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Chapter 5 Additional and Advanced Exercises

Theory and Examples

1. a. If 

b. If 

Give reasons for your answers.

2. Suppose 

Which, if any, of the following statements are true?

a. b.

c. on the interval 

3. Initial value problem Show that

y =

1
aL

x

0
ƒstd sin asx - td dt

-2 … x … 5ƒsxd … g sxd
L

5

-2
sƒsxd + g sxdd = 9L

2

5
ƒsxd dx = -3

L
2

-2
ƒsxd dx = 4, L

5

2
ƒsxd dx = 3, L

5

-2
g sxd dx = 2.

 L
1

0
2ƒsxd dx = 24 = 2?

L
1

0
ƒsxd dx = 4 and ƒsxd Ú 0, does

L
1

0
7ƒsxd dx = 7,  does L

1

0
ƒsxd dx = 1?

solves the initial value problem

(Hint: )

4. Proportionality Suppose that x and y are related by the equation

Show that is proportional to y and find the constant of
proportionality.

5. Find ƒ(4) if

a. b.

6. Find from the following information.

i. ƒ is positive and continuous.

ii. The area under the curve from to is

a2

2
+

a
2

 sin a +

p

2
 cos a .

x = ax = 0y = ƒsxd

ƒsp/2d
L

ƒsxd

0
t2 dt = x cos px .L

x2

0
ƒstd dt = x cos px

d2y/dx2

x = L
y

0
 

121 + 4t2
 dt .

sin sax - atd = sin ax cos at - cos ax sin at .

d2y

dx2 + a2y = ƒsxd, dy

dx
= 0  and  y = 0 when x = 0.
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7. The area of the region in the xy-plane enclosed by the x-axis, the
curve and the lines and is 

equal to for all Find ƒ(x).

8. Prove that

(Hint: Express the integral on the right-hand side as the difference
of two integrals. Then show that both sides of the equation have
the same derivative with respect to x.)

9. Finding a curve Find the equation for the curve in the xy-plane
that passes through the point if its slope at x is always

10. Shoveling dirt You sling a shovelful of dirt up from the bottom
of a hole with an initial velocity of 32 ft/sec. The dirt must rise 17
ft above the release point to clear the edge of the hole. Is that
enough speed to get the dirt out, or had you better duck?

Piecewise Continuous Functions
Although we are mainly interested in continuous functions, many
functions in applications are piecewise continuous. A function ƒ(x) is
piecewise continuous on a closed interval I if ƒ has only finitely
many discontinuities in I, the limits

exist and are finite at every interior point of I, and the appropriate one-
sided limits exist and are finite at the endpoints of I. All piecewise
continuous functions are integrable. The points of discontinuity subdi-
vide I into open and half-open subintervals on which ƒ is continuous,
and the limit criteria above guarantee that ƒ has a continuous exten-
sion to the closure of each subinterval. To integrate a piecewise con-
tinuous function, we integrate the individual extensions and add the
results. The integral of

(Figure 5.34) over is

The Fundamental Theorem applies to piecewise continuous func-
tions with the restriction that is expected to equal
ƒ(x) only at values of x at which ƒ is continuous. There is a similar re-
striction on Leibniz’s Rule below.

Graph the functions in Exercises 11–16 and integrate them over
their domains.

sd>dxd1x
a  ƒstd dt
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 = cx -
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+ cx3
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ƒsxd dx = L

0
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2

0
x2 dx + L

3

2
s -1d dx

[-1, 3]

ƒsxd = •
1 - x, -1 … x 6 0

x2,  0 … x 6 2

-1,  2 … x … 3

lim
x:c- 

ƒsxd and lim
x:c +

ƒsxd

3x2
+ 2.

s1, -1d

L
x

0
aL

u

0
ƒstd dtb  du = L

x

0
ƒsudsx - ud du .

b 7 1.2b2
+ 1 - 22

x = bx = 1y = ƒsxd, ƒsxd Ú 0,

11.

12.

13.

14.

15.

16.

17. Find the average value of the function graphed in the accompany-
ing figure.

18. Find the average value of the function graphed in the accompany-
ing figure.

x

y

1

1 2 30

x

y

0 1 2

1

hsrd = •
r, -1 … r 6 0

1 - r2, 0 … r 6 1

1, 1 … r … 2

ƒsxd = •
1, -2 … x 6 -1

1 - x2, -1 … x 6 1

2, 1 … x … 2

hszd = e21 - z, 0 … z 6 1

s7z - 6d-1>3, 1 … z … 2

g std = e t, 0 … t 6 1

 sin pt, 1 … t … 2

ƒsxd = e2-x, -4 … x 6 0

x2
- 4, 0 … x … 3

ƒsxd = e x2>3, -8 … x 6 0

-4, 0 … x … 3
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FIGURE 5.34 Piecewise continuous functions
like this are integrated piece by piece.
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Leibniz’s Rule
In applications, we sometimes encounter functions like

defined by integrals that have variable upper limits of integration and
variable lower limits of integration at the same time. The first integral
can be evaluated directly, but the second cannot. We may find the de-
rivative of either integral, however, by a formula called Leibniz’s Rule.

ƒsxd = L
x2

 sin x
s1 + td dt and g sxd = L

21x1x
 sin t2 dt ,

at which the carpet is being unrolled. That is, A(x) is being in-
creased at the rate

At the same time, A is being decreased at the rate

the width at the end that is being rolled up times the rate . The
net rate of change in A is

which is precisely Leibniz’s Rule.

To prove the rule, let F be an antiderivative of ƒ on [a, b]. Then

Differentiating both sides of this equation with respect to x gives the
equation we want:

Chain Rule

Use Leibniz’s Rule to find the derivatives of the functions in Ex-
ercises 19–21.

19. 20.

21.

22. Use Leibniz’s Rule to find the value of x that maximizes the value
of the integral

Problems like this arise in the mathematical theory of political
elections. See “The Entry Problem in a Political Race,” by Steven
J. Brams and Philip D. Straffin, Jr., in Political Equilibrium, Peter
Ordeshook and Kenneth Shepfle, Editors, Kluwer-Nijhoff,
Boston, 1982, pp. 181–195.

Approximating Finite Sums with Integrals
In many applications of calculus, integrals are used to approximate fi-
nite sums—the reverse of the usual procedure of using finite sums to
approximate integrals.

L
x + 3

x
 t s5 - td dt .

g s yd = L
21y1y

 sin t2 dt

ƒsxd = L
 sin x

 cos x
 

1
1 - t2 dtƒsxd = L

x

1/x
 
1
t  dt

 = ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

.

 = F¿sysxdd 
dy
dx

- F¿susxdd 
du
dx

 
d
dxL

ysxd

usxd
ƒstd dt =

d
dx

 cFsysxdd - Fsusxdd d

L
ysxd

usxd
ƒstd dt = Fsysxdd - Fsusxdd .

dA
dx

= ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

,

du>dx

ƒsusxdd 
du
dx

,

ƒsysxdd 
dy
dx

.

dy>dx
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y � f (t)
f (y(x))

u(x)

y(x)
A(x) � f (t) dt

y(x)

u(x)L
FIGURE 5.35 Rolling and unrolling a carpet: a geometric
interpretation of Leibniz’s Rule:

dA
dx

= ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

.

Leibniz’s Rule
If ƒ is continuous on [a, b] and if u(x) and y(x) are dif-
ferentiable functions of x whose values lie in [a, b],
then

.
d
dx

 L
ysxd

usxd
ƒstd dt = ƒsysxdd 

dy
dx

- ƒsusxdd 
du
dx

Figure 5.35 gives a geometric interpretation of Leibniz’s Rule. It
shows a carpet of variable width ƒ(t) that is being rolled up at the left
at the same time x as it is being unrolled at the right. (In this interpre-
tation, time is x, not t.) At time x, the floor is covered from u(x) to y(x).
The rate at which the carpet is being rolled up need not be the
same as the rate at which the carpet is being laid down. At any
given time x, the area covered by carpet is

Asxd = L
ysxd

usxd
ƒstd dt .

dy>dx
du>dx

At what rate is the covered area changing? At the instant x, A(x) is in-
creasing by the width ƒ(y(x)) of the unrolling carpet times the rate
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For example, let’s estimate the sum of the square roots of the first
n positive integers, The integral

is the limit of the upper sums

Therefore, when n is large, will be close to and we will have

The following table shows how good the approximation can be.

n Root sum Relative error

10 22.468 21.082
50 239.04 235.70 1.4%

100 671.46 666.67 0.7%
1000 21,097 21,082 0.07%

23. Evaluate

by showing that the limit is

and evaluating the integral.

24. See Exercise 23. Evaluate

lim
n: q

 
1
n4 s13

+ 23
+ 33

+
Á

+ n3d .

L
1

0
x5 dx

lim
n: q

 
15

+ 25
+ 35

+
Á

+ n5

n6

1.386>22.468 L 6%

s2>3dn3>2

Root sum = 21 + 22 +
Á

+ 2n = Sn
# n3>2

L

2
3

 n3/2 .

2>3Sn

x

y

0

y � �x

1 1
n

2
n

n � 1
n

 =

21 + 22 +
Á

+ 2n

n3>2 .

 Sn = A1
n #  

1
n + A2

n #  
1
n +

Á
+ An

n #  
1
n

L
1

0
1x dx =

2
3

 x3>2 d
0

1

=

2
3

21 + 22 +
Á

+ 2n .
25. Let ƒ(x) be a continuous function. Express

as a definite integral.

26. Use the result of Exercise 25 to evaluate

a.

b.

c.

What can be said about the following limits?

d.

e.

27. a. Show that the area of an n-sided regular polygon in a circle
of radius r is

b. Find the limit of as Is this answer consistent with
what you know about the area of a circle?

28. A differential equation Show that 
satisfies both of the following conditions:

i.

ii. and when 

29. A function defined by an integral The graph of a function ƒ
consists of a semicircle and two line segments as shown. Let

a. Find g (1). b. Find g (3). c. Find 

d. Find all values of x on the open interval at which g
has a relative maximum.

e. Write an equation for the line tangent to the graph of g at

f. Find the x-coordinate of each point of inflection of the graph
of g on the open interval 

g. Find the range of g.

s -3, 4d .

x = -1.

s -3, 4d
g s -1d .

y

1 3–3

y � f(x)

–1
–1

1

3

x

g sxd = 1x
1  ƒstd dt .

x = p .y¿ = -2y = 1

y– = -sin x + 2 sin 2x
1px  cos 2t dt + 1

y = sin x +

n : q .An

An =

nr2

2
 sin 

2p
n .

An

lim
n: q

 
1

n15 s115
+ 215

+ 315
+

Á
+ n15d

lim
n: q

 
1

n17 s115
+ 215

+ 315
+

Á
+ n15d

lim
n: q

 
1
n asin 

p
n + sin 

2p
n + sin 

3p
n +

Á
+ sin 

np
n b .

lim
n: q

 
1

n16 s115
+ 215

+ 315
+

Á
+ n15d ,

lim
n: q

 
1
n2 s2 + 4 + 6 +

Á
+ 2nd ,

lim
n: q

 
1
n cƒ a1n b + ƒ a2n b +

Á
+ ƒ ann b d
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