EXERCISES 8.3
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Expanding Quotients into Partial Fractions

Expand the quotients in Exercises 1-8 by partial fractions.
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Irreducible Quadratic Factors

In Exercises 21-28, express the integrands as a sum of partial frac-

Nonrepeated Linear Factors

In Exercises 9-16, express the integrands as a sum of partial fractions
and evaluate the integrals.
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tions and evaluate the integrals.
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Repeated Linear Factors

In Exercises 17-20, express the integrands as a sum of partial frac-

tions and evaluate the integrals.
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Improper Fractions

In Exercises 29-34, perform long division on the integrand, write the
proper fraction as a sum of partial fractions, and then evaluate the
integral.
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Exercise

Exercise

Exercise

47. Find, to two decimal places, the x-coordinate of the centroid of

580 Chapter 8: Techniques of Integration

Evaluating Integrals

Evaluate the integrals in Exercises 35-40.
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Initial Value Problems

Solve the initial value problems in Exercises 4144 for x as a function
of t.

41. (> = 3t + 2)%= 1 (t>2), x3)=0

42. (3t* + 4% + 1)% =2V3, x(1) = —7\/3/4
2 dx _ _

B2 =242 (x>0), x(D) =1

44. (t + 1)% =x>+1 (t>-1), x0)=mn/4

Applications and Examples

In Exercises 45 and 46, find the volume of the solid generated by re-
volving the shaded region about the indicated axis.

45. The x-axis
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the region in the first quadrant bounded by the x-axis, the curve
y= tan”! x, and the line x = \/g

48. Find the x-coordinate of the centroid of this region to two decimal

places.
y

3,1.83

( ) y:4x2+13x—9
x3 4+ 2x% = 3x

(5,0.98)
— X
0 3 5

49. Social diffusion Sociologists sometimes use the phrase “social
diffusion” to describe the way information spreads through a pop-
ulation. The information might be a rumor, a cultural fad, or news
about a technical innovation. In a sufficiently large population,
the number of people x who have the information is treated as a
differentiable function of time ¢, and the rate of diffusion, dx/dt, is
assumed to be proportional to the number of people who have the
information times the number of people who do not. This leads to
the equation

% = kx(N — x),
where N is the number of people in the population.
Suppose 7 is in days, k = 1/250, and two people start a ru-
mor at time ¢+ = 0 in a population of N = 1000 people.

a. Find x as a function of ¢.

b. When will half the population have heard the rumor? (This is
when the rumor will be spreading the fastest.)

50. Second-order chemical reactions Many chemical reactions
are the result of the interaction of two molecules that undergo a
change to produce a new product. The rate of the reaction typi-
cally depends on the concentrations of the two kinds of mole-
cules. If a is the amount of substance 4 and b is the amount of
substance B at time + = 0, and if x is the amount of product at
time #, then the rate of formation of x may be given by the differ-
ential equation

L ka — 26 - ),
or
1 dx

PEEDE

where £ is a constant for the reaction. Integrate both sides of this
equation to obtain a relation between x and ¢ (a) if @ = b, and
(b)ifa # b. Assume in each case that x = 0 when ¢ = 0.

51. An integral connecting 7 to the approximation 22/7
1 x4(x _ 1)4
a. Evaluate G dx.
o x“+1
b. How good is the approximation 77 =~ 22/7? Find out by

. (22
expressing | == — | as a percentage of .
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_ x*x = 1)* ) 52. Find the second-degree polynomial P(x) such that P(0) = 1,
c. Graph the function y = Tlforo = x = 1. Experi- P'(0) = 0, and
x 2
ment with the range on the y-axis set between 0 and 1, then P(x)
between 0 and 0.5, and then decreasing the range until the / m dx

graph can be seen. What do you conclude about the area

under the curve? is a rational function.
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