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Exponential Growth and Decay

Exponential functions increase or decrease very rapidly with changes in the independent
variable. They describe growth or decay in a wide variety of natural and industrial situa-
tions. The variety of models based on these functions partly accounts for their importance.

The Law of Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a rate pro-
portional to its size at a given time t. Examples of such quantities include the amount of a
decaying radioactive material, funds earning interest in a bank account, the size of a popu-
lation, and the temperature difference between a hot cup of coffee and the room in which it
sits. Such quantities change according to the law of exponential change, which we derive
in this section.

If the amount present at time is called then we can find y as a function of t
by solving the following initial value problem:

(1)

If y is positive and increasing, then k is positive, and we use Equation (1) to say that the
rate of growth is proportional to what has already been accumulated. If y is positive and
decreasing, then k is negative, and we use Equation (1) to say that the rate of decay is pro-
portional to the amount still left.

 Initial condition:  y = y0 when t = 0.

 Differential equation: dy
dt

= ky

y0,t = 0

7.5 
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7.5 Exponential Growth and Decay 503

We see right away that the constant function is a solution of Equation (1) if
To find the nonzero solutions, we divide Equation (1) by y:

Integrate with respect to t; 

Exponentiate.

If then 

By allowing A to take on the value 0 in addition to all possible values we can include
the solution in the formula.

We find the value of A for the initial value problem by solving for A when and

The solution of the initial value problem is therefore 
Quantities changing in this way are said to undergo exponential growth if and

exponential decay if k 6 0.
k 7 0,

y = y0 ekt .

y0 = Aek # 0
= A.

t = 0:
y = y0

y = 0
;eC ,

 y = Aekt .

y = ;r .ƒ y ƒ = r , y = ;eCekt

ea + b
= ea # eb ƒ y ƒ = eC # ekt

 ƒ y ƒ = ekt + C

1s1>ud du = ln ƒ u ƒ + C . ln ƒ y ƒ = kt + C

 L  
1
y  

dy
dt

 dt = Lk dt

 
1
y  #  

dy
dt

= k

y0 = 0.
y = 0

A is a shorter name for
;eC .

The Law of Exponential Change

(2)

The number k is the rate constant of the equation.

Growth: k 7 0 Decay: k 6 0

y = y0 ekt

The derivation of Equation (2) shows that the only functions that are their own deriva-
tives are constant multiples of the exponential function.

Unlimited Population Growth

Strictly speaking, the number of individuals in a population (of people, plants, foxes, or
bacteria, for example) is a discontinuous function of time because it takes on discrete val-
ues. However, when the number of individuals becomes large enough, the population can
be approximated by a continuous function. Differentiability of the approximating function
is another reasonable hypothesis in many settings, allowing for the use of calculus to
model and predict population sizes.

If we assume that the proportion of reproducing individuals remains constant and as-
sume a constant fertility, then at any instant t the birth rate is proportional to the number
y(t) of individuals present. Let’s assume, too, that the death rate of the population is stable
and proportional to y(t). If, further, we neglect departures and arrivals, the growth rate
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dy dt is the birth rate minus the death rate, which is the difference of the two proportional-
ities under our assumptions. In other words, so that where is the
size of the population at time As with all kinds of growth, there may be limitations
imposed by the surrounding environment, but we will not go into these here. (This situa-
tion is analyzed in Section 9.5.)

In the following example we assume this population model to look at how the number
of individuals infected by a disease within a given population decreases as the disease is
appropriately treated.

EXAMPLE 1 Reducing the Cases of an Infectious Disease

One model for the way diseases die out when properly treated assumes that the rate dy dt
at which the number of infected people changes is proportional to the number y. The num-
ber of people cured is proportional to the number that have the disease. Suppose that in the
course of any given year the number of cases of a disease is reduced by 20%. If there are
10,000 cases today, how many years will it take to reduce the number to 1000?

Solution We use the equation There are three things to find: the value of 
the value of k, and the time t when 

The value of We are free to count time beginning anywhere we want. If we count
from today, then when so Our equation is now

(3)

The value of k. When the number of cases will be 80% of its present value,
or 8000. Hence,

Logs of both sides

At any given time t,

(4)

The value of t that makes We set y equal to 1000 in Equation (4) and solve
for t:

Logs of both sides

It will take a little more than 10 years to reduce the number of cases to 1000. 

Continuously Compounded Interest

If you invest an amount of money at a fixed annual interest rate r (expressed as a deci-
mal) and if interest is added to your account k times a year, the formula for the amount of
money you will have at the end of t years is

(5)At = A0 a1 +
r
k
b kt

.

A0

 t =

ln 0.1
ln 0.8

L 10.32 years .

 sln 0.8dt = ln 0.1

 e sln 0.8dt
= 0.1

 1000 = 10,000e sln 0.8dt

y = 1000.

y = 10,000e sln 0.8dt .

 k = ln 0.8 6 0.

 ln sekd = ln 0.8

 ek
= 0.8

 8000 = 10,000eks1d

t = 1 year,

y = 10,000ekt .

y0 = 10,000.t = 0,y = 10,000
y0.

y = 1000.
y0,y = y0 ekt .

>

t = 0.
y0y = y0 ekt ,dy>dt = ky ,

>
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Eq. (3) with
y = 8000

t = 1 and 
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7.5 Exponential Growth and Decay 505

The interest might be added (“compounded,” bankers say) monthly weekly
daily or even more frequently, say by the hour or by the minute. By

taking the limit as interest is compounded more and more often, we arrive at the following
formula for the amount after t years,

As

Substitute

Theorem 4

The resulting formula for the amount of money in your account after t years is

(6)

Interest paid according to this formula is said to be compounded continuously. The num-
ber r is called the continuous interest rate. The amount of money after t years is calcu-
lated with the law of exponential change given in Equation (6).

EXAMPLE 2 A Savings Account

Suppose you deposit $621 in a bank account that pays 6% compounded continuously. How
much money will you have 8 years later?

Solution We use Equation (6) with and 

Nearest cent

Had the bank paid interest quarterly ( in Equation 5), the amount in your ac-
count would have been $1000.01. Thus the effect of continuous compounding, as com-
pared with quarterly compounding, has been an addition of $3.57. A bank might decide it
would be worth this additional amount to be able to advertise, “We compound interest
every second, night and day—better yet, we compound the interest continuously.”

Radioactivity

Some atoms are unstable and can spontaneously emit mass or radiation. This process is
called radioactive decay, and an element whose atoms go spontaneously through this
process is called radioactive. Sometimes when an atom emits some of its mass through
this process of radioactivity, the remainder of the atom re-forms to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium, through a
number of intermediate radioactive steps, decays into lead.

Experiments have shown that at any given time the rate at which a radioactive element
decays (as measured by the number of nuclei that change per unit time) is approximately
proportional to the number of radioactive nuclei present. Thus, the decay of a radioactive
element is described by the equation It is conventional to usedy>dt = -ky, k 7 0.

k = 4

As8d = 621es0.06ds8d
= 621e0.48

= 1003.58

t = 8:A0 = 621, r = 0.06,

Astd = A0 ert .

= A0 ert

x =

r
k

= A0 c lim
x:0

s1 + xd1/x d rt

k : q , 
r
k

: 0= A0 B lim
r
k :0

 a1 +
r
k
b

k
rR rt

= A0 lim
k: q

 a1 +
r
k
b

k
r 
# rt

lim
k: q

 At = lim
k: q

 A0 a1 +
r
k
b kt

sk = 365d ,sk = 52d ,
sk = 12d ,

For radon-222 gas, t is measured in days
and For radium-226, which
used to be painted on watch dials to
make them glow at night (a dangerous
practice), t is measured in years and
k = 4.3 * 10-4 .

k = 0.18 .
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here instead of to emphasize that y is decreasing. If is the number
of radioactive nuclei present at time zero, the number still present at any later time t will be

EXAMPLE 3 Half-Life of a Radioactive Element

The half-life of a radioactive element is the time required for half of the radioactive nuclei
present in a sample to decay. It is an interesting fact that the half-life is a constant that does
not depend on the number of radioactive nuclei initially present in the sample, but only on
the radioactive substance.

To see why, let be the number of radioactive nuclei initially present in the sample.
Then the number y present at any later time t will be We seek the value of t at
which the number of radioactive nuclei present equals half the original number:

This value of t is the half-life of the element. It depends only on the value of k; the number
does not enter in.

(7)

EXAMPLE 4 Half-Life of Polonium-210

The effective radioactive lifetime of polonium-210 is so short we measure it in days rather
than years. The number of radioactive atoms remaining after t days in a sample that starts
with radioactive atoms is

Find the element’s half-life.

Solution

Eq. (7)

EXAMPLE 5 Carbon-14 Dating

The decay of radioactive elements can sometimes be used to date events from the Earth’s
past. In a living organism, the ratio of radioactive carbon, carbon-14, to ordinary carbon
stays fairly constant during the lifetime of the organism, being approximately equal to the

 L 139 days

 =
ln 2

5 * 10-3

 Half-life =
ln 2
k

y = y0 e-5* 10-3 t .

y0

Half-life =
ln 2
k

y0

 t =
ln 2
k

 -kt = ln 
1
2

= - ln 2

 e-kt
=

1
2

 y0 e-kt
=

1
2

 y0

y = y0 e-kt .
y0

y = y0 e-kt, k 7 0.

y0ksk 6 0d-ksk 7 0d
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Reciprocal Rule for logarithms

The k from polonium’s decay equation
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7.5 Exponential Growth and Decay 507

ratio in the organism’s surroundings at the time. After the organism’s death, however, no
new carbon is ingested, and the proportion of carbon-14 in the organism’s remains de-
creases as the carbon-14 decays.

Scientists who do carbon-14 dating use a figure of 5700 years for its half-life (more
about carbon-14 dating in the exercises). Find the age of a sample in which 10% of the ra-
dioactive nuclei originally present have decayed.

Solution We use the decay equation There are two things to find: the value
of k and the value of t when y is (90% of the radioactive nuclei are still present). That
is, find t when or 

The value of k. We use the half-life Equation (7):

The value of t that makes

Logs of both sides

The sample is about 866 years old. 

Heat Transfer: Newton’s Law of Cooling

Hot soup left in a tin cup cools to the temperature of the surrounding air. A hot silver ingot
immersed in a large tub of water cools to the temperature of the surrounding water. In sit-
uations like these, the rate at which an object’s temperature is changing at any given time is
roughly proportional to the difference between its temperature and the temperature of the
surrounding medium. This observation is called Newton’s law of cooling, although it ap-
plies to warming as well, and there is an equation for it.

If H is the temperature of the object at time t and is the constant surrounding tem-
perature, then the differential equation is

(8)

If we substitute y for then

Eq. (8)

H - HS = y. = -ky .

 = -ksH - HSd

 =

dH
dt

HS is a constant . =

dH
dt

- 0

 
dy
dt

=

d
dt

 sH - HSd =

dH
dt

-

d
dt

 sHSd

sH - HSd ,

dH
dt

= -ksH - HSd .

HS

 t = -

5700 ln 0.9
ln 2

L 866 years .

 -
ln 2

5700
 t = ln 0.9

 e-sln 2>5700dt
= 0.9

 e-kt
= 0.9

e-kt
= 0.9:

k =
ln 2

half-life
=

ln 2
5700
 sabout 1.2 * 10-4d

e-kt
= 0.9.y0 e-kt

= 0.9y0 ,
0.9y0

y = y0 e-kt .
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Now we know that the solution of is where Substi-
tuting for y, this says that

(9)

where is the temperature at This is the equation for Newton’s Law of Cooling.

EXAMPLE 6 Cooling a Hard-Boiled Egg

A hard-boiled egg at 98°C is put in a sink of 18°C water. After 5 min, the egg’s tempera-
ture is 38°C. Assuming that the water has not warmed appreciably, how much longer will
it take the egg to reach 20°C?

Solution We find how long it would take the egg to cool from 98°C to 20°C and sub-
tract the 5 min that have already elapsed. Using Equation (9) with and 
the egg’s temperature t min after it is put in the sink is

To find k, we use the information that when 

The egg’s temperature at time t is Now find the time t when

The egg’s temperature will reach 20°C about 13 min after it is put in the water to cool.
Since it took 5 min to reach 38°C, it will take about 8 min more to reach 20°C. 

 t =

ln 40
0.2 ln 4

L 13 min.

 -s0.2 ln 4dt = ln 
1
40

= - ln 40

 e-s0.2 ln 4dt
=

1
40

 80e-s0.2 ln 4dt
= 2

 20 = 18 + 80e-s0.2 ln 4dt

H = 20:
H = 18 + 80e-s0.2 ln 4dt .

k =
1
5 ln 4 = 0.2 ln 4 sabout 0.28d .

 -5k = ln 
1
4

= - ln 4

 e-5k
=

1
4

 38 = 18 + 80e-5k

t = 5:H = 38

H = 18 + s98 - 18de-kt
= 18 + 80e-kt .

H0 = 98,HS = 18

t = 0.H0

H - HS = sH0 - HSde-kt ,

sH - HSd
ys0d = y0.y = y0 e-kt ,dy>dt = -ky
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