The Exponential Function

Having developed the theory of the function ln x, we introduce the exponential function $\exp x = e^x$ as the inverse of $\ln x$. We study its properties and compute its derivative and integral. Knowing its derivative, we prove the power rule to differentiate x^n when n is any real number, rational or irrational.

The Inverse of ln x and the Number e

The function $\ln x$, being an increasing function of x with domain $(0, \infty)$ and range $(-\infty, \infty)$, has an inverse $\ln^{-1} x$ with domain $(-\infty, \infty)$ and range $(0, \infty)$. The graph of $\ln^{-1} x$ is the graph of $\ln x$ reflected across the line y = x. As you can see in Figure 7.11,

$$\lim_{x\to\infty} \ln^{-1} x = \infty \quad \text{and} \quad \lim_{x\to-\infty} \ln^{-1} x = 0.$$
 The function $\ln^{-1} x$ is also denoted by $\exp x$.

In Section 7.2 we defined the number e by the equation $\ln(e) = 1$, so $e = \ln^{-1}(1) = \exp(1)$. Although e is not a rational number, later in this section we see one way to express it as a limit. In Chapter 11, we will calculate its value with a computer to as many places of accuracy as we want with a different formula (Section 11.9, Example 6). To 15 places,

$$e = 2.718281828459045$$
.

The Function $y = e^x$

We can raise the number e to a rational power r in the usual way:

$$e^2 = e \cdot e$$
, $e^{-2} = \frac{1}{e^2}$, $e^{1/2} = \sqrt{e}$,

and so on. Since e is positive, e^r is positive too. Thus, e^r has a logarithm. When we take the logarithm, we find that

$$\ln e^r = r \ln e = r \cdot 1 = r.$$

Since $\ln x$ is one-to-one and $\ln (\ln^{-1} r) = r$, this equation tells us that

$$e^r = \ln^{-1} r = \exp r$$
 for r rational. (1)

We have not yet found a way to give an obvious meaning to e^x for x irrational. But $\ln^{-1} x$ has meaning for any x, rational or irrational. So Equation (1) provides a way to extend the definition of e^x to irrational values of x. The function $\ln^{-1} x$ is defined for all x, so we use it to assign a value to e^x at every point where e^x had no previous definition.

FIGURE 7.11 The graphs of $y = \ln x$ and $y = \ln^{-1} x = \exp x$. The number e is $\ln^{-1} 1 = \exp(1)$.

Typical values of e^x

x	e ^x (rounded)
-1	0.37
0	1
1	2.72
2	7.39
10	22026
100	2.6881×10^{43}

The Natural Exponential Function **DEFINITION**

For every real number x, $e^x = \ln^{-1} x = \exp x$.

For the first time we have a precise meaning for an irrational exponent. Usually the exponential function is denoted by e^x rather than exp x. Since $\ln x$ and e^x are inverses of one another, we have

487

Inverse Equations for e^x and $\ln x$

$$e^{\ln x} = x \qquad (\text{all } x > 0) \tag{2}$$

$$ln (e^x) = x \qquad (all x)$$

Transcendental Numbers and Transcendental Functions

Numbers that are solutions of polynomial equations with rational coefficients are called **algebraic**: -2 is algebraic because it satisfies the equation x + 2 = 0, and $\sqrt{3}$ is algebraic because it satisfies the equation $x^2 - 3 = 0$. Numbers that are not algebraic are called **transcendental**, like e and π . In 1873, Charles Hermite proved the transcendence of e in the sense that we describe. In 1882, C.L.F. Lindemann proved the transcendence of π .

Today, we call a function y = f(x) algebraic if it satisfies an equation of the form

$$P_n y^n + \dots + P_1 y + P_0 = 0$$

in which the P's are polynomials in x with rational coefficients. The function $y=1/\sqrt{x+1}$ is algebraic because it satisfies the equation $(x+1)y^2-1=0$. Here the polynomials are $P_2=x+1$, $P_1=0$, and $P_0=-1$. Functions that are not algebraic are called transcendental.

The domain of $\ln x$ is $(0, \infty)$ and its range is $(-\infty, \infty)$. So the domain of e^x is $(-\infty, \infty)$ and its range is $(0, \infty)$.

EXAMPLE 1 Using the Inverse Equations

(a)
$$\ln e^2 = 2$$

(b)
$$\ln e^{-1} = -1$$

(c)
$$\ln \sqrt{e} = \frac{1}{2}$$

(d)
$$\ln e^{\sin x} = \sin x$$

(e)
$$e^{\ln 2} = 2$$

(f)
$$e^{\ln(x^2+1)} = x^2 + 1$$

(g)
$$e^{3 \ln 2} = e^{\ln 2^3} = e^{\ln 8} = 8$$
 One way

(h)
$$e^{3 \ln 2} = (e^{\ln 2})^3 = 2^3 = 8$$
 Another way

EXAMPLE 2 Solving for an Exponent

Find *k* if $e^{2k} = 10$.

Solution Take the natural logarithm of both sides:

$$e^{2k} = 10$$

$$\ln e^{2k} = \ln 10$$

$$2k = \ln 10$$

$$k = \frac{1}{2} \ln 10.$$
Eq. (3)

The General Exponential Function a^x

Since $a = e^{\ln a}$ for any positive number a, we can think of a^x as $(e^{\ln a})^x = e^{x \ln a}$. We therefore make the following definition.

DEFINITION General Exponential Functions

For any numbers a > 0 and x, the exponential function with base a is

$$a^x = e^{x \ln a}.$$

When a = e, the definition gives $a^x = e^{x \ln a} = e^{x \ln e} = e^{x \cdot 1} = e^x$.

HISTORICAL BIOGRAPHY

Siméon Denis Poisson (1781–1840)

EXAMPLE 3 Evaluating Exponential Functions

(a)
$$2^{\sqrt{3}} = e^{\sqrt{3} \ln 2} \approx e^{1.20} \approx 3.32$$

(b)
$$2^{\pi} = e^{\pi \ln 2} \approx e^{2.18} \approx 8.8$$

We study the calculus of general exponential functions and their inverses in the next section. Here we need the definition in order to discuss the laws of exponents for e^x .

Laws of Exponents

Even though e^x is defined in a seemingly roundabout way as $\ln^{-1} x$, it obeys the familiar laws of exponents from algebra. Theorem 3 shows us that these laws are consequences of the definitions of $\ln x$ and e^x .

THEOREM 3 Laws of Exponents for e^x

For all numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

1.
$$e^{x_1} \cdot e^{x_2} = e^{x_1 + x_2}$$

2.
$$e^{-x} = \frac{1}{e^x}$$

$$3. \quad \frac{e^{x_1}}{e^{x_2}} = e^{x_1 - x_2}$$

4.
$$(e^{x_1})^{x_2} = e^{x_1x_2} = (e^{x_2})^{x_1}$$

Proof of Law 1 Let

$$y_1 = e^{x_1}$$
 and $y_2 = e^{x_2}$. (4)

Then

$$x_1 = \ln y_1$$
 and $x_2 = \ln y_2$ Take logs of both sides of Eqs. (4).

 $x_1 + x_2 = \ln y_1 + \ln y_2$
 $= \ln y_1 y_2$ Product Rule for logarithms

 $e^{x_1 + x_2} = e^{\ln y_1 y_2}$ Exponentiate.

 $= y_1 y_2$ $e^{\ln u} = u$
 $= e^{x_1} e^{x_2}$.

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercise 78).

EXAMPLE 4 Applying the Exponent Laws

(a)
$$e^{x+\ln 2} = e^x \cdot e^{\ln 2} = 2e^x$$
 Law 1

(b)
$$e^{-\ln x} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$
 Law 2

(c)
$$\frac{e^{2x}}{e} = e^{2x-1}$$
 Law 3

(d)
$$(e^3)^x = e^{3x} = (e^x)^3$$
 Law 4

Theorem 3 is also valid for a^x , the exponential function with base a. For example,

$$a^{x_1} \cdot a^{x_2} = e^{x_1 \ln a} \cdot e^{x_2 \ln a} \qquad \text{Definition of } a^x$$

$$= e^{x_1 \ln a + x_2 \ln a} \qquad \text{Law 1}$$

$$= e^{(x_1 + x_2) \ln a} \qquad \text{Factor ln } a$$

$$= a^{x_1 + x_2}. \qquad \text{Definition of } a^x$$

The Derivative and Integral of e^x

The exponential function is differentiable because it is the inverse of a differentiable function whose derivative is never zero (Theorem 1). We calculate its derivative using Theorem 1 and our knowledge of the derivative of $\ln x$. Let

$$f(x) = \ln x$$
 and $y = e^x = \ln^{-1} x = f^{-1}(x)$.

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(e^x) = \frac{d}{dx}\ln^{-1}x$$

$$= \frac{d}{dx}f^{-1}(x)$$

$$= \frac{1}{f'(f^{-1}(x))} \qquad \text{Theorem 1}$$

$$= \frac{1}{f'(e^x)} \qquad f^{-1}(x) = e^x$$

$$= \frac{1}{\left(\frac{1}{e^x}\right)} \qquad f'(z) = \frac{1}{z} \text{ with } z = e^x$$

$$= e^x$$

That is, for $y = e^x$, we find that $dy/dx = e^x$ so the natural exponential function e^x is its own derivative. We will see in Section 7.5 that the only functions that behave this way are constant multiples of e^x . In summary,

$$\frac{d}{dx}e^x = e^x \tag{5}$$

EXAMPLE 5 Differentiating an Exponential

$$\frac{d}{dx}(5e^x) = 5\frac{d}{dx}e^x$$
$$= 5e^x$$

The Chain Rule extends Equation (5) in the usual way to a more general form.

If u is any differentiable function of x, then

$$\frac{d}{dx}e^u = e^u \frac{du}{dx}. (6)$$

EXAMPLE 6 Applying the Chain Rule with Exponentials

(a)
$$\frac{d}{dx}e^{-x} = e^{-x}\frac{d}{dx}(-x) = e^{-x}(-1) = -e^{-x}$$
 Eq. (6) with $u = -x$

(b)
$$\frac{d}{dx}e^{\sin x} = e^{\sin x}\frac{d}{dx}(\sin x) = e^{\sin x} \cdot \cos x$$
 Eq. (6) with $u = \sin x$

The integral equivalent of Equation (6) is

$$\int e^u du = e^u + C.$$

EXAMPLE 7 Integrating Exponentials

(a)
$$\int_0^{\ln 2} e^{3x} dx = \int_0^{\ln 8} e^u \cdot \frac{1}{3} du$$

$$= \frac{1}{3} \int_0^{\ln 8} e^u du$$

$$= \frac{1}{3} e^u \Big|_0^{\ln 8}$$

$$= \frac{1}{3} (8 - 1) = \frac{7}{3}$$

(b)
$$\int_0^{\pi/2} e^{\sin x} \cos x \, dx = e^{\sin x} \Big]_0^{\pi/2}$$
 Antiderivative from Example 6
$$= e^1 - e^0 = e - 1$$

EXAMPLE 8 Solving an Initial Value Problem

Solve the initial value problem

$$e^{y}\frac{dy}{dx} = 2x, \qquad x > \sqrt{3}; \qquad y(2) = 0.$$

Solution We integrate both sides of the differential equation with respect to x to obtain

$$e^y = x^2 + C$$
.

We use the initial condition y(2) = 0 to determine C:

$$C = e^0 - (2)^2$$

= 1 - 4 = -3.

This completes the formula for e^y :

$$e^y = x^2 - 3.$$

To find y, we take logarithms of both sides:

$$\ln e^y = \ln (x^2 - 3)$$

$$y = \ln(x^2 - 3).$$

Notice that the solution is valid for $x > \sqrt{3}$.

Let's check the solution in the original equation.

$$e^{y} \frac{dy}{dx} = e^{y} \frac{d}{dx} \ln (x^{2} - 3)$$

$$= e^{y} \frac{2x}{x^{2} - 3}$$
Derivative of $\ln (x^{2} - 3)$

$$= e^{\ln (x^{2} - 3)} \frac{2x}{x^{2} - 3}$$

$$= (x^{2} - 3) \frac{2x}{x^{2} - 3}$$

$$= (x^{2} - 3) \frac{2x}{x^{2} - 3}$$

$$= 2x.$$

The solution checks.

The Number *e* Expressed as a Limit

We have defined the number e as the number for which $\ln e = 1$, or the value $\exp (1)$. We see that e is an important constant for the logarithmic and exponential functions, but what is its numerical value? The next theorem shows one way to calculate e as a limit.

THEOREM 4 The Number e as a Limit

The number e can be calculated as the limit

$$e = \lim_{x \to 0} (1 + x)^{1/x}.$$

Proof If $f(x) = \ln x$, then f'(x) = 1/x, so f'(1) = 1. But, by the definition of derivative,

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x) \qquad \ln 1 = 0$$

$$= \lim_{x \to 0} \ln(1+x)^{1/x} = \ln\left[\lim_{x \to 0} (1+x)^{1/x}\right] \qquad \ln \text{ is continuous.}$$

Because f'(1) = 1, we have

$$\ln\left[\lim_{x\to 0}(1+x)^{1/x}\right] = 1$$

Therefore,

$$\lim_{x \to 0} (1 + x)^{1/x} = e \qquad \ln e = 1 \text{ and } \ln \text{ is one-to-one}$$

By substituting y = 1/x, we can also express the limit in Theorem 4 as

$$e = \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^y. \tag{7}$$

At the beginning of the section we noted that e = 2.718281828459045 to 15 decimal places.

The Power Rule (General Form)

We can now define x^n for any x > 0 and any real number n as $x^n = e^{n \ln x}$. Therefore, the n in the equation $\ln x^n = n \ln x$ no longer needs to be rational—it can be any number as long as x > 0:

$$\ln x^n = \ln (e^{n \ln x}) = n \ln x$$
 $\ln e^u = u$, any u

Together, the law $a^x/a^y = a^{x-y}$ and the definition $x^n = e^{n \ln x}$ enable us to establish the Power Rule for differentiation in its final form. Differentiating x^n with respect to x gives

$$\frac{d}{dx}x^n = \frac{d}{dx}e^{n \ln x}$$
 Definition of x^n , $x > 0$

$$= e^{n \ln x} \cdot \frac{d}{dx}(n \ln x)$$
 Chain Rule for e^u

$$= x^n \cdot \frac{n}{x}$$
 The definition again
$$= nx^{n-1}.$$

In short, as long as x > 0,

$$\frac{d}{dx}x^n = nx^{n-1}.$$

The Chain Rule extends this equation to the Power Rule's general form.

Power Rule (General Form)

If u is a positive differentiable function of x and n is any real number, then u^n is a differentiable function of x and

$$\frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}.$$

EXAMPLE 9 Using the Power Rule with Irrational Powers

(a)
$$\frac{d}{dx}x^{\sqrt{2}} = \sqrt{2}x^{\sqrt{2}-1}$$
 $(x > 0)$

(b)
$$\frac{d}{dx}(2 + \sin 3x)^{\pi} = \pi(2 + \sin 3x)^{\pi-1}(\cos 3x) \cdot 3$$

= $3\pi(2 + \sin 3x)^{\pi-1}(\cos 3x)$.