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The Fundamental Theorem of Calculus

In this section we present the Fundamental Theorem of Calculus, which is the central the-
orem of integral calculus. It connects integration and differentiation, enabling us to com-
pute integrals using an antiderivative of the integrand function rather than by taking limits
of Riemann sums as we did in Section 5.3. Leibniz and Newton exploited this relationship
and started mathematical developments that fueled the scientific revolution for the next
200 years.

Along the way, we present the integral version of the Mean Value Theorem, which is an-
other important theorem of integral calculus and used to prove the Fundamental Theorem.

Mean Value Theorem for Definite Integrals

In the previous section, we defined the average value of a continuous function over a
closed interval [a, b] as the definite integral divided by the length or width

of the interval. The Mean Value Theorem for Definite Integrals asserts that this av-
erage value is always taken on at least once by the function ƒ in the interval.

The graph in Figure 5.16 shows a positive continuous function defined over
the interval [a, b]. Geometrically, the Mean Value Theorem says that there is a number c in
[a, b] such that the rectangle with height equal to the average value ƒ(c) of the function
and base width has exactly the same area as the region beneath the graph of ƒ from
a to b.
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FIGURE 5.16 The value ƒ(c) in the
Mean Value Theorem is, in a sense, the
average (or mean) height of ƒ on [a, b].
When the area of the rectangle
is the area under the graph of ƒ from a
to b,

ƒscdsb - ad = L
b

a
 ƒsxd dx .

ƒ Ú 0,

THEOREM 3 The Mean Value Theorem for Definite Integrals
If ƒ is continuous on [a, b], then at some point c in [a, b],

ƒscd =
1

b - a
 L

b

a
ƒsxd dx .
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Proof If we divide both sides of the Max-Min Inequality (Table 5.3, Rule 6) by 
we obtain

Since ƒ is continuous, the Intermediate Value Theorem for Continuous Functions (Section
2.6) says that ƒ must assume every value between min ƒ and max ƒ. It must therefore as-

sume the value at some point c in [a, b].

The continuity of ƒ is important here. It is possible that a discontinuous function never
equals its average value (Figure 5.17).

EXAMPLE 1 Applying the Mean Value Theorem for Integrals

Find the average value of on [0, 3] and where ƒ actually takes on this value
at some point in the given domain.

Solution

Section 5.3, Eqs. (1) and (2)

The average value of over [0, 3] is . The function assumes this value
when or (Figure 5.18)

In Example 1, we actually found a point c where ƒ assumed its average value by set-
ting ƒ(x) equal to the calculated average value and solving for x. It’s not always possible to
solve easily for the value c. What else can we learn from the Mean Value Theorem for inte-
grals? Here’s an example.

EXAMPLE 2 Show that if ƒ is continuous on and if

then at least once in [a, b].

Solution The average value of ƒ on [a, b] is

By the Mean Value Theorem, ƒ assumes this value at some point c H  [a, b] .

avsƒd =
1

b - a
 L

b

a
ƒsxd dx =

1
b - a

 #  0 = 0.

ƒsxd = 0

L
b

a
ƒsxd dx = 0,

[a, b], a Z b ,

x = 3>2.4 - x = 5>2 5>2ƒsxd = 4 - x

 = 4 -

3
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5
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.

 =
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2
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2
b b

 =
1

3 - 0
 L

3

0
s4 - xd dx =

1
3

 aL
3

0
4 dx - L

3

0
x dxb

 avsƒd =
1

b - a
 L

b

a
ƒsxd dx

ƒsxd = 4 - x

s1>sb - add1b
a ƒsxd dx

min ƒ …
1

b - a
 L

b

a
ƒsxd dx … max ƒ.

sb - ad ,
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FIGURE 5.17 A discontinuous function
need not assume its average value.
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FIGURE 5.18 The area of the rectangle
with base [0, 3] and height (the average
value of the function ) is
equal to the area between the graph of ƒ
and the x-axis from 0 to 3 (Example 1).

ƒsxd = 4 - x
5>2
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Fundamental Theorem, Part 1

If ƒ(t) is an integrable function over a finite interval I, then the integral from any fixed
number to another number defines a new function F whose value at x is

(1)

For example, if ƒ is nonnegative and x lies to the right of a, then F(x) is the area under the
graph from a to x (Figure 5.19). The variable x is the upper limit of integration of an inte-
gral, but F is just like any other real-valued function of a real variable. For each value of
the input x, there is a well-defined numerical output, in this case the definite integral of ƒ
from a to x.

Equation (1) gives a way to define new functions, but its importance now is the con-
nection it makes between integrals and derivatives. If ƒ is any continuous function, then
the Fundamental Theorem asserts that F is a differentiable function of x whose derivative
is ƒ itself. At every value of x,

To gain some insight into why this result holds, we look at the geometry behind it.
If on [a, b], then the computation of from the definition of the derivative

means taking the limit as of the difference quotient

For the numerator is obtained by subtracting two areas, so it is the area under the
graph of ƒ from x to (Figure 5.20). If h is small, this area is approximately equal to
the area of the rectangle of height ƒ(x) and width h, which can be seen from Figure 5.20.
That is,

Dividing both sides of this approximation by h and letting it is reasonable to expect
that

This result is true even if the function ƒ is not positive, and it forms the first part of the
Fundamental Theorem of Calculus.

F¿sxd = lim
h:0

 
Fsx + hd - Fsxd

h
= ƒsxd .

h : 0,

Fsx + hd - Fsxd L hƒsxd .

x + h
h 7 0,

Fsx + hd - Fsxd
h

.

h : 0
F¿sxdƒ Ú 0

d
dx

 Fsxd =

d
dxL

x

a
ƒstd dt = ƒsxd .

Fsxd = L
x

a
ƒstd dt .

x H  Ia H  I
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FIGURE 5.19 The function F(x) defined
by Equation (1) gives the area under the
graph of ƒ from a to x when ƒ is
nonnegative and x 7 a .

y � f (t)
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y

0 a x x � h b

f (x)

FIGURE 5.20 In Equation (1), F(x) is
the area to the left of x. Also, is
the area to the left of The
difference quotient 
is then approximately equal to ƒ(x), the
height of the rectangle shown here.

[Fsx + hd - Fsxd]>h
x + h .

Fsx + hd

THEOREM 4 The Fundamental Theorem of Calculus Part 1
If ƒ is continuous on [a, b] then is continuous on [a, b] and 

differentiable on and its derivative is 

(2)F¿sxd =

d
dxL

x

a
ƒstd dt = ƒsxd.

ƒsxd ;(a, b)

Fsxd = 1x
a  ƒstd dt

4100 AWL/Thomas_ch05p325-395  8/20/04  9:57 AM  Page 358

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


Before proving Theorem 4, we look at several examples to gain a better understanding
of what it says.

EXAMPLE 3 Applying the Fundamental Theorem

Use the Fundamental Theorem to find

(a)

(b)

(c)

(d)

Solution

(a) Eq. 2 with 

(b) Eq. 2 with 

(c) Rule 1 for integrals in Table 5.3 of Section 5.3 sets this up for the Fundamental Theorem.

Rule 1

(d) The upper limit of integration is not x but This makes y a composite of the two
functions,

We must therefore apply the Chain Rule when finding .

 = 2x cos x2

 = cossx2d # 2x

 = cos u #  
du
dx

 = a d
duL

u

1
 cos t dtb #  

du
dx

 
dy
dx

=

dy
du

 #  
du
dx

dy>dx

y = L
u

1
 cos t dt and u = x2 .

x2 .

 = -3x sin x

 = -

d
dxL

x

5
3t sin t dt

 
dy
dx

=

d
dx

 L
5

x
3t sin t dt =

d
dx

 a-L
x

5
3t sin t dtb

ƒstd =

1

1 + t2

d
dx

 L
x

0
 

1
1 + t2 dt =

1
1 + x2

ƒ(t) = cos t
d
dx

 L
x

a
 cos t dt = cos x

dy
dx
 if y = L

x2

1
 cos t dt

dy
dx
 if y = L

5

x
3t sin t dt

d
dx

 L
x

0
 

1
1 + t2 dt

d
dx

 L
x

a
 cos t dt
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EXAMPLE 4 Constructing a Function with a Given Derivative and Value

Find a function on the domain with derivative

that satisfies the condition 

Solution The Fundamental Theorem makes it easy to construct a function with deriva-
tive tan x that equals 0 at 

Since we have only to add 5 to this function to construct one

with derivative tan x whose value at is 5:

Although the solution to the problem in Example 4 satisfies the two required condi-
tions, you might ask whether it is in a useful form. The answer is yes, since today we have
computers and calculators that are capable of approximating integrals. In Chapter 7 we
will learn to write the solution in Example 4 exactly as

We now give a proof of the Fundamental Theorem for an arbitrary continuous function.

Proof of Theorem 4 We prove the Fundamental Theorem by applying the definition of
the derivative directly to the function F(x), when x and are in This means
writing out the difference quotient

(3)

and showing that its limit as is the number ƒ(x) for each x in .
When we replace and F(x) by their defining integrals, the numerator in

Equation (3) becomes

The Additivity Rule for integrals (Table 5.3, Rule 5) simplifies the right side to

so that Equation (3) becomes

(4) =
1
hL

x + h

x
ƒstd dt .

 
Fsx + hd - Fsxd

h
=

1
h

 [Fsx + hd - Fsxd]

L
x + h

x
ƒstd dt ,

Fsx + hd - Fsxd = L
x + h

a
ƒstd dt - L

x

a
ƒstd dt .

Fsx + hd
(a, b)h : 0

Fsx + hd - Fsxd
h

(a, b).x + h

y = ln ` cos 3
cos x ` + 5.

ƒsxd = L
x

3
 tan t dt + 5.

x = 3

ys3d = L
3

3
 tan t dt = 0,

y = L
x

3
 tan t dt .

x = 3:

ƒs3d = 5.

dy
dx

= tan x

s -p>2, p>2dy = ƒsxd
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According to the Mean Value Theorem for Definite Integrals, the value of the last ex-
pression in Equation (4) is one of the values taken on by ƒ in the interval between x and

That is, for some number c in this interval,

(5)

As approaches x, forcing c to approach x also (because c is trapped between
x and ). Since ƒ is continuous at x, ƒ(c) approaches ƒ(x):

(6)

Going back to the beginning, then, we have

Definition of derivative

Eq. (4)

Eq. (5)

Eq. (6)

If then the limit of Equation (3) is interpreted as a one-sided limit with 
or , respectively. Then Theorem 1 in Section 3.1 shows that F is continuous for
every point of [a, b]. This concludes the proof.

Fundamental Theorem, Part 2 (The Evaluation Theorem)

We now come to the second part of the Fundamental Theorem of Calculus. This part
describes how to evaluate definite integrals without having to calculate limits of Riemann
sums. Instead we find and evaluate an antiderivative at the upper and lower limits of
integration.

h : 0-

h : 0+x = a or b,

 = ƒsxd .

 = lim
h:0 

ƒscd

 = lim
h:0

 
1
hL

x + h

x
ƒstd dt

dF
dx

= lim
h:0

 
Fsx + hd - Fsxd

h

lim
h:0

 ƒscd = ƒsxd .

x + h
h : 0, x + h

1
hL

x + h

x
ƒstd dt = ƒscd .

x + h .
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THEOREM 4 (Continued) The Fundamental Theorem of Calculus Part 2
If ƒ is continuous at every point of [a, b] and F is any antiderivative of ƒ on [a, b],
then

L
b

a
ƒsxd dx = Fsbd - Fsad.

Proof Part 1 of the Fundamental Theorem tells us that an antiderivative of ƒ exists, namely

Thus, if F is any antiderivative of ƒ, then for some constant C for
(by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2).

Since both F and G are continuous on [a, b], we see that also holds
when and by taking one-sided limits (as and x : b -d .x : a+x = bx = a

F(x) = G(x) + C
a 6 x 6 b

Fsxd = Gsxd + C

Gsxd = L
x

a
ƒstd dt .
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Evaluating we have

The theorem says that to calculate the definite integral of ƒ over [a, b] all we need to
do is:

1. Find an antiderivative F of ƒ, and

2. Calculate the number 

The usual notation for is

depending on whether F has one or more terms.

EXAMPLE 5 Evaluating Integrals

(a)

(b)

(c)

The process used in Example 5 was much easier than a Riemann sum computation.
The conclusions of the Fundamental Theorem tell us several things. Equation (2) can

be rewritten as

which says that if you first integrate the function ƒ and then differentiate the result, you get
the function ƒ back again. Likewise, the equation

says that if you first differentiate the function F and then integrate the result, you get the
function F back (adjusted by an integration constant). In a sense, the processes of integra-

L
x

a
 
dF
dt

 dt = L
x

a
ƒstd dt = Fsxd - Fsad

d
dxL

x

a
ƒstd dt =

dF
dx

= ƒsxd ,

 = [8 + 1] - [5] = 4.

 = cs4d3/2
+

4
4
d - cs1d3/2

+
4
1
d

 L
4

1
a3

2
 1x -

4
x2 b  dx = cx3/2

+
4
x d

1

4

L
0

-p>4 sec x tan x dx = sec x d
-p/4

0

= sec 0 - sec a- p
4
b = 1 - 22

L
p

0
 cos x dx = sin x d

0

p

= sin p - sin 0 = 0 - 0 = 0

Fsxd d
a

b or cFsxd d
a

b

,

Fsbd - Fsad
1b

a  
ƒsxd dx = Fsbd - Fsad .

 = L
b

a
ƒstd dt .

 = L
b

a
ƒstd dt - 0

 = L
b

a
ƒstd dt - L

a

a
ƒstd dt

 = Gsbd - Gsad
 Fsbd - Fsad = [Gsbd + C ] - [Gsad + C]

Fsbd - Fsad ,
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tion and differentiation are “inverses” of each other. The Fundamental Theorem also says
that every continuous function ƒ has an antiderivative F. And it says that the differential
equation has a solution (namely, the function ) for every continu-
ous function ƒ.

Total Area

The Riemann sum contains terms such as which give the area of a rectangle when
is positive. When is negative, then the product is the negative of the

rectangle’s area. When we add up such terms for a negative function we get the negative of
the area between the curve and the x-axis. If we then take the absolute value, we obtain the
correct positive area.

EXAMPLE 6 Finding Area Using Antiderivatives

Calculate the area bounded by the x-axis and the parabola 

Solution We find where the curve crosses the x-axis by setting

which gives

The curve is sketched in Figure 5.21, and is nonnegative on 
The area is

The curve in Figure 5.21 is an arch of a parabola, and it is interesting to note that the area
under such an arch is exactly equal to two-thirds the base times the altitude:

To compute the area of the region bounded by the graph of a function and
the x-axis requires more care when the function takes on both positive and negative values.
We must be careful to break up the interval [a, b] into subintervals on which the function
doesn’t change sign. Otherwise we might get cancellation between positive and negative
signed areas, leading to an incorrect total. The correct total area is obtained by adding the
absolute value of the definite integral over each subinterval where ƒ(x) does not change
sign. The term “area” will be taken to mean total area.

EXAMPLE 7 Canceling Areas

Figure 5.22 shows the graph of the function between and 
Compute

(a) the definite integral of ƒ(x) over 

(b) the area between the graph of ƒ(x) and the x-axis over [0, 2p] .

[0, 2p] .

x = 2p .x = 0ƒsxd = sin x

y = ƒsxd

2
3

s5d a25
4
b =

125
6

= 20 56 .

 = a12 - 2 -

8
3
b - a-18 -

9
2

+

27
3
b = 20 56 .

 L
2

-3
s6 - x - x2d dx = c6x -

x2

2
-

x3

3
d

-3

2

[-3, 2] .

x = -3 or x = 2.

y = 0 = 6 - x - x2
= s3 + xds2 - xd ,

y = 6 - x - x2 .

ƒsckd ¢kƒsckdƒsckd
ƒsckd ¢k

y = F(x)dy>dx = ƒsxd
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–3 –2 –1 0 1 2
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y

y � 6 � x � x2

25
4

FIGURE 5.21 The area of this
parabolic arch is calculated with a
definite integral (Example 6).

–1

0

1

x

y

� 2�

y � sin x

Area � 2

Area �
�–2� � 2

FIGURE 5.22 The total area between
and the x-axis for 

is the sum of the absolute values of two
integrals (Example 7).

0 … x … 2py = sin x
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Solution The definite integral for is given by

The definite integral is zero because the portions of the graph above and below the x-axis
make canceling contributions.

The area between the graph of ƒ(x) and the x-axis over is calculated by break-
ing up the domain of sin x into two pieces: the interval over which it is nonnegative
and the interval over which it is nonpositive.

The second integral gives a negative value. The area between the graph and the axis is ob-
tained by adding the absolute values

Area = ƒ 2 ƒ + ƒ -2 ƒ = 4.

L
2p

p

 sin x dx = -cos x d
p

2p

= -[cos 2p - cos p] = -[1 - s -1d] = -2.

L
p

0
 sin x dx = -cos x d

0

p

= -[cos p - cos 0] = -[-1 - 1] = 2.

[p, 2p]
[0, p]

[0, 2p]

L
2p

0
 sin x dx = -cos x d

0

2p

= -[cos 2p - cos 0] = -[1 - 1] = 0.

ƒsxd = sin x
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y

0 2–1

y � x3 � x2 � 2x

Area �

�

8
3

–





8
3

Area � 5
12

FIGURE 5.23 The region between the
curve and the x-axis
(Example 8).

y = x3
- x2

- 2x

Summary:
To find the area between the graph of and the x-axis over the interval
[a, b], do the following:

1. Subdivide [a, b] at the zeros of ƒ.

2. Integrate ƒ over each subinterval.

3. Add the absolute values of the integrals.

y = ƒsxd

EXAMPLE 8 Finding Area Using Antiderivatives

Find the area of the region between the x-axis and the graph of 

Solution First find the zeros of ƒ. Since

the zeros are and 2 (Figure 5.23). The zeros subdivide into two subin-
tervals: on which and [0, 2], on which We integrate ƒ over each
subinterval and add the absolute values of the calculated integrals.

The total enclosed area is obtained by adding the absolute values of the calculated integrals,

Total enclosed area =

5
12

+ ` - 8
3
` =

37
12

.

L
2

0
sx3

- x2
- 2xd dx = cx4

4
-

x3

3
- x2 d

0

2

= c4 -

8
3

- 4 d - 0 = -

8
3

L
0

-1
sx3

- x2
- 2xd dx = cx4

4
-

x3

3
- x2 d

-1

0

= 0 - c1
4

+
1
3

- 1 d =

5
12

ƒ … 0.ƒ Ú 0,[-1, 0] ,
[-1, 2]x = 0, -1,

ƒsxd = x3
- x2

- 2x = xsx2
- x - 2d = xsx + 1dsx - 2d ,

-1 … x … 2.
ƒ(x) = x3

- x2
- 2x,
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