
542 Chapter 7: Transcendental Functions

EXERCISES 7.8

Hyperbolic Function Values and Identities
Each of Exercises 1–4 gives a value of sinh x or cosh x. Use the defi-
nitions and the identity to find the values of the
remaining five hyperbolic functions.

1. 2.

3. 4. cosh x =

13
5

, x 7 0cosh x =

17
15

, x 7 0

sinh x =

4
3

sinh x = -

3
4

cosh2 x - sinh2 x = 1

Rewrite the expressions in Exercises 5–10 in terms of exponentials
and simplify the results as much as you can.

5. 2 cosh (ln x) 6. sinh (2 ln x)

7. 8.

9.

10. ln scosh x + sinh xd + ln scosh x - sinh xd
ssinh x + cosh xd4

cosh 3x - sinh 3xcosh 5x + sinh 5x
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7.8 Hyperbolic Functions 543

11. Use the identities

to show that

a.

b.

12. Use the definitions of cosh x and sinh x to show that

Derivatives
In Exercises 13–24, find the derivative of y with respect to the appro-
priate variable.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23.

(Hint: Before differentiating, express in terms of exponentials
and simplify.)

24.

In Exercises 25–36, find the derivative of y with respect to the appro-
priate variable.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

Integration Formulas
Verify the integration formulas in Exercises 37–40.

37. a.

b.

38.

39. L  x coth-1 x dx =

x2
- 1
2

 coth-1 x +

x
2

+ C

L  x sech-1 x dx =

x2

2
 sech-1 x -

1
2
21 - x2

+ C

L  sech x dx = sin-1 stanh xd + C

L  sech x dx = tan-1 ssinh xd + C

y = cosh-1 ssec xd, 0 6 x 6 p>2
y = sinh-1 stan xd

y = csch-1 2uy = csch-1 a1
2
bu

y = ln x + 21 - x2 sech-1 xy = cos-1 x - x sech-1 x

y = s1 - t2d coth-1 ty = s1 - td coth-1 2t

y = su2
+ 2ud tanh-1 su + 1dy = s1 - ud tanh-1 u

y = cosh-1 22x + 1y = sinh-1 1x

y = s4x2
- 1d csch sln 2xd

y = sx2
+ 1d sech sln xd

y = ln sinh y -

1
2

 coth2 yy = ln cosh y -

1
2

 tanh2 y

y = csch us1 - ln csch udy = sech us1 - ln sech ud
y = ln scosh zdy = ln ssinh zd
y = t2 tanh 

1
ty = 22t tanh 2t

y =

1
2

 sinh s2x + 1dy = 6 sinh 
x
3

cosh2 x - sinh2 x = 1.

cosh 2x = cosh2 x + sinh2 x .

sinh 2x = 2 sinh x cosh x

 cosh sx + yd = cosh x cosh y + sinh x sinh y

 sinh sx + yd = sinh x cosh y + cosh x sinh y
40.

Indefinite Integrals
Evaluate the integrals in Exercises 41–50.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Definite Integrals
Evaluate the integrals in Exercises 51–60.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

Evaluating Inverse Hyperbolic Functions
and Related Integrals
When hyperbolic function keys are not available on a calculator, it is
still possible to evaluate the inverse hyperbolic functions by express-
ing them as logarithms, as shown here.

L
ln 10

0
 4 sinh2 ax

2
b  dxL

0

-ln 2
 cosh2 ax

2
b  dx

L
4

1
 
8 cosh 1x1x

 dxL
2

1
 
cosh sln td

t  dt

L
p>2

0
 2 sinh ssin ud cos u duL

p>4
-p>4

 cosh stan ud sec2 u du

L
ln 2

0
 4e-u sinh u duL

-ln 2

-ln 4
 2eu cosh u du

L
ln 2

0
 tanh 2x dxL

ln 4

ln 2
 coth x dx

L  
csch sln td coth sln td dt

tL  
sech 2t tanh 2t dt2t

L  csch2 s5 - xd dxL  sech2 ax -

1
2
b  dx

L  coth 
u23

 duL  tanh 
x
7

 dx

L  4 cosh s3x - ln 2d dxL  6 cosh ax
2

- ln 3b  dx

L  sinh 
x
5

 dxL  sinh 2x dx

L  tanh-1 x dx = x tanh-1 x +

1
2

 ln s1 - x2d + C

 coth-1 x =

1
2

 ln 
x + 1
x - 1

 ,          ƒ x ƒ 7 1

 csch-1 x = ln a1x +

21 + x2

ƒ x ƒ

b , x Z 0

 sech-1 x = ln a1 + 21 - x2

x b , 0 6 x … 1

 tanh-1 x =

1
2

 ln 
1 + x
1 - x

 ,          ƒ x ƒ 6 1

 cosh-1 x = ln Ax + 2x2
+ 1 B , x Ú 1

 sinh-1 x = ln Ax + 2x2
+ 1 B , - q 6 x 6 q
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Use the formulas in the box here to express the numbers in Exercises
61–66 in terms of natural logarithms.

61. 62.

63. 64.

65. 66.

Evaluate the integrals in Exercises 67–74 in terms of

a. inverse hyperbolic functions.

b. natural logarithms.

67. 68.

69. 70.

71. 72.

73. 74.

Applications and Theory
75. a. Show that if a function ƒ is defined on an interval symmetric

about the origin (so that ƒ is defined at whenever it is de-
fined at x), then

(1)

Then show that is even and that
is odd.

b. Equation (1) simplifies considerably if ƒ itself is (i) even or
(ii) odd. What are the new equations? Give reasons for your
answers.

76. Derive the formula 

Explain in your derivation why the plus sign is used with
the square root instead of the minus sign.

77. Skydiving If a body of mass m falling from rest under the
action of gravity encounters an air resistance proportional to the
square of the velocity, then the body’s velocity t sec into the fall
satisfies the differential equation

where k is a constant that depends on the body’s aerodynamic
properties and the density of the air. (We assume that the fall is
short enough so that the variation in the air’s density will not af-
fect the outcome significantly.)

a. Show that

y = Amg

k
 tanh aAgk

m  tb

m 
dy
dt

= mg - ky2 ,

q .6  

- q 6 xsinh-1 x = ln Ax + 2x2
+ 1 B ,

sƒsxd - ƒs -xdd>2
sƒsxd + ƒs -xdd>2

ƒsxd =

ƒsxd + ƒs -xd
2

+

ƒsxd - ƒs -xd
2

.

-x

L
e

1
 

dx

x21 + sln xd2L
p

0
 

cos x dx21 + sin2 x

L
2

1
 

dx

x24 + x2L
3>13

1>5
 

dx

x21 - 16x2

L
1>2

0
 

dx

1 - x2L
2

5>4
 

dx

1 - x2

L
1>3

0
 

6 dx21 + 9x2L
223

0
 

dx24 + x2

csch-1 s -1>13dsech-1 s3>5d

coth-1 s5>4dtanh-1 s -1>2d

cosh-1 s5>3dsinh-1 s -5>12d

satisfies the differential equation and the initial condition that
when 

b. Find the body’s limiting velocity, 

c. For a 160-lb skydiver with time in seconds and
distance in feet, a typical value for k is 0.005. What is the
diver’s limiting velocity?

78. Accelerations whose magnitudes are proportional to displace-
ment Suppose that the position of a body moving along a coor-
dinate line at time t is

a.

b.

Show in both cases that the acceleration is proportional to
s but that in the first case it is directed toward the origin, whereas
in the second case it is directed away from the origin.

79. Tractor trailers and the tractrix When a tractor trailer turns
into a cross street or driveway, its rear wheels follow a curve like
the one shown here. (This is why the rear wheels sometimes ride
up over the curb.) We can find an equation for the curve if we pic-
ture the rear wheels as a mass M at the point (1, 0) on the x-axis
attached by a rod of unit length to a point P representing the cab
at the origin. As the point P moves up the y-axis, it drags M along
behind it. The curve traced by M—called a tractrix from the
Latin word tractum, for “drag”—can be shown to be the graph of
the function that solves the initial value problem

Solve the initial value problem to find an equation for the curve.
(You need an inverse hyperbolic function.)

80. Area Show that the area of the region in the first quadrant en-
closed by the curve the coordinate axes, and
the line is the same as the area of a rectangle of height 1 a
and length s, where s is the length of the curve from to

(See accompanying figure.)x = b .
x = 0

>x = b
y = s1>ad cosh ax ,

x

y

0 (1, 0)

P

M(x, y)

y � f (x)

Differential equation:  
dy

dx
= -

1

x21 - x2
+

x21 - x2

Initial condition: y = 0 when x = 1.

y = ƒsxd

d2s>dt2

s = a cosh kt + b sinh kt .

s = a cos kt + b sin kt

smg = 160d ,

limt:q y .

t = 0.y = 0
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7.8 Hyperbolic Functions 545

81. Volume A region in the first quadrant is bounded above by the
curve below by the curve and on the left
and right by the y-axis and the line respectively. Find the vol-
ume of the solid generated by revolving the region about the x-axis.

82. Volume The region enclosed by the curve the

x-axis, and the lines is revolved about the x-axis to
generate a solid. Find the volume of the solid.

83. Arc length Find the length of the segment of the curve 

from to 

84. The hyperbolic in hyperbolic functions In case you are won-
dering where the name hyperbolic comes from, here is the an-
swer: Just as and are identified with points
(x, y) on the unit circle, the functions and 
are identified with points (x, y) on the right-hand branch of the
unit hyperbola, 

Another analogy between hyperbolic and circular functions
is that the variable u in the coordinates (cosh u, sinh u) for the
points of the right-hand branch of the hyperbola is
twice the area of the sector AOP pictured in the accompanying
figure. To see why this is so, carry out the following steps.

a. Show that the area A(u) of sector AOP is

Asud =

1
2

 cosh u sinh u - L
cosh u

1
2x2

- 1 dx .

x2
- y2

= 1

x

y

1

10

u→
−∞

–1

u→
∞

P(cosh u, sinh u)
u � 0

x2 � y2 � 1

x2
- y2

= 1.

y = sinh ux = cosh u
y = sin ux = cos u

x = ln 25.x = 0s1>2d cosh 2x

y =

x = ;  ln 23

y = sech x ,

x = 2,
y = sinh x ,y = cosh x ,

x

y

0 sb

s

1
a

y �     cosh ax1
a

b. Differentiate both sides of the equation in part (a) with
respect to u to show that

c. Solve this last equation for A(u). What is the value of A(0)?
What is the value of the constant of integration C in your
solution? With C determined, what does your solution say
about the relationship of u to A(u)?

85. A minimal surface Find the area of the surface swept out by re-
volving about the x-axis the curve 

It can be shown that, of all continuously differentiable curves
joining points A and B in the figure, the curve 
generates the surface of least area. If you made a rigid wire frame
of the end-circles through A and B and dipped them in a soap-film
solution, the surface spanning the circles would be the one gener-
ated by the curve.

86. a. Find the centroid of the curve 

b. Evaluate the coordinates to two decimal places. Then sketch
the curve and plot the centroid to show its relation to the
curve.

y = cosh x, - ln 2 … x …  ln 2 .

y = 4 cosh sx>4d

x

y

–ln 16 ln 810

4
A(–ln 16, 5)

B(ln 81, 6.67)

y � 4 cosh (x /4)

- ln 16 … x …  ln 81 .
y = 4 cosh sx>4d, 

x

y

O

Asymptote

Asy
mpto

te

A
x

y

O A

x2 � y2 � 1
x2 � y2 � 1 P(cos u, sin u)

u is twice the area
of sector AOP.

u � 0
u � 0

u is twice the area
of sector AOP.

P(cosh u, sinh u)

A¿sud =

1
2

.

T

Since the point
(cosh u, sinh u) lies on the right-hand
branch of the hyperbola 
for every value of u (Exercise 84).

x2
- y2

= 1

cosh2 u - sinh2 u = 1,

One of the analogies between hyperbolic and circular
functions is revealed by these two diagrams (Exercise 84).
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Hanging Cables
87. Imagine a cable, like a telephone line or TV cable, strung from

one support to another and hanging freely. The cable’s weight per
unit length is w and the horizontal tension at its lowest point is a
vector of length H. If we choose a coordinate system for the plane
of the cable in which the x-axis is horizontal, the force of gravity
is straight down, the positive y-axis points straight up, and the
lowest point of the cable lies at the point on the y-axis
(see accompanying figure), then it can be shown that the cable
lies along the graph of the hyperbolic cosine

Such a curve is sometimes called a chain curve or a catenary,
the latter deriving from the Latin catena, meaning “chain.”

a. Let P(x, y) denote an arbitrary point on the cable. The next
accompanying figure displays the tension at P as a vector of
length (magnitude) T, as well as the tension H at the lowest
point A. Show that the cable’s slope at P is

b. Using the result from part (a) and the fact that the horizontal
tension at P must equal H (the cable is not moving), show that

Hence, the magnitude of the tension at P(x, y) is
exactly equal to the weight of y units of cable.
T = wy .

tan f =

dy

dx
= sinh 

w
H

 x .

x

y

0

H

Hanging
cable

H
w

y �      cosh     xH
w

w
H

y =

H
w  cosh 

w
H

 x .

y = H>w

88. (Continuation of Exercise 87.) The length of arc AP in the Exer-
cise 87 figure is where Show that
the coordinates of P may be expressed in terms of s as

89. The sag and horizontal tension in a cable The ends of a cable
32 ft long and weighing 2 lb ft are fastened at the same level to
posts 30 ft apart.

a. Model the cable with the equation

Use information from Exercise 88 to show that a satisfies the
equation

(2)

b. Solve Equation (2) graphically by estimating the coordinates
of the points where the graphs of the equations and

intersect in the ay-plane.

c. Solve Equation (2) for a numerically. Compare your solution
with the value you found in part (b).

d. Estimate the horizontal tension in the cable at the cable’s
lowest point.

e. Using the value found for a in part (c), graph the catenary

over the interval Estimate the sag in the
cable at its center.

-15 … x … 15.

y =

1
a cosh ax

y = sinh 15a
y = 16a

16a = sinh 15a .

y =

1
a cosh ax, -15 … x … 15.

>

x =

1
a sinh-1 as, y = As2

+

1
a2 .

a = w>H .s = s1>ad sinh ax ,

x

y

0

H

T

T cos �

�
P(x, y)

y �      cosh     xH
w

w
H







H
wA  0, 
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T

T
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