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Sigma Notation and Limits of Finite Sums

In estimating with finite sums in Section 5.1, we often encountered sums with many terms
(up to 1000 in Table 5.1, for instance). In this section we introduce a notation to write
sums with a large number of terms. After describing the notation and stating several of its
properties, we look at what happens to a finite sum approximation as the number of terms
approaches infinity.

5.2 
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Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

The Greek letter (capital sigma, corresponding to our letter S), stands for “sum.” The
index of summation k tells us where the sum begins (at the number below the symbol)
and where it ends (at the number above ). Any letter can be used to denote the index, but
the letters i, j, and k are customary.

Thus we can write

and

The sigma notation used on the right side of these equations is much more compact than
the summation expressions on the left side.

EXAMPLE 1 Using Sigma Notation

ƒs1d + ƒs2d + ƒs3d +
Á

+ ƒs100d = a
100

i = 1
ƒsid .

12
+ 22

+ 32
+ 42

+ 52
+ 62

+ 72
+ 82

+ 92
+ 102

+ 112
= a

11

k = 1
k2 ,

�
k � 1

ak

n
The index k ends at k � n.

The index k starts at k � 1.

ak is a formula for the kth term.
The summation symbol
(Greek letter sigma)

©

©

©

a
n

k = 1
ak = a1 + a2 + a3 +

Á
+ an - 1 + an .
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The sum in The sum written out, one The value
sigma notation term for each value of k of the sum

15

16
3

+

25
4

=

139
12

42

4 - 1
+

52

5 - 1a
5

k = 4
 

k2

k - 1

1
2

+
2
3

=

7
6

1
1 + 1

+
2

2 + 1a
2

k = 1
 

k
k + 1

-1 + 2 - 3 = -2s -1d1s1d + s -1d2s2d + s -1d3s3da
3

k = 1
s -1dk k

1 + 2 + 3 + 4 + 5a
5

k = 1
k

The lower limit of summation does not have to be 1; it can be any integer.
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EXAMPLE 2 Using Different Index Starting Values

Express the sum in sigma notation.

Solution The formula generating the terms changes with the lower limit of summation,
but the terms generated remain the same. It is often simplest to start with or 

When we have a sum such as

we can rearrange its terms,

Regroup terms.

This illustrates a general rule for finite sums:

Four such rules are given below. A proof that they are valid can be obtained using mathe-
matical induction (see Appendix 1).

a
n

k = 1
sak + bkd = a

n

k = 1
ak + a

n

k = 1
bk

 = a
3

k = 1
 k + a

3

k = 1
 k

2

 = s1 + 2 + 3d + s12
+ 22

+ 32d

 a
3

k = 1
sk + k2d = s1 + 12d + s2 + 22d + s3 + 32d

a
3

k = 1
sk + k2d

 Starting with k = -3:  1 + 3 + 5 + 7 + 9 = a
1

k = -3
s2k + 7d

 Starting with k = 2:  1 + 3 + 5 + 7 + 9 = a
6

k = 2
s2k - 3d

 Starting with k = 1:  1 + 3 + 5 + 7 + 9 = a
5

k = 1
s2k - 1d

 Starting with k = 0:  1 + 3 + 5 + 7 + 9 = a
4

k = 0
s2k + 1d

k = 1.k = 0

1 + 3 + 5 + 7 + 9
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Algebra Rules for Finite Sums

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule: (Any number c)

4. Constant Value Rule: (c is any constant value.)a
n

k = 1
c = n # c

a
n

k = 1
cak = c # a

n

k = 1
ak

a
n

k = 1
(ak - bk) = a

n

k = 1
ak - a

n

k = 1
bk

a
n

k = 1
(ak + bk) = a

n

k = 1
ak + a

n

k = 1
bk
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EXAMPLE 3 Using the Finite Sum Algebra Rules

(a)

(b)

(c) Sum Rule

(d)

Over the years people have discovered a variety of formulas for the values of finite sums. The
most famous of these are the formula for the sum of the first n integers (Gauss may have dis-
covered it at age 8) and the formulas for the sums of the squares and cubes of the first n integers.

EXAMPLE 4 The Sum of the First n Integers

Show that the sum of the first n integers is

Solution: The formula tells us that the sum of the first 4 integers is

Addition verifies this prediction:

To prove the formula in general, we write out the terms in the sum twice, once forward and
once backward.

If we add the two terms in the first column we get Similarly, if we add
the two terms in the second column we get The two terms in any
column sum to When we add the n columns together we get n terms, each equal to

for a total of Since this is twice the desired quantity, the sum of the first
n integers is 

Formulas for the sums of the squares and cubes of the first n integers are proved using
mathematical induction (see Appendix 1). We state them here.

sndsn + 1d>2.
nsn + 1d .n + 1,

n + 1.
2 + sn - 1d = n + 1.

1 + n = n + 1.

1 + 2 + 3 +
Á

+ n

n + sn - 1d + sn - 2d +
Á

+ 1

1 + 2 + 3 + 4 = 10.

s4ds5d
2

= 10.

a
n

k = 1
k =

nsn + 1d
2

.

a
n

k = 1
 
1
n = n # 1

n = 1

 = 6 + 12 = 18

 = s1 + 2 + 3d + s3 # 4d

 a
3

k = 1
sk + 4d = a

3

k = 1
k + a

3

k = 1
4

a
n

k = 1
s -akd = a

n

k = 1
s -1d # ak = -1 # a

n

k = 1
ak = -a

n

k = 1
ak

a
n

k = 1
s3k - k2d = 3a

n

k = 1
k - a

n

k = 1
k2
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Difference Rule
and Constant
Multiple Rule

Constant
Multiple Rule

Constant
Value Rule

Constant Value Rule
( is constant)1>n

 The first n cubes: a
n

k = 1
k3

= ansn + 1d
2

b2

The first n squares:   a
n

k = 1
k2

=

nsn + 1ds2n + 1d
6

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)
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Limits of Finite Sums

The finite sum approximations we considered in Section 5.1 got more accurate as the
number of terms increased and the subinterval widths (lengths) became thinner. The next
example shows how to calculate a limiting value as the widths of the subintervals go to
zero and their number grows to infinity.

EXAMPLE 5 The Limit of Finite Approximations to an Area

Find the limiting value of lower sum approximations to the area of the region R below the
graph of and above the interval [0, 1] on the x-axis using equal width rectan-
gles whose widths approach zero and whose number approaches infinity. (See Figure 5.4a.)

Solution We compute a lower sum approximation using n rectangles of equal width
and then we see what happens as We start by subdividing

[0, 1] into n equal width subintervals

Each subinterval has width . The function is decreasing on [0, 1], and its small-
est value in a subinterval occurs at the subinterval’s right endpoint. So a lower sum is con-
structed with rectangles whose height over the subinterval is 

giving the sum

We write this in sigma notation and simplify,

Difference Rule

Sum of the First n Squares

Numerator expanded

We have obtained an expression for the lower sum that holds for any n. Taking the
limit of this expression as we see that the lower sums converge as the number of
subintervals increases and the subinterval widths approach zero:

The lower sum approximations converge to .A similar calculation shows that the up-
per sum approximations also converge to (Exercise 35). Any finite sum approximation,
in the sense of our summary at the end of Section 5.1, also converges to the same value

2>3 2>3
lim

n: q

a1 -

2n3
+ 3n2

+ n
6n3 b = 1 -

2
6

=
2
3

.

n : q ,

 = 1 -

2n3
+ 3n2

+ n
6n3 .

 = 1 - a 1
n3 b  

sndsn + 1ds2n + 1d
6

 = n # 1
n -

1
n3a

n

k = 1
k2

 = a
n

k = 1
 
1
n - a

n

k = 1
 
k2

n3

 = a
n

k = 1
 a1n -

k2

n3 b
 a

n

k = 1
ƒ ak

n b a1n b = a
n

k = 1
a1 - ak

n b
2b a1n b

ƒ a1n b a1n b + ƒ a2n b a1n b +
Á

+ ƒ ak
n b a1n b +

Á
+ ƒ ann b a1n b .

1 - sk>nd2 ,
ƒsk>nd =[sk - 1d>n, k>n]

1 - x21>n
c0, 

1
n d , c1n , 

2
n d , Á , cn - 1

n , n d .

n : q .¢x = s1 - 0d>n ,

y = 1 - x2
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Constant Value and
Constant Multiple Rules
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. This is because it is possible to show that any finite sum approximation is trapped be-
tween the lower and upper sum approximations. For this reason we are led to define the
area of the region R as this limiting value. In Section 5.3 we study the limits of such finite
approximations in their more general setting.

Riemann Sums

The theory of limits of finite approximations was made precise by the German mathemati-
cian Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies
the theory of the definite integral studied in the next section.

We begin with an arbitrary function ƒ defined on a closed interval [a, b]. Like the
function pictured in Figure 5.8, ƒ may have negative as well as positive values. We subdi-
vide the interval [a, b] into subintervals, not necessarily of equal widths (or lengths), and
form sums in the same way as for the finite approximations in Section 5.1. To do so, we
choose points between a and b and satisfying

To make the notation consistent, we denote a by and b by so that

The set

is called a partition of [a, b].
The partition P divides [a, b] into n closed subintervals

The first of these subintervals is the second is and the k th subinterval of
P is for k an integer between 1 and n.[xk - 1, xk] ,

[x1, x2] ,[x0 , x1] ,

[x0 , x1], [x1, x2], Á , [xn - 1, xn] .

P = 5x0 , x1, x2 , Á , xn - 1, xn6

a = x0 6 x1 6 x2 6
Á

6 xn - 1 6 xn = b .

xn ,x0

a 6 x1 6 x2 6
Á

6 xn - 1 6 b .

5x1, x2 , x3 , Á , xn - 16n - 1

2>3
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HISTORICAL BIOGRAPHY

Georg Friedrich
Bernhard Riemann
(1826–1866)

x

y

ba

y � f (x)

FIGURE 5.8 A typical continuous function over a closed interval [a, b].y = ƒsxd
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The width of the first subinterval is denoted the width of the second
is denoted and the width of the k th subinterval is If all n

subintervals have equal width, then the common width is equal to 

In each subinterval we select some point. The point chosen in the kth subinterval
is called Then on each subinterval we stand a vertical rectangle that stretches

from the x-axis to touch the curve at These rectangles can be above or below
the x-axis, depending on whether is positive or negative, or on it if (Figure
5.9).

On each subinterval we form the product This product is positive, nega-
tive or zero, depending on the sign of When the product is
the area of a rectangle with height and width When the product

is a negative number, the negative of the area of a rectangle of width that
drops from the x-axis to the negative number 

Finally we sum all these products to get

SP = a
n

k = 1
ƒsckd ¢xk .

ƒsckd .
¢xkƒsckd #

¢xk

ƒsckd 6 0,¢xk .ƒsckd
ƒsckd #

¢xkƒsckd 7 0,ƒsckd .
ƒsckd #

¢xk .

ƒsckd = 0ƒsckd
sck , ƒsckdd .

ck .[xk - 1, xk]

x
• • • • • •x0 � a x1 x2 xk�1 xk xn�1 xn � b

�xn�xk�x1 �x2

sb - ad>n .¢x
¢xk = xk - xk - 1 .¢x2 ,[x1, x2]

¢x1 ,[x0 , x1]

x

• • • • • •

kth subinterval

x0 � a xn � bx1 x2 xk�1 xn�1xk
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x

y

0

(c2,  f (c2))

(c1,  f (c1))

x0 � a x1 x2 xk�1 xk xn�1 xn � b

ck cn
c2c1

kth rectangle

(ck,  f (ck))

y � f (x)
(cn,  f (cn))

FIGURE 5.9 The rectangles approximate the region between the graph of the function
and the x-axis.y = ƒsxd
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The sum is called a Riemann sum for ƒ on the interval [a, b]. There are many such sums,
depending on the partition P we choose, and the choices of the points in the subintervals.

In Example 5, where the subintervals all had equal widths we could make
them thinner by simply increasing their number n. When a partition has subintervals of
varying widths, we can ensure they are all thin by controlling the width of a widest
(longest) subinterval. We define the norm of a partition P, written to be the largest of
all the subinterval widths. If is a small number, then all of the subintervals in the parti-
tion P have a small width. Let’s look at an example of these ideas.

EXAMPLE 6 Partitioning a Closed Interval

The set is a partition of [0, 2]. There are five subintervals of P:
[0, 0.2], [0.2, 0.6], [0.6, 1], [1, 1.5], and [1.5, 2]:

The lengths of the subintervals are and
The longest subinterval length is 0.5, so the norm of the partition is

In this example, there are two subintervals of this length.

Any Riemann sum associated with a partition of a closed interval [a, b] defines rec-
tangles that approximate the region between the graph of a continuous function ƒ and the
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the
next section that if the function ƒ is continuous over the closed interval [a, b], then no mat-
ter how we choose the partition P and the points in its subintervals to construct a Rie-
mann sum, a single limiting value is approached as the subinterval widths, controlled by
the norm of the partition, approach zero.

ck

7P 7 = 0.5.
¢x5 = 0.5.

¢x1 = 0.2, ¢x2 = 0.4, ¢x3 = 0.4, ¢x4 = 0.5,

x 

�x1 �x2 �x3

0 0.2 0.6 1 1.5 2

�x4 �x5

P = {0, 0.2, 0.6, 1, 1.5, 2}

7P 7 7P 7 ,

¢x = 1>n ,
ck

SP
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(a)

(b)

x
0 ba

y

y

x
0 ba

y � f (x)

y � f (x)

FIGURE 5.10 The curve of Figure 5.9 with
rectangles from finer partitions of [a, b].
Finer partitions create collections of
rectangles with thinner bases that approx-
imate the region between the graph of ƒ and
the x-axis with increasing accuracy.
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