EXERCISES 7.6

Comparisons with the Exponential e^x

- 1. Which of the following functions grow faster than e^x as $x \to \infty$? Which grow at the same rate as e^x ? Which grow slower?
 - **a.** x + 3

b. $x^3 + \sin^2 x$

c. \sqrt{x}

d. 4^x

e. $(3/2)^x$

f. $e^{x/2}$

g. $e^{x}/2$

- **h.** $\log_{10} x$
- **2.** Which of the following functions grow faster than e^x as $x \to \infty$? Which grow at the same rate as e^x ? Which grow slower?
 - **a.** $10x^4 + 30x + 1$

b. $x \ln x - x$

c. $\sqrt{1 + x^4}$

d. $(5/2)^x$ **f.** xe^x

e. e^{-x} **g.** $e^{\cos x}$

h. e^{x-1}

Comparisons with the Power x^2

- 3. Which of the following functions grow faster than x^2 as $x \to \infty$? Which grow at the same rate as x^2 ? Which grow slower?
 - **a.** $x^2 + 4x$

b. $x^5 - x^2$

c. $\sqrt{x^4 + x^3}$

d. $(x + 3)^2$

 $\mathbf{e.} \ x \ln x$

f. 2^x

g. $x^3 e^{-x}$

- **h.** $8x^2$
- **4.** Which of the following functions grow faster than x^2 as $x \to \infty$? Which grow at the same rate as x^2 ? Which grow slower?
 - **a.** $x^2 + \sqrt{x}$

b. $10x^2$

c. $x^2 e^{-x}$

d. $\log_{10}(x^2)$

e. $x^3 - x^2$

f. $(1/10)^x$

g. $(1.1)^x$

h. $x^2 + 100x$

Comparisons with the Logarithm In x

- 5. Which of the following functions grow faster than $\ln x$ as $x \to \infty$? Which grow at the same rate as $\ln x$? Which grow slower?
 - **a.** $\log_3 x$

b. $\ln 2x$

c. $\ln \sqrt{x}$

d. \sqrt{x}

e. *x*

f. $5 \ln x$

g. 1/x

- **6.** Which of the following functions grow faster than $\ln x$ as $x \to \infty$? Which grow at the same rate as $\ln x$? Which grow slower?
 - **a.** $\log_2(x^2)$

b. $\log_{10} 10x$

c. $1/\sqrt{x}$

d. $1/x^2$

e. $x - 2 \ln x$

f. e^{-x}

g. $\ln (\ln x)$

h. $\ln(2x + 5)$

Ordering Functions by Growth Rates

- 7. Order the following functions from slowest growing to fastest growing as $x \to \infty$.
 - **a.** e^x

b. x^x

c. $(\ln x)^x$

- **d.** $e^{x/2}$
- 8. Order the following functions from slowest growing to fastest growing as $x \to \infty$.
 - **a.** 2^x

 \mathbf{b} , x^2

c. $(\ln 2)^x$

d. e^x

Big-oh and Little-oh; Order

- **9.** True, or false? As $x \to \infty$.
 - **a.** x = o(x)

- **b.** x = o(x + 5)
- **c.** x = O(x + 5)
- **d.** x = O(2x)
- **e.** $e^x = o(e^{2x})$
- $\mathbf{f.} \ x + \ln x = O(x)$
- **g.** $\ln x = o(\ln 2x)$
- **h.** $\sqrt{x^2 + 5} = O(x)$
- 10. True, or false? As $x \to \infty$,
 - **a.** $\frac{1}{x+3} = O(\frac{1}{x})$
- **b.** $\frac{1}{x} + \frac{1}{x^2} = O\left(\frac{1}{x}\right)$
- $\mathbf{c.} \ \frac{1}{x} \frac{1}{x^2} = o\left(\frac{1}{x}\right)$
- **d.** $2 + \cos x = O(2)$
- **e.** $e^{x} + x = O(e^{x})$
- **f.** $x \ln x = o(x^2)$
- **g.** $\ln(\ln x) = O(\ln x)$
- **h.** $\ln(x) = o(\ln(x^2 + 1))$
- 11. Show that if positive functions f(x) and g(x) grow at the same rate as $x \to \infty$, then f = O(g) and g = O(f).
- 12. When is a polynomial f(x) of smaller order than a polynomial g(x) as $x \to \infty$? Give reasons for your answer.
- 13. When is a polynomial f(x) of at most the order of a polynomial g(x) as $x \to \infty$? Give reasons for your answer.

14. What do the conclusions we drew in Section 2.4 about the limits of rational functions tell us about the relative growth of polynomials as $x \to \infty$?

Other Comparisons

T 15. Investigate

$$\lim_{x \to \infty} \frac{\ln(x+1)}{\ln x} \quad \text{and} \quad \lim_{x \to \infty} \frac{\ln(x+999)}{\ln x}.$$

Then use l'Hôpital's Rule to explain what you find.

16. (Continuation of Exercise 15.) Show that the value of

$$\lim_{x \to \infty} \frac{\ln(x+a)}{\ln x}$$

is the same no matter what value you assign to the constant a. What does this say about the relative rates at which the functions $f(x) = \ln(x + a)$ and $g(x) = \ln x$ grow?

- 17. Show that $\sqrt{10x+1}$ and $\sqrt{x+1}$ grow at the same rate as $x \to \infty$ by showing that they both grow at the same rate as \sqrt{x} as
- **18.** Show that $\sqrt{x^4 + x}$ and $\sqrt{x^4 x^3}$ grow at the same rate as $x \to \infty$ by showing that they both grow at the same rate as x^2 as
- 19. Show that e^x grows faster as $x \to \infty$ than x^n for any positive integer n, even $x^{1,000,000}$. (*Hint*: What is the nth derivative of x^n ?)
- **20.** The function e^x outgrows any polynomial Show that e^x grows faster as $x \to \infty$ than any polynomial

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
.

- **21. a.** Show that $\ln x$ grows slower as $x \to \infty$ than $x^{1/n}$ for any positive integer n, even $x^{1/1,000,000}$.
- **7 b.** Although the values of $x^{1/1,000,000}$ eventually overtake the values of ln x, you have to go way out on the x-axis before this happens. Find a value of x greater than 1 for which $x^{1/1,000,000} > \ln x$. You might start by observing that when x > 1 the equation $\ln x = x^{1/1,000,000}$ is equivalent to the equation $\ln (\ln x) = (\ln x)/1,000,000$.
- **c.** Even $x^{1/10}$ takes a long time to overtake $\ln x$. Experiment with a calculator to find the value of x at which the graphs of $x^{1/10}$ and $\ln x$ cross, or, equivalently, at which $\ln x = 10 \ln (\ln x)$. Bracket the crossing point between powers of 10 and then close in by successive halving.
- **d.** (Continuation of part (c).) The value of x at which $\ln x = 10 \ln (\ln x)$ is too far out for some graphers and root finders to identify. Try it on the equipment available to you and see what happens.
- 22. The function ln x grows slower than any polynomial Show that $\ln x$ grows slower as $x \to \infty$ than any nonconstant polynomial.

Algorithms and Searches

23. a. Suppose you have three different algorithms for solving the same problem and each algorithm takes a number of steps that is of the order of one of the functions listed here:

$$n \log_2 n$$
, $n^{3/2}$, $n(\log_2 n)^2$.

Which of the algorithms is the most efficient in the long run? Give reasons for your answer.

b. Graph the functions in part (a) together to get a sense of how rapidly each one grows.

24. Repeat Exercise 23 for the functions

$$n$$
, $\sqrt{n} \log_2 n$, $(\log_2 n)^2$.

- **1 25.** Suppose you are looking for an item in an ordered list one million items long. How many steps might it take to find that item with a sequential search? A binary search?
- **26.** You are looking for an item in an ordered list 450,000 items long (the length of *Webster's Third New International Dictionary*). How many steps might it take to find the item with a sequential search? A binary search?