# 7.4

# $a^x$ and $\log_a x$

We have defined general exponential functions such as  $2^x$ ,  $10^x$ , and  $\pi^x$ . In this section we compute their derivatives and integrals. We also define the general logarithmic functions such as  $\log_2 x$ ,  $\log_{10} x$ , and  $\log_{\pi} x$ , and find their derivatives and integrals as well.

#### The Derivative of $a^u$

We start with the definition  $a^x = e^{x \ln a}$ :

$$\frac{d}{dx}a^x = \frac{d}{dx}e^{x\ln a} = e^{x\ln a} \cdot \frac{d}{dx}(x\ln a) \qquad \frac{d}{dx}e^u = e^u \frac{du}{dx}$$
$$= a^x \ln a.$$

If a > 0, then

$$\frac{d}{dx}a^x = a^x \ln a.$$

With the Chain Rule, we get a more general form.

If a > 0 and u is a differentiable function of x, then  $a^u$  is a differentiable function of x and

$$\frac{d}{dx}a^u = a^u \ln a \, \frac{du}{dx}.\tag{1}$$

These equations show why  $e^x$  is the exponential function preferred in calculus. If a = e, then  $\ln a = 1$  and the derivative of  $a^x$  simplifies to

$$\frac{d}{dx}e^x = e^x \ln e = e^x.$$



**FIGURE 7.12** Exponential functions decrease if 0 < a < 1 and increase if a > 1. As  $x \to \infty$ , we have  $a^x \to 0$  if 0 < a < 1 and  $a^x \to \infty$  if a > 1. As  $x \to -\infty$ , we have  $a^x \to \infty$  if 0 < a < 1 and  $a^x \to 0$  if a > 1.

### **EXAMPLE 1** Differentiating General Exponential Functions

(a) 
$$\frac{d}{dx} 3^x = 3^x \ln 3$$

**(b)** 
$$\frac{d}{dx} 3^{-x} = 3^{-x} (\ln 3) \frac{d}{dx} (-x) = -3^{-x} \ln 3$$

(c) 
$$\frac{d}{dx} 3^{\sin x} = 3^{\sin x} (\ln 3) \frac{d}{dx} (\sin x) = 3^{\sin x} (\ln 3) \cos x$$

From Equation (1), we see that the derivative of  $a^x$  is positive if  $\ln a > 0$ , or a > 1, and negative if  $\ln a < 0$ , or 0 < a < 1. Thus,  $a^x$  is an increasing function of x if a > 1 and a decreasing function of x if 0 < a < 1. In each case,  $a^x$  is one-to-one. The second derivative

$$\frac{d^2}{dx^2}(a^x) = \frac{d}{dx}(a^x \ln a) = (\ln a)^2 a^x$$

is positive for all x, so the graph of  $a^x$  is concave up on every interval of the real line (Figure 7.12).

#### **Other Power Functions**

The ability to raise positive numbers to arbitrary real powers makes it possible to define functions like  $x^x$  and  $x^{\ln x}$  for x > 0. We find the derivatives of such functions by rewriting the functions as powers of e.

#### **EXAMPLE 2** Differentiating a General Power Function

Find dy/dx if  $y = x^x$ , x > 0.

**Solution** Write  $x^x$  as a power of e:

$$v = x^x = e^{x \ln x}$$
.  $a^x \text{ with } a = x$ .

Then differentiate as usual:

$$\frac{dy}{dx} = \frac{d}{dx} e^{x \ln x}$$

$$= e^{x \ln x} \frac{d}{dx} (x \ln x)$$

$$= x^{x} \left( x \cdot \frac{1}{x} + \ln x \right)$$

$$= x^{x} (1 + \ln x).$$

## The Integral of $a^u$

If  $a \neq 1$ , so that  $\ln a \neq 0$ , we can divide both sides of Equation (1) by  $\ln a$  to obtain

$$a^u \frac{du}{dx} = \frac{1}{\ln a} \frac{d}{dx} (a^u).$$

497

Integrating with respect to x then gives

$$\int a^u \frac{du}{dx} dx = \int \frac{1}{\ln a} \frac{d}{dx} (a^u) dx = \frac{1}{\ln a} \int \frac{d}{dx} (a^u) dx = \frac{1}{\ln a} a^u + C.$$

Writing the first integral in differential form gives

$$\int a^u \, du = \frac{a^u}{\ln a} + C. \tag{2}$$

# **EXAMPLE 3** Integrating General Exponential Functions

(a) 
$$\int 2^x dx = \frac{2^x}{\ln 2} + C$$
 Eq. (2) with  $a = 2, u = x$ 

(b) 
$$\int 2^{\sin x} \cos x \, dx$$

$$= \int 2^{u} \, du = \frac{2^{u}}{\ln 2} + C \qquad u = \sin x, du = \cos x \, dx, \text{ and Eq. (2)}$$

$$= \frac{2^{\sin x}}{\ln 2} + C \qquad u \text{ replaced by } \sin x$$

# Logarithms with Base a

As we saw earlier, if a is any positive number other than 1, the function  $a^x$  is one-to-one and has a nonzero derivative at every point. It therefore has a differentiable inverse. We call the inverse the **logarithm of** x **with base** a and denote it by  $\log_a x$ .

# **DEFINITION** $\log_a x$

For any positive number  $a \neq 1$ ,

 $\log_a x$  is the inverse function of  $a^x$ .

The graph of  $y = \log_a x$  can be obtained by reflecting the graph of  $y = a^x$  across the 45° line y = x (Figure 7.13). When a = e, we have  $\log_e x =$  inverse of  $e^x = \ln x$ . Since  $\log_a x$  and  $a^x$  are inverses of one another, composing them in either order gives the identity function.



**FIGURE 7.13** The graph of  $2^x$  and its inverse,  $\log_2 x$ .

## Inverse Equations for $a^x$ and $\log_a x$

$$a^{\log_a x} = x \qquad (x > 0) \tag{3}$$

$$\log_a(a^x) = x \qquad \text{(all } x)$$

# **EXAMPLE 4** Applying the Inverse Equations

(a) 
$$\log_2(2^5) = 5$$
 (b)  $\log_{10}(10^{-7}) = -7$ 

(c) 
$$2^{\log_2(3)} = 3$$
 (d)  $10^{\log_{10}(4)} = 4$ 

## Evaluation of $\log_a x$

The evaluation of  $\log_a x$  is simplified by the observation that  $\log_a x$  is a numerical multiple of  $\ln x$ .

$$\log_a x = \frac{1}{\ln a} \cdot \ln x = \frac{\ln x}{\ln a} \tag{5}$$

We can derive this equation from Equation (3):

$$a^{\log_a(x)} = x$$
 Eq. (3)
 $\ln a^{\log_a(x)} = \ln x$  Take the natural logarithm of both sides.
 $\log_a(x) \cdot \ln a = \ln x$  The Power Rule in Theorem 2
 $\log_a x = \frac{\ln x}{\ln a}$  Solve for  $\log_a x$ .

For example,

$$\log_{10} 2 = \frac{\ln 2}{\ln 10} \approx \frac{0.69315}{2.30259} \approx 0.30103$$

The arithmetic rules satisfied by  $\log_a x$  are the same as the ones for  $\ln x$  (Theorem 2). These rules, given in Table 7.2, can be proved by dividing the corresponding rules for the natural logarithm function by  $\ln a$ . For example,

$$\ln xy = \ln x + \ln y$$
Rule 1 for natural logarithms ...
$$\frac{\ln xy}{\ln a} = \frac{\ln x}{\ln a} + \frac{\ln y}{\ln a}$$
... divided by  $\ln a$  ...
$$\log_a xy = \log_a x + \log_a y$$
.
... gives Rule 1 for base  $a$  logarithms.

# Derivatives and Integrals Involving $\log_a x$

To find derivatives or integrals involving base a logarithms, we convert them to natural logarithms.

If u is a positive differentiable function of x, then

$$\frac{d}{dx}(\log_a u) = \frac{d}{dx}\left(\frac{\ln u}{\ln a}\right) = \frac{1}{\ln a}\frac{d}{dx}(\ln u) = \frac{1}{\ln a} \cdot \frac{1}{u}\frac{du}{dx}.$$

$$\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

# **TABLE 7.2** Rules for base *a* logarithms

For any numbers x > 0 and y > 0,

1. Product Rule: 
$$\log_a xy = \log_a x + \log_a y$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a \frac{1}{y} = -\log_a y$$

$$\log_a x^y = y \log_a x$$

#### **EXAMPLE 5**

(a) 
$$\frac{d}{dx}\log_{10}(3x+1) = \frac{1}{\ln 10} \cdot \frac{1}{3x+1} \frac{d}{dx}(3x+1) = \frac{3}{(\ln 10)(3x+1)}$$

**(b)** 
$$\int \frac{\log_2 x}{x} dx = \frac{1}{\ln 2} \int \frac{\ln x}{x} dx \qquad \log_2 x = \frac{\ln x}{\ln 2}$$
$$= \frac{1}{\ln 2} \int u \, du \qquad u = \ln x, \quad du = \frac{1}{x} dx$$
$$= \frac{1}{\ln 2} \frac{u^2}{2} + C = \frac{1}{\ln 2} \frac{(\ln x)^2}{2} + C = \frac{(\ln x)^2}{2 \ln 2} + C$$

### Base 10 Logarithms

Base 10 logarithms, often called **common logarithms**, appear in many scientific formulas. For example, earthquake intensity is often reported on the logarithmic **Richter scale**. Here the formula is

Magnitude 
$$R = \log_{10} \left( \frac{a}{T} \right) + B$$
,

where a is the amplitude of the ground motion in microns at the receiving station, T is the period of the seismic wave in seconds, and B is an empirical factor that accounts for the weakening of the seismic wave with increasing distance from the epicenter of the earthquake.

# **EXAMPLE 6** Earthquake Intensity

For an earthquake 10,000 km from the receiving station, B = 6.8. If the recorded vertical ground motion is a = 10 microns and the period is T = 1 sec, the earthquake's magnitude is

$$R = \log_{10}\left(\frac{10}{1}\right) + 6.8 = 1 + 6.8 = 7.8.$$

An earthquake of this magnitude can do great damage near its epicenter.

The **pH scale** for measuring the acidity of a solution is a base 10 logarithmic scale. The pH value (hydrogen potential) of the solution is the common logarithm of the reciprocal of the solution's hydronium ion concentration,  $[H_3O^+]$ :

$$pH = log_{10} \frac{1}{[H_3O^+]} = -log_{10}[H_3O^+].$$

The hydronium ion concentration is measured in moles per liter. Vinegar has a pH of three, distilled water a pH of 7, seawater a pH of 8.15, and household ammonia a pH of 12. The total scale ranges from about 0.1 for normal hydrochloric acid to 14 for a normal solution of sodium hydroxide.

Another example of the use of common logarithms is the **decibel** or dB ("dee bee") **scale** for measuring loudness. If I is the **intensity** of sound in watts per square meter, the decibel level of the sound is

**Sound level** = 
$$10 \log_{10} (I \times 10^{12}) \text{ dB}$$
. (6)

Most foods are acidic (pH < 7).

| Food pH Value       |
|---------------------|
|                     |
| Bananas 4.5–4.7     |
| Grapefruit 3.0–3.3  |
| Oranges 3.0–4.0     |
| Limes 1.8–2.0       |
| Milk 6.3–6.6        |
| Soft drinks 2.0–4.0 |
| Spinach 5.1–5.7     |

#### Typical sound levels

| Threshold of hearing    | 0 dB   |
|-------------------------|--------|
| Rustle of leaves        | 10 dB  |
| Average whisper         | 20 dB  |
| Quiet automobile        | 50 dB  |
| Ordinary conversation   | 65 dB  |
| Pneumatic drill 10 feet | 90 dB  |
| away                    |        |
| Threshold of pain       | 120 dB |
|                         |        |

If you ever wondered why doubling the power of your audio amplifier increases the sound level by only a few decibels, Equation (6) provides the answer. As the following example shows, doubling I adds only about 3 dB.

#### **EXAMPLE 7** Sound Intensity

Doubling I in Equation (6) adds about 3 dB. Writing log for  $log_{10}$  (a common practice), we have

Sound level with 
$$I$$
 doubled =  $10 \log (2I \times 10^{12})$  Eq. (6) with  $2I$  for  $I$  =  $10 \log (2 \cdot I \times 10^{12})$  =  $10 \log 2 + 10 \log (I \times 10^{12})$  = original sound level +  $10 \log 2$   $\approx$  original sound level +  $3$ .  $\log_{10} 2 \approx 0.30$