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Applications of First-Order Differential Equations

We now look at three applications of the differential equations we have been studying. The
first application analyzes an object moving along a straight line while subject to a force
opposing its motion. The second is a model of population growth which takes into account
factors in the environment placing limits on growth, such as the availability of food or
other vital resources. The last application considers a curve or curves intersecting each
curve in a second family of curves orthogonally (that is, at right angles).

Resistance Proportional to Velocity

In some cases it is reasonable to assume that the resistance encountered by a moving ob-
ject, such as a car coasting to a stop, is proportional to the object’s velocity. The faster the
object moves, the more its forward progress is resisted by the air through which it passes.
To describe this in mathematical terms, we picture the object as a mass m moving along a
coordinate line with position function s and velocity y at time t. From Newton’s second
law of motion, the resisting force opposing the motion is

We can express the assumption that the resisting force is proportional to velocity by
writing

This is a separable differential equation representing exponential change. The solution to
the equation with initial condition at is (Section 7.5)

(1)

What can we learn from Equation (1)? For one thing, we can see that if m is something
large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take a long time for the
velocity to approach zero (because t must be large in the exponent of the equation in order
to make kt m large enough for y to be small). We can learn even more if we integrate
Equation (1) to find the position s as a function of time t.

Suppose that a body is coasting to a stop and the only force acting on it is a resistance
proportional to its speed. How far will it coast? To find out, we start with Equation (1) and
solve the initial value problem

Integrating with respect to t gives

Substituting when gives

0 = -

y0 m
k

+ C and C =

y0 m
k

.

t = 0s = 0

s = -

y0 m
k

 e-sk>mdt
+ C .

ds
dt

= y0 e-sk>mdt , ss0d = 0.

>

y = y0 e-sk>mdt .

t = 0y = y0

m 
dy
dt

= -ky or dy
dt

= -

k
m y sk 7 0d .

Force = mass * acceleration = m 
dy
dt

.
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The body’s position at time t is therefore

(2)

To find how far the body will coast, we find the limit of s(t) as Since 
we know that as so that

Thus,

(3)

This is an ideal figure, of course. Only in mathematics can time stretch to infinity. The
number is only an upper bound (albeit a useful one). It is true to life in one respect,
at least: if m is large, it will take a lot of energy to stop the body. That is why ocean liners
have to be docked by tugboats. Any liner of conventional design entering a slip with
enough speed to steer would smash into the pier before it could stop.

EXAMPLE 1 A Coasting Ice Skater

For a 192-lb ice skater, the k in Equation (1) is about 1 3 slug sec and 
How long will it take the skater to coast from 11 ft sec (7.5 mph) to 1 ft sec?

How far will the skater coast before coming to a complete stop?

Solution We answer the first question by solving Equation (1) for t:

We answer the second question with Equation (3):

Modeling Population Growth

In Section 7.5 we modeled population growth with the Law of Exponential Change:

dP
dt

= kP, Ps0d = P0

 = 198 ft .

 Distance coasted =

y0 m
k

=

11 # 6
1>3

 t = 18 ln 11 L 43 sec.

 - t>18 = ln s1>11d = - ln 11

 e-t>18
= 1>11

 11e-t>18
= 1

>>6 slugs.
m = 192>32 =>>

y0 m>k

Distance coasted =

y0 m
k

.

 =

y0 m
k

 s1 - 0d =

y0 m
k

.

lim
t: q

 sstd = lim
t: q

 
y0 m

k
 s1 - e-sk>mdtd

t : q ,e-sk>mdt : 0
-sk>md 6 0,t : q .

sstd = -

y0 m
k

 e-sk>mdt
+

y0 m
k

=

y0 m
k

 s1 - e-sk/mdtd .
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Eq. (1) with 
 m = 6, y0 = 11, y = 1

k = 1>3, 

In the English system, where weight is
measured in pounds, mass is measured in
slugs. Thus,

assuming the gravitational constant 
is 32 ft/sec2.

Pounds = slugs * 32,
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9.5 Applications of First-Order Differential Equations 675

where P is the population at time t, is a constant growth rate, and is the size of
the population at time In Section 7.5 we found the solution to this
model. However, an issue to be addressed is “how good is the model?”

To begin an assessment of the model, notice that the exponential growth differential
equation says that

(4)

is constant. This rate is called the relative growth rate. Now, Table 9.4 gives the world pop-
ulation at midyear for the years 1980 to 1989. Taking and we see from
the table that the relative growth rate in Equation (4) is approximately the constant 0.017.
Thus, based on the tabled data with representing 1980, representing 1981, and
so forth, the world population could be modeled by

Initial condition: Ps0d = 4454.

Differential equation: dP
dt

= 0.017P

t = 1t = 0

dP L ¢P ,dt = 1

dP>dt
P

= k

P = P0 ektt = 0.
P0k 7 0

TABLE 9.4 World population (midyear)

Population
Year (millions)

1980 4454

1981 4530

1982 4610

1983 4690

1984 4770

1985 4851

1986 4933

1987 5018

1988 5105

1989 5190

85>5105 L 0.0167

87>5018 L 0.0173

85>4933 L 0.0172

82>4851 L 0.0169

81>4770 L 0.0170

80>4690 L 0.0171

80>4610 L 0.0174

80>4530 L 0.0177

76>4454 L 0.0171

¢P>P

Source: U.S. Bureau of the Census (Sept., 1999): www.census.gov
ipc www worldpop.html.>> >

The solution to this initial value problem gives the population function In
year 1999 (so ), the solution predicts the world population in midyear to be about
6152 million, or 6.15 billion (Figure 9.23), which is more than the actual population of
6001 million given by the U.S. Bureau of the Census (Table 9.5). Let’s examine more re-
cent data to see if there is a change in the growth rate.

Table 9.5 shows the world population for the years 1990 to 2002. From the table we
see that the relative growth rate is positive but decreases as the population increases due to

t = 19
P = 4454e0.017t .

t

P

0 10 20

6000

5000

4000

World population (1980–99)

P � 4454e0.017t

FIGURE 9.23 Notice that the value of the
solution is 6152.16 when

which is slightly higher than the
actual population in 1999.
t = 19,

P = 4454e0.017t
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environmental, economic, and other factors. On average, the growth rate decreases by
about 0.0003 per year over the years 1990 to 2002. That is, the graph of k in Equation (4) is
closer to being a line with a negative slope In Example 5 of Section 9.4
we proposed the more realistic logistic growth model

(5)

where M is the maximum population, or carrying capacity, that the environment is capa-
ble of sustaining in the long run. Comparing Equation (5) with the exponential model, we
see that is a linearly decreasing function of the population rather than a
constant. The graphical solution curves to the logistic model of Equation (5) were obtained
in Section 9.4 and are displayed (again) in Figure 9.24. Notice from the graphs that if

the population grows toward M; if the growth rate will be negative (as
) and the population decreasing.r 7 0, M 7 0

P 7 M ,P 6 M ,

k = rsM - Pd

dP
dt

= rsM - PdP ,

-r = -0.0003.
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TABLE 9.5 Recent world population

Population
Year (millions)

1990 5275

1991 5359

1992 5443

1993 5524

1994 5605

1995 5685

1996 5764

1997 5844

1998 5923

1999 6001

2000 6079

2001 6152

2002 6228 ?

2003 ?

76>6152 L 0.0124

73>6079 L 0.0120

78>6001 L 0.0130

78>5923 L 0.0132

79>5844 L 0.0135

80>5764 L 0.0139

79>5685 L 0.0139

80>5605 L 0.0143

81>5524 L 0.0147

81>5443 L 0.0149

84>5359 L 0.0157

84>5275 L 0.0159

¢P>P

Source: U.S. Bureau of the Census (Sept., 2003): www.census.gov
ipc www worldpop.html.>> >

EXAMPLE 2 Modeling a Bear Population

A national park is known to be capable of supporting 100 grizzly bears, but no more. Ten
bears are in the park at present. We model the population with a logistic differential equa-
tion with (although the model may not give reliable results for very small popu-
lation levels).

r = 0.001

Time

Limiting
populationM

Po
pu

la
tio

n

t

P

M
2

FIGURE 9.24 Solution curves to the logistic population
model dP>dt = r sM - PdP .
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9.5 Applications of First-Order Differential Equations 677

(a) Draw and describe a slope field for the differential equation.

(b) Use Euler’s method with step size to estimate the population size in 20 years.

(c) Find a logistic growth analytic solution P(t) for the population and draw its graph.

(d) When will the bear population reach 50?

Solution

(a) Slope field. The carrying capacity is 100, so The solution we seek is a solu-
tion to the following differential equation.

Figure 9.25 shows a slope field for this differential equation. There appears to be a
horizontal asymptote at The solution curves fall toward this level from
above and rise toward it from below.

(b) Euler’s method. With step size and

we obtain the approximations in Table 9.6, using the iteration formula

Pn = Pn - 1 + 0.001s100 - Pn - 1dPn - 1 .

dP
dt

= ƒst, Pd = 0.001s100 - PdP ,

dt = 1, t0 = 0, Ps0d = 10,

P = 100.

dP
dt

= 0.001s100 - PdP

M = 100.

dt = 1

TABLE 9.6 Euler solution of 

step size 

t P (Euler) t P (Euler)

0 10

1 10.9 11 24.3629

2 11.8712 12 26.2056

3 12.9174 13 28.1395

4 14.0423 14 30.1616

5 15.2493 15 32.2680

6 16.5417 16 34.4536

7 17.9222 17 36.7119

8 19.3933 18 39.0353

9 20.9565 19 41.4151

10 22.6130 20 43.8414

dt = 1
Ps0d = 10,0.001s100 - PdP, 
dP>dt =

0

50

M � 100

t

P

FIGURE 9.25 A slope field for the
logistic differential equation

(Example 2).dP>dt = 0.001s100 - PdP

There are approximately 44 grizzly bears after 20 years. Figure 9.26 shows a graph of
the Euler approximation over the interval with step size It looks
like the lower curves we sketched in Figure 9.24.

dt = 1.0 … t … 150

t

P

20

40

60

80

100

200 40 60 80 100

(20, 43.8414)

120 140

FIGURE 9.26 Euler approximations of
the solution to 

step size dt = 1.Ps0d = 10,
dP>dt = 0.001s100 - PdP ,
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(c) Analytic solution. We can assume that when the bear population is 10, so
The logistic growth model we seek is the solution to the following initial

value problem.

To prepare for integration, we rewrite the differential equation in the form

Using partial fraction decomposition on the left-hand side and multiplying both sides
by 100, we get

Integrate with respect to t.

Exponentiate.

Let .

Solve for P.

This is the general solution to the differential equation. When and we
obtain

Thus, the logistic growth model is

Its graph (Figure 9.27) is superimposed on the slope field from Figure 9.25.

P =

100
1 + 9e-0.1t .

 A = 9.

 1 + A = 10

 10 =

100
1 + Ae0

t = 0, P = 10,

 P =

100
1 + Ae-0.1t .

A = ;e-c 
100
P

- 1 = Ae-0.1t

 
100 - P

P
= s ;e-Cde-0.1t

 p 100 - P
P

p = e-0.1t - C

ln 
a
b

= - ln 
b
a ln p 100 - P

P
p = -0.1t - C

 ln p P
100 - P

p = 0.1t + C

 ln ƒ P ƒ - ln ƒ 100 - P ƒ = 0.1t + C

 a1
P

+
1

100 - P
b  

dP
dt

= 0.1

1
Ps100 - Pd

 
dP
dt

= 0.001.

 Initial condition: Ps0d = 10

 Differential equation: dP
dt

= 0.001s100 - PdP

Ps0d = 10.
t = 0
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0

50

M � 100

t

P

FIGURE 9.27 The graph of

superimposed on the slope field in Figure
9.25 (Example 2).

P =

100
1 + 9e-0.1t
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9.5 Applications of First-Order Differential Equations 679

(d) When will the bear population reach 50? For this model,

The solution of the general logistic differential equation

can be obtained as in Example 2. In Exercise 10, we ask you to show that the solution is

The value of A is determined by an appropriate initial condition.

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the
family at right angles, or orthogonally (Figure 9.28). For instance, each straight line
through the origin is an orthogonal trajectory of the family of circles cen-
tered at the origin (Figure 9.29). Such mutually orthogonal systems of curves are of partic-
ular importance in physical problems related to electrical potential, where the curves in
one family correspond to flow of electric current and those in the other family correspond
to curves of constant potential. They also occur in hydrodynamics and heat-flow problems.

EXAMPLE 3 Finding Orthogonal Trajectories

Find the orthogonal trajectories of the family of curves where is an arbi-
trary constant.

Solution The curves form a family of hyperbolas with asymptotes 
First we find the slopes of each curve in this family, or their dy dx values. Differentiating

implicitly gives

Thus the slope of the tangent line at any point (x, y) on one of the hyperbolas is
On an orthogonal trajectory the slope of the tangent line at this same point

must be the negative reciprocal, or x y. Therefore, the orthogonal trajectories must satisfy
the differential equation

dy
dx

=

x
y .

>y¿ = -y>x .
xy = a

x 
dy
dx

+ y = 0 or dy
dx

= -

y
x .

xy = a
> y = ; x .xy = a

a Z 0xy = a ,

x2
+ y2

= a2 ,

P =
M

1 + Ae-rMt .

dP
dt

= rsM - PdP

 t =

ln 9
0.1

L 22 years .

 e0.1t
= 9

 e-0.1t
=

1
9

 1 + 9e-0.1t
= 2

 50 =

100
1 + 9e-0.1t

Orthogonal trajectory

FIGURE 9.28 An orthogonal trajectory
intersects the family of curves at right
angles, or orthogonally.

x

y

FIGURE 9.29 Every straight line through
the origin is orthogonal to the family of
circles centered at the origin.
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This differential equation is separable and we solve it as in Section 9.1:

Separate variables.

Integrate both sides.

(6)

where is an arbitrary constant. The orthogonal trajectories are the family of hyper-
bolas given by Equation (6) and sketched in Figure 9.30.

b = 2C

 y2
- x2

= b, 

 
1
2

 y2
=

1
2

 x2
+ C

 L  y dy = L  x dx

 y dy = x dx
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x

y

x2 � y2 � b
b � 0

xy � a,
a � 0

0

FIGURE 9.30 Each curve is orthogonal to
every curve it meets in the other family
(Example 3).
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