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Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions and The hyperbolic functions simplify many mathematical expressions and
they are important in applications. For instance, they are used in problems such as comput-
ing the tension in a cable suspended by its two ends, as in an electric transmission line.
They also play an important role in finding solutions to differential equations. In this sec-
tion, we give a brief introduction to hyperbolic functions, their graphs, how their deriva-
tives are calculated, and why they appear as important antiderivatives.

Even and Odd Parts of the Exponential Function

Recall the definitions of even and odd functions from Section 1.4, and the symmetries of
their graphs. An even function ƒ satisfies while an odd function satisfies

Every function ƒ that is defined on an interval centered at the origin can
be written in a unique way as the sum of one even function and one odd function. The de-
composition is

If we write this way, we get

The even and odd parts of called the hyperbolic cosine and hyperbolic sine of x, re-
spectively, are useful in their own right. They describe the motions of waves in elastic
solids and the temperature distributions in metal cooling fins. The centerline of the Gate-
way Arch to the West in St. Louis is a weighted hyperbolic cosine curve.

Definitions and Identities

The hyperbolic cosine and hyperbolic sine functions are defined by the first two equations
in Table 7.5. The table also lists the definitions of the hyperbolic tangent, cotangent, se-
cant, and cosecant. As we will see, the hyperbolic functions bear a number of similarities
to the trigonometric functions after which they are named. (See Exercise 84 as well.)

The notation cosh x is often read “kosh x,” rhyming with “gosh x,” and sinh x is pro-
nounced as if spelled “cinch x,” rhyming with “pinch x.”

Hyperbolic functions satisfy the identities in Table 7.6. Except for differences in sign,
these resemble identities we already know for trigonometric functions.

The second equation is obtained as follows:
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536 Chapter 7: Transcendental Functions

TABLE 7.5 The six basic hyperbolic functions FIGURE 7.31

Hyperbolic sine of x:          

Hyperbolic cosine of x:      

Hyperbolic tangent:

Hyperbolic cotangent:

Hyperbolic secant:

Hyperbolic cosecant:
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TABLE 7.6 Identities for
hyperbolic functions

coth2 x = 1 + csch2 x

tanh2 x = 1 - sech2 x

sinh2 x =

cosh 2x - 1
2

cosh2 x =

cosh 2x + 1
2

cosh 2x = cosh2 x + sinh2 x

sinh 2x = 2 sinh x cosh x

cosh2 x - sinh2 x = 1
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7.8 Hyperbolic Functions 537

The other identities are obtained similarly, by substituting in the definitions of the hy-
perbolic functions and using algebra. Like many standard functions, hyperbolic functions
and their inverses are easily evaluated with calculators, which have special keys or key-
stroke sequences for that purpose.

Derivatives and Integrals

The six hyperbolic functions, being rational combinations of the differentiable functions
and have derivatives at every point at which they are defined (Table 7.7). Again,

there are similarities with trigonometric functions. The derivative formulas in Table 7.7
lead to the integral formulas in Table 7.8.

e-x ,ex

TABLE 7.7 Derivatives of
hyperbolic functions

d
dx

 scsch ud = -csch u coth u 
du
dx

d
dx

 ssech ud = -sech u tanh u 
du
dx

d
dx

 scoth ud = -csch2 u 
du
dx

d
dx

 stanh ud = sech2 u 
du
dx

d
dx

 scosh ud = sinh u 
du
dx

d
dx

 ssinh ud = cosh u 
du
dx

TABLE 7.8 Integral formulas for
hyperbolic functions

L  csch u coth u du = -csch u + C

L  sech u tanh u du = -sech u + C

L  csch2 u du = -coth u + C

L  sech2 u du = tanh u + C

L  cosh u du = sinh u + C

L  sinh u du = cosh u + C

The derivative formulas are derived from the derivative of 

Definition of sinh u

Derivative of

Definition of cosh u

This gives the first derivative formula. The calculation

Definition of csch u

Quotient Rule

Rearrange terms.

Definitions of csch u and coth u

gives the last formula. The others are obtained similarly.
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du
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d
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d
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 a 1
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b

 = cosh u 
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eu =

eu du>dx + e-u du>dx

2

 
d
dx

 ssinh ud =

d
dx

 aeu
- e-u

2
b

eu :
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EXAMPLE 1 Finding Derivatives and Integrals

(a)

(b)

(c) Table 7.6

(d)

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration. Since
the hyperbolic sine is an increasing function of x. We denote

its inverse by

For every value of x in the interval the value of is the num-
ber whose hyperbolic sine is x. The graphs of and are shown in
Figure 7.32a.

The function is not one-to-one, as we can see from the graph in
Figure 7.31b. The restricted function however, is one-to-one and
therefore has an inverse, denoted by

For every value of is the number in the interval whose
hyperbolic cosine is x. The graphs of and are shown in
Figure 7.32b.

Like the function fails to be one-to-one, but its
restriction to nonnegative values of x does have an inverse, denoted by

For every value of x in the interval is the nonnegative number whose
hyperbolic secant is x. The graphs of and are shown in
Figure 7.32c.

y = sech-1 xy = sech x, x Ú 0,
s0, 1], y = sech-1 x

y = sech-1 x .

y = sech x = 1>cosh xy = cosh x ,

y = cosh-1 xy = cosh x, x Ú 0,
0 … y 6 qx Ú 1, y = cosh-1 x

y = cosh-1 x .

y = cosh x, x Ú 0,
y = cosh x

y = sinh-1 xy = sinh x
y = sinh-1 x- q 6 x 6 q ,

y = sinh-1 x .

dssinh xd>dx = cosh x 7 0,

 L 1.6137

 = 4 - 2 ln 2 - 1

 = Ce2x
- 2x D0ln 2

= se2 ln 2
- 2 ln 2d - s1 - 0d

 L
ln 2

0
 4ex sinh x dx = L

ln 2

0
 4ex  

ex
- e-x

2
 dx = L

ln 2

0
 s2e2x

- 2d dx

 =

sinh 2
4

-
1
2

L 0.40672

 =
1
2L

1

0
 scosh 2x - 1d dx =

1
2

 csinh 2x
2

- x d
0

1

 L
1

0
 sinh2 x dx = L

1

0
 
cosh 2x - 1

2
 dx

 =
1
5 ln ƒ u ƒ + C =

1
5 ln ƒ sinh 5x ƒ + C

 L  coth 5x dx = L  
cosh 5x
sinh 5x

 dx =
1
5L  

du
u

 =

t21 + t2
 sech2 21 + t2

 
d
dt

 A tanh 21 + t2 B = sech2 21 = t2 # d
dt

 A21 + t2 B

538 Chapter 7: Transcendental Functions

Evaluate with
a calculator

du = 5 cosh 5x dx
u = sinh 5x ,
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7.8 Hyperbolic Functions 539

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and
therefore have inverses, denoted by

These functions are graphed in Figure 7.33.

y = tanh-1 x, y = coth-1 x, y = csch-1 x .
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(a)
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y � sinh x y � x

y � sinh–1 x
(x � sinh y)

y � cosh x,
x � 0

y � sech x
x � 0

y � x y � x

y � cosh–1 x
(x � cosh y, y � 0)

y � sech–1 x
(x � sech y,
  y � 0)

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about
the line y = x .
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0
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x � tanh y
y � tanh–1x

 x � coth y
y � coth–1x

 x � csch y
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FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.

Useful Identities

We use the identities in Table 7.9 to calculate the values of and 
on calculators that give only and These identities are direct
consequences of the definitions. For example, if then

sech acosh-1 a1x b b =
1

cosh acosh-1 a1x b b
=

1

a1x b
= x

0 6 x … 1,
tanh-1 x .cosh-1 x, sinh-1 x ,

coth-1 xsech-1 x, csch-1 x ,

TABLE 7.9 Identities for inverse
hyperbolic functions

coth-1 x = tanh-1 
1
x

csch-1 x = sinh-1 
1
x

sech-1 x = cosh-1 
1
x
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so

since the hyperbolic secant is one-to-one on 

Derivatives and Integrals

The chief use of inverse hyperbolic functions lies in integrations that reverse the derivative
formulas in Table 7.10.

s0, 1].

cosh-1 a1x b = sech-1 x

540 Chapter 7: Transcendental Functions

TABLE 7.10 Derivatives of inverse hyperbolic functions

dscsch-1 ud
dx

=

-du>dx

ƒ u ƒ21 + u2
 , u Z 0

dssech-1 ud
dx

=

-du>dx

u21 - u2
 ,  0 6 u 6 1

dscoth-1 ud
dx

=
1

1 - u2 
du
dx

 ,   ƒ u ƒ 7 1

dstanh-1 ud
dx

=
1

1 - u2 
du
dx

 ,   ƒ u ƒ 6 1

dscosh-1 ud
dx

=
12u2

- 1
 
du
dx

 ,      u 7 1

dssinh-1 ud
dx

=
121 + u2

 
du
dx

The restrictions and on the derivative formulas for and
come from the natural restrictions on the values of these functions. (See

Figure 7.33a and b.) The distinction between and becomes important
when we convert the derivative formulas into integral formulas. If the integral of

is If the integral is 
We illustrate how the derivatives of the inverse hyperbolic functions are found in

Example 2, where we calculate The other derivatives are obtained by sim-
ilar calculations.

EXAMPLE 2 Derivative of the Inverse Hyperbolic Cosine

Show that if u is a differentiable function of x whose values are greater than 1, then

d
dx

 scosh-1 ud =
12u2

- 1
 
du
dx

.

dscosh-1 ud>dx .

coth-1 u + C .ƒ u ƒ 7 1,tanh-1 u + C .1>s1 - u2d
ƒ u ƒ 6 1,

ƒ u ƒ 7 1ƒ u ƒ 6 1
coth-1 u

tanh-1 uƒ u ƒ 7 1ƒ u ƒ 6 1

HISTORICAL BIOGRAPHY

Sonya Kovalevsky
(1850–1891)
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7.8 Hyperbolic Functions 541

Solution First we find the derivative of for by applying Theorem 1
with and Theorem 1 can be applied because the deriva-
tive of cosh x is positive for 

Theorem 1

In short,

The Chain Rule gives the final result:

Instead of applying Theorem 1 directly, as in Example 2, we could also find the derivative
of using implicit differentiation and the Chain Rule:

Equivalent equation

With appropriate substitutions, the derivative formulas in Table 7.10 lead to the inte-
gration formulas in Table 7.11. Each of the formulas in Table 7.11 can be verified by dif-
ferentiating the expression on the right-hand side.

EXAMPLE 3 Using Table 7.11

Evaluate

L
1

0
 

2 dx23 + 4x2
.

cosh y = x =
12x2

- 1
.

 
dy
dx

=
1

sinh y
=

12cosh2 y - 1

 1 = sinh y 
dy
dx

 x = cosh y

 y = cosh-1 x

y = cosh-1 x, x 7 1,

d
dx

 scosh-1 ud =
12u2

- 1
 
du
dx

.

d
dx

 scosh-1 xd =
12x2

- 1
.

cosh scosh-1 xd = x =
12x2

- 1

 =
12cosh2 scosh-1 xd - 1

ƒ¿sud = sinh u =
1

sinh scosh-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1 sxdd

0 6 x .
ƒ -1sxd = cosh-1 x .ƒsxd = cosh x

x 7 1y = cosh-1 x

2cosh2 u - 1sinh u =

cosh2 u - sinh2 u = 1,

Implicit differentiation
with respect to x, and
the Chain Rule

Since 
and sinh y 7 0

x 7 1, y 7 0
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Solution The indefinite integral is

Formula from Table 7.11

Therefore,

 = sinh-1 a 2

3
b - 0 L 0.98665.

 L
1

0
 

2 dx23 + 4x2
= sinh-1 a 2x23

b d
0

1

= sinh-1 a 223
b - sinh-1 s0d

 = sinh-1 a 2x23
b + C .

 = sinh-1 aua b + C

u = 2x, du = 2 dx, a = 23 L  
2 dx23 + 4x2

= L  
du2a2

+ u2

542 Chapter 7: Transcendental Functions

TABLE 7.11 Integrals leading to inverse hyperbolic functions

1.

2.

3.

4.

5. and a 7 0L  
du

u2a2
+ u2

= -
1
a csch-1 

ƒ  
u
a ƒ + C,   u Z 0

L  
du

u2a2
- u2

= -
1
a sech-1 aua b + C,  0 6 u 6 a

L  
du

a2
- u2 = d 1

a tanh-1 aua b + C  if u2
6 a2

1
a coth-1 aua b + C,  if u2

7 a2

L  
du2u2

- a2
= cosh-1 aua b + C,      u 7 a 7 0

L  
du2a2

+ u2
= sinh-1 aua b + C,      a 7 0
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