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Substitution and Area Between Curves

There are two methods for evaluating a definite integral by substitution. The first method
is to find an antiderivative using substitution, and then to evaluate the definite integral by
applying the Fundamental Theorem. We used this method in Examples 8 and 9 of the pre-
ceding section. The second method extends the process of substitution directly to definite
integrals. We apply the new formula introduced here to the problem of computing the area
between two curves.

Substitution Formula

In the following formula, the limits of integration change when the variable of integration
is changed by substitution.

5.6

THEOREM 6 Substitution in Definite Integrals
If is continuous on the interval [a, b] and ƒ is continuous on the range of g, then

L
b

a
ƒsg sxdd # g¿sxd dx = L

gsbd

gsad
ƒsud du

g¿
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Proof Let F denote any antiderivative of ƒ. Then,

To use the formula, make the same u-substitution and you
would use to evaluate the corresponding indefinite integral. Then integrate the trans-
formed integral with respect to u from the value g (a) (the value of u at ) to the value
g (b) (the value of u at ).

EXAMPLE 1 Substitution by Two Methods

Evaluate 

Solution We have two choices.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 6.

Evaluate the new definite integral.

Method 2: Transform the integral as an indefinite integral, integrate, change back to x, and
use the original x-limits.
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x = b
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=  ƒsgsxddg¿sxd
=  F¿sgsxddg¿sxd

d
dx

 Fsgsxdd

Fundamental
Theorem, Part 2

Let 
When 
When x = 1, u = s1d3

+ 1 = 2 .
x = -1, u = s -1d3

+ 1 = 0 .
u = x3

+ 1, du = 3x2 dx .

Let u = x3
+ 1, du = 3x2 dx .

Integrate with respect to u.

Replace u by x3
+ 1 .

Use the integral just found,
with limits of integration for x.
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Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 6, or transforming the integral, integrating, and transforming
back to use the original limits of integration? In Example 1, the first method seems easier,
but that is not always the case. Generally, it is best to know both methods and to use
whichever one seems better at the time.

EXAMPLE 2 Using the Substitution Formula

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 6 simplifies the calculation of definite integrals of
even and odd functions (Section 1.4) over a symmetric interval (Figure 5.26).[-a, a]
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2
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x

y

0
a–a

(b)

x

y

0 a–a

(a)

FIGURE 5.26 (a) ƒ even, (b) ƒ odd, 1a
-a ƒsxd dx = 01a

-a ƒsxd dx = 21a
0  ƒsxd dx

Theorem 7

Let ƒ be continuous on the symmetric interval 

(a) If ƒ is even, then 

(b) If ƒ is odd, then L
a

-a
 ƒ(x) dx = 0.

L
a

-a
 ƒsxd dx = 2L

a

0
ƒsxd dx .

[-a, a] .

Let

When 

When u = p>2, u = cot (p>2) = 0.

u = p>4, u = cot (p>4) = 1.
-  du = csc2 u du.

u = cot u, du = -csc2 u du,
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Proof of Part (a)

The proof of part (b) is entirely similar and you are asked to give it in Exercise 86.

The assertions of Theorem 7 remain true when ƒ is an integrable function (rather than
having the stronger property of being continuous), but the proof is somewhat more diffi-
cult and best left to a more advanced course.

EXAMPLE 3 Integral of an Even Function

Evaluate

Solution Since satisfies it is even on the symmet-
ric interval so

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve 
below by the curve and on the left and right by the lines and 
(Figure 5.27). The region might accidentally have a shape whose area we could find with
geometry, but if ƒ and g are arbitrary continuous functions, we usually have to find the
area with an integral.

To see what the integral should be, we first approximate the region with n vertical rec-
tangles based on a partition of [a, b] (Figure 5.28). The area of the
kth rectangle (Figure 5.29) is

¢Ak = height * width = [ƒsckd - g sckd] ¢xk .

P = 5x0 , x1, Á , xn6

x = bx = ay = g sxd ,
y = ƒsxd ,
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.

 = 2 cx5

5 -
4
3

 x3
+ 6x d

0

2

 L
2

-2
sx4

- 4x2
+ 6d dx = 2L

2

0
sx4

- 4x2
+ 6d dx

[-2, 2] ,
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5.6 Substitution and Area Between Curves 379

Additivity Rule for
Definite Integrals

Order of Integration Rule

Let 
When 
When x = -a, u = a .

x = 0, u = 0 .
u = -x, du = -dx .

ƒ is even, so
ƒs -ud = ƒsud .

x

y

a

b

Lower curve
y � g(x)

Upper curve
y � f (x)

FIGURE 5.27 The region between
the curves and 
and the lines and x = b .x = a

y = gsxdy = ƒsxd

x

y

y � f (x)

y � g(x)

b � xn

xn�1a � x0
x1

x2

FIGURE 5.28 We approximate the
region with rectangles perpendicular
to the x-axis.

x

y

a

b

(ck, f (ck))

f (ck) � g(ck)

�Ak
ck

(ck, g(ck))
�xk

FIGURE 5.29 The area of the k th
rectangle is the product of its height,

and its width, ¢xk .ƒsckd - g sckd ,

¢Ak
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380 Chapter 5: Integration

We then approximate the area of the region by adding the areas of the n rectangles:

Riemann Sum

As the sums on the right approach the limit because ƒ and
g are continuous. We take the area of the region to be the value of this integral. That is,

A = lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
[ƒsckd - gsckd] ¢xk = L

b

a
[ƒsxd - gsxd] dx .

1b
a  [ƒsxd - gsxd] dx7P 7 : 0,

A L a
n

k = 1
¢Ak = a

n

k = 1
[ƒsckd - gsckd] ¢xk .

DEFINITION Area Between Curves
If ƒ and g are continuous with throughout [a, b], then the area of
the region between the curves and from a to b is the inte-
gral of from a to b:

A = L
b

a
[ƒsxd - g sxd] dx .

( f - g)
y = gsxdy = fsxd

ƒsxd Ú g sxd

When applying this definition it is helpful to graph the curves. The graph reveals which
curve is the upper curve ƒ and which is the lower curve g. It also helps you find the limits
of integration if they are not already known. You may need to find where the curves inter-
sect to determine the limits of integration, and this may involve solving the equation

for values of x. Then you can integrate the function for the area be-
tween the intersections.

EXAMPLE 4 Area Between Intersecting Curves

Find the area of the region enclosed by the parabola and the line 

Solution First we sketch the two curves (Figure 5.30). The limits of integration are found
by solving and simultaneously for x.

Equate ƒ(x) and g(x).

Rewrite.

Factor.

Solve.

The region runs from to The limits of integration are 
The area between the curves is

 = a4 +
4
2

-

8
3
b - a-2 +

1
2

+
1
3
b =

9
2

 = L
2

-1
s2 + x - x2d dx = c2x +

x2

2
-

x3

3
d

-1

2

 A = L
b

a
[ƒsxd - gsxd] dx = L

2

-1
[s2 - x2d - s -xd] dx

a = -1, b = 2.x = 2.x = -1

 x = -1, x = 2.

 sx + 1dsx - 2d = 0

 x2
- x - 2 = 0

 2 - x2
= -x

y = -xy = 2 - x2

y = -x .y = 2 - x2

ƒ - gƒsxd = gsxd

x

y

0–1 1 2

(–1, 1)

(x, f (x))

y � 2 � x2

(x, g(x))

�x

y � –x (2, –2)

FIGURE 5.30 The region in
Example 4 with a typical
approximating rectangle.
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If the formula for a bounding curve changes at one or more points, we subdivide the re-
gion into subregions that correspond to the formula changes and apply the formula for the
area between curves to each subregion.

EXAMPLE 5 Changing the Integral to Match a Boundary Change

Find the area of the region in the first quadrant that is bounded above by and be-
low by the x-axis and the line 

Solution The sketch (Figure 5.31) shows that the region’s upper boundary is the graph of
The lower boundary changes from for to 

for (there is agreement at ). We subdivide the region at into subre-
gions A and B, shown in Figure 5.31.

The limits of integration for region A are and The left-hand limit for re-
gion B is To find the right-hand limit, we solve the equations and

simultaneously for x:

Equate ƒ(x) and g(x).

Square both sides.

Rewrite.

Factor.

Solve.

Only the value satisfies the equation The value is an extrane-
ous root introduced by squaring. The right-hand limit is 

We add the area of subregions A and B to find the total area:

Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectangles
are horizontal instead of vertical and the basic formula has y in place of x.
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2
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 s8d - 2 =

10
3

.

 =
2
3

 s2d3>2
- 0 + a2

3
 s4d3>2

- 8 + 8b - a2
3

 s2d3>2
- 2 + 4b

 = c2
3

 x3>2 d
0

2

+ c2
3

 x3>2
-

x2

2
+ 2x d

2
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Total area =

 
L

2

0
1x dx

(')'*

area of A

+

 
L

4

2
s1x - x + 2d dx

('''')''''*

area of B

 For 2 … x … 4: ƒsxd - gsxd = 1x - sx - 2d = 1x - x + 2

 For 0 … x … 2: ƒsxd - gsxd = 1x - 0 = 1x

b = 4.
x = 11x = x - 2.x = 4

 x = 1, x = 4.

 sx - 1dsx - 4d = 0

 x2
- 5x + 4 = 0

 x = sx - 2d2
= x2

- 4x + 4

 1x = x - 2

y = x - 2
y = 1xa = 2.

b = 2.a = 0

x = 2x = 22 … x … 4
gsxd = x - 20 … x … 2gsxd = 0ƒsxd = 1x .

y = x - 2.
y = 1x
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HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)

x

y

0

1

2

42

y � �x

y � 0

y � x � 2

(x, f (x))

(x, f (x))

(x, g(x))

(x, g(x))

A

B
(4, 2)Area �

2

0
�x dx

Area �

4

2
(�x � x � 2) dxL

L

FIGURE 5.31 When the formula for a
bounding curve changes, the area integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 5.
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For regions like these

use the formula

In this equation ƒ always denotes the right-hand curve and g the left-hand curve, so
is nonnegative.

EXAMPLE 6 Find the area of the region in Example 5 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.32). The region’s right-hand boundary is the line

so The left-hand boundary is the curve so 
The lower limit of integration is We find the upper limit by solving and

simultaneously for y:

Rewrite.

Factor.

Solve.

The upper limit of integration is (The value gives a point of intersection
below the x-axis.)

The area of the region is

This is the result of Example 5, found with less work.
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4
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8
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 = c2y +
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2
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b

a
[ƒs yd - gs yd] dy = L
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 y = -1, y = 2

 s y + 1ds y - 2d = 0

 y2
- y - 2 = 0

 y + 2 = y2

x = y2
x = y + 2y = 0.

gs yd = y2 .x = y2 ,ƒs yd = y + 2.x = y + 2,

ƒs yd - gs yd

A = L
d

c
[ƒs yd - gs yd] dy .

x � f (y)

y y

x

x

x

y

x � g(y)

0

c

d

x � g(y)

x � f (y)

0

c

d

0

c

d
x � f (y)x � g(y)
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Equate 
and  gsyd = y2 .

ƒsyd = y + 2

x

y

y � 0 2 40

1

2
(g(y), y)

( f (y), y)
f (y) � g(y)

(4, 2)

x � y � 2

x � y2

�y

FIGURE 5.32 It takes two
integrations to find the area of this
region if we integrate with respect to
x. It takes only one if we integrate
with respect to y (Example 6).
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Combining Integrals with Formulas from Geometry

The fastest way to find an area may be to combine calculus and geometry.

EXAMPLE 7 The Area of the Region in Example 5 Found the Fastest Way

Find the area of the region in Example 5.

Solution The area we want is the area between the curve and the
x-axis, minus the area of a triangle with base 2 and height 2 (Figure 5.33):

Conclusion from Examples 5–7 It is sometimes easier to find the area between
two curves by integrating with respect to y instead of x. Also, it may help to combine
geometry and calculus. After sketching the region, take a moment to think about the best
way to proceed.

 =
2
3

 s8d - 0 - 2 =

10
3

 .

 =
2
3

 x3>2 d
0

4

- 2

 Area = L
4

0
1x dx -

1
2

 s2ds2d

y = 1x, 0 … x … 4,
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0 2

2

4

1

2

Area � 2

(4, 2)

x

y

y � 0

y � x � 2

y � �x

2

FIGURE 5.33 The area of the blue region
is the area under the parabola 
minus the area of the triangle (Example 7).

y = 1x
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