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The Exponential Function

Having developed the theory of the function In x, we introduce the exponential function
expx = e" as the inverse of In x. We study its properties and compute its derivative and in-
tegral. Knowing its derivative, we prove the power rule to differentiate x"” when # is any
real number, rational or irrational.

y The Inverse of ln x and the Number e

gl y=Inlx The function In x, being an increasing function of x with domain (0, 00) and range
or (—00, 00), has an inverse In"! x with domain (— 00, 00) and range (0, 0). The graph of

T x=lIny In"! x is the graph of In x reflected across the line y = x. As you can see in Figure 7.11,
lim In"'x =00  and lim In"'x = 0.
x—>00 x—>—00

The function In"! x is also denoted by exp x.

In Section 7.2 we defined the number e by the equation In(e) =1, so
e=In"!(1) = exp (1). Although e is not a rational number, later in this section we see one
way to express it as a limit. In Chapter 11, we will calculate its value with a computer to as
many places of accuracy as we want with a different formula (Section 11.9, Example 6).
To 15 places,

e = 2.718281828459045.

The Function y = e*

We can raise the number e to a rational power 7 in the usual way:

2_ . -2 _ 1 12 _
FIGURE 7.11 The graphs of y = Inx and ei=ee, e ="5 e Ve,
y = In"'x = exp x. The number e is ) ) o ) o )
1 = exp (1). and so on. Since e is positive, e” is positive too. Thus, e” has a logarithm. When we take the

logarithm, we find that
Ine" =rlne=r-1=r.
Since In x is one-to-one and In (In"' ) = 7, this equation tells us that
e =Inlr=expr for  rational . (1)

We have not yet found a way to give an obvious meaning to e* for x irrational. But In~! x
has meaning for any x, rational or irrational. So Equation (1) provides a way to extend the
definition of e* to irrational values of x. The function In~" x is defined for all x, so we use it

Typical values of e* to assign a value to e at every point where ¢* had no previous definition.
X e* (rounded)
-1 037 DEFINITION  The Natural Exponential Function
0 1 For every real number x, ¢* = In"'x = expx.
1 2.72
2 7.39
10 22026 For the first time we have a precise meaning for an irrational exponent. Usually the
100 2.6881 X 10% exponential function is denoted by e* rather than exp x. Since In x and e* are inverses of

one another, we have
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| Transcendental Numbers and
Transcendental Functions
Numbers that are solutions of polynomial
equations with rational coefficients are
called algebraic: —2 is algebraic because
it satisfies the equation x + 2 = 0, and
V3is algebraic because it satisfies the
equation x> — 3 = 0. Numbers that are
not algebraic are called transcendental,
like e and 7r. In 1873, Charles Hermite
proved the transcendence of e in the
sense that we describe. In 1882, C.L.F.
Lindemann proved the transcendence
of 7.

Today, we call a function y = f(x)
algebraic if it satisfies an equation of the
form

Pnyn+"'+P1y+P0:0

in which the P’s are polynomials in x
with rational coefficients. The function
vy =1/Vx + 1is algebraic because
it satisfies the equation

(x + 1)y*> = 1 = 0. Here the
polynomials are P, = x + 1, P, = 0,
and Py = —1. Functions that are not
algebraic are called transcendental.
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7.3 The Exponential Function

Inverse Equations for ¢* and In x
(allx > 0) (2)
(all x) (3)

elnx = x

In(e*) = x

The domain of In x is (0, 0) and its range is (— 00, ©0). So the domain of e* is (— 00, 00)
and its range is (0, 00).

EXAMPLE 1 Using the Inverse Equations
(a) Ine? =2

(b) Ine! = —1

(© Ve =%

(d) Ines™ = sinx

() =2

(f) e]n(x2+l) — xZ +1

(g 32 = 2 _ 8 _ g One way
(h) 32 = (eln2)3 =2=38 Another way |
EXAMPLE 2 Solving for an Exponent

Find k if % = 10.

Solution  Take the natural logarithm of both sides:
e =10
Ine** = In 10
2k = In 10 Eq. (3)
1
k= Eln 10. -

The General Exponential Function a*
Since a = ¢ for any positive number a, we can think of a* as (¢™%)* = ¢*"?_ We there-
fore make the following definition.

DEFINITION  General Exponential Functions
For any numbers ¢ > 0 and x, the exponential function with base a is
a¥ = exlna
When a = e, the definition gives a* = e*¢ = ¢¥In¢ = ¥ = ¥,
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HISTORICAL BIOGRAPHY EXAMPLE 3  Evaluating Exponential Functions
Siméon Denis Poisson (a) V3 = e\ﬁhﬂ ~ !0 332

(1781-1840) (b) 27 = ™2 x 218 x g8 [

We study the calculus of general exponential functions and their inverses in the next
section. Here we need the definition in order to discuss the laws of exponents for e*.

Laws of Exponents

Even though e” is defined in a seemingly roundabout way as In"! x, it obeys the familiar
laws of exponents from algebra. Theorem 3 shows us that these laws are consequences of
the definitions of In x and e*.

THEOREM 3 Laws of Exponents for e*
For all numbers x, x;, and x;, the natural exponential e* obeys the following laws:

1. e":e? =0
_ 1
2. e =—
ex
X1
e _
3. ="
-5
e

4 (eny = e = (o)

Proof of Law 1 Let
y = e and vy = e, (4)
Then

x1 =1Iny; and x; = Iny, Take logs of both
sides of Eqgs. (4).
X1 + Xy = 1ny1 + lllyz

=In y1)2 Product Rule for logarithms

et = Sy Exponentiate.

1

= )Vi)2 e =y
= e"en. [

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercise 78).

EXAMPLE 4  Applying the Exponent Laws

(a) 2 = o7 hn? = 27 Law 1
M) emr= L -1 Law2
e
(c) % = e¥! Law 3
(d) (&%) =¥ = (&%) Law 4 ]
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Theorem 3 is also valid for a*, the exponential function with base a. For example,

a¥l - g© = gfilna. gnlna Definition of a*
= Ml Ina+x;Ina Law 1
= e(’“ +x)lna Factor In a
— Xx1tx L. .
=a . Definition of a

The Derivative and Integral of e*

The exponential function is differentiable because it is the inverse of a differentiable func-
tion whose derivative is never zero (Theorem 1). We calculate its derivative using Theorem 1
and our knowledge of the derivative of In x. Let

f(x) = Inx and  y=e" =mh'lx=f"x).
Then,

dy g _d
= - 1n X

el o Gl e
d ._
- L)
o
)
NG 0 =e

1
= f'(z) = %wilhz = e"

#)

= ¢e*.

Theorem 1

That is, for y = e*, we find that dy/dx = e* so the natural exponential function e* is its
own derivative. We will see in Section 7.5 that the only functions that behave this way are
constant multiples of e*. In summary,

et =e¢e* (5)

&=

EXAMPLE 5  Differentiating an Exponential

dicxy_<cd
dx(Se)—dee
:5ex | |

The Chain Rule extends Equation (5) in the usual way to a more general form.
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If u is any differentiable function of x, then

ae =e e (6)

Ii Ii EXAMPLE 6  Applying the Chain Rule with Exponentials
Video Video (a) %eﬂc = eixa%(—x) =ef(—1)=—e" Eq. (6) withu = —x

d g we d -
(b) aesmx = esmxa(smx) = " cosx Eq. (6) withu = sinx u

The integral equivalent of Equation (6) is

/e”du=e”+C.

EXAMPLE 7  Integrating Exponentials
u = 3x, %du =dx, u(0) =0,

In2 In8 1
3 _
(a)/ exdx—/ et 3 du u(In2) =312 =12 = In8
0 0

1 u:|ln8
= 5€
3 0

_le_pn=7
=38~ D=3

w2 ) /2

(b) / e’ cosx dx = esmx:| Antiderivative from Example 6
0 0
=el—el=e—1 u

EXAMPLE 8  Solving an Initial Value Problem

Solve the initial value problem

d
eya = 2x, x> \/3; ¥(2) = 0.

Solution We integrate both sides of the differential equation with respect to x to obtain

e’ =x*+ C.
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We use the initial condition y(2) = 0 to determine C:

C=e"— (2)?

This completes the formula for e”:
eV =x*— 3.
To find y, we take logarithms of both sides:
Ine’ = In(x? — 3)
y =1In(x?* — 3).

Notice that the solution is valid for x > \/3.
Let’s check the solution in the original equation.

d
ey% = eya%ln(x2 - 3)
2x N
= Derivative of In (x? — 3)
x2 — 3 erivative ot In (x
_ eln(x2,3)227x y=In(x? - 3)
x° =3
(2 2x ny _
=x"-=3 Y =y
( )x2 i e )
= 2x.
The solution checks. |

The Number e Expressed as a Limit

We have defined the number e as the number for which Ine = 1, or the value exp (1). We
see that e is an important constant for the logarithmic and exponential functions, but what
is its numerical value? The next theorem shows one way to calculate e as a limit.

THEOREM 4  The Number e as a Limit
The number e can be calculated as the limit

e = lim (1 + x)'”.
x—0

Proof If f(x) = Inx,then f'(x) = 1/x,so0 f'(1) = 1.But, by the definition of derivative,

vy S+ = f) (L 4+ x) = f(1)
P = fim T = i T
In(1 + —Inl
=xli_r)r%)n( z) n :)}i_r)r%)%ln(l+x) Inl =0
= limIn(1 + x)l/x =In [lim(l + x)l/x:| In is continuous.
x—0 x—0
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Because f'(1) = 1, we have
In {lim(l + x)l/x] =1
x—0
Therefore,

lim (1 + x)l/x =e€ Ine = 1 and In is one-to-one u
x—0

By substituting y = 1/x, we can also express the limit in Theorem 4 as

1)’
eZyE)ngo <1 +y> . (7)

At the beginning of the section we noted that e = 2.718281828459045 to 15 decimal
places.

The Power Rule (General Form)

We can now define x" for any x > 0 and any real number 7 as x" = ¢"'"*_ Therefore, the n
in the equation Inx" = nInx no longer needs to be rational—it can be any number as long
asx > 0:

Inx” = In (enlnx) =nlnx Ine* = u, any u

Together, the law a*/a’ = a*” and the definition x" = ¢"!"* enable us to establish
the Power Rule for differentiation in its final form. Differentiating x" with respect to x
gives

d d
axn = aenlnx Definition of x", x > 0
e"nx. i (n In x) Chain Rule for e*
dx
— n n o e .
=Xy The definition again
= nx""!
In short, as long as x > 0,
d n n—1
—V— X = nx
dx

The Chain Rule extends this equation to the Power Rule’s general form.

Power Rule (General Form)
If u is a positive differentiable function of x and » is any real number, then u” is a
differentiable function of x and

d n n—1 @

= nu

ax dx

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

7.3 The Exponential Function 493

EXAMPLE 9  Using the Power Rule with Irrational Powers
(a) %x\/i = V2Vl (x> 0)

d

(b) I (2 + sin3x)™ = w(2 + sin3x)" '(cos 3x) + 3

37(2 + sin3x)" '(cos 3x). [
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