EXERCISES 5.6

Evaluating Definite Integrals

Use the Substitution Formula in Theorem 6 to evaluate the integrals in Exercises 1–24.

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}
$$
 Exercises

1. **a.**
$$
\int_0^3 \sqrt{y+1} \, dy
$$

\n2. **a.** $\int_0^1 r\sqrt{1-r^2} \, dr$
\n3. **a.** $\int_0^{\pi/4} \tan x \sec^2 x \, dx$
\n4. **a.** $\int_0^{\pi} 3 \cos^2 x \sin x \, dx$
\n5. **a.** $\int_0^{1} t^3 (1+t^4)^3 \, dt$
\n6. **a.** $\int_0^{\sqrt{7}} t(t^2+1)^{1/3} \, dt$
\n7. **a.** $\int_{-1}^{1} \frac{5r}{(4+r^2)^2} \, dr$
\n8. **a.** $\int_0^{1} \frac{10\sqrt{v}}{(1+v^3)^2} \, dv$
\n9. **a.** $\int_0^{\sqrt{3}} \frac{4x}{\sqrt{x^2+1}} \, dx$
\n10. $\int_{-1}^{0} \frac{5r}{(4+r^2)^2} \, dr$
\n21. $\int_0^1 \frac{5r}{(1+v^3)^2} \, dr$
\n32. $\int_0^1 \frac{5r}{(4+r^2)^2} \, dr$
\n43. $\int_0^1 \frac{5r}{(1+v^3)^2} \, dr$
\n54. $\int_0^1 \frac{5r}{(1+v^3)^2} \, dr$
\n65. $\int_0^1 \frac{5r}{(1+v^3)^2} \, dr$
\n7. **a.** $\int_0^1 \frac{10\sqrt{v}}{(1+v^3)^2} \, dv$
\n8. **a.** $\int_0^{\sqrt{3}} \frac{4x}{\sqrt{x^2+1}} \, dx$
\n9. **b.** $\int_{-\sqrt{3}}^{\sqrt{3}} \frac{4x}{\sqrt{x^2+1}} \, dx$

10. a.
$$
\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4} + 9}} dx
$$
 b. $\int_{-1}^{0} \frac{x^{3}}{\sqrt{x^{4} + 9}} dx$
\n11. a. $\int_{0}^{\pi/6} (1 - \cos 3t) \sin 3t dt$ b. $\int_{\pi/6}^{\pi/3} (1 - \cos 3t) \sin 3t dt$
\n12. a. $\int_{-\pi/2}^{0} (2 + \tan \frac{t}{2}) \sec^{2} \frac{t}{2} dt$ b. $\int_{-\pi/2}^{\pi/2} (2 + \tan \frac{t}{2}) \sec^{2} \frac{t}{2} dt$
\n13. a. $\int_{0}^{2\pi} \frac{\cos z}{\sqrt{4 + 3 \sin z}} dz$ b. $\int_{-\pi}^{\pi} \frac{\cos z}{\sqrt{4 + 3 \sin z}} dz$
\n14. a. $\int_{-\pi/2}^{0} \frac{\sin w}{(3 + 2 \cos w)^{2}} dw$ b. $\int_{0}^{\pi/2} \frac{\sin w}{(3 + 2 \cos w)^{2}} dw$
\n15. $\int_{0}^{1} \sqrt{t^{5} + 2t} (5t^{4} + 2) dt$ 16. $\int_{1}^{4} \frac{dy}{2\sqrt{y} (1 + \sqrt{y})^{2}}$
\n17. $\int_{0}^{\pi/6} \cos^{-3} 2\theta \sin 2\theta d\theta$ 18. $\int_{\pi}^{3\pi/2} \cot^{5} (\frac{\theta}{6}) \sec^{2} (\frac{\theta}{6}) d\theta$
\n19. $\int_{0}^{\pi} 5(5 - 4 \cos t)^{1/4} \sin t dt$ 20. $\int_{0}^{\pi/4} (1 - \sin 2t)^{3/2} \cos 2t dt$
\n21. $\int_{0}^{1} (4y - y^{2} + 4y^{3} + 1)^{-2/3} (12y^{2} - 2y + 4) dy$
\n22. $\int_{0}^{1} (y^{3} + 6y^{2} - 12y + 9)^{-1/2} (y^{2} + 4y - 4) dy$

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Find the areas of the regions enclosed by the lines and curves in Exercises 41–50.

49. $y = \sqrt{|x|}$ and $5y = x + 6$ [\(How many intersection points](tcu0506c.html) are there?)

50.
$$
y = |x^2 - 4|
$$
 and $y = (x^2/2) + 4$

Find the areas of the regions enclosed by the lines and curves in Exercises 51–58.

51. $x = 2y^2$, $x = 0$, and $y = 3$ **52.** $x = y^2$ and $x = y + 2$ **53.** $y^2 - 4x = 4$ and $4x - y = 16$ **54.** $x - y^2 = 0$ and $x + 2y^2 = 3$ **55.** $x + y^2 = 0$ and $x + 3y^2 = 2$ **56.** $x - y^{2/3} = 0$ and $x + y^4 = 2$ **57.** $x = y^2 - 1$ and $x = |y|\sqrt{1 - y^2}$ **58.** $x = y^3 - y^2$ [and](tcu0506d.html) $x = 2y$

Find the areas of the regions enclosed by the curves in Exercises 59–62.

59. $4x^2 + y = 4$ and $x^4 - y = 1$ **60.** $x^3 - y = 0$ and $3x^2 - y = 4$ **61.** $x + 4y^2 = 4$ and $x + y^4 = 1$, for $x \ge 0$ **62.** $x + y^2 = 3$ [and](tcu0506e.html) $4x + y^2 = 0$

kercis

Exercises

kercise

Find the areas of the regions enclosed by the lines and curves in Exercises 63–70.

63. $y = 2 \sin x$ and $y = \sin 2x$, $0 \le x \le \pi$ **64.** $y = 8 \cos x$ and $y = \sec^2 x$, $-\pi/3 \le x \le \pi/3$ **65.** $y = \cos(\pi x/2)$ and $y = 1 - x^2$ **66.** $y = \sin(\pi x/2)$ and $y = x$ **67.** $y = \sec^2 x$, $y = \tan^2 x$, $x = -\pi/4$, and $x = \pi/4$ **68.** $x = \tan^2 y$ and $x = -\tan^2 y$, $-\pi/4 \le y \le \pi/4$ **69.** $x = 3 \sin y \sqrt{\cos y}$ and $x = 0$, $0 \le y \le \pi/2$ **70.** $y = \sec^2(\pi x/3)$ and $y = x^{1/3}, -1 \le x \le 1$

71. Find the area of the propeller-shaped region enclosed by the curve $x - y^3 = 0$ and the line $x - y = 0$.

- **72.** Find the area of the propeller-shaped region enclosed by the curves $x - y^{1/3} = 0$ and $x - y^{1/5} = 0$.
- **73.** [Find the area of the region in the first quadrant bounded by the](tcu0506g.html) line $y = x$, the line $x = 2$, the curve $y = 1/x^2$, and the *x*-axis.
- **74.** Find the area of the "triangular" region in the first quadrant bounded on the left by the *y*-axis and on the right by the curves $y = \sin x$ and $y = \cos x$.
- **75.** The region bounded below by the parabola $y = x^2$ and above by the line $y = 4$ is to be partitioned into two subsections of equal area by cutting across it with the horizontal line $y = c$.
	- **a.** Sketch the region and draw a line $y = c$ across it that looks about right. In terms of *c*, what are the coordinates of the points where the line and parabola intersect? Add them to your figure.

Exercises

- **b.** Find *c* by integrating with respect to *y*. (This puts *c* in the limits of integration.)
- **c.** Find *c* by integrating with respect to *x*. (This puts *c* into the integrand as well.)
- **76.** Find the area of the region between the curve $y = 3 x^2$ and the line $y = -1$ by integrating with respect to **a.** *x*, **b.** *y*.
- **77.** Find the area of the region in the first quadrant bounded on the left by the *y*-axis, below by the line $y = x/4$, above left by the curve $y = 1 + \sqrt{x}$, and above right by the curve $y = 2/\sqrt{x}$.
- **78.** Find the area of the region in the first quadrant bounded on the left by the *y*-axis, below by the curve $x = 2\sqrt{y}$, above left by the curve $x = (y - 1)^2$, and above right by the line $x = 3 - y$.

79. The figure here shows triangle *AOC* inscribed in the region cut from the parabola $y = x^2$ by the line $y = a^2$. Find the limit of the ratio of the area of the triangle to the area of the parabolic region as *a* approaches zero.

- **80.** Suppose the area of the region between the graph of a positive continuous function *f* and the *x*-axis from $x = a$ to $x = b$ is 4 square units. Find the area between the curves $y = f(x)$ and $y = 2f(x)$ from $x = a$ to $x = b$.
- **81.** Which of the following integrals, if either, calculates the area of the shaded region shown here? Give reasons for your answer.

a.
$$
\int_{-1}^{1} (x - (-x)) dx = \int_{-1}^{1} 2x dx
$$

b.
$$
\int_{-1}^{1} (-x - (x)) dx = \int_{-1}^{1} -2x dx
$$

82. True, sometimes true, or never true? The area of the region between the graphs of the continuous functions $y = f(x)$ and $y = g(x)$ and the vertical lines $x = a$ and $x = b$ ($a < b$) is

$$
\int_a^b [f(x) - g(x)] dx.
$$

Give reasons for your answer.

Theory and Examples

83. Suppose that $F(x)$ is an antiderivative of $f(x) = (\sin x)/x$, $x > 0$. Express

$$
\int_{1}^{3} \frac{\sin 2x}{x} dx
$$

in terms of *F*.

84. Show that if *ƒ* is continuous, then

$$
\int_0^1 f(x) \, dx = \int_0^1 f(1-x) \, dx.
$$

85. Suppose that

$$
\int_0^1 f(x) \, dx = 3.
$$

Find

$$
\int_{-1}^{0} f(x) \, dx
$$

if $\mathbf{a} \cdot f$ is odd, $\mathbf{b} \cdot f$ is even.

86. a. Show that if *f* is odd on $[-a, a]$, then

$$
\int_{-a}^{a} f(x) \, dx = 0.
$$

- **b.** Test the result in part (a) with $f(x) = \sin x$ and $a = \pi/2$.
- **87.** If *ƒ* is a continuous function, find the value of the integral

$$
I = \int_0^a \frac{f(x) dx}{f(x) + f(a - x)}
$$

by making the substitution $u = a - x$ and adding the resulting integral to *I*.

88. By using a substitution, prove that for all positive numbers *x* and *y*,

$$
\int_x^{xy} \frac{1}{t} dt = \int_1^y \frac{1}{t} dt.
$$

The Shift Property for Definite Integrals

A basic property of definite integrals is their invariance under translation, as expressed by the equation.

$$
\int_{a}^{b} f(x) \, dx = \int_{a-c}^{b-c} f(x+c) \, dx. \tag{1}
$$

The equation holds whenever f is integrable and defined for the necessary values of *x*. For example in the accompanying figure, show that

$$
\int_{-2}^{-1} (x+2)^3 dx = \int_0^1 x^3 dx
$$

because the areas of the shaded regions are congruent.

- **89.** Use a substitution to verify Equation (1).
- **90.** For each of the following functions, graph $f(x)$ over [*a*, *b*] and $f(x + c)$ over $[a - c, b - c]$ to convince yourself that Equation (1) is reasonable.

a.
$$
f(x) = x^2
$$
, $a = 0$, $b = 1$, $c = 1$
\n**b.** $f(x) = \sin x$, $a = 0$, $b = \pi$, $c = \pi/2$
\n**c.** $f(x) = \sqrt{x - 4}$, $a = 4$, $b = 8$, $c = 5$

COMPUTER EXPLORATIONS

In Exercises 91–94, you will find the area between curves in the plane when you cannot find their points of intersection using simple algebra. Use a CAS to perform the following steps:

- **a.** Plot the curves together to see what they look like and how many points of intersection they have.
- **b.** Use the numerical equation solver in your CAS to find all the points of intersection.
- **c.** Integrate $|f(x) g(x)|$ over consecutive pairs of intersection values.

d. Sum together the integrals found in part (c).

91.
$$
f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 2x + \frac{1}{3}, \quad g(x) = x - 1
$$

\n**92.** $f(x) = \frac{x^4}{2} - 3x^3 + 10, \quad g(x) = 8 - 12x$
\n**93.** $f(x) = x + \sin(2x), \quad g(x) = x^3$
\n**94.** $f(x) = x^2 \cos x, \quad g(x) = x^3 - x$