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Moments and Centers of Mass

Many structures and mechanical systems behave as if their masses were concentrated at a
single point, called the center of mass (Figure 6.29). It is important to know how to locate
this point, and doing so is basically a mathematical enterprise. For the moment, we deal
with one- and two-dimensional objects. Three-dimensional objects are best done with the
multiple integrals of Chapter 15.

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses 
and on a rigid x-axis supported by a fulcrum at the origin.m3

m1, m2 ,

6.4

x
m1

Fulcrum
at origin

m2 m3

x1 x2 x30

The resulting system might balance, or it might not. It depends on how large the masses
are and how they are arranged.
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6.4 Moments and Centers of Mass 425

Each mass exerts a downward force (the weight of ) equal to the magni-
tude of the mass times the acceleration of gravity. Each of these forces has a tendency
to turn the axis about the origin, the way you turn a seesaw. This turning effect, called a
torque, is measured by multiplying the force by the signed distance from the
point of application to the origin. Masses to the left of the origin exert negative (coun-
terclockwise) torque. Masses to the right of the origin exert positive (clockwise)
torque.

The sum of the torques measures the tendency of a system to rotate about the origin.
This sum is called the system torque.

(1)

The system will balance if and only if its torque is zero.
If we factor out the g in Equation (1), we see that the system torque is

Thus, the torque is the product of the gravitational acceleration g, which is a feature of the en-
vironment in which the system happens to reside, and the number 
which is a feature of the system itself, a constant that stays the same no matter where the sys-
tem is placed.

The number is called the moment of the system about the
origin. It is the sum of the moments of the individual masses.

(We shift to sigma notation here to allow for sums with more terms.)
We usually want to know where to place the fulcrum to make the system balance, that

is, at what point to place it to make the torques add to zero.x

M0 = Moment of system about origin = a  mk xk .

m1 x1, m2 x2, m3 x3

sm1 x1 + m2 x2 + m3 x3d

sm1 x1 + m2 x2 + m3 x3d,

   
g # sm1 x1 + m2 x2 + m3 x3d
" ('''')''''*

a feature of the
environment

a feature of
 the system

System torque = m1 gx1 + m2 gx2 + m3 gx3

xkmk g

mkmk gmk

(a)

(b)

FIGURE 6.29 (a) The motion of this wrench gliding on ice seems haphazard
until we notice that the wrench is simply turning about its center of mass as the
center glides in a straight line. (b) The planets, asteroids, and comets of our solar
system revolve about their collective center of mass. (It lies inside the sun.)

x
m1

Special location
for balance

m2 m3

x1 x2 x30 x
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The torque of each mass about the fulcrum in this special location is

When we write the equation that says that the sum of these torques is zero, we get an equa-
tion we can solve for 

Sum of the torques equals zero

Constant Multiple Rule for Sums

g divided out, distributed

Difference Rule for Sums

Rearranged, Constant Multiple Rule again

Solved for 

This last equation tells us to find by dividing the system’s moment about the origin by
the system’s total mass:

The point is called the system’s center of mass.

Wires and Thin Rods

In many applications, we want to know the center of mass of a rod or a thin strip of
metal. In cases like these where we can model the distribution of mass with a continu-
ous function, the summation signs in our formulas become integrals in a manner we
now describe.

Imagine a long, thin strip lying along the x-axis from to and cut into
small pieces of mass by a partition of the interval [a, b]. Choose to be any point in
the k th subinterval of the partition.

xk¢mk

x = bx = a

x

x =
a  mk xk

a  mk
=

system moment about origin
system mass .

x

x x =
a  mk xk

a  mk
.

 a  mk xk = x a  mk

 a  mk xk - a  xmk = 0

mk a  smk xk - xmkd = 0

 ga  sxk - xdmk = 0

 a  sxk - xdmk g = 0

x :

 = sxk - xdmk g .

 Torque of mk about x = asigned distance
of mk from x

b adownward
force

b
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x
a �mk

xk

b

The k th piece is units long and lies approximately units from the origin. Now ob-
serve three things.

First, the strip’s center of mass is nearly the same as that of the system of point
masses we would get by attaching each mass to the point :

x L

system moment
system mass .

xk¢mk

x

xk¢xk
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6.4 Moments and Centers of Mass 427

EXAMPLE 1 Strips and Rods of Constant Density

Show that the center of mass of a straight, thin strip or rod of constant density lies halfway
between its two ends.

Solution We model the strip as a portion of the x-axis from to 
(Figure 6.30). Our goal is to show that the point halfway between a and b.x = sa + bd>2,

x = bx = a

Second, the moment of each piece of the strip about the origin is approximately
so the system moment is approximately the sum of the :

Third, if the density of the strip at is expressed in terms of mass per unit
length and if is continuous, then is approximately equal to (mass per unit
length times length):

Combining these three observations gives

(2)

The sum in the last numerator in Equation (2) is a Riemann sum for the continuous func-
tion over the closed interval [a, b]. The sum in the denominator is a Riemann sum
for the function over this interval. We expect the approximations in Equation (2) to
improve as the strip is partitioned more finely, and we are led to the equation

This is the formula we use to find x .

x =
L

b

a
 xdsxd dx

L
b

a
 dsxd dx

.

dsxd
xdsxd

x L

system moment
system mass L

a  xk ¢mk

a  ¢mk
L
a  xk dsxkd ¢xk

a  dsxkd ¢xk
.

¢mk L dsxkd ¢xk .

dsxkd ¢xk¢mkd

dsxkd ,xk

System moment L a  xk ¢mk .

xk ¢mkxk ¢mk ,
Density
A material’s density is its mass per unit
volume. In practice, however, we tend to
use units we can conveniently measure.
For wires, rods, and narrow strips, we use
mass per unit length. For flat sheets and
plates, we use mass per unit area.

Moment, Mass, and Center of Mass of a Thin Rod or Strip Along the x-Axis
with Density Function 

(3a)

(3b)

(3c) Center of mass:    x =

M0

M

 Mass:    M = L
b

a
 dsxd dx

 Moment about the origin:   M0 = L
b

a
 xdsxd dx

Dsxd

x

a

b

a � b
2c.m. �

FIGURE 6.30 The center of mass of a
straight, thin rod or strip of constant
density lies halfway between its ends
(Example 1).
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The key is the density’s having a constant value. This enables us to regard the function
in the integrals in Equation (3) as a constant (call it ), with the result that

EXAMPLE 2 Variable-Density Rod

The 10-m-long rod in Figure 6.31 thickens from left to right so that its density, instead of
being constant, is Find the rod’s center of mass.

Solution The rod’s moment about the origin (Equation 3a) is

The rod’s mass (Equation 3b) is

The center of mass (Equation 3c) is located at the point

Masses Distributed over a Plane Region

Suppose that we have a finite collection of masses located in the plane, with mass at the
point (see Figure 6.32). The mass of the system is

Each mass has a moment about each axis. Its moment about the x-axis is and its
moment about the y-axis is The moments of the entire system about the two axes
are

The x-coordinate of the system’s center of mass is defined to be

(4)x =

My

M
=
a  mk xk

a  mk
.

 Moment about y-axis:   My = a  mk xk .

 Moment about x-axis:   Mx = a  mk yk ,

mk xk .
mk yk ,mk

System mass: M = a  mk .

sxk , ykd
mk

x =

M0

M
=

250
3

 #
1
15

=

50
9

L 5.56 m. 

M = L
10

0
 dsxd dx = L

10

0
 a1 +

x
10
b  dx = cx +

x2

20
d

0

10

= 10 + 5 = 15 kg.

 = cx2

2
+

x3

30
d

0

10

= 50 +

100
3

=

250
3

  kg # m.

 M0 = L
10

0
xdsxd dx = L

10

0
x a1 +

x
10
b  dx = L

10

0
 ax +

x2

10
b  dx

dsxd = 1 + sx>10d kg>m.

 =

a + b
2

.

 x =

M0

M
=

d
2

 sb2
- a2d

dsb - ad

 M = L
b

a
 d dx = dL

b

a
  dx = d Cx Dab = dsb - ad

 M0 = L
b

a
 dx dx = dL

b

a
 x dx = d c1

2
 x2 d

a

b

=
d
2

 sb2
- a2d

ddsxd
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The ’s cancel in the
formula for x .
d

The units of a
moment are
mass * length .

10

0

x (m)

FIGURE 6.31 We can treat a rod of
variable thickness as a rod of variable
density (Example 2).

x

y

0

xk

xk

yk

yk

mk

(xk, yk)

FIGURE 6.32 Each mass has a
moment about each axis.

mk
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6.4 Moments and Centers of Mass 429

With this choice of as in the one-dimensional case, the system balances about the line
(Figure 6.33).

The y-coordinate of the system’s center of mass is defined to be

(5)

With this choice of the system balances about the line as well. The torques ex-
erted by the masses about the line cancel out. Thus, as far as balance is concerned,
the system behaves as if all its mass were at the single point We call this point the
system’s center of mass.

Thin, Flat Plates

In many applications, we need to find the center of mass of a thin, flat plate: a disk of alu-
minum, say, or a triangular sheet of steel. In such cases, we assume the distribution of
mass to be continuous, and the formulas we use to calculate and contain integrals in-
stead of finite sums. The integrals arise in the following way.

Imagine the plate occupying a region in the xy-plane, cut into thin strips parallel to
one of the axes (in Figure 6.34, the y-axis). The center of mass of a typical strip is 
We treat the strip’s mass as if it were concentrated at The moment of the strip
about the y-axis is then The moment of the strip about the x-axis is Equa-
tions (4) and (5) then become

As in the one-dimensional case, the sums are Riemann sums for integrals and approach
these integrals as limiting values as the strips into which the plate is cut become narrower
and narrower. We write these integrals symbolically as

x =
1  x

'
 dm

1  dm
 and y =

1  y
'

 dm

1  dm
.

x =

My

M
=
a  x

'
 ¢m

a  ¢m
, y =

Mx

M
=
a  y

'
 ¢m

a  ¢m
.

y
'

 ¢m .x
'

 ¢m .
s x
'

, y
'd.¢m

s x
'

, y
'd.

yx

sx, yd .
y = y

y = yy ,

y =

Mx

M
=
a  mk yk

a  mk
.

x = x
x ,

Moments, Mass, and Center of Mass of a Thin Plate Covering a Region in
the xy-Plane

(6)

 Center of mass:    x =

My

M
, y =

Mx

M

 Mass:    M = L   dm

 Moment about the y-axis:   My = L  x
'

 dm

 Moment about the x-axis:   Mx = L  y
'

 dm

To evaluate these integrals, we picture the plate in the coordinate plane and sketch a strip of
mass parallel to one of the coordinates axes. We then express the strip’s mass dm and the co-
ordinates of the strip’s center of mass in terms of x or y. Finally, we integrate 

and dm between limits of integration determined by the plate’s location in the plane. x
'

 dm ,
y
'

 dm, s x
'

, y
'd

x

y

0

Bala
nc

e l
ine

Balanceline

y � y

x �
 x

c.m.
y

x

FIGURE 6.33 A two-dimensional array
of masses balances on its center of mass.

x

y

~x0

Strip
c.m.

~y
~x

~y

Strip of mass �m

~ ~(x, y)

FIGURE 6.34 A plate cut into thin strips
parallel to the y-axis. The moment exerted
by a typical strip about each axis is the
moment its mass would exert if
concentrated at the strip’s center of mass
s x
'

, y
'd .

¢m
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EXAMPLE 3 Constant-Density Plate

The triangular plate shown in Figure 6.35 has a constant density of Find

(a) the plate’s moment about the y-axis.

(b) the plate’s mass M.

(c) the x-coordinate of the plate’s center of mass (c.m.).

Solution
Method 1: Vertical Strips (Figure 6.36)

(a) The moment The typical vertical strip has

The moment of the strip about the y-axis is

The moment of the plate about the y-axis is therefore

(b) The plate’s mass:

(c) The x-coordinate of the plate’s center of mass:

By a similar computation, we could find and 

Method 2: Horizontal Strips (Figure 6.37)

(a) The moment The y-coordinate of the center of mass of a typical horizontal strip is
y (see the figure), so

The x-coordinate is the x-coordinate of the point halfway across the triangle. This
makes it the average of y 2 (the strip’s left-hand x-value) and 1 (the strip’s right-hand
x-value):

x
'

=

sy>2d + 1
2

=

y
4

+
1
2

=

y + 2
4

.

>
y
'

= y .

My:

y = Mx>M .Mx

x =

My

M
=

2 g # cm
3 g

=
2
3

 cm.

M = L   dm = L
1

0
 6x dx = 3x2 d

0

1

= 3 g.

My = L  x
'

 dm = L
1

0
 6x2 dx = 2x3 d

0

1

= 2 g # cm.

x
'

 dm = x # 6x dx = 6x2 dx .

distance of c.m. from  y-axis: x
'

= x .

mass: dm = d dA = 3 # 2x dx = 6x dx

area: dA = 2x dx

width: dx

length: 2x

center of mass sc.m.d: s x
'

, y
'd = sx, xd

My :

My

d = 3 g>cm2.
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x (cm)

y (cm) 

0

2

1

(1, 2)

y � 2x

x � 1

y � 0

FIGURE 6.35 The plate in Example 3.

x

y

0

2

1

(1, 2)

Units in centimeters

Strip c.m.
is halfway.

x 2x

dx

y � 2x

(x, 2x)

~ ~(x, y) � (x, x)

FIGURE 6.36 Modeling the plate in
Example 3 with vertical strips.

x (cm)

y (cm)

0

2

1

(1, 2)

Strip c.m.
is halfway.

y dy







~ ~(x, y) � 4
y � 2

, y





2

y
, y

2
2
y

1 �

2
y

x � 

(1, y)

2
y

1 �

FIGURE 6.37 Modeling the plate in
Example 3 with horizontal strips.
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6.4 Moments and Centers of Mass 431

We also have

The moment of the strip about the y-axis is

The moment of the plate about the y-axis is

(b) The plate’s mass:

(c) The x-coordinate of the plate’s center of mass:

By a similar computation, we could find  and  

If the distribution of mass in a thin, flat plate has an axis of symmetry, the center of
mass will lie on this axis. If there are two axes of symmetry, the center of mass will lie at
their intersection. These facts often help to simplify our work.

EXAMPLE 4 Constant-Density Plate

Find the center of mass of a thin plate of constant density covering the region bounded
above by the parabola and below by the x-axis (Figure 6.38).

Solution Since the plate is symmetric about the y-axis and its density is constant, the
distribution of mass is symmetric about the y-axis and the center of mass lies on the y-axis.
Thus, It remains to find 

A trial calculation with horizontal strips (Figure 6.38a) leads to an inconvenient inte-
gration

We therefore model the distribution of mass with vertical strips instead (Figure 6.38b).

Mx = L
4

0
 2dy24 - y dy .

y = Mx>M .x = 0.

y = 4 - x2
d

y .Mx

x =

My

M
=

2 g # cm
3 g

=
2
3

  cm.

M = L   dm = L
2

0
 
3
2

 (2 - y) dy =

3
2

 c2y -

y2

2
d

0

2

=

3
2

 (4 - 2) = 3 g.

My = L  x
'

 dm = L
2

0
 
3
8

 s4 - y2d dy =

3
8

 c4y -

y3

3
d

0

2

=

3
8

 a16
3
b = 2 g # cm.

x
'

 dm =

y + 2
4

 #  3 #  
2 - y

2
 dy =

3
8

 s4 - y2d dy .

distance of c.m. to y-axis:  x
'

=

y + 2
4

.

mass:  dm = d dA = 3 #
2 - y

2
 dy

area:  dA =

2 - y
2

 dy

width:  dy

length:  1 -

y
2

=

2 - y
2

How to Find a Plate’s
Center of Mass
1. Picture the plate in the

xy-plane.
2. Sketch a strip of mass

parallel to one of the co-
ordinate axes and find its
dimensions.

3. Find the strip’s mass dm
and center of mass

4. Integrate dm, dm,
and dm to find 
and M.

5. Divide the moments by
the mass to calculate 
and y .

x

Mx , My ,
x
'

y
'

s x
'

, y
'd .
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The typical vertical strip has

The moment of the strip about the x-axis is

The moment of the plate about the x-axis is

(7)

The mass of the plate is

(8)

Therefore,

The plate’s center of mass is the point

EXAMPLE 5 Variable-Density Plate

Find the center of mass of the plate in Example 4 if the density at the point (x, y) is 
twice the square of the distance from the point to the y-axis.

d = 2x2 ,

sx, yd = a0, 
8
5 b .

y =

Mx

M
=

s256>15d d
s32>3d d

=

8
5 .

M = L   dm = L
2

-2
 ds4 - x2d dx =

32
3

 d .

 =
d
2

 L
2

-2
 s16 - 8x2

+ x4d dx =

256
15

 d .

 Mx = L  y
'

 dm = L
2

-2
 
d
2

 s4 - x2d2 dx

y
'

 dm =

4 - x2

2
 #  ds4 - x2d dx =

d
2

 s4 - x2d2 dx .

distance from c.m. to x-axis: y
'

=

4 - x2

2
.

mass: dm = d dA = ds4 - x2d dx

area: dA = s4 - x2d dx

width: dx

length: 4 - x2

center of mass sc.m.d: s x
'

, y
'd = ax, 

4 - x2

2
b
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x

y

0

4

(0, y)

(a)

–2 2

c.m.dy

x

y

0

4

(b)

–2 2
dx
x

Center of mass

y � 4 � x2

y � 4 � x2







~ ~(x, y) � 2
4 � x2

x, 

2
y

4 � x2

2�4 � y

FIGURE 6.38 Modeling the plate in
Example 4 with (a) horizontal strips leads
to an inconvenient integration, so we
model with (b) vertical strips instead.
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6.4 Moments and Centers of Mass 433

Solution The mass distribution is still symmetric about the y-axis, so With
Equations (7) and (8) become

(7’)

(8’)

Therefore,

The plate’s new center of mass is

EXAMPLE 6 Constant-Density Wire

Find the center of mass of a wire of constant density shaped like a semicircle of radius a.

Solution We model the wire with the semicircle (Figure 6.39). The dis-
tribution of mass is symmetric about the y-axis, so To find we imagine the wire
divided into short segments. The typical segment (Figure 6.39a) has

Hence,

The center of mass lies on the axis of symmetry at the point about two-thirds of
the way up from the origin (Figure 6.39b).

Centroids

When the density function is constant, it cancels out of the numerator and denominator of
the formulas for and This happened in nearly every example in this section. As far as

and were concerned, might as well have been 1. Thus, when the density is constant,
the location of the center of mass is a feature of the geometry of the object and not of the
material from which it is made. In such cases, engineers may call the center of mass the
centroid of the shape, as in “Find the centroid of a triangle or a solid cone.” To do so, just
set equal to 1 and proceed to find and as before, by dividing moments by masses.yxd

dyx
y .x

s0, 2a>pd ,

y =
1  y

'
 dm

1dm
=

1p0 a sin u # da du

1p0  da du
=

da2 C -cos u D0p
dap

=
2
p a .

distance of c.m. to x-axis: y
'

= a sin u .

mass: dm = d ds = da du

length: ds = a du

y ,x = 0.
y = 2a2

- x2

d

sx, yd = a0, 
8
7 b .

y =

Mx

M
=

2048
105

 #  
15
256

=

8
7 .

 = L
2

-2
 s8x2

- 2x4d dx =

256
15

.

 M = L   dm = L
2

-2
 ds4 - x2d dx = L

2

-2
 2x2s4 - x2d dx

 = L
2

-2
s16x2

- 8x4
+ x6d dx =

2048
105

 Mx = L  y
'

 dm = L
2

-2
 
d
2

 s4 - x2d2 dx = L
2

-2
 x2s4 - x2d2 dx

d = 2x2 ,
x = 0.

Mass per unit length
times length

x

y

0–a a

(a)

x

y

0–a a

a

c.m.

A typical small 
segment of wire has 
dm � � ds � �a d�.

(a cos�, a sin�)
d�

�

y � �a2 � x2

(b)

~ ~(x, y) � 

0,     a2
�







FIGURE 6.39 The semicircular wire in
Example 6. (a) The dimensions and
variables used in finding the center of
mass. (b) The center of mass does not lie
on the wire.
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