EXERCISES 4.7

Root-Finding

- 1. Use Newton's method to estimate the solutions of the equation $x^2 + x 1 = 0$. Start with $x_0 = -1$ for the left-hand solution and with $x_0 = 1$ for the solution on the right. Then, in each case, find x_2 .
- **2.** Use Newton's method to estimate the one real solution of $x^3 + 3x + 1 = 0$. Start with $x_0 = 0$ and then find x_2 .
- **3.** Use Newton's method to estimate the two zeros of the function $f(x) = x^4 + x 3$. Start with $x_0 = -1$ for the left-hand zero and with $x_0 = 1$ for the zero on the right. Then, in each case, find x_2 .
- **4.** Use Newton's method to estimate the two zeros of the function $f(x) = 2x x^2 + 1$. Start with $x_0 = 0$ for the left-hand zero and with $x_0 = 2$ for the zero on the right. Then, in each case, find x_2 .
- 5. Use Newton's method to find the positive fourth root of 2 by solving the equation $x^4 2 = 0$. Start with $x_0 = 1$ and find x_2 .
- 6. Use Newton's method to find the negative fourth root of 2 by solving the equation $x^4 2 = 0$. Start with $x_0 = -1$ and find x_2 .

Theory, Examples, and Applications

- 7. Guessing a root Suppose that your first guess is lucky, in the sense that x_0 is a root of f(x) = 0. Assuming that $f'(x_0)$ is defined and not 0, what happens to x_1 and later approximations?
- 8. Estimating pi You plan to estimate $\pi/2$ to five decimal places by using Newton's method to solve the equation $\cos x = 0$. Does it matter what your starting value is? Give reasons for your answer.
- **9.** Oscillation Show that if h > 0, applying Newton's method to

$$f(x) = \begin{cases} \sqrt{x}, & x \ge 0\\ \sqrt{-x}, & x < 0 \end{cases}$$

leads to $x_1 = -h$ if $x_0 = h$ and to $x_1 = h$ if $x_0 = -h$. Draw a picture that shows what is going on.

- 10. Approximations that get worse and worse Apply Newton's method to $f(x) = x^{1/3}$ with $x_0 = 1$ and calculate x_1, x_2, x_3 , and x_4 . Find a formula for $|x_n|$. What happens to $|x_n|$ as $n \to \infty$? Draw a picture that shows what is going on.
- **11.** Explain why the following four statements ask for the same information:
 - i) Find the roots of $f(x) = x^3 3x 1$.
 - ii) Find the x-coordinates of the intersections of the curve $y = x^3$ with the line y = 3x + 1.

- iii) Find the *x*-coordinates of the points where the curve $y = x^3 3x$ crosses the horizontal line y = 1.
- iv) Find the values of x where the derivative of $g(x) = (1/4)x^4 (3/2)x^2 x + 5$ equals zero.
- 12. Locating a planet To calculate a planet's space coordinates, we have to solve equations like $x = 1 + 0.5 \sin x$. Graphing the function $f(x) = x 1 0.5 \sin x$ suggests that the function has a root near x = 1.5. Use one application of Newton's method to improve this estimate. That is, start with $x_0 = 1.5$ and find x_1 . (The value of the root is 1.49870 to five decimal places.) Remember to use radians.
- **T** 13. A program for using Newton's method on a grapher Let $f(x) = x^3 + 3x + 1$. Here is a home screen program to perform the computations in Newton's method.
 - **a.** Let $y_0 = f(x)$ and $y_1 = \text{NDER } f(x)$.
 - **b.** Store $x_0 = -0.3$ into *x*.
 - **c.** Then store $x (y_0/y_1)$ into x and press the Enter key over and over. Watch as the numbers converge to the zero of f.
 - **d.** Use different values for x_0 and repeat steps (b) and (c).
 - e. Write your own equation and use this approach to solve it using Newton's method. Compare your answer with the answer given by the built-in feature of your calculator that gives zeros of functions.
- **T 14.** (*Continuation of Exercise 11.*)
 - **a.** Use Newton's method to find the two negative zeros of $f(x) = x^3 3x 1$ to five decimal places.
 - **b.** Graph $f(x) = x^3 3x 1$ for $-2 \le x \le 2.5$. Use the Zoom and Trace features to estimate the zeros of f to five decimal places.
 - **c.** Graph $g(x) = 0.25x^4 1.5x^2 x + 5$. Use the Zoom and Trace features with appropriate rescaling to find, to five decimal places, the values of x where the graph has horizontal tangents.
- **T** 15. Intersecting curves The curve $y = \tan x$ crosses the line y = 2x between x = 0 and $x = \pi/2$. Use Newton's method to find where.
- **T** 16. Real solutions of a quartic Use Newton's method to find the two real solutions of the equation $x^4 2x^3 x^2 2x + 2 = 0$.
- **T** 17. a. How many solutions does the equation $\sin 3x = 0.99 x^2$ have?
 - **b.** Use Newton's method to find them.

T 18. Intersection of curves

- **a.** Does $\cos 3x$ ever equal x? Give reasons for your answer.
- b. Use Newton's method to find where.
- **T** 19. Find the four real zeros of the function $f(x) = 2x^4 4x^2 + 1$.
- **T** 20. Estimating pi Estimate π to as many decimal places as your calculator will display by using Newton's method to solve the equation $\tan x = 0$ with $x_0 = 3$.
 - **21.** At what values(s) of x does $\cos x = 2x$?
 - **22.** At what value(s) of x does $\cos x = -x$?
 - **23.** Use the Intermediate Value Theorem from Section 2.6 to show that $f(x) = x^3 + 2x 4$ has a root between x = 1 and x = 2. Then find the root to five decimal places.
 - **24.** Factoring a quartic Find the approximate values of r_1 through r_4 in the factorization

$$8x^{4} - 14x^{3} - 9x^{2} + 11x - 1 = 8(x - r_{1})(x - r_{2})(x - r_{3})(x - r_{4}).$$

T 25. Converging to different zeros Use Newton's method to find the zeros of $f(x) = 4x^4 - 4x^2$ using the given starting values (Figure 4.52).

a.
$$x_0 = -2$$
 and $x_0 = -0.8$, lying in $\left(-\infty, -\sqrt{2/2}\right)$
b. $x_0 = -0.5$ and $x_0 = 0.25$, lying in $\left(-\sqrt{21/7}, \sqrt{21/7}\right)$
c. $x_0 = 0.8$ and $x_0 = 2$, lying in $\left(\sqrt{2}/2, \infty\right)$
d. $x_0 = -\sqrt{21/7}$ and $x_0 = \sqrt{21/7}$

26. The sonobuoy problem In submarine location problems, it is often necessary to find a submarine's closest point of approach (CPA) to a sonobuoy (sound detector) in the water. Suppose that the submarine travels on the parabolic path $y = x^2$ and that the buoy is located at the point (2, -1/2).

- **a.** Show that the value of *x* that minimizes the distance between the submarine and the buoy is a solution of the equation $x = 1/(x^2 + 1)$.
- **b.** Solve the equation $x = 1/(x^2 + 1)$ with Newton's method.
- 27. Curves that are nearly flat at the root Some curves are so flat that, in practice, Newton's method stops too far from the root to give a useful estimate. Try Newton's method on $f(x) = (x 1)^{40}$ with a starting value of $x_0 = 2$ to see how close your machine comes to the root x = 1.

- 28. Finding a root different from the one sought All three roots of $f(x) = 4x^4 4x^2$ can be found by starting Newton's method near $x = \sqrt{21/7}$. Try it. (See Figure 4.52.)
- **29. Finding an ion concentration** While trying to find the acidity of a saturated solution of magnesium hydroxide in hydrochloric acid, you derive the equation

$$\frac{3.64 \times 10^{-11}}{[\text{H}_3\text{O}^+]^2} = [\text{H}_3\text{O}^+] + 3.6 \times 10^{-4}$$

for the hydronium ion concentration $[H_3O^+]$. To find the value of $[H_3O^+]$, you set $x = 10^4[H_3O^+]$ and convert the equation to

$$x^3 + 3.6x^2 - 36.4 = 0$$

You then solve this by Newton's method. What do you get for *x*? (Make it good to two decimal places.) For $[H_3O^+]$?

T 30. Complex roots If you have a computer or a calculator that can be programmed to do complex-number arithmetic, experiment with Newton's method to solve the equation $z^6 - 1 = 0$. The recursion relation to use is

$$z_{n+1} = z_n - \frac{z_n^6 - 1}{6z_n^5}$$
 or $z_{n+1} = \frac{5}{6}z_n + \frac{1}{6z_n^5}$

Try these starting values (among others): 2, *i*, $\sqrt{3} + i$.