EXERCISES 5.6

Evaluating Definite Integrals

Use the Substitution Formula in Theorem 6 to evaluate the integrals in Exercises 1–24.

1. a.
$$\int_{0}^{3} \sqrt{y+1} \, dy$$

b. $\int_{-1}^{0} \sqrt{y+1} \, dy$
2. a. $\int_{0}^{1} r\sqrt{1-r^{2}} \, dr$
3. a. $\int_{0}^{\pi/4} \tan x \sec^{2} x \, dx$
4. a. $\int_{0}^{\pi} 3 \cos^{2} x \sin x \, dx$
5. a. $\int_{0}^{1} t^{3}(1+t^{4})^{3} \, dt$
6. a. $\int_{0}^{\sqrt{7}} t(t^{2}+1)^{1/3} \, dt$
7. a. $\int_{-1}^{1} \frac{5r}{(4+r^{2})^{2}} \, dr$
8. a. $\int_{0}^{1} \frac{10\sqrt{v}}{(1+v^{3})^{2}} \, dv$
9. a. $\int_{0}^{\sqrt{3}} \frac{4x}{\sqrt{x^{2}+1}} \, dx$
b. $\int_{-\sqrt{3}}^{0} \frac{\sqrt{y}}{\sqrt{x^{2}+1}} \, dx$
b. $\int_{-\sqrt{3}}^{0} \frac{\sqrt{y}}{\sqrt{x^{2}+1}} \, dx$

10. a.
$$\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} dx$$
 b. $\int_{-1}^{0} \frac{x^{3}}{\sqrt{x^{4}+9}} dx$
11. a. $\int_{0}^{\pi/6} (1 - \cos 3t) \sin 3t \, dt$ b. $\int_{\pi/6}^{\pi/3} (1 - \cos 3t) \sin 3t \, dt$
12. a. $\int_{-\pi/2}^{0} \left(2 + \tan \frac{t}{2}\right) \sec^{2} \frac{t}{2} \, dt$ b. $\int_{-\pi/2}^{\pi/2} \left(2 + \tan \frac{t}{2}\right) \sec^{2} \frac{t}{2} \, dt$
13. a. $\int_{0}^{2\pi} \frac{\cos z}{\sqrt{4+3} \sin z} \, dz$ b. $\int_{-\pi}^{\pi} \frac{\cos z}{\sqrt{4+3} \sin z} \, dz$
14. a. $\int_{-\pi/2}^{0} \frac{\sin w}{(3+2\cos w)^{2}} \, dw$ b. $\int_{0}^{\pi/2} \frac{\sin w}{(3+2\cos w)^{2}} \, dw$
15. $\int_{0}^{1} \sqrt{t^{5}+2t} (5t^{4}+2) \, dt$ 16. $\int_{1}^{4} \frac{dy}{2\sqrt{y} (1+\sqrt{y})^{2}}$
17. $\int_{0}^{\pi/6} \cos^{-3} 2\theta \sin 2\theta \, d\theta$ 18. $\int_{\pi}^{3\pi/2} \cot^{5} \left(\frac{\theta}{6}\right) \sec^{2} \left(\frac{\theta}{6}\right) \, d\theta$
19. $\int_{0}^{\pi} 5(5-4\cos t)^{1/4} \sin t \, dt$ 20. $\int_{0}^{\pi/4} (1 - \sin 2t)^{3/2} \cos 2t \, dt$
21. $\int_{0}^{1} (4y - y^{2} + 4y^{3} + 1)^{-2/3} (12y^{2} - 2y + 4) \, dy$
22. $\int_{0}^{1} (y^{3} + 6y^{2} - 12y + 9)^{-1/2} (y^{2} + 4y - 4) \, dy$

23.
$$\int_{0}^{\sqrt[3]{\pi^2}} \sqrt{\theta} \cos^2(\theta^{3/2}) d\theta$$
 24.
$$\int_{-1}^{-1/2} t^{-2} \sin^2\left(1 + \frac{1}{t}\right) dt$$

Area

Find the total areas of the shaded regions in Exercises 25–40. **25. 26.**

35.

Find the areas of the regions enclosed by the lines and curves in Exercises 41–50.

(3, -5)

41. $y = x^2 - 2$ and y = 2 **42.** $y = 2x - x^2$ and y = -3 **43.** $y = x^4$ and y = 8x **44.** $y = x^2 - 2x$ and y = x **45.** $y = x^2$ and $y = -x^2 + 4x$ **46.** $y = 7 - 2x^2$ and $y = x^2 + 4$ **47.** $y = x^4 - 4x^2 + 4$ and $y = x^2$ **48.** $y = x\sqrt{a^2 - x^2}$, a > 0, and y = 0

-5

- **49.** $y = \sqrt{|x|}$ and 5y = x + 6 (How many intersection points are there?)
- **50.** $y = |x^2 4|$ and $y = (x^2/2) + 4$

Find the areas of the regions enclosed by the lines and curves in Exercises 51–58.

51. $x = 2y^2$, x = 0, and y = 3 **52.** $x = y^2$ and x = y + 2 **53.** $y^2 - 4x = 4$ and 4x - y = 16 **54.** $x - y^2 = 0$ and $x + 2y^2 = 3$ **55.** $x + y^2 = 0$ and $x + 3y^2 = 2$ **56.** $x - y^{2/3} = 0$ and $x + y^4 = 2$ **57.** $x = y^2 - 1$ and $x = |y|\sqrt{1 - y^2}$ **58.** $x = y^3 - y^2$ and x = 2y

Find the areas of the regions enclosed by the curves in Exercises 59-62.

59. $4x^2 + y = 4$ and $x^4 - y = 1$ **60.** $x^3 - y = 0$ and $3x^2 - y = 4$ **61.** $x + 4y^2 = 4$ and $x + y^4 = 1$, for $x \ge 0$ **62.** $x + y^2 = 3$ and $4x + y^2 = 0$

Find the areas of the regions enclosed by the lines and curves in Exercises 63–70.

- **63.** $y = 2 \sin x$ and $y = \sin 2x$, $0 \le x \le \pi$ **64.** $y = 8 \cos x$ and $y = \sec^2 x$, $-\pi/3 \le x \le \pi/3$ **65.** $y = \cos(\pi x/2)$ and $y = 1 - x^2$ **66.** $y = \sin(\pi x/2)$ and y = x **67.** $y = \sec^2 x$, $y = \tan^2 x$, $x = -\pi/4$, and $x = \pi/4$ **68.** $x = \tan^2 y$ and $x = -\tan^2 y$, $-\pi/4 \le y \le \pi/4$ **69.** $x = 3 \sin y \sqrt{\cos y}$ and x = 0, $0 \le y \le \pi/2$ **70.** $y = \sec^2(\pi x/3)$ and $y = x^{1/3}$, $-1 \le x \le 1$ **71.** Find the area of the propeller-shaped region enclosed by the curve $x - y^3 = 0$ and the line x - y = 0.
- 72. Find the area of the propeller-shaped region enclosed by the curves $x y^{1/3} = 0$ and $x y^{1/5} = 0$.
- 73. Find the area of the region in the first quadrant bounded by the line y = x, the line x = 2, the curve $y = 1/x^2$, and the *x*-axis.
- 74. Find the area of the "triangular" region in the first quadrant bounded on the left by the *y*-axis and on the right by the curves $y = \sin x$ and $y = \cos x$.
- **75.** The region bounded below by the parabola $y = x^2$ and above by the line y = 4 is to be partitioned into two subsections of equal area by cutting across it with the horizontal line y = c.
 - **a.** Sketch the region and draw a line y = c across it that looks about right. In terms of *c*, what are the coordinates of the points where the line and parabola intersect? Add them to your figure.

- **b.** Find *c* by integrating with respect to *y*. (This puts *c* in the limits of integration.)
- **c.** Find *c* by integrating with respect to *x*. (This puts *c* into the integrand as well.)
- 76. Find the area of the region between the curve $y = 3 x^2$ and the line y = -1 by integrating with respect to **a**. x, **b**. y.
- 77. Find the area of the region in the first quadrant bounded on the left by the *y*-axis, below by the line y = x/4, above left by the curve $y = 1 + \sqrt{x}$, and above right by the curve $y = 2/\sqrt{x}$.
- **78.** Find the area of the region in the first quadrant bounded on the left by the *y*-axis, below by the curve $x = 2\sqrt{y}$, above left by the curve $x = (y 1)^2$, and above right by the line x = 3 y.

79. The figure here shows triangle *AOC* inscribed in the region cut from the parabola $y = x^2$ by the line $y = a^2$. Find the limit of the ratio of the area of the triangle to the area of the parabolic region as *a* approaches zero.

- **80.** Suppose the area of the region between the graph of a positive continuous function f and the x-axis from x = a to x = b is 4 square units. Find the area between the curves y = f(x) and y = 2f(x) from x = a to x = b.
- **81.** Which of the following integrals, if either, calculates the area of the shaded region shown here? Give reasons for your answer.

a.
$$\int_{-1}^{1} (x - (-x)) dx = \int_{-1}^{1} 2x dx$$

b. $\int_{-1}^{1} (-x - (x)) dx = \int_{-1}^{1} -2x dx$

82. True, sometimes true, or never true? The area of the region between the graphs of the continuous functions y = f(x) and y = g(x) and the vertical lines x = a and x = b (a < b) is

$$\int_a^b [f(x) - g(x)] \, dx.$$

Give reasons for your answer.

Theory and Examples

83. Suppose that F(x) is an antiderivative of $f(x) = (\sin x)/x$, x > 0. Express

$$\int_{1}^{3} \frac{\sin 2x}{x} \, dx$$

in terms of F.

84. Show that if f is continuous, then

$$\int_0^1 f(x) \, dx = \int_0^1 f(1-x) \, dx.$$

85. Suppose that

$$\int_0^1 f(x) \, dx = 3$$

Find

$$\int_{-1}^{0} f(x) \, dx$$

if \mathbf{a} . f is odd, \mathbf{b} . f is even.

86. a. Show that if f is odd on [-a, a], then

$$\int_{-a}^{a} f(x) \, dx = 0 \, .$$

- **b.** Test the result in part (a) with $f(x) = \sin x$ and $a = \pi/2$.
- 87. If f is a continuous function, find the value of the integral

$$I = \int_0^a \frac{f(x) \, dx}{f(x) + f(a - x)}$$

by making the substitution u = a - x and adding the resulting integral to *I*.

88. By using a substitution, prove that for all positive numbers *x* and *y*,

$$\int_{x}^{xy} \frac{1}{t} dt = \int_{1}^{y} \frac{1}{t} dt.$$

The Shift Property for Definite Integrals

A basic property of definite integrals is their invariance under translation, as expressed by the equation.

$$\int_{a}^{b} f(x) \, dx = \int_{a-c}^{b-c} f(x+c) \, dx. \tag{1}$$

The equation holds whenever f is integrable and defined for the necessary values of x. For example in the accompanying figure, show that

$$\int_{-2}^{-1} (x+2)^3 \, dx = \int_0^1 x^3 \, dx$$

because the areas of the shaded regions are congruent.

- **89.** Use a substitution to verify Equation (1).
- **90.** For each of the following functions, graph f(x) over [a, b] and f(x + c) over [a c, b c] to convince yourself that Equation (1) is reasonable.

a.
$$f(x) = x^2$$
, $a = 0$, $b = 1$, $c = 1$
b. $f(x) = \sin x$, $a = 0$, $b = \pi$, $c = \pi/2$
c. $f(x) = \sqrt{x-4}$, $a = 4$, $b = 8$, $c = 5$

COMPUTER EXPLORATIONS

In Exercises 91–94, you will find the area between curves in the plane when you cannot find their points of intersection using simple algebra. Use a CAS to perform the following steps:

- **a.** Plot the curves together to see what they look like and how many points of intersection they have.
- **b.** Use the numerical equation solver in your CAS to find all the points of intersection.
- **c.** Integrate |f(x) g(x)| over consecutive pairs of intersection values.

d. Sum together the integrals found in part (c).

91.
$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 2x + \frac{1}{3}$$
, $g(x) = x - 1$
92. $f(x) = \frac{x^4}{2} - 3x^3 + 10$, $g(x) = 8 - 12x$
93. $f(x) = x + \sin(2x)$, $g(x) = x^3$

94. $f(x) = x^2 \cos x$, $g(x) = x^3 - x$