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Euler’s Method

If we do not require or cannot immediately find an exact solution for an initial value prob-
lem we can often use a computer to generate a table of approxi-
mate numerical values of y for values of x in an appropriate interval. Such a table is called
a numerical solution of the problem, and the method by which we generate the table is
called a numerical method. Numerical methods are generally fast and accurate, and they
are often the methods of choice when exact formulas are unnecessary, unavailable, or
overly complicated. In this section, we study one such method, called Euler’s method,
upon which many other numerical methods are based.

Euler’s Method

Given a differential equation and an initial condition we can
approximate the solution by its linearization

Lsxd = ysx0d + y¿sx0dsx - x0d or Lsxd = y0 + ƒsx0 , y0dsx - x0d .

y = ysxd
ysx0d = y0 ,dy>dx = ƒsx, yd

y¿ = ƒsx, yd, ysx0d = y0

HISTORICAL BIOGRAPHY

Leonhard Euler
(1703–1783)
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660 Chapter 9: Further Applications of Integration

The function L(x) gives a good approximation to the solution y(x) in a short interval about
(Figure 9.8). The basis of Euler’s method is to patch together a string of linearizations to

approximate the curve over a longer stretch. Here is how the method works.
We know the point lies on the solution curve. Suppose that we specify a new

value for the independent variable to be (Recall that in the defini-
tion of differentials.) If the increment dx is small, then

is a good approximation to the exact solution value So from the point 
which lies exactly on the solution curve, we have obtained the point which lies
very close to the point on the solution curve (Figure 9.9).

Using the point and the slope of the solution curve through 
we take a second step. Setting we use the linearization of the solution curve
through to calculate

This gives the next approximation to values along the solution curve 
(Figure 9.10). Continuing in this fashion, we take a third step from the point with
slope to obtain the third approximation

and so on. We are literally building an approximation to one of the solutions by following
the direction of the slope field of the differential equation.

The steps in Figure 9.10 are drawn large to illustrate the construction process, so the
approximation looks crude. In practice, dx would be small enough to make the red curve
hug the blue one and give a good approximation throughout.

EXAMPLE 1 Using Euler’s Method

Find the first three approximations using Euler’s method for the initial value problem

starting at with 

Solution We have and

The step-by-step process used in Example 1 can be continued easily. Using equally
spaced values for the independent variable in the table and generating n of them, set

 xn = xn - 1 + dx .
 o

 x2 = x1 + dx

 x1 = x0 + dx

 = 1.42 + s1 + 1.42ds0.1d = 1.662

 = y2 + s1 + y2d dx

 Third: y3 = y2 + ƒsx2 , y2d dx

 = 1.2 + s1 + 1.2ds0.1d = 1.42

 = y1 + s1 + y1d dx

 Second: y2 = y1 + ƒsx1, y1d dx

 = 1 + s1 + 1ds0.1d = 1.2

 = y0 + s1 + y0d dx

 First: y1 = y0 + ƒsx0 , y0d dx

x3 = x0 + 3dx = 0.3.
x0 = 0, y0 = 1, x1 = x0 + dx = 0.1, x2 = x0 + 2dx = 0.2,

dx = 0.1.x0 = 0

y¿ = 1 + y, ys0d = 1,

y1, y2 , y3

y3 = y2 + ƒsx2, y2d dx ,

ƒsx2 , y2d
sx2 , y2d

y = ysxdsx2 , y2d

y2 = y1 + ƒsx1, y1d dx .

sx1, y1d
x2 = x1 + dx ,

sx1, y1d ,ƒsx1, y1dsx1, y1d
sx1, ysx1dd

sx1, y1d ,
sx0 , y0d ,y = ysx1d .

y1 = Lsx1d = y0 + ƒsx0 , y0d dx

dx = ¢xx1 = x0 + dx .
sx0 , y0d

x0

0

y
y � L(x) � y0 � f (x0, y0)(x � x0)

y � y (x)

(x0, y0)y0

x0
x

FIGURE 9.8 The linearization L(x) of
at x = x0 .y = ysxd
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FIGURE 9.9 The first Euler step
approximates with y1 = Lsx1d .ysx1d
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FIGURE 9.10 Three steps in the Euler
approximation to the solution of the initial
value problem 
As we take more steps, the errors involved
usually accumulate, but not in the
exaggerated way shown here.

y¿ = ƒsx, yd, y sx0d = y0 .
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9.3 Euler’s Method 661

Then calculate the approximations to the solution,

The number of steps n can be as large as we like, but errors can accumulate if n is too large.
Euler’s method is easy to implement on a computer or calculator. A computer program

generates a table of numerical solutions to an initial value problem, allowing us to input 
and the number of steps n, and the step size dx. It then calculates the approximate solu-
tion values in iterative fashion, as just described.

Solving the separable equation in Example 1, we find that the exact solution to the
initial value problem is We use this information in Example 2.

EXAMPLE 2 Investigating the Accuracy of Euler’s Method

Use Euler’s method to solve

on the interval starting at and taking

(a)

(b)

Compare the approximations with the values of the exact solution 

Solution

(a) We used a computer to generate the approximate values in Table 9.1. The “error” col-
umn is obtained by subtracting the unrounded Euler values from the unrounded values
found using the exact solution. All entries are then rounded to four decimal places.

y = 2ex
- 1.

dx = 0.05.

dx = 0.1

x0 = 00 … x … 1,

y¿ = 1 + y, ys0d = 1,

y = 2ex
- 1.

y1, y2 , Á , yn

y0 ,
x0

 yn = yn - 1 + ƒsxn - 1, yn - 1d dx .

 o

 y2 = y1 + ƒsx1, y1d dx

 y1 = y0 + ƒsx0 , y0d dx

TABLE 9.1 Euler solution of 
step size 

x y (Euler) y (exact) Error

0 1 1 0

0.1 1.2 1.2103 0.0103

0.2 1.42 1.4428 0.0228

0.3 1.662 1.6997 0.0377

0.4 1.9282 1.9836 0.0554

0.5 2.2210 2.2974 0.0764

0.6 2.5431 2.6442 0.1011

0.7 2.8974 3.0275 0.1301

0.8 3.2872 3.4511 0.1639

0.9 3.7159 3.9192 0.2033

1.0 4.1875 4.4366 0.2491

dx = 0.1
y¿ = 1 + y, ys0d = 1 ,
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By the time we reach (after 10 steps), the error is about 5.6% of the exact
solution. A plot of the exact solution curve with the scatterplot of Euler solution
points from Table 9.1 is shown in Figure 9.11.

(b) One way to try to reduce the error is to decrease the step size. Table 9.2 shows the re-
sults and their comparisons with the exact solutions when we decrease the step size to
0.05, doubling the number of steps to 20. As in Table 9.1, all computations are per-
formed before rounding. This time when we reach the relative error is only
about 2.9%.

x = 1,

x = 1
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FIGURE 9.11 The graph of 
superimposed on a scatterplot of the Euler
approximations shown in Table 9.1
(Example 2).

y = 2ex
- 1

TABLE 9.2 Euler solution of 
step size 

x y (Euler) y (exact) Error

0 1 1 0

0.05 1.1 1.1025 0.0025

0.10 1.205 1.2103 0.0053

0.15 1.3153 1.3237 0.0084

0.20 1.4310 1.4428 0.0118

0.25 1.5526 1.5681 0.0155

0.30 1.6802 1.6997 0.0195

0.35 1.8142 1.8381 0.0239

0.40 1.9549 1.9836 0.0287

0.45 2.1027 2.1366 0.0340

0.50 2.2578 2.2974 0.0397

0.55 2.4207 2.4665 0.0458

0.60 2.5917 2.6442 0.0525

0.65 2.7713 2.8311 0.0598

0.70 2.9599 3.0275 0.0676

0.75 3.1579 3.2340 0.0761

0.80 3.3657 3.4511 0.0853

0.85 3.5840 3.6793 0.0953

0.90 3.8132 3.9192 0.1060

0.95 4.0539 4.1714 0.1175

1.00 4.3066 4.4366 0.1300

dx = 0.05
y¿ = 1 + y, ys0d = 1,

It might be tempting to reduce the step size even further in Example 2 to obtain
greater accuracy. Each additional calculation, however, not only requires additional com-
puter time but more importantly adds to the buildup of round-off errors due to the approx-
imate representations of numbers inside the computer.

The analysis of error and the investigation of methods to reduce it when making nu-
merical calculations are important but are appropriate for a more advanced course. There
are numerical methods more accurate than Euler’s method, as you can see in a further
study of differential equations. We study one improvement here.
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9.3 Euler’s Method 663

Improved Euler’s Method

We can improve on Euler’s method by taking an average of two slopes. We first estimate as
in the original Euler method, but denote it by We then take the average of 
and in place of in the next step. Thus, we calculate the next approxi-
mation using

EXAMPLE 3 Investigating the Accuracy of the Improved Euler’s Method

Use the improved Euler’s method to solve

on the interval starting at and taking Compare the approxi-
mations with the values of the exact solution 

Solution We used a computer to generate the approximate values in Table 9.3. The “error”
column is obtained by subtracting the unrounded improved Euler values from the unrounded
values found using the exact solution. All entries are then rounded to four decimal places.

y = 2ex
- 1.

dx = 0.1.x0 = 00 … x … 1,

y¿ = 1 + y, ys0d = 1,

 yn = yn - 1 + cƒsxn - 1, yn - 1d + ƒsxn , znd
2

d  dx .

 zn = yn - 1 + ƒsxn - 1, yn - 1d dx

yn

ƒsxn - 1, yn - 1dƒsxn , znd
ƒsxn - 1, yn - 1dzn .

yn

By the time we reach  (after 10 steps), the relative error is about 0.19%.

By comparing Tables 9.1 and 9.3, we see that the improved Euler’s method is consid-
erably more accurate than the regular Euler’s method, at least for the initial value problem
y¿ = 1 + y, ys0d = 1.

x = 1

HISTORICAL BIOGRAPHY

Carl Runge
(1856–1927)

TABLE 9.3 Improved Euler solution of 
step size 

y (improved
x Euler) y (exact) Error

0 1 1 0

0.1 1.21 1.2103 0.0003

0.2 1.4421 1.4428 0.0008

0.3 1.6985 1.6997 0.0013

0.4 1.9818 1.9836 0.0018

0.5 2.2949 2.2974 0.0025

0.6 2.6409 2.6442 0.0034

0.7 3.0231 3.0275 0.0044

0.8 3.4456 3.4511 0.0055

0.9 3.9124 3.9192 0.0068

1.0 4.4282 4.4366 0.0084

dx = 0.1 ys0d = 1 ,
y¿ = 1 + y, 
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EXAMPLE 4 Oil Refinery Storage Tank Revisited

In Example 6, Section 9.2, we looked at a problem involving an additive mixture entering
a 2000-gallon gasoline tank that was simultaneously being pumped. The analysis gave the
initial value problem

where y(t) is the amount of additive in the tank at time t. The question was to find y(20). Us-
ing Euler’s method with an increment of (or 100 steps) gives the approximations

ending with The relative error from the exact solution 
is about 0.18%.

ys20d = 1342ys20d L 1344.3616.

ys0.2d L 115.55, ys0.4d L 131.0298, Á

dt = 0.2

dy
dt

= 80 -

45y
2000 - 5t

 , ys0d = 100
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