Chapter 9

Practice Exercises

In Exercises 1–20 solve the differential equation.

1.
$$\frac{dy}{dx} = \sqrt{y}\cos^2 \sqrt{y}$$
 2. $y' = \frac{3y(x+1)^2}{y-1}$

2.
$$y' = \frac{3y(x+1)^2}{y-1}$$

$$3. yy' = \sec y^2 \sec^2 x$$

$$4. y \cos^2 x \, dy + \sin x \, dx = 0$$

5.
$$y' = xe^y \sqrt{x-2}$$
 6. $y' = xye^{x^2}$

$$6. v' = xve^{x}$$

7.
$$\sec x \, dy + x \cos^2 y \, dx = 0$$

7.
$$\sec x \, dy + x \cos^2 y \, dx = 0$$
 8. $2x^2 \, dx - 3\sqrt{y} \csc x \, dy = 0$

9.
$$y' = \frac{e^y}{xy}$$

$$10. \ y' = xe^{x-y}\csc y$$

11.
$$x(x-1) dy - y dx = 0$$
 12. $y' = (y^2 - 1)x^{-1}$

12.
$$y' = (y^2 - 1)x^{-1}$$

13.
$$2y' - y = xe^{x/2}$$

13.
$$2y' - y = xe^{x/2}$$
 14. $\frac{y'}{2} + y = e^{-x} \sin x$

15.
$$xy' + 2y = 1 - x^{-1}$$
 16. $xy' - y = 2x \ln x$

16.
$$xy' - y = 2x \ln x$$

17.
$$(1 + e^x) dv + (ve^x + e^{-x}) dx = 0$$

18.
$$e^{-x} dy + (e^{-x}y - 4x) dx = 0$$

19.
$$(x + 3y^2) dy + y dx = 0$$
 (Hint: $d(xy) = y dx + x dy$)

20.
$$x dy + (3y - x^{-2}\cos x) dx = 0, \quad x > 0$$

Initial Value Problems

In Exercises 21–30 solve the initial value problem.

21.
$$\frac{dy}{dx} = e^{-x-y-2}$$
, $y(0) = -2$

22.
$$\frac{dy}{dx} = \frac{y \ln y}{1 + x^2}$$
, $y(0) = e^2$

23.
$$(x+1)\frac{dy}{dx} + 2y = x$$
, $x > -1$, $y(0) = 1$

24.
$$x \frac{dy}{dx} + 2y = x^2 + 1$$
, $x > 0$, $y(1) = 1$

25.
$$\frac{dy}{dx} + 3x^2y = x^2$$
, $y(0) = -1$

26.
$$x dy + (y - \cos x) dx = 0$$
, $y\left(\frac{\pi}{2}\right) = 0$

27.
$$x dy - (y + \sqrt{y}) dx = 0$$
, $y(1) = 1$

28.
$$y^{-2} \frac{dx}{dy} = \frac{e^x}{e^{2x} + 1}, \quad y(0) = 1$$

29.
$$xy' + (x - 2)y = 3x^3e^{-x}$$
, $y(1) = 0$

30.
$$y dx + (3x - xy + 2) dy = 0$$
, $y(2) = -1$, $y < 0$

Euler's Method

In Exercises 31 and 32, use the stated method to solve the initial value problem on the given interval starting at x_0 with dx = 0.1.

31. Euler:
$$y' = y + \cos x$$
, $y(0) = 0$; $0 \le x \le 2$; $x_0 = 0$

32. Improved Euler:
$$y' = (2 - y)(2x + 3)$$
, $y(-3) = 1$; $-3 \le x \le -1$: $x_0 = -3$

In Exercises 33 and 34, use the stated method with dx = 0.05 to estimate y(c) where y is the solution to the given initial value problem.

T 33. Improved Euler:

$$c = 3;$$
 $\frac{dy}{dx} = \frac{x - 2y}{x + 1},$ $y(0) = 1$

683

$$c = 4;$$
 $\frac{dy}{dx} = \frac{x^2 - 2y + 1}{x},$ $y(1) = 1$

In Exercises 35 and 36, use the stated method to solve the initial value problem graphically, starting at $x_0 = 0$ with

a.
$$dx = 0.1$$
.

b.
$$dx = -0.1$$

T 35. Euler:

$$\frac{dy}{dx} = \frac{1}{e^{x+y+2}}, \quad y(0) = -2$$

T 36. Improved Euler:

$$\frac{dy}{dx} = -\frac{x^2 + y}{e^y + x}, \quad y(0) = 0$$

Slope Fields

In Exercises 37–40, sketch part of the equation's slope field. Then add to your sketch the solution curve that passes through the point P(1,-1). Use Euler's method with $x_0=1$ and dx=0.2 to estimate y(2). Round your answers to four decimal places. Find the exact value of y(2) for comparison.

37.
$$y' = x$$

38.
$$y' = 1/x$$

39.
$$v' = xv$$

40.
$$y' = 1/y$$

Autonomous Differential Equations and Phase Lines

In Exercises 41 and 42.

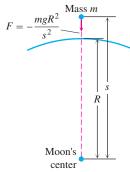
- a. Identify the equilibrium values. Which are stable and which are unstable?
- **b.** Construct a phase line. Identify the signs of y' and y''.
- **c.** Sketch a representative selection of solution curves.

41.
$$\frac{dy}{dx} = y^2 - 1$$

$$42. \ \frac{dy}{dx} = y - y^2$$

Applications

43. Escape velocity The gravitational attraction F exerted by an airless moon on a body of mass m at a distance s from the moon's center is given by the equation $F = -mg R^2 s^{-2}$, where g is the acceleration of gravity at the moon's surface and R is the moon's radius (see accompanying figure). The force F is negative because it acts in the direction of decreasing s.



a. If the body is projected vertically upward from the moon's surface with an initial velocity v_0 at time t = 0, use Newton's second law, F = ma, to show that the body's velocity at position s is given by the equation

$$v^2 = \frac{2gR^2}{s} + v_0^2 - 2gR.$$

Thus, the velocity remains positive as long as $v_0 \ge \sqrt{2gR}$. The velocity $v_0 = \sqrt{2gR}$ is the moon's **escape velocity**. A body projected upward with this velocity or a greater one will escape from the moon's gravitational pull.

b. Show that if $v_0 = \sqrt{2gR}$, then

$$s = R\bigg(1 + \frac{3v_0}{2R}t\bigg)^{2/3}.$$

44. Coasting to a stop Table 9.9 shows the distance s (meters) coasted on in-line skates in t sec by Johnathon Krueger. Find a model for his position in the form of Equation (2) of Section 9.5. His initial velocity was $v_0 = 0.86$ m/sec, his mass m = 30.84 kg (he weighed 68 lb), and his total coasting distance 0.97 m.

TABLE 9.9 Johnathon Krueger skating data

t (sec)	s (m)	t (sec)	s (m)	t (sec)	s (m)
0	0	0.93	0.61	1.86	0.93
0.13	0.08	1.06	0.68	2.00	0.94
0.27	0.19	1.20	0.74	2.13	0.95
0.40	0.28	1.33	0.79	2.26	0.96
0.53	0.36	1.46	0.83	2.39	0.96
0.67	0.45	1.60	0.87	2.53	0.97
0.80	0.53	1.73	0.90	2.66	0.97