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Indefinite Integrals and the Substitution Rule

A definite integral is a number defined by taking the limit of Riemann sums associated
with partitions of a finite closed interval whose norms go to zero. The Fundamental Theo-
rem of Calculus says that a definite integral of a continuous function can be computed eas-
ily if we can find an antiderivative of the function. Antiderivatives generally turn out to be
more difficult to find than derivatives. However, it is well worth the effort to learn tech-
niques for computing them.

Recall from Section 4.8 that the set of all antiderivatives of the function ƒ is called the
indefinite integral of ƒ with respect to x, and is symbolized by

The connection between antiderivatives and the definite integral stated in the Fundamental
Theorem now explains this notation. When finding the indefinite integral of a function ƒ,
remember that it always includes an arbitrary constant C.

We must distinguish carefully between definite and indefinite integrals. A definite in-

tegral is a number. An indefinite integral is a function plus an arbi-
trary constant C.

So far, we have only been able to find antiderivatives of functions that are clearly rec-
ognizable as derivatives. In this section we begin to develop more general techniques for
finding antiderivatives. The first integration techniques we develop are obtained by invert-
ing rules for finding derivatives, such as the Power Rule and the Chain Rule.

The Power Rule in Integral Form

If u is a differentiable function of x and n is a rational number different from the
Chain Rule tells us that

d
dx

 a un + 1

n + 1
b = un 

du
dx

.

-1,

1ƒsxd dx1b
a ƒsxd dx

Lƒsxd dx .

5.5 
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From another point of view, this same equation says that is one of the anti-
derivatives of the function Therefore,

The integral on the left-hand side of this equation is usually written in the simpler “differ-
ential” form,

obtained by treating the dx’s as differentials that cancel. We are thus led to the following
rule.

Lun du ,

L au
n 

du
dx
b  dx =

un + 1

n + 1
+ C .

unsdu>dxd .
un + 1>sn + 1d
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If u is any differentiable function, then

(1)Lun du =

un + 1

n + 1
+ C sn Z -1, n rationald .

Equation (1) actually holds for any real exponent as we see in Chapter 7.
In deriving Equation (1), we assumed u to be a differentiable function of the variable

x, but the name of the variable does not matter and does not appear in the final formula.
We could have represented the variable with or any other letter. Equation (1) says
that whenever we can cast an integral in the form

with u a differentiable function and du its differential, we can evaluate the integral as

EXAMPLE 1 Using the Power Rule

Simpler form

Replace u by 1 + y2 . =
2
3

 s1 + y2d3>2
+ C

 =
2
3

 u3>2
+ C

 =

u s1>2d + 1

s1>2d + 1
+ C

 = Lu1>2 du

 L21 + y2 # 2y dy = L1u # adu
dy
b  dy

[un + 1>sn + 1d] + C .

Lun du, sn Z -1d ,

u, t, y ,

n Z -1,

Let 
du>dy = 2y

u = 1 + y2 ,

Integrate, using Eq. (1)
with n = 1>2 .
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EXAMPLE 2 Adjusting the Integrand by a Constant

Simpler form

Replace u by 

Substitution: Running the Chain Rule Backwards

The substitutions in Examples 1 and 2 are instances of the following general rule.

4t - 1 . =
1
6

 s4t - 1d3>2
+ C

 =
1
6

 u3>2
+ C

 =
1
4

 #  
u3>2
3>2 + C

 =
1
4Lu1>2 du

 =
1
4L1u # adu

dt
b  dt

 L24t - 1 dt = L  
1
4

# 24t - 1 # 4 dt
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Let 
du>dt = 4 .

u = 4t - 1 ,

With the out front,
the integral is now in
standard form.

1>4

Integrate, using Eq. (1)
with n = 1>2 .

THEOREM 5 The Substitution Rule
If is a differentiable function whose range is an interval I and ƒ is con-
tinuous on I, then

Lƒsg sxddg¿sxd dx = Lƒsud du .

u = g sxd

Proof The rule is true because, by the Chain Rule, F(g (x)) is an antiderivative of
whenever F is an antiderivative of ƒ:

Chain Rule

Because 

If we make the substitution then

Fundamental Theorem

Fundamental Theorem

F¿ = ƒ = Lƒsud du

 = LF¿sud du

u = gsxd = Fsud + C

 = Fsg sxdd + C

 Lƒsg sxddg¿sxd dx = L  
d
dx

 Fsg sxdd dx

u = gsxd

F¿ = ƒ = ƒsg sxdd # g¿sxd .

 
d
dx

 Fsg sxdd = F¿sg sxdd # g¿sxd

ƒsg sxdd # g¿sxd
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The Substitution Rule provides the following method to evaluate the integral

when ƒ and are continuous functions:

1. Substitute and to obtain the integral

2. Integrate with respect to u.

3. Replace u by g (x) in the result.

EXAMPLE 3 Using Substitution

Replace u by 

We can verify this solution by differentiating and checking that we obtain the original
function 

EXAMPLE 4 Using Substitution

Integrate with respect to u.

Replace u by x3 . = -
1
3

 cos sx3d + C

 =
1
3

 s -cos ud + C

 =
1
3L  sin u du

 = L  sin u # 1
3

 du

 Lx2 sin sx3d dx = Lsin sx3d # x2 dx

cos s7u + 5d .

7u + 5 . =
1
7 sin s7u + 5d + C

 =
1
7 sin u + C

 =
1
7L  cos u du

 L  cos s7u + 5d du = L  cos u # 1
7 du

Lƒsud du .

du = g¿sxd dxu = gsxd

g¿

Lƒsg sxddg¿sxd dx ,
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s1>7d du = du .
Let u = 7u + 5, du = 7 du,

With the ( ) out front, the
integral is now in standard form.

1>7

Integrate with respect to u,
Table 4.2.

s1>3d du = x2 dx .

du = 3x2 dx,

Let u = x3,
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EXAMPLE 5 Using Identities and Substitution

The success of the substitution method depends on finding a substitution that changes
an integral we cannot evaluate directly into one that we can. If the first substitution fails,
try to simplify the integrand further with an additional substitution or two (see Exercises
49 and 50). Alternatively, we can start fresh. There can be more than one good way to start,
as in the next example.

EXAMPLE 6 Using Different Substitutions

Evaluate

Solution We can use the substitution method of integration as an exploratory tool: Sub-
stitute for the most troublesome part of the integrand and see how things work out. For the
integral here, we might try or we might even press our luck and take u to be
the entire cube root. Here is what happens in each case.

Solution 1: Substitute 

In the form 

Integrate with respect to u.

Replace u by z2
+ 1 . =

3
2

 sz2
+ 1d2>3

+ C

 =

3
2

 u2>3
+ C

 =

u2>3
2>3 + C

1un du = Lu-1>3 du

 L  
2z dz23 z2

+ 1
= L  

du

u1>3

u = z2
+ 1.

u = z2
+ 1

L  
2z dz23 z2

+ 1
 .

u = 2x =
1
2

 tan 2x + C

d
du

 tan u = sec2 u =
1
2

 tan u + C

 =
1
2Lsec2 u du

 = Lsec2 u # 1
2

 du

1
cos 2x

= sec 2x L  
1

cos2 2x
 dx = Lsec2 2x dx
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dx = s1>2d du
du = 2 dx,
u = 2x,

Let 
du = 2z dz .

u = z2
+ 1,
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Solution 2: Substitute instead.

Integrate with respect to u.

Replace u by 

The Integrals of and 

Sometimes we can use trigonometric identities to transform integrals we do not know how
to evaluate into ones we can using the substitution rule. Here is an example giving the in-
tegral formulas for and which arise frequently in applications.

EXAMPLE 7

(a)

(b)

EXAMPLE 8 Area Beneath the Curve 

Figure 5.24 shows the graph of over the interval Find

(a) the definite integral of over 

(b) the area between the graph of the function and the x-axis over 

Solution

(a) From Example 7(a), the definite integral is

(b) The function is nonnegative, so the area is equal to the definite integral, orp .sin2 x

 = [p - 0] - [0 - 0] = p .

 L
2p

0
sin2 x dx = cx

2
-

sin 2x
4
d

0

2p

= c2p
2

-

sin 4p
4
d - c0

2
-

sin 0
4
d

[0, 2p] .

[0, 2p] .g sxd

[0, 2p] .gsxd = sin2 x

y = sin2 x

 =

x
2

+

sin 2x
4

+ C

 Lcos2 x dx = L  
1 + cos 2x

2
 dx

 =
1
2

 x -
1
2

 
sin 2x

2
+ C =

x
2

-

sin 2x
4

+ C

 =
1
2Ls1 - cos 2xd dx =

1
2L  dx -

1
2L  cos 2x dx

 Lsin2 x dx = L  
1 - cos 2x

2
 dx

cos2 xsin2 x

cos2 xsin2 x

sz2
+ 1d1>3 . =

3
2

 sz2
+ 1d2>3

+ C

 = 3 # u2

2
+ C

 = 3Lu du

 L  
2z dz23 z2

+ 1
= L  

3u2 du
u

u = 23 z2
+ 1
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Let 

3u2 du = 2z dz.

u3
= z2

+ 1,

u = 23 z2
+ 1,

sin2 x =

1 - cos 2x
2

cos2 x =

1 + cos 2x
2

As in part (a), but
with a sign change

0 2���
2

1

x

y

y � sin2 x

1
2

FIGURE 5.24 The area beneath the
curve over equals 
square units (Example 8).

p[0, 2p]y = sin2 x
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EXAMPLE 9 Household Electricity

We can model the voltage in our home wiring with the sine function

which expresses the voltage V in volts as a function of time t in seconds. The function runs
through 60 cycles each second (its frequency is 60 hertz, or 60 Hz). The positive constant

(“vee max”) is the peak voltage.
The average value of V over the half-cycle from 0 to sec (see Figure 5.25) is

The average value of the voltage over a full cycle is zero, as we can see from Figure 5.25.
(Also see Exercise 63.) If we measured the voltage with a standard moving-coil gal-
vanometer, the meter would read zero.

To measure the voltage effectively, we use an instrument that measures the square root
of the average value of the square of the voltage, namely

The subscript “rms” (read the letters separately) stands for “root mean square.” Since the
average value of over a cycle is

(Exercise 63, part c), the rms voltage is

The values given for household currents and voltages are always rms values.Thus, “115 volts
ac” means that the rms voltage is 115. The peak voltage, obtained from the last equation, is

which is considerably higher.

Vmax = 22 Vrms = 22 # 115 L 163 volts ,

Vrms = BsVmaxd2

2
=

Vmax22
.

sV 2dav =
1

s1>60d - 0
 L

1>60

0
sVmaxd2 sin2 120pt dt =

sVmaxd2

2
,

V 2
= sVmaxd2 sin2 120pt

Vrms = 2sV 2dav .

 =

2Vmax
p .

 =

Vmax
p  [-cos p + cos 0]

 = 120Vmax c- 1
120p

 cos 120pt d
0

1>120

 Vav =
1

s1>120d - 0
 L

1>120

0
 Vmax sin 120pt dt

1>120
Vmax

V = Vmax sin 120pt ,
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t

V

0

V � Vmax sin 120�tVmax

Vav �
2Vmax

�

1
120

1
60

FIGURE 5.25 The graph of the voltage
over a full cycle. Its

average value over a half-cycle is 
Its average value over a full cycle is zero
(Example 9).

2Vmax>p .
V = Vmax sin 120pt
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