EXERCISES 7.1

Identifying One-to-One Functions Graphically

Which of the functions graphed in Exercises 1-6 are one-to-one, and which are not?

1.

3.

4.

5.

6.

Graphing Inverse Functions

Each of Exercises 7–10 shows the graph of a function y = f(x). Copy the graph and draw in the line y = x. Then use symmetry with respect to the line y = x to add the graph of f^{-1} to your sketch. (It is not necessary to find a formula for f^{-1} .) Identify the domain and range of f^{-1} .

7.

10.

- 11. a. Graph the function $f(x) = \sqrt{1 x^2}$, $0 \le x \le 1$. What symmetry does the graph have?
 - **b.** Show that f is its own inverse. (Remember that $\sqrt{x^2} = x$ if
- **12. a.** Graph the function f(x) = 1/x. What symmetry does the graph have?
 - **b.** Show that *f* is its own inverse.

Formulas for Inverse Functions

Each of Exercises 13–18 gives a formula for a function y = f(x) and shows the graphs of f and f^{-1} . Find a formula for f^{-1} in each case.

13.
$$f(x) = x^2 + 1$$
, $x \ge 0$ **14.** $f(x) = x^2$, $x \le 0$

14.
$$f(x) = x^2, x \le 0$$

15.
$$f(x) = x^3 - 1$$

17. $f(x) = (x + 1)^2$, $x \ge -1$ **18.** $f(x) = x^{2/3}$, $x \ge 0$

Each of Exercises 19–24 gives a formula for a function y = f(x). In each case, find $f^{-1}(x)$ and identify the domain and range of f^{-1} . As a check, show that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$.

19.
$$f(x) = x^5$$

20.
$$f(x) = x^4, x \ge 0$$

21.
$$f(x) = x^3 + 1$$

21.
$$f(x) = x^3 + 1$$
 22. $f(x) = (1/2)x - 7/2$

23.
$$f(x) = 1/x^2$$
, $x > 0$ **24.** $f(x) = 1/x^3$, $x \ne 0$

24.
$$f(x) = 1/x^3, x \neq 0$$

Derivatives of Inverse Functions

In Exercises 25-28:

- **a.** Find $f^{-1}(x)$.
- **b.** Graph f and f^{-1} together.
- **c.** Evaluate df/dx at x = a and df^{-1}/dx at x = f(a) to show that at these points $df^{-1}/dx = 1/(df/dx)$.

25.
$$f(x) = 2x + 3$$
, $a = -1$ **26.** $f(x) = (1/5)x + 7$, $a = -1$

26.
$$f(x) = (1/5)x + 7$$
, $a = -$

27.
$$f(x) = 5 - 4x$$
, $a = 1/2$ **28.** $f(x) = 2x^2$, $x \ge 0$, $a = 5$

- **29. a.** Show that $f(x) = x^3$ and $g(x) = \sqrt[3]{x}$ are inverses of one another.
 - **b.** Graph f and g over an x-interval large enough to show the graphs intersecting at (1, 1) and (-1, -1). Be sure the picture shows the required symmetry about the line y = x.
 - **c.** Find the slopes of the tangents to the graphs of f and g at (1, 1) and (-1, -1) (four tangents in all).
 - **d.** What lines are tangent to the curves at the origin?
- **30. a.** Show that $h(x) = x^3/4$ and $k(x) = (4x)^{1/3}$ are inverses of one
 - **b.** Graph h and k over an x-interval large enough to show the graphs intersecting at (2, 2) and (-2, -2). Be sure the picture shows the required symmetry about the line y = x.
 - **c.** Find the slopes of the tangents to the graphs at h and k at (2, 2) and (-2, -2).
 - **d.** What lines are tangent to the curves at the origin?
- **31.** Let $f(x) = x^3 3x^2 1$, $x \ge 2$. Find the value of df^{-1}/dx at the point x = -1 = f(3).
- **32.** Let $f(x) = x^2 4x 5, x > 2$. Find the value of df^{-1}/dx at the point x = 0 = f(5).

- 33. Suppose that the differentiable function y = f(x) has an inverse and that the graph of f passes through the point (2, 4) and has a slope of 1/3 there. Find the value of df^{-1}/dx at x = 4.
- **34.** Suppose that the differentiable function y = g(x) has an inverse and that the graph of g passes through the origin with slope 2. Find the slope of the graph of g^{-1} at the origin.

Inverses of Lines

- 35. a. Find the inverse of the function f(x) = mx, where m is a constant different from zero.
 - **b.** What can you conclude about the inverse of a function y = f(x) whose graph is a line through the origin with a nonzero slope *m*?
- **36.** Show that the graph of the inverse of f(x) = mx + b, where m and b are constants and $m \neq 0$, is a line with slope 1/m and yintercept -b/m.
- **37. a.** Find the inverse of f(x) = x + 1. Graph f and its inverse together. Add the line y = x to your sketch, drawing it with dashes or dots for contrast.
 - **b.** Find the inverse of f(x) = x + b (b constant). How is the graph of f^{-1} related to the graph of f?
 - c. What can you conclude about the inverses of functions whose graphs are lines parallel to the line y = x?
- **38.** a. Find the inverse of f(x) = -x + 1. Graph the line y = -x + 1 together with the line y = x. At what angle do the lines intersect?
 - **b.** Find the inverse of f(x) = -x + b (b constant). What angle does the line y = -x + b make with the line y = x?
 - c. What can you conclude about the inverses of functions whose graphs are lines perpendicular to the line y = x?

Increasing and Decreasing Functions

39. As in Section 4.3, a function f(x) increases on an interval I if for any two points x_1 and x_2 in I,

$$x_2 > x_1 \implies f(x_2) > f(x_1).$$

Similarly, a function decreases on I if for any two points x_1 and x_2 in I,

$$x_2 > x_1 \implies f(x_2) < f(x_1)$$
.

Show that increasing functions and decreasing functions are oneto-one. That is, show that for any x_1 and x_2 in I, $x_2 \neq x_1$ implies $f(x_2) \neq f(x_1)$.

Use the results of Exercise 39 to show that the functions in Exercises 40–44 have inverses over their domains. Find a formula for df^{-1}/dx using Theorem 1.

- **40.** f(x) = (1/3)x + (5/6)
- **41.** $f(x) = 27x^3$
- **42.** $f(x) = 1 8x^3$
- **43.** $f(x) = (1 x)^3$
- **44.** $f(x) = x^{5/3}$

Theory and Applications

- **45.** If f(x) is one-to-one, can anything be said about g(x) = -f(x)? Is it also one-to-one? Give reasons for your answer.
- **46.** If f(x) is one-to-one and f(x) is never zero, can anything be said about h(x) = 1/f(x)? Is it also one-to-one? Give reasons for your answer.
- **47.** Suppose that the range of g lies in the domain of f so that the composite $f \circ g$ is defined. If f and g are one-to-one, can anything be said about $f \circ g$? Give reasons for your answer.
- **48.** If a composite $f \circ g$ is one-to-one, must g be one-to-one? Give reasons for your answer.
- **49.** Suppose f(x) is positive, continuous, and increasing over the interval [a, b]. By interpreting the graph of f show that

$$\int_{a}^{b} f(x) dx + \int_{f(a)}^{f(b)} f^{-1}(y) dy = bf(b) - af(a).$$

50. Determine conditions on the constants a, b, c, and d so that the rational function

$$f(x) = \frac{ax + b}{cx + d}$$

has an inverse.

51. If we write g(x) for $f^{-1}(x)$, Equation (1) can be written as

$$g'(f(a)) = \frac{1}{f'(a)}, \text{ or } g'(f(a)) \cdot f'(a) = 1.$$

If we then write x for a, we get

$$g'(f(x)) \cdot f'(x) = 1.$$

The latter equation may remind you of the Chain Rule, and indeed there is a connection.

Assume that f and g are differentiable functions that are inverses of one another, so that $(g \circ f)(x) = x$. Differentiate both sides of this equation with respect to x, using the Chain Rule to express $(g \circ f)'(x)$ as a product of derivatives of g and f. What do you find? (This is not a proof of Theorem 1 because we assume here the theorem's conclusion that $g = f^{-1}$ is differentiable.)

52. Equivalence of the washer and shell methods for finding volume Let f be differentiable and increasing on the interval $a \le x \le b$, with a > 0, and suppose that f has a differentiable inverse, f^{-1} . Revolve about the y-axis the region bounded by the graph of f and the lines x = a and y = f(b) to generate a solid. Then the values of the integrals given by the washer and shell methods for the volume have identical values:

$$\int_{f(a)}^{f(b)} \pi((f^{-1}(y))^2 - a^2) \, dy = \int_a^b 2\pi x (f(b) - f(x)) \, dx.$$

To prove this equality, define

$$W(t) = \int_{f(a)}^{f(t)} \pi((f^{-1}(y))^2 - a^2) \, dy$$
$$S(t) = \int_a^t 2\pi x (f(t) - f(x)) \, dx.$$

Then show that the functions W and S agree at a point of [a, b] and have identical derivatives on [a, b]. As you saw in Section 4.8, Exercise 102, this will guarantee W(t) = S(t) for all t in [a, b]. In particular, W(b) = S(b). (Source: "Disks and Shells Revisited," by Walter Carlip, American Mathematical Monthly, Vol. 98, No. 2, Feb. 1991, pp. 154–156.)

COMPUTER EXPLORATIONS

In Exercises 53–60, you will explore some functions and their inverses together with their derivatives and linear approximating functions at specified points. Perform the following steps using your CAS:

- **a.** Plot the function y = f(x) together with its derivative over the given interval. Explain why you know that f is one-to-one over the interval.
- **b.** Solve the equation y = f(x) for x as a function of y, and name the resulting inverse function g.
- **c.** Find the equation for the tangent line to f at the specified point $(x_0, f(x_0))$.
- **d.** Find the equation for the tangent line to g at the point $(f(x_0), x_0)$ located symmetrically across the 45° line y = x (which is the graph of the identity function). Use Theorem 1 to find the slope of this tangent line.
- e. Plot the functions f and g, the identity, the two tangent lines, and the line segment joining the points $(x_0, f(x_0))$ and $(f(x_0), x_0)$. Discuss the symmetries you see across the main diagonal.

53.
$$y = \sqrt{3x - 2}$$
, $\frac{2}{3} \le x \le 4$, $x_0 = 3$

54.
$$y = \frac{3x+2}{2x-11}$$
, $-2 \le x \le 2$, $x_0 = 1/2$

55.
$$y = \frac{4x}{x^2 + 1}$$
, $-1 \le x \le 1$, $x_0 = 1/2$

56.
$$y = \frac{x^3}{x^2 + 1}$$
, $-1 \le x \le 1$, $x_0 = 1/2$

57.
$$y = x^3 - 3x^2 - 1$$
, $2 \le x \le 5$, $x_0 = \frac{27}{10}$

58.
$$y = 2 - x - x^3$$
, $-2 \le x \le 2$, $x_0 = \frac{3}{2}$

59.
$$y = e^x$$
, $-3 \le x \le 5$, $x_0 = 1$

60.
$$y = \sin x$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, $x_0 = 1$

In Exercises 61 and 62, repeat the steps above to solve for the functions y = f(x) and $x = f^{-1}(y)$ defined implicitly by the given equations over the interval.

61.
$$y^{1/3} - 1 = (x + 2)^3$$
, $-5 \le x \le 5$, $x_0 = -3/2$

62.
$$\cos y = x^{1/5}$$
, $0 \le x \le 1$, $x_0 = 1/2$