EXERCISES 8.3

Expanding Quotients into Partial Fractions

Expand the quotients in Exercises 1-8 by partial fractions.

1.
$$\frac{5x - 13}{(x - 3)(x - 2)}$$

2. $\frac{5x - 7}{x^2 - 3x + 2}$
3. $\frac{x + 4}{(x + 1)^2}$
4. $\frac{2x + 2}{x^2 - 2x + 1}$
5. $\frac{z + 1}{z^2(z - 1)}$
6. $\frac{z}{z^3 - z^2 - 6z}$
7. $\frac{t^2 + 8}{t^2 - 5t + 6}$
8. $\frac{t^4 + 9}{t^4 + 9t^2}$

Nonrepeated Linear Factors

In Exercises 9–16, express the integrands as a sum of partial fractions and evaluate the integrals.

9.
$$\int \frac{dx}{1-x^2}$$

10.
$$\int \frac{dx}{x^2+2x}$$

11.
$$\int \frac{x+4}{x^2+5x-6} dx$$

12.
$$\int \frac{2x+1}{x^2-7x+12} dx$$

13.
$$\int_4^8 \frac{y \, dy}{y^2-2y-3}$$

14.
$$\int_{1/2}^1 \frac{y+4}{y^2+y} dy$$

15.
$$\int \frac{dt}{t^3+t^2-2t}$$

16.
$$\int \frac{x+3}{2x^3-8x} dx$$

Repeated Linear Factors

In Exercises 17–20, express the integrands as a sum of partial fractions and evaluate the integrals.

17.
$$\int_0^1 \frac{x^3 dx}{x^2 + 2x + 1}$$
 18.
$$\int_{-1}^0 \frac{x^3 dx}{x^2 - 2x + 1}$$

19.
$$\int \frac{dx}{(x^2-1)^2}$$
 20. $\int \frac{x^2 dx}{(x-1)(x^2+2x+1)}$

Irreducible Quadratic Factors

In Exercises 21–28, express the integrands as a sum of partial fractions and evaluate the integrals.

21.
$$\int_{0}^{1} \frac{dx}{(x+1)(x^{2}+1)}$$
22.
$$\int_{1}^{\sqrt{3}} \frac{3t^{2}+t+4}{t^{3}+t} dt$$
23.
$$\int \frac{y^{2}+2y+1}{(y^{2}+1)^{2}} dy$$
24.
$$\int \frac{8x^{2}+8x+2}{(4x^{2}+1)^{2}} dx$$
25.
$$\int \frac{2s+2}{(s^{2}+1)(s-1)^{3}} ds$$
26.
$$\int \frac{s^{4}+81}{s(s^{2}+9)^{2}} ds$$
27.
$$\int \frac{2\theta^{3}+5\theta^{2}+8\theta+4}{(\theta^{2}+2\theta+2)^{2}} d\theta$$
28.
$$\int \frac{\theta^{4}-4\theta^{3}+2\theta^{2}-3\theta+1}{(\theta^{2}+1)^{3}} d\theta$$

Improper Fractions

In Exercises 29–34, perform long division on the integrand, write the proper fraction as a sum of partial fractions, and then evaluate the integral.

29.
$$\int \frac{2x^3 - 2x^2 + 1}{x^2 - x} dx$$
30.
$$\int \frac{x^4}{x^2 - 1} dx$$
31.
$$\int \frac{9x^3 - 3x + 1}{x^3 - x^2} dx$$
32.
$$\int \frac{16x^3}{4x^2 - 4x + 1} dx$$
33.
$$\int \frac{y^4 + y^2 - 1}{y^3 + y} dy$$
34.
$$\int \frac{2y^4}{y^3 - y^2 + y - 1} dy$$

Evaluating Integrals

Evaluate the integrals in Exercises 35-40.

35.
$$\int \frac{e^{t} dt}{e^{2t} + 3e^{t} + 2}$$
36.
$$\int \frac{e^{4t} + 2e^{2t} - e^{t}}{e^{2t} + 1} dt$$
37.
$$\int \frac{\cos y \, dy}{\sin^{2} y + \sin y - 6}$$
38.
$$\int \frac{\sin \theta \, d\theta}{\cos^{2} \theta + \cos \theta - 2}$$
39.
$$\int \frac{(x - 2)^{2} \tan^{-1} (2x) - 12x^{3} - 3x}{(4x^{2} + 1)(x - 2)^{2}} dx$$
40.
$$\int \frac{(x + 1)^{2} \tan^{-1} (3x) + 9x^{3} + x}{(9x^{2} + 1)(x + 1)^{2}} dx$$

Initial Value Problems

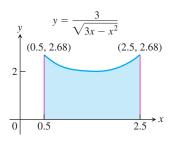
Solve the initial value problems in Exercises 41–44 for x as a function of t.

41.
$$(t^2 - 3t + 2)\frac{dx}{dt} = 1$$
 $(t > 2)$, $x(3) = 0$
42. $(3t^4 + 4t^2 + 1)\frac{dx}{dt} = 2\sqrt{3}$, $x(1) = -\pi\sqrt{3}/4$
43. $(t^2 + 2t)\frac{dx}{dt} = 2x + 2$ $(t, x > 0)$, $x(1) = 1$
44. $(t + 1)\frac{dx}{dt} = x^2 + 1$ $(t > -1)$, $x(0) = \pi/4$

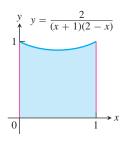
Applications and Examples

In Exercises 45 and 46, find the volume of the solid generated by revolving the shaded region about the indicated axis.

45. The *x*-axis

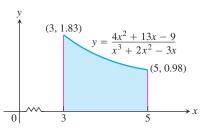


46. The y-axis



1 47. Find, to two decimal places, the *x*-coordinate of the centroid of the region in the first quadrant bounded by the *x*-axis, the curve $y = \tan^{-1} x$, and the line $x = \sqrt{3}$.

48. Find the *x*-coordinate of the centroid of this region to two decimal places.



1 49. Social diffusion Sociologists sometimes use the phrase "social diffusion" to describe the way information spreads through a population. The information might be a rumor, a cultural fad, or news about a technical innovation. In a sufficiently large population, the number of people x who have the information is treated as a differentiable function of time t, and the rate of diffusion, dx/dt, is assumed to be proportional to the number of people who have the information times the number of people who do not. This leads to the equation

$$\frac{dx}{dt} = kx(N-x),$$

where N is the number of people in the population.

Suppose t is in days, k = 1/250, and two people start a rumor at time t = 0 in a population of N = 1000 people.

- **a.** Find *x* as a function of *t*.
- **b.** When will half the population have heard the rumor? (This is when the rumor will be spreading the fastest.)
- **50.** Second-order chemical reactions Many chemical reactions are the result of the interaction of two molecules that undergo a change to produce a new product. The rate of the reaction typically depends on the concentrations of the two kinds of molecules. If a is the amount of substance A and b is the amount of substance B at time t = 0, and if x is the amount of product at time t, then the rate of formation of x may be given by the differential equation

$$\frac{dx}{dt} = k(a-x)(b-x),$$

or

$$\frac{1}{(a-x)(b-x)}\frac{dx}{dt} = k,$$

where k is a constant for the reaction. Integrate both sides of this equation to obtain a relation between x and t (a) if a = b, and (b) if $a \neq b$. Assume in each case that x = 0 when t = 0.

51. An integral connecting π to the approximation 22/7

a. Evaluate
$$\int_0^1 \frac{x^4(x-1)^4}{x^2+1} dx$$
.

b. How good is the approximation $\pi \approx 22/7$? Find out by expressing $\left(\frac{22}{7} - \pi\right)$ as a percentage of π .

- 8.3 Integration of Rational Functions by Partial Fractions 581
- **c.** Graph the function $y = \frac{x^4(x-1)^4}{x^2+1}$ for $0 \le x \le 1$. Experi-

ment with the range on the *y*-axis set between 0 and 1, then between 0 and 0.5, and then decreasing the range until the graph can be seen. What do you conclude about the area under the curve? 52. Find the second-degree polynomial P(x) such that P(0) = 1, P'(0) = 0, and

$$\int \frac{P(x)}{x^3(x-1)^2} \, dx$$

is a rational function.