EXERCISES 9.5

- 1. Coasting bicycle A 66-kg cyclist on a 7-kg bicycle starts coasting on level ground at 9 m/sec. The k in Equation (1) is about 3.9 kg/sec.
 - a. About how far will the cyclist coast before reaching a complete stop?
 - **b.** How long will it take the cyclist's speed to drop to 1 m/sec?
- **2. Coasting battleship** Suppose that an Iowa class battleship has mass around 51,000 metric tons (51,000,000 kg) and a *k* value in Equation (1) of about 59,000 kg/sec. Assume that the ship loses power when it is moving at a speed of 9 m/sec.
 - a. About how far will the ship coast before it is dead in the water?
 - **b.** About how long will it take the ship's speed to drop to 1 m/sec?
- 3. The data in Table 9.7 were collected with a motion detector and a CBL™ by Valerie Sharritts, a mathematics teacher at St. Francis DeSales High School in Columbus, Ohio. The table shows the distance s (meters) coasted on in-line skates in t sec by her daughter Ashley when she was 10 years old. Find a model for Ashley's position given by the data in Table 9.7 in the form of Equation (2). Her initial velocity was v₀ = 2.75 m/sec, her mass m = 39.92 kg (she weighed 88 lb), and her total coasting distance was 4.91 m.
- **4. Coasting to a stop** Table 9.8 shows the distance s (meters) coasted on in-line skates in terms of time t (seconds) by Kelly Schmitzer. Find a model for her position in the form of Equation (2). Her initial velocity was $v_0 = 0.80 \text{ m/sec}$, her mass m = 49.90 kg (110 lb), and her total coasting distance was 1.32 m.
- **5. Guppy population** A 2000-gal tank can support no more than 150 guppies. Six guppies are introduced into the tank. Assume that the rate of growth of the population is

$$\frac{dP}{dt} = 0.0015(150 - P)P,$$

where time *t* is in weeks.

TABLE 9.7 Ashley Sharritts skating data

t (sec)	s (m)	t (sec)	s (m)	t (sec)	s (m)
0	0	2.24	3.05	4.48	4.77
0.16	0.31	2.40	3.22	4.64	4.82
0.32	0.57	2.56	3.38	4.80	4.84
0.48	0.80	2.72	3.52	4.96	4.86
0.64	1.05	2.88	3.67	5.12	4.88
0.80	1.28	3.04	3.82	5.28	4.89
0.96	1.50	3.20	3.96	5.44	4.90
1.12	1.72	3.36	4.08	5.60	4.90
1.28	1.93	3.52	4.18	5.76	4.91
1.44	2.09	3.68	4.31	5.92	4.90
1.60	2.30	3.84	4.41	6.08	4.91
1.76	2.53	4.00	4.52	6.24	4.90
1.92	2.73	4.16	4.63	6.40	4.91
2.08	2.89	4.32	4.69	6.56	4.91

- **a.** Find a formula for the guppy population in terms of t.
- **b.** How long will it take for the guppy population to be 100? 125?
- 6. Gorilla population A certain wild animal preserve can support no more than 250 lowland gorillas. Twenty-eight gorillas were known to be in the preserve in 1970. Assume that the rate of growth of the population is

$$\frac{dP}{dt} = 0.0004(250 - P)P,$$

where time t is in years.

t (sec)	s (m)	t (sec)	s (m)	t (sec)	s (m)
0	0	1.5	0.89	3.1	1.30
0.1	0.07	1.7	0.97	3.3	1.31
0.3	0.22	1.9	1.05	3.5	1.32
0.5	0.36	2.1	1.11	3.7	1.32
0.7	0.49	2.3	1.17	3.9	1.32
0.9	0.60	2.5	1.22	4.1	1.32
1.1	0.71	2.7	1.25	4.3	1.32
1.3	0.81	2.9	1.28	4.5	1.32

- **a.** Find a formula for the gorilla population in terms of t.
- **b.** How long will it take for the gorilla population to reach the carrying capacity of the preserve?
- Pacific halibut fishery The Pacific halibut fishery has been modeled by the logistic equation

$$\frac{dy}{dt} = r(M - y)y$$

where y(t) is the total weight of the halibut population in kilograms at time t (measured in years), the carrying capacity is estimated to be $M=8\times10^7$ kg, and $r=0.08875\times10^{-7}$ per year.

- **a.** If $y(0) = 1.6 \times 10^7$ kg, what is the total weight of the halibut population after 1 year?
- **b.** When will the total weight in the halibut fishery reach $4 \times 10^7 \,\mathrm{kg}$?
- **8. Modified logistic model** Suppose that the logistic differential equation in Example 2 is modified to

$$\frac{dP}{dt} = 0.001(100 - P)P - c$$

for some constant c.

- **a.** Explain the meaning of the constant *c*. What values for *c* might be realistic for the grizzly bear population?
- **b.** Draw a direction field for the differential equation when c = 1. What are the equilibrium solutions (Section 9.4)?
 - c. Sketch several solution curves in your direction field from part (a). Describe what happens to the grizzly bear population for various initial populations.
- **9. Exact solutions** Find the exact solutions to the following initial value problems.

a.
$$y' = 1 + y$$
, $y(0) = 1$

b.
$$y' = 0.5(400 - y)y$$
, $y(0) = 2$

10. Logistic differential equation Show that the solution of the differential equation

$$\frac{dP}{dt} = r(M - P)P$$

is

$$P = \frac{M}{1 + Ae^{-rMt}},$$

681

where A is an arbitrary constant.

- 11. Catastrophic solution Let k and P_0 be positive constants.
 - **a.** Solve the initial value problem?

$$\frac{dP}{dt} = kP^2, \quad P(0) = P_0$$

- **b.** Show that the graph of the solution in part (a) has a vertical asymptote at a positive value of *t*. What is that value of *t*?
- **12. Extinct populations** Consider the population model

$$\frac{dP}{dt} = r(M-P)(P-m),$$

where r>0, M is the maximum sustainable population, and m is the minimum population below which the species becomes extinct.

a. Let m = 100, and M = 1200, and assume that m < P < M. Show that the differential equation can be rewritten in the form

$$\left[\frac{1}{1200 - P} + \frac{1}{P - 100} \right] \frac{dP}{dt} = 1100r$$

and solve this separable equation.

- **b.** Find the solution to part (a) that satisfies P(0) = 300.
- **c.** Solve the differential equation with the restriction m < P < M.

Orthogonal Trajectories

In Exercises 13–18, find the orthogonal trajectories of the family of curves. Sketch several members of each family.

13.
$$y = mx$$

14.
$$v = cx^2$$

15.
$$kx^2 + y^2 = 1$$

16.
$$2x^2 + v^2 = c^2$$

17.
$$y = ce^{-x}$$

18.
$$v = e^{kx}$$

- 19. Show that the curves $2x^2 + 3y^2 = 5$ and $y^2 = x^3$ are orthogonal.
- **20.** Find the family of solutions of the given differential equation and the family of orthogonal trajectories. Sketch both families.

a.
$$x dx + y dy = 0$$
 b. $x dy - 2y dx = 0$

21. Suppose a and b are positive numbers. Sketch the parabolas

$$v^2 = 4a^2 - 4ax$$
 and $v^2 = 4b^2 + 4bx$

in the same diagram. Show that they intersect at $(a - b, \pm 2\sqrt{ab})$, and that each "a-parabola" is orthogonal to every "b-parabola."