
OVERVIEW One of the great achievements of classical geometry was to obtain formulas
for the areas and volumes of triangles, spheres, and cones. In this chapter we study a
method to calculate the areas and volumes of these and other more general shapes. The
method we develop, called integration, is a tool for calculating much more than areas and
volumes. The integral has many applications in statistics, economics, the sciences, and
engineering. It allows us to calculate quantities ranging from probabilities and averages to
energy consumption and the forces against a dam’s floodgates.

The idea behind integration is that we can effectively compute many quantities by
breaking them into small pieces, and then summing the contributions from each small
part. We develop the theory of the integral in the setting of area, where it most clearly
reveals its nature. We begin with examples involving finite sums. These lead naturally to
the question of what happens when more and more terms are summed. Passing to the limit,
as the number of terms goes to infinity, then gives an integral. While integration and dif-
ferentiation are closely connected, we will not see the roles of the derivative and antideriv-
ative emerge until Section 5.4. The nature of their connection, contained in the Fundamen-
tal Theorem of Calculus, is one of the most important ideas in calculus.
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Estimating with Finite Sums

This section shows how area, average values, and the distance traveled by an object over
time can all be approximated by finite sums. Finite sums are the basis for defining the
integral in Section 5.3.

Area

The area of a region with a curved boundary can be approximated by summing the areas of
a collection of rectangles. Using more rectangles can increase the accuracy of the approxi-
mation.

EXAMPLE 1 Approximating Area

What is the area of the shaded region R that lies above the x-axis, below the graph of
and between the vertical lines and ? (See Figure 5.1.) An archi-

tect might want to know this area to calculate the weight of a custom window with a shape
described by R. Unfortunately, there is no simple geometric formula for calculating the
areas of shapes having curved boundaries like the region R.
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5.1 

0.5 1

0.5

0

1

x

y

R

y � 1 � x2

FIGURE 5.1 The area of the region
R cannot be found by a simple
geometry formula (Example 1).
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While we do not yet have a method for determining the exact area of R, we can ap-
proximate it in a simple way. Figure 5.2a shows two rectangles that together contain the re-
gion R. Each rectangle has width and they have heights 1 and moving from left to
right. The height of each rectangle is the maximum value of the function ƒ, obtained by
evaluating ƒ at the left endpoint of the subinterval of [0, 1] forming the base of the rectan-
gle. The total area of the two rectangles approximates the area A of the region R,

This estimate is larger than the true area A, since the two rectangles contain R. We say that
0.875 is an upper sum because it is obtained by taking the height of each rectangle as the
maximum (uppermost) value of ƒ(x) for x a point in the base interval of the rectangle. In
Figure 5.2b, we improve our estimate by using four thinner rectangles, each of width 
which taken together contain the region R. These four rectangles give the approximation

which is still greater than A since the four rectangles contain R.
Suppose instead we use four rectangles contained inside the region R to estimate the

area, as in Figure 5.3a. Each rectangle has width as before, but the rectangles are
shorter and lie entirely beneath the graph of ƒ. The function is decreasing
on [0, 1], so the height of each of these rectangles is given by the value of ƒ at the right
endpoint of the subinterval forming its base. The fourth rectangle has zero height and
therefore contributes no area. Summing these rectangles with heights equal to the mini-
mum value of ƒ(x) for x a point in each base subinterval, gives a lower sum approximation
to the area,

This estimate is smaller than the area A since the rectangles all lie inside of the region R.
The true value of A lies somewhere between these lower and upper sums:
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FIGURE 5.2 (a) We get an upper estimate of the area of R by using two
rectangles containing R. (b) Four rectangles give a better upper estimate. Both
estimates overshoot the true value for the area.
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By considering both lower and upper sum approximations we get not only estimates
for the area, but also a bound on the size of the possible error in these estimates since the
true value of the area lies somewhere between them. Here the error cannot be greater than
the difference 

Yet another estimate can be obtained by using rectangles whose heights are the values
of ƒ at the midpoints of their bases (Figure 5.3b). This method of estimation is called the
midpoint rule for approximating the area. The midpoint rule gives an estimate that is be-
tween a lower sum and an upper sum, but it is not clear whether it overestimates or under-
estimates the true area. With four rectangles of width as before, the midpoint rule esti-
mates the area of R to be

In each of our computed sums, the interval [a, b] over which the function ƒ is defined
was subdivided into n subintervals of equal width (also called length) 
and ƒ was evaluated at a point in each subinterval: in the first subinterval, in the sec-
ond subinterval, and so on. The finite sums then all take the form

By taking more and more rectangles, with each rectangle thinner than before, it appears
that these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of
equal width. The sum of their areas is 0.634765625, which appears close to the true area,
but is still smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width.
The sum of their areas is 0.697265625, which is somewhat larger than the true area be-
cause the rectangles taken together contain R. The midpoint rule for 16 rectangles gives a
total area approximation of 0.6669921875, but it is not immediately clear whether this es-
timate is larger or smaller than the true area.
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0.78125 - 0.53125 = 0.25.
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FIGURE 5.3 (a) Rectangles contained in R give an estimate for the area that undershoots
the true value. (b) The midpoint rule uses rectangles whose height is the value of 
at the midpoints of their bases.
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FIGURE 5.4 (a) A lower sum using 16
rectangles of equal width 
(b) An upper sum using 16 rectangles.

¢x = 1>16.
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Table 5.1 shows the values of upper and lower sum approximations to the area of R us-
ing up to 1000 rectangles. In Section 5.2 we will see how to get an exact value of the areas
of regions such as R by taking a limit as the base width of each rectangle goes to zero and
the number of rectangles goes to infinity. With the techniques developed there, we will be
able to show that the area of R is exactly  .

Distance Traveled

Suppose we know the velocity function y(t) of a car moving down a highway, without chang-
ing direction, and want to know how far it traveled between times and If we al-
ready know an antiderivative F(t) of y(t) we can find the car’s position function s(t) by setting

The distance traveled can then be found by calculating the change in po-
sition, (see Exercise 93, Section 4.8). If the velocity function is determined by
recording a speedometer reading at various times on the car, then we have no formula from
which to obtain an antiderivative function for velocity. So what do we do in this situation?

When we don’t know an antiderivative for the velocity function y(t), we can approxi-
mate the distance traveled in the following way. Subdivide the interval [a, b] into short
time intervals on each of which the velocity is considered to be fairly constant. Then ap-
proximate the distance traveled on each time subinterval with the usual distance formula

and add the results across [a, b].
Suppose the subdivided interval looks like

with the subintervals all of equal length Pick a number in the first interval. If is
so small that the velocity barely changes over a short time interval of duration then the
distance traveled in the first time interval is about If is a number in the second
interval, the distance traveled in the second time interval is about The sum of the
distances traveled over all the time intervals is

where n is the total number of subintervals.

D L yst1d ¢t + yst2d ¢t +
Á

+ ystnd ¢t ,
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t2yst1d ¢t .

¢t ,
¢tt1¢t .
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�t �t �t
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distance = velocity * time

ssbd - ssad
sstd = Fstd + C .

t = b .t = a

2>3
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TABLE 5.1 Finite approximations for the area of R

Number of
subintervals Lower sum Midpoint rule Upper sum

2 .375 .6875 .875

4 .53125 .671875 .78125

16 .634765625 .6669921875 .697265625

50 .6566 .6667 .6766

100 .66165 .666675 .67165

1000 .6661665 .66666675 .6671665
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EXAMPLE 2 Estimating the Height of a Projectile

The velocity function of a projectile fired straight into the air is 
Use the summation technique just described to estimate how far the projectile rises during
the first 3 sec. How close do the sums come to the exact figure of 435.9 m?

Solution We explore the results for different numbers of intervals and different choices
of evaluation points. Notice that ƒ(t) is decreasing, so choosing left endpoints gives an up-
per sum estimate; choosing right endpoints gives a lower sum estimate.

(a) Three subintervals of length 1, with ƒ evaluated at left endpoints giving an upper sum:

With ƒ evaluated at and 2, we have

(b) Three subintervals of length 1, with ƒ evaluated at right endpoints giving a lower sum:

With ƒ evaluated at and 3, we have

(c) With six subintervals of length , we get

An upper sum using left endpoints: a lower sum using right endpoints:

These six-interval estimates are somewhat closer than the three-interval estimates.
The results improve as the subintervals get shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value
435.9 from above, whereas the right-endpoint lower sums approach it from below. The true

D L 428.55.
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value lies between these upper and lower sums. The magnitude of the error in the closest
entries is 0.23, a small percentage of the true value.

It would be reasonable to conclude from the table’s last entries that the projectile rose
about 436 m during its first 3 sec of flight.

Displacement Versus Distance Traveled

If a body with position function s(t) moves along a coordinate line without changing direc-
tion, we can calculate the total distance it travels from to by summing the dis-
tance traveled over small intervals, as in Example 2. If the body changes direction one or
more times during the trip, then we need to use the body’s speed which is the ab-
solute value of its velocity function, y(t), to find the total distance traveled. Using the ve-
locity itself, as in Example 2, only gives an estimate to the body’s displacement,

the difference between its initial and final positions.
To see why, partition the time interval [a, b] into small enough equal subintervals 

so that the body’s velocity does not change very much from time to Then 
gives a good approximation of the velocity throughout the interval. Accordingly, the
change in the body’s position coordinate during the time interval is about

The change is positive if is positive and negative if is negative.
In either case, the distance traveled during the subinterval is about

The total distance traveled is approximately the sum

ƒ yst1d ƒ  ¢t + ƒ yst2d ƒ ¢t +
Á

+ ƒ ystnd ƒ  ¢t .

ƒ ystkd ƒ  ¢t .
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ystkd ¢t .

ystkdtk .tk - 1

¢t
ssbd - ssad ,

ƒ ystd ƒ ,

t = bt = a

 Error percentage =

0.23
435.9

L 0.05%.

 = ƒ 435.9 - 435.67 ƒ = 0.23.

 Error magnitude = ƒ true value - calculated value ƒ
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TABLE 5.2 Travel-distance estimates

Number of Length of each Upper Lower
subintervals subinterval sum sum

3 1 450.6 421.2

6 443.25 428.55

12 439.57 432.22

24 437.74 434.06

48 436.82 434.98

96 436.36 435.44

192 436.13 435.671>64

1>32

1>16

1>8
1>4
1>2
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Average Value of a Nonnegative Function

The average value of a collection of n numbers is obtained by adding them
together and dividing by n. But what is the average value of a continuous function ƒ on an
interval [a, b]? Such a function can assume infinitely many values. For example, the tem-
perature at a certain location in a town is a continuous function that goes up and down
each day. What does it mean to say that the average temperature in the town over the
course of a day is 73 degrees?

When a function is constant, this question is easy to answer. A function with constant
value c on an interval [a, b] has average value c. When c is positive, its graph over [a, b]
gives a rectangle of height c. The average value of the function can then be interpreted
geometrically as the area of this rectangle divided by its width (Figure 5.5a).

What if we want to find the average value of a nonconstant function, such as the func-
tion g in Figure 5.5b? We can think of this graph as a snapshot of the height of some water
that is sloshing around in a tank, between enclosing walls at and As the wa-
ter moves, its height over each point changes, but its average height remains the same. To
get the average height of the water, we let it settle down until it is level and its height is
constant. The resulting height c equals the area under the graph of g divided by We
are led to define the average value of a nonnegative function on an interval [a, b] to be the
area under its graph divided by For this definition to be valid, we need a precise
understanding of what is meant by the area under a graph. This will be obtained in Section
5.3, but for now we look at two simple examples.

EXAMPLE 3 The Average Value of a Linear Function

What is the average value of the function on the interval [0, 2]?

Solution The average equals the area under the graph divided by the width of the inter-
val. In this case we do not need finite approximation to estimate the area of the region un-
der the graph: a triangle of height 6 and base 2 has area 6 (Figure 5.6). The width of the
interval is The average value of the function is 

EXAMPLE 4 The Average Value of sin x

Estimate the average value of the function on the interval 

Solution Looking at the graph of sin x between 0 and in Figure 5.7, we can see
that its average height is somewhere between 0 and 1. To find the average we need to

p

[0, p] .ƒsxd = sin x

6>2 = 3.b - a = 2 - 0 = 2.

ƒsxd = 3x

b - a .

b - a .

x = b .x = a

b - a

x1, x2 , Á , xn
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the rectangle divided by (b) The average value of g (x) on [a, b]
is the area beneath its graph divided by b - a .

b - a .
ƒsxd = c

1 2 3

2

0

4

6

x

y

f (x) � 3x

FIGURE 5.6 The average
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[0, 2] is 3 (Example 3).
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calculate the area A under the graph and then divide this area by the length of the interval,

We do not have a simple way to determine the area, so we approximate it with finite
sums. To get an upper sum estimate, we add the areas of four rectangles of equal width

that together contain the region beneath the graph of and above the x-axis
on We choose the heights of the rectangles to be the largest value of sin x on each
subinterval. Over a particular subinterval, this largest value may occur at the left endpoint,
the right endpoint, or somewhere between them. We evaluate sin x at this point to get the
height of the rectangle for an upper sum. The sum of the rectangle areas then estimates the
total area (Figure 5.7a):

To estimate the average value of sin x we divide the estimated area by and obtain the ap-
proximation 

If we use eight rectangles of equal width all lying above the graph of 
(Figure 5.7b), we get the area estimate

Dividing this result by the length of the interval gives a more accurate estimate of 0.753
for the average. Since we used an upper sum to approximate the area, this estimate is still
greater than the actual average value of sin x over If we use more and more rectan-
gles, with each rectangle getting thinner and thinner, we get closer and closer to the true
average value. Using the techniques of Section 5.3, we will show that the true average
value is 

As before, we could just as well have used rectangles lying under the graph of
and calculated a lower sum approximation, or we could have used the midpoint

rule. In Section 5.3, we will see that it doesn’t matter whether our approximating rectan-
gles are chosen to give upper sums, lower sums, or a sum in between. In each case, the ap-
proximations are close to the true area if all the rectangles are sufficiently thin.
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FIGURE 5.7 Approximating the area under between 0 and 
to compute the average value of sin x over using (a) four rectangles;
(b) eight rectangles (Example 4).

[0, p] ,
pƒsxd = sin x
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Summary

The area under the graph of a positive function, the distance traveled by a moving object
that doesn’t change direction, and the average value of a nonnegative function over an in-
terval can all be approximated by finite sums. First we subdivide the interval into subinter-
vals, treating the appropriate function ƒ as if it were constant over each particular subinter-
val. Then we multiply the width of each subinterval by the value of ƒ at some point within
it, and add these products together. If the interval [a, b] is subdivided into n subintervals of
equal widths and if is the value of ƒ at the chosen point in the
k th subinterval, this process gives a finite sum of the form

The choices for the could maximize or minimize the value of ƒ in the k th subinterval, or
give some value in between. The true value lies somewhere between the approximations
given by upper sums and lower sums. The finite sum approximations we looked at im-
proved as we took more subintervals of thinner width.

ck

ƒsc1d ¢x + ƒsc2d ¢x + ƒsc3d ¢x +
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ckƒsckd¢x = sb - ad>n ,
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