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Preface

“Our goal with the volumes which together will constitute the “Handbook of Differen-
tial Geometry” is to give a rather complete survey of the field of differential geometry.”
Thus reads the opening sentence of the “Handbook of Differential Geometry, Volume I”,
and only the presence of the word “rather” saves this goal from being an obvious mis-
sion impossible. Let us recall the contents of this Volume I:Differential geometry of webs
(M.A. Akivis and V.V. Goldberg),Spaces of metrics and curvature functionals(D.E. Blair),
Riemannian submanifolds(B.-Y. Chen),Einstein metrics in dimension four(A. Derdzin-
ski), The Atiyah–Singer index theorem(P.B. Gilkey), Survey of isospectral manifolds
(C.S. Gordon),Submanifolds with parallel fundamental form(Ü. Lumiste),Sphere the-
orems(K. Shiohama),Affine differential geometry(U. Simon),A survey on isoparametric
hypersurfaces and their generalizations(G. Thorbergsson),Curves(T. Willmore); with
introduction by S.S. Chern.

As in Volume I, we allowed the authors in this Volume II as much freedom as possible
concerning style and contents. We are confident that the reader will appreciate this prag-
matic point of view. Some contributions will emphasize the basics; some will emphasize
the classical results; others the recent developments. Needless to say all authors have spent
a lot of time and energy in describing their topic, which we appreciate enormously.

The contributions to this Volume II are:Some problems on Finsler geometry(J.C. Ál-
varez Paiva),Foliations (R. Barre and A. El Kacimi),Symplectic geometry(A. Can-
nas da Silva),Metric Riemannian geometry(K. Fukaya),Contact geometry(H. Geiges),
Complex differential geometry(I. Mihai), Compendium on the geometry of Lagrange
spaces(R. Miron), Certain actual topics on modern Lorentzian geometry(F.J. Palomo
and A. Romero).

Obviously the whole field of differential geometry is not yet covered in the two volumes
of this “Handbook of Differential Geometry”. Some of the authors explicitly mention top-
ics that should have been covered, but are not for practical reasons; but also other topics
are not (yet) treated sufficiently or not treated at all.

Recently Professors Chern and Willmore passed away. Both had a great impact on the
development of contemporary geometry and were genuine sources of inspiration, guidance
and support for many generations of mathematicians through their books and articles, their
fantastic lectures and their warm and truly concerned personal contacts. Together with
all authors we gratefully dedicate this book to the memories of Professor S.S. Chern and
Professor T.J. Willmore.

Franki Dillen and Leopold Verstraelen
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CHAPTER 1

Some Problems on Finsler Geometry∗
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E-mail: jalvarez@duke.poly.edu

We do like intuitive geometric arguments and uncovering
simple geometric reasons underlying seemingly recondite facts.

H. Busemann
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Abstract
This chapter is an unorthodox survey of Finsler geometry presenting both results and open

problems. It aims to show that recent progress in convex geometry, the calculus of variations,
symplectic geometry, and integral geometry can be powerful tools in the study of Finsler
manifolds; and that Finsler geometry can prove useful in solving some of the open problems
in these fields.
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1. Introduction

Finsler manifolds, manifolds whose tangent spaces carry a norm that varies smoothly with
the base point, were born prematurely in 1854 together with their Riemannian counterparts
in Riemann’s ground-breakingHabilitationsvortrag. I say prematurely because in 1854
Minkowski’s work on normed spaces and convex bodies (see [69]) was still forty three
years away, and thus not even the infinitesimal geometry on which Finsler manifolds are
based was understood or appreciated at the time. Apparently, Riemann did not know what
to make of these ‘more general class’ of manifolds whose element of arclength does not
originate from a scalar product and, fatefully, put in a bad word for them [44]:

Investigation of this more general class would actually require no essential different principles,
but it would be rather time-consuming and throw relatively little new light on the study of Space,
especially since the results cannot be expressed geometrically.

Given the awe with which we rightfully regard Riemann’s achievements and uncanny
geometrical intuition, it is tempting to take the above quotation out of historical context
and to dismiss Finsler geometry altogether. But, if we think of the great advances in convex
geometry, the calculus of variations, integral geometry, the theory of metric spaces, and
symplectic geometry that have taken place since 1854, then we may be moved to reassess
Riemann’s statement and to consider applying these new tools to develop the subject in a
way that Riemann could not have foreseen.

The paper includes eighteen simply-stated open problems, as well as a survey of the
more elementary and geometric chapters of Finsler geometry. It presents a detailed dis-
cussion of the Holmes–Thompson volume and its role in integral geometry and geometric
inequalities, thus complementing the survey by Álvarez and Thompson [16]. The other
highlights of the paper are its presentation of Hilbert’s fourth problem and its elementary
approach to the differential invariants of Finsler surfaces. These are mostly based on the pa-
pers [15,12,13] with I.M. Gelfand, M. Smirnov and E. Fernandes, as well as on the lecture
notes [10] written jointly with C. Durán.

In view of the often-made criticisms of Finsler geometry—very few concrete and inter-
esting examples, very few non-Riemannian theorems of real geometric content, and too
many subindices—I have tried to include as many concrete examples, simply-stated re-
sults, and geometric constructions as possible. In this way, many of the jewels, so to speak,
of Finsler geometry find their way into the following pages.

As anyone writing a survey paper, I have had to make some choices. In matters of taste,
I have consistently preferred the concrete to the abstract, the elementary to the advanced,
the C∞ to theCk , and the global to the local. I have stayed clear of Riemann–Finsler
geometry and Finsler connections because the book [23] of Bao, Chern and Shen covers
the subject in depth as do the lecture notes of Abate and Patrizio [1]. Because of my igno-
rance of the subject, I have not touched on complex Finsler geometry (see [1] also for this
topic) and, despite their undeniable interest and importance, non-reversible Finsler metrics
are barely mentioned. Another important topic that is not covered in this survey is Buse-
mann’s G-spaces. This approach, which consists in abstracting the properties of geodesics
on Finsler manifolds, is one of the most powerful in Finsler geometry, but it is impossible
to outdo Busemann’s own exposition in [37,38].
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The reader wishing to have a broader view of the activity in Finsler geometry should
read the short surveys of Chern [44] and Busemann [35]. The book [20] contains survey
articles on several topics including non-reversible Finsler metrics, the proceedings [22]
contains many open problems and a vista of various approaches to Finsler geometry. The
book [84] contains a beautiful exposition of the convex-geometric aspects of the Holmes–
Thompson volume as well as most of the convex geometry necessary for the study of
Finsler manifolds. The lecture notes [10] are similar in spirit to the present paper. The
thesis of Egloff [46] is a good place to learn about the beautiful results of Egloff [47,48]
and Foulon [50–52] on the geometry and dynamics of Finsler manifolds with non-positive
and negative curvature. Finally, I wholeheartedly recommend looking at the papers [42]
and [3] before plunging into other papers where Finsler connections are treated.

The reader can find many of the preprints cited in this paper, along with other
works on the interaction between convex, integral, metric, and symplectic geometry, in
http://www.math.poly.edu/research/finsler.

2. Preliminaries

If (V ,‖ · ‖) is a real, finite-dimensional normed space, we define the length of a smooth
curveγ : [a, b]→ V by the formula

length ofγ :=
∫ b

a

∥∥γ̇ (t)∥∥dt.
A smooth submanifoldN ⊂ V inherits a metric from the norm: ifx andy are two points
onN , define their distance as the infimum of the lengths of all smooth curves onN joining
x andy. Notice that in order to define the metric onN it suffices to know the restriction of
the norm to each tangent space. This motivates the following heuristic definition: A Finsler
manifold is a manifold together with the choice of a norm on each tangent space. The
precise definition requires us to restrict the class of norms to those where the unit sphere
is smooth andquadratically convex(i.e., it has positive principal curvatures for some (and
therefore any) Euclidean structure onV ). The intrinsic definition of these norms is as
follows:

Let V be a vector space and letϕ :V → [0,∞) be a norm that is smooth outside the
origin. SetL := ϕ2/2 and consider the exterior derivative ofL, dL, as a map fromV
minus the origin toV ∗ minus the origin. The normϕ is said to be aMinkowski normif dL
is a diffeomorphism.

For any non-zero vectorv ∈ V , the differential

D(dL)(v) :TvV → TdL(v)V
∗

is an invertible linear map. In fact, using the natural identification ofTvV with V ,
andTdL(v)V ∗ with V ∗, we can think ofgϕ(v) :=D(dL)(v) as a (symmetric) bilinear form
onV :

gϕ(v)(w1,w2) :=
(
D(dL)(v)(w1)

)
(w2).

http://www.math.poly.edu/research/finsler
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The normϕ is a Minkowski norm if and only ifgϕ is positive definite. When the vectorv
belongs to the unit sphere, we will denotegϕ(v) as theosculating Euclidean structureat v
and the ellipsoid

Ev :=
{
w ∈ V : gϕ(v)(w,w)= 1

}
as theosculating ellipsoidat v.

DEFINITION 2.1. A Finsler metricon a manifoldM is a continuous function defined on
its tangent bundle with the property that it is smooth away from the zero section and its
restriction to each tangent space is a Minkowski norm.

Some examples of Finsler manifolds are submanifolds of Minkowski spaces and flat tori
obtained as quotients of Minkowski spaces.

If γ : [a, b]→M is a smooth curve on a Finsler manifold(M,ϕ), then the quantity

length ofγ :=
∫ b

a

ϕ
(
γ̇ (t)

)
dt (1)

is independent of the parameterization. Using this definition of length we define a metric
onM by letting the distance between two pointsx, y ∈M to be the infimum of the lengths
of all smooth curves joiningx andy. Finsler manifolds arelength spaces: the length of a
curveγ defined by the integral in (1) equals the metric length of the curve given by

sup

{
k−1∑
i=0

dist
(
γ (ti), γ (ti+1)

)
: a = t0< · · ·< tk = b is a partition of[a, b]

}
.

The condition that the norms in each tangent space be Minkowski norms is necessary
for the study of the geodesics. Namely, we want these to be solutions of a second-order
differential equation onM .

2.1. The Hamiltonian point of view

If (V ,ϕ) is a normed space, then the dual vector spaceV ∗ inherits a natural norm defined
by the equation

ϕ∗(ξ) := sup
{∣∣ξ(v)∣∣: ϕ(v)� 1

}
.

A related construction on Minkowski spaces is theLegendre transformwhich assigns to
a non-zero vectorv ∈ V the covectorϕ(v) dϕ(v) = gϕ(v)(v, ·). It is easy to check that if
v belongs to the unit sphereS ⊂ (V ,ϕ), then the Legendre transform ofv is the unique
covectorξ such thatξ = 1 is the hyperplane tangent toS at the pointv. This implies that
the image ofS under the Legendre transform is the unit sphere in(V ∗, ϕ∗).
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Let (M,ϕ) be a Finsler manifold and for each pointm ∈M letϕm denote the Minkowski
norm onTmM . If (T ∗

mM,ϕ
∗
m) is the dual of the normed space(TmM,ϕm), then the function

H :T ∗M→R

defined byH(pm) := ϕ∗m(pm) is a Hamiltonian whose energy surfaces are fiber-wise con-
vex. Applying the Legendre transform on each tangent space ofM defines a diffeomor-
phismL :TM \ 0→ T ∗M \ 0 with the property thatH ◦L= ϕ.

By passing from a Finsler metric to its associated Hamiltonian, we gain access to the
techniques of Hamiltonian mechanics and symplectic geometry. Below, we recall some of
the basic definitions and constructions. For more information see [18] and [2].

DEFINITION 2.2. Letπ :T ∗M→M be the standard projection and letDπ :T (T ∗M)→
TM be its differential. Thecanonical 1-form α on T ∗M is defined by the equation
α(vpm)= pm(Dπ(vpm)), wherepm ∈ T ∗

mM andvpm ∈ Tpm(T
∗M). Thesymplectic2-form

is defined asω := −dα.

The formω is non-degenerate: at each pointpm ∈ T ∗M , the mapvpm 	→ ωpm(vpm, ·) is
an isomorphism fromTpm(T

∗M) to T ∗
pm(T

∗M). We can use this isomorphism to pass from
1-forms onT ∗M to vector fields onT ∗M .

DEFINITION 2.3. LetH :T ∗M→ R be a smooth function. TheHamiltonian vector field
of H , XH , is defined by the equalitydH = ω(XH , ·).

As an easy consequence of the definition, we have thatH is constant along the integral
curves of the Hamiltonian vector fieldXH , and that the symplectic form is invariant under
the flow ofXH .

Because of this result, it is usual to disregard the functionH in favor of theunit co-
sphere bundleS∗HM :=H−1(1). If α is the canonical 1-form onT ∗M , then its restriction
to the unit co-sphere bundleS∗HM , which we denote byαH , is a contact form(i.e., the
top-order formαH ∧ (dαH )n−1 never vanishes). UsingαH , we can define the restriction
of the Hamiltonian vector fieldXH without any reference to the functionH :

DEFINITION 2.4. TheReeb vector fieldXH onS∗HM is defined by the equations

αH (XH )= 1, dαH (XH , ·)= 0.

The projection toM of the integral curves of this vector field are geodesics parameter-
ized with unit speed. Conversely, ifγ is a geodesic onM parameterized with unit speed,
then the Legendre transformL maps the velocity curvėγ to an orbit of the Reeb vector
field. We remark that ifγ is any smooth curve onM parameterized with unit speed, then

length ofγ =
∫
L◦γ

αH . (2)
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Note that the Finsler manifold(M,ϕ) is geodesically complete (or metrically complete,
since it is easy to verify that the Hopf–Rinow theorem extends to the Finsler setting) if and
only if the Reeb vector field defines a flow.

Let us finish this section by remarking that the non-degeneracy of the symplectic formω

onT ∗M is equivalent to the fact thatωn, n= dim(M), is a volume form. This remark will
provide us with a natural way to define the volume of a Finsler manifold.

2.2. The Riemannian point of view

Finsler manifolds can also be studied from the point of view of Riemannian manifolds and
bundles. Indeed, to every unit vectorvm ∈ TmM we may associate the inner productgϕ(v).
In this way, we can define a Riemannian structure on the pullback of the tangent bundle of
M to the unit tangent bundle ofM . This construction underlies many of the definitions of
connections associated to Finsler manifolds.

A variation on this theme is to take a nowhere zero vector fieldX defined on an open sub-
setO ⊂M and to associate to it the Riemannian metric onO defined bym 	→ gϕ(X(m)).
This construction has been used by Shen (see [79] and Section 8) to give a simple descrip-
tion of the Finsler curvature.

2.3. Isometries and isometric embeddings

The definitions ofisometryandisometric embeddingbetween Finsler manifolds(M,ϕM)
and(N,ϕN) are the same as for Riemannian manifolds. Namely, an isometry (respectively
isometric embedding) is a diffeomorphism (respectively embedding)f :M→N such that
f ∗ϕN = ϕM . Unlike Riemannian manifolds, two Finsler manifolds can fail to be isometric
because of what happens at a single tangent space. For example, if at a pointm ∈M the
indicatrix

SmM := {vm ∈ TmM: ϕM(vm)= 1
}

is an ellipsoid while none of the indicatrices ofN are ellipsoids, thenM andN are not
isometric. This remark points at the important role played by the centro-affine geometry of
convex hypersurfaces in Finsler geometry.

In [32] Burago and Ivanov showed thatany compact Finsler manifold admits an iso-
metric embedding into a finite-dimensional normed space. It is likely, but unproved, that
the norm can be chosen to be a Minkowski norm. They also give examples of non-
compact Finsler manifolds that cannot be isometrically embedded in any finite-dimensional
normed space. Examples of Finsler manifolds that cannot be isometrically embedded in
anyMinkowskispace have been given by Shen (see [79]) and by Álvarez and Durán (see
Section 8.5).

However, new types of embedding problems arise in Finsler geometry. For example,
while it is known that every two-dimensional normed space is isometric to a subspace
of L1([0,1]) (see, for example, [29]), it is not clear whether the following problem has an
affirmative answer.
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PROBLEM 1. Does every two-dimensional Finsler manifold admit an isometric embedding
into the Banach spaceL1([0,1])?

The relation between intrinsic and extrinsic geometric properties of submanifolds of
normed space is not understood. For example, the following problem from [84] is open.

PROBLEM 2 (Thompson). LetX andY be two normed spaces of dimensionn, n > 2,
such that its unit spheres are isometric as Finsler manifolds. Does it follow thatX andY
are isometric as normed spaces?

2.4. Isometric submersions

In Riemannian geometry isometric submersions are used to construct examples of Rie-
mannian manifolds while keeping some control on their geodesics and curvature. The
Finslerian generalization of this construction is simple, but perhaps not as well known
as it should be. What follows is taken from [11].

DEFINITION 2.5. A surjective linear mapπ :X→ Y between two normed spaces is said
to be anisometric submersionif the image of the closed unit ball onX under the mapπ
equals the closed unit ball onY .

Clearly, ifx is any vector inX, then‖π(x)‖Y � ‖x‖X. The vectors for which the equality
holds are calledhorizontal vectorsand form thehorizontal conein X. Notice that if the
unit sphere inX is smooth, its intersection with the horizontal cone is the singular set of
the restriction of the mapπ to the unit sphere. This description makes it easy to grasp that,
unlike the case where the spaces is Euclidean, the horizontal cone is rarely a subspace.

DEFINITION 2.6. A submersionρ :M→ N between Finsler manifolds is said to beiso-
metric if for every pointm ∈M the differential

Dmρ :TmM→ Tρ(m)N

is an isometric submersion of normed spaces.

More generally, Berestovskii has defined in [24] isometric submersions, orsubmetriesof
metric spaces, as maps that send metric balls to metric balls of the same radius. When the
metric spaces are Finsler manifolds both notions of isometric submersion agree. However,
in the particular case of Finsler manifolds we can also speak of horizontal lifts.

DEFINITION 2.7. Let ρ :M → N be an isometric submersion. An immersed curve
γ : [a, b] →M is said to behorizontal if for every t ∈ (a, b) the velocity vectorγ̇ (t) be-
longs to the horizontal cone inTγ (t)M . A curveγ : [a, b] →M is said to be ahorizontal
lift of an immersed curveσ : [a, b]→N if γ is horizontal andρ ◦ γ = σ .
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The following result is an easy consequence of the definitions and of the basic properties
of geodesics in a Finsler manifold.

THEOREM 2.8 (Álvarez and Durán [11]).An immersed curve onN is a geodesic if and
only if any of its horizontal lifts is a geodesic onM . In particular, the geodesics ofN are
precisely the projections of horizontal geodesics onM .

As we shall see in Section 6, this theorem is useful in constructing interesting examples
of Finsler metrics on complex and quaternionic projective spaces.

3. Volume and area in Finsler spaces

The theory of volume and area in normed spaces has long been a major driving force in
convex geometry. For example, the Blaschke–Santaló inequality, the Mahler conjecture, the
Busemann–Petty problems, the Shephard problem, and the numerous works of Busemann,
Ewald and Shephard on the notions of convexity on Grassmannians originated from or
have applications to the study of volumes and areas in normed spaces (see [16]).

Defining a volume on a finite-dimensional normed space seems easy: a natural volume
should be invariant under translations, positive on open sets, and finite on compact sets. By
Haar’s theorem, such a volume must be a multiple of the Lebesgue measure. However, the
choice of this multiple is crucial. To understand this, suppose we have already decided on
how to assign those constants to two-dimensional normed spaces. We can now define the
area of a two-dimensional polyhedral surface embedded in a 3-dimensional normed space
as the sum of the areas of its faces with their induced norms. Making a different choice of
constants leads to a completely different way of measuring the area of polyhedral surfaces.

The guiding principle in defining volumes on normed spaces is that the choice of a
volume for everyk-dimensional normed space leads to the definition of thek-volume in-
tegrand in all higher-dimensional normed spaces. Requiring even mild conditions on these
area integrands, such as that regions in hyperplanes be area-minimizing, severely restricts
our choices for a definition of volume. In fact, in the literature one can only find three
reasonable choices of volume on normed spaces: the Busemann definition, the Holmes–
Thompson definition, and the Benson definition (also known as Gromov’s mass∗ [56]).

Since the Busemann volume of a Finsler manifold coincides with its Hausdorff measure
as a metric space, at first sight it seems the most natural and geometric definition. However,
the Holmes–Thompson definition, with its ties to Brunn–Minkowski theory, integral, and
symplectic geometry, is rapidly becoming the definition of choice.

DEFINITION 3.1. The Holmes–Thompson volumeof an n-dimensional Finsler mani-
fold (M,ϕ), voln(M,ϕ), is the symplectic volume of its unit co-disc bundle divided by
the volume of the Euclideann-dimensional unit ball. Thek-volume of ak-dimensional
submanifold is the volume of the submanifold with its induced Finsler metric.
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Note that, using the notation of the previous section, we have that

voln(M)= 1

εnn!
∫
S∗HM

αH ∧ (dαH )n−1, (3)

whereεn is the volume of the Euclidean unit ball of dimensionn.
Using the Blaschke–Santaló inequality, Durán has remarked in [45] thatthe Hausdorff

measure of a Finsler manifold is no less than its Holmes–Thompson volume. Equality holds
if and only if the metric is Riemannian.

One of the basic problems about a given definition of volume on normed and Finsler
spaces is determining the convexity or ellipticity properties of thek-volume integrands.
Perhaps the most enticing and difficult question of the kind is the following problem of
Busemann:

PROBLEM 3. LetP be a compact polyhedron of dimensionk in a normed space. Is the
k-volume of any given face less than or equal to the sum of thek-volumes of the remaining
faces?

In the case of polyhedra of codimension one the answer to this question is affirmative for
both the Hausdorff measure (Busemann [34]) and the Holmes–Thompson volume (Holmes
and Thompson [62]).

For the Hausdorff measure no other results of this kind are known. For the Holmes–
Thompson volume the answer to Busemann’s question is known to be affirmative if the
normed space is a subspace ofL1([0,1]):

THEOREM 3.2 (Busemann et al. [40]).LetP be a compact polyhedron of dimensionk in
the Banach spaceL1([0,1]). The(Holmes–Thompson) k-volume of any given face is less
than or equal to the sum of thek-volumes of the remaining faces.

The latest progress on the question of minimality of flats in normed spaces is the follow-
ing result of Burago and Ivanov:

THEOREM 3.3 (Burago and Ivanov [33]).Let P be a compact2-dimensional polyhe-
dron in a normed space. If P is homeomorphic to a sphere, then the(Holmes–Thompson)
2-volume of any given face is less than or equal to the sum of the2-volumes of the remain-
ing faces.

In [64], S. Ivanov shows that this result can be extended to a theorem that is new even in
the Riemannian case:

THEOREM3.4 (Ivanov [64]). Letϕ be a Finsler metric on the closed two-dimensional disc
D such that every two points onD are joined by a unique geodesic. If ψ is another Finsler
metric onD such that the distance induced byψ on the boundary∂D ofD is greater than
or equal to the distance induced byϕ on∂D, then the Holmes–Thompson volume of(D,ϕ)

does not exceed that of(D,ψ).
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It follows from Ivanov’s theorem that a two-dimensional totally geodesic submanifold
in a Finsler space is minimal—in the usual sense of being an extremal for the 2-volume
functional—with respect to the Holmes–Thompson definition of area. This is true in all
dimensions:

THEOREM 3.5 (Berck [25]). A totally geodesic submanifold of a Finsler manifold is min-
imal with the respect to the Holmes–Thompson definition of area.

In [9], Álvarez and Berck show that Theorems 3.4 and 3.5 no longer hold if the Holmes–
Thompson volume is replaced by the Hausdorff measure.

One of the advantages of working with the Holmes–Thompson definition is that there is a
remarkably simple formula for the Holmes–Thompsonk-volume densities of a Minkowski
space in terms of the Fourier transform of its norm. In a different guise, this formula was
first obtained by W. Weil [85]. In the present form it was rediscovered by Álvarez and
Fernandes in [13].

FOURIER TRANSFORMS OF NORMS. Let φ be a smooth, even homogeneous function
of degree one on ann-dimensional vector spaceV , let e1, . . . ,en be a basis ofV , and
let ξ1, . . . , ξn be the dual basis inV ∗. These bases allow us to introduce coordinates
(x1, . . . , xn) in V and(ξ1, . . . , ξn) in V ∗, which we can use to compute the standard (dis-
tributional) Fourier transform

φ̂(ξ) :=
∫

Rn
eiξ ·vφ(v) dv.

This transform depends on the choice of basis, or rather on the Lebesgue measure associ-
ated to it. However, the form̂φ dξ1∧· · ·∧dξn does not. Up to a constant factor, theFourier
transformof φ is the contraction of thisn-form with the Euler vector field,XE(ξ) = ξ ,
in V ∗:

φ̌ := −1

4(2π)n−1
φ̂ dξ1 ∧ · · · ∧ dξn�XE.

It is known (see [63, pp. 167–168]) thatφ̂ is smooth onV ∗ \ {0} and homogeneous of
degree−n− 1. It follows thatφ̌ is a smooth differential form onV ∗ \ {0} which is homo-
geneous of degree−1.

DEFINITION 3.6. Let(V ,ϕ) be ann-dimensional Minkowski space. For each integerk,
1� k < n, define the integrand

ϕk(v1 ∧ · · · ∧ vk) :=
∫
(ξ1,...,ξ k)∈S∗k

|ξ1 ∧ · · · ∧ ξ k · v1 ∧ · · · ∧ vk|ϕ̌k, (4)

whereS∗ is any closed hypersurface inV ∗ \ {0} that is star-shaped with respect to the
origin.
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THEOREM 3.7 [13]. Let (V ,ϕ) be ann-dimensional Minkowski space. If N ⊂ V is an
immersed submanifold of dimensionk, 1� k < n, then we have the following formula for
the Holmes–Thompsonk-area ofN :

volk(N)= 1

εk

∫
N

ϕk,

whereεk denotes the volume of the Euclidean unit ball of dimensionk.

One of the main justifications for adopting the Holmes–Thompson volume comes from
its role in integral geometry (see [78,12,13,76,77]). In fact, the formula for the Holmes–
Thompsonk-area density in terms of the Fourier transform of the norm is equivalent to the
following Crofton-type formula for Minkowski spaces:

THEOREM 3.8. Let (V ,‖ · ‖) be ann-dimensional Minkowski space and letk, 1 � k �
n− 1,be an integer. There exists a smooth, translation-invariant, and possibly signed mea-
sureΦn−k on the manifoldHn,n−k of (n− k)-flats ofV such that ifN ⊂ V is an immersed
k-dimensional submanifold, then

volk(N)= 1

εk

∫
λ∈Hn,n−k

#(N ∩ λ)Φn−k, (5)

whereεk is the volume of the Euclidean unit ball of dimensionk.

This theorem was first proved for finite-dimensional subspaces ofL1([0,1]) by Schnei-
der and Wieacker [78]. In the form given above it is due to Álvarez and Fernandes [12]. It
has recently been extended by Schneider [77] to generalized hypermetric spaces (i.e., finite-
dimensional normed spaces where the distributional Fourier transform of the norm is a
signed measure).

4. Unit spheres in Minkowski spaces

Surprisingly little is known about the Finsler geometry of unit spheres in Minkowski
spaces. The classic results in two dimensions are the theorems of Goł¸ab and Schäffer
(see [54] and [73]).

THEOREM 4.1 (Goła̧b). The length of the unit circle of a two-dimensional normed space
is greater than or equal to six and less than or equal to eight. Moreover, the lower bound
is attained if and only if the unit circle is an affine regular hexagon and the upper bound is
attained if and only if the unit circle is a parallelogram.

THEOREM4.2 (Schäffer).The length of the unit circle of a two-dimensional normed space
equals the length of the unit circle of its dual space.
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The perimeter of the unit circle is at once its surface area, twice its intrinsic diameter,
the length of its shortest closed geodesic, and the length of its shortest closed, symmetric
geodesic. Each of these interpretations points to a different, possible, higher-dimensional
extension of the theorems of Goł¸ab and Schäffer. In this section, we shall quickly survey
what is known about the higher-dimensional analogues of Goł¸ab’s theorem. The general-
izations of Schäffer’s theorem have an unexpected relation with symplectic geometry and
will be discussed in the next section.

We start with the following upper bounds for the Hausdorff measure and the Holmes–
Thompson area of unit spheres in finite-dimensional normed spaces.

THEOREM 4.3 (Busemann and Petty [41]).The(intrinsic) Hausdorff measure of the unit
sphere of ann-dimensional normed space is at most2n times the volume of the Euclidean
unit ball of dimensionn− 1. Equality holds if and only if the unit ball is a parallelotope.

Since the Holmes–Thompson area is always less than or equal to the Hausdorff measure,
we have the following corollary:

COROLLARY 4.4 (Thompson).The Holmes–Thompson area of the unit sphere in an
n-dimensional normed space is at most2n times the volume of the Euclidean unit ball
of dimensionn−1.Equality holds if and only ifn= 2 and the unit ball is a parallelogram.

The quest of the lower bound is much more challenging and interesting. The only re-
sult in dimension greater than two is the following (unpublished) sharp lower bound by
Álvarez, Ivanov and Thompson.

THEOREM 4.5. The Holmes–Thompson area of the unit sphere in a normed space of di-
mension three is at least36/π . This bound is attained, for example, when the unit sphere
of the normed space is the rhombic dodecahedron or the cubo-octahedron.

As a corollary, we have that the Hausdorff measure of the unit sphere of a three-
dimensional normed space is greater than 36/π . This result is, so far, the only contribution
to the following problem of Busemann and Petty [41].

PROBLEM 4 (Busemann–Petty Problem 7). Find the sharp lower bound for the Hausdorff
measure of the unit sphere of a normed space of dimensionn, n� 3.

Of course, we have the analogous problem for the Holmes–Thompson definition of vol-
ume.

PROBLEM 5 (Thompson [84]). Find the sharp lower bound for the Holmes–Thompson
area of the unit sphere of a normed space of dimensionn, n > 3.

Schäffer has considered the length of the shortest closed geodesic that is symmetric
about the origin. This length, which Schäffer calls thegirth of the normed space, is twice
the length of the shortest non-contractible geodesic, thesystole, for the induced Finsler
metric on the projective space.
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THEOREM 4.6 (Schäffer [74]).The girth of ann-dimensional normed space is at most
eight and least4+ 2[n/2]−1, where[·] denotes the greatest-integer function. Moreover if
the girth equals eight, then the space is two-dimensional and its unit ball is a parallelo-
gram.

Here is yet another interesting question of Schäffer about the girth of normed spaces.
The problem was posed as a conjecture in [74, p. 97].

PROBLEM 6 (Schäffer [74]). Prove or disprove that girth of a Minkowski space of dimen-
sion three is at most 2π and that equality holds if and only the space is Euclidean.

So far, we have only considered the shortest geodesic that is symmetric about the origin.
Is it possible that on some unit sphere there is a shorter geodesic that is not symmetric?

PROBLEM 7 (Thompson). Is the shortest closed geodesic on the unit sphere of a
Minkowski space symmetric with respect to the origin?

We now shift our attention to a more classic metric invariant, the inner or intrinsic diam-
eter of the unit sphere.

THEOREM 4.7 (Schäffer [74]).The(intrinsic) diameter of the unit sphere of ann-dimen-
sional normed space is at most four and at least2+[n/2]−1, where[·] denotes the greatest-
integer function. In particular, the diameter of the unit sphere of a three-dimensional
Minkowski space is between three and four.

PROOF. In order to see that the diameter is at most four, letx andy be any two distinct
points on the unit sphere and consider a plane passing through these points and the origin.
The intersection of the plane with the sphere is a curve whose length, by Goł¸ab’s theorem,
is at most eight. It follows that the distance betweenx andy is at most four.

To obtain the lower bound, notice that, by Theorem 4.6, the length of the shortest closed,
symmetric curve on the unit sphere is greater than or equal to 4+ 2[n/2]−1. This implies
that there is a pair of antipodal points at a distance greater than or equal to 2+[n/2]−1 and
the inequality follows. �

Schäffer also characterizes those normed spaces for which the diameter of the unit sphere
equals four (see Theorem 9G in [74, p. 58]).

PROBLEM 8 (Schäffer [74]). Is the (inner) diameter of the unit sphere of a finite-
dimensional normed space attained at a pair of antipodes?

5. Symplectic equivalence of Finsler manifolds

In this section we study several notions of symplectic equivalence between Finsler spaces
and consider the higher-dimensional generalizations of Schäffer’s Theorem 4.2.
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5.1. Equivalence of unit co-disc bundles

The unit co-disc bundle of a Finsler manifold is an open subset of the cotangent bundle and,
as such, it carries a symplectic structure. A vaguely posed, but possibly fruitful, problem is
to relate the symplectic invariants of the unit co-disc bundle to the metric invariants of the
Finsler manifold.

A large class of examples of Finsler manifolds with symplectomorphic unit co-disc bun-
dles is furnished by the following result:

THEOREM 5.1 (Álvarez [8]). Let (Rn,‖ · ‖1) and (Rn,‖ · ‖2) be two Minkowski spaces
and letS1 andS2 denote their unit spheres. The unit co-disc bundle of the Finsler metric
on S1 induced by its embedding into(Rn,‖ · ‖2) is symplectomorphic to the unit co-disc
bundle of the Finsler metric onS∗2 induced by its embedding into(Rn,‖ · ‖∗1).

In particular, the unit sphere of a Minkowski space and its dual have symplectomorphic
unit co-disc bundles. The following corollary—the first of our generalizations of Schäffer’s
theorem—predated the theorem, and was in effect its motivation.

COROLLARY 5.2 (Holmes and Thompson [62]).The unit sphere of a normed space and
that of its dual have the same Holmes–Thompson area.

Besides examples of non-isometric Finsler manifolds with symplectomorphic co-disc
bundles, it is interesting to look for rigidity results such as the following theorem of Benci
and Sikorav (see [80] and [68, p. 365]).

THEOREM 5.3. If the unit co-disc bundles of two flat Finsler tori are symplectomorphic,
then the tori are isometric.

5.2. Equivalence of unit co-sphere bundles

DEFINITION 5.4. LetM andN be two Finsler manifolds with unit co-sphere bundles
S∗M andS∗N and canonical 1-formsαM andαN . The Finsler manifoldsM andN will be
said to beexactly contactomorphicif there exists a diffeomorphismF :S∗M→ S∗N and
a functionf on S∗M such thatF ∗αN = αM + df . If F ∗αN = αM , we shall say that the
metrics areα-equivalent.

PROPOSITION5.5. If M andN are two exactly contactomorphic Finsler manifolds, then
their volumes and their length spectra are equal. Moreover, if M andN areα-equivalent,
then their geodesic flows are conjugate.

PROOF. To see that the volume ofM equals that ofN we simply use Eq. (3) expressing
the Holmes–Thompson volume of the manifold in terms of the canonical 1-form.

The equality of the length spectra follows from Eq. (2), which states that the action
of a leaf of the geodesic foliation equals the length of the underlying geodesic. Indeed,
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if F :S∗M → S∗N is a diffeomorphism satisfyingF ∗αN = αM + df , thenF maps the
geodesic foliation onS∗M to the geodesic foliation onS∗N . Moreover, we see that closed
leaves are taken to closed leaves with the same action.

In the case whereF ∗αN = αM , the expression for the geodesic spray as the Reeb vector
field of the canonical 1-form immediately implies that the geodesic flows are conjugate.�

PROBLEM 9. Is every (reversible) Finsler metric on the two-sphere exactly contactomor-
phic orα-equivalent to a Riemannian metric?

A large class of examples of exactly contactomorphic Finsler manifolds is provided by
the following analogue of Theorem 5.1.

THEOREM5.6 (Álvarez [8]). Let(Rn,‖·‖1) and(Rn,‖·‖2) be two Minkowski spaces and
let S1 andS2 denote their unit spheres. The Finsler metric onS1 induced by its embedding
into (Rn,‖ · ‖2) and the Finsler metric onS∗2 induced by its embedding into(Rn,‖ · ‖∗1) are
exactly contactomorphic. Moreover, the diffeomorphismF can be taken such that it takes
centrally symmetric closed geodesics to centrally symmetric closed geodesics.

As a corollary we obtain our second generalization of Schäffer’s theorem:

COROLLARY 5.7. The length of shortest closed geodesic on the unit sphere of a
Minkowski space equals the length of the shortest closed geodesic on the unit sphere its
dual.

While the length of the shortest closed geodesic on the unit sphere of a Minkowski space
is an interesting invariant, it seems very hard to prove that it is continuous with respect to
any of the natural topologies in the space of convex bodies. In this respect, the girth—
the infimum of the lengths of all centrally symmetric, simple, closed curves—is a much
better invariant. Indeed, Schäffer proved in [74, p. 91] that the girth of a normed space is
continuous with respect to the topology induced by the Banach–Mazur distance.

Schäffer also conjectured that the girth of a normed space equals the girth of its dual
and proved that it is enough to consider the case of finite-dimensional normed spaces.
Theorem 5.6 together with Schäffer’s results settles the conjecture.

THEOREM 5.8 (Álvarez [8]). The girth of a normed space equals the girth of its dual.

The preceding theorem is a third generalization of the fact that the perimeter of the
unit circle of a normed plane equals the perimeter of the dual circle. Schäffer showed in
[74, p. 110] that a fourth possible generalization—that the (intrinsic) diameter of the unit
sphere in a normed space equals the diameter of the dual sphere—is false. In particular,the
diameter of a Finsler manifold is not a symplectic invariant of its unit co-disc bundle.

The notion ofα-equivalence first appeared in Weinstein’s work on the volume of Rie-
mannian manifolds all of whose geodesics are closed. The symplectic and topological na-
ture of his proofs implies that they extend unchanged for Finsler metrics.
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THEOREM 5.9 (Weinstein [86]).Let ϕt , t ∈ [0,1], be a smooth family of Finsler metrics
on a compact manifoldM . If for every t the geodesics of the Finsler metricϕt are all
closed and of fixed lengthL, independent oft , then(M,ϕ0) and(M,ϕ1) areα-equivalent.
In particular, (M,ϕ0) and(M,ϕ1) have the same volume.

Weinstein’s theorem follows from the fact that the manifolds of geodesics of the metrics
involved are symplectomorphic. In the next paragraph we will review the natural symplec-
tic structure on spaces of geodesics and some of their applications to integral geometry and
the minimality of submanifolds in Finsler spaces.

5.3. Manifolds of geodesics

LetM be a Finsler manifold such that its space of oriented geodesics is a manifoldG(M).
Let S∗M denote its unit co-sphere bundle and letπ :S∗M→G(M) be the canonical pro-
jection which sends a given unit covector to the geodesic that has this covector as initial
condition.

PROPOSITION–DEFINITION 5.10 ([18] and [27]). LetM be a Finsler manifold with man-
ifold of geodesicsG(M) and let

S∗M
i

π

T ∗M

G(M)

be the canonical projection ontoG(M) and the canonical inclusion intoT ∗M . If ωM is
the standard symplectic form onT ∗M , then there is a unique symplectic formω onG(M)
which satisfies the equationπ∗ω= i∗ωM .

At first sight there seem to be very few examples of Riemannian or Finsler manifolds
whose space of geodesics is smooth. The following examples will convince the reader that
this is not so.

EXAMPLES.
1. Strictly convex balls and Hadamard manifolds[49]. Around any pointx in a Finsler

manifold there is an open geodesic ball with the property that the function that as-
signs to every point in the ball its distance fromx is strictly convex. The space of
geodesics in such a geodesic ball is a smooth manifold. As a result, the space of
geodesics of any complete Riemannian metric onRn with non-positive sectional cur-
vature (a Hadamard manifold) is a smooth manifold.

2. Projective Finsler metrics. These are Finsler metrics on open, convex subsets ofRPn

such that projective line segments are geodesics. We will review their construction in
the next section.
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3. Zoll manifolds. These are Finsler metrics all of whose geodesics are periodic with the
same minimal period. A great number of Riemannian examples has been constructed
by Weinstein (see [27]).

It is interesting to determine when the manifolds of geodesics of two Finsler manifolds
are symplectomorphic. Here are two results in this direction:

THEOREM 5.11 (Ferrand [49]).The manifold of geodesics of a Hadamard manifold of di-
mensionn is symplectomorphic to the cotangent bundle of the(n−1)-dimensional sphere.

THEOREM 5.12 (Ono [70]).The manifold of geodesics of a Zoll Finsler metric onS3 is
symplectomorphic to a complex hyperquadric inCP 3.

It follows from these theorems that all Hadamard manifolds and all Zoll metrics onS3

areα-equivalent among themselves.

PROBLEM 10. Is the manifold of geodesics of a Zoll Finsler metric on then-sphere sym-
plectomorphic to a complex hyperquadric inCPn? Is the space of all Zoll Finsler metrics
on then-sphere connected?

The study of the symplectic geometry of the space of geodesics has interesting appli-
cations to the integral geometry of Finsler manifolds. For example, the classical integral-
geometric theorem of Cauchy and its extension to finite-dimensional normed spaces is a
consequence of the following symplectic equivalence.

THEOREM 5.13 (Álvarez [8]). Let (V ,‖ · ‖) be a Minkowski space, and letM ⊂ V be a
smooth quadratically convex hypersurface. The unit co-disc bundle for the induced Finsler
metric onM and the set of all oriented lines inV which pass through the interior ofM are
symplectomorphic.

The Crofton formula for hypersurfaces of Finsler spaces, announced by Chakerian
in [43], follows easily from the co-area formula and symplectic reduction (see [9] for a
proof).

THEOREM 5.14. LetM be ann-dimensional Finsler manifold with manifold of geodes-
icsG(M). If N ⊂M is an immersed hypersurface and ifωn−1 denotes the Liouville volume
form onG(M), then

voln−1(N)= 1

2εn−1n! ·
∫
γ∈G(M)

#(N ∩ γ )∣∣ωn−1
∣∣,

whereεn−1 is the volume of the Euclidean unit ball of dimensionn− 1.
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6. Around Hilbert’s fourth problem

In modern terminology, Hilbert’s fourth problem asks to construct and study all Finsler
metrics on open convex subsets ofRPn (includingRPn itself) such that geodesics lie on
projective lines. At the root of this problem are Minkowski’s work on normed spaces and
the following generalization of the Cayley–Klein model of hyperbolic geometry given by
Hilbert himself:

Let D ⊂ Rn be an open domain bounded by a convex hypersurfaceC. If x andy are
two distinct points onD, denote bya andb the points of intersection ofC with the line
determined byx andy (see Figure 1), and define the distance between these points by the
equation

d(x,y) := 1

2
ln

(‖y− a‖‖x− b‖
‖x− a‖‖y− b‖

)
. (6)

THEOREM 6.1 (Hilbert [59]). The functiond is a distance function onD. Moreover,
straight line segments are geodesics.

The metric space(D,d) is called aHilbert geometry. The following elegant descrip-
tion of the Finsler metrics that gives rise to Hilbert geometries, and which I learned from
R. Ambartzumian, is apparently well known.

Let D ⊂ Rn be an open domain bounded by a smooth, quadratically convex hypersur-
faceC. Define a Finsler metricϕ onD by setting its value at a non-zero vectorvx ∈ TxD

to beϕ(vx) := (t−1
1 + t−1

2 )/2, wheret1 andt2 are the two positive real numbers for which
x+ t1v andx− t2v belong toC.

PROPOSITION6.2. If x andy are two points onD andxy is the line segment joining them,
then ∫

xy
ϕ = 1

2
ln

(‖y− a‖‖x− b‖
‖x− a‖‖y− b‖

)
.

Hamel, a student of Hilbert, was the first to study Hilbert’s fourth problem. Among
other things he showed that Lagrangians onRn whose extremals are straight lines are
characterized by a system of linear partial differential equations.

Fig. 1.
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THEOREM 6.3 (Hamel [58]).Let ϕ :TRn \ 0→ R be a smooth Lagrangian which is ho-
mogeneous of order one in the velocities. Straight lines are extremals of the functional
γ 	→ ∫

ϕ(γ̇ (t)) dt if and only ifϕ satisfies the system of equations

∂2ϕ

∂xi∂vj
= ∂2ϕ

∂xj ∂vi
for 1� i, j � n. (7)

It is mainly through the work of Busemann and Pogorelov (see [37,72,82,15]) that the
construction of projective Finsler metrics in terms of a class of (possibly signed) measures
is now well understood.

DEFINITION 6.4 [15,82]. LetD ⊂RPn be an open convex set and letHn−1(D) be the set
of all hyperplanes passing throughD. A possibly-signed measure onHn−1(D) is said to
bequasi-positiveif for any two line segmentsxy andyz not on the same line, the measure
of the set of hyperplanes intersecting twice the wedge formed byxy andyz is positive.

THEOREM 6.5. A Finsler metricϕ on an open convex setD ⊂ RPn is projective if and
only if there exists a smooth quasi-positive measureΦn−1 on the space of hyperplanes
passing throughD,Hn−1(D), such that for any smooth curveγ ,∫

γ

ϕ = 1

2

∫
ζ∈Hn−1(D)

#(ζ ∩ γ )Φn−1. (8)

Notice that, in particular, the length of a line segment equals half theΦn−1-measure of
the set of all hyperplanes intersecting it.

In Pogorelov’s approach to Hilbert’s fourth problem, Theorem 6.5 follows from the fol-
lowing integral representation for the solution of Hamel’s equations.

THEOREM 6.6. A Lagrangianϕ :TRn \ 0→ R which is homogeneous of order one in
the velocities satisfies Hamel’s equations if and only if there exists a smooth even function
ν(r, ξ ) on R× Sn−1 such that

ϕ(x,v)=
∫

ξ∈Sn−1
|ξ · v|ν(ξ · x, ξ)Ω, (9)

whereΩ is the standard area form on the unit sphere inRn.

EXAMPLE [12]. Applying formula (9) to the functionν :R×S1 →R defined byν(r, θ)=
1+ r2, we obtain the Finsler metric

ϕ(x1, x2, v1, v2)= 1

3
√
v2

1 + v2
2

[(
3+ x2

1 + x2
2

)(
v2

1 + v2
2

)+ (x1v1 + x2v2)
2].

Theorem 6.5 states that projective Finsler metrics are exactly those Finsler spaces for
which there is a Crofton formula for the lengths of curves. Do the Crofton formulas for
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the areas of submanifolds also hold? Does the first Crofton formula imply all others? The
answer isyesif by area we mean Holmes–Thompson area:

THEOREM 6.7 (Álvarez and Fernandes [12]).Let ϕ be a projective Finsler metric on an
open convex domainD ⊂RPn and letk, 1� k � n−1,be a natural number. There exists a
smooth(possibly signed) measureΦn−k on the manifoldHn−k(D) of (n− k)-flats passing
throughD such that ifN ⊂Rn is an immersed submanifold of dimensionk, then

volk(N)= 1

εk

∫
ζ∈Hn−k(D)

#(N ∩ ζ )Φn−k, (10)

whereεk is the volume of the Euclidean unit ball of dimensionk.

The construction of the measuresΦn−k given in [12] and the formula (4) for the Holmes–
Thompson volume imply that all the tangent spaces of a projective Finsler metric are hy-
permetric if and only if the measuresΦn−k , k = 1, . . . , n − 1, are positive. In this case,
just like in the case of the standard Riemannian metric onRPn, projective subspaces are
area-minimizing.

THEOREM 6.8 (Álvarez and Fernandes).If the geodesics of a Finsler metric onRPn are
projective lines and all its tangent spaces are hypermetric, then the projective subspaces
are area-minimizing in their homology class.

PROOF. If N ⊂RPn is ak-dimensional submanifold which is homologous to a projective
subspace, then the number of points of intersection ofN with a projective subspace of
complementary dimension is at least one. Using the Crofton formula (10) and positivity of
the measureΦn−k , we have that

volk(N) = 1

εk

∫
ζ∈Hn−k(RPn)

#(N ∩ ζ )Φn−k

� 1

εk

∫
Hn−k(RPn)

Φn−k = volk
(
RP k

)
. �

R. Schneider has recently shown in [77] that the two previous theorems remain valid
even if the regularity assumptions on both the Finsler metric and the submanifold are sig-
nificantly weakened.

The following results also points to the similarity between projective Finsler metrics and
the standard Riemannian metric onRPn.

PROPOSITION6.9. If (RPn,ϕ) is a projective Finsler space for which the length of the
projective lines is equal toπ , then the Holmes–Thompson volume of(RPn,ϕ) equals the
volume ofRPn with its standard Riemannian metric.

PROOF. If ϕ0 denotes the standard Riemannian metric onRPn, then, for each numbert ,
t ∈ [0,1], the metricϕt = (1− t)ϕ0 + tϕ is a projective Finsler metric and the length of
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its closed geodesics isπ . Applying Theorem 5.9, we conclude that the Holmes–Thompson
volumes of(RPn,ϕ0) and(RPn,ϕ) are equal. �

It seems that the analogues of Hilbert’s fourth problem for rank-one symmetric spaces
other thanRPn have never been studied. For example, the following problem is open:

PROBLEM 11. Construct all Finsler metrics onCP 2 such that the geodesics coincide as
point sets with those of the standard Riemannian metric onCP 2.

In trying to solve this problem, Álvarez and Durán stumbled upon the following con-
struction of Finsler metrics on complex and quaternionic projective spaces for which the
projective lines are totally geodesic and the geodesics are circles:

Use the Busemann–Pogorelov construction of projective metrics on real projective
spaces and spheres to construct a projective metricϕ on S2n+1 (respectivelyS4n+3) that
is invariant under the Hopf action. There is a unique Finsler metricψ on CPn (respec-
tively HPn) for which the projection map of the Hopf fibration is an isometric submersion
from (S2n+1, ϕ) to (CPn,ψ) (respectively from(S4n+3, ϕ) to (HPn,ψ)). For the met-
ric ψ , projective lines are totally geodesic and geodesics are (geometric) circles.

This construction suggests yet another inverse problem:

PROBLEM 12. Construct all Finsler metrics onCPn such that the geodesics are circles.

Forn= 1 this problem has been solved by Álvarez and Berck (unpublished) in terms of
space-type surfaces (also calledelliptic congruences) on the Grassmannian of Lagrangian
planes inR4.

There have been many attempts to define the Finsler analogue of Kähler metrics, but
none seems to have enjoyed any measure of success. Since the metric properties of Kähler
manifolds are not so well understood as to proceed in this direction, it makes sense to
use some remarkable geometric property of Kähler manifolds in an attempt to define their
Finsler analogues. One such remarkable geometric property is that complex submanifolds
are minimal.

PROBLEM 13. Construct and study all the Finsler metrics onCPn for which complex sub-
manifolds are minimal. Are (Riemannian) Kähler metrics the only ones with this property?

7. Closed geodesics

In Riemannian geometry, the study of closed geodesics has a long and glorious history with
contributors like Poincaré, Birkhoff and Morse. However, there do not seem to be many
interesting results about closed geodesics in Finsler manifolds. If an existence result in
Riemannian geometry depends only on Morse theory and the method of broken geodesics,
then it automatically holds in Finsler geometry.

A Riemannian result that would be interesting to extend to the Finsler setting is a
theorem of Bangert and Franks [19,53] stating that any Riemannian metric on the two-
dimensional sphere has infinitely many closed geodesics. Here we emphasize that we
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are considering symmetric or reversible Finsler metrics. Indeed, Katok has constructed
non-reversible Finsler metrics on the 2-sphere which have only two closed geodesics
(see [65,87]).

PROBLEM 14 (Bangert). Does every Finsler metric onS2 have infinitely many closed
geodesics?

Franks’ work on the periodic points of area preserving maps of the annulus and recent
work by Hofer, Wysocki and Zehnder (see [61]) suggest the following question:

PROBLEM 15. Is the number of distinct closed geodesics on a non-reversible Finsler met-
ric on the 2-sphere either two or infinity?

8. Differential invariants of Finsler surfaces

In this section we study the differential invariants of Finsler surfaces without the aid of the
Cartan connection and then introduce Cartan’s structure equations in order to uncover the
relations between these invariants.

8.1. Convex geometry and the invariantI

A smooth, centrally symmetric, and quadratically convex curveS on a two-dimensional
vector spaceV parameterizes a family of Euclidean structures onV . Indeed, for each point
v ∈ S, there is a unique ellipseEv which is centered at the origin and osculatesS up to
second order at this point. We associate tov the Euclidean structure withEv as unit circle.

DEFINITION 8.1. Let(V ,ϕ) be a two-dimensional Minkowski space with unit circleS.
An orthonormal basisof V is an ordered pair of vectors(v,v⊥), wherev ∈ S andv⊥ is
both of unit length and perpendicular tov with respect to the Euclidean structure associated
to v.

Using the Euclidean structures associated to the curve we may define adistinguished
parameterization ofS: orient the vector spaceV and parameterize the curveS by a mapγ
in such a way thatγ (t), γ̇ (t) is an oriented orthonormal basis. Tabachnikov has remarked
(private communication) that this parameterization is, up to shifts in the parameter, the only
one satisfying the equation

det
(
γ (t), γ̇ (t)

)= det
(
γ̇ (t), γ̈ (t)

)
.

The period ofγ is a linear invariant ofS which we shall call thetotal angleof S.

THEOREM 8.2 (Schneider [75]).The total angle of a smooth, centrally-symmetric, and
quadratically convex curve on the plane is less than or equal to2π . Equality holds if and
only if the curve is an ellipse.
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DEFINITION 8.3. LetS be a smooth, centrally symmetric, and quadratically convex curve
on a two-dimensional vector spaceV . If γ is a distinguished parameterization ofS and
v= γ (t) is a point onS, thenI (v) is defined by the equation

γ̈ (t) := −γ (t)+ I (v)γ̇ (t).
The quantityI (v) is zero if and only if the osculating ellipseE(v) osculatesS up to

third order or higher atv. It follows that if I is identically zero, thenS is an ellipse. Using
a theorem of Ghys of the zeros of the Schwartzian derivative (see [71]), Álvarez has showed
in [10] that the invariantI vanishes at least eight times.

If (M,ϕ) is a Finsler surface, then every tangent spaceTmM , m ∈M , is a Minkowski
space and the indicatrix

SmM := {vm ∈ TmM: ϕ(vm)= 1
}

is smooth, centrally symmetric, and quadratically convex. For each unit tangent vectorvm
we defineI (vm) as the value of the invariantI of SmM at the pointvm. The result is
a smooth function, which we again denote byI , defined of the unit circle bundle ofM .
Clearly, this function is identically zero if and only if the Finsler surface is Riemannian.

We can also use the previous geometric constructions to define a vector field on the unit
circle bundle of an oriented Finsler surface(M,ϕ): If vm is a unit tangent vector andγ (t)
is a distinguished parameterization ofSmM with γ (0)= vm, thenX3(vm) := γ̇ (0).

8.2. The invariantJ

We shall now define a smooth function on the unit bundle ofM which measures how the
invariantI changes along the geodesics.

DEFINITION 8.4. Let(M,ϕ) be a Finsler surfaces, letvm ∈ TmM be a unit tangent vector,
and letσ : (−ε, ε)→M be the geodesic with initial conditionvm. Define

J (vm)= d/dtI
(
σ̇ (t)

)∣∣
t=0.

Note thatJ = 0 means thatI is an invariant of motion. The Finsler surfaces for which
this occurs are calledLandsberg surfaces. Originally, they came up in the study of Fins-
lerian analogues of the Gauss–Bonnet theorem (see [66] and Section 8.5). Unfortunately,
all the known examples of Landsberg surfaces are either Riemannian or locally isometric
to Minkowski planes. For example, the following problem remains unsolved.

PROBLEM 16. Is there any non-Riemannian Landsberg metric on the 2-sphere?

8.3. Curvature of Finsler surfaces

The formula of second variation really belongs to variational calculus and not to Rie-
mannian geometry. It should not come then as a surprise that many of the definitions and
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theorems in Riemannian geometry, including the notion of curvature, extend to Finsler
geometry.

Let us start by defining the obvious extensions of Jacobi fields and conjugate points:
Given a geodesicγ : [a, b]→M , ageodesic variationof γ is a smooth mapΓ : (−ε, ε)×

[a, b]→M such that
• Γ (0, t)= γ (t).
• For each fixeds0, the curvet 	→ Γ (s0, t) is a geodesic.
If Γ (s, t) is a geodesic variation of the geodesicγ , the vector fieldY alongγ defined

by

Y(t)= ∂Γ (s, t)

∂s

∣∣∣∣
s=0

is called aJacobi field. A Jacobi field is said to beproper if, for eacht , γ̇ (t) andY(t) form
an orthonormal basis of the Minkowski planeTmM in the sense of Definition 8.1.

DEFINITION 8.5. Letp be a point in a Finsler surface and letγ be a geodesic starting
from p. A point γ (s) is said to beconjugateto p alongγ if there exists a non-zero Jacobi
field Y(t) alongγ such thatY(0)= Y(s)= 0.

Just as in Riemannian geometry, geodesics minimize length up to their first conjugate
point.

PROPOSITION8.6. Letp be a point in a Finsler surface and letγ be a geodesic starting
fromp. The curveγ restricted to the interval[0, s] minimizes length if and only if there is
no conjugate point betweenp = γ (0) andγ (s).

If we are given a geodesicγ let us orient the tangent spacesTγ (t)M and let us define
γ̇⊥(t) in such a way thaṫγ (t) and γ̇⊥(t) form an oriented orthonormal basis onTγ (t)M .
Note that any proper Jacobi fieldY alongγ can be uniquely expressed as

Y(t)= y(t)γ̇⊥(t),

wherey is a real-valued function.

PROPOSITION–DEFINITION 8.7. There is a unique smooth functionK on the unit circle
bundle ofM such that for any geodesicγ parameterized with unit speed and for any proper
Jacobi fieldY(t)= y(t)γ̇⊥(t) theJacobi equation

y′′(t)+K(γ̇ (t))y(t)= 0

holds.

The functionK is called thecurvatureof (M,ϕ). In contrast with the Riemannian case,
K depends on both the pointγ (t) ∈M and the direction oḟγ (t).
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The Bonnet–Myers theorem follows, as usual, from the Jacobi equation and Sturm’s
comparison theorem.

THEOREM 8.8. If the curvature function of a Finsler surface(M,ϕ) is greater than or
equal to a positive numberδ, then the diameter ofM is less than or equal toπ/

√
δ.

A very helpful way of describing the Finsler curvature in terms of auxiliary Riemannian
metrics has been given by Shen [79]: Letvm ∈ TmM be a unit vector and letX be ageodesic
vector field(i.e., the integral curves ofX are geodesics parameterized with unit speed)
defined on a neighborhoodO of m and such thatX(m)= vm. If we define a Riemannian
metric onO by x 	→ gϕ(X(x)) as in Section 2, then the Riemannian curvature of this
metric atm equals the Finsler curvature of(M,ϕ) at vm.

8.4. Cartan’s structure equations

By now we have defined three geometric invariants of Finsler surfaces:I , J andK . The
invariantI is a centro-affine invariant which describes the shape of each unit tangent cir-
cle, the invariantK belongs to the calculus of variations and measures the focusing of
geodesics, and the invariantJ , by measuring howI varies along geodesics, partakes of
both convex geometry and variational calculus. All three invariants can be defined, as we
have done, by elementary geometric and variational considerations, but there is nothing to
suggest the deep and interesting relations between the three.

DEFINITION 8.9. If (M,ϕ) is a Finsler manifold, thegeodesic sprayof M is the vector
fieldX1 defined on the unit tangent bundle and whose value at a unit tangent vectorvm is
defined as follows: takeσ(t) to be the geodesic with initial conditionvm and setX1(vm) :=
d/dt σ̇ (t)|t=0.

THEOREM 8.10 (Cartan [42]).Let (M,ϕ) be an oriented Finsler surface, let X1 denote
its geodesic spray, and letX3 be the vector field defined at the end of Section8.1. If we
defineX2 := [X3,X1], then we have the following equations:

[X3,X1] =X2,

[X1,X2] =KX3,

[X3,X2] = −X1 + IX2 + JX3.

Of course, Cartan preferred differential forms to vector fields and he wrote the above
equations in terms of the dual formsω1, ω2 andω3 defined by the equationsωi(Xj )= δij .
Cartan’sstructure equationsare:

dω1 =−ω2 ∧ω3,

dω2 = ω1 ∧ω3 − Iω2 ∧ω3,

dω3 =−Kω1 ∧ω2 − Jω2 ∧ω3.
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Note that by differentiating the structure equations we obtain the followingBianchi iden-
tities:

J = I1,
K3 +KI + J1 = 0.

In these identities the subindices represent differentiation with respect to the vector
fieldsX1, X2 andX3. In general ifF is a function on the unit bundle we will write

dF = F1ω1 + F2ω2 + F3ω3.

Cartan shows that the formsω1, ω2, andω3 solve the problem of equivalence. From this
it follows, at least in theory, that all microlocal invariant properties of Finsler surfaces can
be written in terms of the functionsI , J ,K , and their derivatives with respect to the vector
fieldsX1, X2, andX3. As an example, we have Berwald’s characterizations of locally
Minkowski and projectively flat Finsler surfaces.

THEOREM 8.11 (Berwald).A Finsler surface is locally Minkowski if and only ifK , I1,
andI2 are identically zero.

Let us recall that a Finsler manifold is said to beprojectively flatif around every point
we can find a small neighborhood and a diffeomorphism of this neighborhood to an open
subset of Euclidean space such that geodesics are mapped onto straight lines.

THEOREM 8.12 (Berwald [26]).The(non-parameterized) geodesics of a Finsler surface
are locally the geodesics of some affine connection if and only if the following equation
holds:

I23+ J33+ 2I (I2 + J3)+ 6J = 0.

The dual system of curves to the geodesics of a Finsler surface are locally the geodesics of
some affine connection if and only if the following equation holds:

K31− 3K2 = 0.

Moreover, both of the above equations hold if and only if the surface is projectively flat.

For dual systems of curves and an elementary exposition of path geometry see Arnold’s
book [17, pp. 42–56]. A very clear exposition of Berwald’s theorem and its proof is given
in [31].

It is amusing to prove the following classic theorem of Beltrami by using Berwald’s
result.

COROLLARY 8.13 (Beltrami).A Riemannian surface is projectively flat if and only if its
curvature is constant.
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Berwald was also interested in Finsler metrics whose geodesics coincide as parameter-
ized curves with the geodesics of some affine connection. These Finsler metrics are called
Berwald metrics. In two dimensions they are characterized by the equationsI1 = 0 and
I2 = 0.

8.5. Applications of Cartan’s structure equations

Armed with Cartan’s structure equations and their Bianchi identities, we are now in a
position to prove some of the deepest results in the theory of Finsler surfaces.

THEOREM 8.14 (Akbar–Zadeh [4]).A compact Finsler surface of constant negative cur-
vature is Riemannian.

PROOF. Using the second Bianchi identity, which tells us thatK3+KI +J1 = 0, we have
that ifK ≡ c is a constant andσ(t) is a geodesic onM , then the functionI (t) := I (σ̇ (t))

satisfies the differential equation

d2

dt2
I =−cI.

If c is negative, thenI (t) must be a linear combination of exponentials and, therefore, if
the initial condition is notI (0)= 0, I ′(0)= 0, the functionI (t) is unbounded. SinceI is
bounded whenever the Finsler surface is compact, the only possibility that remains is that
I be identically zero, and that the surface be Riemannian. �

The classical non-Riemannian examples of Finsler metrics with constant negative curva-
ture are the Hilbert geometries. Since the existence of an isometric embedding of a Finsler
surface on a Minkowski space implies that the invariantI is bounded (this follows imme-
diately from the geometric interpretation ofI given in Section 8.1) we have the following
remark of Álvarez and Durán [10]:the Hilbert geometry given by a smooth, quadratically
convex curveC does not admit an isometric embedding into a Minkowski space unlessC

is an ellipse.
If C is an ellipse, then the Hilbert geometry is the Cayley–Klein model of hyperbolic

geometry and, by a theorem of Rosendorn, it admits an explicit isometric embedding
into R5 (see [57, p. 276]).

THEOREM 8.15 (Akbar–Zadeh [4]).A compact Finsler surface with zero curvature is
locally isometric to a Minkowski plane.

PROOF. By Theorem 8.11, we need to show that a compact Finsler surface of zero curva-
ture also satisfiesI1 ≡ 0 andI2 ≡ 0.

Reasoning as in the proof of the previous theorem, ifσ(t) is a geodesic onM , then the
functionI (t) := I (σ̇ (t)) satisfies the differential equation

d2

dt2
I = 0.
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This implies thatI is a linear function oft . SinceI is bounded, it must be a constant and,
therefore,I1 = 0.

The proof thatI2 = 0 is just slightly more involved. First note from the structure equa-
tions that whenK ≡ 0 the vector fieldsX1 andX2 commute. From this we gather that
I21= I12= 0, and soI2 is constant along geodesics. Using this we have that

I2 =X2I = [X3,X1]I =−I31.

This implies that 0= I21 = −I311 and, hence,I3 is a linear function oft . SinceI3 is
bounded,I3 must be constant on geodesics andI2 =−I31= 0. �

This proof also shows that a surface with a complete Finsler metric of zero curvature
that is isometrically embedded in a Minkowski space must be locally Minkowski.

PROBLEM 17. Is there any complete Finsler metric onR2 with zero curvature that is not
locally Minkowski?

THEOREM 8.16. Let (M,ϕ) be a Landsberg surface. If M is connected, then the total
angle of any two of its tangent unit circles is the same.

The proof is taken from Bryant’s beautiful paper [30].

PROOF. If x andy be two points onM , the difference of the total angle of the unit circle
Sy overy and the total angle of the unit circleSx overx is given by∫

Sy

ω3 −
∫
Sx

ω3,

where the orientation overSy andSx is taken so that the integrals are positive.
Let γ : [0,1]→M be a smooth curve joining them. Letπ :UM→M denote the natural

projection and setC be the cylinderπ−1(γ ). Note that the oriented boundary ofC isSy−Sx
and that the 2-formω1 ∧ω2 vanishes identically onC.

Using Stokes theorem and the structure equations we have that∫
Sy

ω3 −
∫
Sx

ω3 =
∫
C
dω3 =

∫
C
−Kω1 ∧ω2 − Jω2 ∧ω3 = 0. �

Another application that uses the full power of Cartan’s structure equations is the Finsler
version of the Gauss–Bonnet theorem given by Bao and Chern in [21].

Let (M,ϕ) be a compact, oriented Finsler surface and letX be a vector field onM with
a finite number of non-degenerate zeros. Cut out small discs, say of radiusr , around the
zeros ofX and denote the resulting manifold with boundary byMr . Normalizing the vector
fieldX onMr we obtain a sectionσr :Mr → SMr over the unit circle bundle ofMr .
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Using the fact that the total angle of the tangent unit circle at a pointx is given by the
integral ofω3 overSxM , the equation

dω3 =−Kω1 ∧ω2 − Jω2 ∧ω3, (11)

and Stokes’ theorem, Chern and Bao arrive at the following result:

THEOREM 8.17 [21]. Let (M,ϕ) be a compact, oriented Finsler surface and letX be
a vector field onM with zerosx1, . . . , xn which are non-degenerate and with indices
I(x1), . . . ,I(xn). Using the notation above, the limit asr tends to zero of the quantity∫

Mr

σ ∗r (−Kω1 ∧ω2 − Jω2 ∧ω3) (12)

is well defined and equals
∑n

i=1I(xi)A(xi), whereA(x1), . . . ,A(xn) are the total angles
of the unit tangent circles at the pointsx1, . . . , xn.

If, as in the case of Landsberg surfaces, the total angle of the unit tangent circles does
not vary from point to point, then we have that the Euler characteristic ofM can be written
as an integral in terms of the differential invariants of the Finsler surface.

Unfortunately, the Gauss–Bonnet theorem for Finsler surfaces does not have as many
geometric implications as its Riemannian counterpart. For example, it cannot be used to
prove that a metric of non-positive, or non-negative, curvature on a two-dimensional Finsler
torus must be flat, or that two simple closed geodesics in a positively curved Finsler two-
sphere must intersect. The reader is invited to prove these seemingly simple results by
him/herself and thereby gain some insight into some of the difficulties of extending Rie-
mannian results to the Finsler setting.

A greater conceptual challenge is that the standard Riemannian technique of comparing
arbitrary metrics to metrics of constant curvature does not generalize to the Finsler setting.
As we saw earlier in this section, a compact Finsler surface with constant negative curva-
ture is Riemannian. Likewise, it has been recently remarked by Bryant that the main result
of LeBrun and Mason, in [67], implies the following important result:

THEOREM 8.18 (Bryant).A Finsler metric of constant positive curvature on the two-
sphere is Riemannian.

The analogous result in higher dimensions is still open:

PROBLEM 18 (Bryant). Is there any non-Riemannian Finsler metric onSn, n > 2, with
constant (positive) curvature?

It is possible that we must instead compare arbitrary Finsler metrics to metrics that have
a given, simple, dynamical property. For example, there is evidence that the following
generalization of the uniformization theorem is true:
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CONJECTURE(Álvarez [6]). If ϕ is a Finsler metric onRP 2, there exists a smooth func-
tion ρ on RP 2 such that all the geodesics of(RP 2, eρϕ) are closed.
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0. Foreword

Foliation Theory is the qualitative study of Differential Equations. It was initiated by the
works of H. Poincaré, I. Bendixon and developed later by C. Ehresmann, G. Reeb and
many other people. Since then the subject has been a wide field in mathematical research.
Actually it is almost impossible to describe all the results and the different steps of its
development. So the purpose of this chapter is to give definitions, some examples and the
fundamental concepts like holonomy, transverse structures, etc. Some themes in the point
of view of Differential Geometry are discussed: characteristic classes, basic Hodge theory,
deformations, etc. A complete account on Foliation Theory can be found in the book [135]
by C. Godbillon. The bibliography is not complete. It is motivated by two reasons: the first
one is to indicate references for the reader who wants to learn much more on foliations; the
second one is to mention people who make contributions to the subject; for most of them
the selected list is nonexhaustive. All foliations considered areregular that is, all leaves
have the same dimension. The theory ofsingular foliationsand speciallyholomorphic
singular foliationsis well developed with a plentiful literature. It merits to be presented
independently. References on the subject can be found on the paper [56] by D. Cerveau.

Unless otherwise stated, all the objects (manifolds, maps, functions, etc.) are assumed
to be of classC∞. Moreover, for simplicity, we will suppose that all the manifolds are ori-
entable. For any manifoldM , we denote byA the algebra of functions onM . If E −→M

is a vector bundle,C∞(E) will denote the space of its global sections; this is anA-module
and, equipped with theC∞-topology, it is a Fréchet space. In caseE is the tangent bundle
TM ofM , we denoteC∞(TM) simply byχ(M) (the space of vector fields tangent toM).
For r ∈ N, Ωr(M) is the space of differential forms of degreer onM which is by defi-
nition C∞(ΛrT ∗M) whereΛrT ∗M −→M is the vector bundle with fibre atx ∈M the
vector space of skew-symmetric forms of degreer on TxM ; Ω0(M) is justA. The other
notations will be introduced at need.

1. Definitions and examples

Let M be the Euclidean spaceRm+n = Rm × Rn with canonical coordinates denoted
(x, y) = (x1, . . . , xm, y1, . . . , yn) and consider the family of affine subspacesFy of M
wherey ∈ Rn, defined by the differential system:dy1 = · · · = dyn = 0. ThenM , con-
sidered as a disjoint union of these spaces, is a nonconnected manifold of dimensionm.
Its topology is the product of the usual topology onRm and the discrete one onRn. We
say thatM , with this structure, is afoliated manifoldof dimensionm andcodimensionn.
It constitutes thelocal modelof a foliation of codimensionn on a manifold of dimension
m+ n. LetO be an open set ofRm+n; let us call aplaqueof O any intersection ofO with
a horizontal spaceFy .

DEFINITION 1. Let M be a manifold of dimensionm + n. A codimensionn folia-
tion F on M is given by an open coverU = (Ui)i∈I and for eachi, a diffeomorphism
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Fig. 1.

ϕi : Rm+n −→Ui such that, on each nonempty intersectionUi ∩Uj , the coordinate change
ϕ−1
j ◦ ϕi : (x, y) ∈ ϕ−1

i (Ui ∩Uj)−→ (x′, y′) ∈ ϕ−1
j (Ui ∩Uj ) has the form:

x′ = ϕij (x, y) and y′ = γij (y). (1)

This means that the diffeomorphismϕ−1
j ◦ ϕi sends a plaque ofϕ−1

i (Ui ∩ Uj ) into a

plaque ofϕ−1
j (Ui ∩ Uj ). The manifoldM is decomposed into connected submanifolds

of dimensionm. Each of these submanifolds is called aleaf of F . A subsetU of M is
saturatedfor F if it is union of leaves that is, ifx ∈ U then the leaf passing throughx is
contained inU .

Coordinate patches(Ui, ϕi) satisfying conditions of Definition 1 are said to bedistin-
guishedfor the foliationF .

Let F be a codimensionn foliation onM defined by a maximal atlas(Ui, ϕi)i∈I like
in Definition 1. Letπ : Rm+n = Rm ×Rn −→ Rn be the second projection. Then the map

fi :Ui
π◦ϕ−1

i−→ Rn is a submersion. OnUi∩Uj �= ∅we havefj = γij ◦fi . The submersionsfi
and the local diffeomorphismsγij of Rn give a complete characterization ofF .

DEFINITION 2. A codimensionn foliation onM is given by an open cover(Ui)i∈I , sub-
mersionsfi :Ui −→ T over ann-dimensional transverse manifoldT and, forUi ∩Uj �= ∅,
a diffeomorphismγij :fi(Ui ∩Uj )⊂ T −→ fj (Ui ∩Uj )⊂ T satisfying:

fj (x)= γij ◦ fi(x) for x ∈Ui ∩Uj . (2)

We say that{Ui,fi, T , γij } is afoliated cocycledefiningF .

The proof of the equivalence of Definitions 1 and 2 is not difficult; it is left to the reader.
The foliationF is said to betransversely orientableif T can be given an orientation

preserved by all the local diffeomorphismsγij .
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1.1. Morphisms of foliations

Let M andM ′ be two manifolds endowed respectively with two foliationsF andF ′.
A mapf :M −→M ′ will be calledfoliatedor amorphismbetweenF andF ′ if, for every
leaf L of F , f (L) is contained in a leaf ofF ′; we say thatf is an isomorphismif, in
addition,f is a diffeomorphism; in this case the restriction off to any leafL ∈ F is a
diffeomorphism on the leafL′ = f (L) ∈F ′.

Suppose now thatf is a diffeomorphism ofM with a codimensionn foliation F . Then
for every leafL ∈F , f (L) is a leaf of a codimensionn foliation F ′ onM ; we say thatF ′
is theimageof F by the diffeomorphismf and we writeF = f ∗(F ′). Two foliationsF
andF ′ onM are said to beCr -conjugated(topologicallyif r = 0, differentiablyif r =∞
andanalyticallyin the caser = ω) if there exists aCr -homeomorphismf :M −→M such
thatf ∗(F ′)=F .

1.2. The concept of holonomy

This is a very important notion in Foliation Theory. In many situations it determines com-
pletely the structure of the foliation. In this subsection, we will introduce this concept and
give the statement of the local and globalstability theorems.

Let F be a codimensionn foliation onM , let L be a leaf ofF andx ∈ L. Let T be a
small transversal toF passing throughx. Let σ : [0,1] −→ L be a continuous path such
thatσ(0) = σ(1)= x. Then there exist a finite open coverUi , i = 0,1, . . . , k, of M with
U0 =Uk and a subdivision 0= t0< t1< · · ·< tk = 1 of [0,1] such that:

– σ([ti−1, ti])⊂Ui ,
– if Ui ∩Uj �= ∅ thenUi ∪Uj is contained in a distinguished chart ofF .

We say thatUi is asubordinated chainto σ . Fori = 0,1, . . . , k let Ti be a small transversal
to F passing throughσi(t) with T0 = Tk = T . For every pointz ∈ Ti , sufficiently close to
σ(ti), the plaque ofF passing throughz intersectsTi+1 in a unique pointfi(z). The domain
of fi contains a transversalT ′

i passing throughσ(ti) and homeomorphic to an open ball of
Rn. Then, it is clear that the map:fσ = fk−1 ◦ fk−2 ◦ · · · ◦ f0 is well defined on an open
neighborhood ofx; it is called theholonomy mapassociated toσ . We can prove (see [39],
for instance) that the germ offσ :

– does not depend on the chainUi , i = 1, . . . , k, and in the choice ofσ in its homotopy
class in the groupπ1(L,x) of the homotopy classes of loops based atx,

– satisfiesfσ (x)= x.
So we get a homomorphismh : [σ ] ∈ π1(L,x) −→ fσ ∈ G(T ,x) whereG(T ,x) is the
group of germs of diffeomorphisms ofT fixing the pointx. This representationh is called
the holonomyof the leafL at x. It is trivial if L is simply connected. The foliationF is
said to bewithout holonomyif this representation is trivial for every leafL of F and every
pointx ∈ L.

THEOREM 1 (Local stability). Suppose thatF admits a compact leafL with finite funda-
mental group. ThenL admits a saturated neighborhoodV such that every leaf contained
in V is compact with finite fundamental group.
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THEOREM 2 (Global stability).Suppose thatM is compact, the codimension ofF is one
and thatF admits a compact leaf with finite fundamental group. Then all leaves ofF are
compact with finite fundamental group.

The proof can be found in the original paper of G. Reeb [285] or in the book [39] by
C. Camacho and A. Lins Neto.

1.3. Examples of foliations

(i) Simple foliations. On every manifoldM we have a foliation by taking points as leaves.
Its codimension is equal to the dimension ofM . AlsoM can be equipped with a codimen-
sion zero foliation with only one leaf, namely,M itself.

In general, every submersionM
π−→ B with connected fibres defines a foliation. The

leaves being the fibresπ−1(b), b ∈ B. In particular, every productF × B is a foliation
with leavesF × {b}, b ∈ B. These foliations are transversely orientable if, and only if, the
manifoldB is orientable.

These aresimple foliations.We shall give more interesting examples in different situa-
tions.

(ii) One-dimensional foliations. Let us begin by surfaces. Let̃M = R2 and consider the
differential equationdy−α dx = 0 whereα is a real number. This equation hasy = αx+c,
c ∈ R, as general solution. Whenc varies, we obtain a family of parallel lines which defines
a foliationF̃ in M̃ .

The natural action ofZ2 on M̃ preserves the foliatioñF (i.e. the image of any leaf
of F̃ by an integer translation is a leaf of̃F ). ThenF̃ induces a foliationF on the torus
T2 = R2/Z2. The leaves are all diffeomorphic to the circleS1 if α is rational and to the
real line ifα is not rational (Figure 2). In fact, ifα is not rational, every leaf ofF is dense;
this shows that even if locally a foliation is simple, globally it can be complicated.

LetM be a closed orientable surface. The fact thatM admits a one-dimensional foliation
depends on the topology ofM , which is described by theEuler–Poincaré numberχ(M);

Fig. 2.



Foliations 41

Fig. 3.

Fig. 4.

this number can be defined as follows: take a triangulation ofM , i.e. a decomposition of
M into triangles such as shown for the 2-sphereS2 (Figure 3).

Let b0, b1 andb2 be the numbers respectively of vertices, edges and triangles. Then
χ(M) = b0 − b1 + b2 is independent of the triangulation; it is called theEuler–Poincaré
numberof M . (There are many books on Algebraic or Differential Topology where we
can find the proof of this fact.) It classifies completely the topology of closed orientable
surfaces, i.e.M andM ′ are homeomorphic if, and only if,χ(M)= χ(M ′). For the trian-
gulation ofS2 in Figure 3 we haveb0 = 4, b1 = 6 andb2 = 4. Soχ(S2)= 2.

The Euler–Poincaré number ofM is the only obstruction to the existence of dimen-
sion one foliation onM : M admits such foliation if, and only if,χ(M)= 0. For example,
S2 cannot support a one-dimensional foliation. In fact,T2 is the only one compact ori-
entable surface which admits a foliation of dimension one. The reader can prove, by using
an adequate triangulation, that a closed orientable surfaceMg of genusg (see in Figure 4
the caseg = 2) hasχ(Mg)= 2−2g as Euler–Poincaré number. ThenMg admits a foliation
F of dimension one if, and only if,g = 1, i.e.Mg is T2.

SupposeM is compact of dimensionn. For eachr = 0,1, . . . , n, letHr(M,R) denote
the realr th cohomology spaceof M which is finite dimensional. Then the number

χ(M)=
n∑
r=0

(−1)r dimHr(M,R)
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is a topological invariantcalled theEuler–Poincaré numberof M . For a surface, it is
exactly the number defined above by using a triangulation. The manifoldM admits a one-
dimensional foliation if, and only if,χ(M)= 0.

(iii) Reeb foliation on the 3-sphereS3. Let M be the 3-dimensional sphereS3 =
{(z1, z2) ∈ C2: |z1|2 + |z2|2 = 1}. Denote byD the open unit disc inC andD̄ its closure
which is the closed unit disc{z ∈ C: |z|� 1}. The two subsets:

M+ =
{
(z1, z2) ∈ S3: |z1|2 � 1

2

}
and M− =

{
(z1, z2) ∈ S3: |z2|2 � 1

2

}
are diffeomorphic tōD×S1. They haveT2 as common boundary:

∂M+ = ∂M− =
{
(z1, z2) ∈ S3: |z1|2 = |z2|2 = 1

2

}
and their union is equal toS3. ThenS3 can be obtained by gluingM+ andM− along their
boundaries by the diffeomorphism(z1, z2) ∈ ∂M+ −→ (z2, z1) ∈ ∂M−, i.e. we identify
(z1, z2) with (z2, z1) in the disjoint unionM+

∐
M−. Let f : D −→ R be the function

defined by:

f (z)= exp

(
1

1− |z|2
)
.

Let t denote the second coordinate inD × R. The family of surfaces(St )t∈R obtained by
translating the graphS of f along thet-axis defines a foliation onD × R. If we add the
cylinderS1 × R, whereS1 is viewed as the boundary ofD̄, we obtain a codimension one
foliation F̃ on D̄×R. By construction,F̃ is invariant by the transformation

(z, t) ∈ D̄×R−→ (z, t + 1) ∈ D̄×R;

so it induces a foliationF0 on the quotient:

D̄×R/(z, t)∼ (z, t + 1)� D̄×S1.

It has the boundaryT2 = S1×S1 as a closed leaf. The others are diffeomorphic toR2 (see
Figure 5).

BecauseM+ andM− are diffeomorphic tōD× S1, F0 defines onM+ andM− respec-
tively two foliationsF+ andF− which give a codimension one foliationF on S3 called
theReeb foliation.

(iv) Lie group actions. LetM be a manifold of dimensionm+ n andG a connected Lie

group of dimensionm. An actionof G onM is a mapG×M Φ−→M such that:
– Φ(e, x)= x for everyx ∈M (wheree is the unit element ofG),
– Φ(g′,Φ(g, x))=Φ(g′g,x) for everyx ∈M and everyg,g′ ∈G.
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Fig. 5.

Suppose that, for every pointx ∈M , the dimension of theisotropy subgroup:

Gx =
{
g ∈G: Φ(g,x)= x}

is independent ofx. Then the actionΦ defines a foliationF of dimension=m− dimGx ;
its leaves are the orbits{Φ(g,x): g ∈ G}. In particular, this is the case ifΦ is locally
free, i.e. if, for everyx ∈M , the isotropy subgroupGx is discrete. An explicit example is
given whenM is the quotientH/Γ of a Lie groupH by a discrete subgroupΓ andG is
a connected Lie subgroup ofH ; the action ofG onM being induced by the left action of
G onH . We say thatF is ahomogeneous foliation. Let us give an explicit example (for
more details see [93]).

Let A ∈ SL(m + n − 1,Z), wherem + n � 3, be a matrix diagonalizable and having
all its eigenvaluesµ1, . . . ,µm−1, λ1, . . . , λn real and positive. We can think ofA as a
diffeomorphism of the(m+n−1)-torusTm+n−1. LetX1, . . . ,Xm−1, Y1, . . . , Yn be linear
vector fields onTm+n−1 such that:

A∗Xj = µjXj , A∗Yk = λkYk for j = 1, . . . ,m− 1 andk = 1, . . . , n,

and denote byF0 the foliation onTm+n−1 defined by the vector fieldsX1, . . . ,Xm−1. The
product ofF0 by R gives a codimensionn foliation on Tm+n−1 × R which is invariant
by the diffeomorphismφ of Tm+n−1 × R sending(z, t) to (A(z), t + 1). So, it induces a
codimensionn foliation F on the quotient manifoldTm+nA = Tm+n−1 ×R/φ. Notice that
Tm+nA is a flat bundle over the circleS1 with fibre Tm+n−1. In fact Tm+nA is the homo-
geneous spaceH/Γ whereH is the semi-direct product ofRm+n−1 by R given by the
action:

(t, z) ∈R×Rm+n−1 −→Atz ∈Rm+n−1
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andΓ is the subgroup:{
(m, k) ∈H |m ∈ Zm+n−1, k ∈ Z

}
.

If v1, . . . , vm−1 ∈ Rm+n−1 are eigenvectors ofA corresponding respectively to the eigen-
valuesµ1, . . . ,µm−1 then the subgroup:

G=
{(

m−1∑
i=1

aivi, b

)
∈H ∣∣a1, . . . , am−1, b ∈R

}

is isomorphic to the semi-direct product ofRm−1 by R∗+ whereR∗+ acts onRm−1 by
homotheties on each factor. The action ofG on Tm+nA , induced by this identification, is a
locally free action whose orbits define the foliationF .

(v) Foliations obtained by suspension. Let B andF be two manifolds, respectively of
dimensionsm andn. Suppose that the fundamental groupπ1(B) of B is finitely generated.
Let ρ :π1(B)−→ Diff (F ) be an injective representation, where Diff(F ) is the diffeomor-
phism group ofF . Denote byB̃ the universal covering ofB andF̃ the horizontal foliation
onM̃ = B̃×F , i.e. the foliation whose leaves are the subsetsB̃×{y}, y ∈ F . This foliation
is invariant by all the transformationsTγ : M̃ −→ M̃ defined byTγ (x̃, y)= (γ · x̃, ρ(γ )(y))
whereγ · x̃ is the natural action ofγ ∈ π1(B) on B̃; thenF̃ induces a codimensionn foli-
ationFρ on the quotient manifold:

M = M̃/(x̃, y)∼ (γ · x̃, ρ(γ )(y)).
We say thatFρ is thesuspensionof the diffeomorphism groupΓ = ρ(π1(B)). The leaves
of Fρ are transverse to the fibres of the natural fibration induced by the first projection
B̃ × F −→ B̃.

Fig. 6.
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Conversely, suppose thatF −→M
π−→ B is a fibration with compact fibreF and that

F is a codimensionn foliation (n = dimension ofF ) transverse to the fibres ofπ . Then
there exists a representationρ :π1(B)−→ Diff (F ) such thatF =Fρ .

Concrete example: letB be the circleS1 andF = R+ = [0,+∞[. Let ρ be the rep-
resentation ofZ = π1(S1) in Diff ([0,+∞[) defined byρ(1) = ϕ whereϕ(y) = λy with
λ ∈ ]0,1[. Becauseϕ is isotopic to the identity map ofF , the manifoldM is diffeomor-
phic to S1 × R+ and the foliationFρ has one closed leaf diffeomorphic to the circleS1,
corresponding to the fixed pointϕ(0)= 0 (see Figure 6).

1.4. Foliations and differential systems

LetM be a manifold of dimensionm+ n. Denote byTM the tangent bundle ofM and let
E be a subbundle of rankm. LetU be an open set ofM such that onU , TM is equivalent
to the productU×Rm+n. At each pointx ∈U , the fibreEx can be considered as the kernel
of n differential 1-formsω1, . . . ,ωn linearly independent:

Ex =
n⋂
j=1

kerωj (x). (S)

The subbundleE is called anm-plane fieldon M . We say thatE is involutive, if for
every vector fieldX andY tangent toE (i.e. sections ofE), the bracket[X,Y ] is also
tangent toE. We say thatE is completely integrableif, through each pointx ∈M , there
exists a submanifoldPx of dimensionm which admitsE|Px (the restriction ofE to Px ) as
tangent bundle. The maximal connected submanifolds satisfying this property are called
the integral submanifoldsof the differential system (S). They define a partition ofM , i.e.
a codimensionn foliation. We have

THEOREM 3 (Frobenius).LetE be a subbundle of rankm given locally by a differential
system like in(S).Then the following assertions are equivalent:

– E is involutive,
– E is completely integrable,
– there exist differential1-forms(defined locally) (βij ), i, j = 1, . . . , n, such thatdωi =∑n

j=1βij ∧ωj , i = 1, . . . , n.

For example, letω be a nonsingular 1-form. The corresponding subbundleE has fibre
Ex = ker(ωx). It defines a codimension one foliation if, and only if, there exists a 1-formβ

such thatdω= β∧ω; this condition is equivalent todω∧ω= 0. In particular, ifω is closed
it defines a codimension one foliationF . If M is compact, all leaves are diffeomorphic and
integration ofω over loops ofM gives rise to a morphismh :π1(M) −→ R. The range
Γ = h(π1(M)) of h is a subgroup ofR called theholonomy groupof F . Example (ii) is of
this type:M = T2, ω= dy− α dx which is closed. The fundamental group ofT2 is Z ⊕Z
and it is easy to see thatΓ = {p+ qα: p,q ∈ Z}.
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1.5. Notations

Let F be a codimensionn foliation onM . We denote byTF the tangent bundle toF and
νF the quotientTM/TF which is thenormal bundletoF ; χ(F) will denote the space of
sections ofTF (elements ofχ(F) are vector fieldsX ∈ χ(M) tangent toF ).

A differential formα ∈Ωr(M) is said to bebasic if it satisfiesiXα = 0 andLXα = 0
for everyX ∈ χ(F). (HereiX andLX denote respectively the inner product and the Lie
derivative with respect to the vector fieldX.) For a functionf :M −→ R, these conditions
are equivalent toX · f = 0 for everyX ∈ χ(F), i.e.f is constant on the leaves ofF ; we
denote byΩr(M/F) the space of basic forms of degreer on the foliated manifold(M,F);
this is a module over the algebraAb of basic functions. A vector fieldY ∈ χ(M) is said
to be foliated, if for everyX ∈ χ(F), the bracket[X,Y ] ∈ χ(F). We can easily see that
the setχ(M,F) of foliated vector fields is a Lie algebra and anAb-module; by definition
χ(F) is an ideal ofχ(M,F) and the quotient

χ(M/F)= χ(M,F)/χ(F)

is called the Lie algebra oftransverse(or basic) vector fieldson the foliated manifold
(M,F). Also, it has a module structure over the algebraAb.

2. Transverse structures

Let M be a manifold of dimensionm + n endowed with a codimensionn foliation F
defined by a foliated cocycle{Ui,fi, T , γij } like in Definition 2.

DEFINITION 3. A transverse structureto F is a geometric structure onT invariant by the
local diffeomorphismsγij .

This is a very important notion in Foliation Theory. To make it clear, let us give the main
examples.

2.1. Measurable foliations

Let BT denote the family of Borel sets onT . A transverse invariant measureto F is a
measureµ onBT such that, for anyA ∈ BT in the domain of definition ofγij , we have

µ
(
γij (A)

)= µ(A).
We say thatF is a measurable foliationif it admits a transverse measure. The notion of
measurable foliation was introduced firstly by J.F. Plante; he obtained many interesting
results on the qualitative behavior of codimension one measurable foliations on compact
manifolds (cf. [273]).



Foliations 47

2.2. Lie foliations

We say thatF is a Lie foliation, if T is a Lie groupG and γij are restrictions of left
translations onG.

Such foliation can also be defined by a 1-formω onM with values in the Lie algebraG
such that:

(i) ωx :TxM −→ G is surjective for everyx ∈M ,
(ii) dω+ 1

2[ω,ω] = 0.
If G is Abelian,ω is given byn linearly independent closed scalar 1-formsω1, . . . ,ωn.

In particular, ifn= 1, an important topological property of compact manifolds supporting
such foliation is given by the following theorem due to Tischler [350].

THEOREM 4. If a compact manifold admits a closed nonsingular1-form, then it is a lo-
cally trivial fibration over the circleS1.

The hypothesisG is Abelian is important: D. Lehmann [211] proved that, in general, the
result is false even ifG is nilpotent.

Foliations defined by nonsingular closed 1-forms can be considered as topological pro-
totype of codimension one foliations without holonomy as it is illustrated by Sacksteder’s
theorem [311]:

THEOREM 5. LetF be aCr (r � 2) codimension one foliation on a connected compact
manifold. If F has no holonomy, then it is topologically conjugated to a foliation defined
by a nonsingular closed1-form.

In the general case, the structure of a Lie foliation on a compact manifold, is given by
the following theorem due to E. Fédida [101]:

THEOREM6. LetF be a LieG-foliation on a compact manifoldM . LetM̃ be the universal
covering ofM andF̃ the lift ofF to M̃ . Then there exist a homomorphismh :π1(M)−→G

and a locally trivial fibrationD : M̃ −→G whose fibres are the leaves ofF̃ and such that,
for everyγ ∈ π1(M), the following diagram is commutative:

M̃
γ−→ M̃

D ↓ ↓D
G

h(γ )−→ G

where the first line denotes the deck transformation ofγ ∈ π1(M) on M̃ .

The subgroupΓ = h(π1(M)) ⊂ G is called theholonomy groupof F although the
holonomy of each leaf is trivial. The fibrationD : M̃ −→G is called thedeveloping map
of F .
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2.3. Transversely parallelizable foliations

We say thatF is transversely parallelizableif there exist onM , foliated vector fields
Y1, . . . , Yn, transverse toF and everywhere linearly independent. This means that the man-
ifold T admits a parallelism(Y1, . . . , Yn) invariant by all the local diffeomorphismsγij or,
equivalently, that theAb-moduleχ(M/F) is free of rankn. The structure of a transversely
parallelizable foliation on a compact manifold is given by the following theorem due to
L. Conlon [60] forn= 2 and in general to P. Molino [243].

THEOREM 7. LetF be a transversely parallelizable foliation of codimensionn on a com-
pact manifoldM . Then:

(1) the closures of the leaves are submanifolds which are fibres of a locally trivial fibra-
tion π :M −→W whereW is a compact manifold,

(2) there exists a simply connected Lie groupG0 such that the restrictionF0 of F to
any leaf closureF is aG0-Lie foliation,

(3) the cocycle of the fibrationπ :M −→W has values in the group of diffeomorphisms
of F preservingF0.

The fibrationπ :M −→W and the manifoldW are called respectively thebasic fibra-
tion and thebasic manifoldassociated toF . Theorem 7 says that if, in particular, the leaves
of F are closed, then the foliation is just a fibration overW . This is still true even if the
leaves are not closed: the manifoldM is a fibration over the leaf spaceM/F which is,
in this case, aQ-manifold in the sense of [13]. Theorem 7 is still valid fortransversely
complete foliationson noncompact manifolds (cf. [242]).

It is not difficult to see that any Lie foliation is transversely parallelizable. This is a
consequence of the fact that a Lie group is parallelizable and that the parallelism can be
chosen invariant by left translations.

2.4. Riemannian foliations

The foliationF is said to beRiemannianif there exists onT a Riemannian metric such
that the local diffeomorphismsγij are isometries. Using the submersionsfi :Ui −→ T one
can construct onM a Riemannian metric which can be written in local coordinates:

ds2 =
m∑

i,j=1

θi ⊗ θj +
n∑

k,�=1

gk�(y) dyk ⊗ dy�.

Equivalently,F is Riemannian, if any geodesic orthogonal to the leaves at a point is
orthogonal to the leaves everywhere [289].

Let F be Riemannian. Then there exists a Levi-Civita connection, transverse to the
leaves which, by unicity argument, coincides on any distinguished open set, with the pull-
back of the Levi-Civita connection on the Riemannian manifoldT . This connection is said
to beprojectable. Let O(n)−→M# τ−→M be the principal bundle of orthonormal frames
transverse toF ; this is anF -bundle, in the sense of Section 7.1. The following theorem is
due to P. Molino [243].
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THEOREM 8. SupposeM is compact. Then, the foliationF can be lifted to a foliationF#

onM# of the same dimension and such that:
(1) F# is transversely parallelizable,
(2) F# is invariant under the action ofO(n) onM# and projects, by τ , onF .

The basic manifoldW# and the basic fibrationF # −→M# π#−→W# are called respec-
tively thebasic manifoldand thebasic fibrationof F .

We have the following properties:
– the restriction ofτ to a leaf ofF# is a covering over a leaf ofF . So all leaves ofF

have the same universal covering,
– the closure of any leaf ofF is a submanifold ofM and the leaf closures define asin-

gular foliation (the leaves have different dimensions) onM . (For more details about
this notion see [243].)

Another interesting result for Riemannian foliations is the Global Reeb Stability Theo-
rem which is valid even if the codimension is greater than 1.

THEOREM 9. Let F be a Riemannian foliation on a compact manifold M. If there ex-
ists a compact leaf with finite fundamental group, then all leaves are compact with finite
fundamental group.

The propertyF is Riemannian means that the leaf spaceQ =M/F is a Riemannian
manifold even ifQ does not support any differentiable structure!

2.5. Transversely holomorphic foliations

The foliationF is said to betransversely holomorphicif T is a complex manifold and the
γij are local biholomorphisms. Particular case is aholomorphic foliation: the manifoldsM
andT are complex, all thefi are holomorphic and allγij are local biholomorphisms.

If T is Kählerian andγij biholomorphisms which preserve the Kähler form onT we say
thatF is transversely Kählerian. For example, any codimension 2 Riemannian foliation
which is transversely orientable is transversely Kählerian.

Let us give concrete examples of such foliations. LetM be the unit sphere in the Her-
mitian spaceCn+1:

M = S2n+1 =
{
(z1, . . . , zn+1) ∈ Cn+1:

n+1∑
k=1

|zk|2 = 1

}
.

LetZ be the holomorphic vector field onCn+1 given by the formula:

Z =
n+1∑
k=1

akzk
∂

∂zk
,
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whereak = αk + iβk ∈ C. There exists a good choice of the numbersak such that the
orbits ofZ intersect transversely the sphereM ; thenZ induces onM a real vector fieldX
which defines a foliationF . It is not difficult to see thatF is transversely holomorphic. It
is transversely Kählerian if we choose in additionαk = 0 for anyk = 1, . . . , n+ 1.

3. Codimension one foliations

Codimension one foliations constitute a rich theme which was studied extensively by many
people. The richness comes from the existence, for such foliations, of nonsingular trans-
verse vector fields which give a way to go from a leaf to an other. Most of the results in
Foliation Theory were first obtained in the codimension one case; this section is devoted
to summarize some of them.

LetF be a codimension one foliation on a manifoldM andν a transverse vector bundle
toF . Becauseν is of rank one, it is integrable and defines a foliationV transverse toF . So
we have clearlyχ(M)= 0. It is natural to ask if this condition is sufficient for the existence
of a codimension one foliation onM ; this was conjectured by E. Thomas [342]. The reader
can see the paper [207] by B. Lawson about the history of the different steps for solving
this conjecture. The final solution was given by W. Thurston [348] who proved

THEOREM 10 (Thurston).LetM be a compact manifold. ThenM admits a codimension
one foliation if, and only if, the Euler–Poincaré numberχ(M) ofM is zero.

Recall that two vector bundlesE −→M andE′ −→M are said to behomotopicif there
exists a continuous familyEt −→M , t ∈ [0,1], of vector bundles such thatE0 = E and
E1 = E′. So we can formulate the question of existence of codimension one foliations, in
general, in the following:

LetM be a compact manifold. Then any codimension one plane field onM is homotopic
to an integrable one.

The first results solving (in some particular cases), this conjecture were obtained by
J. Wood (see [376]) and also by P. Schweitzer and W. Thurston in theC0-case. As far as
we know this conjecture is still open.

Notice that the compactness of the manifold is a big constraint. Indeed on open mani-
folds the answer to this conjecture is positive [266].

The regularity property seems to be very important in the existence of foliations on
compact manifolds. In particular, there is a big difference in the treatment between theC∞
case and the real analytic one. In this direction A. Haefliger proved in [143] the following
important theorem.

THEOREM 11 (Haefliger).LetM be a compact manifold with a finite fundamental group.
ThenM has no real analytic codimension one foliation.

Let us end this section with one of the most important results obtained in codimension
one foliation theory on 3-manifolds [261].
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THEOREM12 (Novikov). LetM be a compact3-manifold with a finite fundamental group.
Then any codimension one foliation onM has a compact leaf diffeomorphic to the torusT2.

4. Γ -structures

This notion was introduced by A. Haefliger and became a key ingredient in studying char-
acteristic classes of foliations.

DEFINITION 4. A groupoid is given by a setΓ , a subsetΓ (2) of Γ × Γ with a law

(γ, σ ) ∈ Γ (2) −→ γ σ ∈ Γ
and an inverse mapγ ∈ Γ −→ γ−1 ∈ Γ satisfying the following properties:

(i) (γ−1)−1 = γ ,
(ii) if (γ, σ ), (σ, τ ) ∈ Γ (2), then(γ σ, τ ), (γ, στ) ∈ Γ (2) and(γ σ )τ = γ (στ),

(iii) if (γ−1, γ ) ∈ Γ (2) and(γ, σ ) ∈ Γ (2), thenγ−1(γ σ )= σ ,
(iv) if (γ, γ−1) ∈ Γ (2) and(τ, γ ) ∈ Γ (2), then(τγ )γ−1 = τ .

Forγ ∈ Γ , s(γ )= γ−1γ is called thesourceof γ andr(γ )= γ γ−1 therangeof γ .
Then, there are two projectionss, r (or α,β) :Γ −→ Γ (0) = Im r . The subsetΓ (0) of Γ

is called theunit spaceof Γ .
A topological groupoidis a groupoid with a topology compatible with the composition

and inverse maps. As a consequence, the two projectionss, r on the unit space are also
continuous.

A differentiable structureonΓ is given by a manifold structure onΓ andΓ (0) compat-
ible with the composition and inverse maps and such that:

– s :Γ −→ Γ (0) is a submersion,
– the canonical injectionΓ (0) −→ Γ is an embedding.
The differentiable (or topological) groupoidΓ is étaleif s is étale.
LetM be a manifold,Γ a topological groupoid and{Ui} an open cover ofM ; a 1-cocycle

onM with values inΓ is given as follows: for each pair(i, j), let

γij :Ui ∩Uj −→ Γ

be a continuous map such that, ifx ∈Ui ∩Uj ∩Uk , then(γij (x), γjk(x)) ∈ Γ (2) and

γik(x)= γij (x)γjk(x).
Two 1-cocycles are said to becohomologousif they are restrictions of the same cocyle
on the union of their coverings. AΓ -structureon M, or an element ofH 1(M,Γ ), is an
equivalence class of 1-cocycles.

LetΓ be the groupoid of germs of local diffeomorphisms ofRn; then the unit spaceΓ (0)

may be identified toRn. A codimensionn foliationF onM may be viewed as a particular
Γ -structure for which a representative is a 1-cocycle on an open covering{Ui} such that
the following mapsfi = γii :Ui −→ Γ (0) =Rq are submersions.
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5. The leaf space

Let F be a codimensionn foliation onM . Let U be a subset ofM and denote byÛ the
union of the leaves intersectingU . Recall thatU is saturatedif U = Û . It is easy to see that
if U is open, so isÛ . Then, the equivalence relation onM , x ∼ y if, and only if,x andy are
in the same leaf, is open. The set of equivalence classesM/∼, endowed with the quotient
topology, is called theleaf spaceof F and usually denoted byM/F .

We can think ofM/F as follows. The foliationF is the geometric realization of a
completely integrable differential system (S) onM . Each integral submanifold is a leaf
of F and corresponds to an initial condition of (S). So we can considerQ as a parameter
space of the initial conditions of this differential system. In generalQ is not a manifold,
but we can define on this space many geometrical objects like functions, differential forms,
differential operators, etc. (cf., for instance, Section 7). They correspond to their analogues
onM invariant along the leaves (in a sense to be determined following the context).

There were many attempts to give the leaf space of a foliation a differentiable structure,
even if its topology is, generally poor.

A first one was from Satake, whose point of view was recovered by W. Thurston. In
other domains, let us cite G.W. Mackey [219] who introduced the virtual group notion in
Ergodic Theoryand M. Artin [12] the algebraic space notion. The former corresponds to
the measurable version of theS-atlas of W.T. Van Est, the latter suggested the definition of
aQ-manifold.

In fact, there is no uniform definition. Each corresponds to a given situation or a
particular problem. Nevertheless, the point of view ofNoncommutative Geometry, by
A. Connes, using theC∗-algebra of the groupoid of a foliation, or the crossed-product
of theC∗-algebra of a manifold by a group acting on it, is attractive and efficient too. For
example, there are Longitudinal and Transversal Index Theorems for foliations; one gets
also Godbillon–Vey classes, etc.

5.1. V -manifolds

LetΩ be an open set inRn and letΣ be a finite group of diffeomorphisms ofΩ . Denote by
Ω/Σ the orbit space with quotient topology andp the canonical projectionΩ −→Ω/Σ .
If Ω ′ is another open set ofRn, Σ ′ a finite group of diffeomorphisms ofΩ ′ andp′ the
canonical projectionΩ ′ −→Ω ′/Σ ′, then amorphismfromΩ/Σ toΩ ′/Σ ′ is a continuous
mapf fromΩ/Σ toΩ ′/Σ ′, which admits local coverings by smooth local maps fromΩ
toΩ ′. An isomorphismis a bijective morphism, the inverse of which is a morphism.

If V is a second countable Hausdorff space, aSatake atlasof dimensionn is a family
A = (Ui,Φi) where(Ui) is an open covering ofV andΦi :Ui −→ Ωi/Σi is a homeo-
morphism ofUi on the quotient of an open subsetΩi of Rn by a finite group of diffeo-
morphisms, with following coherence condition: for alli, j such thatUi ∩Uj �= ∅ the map
Φj ◦Φ−1

i :Φi(Ui ∩Uj )−→Φj(Ui ∩Uj) is a morphism as previously defined.
A V -manifold(or aSatake manifoldor anorbifold) of dimensionn is a spaceV with a

maximal Satake atlas of dimensionn. The following are simple examples illustrating the
notion of aV -manifold.
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(i) Let Γ be a finite group of isometries of a Riemannian manifoldM of dimensionn.
Then the quotient spaceM/Γ is aV -manifold of dimensionn.

(ii) A waterdrop obtained by gluing two open discs along their boundaries, one of them
being implemented with a rotation of2π

3 around its center.
It is proved in [243] thatevery leaf space of a Riemannian foliation with compact leaves

on a compact manifold is aV -manifold.
Conversely:every compactV -manifold is the leaf space of a Riemannian foliation with

compact leaves on a compact manifold(cf. [132]).

5.2. QF -manifolds

Let (X,p,S) be a triple whereX is a manifold,S a set andp a surjective map fromX
to S; this is anétaleQF -atlasof S if it satisfies the following conditions:

(H) for every pair(x, y) in X2 such thatp(x)= p(y), there are open neighborhoods
U andV respectively ofx andy and a diffeomorphismh from U to V such that
h(x)= y andp ◦ h(t)= p(t) for everyt ∈U ,

(QF) every morphism from a manifoldZ to X such thatp ◦ f is constant is locally
constant.

As usual two étaleQF -atlases(X1,p1, S) and(X2,p2, S) areequivalentif (X,p,S) is
an étaleQF -atlas whereX is the disjoint union ofX1 andX2 andp is p1 onX1 andp2
onX2. A QF -manifold structureon S is an equivalence class of étaleQF -atlases onS.
All the leaf spaces of foliated second countable manifolds are in this category.

5.3. Q-manifolds

Let (X,p,S) be a triple whereX is a manifold,S a set andp a surjective map fromX
to S; this is aQ-atlasof S if it satisfies the following conditions:

(H) is as in the definition of an étaleQF -atlas,
(Q) letf = (f1, f2) be a morphism from a manifoldZ toX2 such thatp ◦ f1 = p ◦ f2;

then the subsetT = {z ∈ Z: f1(z)= f2(z)} is open inZ.
A Q-manifold structureon S is an equivalence class ofQ-atlases ofS. The following

are examples ofQ-manifolds:
(i) the leaf space of foliated torus with geodesics having irrational slope,

(ii) more generally, the leaf space of a transversely parallelizable foliation on a compact
manifold.

It was first tried to generalize to leaf spaces the classical theorems and tools (Gauss–
Bonnet, de Rham cohomology, Poincaré duality, Leray–Serre spectral sequence, funda-
mental group, etc.) to get results on the transverse structure.

TheV -manifolds are met in natural way and there exist many examples of them. They
appear also with ramified coverings.

TheQ-manifolds permitted to restore the third Lie theorem for Banach Lie algebras
(cf. [268]); they appear also in the structure theorem of P. Molino. Recently, G. Meigniez
got a characterization of Godbillon Homotopy Extension Property for foliations, where
they play a role (cf. [231]).
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6. Characteristic classes

We follow here the lectures of R. Bott as written by L. Conlon in [23]. We will restrict our-
self to only one result: Bott vanishing theorem. The reader can find more material in [23]
or in [147].

6.1. The classifying space and the universal bundle

LetH be a separable real Hilbert space with norm‖ ‖. If u andv are nonzero vectors inH,
(u, v) will be the angle defined byu andv; it is immediate to see that for every positive
numberλ andµ we have(λu,µv) = (u, v). Denote by BGLn the set ofn-dimensional
subspaces ofH. Let τ, σ ∈ BGLn and setδ(τ, σ )= inf(u, v) where the infimum is taken
over all the vectoru ∈ τ andv ∈ σ with ‖u‖ = ‖v‖ = 1. It is not difficult to see thatδ
defines a distance on BGLn. The topological space BGLn is called theclassifying spaceof
the group GL(n,R) of linear transformations of the vector spaceRn.

The cohomologyH ∗(BGLn,R) of BGLn is a polynomial ringR[p1, . . . , p[n/2]] where
thepi ∈H 4i (BGLn,R) are the universal Pontryagin classes (cf. [21]).

On BGLn we have a canonical real vector bundleS −→ BGLn of rankn whose fibre at
eachτ is the spaceτ itself; it is called theuniversal bundleon BGLn.

6.2. Classification of real vector bundles

As M is paracompact, it admits a countable locally finite open coverU = {Ui} which,
in addition, can be chosen such that each finite intersectionUi1 ∩ · · · ∩Ui� is contractible.
Such an open cover is called agood cover; it always exists: take a Riemannian metric onM
and a countable family of geodesically convex open balls which coversM . If E

π−→M is
a real vector bundle of rankn, its restrictionE|Ui to anyUi is trivial, i.e. there exists a dif-
feomorphismϕi :E|Ui −→Ui ×Rn which sends the fibreEx isomorphically on{x} ×Rn.
Let (s1

i , . . . , s
n
i ) be a basis of the free moduleC∞(E|Ui ) over the algebraA(Ui) of real

valuedC∞-functions onUi . Let {ρi} be a partition of the unity subordinated to{Ui} and
let Vi be the real vector space spanned by(ρis

1
i , . . . , ρis

n
i ). For eachi we setψi = qi ◦ ϕi

whereqi :Ui × Rn −→ Rn is the second projection. Now expressH as orthogonal direct
sum of theVi � Rn and denote byζi :Vi −→H the inclusion of theith summand. Define
Φ :E −→H by

Φ(x, ξ)=
∞∑
i=1

ρi(x) · ζi
(
ψi(x, ξ)

)
.

ThenΦ is continuous and sends each fibreπ−1(x) of E isomorphically on ann-dimen-
sional subspace ofH. Thusf (x)=Φ(π−1(x)) defines a continuous mapf :M −→ BGLn
called theclassifying mapfor the vector bundleE namelyE is the pullback byf of the
universal bundleS −→ BGLn. In fact there is a natural one–one correspondence between
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the set Vectn(M) of isomorphism classes of real vector bundles of rankn onM and the set
[M,BGLn] of homotopy classes of mapsM −→ BGLn. The ith-Pontryagin class of the
real vector bundleE −→M is by definitionpi(E)= f ∗(pi). The graded subring

Pont∗(E)= f ∗(H ∗(BGLn,R)
)⊂H ∗(M,R)

is called the Pontryagin ring ofE. The first important result obtained in the theory of
characteristic classes of foliations is the following

THEOREM 13 (Bott vanishing theorem).LetF be a foliation of codimensionn with nor-
mal bundleνF . ThenPonti (νF)= 0 for i > 2n.

As a nontrivial example of characteristic class of a foliationF , we have theGodbillon–
Vey invariant GV(F) (discovered by C. Godbillon and J. Vey [136]) which is, in general,
nonzero as shown by R. Roussarie. An elementary construction of this invariant in the
codimension one case is as follows.

Let M be a compact manifold endowed with a codimension one foliation defined by a
differential 1-formω. Then the integrability condition implies the equalityω ∧ dω = 0,
i.e. dω = α ∧ ω. It is easy to see thatα ∧ dα is closed and that its cohomology class in
H 3(M,R), which is by definitionGV(F), is independent of the choice ofα.

One of the most important results in the study of the Godbillon–Vey invariant for codi-
mension one foliations was obtained by G. Duminy in [73]. Let us describe it briefly;
a complete account is given in [119]. LetF be a codimension one foliation on a compact
manifoldM . A leaf L of F is calledresilient if there exist a loopσ : [0,1] −→ L and a
transversalT to F passing throughσ(0) such that the following conditions are satisfied:

(i) there exists a pointx ∈ L∩T in the domain of holonomyhσ of σ and different from
σ(0);

(ii) the sequencehnσ (x) converges toσ(0) asn→+∞.
G. Duminy proved thatif F has no resilient leaf then the Godbillon–Vey invariant ofF is
zero.

Recently, A. Connes and H. Moscovici have discovered a universal Hopf algebra with
cohomology from which one is able to recover the characteristic classes of a foliation
without use of Chern–Weil homomorphism or connections (cf. [63]).

7. Basic global analysis

LetM be a manifold endowed with a foliationF of codimensionn. We suppose for sim-
plicity thatF is transversely orientable.

7.1. Foliated vector bundles and basic sections

Let P :G ↪→ P
ι−→M be a principal bundle with structural groupG ⊂ GL(N,C). The

groupG acts onP on the right and on its Lie algebraG by the adjoint representation.
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Denote byV the vector bundle whose fibreVz at a pointz ∈ P is the tangent space atz of
the fibre ofP . A connectiononP is a subbundleH of T P such that:

– for everyz ∈ P , TzP = Vz ⊕Hz,
– for everyg ∈G and everyz ∈ P , Hzg = (Rg)∗(Hz) whereRg is the right action ofg

onP .
As is well known the subbundleH is also the kernel of an invariant (under the action

of G) 1-formω onP (called theconnection form) with values inG.
It is easy to see that the restriction ofι∗ (the derivative ofι) to Hz is an isomorphism

onto Tι(z)M . Let τ = ι−1∗ (TF). We say thatP is foliated if τ is integrable. In this case,
τ defines a foliationF̃ onP such that

– dim(F̃)= dim(F),
– F̃ is invariant under the action ofG.
We say that the connectionH is basic, if the ω is basic (cf. Section 1.5). A foliated

bundleE is said to be anF -bundle, if it admits a basic connection.
Let E −→M be a complex vector bundle defined by a cocycle{Ui, γij ,G} whereUi

is an open cover ofM andγij :Ui ∩ Uj −→G ⊂ GL(N,C) are the transition functions.
We say thatE is anF -bundle, if the associated principal bundleG −→ P −→M is an
F -bundle. BecauseE = P ×G CN , F̃ induces a foliationFE on E. An F -morphism
ϕ : (E,ω) −→ (E′,ω′) between twoF -bundles is a morphism of vector bundles which
sends leaves ofFE into leaves ofFE′ .

(Notice that the collection ofF -bundles andF -morphisms is a category. So we can
define the groupK(M,F) of foliatedK-theoryas in the classical case.)

LetE −→M be anF -bundle. Then the dual bundleE∗ and all its exterior powersΛ∗E∗
areF -bundles; alsoH2E = {Hermitian forms onE} is anF -bundle.

7.2. Transversely elliptic operators

Let E −→ M be a F -foliated vector bundle. Denote by∇ the covariant derivative

χ(M) × C∞(E) ∇−→ C∞(E) associated to the connectionH. We say that a section
α ∈ C∞(E) is basic, if it satisfies the condition∇Xα = 0 for everyX ∈ χ(F). The space
C∞(E/F) of basic sections ofE is anAb-module.

LetE andE′ two F -bundles (with the same rankN for simplicity). A basic differential

operator of order� from E to E′ is a linear mapC∞(E/F) D−→ C∞(E′/F) such that
on local coordinates(x1, . . . , xm, y1, . . . , yn) for which F is defined by the differential
equationsdy1 = · · · = dyn = 0,D has the expression:

D =
∑
|s|��

as(y)
∂ |s|

∂y
s1
1 . . . ∂y

sn
n

,

wheres = (s1, . . . , sn) ∈Nn, |s| = s1 + · · · + sn andas are (N ×N )-matrices whose coef-
ficients are basic functions. Theprincipal symbolofD at the pointz= (x, y) and the basic
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covectorξ ∈ ν∗zF is the linear mapσ(D)(z, ξ) :Ez −→E′
z defined by

σ(D)(z, ξ)(η)=
∑
|s|=�

ξ
s1
1 · · · · · ξ snn as(y)(η).

We say thatD is transversely ellipticif σ(D)(z, ξ) is an isomorphism for everyz ∈M and
every basic covectorξ different from 0. IfF is Riemannian, its conormal bundleν∗F is
anF -bundle and is equipped with a foliationF∗. Then the principal symbolσ(D)(z, ξ) of
a transversely elliptic operatorD defines an element[D] in the groupK(ν∗F ,F∗).

A Hermitian metriconE is a positive definite sectionh of H2E. If h is basic we say
thatE is aHermitianF -bundle.

LetE −→M be a HermitianF -foliated bundle with Hermitian metrich and letD be a
basic differential operator of order�= 2�′ onC∞(E/F). For everyz ∈M and every basic
covectorξ ∈ ν∗zF we define a quadratic formA(D)(z, ξ) :Ez −→C by

A(D)(z, ξ)(η)= (−1)�
′ 〈
σ(D)(z, ξ)(η), η

〉
.

We say thatD is strongly transversely elliptic, if A(D)(z, ξ) is positive definite for every
z ∈M and every nonzeroξ . Obviously every strongly transversely elliptic operator is trans-
versely elliptic.

From now on we suppose thatM is compact and connected. Assume that the foliation
F is Riemannian transversely oriented. LetE# be the pullback ofE to the principal bundle

SO(n)−→M# p−→M of the orthonormal direct frames transverse toF (cf. Theorem 8).
ThenE# is a SO(n)-bundle and a HermitianF#-bundle equipped with a Hermitian met-
ric h#. LetW# be the basic manifold associated to the transversely parallelizable foliation
F# onM#. The basic sections ofE are canonically identified to basic sections ofE# which
are invariant under the action of SO(n). In particular, iff :M −→ C is a basic function,
f ◦ p is a basic function onM# (with respect toF#); moreoverf ◦ p is invariant by the
action of SO(n). Becausef ◦p is continuous, it is constant on the leaf closures ofF# so it
induces an SO(n)-invariantC∞ function on the basic manifoldW#. We can prove, by the
converse process, that any SO(n)-invariantC∞ function on the basic manifoldW# defines
a C∞ basic function onM ; in other words, the algebraAb of basic functions onM is
canonically isomorphic to the algebraASO(n)(W

#) of functions onW# invariant by SO(n).
The bundle like metric onM# induces a Riemannian metric onW# for which SO(n) acts
by isometries. Letµ be the measure onW# associated to this metric.

OnC∞(E/F) we define an inner product as follows. Letα andβ be two elements of
C∞(E/F). The functionΘ(α,β) : z ∈M −→ hz(α(z),β(z)) ∈C is basic; so it defines an
SO(n)-invariant functionΘ#(α,β) onW#. We set

〈α,β〉 =
∫
W

Θ#(α,β)(w)dµ(w).

For any basic differential operatorD from a HermitianF -bundleE to a Hermitian
F -bundleE′, denote byN(D) the kernel ofD andR(D) its range.
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THEOREM 14. Let E andE′ be two HermitianF -bundles onM and letD be a trans-
versely elliptic operator fromC∞(E/F) to C∞(E′/F). Denote byD∗ the formal adjoint
of D which is also a basic transversely elliptic operator fromC∞(E′/F) to C∞(E/F).
ThenN(D) andN(D∗) are finite dimensional and we have an orthogonal decomposition:

C∞(E/F)=N(D)⊕R(D∗).

In particular,D has an index: ind(D/F)= dimN(D)− dimN(D∗).

All the details of the proof of this theorem can be found in [85].

7.3. Transversely elliptic complexes

Let (Er,Dr)r=0,1,...,n be a family of HermitianF -bundles and basic differential operators
of order oneDr :C∞(Er/F) −→ C∞(Er+1/F) (by conventionDn = 0) such that the
sequence

· · · Dr−1−→ C∞(Er/F) Dr−→ C∞(Er+1/F
) Dr+1−→ · · · (∗)

is a differential complex, that is,Dr+1 ◦ Dr = 0 for r = 0,1, . . . , n − 1. Let z ∈M and
ξ ∈ ν∗zF ; denote byσ(Dr)(z, ξ) the principal symbol ofDr at (z, ξ) which is a linear
map σ(Dr)(z, ξ) :Erz −→ Er+1

z . Setσr = σ(Dr)(z, ξ); we say that the complex (∗) is
transversely ellipticif its symbol sequence

· · · σr−1−→Erz
σr−→Er+1

z

σr+1−→ · · · (∗′)

is exact for everyz and every nonzeroξ . LetD∗
r :C∞(Er+1/F) −→ C∞(Er/F) be the

formal adjoint ofDr (with respect to the inner product defined in Section 7.2). Then it is
easy to see that the complex (∗) is transversely elliptic if and only if the basic operator of
order 2:Lr :C∞(Er/F)−→ C∞(Er/F) defined byLr =D∗

r Dr +Dr−1D
∗
r−1 is strongly

transversely elliptic.
Let (Er,Dr), r = 0,1, . . . , n, be a transversely elliptic complex with cohomology

Hr
b (E

∗). Then applying Theorem 14, we have

THEOREM 15.
(i) For each r = 0,1, . . . , n, the kernel Hr

b(E
∗) of Lr is equal to the space

N(Dr)∩N(D∗
r−1).

(ii) The spaceHr
b(E

∗) is finite dimensional and we have an orthogonal decomposition

C∞(Er/F)=Hr
b(E

∗)⊕R(Dr−1)⊕R(D∗
r ).

(iii) The orthogonal projectionC∞(Er/F)−→Hr
b(E

∗) induces an isomorphism from
Hr
b (E

∗) to Hr
b(E

∗).
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We will give two concrete examples to illustrate this result: the basic de Rham complex
and the basic Dolbeault complex.

Let r ∈ {0, . . . , n} and denote byEr the vector bundle of exteriorr-forms on the normal
bundleνF . As it was pointed out,Er is a HermitianF -bundle; its basic sections are exactly
basic differential formsΩr(M/F) of degreer onM . The de Rham exterior differentiald
restricted toΩr(M/F) = C∞(Er/F) is a basic differential operatord :Ωr(M/F) −→
Ωr+1(M/F). Thus we obtain a differential complex

· · · d−→Ωr(M/F) d−→Ωr+1(M/F) d−→ · · · (∗∗)

called thebasic de Rham complexof F ; its homologyHr(M/F) is called thebasic coho-
mologyof F and depends only on the transverse structure ofF .

Let δb :Ωr+1(M/F) −→ Ωr(M/F) be the formal adjoint ofd ; this operator can be
described explicitly in terms of coefficients of the transverse metric onνF and the Her-
mitian metrics on the bundlesEr (cf., for instance, [5,352,351,265,289,288,290,291,89,
195–197,85]). Let�b = dδb + δbd ; this is a basic differential operator of order 2 on
Ωr(M/F) called thebasic Laplacian. A basic formα ∈ Ωr(M/F) which satisfies the
equation�bα = 0, or equivalentlydα = 0 andδbα = 0, is called abasic harmonicform;
denote byHr (M/F) the space of such forms. Applying Theorem 14 we obtain the follow-
ing

THEOREM 16.
(i) The spaceHr (M/F) is finite dimensional and we have an orthogonal decomposi-

tion

Ωr(M/F)=Hr (M/F)⊕R(d)⊕R(δb).

(ii) The orthogonal projectionΩr(M/F) −→ Hr (M/F) induces an isomorphism
fromHr(M/F) to Hr (M/F).

(iii) Suppose that the vector spaceHn(M/F) is nonzero; then there exists a natural
nondegenerate pairingΦ : ([α], [β]) ∈Hr(M/F)×Hn−r (M/F)−→Φ([α], [β])
∈ C. So the basic cohomology satisfies Poincaré duality.

During the last decades, many people contributed to the proof of this theorem. It was
first proved by B.L. Reinhart in [290]. But Y. Carrière [51] discovered a mistake which
makes assertion (iii) false: B.L. Reinhart does not supposeHn(M/F) different from{0}
to obtain Poincaré duality; he was probably thinking that this hypothesis is automatically
satisfied. Later on F.W. Kamber and P. Tondeur [196] have shown that the Reinhart’s proof
is still valid if we suppose the leaves minimal (cf. Section 9.3). Finally the theorem was
proved in full generality (without any assumption on the minimality of the leaves) in [89].

Now suppose thatF is Hermitian. Letν be the complexified normal bundleνF ⊗R C
of νF . Let J be the automorphism ofν associated to the complex structure;J satisfies the
relationJ 2 =−id and then has two eigenvaluesi and−i with associated eigensubbundles
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respectively denotedν10 andν01. We have a splittingν = ν10⊕ ν01 which gives rise to a
decomposition

Λrν∗ =
⊕
p+q=r

Λp,q,

whereΛp,q = Λpν10∗ ⊗ Λqν01∗. Basic sections ofΛp,q are calledbasic forms of type
(p, q). They form a vector space denotedΩp,q(M/F). We have

Ωr(M/F)=
⊕
p+q=r

Ωp,q(M/F).

The exterior differential decomposes into a sum of two operators

∂ :Ωp,q(M/F)−→Ωp+1,q (M/F) and

∂̄ :Ωp,q(M/F)−→Ωp,q+1(M/F)

as in the classical case of a complex manifold. We have∂̄2 = 0; so we obtain, forp fixed,
a differential complex

· · · ∂̄−→Ωp,q(M/F) ∂̄−→Ωp,q+1(M/F) ∂̄−→ · · · (∗∗∗)

called thebasic Dolbeault complexof F ; its homologyHp,q(M/F) is thebasic Dolbeault
cohomologyof the foliationF : even though the leaf space is topologically bad, it can be
considered as a “complex manifold” whose Dolbeault cohomology isHp,∗(M/F)!

Let δ′′b denote the formal adjoint of̄∂ ; this is an operator of type(0,−1). The operator
�′′
b = δ′′b ∂̄+ ∂̄δ′′b is selfadjoint; a simple computation in local coordinates, like for the basic

Laplacian, shows that�′′
b is strongly transversely elliptic. Therefore the complex (∗∗∗) is

transversely elliptic. Let

Hp,q(M/F)= Ker�′′
b =

{
α ∈Ωp,q(M/F): ∂̄α = 0 andδ′′bα = 0

}
.

Applying Theorem 14, we obtain

THEOREM 17.
(i) The spaceHp,q(M/F) is finite dimensional and we have an orthogonal decompo-

sition

Ωp,q(M/F)=Hp,q(M/F)⊕R(�′′
b)=Hp,q(M/F)⊕R(∂̄)⊕R(δ′′b ).

(ii) The orthogonal projectionΩp,q(M/F)−→Hp,q(M/F) induces an isomorphism
fromHp,q(M/F) to Hp,q(M/F).

(iii) Suppose that the vector spaceHn(M/F) is nonzero; then there exists a nat-
ural nondegenerate pairingΨ : ([α], [β]) ∈Hp,q(M/F)×Hn−p,n−q(M/F)−→
Ψ ([α], [β]) ∈ C. So the basic Dolbeault cohomology satisfies Serre duality.
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Suppose now thatF is transversely Kählerian with Kähler formω (it is a basic differ-
ential form of degree 2; it is closed and nondegenerate). In this case, we can prove that
�b = 2�′′

b . Because of the decomposition

Ωr(M/F)=
⊕
p+q=r

Ωp,q(M/F),

every basic differentialr-form can be uniquely written as a sumα =∑p+q=r αpq where
αpq ∈Ωp,q(M/F). Then we have the following assertions.

(iv) α is�b-harmonic if, and only if, each componentαpq is�′′
b-harmonic. So we have

a direct decomposition

Hr(M/F)=
⊕
p+q=r

Hp,q(M/F).

(v) The complex conjugacy induces an isomorphism(of real vector spaces)

Hp,q(M/F)�Hq,p(M/F).

(vi) For every oddr ∈ {0, . . . ,2n}, the dimension of the spaceHr(M/F) is even. In
particular, if n= 1 we haveb1(M/F)= 2 dimH 01(M/F).

The integer dimH 01(M/F) will be denotedg(F) and called thegenusof the folia-
tion F . It is similar to the genus of a compact Riemann surface; it counts the number of
linearly independent basic holomorphic 1-forms.

(vii) For everyp ∈ {0, . . . , n} the differential formωp = ω ∧ · · · ∧ ω (wedge productp
times) is harmonic. So, the spaceHp,p(M/F) is nonzero.

Notice that this theorem is also a particular case of Theorem 15. It can be used to es-
tablish more properties: basic Hodge structures for transversely Kählerian foliations, basic
Calabi–Yau theorem [85] and deformation of transversely holomorphic foliations with a
fixed differentiable type [90].

8. Deformation theory of foliations

We will describe only the real case following Hamilton’s paper [159]. Deformation theory
of holomorphic or generally transversely holomorphic foliations is more rich. The reader
can find a good account of the subject in [132].

Let M be a manifold of dimensionm+ n. For eachx ∈M , letG(x,m) be the Grass-
manian manifold ofm-planes inTxM . Then:

G(m)=
⋃
x∈M

G(x,m)

can be given a structure of a differentiable manifold such that the canonical projection
(x, τ ) ∈ G(m) −→ x ∈ M is a locally trivial fibration, the fibre being the Grassmanian
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G(m) of m-planes in the spaceRm+n. Then a subbundle of rankm of TM is just a section
of the bundleG(m)−→M . Denote byC∞(G(m)) the space of sections of this bundle.

Let τ ∈ C∞(G(m)). By Frobenius theorem,τ is tangent to a foliation if, and only if, for
any pair(U,V ) of (global) sections ofτ , the Lie bracket[U,V ] is also a section ofτ . Let
(X1, . . . ,Xm) be a local basis ofτ . Then

U =
m∑
i=1

aiXi and V =
m∑
j=1

bjXj .

So the bracket[U,V ] can be expressed as

[U,V ] =
m∑

i,j=1

{
aibj [Xi,Xj ] +

(
aiXi

(
bj
)
Xj − bjXj

(
ai
)
Xi
)}
.

Therefore the value of[U,V ] in ντ = TM/τ at a pointx ∈ M depends only on the
value ofU andV at x. HenceQτ(U,V ) = π([U,V ]) is a skew-symmetric bilinear map
Qτ : τ × τ −→ ντ whereπ :TM −→ ντ is the canonical projection. In other words,Qτ

is a global section of the vector bundleΛ2(τ, ντ ) of skew-symmetric bilinear forms on
the bundleτ . The integrability condition ofτ is equivalent toQτ identically equal to 0.
So we get a mapQ :C∞(G(m))−→Σ whereΣ is a fibre bundle overG(m) whose fibre
over a pointσ ∈ G(m) is the infinite-dimensional spaceΩ2(σ, νσ ) of global sections of the
bundleΛ2(τ, ντ ). The spaceFol(M,m) of dimensionm foliations onM is exactly the set
{Q= 0}. It will be equipped with theC∞-topology induced by the topology of the Fréchet
manifoldC∞(G(m)) (cf. [160]). LetD be the diffeomorphism group ofM ; thenD acts
onC∞(G(m)) and the action preservesFol(M,m). Two foliationsF ,F ′ ∈Fol(M,m) are
conjugated, if they are in the same orbit of the action ofD, that is, there existsϕ ∈D such
thatF ′ = ϕ∗(F).

Now fix τ in C∞(G(m)) and suppose that it is tangent to a foliationF . Then the map
Pτ :ϕ ∈D −→ ϕ∗(F) ∈ C∞(G(m)) takes its values inFol(M,m). So we get a sequence
of Fréchet manifolds and differentiable maps

D Pτ−→ C∞(G(m)) Q−→Σ.

Following R. Hamilton, this sequence is called thenonlinear deformation complexof the
foliation F [159].

DEFINITION 5. We say thatF is C∞-stable if there exist an open neighborhoodO of
the identity inD and an open neighborhoodU of F in Fol(M,m) such that the sequence

O Pτ−→ U Q−→Σ is exact, that is, every dimensionm foliation F ′ onM , close enough to
F in theC∞-topology, is conjugated toF by an element ofO.

An important tool to prove theC∞-stability of a foliation is Hamilton’s criterion
(cf. [159, p. 47]) that we shall describe. This criterion is based on the implicit function
theorem of Nash–Moser which is nicely explained in Hamilton’s paper [160].
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Given a foliationF of dimensionm on a compact manifoldM , letAkF denote the space
of differentiable sections ofΛkTF∗ ⊗ νF . SinceνF is a foliated bundle there is a well
defined “exterior derivative along the leaves” dF :AkF −→Ak+1

F given by:

dFη(X1, . . . ,Xk+1)

=
∑
i

(−1)iXiη(X1, . . . , X̂i , . . . ,Xk+1)

+
∑
i<j

(−1)i+j η
([Xi,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xk+1

)
.

An easy computation shows thatd2
F = 0 and thus we obtain a differential complex

0−→A0
F

dF−→A1
F

dF−→A2
F

dF−→ · · · dF−→AmF −→ 0

which is only elliptic along the leaves. Let‖ ‖0 � ‖ ‖1 � · · · � ‖ ‖s � · · · be an in-
creasing collection of norms (of Sobolev or Hölder type) on the Fréchet space

A∗
F =

⊕
k�0

AkF .

With this notation one has

THEOREM18 (Hamilton). Assume that there exist continuous linear operatorsH :A1
F −→

A0
F andK :A2

F −→A1
F fulfilling the following conditions:

(i) dF ◦H +K ◦ dF = id,
(ii) there is a fixed numberr ∈N for which we have tame estimates for alls,∥∥H(β)∥∥

s
� Cs‖β‖s+r and

∥∥K(γ )∥∥
s
�Cs‖γ ‖s+r ,

whereCs are positive constants depending only ons.
Then the foliationF isC∞-stable.

Unfortunately Hamilton’s paper is still unpublished. In [93], the authors constructed a
class of foliations and, using Hamilton’s criterion, they proved that these foliations are
C∞-stable. Example 1.3(iv), with some assumptions on the matrixA, is in this class.

9. Some other themes

As we have pointed out in the foreword, Foliation Theory is a wide field in Mathematics
and so huge to discuss completely here. For this reason we have chosen only some of
the themes related to Differential Geometry which is the main topic to which this book is
devoted. The nonwarned reader may be inclined to believe that the theory is reduced to this
part. Fortunately this is not the case. We devote this section to other themes which are no
less important than the above ones.
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9.1. Compact leaves

LetM be a connected compact orientable manifold of dimensionm+ n andF a codimen-
sionn foliation onM . A compact leafof F is a leafL which is compact as a subset ofM .
If m = 1 such leaf is a periodic orbit and it describes a stationary state of the dynamical
system defined byF . The problem of the existence of compact leaves is highly nontrivial.
It was first introduced by H. Poincaré in his studies onlimit cyclesfor ordinary differen-
tial equations. One of the famous problems was the Seifert conjecture:Every continuous
vector field on the3-dimensional sphereS3 has a periodic orbit.

In 1974, using Denjoy’s example of a vector field with exceptional minimal set on the
2-torus, P. Schweitzer [324] constructed a counterexample in classC1. In 1988, J. Harri-
son [162] gave aC2 counterexample. Finally in 1993, K. Kuperberg [200] solved com-
pletely the problem by constructing in any compact 3-manifold a real analytic vector field
without periodic orbit. However, M. Brunella [31] proved that the conjecture is true if the
flow is transversely holomorphic; in fact, he established a complete classification of these
flows on compact 3-manifolds.

The most important result concerning the problem of existence of compact leaves was
Novikov’s theorem stated above (Theorem 12). Nothing is known in higher dimensions
and the following question is still open:is it true that every codimension one foliation on
the odd sphereS2p+1 (wherep � 2) admits a compact leaf?

We say thatF is acompact foliationif all leaves are compact. For example, every fo-
liation defined by a locally free action of a connected compact Lie group is a compact
foliation. Compact foliations was a theme which interested many people (R. Edwards,
K. Millet, D. Sullivan, D. Epstein, E. Vogt, H. Rummler, etc.).

9.2. When is a manifold a leaf?

Let L be a noncompact connected manifold.Does there exist a compact manifoldM en-
dowed with a foliationF with a leaf diffeomorphic toL? This question was asked by
J. Sondow in [335] where he gave some sufficient conditions onL to be a leaf. J. Cantwell
and L. Conlon proved in [46] that every surface is a leaf. Along the same lines, G. Hector
and W. Bouma proved in [170] that every noncompact surface can be a leaf of a simple
foliation of R3, i.e. a foliation defined by a submersionR3 −→ R.

In [114] E. Ghys observed that the topology of a leaf of a foliation on a compact mani-
fold has to be, in some sense, “recurrent”; then he constructed, for any positive integerd ,
a noncompact manifoldL of dimensiond which can not be homeomorphic to any leaf of
any foliation on a compact manifold. In [125] he also studies the topology of the generic
leaves of alaminationby surfaces on a compact metric space and proved that there exist
only six noncompact surfaces which can be realized as leaves:

(a) the planeR2,
(b) the cylinderS1 ×R,
(c) the “Loch-Ness monster”, i.e. the plane with infinitely many handles attached,
(d) the “Jacob ladder”,
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(e) the “Cantor tree”, i.e. the sphereS2 with a Cantor set removed,
(f) the “flowered Cantor tree”, i.e. the Cantor tree with infinitely many handles attached

in all directions.

9.3. Minimal leaves

LetM be a Riemannian manifold. Denote by∇ the covariant derivative associated to the
Levi-Civita connection. LetL be a submanifold ofM (not necessarily properly embedded).
Let x ∈ L andν a vector field defined on a neighborhood ofx and orthogonal toL. For
X ∈ TxL, we set:

Wν
x (X)=−px(∇Xν),

wherepx :TxM −→ TxL is the orthogonal projection. ThenWν
x is an endomorphism of

the vector spaceTxL, symmetric with respect to the induced metric onTxL; it is called
the Weingarten mapassociated toν. The trace ofWν

x describes the variation atx of the
volume element whenL moves in the direction ofν. We say thatL is minimal, if the trace
of Wν

x is zero for all vector fieldsν orthogonal toL. A foliation F onM is said to be with
minimal leaves, if all leaves ofF are minimal submanifolds.

Given anm-dimensional foliation on a compact manifoldM , does there exist a Rie-
mannian metric onM for which the leaves are minimal?

This question was discussed by H. Rummler [309] and D. Sullivan [339]. They proved
the following criterion:such a metric exists if, and only if, there exists anm-formχ positive
on the leaves and relatively closed, namelydχ(X1, . . . ,Xm,Y ) = 0 whenever the vector
fieldsX1, . . . ,Xm are tangent toF .

In [149] A. Haefliger proved that the property forF to be with minimal leaves depends
only on the transverse structure. He also gave a criterion in terms of transverse invariant
currents and used it to give many examples of minimal foliations and nonminimal ones.

Suppose now thatF is a Riemannian codimensionn foliation and denote byv the vol-
ume basic form associated to the metric. IfF is with minimal leaves thenv defines a
nonzero class in the basic cohomologyHn(M/F). Indeed, letχ be them-form given by
the Rummler–Sullivan criterion. Suppose thatv = dβ whereβ ∈Ωn−1(M/F). Then:

χ ∧ v = χ ∧ dβ = (−1)m
{
d(χ ∧ β)− dχ ∧ β}.

But dχ ∧ β = 0 becauseχ is relatively closed. Soχ ∧ v is an exact form. But this is im-
possible because it is a volume form on the compact orientable manifoldM . The converse
of this assertion was conjectured by Y. Carrière [51] and proved by X. Masa in [227].

In [112] E. Ghys proved that any Riemannian foliation on a simply connected compact
manifold admits a bundle-like metric for which the leaves are minimal.

Now letF be a foliation on a compact Riemannian manifoldM . We say thatF is totally
geodesicif every geodesic tangent to a leafL at a point is tangent toL everywhere. This
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is a special class of foliations with minimal leaves which was studied, for instance, by
Y. Carrière, G. Cairns, E. Ghys (see [35,36,33,37,54]). In particular, E. Ghys, in [111],
has completely classified all the totally geodesic foliations of codimension one on compact
manifolds.
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Introduction

This is an overview of symplectic geometry1—the geometry ofsymplectic manifolds. From
a language for classical mechanics in the XVIII century, symplectic geometry has matured
since the 1960’s to a rich and central branch of differential geometry and topology. A cur-
rent survey can thus only aspire to give a partial flavor on this exciting field. The following
six topics have been chosen for this handbook:

1. Symplectic manifoldsare manifolds equipped withsymplectic forms. A symplectic
form is a closed nondegenerate 2-form. The algebraic condition (nondegeneracy) says
that the top exterior power of a symplectic form is a volume form, therefore symplec-
tic manifolds are necessarily even-dimensional and orientable. The analytical condition
(closedness) is a natural differential equation that forces all symplectic manifolds to being
locally indistinguishable: they all locally look like an even-dimensional Euclidean space
equipped with the

∑
dxi ∧ dyi symplectic form. All cotangent bundles admit canonical

symplectic forms, a fact relevant for analysis of differential operators, dynamical systems,
classical mechanics, etc. Basic properties, major classical examples, equivalence notions,
local normal forms of symplectic manifolds and symplectic submanifolds are discussed in
Section 1.

2. Lagrangian submanifolds2 are submanifolds of symplectic manifolds of half dimen-
sion and where the restriction of the symplectic form vanishes identically. By theLagran-
gian creed[137], everything is a Lagrangian submanifold, starting with closed 1-forms,
real functions modulo constants and symplectomorphisms (diffeomorphisms that respect
the symplectic forms). Section 2 also describes normal neighborhoods of Lagrangian sub-
manifolds with applications.

3. Complex structuresor almost complex structures abound in symplectic geometry:
any symplectic manifold possesses almost complex structures, and even so in acompatible
sense. This is the point of departure for the modern technique of studying pseudoholomor-
phic curves, as first proposed by Gromov [64]. Kähler geometry lies at the intersection of
complex, Riemannian and symplectic geometries, and plays a central role in these three
fields. Section 3 includes the local normal form for Kähler manifolds and a summary of
Hodge theory for Kähler manifolds.

4. Symplectic geographyis concerned with existence and uniqueness of symplectic
forms on a given manifold. Important results from Kähler geometry remain true in the
more general symplectic category, as shown using pseudoholomorphic methods. This
viewpoint was more recently continued with work on the existence of certain symplectic

1The wordsymplecticin mathematics was coined in the late 1930’s by Weyl [142, p. 165] who substituted the
Latin root in complexby the corresponding Greek root in order to label the symplectic group (first studied by
Abel). An English dictionary is likely to listsymplecticas the name for a bone in a fish’s head.

2The nameLagrangian manifoldwas introduced by Maslov [93] in the 1960’s, followed byLagrangian plane,
etc., introduced by Arnold [2].
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submanifolds, in the context of Seiberg–Witten invariants, and with topological descrip-
tions in terms of Lefschetz pencils. Both of these directions are particularly relevant to
4-dimensional topology and to mathematical physics, where symplectic manifolds occur
as building blocks or as key examples. Section 4 treats constructions of symplectic mani-
folds and invariants to distinguish them.

5. Hamiltonian geometryis the geometry of symplectic manifolds equipped with amo-
ment map, that is, with a collection of quantities conserved by symmetries. With roots
in Hamiltonian mechanics, moment maps became a consequential tool in geometry and
topology. The notion of a moment map arises from the fact that, to any real function on a
symplectic manifold, is associated a vector field whose flow preserves the symplectic form
and the given function; this is called theHamiltonian vector fieldof that (Hamiltonian)
function. The Arnold conjecture in the 60’s regarding Hamiltonian dynamics was a major
driving force up to the establishment of Floer homology in the 80’s. Section 5 deals mostly
with the geometry of moment maps, including the classical Legendre transform, integrable
systems and convexity.

6. Symplectic reductionis at the heart of many symplectic arguments. There are infinite-
dimensional analogues with amazing consequences for differential geometry, as illustrated
in a symplectic approach to Yang–Mills theory. Symplectic toric manifolds provide exam-
ples of extremely symmetric symplectic manifolds that arise from symplectic reduction
using just the data of a polytope. All properties of a symplectic toric manifold may be read
from the corresponding polytope. There are interesting interactions with algebraic geome-
try, representation theory and geometric combinatorics. The variation of reduced spaces is
also addressed in Section 6.

1. Symplectic manifolds

1.1. Symplectic linear algebra

Let V be a vector space overR, and letΩ :V × V → R be a skew-symmetric bilin-
ear map. By a skew-symmetric version of the Gram–Schmidt process,3 there is a basis
u1, . . . , uk , e1, . . . , en, f1, . . . , fn of V for whichΩ(ui, v) = Ω(ei, ej ) = Ω(fi, fj ) = 0
andΩ(ei, fj ) = δij for all i, j and all v ∈ V . Although such a basis is not unique, it
is commonly referred to as acanonical basis. The dimensionk of the subspaceU =
{u ∈ V | Ω(u,v) = 0 for all v ∈ V } is an invariant of the pair(V ,Ω). Sincek + 2n =
dimV , the even number 2n is also an invariant of(V ,Ω), called therankofΩ . We denote
by Ω̃ :V → V ∗ the linear map defined bỹΩ(v)(u) :=Ω(v,u). We say thatΩ is symplec-
tic (or nondegenerate) if the associated̃Ω is bijective (i.e., the kernelU of Ω̃ is the trivial
space{0}). In that case, the mapΩ is called alinear symplectic structureon V , and the

3Let u1, . . . , uk be a basis ofU := {u ∈ V | Ω(u,v) = 0 for all v ∈ V }, andW a complementary subspace
such thatV = U ⊕W . Take any nonzeroe1 ∈W . There isf1 ∈W with Ω(e1, f1)= 1. LetW1 be the span of
e1, f1 andWΩ

1 := {v ∈ V |Ω(v,u)= 0 ∀u ∈W1}. ThenW =W1 ⊕WΩ
1 . Take any nonzeroe2 ∈WΩ

1 . There is

f2 ∈WΩ
1 for whichΩ(e2, f2)= 1. LetW2 be the span ofe2, f2, and so on.
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pair (V ,Ω) is called asymplectic vector space. A linear symplectic structureΩ expresses

a duality by the bijectionΩ̃ :V
�−→ V ∗, similar to the (symmetric) case of an inner prod-

uct. By considering a canonical basis, we see that the dimension of a symplectic vector
space(V ,Ω) must be even, dimV = 2n, and thatV admits a basise1, . . . , en, f1, . . . , fn
satisfyingΩ(ei, fj ) = δij andΩ(ei, ej ) = 0= Ω(fi, fj ). Such a basis is then called a
symplectic basisof (V ,Ω), and, in terms of exterior algebra,Ω = e∗1∧f ∗

1 +· · ·+ e∗n∧f ∗
n ,

wheree∗1, . . . , e∗n, f ∗
1 , . . . , f

∗
n is the dual basis. With respect to a symplectic basis, the map

Ω is represented by the matrix[
0 Id

−Id 0

]
.

EXAMPLES.
1. Theprototype of a symplectic vector spaceis (R2n,Ω0) withΩ0 such that the canon-

ical basise1 = (1,0, . . . ,0), . . . , en, f1, . . . , fn = (0, . . . ,0,1) is a symplectic basis.
Bilinearity then determinesΩ0 on other vectors.

2. For any real vector spaceE, the direct sumV =E ⊕E∗ has acanonical symplectic
structuredetermined by the formulaΩ0(u⊕ α,v ⊕ β)= β(u)− α(v). If e1, . . . , en
is a basis ofE, andf1, . . . , fn is the dual basis, thene1 ⊕ 0, . . . , en ⊕ 0, 0⊕ f1, . . . ,

0⊕ fn is a symplectic basis forV .

Given a linear subspaceW of a symplectic vector space(V ,Ω), its symplectic orthog-
onal is the subspaceWΩ := {v ∈ V |Ω(v,u) = 0 for all u ∈W }. By nondegeneracy, we
have dimW + dimWΩ = dimV and (WΩ)Ω = W . For subspacesW and Y , we have
(W ∩ Y)Ω =WΩ + YΩ , and ifW ⊆ Y thenYΩ ⊆WΩ .

There are special types of linear subspaces of a symplectic vector space(V ,Ω).
A subspaceW is a symplectic subspaceif the restrictionΩ|W is nondegenerate, that is,
W ∩WΩ = {0}, or equivalentlyV =W ⊕WΩ . A subspaceW is anisotropic subspaceif
Ω|W ≡ 0, that is,W ⊆WΩ . A subspaceW is acoisotropic subspaceif WΩ ⊆W . A sub-
spaceW is aLagrangian subspaceif it is both isotropic and coisotropic, or equivalently,
if it is an isotropic subspace with dimW = 1

2 dimV . A basise1, . . . , en of a Lagrangian
subspace can be extended to a symplectic basis: choosef1 in the symplectic orthogonal to
the linear span of{e2, . . . , en}, etc.

EXAMPLES.
1. For a symplectic basis as above, the span ofe1, f1 is symplectic, that ofe1, e2

isotropic, that ofe1, . . . , en, f1 coisotropic, and that ofe1, . . . , en Lagrangian.
2. The graph of a linear mapA :E→E∗ is a Lagrangian subspace ofE ⊕E∗ with the

canonical symplectic structure if and only ifA is symmetric (i.e.,(Au)v = (Av)u).
Therefore, the Grassmannian of all Lagrangian subspaces in a 2n-dimensional sym-
plectic vector space has dimensionn(n+1)

2 .

A symplectomorphismϕ between symplectic vector spaces(V ,Ω) and (V ′,Ω ′) is a

linear isomorphismϕ :V
�−→ V ′ such thatϕ∗Ω ′ = Ω .4 If a symplectomorphism exists,

4By definition,(ϕ∗Ω ′)(u, v)=Ω ′(ϕ(u),ϕ(v)).
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(V ,Ω) and(V ′,Ω ′) are said to besymplectomorphic. Being symplectomorphic is clearly
an equivalence relation in the set of all even-dimensional vector spaces. The existence of
canonical bases shows that every 2n-dimensional symplectic vector space(V ,Ω) is sym-
plectomorphic to the prototype(R2n,Ω0); a choice of a symplectic basis for(V ,Ω) yields
a symplectomorphism to(R2n,Ω0). Hence, nonnegative even integers classify equivalence
classes for the relation of being symplectomorphic.

Let Ω(V ) be the space of all linear symplectic structures on the vector spaceV . Take
a Ω ∈ Ω(V ), and let Sp(V ,Ω) be thegroup of symplectomorphismsof (V ,Ω). The
group GL(V ) of all isomorphisms ofV actstransitivelyon Ω(V ) by pullback (i.e., all
symplectic structures are related by a linear isomorphism), and Sp(V ,Ω) is the stabilizer
of the givenΩ . Hence,Ω(V )�GL(V )/Sp(V ,Ω).

1.2. Symplectic forms

Letω be a de Rham 2-form on a manifold5 M . For each pointp ∈M , the mapωp :TpM×
TpM→ R is skew-symmetric and bilinear on the tangent space toM atp, andωp varies
smoothly inp.

DEFINITION 1.1. The 2-formω is symplecticif ω is closed (i.e., its exterior derivative
dω is zero) andωp is symplectic for allp ∈M . A symplectic manifoldis a pair(M,ω)
whereM is a manifold andω is a symplectic form.

Symplectic manifolds must beeven-dimensional. Moreover, thenth exterior powerωn

of a symplectic formω on a 2n-dimensional manifold is avolume form.6 Hence, any sym-
plectic manifold(M,ω) is canonically oriented. The formωn

n! is called thesymplectic vol-
umeor Liouville volumeof (M,ω). When(M,ω) is acompact2n-dimensional symplectic
manifold, the de Rham cohomology class[ωn] ∈ H 2n(M;R) must be nonzero by Stokes
theorem. Therefore, the class[ω] must be nonzero, as well as its powers[ω]k = [ωk] �= 0.
Exact symplectic formscan only exist on noncompact manifolds. Compact manifolds with
a trivial even cohomology groupH 2k(M;R), k = 0,1, . . . , n, such as spheresS2n with
n > 1, can thus never be symplectic. On a manifold of dimension greater than 2, a function
multiple fω of a symplectic formω is symplectic if and only iff is a nonzero locally
constant function (this follows from the existence of a symplectic basis).

EXAMPLES.
1. LetM =R2n with linear coordinatesx1, . . . , xn, y1, . . . , yn. The form

ω0 =
n∑
i=1

dxi ∧ dyi

5Unless otherwise indicated, all vector spaces are real and finite-dimensional, all maps are smooth (i.e.,C∞)
and all manifolds are smooth, Hausdorff and second countable.

6A volume formis a nonvanishing form of top degree. IfΩ is a symplectic structure on a vector spaceV of
dimension 2n, its nth exterior powerΩn =Ω ∧ · · · ∧Ω does not vanish. Actually, a skew-symmetric bilinear
mapΩ is symplectic if and only ifΩn �= 0.



Symplectic geometry 85

is symplectic, and the vectors( ∂
∂x1
)p, . . . , (

∂
∂xn
t)p, ( ∂

∂y1
)p, . . . , (

∂
∂yn
)p constitute a

symplectic basis ofTpM .
2. LetM =Cn with coordinatesz1, . . . , zn. The formω0 = i

2

∑
dzk ∧ dz̄k is symplec-

tic. In fact, this form coincides with that of the previous example under the identifi-
cationCn �R2n, zk = xk + iyk .

3. The 2-sphereS2, regarded as the set of unit vectors inR3, has tangent vectors
at p identified with vectors orthogonal top. The standard symplectic form onS2

is induced by the standard inner (dot) and exterior (vector) products:ωp(u, v) :=
〈p,u× v〉, for u,v ∈ TpS2 = {p}⊥. This is the standard area form onS2 with total
area 4π . In terms of cylindrical polar coordinates 0� θ < 2π and−1 � z� 1 away
from the poles, it is writtenω= dθ ∧ dz.

4. On any Riemann surface, regarded as a 2-dimensional oriented manifold, any area
form, that is, any never vanishing 2-form, is a symplectic form.

5. Products of symplectic manifolds are naturally symplectic by taking the sum of the
pullbacks of the symplectic forms from the factors.

6. If a (2n+1)-dimensional manifoldX admits acontact form, that is, a 1-formα such
thatα∧(dα)n is never vanishing, then the 2-formd(etα) is symplectic onX×R, and
the symplectic manifold(X×R, d(etα)) is called thesymplectizationof thecontact
manifold (X,α). For more oncontact geometry, see for instance the corresponding
contribution in this volume.

DEFINITION 1.2. Let(M1,ω1) and(M2,ω2) be symplectic manifolds. A (smooth) map
ψ :M1 →M2 is symplecticif ψ∗ω2 = ω1.7 A symplectic diffeomorphismϕ :M1 →M2 is
asymplectomorphism. (M1,ω1) and(M2,ω2) are said to besymplectomorphicwhen there
exists a symplectomorphism between them.

The classification of symplectic manifolds up to symplectomorphism is an open prob-
lem in symplectic geometry. However, the local classification is taken care of by theDar-
boux theorem(Theorem 1.9): the dimension is the only local invariant of symplectic man-
ifolds up to symplectomorphisms. That is, just as anyn-dimensional manifold is locally
diffeomorphic toRn, any symplectic manifold(M2n,ω) is locally symplectomorphic to
(R2n,ω0). As a consequence, if we prove for(R2n,ω0) a local assertion that is invari-
ant under symplectomorphisms, then that assertion holds for any symplectic manifold. We
will hence refer toR2n, with linear coordinates(x1, . . . , xn, y1, . . . , yn), and with sym-
plectic formω0 =∑n

i=1dxi ∧ dyi , as theprototype of a local piece of a2n-dimensional
symplectic manifold.

1.3. Cotangent bundles

Cotangent bundles are major examples of symplectic manifolds. Let(U, x1, . . . , xn) be a
coordinate chart for a manifoldX, with associated cotangent coordinates(T ∗U, x1, . . . , xn,

7By definition of pullback, we have(ψ∗ω2)p(u, v) = (ω2)ψ(p)(dψp(u), dψp(v)), at tangent vectorsu,v ∈
TpM1.
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ξ1, . . . , ξn).8 Define a symplectic form onT ∗U by

ω=
n∑
i=1

dxi ∧ dξi .

One can check that thisω is intrinsically defined by considering the 1-form onT ∗U ,

α =
n∑
i=1

ξi dxi,

which satisfiesω=−dα and is coordinate-independent: in terms of the natural projection
π :M → X, p = (x, ξ) 	→ x, the formα may be equivalently defined pointwise without
coordinates by

αp = (dπp)∗ξ ∈ T ∗
pM,

where(dπp)∗ :T ∗
x X→ T ∗

pM is the transpose ofdπp, that is,αp(v)= ξ((dπp)v) for v ∈
TpM . Or yet, the formα is uniquely characterized by the property thatµ∗α = µ for every
1-form µ :X → T ∗X (see Proposition 2.2). The 1-formα is the tautological form(or
the Liouville 1-form) and the 2-formω is thecanonical symplectic formon T ∗X. When
referring to a cotangent bundle as a symplectic manifold, the symplectic structure is meant
to be given by this canonicalω.

Let X1 andX2 be n-dimensional manifolds with cotangent bundlesM1 = T ∗X1 and
M2 = T ∗X2, and tautological 1-formsα1 andα2. Suppose thatf :X1 → X2 is a diffeo-
morphism. Then there is a natural diffeomorphismf! :M1 →M2 which lifts f ; namely,
for p1 = (x1, ξ1) ∈M1 we define

f!(p1)= p2 = (x2, ξ2), with

{
x2 = f (x1) ∈X2 and
ξ1 = (dfx1)

∗ξ2 ∈ T ∗
x1
X1,

where(dfx1)
∗ :T ∗

x2
X2

�−→ T ∗
x1
X1, sof!|T ∗

x1
is the inverse map of(dfx1)

∗.

PROPOSITION 1.3. The lift f! of a diffeomorphismf :X1 → X2 pulls the tautological
form onT ∗X2 back to the tautological form onT ∗X1, i.e., (f!)∗α2 = α1.

8If an n-dimensional manifoldX is described by coordinate charts(U, x1, . . . , xn) with xi :U → R, then, at
anyx ∈ U , the differentials(dxi )x form a basis ofT ∗x X, inducing a map

T ∗U −→ R2n,

(x, ξ) 	−→ (x1, . . . , xn, ξ1, . . . , ξn),

whereξ1, . . . , ξn ∈R are the corresponding coordinates ofξ ∈T ∗x X: ξ =∑n
i=1 ξi (dxi )x . Then(T ∗U, x1, . . . ,

xn, ξ1, . . . , ξn) is a coordinate chart for the cotangent bundleT ∗X; the coordinatesx1, . . . , xn, ξ1, . . . , ξn are
called thecotangent coordinatesassociated to the coordinatesx1, . . . , xn on U . One verifies that the transition
functions on the overlaps are smooth, soT ∗X is a 2n-dimensional manifold.
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PROOF. At p1 = (x1, ξ1) ∈M1, the claimed identity says(df!)∗p1
(α2)p2 = (α1)p1, where

p2 = f!(p1), that is,p2 = (x2, ξ2) wherex2 = f (x1) and (dfx1)
∗ξ2 = ξ1. This can be

proved as follows:

(df!)
∗
p1
(α2)p2 = (df!)

∗
p1
(dπ2)

∗
p2
ξ2 by definition ofα2

= (d(π2 ◦ f!)
)∗
p1
ξ2 by the chain rule

= (d(f ◦ π1)
)∗
p1
ξ2 becauseπ2 ◦ f! = f ◦ π1

= (dπ1)
∗
p1
(df )∗x1

ξ2 by the chain rule

= (dπ1)
∗
p1
ξ1 by definition off!

= (α1)p1 by definition ofα1. �

As a consequence of this naturality for the tautological form, a diffeomorphism of man-
ifolds induces a canonical symplectomorphism of cotangent bundles:

COROLLARY 1.4. The liftf! :T ∗X1 → T ∗X2 of a diffeomorphismf :X1 →X2 is a sym-
plectomorphism for the canonical symplectic forms, i.e., (f!)∗ω2 = ω1.

In terms of the group (under composition) of diffeomorphisms Diff(X) of a manifoldX,
and thegroup of symplectomorphismsSympl(T ∗X,ω) of its cotangent bundle, we see that
the injection Diff(X)→ Sympl(T ∗X,ω), f 	→ f! is a group homomorphism. Clearly this
is not surjective: for instance, consider the symplectomorphismT ∗X→ T ∗X given by
translation along cotangent fibers.

EXAMPLE. Let X1 = X2 = S1. ThenT ∗S1 is a cylinderS1 × R. The canonical form is
the area formω = dθ ∧ dξ . If f :S1 → S1 is any diffeomorphism, thenf! :S1 × R →
S1×R is a symplectomorphism, i.e., is an area-preserving diffeomorphism of the cylinder.
Translation along theR direction is area-preserving but is not induced by a diffeomorphism
of the base manifoldS1.

There is a criterion for which cotangent symplectomorphisms arise as lifts of diffeomor-
phisms in terms of the tautological form. First note the following feature of symplectic
manifolds withexact symplectic forms. Let α be a 1-form on a manifoldM such that
ω = −dα is symplectic. There exists a unique vector fieldv whose interior product with
ω is α, i.e., ıvω = −α. If g :M →M is a symplectomorphism that preservesα (that is,
g∗α = α), theng commutes with the flow9 of v, i.e., (exptv) ◦ g = g ◦ (exptv). When

9Forp ∈M , (exptv)(p) is the unique curve inM solving the initial value problem

d
dt

(
exptv(p)

)= v(exptv(p)
)
,

(exptv)(p)|t=0 = p
for t in some neighborhood of 0. The one-parameter group of diffeomorphisms exptv is called theflow of the
vector fieldv.
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M = T ∗X is the cotangent bundle of an arbitraryn-dimensional manifoldX, andα is the
tautological 1-form onM , the vector fieldv is just

∑
ξi

∂
∂ξi

with respect to a cotangent
coordinate chart(T ∗U, x1, . . . , xn, ξ1, . . . , ξn). The flow exptv, −∞ < t <∞, satisfies
(exptv)(x, ξ)= (x, et ξ), for every(x, ξ) in M .

THEOREM 1.5. A symplectomorphismg :T ∗X → T ∗X is a lift of a diffeomorphism
f :X→X if and only if it preserves the tautological form: g∗α = α.

PROOF. By Proposition 1.3, a liftf! :T ∗X→ T ∗X of a diffeomorphismf :X→X pre-
serves the tautological form. Conversely, ifg is a symplectomorphism ofM that pre-
servesα, theng preserves the cotangent fibration: by the observation above,g(x, ξ) =
(y, η)⇒ g(x,λξ)= (y,λη) for all (x, ξ) ∈M andλ > 0, and this must hold also forλ� 0
by the differentiability ofg at (x,0). Therefore, there exists a diffeomorphismf :X→X

such thatπ ◦g = f ◦π , whereπ :M→X is the projection mapπ(x, ξ)= x, andg = f#. �

The canonical form is natural also in the following way. Given a smooth function
h :X→ R, the diffeomorphismτh of M = T ∗X defined byτh(x, ξ)= (x, ξ + dhx) turns
out to be always a symplectomorphism. Indeed, ifπ :M→X, π(x, ξ)= x, is the projec-
tion, we haveτ ∗hα = α + π∗ dh, so thatτ ∗hω= ω.

1.4. Moser’s trick

There are other relevant notions of equivalence for symplectic manifolds10 besides being
symplectomorphic. LetM be a manifold with two symplectic formsω0,ω1.

DEFINITION 1.6. The symplectic manifolds(M,ω0) and (M,ω1) arestrongly isotopic
if there is an isotopyρt :M → M such thatρ∗1ω1 = ω0. (M,ω0) and (M,ω1) are
deformation-equivalentif there is a smooth familyωt of symplectic forms joiningω0
to ω1. (M,ω0) and (M,ω1) are isotopic if they are deformation-equivalent and the de
Rham cohomology class[ωt ] is independent oft .

Hence, being strongly isotopic implies being symplectomorphic, and being isotopic im-
plies being deformation-equivalent. We also have that being strongly isotopic implies being
isotopic, because, ifρt :M→M is an isotopy such thatρ∗1ω1 = ω0, thenωt := ρ∗t ω1 is a
smooth family of symplectic forms joiningω1 toω0 and[ωt ] = [ω1], ∀t , by the homotopy
invariance of de Rham cohomology.

Moser [105] proved that, on a compact manifold, being isotopic implies being strongly
isotopic (Theorem 1.7). McDuff showed that deformation-equivalence is indeed a nec-
essary hypothesis: even if[ω0] = [ω1] ∈ H 2(M;R), there are compact examples where
(M,ω0) and(M,ω1) are not strongly isotopic; see Example 7.23 in [99]. In other words,

10Understanding these notions and the normal forms requires tools, such as isotopies (byisotopywe mean a
smooth one-parameter family of diffeomorphisms starting at the identity, like the flow of a vector field), Lie
derivative, tubular neighborhoods and the homotopy formula in de Rham theory, covered in differential geometry
or differential topology texts.
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fix c ∈ H 2(M) and defineSc as the set of symplectic formsω in M with [ω] = c. On
a compact manifold, all symplectic forms in the same path-connected component ofSc
are symplectomorphic according to the Moser theorem, though there might be symplectic
forms in different components ofSc that are not symplectomorphic.

THEOREM 1.7 (Moser).LetM be a compact manifold with symplectic formsω0 andω1.
Suppose thatωt , 0� t � 1, is a smooth family of symplectic forms joiningω0 to ω1 with
cohomology class[ωt ] independent oft . Then there exists an isotopyρ :M×R→M such
thatρ∗t ωt = ω0, 0� t � 1.

Moser applied an extremely useful argument, known asMoser’s trick, starting with the
following observation. If there existed an isotopyρ :M × R →M such thatρ∗t ωt = ω0,
0� t � 1, in terms of the associated time-dependent vector field

vt := dρt

dt
◦ ρ−1

t , t ∈R,

we would then have for all 0� t � 1 that

0= d

dt
(ρ∗t ωt )= ρ∗t

(
Lvt ωt +

dωt

dt

)
⇐⇒ Lvt ωt +

dωt

dt
= 0.

Conversely, the existence of a smooth time-dependent vector fieldvt , t ∈ R, satisfying
the last equation is enough to produce by integration (sinceM is compact) the desired
isotopyρ :M ×R→M satisfyingρ∗t ωt = ρ∗0ω0 = ω0, for all t . So everything boils down
to solving the equationLvt ωt + dωt

dt
= 0 for vt .

PROOF. By the cohomology assumption that[ d
dt
ωt ] = 0, there exists asmoothfamily of

1-formsµt such that

dωt

dt
= dµt , 0� t � 1.

The argument involves the Poincaré lemma for compactly-supported forms, together with
the Mayer–Vietoris sequence in order to use induction on the number of charts in a good
cover ofM ; for a sketch, see page 95 in [99]. In the simplest case whereωt = (1− t)ω0+
tω1 with [ω0] = [ω1], we have thatdωt

dt
= ω1 −ω0 = dµ is exact.

The nondegeneracy assumption onωt , guarantees that we can pointwise solve the equa-
tion, known asMoser’s equation,

ıvt ωt +µt = 0

to obtain a unique smooth family of vector fieldsvt , 0 � t � 1. Extendvt to all t ∈ R.
Thanks to the compactness ofM , the vector fieldsvt generate an isotopyρ satisfying
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dρt
dt

= vt ◦ ρt . Then we indeed have

d

dt
(ρ∗t ωt )= ρ∗t

(
Lvt ωt +

dωt

dt

)
= ρ∗t (dıvt ωt + dµt)= ρ∗t d(ıvt ωt +µt)= 0,

where we used Cartan’s magic formula inLvt ωt = dıvt ωt + ıvt dωt . �

EXAMPLE. On a compact oriented 2-dimensional manifoldM , a symplectic form is just
an area form. Letω0 andω1 be two area forms onM . If [ω0] = [ω1], i.e., ω0 andω1
give the same total area, then any convex combination of them is symplectic (because they
induce the same orientation), and there is an isotopyϕt :M → M , t ∈ [0,1], such that
ϕ∗1ω0 = ω1. Therefore, up to strong isotopy, there is a unique symplectic representative in
each nonzero 2-cohomology class ofM .

On anoncompactmanifold, givenvt , we would need to check the existence for 0� t � 1
of an isotopyρt solving the differential equationdρt

dt
= vt ◦ ρt .

1.5. Darboux and Moser theorems

By asubmanifoldof a manifoldM we mean either a manifoldX with aclosed embedding11

i :X ↪→M , or anopen submanifold(i.e., an open subset ofM).
Given a 2n-dimensional manifoldM , a k-dimensional submanifoldX, neighborhoods

U0,U1 of X, and symplectic formsω0,ω1 on U0,U1, we would like to know whether
there exists alocal symplectomorphism preservingX, i.e., a diffeomorphismϕ :U0 → U1
with ϕ∗ω1 = ω0 andϕ(X)= X. Moser’s Theorem 1.7 addresses the case whereX =M .
At the other extreme, whenX is just one point, there is the classical Darboux theorem
(Theorem 1.9). In general, we have:

THEOREM 1.8 (Moser theorem—relative version).Let ω0 and ω1 be symplectic forms
on a manifoldM , andX a compact submanifold ofM . Suppose that the forms coincide,
ω0|p = ω1|p, at all pointsp ∈ X. Then there exist neighborhoodsU0 andU1 of X in M ,
and a diffeomorphismϕ :U0 → U1 such thatϕ∗ω1 = ω0 andϕ restricted toX is the identity
map.

PROOF. Pick a tubular neighborhoodU0 of X. The 2-formω1 − ω0 is closed onU0, and
satisfies(ω1 − ω0)p = 0 at allp ∈X. By the homotopy formula on the tubular neighbor-
hood, there exists a 1-formµ on U0 such thatω1 − ω0 = dµ andµp = 0 at allp ∈ X.
Consider the familyωt = (1− t)ω0+ tω1 = ω0+ t dµ of closed 2-forms onU0. Shrinking
U0 if necessary, we can assume thatωt is symplectic fort ∈ [0,1], as nondegeneracy is
an open property. Solve Moser’s equation,ıvt ωt =−µ, for vt By integration, shrinkingU0
again if necessary, there exists a local isotopyρ :U0 × [0,1]→M with ρ∗t ωt = ω0, for all
t ∈ [0,1]. Sincevt |X = 0, we haveρt |X = idX . Setϕ = ρ1, U1 = ρ1(U0). �
11A closed embeddingis aproper injective immersion. A map isproperwhen its preimage of a compact set is

always compact.
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THEOREM 1.9 (Darboux).Let (M,ω) be a symplectic manifold, and letp be any point
in M . Then we can find a chart(U, x1, . . . , xn, y1, . . . yn) centered atp where

ω=
n∑
i=1

dxi ∧ dyi.

Such a coordinate chart(U, x1, . . . , xn, y1, . . . , yn) is called aDarboux chart, and the
corresponding coordinates are calledDarboux coordinates.

The classical proof of Darboux’s theorem is by induction on the dimension of the mani-
fold [2], in the spirit of the argument for a symplectic basis (Section 1.1). The proof below,
using Moser’s theorem, was first provided by Weinstein [136].

PROOF. Apply Moser’s relative theorem toX = {p}. More precisely, use any symplec-
tic basis for(TpM,ωp) to construct coordinates(x′1, . . . , x′n, y′1, . . . y′n) centered atp and
valid on some neighborhoodU ′, so thatωp =∑dx′i ∧ dy′i |p. There are two symplectic
forms onU ′: the givenω0 = ω andω1 =∑dx′i ∧ dy′i . By Theorem 1.8, there are neigh-
borhoodsU0 andU1 of p, and a diffeomorphismϕ :U0 → U1 such thatϕ(p) = p and
ϕ∗(
∑
dx′i ∧ dy′i ) = ω. Sinceϕ∗(

∑
dx′i ∧ dy′i ) =

∑
d(x′i ◦ ϕ) ∧ d(y′i ◦ ϕ), we simply set

new coordinatesxi = x′i ◦ ϕ, yi = y′i ◦ ϕ. �

Darboux’s theorem is easy in the 2-dimensional case. Being closedω is locally exact,
ω = dα. Every nonvanishing 1-form on a surface can be written locally asα = g dh for
suitable functionsg,h, whereh is a coordinate on the local leaf space of the kernel foliation
of α. The formω = dg ∧ dh is nondegenerate if and only if(g,h) is a local diffeomor-
phism. By the way, transversality shows that the normal form for ageneric12 2-form is
x dx ∧ dy near a point where it is degenerate.

1.6. Symplectic submanifolds

Moser’s argument permeates many other proofs, including those of the next two results
regardingsymplectic submanifolds. Let (M,ω) be a symplectic manifold.

DEFINITION 1.10. Asymplectic submanifoldof (M,ω) is a submanifoldX of M where,
at eachp ∈X, the spaceTpX is a symplectic subspace of(TpM,ωp).

If i :X ↪→M is the inclusion of a symplectic submanifoldX, then the restriction ofω
toX is a symplectic form, so that(X, i∗ω) is itself a symplectic manifold.

Let X be a symplectic submanifold of(M,ω). At eachp ∈ X, we haveTpM =
TpX ⊕ (TpX)

ωp (Section 1.1), so the map(TpX)ωp → TpM/TpX is an isomorphism.
This canonical identification of thenormal spaceof X atp, NpX := TpM/TpX, with the
symplectic orthogonal(TpX)ωp , yields a canonical identification of thenormal bundleNX

12Generichere means that the subset of those 2-forms having this behavior is open, dense and invariant under
diffeomorphisms of the manifold.
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with the symplectic vector bundle(T X)ω. A symplectic vector bundleis a vector bundle
E → X equipped with a smooth13 field Ω of fiberwise nondegenerate skew-symmetric
bilinear mapsΩp :Ep × Ep → R. The symplectic normal bundleis the normal bundle
of a symplectic submanifold, with the symplectic structure induced by orthogonals. The
next theorem, due to Weinstein [136], states that a neighborhood of a symplectic sub-
manifold X is determined byX and (the isomorphism class of) its symplectic normal
bundle.

THEOREM1.11 (Symplectic neighborhood theorem).Let(M0,ω0), (M1,ω1) be symplec-
tic manifolds with diffeomorphic compact symplectic submanifoldsX0,X1. Let i0 :X0 ↪→
M0, i1 :X1 ↪→ M1 be their inclusions. Suppose there is an isomorphism̃φ :NX0 →
NX1 of the corresponding symplectic normal bundles covering a symplectomorphism
φ : (X0, i

∗
0ω0)→ (X1, i

∗
1ω1). Then there exist neighborhoodsU0 ⊂M0, U1 ⊂M1 of X0,

X1 and a symplectomorphismϕ :U0 → U1 extendingφ such that the restriction ofdϕ to
the normal bundleNX0 is φ̃.

As first noted by Thurston [131], the formΩ + π∗ωX is symplectic in some neighbor-
hood of the zero section inNX, whereπ :NX→ X is the bundle projection andωX is
the restriction ofω toX. Therefore,a compact symplectic submanifoldX always admits a
tubular neighborhood in the ambient(M,ω) symplectomorphic to a tubular neighborhood
of the zero section in the symplectic normal bundleNX.

PROOF. By the Whitney extension theorem14 there exist neighborhoodsU0 ⊂ M0 and
U1 ⊂M1 of X0 andX1, and a diffeomorphismh :U0 → U1 such thath ◦ i0 = i1 ◦ φ and
the restriction ofdh to the normal bundleNX0 is the givenφ̃. Henceω0 andh∗ω1 are two
symplectic forms onU0 which coincide at all pointsp ∈X0. The result now follows from
Moser’s relative theorem (Theorem 1.8). �

Carefully combining Moser’s argument with the existence of an ambient isotopy that
produces a given deformation of a compact submanifold, we can show:

THEOREM 1.12. LetXt , t ∈ [0,1], be a(smooth) family of compact symplectic submani-
folds of a compact symplectic manifold(M,ω). Then there exists an isotopyρ :M ×R→
M such that for allt ∈ [0,1] we haveρ∗t ω= ω andρt (X0)=Xt .

Inspired by complex geometry, Donaldson [32] proved the following theorem on the ex-
istence of symplectic submanifolds. A major consequence is the characterization of sym-
plectic manifolds in terms ofLefschetz pencils; see Section 4.6.

13Smoothness means that, for any pair of (smooth) sectionsu andv ofE, the real-valued functionΩ(u,v) :X→
R given by evaluation at each point is smooth.
14Whitney extension theorem. LetM be a manifold andX a submanifold ofM . Suppose that at eachp ∈X

we are given a linear isomorphismLp :TpM
�−→ TpM such thatLp |TpX = IdTpX andLp depends smoothly

onp. Then there exists an embeddingh :N →M of some neighborhoodN of X in M such thath|X = idX and
dhp =Lp for all p ∈X. A proof relies on a tubular neighborhood model.
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THEOREM 1.13 (Donaldson).Let (M,ω) be a compact symplectic manifold. Assume that
the cohomology class[ω] is integral, i.e., lies in H 2(M;Z). Then, for every sufficiently
large integerk, there exists a connected codimension-2 symplectic submanifoldX repre-
senting the Poincaré dual of the integral cohomology classk[ω].

Under the same hypotheses, Auroux extended this result to show that givenα ∈
H2m(M;Z) there exist positivek, � ∈ Z such thatkPD[ωn−m] + �α is realized by a 2m-
dimensional symplectic submanifold.

2. Lagrangian submanifolds

2.1. First Lagrangian submanifolds

Let (M,ω) be a symplectic manifold.

DEFINITION 2.1. A submanifoldX of (M,ω) is Lagrangian(respectively,isotropicand
coisotropic) if, at eachp ∈ X, the spaceTpX is a Lagrangian (respectively, isotropic and
coisotropic) subspace of(TpM,ωp).

If i :X ↪→M is the inclusion map, thenX is a Lagrangian submanifoldif and only if
i∗ω= 0 and dimX = 1

2 dimM .
The problem of embedding15 a compact manifold as a Lagrangian submanifold of a

given symplectic manifold is often global. For instance, Gromov [64] proved that there
can be no Lagrangian spheres in(Cn,ω0), except for the circle inC2, and more generally
no compactexact Lagrangiansubmanifolds, in the sense thatα0 =∑yj dxj restricts to
an exact 1-form. The argument usespseudoholomorphic curves(Section 3.6). Yet there
are immersedLagrangian spheres (Section 2.7). More recently were found topological
and geometrical constraints on manifolds that admit Lagrangian embeddings intocompact
symplectic manifolds; see, for instance, [16,17,115].

EXAMPLES.
1. Any 1-dimensional submanifold of a symplectic surface is Lagrangian (because a

1-dimensional subspace of a symplectic vector space is always isotropic).
Therefore, any product ofn embedded curves arises as a Lagrangian submanifold

of (a neighborhood of zero in) the prototype(R2n,ω0). In particular, atorus Tn =
S1× · · · × S1 can be embedded as a Lagrangian submanifold of any 2n-dimensional
symplectic manifold, by Darboux’s theorem (Theorem 1.9).

2. LetM = T ∗X be the cotangent bundle of a manifoldX. With respect to a cotangent
coordinate chart(T ∗U,x1, . . . , xn, ξ1, . . . , ξn), the tautological form isα =∑ ξi dxi
and the canonical form isω=−dα =∑dxi ∧ dξi .

The zero sectionX0 := {(x, ξ) ∈ T ∗X | ξ = 0 in T ∗
x X} is ann-dimensional sub-

manifold ofT ∗X whose intersection withT ∗U is given by the equationsξ1 = · · · =
15An embeddingis an immersion that is a homeomorphism onto its image.
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ξn = 0. Clearlyα vanishes onX0 ∩ T ∗U . Hence, ifi0 :X0 ↪→ T ∗X is the inclusion
map, we havei∗0ω= i∗0dα = 0, and soX0 is Lagrangian.

A cotangent fiberT ∗
x0
X is ann-dimensional submanifold ofT ∗X given by the

equationsxi = (x0)i , i = 1, . . . , n, on T ∗U . Since thexi ’s are constant, the formα
vanishes identically, andT ∗

x0
X is a Lagrangian submanifold.

Let Xµ be (the image of) an arbitrary section, that is, ann-dimensional submanifold
of T ∗X of the formXµ = {(x,µx) | x ∈ X, µx ∈ T ∗

x X}, where the covectorµx depends
smoothly onx, soµ :X→ T ∗X is a de Rham 1-form. We will investigate when such an
Xµ is Lagrangian. Relative to the inclusioni :Xµ ↪→ T ∗X and the cotangent projection
π :T ∗X→ X, theseXµ’s are exactly the submanifolds for whichπ ◦ i :Xµ → X is a
diffeomorphism.

PROPOSITION2.2. The tautological1-formα onT ∗X satisfiesµ∗α = µ, for any1-form
µ :X→ T ∗X.

PROOF. Denote bysµ :X→ T ∗X, x 	→ (x,µx), the 1-formµ regarded exclusively as a
map. From the definition,αp = (dπp)

∗ξ atp = (x, ξ) ∈M . Forp = sµ(x)= (x,µx), we
haveαp = (dπp)∗µx . Then, sinceπ ◦ sµ = idX, we have(

s∗µα
)
x
= (dsµ)∗xαp = (dsµ)∗x(dπp)∗µx =

(
d(π ◦ sµ)

)∗
x
µx = µx. �

The mapsµ :X→ T ∗X, sµ(x)= (x,µx) is an embedding with image the sectionXµ.
The diffeomorphismτ :X→Xµ, τ(x) := (x,µx), satisfiesi ◦ τ = sµ.

PROPOSITION2.3. The sections ofT ∗X that are Lagrangian are those corresponding to
closed1-forms onX.

PROOF. Using the previous notation, the condition ofXµ being Lagrangian becomes:
i∗ dα = 0⇔ τ ∗i∗ dα = 0⇔ s∗µ dα = 0⇔ d(s∗µα)= 0⇔ dµ= 0. �

Whenµ= dh for someh ∈ C∞(X), such a primitiveh is called agenerating function
for the Lagrangian submanifoldXµ. Two functions generate the same Lagrangian subman-
ifold if and only if they differ by a locally constant function. WhenX is simply connected,
or at leastH 1

deRham(X)= 0, every LagrangianXµ admits a generating function.
Besides the cotangent fibers, there are lots of Lagrangian submanifolds ofT ∗X not

covered by the description in terms of closed 1-forms. LetS be any submanifold of an
n-dimensional manifoldX. Theconormal spaceof S atx ∈ S is

N∗
x S =

{
ξ ∈ T ∗

x X | ξ(v)= 0 for all v ∈ TxS
}
.

The conormal bundleof S is N∗S = {(x, ξ) ∈ T ∗X | x ∈ S, ξ ∈ N∗
x S}. This is an

n-dimensional submanifold ofT ∗X. In particular, takingS = {x} to be one point, the co-
normal bundle is the corresponding cotangent fiberT ∗

x X. Taking S = X, the conormal
bundle is the zero sectionX0 of T ∗X.
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PROPOSITION2.4. If i :N∗S ↪→ T ∗X is the inclusion of the conormal bundle of a sub-
manifoldS ⊂X, andα is the tautological1-form onT ∗X, theni∗α = 0.

PROOF. Let (U, x1, . . . , xn) be a coordinate chart onX adapted toS, so thatU ∩ S is de-
scribed byxk+1 = · · · = xn = 0. Let (T ∗U, x1, . . . , xn, ξ1, . . . , ξn) be the associated cotan-
gent coordinate chart. The submanifoldN∗S ∩ T ∗U is described byxk+1 = · · · = xn = 0
andξ1 = · · · = ξk = 0. Sinceα =∑ ξi dxi onT ∗U , we conclude that, atp ∈N∗S,

(i∗α)p = αp|Tp(N∗S) =
∑
i>k

ξi dxi

∣∣∣∣
span{ ∂

∂xi
, i�k}

= 0.
�

COROLLARY 2.5. For any submanifoldS ofX, the conormal bundleN∗S is a Lagrangian
submanifold ofT ∗X.

2.2. Lagrangian neighborhood theorem

Weinstein [136] proved that, if a compact submanifoldX is Lagrangian with respect to
two symplectic formsω0 andω1, then the conclusion of the Moser relative theorem (The-
orem 1.8) still holds. We need some algebra for the Weinstein theorem.

Suppose thatU,W aren-dimensional vector spaces, andΩ :U ×W → R is a bilinear
pairing; the mapΩ gives rise to a linear map̃Ω :U →W ∗, Ω̃(u) =Ω(u, ·). ThenΩ is
nondegenerate if and only if̃Ω is bijective.

PROPOSITION2.6. Let (V ,Ω) be a symplectic vector space, U a Lagrangian subspace
of (V ,Ω), andW any vector space complement toU , not necessarily Lagrangian. Then
fromW we can canonically build a Lagrangian complement toU .

PROOF. FromΩ we get a nondegenerate pairingΩ ′ :U × W → R, so Ω̃ ′ :U → W ∗
is bijective. We look for a Lagrangian complement toU of the formW ′ = {w + Aw |
w ∈ W } for some linear mapA :W → U . For W ′ to be Lagrangian we need that
Ω(w1,w2) = Ω̃ ′(Aw2)(w1) − Ω̃ ′(Aw1)(w2). Let A′ = Ω̃ ′ ◦ A, and look forA′ such
thatΩ(w1,w2) = A′(w2)(w1) − A′(w1)(w2) for all w1,w2 ∈ W . The canonical choice
isA′(w)=−1

2Ω(w, ·). SetA= (Ω̃ ′)−1 ◦A′. �

PROPOSITION2.7. Let V be a vector space, let Ω0 andΩ1 be symplectic forms onV ,
let U be a subspace ofV Lagrangian forΩ0 andΩ1, and letW be any complement toU

in V . Then fromW we can canonically construct a linear isomorphismL :V
�−→ V such

thatL|U = IdU andL∗Ω1 =Ω0.

PROOF. By Proposition 2.6, fromW we canonically obtain complementsW0 andW1 toU
in V such thatW0 is Lagrangian forΩ0 andW1 is Lagrangian forΩ1. The nondegenerate

bilinear pairingsΩi :Wi ×U →R, i = 0,1, give isomorphisms̃Ωi :Wi
�−→U∗, i = 0,1,

respectively. LetB :W0 →W1 be the linear map satisfying̃Ω1◦B = Ω̃0, i.e.,Ω0(w0, u)=
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Ω1(Bw0, u), ∀w0 ∈W0, ∀u ∈U . LetL := IdU ⊕B :U ⊕W0 →U ⊕W1 be the extension
of B to the rest ofV by setting it to be the identity onU . It satisfies:

(L∗Ω1)(u⊕w0, u
′ ⊕w′

0) =Ω1(u⊕Bw0, u
′ ⊕Bw′

0)

=Ω1(u,Bw
′
0)+Ω1(Bw0, u

′)

=Ω0(u,w
′
0)+Ω0(w0, u

′)

=Ω0(u⊕w0, u
′ ⊕w′

0). �

THEOREM 2.8 (Weinstein Lagrangian neighborhood theorem).Let M be a 2n-dimen-
sional manifold, X a compactn-dimensional submanifold, i :X ↪→M the inclusion map,
andω0 andω1 symplectic forms onM such thati∗ω0 = i∗ω1 = 0, i.e.,X is a Lagrangian
submanifold of both(M,ω0) and(M,ω1). Then there exist neighborhoodsU0 andU1 ofX
in M and a diffeomorphismϕ :U0 → U1 such thatϕ∗ω1 = ω0 andϕ is the identity onX,
i.e., ϕ(p)= p, ∀p ∈X.

PROOF. Put a Riemannian metricg onM . Fix p ∈ X, and letV = TpM , U = TpX and
W = U⊥, the orthocomplement ofU in V relative to the inner productgp(·, ·). Since
i∗ω0 = i∗ω1 = 0, the subspaceU is Lagrangian for both(V ,ω0|p) and (V ,ω1|p). By
Proposition 2.7, we canonically get fromU⊥ a linear isomorphismLp :TpM→ TpM de-
pending smoothly onp, such thatLp|TpX = IdTpX andL∗pω1|p = ω0|p. By the Whitney
extension theorem (Section 1.5), there exist a neighborhoodN of X and an embedding
h :N ↪→ M with h|X = idX and dhp = Lp for p ∈ X. Hence, at anyp ∈ X, we have
(h∗ω1)p = (dhp)

∗ω1|p = L∗pω1|p = ω0|p . Applying the Moser relative theorem (Theo-
rem 1.8) toω0 andh∗ω1, we find a neighborhoodU0 of X and an embeddingf :U0 →N
such thatf |X = idX andf ∗(h∗ω1)= ω0 onUo. Setϕ = h ◦ f andU1 = ϕ(U0). �

Theorem 2.8 has the following generalization. For a proof see, for instance, either
of [61,70,139].

THEOREM 2.9 (Coisotropic embedding theorem).LetM be a manifold of dimension2n,
X a submanifold of dimensionk � n, i :X ↪→M the inclusion, andω0 andω1 symplectic
forms onM , such thati∗ω0 = i∗ω1 andX is coisotropic for both(M,ω0) and (M,ω1).
Then there exist neighborhoodsU0 andU1 of X in M and a diffeomorphismϕ :U0 → U1

such thatϕ∗ω1 = ω0 andϕ|X = idX.

2.3. Weinstein tubular neighborhood theorem

Let (V ,Ω) be a symplectic linear space, and letU be a Lagrangian subspace. Then there
is a canonical nondegenerate bilinear pairingΩ ′ :V/U ×U →R defined byΩ ′([v], u)=
Ω(v,u) where[v] is the equivalence class ofv in V/U . Consequently, we get a canonical
isomorphismΩ̃ ′ :V/U →U∗, Ω̃ ′([v])=Ω ′([v], ·).
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In particular, if (M,ω) is a symplectic manifold, andX is a Lagrangian submanifold,
thenTpX is a Lagrangian subspace of(TpM,ωp) for eachp ∈ X and there is a canoni-
cal identification of thenormal spaceof X at p, NpX := TpM/TpX, with the cotangent
fiberT ∗

pX. Consequently the normal bundleNX and the cotangent bundleT ∗X are canon-
ically identified.

THEOREM 2.10 (Weinstein tubular neighborhood theorem).Let (M,ω) be a symplec-
tic manifold, X a compact Lagrangian submanifold, ω0 the canonical symplectic form
onT ∗X, i0 :X ↪→ T ∗X the Lagrangian embedding as the zero section, andi :X ↪→M the
Lagrangian embedding given by inclusion. Then there are neighborhoodsU0 ofX in T ∗X,
U ofX in M , and a diffeomorphismϕ :U0 → U such thatϕ∗ω= ω0 andϕ ◦ i0 = i.

PROOF. By the standard tubular neighborhood theorem16 and sinceNX � T ∗X are
canonically identified, we can find a neighborhoodN0 of X in T ∗X, a neighborhoodN
of X in M , and a diffeomorphismψ :N0 → N such thatψ ◦ i0 = i. Let ω0 be the
canonical form onT ∗X and ω1 = ψ∗ω. The submanifoldX is Lagrangian for both
of these symplectic forms onN0. By the Weinstein Lagrangian neighborhood theorem
(Theorem 2.8), there exist neighborhoodsU0 andU1 of X in N0 and a diffeomorphism
θ :U0 → U1 such thatθ∗ω1 = ω0 andθ ◦ i0 = i0. Takeϕ = ψ ◦ θ andU = ϕ(U0). Then
ϕ∗ω= θ∗ψ∗ω= θ∗ω1 = ω0. �

Theorem 2.10 classifies compact Lagrangian embeddings: up to local symplectomor-
phism, the set of Lagrangian embeddings is the set of embeddings of manifolds into their
cotangent bundles as zero sections.

The classification of compactisotropic embeddings is also due to Weinstein in [137,
139]. An isotropic embeddingof a manifoldX into a symplectic manifold(M,ω) is a
closed embeddingi :X ↪→ M such thati∗ω = 0. Weinstein showed that neighborhood
equivalence of isotropic embeddings is in one-to-one correspondence with isomorphism
classes of symplectic vector bundles.

The classification of compactcoisotropicembeddings is due to Gotay [61]. Acoisotropic
embeddingof a manifoldX carrying a closed 2-formα of constant rank into a symplectic
manifold (M,ω) is an embeddingi :X ↪→M such thati∗ω = α and i(X) is coisotropic
as a submanifold ofM . Let E be thecharacteristic distributionof a closed formα of
constant rank onX, i.e.,Ep is the kernel ofαp atp ∈X. Gotay showed that then the total
spaceE∗ carries a symplectic structure in a neighborhood of the zero section, such thatX

embeds coisotropically onto this zero section and, moreover, every coisotropic embedding
is equivalent to this in some neighborhood of the zero section.

16Tubular neighborhood theorem. LetM be a manifold,X a submanifold,NX the normal bundle ofX in M ,
i0 :X ↪→NX the zero section, andi :X ↪→M the inclusion. Then there are neighborhoodsU0 ofX in NX, U of
X in M and a diffeomorphismψ :U0 → U such thatψ ◦ i0 = i. This theorem can be proved with the exponential
map using a Riemannian metric; see, for instance, [120].
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2.4. Application to symplectomorphisms

Let (M1,ω1) and(M2,ω2) be two 2n-dimensional symplectic manifolds. Given a diffeo-

morphismf :M1
�−→M2, there is a way to express the condition off being a symplecto-

morphism in terms of a certain submanifold being Lagrangian. Consider the two projection
maps pri :M1×M2 →Mi , (p1,p2) 	→ pi , i = 1,2. Thetwisted product formonM1×M2
is the symplectic17 form

ω̃= (pr1)
∗ω1 − (pr2)

∗ω2.

PROPOSITION 2.11. A diffeomorphismf :M1
�−→ M2 is a symplectomorphism if and

only if the graph off is a Lagrangian submanifold of(M1 ×M2, ω̃).

PROOF. The graph off is the 2n-dimensional submanifold Graphf = {(p,f (p)) | p ∈
M1} ⊆ M1 × M2, which is the image of the embeddingγ :M1 → M1 × M2, p 	→
(p,f (p)). We haveγ ∗ω̃= γ ∗pr∗1ω1−γ ∗pr∗2ω2 = (pr1◦γ )∗ω1− (pr2◦γ )∗ω2, and pr1◦γ
is the identity map onM1 whereas pr2 ◦ γ = f . So Graphf is Lagrangian, i.e.,γ ∗ω̃ = 0,
if and only if f ∗ω2 = ω1, i.e.,f is a symplectomorphism. �

Lagrangian submanifolds of(M1×M2, ω̃) are calledcanonical relations, when viewed
as morphisms between(M1,ω1) and(M2,ω2), even if dimM1 �= dimM2. Under a reason-
able assumption, there is a notion of composition [137].

Take M1 = M2 = M and suppose that(M,ω) is a compactsymplectic manifold
and f ∈ Sympl(M,ω). The graphs Graphf and�, of f and of the identity map id :
M →M , are Lagrangian submanifolds ofM ×M with ω̃ = pr∗1ω − pr∗2ω. By the We-
instein tubular neighborhood theorem, there exist a neighborhoodU of � in (M ×M,ω̃)
and a neighborhoodU0 of M in (T ∗M,ω0) with a symplectomorphismϕ :U → U0 satis-
fying ϕ(p,p)= (p,0), ∀p ∈M .

Suppose thatf is sufficientlyC1-close18 to id, i.e.,f is in some sufficiently small neigh-
borhood of the identity id in theC1-topology. Hence we can assume that Graphf ⊆ U .
Let j :M ↪→ U , j (p)= (p,f (p)), be the embedding as Graphf , andi :M ↪→ U , i(p)=
(p,p), be the embedding as�= Graph id. The mapj is sufficientlyC1-close toi. These
maps induce embeddingsϕ ◦ j = j0 :M ↪→ U0 andϕ ◦ i = i0 :M ↪→ U0 as 0-section, re-
spectively. Since the mapj0 is sufficientlyC1-close toi0, the image setj0(M) intersects
each fiberT ∗

pM at one pointµp depending smoothly onp. Therefore, the image ofj0 is

the image of a smooth sectionµ :M → T ∗M , that is, a 1-formµ = j0 ◦ (π ◦ j0)−1. We
conclude that Graphf � {(p,µp) | p ∈M, µp ∈ T ∗

pM}. Conversely, ifµ is a 1-form suf-

ficiently C1-close to the zero 1-form, then{(p,µp) | p ∈M, µp ∈ T ∗
pM} � Graphf , for

some diffeomorphismf :M→M .

17More generally,λ1(pr1)
∗ω1 + λ2(pr2)

∗ω2 is symplectic for allλ1, λ2 ∈R \ {0}.
18Let X and Y be manifolds. A sequence of mapsfi :X → Y converges in theC0-topology (a.k.a. the

compact-open topology) to f :X→ Y if and only if fi converges uniformly on compact sets. A sequence of
C1 mapsfi :X→ Y converges in theC1-topologyto f :X→ Y if and only if it and the sequence of derivatives
dfi :TX→ T Y converge uniformly on compact sets.
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By Proposition 2.3, Graphf is Lagrangian if and only ifµ is closed. A smallC1-
neighborhood of id in Sympl(M,ω) is thus homeomorphic to aC1-neighborhood of zero
in the vector space of closed 1-forms onM . So we obtain the model:

Tid
(
Sympl(M,ω)

)� {µ ∈Ω1(M) | dµ= 0
}
.

In particular,Tid(Sympl(M,ω)) contains the space of exact 1-forms that correspond to
generating functions,C∞(M)/{locally constant functions}.

THEOREM 2.12. Let (M,ω) be a compact symplectic manifold(and not just one point)
withH 1

deRham(M)= 0. Then any symplectomorphism ofM that is sufficientlyC1-close to
the identity has at least two fixed points.

PROOF. If f ∈ Sympl(M,ω) is sufficientlyC1-close to id, then its graph corresponds to a
closed 1-formµ onM . AsH 1

deRham(M)= 0, we have thatµ= dh for someh ∈ C∞(M).
But h must have at least two critical points becauseM is compact. A pointp whereµp =
dhp = 0 corresponds to a point in the intersection of the graph off with the diagonal, that
is, a fixed point off . �

This result has the following analogue in terms ofLagrangian intersections: if X is a
compact Lagrangian submanifold of a symplectic manifold(M,ω) withH 1

deRham(X)= 0,
then every Lagrangian submanifold ofM that isC1-close19 to X intersectsX in at least
two points.

2.5. Generating functions

We focus on symplectomorphisms between the cotangent bundlesM1 = T ∗X1, M2 =
T ∗X2 of two n-dimensional manifoldsX1,X2. Letα1, α2 andω1,ω2 be the corresponding
tautological and canonical forms. Under the natural identification

M1 ×M2 = T ∗X1 × T ∗X2 � T ∗(X1 ×X2),

the tautological 1-form onT ∗(X1 × X2) is α = pr∗1α1 + pr∗2α2, the canonical 2-form on
T ∗(X1 ×X2) is ω=−dα = pr∗1ω1 + pr∗2ω2, and the twisted product form is̃ω= pr∗1ω1 −
pr∗2ω2. We define the involutionσ2 :M2 →M2, (x2, ξ2) 	→ (x2,−ξ2), which yieldsσ ∗2α2 =
−α2. Let σ = idM1 × σ2 :M1 ×M2 →M1 ×M2. Thenσ ∗ω̃ = pr∗1ω1 + pr∗2ω2 = ω. If L
is a Lagrangian submanifold of(M1 ×M2,ω), then itstwistLσ := σ(L) is a Lagrangian
submanifold of(M1 ×M2, ω̃).

For producing a symplectomorphismM1 = T ∗X1 →M2 = T ∗X2 we can start with a
Lagrangian submanifoldL of (M1 ×M2,ω), twist it to obtain a Lagrangian submanifold
Lσ of (M1 ×M2, ω̃), and, if Lσ happens to be the graph of some diffeomorphismϕ :
M1 →M2, thenϕ is a symplectomorphism.

19We say that a submanifoldY of M is C1-closeto another submanifoldX when there is a diffeomorphism
X→ Y that is, as a map intoM , C1-close to the inclusionX ↪→M .
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A method to obtain Lagrangian submanifolds ofM1 ×M2 � T ∗(X1 × X2) relies on
generating functions. For anyf ∈ C∞(X1 ×X2), df is a closed 1-form onX1 ×X2. The
Lagrangian submanifold generated byf is Lf := {((x, y), (df )(x,y)) | (x, y) ∈X1 ×X2}
(cf. Section 2.1). We adopt the loose notation

dxf := dxf (x, y) := (df )(x,y) projected toT ∗
x X1 × {0},

dyf := dyf (x, y) := (df )(x,y) projected to{0} × T ∗
y X2,

which enables us to writeLf = {(x, y, dxf, dyf ) | (x, y) ∈X1 ×X2} and

Lσf =
{
(x, y, dxf,−dyf ) | (x, y) ∈X1 ×X2

}
.

WhenLσf is in fact the graph of a diffeomorphismϕ :M1 = T ∗X1 →M2 = T ∗X2, we call
ϕ thesymplectomorphism generated byf , and callf thegenerating functionof ϕ. The is-
sue now is to determine whether a givenLσf is the graph of a diffeomorphismϕ :M1 →M2.
Let (U1, x1, . . . , xn), (U2, y1, . . . , yn) be coordinate charts forX1,X2, with associated
charts(T ∗U1, x1, . . . , xn, ξ1, . . . , ξn), (T ∗U2, y1, . . . , yn, η1, . . . , ηn) for M1,M2. The set
Lσf is the graph ofϕ :M1 →M2 exactly when, for any(x, ξ) ∈M1 and(y, η) ∈M2, we
haveϕ(x, ξ)= (y, η)⇔ ξ = dxf andη=−dyf . Therefore, given a point(x, ξ) ∈M1, to
find its image(y, η)= ϕ(x, ξ) we must solve theHamilton look-alike equationsξi =

∂f
∂xi
(x, y),

ηi =− ∂f
∂yi
(x, y).

If there is a solutiony = ϕ1(x, ξ) of the first equation, we may feed it to the second thus
obtainingη = ϕ2(x, ξ), so thatϕ(x, ξ) = (ϕ1(x, ξ), ϕ2(x, ξ)). By the implicit function
theorem, in order to solve the first equation locally and smoothly fory in terms ofx andξ ,
we need the condition

det

[
∂

∂yj

(
∂f

∂xi

)]n
i,j=1

�= 0.

This is a necessary condition forf to generate a symplectomorphismϕ. Locally this is
also sufficient, but globally there is the usual bijectivity issue.

EXAMPLE. LetX1 =X2 = Rn, andf (x, y)=−|x−y|2
2 , the square of Euclidean distance

up to a constant. In this case, the Hamilton equations areξi =
∂f
∂xi

= yi − xi,
ηi = − ∂f

∂yi
= yi − xi,

⇐⇒
{
yi = xi + ξi,
ηi = ξi .

The symplectomorphism generated byf is ϕ(x, ξ) = (x + ξ, ξ). If we use the Euclid-
ean inner product to identifyT ∗Rn with TRn, and hence regardϕ as ϕ̃ :TRn → TRn
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and interpretξ as the velocity vector, then the symplectomorphismϕ corresponds to free
translational motion in Euclidean space.

The previous example can be generalized to thegeodesic flow on a Riemannian man-
ifold.20 Let (X,g) be a geodesically convex Riemannian manifold, whered(x, y) is the
Riemannian distance between pointsx andy. Consider the function

f :X×X −→R, f (x, y)=−d(x, y)
2

2
.

We want to investigate iff generates a symplectomorphismϕ :T ∗X→ T ∗X. Using the

identificationg̃x :TxX
�−→ T ∗

x X, v 	→ gx(v, ·), induced by the metric, we translateϕ into
a mapϕ̃ :TX→ TX. We need to solve{

g̃x(v)= ξ = dxf (x, y),
g̃y(w)= η=−dyf (x, y) (1)

for (y, η) in terms of(x, ξ) in order to findϕ, or, equivalently, for(y,w) in terms(x, v)
in order to findϕ̃. Assume that(X,g) is geodesically complete, that is, every geodesic can
be extended indefinitely.

PROPOSITION2.13. Under the identificationTxX � T ∗
x X given by the metric, the sym-

plectomorphism generated byf corresponds to the map

ϕ̃ :TX −→ TX,

(x, v) 	−→
(
γ (1),

dγ

dt
(1)

)
,

whereγ is the geodesic with initial conditionsγ (0)= x and dγ
dt
(0)= v.

20A Riemannian metricon a manifoldX is a smooth functiong that assigns to each pointx ∈X aninner product
gx on TxX, that is, a symmetric positive-definite bilinear mapgx :TxX × TxX→ R. Smoothness means that
for every (smooth) vector fieldv :X→ TX the real-valued functionx 	→ gx(vx, vx) is smooth. ARiemannian
manifold is a pair(X,g) whereg is a Riemannian metric on the manifoldX. The arc-lengthof a piecewise

smooth curveγ : [a, b] → X on a Riemannian(X,g) is
∫ b
a
dγ
dt
dt , where dγ

dt
(t) = dγt (1) ∈ Tγ (t)X and dγ

dt
=√

gγ (t)(
dγ
dt
,
dγ
dt
) is the velocity of γ . A reparametrizationof a curveγ : [a, b] → X is a curve of the form

γ ◦ τ : [c, d] → X for someτ : [c, d] → [a, b]. By the change of variable formula for the integral, we see that
the arc-length ofγ is invariant by reparametrization. TheRiemannian distancebetween two pointsx andy of a
connected Riemannian manifold(X,g) is the infimumd(x, y) of the set of all arc-lengths for piecewise smooth
curves joiningx to y. A geodesicis a curve that locally minimizes distance and whose velocity is constant. Given

any curveγ : [a, b] → X with dγ
dt

never vanishing, there is a reparametrizationγ ◦ τ : [a, b] → X of constant
velocity. A minimizing geodesicfrom x to y is a geodesic joiningx to y whose arc-length is the Riemannian
distanced(x, y). A Riemannian manifold(X,g) is geodesically convexif every pointx is joined to every other
point y by a unique (up to reparametrization) minimizing geodesic. For instance,(Rn, 〈·, ·〉) is a geodesically
convex Riemannian manifold (wheregx(v,w)= 〈v,w〉 is the Euclidean inner product onTRn �Rn ×Rn), for
which the Riemannian distance is the usual Euclidean distanced(x, y)= |x − y|.
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This mapϕ̃ is called thegeodesic flowon (X,g).

PROOF. Given(x, v) ∈ TX, let exp(x, v) :R→X be the unique geodesic with initial con-
ditions exp(x, v)(0) = x and d exp(x,v)

dt
(0) = v. In this notation, we need to show that the

unique solution of the system of equations (1) isϕ̃(x, v)= (exp(x, v)(1), d exp(x,v)
dt

(1)).
The Gauss lemma in Riemannian geometry (see, for instance, [120]) asserts that geo-

desics are orthogonal to the level sets of the distance function. To solve the first equation
for y = exp(x,u)(1) for someu ∈ TxX, evaluate both sides atv and at vectorsv′ ∈ TxX
orthogonal tov,

|v|2= d

dt

[−d(exp(x, v)(t), y)2

2

]
t=0

and 0= d

dt

[−d(exp(x, v′)(t), y)2

2

]
t=0

to conclude thatu= v, and thusy = exp(x, v)(1).
We have−dyf (x, y)(w′) = 0 at vectorsw′ ∈ TyX orthogonal toW := d exp(x,v)

dt
(1),

becausef (x, y) is essentially the arc-length of a minimizing geodesic. Hencew = kW

must be proportional toW , andk = 1 since

k|v|2 = gy(kW,W)=− d

dt

[−d(x,exp(x, v)(1− t))2
2

]
t=0

= |v|2. �

2.6. Fixed points

Let X be ann-dimensional manifold, andM = T ∗X its cotangent bundle equipped with
the canonical symplectic formω. Let f :X ×X→ R be a smooth function generating a
symplectomorphismϕ :M→M , ϕ(x, dxf )= (y,−dyf ), with the notation of Section 2.5.
To describe the fixed points ofϕ, we introduce the functionψ :X→R, ψ(x)= f (x, x).

PROPOSITION2.14. There is a one-to-one correspondence between the fixed points of the
symplectomorphismϕ and the critical points ofψ .

PROOF. At x0 ∈X, dx0ψ = (dxf +dyf )|(x,y)=(x0,x0). Let ξ = dxf |(x,y)=(x0,x0). Recalling
thatLσf is the graph ofϕ, we have thatx0 is a critical point ofψ , i.e., dx0ψ = 0, if and
only if dyf |(x,y)=(x0,x0) =−ξ , which happens if and only if the point inLσf corresponding
to (x, y)= (x0, x0) is (x0, x0, ξ, ξ), i.e.,ϕ(x0, ξ)= (x0, ξ) is a fixed point. �

Consider the iteratesϕN = ϕ ◦ϕ ◦ · · · ◦ϕ,N = 1,2, . . . , given byN successive applica-
tions ofϕ. According to the previous proposition, if the symplectomorphismϕN :M→M

is generated by some functionf (N), then there is a one-to-one correspondence between
the set of fixed points ofϕN and the set of critical points ofψ(N) :X→ R, ψ(N)(x) =
f (N)(x, x). It remains to know whetherϕN admits a generating function. We will see that
to a certain extent it does.

For each pairx, y ∈X, define a mapX→ R, z 	→ f (x, z)+ f (z, y). Suppose that this
map has a unique critical pointz0 and thatz0 is nondegenerate. Asz0 is determined for
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each(x, y) implicitly by the equationdyf (x, z0) + dxf (z0, y) = 0, by nondegeneracy,
the implicit function theorem assures thatz0 = z0(x, y) is a smooth function. Hence, the
function

f (2) :X×X −→R, f (2)(x, y) := f (x, z0)+ f (z0, y)

is smooth. Sinceϕ is generated byf , andz0 is critical, we have

ϕ2(x, dxf (2)(x, y)) = ϕ
(
ϕ(x, dxf (x, z0)

)= ϕ(z0,−dyf (x, z0)
)

= ϕ
(
z0, dxf (z0, y)

)= (y,−dyf (z0, y)
)

= (y,−dyf (2)(x, y)).
We conclude that the functionf (2) is a generating function forϕ2, as long as, for each
ξ ∈ T ∗

x X, there is a uniquey ∈X for whichdxf (2)(x, y) equalsξ .
There are similar partial recipes for generating functions of higher iterates. In the case

of ϕ3, suppose that the functionX ×X→ R, (z, u) 	→ f (x, z)+ f (z,u)+ f (u, y), has
a unique critical point(z0, u0) and that it is a nondegenerate critical point. A generating
function would bef (3)(x, y)= f (x, z0)+ f (z0, u0)+ f (u0, y).

When the generating functionsf,f (2), f (3), . . . , f (N) exist given by these formulas, the
N -periodic pointsof ϕ, i.e., the fixed points ofϕN , are in one-to-one correspondence with
the critical points of

(x1, . . . , xN) 	−→ f (x1, x2)+ f (x2, x3)+ · · · + f (xN−1, xN)+ f (xN,x1).

EXAMPLE. Let χ :R → R2 be a smooth plane curve that is 1-periodic, i.e.,χ(s + 1) =
χ(s), and parametrized by arc-length, i.e.,| dχ

ds
| = 1. Assume that the regionY enclosed by

the image ofχ is convex, i.e., for anys ∈R, the tangent line{χ(s)+ t dχ
ds

| t ∈R} intersects
the imageX := ∂Y of χ only at the pointχ(s).

Suppose that a ball is thrown into a billiard table of shapeY rolling with constant velocity
and bouncing off the boundary subject to the usual law of reflection. The map describing
successive points on the orbit of the ball is

ϕ :R/Z× (−1,1) −→ R/Z× (−1,1),

(x, v) 	−→ (y,w),

saying that when the ball bounces offχ(x) with angleθ = arccosv, it will next collide
with χ(y) and bounce off with angleν = arccosw. Then the functionf :R/Z×R/Z→R
defined byf (x, y)=−|χ(x)−χ(y)| is smooth off the diagonal, and forϕ(x, v)= (y,w)
satisfies 

∂f
∂x
(x, y)= χ(y)−χ(x)

|χ(x)−χ(y)| · dχds
∣∣
s=x = cosθ = v,

∂f
∂y
(x, y)= χ(x)−χ(y)

|χ(x)−χ(y)| · dχds
∣∣
s=y =−cosν =−w.
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We conclude thatf is a generating function forϕ. Similar approaches work for higher-
dimensional billiard problems. Periodic points are obtained by finding critical points of
real functions ofN variables inX,

(x1, . . . , xN) 	−→
∣∣χ(x1)− χ(x2)

∣∣+ · · · + ∣∣χ(xN−1)− χ(xN)
∣∣

+ ∣∣χ(xN)− χ(x1)
∣∣,

that is, by finding theN -sided (generalized) polygons inscribed inX of critical perimeter.
Notice thatR/Z × (−1,1) � {(x, v) | x ∈ X, v ∈ TxX, |v| < 1} is the open unit tangent
ball bundle of a circleX, which is an open annulusA, and the mapϕ :A→ A is area-
preserving, as in the next two theorems.

While studyingPoincaré return mapsin dynamical systems, Poincaré arrived at the
following results.

THEOREM 2.15 (Poincaré recurrence theorem).Let ϕ :A→ A be a volume-preserving
diffeomorphism of a finite-volume manifoldA, and U a nonempty open set inA. Then
there isq ∈ U and a positive integerN such thatϕN(q) ∈ U .

Hence, under iteration, a mechanical system governed byϕ will eventually return arbi-
trarily close to the initial state.

PROOF. Let U0 = U , U1 = ϕ(U), U2 = ϕ2(U), . . . . If all of these sets were disjoint, then,
since Volume(Ui )= Volume(U) > 0 for all i, the volume ofA would be greater or equal
to
∑

i Volume(Ui )=∞. To avoid this contradiction we must haveϕk(U)∩ ϕ�(U) �= ∅ for
somek > �, which impliesϕk−�(U)∩ U �= ∅. �

THEOREM 2.16 (Poincaré’s last geometric theorem).Suppose thatϕ :A→A is an area-
preserving diffeomorphism of the closed annulusA = R/Z × [−1,1] that preserves the
two components of the boundary and twists them in opposite directions. Thenϕ has at
least two fixed points.

This theorem was proved in 1913 by Birkhoff [18], and hence is also called the
Poincaré–Birkhoff theorem. It has important applications to dynamical systems and ce-
lestial mechanics. TheArnold conjectureon the existence of fixed points for symplecto-
morphisms of compact manifolds (see Section 5.2) may be regarded as a generalization
of the Poincaré–Birkhoff theorem. This conjecture has motivated a significant amount of
research involving a more general notion of generating function; see, for instance, [41,55].

2.7. Lagrangians and special Lagrangians inCn

The standardHermitian inner producth(·, ·) on Cn has real and imaginary parts given by
the Euclidean inner product〈·, ·〉 and (minus) the symplectic formω0, respectively: for
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v = (x1 + iy1, . . . , xn + iyn), u= (a1 + ib1, . . . , an + ibn) ∈Cn,

h(v,u) =
n∑
k=1

(xk + iyk)(ak − ibk)=
n∑
k=1

(xkak + ykbk)− i
n∑
k=1

(xkbk − ykak)

= 〈v,u〉 − iω0(v,u).

LEMMA 2.17. LetW be a subspace of(Cn,ω0) ande1, . . . , en vectors inCn. Then:
(a) W is Lagrangian if and only ifW⊥ = iW ;
(b) (e1, . . . , en) is an orthonormal basis of a Lagrangian subspace if and only if

(e1, . . . , en) is a unitary basis ofCn.

PROOF. (a) We always haveω0(v,u) = − imh(v,u) = reh(iv,u) = 〈iv, u〉. It follows
that, if W is Lagrangian, so thatω0(v,u) = 0 for all v,u ∈ W , then iW ⊆ W⊥. These
spaces must be equal because they have the same dimension. Reciprocally, when〈iv, u〉 =
0 for all v,u ∈ W , the equality above shows thatW must be isotropic. Since dimW =
dimiW = dimW⊥ = 2n− dimW , the dimension ofW must ben.

(b) If (e1, . . . , en) is an orthonormal basis of a Lagrangian subspaceW , then, by the
previous part,(e1, . . . , en, ie1, . . . , ien) is an orthonormal basis ofCn as a real vector space.
Hence(e1, . . . , en) must be a complex basis ofCn and it is unitary becauseh(ej , ek) =
〈ej , ek〉 − iω0(ej , ek) = δjk . Conversely, if(e1, . . . , en) is a unitary basis ofCn, then the
real span of these vectors is Lagrangian(ω0(ej , ek) = − imh(ej , ek) = 0) and they are
orthonormal(〈ej , ek〉 = reh(ej , ek)= δjk). �

TheLagrangian GrassmannianΛn is the set of all Lagrangian subspaces ofCn. It fol-
lows from part (b) of Lemma 2.17 thatΛn is the set of all subspaces ofCn admitting an
orthonormal basis that is a unitary basis ofCn. Therefore, we have

Λn �U(n)/O(n).

Indeed U(n) acts transitively onΛn: givenW,W ′ ∈Λn with orthonormal bases(e1, . . . , en),
(e′1, . . . , e′n), respectively, there is a unitary transformation ofCn that maps(e1, . . . , en) to
(e′1, . . . , e′n) as unitary bases ofCn. And the stabilizer ofRn ∈Λn is the subgroup of those
unitary transformations that preserve this Lagrangian subspace, namely O(n). It follows
thatΛn is a compact connected manifold of dimensionn(n+1)

2 ; cf. the last example of
Section 1.1.

The Lagrangian Grassmannian comes with atautological vector bundle

τn :=
{
(W,v) ∈Λn ×Cn | v ∈W},

whose fiber overW ∈Λn is then-dimensional real spaceW . It is a consequence of part (a)
of Lemma 2.17 that the following map gives a well-defined global isomorphism of the
complexificationτn⊗R C with the trivial bundleCn overΛn (i.e.,a global trivialization):
(W,v⊗ c) 	→ (W, cv), forW ∈Λn, v ∈W , c ∈C.
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DEFINITION 2.18. ALagrangian immersionof a manifoldX is an immersionf :X→Cn

such thatdfp(TpX) is a Lagrangian subspace of(Cn,ω0), for everyp ∈X.

EXAMPLE. The graph of a maph :Rn → iRn is an embeddedn-dimensional subman-
ifold X of Cn. Its tangent space at(p,h(p)) is {v + dhp(v) | v ∈ Rn}. Let e1, . . . , en
be the standard basis ofRn. Sinceω0(ek + dhp(ek), ej + dhp(ej ))= 〈ek,−i dhp(ej )〉 +
〈ej , i dhp(ek)〉, we see thatX is Lagrangian if and only if∂hk

∂xj
= ∂hj

∂xk
, ∀j, k, which in Rn

is if and only ifh is the gradient of someH :Rn→ iR.

If f :X→Cn is a Lagrangian immersion, we can define aGauss map

λf :X −→ Λn,

p 	−→ dfp(TpX).

Sinceλ∗f τn = TX andτn ⊗ C � Cn, we see that a necessary condition for an immersion
X→ Cn to exist is that the complexification ofTX be trivializable. Using the h-principle
(Section 3.2), Gromov [65] showed that this is also sufficient:an n-dimensional manifold
X admits a Lagrangian immersion intoCn if and only if the complexification of its tangent
bundle is trivializable.

EXAMPLE. For the unit sphereSn = {(t, x) ∈R×Rn: t2 + |x|2 = 1}, theWhitney sphere
immersionis the map

f :Sn −→ Cn,

(t, x) 	−→ x + itx.

The only self-intersection is at the origin wheref (−1,0, . . . ,0) = f (1,0, . . . ,0). Since
T(t,x)S

n = (t, x)⊥, the differentialdf(t,x) : (u, v) 	→ v + i(tv + ux) is always injective:
v + i(tv + ux) = 0⇔ v = 0 andux = 0, but whenx = 0 it is t = ±1 andT(±1,0)S

n =
{0} × Rn, so it must beu = 0. We conclude thatf is an immersion. By computing
ω0 at two vectors of the formv + i(tv + ux), we find that the imagedfp(TpSn) is an
n-dimensional isotropic subspace ofCn. Therefore,f is a Lagrangian immersion ofSn,
and the complexificationT Sn⊗C must be always trivializable, though the tangent bundle
T Sn is only trivializable in dimensionsn= 0,1,3,7.

Thespecial Lagrangian GrassmannianSΛn is the set of allorientedsubspaces ofCn

admitting apositiveorthonormal basis(e1, . . . , en) that is aspecialunitary basis ofCn. By
the characterization of Lagrangian in the part (b) of Lemma 2.17, it follows that the ele-
ments ofSΛn are indeed Lagrangian submanifolds. Similarly to the case of the Lagrangian
Grassmannian, we have that

SΛn � SU(n)/SO(n)

is a compact connected manifold of dimensionn(n+1)
2 − 1.



Symplectic geometry 107

We can single out thespecialLagrangian subspaces by expressing the condition on the
determinant in terms of the realn-form in Cn,

β := imΩ, whereΩ := dz1 ∧ · · · ∧ dzn.

Since forA ∈ SO(n), we have detA = 1 andΩ(e1, . . . , en) =Ω(Ae1, . . . ,Aen), we see
that, for an oriented realn-dimensional subspaceW ⊂Cn, the numberΩ(e1, . . . , en) does
not depend on the choice of a positive orthonormal basis(e1, . . . , en) of W , thus can be
denotedΩ(W) and its imaginary partβ(W).

PROPOSITION2.19. A subspaceW of (Cn,ω0) has an orientation for which it is a special
Lagrangian if and only ifW is Lagrangian andβ(W)= 0.

PROOF. Any orthonormal basis(e1, . . . , en) of a Lagrangian subspaceW ⊂ Cn is the im-
age of the canonical basis ofCn by someA ∈ U(n), andΩ(W)= detA ∈ S1. Therefore,
W admits an orientation for which such apositive(e1, . . . , en) is a specialunitary basis
of Cn if and only if detA=±1, i.e.,β(W)= 0. �

DEFINITION 2.20. Aspecial Lagrangian immersionof an oriented manifoldX is a La-
grangian immersionf :X→Cn such that, at eachp ∈X, the spacedfp(TpX) is a special
Lagrangian subspace of(Cn,ω0).

For a special Lagrangian immersionf , the Gauss mapλf takes values inSΛn.
By Proposition 2.19, the immersionf of ann-dimensional manifoldX in (Cn,ω0) is

special Lagrangianif and only if f ∗ω0 = 0 andf ∗β = 0.

EXAMPLE. In C2, writing zk = xk + iyk , we haveβ = dx1 ∧ dy2 + dy1 ∧ dx2. We have
seen that the graph of the gradienti∇H is Lagrangian, for any functionH :R2 → R.
Sof (x1, x2) = (x1, x2, i

∂H
∂x1
, i ∂H
∂x2
) is a Lagrangian immersion. Forf to be aspecialLa-

grangian immersion, we need the vanish of

f ∗β = dx1 ∧ d
(
∂H

∂x2

)
+ d
(
∂H

∂x1

)
∧ dx2 =

(
∂2H

∂x2
1

+ ∂2H

∂x2
2

)
dx1 ∧ dx2.

Hence the graph of∇H is special Lagrangian if and only ifH is harmonic.

If f :X→ Cn is a special Lagrangian immersion, thenf ∗Ω is an exact (real) volume
form: f ∗Ω = d re(z1dz2 ∧ · · · ∧ dzn). We conclude, by Stokes theorem, that there can be
no special Lagrangian immersion of a compact manifold inCn. Calabi–Yau manifolds21

are more general manifolds where a definition of special Lagrangian submanifold makes
sense and where the space of special Lagrangian embeddings of a compact manifold is
interesting. Special Lagrangian geometry was introduced by Harvey and Lawson [71]. For
a treatment of Lagrangian and special Lagrangian submanifolds with many examples; see,
for instance, [9].

21Calabi–Yau manifoldsare compactKähler manifolds(Section 3.4) with vanishing first Chern class.
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3. Complex structures

3.1. Compatible linear structures

A complex structureon a vector spaceV is a linear mapJ :V → V such thatJ 2 =−Id.
The pair (V ,J ) is then called acomplex vector space.A complex structureJ on V is
equivalent to a structure of vector space overC, the mapJ corresponding to multipli-
cation byi. If (V ,Ω) is a symplectic vector space, a complex structureJ on V is said
to be compatible(with Ω , or Ω-compatible) if the bilinear mapGJ :V × V → R de-
fined byGJ (u, v) =Ω(u,Jv) is an inner product onV . This condition comprisesJ be-
ing a symplectomorphism (i.e.,Ω(Ju,Jv) = Ω(u,v), ∀u,v) and the so-calledtaming:
Ω(u,Ju) > 0, ∀u �= 0.

EXAMPLE. For the symplectic vector space(R2n,Ω0) with symplectic basise1 =
(1,0, . . . ,0), . . . , en, f1, . . . , fn = (0, . . . ,0,1), there is a standard compatible complex
structureJ0 determined byJ0(ej )= fj andJ0(fj )=−ej for all j = 1, . . . , n. This corre-
sponds to a standard identification ofR2n with Cn, andΩ0(u, J0v)= 〈u,v〉 is the standard
Euclidean inner product. With respect to the symplectic basise1, . . . , en, f1, . . . , fn, the
mapJ0 is represented by the matrix[

0 −Id

Id 0

]
.

Thesymplectic linear group, Sp(2n) := {A ∈ GL(2n;R) |Ω0(Au,Av)=Ω0(u, v) for all
u,v ∈R2n}, is the group of all linear transformations ofR2n that preserve the standard sym-
plectic structure. Theorthogonal groupO(2n) is the group formed by the linear transfor-
mationsA that preserve the Euclidean inner product,〈Au,Av〉 = 〈u,v〉, for all u,v ∈R2n.
Thegeneral complex groupGL(n;C) is the group of linear transformationsA :R2n→R2n

commuting withJ0, A(J0v) = J0(Av), for all v ∈ R2n.22 The compatibility between the
structuresΩ0, 〈·, ·〉 andJ0 implies that the intersection ofany twoof these subgroups of
GL(2n;R) is the same group, namely theunitary groupU(n).

As (R2n,Ω0) is the prototype of a 2n-dimensional symplectic vector space, the preced-
ing example shows that compatible complex structures always exist on symplectic vector
spaces.23 There is yet a way to produce acanonicalcompatible complex structureJ after
the choice of an inner productG on (V ,Ω), though the startingG(u,v) is usually different
fromG

J
(u, v) :=Ω(u,Jv).

PROPOSITION3.1. Let (V ,Ω) be a symplectic vector space, with an inner productG.
Then there is a canonical compatible complex structureJ onV .

22Identify the complexn× n matrixX+ iY with the real 2n× 2n matrix
(X −Y
Y X

)
.

23Conversely, given(V ,J ), there is a symplecticΩ with which J is compatible: takeΩ(u,v)=G(Ju,v) for
an inner productG such thatJ t =−J .
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PROOF. By nondegeneracy ofΩ and G, the mapsu 	→ Ω(u, ·) and w 	→ G(w, ·)
are both isomorphisms betweenV and V ∗. Hence,Ω(u,v) = G(Au,v) for some lin-
earA :V → V . The mapA is skew-symmetric, and the productAAt is symmetric24

and positive:G(AAtu,u) = G(Atu,Atu) > 0, for u �= 0. By the spectral theorem,
these properties imply thatAAt diagonalizes with positive eigenvaluesλi , sayAAt =
B diag(λ1, . . . , λ2n) B

−1. We may hence define an arbitrary real power ofAAt by rescal-
ing the eigenspaces, in particular,

√
AAt := B diag(

√
λ1, . . . ,

√
λ2n )B

−1.

The linear transformation
√
AAt is symmetric, positive-definite and does not depend on

the choice ofB nor of the ordering of the eigenvalues. It is completely determined by its
effect on each eigenspace ofAAt : on the eigenspace corresponding to the eigenvalueλk ,
the map

√
AAt is defined to be multiplication by

√
λk .

Let J := (
√
AAt)−1A. SinceA and

√
AAt commute,J is orthogonal(JJ t = Id), as

well as skew-symmetric(J t =−J ). It follows thatJ is a complex structure onV . Com-
patibility is easily checked:

Ω(Ju,Jv)=G(AJu,Jv)=G(JAu,Jv)=G(Au,v)=Ω(u,v)

and

Ω(u,Ju)=G(Au,Ju)=G(−JAu,u)=G(√AAtu,u)> 0, for u �= 0. �

The factorizationA=√
AAt J is called thepolar decompositionof A.

REMARK. Beingcanonical, this construction may besmoothlyperformed: when(Vt ,Ωt )

is a family of symplectic vector spaces with a familyGt of inner products, all depending
smoothly on a parametert , an adaptation of the previous proof shows that there is a smooth
family Jt of compatible complex structures on(Vt ,Ωt ).

Let (V ,Ω) be a symplectic vector space of dimension 2n, and letJ be a complex struc-
ture onV . If J is Ω-compatible andL is a Lagrangian subspace of(V ,Ω), thenJL is
also Lagrangian andJL= L⊥, where⊥ indicates orthogonality with respect to the inner
productG

J
(u, v) = Ω(u,Jv). Therefore, a complex structureJ is Ω-compatibleif and

only if there exists a symplectic basis forV of the form

e1, e2, . . . , en, f1 = Je1, f2 = Je2, . . . , fn = Jen.

LetJ (V ,Ω) be theset of all compatible complex structures in a symplectic vector space
(V ,Ω).

24A mapB :V → V is symmetric, respectivelyskew-symmetric, whenBt = B , respectivelyBt = −B , where
the transposeBt :V → V is determined byG(Btu, v)=G(u,Bv).
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PROPOSITION3.2. The setJ (V ,Ω) is contractible.25

PROOF. Pick a Lagrangian subspaceL0 of (V ,Ω). Let L(V ,Ω,L0) be the space of all
Lagrangian subspaces of(V ,Ω) that intersectL0 transversally. LetG(L0) be the space of
all inner products onL0. The map

Ψ :J (V ,Ω) −→ L(V ,Ω,L0)× G(L0),

J 	−→ (JL0,GJ
|L0)

is a homeomorphism, with inverse as follows. Take(L,G) ∈ L(V ,Ω,L0)× G(L0). For
v ∈ L0, v⊥ = {u ∈ L0 |G(u,v)= 0} is a (n− 1)-dimensional space ofL0; its symplectic
orthogonal(v⊥)Ω is (n+1)-dimensional. Then(v⊥)Ω ∩L is 1-dimensional. LetJv be the
unique vector in this line such thatΩ(v,Jv) = 1. If we takev’s in someG-orthonormal
basis ofL0, this defines an elementJ ∈ J (V ,Ω).

The setL(V ,Ω,L0) can be identified with the vector space of all symmetricn × n

matrices. In fact, anyn-dimensional subspaceL of V that is transverse toL0 is the graph
of a linear mapJL0 → L0, and the Lagrangian ones correspond to symmetric maps (cf.
Section 1.1). Hence,L(V ,Ω,L0) is contractible. SinceG(L0) is contractible (it is even
convex), we conclude thatJ (V ,Ω) is contractible. �

3.2. Compatible almost complex structures

An almost complex structureon a manifoldM is a smooth26 field of complex structures
on the tangent spaces,Jp :TpM→ TpM , p ∈M . The pair(M,J ) is then called analmost
complex manifold.

DEFINITION 3.3. An almost complex structureJ on a symplectic manifold(M,ω) is
compatible(with ω or ω-compatible) if the map that assigns to each pointp ∈ M the
bilinear pairinggp :TpM × TpM → R, gp(u, v) := ωp(u,Jpv) is a Riemannian metric
onM . A triple (ω,g, J ) of a symplectic form, a Riemannian metric and an almost complex
structure on a manifoldM is acompatible triplewheng(·, ·)= ω(·, J ·).

If (ω,J, g) is a compatible triple, each ofω, J or g can be written in terms of the other
two.

EXAMPLES.
1. If we identify R2n with Cn using coordinateszj = xj + iyj , multiplication by i

induces a constant linear mapJ0 on the tangent spaces such thatJ 2
0 = −Id, known

25Contractibilityof J (V ,Ω) means that there exists a homotopyht :J (V ,Ω)→J (V ,Ω), 0� t � 1, starting
at the identityh0 = Id, finishing at a trivial maph1 :J (V ,Ω)→ {J0}, and fixingJ0 (i.e.,ht (J0)= J0, ∀t ) for
someJ0 ∈J (V ,Ω).
26Smoothnessmeans that for any vector fieldv, the imageJv is a (smooth) vector field.
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as thestandard almost complex structureon R2n:

J0

(
∂

∂xj

)
= ∂

∂yj
, J0

(
∂

∂yj

)
=− ∂

∂xj
.

For the standard symplectic formω0 =∑dxj ∧dyj and the Euclidean inner product
g0 = 〈·, ·〉, the compatibility relation holds:ω0(u, v)= g0(J0(u), v).

2. Any oriented hypersurfaceΣ ⊂ R3 carries a natural symplectic form and a natural
compatible almost complex structure induced by the standard inner (or dot) and exte-
rior (or vector) products. They are given by the formulasωp(u, v) := 〈νp,u× v〉 and
Jp(v) = νp × v for v ∈ TpΣ , whereνp is the outward-pointing unit normal vector
at p ∈ Σ (in other words,ν :Σ → S2 is the Gauss map). Cf. Example 3 of Sec-
tion 1.2. The corresponding Riemannian metric is the restriction toΣ of the standard
Euclidean metric〈·, ·〉.

3. The previous example generalizes to the oriented hypersurfacesM ⊂R7. Regarding
u,v ∈ R7 as imaginaryoctonions(or Cayley numbers), the natural vector product
u× v is the imaginary part of the product ofu andv as octonions. This induces a
natural almost complex structure onM given byJp(v) = νp × v, whereνp is the
outward-pointing unit normal vector atp ∈M . In the case ofS6, at least, thisJ is
not compatible with any symplectic form, asS6 cannot be a symplectic manifold.

As a consequence of the remark in Section 3.1, we have:

PROPOSITION3.4. On any symplectic manifold(M,ω)with a Riemannian metricg, there
is a canonical compatible almost complex structureJ .

Since Riemannian metrics always exist, we conclude thatany symplectic manifold has
compatible almost complex structures. The metricg

J
(·, ·) := ω(·, J ·) tends to be different

from the giveng(·, ·).

PROPOSITION3.5. Let(M,J ) be an almost complex manifold whereJ is compatible with
two symplectic formsω0,ω1 Thenω0 andω1 are deformation-equivalent.

PROOF. Simply take the convex combinationsωt = (1− t)ω0 + tω1, 0� t � 1. �

A counterexample to the converse of this proposition is provided by the familyωt =
cosπt dx1 ∧ dy1 + sinπt dx1 ∧ dy2 + sinπt dy1 ∧ dx2 + cosπt dx2 ∧ dy2 for 0 � t � 1.
There is noJ in R4 compatible with bothω0 andω1 =−ω0.

A submanifoldX of an almost complex manifold(M,J ) is analmost complex subman-
ifold whenJ (T X)⊆ TX, i.e., we haveJpv ∈ TpX, ∀p ∈X,v ∈ TpX.

PROPOSITION3.6. Let (M,ω) be a symplectic manifold equipped with a compatible al-
most complex structureJ . Then any almost complex submanifoldX of (M,J ) is a sym-
plectic submanifold of(M,ω).
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PROOF. Let i :X ↪→ M be the inclusion. Theni∗ω is a closed 2-form onX. Since
ωp(u, v) = gp(Jpu, v), ∀p ∈ X, ∀u,v ∈ TpX, and sincegp|TpX is nondegenerate, so is
ωp|TpX, andi∗ω is nondegenerate. �

It is easy to see that thesetJ (M,ω) of all compatible almost complex structures on a
symplectic manifold(M,ω) is path-connected. From two almost complex structuresJ0, J1
compatible withω, we get two Riemannian metricsg0(·, ·)= ω(·, J0·), g1(·, ·)= ω(·, J1·).
Their convex combinations

gt (·, ·)= (1− t)g0(·, ·)+ tg1(·, ·), 0� t � 1,

form a smooth family of Riemannian metrics. Applying the polar decomposition to the
family (ω,gt ), we obtain a smooth path of compatible almost complex structuresJt joining
J0 to J1. The setJ (M,ω) is evencontractible(this is important for defining invariants).
The first ingredient is the contractibility of the set of compatible complex structures on a
vector space (Proposition 3.2). Consider the fiber bundleJ →M with fiber overp ∈M
being the spaceJp := J (TpM,ωp) of compatible complex structures on the tangent space
at p. A compatible almost complex structure on(M,ω) is a section ofJ . The space of
sections ofJ is contractible because the fibers are contractible.27

Thefirst Chern classc1(M,ω) of a symplectic manifold(M,ω) is the first Chern class
of (TM,J ) for any compatibleJ . The classc1(M,ω) ∈H 2(M;Z) is invariant under de-
formations ofω.

We never used the closedness ofω to obtain compatible almost complex structures. The
construction holds for analmost symplectic manifold(M,ω), that is, a pair of a mani-
fold M and a nondegenerate 2-formω, not necessarily closed. We could further work with
asymplectic vector bundle, that is, a vector bundleE→M equipped with a smooth fieldω
of fiberwise nondegenerate skew-symmetric bilinear maps (Section 1.6). The existence of
such a fieldω is equivalent to being able to reduce the structure group of the bundle from
the general linear group to the linear symplectic group. As both Sp(2n) and GL(n;C) re-
tract to their common maximal compact subgroup U(n), a symplectic vector bundle can be
always endowed with a structure of complex vector bundle, and vice-versa.

Gromov showed in his thesis [63] that anyopen28 almost complex manifold admits a
symplectic form. The books [42, §10.2] and [99, §7.3] contain proofs of this statement
using different techniques.

THEOREM 3.7 (Gromov).For an open manifold the existence of an almost complex struc-
ture J implies that of a symplectic formω in any given2-cohomology class and such that
J is homotopic to an almost complex structure compatible withω.

From an almost complex structureJ and a metricg, one builds a nondegenerate 2-form
ω(u, v) = g(Ju, v), which will not be closed in general. Closedness is adifferential re-

27The base being a (second countable and Hausdorff) manifold, a contraction can be produced using a countable
cover by trivializing neighborhoods whose closures are compact subsets of larger trivializing neighborhoods, and
such that eachp ∈M belongs to only a finite number of such neighborhoods.
28A manifold is open if it has no closed connected components, whereclosedmeans compact and without

boundary.
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lation, i.e., a condition imposed on the partial derivatives, encoded as a subset ofjet
space. One says that a differential relation satisfies theh-principle29 if any formal solution
(i.e., a solution for the associated algebraic problem, in the present case a nondegenerate
2-form) is homotopic to aholonomic solution(i.e., a genuine solution, in the present case a
closed nondegenerate 2-form). Therefore, when the h-principle holds, one may concentrate
on a purely topological question (such as the existence of an almost complex structure) in
order to prove the existence of a differential solution. Gromov showed that, for an open
differential relation on an open manifold, when the relation is invariant under the group
of diffeomorphisms of the underlying manifold, the inclusion of the space of holonomic
solutions into the space of formal solutions is a weak homotopy equivalence, i.e., induces
isomorphisms of all homotopy groups. The previous theorem fits here as an application.

Forclosedmanifolds there is no such theorem: as discussed in Section 1.2, the existence
of a 2-cohomology class whose top power is nonzero is also necessary for the existence
of a symplectic form and there are further restrictions coming fromGromov–Witten theory
(see Section 4.5).

3.3. Integrability

Any complex manifold30 has a canonical almost complex structureJ . It is defined lo-
cally over the domainU of a complex chartϕ :U → V ⊆ Cn, by Jp( ∂

∂xj
|p) = ∂

∂yj
|p and

Jp(
∂
∂yj

|p) = − ∂
∂xj

|p , where these are the tangent vectors induced by the real and imag-
inary parts of the coordinates ofϕ = (z1, . . . , zn), zj = xj + iyj . This yields a globally
well-definedJ , thanks to theCauchy–Riemann equationssatisfied by the components of
the transition maps.

An almost complex structureJ on a manifoldM is called integrablewhen J is in-
duced by some underlying structure of complex manifold onM as above. The question
arises whether some compatible almost complex structureJ on a symplectic manifold
(M,ω) is integrable. To understand what is involved, we review Dolbeault theory and the
Newlander–Nirenberg theorem.

Let (M,J ) be a 2n-dimensional almost complex manifold. The fibers of the complexi-
fied tangent bundle,TM ⊗C, are 2n-dimensional vector spaces overC. We may extendJ
linearly toTM ⊗C by J (v ⊗ c)= Jv⊗ c, v ∈ TM , c ∈C. SinceJ 2 =−Id, on the com-
plex vector space(TM⊗C)p the linear mapJp has eigenvalues±i. The(±i)-eigenspaces
of J are denotedT1,0 andT0,1, respectively, and called the spaces ofJ -holomorphicand
of J -anti-holomorphic tangent vectors. We have an isomorphism

(π1,0,π0,1) :TM ⊗C
�−→ T1,0 ⊕ T0,1,

v 	−→ 1

2
(v − iJ v, v + iJ v),

29There are in fact different h-principles depending on the different possible coincidences of homotopy groups
for the spaces of formal solutions and of holonomic solutions.
30A complex manifoldof (complex) dimensionn is a setM with a complete complex atlas{(Uα,Vα,ϕα), α ∈

index setI } whereM =⋃α Uα , theVα ’s are open subsets ofCn, and the mapsϕα :Uα → Vα are bijections such
that the transition mapsψαβ = ϕβ ◦ ϕ−1

α :Vαβ → Vβα arebiholomorphic(i.e., bijective, holomorphic and with
holomorphic inverse) as maps on open subsets ofCn, Vαβ = ϕα(Uα ∩Uβ).
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where the maps to each summand satisfyπ1,0 ◦ J = iπ1,0 andπ0,1 ◦ J =−iπ0,1. Restrict-
ing π1,0 to TM , we see that(TM,J )� T1,0 � T0,1, as complex vector bundles, where the
multiplication byi is given byJ in (TM,J ) and whereT0,1 denotes the complex conjugate
bundle ofT0,1.

Similarly, J ∗ defined onT ∗M⊗C by J ∗ξ = ξ ◦ J has (±i)-eigenspacesT 1,0 = (T1,0)
∗

and T 0,1 = (T0,1)
∗, respectively, called the spaces ofcomplex-linearand of complex-

antilinear cotangent vectors. Under the two natural projectionsπ1,0,π0,1, the complex-
ified cotangent bundle splits as

(
π1,0,π0,1) :T ∗M ⊗C

�−→ T 1,0 ⊕ T 0,1,

ξ 	−→ 1

2
(ξ − iJ ∗ξ, ξ + iJ ∗ξ).

Let

Λk(T ∗M ⊗C) :=Λk(T 1,0 ⊕ T 0,1)= ⊕
�+m=k

Λ�,m,

whereΛ�,m := (Λ�T 1,0) ∧ (ΛmT 0,1), and letΩk(M;C) be the space of sections of
Λk(T ∗M ⊗ C), called complex-valuedk-forms onM . The differential forms of type
(�,m) on (M,J ) are the sections ofΛ�,m, and the space of these differential forms
is denotedΩ�,m. The decomposition of forms by Dolbeault type isΩk(M;C) =⊕

�+m=k Ω�,m. Letπ�,m :Λk(T ∗M⊗C)→Λ�,m be the projection map, where�+m= k.
The usual exterior derivatived (extended linearly to smooth complex-valued forms) com-
posed with two of these projections induces thedel and del-bar differential operators,
∂ and∂̄ , on forms of type(�,m):

∂ := π�+1,m ◦ d :Ω�,m −→Ω�+1,m

and

∂̄ := π�,m+1 ◦ d :Ω�,m −→Ω�,m+1.

If β ∈Ω�,m(M), with k = �+m, thendβ ∈Ωk+1(M;C):

dβ =
∑

r+s=k+1

πr,sdβ = πk+1,0dβ + · · · + ∂β + ∂̄β + · · · + π0,k+1dβ.

In particular, on complex-valued functions we havedf = d(ref )+ i d(imf ) andd =
∂ + ∂̄ , where∂ = π1,0 ◦ d and ∂̄ = π0,1 ◦ d . A function f :M → C is J -holomorphic
at p ∈M if dfp is complex linear, i.e.,dfp ◦ Jp = i dfp (or dfp ∈ T 1,0

p ). A function f
is J -holomorphicif it is holomorphic at allp ∈ M . A function f :M → C is J -anti-
holomorphic atp ∈M if dfp is complex antilinear, i.e.,dfp ◦Jp =−i dfp (or dfp ∈ T 0,1

p ),
that is, when the conjugate function̄f is holomorphic atp ∈ M . In terms of∂ and ∂̄ ,
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a functionf is J -holomorphic if and only if∂̄f = 0, andf is J -anti-holomorphic if and
only if ∂f = 0.

WhenM is a complex manifoldandJ is its canonical almost complex structure, the
splittingΩk(M;C)=⊕�+m=k Ω�,m is particularly interesting. LetU ⊆M be the domain
of a complex coordinate chartϕ = (z1, . . . , zn), where the corresponding real coordinates
x1, y1, . . . , xn, yn satisfyzj = xj + iyj . In terms of

∂

∂zj
:= 1

2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂z̄j
:= 1

2

(
∂

∂xj
+ i ∂

∂yj

)
,

the(±i)-eigenspaces ofJp (p ∈ U ) can be written

(T1,0)p =C-span

{
∂

∂zj

∣∣∣∣
p

: j = 1, . . . , n

}
and (T0,1)p =C-span

{
∂

∂z̄j

∣∣∣∣
p

}
.

Similarly, puttingdzj = dxj + i dyj anddz̄j = dxj − i dyj , we obtain simple formulas
for the differentials of ab ∈ C∞(U;C), ∂b=∑ ∂b

∂zj
dzj and∂̄b=∑ ∂b

∂z̄j
dz̄j , and we have

T 1,0 =C-span{dzj : j = 1, . . . , n} andT 0,1 =C-span{dz̄j : j = 1, . . . , n}. If we use multi-
index notationJ = (j1, . . . , j�) where 1� j1 < · · · < j� � n, |J | = � anddzJ = dzj1 ∧
dzj2 ∧ · · · ∧ dzj� , then the set of(�,m)-forms onU is

Ω�,m =
{ ∑
|J |=�, |K|=m

bJ,K dzJ ∧ dz̄K | bJ,K ∈ C∞(U;C)
}
.

A form β ∈Ωk(M;C) may be written overU as

β =
∑

�+m=k

( ∑
|J |=�, |K|=m

bJ,K dzJ ∧ dz̄K
)
.

Sinced = ∂ + ∂̄ on functions, we get

dβ =
∑

�+m=k

( ∑
|J |=�, |K|=m

dbJ,K ∧ dzJ ∧ dz̄K
)

=
∑

�+m=k

( ∑
|J |=�, |K|=m

∂bJ,K ∧ dzJ ∧ dz̄K︸ ︷︷ ︸
∈Ω�+1,m

+
∑

|J |=�, |K|=m
∂̄bJ,K ∧ dzJ ∧ dz̄K

)
︸ ︷︷ ︸

∈Ω�,m+1

= ∂β + ∂̄β,
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and conclude that,on a complex manifold,d = ∂ + ∂̄ on forms of any degree. This cannot
be proved for an almost complex manifold, because there are no coordinate functionszj to
give a suitable basis of 1-forms.

Whend = ∂ + ∂̄ , for any formβ ∈Ω�,m, we have

0= d2β = ∂2β︸︷︷︸
∈Ω�+2,m

+ ∂∂̄β + ∂̄∂β︸ ︷︷ ︸
∈Ω�+1,m+1

+ ∂̄2β︸︷︷︸
∈Ω�,m+2

&⇒

∂̄2 = 0,
∂∂̄ + ∂̄∂ = 0,
∂2 = 0.

Since∂̄2 = 0, the chain 0−→Ω�,0 ∂̄−→Ω�,1 ∂̄−→Ω�,2 ∂̄−→ · · · is a differential complex.
Its cohomology groups

H
�,m
Dolbeault(M) :=

ker∂̄ :Ω�,m→Ω�,m+1

im ∂̄ :Ω�,m−1 →Ω�,m

are called theDolbeault cohomologygroups. The Dolbeault theorem states that for com-
plex manifoldsH�,m

Dolbeault(M) � Hm(M;O(Ω(�,0))), whereO(Ω(�,0)) is the sheaf of
forms of type(�,0) overM .

It is natural to ask whether the identityd = ∂ + ∂̄ could hold for manifolds other than
complex manifolds. Newlander and Nirenberg [106] showed that the answer is no: for an
almost complex manifold(M,J ), the following are equivalent

M is a complex manifold ⇐⇒ N ≡ 0 ⇐⇒ d = ∂ + ∂̄
⇐⇒ ∂̄2 = 0,

whereN is theNijenhuis tensor:

N (X,Y ) := [JX,JY ] − J [JX,Y ] − J [X,JY ] − [X,Y ],

for vector fieldsX andY onM , [·, ·] being the usual bracket.31 The Nijenhuis tensor can
be thought of as a measure of the existence ofJ -holomorphic functions: if there existn
J -holomorphic functions,f1, . . . , fn, onR2n, that are independent at some pointp, i.e., the
real and imaginary parts of(df1)p, . . . , (dfn)p form a basis ofT ∗

pR2n, thenN vanishes
identically atp. More material related to Dolbeault theory or to the Newlander–Nirenberg
theorem can be found in [23,37,62,76,141].

EXAMPLE. Out of all spheres, onlyS2 and S6 admit almost complex structures [121,
§41.20]. As a complex manifold,S2 if referred to as theRiemann sphereCP1. The almost
complex structure onS6 from Example 3 of Section 3.2 is not integrable, but it is not yet
known whetherS6 admits a structure of complex manifold.

31Thebracketof vector fieldsX andY is the vector field[X,Y ] characterized by the property thatL[X,Y ]f :=
LX(LY f )−LY (LXf ), for f ∈ C∞(M), whereLXf = df (X).
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In the (real) 2-dimensional caseN always vanishes simply becauseN is a tensor, i.e.,
N (fX,gY ) = fgN (X,Y ) for any f,g ∈ C∞(M), andN (X,JX) = 0 for any vector
field X. Combining this with the fact that any orientable surface is symplectic, we con-
clude that any orientable surface is a complex manifold, a result already known to Gauss.
However, most almost complex structures on higher-dimensional manifolds are not inte-
grable. In Section 3.5 we see that the existence of a complex structure compatible with a
symplectic structure on a compact manifold imposes significant topological constraints.

3.4. Kähler manifolds

DEFINITION 3.8. A Kähler manifoldis a symplectic manifold(M,ω) equipped with an
integrable compatible almost complex structureJ . The symplectic formω is then called a
Kähler form.

As a complex manifold, a Kähler manifold(M,ω,J ) has Dolbeault cohomology. As it
is also a symplectic manifold, it is interesting to understand where the symplectic formω

sits with respect to the Dolbeault type decomposition.

PROPOSITION3.9. A Kähler formω is a ∂- and ∂̄-closed(1,1)-form that is given on a
local complex chart(U, z1, . . . , zn) by

ω= i

2

n∑
j,k=1

hjk dzj ∧ dz̄k,

where, at every pointp ∈ U , (hjk(p)) is a positive-definite Hermitian matrix.

In particular,ω defines a Dolbeault(1,1)-cohomology class,[ω] ∈H 1,1
Dolbeault(M).

PROOF. Being a form inΩ2(M;C)=Ω2,0⊕Ω1,1⊕Ω0,2, with respect to a local complex
chart,ω can be written

ω=
∑

ajk dzj ∧ dzk +
∑

bjk dzj ∧ dz̄k +
∑

cjk dz̄j ∧ dz̄k
for someajk, bjk, cjk ∈ C∞(U;C). By the compatibility ofω with the complex struc-
ture,J is a symplectomorphism, that is,J ∗ω= ω where(J ∗ω)(u, v) := ω(Ju,Jv). Since
J ∗ dzj = dzj ◦ J = i dzj andJ ∗ dz̄j = dz̄j ◦ J =−i dz̄j , we haveJ ∗ω = ω if and only
if the coefficientsajk andcjk all vanish identically, that is, if and only ifω ∈Ω1,1. Since
ω is closed, of type(1,1) anddω = ∂ω + ∂̄ω, we must have∂ω = 0 and ∂̄ω = 0. Set
bjk = i

2hjk . Asω is real-valued, i.e.,ω= i
2

∑
hjk dzj ∧dz̄k andω̄=− i

2

∑
hjk dz̄j ∧dzk

coincide, we must havehjk = hkj for all j andk. In other words, at every pointp ∈ U , the
n× n matrix (hjk(p)) is Hermitian. The nondegeneracy amounts to the nonvanishing of

ωn = n!
(
i

2

)n
det(hjk) dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.
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Therefore, at everyp ∈M , the matrix(hjk(p)) must be nonsingular. Finally, the positivity
conditionω(v,Jv) > 0,∀v �= 0, from compatibility, implies that, at eachp ∈ U , the matrix
(hjk(p)) is positive-definite. �

Consequently, ifω0 andω1 are both Kähler forms on a compact manifoldM with
[ω0] = [ω1] ∈ H 2

deRham(M), then(M,ω0) and (M,ω1) are strongly isotopic by Moser’s
Theorem 1.7. Indeedωt = (1− t)ω0 + tω1 is symplectic fort ∈ [0,1], as convex combi-
nations of positive-definite matrices are still positive-definite.

Another consequence is the following recipe for Kähler forms. A smooth real func-
tion ρ on a complex manifoldM is strictly plurisubharmonic(s.p.s.h.) if, on each local

complex chart(U, z1, . . . , zn), the matrix( ∂2ρ
∂zj ∂z̄k

(p)) is positive-definite at allp ∈ U . If

ρ ∈ C∞(M;R) is s.p.s.h., then the form

ω= i

2
∂∂̄ρ

is Kähler. The functionρ is then called a (global)Kähler potential.

EXAMPLE. LetM =Cn �R2n, with complex coordinates(z1, . . . , zn) and corresponding
real coordinates(x1, y1, . . . , xn, yn) via zj = xj + iyj . The function

ρ(x1, y1, . . . , xn, yn)=
n∑
j=1

(
x2
j + y2

j

)=∑ |zj |2 =
∑

zj z̄j

is s.p.s.h. and is a Kähler potential for the standard Kähler form:

i

2
∂∂̄ρ = i

2

∑
j,k

δjk dzj ∧ dz̄k = i

2

∑
j

dzj ∧ dz̄j =
∑
j

dxj ∧ dyj = ω0.

There is a local converse to the previous construction of Kähler forms.

PROPOSITION 3.10. Let ω be a closed real-valued(1,1)-form on a complex mani-
fold M and letp ∈ M . Then on a neighborhoodU of p we haveω = i

2∂∂̄ρ for some
ρ ∈ C∞(U;R).

The proof of this theorem requires holomorphic versions of Poincaré’s lemma, namely,
the local triviality of Dolbeault groups (the fact that any point in a complex manifold admits
a neighborhoodU such thatH�,m

Dolbeault(U)= 0 for allm> 0) and the local triviality of the
holomorphic de Rham groups; see [62].

For a Kählerω, such a local functionρ is called alocal Kähler potential.

PROPOSITION3.11. LetM be a complex manifold, ρ ∈ C∞(M;R) s.p.s.h.,X a complex
submanifold, andi :X ↪→M the inclusion map. Theni∗ρ is s.p.s.h.



Symplectic geometry 119

PROOF. It suffices to verify this locally by considering a complex chart(z1, . . . , zn) forM
adapted toX so thatX is given there by the equationsz1 = · · · = zm = 0. Being a

principal minor of the positive-definite matrix( ∂2

∂zj ∂z̄k
(0, . . . ,0, zm+1, . . . , zn)) the matrix

(
∂2ρ

∂zm+j ∂z̄m+k (0, . . . ,0, zm+1, . . . , zn)) is also positive-definite. �

COROLLARY 3.12. Any complex submanifold of a Kähler manifold is also Kähler.

DEFINITION 3.13. Let (M,ω) be a Kähler manifold,X a complex submanifold, and
i :X ↪→M the inclusion. Then(X, i∗ω) is called aKähler submanifold.

EXAMPLES.
1. Complex vector space(Cn,ω0) whereω0 = i

2

∑
dzj ∧ dz̄j is Kähler. According to

Corollary 3.12, every complex submanifold ofCn is Kähler.
2. In particular,Stein manifoldsare Kähler.Stein manifoldsare the properly embedded

complex submanifolds ofCn. They can be alternatively characterized as being the
Kähler manifolds(M,ω) that admit a global proper Kähler potential, i.e.,ω= i

2∂∂̄ρ

for some proper functionρ :M→R.
3. The functionz 	→ log(|z|2 + 1) on Cn is strictly plurisubharmonic. Therefore the

2-form

ωFS= i

2
∂∂̄ log

(|z|2 + 1
)

is another Kähler form onCn This is called theFubini–Study formon Cn.
4. Let {(Uj ,Cn,ϕj ), j = 0, . . . , n} be the usual complex atlas forcomplex projective

space.32 The formωFS is preserved by the transition maps, henceϕ∗j ωFS andϕ∗kωFS
agree on the overlapUj ∩ Uk . The Fubini–Study formon CPn is the Kähler form
obtained by gluing together theϕ∗j ωFS, j = 0, . . . , n.

5. Consequently, allnonsingular projective varietiesare Kähler submanifolds. Here by
nonsingular we mean smooth, and by projective variety we mean the zero locus of
some collection of homogeneous polynomials.

6. All Riemann surfacesare Kähler, since any compatible almost complex structure is
integrable for dimension reasons (Section 3.3).

32The complex projective spaceCPn is the complexn-dimensional manifold given by the space of complex
lines in Cn+1. It can be obtained fromCn+1 \ {0} by making the identifications(z0, . . . , zn) ∼ (λz0, . . . , λzn)

for all λ ∈ C \ {0}. One denotes by[z0, . . . , zn] the equivalence class of(z0, . . . , zn), and callsz0, . . . , zn the
homogeneous coordinatesof the pointp = [z0, . . . , zn]. (Homogeneous coordinates are, of course, only deter-
mined up to multiplication by a nonzero complex numberλ.) LetUj be the subset ofCPn consisting of all points
p = [z0, . . . , zn] for which zj �= 0. Letϕj :Uj →Cn be the map defined by

ϕj
([z0, . . . , zn])= z0

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn

zj
.

The collection{(Uj ,Cn,ϕj ), j = 0, . . . , n} is theusual complex atlasfor CPn. For instance, the transition map

from (U0,C
n,ϕ0) to (U1,C

n,ϕ1) is ϕ0,1(z1, . . . , zn) = ( 1
z1
,
z2
z1
, . . . ,

zn
z1
) defined from the set{(z1, . . . , zn) ∈

Cn | z1 �= 0} to itself.
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7. The Fubini–Study form on the chartU0 = {[z0, z1] ∈ CP1 | z0 �= 0} of theRiemann
sphereCP1 is given by the formula

ωFS= dx ∧ dy
(x2 + y2 + 1)2

,

where z1
z0
= z = x + iy is the usual coordinate onC. The standard area formωstd=

dθ ∧ dh is induced by regardingCP1 as the unit sphereS2 in R3 (Example 3 of
Section 1.2). Stereographic projection shows thatωFS= 1

4ωstd.
8. Complex toriare Kähler. Complex tori look like quotientsCn/Zn whereZn is a lattice

in Cn. The formω=∑dzj ∧ dz̄j induced by the Euclidean structure is Kähler.
9. Just like products of symplectic manifolds are symplectic, also products of Kähler

manifolds are Kähler.

3.5. Hodge theory

Hodge [73] identified the spaces of cohomology classes of forms with spaces of actual
forms, by pickingtherepresentative from each class that solves a certain differential equa-
tion, namely theharmonicrepresentative. We give a sketch of Hodge’s idea. The first part
makes up ordinary Hodge theory, which works for any compact oriented Riemannian man-
ifold (M,g), not necessarily Kähler.

At a pointp ∈M , let e1, . . . , en be a positively oriented orthonormal basis of the cotan-
gent spaceT ∗

pM , with respect to the induced inner product and orientation. TheHodge
star operatoris the linear operator on the exterior algebra ofT ∗

pM defined by

∗(1)= e1 ∧ · · · ∧ en,
∗(e1 ∧ · · · ∧ en)= 1,

∗(e1 ∧ · · · ∧ ek)= ek+1 ∧ · · · ∧ en.

We see that∗ :Λk(T ∗
pM)→Λn−k(T ∗

pM) and satisfies∗∗ = (−1)k(n−k). Thecodifferential
and theLaplacianare the operators defined by

δ = (−1)n(k+1)+1 ∗ d∗ :Ωk(M)→Ωk−1(M),

�= dδ+ δd :Ωk(M)→Ωk(M).

The operator� is also called theLaplace–Beltrami operatorand satisfies�∗ = ∗�. On

Ω0(Rn)= C∞(Rn), it is simply the usual Laplacian�=−∑n
i=1

∂2

∂x2
i

. The inner product

on formsof any degree,

〈·, ·〉 :Ωk(M)×Ωk(M)−→R, 〈α,β〉 :=
∫
M

α ∧ ∗β,
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satisfies〈dα,β〉 = 〈α, δβ〉, so the codifferentialδ is often denoted byd∗ and called
the adjoint33 of d . Also, � is self-adjoint (i.e.,〈�α,β〉 = 〈α,�β〉), and 〈�α,α〉 =
|dα|2 + |δα|2 � 0, where| · | is the norm with respect to this inner product. Theharmonic
k-formsare the elements ofHk := {α ∈ Ωk | �α = 0}. Note that�α = 0 if and only if
dα = δα = 0. Since a harmonic form isd-closed, it defines a de Rham cohomology class.

THEOREM 3.14 (Hodge).Every de Rham cohomology class on a compact oriented Rie-
mannian manifold(M,g) possesses a unique harmonic representative, i.e., there is an
isomorphismHk � Hk

deRham(M;R). In particular, the spacesHk are finite-dimensional.
We also have the following orthogonal decomposition with respect to the inner product on
forms: Ωk �Hk ⊕�(Ωk(M))�Hk ⊕ dΩk−1 ⊕ δΩk+1.

This decomposition is called theHodge decomposition on forms. The proof of this and
the next theorem involves functional analysis, elliptic differential operators, pseudodiffer-
ential operators and Fourier analysis; see for instance [62,83,141].

Here is wherecomplex Hodge theorybegins. WhenM is Kähler, the Laplacian satisfies
�= 2(∂̄ ∂̄∗ + ∂̄∗∂̄) (see, for example, [62]) and preserves the decomposition according to
type,� :Ω�,m→Ω�,m. Hence, harmonic forms are also bigraded

Hk =
⊕
�+m=k

H�,m

and satisfy a Künneth formulaH�,m(M ×N)�⊕p+r=�, q+s=mHp,q(M)⊗Hr,s(N).

THEOREM 3.15 (Hodge).Every Dolbeault cohomology class on a compact Kähler man-
ifold (M,ω) possesses a unique harmonic representative, i.e., there is an isomorphism
H�,m �H�,m

Dolbeault(M).

Combining the two theorems of Hodge, we find the decomposition of cohomology
groups for a compact Kähler manifold

Hk
deRham(M;C)�

⊕
�+m=k

H
�,m
Dolbeault(M),

known as theHodge decomposition. In particular, the Dolbeault cohomology groups
H
�,m
Dolbeaultare finite-dimensional andH�,m �Hm,�.
Let bk(M) := dimHk

deRham(M) be the usualBetti numbersof M , and leth�,m(M) :=
dimH�,m

Dolbeault(M) be theHodge numbersof M .
For an arbitrary compact symplectic manifold(M,ω), the even Betti numbers must be

positive, becauseωk is closed but not exact(k = 0,1, . . . , n). In fact, if it wereωk = dα,
by Stokes’ theorem we would have

∫
M
ωn = ∫

M
d(α ∧ ωn−k) = 0, which contradictsωn

being a volume form.

33WhenM is not compact, we still have aformal adjointof d with respect to the nondegenerate bilinear pairing
〈·, ·〉 :Ωk(M)×Ωk

c (M)→ R defined by a similar formula, whereΩk
c (M) is the space of compactly supported

k-forms.
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For a compact Kähler manifold(M,ω), there are finer topological consequences coming
from the Hodge theorems, as we must havebk =∑�+m=k h�,m and h�,m = hm,�. The

odd Betti numbers must be even becauseb2k+1 =∑�+m=2k+1h
�,m = 2

∑k
�=0h

�,(2k+1−�).
The numberh1,0 = 1

2b
1 must be a topological invariant. The numbersh�,� are positive,

because 0�= [ω�] ∈ H�,�
Dolbeault(M). First of all, [ω�] defines an element ofH�,�

Dolbeault as
ω ∈Ω1,1 implies thatω� ∈Ω�,�, and the closedness ofω� implies that∂̄ω� = 0. If it were
ω� = ∂̄β for someβ ∈Ω�−1,�, thenωn = ω�∧ωn−� = ∂̄(β∧ωn−�) would be∂̄-exact. But
[ωn] �= 0 inH 2n

deRham(M;C)�Hn,n
Dolbeault(M) since it is a volume form. A popular diagram

to describe relations among Hodge numbers is theHodge diamond:

hn,n

hn,n−1 hn−1,n

hn,n−2 hn−1,n−1 hn−2,n

. . .
... . . .

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

Complex conjugation gives symmetry with respect to the middle vertical, whereas the
Hodge star operator induces symmetry about the center of the diamond. The middle verti-
cal axis is all nonzero.

There are further symmetries and ongoing research on how to computeH
�,m
Dolbeault for

a compact Kähler manifold(M,ω). In particular, thehard Lefschetz theoremstates iso-

morphismsLk :Hn−k
deRham(M)

�−→ Hn+k
deRham(M) given by wedging withωk at the level of

forms and theLefschetz decompositionsHm
deRham(M) �

⊕
k L

k(kerLn−m+2k+1|Hm−2k ).
The Hodge conjectureclaims, for projective manifoldsM (i.e., complex submanifolds
of complex projective space), that the Poincaré duals of elements inH

�,�
Dolbeault(M) ∩

H 2�(M;Q) are rational linear combinations of classes of complex codimension� sub-
varieties ofM . This has been proved only for the� = 1 case (it is the Lefschetz theorem
on (1,1)-classes; see, for instance, [62]).

3.6. Pseudoholomorphic curves

Whereas an almost complex manifold(M,J ) tends to have noJ -holomorphic functions
M → C at all,34 it has plenty ofJ -holomorphic curvesC →M . Gromov first realized
thatpseudoholomorphic curvesprovide a powerful tool in symplectic topology in an ex-
tremely influential paper [64]. Fix a closed Riemann surface(Σ, j), that is, a compact
complex 1-dimensional manifoldΣ without boundary and equipped with the canonical
almost complex structurej .

34However, the study ofasymptoticallyJ -holomorphic functionshas been recently developed to obtain impor-
tant results [32,34,13]; see Section 4.6.
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DEFINITION 3.16. A parametrizedpseudoholomorphic curve(or J -holomorphic curve)
in (M,J ) is a (smooth) mapu :Σ →M whose differential intertwinesj andJ , that is,
dup ◦ jp = Jp ◦ dup, ∀p ∈Σ .

In other words, theCauchy–Riemann equationdu+ J ◦ du ◦ j = 0 holds.
Pseudoholomorphic curves are related to parametrized 2-dimensional symplectic sub-

manifolds. If a pseudoholomorphic curveu :Σ → M is an embedding, then its image
S := u(Σ) is a 2-dimensional almost complex submanifold, hence a symplectic submani-
fold. Conversely, the inclusioni :S ↪→M of a 2-dimensional symplectic submanifold can
be seen as a pseudoholomorphic curve. An appropriate compatible almost complex struc-
ture J on (M,ω) can be constructed starting fromS, such thatT S is J -invariant. The
restrictionj of J to T S is necessarily integrable becauseS is 2-dimensional.

The groupG of complex diffeomorphisms of(Σ, j) acts on (parametrized) pseudo-
holomorphic curves by reparametrization:u 	→ u◦γ , for γ ∈G. This normally means that
each curveu has a noncompact orbit underG. The orbit spaceMg(A,J ) is the set of
unparametrized pseudoholomorphic curves in(M,J ) whose domainΣ has genusg and
whose imageu(Σ) has homology classA ∈H2(M;Z). The spaceMg(A,J ) is called the
moduli space of unparametrized pseudoholomorphic curvesof genusg representing the
classA. For genericJ , Fredholm theory shows that pseudoholomorphic curves occur in
finite-dimensional smooth families, so that the moduli spacesMg(A,J ) can be manifolds,
after avoiding singularities given bymultiple coverings.35

EXAMPLE. Usually Σ is the Riemann sphereCP1, whose complex diffeomorphisms
are those given byfractional linear transformations(or Möbius transformations). So
the 6-dimensional noncompact group of projective linear transformations PSL(2;C) acts
on pseudoholomorphic spheresby reparametrizationu 	→ u ◦ γA, whereA = [ a b

c d

] ∈
PSL(2;C) acts byγA :CP1 →CP1, γA[z,1] = [ az+b

cz+d ,1].

WhenJ is an almost complex structurecompatiblewith a symplectic formω, the area of
the image of a pseudoholomorphic curveu (with respect to the metricg

J
(·, ·)= ω(·, J ·))

is determined by the classA that it represents. The number

E(u) := ω(A)=
∫
Σ

u∗ω= area of the image ofu with respect togJ

is called theenergyof the curveu and is a topological invariant: it only depends on[ω]
and on the homotopy class ofu. Gromov proved that the constant energy of all the pseudo-
holomorphic curves representing a homology classA ensured that the spaceMg(A,J ),
though not necessarily compact, had naturalcompactificationsMg(A,J ) by including
what he calledcusp-curves.

THEOREM 3.17 (Gromov’s compactness theorem).If (M,ω) is a compact manifold
equipped with a generic compatible almost complex structureJ , and if uj is a sequence

35A curveu :Σ→M is amultiple coveringif u factors asu= u′ ◦ σ whereσ :Σ→Σ ′ is a holomorphic map
of degree greater than 1.
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of pseudoholomorphic curves inMg(A,J ), then there is a subsequence that weakly con-
verges to a cusp-curve inMg(A,J ).

Hence the cobordism class of the compactified moduli spaceMg(A,J ) might be a nice
symplectic invariant of(M,ω), as long as it is not empty or null-cobordant. Actually a
nontrivial regularity criterion forJ ensures the existence of pseudoholomorphic curves.
And even whenMg(A,J ) is null-cobordant, we can define an invariant to be the (signed)
number of pseudoholomorphic curves of genusg in classA that intersect a specified set of
representatives of homology classes inM [112,128,145]. For more on pseudoholomorphic
curves; see, for instance, [100] (for a comprehensive discussion of the genus 0 case) or [11]
(for higher genus). Here is a selection of applications of (developments from) pseudoholo-
morphic curves:
• Proof of thenonsqueezing theorem[64]: for R > r there is no symplectic embedding

of a ballB2n
R of radiusR into a cylinderB2

r ×R2n−2 of radiusr , both in(R2n,ω0).
• Proof that there areno Lagrangian spheresin (Cn,ω0), except for the circle inC2,

and more generallyno compact exact Lagrangian submanifolds, in the sense that the
tautological 1-formα restricts to an exact form [64].

• Proof that if (M,ω) is a connected symplectic 4-manifold symplectomorphic to
(R4,ω0) outside a compact set and containing no symplecticS2’s, then(M,ω) sym-
plectomorphic to(R4,ω0) [64].

• Study questions ofsymplectic packing[15,98,134] such as: for a given 2n-dimensional
symplectic manifold(M,ω), what is the maximal radiusR for which there is a sym-
plectic embedding ofN disjoint ballsB2n

R into (M,ω)?
• Study groups of symplectomorphismsof 4-manifolds (for a review see [97]). Gro-

mov [64] showed that Sympl(CP2,ωFS) and Sympl(S2× S2,pr∗1σ ⊕ pr∗2σ) deforma-
tion retract onto the corresponding groups of standard isometries.

• Development ofGromov–Witten invariantsallowing to prove, for instance, the nonex-
istence of symplectic forms onCP2 # CP2 # CP2 or the classification of symplectic
structures onruled surfaces(Section 4.3).

• Development ofFloer homologyto prove the Arnold conjecture on the fixed points
of symplectomorphisms of compact symplectic manifolds, or on the intersection of
Lagrangian submanifolds (Section 5.2).

• Development ofsymplectic field theoryintroduced by Eliashberg, Givental and
Hofer [40] extending Gromov–Witten theory, exhibiting a rich algebraic structure and
also with applications tocontact geometry.

4. Symplectic geography

4.1. Existence of symplectic forms

The utopian goal of symplectic classification addresses the standard questions:
• (Existence) Which manifolds carry symplectic forms?
• (Uniqueness) What are the distinct symplectic structures on a given manifold?
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symplectic

even-dimensional orientable

Kähler

almost complex

complex

Fig. 1.

Existence is tackled through central examples in this subsection and symplectic con-
structions in the next two sections. Uniqueness is treated in the remainder of this subsection
dealing with invariants that allow to distinguish symplectic manifolds.

A Kähler structure naturally yields both a symplectic form and a complex structure
(compatible ones). Either a symplectic or a complex structure on a manifold implies the
existence of an almost complex structure. Figure 1 represents the relations among these
structures. In dimension 2, orientability trivially guarantees the existence of all other struc-
tures, so the picture collapses. In dimension 4, the first interesting dimension, the picture
above is faithful—we will see that there areclosed4-dimensional examples in each region.
Closedhere means compact and without boundary.

Not all 4-dimensional manifolds are almost complex. A result of Wu [146] gives a nec-
essary and sufficient condition in terms of the signatureσ and the Euler characteristic
χ of a 4-dimensional closed manifoldM for the existence of an almost complex struc-
ture: 3σ + 2χ = h2 for someh ∈ H 2(M;Z) congruent with the second Stiefel–Whitney
classw2(M) modulo2. For example,S4 and(S2 × S2) #(S2 × S2) are not almost com-
plex. When an almost complex structure exists, the first Chern class of the tangent bundle
(regarded as a complex vector bundle) satisfies the condition forh. The sufficiency of Wu’s
condition is the remarkable part.36

According to Kodaira’s classification of closed complex surfaces [82], such a surface
admits a Kähler structure if and only if its first Betti numberb1 is even. The necessity of this
condition is a Hodge relation on the Betti numbers (Section 3.5). The complex projective
planeCP2 with the Fubini–Study form (Section 3.4) might be called the simplest example
of a closed Kähler 4-manifold.

The Kodaira–Thurston example[131] first demonstrated that a manifold that admits
both a symplectic and a complex structure does not have to admit any Kähler structure.

36Moreover, such solutionsh are in one-to-one correspondence withisomorphismclasses of almost complex
structures.
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even-dimensional and simply connected

almost complex (and simply connected)

symplectic (and simply connected)

complex (and simply connected)

Fig. 2.

Take R4 with dx1 ∧ dy1 + dx2 ∧ dy2, andΓ the discrete group generated by the four
symplectomorphisms:

(x1, x2, y1, y2) 	−→ (x1 + 1, x2, y1, y2),

(x1, x2, y1, y2) 	−→ (x1, x2 + 1, y1, y2),

(x1, x2, y1, y2) 	−→ (x1, x2 + y2, y1 + 1, y2),

(x1, x2, y1, y2) 	−→ (x1, x2, y1, y2 + 1).

ThenM =R4/Γ is a symplectic manifold that is a 2-torus bundle over a 2-torus. Kodaira’s
classification [82] shows thatM has a complex structure. However,π1(M) = Γ , hence
H1(R4/Γ ;Z)= Γ/[Γ,Γ ] has rank 3, sob1 = 3 is odd.

Fernández–Gotay–Gray [44] first exhibited symplectic manifolds that do not admit any
complex structure at all. Their examples are circle bundles over circle bundles (i.e., atower
of circle bundles) over a 2-torus.

TheHopf surfaceis the complex surface diffeomorphic toS1 × S3 obtained as the quo-
tient C2 \ {0}/Γ whereΓ = {2nId | n ∈ Z} is a group ofcomplextransformations, i.e., we
factor C2 \ {0} by the equivalence relation(z1, z2) ∼ (2z1,2z2). The Hopf surface is not
symplectic becauseH 2(S1 × S3)= 0.

The manifoldCP2 # CP2 # CP2 is almost complex but is neither complex (since it
does not fit Kodaira’s classification [82]), nor symplectic as shown by Taubes [126] us-
ing Seiberg–Witten invariants (Section 4.5).

We could go through the previous discussion restricting to closed 4-dimensional exam-
pleswith a specific fundamental group. We will do this restricting to simply connected
examples, where Figure 2 holds.

It is a consequence of Wu’s result [146] that a simply connected manifold admits an
almost complex structure if and only ifb+2 is odd.37 In particular, the connected sum

37Theintersection formof an orientedtopologicalclosed 4-manifoldM is the bilinear pairingQM :H2(M;Z)×
H2(M;Z)→ Z, QM(α,β) := 〈α ∪ β, [M]〉, whereα ∪ β is thecup productand[M] is thefundamental class.



Symplectic geometry 127

#mCP2 #nCP2 (ofm copies ofCP2 with n copies ofCP2) has an almost complex structure
if and only ifm is odd.38

By Kodaira’s classification [82], a simply connected complex surface always admits a
compatible symplectic form (sinceb1 = 0 is even), i.e., it is always Kähler.

Since they are simply connected,S4, CP2 # CP2 # CP2 andCP2 live in three of the four
regions in the picture for simply connected examples. All ofCP2 #mCP2 are also simply
connected Kähler manifolds because they arepointwise blow-upsCP2 and theblow-down
mapis holomorphic; see Section 4.3.

There is a family of manifolds obtained fromCP2 #9 CP2 =:E(1) by aknot surgery[45]
that were shown by Fintushel and Stern to be symplectic and confirmed not to admit a
complex structure [109]. The first example of a closed simply connected symplectic man-
ifold that cannot be Kähler, was a 10-dimensional manifold obtained by McDuff [94] as
follows. The Kodaira–Thurston exampleR4/Γ (not simply connected) embeds symplec-
tically in (CP5,ωFS) [65,132]. McDuff’s example is ablow-upof (CP5,ωFS) along the
image ofR4/Γ .

Geography problemsare problems on the existence of simply connected closed oriented
4-dimensional manifolds with some additional structure (such as, a symplectic form or
a complex structure) for each pair oftopological coordinates. As a consequence of the
work of Freedman [51] and Donaldson [30] in the 80’s, it became known that the homeo-
morphism class of a connected simply connected closed orientedsmooth4-manifold is
determined by the two integers—the second Betti number and the signature(b2, σ )—
and theparity39 of the intersection form. Forgetting about the parity, the numbers(b2, σ )

can be treated astopological coordinates. For each pair(b2, σ ) there could well be in-
finite different (i.e., nondiffeomorphic) smooth manifolds. Using Riemannian geometry,
Cheeger [22] showed that there are at mostcountably manydifferent smooth types for
closed 4-manifolds. There are no known finiteness results for the smooth types of a given
topological 4-manifold, in contrast to other dimensions.

Traditionally, the numbers used are(c2
1, c2) := (3σ + 2χ,χ)= (3σ + 4+ 2b2,2+ b2),

and frequently just theslopec2
1/c2 is considered. IfM admits an almost complex struc-

tureJ , then(TM,J ) is a complex vector bundle, hence has Chern classesc1 = c1(M,J )

and c2 = c2(M,J ). Both c2
1 := c1 ∪ c1 and c2 may be regarded as numbers since

H 4(M;Z)� Z. They satisfyc2
1 = 3σ+2χ (by Hirzebruch’s signature formula) andc2 = χ

(because the top Chern class is always the Euler class), justifying the notation for the topo-
logical coordinates in this case.

SinceQM always vanishes on torsion elements, descending toH2(M;Z)/torsion it can be represented by a ma-
trix. WhenM is smooth and simply connected, this pairing isQM(α,β) :=

∫
M α ∧ β since nontorsion elements

are representable by 2-forms. AsQM is symmetric (in the smooth case, the wedge product of 2-forms is symmet-
ric) and unimodular (the determinant of a matrix representingQM is±1 by Poincaré duality), it is diagonalizable
overR with eigenvalues±1. We denote byb+2 (respectivelyb−2 ) the number of positive (respectively negative)
eigenvalues ofQM counted with multiplicities, i.e., the dimension of a maximal subspace whereQM is positive-
definite (respectively negative-definite). Thesignatureof M is the differenceσ := b+2 − b−2 , whereas the second

Betti number is the sumb2 = b+2 + b−2 , i.e., therank of QM . Thetypeof an intersection form isdefiniteif it is
positive or negative definite (i.e.,|σ | = b2) andindefiniteotherwise.
38The intersection form of a connected sumM0 #M1 is (isomorphic to)QM0 ⊕QM1.
39We say that theparity of an intersection formQM is evenwhenQM(α,α) is even for allα ∈H2(M;Z), and

oddotherwise.
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EXAMPLES. The manifoldCP2 has (b2, σ ) = (1,1), i.e., (c2
1, c2) = (9,3). Reversing

the orientationCP2 has (b2, σ ) = (1,−1), i.e., (c2
1, c2) = (3,3). Their connected sum

CP2 # CP2 has (b2, σ ) = (2,0), i.e., (c2
1, c2) = (8,0). The productS2 × S2 also has

(b2, σ ) = (2,0), i.e., (c2
1, c2) = (8,4). But CP2 # CP2 has anodd intersection form

whereasS2 × S2 has anevenintersection form:
[ 1 0

0 −1

]
vs.
[ 0 1

1 0

]
.

Symplectic geography[60,122] addresses the following question: What is the set of pairs
of integers(m,n) ∈ Z×Z for which there exists a connected simply connected closedsym-
plectic4-manifoldM having second Betti numberb2(M) = m and signatureσ(M)= n?
This problem includes the usual geography of simply connected complex surfaces, since
all such surfaces are Kähler according to Kodaira’s classification [82]. Often, instead of
the numbers(b2, σ ), the question is equivalently phrased in terms of the Chern numbers
(c2

1, c2) for a compatible almost complex structure, which satisfyc2
1 = 3σ + 2χ [146] and

c2 = χ , whereχ = b2 + 2 is theEuler number. Usually onlyminimal (Section 4.3) or
irreduciblemanifolds are considered to avoid trivial examples. A manifold isirreducible
when it is not a connected sum of other manifolds, except when one of the summands is a
homotopy sphere.

It was speculated that perhaps any simply connected closed smooth 4-manifold other
thanS4 is diffeomorphic to a connected sum of symplectic manifolds, where any orien-
tation is allowed on each summand (the so-calledminimal conjecturefor smooth 4-mani-
folds). Szabó [124,125] provided counterexamples in a family of irreducible simply con-
nected closed nonsymplectic smooth 4-manifolds.

All these problems could be posed for other fundamental groups. Gompf [57] usedsym-
plectic sums(Section 4.2) to prove the following theorem. He also proved that his surgery
construction can be adapted to producenon-Kähler examples. Since finitely-presented
groups are not classifiable, this shows that compact symplectic 4-manifold are not clas-
sifiable.

THEOREM 4.1 (Gompf). Every finitely-presented group occurs as the fundamental group
π1(M) of a compact symplectic 4-manifold(M,ω).

4.2. Fibrations and sums

Products of symplectic manifolds are naturally symplectic. As we will see, special kinds
of twisted products, i.e., fibrations,40 are also symplectic.

40A fibration (or fiber bundle) is a manifoldM (called thetotal space) with a submersionπ :M→X to a man-
ifold X (the base) that is locally trivial in the sense that there is an open covering ofX, such that, to each set
U in that covering corresponds a diffeomorphism of the formϕU = (π, sU ) :π−1(U)→ U × F (a local trivial-
ization) whereF is a fixed manifold (themodel fiber). A collection of local trivializations such that the setsU
coverX is called atrivializing coverfor π . Given two local trivializations, the second entry of the composition
ϕV ◦ ϕ−1

U = (id,ψUV ) on (U ∩ V)× F gives the correspondingtransition functionψUV (x) :F → F at each
x ∈ U ∩V .
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DEFINITION 4.2. A symplectic fibrationis a fibrationπ :M → X where the model fiber
is a symplectic manifold(F,σ ) and with a trivializing cover for which all the transition
functions are symplectomorphismsF → F .

In a symplectic fibration eachfiber π−1(x) carries acanonical symplectic formσx de-
fined by the restriction ofs∗Uσ , for any domainU of a trivialization coveringx (i.e.,x ∈ U ).
A symplectic formω on the total spaceM of a symplectic fibration is calledcompatible
with the fibration if each fiber(π−1(x), σx) is a symplectic submanifold of(M,ω), i.e.,σx
is the restriction ofω to π−1(x).

EXAMPLES.
1. Every compact oriented41 fibration whose model fiberF is an oriented surface

admits a structure of symplectic fibrationfor the following reason. Letσ0 be an
area form onF . Each transition functionψUV (x) :F → F pulls σ0 back to a
cohomologous area formσ1 (depending onψUV (x)). Convex combinationsσt =
(1− t)σ0 + tσ1 give a path of area forms fromσ0 to σ1 with constant class[σt ]. By
Moser’s argument (Section 1.4), there exists a diffeomorphismρ(x) :F → F isotopic
to the identity, depending smoothly onx ∈ U ∩V , such thatψUV (x) ◦ ρ(x) is a sym-
plectomorphism of(F,σ0). By successively adjusting local trivializations for a finite
covering of the base, we can make all transition functions into symplectomorphisms.

2. Every fibration with connected base and compact fibers having a symplectic form
ω for which all fibers are symplectic submanifolds admits a structure of symplectic
fibration compatible withω. Indeed, under trivializations, the restrictions ofω to the
fibers give cohomologous symplectic forms in the model fiberF . So by Moser’s
Theorem 1.7, all fibers are strongly isotopic to(F,σ ) whereσ is the restriction ofω
to a chosen fiber. These isotopies can be used to produce a trivializing cover where
eachsU (x) is a symplectomorphism.

In the remainder of this subsection, assume that for a fibrationπ :M→X the total space
is compact and the base is connected. For the existence of a compatible symplectic form on
a symplectic fibration, a necessary condition is the existence of a cohomology class inM

that restricts to the classes of the fiber symplectic forms. Thurston [131] showed that, when
the base admits also a symplectic form, this condition is sufficient. Yet not all symplectic
fibrations with a compatible symplectic form have a symplectic base [138].

THEOREM 4.3 (Thurston).Let π :M → X be a compact symplectic fibration with con-
nected symplectic base(X,α) and model fiber(F,σ ). If there is a class[ν] ∈ H 2(M)

pulling back to[σ ], then, for sufficiently largek > 0, there exists a symplectic formωk
onM that is compatible with the fibration and is in[ν + kπ∗α].

PROOF. We first find a formτ onM in the class[ν] that restricts to the canonical sym-
plectic form on each fiber. Pick a trivializing cover{ϕi = (π, si) | i ∈ I } with contractible

41An oriented fibrationis a fibration whose model fiber is oriented and there is a trivializing cover for which all
transition functions preserve orientation.
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domainsUi . Let ρi , i ∈ I , be a partition of unity subordinate to this covering and let
ρ̃i := ρi ◦ π :M → R. Since[ν] always restricts to the class of the canonical symplec-
tic form [σx], and theUi ’s are contractible, on eachπ−1

i (Ui ) the formss∗i σ − ν are exact.
Choose 1-formsλi such thats∗i σ = ν + dλi , and set

τ := ν +
∑
i∈I

d(ρ̃iλi).

Sinceτ is nondegenerate on the (vertical) subbundle given by the kernel ofdπ , for k > 0
large enough the formτ + kπ∗α is nondegenerate onM . �

COROLLARY 4.4. Let π :M → X be a compact oriented fibration with connected sym-
plectic base(X,α) and model fiber an oriented surfaceF of genusg(F ) �= 1. Thenπ
admits a compatible symplectic form.

PROOF. By Example 1 above,π :M→X admits a structure of symplectic fibration with
model fiber(F,σ ). Since the fiber is not a torus(g(F ) �= 1), the Euler class of the tangent
bundleT F (which coincides withc1(F,σ )) is λ[σ ] for someλ �= 0. Hence, the first Chern
class[c] of thevertical subbundle given by the kernel ofdπ (assembling the tangent bun-
dles to the fibers) restricts toλ[σx] on the fiber overx ∈ X. We can apply Theorem 4.3
using the class[ν] = λ−1[c]. �

A pointwise connected sumM0 #M1 of symplectic manifolds(M0,ω0) and(M1,ω1)

tends to not admit a symplectic form, even if we only require the eventual symplectic form
to be isotopic toωi on eachMi minus a ball. The reason [7] is that such a symplectic form
onM0 #M1 would allow to construct an almost complex structure on the sphere formed
by the union of the two removed balls, which is known not to exist except onS2 andS6.
Therefore:

PROPOSITION4.5. Let (M0,ω0) and (M1,ω1) be two compact symplectic manifolds of
dimension not2 nor 6. Then the connected sumM0 #M1 does not admit any symplectic
structure isotopic toωi onMi minus a ball, i = 1,2.

For connected sums to work in the symplectic category, they should be done along
codimension 2 symplectic submanifolds. The following construction, already mentioned
in [65], was dramatically explored and popularized by Gompf [57] (he used it to prove
Theorem 4.1). Let(M0,ω0) and(M1,ω1) be two 2n-dimensional symplectic manifolds.
Suppose that a compact symplectic manifold(X,α) of dimension 2n − 2 admits sym-
plectic embeddings to bothi0 :X ↪→ M0, i1 :X ↪→ M1. For simplicity, assume that the
corresponding normal bundles are trivial (in general, they need to have symmetric Euler
classes). By the symplectic neighborhood theorem (Theorem 1.11), there exist symplec-
tic embeddingsj0 :X × Bε →M0 andj1 :X × Bε →M1 (called framings) whereBε is
a ball of radiusε and centered at the origin inR2 such thatj∗k ωk = α + dx ∧ dy and
jk(p,0)= ik(p), ∀p ∈X, k = 0,1. Chose an area- and orientation-preserving diffeomor-
phismφ of the annulusBε \ Bδ for 0< δ < ε that interchanges the two boundary compo-
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nents. LetUk = jk(X × Bδ)⊂Mk , k = 0,1. A symplectic sumof M0 andM1 alongX is
defined to be

M0 #XM1 := (M0 \ U0)∪φ (M1 \ U1),

where the symbol∪φ means that we identifyj1(p, q) with j0(p,φ(q)) for all p ∈ X
and δ < |q| < ε. As ω0 andω1 agree on the regions under identification, they induce a
symplectic form onM0 #XM1. The result depends onj0, j1, δ andφ.

Rational blow-downis a surgery on 4-manifolds that replaces a neighborhood of a chain
of embeddedS2’s with boundary alens spaceL(n2, n− 1) by a manifold with the same
rational homology as a ball. This simplifies the homology possibly at the expense of com-
plicating the fundamental group. Symington [123] showed that rational blow-down pre-
serves a symplectic structure if the original spheres are symplectic surfaces in a symplectic
4-manifold.

4.3. Symplectic blow-up

Symplectic blow-upis the extension to the symplectic category of the blow-up operation
in algebraic geometry. It is due to Gromov according to the first printed exposition of this
operation in [94].

LetL be thetautological line bundleoverCPn−1, that is,

L= {([p], z) | p ∈Cn \ {0}, z= λp for someλ ∈C
}

with projection toCPn−1 given byπ : ([p], z) 	→ [p]. The fiber ofL over the point[p] ∈
CPn−1 is the complex line inCn represented by that point. Theblow-up of Cn at the
origin is the total space of the bundleL, sometimes denoted̃Cn. The correspondingblow-
down mapis the mapβ :L→ Cn defined byβ([p], z) = z. The total space ofL may be
decomposed as the disjoint union of two sets: the zero section

E := {([p],0) | p ∈Cn \ {0}}
and

S := {([p], z) | p ∈Cn \ {0}, z= λp for someλ ∈C∗}.
The setE is called theexceptional divisor; it is diffeomorphic toCPn−1 and gets mapped
to the origin byβ. On the other hand, the restriction ofβ to the complementary setS is
a diffeomorphism ontoCn \ {0}. Hence, we may regardL as being obtained fromCn by
smoothly replacing the origin by a copy ofCPn−1. Every biholomorphic mapf :Cn→Cn

with f (0)= 0 lifts uniquely to a biholomorphic map̃f :L→ L with f̃ (E)= E. The lift
is given by the formula

f̃
([p], z)= {([f (z)], f (z)) if z �= 0,

([p],0) if z= 0.
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There are actions of the unitary group U(n) onL, E andS induced by the standard linear
action onCn, and the mapβ is U(n)-equivariant. For instance,β∗ω0 + π∗ωFS is a U(n)-
invariant Kähler form onL.

DEFINITION 4.6. Ablow-up symplectic formon the tautological line bundleL is a U(n)-
invariant symplectic formω such that the differenceω − β∗ω0 is compactly supported,
whereω0 = i

2

∑n
k=1dzk ∧ dz̄k is the standard symplectic form onCn.

Two blow-up symplectic forms areequivalentif one is the pullback of the other by
a U(n)-equivariant diffeomorphism ofL. Guillemin and Sternberg [69] showed that two
blow-up symplectic forms are equivalent if and only if they have equal restrictions to the
exceptional divisorE ⊂ L. Let Ωε (ε > 0) be the set of all blow-up symplectic forms
on L whose restriction to the exceptional divisorE � CPn−1 is εωFS, whereωFS is the
Fubini–Study form (Section 3.4). Anε-blow-upof Cn at the origin is a pair(L,ω) with
ω ∈Ωε.

Let (M,ω) be a 2n-dimensional symplectic manifold. It is a consequence of Dar-
boux’s theorem (Theorem 1.9) that, for each pointp ∈M , there exists a complex chart
(U, z1, . . . , zn) centered atp and with image inCn whereω|U = i

2

∑n
k=1dzk ∧ dz̄k . It is

shown in [69] that, forε small enough, we can perform anε-blow-up ofM atp modeled
onCn at the origin, without changing the symplectic structure outside of a small neighbor-
hood ofp. The resulting manifold is called anε-blow-up ofM at p. As a manifold, the
blow-up ofM at a point is diffeomorphic to theconnected sum42 M # CPn, whereCPn is
the manifoldCPn equipped with the orientation opposite to the natural complex one.

EXAMPLE. Let P(L⊕ C) be theCP1-bundle overCPn−1 obtained by projectivizing the
direct sum of the tautological line bundleL with a trivial complex line bundle. Consider
the map

β :CP(L⊕C) −→ CPn,([p], [λp :w]) 	−→ [λp :w],

where[λp :w] on the right represents a line inCn+1, forgetting that, for each[p] ∈CPn−1,
that line sits in the 2-complex-dimensional subspaceL[p] ⊕ C ⊂ Cn ⊕ C. Notice thatβ
maps theexceptional divisor

E := {([p], [0 : . . . : 0 : 1]) | [p] ∈CPn−1}�CPn−1

to the point[0 : . . . : 0 : 1] ∈CPn, andβ is a diffeomorphism on the complement

S := {([p], [λp :w]) | [p] ∈CPn−1, λ ∈C∗, w ∈C
}�CPn \ {[0 : . . . : 0 : 1]}.

42Theconnected sumof two orientedm-dimensional manifoldsM0 andM1 is the manifold, denotedM0 #M1,
obtained from the union of those manifolds each with a small ball removedMi \Bi by identifying the boundaries
via a (smooth) mapφ : ∂B1 → ∂B2 that extends to an orientation-preserving diffeomorphism of neighborhoods
of ∂B1 and∂B2 (interchanging the inner and outer boundaries of the annuli).
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Therefore, we may regardCP(L⊕C) as being obtained fromCPn by smoothly replacing
the point[0 : . . . : 0 : 1] by a copy ofCPn−1. The spaceCP(L ⊕ C) is the blow-up of
CPn at the point[0 : . . . : 0 : 1], andβ is the corresponding blow-down map. The manifold
CP(L⊕C) for n= 2 is aHirzebruch surface.

When(CPn−1,ωFS) is symplectically embedded in a symplectic manifold(M,ω) with
imageX and normal bundle isomorphic to the tautological bundleL, it can be subject to
a blow-downoperation. By the symplectic neighborhood theorem (Theorem 1.11), some
neighborhoodU ⊂M of the imageX is symplectomorphic to a neighborhoodU0 ⊂ L of
the zero section. It turns out that some neighborhood of∂U0 in L is symplectomorphic to
a spherical shell in(Cn,ω0). Theblow-down ofM alongX is a manifold obtained from
the union ofM \ U with a ball inCn. For more details, see [99, §7.1].

Following algebraic geometry, we callminimala 2n-dimensional symplectic manifold
(M,ω) without any symplectically embedded(CPn−1,ωFS), so that(M,ω) is not the
blow-up at a point of another symplectic manifold. In dimension 4, a manifold is mini-
mal if it does not contain any embedded sphereS2 with self-intersection−1. Indeed, by
the work of Taubes [126,129], if such a sphereS exists, then either the homology class
[S] or its symmetric−[S] can be represented by asymplecticallyembedded sphere with
self-intersection−1.

For a symplectic manifold(M,ω), let i :X ↪→M be the inclusion of a symplectic sub-
manifold. The normal bundleNX toX in M admits a structure of complex vector bundle
(as it is a symplectic vector bundle). LetP(NX)→X be the projectivization of the bundle
NX→ X, let Z be the zero section ofNX, let L(NX) be the correspondingtautologi-
cal line bundle(given by assembling the tautological line bundles over each fiber) and let
β :L(NX)→NX be the blow-down map. On theexceptional divisor

E := {([p],0) ∈ L(NX) | p ∈NX \Z}� P(NX)

the mapβ is just projection to the zero sectionZ. The restriction ofβ to the comple-
mentL(NX) \E is a diffeomorphism toNX \Z. Hence,L(NX) may be viewed as being
obtained fromNX by smoothly replacing each point of the zero section by the projec-
tivization of its normal space. We symplectically identify some tubular neighborhoodU
of X in M with a tubular neighborhoodU0 of the zero sectionZ in NX. A blow-up of
the symplectic manifold(M,ω) along the symplectic submanifoldX is the manifold ob-
tained from the union ofM \ U andβ−1(U0) by identifying neighborhoods of∂U , and
equipped with a symplectic form that restricts toω onM \ U [94]. WhenX is one point,
this construction reduces to the previous symplectic blow-up at a point.

Often symplectic geography concentrates on minimal examples. McDuff [95] showed
that a minimal symplectic 4-manifold with a symplectically embeddedS2 with nonnegative
self-intersection is symplectomorphic either toCP2 or to anS2-bundle over a surface.
Using Seiberg–Witten theory it was proved:

THEOREM 4.7. Let (M,ω) be a minimal closed symplectic4-manifold.
(a) (Taubes [129])If b+2 > 1, thenc2

1 � 0.
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(b) (Liu [89]) If b+2 = 1 and c2
1 < 0, thenM is the total space of anS2-fibration over

a surface of genusg whereω is nondegenerate on the fibers, and (c2
1, c2) = (8−

8g,4− 4g), i.e., (M,ω) is asymplectic ruled surface.

A symplectic ruled surface43 is a symplectic 4-manifold(M,ω) that is the total space of
anS2-fibration whereω is nondegenerate on the fibers.

A symplectic rational surfaceis a symplectic 4-manifold(M,ω) that can be obtained
from the standard(CP2,ωFS) by blowing up and blowing down.

With b+2 = 1 andc2
1 = 0, we have symplectic manifoldsCP2 #9 CP2 =: E(1), theDol-

gachev surfacesE(1,p, q), the resultsE(1)K of surgery on a fibered knotK ⊂ S3, etc.
With b+2 = 1 andc2

1 > 0, we have symplectic manifoldsCP2, S2 × S2, CP2 #nCP2 for
n � 8 and theBarlow surface. For b+2 = 1 andc2

1 � 0, Park [109] gave a criterion for a
symplectic 4-manifold to be rational or ruled in terms of Seiberg–Witten theory.

4.4. Uniqueness of symplectic forms

Besides the notions listed in Section 1.4, the following equivalence relation for symplectic
manifolds is considered. As it allows the cleanest statements about uniqueness, this relation
is simply calledequivalence.

DEFINITION 4.8. Symplectic manifolds(M,ω0) and(M,ω1) areequivalentif they are
related by a combination of deformation-equivalences and symplectomorphisms.

Recall that(M,ω0) and (M,ω1) are deformation-equivalentwhen there is a smooth
family ωt of symplectic forms joiningω0 to ω1 (Section 1.4), and they aresymplecto-
morphicwhen there is a diffeomorphismϕ :M →M such thatϕ∗ω1 = ω0 (Section 1.2).
Hence, equivalence is the relation generated by deformations and diffeomorphisms. The
corresponding equivalence classes can be viewed as the connected components of the mod-
uli space of symplectic forms up to diffeomorphism. This is a useful notion when focusing
on topological properties.

EXAMPLES.
1. The complex projective planeCP2 has a unique symplectic structure up to symplec-

tomorphism and scaling. This was shown by Taubes [128] relating Seiberg–Witten
invariants (Section 4.5) to pseudoholomorphic curves to prove the existence of a
pseudoholomorphic sphere. Previous work of Gromov [64] and McDuff [96] showed
that the existence of a pseudoholomorphic sphere implies that the symplectic form is
standard.

Lalonde and McDuff [85] concluded similar classifications for symplectic ruled
surfaces and for symplectic rational surfaces (Section 4.3). The symplectic form on

43A (rational)ruled surfaceis a complex (Kähler) surface that is the total space of a holomorphic fibration over
a Riemann surface with fiberCP1. When the base is also a sphere, these are theHirzebruch surfacesP(L⊕C)
whereL is a holomorphic line bundle overCP1.
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a symplectic ruled surface is unique up to symplectomorphism in its cohomology
class, and is isotopic to a standard Kähler form. In particular, any symplectic form
on S2 × S2 is symplectomorphic toaπ∗1σ + bπ∗2σ for somea, b > 0 whereσ is the
standard area form onS2.

Li–Liu [88] showed that the symplectic structure onCP2 #nCP2 for 2 � n� 9 is
unique up to equivalence.

2. McMullen and Taubes [101] first exhibited simply connected closed 4-manifolds ad-
mitting inequivalent symplectic structures. Their examples were constructed using
3-dimensional topology, and distinguished by analyzing the structure of Seiberg–
Witten invariants to show that the first Chern classes (Section 3.2) of the two sym-
plectic structures lie in disjoint orbits of the diffeomorphism group. In higher di-
mensions there were previously examples of manifolds with inequivalent symplectic
forms; see, for instance, [111].

With symplectic techniques and avoiding gauge theory, Smith [117] showed that,
for eachn� 2, there is a simply connected closed 4-manifold that admits at leastn

inequivalent symplectic forms, also distinguished via the first Chern classes. It is not
yet known whether there exist inequivalent symplectic forms on a 4-manifold with
the same first Chern class.

4.5. Invariants for4-manifolds

Very little was known about 4-dimensional manifolds until 1981, when Freedman [51]
provided a complete classification of closed simply connectedtopological 4-manifolds,
and shortly thereafter Donaldson [30] showed that the panorama forsmooth4-manifolds
was much wilder.44 Freedman showed that, modulo homeomorphism, such topological
manifolds are essentially classified by their intersection forms (for anevenintersection
form there is exactly one class, whereas for anodd intersection form there are exactly two
classes distinguished by theKirby–Siebenmann invariant KS, at most one of which admits
smooth representatives—smoothness requiresKS= 0). Donaldson showed that, whereas
the existence of a smooth structure imposes strong constraints on the topological type
of a manifold, for the same topological manifold there can be infinite different smooth
structures.45 In other words, by far not all intersection forms can occur for smooth 4-mani-
folds and the same intersection form may correspond to nondiffeomorphic manifolds.

Donaldson’s key tool was a set of gauge-theoretic invariants, defined by counting with
signs the equivalence classes (modulo gauge equivalence) of connections on SU(2)- (or
SO(3)-) bundles overM whose curvature has vanishing self-dual part. For a dozen years
there was hard work on the invariants discovered by Donaldson but limited advancement
on the understanding of smooth 4-manifolds.

44It had been proved by Rokhlin in 1952 that if such a smooth manifoldM has even intersection formQM (i.e.,
w2 = 0), then the signature ofQM must be a multiple of 16. It had been proved by Whitehead and Milnor that
two such topological manifolds are homotopy equivalent if and only if they have the same intersection form.
45It is known that in dimensions� 3, each topological manifold has exactly one smooth structure, and in di-

mensions� 5 each topological manifold has at most finitely many smooth structures. For instance, whereas each
topologicalRn, n �= 4, admits a unique smooth structure, the topologicalR4 admits uncountably many smooth
structures.
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EXAMPLES. Finding exotic46 smooth structures on closed simply connected manifolds
with small b2 has long been an interesting problem, especially in view of the smooth
Poincaré conjecture for 4-manifolds. The first exotic smooth structures on a rational sur-
faceCP2 #nCP2 were found in the late 80’s forn = 9 by Donaldson [31] and forn = 8
by Kotschick [84]. There was no progress until the recent work of Park [110] constructing
a symplectic exoticCP2 #7 CP2 and using this to exhibit a third distinct smooth structure
CP2 #8 CP2, thus illustrating how the existence of symplectic forms is tied to the existence
of different smooth structures. This stimulated research by Fintushel, Ozsváth, Park, Stern,
Stipsicz and Szabó, which together shows that there are infinitely many exotic smooth
structures onCP2 #nCP2 for n= 5,6,7,8 (the casen= 9 had been shown in the late 80’s
by Friedman–Morgan and by Okonek–Van de Ven).

In 1994 Witten brought about a revolution in Donaldson theory by introducing a new set
of invariants—theSeiberg–Witten invariants—which are much simpler to calculate and to
apply. This new viewpoint was inspired by developments due to Seiberg and Witten in the
understanding ofN = 2 supersymmetric Yang–Mills.

LetM be a smooth oriented closed 4-dimensional manifold withb+2 (M) > 1 (there is a
version forb+2 (M)= 1). All such 4-manifoldsM (with anyb+2 (M)) admit a spin-c struc-
ture, i.e., a Spinc(4)-bundle overM with an isomorphism of the associated SO(4)-bundle
to the bundle of oriented frames on the tangent bundle for some chosen Riemannian metric.
Let CM = {a ∈H 2(M;Z) | a ≡ w2(TM)(2)} be the set of characteristic elements, and let
Spinc(M) be the set of spin-c structures onM . For simplicity, assume thatM is simply
connected (or at least thatH1(M;Z) has no 2-torsion), so that Spinc(M) is isomorphic to
CM with isomorphism given by the first Chern class of thedeterminant line bundle(the
determinant line bundleis the line bundle associated by a natural group homomorphism
Spinc(4)→ U(1)). Fix an orientation of a maximal-dimensional positive-definite subspace
H 2+(M;R)⊂H 2(M;R). The Seiberg–Witten invariant is the function

SWM :CM −→ Z

defined as follows. Given a spin-c structureα ∈ Spinc(M) � CM , the image SWM(α) =
[M] ∈ Hd(B∗;Z) is the homology class of the moduli spaceM of solutions (called
monopoles) of the Seiberg–Witten (SW) equations modulo gauge equivalence. The SW
equations are nonlinear differential equations on a pair of a connectionA on the determi-
nant line bundle ofα and of a sectionϕ of an associated U(2)-bundle, called the positive
(half) spinor bundle:

F+
A = iq(ϕ) and DAϕ = 0,

whereF+
A is the self-dual part of the (imaginary) curvature ofA, q is a squaring oper-

ation taking sections of the positive spinor bundle to self-dual 2-forms, andDA is the
corresponding Dirac operator. For a generic perturbation of the equations (replacing the
first equation byF+

A = iq(ϕ)+ iν, whereν is a self-dual 2-form) and of the Riemannian

46A manifold homeomorphic but not diffeomorphic to a smooth manifoldM is called anexoticM .
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metric, a transversality argument shows that the moduli spaceM is well-behaved and ac-
tually inside the spaceB∗ of gauge-equivalence classes of irreducible pairs (those(A,ϕ)

for which ϕ �= 0), which is homotopy-equivalent toCP∞ and hence has even-degree ho-
mology groupsHd(B∗;Z)� Z. When the dimensiond of M is odd or whenM is empty,
the invariant SWM(α) is set to be zero. Thebasic classesare the classesα ∈ CM for which
SWM(α) �= 0. The set of basic classes is always finite, and ifα is a basic class then so is
−α. The main results are that the Seiberg–Witten invariants are invariants of the diffeomor-
phism type of the 4-manifoldM and satisfy vanishing and nonvanishing theorems, which
allowed to answer an array of questions about specific manifolds.

Taubes [128] discovered an equivalence between Seiberg–Witten and Gromov invariants
(using pseudoholomorphic curves) for symplectic 4-manifolds, by proving the existence of
pseudoholomorphic curves from solutions of the Seiberg–Witten equations and vice-versa.
As a consequence, he proved:

THEOREM 4.9 (Taubes).Let (M,ω) be a compact symplectic4-manifold.
If b+2 > 1, thenc1(M,ω) admits a smooth pseudoholomorphic representative.
If M =M1 #M2, then one of theMi ’s has negative definite intersection form.

There are results also forb+2 = 1, and follow-ups describe the set of basic classes of a
connected sumM #N in terms of the set of basic classes ofM whenN is a manifold with
negative definite intersection form (starting withCP2).

In an attempt to understand other 4-manifolds via Seiberg–Witten and Gromov invari-
ants, some analysis of pseudoholomorphic curves has been extended to nonsymplectic
4-manifolds by equipping these with anearly nondegenerate closed2-form. In particu-
lar, Taubes [130] has related Seiberg–Witten invariants to pseudoholomorphic curves for
compact oriented 4-manifolds withb+2 > 0. Any compact oriented 4-manifoldM with
b+2 > 0 admits a closed 2-form that vanishes along a union of circles and is symplectic
elsewhere [54,75]. In fact, for a generic metric onM , there is a self-dual harmonic formω
which is transverse to zero as a section ofΛ2T ∗M . The vanishing locus ofω is the union
of a finite number of embedded circles, andω is symplectic elsewhere.

The generic behavior of closed 2-forms on orientable 4-manifolds is partially un-
derstood [3, pp. 23–24]. Here is a summary. Letω be a generic closed 2-form on a
4-manifold M . At the points of some hypersurfaceZ, the form ω has rank 2. At a
generic point ofM , ω is nondegenerate; in particular, has the Darboux normal form
dx1 ∧ dy1 + dx2 ∧ dy2. There is a codimension-1 submanifoldZ whereω has rank 2,
and there are no points whereω vanishes. At a generic point ofZ, the kernel ofω̃ is trans-
verse toZ; the normal form near such a point isx1dx1∧dy1+dx2∧dy2. There is a curve
C where the kernel of̃ω is not transverse toZ, hence sits inT Z. At a generic point ofC,
the kernel ofω̃ is transverse toC; there are two possible normal forms near such points,

calledelliptic andhyperbolic, d(x − z2

2 )∧ dy + d(xz± ty − z3

3 )∧ dt . The hyperbolic and
elliptic sections ofC are separated byparabolicpoints, where the kernel is tangent toC.
It is known that there exists at least one continuous family of inequivalent degeneracies in
a parabolic neighborhood [56].
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4.6. Lefschetz pencils

Lefschetz pencilsin symplectic geometry imitate linear systems in complex geometry.
Whereas holomorphic functions on a projective surface must be constant, there are in-
teresting functions on the complement of a finite set, and generic such functions have only
quadratic singularities. A Lefschetz pencil can be viewed as a complex Morse function
or as a very singular fibration, in the sense that, not only some fibers are singular (have
ordinary double points) but allfibersgo through some points.

DEFINITION 4.10. A Lefschetz pencilon an oriented 4-manifoldM is a mapf :M \
{b1, . . . , bn} → CP1 defined on the complement of a finite set inM , called thebase lo-
cus, that is a submersion away from a finite set{p1, . . . , pn+1}, and obeying local models
(z1, z2) 	→ z1/z2 near thebj ’s and(z1, z2) 	→ z1z2 near thepj ’s, where(z1, z2) are ori-
ented local complex coordinates.

Usually it is also required that each fiber contains at most one singular point. By blowing
up M at thebj ’s, we obtain a map toCP1 on the whole manifold, called aLefschetz
fibration. Lefschetz pencils and Lefschetz fibrations can be defined on higher-dimensional
manifolds where thebj ’s are replaced by codimension 4 submanifolds. By working on
the Lefschetz fibration, Gompf [59,58] proved that a structure of Lefschetz pencil (with a
nontrivial base locus) gives rise to a symplectic form, canonical up to isotopy, such that the
fibers are symplectic.

Using asymptotically holomorphic techniques [12,32], Donaldson [34] proved that sym-
plectic 4-manifolds admit Lefschetz pencils. More precisely:

THEOREM 4.11 (Donaldson).LetJ be a compatible almost complex structure on a com-
pact symplectic4-manifold(M,ω) where the class[ω]/2π is integral. ThenJ can be de-
formed through almost complex structures to an almost complex structureJ ′ such thatM
admits a Lefschetz pencil withJ ′-holomorphic fibers.

The closure of a smooth fiber of the Lefschetz pencil is a symplectic submanifold
Poincaré dual tok[ω]/2π ; cf. Theorem 1.13. Other perspectives on Lefschetz pencils
have been explored, including in terms of representations of the free groupπ1(CP1 \
{p1, . . . , pn+1}) in the mapping class groupΓg of the generic fiber surface [118].

Similar techniques were used by Auroux [13] to realize symplectic 4-manifolds as
branched coversof CP2, and thus reduce the classification of symplectic 4-manifolds to a
(hard) algebraic question about factorization in the braid group. LetM andN be compact
oriented 4-manifolds, and letν be a symplectic form onN .

DEFINITION 4.12. A mapf :M → N is a symplectic branched coverif for any p ∈M
there are complex charts centered atp andf (p) such thatν is positive on each complex
line and wheref is given by: a local diffeomorphism(x, y)→ (x, y), or a simple branch-
ing (x, y)→ (x2, y), or an ordinary cusp(x, y)→ (x3 − xy, y).
THEOREM 4.13 (Auroux). Let (M,ω) be a compact symplectic4-manifold where the
class[ω] is integral, and letk be a sufficiently large integer. Then there is a symplectic
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branched coverfk : (M,kω)→ CP2, that is canonical up to isotopy fork large enough.
Conversely, given a symplectic branched coverf :M→N , the domainM inherits a sym-
plectic form canonical up to isotopy in the classf ∗[ν].

5. Hamiltonian geometry

5.1. Symplectic and Hamiltonian vector fields

Let (M,ω) be a symplectic manifold and letH :M → R be a smooth function. By non-
degeneracy, there is a unique vector fieldX

H
onM such thatıXH ω= dH . Supposing that

X
H

is complete (this is always the case whenM is compact), letρt :M →M , t ∈ R, be
its flow (cf. Section 1.3). Each diffeomorphismρt preservesω, i.e., ρ∗t ω = ω, because
d
dt
ρ∗t ω= ρ∗t LXH ω= ρ∗t (dıXH ω+ ıXH dω)= 0. Therefore, every function on(M,ω) pro-

duces a family of symplectomorphisms. Notice how this feature involves both thenonde-
generacyand theclosednessof ω.

DEFINITION 5.1. A vector fieldX
H

such thatıXH ω = dH for someH ∈ C∞(M) is a
Hamiltonian vector fieldwith Hamiltonian functionH .

Hamiltonian vector fields preserve their Hamiltonian functions (LXHH = ıXH dH =
ıXH ıXH ω = 0), so each integral curve{ρt (x) | t ∈ R} of a Hamiltonian vector fieldX

H

must be contained in a level set of the Hamiltonian functionH . In (R2n,ω0 =∑dxj ∧
dyj ), thesymplectic gradientX

H
=∑( ∂H

∂yj

∂
∂xj

− ∂H
∂xj

∂
∂yj
) and the usual (Euclidean) gradi-

ent∇H =∑j (
∂H
∂xj

∂
∂xj

+ ∂H
∂yj

∂
∂yj
) of a functionH are related byJX

H
= ∇H , whereJ is

the standard almost complex structure.

EXAMPLES.
1. For the height functionH(θ,h) = h on the sphere(M,ω) = (S2, dθ ∧ dh), from
ıXH (dθ ∧ dh)= dh we getX

H
= ∂

∂θ
. Thus,ρt (θ,h)= (θ + t, h), which is rotation

about the vertical axis, preserving the heightH .
2. LetX be any vector field on a manifoldW . There is a unique vector fieldX! on

the cotangent bundleT ∗W whose flow is the lift of the flow ofX. Let α be the
tautological form andω =−dα the canonical symplectic form onT ∗W . The vector
fieldX! is Hamiltonian with Hamiltonian functionH := ıX!α.

3. Consider Euclidean spaceR2n with coordinates(q1, . . . , qn,p1, . . . , pn) andω0 =∑
dqj ∧ dpj . The curveρt = (q(t),p(t)) is an integral curve for a Hamiltonian

vector fieldX
H

exactly when it satisfies theHamilton equations:

{
dqi
dt
(t)= ∂H

∂pi
,

dpi
dt
(t)=− ∂H

∂qi
.
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4. Newton’s second lawstates that a particle of massm moving inconfiguration space
R3 with coordinatesq = (q1, q2, q3) under a potentialV (q) moves along a curve
q(t) such that

m
d2q

dt2
=−∇V (q).

Introduce themomentapi = m
dqi
dt

for i = 1,2,3, andenergyfunctionH(q,p) =
1

2m |p|2 + V (q) on thephase space47 R6 = T ∗R3 with coordinates(q1, q2, q3,p1,

p2,p3). The energyH is conserved by the motion and Newton’s second law inR3 is
then equivalent to the Hamilton equations inR6:{ dqi

dt
= 1

m
pi = ∂H

∂pi
,

dpi
dt

=md2qi
dt2

=− ∂V
∂qi

=− ∂H
∂qi
.

DEFINITION 5.2. A vector fieldX on M preservingω (i.e., such thatLXω = 0) is a
symplectic vector field.

Hence, a vector fieldX on (M,ω) is called symplecticwhen ıXω is closed, and
Hamiltonian when ıXω is exact. In the latter case, aprimitive H of ıXω is called a
Hamiltonian functionof X. On a contractible open set every symplectic vector field is
Hamiltonian. Globally, the groupH 1

deRham(M) measures the obstruction for symplectic
vector fields to be Hamiltonian. For instance, the vector fieldX1 = ∂

∂θ1
on the 2-torus

(M,ω)= (T2, dθ1 ∧ dθ2) is symplectic but not Hamiltonian.
A vector fieldX is a differential operator on functions:X · f := L

X
f = df (X) for f ∈

C∞(M). As such, the bracketW = [X,Y ] is the commutator:LW = [LX,LY ] = LXLY −
LYLX (cf. Section 3.3). This endows the setχ(M) of vector fields on a manifoldM with a
structure ofLie algebra.48 For a symplectic manifold(M,ω), usingı[X,Y ] = [LX, ıY ] and
Cartan’s magic formula, we find thatı[X,Y ]ω= dıXıYω+ ıXdıYω− ıY dıXω− ıY ıX dω=
d(ω(Y,X)). Therefore:

PROPOSITION 5.3. If X and Y are symplectic vector fields on a symplectic manifold
(M,ω), then[X,Y ] is Hamiltonian with Hamiltonian functionω(Y,X).

Hence, Hamiltonian vector fields and symplectic vector fields form Lie subalgebras for
the Lie bracket[·, ·].

DEFINITION 5.4. ThePoisson bracketof two functionsf,g ∈ C∞(M) is the function
{f,g} := ω(Xf ,Xg)= LXgf .

47Thephase spaceof a system ofn particles is the space parametrizing the position and momenta of the particles.
The mathematical model for a phase space is a symplectic manifold.
48A (real) Lie algebrais a (real) vector spaceg together with aLie bracket[·, ·], i.e., a bilinear map[·, ·] :g×

g → g satisfyingantisymmetry, [x, y] = −[y, x], ∀x, y ∈ g, and theJacobi identity, [x, [y, z]] + [y, [z, x]] +
[z, [x, y]] = 0, ∀x, y, z ∈ g.
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By Proposition 5.3 we haveX{f,g} = −[Xf ,Xg]. Moreover, the bracket{·, ·} satis-
fies theJacobi identity, {f, {g,h}} + {g, {h,f }} + {h, {f,g}} = 0, and theLeibniz rule,
{f,gh} = {f,g}h+ g{f,h}.

DEFINITION 5.5. A Poisson algebra(P, {·, ·}) is a commutative associative algebraP
with a Lie bracket{·, ·} satisfying the Leibniz rule.

When (M,ω) is a symplectic manifold,(C∞(M), {·, ·}) is a Poisson algebra, and the
mapC∞(M)→ χ(M), H 	→X

H
is a Lie algebra anti-homomorphism.

EXAMPLES.
1. For the prototype(R2n,

∑
dxi ∧ dyi), we haveXxi = − ∂

∂yi
andXyi = ∂

∂xi
, so that

{xi, xj } = {yi, yj } = 0 and {xi, yj } = δij for all i, j . Arbitrary functionsf,g ∈
C∞(R2n) have theclassical Poisson bracket

{f,g} =
n∑
i=1

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
.

2. LetG be a Lie group,49 g its Lie algebra andg∗ the dual vector space ofg. The vector
field gX# generated byX ∈ g for the adjoint action50 of G on g has value[X,Y ] at
Y ∈ g. The vector fieldX# generated byX ∈ g for the coadjoint action ofG on g∗ is
〈X#

ξ
, Y 〉 = 〈ξ, [Y,X]〉, ∀ξ ∈ g∗, Y ∈ g. The skew-symmetric pairingω on g defined

at ξ ∈ g∗ by

ωξ (X,Y ) :=
〈
ξ, [X,Y ]〉

has kernel atξ the Lie algebragξ of the stabilizer ofξ for the coadjoint action.
Therefore,ω restricts to a nondegenerate 2-form on the tangent spaces to the orbits
of the coadjoint action. As the tangent spaces to an orbit are generated by the vec-
tor fieldsX#, the Jacobi identity ing implies that this form is closed. It is called the
canonical symplectic form(or theLie–Poissonor Kirillov–Kostant–Souriau symplec-
tic structure) on thecoadjoint orbits. The corresponding Poisson structure ong∗ is
the canonical one induced by the Lie bracket:

{f,g}(ξ)= 〈ξ, [dfξ , dgξ ]〉
49A Lie group is a manifoldG equipped with a group structure where the group operationG ×G→ G and

inversionG→ G are smooth maps. Anaction of a Lie groupG on a manifoldM is a group homomorphism
G→ Diff (M), g 	→ ψg , where theevaluation mapM ×G→M , (p,g) 	→ ψg(p) is a smooth map. Theorbit
of G throughp ∈M is {ψg(p) | g ∈G}. Thestabilizer(or isotropy) of p ∈M isGp := {g ∈G |ψg(p)= p}.
50Any Lie groupG acts on itself byconjugation: g ∈G 	→ψg ∈Diff (G), ψg(a)= g · a · g−1. Let Adg :g→ g

be the derivative at the identity ofψg :G→ G. We identify the Lie algebrag with the tangent spaceTeG.
For matrix groups, Adg X = gXg−1. Letting g vary, we obtain theadjoint action of G on its Lie algebra
Ad :G→ GL(g). Let 〈·, ·〉 :g∗ × g → R be the natural pairing〈ξ,X〉 = ξ(X). Given ξ ∈ g∗, we define Ad∗g ξ
by 〈Ad∗g ξ,X〉 = 〈ξ,Ad

g−1X〉, for anyX ∈ g. The collection of maps Ad∗g forms thecoadjoint actionof G on

the dual of its Lie algebra Ad∗ :G→GL(g∗). These satisfy Adg ◦Adh = Adgh and Ad∗g ◦Ad∗
h
= Ad∗

gh
.
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for f,g ∈ C∞(g∗) andξ ∈ g∗. The differentialdfξ :Tξ g
∗ � g∗ →R is identified with

an element ofg� g∗∗.

5.2. Arnold conjecture and Floer homology

There is an important generalization of Poincaré’s last geometric theorem (Theorem 2.16)
conjectured by Arnold starting around 1966. Let(M,ω) be a compact symplectic manifold,
andht :M→R a 1-periodic (i.e.,ht = ht+1) smooth family of functions. Letρ :M×R→
M be the isotopy generated by the time-dependent Hamiltonian vector fieldvt defined by
the equationω(vt , ·) = dht . The symplectomorphismϕ = ρ1 is then said to beexactly
homotopic to the identity. In other words, a symplectomorphism exactly homotopic to the
identity is the time-1 map of the isotopy generated by some time-dependent 1-periodic
Hamiltonian function. There is a one-to-one correspondence between the fixed points ofϕ

and the period-1 orbits ofρ. When all the fixed points of suchϕ are nondegenerate (generic
case), we callϕ nondegenerate. TheArnold conjecture[2, Appendix 9] predicted that

#{fixed points of a nondegenerateϕ}�
2n∑
i=0

dimHi(M;R)

(or even that the number of fixed points of a nondegenerateϕ is at least the minimal number
of critical points of a Morse function51). When the Hamiltonianh :M→R is independent
of t , this relation is trivial: a pointp is critical for h if and only if dhp = 0, if and only
if vp = 0, if and only if ρ(t,p) = p, ∀t ∈ R, which implies thatp is a fixed point of
ρ1 = ϕ, so the Arnold conjecture reduces to a Morse inequality. Notice that, according to
the Lefschetz fixed point theorem, the Euler characteristic ofM , i.e., thealternatingsum
of the Betti numbers,

∑
(−1)i dimHi(M;R), is a (weaker) lower bound for the number of

fixed points ofϕ.
The Arnold conjecture was gradually proved from the late 70’s to the late 90’s by

Eliashberg [39], Conley–Zehnder [24], Floer [49], Sikorav [116], Weinstein [140], Hofer–
Salamon [74], Ono [108], culminating with independent proofs by Fukaya–Ono [52]
and Liu–Tian [90]. There are open conjectures for sharper bounds on the number of
fixed points. The breakthrough tool for establishing the Arnold conjecture wasFloer ho-
mology—an∞-dimensional analogue of Morse theory. Floer homology was defined by
Floer [46–50] and developed through the work of numerous people after Floer’s death.
It combines the variational approach of Conley and Zehnder [25], with Witten’s Morse–
Smale complex [144], and with Gromov’s compactness theorem for pseudoholomorphic
curves [64].

Floer theory starts from a symplectic action functional on the space of loopsLM of
a symplectic manifold(M,ω) whose zeros of the differentialdF :T (LM)→ R are the
period-1 orbits of the isotopyρ above. The tangent bundleT (LM) is the space of loops
with vector fields over them: pairs(�, v), where� :S1 →M andv :S1 → �∗(TM) is a

51A Morse functionis a smooth functionf :M→ R all of whose critical points are nondegenerate, i.e., at any
critical point the Hessian matrix is nondegenerate.
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section. Thendf (�, v)= ∫ 1
0 ω(�̇(t)−Xht (�(t), v(t)) dt . TheFloer complex52 is the chain

complex freely generated by the critical points ofF (corresponding to the fixed points
of ϕ), with relative gradingindex(x, y) given by the difference in the number of positive
eigenvalues from the spectral flow. The Floer differential is given by counting the number
n(x, y) of pseudoholomorphic surfaces (thegradient flow linesjoining two fixed points):

C∗ =
⊕

x∈Crit(F )

Z〈x〉 and ∂〈x〉 =
∑

y∈Crit(F )
index(x,y)=1

n(x, y)〈y〉.

Pondering transversality, compactness and orientation, Floer’s theorem states that the ho-
mology of(C∗, ∂) is isomorphic to the ordinary homology ofM . In particular, the sum of
the Betti numbers is a lower bound for the number of fixed points ofϕ.

From the abovesymplectic Floer homology, Floer theory has branched out to tackle
other differential geometric problems in symplectic geometry and 3- and 4-dimensional
topology. It provides a rigorous definition of invariants viewed as homology groups of
infinite-dimensional Morse-type theories, with relations to gauge theory and quantum field
theory. There isLagrangian Floer homology(for the case of Lagrangian intersections,
i.e., intersection of a Lagrangian submanifold with a Hamiltonian deformation of itself),
instanton Floer homology(for invariants of 3-manifolds),Seiberg–Witten Floer homology,
Heegaard Floer homologyandknot Floer homology. For more on Floer homology; see,
for instance, [35,113].

5.3. Euler–Lagrange equations

The equations of motion in classical mechanics arise fromvariational principles. The
physical path of a general mechanical system ofn particles is the path thatminimizesa
quantity called theaction. When dealing with systems with constraints, such as the simple

52The Morse complexfor a Morse function on a compact manifold,f :M → R, is the chain complex freely
generated by the critical points off , graded by theMorse indexı and with differential given by counting the
numbern(x, y) of flow lines of the negative gradient−∇f (for a metric onX) from the pointx to the pointy
whose indices differ by 1:

C∗ =
⊕

x∈Crit(f )

Z〈x〉 and ∂〈x〉 =
∑

y∈Crit(f )
ı(y)=ı(x)−1

n(x, y)〈y〉.

The coefficientn(x, y) is thus the number of solutions (moduloR-reparametrization)u :R →X of the ordinary
differential equationd

dt
u(t)=−∇f (u(t)) with conditions limt→−∞ u(t)= x, limt→+∞ u(t)= y. TheMorse

indexof a critical point off is the dimension of its unstable manifold, i.e., the number of negative eigenvalues
of the Hessian off at that point. For a generic metric, the unstable manifold of a critical pointWu(x) intersects
transversally with the stable manifold of another critical pointWs(y). When ı(x) − ı(y) = 1, the intersection
Wu(x) ∩Ws(y) has dimension 1, so when we quotient out by theR-reparametrization (to count actual image
curves) we get a discrete set, which is finite by compactness. That(C∗, ∂) is indeed a complex, i.e.,∂2 = 0,
follows from counting broken flow lines between points whose indices differ by 2. Morse’s theorem states that
the homology of the Morse complex coincides with the ordinary homology ofM . In particular, the sum of all the
Betti numbers

∑
dimHi(M;R) is a lower bound for the number of critical points of a Morse function.
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pendulum, or two point masses attached by a rigid rod, or a rigid body, the language of
variational principles becomes more appropriate than the explicit analogues of Newton’s
second laws. Variational principles are due mostly to D’Alembert, Maupertius, Euler and
Lagrange.

LetM be ann-dimensional manifold, and letF :TM→ R be a function on its tangent
bundle. Ifγ : [a, b] →M is a curve onM , the lift of γ to TM is the curve onTM given
by γ̃ : [a, b]→ TM , t 	→ (γ (t),

dγ
dt
(t)). Theactionof γ is

Aγ :=
∫ b

a

(γ̃ ∗F)(t) dt =
∫ b

a

F

(
γ (t),

dγ

dt
(t)

)
dt.

For fixedp,q, let P(a, b,p, q) = {γ : [a, b] → M smooth| γ (a) = p, γ (b) = q}. The
goal is to find, among allγ ∈ P(a, b,p, q), the curve thatlocally minimizesAγ .
(Minimizing curves are always locally minimizing.) Assume thatp, q and the image
of γ lie in a coordinate neighborhood(U, x1, . . . , xn). On T U we have coordinates
(x1, . . . , xn, v1, . . . , vn) associated with a trivialization ofT U by ∂

∂x1
, . . . , ∂

∂xn
. Using this

trivialization, a curveγ : [a, b]→ U , γ (t)= (γ1(t), . . . , γn(t)) lifts to

γ̃ : [a, b] −→ T U, γ̃ (t)=
(
γ1(t), . . . , γn(t),

dγ1

dt
(t), . . . ,

dγn

dt
(t)

)
.

Consider infinitesimal variations ofγ . Let c1, . . . , cn ∈ C∞([a, b]) be such thatck(a) =
ck(b)= 0. Forε small, letγε : [a, b]→ U be the curveγε(t)= (γ1(t)+εc1(t), . . . , γn(t)+
εcn(t)). LetAε :=Aγε . A necessary condition forγ = γ0 ∈ P(a, b,p, q) to minimize the
action is thatε = 0 be a critical point ofAε. By the Leibniz rule and integration by parts,
we have that

dAε

dε
(0) =

∫ b

a

∑
k

[
∂F

∂xk

(
γ0(t),

dγ0

dt
(t)

)
ck(t)+ ∂F

∂vk

(
γ0,

dγ0

dt

)
dck

dt
(t)

]
dt

=
∫ b

a

∑
k

[
∂F

∂xk
(. . .)− d

dt

∂F

∂vk
(. . .)

]
ck(t) dt.

For dAε

dε
(0) to vanish for allck ’s satisfying boundary conditionsck(a) = ck(b) = 0, the

pathγ0 must satisfy theEuler–Lagrange equations:

∂F

∂xk

(
γ0(t),

dγ0

dt
(t)

)
= d

dt

∂F

∂vk

(
γ0(t),

dγ0

dt
(t)

)
, k = 1, . . . , n.

EXAMPLES.
1. Let (M,g) be a Riemannian manifold. LetF :TM → R be the function whose

restriction to each tangent space is the quadratic form defined by the Riemannian
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metric. On a coordinate chartF(x, v) = |v|2 =∑gij (x)v
ivj . Let p,q ∈ M and

γ : [a, b]→M a curve joiningp to q. Theactionof γ is

Aγ =
∫ b

a

∣∣∣∣dγdt
∣∣∣∣2dt.

The Euler–Lagrange equations become theChristoffel equationsfor a geodesic

d2γ k

dt2
+
∑(

Γ kij ◦ γ
)dγ i
dt

dγ j

dt
= 0,

where theChristoffel symbolsΓ kij ’s are defined in terms of the coefficients of the

Riemannian metric (gij is the matrix inverse togij ) by

Γ kij =
1

2

∑
�

g�k
(
∂g�i

∂xj
+ ∂g�j

∂xi
− ∂gij

∂x�

)
.

2. Consider a point-particle of massm moving in R3 under aforce fieldG. Thework
of G on a pathγ : [a, b] → R3 is Wγ :=

∫ b
a
G(γ (t)) · dγ

dt
(t) dt . Suppose thatG is

conservative, i.e.,Wγ depends only on the initial and final points,p = γ (a) and
q = γ (b). We can define thepotential energyasV :R3 → R, V (q) :=Wγ , whereγ
is a path joining a fixed base pointp0 ∈ R3 to q. Let P be the set of all paths going
from p to q over timet ∈ [a, b]. By theprinciple of least action, the physical path
is the pathγ ∈ P that minimizes a kind of mean value of kinetic minus potential
energy, known as theaction:

Aγ :=
∫ b

a

(
m

2

∣∣∣∣dγdt (t)
∣∣∣∣2 − V (γ (t)))dt.

The Euler–Lagrange equations are then equivalent toNewton’s second law:

m
d2x

dt2
(t)− ∂V

∂x

(
x(t)

)= 0 ⇐⇒ m
d2x

dt2
(t)=G(x(t)).

In the case of the earth moving about the sun, both regarded as point-masses and
assuming that the sun to be stationary at the origin, thegravitational potentialV (x)=
const
|x| yields theinverse square lawfor the motion.

3. Consider nown point-particles of massesm1, . . . ,mn moving inR3 under a conser-
vative force corresponding to a potential energyV ∈ C∞(R3n). At any instantt , the
configuration of this system is described by a vectorx = (x1, . . . , xn) in configuration
spaceR3n, wherexk ∈R3 is the position of thekth particle. For fixedp,q ∈R3n, let
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P be the set of all pathsγ = (γ1, . . . , γn) : [a, b]→R3n from p to q. Theactionof a
pathγ ∈ P is

Aγ :=
∫ b

a

(
n∑
k=1

mk

2

∣∣∣∣dγkdt (t)
∣∣∣∣2 − V (γ (t))

)
dt.

The Euler–Lagrange equations reduce to Newton’s law for each particle. Suppose that
the particles are restricted to move on a submanifoldM of R3n called theconstraint
set. By theprinciple of least action for a constrained system, the physical path has
minimal action among all paths satisfying the rigid constraints. I.e., we single out
the actual physical path as the one that minimizesAγ among allγ : [a, b]→M with
γ (a)= p andγ (b)= q.

In the case whereF(x, v) does not depend onv, the Euler–Lagrange equations are sim-
ply ∂F

∂xi
(γ0(t),

dγ0
dt
(t))= 0. These are satisfied if and only if the curveγ0 sits on the critical

set ofF . For genericF , the critical points are isolated, henceγ0(t) must be a constant
curve. In the case whereF(x, v) depends affinely onv, F(x, v)= F0(x)+∑n

j=1Fj (x)vj ,
the Euler–Lagrange equations become

∂F0

∂xi

(
γ (t)

)= n∑
j=1

(
∂Fi

∂xj
− ∂Fj

∂xi

)(
γ (t)

)dγj
dt
(t).

If the n× n matrix ( ∂Fi
∂xj

− ∂Fj
∂xi
) has an inverseGij (x), we obtain the system of first order

ordinary differential equations
dγj
dt
(t) =∑Gji(γ (t))

∂F0
∂xi
(γ (t)). Locally it has a unique

solution through each pointp. If q is not on this curve, there is no solution at all to the
Euler–Lagrange equations belonging toP(a, b,p, q).

Therefore, we need nonlinear dependence ofF on thev variables in order to have ap-
propriate solutions. From now on, assume theLegendre condition:

det

(
∂2F

∂vi∂vj

)
�= 0.

LettingGij (x, v)= ( ∂2F
∂vi∂vj

(x, v))−1, the Euler–Lagrange equations become

d2γj

dt2
=
∑
i

Gji
∂F

∂xi

(
γ,
dγ

dt

)
−
∑
i,k

Gji
∂2F

∂vi∂xk

(
γ,
dγ

dt

)
dγk

dt
.

This second order ordinary differential equation has a unique solution given initial con-

ditions γ (a) = p and dγ
dt
(a) = v. Assume that( ∂2F

∂vi∂vj
(x, v)) ' 0, ∀(x, v), i.e., with

the x variable frozen, the functionv 	→ F(x, v) is strictly convex. Then the pathγ0 ∈
P(a, b,p, q) satisfying the above Euler–Lagrange equations does indeed locally mini-
mizeAγ (globally it is only critical):
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PROPOSITION5.6. For every sufficiently small subinterval[a1, b1] of [a, b], γ0|[a1,b1] is
locally minimizing inP(a1, b1,p1, q1) wherep1 = γ0(a1), q1 = γ0(b1).

PROOF. Takec= (c1, . . . , cn)with ci ∈ C∞([a, b]), ci(a)= ci(b)= 0. Letγε = γ0+εc ∈
P(a, b,p, q), and letAε =Aγε . Suppose thatγ0 : [a, b]→ U satisfies the Euler–Lagrange
equations, i.e.,dAε

dε
(0)= 0. Then

d2Aε

dε2
(0) =

∫ b

a

∑
i,j

∂2F

∂xi∂xj

(
γ0,

dγ0

dt

)
cicj dt (A)

+ 2
∫ b

a

∑
i,j

∂2F

∂xi∂vj

(
γ0,

dγ0

dt

)
ci
dcj

dt
dt (B)

+
∫ b

a

∑
i,j

∂2F

∂vi∂vj

(
γ0,

dγ0

dt

)
dci

dt

dcj

dt
dt. (C)

Since( ∂2F
∂vi∂vj

(x, v))' 0 at allx, v, we have

∣∣(A)
∣∣�KA |c|2L2[a,b],

∣∣(B)
∣∣�KB|c|L2[a,b]

∣∣∣∣dcdt
∣∣∣∣
L2[a,b]

and

(C) �KC

∣∣∣∣dcdt
∣∣∣∣2
L2[a,b]

,

whereKA,KB,KC are positive constants. By the Wirtinger inequality53, if b − a is very
small, then (C)> |(A)| + |(B)| whenc �≡ 0. Hence,γ0 is a local minimum. �

In Section 5.1 we saw that solving Newton’s second law inconfiguration spaceR3 is
equivalent to solving inphase spacefor the integral curve inT ∗R3 = R6 of the Hamil-
tonian vector field with Hamiltonian functionH . In the next subsection we will see how
this correspondence extends to more general Euler–Lagrange equations.

5.4. Legendre transform

The Legendre transform gives the relation between the variational (Euler–Lagrange) and
the symplectic (Hamilton–Jacobi) formulations of the equations of motion.

53TheWirtinger inequalitystates that, forf ∈C1([a, b]) with f (a)= f (b)= 0, we have∫ b

a

∣∣∣∣dfdt
∣∣∣∣2 dt � π2

(b− a)2
∫ b

a
|f |2dt.

This can be proved with Fourier series.
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Let V be ann-dimensional vector space, withe1, . . . , en a basis ofV andv1, . . . , vn
the associated coordinates. LetF :V →R, F = F(v1, . . . , vn), be a smooth function. The
function F is strictly convexif and only if for every pair of elementsp,v ∈ V , v �= 0,
the restriction ofF to the line{p + xv | x ∈ R} is strictly convex.54 It follows from the
case of real functions onR that, for a strictly convex functionF on V , the following are
equivalent:55

(a) F has a critical point, i.e., a point wheredFp = 0;
(b) F has a local minimum at some point;
(c) F has a unique critical point (global minimum); and
(d) F is proper, that is,F(p)→+∞ asp→∞ in V .

A strictly convex functionF is stablewhen it satisfies conditions (a)–(d) above.

DEFINITION 5.7. TheLegendre transformassociated toF ∈ C∞(V ) is the map

LF :V −→ V ∗,

p 	−→ dFp ∈ T ∗
p V � V ∗,

whereT ∗
p V � V ∗ is the canonical identification for a vector spaceV .

From now on, assume thatF is a strictly convex function onV . Then, for every point
p ∈ V , L

F
maps a neighborhood ofp diffeomorphically onto a neighborhood ofL

F
(p).

Given� ∈ V ∗, let

F� :V −→R, F�(v)= F(v)− �(v).

Since(d2F)p = (d2F�)p, F is strictly convex if and only ifF� is strictly convex. The
stability setof F is

SF = {� ∈ V ∗ | F� is stable}.

The setS
F

is open and convex, andL
F

mapsV diffeomorphically ontoS
F

. (A way to
ensure thatS

F
= V ∗ and hence thatL

F
mapsV diffeomorphically ontoV ∗, is to as-

sume that a strictly convex functionF hasquadratic growth at infinity, i.e., there exists
a positive-definite quadratic formQ onV and a constantK such thatF(p)�Q(p)−K ,
for all p.) The inverse toLF is the mapL−1

F :SF → V described as follows: for� ∈ SF ,

54A function F :V → R is strictly convexif at everyp ∈ V the Hessiand2Fp is positive definite. Letu =∑n
i=1uiei ∈ V . TheHessianof F atp is the quadratic function onV ,

(d2F)p(u) :=
∑
i,j

∂2F

∂vi∂vj
(p)uiuj = d2

dt2
F(p+ tu)

∣∣∣∣
t=0

.

55A smooth functionf :R→R is strictly convexif f ′′(x) > 0 for all x ∈R. Assuming thatf is strictly convex,
the following four conditions are equivalent:f ′(x) = 0 at some point,f has a local minimum,f has a unique
(global) minimum, andf (x)→+∞ asx →±∞. The functionf is stableif it satisfies one (and hence all)
of these conditions. For instance,ex + ax is strictly convex for anya ∈ R, but it is stable only fora < 0. The
functionx2 + ax is strictly convex and stable for anya ∈R.
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the valueL−1
F (�) is the unique minimum pointp� ∈ V of F�. Indeedp is the minimum of

F(v)− dFp(v).

DEFINITION 5.8. Thedual functionF ∗ to F is

F ∗ :SF −→R, F ∗(�)=−min
p∈V F�(p).

The dual functionF ∗ is smooth and, for allp ∈ V and all� ∈ S
F

, satisfies theYoung
inequalityF(p)+ F ∗(�)� �(p).

On one hand we haveV × V ∗ � T ∗V , and on the other hand, sinceV = V ∗∗, we have
V × V ∗ � V ∗ × V � T ∗V ∗. Let α1 be the tautological 1-form onT ∗V andα2 be the
tautological 1-form onT ∗V ∗. Via the identifications above, we can think of both of these
forms as living onV × V ∗. Sinceα1 = dβ − α2, whereβ :V × V ∗ → R is the function
β(p, �)= �(p), we conclude that the formsω1 =−dα1 andω2 =−dα2 satisfyω1 =−ω2.

THEOREM 5.9. For a strictly convex functionF we have thatL−1
F = LF ∗ .

PROOF. The graphΛ
F

of the Legendre transformL
F

is a Lagrangian submanifold of
V × V ∗ with respect to the symplectic formω1. Hence,Λ

F
is also Lagrangian forω2. Let

pr1 :Λ
F
→ V and pr2 :Λ

F
→ V ∗ be the restrictions of the projection mapsV × V ∗ → V

andV ×V ∗ → V ∗, and leti :Λ
F
↪→ V ×V ∗ be the inclusion map. Theni∗α1 = d(pr1)

∗F
as both sides have valuedFp at (p, dFp) ∈ΛF

. It follows thati∗α2 = d(i∗β− (pr1)
∗F)=

d(pr2)
∗F ∗, which shows thatΛ

F
is the graph of the inverse ofLF ∗ . From this we conclude

that the inverse of the Legendre transform associated withF is the Legendre transform
associated withF ∗. �

LetM be a manifold andF :TM→ R. We return to the Euler–Lagrange equations for
minimizing the actionAγ =

∫
γ̃ ∗F . At p ∈M , letFp := F |TpM :TpM→R. Assume that

Fp is strictly convex for allp ∈M . To simplify notation, assume also thatSFp = T ∗
pM . The

Legendre transform on each tangent spaceLFp :TpM
�−→ T ∗

pM is essentially given by the
first derivatives ofF in thev directions. Collect these and the dual functionsF ∗

p :T ∗
pM→

R into maps

L :TM −→ T ∗M, L|TpM = LFp and H :T ∗M −→R, H |T ∗
pM

= F ∗
p .

The mapsH andL are smooth, andL is a diffeomorphism.

THEOREM5.10. Letγ : [a, b]→M be a curve, andγ̃ : [a, b]→ TM its lift. Thenγ satis-
fies the Euler–Lagrange equations on every coordinate chart if and only ifL ◦ γ̃ : [a, b]→
T ∗M is an integral curve of the Hamiltonian vector fieldXH .
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PROOF. Let (U, x1, . . . , xn) be a coordinate chart inM , with associated tangent(T U, x1,

. . . , xn, v1, . . . , vn) and cotangent(T ∗U, x1, . . . , xn, ξ1, . . . , ξn) coordinates. OnT U we
haveF = F(x, v), onT ∗U we haveH =H(x, ξ), and

L :T U −→ T ∗U, H :T ∗U −→ R,

(x, v) 	−→ (x, ξ), (x, ξ) 	−→ F ∗
x (ξ)= ξ · v− F(x, v),

whereξ := LFx (v)= ∂F
∂v
(x, v) is called themomentum. Integral curves(x(t), ξ(t)) of XH

satisfy the Hamilton equations:

(H)

{
dx
dt

= ∂H
∂ξ
(x, ξ),

dξ
dt
=− ∂H

∂x
(x, ξ),

whereas the physical pathx(t) satisfies the Euler–Lagrange equations:

(E–L)
∂F

∂x

(
x,
dx

dt

)
= d

dt

∂F

∂v

(
x,
dx

dt

)
.

Let (x(t), ξ(t)) = L(x(t), dx
dt
(t)). For an arbitrary curvex(t), we want to prove thatt 	→

(x(t), ξ(t)) satisfies (H) if and only ift 	→ (x(t), dx
dt
(t)) satisfies (E–L). The first line of (H)

comes automatically from the definition ofξ :

ξ = LFx
(
dx

dt

)
⇐⇒ dx

dt
= L−1

Fx
(ξ)= LF ∗

x
(ξ)= ∂H

∂ξ
(x, ξ).

If (x, ξ)= L(x, v), by differentiating both sides ofH(x, ξ)= ξ · v− F(x, v) with respect
to x, whereξ = LFx (v)= ξ(x, v) andv = ∂H

∂ξ
, we obtain

∂H

∂x
+ ∂H

∂ξ

∂ξ

∂x
= ∂ξ

∂x
· v− ∂F

∂x
⇐⇒ ∂F

∂x
(x, v)=−∂H

∂x
(x, ξ).

Using the last equation and the definition ofξ , the second line of (H) becomes (E–L):

dξ

dt
=−∂H

∂x
(x, ξ) ⇐⇒ d

dt

∂F

∂v
(x, v)= ∂F

∂x
(x, v). �

5.5. Integrable systems

DEFINITION 5.11. AHamiltonian systemis a triple(M,ω,H), where(M,ω) is a sym-
plectic manifold andH ∈ C∞(M) is theHamiltonian function.

PROPOSITION 5.12. For a functionf on a symplectic manifold(M,ω) we have that
{f,H } = 0 if and only iff is constant along integral curves ofX

H
.
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PROOF. Let ρt be the flow ofX
H

. Then

d

dt
(f ◦ ρt ) = ρ∗t LXH f = ρ∗t ıXH df = ρ∗t ıXH ıXf ω= ρ∗t ω(Xf ,XH

)

= ρ∗t {f,H }. �

A function f as in Proposition 5.12 is called anintegral of motion(or a first integral
or a constant of motion). In general, Hamiltonian systems do not admit integrals of mo-
tion that areindependentof the Hamiltonian function. Functionsf1, . . . , fn are said to be
independentif their differentials(df1)p, . . . , (dfn)p are linearly independent at all points
p in some dense subset ofM . Loosely speaking, a Hamiltonian system is (completely)
integrableif it has as manycommutingintegrals of motion as possible.Commutativityis
with respect to the Poisson bracket. Iff1, . . . , fn are commuting integrals of motion for
a Hamiltonian system(M,ω,H), thenω(Xfi ,Xfj )= {fi, fj } = 0, so at eachp ∈M the
Hamiltonian vector fields generate an isotropic subspace ofTpM . Whenf1, . . . , fn are
independent, by symplectic linear algebran can be at most half the dimension ofM .

DEFINITION 5.13. A Hamiltonian system(M,ω,H) whereM is a 2n-dimensional man-
ifold is (completely) integrableif it possessesn independent commuting integrals of mo-
tion, f1 =H,f2, . . . , fn.

Any 2-dimensional Hamiltonian system (where the set of nonfixed points is dense) is
trivially integrable. Basic examples are the simple pendulum and the harmonic oscillator.
A Hamiltonian system(M,ω,H) whereM is 4-dimensional is integrable if there is an in-
tegral of motion independent ofH (the commutativity condition is automatically satisfied).
A basic example is the spherical pendulum. Sophisticated examples of integrable systems
can be found in [8,72].

EXAMPLES.
1. Thesimple pendulumis a mechanical system consisting of a massless rigid rod of

length�, fixed at one end, whereas the other end has a bob of massm, which may
oscillate in the vertical plane. We assume that the force of gravity is constant point-
ing vertically downwards and the only external force acting on this system. Letθ

be the oriented angle between the rod and the vertical direction. Letξ be the co-
ordinate along the fibers ofT ∗S1 induced by the standard angle coordinate onS1.

The energy functionH :T ∗S1 → R, H(θ, ξ) = ξ2

2m�2 +m�(1− cosθ), is an appro-
priate Hamiltonian function to describe the simple pendulum. Gravity is responsible
for the potential energyV (θ) = m�(1− cosθ), and the kinetic energy is given by
K(θ, ξ)= 1

2m�2 ξ
2.

2. Thespherical pendulumconsists of a massless rigid rod of length�, fixed at one
end, whereas the other end has a bob of massm, which may oscillatefreely in all
directions. For simplicity letm = � = 1. Again assume that gravity is the only ex-
ternal force. Letϕ, θ (0 < ϕ < π , 0< θ < 2π ) be spherical coordinates for the
bob, inducing coordinatesη, ξ along the fibers ofT ∗S2. An appropriate Hamil-
tonian function for this system is the energy functionH :T ∗S2 →R,H(ϕ, θ, η, ξ)=
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1
2(η

2 + ξ2

(sinϕ)2
)+ cosϕ. The functionJ (ϕ, θ, η, ξ)= ξ is an independent integral of

motion corresponding to the group of symmetries given by rotations about the vertical
axis (Section 5.6). The pointsp ∈ T ∗S2 wheredHp anddJp are linearly dependent
are:
• the two critical points ofH (where bothdH anddJ vanish);
• if x ∈ S2 is in the southern hemisphere (x3 < 0), then there exist exactly two

points,p+ = (x, η, ξ) andp− = (x,−η,−ξ), in the cotangent fiber abovex
wheredHp anddJp are linearly dependent;

• sincedHp anddJp are linearly dependent along the trajectory of the Hamil-
tonian vector field ofH throughp+, this trajectory is also a trajectory of the
Hamiltonian vector field ofJ and hence its projection ontoS2 is a latitudinal
(or horizontal) circle. The projection of the trajectory throughp− is the same
latitudinal circle traced in the opposite direction.

Let (M,ω,H) be an integrable system of dimension 2n with integrals of motionf1 =
H,f2, . . . , fn. Let c ∈Rn be a regular value off := (f1, . . . , fn). The corresponding level
set f−1(c) is a Lagrangian submanifold, as it isn-dimensional and its tangent bundle
is isotropic. If the flows are complete onf−1(c), by following them we obtain global
coordinates. Any compact component off−1(c)must hence be a torus. These components,
when they exist, are calledLiouville tori. A way to ensure that compact components exist
is to have one of thefi ’s proper.

THEOREM 5.14 (Arnold–Liouville [2]). Let (M,ω,H) be an integrable system of dimen-
sion 2n with integrals of motionf1 = H,f2, . . . , fn. Let c ∈ Rn be a regular value of
f := (f1, . . . , fn). The levelf−1(c) is a Lagrangian submanifold ofM .

(a) If the flows of the Hamiltonian vector fieldsXf1, . . . ,Xfn starting at a pointp ∈
f−1(c) are complete, then the connected component off−1(c) containingp is a
homogeneous space forRn, i.e., is of the formRn−k × Tk for somek, 0 � k � n,
whereTk is a k-dimensional torus.. With respect to this affine structure, that compo-
nent has coordinatesϕ1, . . . , ϕn, known asangle coordinates,in which the flows of
Xf1, . . . ,Xfn are linear.

(b) There are coordinatesψ1, . . . ,ψn, known asaction coordinates,complementary to
the angle coordinates, such that theψi ’s are integrals of motion andϕ1, . . . , ϕn,
ψ1, . . . ,ψn form a Darboux chart.

Therefore, the dynamics of an integrable system has a simple explicit solution in action-
angle coordinates. The proof of part (a)—the easy part of the theorem—is sketched above.
For the proof of part (b) see, for instance, [2,36]. Geometrically, regular levels being
Lagrangian submanifolds implies that, in a neighborhood of a regular value, the map
f :M → Rn collecting the given integrals of motion is aLagrangian fibration, i.e., it is
locally trivial and its fibers are Lagrangian submanifolds. Part (a) states that there are co-
ordinates along the fibers, the angle coordinates,56 in which the flows ofXf1, . . . ,Xfn
are linear. Part (b) guarantees the existence of coordinates onRn, the action coordinates,

56The nameangle coordinatesis used even if the fibers are not tori.
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ψ1, . . . ,ψn, complementary to the angle coordinates, that (Poisson) commute among them-
selves and satisfy{ϕi,ψj } = δij . The action coordinates are generally not the given inte-
grals of motion becauseϕ1, . . . , ϕn, f1, . . . , fn do not form a Darboux chart.

5.6. Symplectic and Hamiltonian actions

Let (M,ω) be a symplectic manifold, andG a Lie group.

DEFINITION 5.15. An action57 ψ :G→ Diff (M), g 	→ψg , is asymplectic actionif each
ψg is a symplectomorphism, i.e.,ψ :G→ Sympl(M,ω)⊂Diff (M).

In particular, symplectic actions ofR on (M,ω) are in one-to-one correspondence with
complete symplectic vector fields onM :

ψ = exptX ←→ Xp = dψt(p)

dt

∣∣∣∣
t=0
, p ∈M.

We may define a symplectic actionψ of S1 or R on (M,ω) to beHamiltonianif the vector
fieldX generated byψ is Hamiltonian, that is, when there isH :M→R with dH = ıXω.
An action ofS1 may be viewed as a periodic action ofR.

EXAMPLES.
1. On (R2n,ω0), the orbits of the action generated byX = − ∂

∂y1
are lines parallel to

the y1-axis, {(x1, y1 − t, x2, y2, . . . , xn, yn) | t ∈ R}. SinceX is Hamiltonian with
Hamiltonian functionx1, this is aHamiltonian actionof R.

2. On the 2-sphere(S2, dθ ∧ dh) in cylindrical coordinates, the one-parameter group
of diffeomorphisms given by rotation around the vertical axis,ψt(θ,h)= (θ + t, h)
(t ∈R) is a symplectic action of the groupS1 �R/〈2π〉, as it preserves the area form
dθ ∧ dh. Since the vector field corresponding toψ is Hamiltonian with Hamiltonian
functionh, this is aHamiltonian actionof S1.

WhenG is a product ofS1’s or R’s, an actionψ :G→ Sympl(M,ω) is calledHamil-
tonian when the restriction to each 1-dimensional factor is Hamiltonian in the previous
sensewith Hamiltonian function preserved by the action of the rest ofG.

For an arbitrary Lie groupG, we use an upgraded Hamiltonian functionµ, known as
a moment map, determined up to an additive local constant by coordinate functionsµi
indexed by a basis of the Lie algebra ofG. We require that the constant be such thatµ is
equivariant, i.e.,µ intertwines the action ofG onM and the coadjoint action ofG on the
dual of its Lie algebra. (IfM is compact, equivariance can be achieved by adjusting the
constant so that

∫
M
µωn = 0. Similarly when there is a fixed pointp (on each component

of M) by imposingµ(p)= 0.)
LetG be a Lie group,g the Lie algebra ofG, andg∗ the dual vector space ofg.

57A (smooth)action of G on M is a group homomorphismG→ Diff (M), g 	→ ψg , whose evaluation map
M ×G→M , (p,g) 	→ψg(p), is smooth.
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DEFINITION 5.16. An actionψ :G→ Diff (M) on a symplectic manifold(M,ω) is a
Hamiltonian actionif there exists a mapµ :M→ g∗ satisfying:
• For eachX ∈ g, we havedµX = ıX#ω, i.e., µX is a Hamiltonian function for the

vector fieldX#, where
– µX :M→R, µX(p) := 〈µ(p),X〉, is the component ofµ alongX,
– X# is the vector field onM generated by the one-parameter subgroup{exptX |
t ∈R} ⊆G.

• The mapµ is equivariantwith respect to the given actionψ onM and the coadjoint
action:µ ◦ψg = Ad∗g ◦µ, for all g ∈G.

Then(M,ω,G,µ) is aHamiltonianG-spaceandµ is amoment map.

This definition matches the previous one whenG is an Abelian groupR, S1 or Tn, for
which equivariance becomes invariance since the coadjoint action is trivial.

EXAMPLES.
1. Let Tn = {(t1, . . . , tn) ∈ Cn: |tj | = 1, for all j } be a torus acting onCn by

(t1, . . . , tn) · (z1, . . . , zn) = (t
k1
1 z1, . . . , t

kn
n zn), wherek1, . . . , kn ∈ Z are fixed. This

action is Hamiltonian with a moment mapµ :Cn → (tn)∗ � Rn, µ(z1, . . . , zn) =
−1

2(k1|z1|2, . . . , kn|zn|2).
2. When a Lie groupG acts on two symplectic manifolds(Mj ,ωj ), j = 1,2, with

moment mapsµj :Mj → g∗, the diagonal action ofG onM1×M2 has moment map
µ :M1 ×M2 → g∗, µ(p1,p2)= µ1(p1)+µ2(p2).

3. Equip the coadjoint orbits of a Lie groupG with the canonical symplectic form (Sec-
tion 5.1). Then, for eachξ ∈ g∗, the coadjoint action on the orbitG · ξ is Hamiltonian
with moment map simply the inclusion mapµ :G · ξ ↪→ g∗.

4. Identify the Lie algebra of the unitary group U(n) with its dual via the inner product
〈A,B〉 = trace(A∗B). The natural action of U(n) on (Cn,ω0) is Hamiltonian with
moment mapµ :Cn→ u(n) given byµ(z)= i

2zz
∗. Similarly, a moment map for the

natural action of U(k) on the space(Ck×n,ω0) of complex(k× n)-matrices is given
by µ(A)= i

2AA
∗ for A ∈ Ck×n. Thus the U(n)-action by conjugation on the space

(Cn
2
,ω0) of complex(n× n)-matrices is Hamiltonian, with moment map given by

µ(A)= i
2[A,A∗].

5. For the spherical pendulum (Section 5.5), theenergy-momentum map(H,J ) :T ∗S2

→R2 is a moment map for theR× S1 action given by time flow and rotation about
the vertical axis.

6. Suppose that a compact Lie group acts on a symplectic manifold(M,ω) in a Hamil-
tonian way, and thatq ∈M is a fixed point for theG-action. Then, by an equivariant
version of Darboux’s theorem,58 there exists a Darboux chart(U, z1, . . . , zn) cen-
tered atq that isG-equivariant with respect to a linear action ofG on Cn. Consider
anε-blow-up ofM relative to this chart, forε sufficiently small. ThenG acts on the
blow-up in a Hamiltonian way.

58Equivariant Darboux theorem [136]. Let (M,ω) be a2n-dimensional symplectic manifold equipped with
a symplectic action of a compact Lie groupG, and letq be a fixed point. Then there exists aG-invariant chart



Symplectic geometry 155

The concept of a moment map was introduced by Souriau [119] under the French name
application moment; besides the more standard English translation tomoment map, the
alternativemomentum mapis also used, and recently James Stasheff has proposed the
short unifying new wordmomap. The name comes from being the generalization oflinear
and angular momentain classical mechanics.

Let R3 act on(R6 � T ∗R3,ω0 =∑dxi ∧ dyi) by translations:

a ∈R3 	−→ψa ∈ Sympl
(
R6,ω0

)
, ψa(x, y)= (x + a, y).

The vector field generated byX = a = (a1, a2, a3) isX# = a1
∂
∂x1

+a2
∂
∂x2

+a3
∂
∂x3

, and the
linear momentummap

µ :R6 −→R3, µ(x, y)= y

is a moment map, withµa(x, y)= 〈µ(x, y), a〉 = y · a. Classically,y is called themomen-
tum vectorcorresponding to theposition vectorx.

The SO(3)-action onR3 by rotations lifts to a symplectic actionψ on the cotangent
bundleR6. The infinitesimal version of this action is59

a ∈R3 	−→ dψ(a) ∈ χsympl(R6), dψ(a)(x, y)= (a × x, a × y).

Then theangular momentummap

µ :R6 −→R3, µ(x, y)= x × y

is a moment map, withµa(x, y)= 〈µ(x, y), a〉 = (x × y) · a.
The notion of a moment map associated to a group action on a symplectic manifold for-

malizes theNoether principle, which asserts that there is a one-to-one correspondence be-
tweensymmetries(or one-parameter group actions) andintegrals of motion(or conserved
quantities) for a mechanical system.

(U, x1, . . . , xn, y1, . . . , yn) centered atq andG-equivariant with respect to a linear action ofG on R2n such
that

ω|U =
n∑
k=1

dxk ∧ dyk.

A suitable linear action onR2n is equivalent to the induced action ofG onTqM . The proof relies on an equivariant
version of the Moser trick and may be found in [70].
59The Lie group SO(3)= {A ∈ GL(3;R) | AtA= Id and detA= 1}, has Lie algebra,g = {A ∈ gl(3;R) | A+
At = 0}, the space of 3× 3 skew-symmetric matrices. The standard identification ofg with R3 carries the Lie
bracket to the exterior product:

A=
 0 −a3 a2
a3 0 −a1
−a2 a1 0

 	−→ a = (a1, a2, a3),

[A,B] =AB −BA 	−→ a × b.
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DEFINITION 5.17. An integral of motionof a HamiltonianG-space(M,ω,G,µ) is a
G-invariant functionf :M→ R. Whenµ is constant on the trajectories of a Hamiltonian
vector fieldXf , the corresponding flow{exptXf | t ∈ R} (regarded as anR-action) is a
symmetryof the HamiltonianG-space(M,ω,G,µ).

THEOREM 5.18 (Noether).Let (M,ω,G,µ) be a HamiltonianG-space whereG is con-
nected. If f is an integral of motion, the flow of its Hamiltonian vector fieldXf is a sym-
metry. If the flow of some Hamiltonian vector fieldXf is a symmetry, then a corresponding
Hamiltonian functionf is an integral of motion.

PROOF. LetµX = 〈µ,X〉 :M→ R for X ∈ g. We haveLXf µX = ıXf dµ
X = ıXf ıX#ω =

−ıX#ıXf ω =−ıX#df =−LX#f . Soµ is invariant over the flow ofXf if and only if f is
invariant under the infinitesimalG-action. �

We now turn to the questions of existence and uniqueness of moment maps.
Let g be a Lie algebra, and letCk := Λkg∗ be the set ofk-cochainson g, that is, of

alternatingk-linear mapsg× · · · × g→ R. The linear operatorδ :Ck → Ck+1 defined by
δc(X0, . . . ,Xk)=∑i<j (−1)i+j c([Xi,Xj ],X0, . . . , X̂i , . . . , X̂j , . . . ,Xk) satisfiesδ2 = 0.
TheLie algebra cohomology groups(or Chevalley cohomology groups) of g are the coho-

mology groups of the complex 0
δ−→ C0 δ−→ C1 δ−→ · · ·:

Hk(g;R) := kerδ :Ck → Ck+1

im δ :Ck−1 → Ck
.

It is alwaysH 0(g;R)= R. If c ∈ C1 = g∗, thenδc(X,Y )=−c([X,Y ]). Thecommutator
ideal [g,g] is the subspace ofg spanned by{[X,Y ] | X,Y ∈ g}. Sinceδc = 0 if and only
if c vanishes on[g,g], we conclude thatH 1(g;R) = [g,g]0, where[g,g]0 ⊆ g∗ is the
annihilator of [g,g]. An element ofC2 is an alternating bilinear mapc :g× g → R, and
δc(X,Y,Z) = −c([X,Y ],Z) + c([X,Z], Y ) − c([Y,Z],X). If c = δb for someb ∈ C1,
thenc(X,Y )= (δb)(X,Y )=−b([X,Y ]).

If g is the Lie algebra of a compact connected Lie groupG, then by averaging one can
show that the de Rham cohomology may be computed from the subcomplex ofG-invariant
forms, and henceHk(g;R)=Hk

deRham(G).

PROPOSITION5.19. If H 1(g;R)=H 2(g,R)= 0, then any symplecticG-action is Hamil-
tonian.

PROOF. Let ψ :G→ Sympl(M,ω) be a symplectic action ofG on a symplectic mani-
fold (M,ω). SinceH 1(g;R) = 0 means that[g,g] = g, and since commutators of sym-
plectic vector fields are Hamiltonian, we havedψ :g = [g,g] → χham(M). The action
ψ is Hamiltonian if and only if there is a Lie algebra homomorphismµ∗ :g → C∞(M)
such that the Hamiltonian vector field ofµ∗(ξ) is dψ(ξ). We first take an arbitrary vector
space liftτ :g → C∞(M) with this property, i.e., for each basis vectorX ∈ g, we choose
τ(X) = τX ∈ C∞(M) such thatv(τX) = dψ(X). The mapX 	→ τX may not be a Lie al-
gebra homomorphism. By construction,τ [X,Y ] is a Hamiltonian function for[X,Y ]#, and
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(as computed in Section 5.5){τX, τY } is a Hamiltonian function for−[X#, Y #]. Since
[X,Y ]# =−[X#, Y #], the corresponding Hamiltonian functions must differ by a constant:

τ [X,Y ] − {τX, τY }= c(X,Y ) ∈R.

By the Jacobi identity,δc = 0. SinceH 2(g;R) = 0, there isb ∈ g∗ satisfyingc = δb,
c(X,Y )=−b([X,Y ]). We define

µ∗ :g −→ C∞(M),

X 	−→ µ∗(X)= τX + b(X)= µX.

Nowµ∗ is a Lie algebra homomorphism:µ∗([X,Y ])= {τX, τY } = {µX,µY }. �

By the Whitehead lemmas (see, for instance, [77, pp. 93–95]) a semisimple Lie group
G hasH 1(g;R) = H 2(g;R) = 0. As a corollary,whenG is semisimple, any symplectic
G-action is Hamiltonian.60

PROPOSITION5.20. For a connected Lie groupG, if H 1(g;R) = 0, then moment maps
for HamiltonianG-actions are unique.

PROOF. Suppose thatµ1 andµ2 are two moment maps for an actionψ . For eachX ∈ g,
µX1 andµX2 are both Hamiltonian functions forX#, thusµX1 − µX2 = c(X) is locally con-
stant. This definesc ∈ g∗, X 	→ c(X). Since the correspondingµ∗i :g → C∞(M) are Lie
algebra homomorphisms, we havec([X,Y ])= 0,∀X,Y ∈ g, i.e.,c ∈ [g,g]0 = {0}. Hence,
µ1 = µ2. �

In general, ifµ :M → g∗ is a moment map, then given anyc ∈ [g,g]0, µ1 = µ+ c is
another moment map. In other words, moment maps are unique up to elements of the dual
of the Lie algebra that annihilate the commutator ideal.

The two extreme cases are when

• G is semisimple: any symplectic action is Hamiltonian,

moment maps are unique;
• G is Abelian: symplectic actions may not be Hamiltonian,

moment maps are unique up to a constantc ∈ g∗.

60A compact Lie groupG hasH1(g;R)=H2(g;R)= 0 if and only if it is semisimple. In fact, a compact Lie
groupG is semisimple wheng = [g,g]. The unitary group U(n) is not semisimple because the multiples of the
identity,S1 · Id, form a nontrivial center; at the level of the Lie algebra, this corresponds to the subspaceR · Id of
scalar matrices, which are not commutators since they are not traceless. Any Abelian Lie group isnotsemisimple.
Any direct product of the other compact classical groups SU(n), SO(n) and Sp(n) is semisimple. An arbitrary
compact Lie group admits a finite cover by a direct product of tori and semisimple Lie groups.
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5.7. Convexity

Atiyah, Guillemin and Sternberg [4,68] showed that the image of the moment map for a
Hamiltonian torus action on a compact connected symplectic manifold is always a poly-
tope.61 A proof of this theorem can also be found in [99].

THEOREM 5.21 (Atiyah, Guillemin–Sternberg).Let (M,ω) be a compact connected sym-
plectic manifold. Suppose thatψ :Tm → Sympl(M,ω) is a Hamiltonian action of an
m-torus with moment mapµ :M→Rm. Then:

(a) the levelsµ−1(c) are connected(c ∈Rm);
(b) the imageµ(M) is convex;
(c) µ(M) is the convex hull of the images of the fixed points of the action.

The imageµ(M) of the moment map is called themoment polytope.

EXAMPLES.
1. Suppose thatTm acts linearly on(Cn,ω0). Let λ(1), . . . , λ(n) ∈ Zm be theweights

appearing in the corresponding weight space decomposition, that is,

Cn �
n⊕
k=1

Vλ(k) ,

where, forλ(k) = (λ
(k)
1 , . . . , λ

(k)
m ), the torusTm acts on the complex lineVλ(k) by

(eit1, . . . , eitm) · v = e
i
∑
j λ

(k)
j tj v. If the action is effective62, thenm � n and the

weightsλ(1), . . . , λ(n) are part of aZ-basis ofZm. If the action is symplectic (hence
Hamiltonian in this case), then the weight spacesVλ(k) are symplectic subspaces. In
this case, a moment map is given by

µ(v)=−1

2

n∑
k=1

λ(k)|vλ(k) |2,

where | · | is the standard norm63 and v = vλ(1) + · · · + vλ(n) is the weight space
decomposition ofv. We conclude that, ifTn acts onCn in a linear, effective and
Hamiltonian way, then any moment mapµ is a submersion, i.e., each differential
dµv :Cn→Rn (v ∈Cn) is surjective.

61A polytopein Rn is the convex hull of a finite number of points inRn. A convex polyhedronis a subset ofRn

that is the intersection of a finite number of affine half-spaces. Hence, polytopes coincide with bounded convex
polyhedra.
62An action of a groupG on a manifoldM is calledeffectiveif each group elementg �= e moves at least one

pointp ∈M , that is,
⋂
p∈M Gp = {e}, whereGp = {g ∈G | g · p = p} is the stabilizer ofp.

63The standard inner product satisfies〈v,w〉 = ω0(v, Jv) whereJ ∂
∂z

= i ∂
∂z

andJ ∂
∂z̄

=−i ∂
∂z̄

. In particular, the
standard norm is invariant for a symplectic complex-linear action.
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2. Consider a coadjoint orbitOλ for the unitary group U(n). Multiplying by i, the orbit
Oλ can be viewed as the set of Hermitian matrices with a given eigenvalue spectrum
λ= (λ1 � · · ·� λn). The restriction of the coadjoint action to the maximal torusTn

of diagonal unitary matrices is Hamiltonian with moment mapµ :Oλ→Rn taking a
matrix to the vector of its diagonal entries. Then the moment polytopeµ(Oλ) is the
convex hullC of the points given by all the permutations of(λ1, . . . , λn). This is a
rephrasing of the classical theorem of Schur (µ(Oλ)⊆ C) and Horn (C ⊆ µ(Oλ)).

Example 1 is related to the universal local picture for a moment map near a fixed point
of a Hamiltonian torus action:

THEOREM 5.22. Let (M2n,ω,Tm,µ) be a HamiltonianTm-space, whereq is a fixed
point. Then there exists a chart(U, x1, . . . , xn, y1, . . . , yn) centered atq and weights
λ(1), . . . , λ(n) ∈ Zm such that

ω|U =
n∑
k=1

dxk ∧ dyk and µ|U = µ(q)− 1

2

n∑
k=1

λ(k)
(
x2
k + y2

k

)
.

The following two results use the crucial fact that any effective action of anm-torus on
a manifold has orbits of dimensionm; a proof may be found in [19].

COROLLARY 5.23. Under the conditions of the convexity theorem, if the Tm-action is
effective, then there must be at leastm+ 1 fixed points.

PROOF. At a pointp of anm-dimensional orbit the moment map is a submersion, i.e.,
(dµ1)p, . . . , (dµm)p are linearly independent. Hence,µ(p) is an interior point ofµ(M),
andµ(M) is a nondegenerate polytope. A nondegenerate polytope inRm has at leastm+1
vertices. The vertices ofµ(M) are images of fixed points. �

PROPOSITION5.24. Let (M,ω,Tm,µ) be a HamiltonianTm-space. If the Tm-action is
effective, thendimM � 2m.

PROOF. Since the moment map is constant on an orbitO, for p ∈ O the differential
dµp :TpM→ g∗ mapsTpO to 0. ThusTpO ⊆ kerdµp = (TpO)ω, where(TpO)ω is the
symplectic orthogonal ofTpO. This shows that orbitsO of a Hamiltonian torus action
are isotropic submanifolds ofM . In particular, by symplectic linear algebra we have that
dimO � 1

2 dimM . Now consider anm-dimensional orbit. �

For a Hamiltonian action of an arbitrary compact Lie groupG on a compact symplec-
tic manifold (M,ω), the following non-Abelianconvexity theorem was proved by Kir-
wan [81]: ifµ :M→ g∗ is a moment map, then the intersectionµ(M)∩ t∗+ of the image of
µ with a Weyl chamber for a Cartan subalgebrat⊆ g is a convex polytope. This had been
conjectured by Guillemin and Sternberg and proved by them in particular cases.
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6. Symplectic reduction

6.1. Marsden–Weinstein–Meyer theorem

Classical physicists realized that, whenever there is a symmetry group of dimensionk

acting on a mechanical system, the number of degrees of freedom for the position and
momenta of the particles may be reduced by 2k. Symplectic reduction formulates this
process mathematically.

THEOREM 6.1 (Marsden–Weinstein, Meyer [92,102]).Let (M,ω,G,µ) be a Hamil-
tonianG-space(Section5.6) for a compact Lie groupG. Let i :µ−1(0) ↪→ M be the
inclusion map. Assume thatG acts freely onµ−1(0). Then

(a) the orbit spaceMred= µ−1(0)/G is a manifold,
(b) π :µ−1(0)→Mred is a principalG-bundle, and
(c) there is a symplectic formωred onMred satisfyingi∗ω= π∗ωred.

DEFINITION 6.2. The symplectic manifold(Mred,ωred) is the reduction (or reduced
space, or symplectic quotient) of (M,ω) with respect toG,µ.

WhenM is Kähler and the action ofG preserves the complex structure, we can show
that the symplectic reduction has a natural Kähler structure.

Let (M,ω,G,µ) be a HamiltonianG-space for a compact Lie groupG. To reduce
at a levelξ ∈ g∗ of µ, we needµ−1(ξ) to be preserved byG, or else take theG-orbit
of µ−1(ξ), or else take the quotient by the maximal subgroup ofG that preservesµ−1(ξ).
Sinceµ is equivariant,G preservesµ−1(ξ) if and only if Ad∗g ξ = ξ , ∀g ∈G. Of course, the
level 0 is always preserved. Also, whenG is a torus, any level is preserved andreduction
at ξ for the moment mapµ, is equivalent to reduction at 0 for a shifted moment map
φ :M→ g∗, φ(p) := µ(p)− ξ . In general, letO be a coadjoint orbit ing∗ equipped with
thecanonical symplectic formωO (defined in Section 5.1). LetO− be the orbitO equipped
with −ωO. The natural product action ofG onM ×O− is Hamiltonian with moment map
µO(p, ξ)= µ(p)− ξ . If the hypothesis of Theorem 6.1 is satisfied forM ×O−, then one
obtains areduced space with respect to the coadjoint orbitO.

EXAMPLES.
1. The standard symplectic form onCn is ω0 = i

2

∑
dzi ∧ dz̄i = ∑dxi ∧ dyi =∑

ri dri ∧ dθi in polar coordinates. TheS1-action on(Cn,ω0) whereeit ∈ S1 acts
as multiplication byeit has vector fieldX# = ∂

∂θ1
+ ∂

∂θ2
+ · · · + ∂

∂θn
. This action is

Hamiltonian with moment mapµ :Cn → R, µ(z)=−|z|2
2 , sinceıX#ω =∑ ridri =

−1
2

∑
dr2
i = dµ. The levelµ−1(−1

2) is the unit sphereS2n−1, whose orbit space is
the projective space,

µ−1
(
−1

2

)/
S1 = S2n−1/S1 =CPn−1.
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The reduced symplectic form at level−1
2 isωred= ωFS the Fubini–Study symplectic

form. Indeed, if pr :Cn+1\{0}→CPn is the standard projection, the forms pr∗ωFS=
i
2∂∂̄ log(|z|2) andω0 have the same restriction toS2n+1.

2. Consider the natural action of U(k) on Ck×n with moment mapµ(A)= i
2AA

∗ + Id
2i

for A ∈ Ck×n (Section 5.6). Sinceµ−1(0) = {A ∈ Ck×n | AA∗ = Id}, the reduced
manifold is the Grassmannian ofk-planes inCn:

µ−1(0)/U(k)=G(k, n).

For the case whereG= S1 and dimM = 4, here is a glimpse of reduction. Letµ :M→
R be the moment map andp ∈ µ−1(0). Choose local coordinates nearp: θ along the
orbit throughp, µ given by the moment map, andη1, η2 the pullback of coordinates on
Mred= µ−1(0)/S1. Then the symplectic form can be written

ω=Adθ ∧ dµ+
∑

Bj dθ ∧ dηj +
∑

Cj dµ∧ dηj +Ddη1 ∧ dη2.

As dµ= ı( ∂
∂θ
)ω, we must haveA= 1, Bj = 0. Sinceω is symplectic, it must beD �= 0.

Hence,i∗ω=Ddη1 ∧ dη2 is the pullback of a symplectic form onMred.
The actual proof of Theorem 6.1 requires some preliminary ingredients.
Let µ :M→ g∗ be the moment map for an (Hamiltonian) action of a Lie groupG on a

symplectic manifold(M,ω). Let gp be the Lie algebra of the stabilizer of a pointp ∈M ,
let g0

p = {ξ ∈ g∗ | 〈ξ,X〉 = 0, ∀X ∈ gp} be the annihilator ofgp, and letOp be theG-orbit
throughp. Sinceωp(X#

p, v)= 〈dµp(v),X〉, for all v ∈ TpM and allX ∈ g, the differential
dµp :TpM→ g∗ has

kerdµp = (TpOp)
ωp and imdµp = g0

p.

Consequently, the action is locally free64 atp if and only if p is a regular point ofµ (i.e.,
dµp is surjective), and we obtain:

LEMMA 6.3. If G acts freely onµ−1(0), then0 is a regular value ofµ, the levelµ−1(0)
is a submanifold ofM of codimensiondimG, and, for p ∈ µ−1(0), the tangent space
Tpµ

−1(0)= kerdµp is the symplectic orthogonal toTpOp in TpM .

In particular,orbits inµ−1(0) are isotropic. Since any tangent vector to the orbit is the
value of a vector field generated by the group, we can show this directly by computing,
for anyX,Y ∈ g andp ∈ µ−1(0), the Hamiltonian function for[Y #,X#] = [Y,X]# at that
point:ωp(X#

p,Y
#
p)= µ[Y,X](p)= 0.

LEMMA 6.4. Let (V ,Ω) be a symplectic vector space, andI an isotropic subspace. Then
Ω induces a canonical symplectic structureΩred on IΩ/I .

64The action islocally freeatp whengp = {0}, i.e., the stabilizer ofp is a discrete group. The action isfreeat
p when the stabilizer ofp is trivial, i.e.,Gp = {e}.
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PROOF. Let [u], [v] be the classes inIΩ/I of u,v ∈ IΩ . We haveΩ(u + i, v + j) =
Ω(u,v), ∀i, j ∈ I , becauseΩ(u, j) = Ω(i, v) = Ω(i, j) = 0. Hence, we can define
Ωred([u], [v]) := Ω(u,v). This is nondegenerate: ifu ∈ IΩ hasΩ(u,v) = 0, for all
v ∈ IΩ , thenu ∈ (IΩ)Ω = I , i.e.,[u] = 0. �

PROPOSITION6.5. If a compact Lie groupG acts freely on a manifoldM , thenM/G is
a manifold and the mapπ :M→M/G is a principalG-bundle.

PROOF. We first show that, for anyp ∈M , theG-orbit throughp is a compact submani-
fold of M diffeomorphic toG.65 TheG-orbit throughp is the image of the smooth injec-
tive map evp :G→M , evp(g)= g · p. The map evp is proper because, ifA is a compact,
hence closed, subset ofM , then its inverse image(evp)−1(A), being a closed subset of
the compact Lie groupG, is also compact. The differentiald(evp)e is injective because
d(evp)e(X)= 0⇔X#

p = 0⇔X = 0, ∀X ∈ TeG, as the action is free. At any other point
g ∈G, for X ∈ TgG we haved(evp)g(X)= 0⇔ d(evp ◦Rg)e ◦ (dRg−1)g(X)= 0, where
Rg :G→ G, h 	→ hg, is right multiplication byg. But evp ◦ Rg = evg·p has an injec-
tive differential ate, and(dRg−1)g is an isomorphism. It follows thatd(evp)g is always
injective, so evp is an immersion. We conclude that evp is a closed embedding.

We now apply the slice theorem66 which is an equivariant tubular neighborhood theo-
rem. Forp ∈M , letq = π(p) ∈M/G. Choose aG-invariant neighborhoodU of p as in the
slice theorem, so thatU �G× S whereS is an appropriate slice. Thenπ(U)= U/G=: V
is a neighborhood ofq in M/G homeomorphic67 to S. Such neighborhoodsV are used
as charts onM/G. To show that the associated transition maps are smooth, consider two
G-invariant open setsU1,U2 in M and corresponding slicesS1, S2. ThenS12 = S1 ∩ U2,
S21= S2 ∩ U1 are both slices for theG-action onU1 ∩ U2. To compute the transition map

S12→ S21, consider the sequenceS12
�−→ {e}×S12 ↪→G×S12

�−→ U1∩U2 and similarly

for S21. The compositionS12 ↪→ U1 ∩ U2
�−→G× S21

pr−→ S21 is smooth.
Finally, we show thatπ :M →M/G is a principalG-bundle. Forp ∈M , q = π(p),

choose aG-invariant neighborhoodU of p of the formη :G×S �−→ U . ThenV = U/G�
S is the corresponding neighborhood ofq in M/G:

M ⊇ U
η� G× S �G× V

↓ π ↓
M/G ⊇ V = V

65Even if the action is not free, the orbit throughp is a compact submanifold ofM . In that case, the orbit of a
pointp is diffeomorphic to the quotientG/Gp of G by the stabilizer ofp.
66Slice theorem.LetG be a compact Lie group acting on a manifoldM such thatG acts freely atp ∈M . Let
S be a transverse section toOp at p (this is called aslice). Choose a coordinate chartx1, . . . , xn centered atp
such thatOp �G is given byx1 = · · · = xk = 0 andS by xk+1 = · · · = xn = 0. Let Sε = S ∩ Bε whereBε is
the ball of radiusε centered at0 with respect to these coordinates. Letη :G× S→M , η(g, s)= g · s. Then, for
sufficiently smallε, the mapη :G× Sε →M takesG× Sε diffeomorphically onto aG-invariant neighborhood
U of theG-orbit throughp. In particular, if the action ofG is free atp, then the action is free onU , so the set of
points whereG acts freely is open.
67We equip the orbit spaceM/G with thequotient topology, i.e.,V ⊆M/G is open if and only ifπ−1(V) is

open inM .
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Since the projection on the right is smooth,π is smooth. By considering the overlap of two
trivializationsφ1 :U1 →G× V1 andφ2 :U2 →G× V2, we check that the transition map
φ2 ◦ φ−1

1 = (σ12, id) :G× (V1 ∩ V2)→G× (V1 ∩ V2) is smooth. �

PROOF OFTHEOREM6.1. SinceG acts freely onµ−1(0), by Lemma 6.3 the levelµ−1(0)
is a submanifold. Applying Proposition 6.5 to the free action ofG on the manifoldµ−1(0),
we conclude the assertions (a) and (b).

At p ∈ µ−1(0) the tangent space to the orbitTpOp is an isotropic subspace of the sym-
plectic vector space(TpM,ωp). By Lemma 6.4 there is a canonical symplectic structure
on the quotientTpµ−1(0)/TpOp. The point[p] ∈Mred= µ−1(0)/G has tangent space
T[p]Mred � Tpµ

−1(0)/TpOp. This gives a well-defined nondegenerate 2-formωred on
Mred becauseω isG-invariant. By constructioni∗ω= π∗ωred where

µ−1(0)
i
↪→ M

↓ π
Mred

The injectivity ofπ∗ yields closedness:π∗ dωred= dπ∗ωred= dı∗ω= ı∗ dω= 0. �

6.2. Applications and generalizations

Let (M,ω,G,µ) be a HamiltonianG-space for a compact Lie groupG. Suppose that
another Lie groupH acts on(M,ω) in a Hamiltonian way with moment mapφ :M→ h∗.
Suppose that theH -action commutes with theG-action, thatφ isG-invariant and thatµ is
H -invariant. Assuming thatG acts freely onµ−1(0), let (Mred,ωred) be the corresponding
reduced space. Since the action ofH preservesµ−1(0) andω and commutes with the
G-action, the reduced space(Mred,ωred) inherits a symplectic action ofH . Sinceφ is
preserved by theG-action, the restriction of this moment map toµ−1(0) descends to a
moment mapφred:Mred→ h∗ satisfyingφred◦ π = φ ◦ i, whereπ :µ−1(0)→Mred and
i :µ−1(0) ↪→M . Therefore,(Mred,ωred,H,φred) is a HamiltonianH -space.

Consider now the action of aproduct groupG = G1 × G2, whereG1 andG2 are
compact connected Lie groups. We haveg = g1 ⊕ g2 and g∗ = g∗1 ⊕ g∗2. Suppose that
(M,ω,G,ψ) is a HamiltonianG-space with moment map

ψ = (ψ1,ψ2) :M −→ g∗1 ⊕ g∗2,

whereψi :M→ g∗i for i = 1,2. The fact thatψ is equivariant implies thatψ1 is invariant
underG2 andψ2 is invariant underG1. Assume thatG1 acts freely onZ1 :=ψ−1

1 (0). Let
(M1 = Z1/G1,ω1) be the reduction of(M,ω) with respect toG1,ψ1. From the observa-
tion above,(M1,ω1) inherits a HamiltonianG2-action with moment mapµ2 :M1 → g∗2
such thatµ2 ◦ π = ψ2 ◦ i, whereπ :Z1 → M1 and i :Z1 ↪→ M . If G acts freely on
ψ−1(0,0), thenG2 acts freely onµ−1

2 (0), and there is a natural symplectomorphism

µ−1
2 (0)/G2 � ψ−1(0,0)/G.



164 A. Cannas da Silva

This technique of performing reduction with respect to one factor of a product group at a
time is calledreduction in stages. It may be extended to reduction by a normal subgroup
H ⊂G and by the corresponding quotient groupG/H .

EXAMPLE. Finding symmetries for a mechanical problem may reduce degrees of free-
dom by two at a time: an integral of motionf for a 2n-dimensional Hamiltonian system
(M,ω,H) may allow to understand the trajectories of this system in terms of the tra-
jectories of a(2n − 2)-dimensional Hamiltonian system(Mred,ωred,Hred). Locally this
process goes as follows. Let(U, x1, . . . , xn, ξ1, . . . , ξn) be a Darboux chart forM such
that f = ξn.68 Sinceξn is an integral of motion, 0= {ξn,H } = − ∂H

∂xn
, the trajectories of

the Hamiltonian vector fieldXH lie on a constant levelξn = c (Proposition 5.12), and
H does not depend onxn. The reduced spaceis Ured = {(x1, . . . , xn−1, ξ1, . . . , ξn−1) |
∃a: (x1, . . . , xn−1, a, ξ1, . . . , ξn−1, c) ∈ U} and thereduced Hamiltonianis Hred:Ured
→ R, Hred(x1, . . . , xn−1, ξ1, . . . , ξn−1) = H(x1, . . . , xn−1, a, ξ1, . . . , ξn−1, c) for somea.
In order to find the trajectories of the original system on the hypersurfaceξn = c, we look
for the trajectories(x1(t), . . . , xn−1(t), ξ1(t), . . . , ξn−1(t)) of the reduced system onUred,
and integrate the equationdxn

dt
(t)= ∂H

∂ξn
to obtain the original trajectories where{

xn(t)= xn(0)+
∫ t

0
∂H
∂ξn
(x1(t), . . . , xn−1(t), ξ1(t), . . . , ξn−1(t), c) dt,

ξn(t)= c.

By Sard’s theorem, the singular values of a moment mapµ :M → g∗ form a set of
measure zero. So, perturbing if necessary, we may assume that a level ofµ is regular
hence, whenG is compact, that any pointp of that level has finite stabilizerGp. Let
Op be the orbit ofp. By the slice theorem for the case of orbifolds, nearOp the orbit
space of the level is modeled byS/Gp, whereS is aGp-invariant disk in the level and
transverse toOp (a slice). Thus, the orbit space is anorbifold.69 This implies that, when
G= Tn is ann-torus, for most levels reduction goes through, however the quotient space
is not necessarily a manifold but an orbifold. Roughly speaking, orbifolds are singular
manifolds where each singularity is locally modeled onRm/Γ , for some finite groupΓ ⊂
GL(m;R). The differential-geometric notions of vector fields, differential forms, exterior

68To obtain such a chart, in the proof of Darboux’s Theorem 1.9 start with coordinates(x′1, . . . , x′n, y′1, . . . y′n)
such thaty′n = f and ∂

∂x′n
=Xf .

69Let |M| be a Hausdorff topological space satisfying the second axiom of countability. Anorbifold charton |M|
is a triple(V,Γ,ϕ), whereV is a connected open subset of some Euclidean spaceRm, Γ is a finite group that acts
linearly onV so that the set of points where the action is not free has codimension at least two, andϕ :V → |M| is
aΓ -invariant map inducing a homeomorphism fromV/Γ onto its imageU ⊂ |M|. An orbifold atlasA for |M| is
a collection of orbifold charts on|M| such that: the collection of imagesU forms a basis of open sets in|M|, and
the charts are compatible in the sense that, whenever two charts(V1,Γ1, ϕ1) and(V2,Γ2, ϕ2) satisfyU1 ⊆ U2,
there exists an injective homomorphismλ :Γ1 → Γ2 and aλ-equivariant open embeddingψ :V1 → V2 such that
ϕ2 ◦ ψ = ϕ1. Two orbifold atlases areequivalentif their union is still an atlas. Anm-dimensionalorbifold M
is a Hausdorff topological space|M| satisfying the second axiom of countability, plus an equivalence class of
orbifold atlases on|M|. We do not require the action of each groupΓ to be effective. Given a pointp on an
orbifold M , let (V,Γ,ϕ) be an orbifold chart for a neighborhoodU of p. The orbifold structure groupof p,
Γp , is (the isomorphism class of) the stabilizer of a preimage ofp underφ. Orbifolds were introduced by Satake
in [114].
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differentiation, group actions, etc., extend naturally to orbifolds by gluing corresponding
local Γ -invariant orΓ -equivariant objects. In particular, asymplectic orbifoldis a pair
(M,ω) whereM is an orbifold andω is a closed 2-form onM that is nondegenerate at
every point.

EXAMPLES. TheS1-action onC2 given byeiθ · (z1, z2)= (eikθ z1, e
i�θ z2), for some inte-

gersk and�, has moment mapµ :C2 → R, (z1, z2) 	→ −1
2(k|z1|2 + �|z2|2). Any ξ < 0 is

a regular value andµ−1(ξ) is a 3-dimensional ellipsoid.

When�= 1 andk � 2, the stabilizer of(z1, z2) is {1} if z2 �= 0 and isZk = {ei 2πm
k |m=

0,1, . . . , k − 1} if z2 = 0. The reduced spaceµ−1(ξ)/S1 is then called ateardroporbifold
or conehead; it has onecone(or dunce cap) singularity with cone angle2π

k
, that is, a point

with orbifold structure groupZk .
Whenk, �� 2 are relatively prime, forz1, z2 �= 0 the stabilizer of(z1,0) is Zk , of (0, z2)

is Z� and of(z1, z2) is {1}. The quotientµ−1(ξ)/S1 is called afootballorbifold: it has two
cone singularities, with angles2π

k
and 2π

�
.

ForS1 acting onCn by eiθ · (z1, . . . , zn)= (eik1θ z1, . . . , e
iknθ zn) the reduced spaces are

orbifolds calledweighted(or twisted) projective spaces.

Let (M,ω) be a symplectic manifold whereS1 acts in a Hamiltonian way,ρ :S1 →
Diff (M), with moment mapµ :M→R. Suppose that:
• M has a unique nondegenerate minimum atq whereµ(q)= 0, and
• for ε sufficiently small,S1 acts freely on the level setµ−1(ε).

Let C be equipped with the symplectic form−i dz ∧ dz̄. Then the action ofS1 on the
productψ :S1 → Diff (M × C), ψt(p, z) = (ρt (p), t · z), is Hamiltonian with moment
map

φ :M ×C−→R, φ(p, z)= µ(p)− |z|2.

Observe thatS1 acts freely on theε-level ofφ for ε small enough:

φ−1(ε) = {(p, z) ∈M ×C | µ(p)− |z|2 = ε}
= {(p,0) ∈M ×C | µ(p)= ε}

∪ {(p, z) ∈M ×C | |z|2 = µ(p)− ε > 0
}
.

The reduced space is hence

φ−1(ε)/S1 � µ−1(ε)/S1 ∪ {p ∈M | µ(p) > ε}.
The open submanifold ofM given by {p ∈ M | µ(p) > ε} embeds as an open dense
submanifold intoφ−1(ε)/S1. The reduced spaceφ−1(ε)/S1 is theε-blow-up ofM at q
(Section 5.6). This global description of blow-up for HamiltonianS1-spaces is due to Ler-
man [86], as a particular instance of hiscutting technique.Symplectic cuttingis the appli-
cation of symplectic reduction to the product of a HamiltonianS1-space with the standard
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C as above, in a way that the reduced space for the original HamiltonianS1-space embeds
symplectically as a codimension 2 submanifold in a symplectic manifold. As it is a local
construction, the cutting operation may be more generally performed at a local minimum
(or maximum) of the moment mapµ. There is a remainingS1-action on the cut space
M

�ε
cut := φ−1(ε)/S1 induced by

τ :S1 −→Diff (M ×C), τt (p, z)=
(
ρt (p), z

)
.

In fact, τ is a HamiltonianS1-action onM × C that commutes withψ , thus descends to
an actionτ̃ :S1 →Diff (M�ε

cut ), which is also Hamiltonian.
Loosely speaking, the cutting technique provides a Hamiltonian way to close the open

manifold {p ∈M | µ(p) > ε}, by using the reduced space at levelε, µ−1(ε)/S1. We may
similarly close{p ∈M | µ(p) < ε}. The resulting HamiltonianS1-spaces are calledcut
spaces, and denotedM�ε

cut andM�ε
cut . If another groupG acts onM in a Hamiltonian way

that commutes with theS1-action, then the cut spaces are also HamiltonianG-spaces.

6.3. Moment map in gauge theory

LetG be a Lie group andP a principalG-bundle overB.70 If A is a connection (form)71

on P , and if a ∈ Ω1
horiz ⊗ g is G-invariant for the product action, thenA + a is also a

connection onP . Reciprocally, any two connections onP differ by ana ∈ (Ω1
horiz⊗ g)G.

70LetG be a Lie group andB a manifold. AprincipalG-bundle overB is a fibrationπ :P → B (Section 4.2)
with a free action ofG (thestructure group) on the total spaceP , such that the baseB is the orbit space, the map
π is the point-orbit projection and the local trivializations are of the formϕU = (π, sU ) :π−1(U)→ U ×G with
sU (g · p)= g · sU (p) for all g ∈G and allp ∈ π−1(U). A principalG-bundle is represented by a diagram

G ↪→ P

↓ π
B

For instance, theHopf fibration is a principalS1-bundle overS2(= CP1) with total spaceS3 regarded as unit
vectors inC2 where circle elements act by complex multiplication.
71An actionψ :G→ Diff (P ) induces an infinitesimal actiondψ :g→ χ(P ) mappingX ∈ g to the vector field
X# generated by the one-parameter group{exptX(e) | t ∈ R} ⊆ G. Fix a basisX1, . . . ,Xk of g. Let P be a
principalG-bundle overB . Since theG-action is free, the vector fieldsX#

1, . . . ,X
#
k

are linearly independent at

eachp ∈ P . Thevertical bundleV is the rankk subbundle ofT P generated byX#
1, . . . ,X

#
k
. Alternatively,V is

the set of vectors tangent toP that lie in the kernel of the derivative of the bundle projectionπ , soV is indeed
independent of the choice of basis forg. An (Ehresmann) connectiononP is a choice of a splittingT P = V ⊕H ,
whereH (called thehorizontal bundle) is aG-invariant subbundle ofT P complementary to the vertical bundleV .
A connection formonP is a Lie-algebra-valued 1-formA=∑k

i=1Ai ⊗Xi ∈Ω1(P )⊗g such thatA isG-invar-

iant, with respect to the product action ofG onΩ1(P ) (induced by the action onP ) and ong (the adjoint action),
andA is vertical, in the sense thatıX#A=X for anyX ∈ g. A connectionT P = V ⊕H determines a connection
(form)A and vice-versa by the formulaH = kerA= {v ∈ T P | ıvA= 0}. Given a connection onP , the splitting
T P = V ⊕ H induces splittings for bundlesT ∗P = V ∗ ⊕ H∗, ∧2T ∗P = (∧2V ∗) ⊕ (V ∗ ∧ H∗) ⊕ (∧2H∗),
etc., and for their sections:Ω1(P )=Ω1

vert⊕Ω1
horiz, Ω

2(P )=Ω2
vert⊕Ω2

mix ⊕Ω2
horiz, etc. The corresponding

connection formA is inΩ1
vert⊗ g.
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We conclude that thesetA of all connectionson the principalG-bundleP is an affine
space modeled on the linear spacea= (Ω1

horiz⊗ g)G.
Now letP be a principalG-bundle over a compact Riemann surface. Suppose that the

groupG is compact or semisimple. Atiyah and Bott [6] noticed that the corresponding
spaceA of all connections may be treated as aninfinite-dimensional symplectic manifold.
This requires choosing aG-invariant inner product〈·, ·〉 on g, which always exists, ei-
ther by averaging any inner product whenG is compact, or by using theKilling form on
semisimple groups.

SinceA is an affine space, its tangent space at any pointA is identified with the model
linear spacea. With respect to a basisX1, . . . ,Xk for the Lie algebrag, elementsa, b ∈ a

are written

a =
∑

ai ⊗Xi and b=
∑

bi ⊗Xi.

If we wedgea andb, and then integrate overB, we obtain a real number:

ω :a× a −→ (
Ω2

horiz(P )
)G �Ω2(B) −→ R,

(a, b) 	−→
∑
i,j

ai ∧ bj 〈Xi,Xj 〉 	−→
∫
B

∑
i,j

ai ∧ bj 〈Xi,Xj 〉.

We used that the pullbackπ∗ :Ω2(B) → Ω2(P ) is an isomorphism onto its image
(Ω2

horiz(P ))
G. Whenω(a, b) = 0 for all b ∈ a, thena must be zero. The mapω is non-

degenerate, skew-symmetric, bilinear and constant in the sense that it does not depend on
the base pointA. Therefore, it has the right to be called a symplectic form onA, so the
pair (A,ω) is aninfinite-dimensional symplectic manifold.

A diffeomorphismf :P → P commuting with theG-action determines a diffeomor-
phismfbasic:B→ B by projection. Such a diffeomorphismf is called agauge transfor-
mation if the inducedfbasic is the identity. Thegauge groupof P is the groupG of all
gauge transformations ofP .

The derivative of anf ∈ G takes anEhresmann connectionT P = V ⊕ H to another
connectionT P = V ⊕Hf , and thus induces an action ofG in the spaceA of all connec-
tions. Atiyah and Bott [6] noticed that the action ofG on (A,ω) is Hamiltonian, where the
moment map (appropriately interpreted) is

µ :A −→ (
Ω2(P )⊗ g

)G
,

A 	−→ curvA,

i.e., the moment mapis the curvature.72 The reduced spaceM= µ−1(0)/G is the space of
flat connectionsmodulo gauge equivalence, known as themoduli space of flat connections,
which is a finite-dimensional symplectic orbifold.

72The exterior derivative of a connectionA decomposes into three components,

dA= (dA)vert+ (dA)mix + (dA)horiz∈
(
Ω2

vert⊕Ω2
mix ⊕Ω2

horiz
)⊗ g
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EXAMPLE. We describe the Atiyah–Bott construction for the case of a circle bundle

S1 ↪→ P

↓ π
B

Let v be the generator of theS1-action onP , corresponding to the basis 1 ofg � R.
A connection form onP is an ordinary 1-formA ∈Ω1(P ) such thatLvA= 0 andıvA= 1.
If we fix one particular connectionA0, then any other connection is of the formA=A0+a
for somea ∈ a= (Ω1

horiz(P ))
G =Ω1(B). The symplectic form ona=Ω1(B) is simply

ω :a× a −→Ω2(B) −→ R,

(a, b) 	−→ a ∧ b 	−→
∫
B

a ∧ b.

The gauge group isG = Maps(B,S1), because a gauge transformation is multiplication
by some element ofS1 over each point inB encoded in a maph :B → S1. The action
φ :G → Diff (P ) takesh ∈ G to the diffeomorphism

φh :p 	−→ h
(
π(p)

) · p.
The Lie algebra ofG is LieG =Maps(B,R)= C∞(B)with dual(LieG)∗ =Ω2(B), where
the (smooth) duality is provided by integrationC∞(B)×Ω2(B)→ R, (h,β) 	→ ∫

B
hβ.

The gauge group acts on the space of all connections by

ψ :G −→ Diff (A),(
h :x 	→ eiθ(x)

) 	−→ (ψh :A 	→A− π∗ dθ).

(In the case whereP = S1 × B is a trivial bundle, every connection can be writtenA =
dt + β, with β ∈Ω1(B). A gauge transformationh ∈ G acts onP by φh : (t, x) 	→ (t +
θ(x), x) and onA byA 	→ φ∗

h−1(A).) The infinitesimal action is

dψ : LieG −→ χ(A),
X 	−→ X# = vector field described by(A 	→A− dX),

so thatX# =−dX. It remains to check that

µ :A −→ (LieG)∗ =Ω2(B),

A 	−→ curvA

satisfying(dA)mix = 0 and(dA)vert(X,Y ) = [X,Y ], i.e., (dA)vert = 1
2
∑
i,�,m c

i
�m
A� ∧ Am ⊗ Xi , where the

ci
�m

’s are thestructure constantsof the Lie algebra with respect to the chosen basis, and defined by[X�,Xm] =∑
i,�,m c

i
�m
Xi . So the relevance ofdA may come only from its horizontal component, called thecurvature form

of the connectionA, and denoted curvA= (dA)horiz ∈Ω2
horiz⊗ g. A connection is calledflat if its curvature is

zero.
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is indeed a moment map for the action of the gauge group onA. Since in this case curvA=
dA ∈ (Ω2

horiz(P ))
G =Ω2(B), the action ofG onΩ2(B) is trivial andµ is G-invariant, the

equivariance condition is satisfied. Take anyX ∈ LieG = C∞(B). Since the mapµX :A 	→
〈X,dA〉 = ∫

B
X · dA is linear inA, its differential is

dµX :a −→ R,

a 	−→
∫
B

Xda.

By definition ofω and the Stokes theorem, we have that

ω
(
X#, a

)= ∫
B

X# · a =−
∫
B

dX · a =
∫
B

X · da = dµX(a), ∀a ∈Ω1(B),

so we are done in proving thatµ is the moment map.

The function‖µ‖2 :A → R giving the square of theL2 norm of the curvature is the
Yang–Mills functional, whose Euler–Lagrange equations are theYang–Mills equations.
Atiyah and Bott [6] studied the topology ofA by regarding‖µ‖2 as an equivariant Morse
function. In general, it is a good idea to apply Morse theory to the norm square of a moment
map [80].

6.4. Symplectic toric manifolds

Toric manifolds are smoothtoric varieties.73 When studying the symplectic features of
these spaces, we refer to them assymplectic toric manifolds. Relations between the alge-
braic and symplectic viewpoints on toric manifolds are discussed in [21].

DEFINITION 6.6. A symplectic toric manifoldis a compact connected symplectic mani-
fold (M,ω) equipped with an effective Hamiltonian action of a torusT of dimension equal
to half the dimension of the manifold, dimT = 1

2 dimM , and with a choice of a corre-
sponding moment mapµ. Two symplectic toric manifolds,(Mi,ωi,Ti ,µi), i = 1,2, are
equivalentif there exists an isomorphismλ :T1 → T2 and aλ-equivariant symplectomor-
phismϕ :M1 →M2 such thatµ1 = µ2 ◦ ϕ.

EXAMPLES.
1. The circleS1 acts on the 2-sphere(S2,ωstandard= dθ ∧dh) by rotations,eiν · (θ,h)=
(θ + ν,h). with moment mapµ= h equal to the height function and moment poly-
tope[−1,1] (see Figure 3).

73Toric varieties were introduced by Demazure in [29]. There are many nice surveys of the theory of toric vari-
eties in algebraic geometry; see, for instance, [27,53,79,107]. Toric geometry has recently become an important
tool in physics in connection with mirror symmetry [26].
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Analogously,S1 acts on the Riemann sphereCP1 with the Fubini–Study form
ωFS = 1

4ωstandard, by eiθ · [z0, z1] = [z0, e
iθ z1]. This is Hamiltonian with moment

mapµ[z0, z1] = −1
2 · |z1|2

|z0|2+|z1|2 , and moment polytope[−1
2,0].

2. For theTn-action on the product ofn Riemann spheresCP1 × · · · ×CP1 by(
eiθ1, . . . , eiθn

) · ([z1,w1], . . . , [zn,wn]
)= ([z1, e

iθ1w1
]
, . . . ,

[
w0, e

iθnw1
])
,

the moment polytope is ann-dimensional cube.
3. Let(CP2,ωFS) be 2-(complex-)dimensional complex projective space equipped with

the Fubini–Study form defined in Section 3.4. TheT2-action onCP2 by (eiθ1, eiθ2) ·
[z0, z1, z2] = [z0, e

iθ1z1, e
iθ2z2] has moment map

µ[z0, z1, z2] = −1

2

( |z1|2
|z0|2 + |z1|2 + |z2|2 ,

|z2|2
|z0|2 + |z1|2 + |z2|2

)
.

The image is the isosceles triangle with vertices(0,0), (−1
2,0) and(0,−1

2).
4. For theTn-action on(CPn,ωFS) by(

eiθ1, . . . , eiθn
) · [z0, z1, . . . , zn] =

[
z0, e

iθ1z1, . . . , e
iθnzn

]
the moment polytope is ann-dimensional simplex.

Since the coordinates of the moment map are commuting integrals of motion, a sym-
plectic toric manifold gives rise to a completely integrable system. By Proposition 5.24,
symplectic toric manifolds are optimal Hamiltonian torus-spaces. By Theorem 5.21, they
have an associated polytope. It turns out that the moment polytope contains enough infor-
mation to sort all symplectic toric manifolds. We now define the class of polytopes that
arise in the classification. For a symplectic toric manifold the weightsλ(1), . . . , λ(n) in
Theorem 5.22 form aZ-basis ofZm, hence the moment polytope is aDelzant polytope:

DEFINITION 6.7. ADelzant polytopein Rn is a polytope satisfying:
• simplicity, i.e., there aren edges meeting at each vertex;
• rationality, i.e., the edges meeting at the vertexp are rational in the sense that each

edge is of the formp+ tui , t � 0, whereui ∈ Zn;
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• smoothness, i.e., for each vertex, the correspondingu1, . . . , un can be chosen to be a
Z-basis ofZn.

In R2 the simplicity condition is always satisfied (by nondegenerate polytopes). InR3,
for instance, a square pyramid fails the simplicity condition.

EXAMPLES. Figure 4 represents Delzant polytopes inR2.

The following theorem classifies (equivalence classes of) symplectic toric manifolds in
terms of the combinatorial data encoded by a Delzant polytope.

THEOREM 6.8 (Delzant [28]).Toric manifolds are classified by Delzant polytopes, and
their bijective correspondence is given by the moment map:

{toric manifolds} ←→ {Delzant polytopes},(
M2n,ω,Tn,µ

) 	−→ µ(M).

Delzant’s construction (Section 6.5) shows that for a toric manifold the moment map
takes the fixed points bijectively to the vertices of the moment polytope and takes points
with a k-dimensional stabilizer to the codimensionk faces of the polytope. The moment
polytope is exactly the orbit space, i.e., the preimage underµ of each point in the polytope
is exactly one orbit. For instance, consider(S2,ω = dθ ∧ dh,S1,µ = h), whereS1 acts
by rotation. The image ofµ is the line segmentI = [−1,1]. The productS1 × I is an
open-ended cylinder. We can recover the 2-sphere by collapsing each end of the cylinder
to a point. Similarly, we can buildCP2 from T2 ×� where� is a rectangular isosceles
triangle, and so on.

EXAMPLES.
1. By a linear transformation in SL(2;Z), we can make one of the angles in a Delzant

triangle into a right angle. Out of the rectangular triangles, only the isosceles one
satisfies the smoothness condition. Therefore, up to translation, change of scale and
the action of SL(2;Z), there is just one 2-dimensional Delzant polytope with three
vertices, namely anisosceles triangle. We conclude that the projective spaceCP2

is the only 4-dimensional toric manifold with three fixed points, up to choices of a
constant in the moment map, of a multiple ofωFS and of a lattice basis in the Lie
algebra ofT2.

2. Up to translation, change of scale and the action of SL(n;Z), thestandardn-simplex
� in Rn (spanned by the origin and the standard basis vectors(1,0, . . . ,0), . . . ,
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(0, . . . ,0,1)) is the onlyn-dimensional Delzant polytope withn+1 vertices. Hence,
M� = CPn is the only 2n-dimensional toric manifold withn+ 1 fixed points, up to
choices of a constant in the moment map, of a multiple ofωFS and of a lattice basis
in the Lie algebra ofTN .

3. A transformation in SL(2;Z) makes one of the angles in a Delzant quadrilateral
into a right angle. Automatically an adjacent angle also becomes 90◦. Smoothness
imposes that the slope of the skew side be integral. Thus, up to translation, change of
scale and SL(2;Z)-action, the 2-dimensional Delzant polytopes with four vertices are
trapezoids with vertices(0,0), (0,1), (�,1) and(�+n,0), for n a nonnegative integer
and� > 0. Under Delzant’s construction (that is, under symplectic reduction ofC4

with respect to an action of(S1)2), these correspond to the so-calledHirzebruch
surfaces—the only 4-dimensional symplectic toric manifolds that have four fixed
points up to equivalence as before. Topologically, they areS2-bundles overS2, either
the trivial bundleS2×S2 whenn is even or the nontrivial bundle (given by the blow-
up of CP2 at a point; see Section 4.3) whenn is odd.

Let � be ann-dimensional Delzant polytope, and let(M�,ω�,Tn,µ�) be the asso-
ciated symplectic toric manifold. Theε-blow-up of (M�,ω�) at a fixed point of theTn-
action is a new symplectic toric manifold (Sections 4.3 and 5.6). Letq be a fixed point
of theTn-action on(M�,ω�), and letp = µ�(q) be the corresponding vertex of�. Let
u1, . . . , un be the primitive (inward-pointing) edge vectors atp, so that the raysp + tui ,
t � 0, form the edges of� atp.

PROPOSITION6.9. Theε-blow-up of(M�,ω�) at a fixed pointq is the symplectic toric
manifold associated to the polytope�ε obtained from� by replacing the vertexp by the
n verticesp+ εui , i = 1, . . . , n.

In other words, the moment polytope for the blow-up of(M�,ω�) at q is obtained
from � by chopping off the corner corresponding toq, thus substituting the original set
of vertices by the same set with the vertex corresponding toq replaced by exactlyn new
vertices. The truncated polytope is Delzant. We may view theε-blow-up of (M�,ω�)

as being obtained fromM� by smoothly replacingq by (CPn−1, εωFS) (whose moment
polytope is an(n− 1)-dimensional simplex). (See Figure 5.)

EXAMPLE. The moment polytope for the standardT2-action on(CP2,ωFS) is a right
isosceles triangle�. If we blow upCP2 at [0 : 0 : 1] we obtain a symplectic toric manifold
associated to the trapezoid below: aHirzebruch surface(see Figure 6).
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Let (M,ω,Tn,µ) be a 2n-dimensional symplectic toric manifold. Choose a suitably
generic direction inRn by picking a vectorX whose components are independent overQ.
This condition ensures that:
• the one-dimensional subgroupTX generated by the vectorX is dense inTn,
• X is not parallel to the facets of the moment polytope� := µ(M), and
• the vertices of� have different projections alongX.
Then the fixed points for theTn-action are exactly the fixed points of the action restricted

to TX, that is, are the zeros of the vector field,X# onM generated byX. The projection
of µ alongX, µX := 〈µ,X〉 :M → R, is a Hamiltonian function for the vector fieldX#

generated byX. We conclude that the critical points ofµX are precisely the fixed points of
theTn-action (see Figure 7).

By Theorem 5.22, ifq is a fixed point for theTn-action, then there exists a chart
(U, x1, . . . , xn, y1, . . . , yn) centered atq and weightsλ(1), . . . , λ(n) ∈ Zn such that

µX|U = 〈µ,X〉|U = µX(q)− 1

2

n∑
k=1

〈λ(k),X〉(x2
k + y2

k

)
.

Since the components ofX are independent overQ, all coefficients〈λ(k),X〉 are nonzero,
soq is anondegeneratecritical point ofµX. Moreover, theindex74 of q is twice the number
of labelsk such that−〈λ(k),X〉 < 0. But the−λ(k)’s are precisely the edge vectorsui
which satisfy Delzant’s conditions. Therefore, geometrically, the index ofq can be read
from the moment polytope�, by taking twice the number of edges whose inward-pointing

74A Morse functionon anm-dimensional manifoldM is a smooth functionf :M → R all of whose critical
points (wheredf vanishes) are nondegenerate (i.e., theHessian matrixis nonsingular). Letq be a nondegenerate
critical point forf :M→ R. The index off at q is the index of the HessianHq :Rm ×Rm→ R regarded as a
symmetric bilinear function, that is, the maximal dimension of a subspace ofR whereH is negative definite.
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edge vectors atµ(q) point up relative toX, that is, whose inner product withX is positive.
In particular,µX is aperfect Morse function75 and we have

PROPOSITION6.10. Let X ∈ Rn have components independent overQ. The degree-2k
homology group of the symplectic toric manifold(M,ω,T,µ) has dimension equal to the
number of vertices of the moment polytope where there are exactlyk (primitive inward-
pointing) edge vectors that point up relative to the projection along theX. All odd-degree
homology groups ofM are zero.

By Poincaré duality (or by taking−X instead ofX), the wordspoint upmay be replaced
by point down. The Euler characteristic of a symplectic toric manifold is simply the number
of vertices of the corresponding polytope. There is a combinatorial way of understanding
the cohomology ring [53].

A symplectic toric orbifoldis a compact connected symplectic orbifold(M,ω) equipped
with an effective Hamiltonian action of a torus of dimension equal to half the dimension
of the orbifold, and with a choice of a corresponding moment map. Symplectic toric orb-
ifolds were classified by Lerman and Tolman [87] in a theorem that generalizes Delzant’s:
a symplectic toric orbifold is determined by its moment polytope plus a positive integer
label attached to each of the polytope facets. The polytopes that occur are more general
than the Delzant polytopes in the sense that only simplicity and rationality are required;
the edge vectorsu1, . . . , un need only form a rational basis ofZn. When the integer la-
bels are all equal to 1, the failure of the polytope smoothness accounts for all orbifold
singularities.

6.5. Delzant’s construction

Following [28,66], we prove the existence part (or surjectivity) in Delzant’s theorem, by
using symplectic reduction to associate to ann-dimensional Delzant polytope� a sym-
plectic toric manifold(M�,ω�,Tn,µ�).

Let � be a Delzant polytope in(Rn)∗76 and withd facets.77 We can algebraically de-
scribe� as an intersection ofd halfspaces. Letvi ∈ Zn, i = 1, . . . , d , be the primitive78

outward-pointing normal vectors to the facets of�. Then, for someλi ∈ R, we can write
�= {x ∈ (Rn)∗ | 〈x, vi〉� λi, i = 1, . . . , d}.
75A perfect Morse functionis a Morse functionf for which theMorse inequalities[103,104] are equalities, i.e.,
bλ(M)= Cλ andbλ(M)− bλ−1(M)+ · · · ± b0(M)= Cλ −Cλ−1 + · · · ±C0 wherebλ(M)= dimHλ(M) and
Cλ be the number of critical points off with indexλ. If all critical points of a Morse functionf have even index,
thenf is a perfect Morse function.
76Although we identifyRn with its dual via the Euclidean inner product, it may be more clear to see� in (Rn)∗

for Delzant’s construction.
77A faceof a polytope� is a set of the formF = P ∩ {x ∈Rn | f (x)= c} wherec ∈R andf ∈ (Rn)∗ satisfies
f (x)� c, ∀x ∈ P . A facetof ann-dimensional polytope is an(n− 1)-dimensional face.
78A lattice vectorv ∈ Zn is primitive if it cannot be written asv = ku with u ∈ Zn, k ∈ Z and |k| > 1; for

instance,(1,1), (4,3), (1,0) are primitive, but(2,2), (3,6) are not.
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EXAMPLE. When� is the triangle shown in Figure 8, we have

�= {x ∈ (R2)∗ ∣∣ 〈x, (−1,0)
〉
� 0,

〈
x, (0,−1)

〉
� 0,

〈
x, (1,1)

〉
� 1
}
.

For the standard basise1 = (1,0, . . . ,0), . . . , ed = (0, . . . ,0,1) of Rd , consider

π :Rd −→ Rn,

ei 	−→ vi.

LEMMA 6.11. The mapπ is onto and mapsZd ontoZn.

PROOF. We need to show that the set{v1, . . . , vd} spansZn. At a vertexp, the edge vectors
u1, . . . , un ∈ (Rn)∗ form a basis for(Zn)∗ which, by a change of basis if necessary, we may
assume is the standard basis. Then the corresponding primitive normal vectors to the facets
meeting atp are−u1, . . . ,−un. �

We still callπ the induced surjective mapTd = Rd/(2πZd)
π→ Tn = Rn/(2πZn). The

kernelN of π is a (d − n)-dimensional Lie subgroup ofTd with inclusion i :N ↪→ Td .
Let n be the Lie algebra ofN . The exact sequence of tori

1−→N
i−→ Td

π−→ Tn −→ 1

induces an exact sequence of Lie algebras

0−→ n
i−→Rd

π−→Rn −→ 0

with dual exact sequence

0−→ (Rn)∗ π∗−→ (
Rd
)∗ i∗−→ n∗ −→ 0.
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ConsiderCd with symplectic formω0 = i
2

∑
dzk ∧ dz̄k , and standard Hamiltonian ac-

tion of Td given by(eit1, . . . , eitd ) · (z1, . . . , zd) = (eit1z1, . . . , e
itd zd). A moment map is

φ :Cd → (Rd)∗ defined by

φ(z1, . . . , zd)=−1

2

(|z1|2, . . . , |zd |2
)+ (λ1, . . . , λd),

where the constant is chosen for later convenience. The subtorusN acts onCd in a Hamil-
tonian way with moment mapi∗ ◦ φ :Cd → n∗. LetZ = (i∗ ◦ φ)−1(0).

In order to show thatZ (a closed set) is compact it suffices (by the Heine–Borel theorem)
to show thatZ is bounded. Let�′ be the image of� byπ∗. First we show thatφ(Z)=�′.
A valuey ∈ (Rd)∗ is in the image ofZ by φ if and only if

(a) y is in the image ofφ and (b) i∗y = 0

if and only if (using the expression forφ and the third exact sequence)

(a) 〈y, ei〉� λi for i = 1, . . . , d and

(b) y = π∗(x) for somex ∈ (Rn)∗.
Suppose thaty = π∗(x). Then

〈y, ei〉� λi, ∀i ⇐⇒ 〈
x,π(ei)

〉
� λi, ∀i

⇐⇒ 〈x, vi〉� λi, ∀i ⇐⇒ x ∈�.
Thus,y ∈ φ(Z)⇔ y ∈ π∗(�)=�′. Since�′ is compact,φ is proper andφ(Z)=�′, we
conclude thatZ must be bounded, and hence compact.

In order to show thatN acts freely onZ, pick a vertexp of�, and letI = {i1, . . . , in} be
the set of indices for then facets meeting atp. Pick z ∈ Z such thatφ(z)= π∗(p). Then
p is characterized byn equations〈p,vi〉 = λi wherei ∈ I :

〈p,vi〉 = λi ⇐⇒ 〈
p,π(ei)

〉= λi
⇐⇒ 〈

π∗(p), ei
〉= λi

⇐⇒ 〈
φ(z), ei

〉= λi
⇐⇒ ith coordinate ofφ(z) is equal toλi

⇐⇒ −1

2
|zi |2 + λi = λi

⇐⇒ zi = 0.

Hence, thosez’s are points whose coordinates in the setI are zero, and whose other co-
ordinates are nonzero. Without loss of generality, we may assume thatI = {1, . . . , n}. The
stabilizer ofz is(

Td
)
z
= {(t1, . . . , tn,1, . . . ,1) ∈ Td

}
.
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As the restrictionπ : (Rd)z → Rn maps the vectorse1, . . . , en to a Z-basisv1, . . . , vn
of Zn (respectively), at the level of groupsπ : (Td)z → Tn must be bijective. Since
N = ker(π :Td → Tn), we conclude thatN ∩ (Td)z = {e}, i.e., Nz = {e}. Hence all
N -stabilizers at points mapping to vertices are trivial. But this was the worst case, since
other stabilizersNz′ (z′ ∈ Z) are contained in stabilizers for pointsz that map to vertices.
We conclude thatN acts freely onZ.

We now apply reduction. Sincei∗ is surjective, 0∈ n∗ is a regular value ofi∗ ◦ φ.
Hence,Z is a compact submanifold ofCd of (real) dimension 2d − (d − n) = d + n.
The orbit spaceM� = Z/N is a compact manifold of (real) dimension dimZ − dimN =
(d + n) − (d − n) = 2n. The point-orbit mapp :Z→M� is a principalN -bundle over
M�. Consider the diagram

Z
j
↪→ Cd

p ↓
M�

wherej :Z ↪→ Cd is inclusion. The Marsden–Weinstein–Meyer theorem (Theorem 6.1)
guarantees the existence of a symplectic formω� onM� satisfying

p∗ω� = j∗ω0.

SinceZ is connected, the symplectic manifold(M�,ω�) is also connected.
It remains to show that(M�,ω�) is a HamiltonianTn-space with a moment mapµ�

having imageµ�(M�)=�. Letz be such thatφ(z)= π∗(p)wherep is a vertex of�. Let
σ :Tn → (Td)z be the inverse for the earlier bijectionπ : (Td)z → Tn. This is asection,
i.e., a right inverse forπ , in the sequence

1 −→ N
i−→ Td

π−→ Tn −→ 1,
σ←−

so it splits, i.e., becomes like a sequence for a product, as we obtain an isomorphism

(i, σ ) :N × Tn
�−→ Td . The action of theTn factor (or, more rigorously,σ(Tn) ⊂ Td )

descends to the quotientM� = Z/N . Consider the diagram

Z
j
↪→Cd

φ−→ (
Rd
)∗ � η∗ ⊕ (Rn)∗ σ ∗−→ (Rn)∗

p ↓
M�

where the last horizontal map is projection onto the second factor. Since the composition
of the horizontal maps is constant alongN -orbits, it descends to a map

µ� :M� −→ (Rn)∗
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which satisfiesµ� ◦ p = σ ∗ ◦ φ ◦ j . By reduction for product groups (Section 6.2), this is
a moment map for the action ofTn on (M�,ω�). The image ofµ� is

µ�(M�)= (µ� ◦ p)(Z)= (σ ∗ ◦ φ ◦ j)(Z)= (σ ∗ ◦ π∗)(�)=�,
becauseφ(Z) = π∗(�) andπ ◦ σ = id. We conclude that(M�,ω�,Tn,µ�) is the re-
quired toric manifold corresponding to�. This construction via reduction also shows that
symplectic toric manifolds are in fact Kähler.

EXAMPLE. Here are the details of Delzant’s construction for the case of a segment
� = [0, a] ⊂ R∗ (n = 1, d = 2). Let v(= 1) be the standard basis vector inR. Then�
is described by〈x,−v〉 � 0 and〈x, v〉 � a, wherev1 = −v, v2 = v, λ1 = 0 andλ2 = a.
The projectionR2 π−→ R, e1 	→ −v, e2 	→ v, has kernel equal to the span of(e1 + e2), so
thatN is the diagonal subgroup ofT2 = S1 × S1. The exact sequences become

1−→ N
i−→ T2 π−→ S1 −→ 1,

t 	−→ (t, t),

(t1, t2) 	−→ t−1
1 t2,

0−→ n
i−→ R2 π−→ R −→ 0,

x 	−→ (x, x),

(x1, x2) 	−→ x2 − x1,

0−→ R∗ π∗−→ (
R2
)∗ i∗−→ n∗ −→ 0,

x 	−→ (−x, x),
(x1, x2) 	−→ x1 + x2.

The action of the diagonal subgroupN = {(eit , eit ) ∈ S1 × S1} on C2 by(
eit , eit

) · (z1, z2)=
(
eit z1, e

it z2
)

has moment map(i∗ ◦ φ)(z1, z2)=−1
2(|z1|2 + |z2|2)+ a, with zero-level set

(i∗ ◦ φ)−1(0)= {(z1, z2) ∈C2: |z1|2 + |z2|2 = 2a
}
.

Hence, the reduced space is a projective space,(i∗ ◦ φ)−1(0)/N =CP1.

6.6. Duistermaat–Heckman theorems

Throughout this subsection, let(M,ω,G,µ) be a HamiltonianG-space, whereG is an
n-torus79 and the moment mapµ is proper.
79The discussion in this subsection may be extended to Hamiltonian actions of other compact Lie groups, not

necessarily tori; see [66, Exercises 2.1–2.10].



Symplectic geometry 179

If G acts freely onµ−1(0), it also acts freely on nearby levelsµ−1(t), t ∈ g∗ andt ≈ 0.
(Otherwise, assume only that 0 is a regular value ofµ and work with orbifolds.) We study
the variation of the reduced spaces by relating(

Mred= µ−1(0)/G,ωred
)

and
(
Mt = µ−1(t)/G,ωt

)
.

For simplicity, assumeG to be the circleS1. Let Z = µ−1(0) and leti :Z ↪→M be the
inclusion map. Fix a connection formα ∈Ω1(Z) for the principal bundle

S1 ↪→ Z

↓ π
Mred

that is,LX#α = 0 andıX#α = 1, whereX# is the infinitesimal generator for theS1-action.
Construct a 2-form on the product manifoldZ× (−ε, ε) by the recipe

σ = π∗ωred− d(xα),
wherex is a linear coordinate on the interval(−ε, ε)⊂R� g∗. (By abuse of notation, we
shorten the symbols for forms onZ × (−ε, ε) that arise by pullback via projection onto
each factor.)

LEMMA 6.12. The 2-formσ is symplectic forε small enough.

PROOF. At points wherex = 0, the formσ |x=0 = π∗ωred+α∧dx satisfiesσ |x=0(X
#, ∂
∂x
)

= 1, soσ is nondegenerate alongZ × {0}. Since nondegeneracy is an open condition, we
conclude thatσ is nondegenerate forx in a sufficiently small neighborhood of 0. Closed-
ness is clear. �

Notice thatσ is invariant with respect to theS1-action on the first factor ofZ× (−ε, ε).
This action is Hamiltonian with moment mapx :Z × (−ε, ε)→ (−ε, ε) given by projec-
tion onto the second factor (sinceLX#α = 0 andıX#α = 1):

ıX#σ =−ıX#d(xα)=−LX#(xα)+ dıX#(xα)= dx.
LEMMA 6.13. There exists an equivariant symplectomorphism between a neighborhood
of Z in M and a neighborhood ofZ × {0} in Z × (−ε, ε), intertwining the two moment
maps, for ε small enough.

PROOF. The inclusioni0 :Z ↪→ Z × (−ε, ε) asZ × {0} and the natural inclusioni :Z ↪→
M are S1-equivariant coisotropic embeddings. Moreover, they satisfyi∗0σ = i∗ω since
both sides are equal toπ∗ωred, and the moment maps coincide onZ becausei∗0x = 0=
i∗µ. Replacingε by a smaller positive number if necessary, the result follows from the
equivariant version of the coisotropic embedding theorem (Theorem 2.9).80 �
80Equivariant coisotropic embedding theorem:Let (M0,ω0), (M1,ω1) be symplectic manifolds of dimen-

sion 2n, G a compact Lie group acting on(Mi,ωi), i = 0,1, in a Hamiltonian way with moment mapsµ0
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Therefore, in order to compare the reduced spacesMt = µ−1(t)/S1 for t ≈ 0, we can
work inZ× (−ε, ε) and compare instead the reduced spacesx−1(t)/S1.

PROPOSITION6.14. The space(Mt ,ωt ) is symplectomorphic to(Mred,ωred− tβ) where
β is the curvature form of the connectionα.

PROOF. By Lemma 6.13,(Mt ,ωt ) is symplectomorphic to the reduced space at levelt for
the Hamiltonian space(Z × (−ε, ε), σ,S1, x). Sincex−1(t)= Z × {t}, whereS1 acts on
the first factor, all the manifoldsx−1(t)/S1 are diffeomorphic toZ/S1 =Mred. As for the
symplectic forms, letιt :Z×{t} ↪→Z× (−ε, ε) be the inclusion map. The restriction ofσ
toZ× {t} is

ι∗t σ = π∗ωred− t dα.

By definition of curvature,dα = π∗β. Hence, the reduced symplectic form onx−1(t)/S1

is ωred− tβ. �

In loose terms, Proposition 6.14 says that the reduced formsωt vary linearly int , for t
close enough to 0. However, the identification ofMt withMred as abstract manifolds is not
natural. Nonetheless, any two such identifications are isotopic. By the homotopy invariance
of de Rham classes, we obtain:

THEOREM6.15 (Duistermaat–Heckman [38]).Under the hypotheses and notation before,
the cohomology class of the reduced symplectic form[ωt ] varies linearly int . More specif-
ically, if c = [−β] ∈H 2

deRham(Mred) is the first Chern class81 of theS1-bundleZ→Mred,
we have

[ωt ] = [ωred] + tc.

andµ1, respectively,Z a manifold of dimensionk � n with aG-action, andιi :Z ↪→Mi , i = 0,1,G-equivariant
coisotropic embeddings. Suppose thatι∗0ω0 = ι∗1ω1 and ι∗0µ0 = ι∗1µ1. Then there existG-invariant neighbor-
hoodsU0 and U1 of ι0(Z) and ι1(Z) in M0 andM1, respectively, and aG-equivariant symplectomorphism
ϕ :U0 → U1 such thatϕ ◦ ι0 = ι1 andµ0 = ϕ∗µ1.
81Often the Lie algebra ofS1 is identified with 2πiR under the exponential map exp :g� 2πiR→ S1, ξ 	→ eξ .

Given a principalS1-bundle, by this identification the infinitesimal action maps the generator 2πi of 2πiR
to the generating vector fieldX#. A connection formA is then an imaginary-valued 1-form on the total space
satisfyingLX#A= 0 andıX#A= 2πi. Its curvature formB is an imaginary-valued 2-form on the base satisfying

π∗B = dA. By the Chern–Weil isomorphism, thefirst Chern classof the principalS1-bundle isc= [ i2π B].
Here we identify the Lie algebra ofS1 with R and implicitly use the exponential map exp :g � R → S1,

t 	→ e2πit . Hence, given a principalS1-bundle, the infinitesimal action maps the generator 1 ofR to X#, and
here a connection formα is an ordinary 1-form on the total space satisfyingLX#α = 0 and ıX#α = 1. The
curvature formβ is an ordinary 2-form on the base satisfyingπ∗β = dα. Consequently, we haveA = 2πiα,
B = 2πiβ and the first Chern class is given byc= [−β].
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DEFINITION 6.16. TheDuistermaat–Heckman measure,mDH, ong∗ is the push-forward
of the Liouville measure82 byµ :M→ g∗, that is, for any Borel subsetU of g∗, we have

mDH(U)=
∫
µ−1(U)

ωn

n! .

The integral with respect to the Duistermaat–Heckman measure of a compactly-
supported functionh ∈ C∞(g∗) is∫

g∗
hdmDH :=

∫
M

(h ◦µ)ω
n

n! .

On g∗ regarded as a vector space, sayRn, there is also the Lebesgue (or Euclidean) mea-
sure,m0. The relation betweenmDH andm0 is governed by theRadon–Nikodym derivative,
denoted bydmDH

dm0
, which is ageneralized functionsatisfying

∫
g∗
hdmDH =

∫
g∗
h
dmDH

dm0
dm0.

THEOREM 6.17 (Duistermaat–Heckman [38]).Under the hypotheses and notation be-
fore, the Duistermaat–Heckman measure is a piecewise polynomial multiple of Lebesgue
measure ong∗ � Rn, that is, the Radon–Nikodym derivativef = dmDH

dm0
is piecewise poly-

nomial. More specifically, for any Borel subsetU of g∗, we havemDH(U) =
∫
U f (x)dx,

wheredx = dm0 is the Lebesgue volume form onU andf :g∗ � Rn → R is polynomial
on any region consisting of regular values ofµ.

This Radon–Nikodym derivativef is called theDuistermaat–Heckman polynomial. In
the case of a toric manifold, the Duistermaat–Heckman polynomial is a universal constant
equal to(2π)n when� is n-dimensional. Thus the symplectic volume of(M�,ω�) is
(2π)n times the Euclidean volume of�.

EXAMPLE. For the standard spinning of a sphere (S2,ω= dθ ∧dh,S1,µ= h), the image
of µ is the interval[−1,1]. The Lebesgue measure of[a, b] ⊆ [−1,1] is m0([a, b]) =
b− a. The Duistermaat–Heckman measure of[a, b] is

mDH
([a, b])= ∫

{(θ,h)∈S2 | a�h�b}
dθ dh= 2π(b− a),

82On an arbitrary symplectic manifold(M2n,ω), with symplectic volumeω
n

n! , theLiouville measure(or sym-
plectic measure) of a Borel subsetU of M is

mω(U)=
∫
U

ωn

n! .

The setB of Borel subsetsis theσ -ring generated by the set of compact subsets, i.e., ifA,B ∈ B, thenA\B ∈ B,
and ifAi ∈ B, i = 1,2, . . . , then

⋃∞
i=1Ai ∈B.



182 A. Cannas da Silva

i.e., mDH = 2πm0. Consequently,the area of the spherical region between two paral-
lel planes depends only on the distance between the planes, a result that was known to
Archimedes around 230 BC.

PROOF. We sketch the proof of Theorem 6.17 for the caseG = S1. The proof for the
general case, which follows along similar lines, can be found in, for instance, [66], besides
the original articles.

Let (M,ω,S1,µ) be a HamiltonianS1-space of dimension 2n and let(Mx,ωx) be its
reduced space at levelx. Proposition 6.14 or Theorem 6.15 imply that, forx in a sufficiently
narrow neighborhood of 0, the symplectic volume ofMx ,

vol(Mx)=
∫
Mx

ωn−1
x

(n− 1)! =
∫
Mred

(ωred− xβ)n−1

(n− 1)! ,

is a polynomial inx of degreen− 1. This volume can be also expressed as

vol(Mx)=
∫
Z

π∗(ωred− xβ)n−1

(n− 1)! ∧ α,

whereα is a connection form for theS1-bundleZ→Mred andβ is its curvature form.
Now we go back to the computation of the Duistermaat–Heckman measure. For a Borel
subsetU of (−ε, ε), the Duistermaat–Heckman measure is, by definition,

mDH(U)=
∫
µ−1(U)

ωn

n! .

Using the fact that(µ−1(−ε, ε),ω) is symplectomorphic to(Z × (−ε, ε), σ ) and, more-
over, they are isomorphic as HamiltonianS1-spaces, we obtain

mDH(U)=
∫
Z×U

σn

n! .

Sinceσ = π∗ωred−d(xα), its power isσn = n(π∗ωred−x dα)n−1∧α∧dx. By the Fubini
theorem, we then have

mDH(U)=
∫
U

[∫
Z

π∗(ωred− xβ)n−1

(n− 1)! ∧ α
]
∧ dx.

Therefore, the Radon–Nikodym derivative ofmDH with respect to the Lebesgue measure,
dx, is

f (x)=
∫
Z

π∗(ωred− xβ)n−1

(n− 1)! ∧ α = vol(Mx).
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The previous discussion proves that, forx ≈ 0, f (x) is a polynomial inx. The same
holds for a neighborhood of any other regular value ofµ, because we may change the
moment mapµ by an arbitrary additive constant. �

Duistermaat and Heckman [38] also applied these results whenM is compact to provide
a formula for the oscillatory integral

∫
M
eiµ

X ωn

n! for X ∈ g as a sum of contributions of
the fixed points of the action of the one-parameter subgroup generated byX. They hence
showed that thestationary phase approximation83 is exact in the case of the moment map.
WhenG is a maximal torus of a compact connected simple Lie group acting on a coadjoint
orbit, the Duistermaat–Heckman formula reduces to the Harish–Chandra formula. It was
observed by Berline and Vergne [14] and by Atiyah and Bott [5] that the Duistermaat–
Heckman formula can be derived bylocalization in equivariant cohomology. This is an
instance ofAbelian localization, i.e., a formula for an integral (in equivariant cohomology)
in terms of data at the fixed points of the action, and typically is used for the case of Abelian
groups (or of maximal tori). Laternon-Abelian localizationformulas were found, where
integrals (in equivariant cohomology) are expressed in terms of data at the zeros of the
moment map, normally used for the case of non-Abelian groups. Both localizations gave
rise to computations of the cohomology ring structure of reduced spaces [80].
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1. Introduction

This article is a survey of (a part of) Riemannian geometry. Riemannian geometry is a
huge area which occupies, I believe, at least 1/3 of the whole of differential geometry. So
obviously we need to restrict our attention to some part of it to write an article in this hand-
book. (M. Berger’s books [20,19] deals with wider topics.) Let me mention first what isnot
included in this article but should have been included in a survey of Riemannian geometry.

(1) We do not include an elementary or introductory part of Riemannian geometry. For
example, topics covered in [103, Sections II, III] or [97] are not in this article. We
assume the reader to have some knowledge about it.

(2) We focus our attention to global results, and results of local nature are rarely dis-
cussed.

(3) One powerful tool to study global Riemannian geometry is partial differential equa-
tions, especially nonlinear one. We do not discuss it.1 The theory of geodesics
(which is a theory of nonlinearordinary differential equations) is one of the main
tools used in this article. Linear partial differential equations, especially the Lapla-
cian, is mentioned only when it is closely related to the other topics included in this
article.

(4) We do not discuss manifolds of nonpositive curvature.
(5) We do not discuss scalar curvature.
After removing so many important and interesting topics there are still many things

missing in this article. For example, results such as filling volume [73] is not discussed.
The study of closed geodesics is not included either.

So what is included in this article?
We focus the part of Riemannian geometry which describes relations of curvature (sec-

tional or Ricci curvature) to topology of the underlying manifold. Since we do not discuss
nonpositively curved manifolds, the main target is manifolds of (almost) nonnegative cur-
vature and more generally the class of manifolds with curvature bounded from below. The
study of such Riemannian manifolds started with sphere theorems in the 50’s where com-
parison theorems are introduced by Rauch as an important tool of study.

At the beginning of the 70’s Cheeger (and Weinstein) proved finiteness theorems which
provide another kind of statements to be established other than sphere theorems. Soon
after that, M. Gromov introduced many new ideas, results and tools, such as Gromov–
Hausdorff convergence, almost flat manifold theorem, Betti number estimate, etc., and gave
tremendous influence to the area. These present the first turning point of the development
of metric Riemannian geometry.

In the 1980’s global Riemannian geometry was a very rapidly developing area. Espe-
cially the class of Riemannian manifolds with sectional curvature bounded from below
and above are studied extensively. An important progress in the 1980’s is the theory of
collapsing Riemannian manifolds.

Those topics are discussed in Sections 2–13. After a brief review of sphere theorems in
Section 2, we describe finiteness theorems in Section 3. In Section 4, while explaining a
rough sketch of proofs of sphere theorems, we review several basic facts on global Rie-

1So, for example, famous result by Hamilton on the 3 manifold of positive Ricci curvature is not discussed.
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mannian geometry, such as Rauch’s comparison theorem, cut points, conjugate points, in-
jectivity radius, etc. One of the main tools of global Riemannian geometry is the Gromov–
Hausdorff distance, which we define in Section 5, and we will prove Gromov’s precom-
pactness theorem. The proofs of finiteness theorems are discussed in Sections 6–9. We try
to sketch various (different) techniques used to prove finiteness theorems etc. there, rather
than to concentrate on one method and to give its full details. Collapsing Riemannian
manifolds (under the bound of the absolute value of sectional curvature) is discussed in
Sections 10–13.

In Sections 14–18, we discuss the class of Riemannian manifolds with sectional curva-
ture bounded from below (but not above). The basic tool to study it is Morse theory of
the distance function, which was initiated by Grove–Shiohama. We discuss it and its ap-
plication to sphere theorems in Section 14. We explain applications of the same method
to finiteness theorems in Section 15. The theme of Section 16 is noncompact manifolds of
nonnegative curvature. Besides its own interest, it is used in many places to study compact
Riemannian manifold. Our focus in this article is on the compact case, so we restrict our
discussion on noncompact manifolds to ones which have a direct application to compact
manifolds.

New turning points of the development of metric Riemannian geometry came at some
point in the 1990’s when several mathematicians belonging to the new generation (such
as Perelman and Colding) began to work in this field. In Sections 17 and 18 we discuss
Alexandrov spaces. They are metric spaces which have curvature>−∞ in some general-
ized sense. The notion of curvature on a metric space which is not a manifold was intro-
duced by Alexandrov a long time ago. Recently various applications of it to Riemannian
geometry (study ofsmoothRiemannian manifolds) were discovered. It makes this topic
more popular among Riemannian geometers. An important structure theorem of Alexan-
drov spaces is obtained by Perelman and his collaborators, which we review in Sections 17
and 18.

In Sections 19–23 we discuss the class of Riemannian manifolds with Ricci curvature
bounded from below. The first Betti number and the fundamental group are topics studied
extensively under this curvature assumption. We review some of such studies in Section 19.
The theme of Section 20 is (mainly) a special case, that is the case of Einstein manifolds.
Our discussion of Einstein manifolds is restricted to those related to the other parts of
this article. We discuss Einstein manifolds here since they provide rich examples of a new
phenomenon which appears when we replace the assumption sectional curvature� const,
by the Ricci curvature� const. Also it is an area where results we discuss in Sections 21–23
provide (and will provide) a powerful tool. Sections 21–23 are reviews of results obtained
recently by Colding and Cheeger–Colding on the class of manifolds whose Ricci curvature
is bounded from below. Here we emphasize the geometric part of the story and omit most
of the analytic parts of the proofs, though analytic parts are as important as geometric parts.

It is of course impossible to write down all details of the proofs in this article. However,
rather than stating as many results as possible without proof, the author tried to survey
as many ideas, tools, techniques, methods of proofs, etc. as possible. In that sense, the
emphasis of this article is on methods of proofs and not on their outcome. (Of course
important applications of various techniques are explained.) Since this is a survey article
there are no new results in it.
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1.1. Notations used in this article

TpM = the tangent space, Expp :TpM→M, the exponential map,

Bp(R,X)=
{
x ∈X | d(x,p) < R}, for a metric space(X,d) andp ∈X,

KM = the sectional curvature ofM, Vol(M)= the volume ofM,

RicciM = the Ricci curvature ofM, Diam(M)= the diameter ofM,

iM(p)= the injectivity radius ofM atp (Definition 4.1),

xy = a minimal geodesic joiningx andy,

� xyz= the angle betweenxy andyz aty,

Sn(D)=
{
M | RicciM �−(n− 1), dim= n, Diam(M)�D

}
,

Sn(D,v)=
{
M ∈Sn(D) | Vol(M)� v

}
,

Sn(D, i > ρ)=
{
M ∈Sn(D) | ∀p, iM(p)� ρ

}
,

Mn(D)=
{
M | |KM |� 1, dim= n, Diam(M)�D

}
,

Mn(D,v)=
{
M ∈Mn(D) | Vol(M)� v

}
,

M′
n(D,v)=

{
M |KM �−1, Diam(M)�D, Vol(M)� v

}
,

dGH(X1,X2)= the Gromov–Hausdorff distance (Definition 3.2),

Sn(κ)= simply connected Riemannian manifold withKM ≡ κ,
Ap(a, b;M)=

{
x ∈M | a � d(p,x)� b

}
,

Sp(a;M)=
{
x ∈M | d(p,x)= a}.

limGH
i→∞Xi =X means limi→∞ dGH(Xi,X)= 0.

The symbol
.= means almost equal. The argument using this symbol is not rigorous. We

use it only when we sketch the proof.
The symbolτ(ε1, . . . , εk|a1, . . . , am) stand for the positive number depending only on

ε1, . . . , εk, a1, . . . , am and satisfying

lim
ε1,...,εk→0

τ(ε1, . . . , εk|a1, . . . , am)= 0,

for each fixeda1, . . . , am. In other words

f (ε1, . . . , εk|a1, . . . , am) < τ(ε1, . . . , εk|a1, . . . , am)

is equivalent to the following statement.
For eachδ, a1, . . . , am there existsε such that ifε1< ε, . . . , εk < ε then

f (ε1, . . . , εk|a1, . . . , am) < δ.
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2. Sphere theorems

There are several pioneering works in metric Riemannian geometry (such as Myers’ theo-
rem (Theorem 5.4), Hadamard–Cartan’s theorem (Theorem 4.6), study of convex surfaces
in R3, etc.). But let me set the beginning of metric Riemannian geometry at the time when
the following theorem was proved. From now on, we denote byKM the sectional curvature
of a Riemannian manifoldM . We assume all Riemannian manifolds are complete unless
otherwise stated.

THEOREM 2.1 (Rauch’s sphere theorem [129]).There exists a positive constantεn de-
pending only on the dimensionn such that, if a simply connected Riemannian manifoldM
satisfies1�KM � 1− εn, thenM is homeomorphic to a sphere.

This theorem is one of the first theorems which are called “sphere theorems”. In this
section, we mention some of the most important sphere theorems.2

THEOREM 2.2 (Klingenberg [94], Berger [18]).If a simply connected Riemannian mani-
foldM satisfies1�KM > 1/4, then it is homeomorphic to a sphere.

If M satisfies1�KM � 1/4, thenM is either homeomorphic to a sphere or is isometric
to a symmetric space of compact type.3

Theorem 2.2 is a generalization of Rauch’s theorem, and is an optimal result among
those characterizing spheres under an assumption of the sectional curvature bounded from
above or below.4 (We remark that the sectional curvature of a complex, or quaternionic
projective space, or Cayley plane is between 1 and 1/4.)

THEOREM 2.3 (Bochner [157]).If the curvature tensorR of a simply connected Rie-
mannian manifoldM satisfies

C

2
� −Rijk�ξ ij ξ k�

‖ξ‖ � C

for any antisymmetric2 tensorξ (whereC is a positive constant), then the homology group
overR ofM is isomorphic to the homology group of the sphere.

The assumption of Theorem 2.3 is on the curvature operator and is more restrictive than
the one on sectional curvature. Hence Theorem 2.3 follows from Theorem 2.2. (Theo-
rem 2.3 was proved earlier.) We mention Theorem 2.3 since the idea of its proof is quite
different from the proof of Theorem 2.2. We mention them later in Section 19.

THEOREM 2.4. If M is simply connected and if1�KM � 1− ε, thenM is diffeomorphic
to a sphere.

The difference between Theorems 2.4 and 2.2 is that the conclusion of Theorem 2.4
is one on the diffeomorphism type and is sharper. The constant 1− ε in Theorem 2.4

2In this article we mention only a part of many sphere theorems. The reader may find more in [139].
3More precisely, one of the complex or quaternionic projective space or the Cayley plane.
4Several results which relax the condition of Theorem 2.2 to 1�KM � 1/4− ε are known. See [3].
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was 1− εn whereεn is a positive number depending only on dimensionn and was not
explicit, at the time when it was first proved by Gromoll and Shikata in [65,136]. Later it
was improved to a constant 1− ε which is independent of the dimension. It was further
improved and an explicit bound (1− ε = 0.87) was found [143]. The explicit bound is
improved several times.5 The possibility that “1� KM > 0.25 andπ1(M) = {1} implies
thatM is diffeomorphic toSn” was not yet eliminated. The best constant is not yet found.

Remark2.1. Hitchin [85] proved that there are some exotic spheres which do not admit a
metric of positive scalar curvature, by using theKO index theorem of the Dirac operator.
Gromoll–Myer [66] (and Grove–Ziller [83]) found examples of exotic spheres which have
a metric of nonnegative curvature. So far no example of an exotic sphere which has a metric
of (strictly) positive sectional curvature is found.

THEOREM 2.5 (Berger [18], Grove–Shiohama [82]).If KM � 1/4 and if the diameter of
M is greater thanπ , thenM is homeomorphic to a sphere.

Berger proved thatM is homotopy equivalent to a sphere under the assumption of The-
orem 2.5 and Grove–Shiohama proved thatM is homeomorphic to a sphere. By the gen-
eralized Poincaré conjecture (proved by Smale and Freedman) the latter follows from the
former (in case dimension is not 3). But the proof by Grove–Shiohama (which is different
from Berger’s) uses Morse theory of functions which are not differentiable. This technique
turns out to be very useful to study Riemannian manifold under lower (but not upper)
curvature bounds. (See Section 14.)

The next theorem is a final form of a series of results due to Shiohama [137], Otsu–
Shiohama–Yamaguchi [111], Perelman [114]. We will discuss it in Section 22.

THEOREM 2.6 (Cheeger–Colding [29]).There existsεn > 0 such that ifM satisfies
RicciM � (n− 1), Vol(M)� Vol(Sn)− εn thenM is diffeomorphic to a sphere.

A sphere theorem is a characterization of a sphere, which is the most basic example of
Riemannian manifold.

Let us recall the classification of surfaces (two-manifolds). It was first proved that a
“simply connected compact 2-dimensional manifold is a sphere”, then the classification in
the general case was performed by simplifying a general surface by, say, surgery.

In a similar sense, sphere theorems play an important role in metric Riemannian geome-
try. Especially the techniques used to prove the sphere theorems we mentioned above play
an important role to study more general Riemannian manifolds.

3. Finiteness theorems and Gromov–Hausdorff distance

Another type of important result in metric Riemannian geometry are finiteness theorems.
First examples of that kind are proved by Cheeger and by Weinstein, which appeared at the
beginning of the 1970’s. Cheeger’s finiteness theorem is as follows.

5The best estimate known at the time of writing this article is about 1− ε = 0.68 [86,144].
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THEOREM 3.1 (Cheeger [25]).For all positive numbersD,v,n, the number of diffeo-
morphism classes of Riemannian manifoldsM with Diam(M) � D, Vol(M) � v, and
|KM |� 1 is finite.

The method of proof of Theorem 3.1 is closely related to the proofs of Rauch’s sphere
theorem and of Theorems 2.2, 2.4. We will explain it later.

Theorems 2.4 and 3.1 (and their proof) use an idea that if two Riemannian manifolds are
“close” to each other then they are diffeomorphic to each other.

One way to formulate precisely what we mean by two Riemannian manifolds to be
close, is by using the notion Gromov–Hausdorff distance.6 Let us first review the defini-
tion of (usual or classical) Hausdorff distance. Let(X,d) be a metric space andY1, Y2 be
subspaces. We put for any subspaceY of X,

NεY = {x ∈X | d(x,Y ) < ε},
whered(x,Y )= inf{d(x, y) | y ∈ Y }.

DEFINITION 3.1. TheHausdorff distancedX(Y1, Y2) betweenY1 andY2 is the infimum
of ε > 0 such thatY2 ⊂NεY1, Y1 ⊂NεY2.

The Hausdorff distance defines a complete metric on the set of all compact subsets of a
fixed complete metric space(X,d).

The Gromov–Hausdorff distance is an “absolute analogue” of the Hausdorff distance.
Namely it defines a distance between two metric spaces (which we do not assume to be
embedded somewhere a priori).

DEFINITION 3.2. TheGromov–Hausdorff distancedGH((X1, d), (X2, d)) between two
metric spaces(X1, d) and (X2, d) is an infimum of the Hausdorff distancedZ(X1,X2),
whereZ is a metric space such thatX1,X2 are embedded toZ by isometries.

Hereafter we write limGH
i→∞Xi =X if lim i→∞ dGH(Xi,X)= 0.

Gromov–Hausdorff distance defines a complete metric on the set of all isometry classes
of compact metric spaces.

The following version is sometimes convenient.

DEFINITION 3.3 [52]. A mapϕ :X1 → X2 is called anε-Hausdorff approximation, if
|dX1(ϕ(x),ϕ(y))−dX2(x, y)|� ε for all x, y ∈X1 and if theε-neighborhood of the image
ϕ(X1) isX2.

If dGH(X1,X2)� ε then there exists a 3ε-Hausdorff approximationX1 →X2. If there
exists anε-Hausdorff approximationX1 →X2 thendGH(X1,X2)� 3ε.

There are two types of important results on the Gromov–Hausdorff distance which are
applied to finiteness theorems. In this section, we explain results which were developed
mainly in the 1980’s.

6See [69,75,57] for more detailed account on it.
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We first state Gromov’s precompactness theorem on manifolds with Ricci curvature
bound. Letn,D be a positive integer and a positive number. We denote bySn(D) the
set of all isometry classes of Riemannian manifoldsM such that Ricci� −(n − 1) and
diameter� D. Here and hereafter the diameter Diam(X) of a metric space(X,d) is the
supremum ofd(x, y) wherex, y ∈X.

THEOREM 3.2 (Gromov [69]). (Sn(D), dGH) is relatively compact in the space of all
isometry classes of compact metric spaces.

The method of the proof of Theorem 3.2 is related to the proofs of Rauch’s sphere
theorem and of Theorem 2.2. We will explain it in Section 5.

We next mention a rigidity theorem. Gromov’s precompactness theorem assumes bounds
from below of the Ricci curvature, which is a rather weak assumption. We need the stronger
assumption for the rigidity theorem. We first discuss the case that Gromov studied in [69].
For n,D,v, we denote byMn(D,v) the set of all isometry classes ofn-dimensional Rie-
mannian manifoldsM such that|KM |� 1, Diam(M)�D, and Vol(M)� v.

THEOREM 3.3 [69,93]. There existsεn(D,v) > 0 such that ifM1,M2 ∈Mn(D,v) and if
dGH(M1,M2)� εn(D,v), thenM1 is diffeomorphic toM2.

Attempts to prove a similar conclusion as Theorem 3.3 under an assumption milder
thanM1,M2 ∈Mn(D,v), played a very important role in the development of metric Rie-
mannian geometry. Perelman proved thatM1 is homeomorphic toM2 if dGH(M1,M2)�
εn(D,v) under the assumptionKM � −1, which replaces|KM | � 1 in the definition of
Mn(D,v). (Theorem 18.2.) Further study is done when we assume Ricci curvature bounds.
(See Theorem 22.3.)

Theorem 3.1 follows from Theorems 3.2 and 3.3. (We leave its proof as an exercise to
the reader.)

Theorem 3.2 asserts relative compactness. Namely it implies that, for any sequenceMi

of elements ofSn(D), there exists a converging subsequence. Its limitM∞ may be re-
garded as a “weak solution” of various problems of metric Riemannian geometry (when
we regard it as an analogy of functional analysis). Then it is natural and important to study
the “regularity” ofM∞. It is closely related to the proof of Theorem 3.3. The next result is
related to the “regularity” question.

THEOREM3.4 [69,64,121].Each element ofMn(D,v) is a Riemannian manifold ofC1,α-
class.7

Hereα is any positive number withα < 1 and a Riemannian manifold ofC1,α-class is a
manifold with metric tensorg whose first derivative isCα-Hölder continuous.

The assumption of Theorem 3.4 is rather strong. There are two kinds of study to relax
this conditionX ∈Mn(D,v).

7The proof of this theorem is completed in [64,121] based on the idea of Gromov [69]. There seems to be
various independent research in Russia. (See, for example, [107,108,17].)
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One is to remove the assumption Vol(M) � v. It means that we study the limit of a
sequence of Riemannian manifolds which will become degenerate. This is called the study
of collapsing Riemannian manifolds. We discuss it in Sections 10–13. (See also [57].)

The other direction is to relax the assumption|KM |� 1. Theorem 3.1 is generalized as
follows towards this direction.

For n,D,v, we denote byM′
n(D,v) the set of all isometry classes ofn-dimensional

Riemannian manifoldsM such thatKM �−1, Diam(M)�D, Vol(M)� v.

THEOREM 3.5 (Grove–Petersen–Wu [78,81]).For eachn,D,v, the number of homeo-
morphism classes of elements ofM′

n(D,v) is finite.8

We explain the proof of Theorem 3.5 in Section 15.
The limit of a sequence of manifoldsM satisfyingKM � −1 is an Alexandrov space.

We will discuss it in Sections 17 and 18.

Remark3.1. (1) IfMi is a sequence of Riemannian manifolds such thatN = limGH
i→∞Mi

andN is a Riemannian manifold. ThenKMi
� κ impliesKN � κ . Moreover we have

dimN � dimMi .
(2) On the other hand, in the case whenΛ�KMi

� κ , Λ�KN is, in general, false for
limGH

i→∞Mi =N . A counterexample can be constructed as follows. Let Rotθ be the rotation
by angleθ of S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} around thez axis. We consider the
quotient ofS2 × R by the Z action generated by(p, t)→ (Rotαε(p), t + ε). Let Mε,α

be the quotient space with quotient metric. (Mε,α is diffeomorphic toS2 × S1.) We have
1�KMε,α � 0 sinceMε,α is locally isometric toS2×R. The limit ofMε,α asε→ 0 isS2

with some Riemannian metricgα . 1� (S2, gα) does not hold unlessα = 0.

4. Geodesic coordinate, injectivity radius, comparison theorems and sphere theorem

The following theorem in differential topology is used in the proof of Theorem 2.2.

THEOREM 4.1. If a compactn-dimensional manifoldM is a union of two open sets both
of which are diffeomorphic toRn, thenM is homeomorphic to a sphere.

In order to apply Theorem 4.1 to the proofs of sphere theorems, we want to coverM

by two coordinate neighborhoods. To estimate the size of the coordinate charts plays an
important role in the study of other problems. Let us begin with the following

PROPOSITION 4.2. For each compact Riemannian manifoldM , there exists a positive
numberεM with the following properties. If the distance betweenp,q ∈M is smaller than
εM , then there exists a uniquegeodesic of length< εM joining p,q.

8In case the dimension is 3, [78,81] proved only finiteness of homotopy type. Now, Perelman’s stability theorem
(Theorem 18.2) implies the finiteness of homeomorphism classes in general.
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The proof of Proposition 4.2 is given in many standard text books of Riemannian geom-
etry. (For example, in [97,33].)

The uniqueness of such geodesic is essential for our purpose. Let us explain this point.
Let M be a complete Riemannian manifold. For eachp ∈M we define the exponential
map, Expp :TpM →M as follows. LetV ∈ Tp(M). There exists a geodesic� :R →M ,

such thatd�
dt
(0)= V . We then put�(1)= Expp V .

Proposition 4.2 implies that Expp :TpM →M is a diffeomorphism on the ball of ra-
diusεM .

DEFINITION 4.1. The injectivity radius of a Riemannian manifoldM is a function
iM :M→R which associates top ∈M the positive number:

iM(p)= sup
{
ε | Expp :TpM→M is injective on

{
V ∈ TpM | ‖V ‖< ε}}.

Proposition 4.2 impliesiM � εM for a compact Riemannian manifoldM . (It is easy to
see thatiM is continuous. HenceiM � εM > 0 follows easily from the implicit function
theorem. Proposition 4.2 is a bit more involved.)

If R < iM(p), then the restriction of the exponential map Expp :TpM→M to the metric
ball of radiusR centered at origin, defines a coordinate of a neighborhood ofp. We call it
thegeodesic coordinate.

To prove Theorem 2.2, it is important to estimate the injectivity radiusiM from below.
The next result9 provides such an estimate.

THEOREM 4.3. Suppose thatdimM is even. If KM > 0, then iM � π andM is simply
connected.10

SupposedimM is odd. If 1�KM � 1/4 and ifM is simply connected then, iM � π .
In particular, if M satisfies the assumption of Theorem2.2, then we haveiM � π .

(There are several results in the nonsimply connected case. We omit it.) Another result
we use is the following

PROPOSITION4.4 (Berger).Let us assume thatKM � 1/4 and Diam(M) � π . We take
p,q ∈M such thatd(p,q)=Diam(M). Then we have

IntBp(π,M)∪ IntBq(π,M)=M.

(Here Int denotes the interior.)

The proof is in Section 14.
Using Theorem 4.3 and Proposition 4.4, the proof of Theorem 2.2 goes roughly as fol-

lows. By Theorem 4.3, the injectivity radius ofM is not smaller thanπ . Especially the
diameter ofM is not smaller thanπ .

9This theorem is due to [18] in even dimension, and to [95,37] in odd dimension.
10The second assertion is a classical result due to Synge.
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Let us first assume 1� KM > 1/4. We replace the metricgM of M by (1 + δ)gM ,
whereδ is a positive number sufficiently close to 0. The assumption 1� KM > 1/4 is
still satisfied. HenceM satisfies the assumption of Proposition 4.4. Hence IntBp(π,M)∪
IntBq(π,M)=M . Moreover IntBp(π,M) and IntBq(π,M) are diffeomorphic to the ball
by Theorem 4.3. Therefore, by Theorem 4.1,M is homeomorphic to a sphere.

We next consider the case when 1�KM � 1/4. If the diameter ofM is strictly greater
thanπ , then again Proposition 4.4 and Theorems 4.1 and 4.3 imply thatM is homeomor-
phic to a sphere.

Finally we consider the case when the diameter ofM is π . In this case, we consider the
restriction of the exponential map Expp :TpM→M to the ballDn(π) of radiusπ . Then it
is a diffeomorphism at the interior. SoM is obtained fromDn(π) by identifying boundary
points only. We examine this situation carefully and conclude thatM is a symmetric space
of compact type. We omit the details. (See, for example, [33, Chapter 7].) �

We explain the outline of the proof of Theorem 4.3 later in this section. We first explain
some basic facts. Let us begin with the following theorem. Letκ be a constant. We put

sκ(t)=


sint

√
κ√

κ
, κ > 0,

t, κ = 0,
sinht

√−κ√−κ , κ < 0.
(4.1)

THEOREM 4.5 (Rauch).If KM � κ , then the derivativedx Expp of the exponential map
Expp satisfies

∥∥dx Expp(V )
∥∥� ‖V ‖sκ(r).

Here x ∈ Tp(M), ‖x‖ = r , V ∈ TxTp(M) ∼= Tp(M) and we assumer � π/
√
κ in case

κ > 0.
Let KM � κ . In caseκ > 0, we assumedtx Expp is invertible for t ∈ [0,1]. Then we

have ∥∥dx Expp(V )
∥∥� ‖V ‖sκ(r).

Theorem 4.5 implies that ifKM � 1, then the restriction of Expp :TpM→M to the ball
of radiusπ is an immersion. (Namely its Jacobi matrix is invertible.)

We remark that the equality in Theorem 4.5 holds in the case whenM is of constant
curvatureκ .

Theorem 4.5 is used by Rauch to prove his sphere theorem. We use the Jacobi field in
the proof of Theorem 4.5 as follows. Letx,V be as in Theorem 4.5, and define a geodesic
�s by

�s(t)= Expp
(
t (x + sV )).
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For eachs, �s is a geodesic. Its derivative

J (t)= ∂�s(t)

∂s

∣∣∣∣
s=0

∈ T�0(t)M

with respect tos, by definition, is a Jacobi field. Note thatdx Expp(V )= J (1). Therefore,
to prove Theorem 4.5, it suffices to estimate the Jacobi field. We use the following equation
(which the Jacobi field satisfies) for this purpose.

D2

dt2
J (t)+R

(
d�0

dt
(t), J (t)

)
d�0

dt
(t)= 0. (4.2)

HereD
dt

is a covariant derivative with respect to the tangent vectord�0
dt
(t) andR is a curva-

ture tensor.
If e1, e2 is an orthonormal frame of a planeπ in the tangent space, theng(R(e1, e2)e2, e1)

is the sectional curvature of the planeπ . (Hereg is the metric tensor.) Therefore, the sec-
ond term of Eq. (4.2) can be written in terms of the sectional curvature. Using it we can
compare Eq. (4.2) to the one in case our manifold is of constant curvature. Namely if
KM ≡ κ then (4.2) will be

D2

dt2
J (t)+ κJ (t)= 0. (4.3)

Its solution isJ (t) = sκ(t)V (t) where∇�̇(t)V = 0. Namely‖J (t)‖ = sκ(t) if KM ≡ κ .
This implies Theorem 4.5. �

Theorem 4.5 implies the following

THEOREM 4.6 (Hadamard–Cartan).If a complete Riemannian manifoldM satisfies
KM � 0, thenExpp :TpM →M is a covering map. In particular the universal covering
space ofM is diffeomorphic toRn.

In fact, Theorem 4.5 implies that the Jacobi matrix of Expp :TpM→M is of maximal
rank everywhere. To prove that it is a covering map we need a bit more. We use complete-
ness of metric for this last step. We omit it. �

By integrating the conclusion of Theorem 4.5, we can compare the distance between two
points Expp(x), Expp(y) (which are close top) to the corresponding distance in the space
with constant curvature. Actually we can do it more globally and obtain the Toponogov
comparison theorem.

To state it we need some notation. LetSn(κ) be the complete simply connected Rie-
mannian manifold with constant curvatureκ . Letx′, y′, z′ ∈ Sn(κ). We denote byx′y′, etc.
the minimal geodesic joiningx′ andy′, etc. Letθ = � y′x′z′ be the angle betweenx′y′ and



202 K. Fukaya

Fig. 4.1.

x′z′ at x′. We puta = d(x′, y′), b = d(x′, z′). It is easy to see thatd(y′, z′) depends only
ona, b, θ, κ . We define

s(a, b, θ, κ)= d(y′, z′). (4.4)

We remark that in caseκ > 0, the numbers(a, b, θ, κ) is defined only fora, b < π/
√
κ .

LetM be a Riemannian manifold andx, y, z ∈M . We denote byxy a minimal geodesic
joining x andy. (In case there are several minimal geodesics we take any one of them.)
Let � yxz be the angle betweenxy andxz atx (see Figure 4.1).

THEOREM 4.7 (Alexandrov–Toponogov).If KM � κ then we have

d(y, z)� s
(
d(x, y), d(x, z), � yxz, κ

)
.

If KM � κ and ifd(x, y), d(x, z)� iM(x) then

d(y, z)� s
(
d(x, y), d(x, z), � yxz, κ

)
.

We remark that in the first inequality we do not need to assume that the trianglex, y, z

is small. Actually we only need to assume one of the geodesics joiningx to y and toz are
minimal and the other may be any geodesic of length� π/

√
κ . Theorem 4.7 is proved in

many text books (see, for example, [33]).
As we already mentioned, Theorem 4.5 implies that, ifKM � 1, then the exponential

map is an immersion on the metric ball of radiusπ . Especially it is locally an injection
there. To prove Theorem 4.1 we need global injectivity. We here introduce several termi-
nology.

DEFINITION 4.2. q ∈M is said to be aconjugate pointof p ∈M if there existsx such
thatq = Expp(x) and thatdx Expp is not of maximal rank.
q is said to be acut pointof p ∈M if there existsx �= y ∈ Tp(M) such that Expp x =

Expp y = q.

EXAMPLE 4.1. We consider the sphereS2 of constant curvature 1. Every geodesic which
starts at the north polenp meets again at the south polesp. Hence the south pole is a
conjugate point of the north pole.
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Fig. 4.2.

We next divideS2 by the involution and obtain the real projective spaceRP 2. Then
np andsp determine the same pointx = [np] = [sp] ∈ RP 2. If c ∈ S2 is on the equator
then there are minimal geodesics�1, �2 joining c to np, sp, respectively.�1, �2 induce two
minimal geodesics̄�1, �̄2 in RP 2 joining x to y = [c]. Thusy is a cut point ofx.

Note thatiM(p) > r holds if there exists neither a cut point nor a conjugate pointq of
p such thatd(p,q)� r . We can use Theorem 4.5 to estimate the distance to the conjugate
point. However the problem to estimate the distance to the cut point is a more global one.

We remark the following fact.

LEMMA 4.8. If � : [a, b] →M is the minimal geodesic, then for t ∈ (a, b), q = �(t) is
neither a cut point nor a conjugate point ofp = �(a).

In fact if q is a cut point then there is a geodesic�′ joining p to q with |�′| = |�[a,t]| (see
Figure 4.2). Then the union�′ ∪ �|[t,b] of two geodesics is not smooth and has the same
length as the minimal geodesic�. This is a contradiction. Ifq is a conjugate point then by
the Morse index theorem (see [103,97,33]),�[a,t+ε] is not minimal. This contradicts the
assumption.

Here we state the following basic result about cut points. (See, for example, [33, p. 96]
for its proof.)

THEOREM 4.9 (Klingenberg).LetM be a Riemannian manifold. We assume thatq is not
a conjugate point ofp, for eachp,q ∈M with d(p,q) < r . If there existsp ∈M with
iM(p) < r then there exists a closed geodesic of length< 2r in M .

In view of Theorems 4.5 and 4.9, to prove Theorem 4.3, it suffices to show that the
length of a nontrivial closed geodesic ofM is greater than 2π . We explain the brief outline
of its proof below. (See [33, p. 100] for its details.)

We first consider the case dimM is even. LetM be a simply connected Riemannian man-
ifold with 1 �KM > 0. Let� :S1 →M be a nontrivial geodesic of minimal length. We re-
gardS1 ∼=R/Z. Putp = �(0). By the parallel transport along� we have a holonomy homo-
morphism hol� :TpM→ TpM . The tangent vectord�

dt
(0) is an invariant of the holonomy.

Since hol� is an orthogonal transformation, and dimM is even, it follows that there ex-
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ists a nonzero vectorV ∈ TpM orthogonal tod�
dt
(0) such that hol�(V ) = V . The parallel

transport ofV defines a vector fieldV (t) ∈ T�(t)M , which is a parallel vector field. We put

�s(t)= Exp�(t)
(
sV (t)

)
.

Using∇V (t)= 0 and first variation formula (see, for example, [33, Section 1], [97, Vol. II,
Theorem 5.1], [103, Theorem 12.2]), we find thatd�s

ds
(0)= 0. Using moreover the second

variation formula (see, for example, [33, Section 6], [97, Vol. II, Theorem 5.4], [103, The-

orem 13.1]) and the positivity of curvature, we findd
2�s
ds2 (0) < 0, which contradicts to the

minimality of the length of�.
The proof of the odd-dimensional case is more involved. We remark that the quotient

of S3 by a cyclic groupZ/pZ has constant positive curvature one (and is not simply
connected). Its injectivity radius converges to 0 asp → ∞. This shows that, to prove
Theorem 4.3 in odd-dimensional case, we need to use the assumption thatM is simply
connected.

The proof of the odd-dimensional case is roughly as follows. We assume that there exists
a closed geodesic� of length< 2π . SinceM is simply connected,� is null homotopic. Let
�s be a homotopy such that�0 = �, �1 = const. We may assume that the length of� is
minimal among all nontrivial closed geodesics. By using the assumption thatKM > 1/4
we can prove that the length of�s is always smaller than 2π . (This is the essential point of
the proof. To prove this we use the fact that the Morse index (with respect to the length) of
the closed geodesic of length> 2π is not smaller than 2.11)

Now we consider the exponential map Expp at the tangent space ofp = �(0). Expp is a
submersion on the ball of radiusπ . Hence it has a similar property to the covering map up
to radiusπ . Especially it has the homotopy lifting property there. Since the length of�s is
not greater than 2π , its image is of distance� π from p. Therefore we can lift�s to TpM .
(Note we can lift�1 since it is a constant map.) Hence we obtain a lift�̃0 :S1 → TpM . But
this is a contradiction since�0 = � is a geodesic.12 �

5. Packing and precompactness theorem

A similar argument as in the last section is used in the proof of the finiteness theorem (The-
orem 3.1) and of Theorem 3.2. We explain this point here. We first discuss Theorem 3.2.
The basic fact we use for its proof is the following

11Let us consider the round sphere of radius 2 (that is the round sphere of curvature 1/4). The geodesic segment
of length 2π , that is the geodesic segment joining north pole with south pole, has Morse indexn− 1. (Here we
consider the set of all arcs joining north pole with south pole and consider the length as a Morse function on it.
n−1 is the Morse index with respect to this Morse function.) We compare our closed geodesic with this geodesic
segment to obtain the conclusion about the Morse index.
12This argument is not enough to handle the case 1�KM � 1/4 of Theorem 2.2 (since then we can only show

thatπ is a submersion at theinterior of the ball of radiusπ ). In that case we need an additional argument. We
omit it.
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PROPOSITION5.1. LetD > 0 andN : (0,1)→ N. We denote byMet(D,N), the set of
all isometry classes of complete metric spaces satisfying(1), (2) below. ThenMet(D,N)

is compact with respect to the Gromov–Hausdorff distance.
(1) The diameter ofM �D.
(2) For eachε ∈ (0,1) there exists a finite subsetZ ofM with the following properties:

(2.a) !Z �N(ε).
(2.b) For eachx ∈M , there existsx0 ∈Z satisfyingd(x, x0) < ε.

The proof of Proposition 5.1 is given, for example, in [57, Section 2].
Here we introduce a notation.

DEFINITION 5.1. We call the subsetZ anε-net if it satisfies (2.b).

To deduce Theorem 3.2 from Proposition 5.1, we use the following Theorem 5.2. Let
Sn(κ) be the complete simply connected Riemannian manifold with constant curvatureκ .
LetBp(R,M) be the metric ball inM of radiusR centered atp.

THEOREM 5.2 (Bishop–Gromov).If Ricci� (n−1)κ then the volumeVol(Bp(R,M)) of
the metric ball satisfies the following inequality forr < R:

Vol(Bp(R,M))

Vol(Bp(r,M))
� Vol(Bp0(R,S

n(κ)))

Vol(Bp0(r,S
n(κ)))

. (5.1)

(5.1) is called the Bishop–Gromov inequality. It plays a key role to study the class of
Riemannian manifolds with Ricci curvature bounded from below. The equality holds ifM

is of constant curvatureκ .
Let us sketch a proof of Theorem 5.2. We put

A(t)= Vol(Bp(t,M))

Vol(Bp0(t,S
n(κ)))

. (5.2)

It suffices to show thatA is nonincreasing. (In caseκ > 0, Theorem 5.4 implies that we
need to considert � π only.)

Let � : [0, a)→M be a minimal geodesic with�(0) = p parameterized by arc length.
Let v = (d�/dt)(0).

We take a vectorv∗ ∈ Tp0S
n(κ) with unit length. We put

a(v, t)= detdtv Expp
detdtv∗ Expp∗

. (5.3)

Here detdtv Expp is the determinant of the derivative of the exponential map. We first
prove thata(v, t) is a nonincreasing function oft for each fixedv.

We can prove it in a way similar as the proof of Theorem 4.5. One difference however
is that our assumption in Theorem 5.2 is only on the Ricci curvature while in Theorem 4.5
the assumption is on the sectional curvature. However since we only need to estimate
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the determinant of the Jacobi matrix of the exponential map, the assumption on the Ricci
curvature, which is the trace of the curvature tensor, is enough. This is half of the idea of
the proof of Proposition 5.2. Let us fixp and moveq ∈M , and consider the set

V =
{
d�p,q

dt
(0) ∈ TpM

∣∣∣∣q ∈M}, (5.4)

where�p,q is the minimal geodesics joiningp andq. (If there are several we take all of

them.) (We take a parametrization of�p,q so that the length ofd�p,q
dt
(0) is d(p,q).)

We have

Vol
(
Bp(R,M)

)= ∫
V∩B0(R,RpM)

‖detdx Expp ‖dx. (5.5)

(Here detdx Exp is the determinant of Jacobi matrix.) (5.5) and the fact thata(v, t) is a
nonincreasing function oft implies (5.1) forR, r smaller than the injectivity radius.

To prove Theorem 5.2 beyond injectivity radius, we proceed as follows. We remark that
V is star shaped (that is ifx ∈ V t ∈ [0,1], thentx ∈ V ). We then modifya to a′ so that
a′(t, v)= a(t, v) if tv ∈ V anda′(t, v)= 0 if tv /∈ V . Thena′ is a nonincreasing function
of t . Theorem 5.2 follows. �

COROLLARY 5.3. If RicciM � κ andp ∈M then

Vol
(
Bp(R,M)

)
� Vol

(
Bp0

(
R,Sn(κ)

))
.

This corollary follows from the fact that the functionA in (5.2) is nonincreasing and
limt→0A(t)= 1.

Theorem 5.2 and Proposition 5.1 imply Theorem 3.2 as follows. Let us assume thatM

satisfies the assumption of Theorem 3.2. It suffices to show thatM satisfies the assumption
of Proposition 5.1. Letε > 0. We takeZ ⊂M which is maximal (with respect to inclu-
sion) among the subsets ofM satisfying “z1, z2 ∈ Z, z1 �= z2, impliesd(z1, z2) > ε”. The
maximality implies (2.6). On the other hand, sinceBz(ε/2,M), z ∈Z, are disjoint to each
other, it follows that∑

z∈Z
Vol
(
Bz(ε/2,M)

)
< VolM.

SinceBz(D,M)=M , Proposition 5.1 implies

!Z � Vol(M)

sup Vol(Bp(ε/2,M))
� Vol(Bp0(D,S

n(κ)))

Vol(Bp0(ε/2,S
n(κ)))

.

If we let N(ε) be the right-hand side, then the assumption of Proposition 5.1 is satisfied.
Theorem 3.2 follows. �

We remark that the following classical result is actually proved during the proof of The-
orem 5.2.



Metric Riemannian geometry 207

THEOREM 5.4 (Myers). If M is an n-dimensional complete Riemannian manifold with
Ricci� (n− 1)κ > 0, thenM is compact and its diameter is not greater thanπ/

√
κ .

In fact during the proof of Theorem 5.2 we proved the following under the assumption
p ∈M , RicciM � κ .

“If t 	→ Expp(tv) is a minimal geodesic fort ∈ [0,1], then detdv Expp is not greater
than detdv0 Expp0

, wherep0 ∈ Sn(κ), v0 ∈ Tp0S
n(κ) and|v0| = |v|.”

We remark that detdv0 Expp0
= 0 if ‖v0‖ = π/

√
κ . Therefore there exists no minimal

geodesic of length> π/
√
κ if RicciM � κ . Theorem 5.4 follows immediately. �

In the above argument,Bz(ε,M), z ∈ Z, coversM . Namely we estimate the number of
metric balls (geodesic coordinate) to show Theorem 3.2. Ifε is smaller than the injectivity
radius ofM , thenBz(ε,M) is diffeomorphic toDn. The proof of Theorem 3.2 is related to
the proof of sphere theorems in this way. Theorem 4.1 deals with the case when two balls
coverM and conclude thatM is a sphere. If we can replace Theorem 4.1 by a statement
such as “ifM is covered by the balls whose number is estimated byC, then the number
of diffeomorphism classes of suchM is estimated byC” then finiteness theorems would
follow. Unfortunately the statement in the parenthesis above does not hold. So we need to
include information how the balls are glued. Theorem 3.1 can be proved in that way. (See
Sections 6–8.) Here we prove a weaker version (Weinstein [150]).

PROPOSITION 5.5. For each D,ε the number of homotopy equivalence classes of
n-dimensional Riemannian manifolds satisfying(1), (2) below is finite.

(1) M ∈Mn(D),
(2) The injectivity radius ofM is greater thanε.

To prove Proposition 5.5 we use the setZ above. We then obtain an open covering
Bz(ε,M), z ∈ Z, of M . It is a simple covering. Namely for eachz1, . . . , zk ∈ Z the in-
tersection

⋂k
i=1Bzi (ε,M) is either empty or contractible. It implies that the simplicial

complexK(Z) defined below is homotopy equivalent toM .
(1) A vertex ofK(Z) corresponds to an element ofZ.
(2) z0, . . . , zk ∈ Z is the set of vertices of ak simplex of K(Z) if and only if⋂k

i=0Bzi (ε,M) �= ∅.
Since the order ofZ is estimated by a number depending only onD andε, it follows that

there exists only finitely many possibilities for the homotopy type ofK(Z). Proposition 5.5
follows. �

In Theorem 3.1, there is no assumption on the injectivity radius but only a bound of
volume from below is assumed. An assumption on the volume is more natural and geomet-
ric than one on the injectivity radius. However, in case the absolute value of the sectional
curvature is bounded, these two assumptions are equivalent.

PROPOSITION5.6 (Cheeger [25]).There exists a positive numberc(n,D,v) depending
only onn,D,v such that ifM ∈Mn(D,v), theniM � c(n,D,v).
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The proof of Proposition 5.6 is closely related to the proof of Theorem 3.5. We will
explain it in Section 15.

6. Construction of homeomorphism by isotopy theory

In Section 5, we discussed an estimate of the number of open sets which coverM and
which are diffeomorphic toDn, and we showed how it is used to estimate the number of
homotopy types (Proposition 5.5). However as we mentioned there, we need more argu-
ments to estimate the number of diffeomorphism classes (or homeomorphism classes). We
will explain some of them in the four sections beginning from this section.

We again begin with a sphere theorem, the differentiable sphere theorem (Theorem 2.4)
this time.

Let M satisfy the assumptions of Theorem 2.4. Namely we assume thatM is simply
connected and 1�KM � 1− ε. Then by Proposition 4.4 and Theorem 4.3,M is a union
of two ballsV1,V2 such thatVi ∼= Dn. We may assume∂Vi ∼= Sn−1. Moreover we may
assumeV1 ∩ V2 = ∂V1 = ∂V2. So we obtain a diffeomorphism

I :Sn−1 ∼= ∂V1 → ∂V2 ∼= Sn−1. (6.1)

It is easy to see that ifI is diffeotopic to the identity map (namely if there exists a smooth
family It of diffeomorphisms such thatI0 = I , I1 = id), thenM = V1∪V2 is diffeomorphic
to Sn.

Now we use the following

PROPOSITION6.1. For each compact Riemannian manifoldN there existsεN > 0 such
that if theC1-distance betweenF :N →N and the identity is smaller thanεN , thenF is
diffeotopic to the identity.

Here we recall

DEFINITION 6.1. Two diffeomorphismsF1,F2 :N → N ′ are said to bediffeotopic to
each other if there exists a smooth mapF : [1,2] × N → N ′ such thatF(1, x) = F1(x),
F(2, x)= F2(x) and thatx 	→ F(t, x) is a diffeomorphism for eacht .

The proof is elementary. To apply Proposition 6.1 to the proof of Theorem 2.5, we use
the following lemma.

LEMMA 6.2. For eachε > 0 there existsδn(ε) > 0 with the following properties. LetM be
an n-dimensional simply connected Riemannian manifold with1> K > 1− δn(ε). Then
we may choose the gluing map(6.1) so that itsC1-distance from the identity is smaller
thanε.

We omit the proof. See, for example, [33, Chapter 7].
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Fig. 6.1.

We are going to explain how we use the idea above for the proof of Theorems 3.3 and 3.1.
Cheeger’s original proof of Theorem 3.1 [25] is similar to the idea explained in this section.

LetM,N be Riemannian manifolds. We assume that they are covered by the same num-
ber of metric balls. Namely we assumeM =⋃k

i=1Bpi (ε,M), N =⋃k
i=1Bqi (ε,N). We

assume also that 10ε is smaller than the injectivity radius ofM and ofN . (We put 10
for a technical reason.) We assume also that intersection pattern of the balls are the same.
Namely, for eachi, j ,Bpi (ε,M)∩Bpj (ε,M) �= ∅ if and only ifBqi (ε,N)∩Bqj (ε,N) �= ∅.

We want to find a sufficient condition forM to be diffeomorphic toN . For this purpose
we compare the chart

⋃k
i=1Bpi (ε,M) of M , with the chartN =⋃k

i=1Bqi (ε,N) of N . To
compare, we want to take the same domain for coordinate transformations. For this purpose
we proceed as follows. LetBpi (ε,M) ∩ Bpj (ε,M) �= ∅ thenBpi (ε,M) ⊂ Bpj (10ε,M)
(see Figure 6.1). For eachpi, qj , we fix a linear isometryTpiM ∼=Rn, Tqj N ∼=Rn and use
it to identify tangent spaces withRn. (There are various choices of identification. We take
one and fix it.)

We consider the composition

ϕMji = Exp−1
pj

◦Exppi :Bn(ε)→ Bn(10ε).

HereBn(ε) is a metric ball of radiusε in Rn centered at origin, and Exp−1
pj

is an inverse of

the exponential map Exppj :Bn(10ε)→N . We defineϕNji in a similar way.

In the next proposition weassumethat theC2 norm (orC1,α norm) ofϕMji , ϕ
N
ji is smaller

than a constantC.

PROPOSITION6.3. There existsεn,k(C) > 0 such that if theC1 distance betweenϕMji and

ϕNji is smaller thanεn,k(C), thenM is diffeomorphic toN .
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Cheeger proved Proposition 6.3 in the following way. First we use Proposition 6.1
to prove that the coordinate transformationϕMji is diffeotopic toϕNji . We then use it to

construct a diffeomorphism
⋃K
i=1Ui → N (to its image) by induction inK . For details

see [25]. We prove Proposition 6.3 in a slightly different way in Section 7.
Proposition 6.3 is used to prove Theorem 3.1. For this purpose, we first observe that there

is a constantC such that a Riemannian manifold satisfying the assumption of Theorem 3.1
is covered by metric balls whose number is not greater thanC. Since the number of metric
balls is bounded, the number of possible intersection patterns among them is also bounded.
Let us fix intersection pattern of the metric balls we use. We use Proposition 6.3 and find
that, if the coordinate transformationsϕMji areC1 close toϕNji , thenM is diffeomorphic

to N . If the coordinate transformationsϕMji are uniformly bounded in theC2 norm then

Ascoli–Alzera’s theorem implies that they are precompact inC1-topology. Theorem 3.1
will follow.

We need however to estimate second derivative of the coordinate transformation uni-
formly. Our assumption in Theorem 3.1 is on curvature, which is a second derivative of
the metric tensor. So one may imagine that it implies the estimate of the second derivative
of coordinate transformation. However when we use geodesic coordinates, the assumption
of (sectional) curvature is not enough to do so. (Cheeger [25] proved it under the addi-
tional assumption that a covariant derivative of the curvature tensor is also bounded.) To
go around this trouble, Cheeger in [25] proceeds as follows. Instead of using a statement
such as “two diffeomorphism is diffeotopic to each other if they areC1-close to each other”
we can use a statement such as “two homeomorphism are isotopic to each other if they are
C0-close to each other” [48]. And we can use the isotopy extension theorem13 to construct
an homomorphism

⋃k
i=1Ui → N by induction onk. This argument implies finiteness of

homeomorphism classes and is not enough to prove Theorem 3.1 in four dimensions.14 (In
higher dimensions, one can use surgery etc. to deduce finiteness of diffeomorphism classes
from finiteness of homeomorphism classes by purely topological argument.)

We can use harmonic coordinates (which we discuss in the next section) to find a co-
ordinate chart such that theC2,α-norm of its coordinate transformation can be estimated
uniformly.

7. Harmonic coordinate and its application

As we mentioned in the last section, in order to obtain an estimate of the Hölder norm
of the coordinate transformation, taking geodesic coordinates does not give an optimal
result. Harmonic coordinates are the best choice for this purpose.15 There are various other

13Which is much less elementary than Proposition 6.1 and is based on highly nontrivial results such as Kirby–
Siebenmann’s result on the Hauptvermutung. See [48].
14[120] added some technical argument and proved Theorem 3.1 in four dimension as well.
15In mathematical study of gauge theory, we need to take representative of gauge equivalence class in order to

kill freedom of gauge transformation. This is an important point to study moduli space of connections. Here we
are studying “gravity” and coordinate transformation plays a role of gauge transformation. The process to find a
good coordinate is called gauge fixing in Physics. Harmonic coordinates are used in Riemannian geometry around
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applications of harmonic coordinates.16 It also plays an important role to prove that the
limit metric in Theorem 3.4 is ofC1,α-class.

Let M be a Riemannian manifold. We assume that the injectivity radius ofM is much
greater thanr . Let p ∈M andei(p), i = 1, . . . , n be an orthonormal frame ofTpM . We
put vi(p)= Expp(rei(p)), wi(p)= Expp(−rei(p)) and define

hp,i(x)= d(x,wi(p))
2 − d(x, vi(p))2
4r2

. (7.1)

We callhp,i analmost linear function. (We remark thathp,i is a linear function ifM =Rn.)
hp = (hp,1, . . . , hp,n) defines a coordinate system in a neighborhood ofp. However

sincehp is in principle a distance function, this coordinate does not provide optimal results
for the estimate of the Hölder norm of coordinate transformation. We will replace it by a
harmonic function. We consider a boundary value problem of the Laplace equation�ϕ = 0
as follows. Let us takeδ such thatr- δ- iM(p), and considerϕp,i :Bp(δ,M)→R with
the following properties:

(1) �ϕp,i = 0.
(2) If q ∈ Sp(δ,M), thenϕp,i(q)= hp,i(q).

DEFINITION 7.1. We callϕp = (ϕp,1, . . . , ϕp,n) aharmonic coordinate.

Using the fact thatϕpi is C1-close tohpi we can prove thatϕp defines a coordinate in a
neighborhood ofp.

Now we can prove an estimate ofC2,α norm of the coordinate transformation of the
harmonic coordinate as follows. We putDn(ε) = {x ∈ Rn | ‖x‖ < ε}. We takeε with
10ε < r . Let p,q ∈M with d(p,q) < ε. We consider the inverseϕ−1

p of ϕp. Then the

image ofϕ−1
p :Dn(ε)→M is contained in the domain ofϕq :Bq(r,M)→ Rn. Therefore

we can define

ϕMq,p = ϕq ◦ ϕ−1
p :Dn(ε)→Rn. (7.2)

THEOREM7.1. There exists a positive constantC(r, ε,α,n) depending only onr, ε,α and
the dimensionn, such that theC2,α-norm ofϕMq,p is not greater thanC(r, ε,α,n).

Also theC1,α-norm of the metric tensor in harmonic coordinates is estimated by
C(r, ε,α,n).

The proof is based on a priori estimate of harmonic functions. See [87,88,64], where the
second half is proved. The first half follows easily from the second half. Theorem 7.1 is
generalized to Theorem 20.7.

the same time when Uhlenbeck etc. used Coulomb gauge in the study of moduli space of connections. The proof
of Theorem 3.4 we present in this section is very similar to the proof by Uhlenbeck etc. of the compactification
of the moduli space of self dual connections on 4 manifolds.
16We can use it to study Gromov–Hausdorff convergence under weaker assumption also. See Section 20.
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Let us prove Theorem 3.4 as a typical application of Theorem 7.1.17 Let us take a se-
quenceMk of elements ofMn(D,v). We denote its limit in Gromov–Hausdorff distance
byX. By Theorem 4.3, the injectivity radius ofMk is greater thanr , a number independent
of k. We takeε such that 10ε < r . In the same way as Section 2, we can take a finite subset
{pi,k | i = 1, . . . , Ik} ∈Mk with the following properties:

(1) Ik is smaller than a number independent ofk.
(2)

⋃
i ϕ

−1
pi,k
(Dn(ε))=Mk .

By (1) we may assume thatIk is independent ofk by taking a subsequence if neces-
sary. SetI = Ik . Then the intersection pattern of the coordinatesϕ−1

pi,k
(Dn(ε)) has only

a finite number of possibilities. Hence by taking a subsequence we may assume that the
intersection pattern is independent ofk. Namely we may assume that for eachi, j � I ,

ϕ−1
pi,k

(
Dn(ε)

)∩ ϕ−1
pj,k

(
Dn(ε)

)
(7.3)

is empty or not does not depend onk.
Now for anyi, j such that (7.3) is not empty, we considerϕMk

pj,k,pi,k defined by (7.2). We

fix α < 1, and apply Theorem 7.1 toα′ with 1> α′ > α. We then find that theC2,α′ -norm
of ϕMk

pj,k,pi,k is estimated by a number independent ofk. Hence we may take a subsequence

and assume thatϕMk
pj,k,pi,k converges inC2,α-topology. Let us denotes its limit by

ϕpj,∞,pi,∞ :Dn(ε)→Rn.

We use them as a coordinate transformation to obtain a smooth manifoldM∞ of C2,α-
class. Moreover by the uniformC1,α′ -boundedness of metric tensor, we find a Riemannian
metricg∞ onM∞ of C1,α-class which is a limit of metrics onMk . We can prove thatMk

converges to(M∞, g∞) in Gromov–Hausdorff distance. Hence(M∞, g∞) is isometric
toX. Theorem 3.4 follows. �

We next prove Theorem 3.3. We assume that the theorem is false. Then there exist
M1,k,M2,k ∈Mn(D,v) such thatdH (M1,k,M2,k) < 1/k butM1,k is not diffeomorphic to
M2,k . We use Theorem 3.3 to show that, after taking a subsequence,M1,k,M2,k converges
toX1,X2, respectively. By Theorem 3.4,X1,X2 are Riemannian manifolds ofC1,α-class.
By using the center of mass technique we will explain in the next section, we can prove
thatM1,k is diffeomorphic toX1 andM2,k is diffeomorphic toX2 for largek. On the other
hand, since the Gromov–Hausdorff distance betweenX1 andX2 is zero, it follows thatX1
is isometric toX2. HenceX1 is diffeomorphic toX2. This is a contradiction. �

8. Center of mass technique

In Section 6 we explained how the isotopy extension theorem can be used to construct a
homeomorphism. In fact the isotopy extension theorem is very difficult to prove. We can
use a method called the center of mass technique which simplifies those points. The center

17The author follows the argument of [90] here.
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of mass technique can be applied to various other problems, for example, to group actions.
In this section we explain it.

Let us start the explanation of the center of mass technique by beginning a proof of
(a modified version of) Proposition 6.3.

In Proposition 6.3, the assumption is about the exponential map Expp or coordinate
transformation of geodesic coordinates. We actually use the case of harmonic coordinates.
So we consider the following situation.

(a) M =⋃i ϕpi (D
n(ε)), N =⋃i ψqi (D

n(ε)) are open coverings.
(b) The intersection pattern of coordinate neighborhoods coincide to each other. Namely

ϕpi (D
n(ε))∩ ϕpj (Dn(ε)) �= ∅ if and only ifψqi (D

n(ε))∩ψqj (Dn(ε)) �= ∅.
(c) If ϕpi (D

n(ε))∩ ϕpj (Dn(ε)) �= ∅, thenϕpi (D
n(ε))⊆ ϕpj (Dn(r)).

(d) TheC2,α-norm of the coordinate transformation

Φij = ϕ−1
pi

◦ ϕpi :Dn(ε)→Rn

is bounded uniformly above byC. The same holds for

Ψij =ψ−1
qi

◦ψqi :Dn(ε)→Rn.

(e) Φij is close toΨij in C1-norm.
Our purpose is to construct a diffeomorphismF :M→N under these assumptions.
For eachx ∈ ϕpi (Dn(ε)), we put

Fi(x)=ψqi ◦ ϕ−1
pi
(x) ∈N. (8.1)

This corresponds to what we definedF on each coordinate chartϕpi (D
n(ε)). The main

point is whether we can glue them to obtainF globally. Namely in casex ∈ ϕpi (Dn(ε))∩
ϕpj (D

n(ε)) we need to know whether

ψqi ◦ ϕ−1
pi
(x)

?=ψqj ◦ ϕ−1
pj
(x) (8.2)

or not. It is easy to see that (8.2) does not hold. What follows from our assumption (as-
sumption of Proposition 6.3 or the assumption (e) above) is

d
(
ψqi ◦ ϕ−1

pi
(x),ψqj ◦ ϕ−1

pj
(x)
)
< ε (8.3)

(whereε is a sufficiently small positive number). (More precisely, (8.3) is inC0-norm, but
assumption (e) is inC1-norm.)

The basic idea of the center of mass technique is to take the average ofFi(x) overi with
x ∈ ϕpi (Dn(ε)). Before we continue the proof of Proposition 6.3, we explain the center of
mass technique in general here.

Let m a Borel probability measure onM (namely a measure onM with m(M)= 1). Let
us denote the support ofm by Supp(m). We define a functiondm onM by

dm(x)=
∫
d(x,p)dm(p). (8.4)
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PROPOSITION 8.1. We assume the injectivity radius ofM is larger than10ε. We also
assumeKM � κ and20ε < π/

√
κ .18

If the diameter ofSupp(m) is smaller thanε, then on

B3ε
(
Supp(m),M

)= {x ∈M | d(x,Supp(m)
)
< 3ε

}
,

the functiondm is convex.

Here a function on a Riemannian manifold said to be convex if its restriction to each
geodesic is convex.

We can prove Proposition 8.1 by using the convexity of the distance functiondp on
Bp(π/

√
κ,M).19

Now we assume that the diameter of Supp(m) is smaller thanε. Then outside
B3ε(Supp(m),M) the value of the functiondm is greater than 3ε, and on Supp(m) the
value of the functiondm is smaller thanε. Therefore Supp(m) attains its minimum on the
interior ofB3ε(Supp(m),M). Sincedm is convex there, the minimum is attained at unique
point.

DEFINITION 8.1. Thecenter of massis the point wheredm attains its minimum. We write
center of mass byCM(m).

We remark that ifM =Rn, then

CM(m)=
∫

Rn
x dm(x).

We go back to the proof of Proposition 6.3. We take a partition of unityχi associated to
the coveringM =⋃i Bpi (ε,M). We define a measureF(x) onN by

F(x)=
∑
i

χi(x)δFi(x).

HereδFi(x) is the delta measure supported atFi(x) and the summation is taken over alli
with x ∈ Bpi (ε,M).

By (8.3) we have Diam(Supp(F(x))) < ε. Let F(x) be the center of mass ofF(x).
Namely,

F(x)= CM
(
F(x)

)= CM

(∑
i

χi(x)δFi(x)

)
. (8.5)

It is easy to see thatF(x) is a continuous function ofx. Actually it is smooth. (We can
prove it by using implicit function theorem.) We can prove that it is a diffeomorphism by
using the following lemma.

18In caseκ � 0 the second condition is void.
19This fact is a consequence of Toponogov’s comparison Theorem 4.7.
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LEMMA 8.2. If Fi , i = 1,2, . . . , areC1-close to each other, thenF , determined by(8.5),
isC1-close toFi .

The proof is elementary.
Then, to prove Proposition 6.3, we only need to show thatF is injective. Suppose

F(x) = F(y), x �= y. By using the fact that the Jacobi matrix ofF is invertible, we can
show thatx cannot be close toy. On the other hand, sinceF is close ofFi and sinceFi
is injective, we can prove thatx cannot be far fromy. This is a contradiction. This is an
outline of the proof of Proposition 6.3. �

There are various other applications of the center of mass technique. Let us mention
another application of it, that is an application to group actions. LetM be a Riemannian
manifold on whichG acts. For simplicity we assumeG is a finite group. We assume
G has two different actions onM and write them asψ1 :G→ Diff (M) andψ2 :G→
Diff (M). We assume that there existsC such that for each elementg ∈G, theC2 norm of
ψ1(g),ψ2(g) are smaller thanC.

PROPOSITION8.3 (Grove–Karcher).There exists a constantε depending only onC, the
dimensionn, the injectivity radius ofM , and the maximum of the absolute value of the
sectional curvature ofM , with the following property.

If d(ψ1(g)(x),ψ2(g)(x)) < ε for eachg ∈G, x ∈M , then there exists a diffeomorphism
φ :M→M such thatφ(ψ1(g)(x))=ψ2(g)(φ(x)).

See [77] for its proof. ([77] is the paper where the center of mass technique first ap-
peared.)

Proposition 8.3 is applied to study Riemannian manifold whose sectional curvature is
close to 1 but whose fundamental group is not necessary trivial.

9. Embedding Riemannian manifolds by distance function

In the last section we explained the center of mass technique which we can use to construct
a diffeomorphism. In Section 6 we mentioned another way, that is to use isotopy theory. In
this section, we discuss the third method which was introduced and used by Gromov [68,
69]. In [53] the author remarked that this method can be used to construct a smooth map
(projection of a fiber bundle) in collapsing situation (Theorem 11.2). It was further general-
ized by Yamaguchi [153] (Theorem 11.3) to the case when we assume a bound of sectional
curvature from below (but not above).

We here explain an alternative proof of Theorem 3.3. This proof is completed by Kat-
suda [93] based on an idea of Gromov [69]. We assumeM,N ∈Mn(D,v), dH (M,N) <
ε(n, v,D). (We chooseε = ε(n, v,D) > 0 later.) Letψ :M → N be a 3ε Hausdorff ap-
proximation. We take a 20ε-netX of M . We can takeX such that

if x, x′ ∈X, x �= x′, thend(x, x′) > 10ε, (∗)
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in addition. It is easy to see thatψ(X) is an 30ε-net ofN . It is also easy to see that

if x, x′ ∈X, x �= x′, thend
(
ψ(x),ψ(x′)

)
> ε. (∗∗)

We denote by[0,1]X the set of all mapsX→[0,1]. It is a finite-dimensional Euclidean
space. The idea is to embedM (respectivelyN ) in [0,1]X using the distance function
from X (respectivelyψ(X)). In order to go around the trouble that the distance function
is not differentiable, we proceed as follows. We takeε so that it is much smaller than the
injectivity radius ofM andN . We next takeχ :R>0 →[0,1] such that

χ(t)=
{0, t < Cε,
t, t ∈ [C2ε,C3ε],
const, t > C4ε.

HereC is a sufficiently large positive number which will be determined later. We may
assume thatC5ε is smaller than the injectivity radius ofM andN . (Precisely we first
chooseC and then chooseε so that this condition is satisfied.) Then we defineIM :M→
[0,1]X by IM(p)(x)= χ(d(p,x)) andIN :N→RX by IN(p)(x)= χ(d(p,ψ(x))). Note
χ(t) is a constant wheret is larger than the injectivity radius. HenceIM, IN are smooth.
We can prove the following

LEMMA 9.1.
(1) IM, IN are smooth embeddings.
(2) IM(M) is contained in a tubular neighborhoodU(N) of IN(N).
(3) We identifyU(N) with a normal bundle and letπ :U(N)→N be the projection of

the normal bundle.
Then the restriction ofπ to IM(M) is a diffeomorphism.

We omit the details of the proof (see [93]), but explain briefly its idea. The rea-
son that (1) holds is that, for eachp, there are sufficiently many pointsq ∈ X with
d(q,p) ∈ [C2ε,C3ε]. Namely using the distance function from suchq we can show the
Jacobi matrix ofIM, IN are invertible in a neighborhood ofp.

To prove (2) we observe that, ifx ∈ X ⊂ M , then the distance betweenIM(x) and
IN(ψ(x)) is small. (Namely it is something like constdH (M,N) = constε.) Moreover,
sinceX,ψ(X) are enough dense inM,N , it follows that IM(M) are sufficiently close
to IN(N). We next need an estimate of the size of the tubular neighborhoods ofIM(M),
IN(N). This follows from the estimate of the second derivative ofIM andIN , which turn
out to be a consequence of the assumption on curvature ofM,N . To carry out the actual
proof we need to estimate the size of the tubular neighborhood and the distance between
IM(x) andIN(ψ(x)) more precisely.

To prove (3) we need to see that the Jacobi matrix of the restriction ofπ :U(N)→N to
IM(M) is invertible. This follows from the fact thatIM(M) isC1-close toIN(N), namely
they are close to each other together with their tangent spaces. Since the derivative of the
distance function is written in terms of the angle between edges of geodesic triangles, we
can prove this fact by using comparison theorems. �
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Theorem 3.3 follows immediately from Lemma 9.1.

Remark9.1. (A) We used distance functions in the discussion above. We can use eigen-
functions of the Laplace operator (or Green kernel) instead. Then the estimate about the
derivatives of the diffeomorphism we get becomes better. (See, for example, [16,56,91].)
This approach is closely related to harmonic coordinates.

(B) We took a net and embed Riemannian manifolds to a finite-dimensional Euclidean
space in the above argument. We can use distance functions from all the points and can
embed Riemannian manifolds to a Hilbert or Banach space. This argument is useful for
a generalization of Theorem 3.3 to an equivariant version. (Namely in the situation when
a Lie group acts onM,N .) If we use the eigenfunction of the Laplace operator as we
mentioned in (A), embedding to finite-dimensional Euclidean space is good enough to
show the equivariant version also.

10. Almost flat manifold

In this section we start discussing the case when the injectivity radius goes to zero. In the
earlier sections, we began with sphere theorems and applied the method appeared there to
finiteness theorems, etc. In sphere theorems, we study manifolds of positive curvature. We
here consider another typical Riemannian manifold that is a flat manifold. We first recall
the following famous

THEOREM 10.1 (Bieberbach).If M is a compact Riemannian manifold withKM ≡ 0,
then there exists a finite covering̃M ofM such thatM̃ is isometric to a flat torus.

We want to study a Riemannian manifold(M,g) whose curvature is close to zero. To
obtain a nontrivial result, we need some normalization. (In fact, the curvature of(M,kg)

tends to 0 ask→∞ for any(M,g).) To normalize volume is not good enough either. (For
example,M × S1 for anyM carries a metric with volume 1 and curvature arbitrary small.)
So let us normalize the diameter to 1. In other words, we assume|KM |Diam(M)2 is small.
We call such manifoldalmost flat manifold. However the assumption|KM |Diam(M)2

small doesnot imply thatM is diffeomorphic to a flat manifold.

EXAMPLE 10.1. We consider the groupN of all 3× 3 matrix of the form(1 x z

0 1 y

0 0 1

)
.

We consider a left invariant metricgε onN such thatgε = ε2dx2+ ε2dy2+ ε4dz2 at the
unit matrix I . Let E1,E2,E3 be left invariant vectors such thatE1 = ∂/∂x, E2 = ∂/∂y,
E3 = ∂/∂z at I . It is well known that the curvature of a Lie group with left invariant
metric is calculated as follows. IfE,F are left invariant orthonormal vectors then the
sectional curvature of the plane spanned by them is not greater 6‖[E,F ]‖. (See [24].)
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Hence the sectional curvatureK(N,gε) is bounded asε→ 0. On the other hand, we consider
the subgroupNZ consisting of matrix inN such thatx, y, z ∈ Z.NZ is a discrete subgroup
of N and the quotient spaceM =NZ \N is known to be compact. We consider the metric
onM induced bygε and denote it bȳgε . It is easy to see that the diameter Diam(M, ḡε)
goes to zero. Hence Diam(M, ḡε)2Kgε goes to zero. However no finite cover ofM is
diffeomorphic toT 3.

This example shows that we need to include not only Abelian but also nilpotent Lie
groups to characterize almost flat manifolds.

THEOREM 10.2 (Gromov [68]).There existsεn > 0 such that if ann-dimensional com-
pact Riemannian manifoldM satisfies|KM |Diam(M)2< εn, thenM has a finite coverM̃
which is diffeomorphic toΓ \ N , whereN is a nilpotent Lie group andΓ is a discrete
subgroup.

There is an improvement of Theorem 10.2 due to Ruh [133]. LetN be an nilpotent
Lie group. There exists a connection∇can of TN which is invariant to both left and right
actions ofN . Let Γ be a discrete subgroup ofN . ∇can induces a connection onΓ \ N
which we denote by the same symbol. (We remark that∇can is not equal to the Levi-Civita
connection.) LetΛ be a finite subgroup of Aut(Γ \ N,∇can). We callΛ \ (Γ \ N) an
infranilmanifold.

THEOREM 10.3 (Ruh).Under the assumption of Theorem10.2,M is diffeomorphic to an
infranilmanifold.

Let us sketch some of the essential ideas behind the proof of Theorem 10.2. One im-
portant origin is Margulis’ lemma. Margulis’ lemma first appeared in the study of discrete
subgroup of Lie group.

THEOREM 10.4 (Zassenhaus, see [69, 8.44]).For each Lie groupG there exists a neigh-
borhoodU of the unit, such that ifΓ ⊂G is a discrete subgroup thenU ∩ Γ generates a
nilpotent subgroup.

The proof is based on the following fact. Letg1, g2 ∈ G be in a neighborhood of the
unit 1, then

d
(
1, {g1, g2}

)
�Cd(1, g1)d(1, g2). (10.1)

Here{g1, g2} is the commutator. This formula (10.1) is a consequence of the fact that the
derivative of(g1, g2) 	→ {g1, g2} at 1 is zero. Once we have (10.1) we can prove Theo-
rem 10.4 as follows. We chooseU small enough such that ifg ∈U thend(1, g) < 1/(2C).
Then (10.1) implies that ifgi ∈ U , thend(1, {g1, g2}) is strictly smaller thand(1, gi)/C.
We repeat this and find thatN hold commutator between elements ofU is in the 1/CN

neighborhood of 1. SinceΓ is discrete, it implies the existence ofN such that anyN hold
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commutators between elements ofU ∩ Γ are trivial. It follows thatU ∩ Γ generates a
nilpotent group. �

There are various Riemannian geometry versions of Theorem 10.4. The following,
which is proved by Cheeger–Colding [31] (improving [59]) is one of the strongest ver-
sions.

THEOREM10.5. There existsεn with the following properties. LetM be ann-dimensional
complete Riemannian manifold withRicciM � −(n − 1) andp ∈M . Then the image of
π1(Bp(εn,M))→ π1(Bp(1,M)) has nilpotent subgroup of finite index.

If we apply it to the situation of Theorem 10.2 we find that the fundamental group of
M has nilpotent subgroup of finite index. (See Section 19 for more discussions on the
fundamental group.)

Another idea applied by Gromov to prove Theorem 10.2 is to use local fundamental
pseudogroup, which we discuss briefly here. (See [57, Section 7] and [24] for its precise
definition.) LetM be a complete Riemannian manifold. We assumeKM � 1. Letp ∈M .
Then by Theorem 4.5 the exponential map Expp :TpM→M is an immersion on the ball
B0(π;TpM). SinceB0(π;TpM) has a boundary, Expp :B0(π;TpM)→M is not a cov-
ering map. So we cannot consider its deck transformation group in the usual sense. But we
can define a “pseudogroup” in the following way. Letε < π/10. We consider the set of all
loops� :S1 → Bp(ε,M) with �(0) = p and|�| < ε. We say� ∼ �′ for such�, �′ if there
exists a based homotopy�t between them such that|�t |< ε for eacht . Let us denote the
set of equivalence classes byπ1(M,p; ε). The loop sum∗ onπ1(M,p; ε) is not necessary
defined. But when it is defined, its∼ equivalence class is well defined. (We need to use
the fact that Expp :B0(π;TpM)→M is an immersion to show this.) When loop sum is
well defined it is associative. (Here the reader may find some flavor of Klingenberg’s ar-
gument we mentioned at the end of Section 4.) Thus(π1(M,p; ε),∗) is something similar
to a group. We call it afundamental pseudogroup. The following pseudogroup version of
Margulis’ lemma is used in the proof of Theorem 10.2.

LEMMA 10.6. If |KM | � 1 and if Diam(M) < εn, then there exists a subpseudogroup
(π0

1(M,p; ε),∗) of (π1(M,p; ε),∗) such that (π0
1(M,p; ε),∗) is embedded( pre-

serving∗) into a nilpotent Lie groupN , its image generates a discrete subgroupΓ and
that the index[π1(M,p; ε) :π0

1(M,p; ε)] is estimated by a number depending only onn.
Hereεn- ε- 1.

Lemma 10.6 is the main part of the proof of Theorem 10.2. (Actually we need a bit
more. Namely we have to show that the action of(π1(M,p; ε),∗) toB0(π;Tp(M)) is dif-
feomorphic to an action toU ⊂N of some subpseudogroupΓ ∩U , whereN is a nilpotent
Lie group andΓ is its discrete subgroup.) �

For the details of the proof, we refer to [24,57].



220 K. Fukaya

11. Collapsing Riemannian manifolds—I

Using Theorems 3.3, 3.4, we can describe a sequence ofn-dimensional Riemannian man-
ifolds Mi with |KMi

| � 1 and Vol(Mi)� v > 0 wherev is independent ofi. Namely the
limit X (which exists after taking a subsequence) is a Riemannian manifold ofC1,α-class
andX is diffeomorphic toMi for sufficiently largei.

In Section 10, we considered a sequence of Riemannian manifoldsMi with |KMi
| � 1

and Diam(Mi)→ 0. (The second condition is equivalent to saying thatMi converges to a
point.) Theorem 10.2 implies thatMi is an infranilmanifold for largei.

These are two extremal cases. We now discuss the intermediate case. Namely we con-
sider the case when a sequence of Riemannian manifoldsMi converges to a metric spaceX
(with respect to the Gromov–Hausdorff distance) such thatn > dimX > 0. We say that
such sequencecollapses toX. Here we discuss results under the assumption|KMi

| � 1.
(The study under weaker assumption is discussed in later sections.)

We first explain some examples of collapsing Riemannian manifolds. The first example
is due to Berger and is called the Berger sphere.

EXAMPLE 11.1. We consider the Hopf fibrationπ :S3 → S2. (Namely we regard
S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}, and we associate to(z1, z2) the complex one-
dimensional space spanned by it, which is an element ofCP 1 = S2.) We put the standard
metric onS3 and regardS2 as a sphere of radius 1/2. It is easy to see thatπ is a Rie-
mannian submersion. (Namely ifVh ∈ TpS3 andV is perpendicular to the fiber ofπ con-
tainingp, thengS3(Vh,Vh)= gS2(π∗Vh,π∗Vh).) We define a metricgε on S3 as follows.
Let V,W ∈ TpS3. We write

V = Vh + Vv, W =Wh +Wv,

whereVh,Wh are perpendicular to the fiber (with respect togS3) andVv,Wv are tangent
to the fiber. We set

gε(V,W)= gS3(Vh,Wh)+ ε2gS3(Vv,Wv).

It is easy to see that limGH
ε→0(S

3, gε)= (S2, gS2). We can check that the sectional curvature
of (S3, gε) is between 0 and 1 ifε ∈ (0,1].

We can generalize this construction and prove the following

PROPOSITION11.1. LetM be a compact manifold on which a torusT m acts. We assume
that there is no pointp onM such thatp is fixed by all the elements ofT m. Then there
exists a family of metricsgε onM such thatKgε is bounded from below and above and
that limGH

ε→0(M,gε)=M/T m.

To find such a sequence of metrics, we first take aT m invariant Riemannian metricgM
onM . We next takeX an element of the Lie algebra ofT m such that the subgroup∼= R
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generated byX is dense inT m. We regardX as a (Killing) vector field onM . We remark
thatX never vanishes onM . ForV,W ∈ TpM we put

V = Vh + c(V )X(p), W =Wh + c(W)X(p),
wheregM(Vh,Xp)= gM(Wh,Xp)= 0. We then define

gε(V,W)= gM(Vh,Wh)+ ε2c(V )c(W)gM
(
X(p),X(p)

)
.

We can prove that the limit of(M,gε) asε→ 0 isM/T m with quotient metric and the
sectional curvature of(M,gε) is bounded forε ∈ (0,1]. �

Let us take, for example,M = S3. We can find an action ofT 2 on S3 satisfying the
assumption of Proposition 11.1. Hence there exists a sequence of metrics onS3 such that
the limit isS3/T 2 = [0,1], the interval. In particular the limit space is not a manifold.

This construction is further generalized in [38] (Theorem 12.1).
There are two approaches to study collapsing Riemannian manifolds under the assump-

tion |KMi
|� 1. One is due to Cheeger–Gromov [39,38], the other is due to the author [53,

55,56]. These two approaches are unified in [34]. In this section, we discuss the second
approach and in the next section we discuss the first (and the joined) approach.

Here we discuss the following two problems. Forn,D, we denote byMn(D) the set of
all isometry classes ofn-dimensional Riemannian manifoldsM such that|KM | � 1, and
Diam(M)�D.

PROBLEM 11.1. LetMi ∈Mn(D) andX = limGH
i→∞Mi =X.

(1) What kind of singularity canX have?
(2) Describe the relations betweenX andMi .

We remark that if we replaceMn(D) by Mn(D,v), the answers are Theorems 3.3, 3.4.
Problem 11.1 will be studied also under milder assumptions on curvature later.

We first discuss Problem 3.4(2) in the special case whenX is a smooth manifold.

THEOREM 11.2 (Fukaya [53,56]).Let Mi ∈ Mn(D). SupposeB = limGH
i→∞Mi is a

smooth Riemannian manifold. Then, for large i, there exists a fiber bundleπi :Mi → B

with the following properties:
(1) The fiber is diffeomorphic to an infranilmanifoldF .
(2) The structure group is the group of affine transformationsAff (F,∇can), where we

define the affine connection∇can onF as in the last section.
(3) πi is an almost Riemannian submersion in the following sense. If V ∈ Tp(Mi) is

perpendicular to the fiber then

1− εi < gMi
(V,V )

gN(πi∗V,πi∗V )
< 1+ εi,

whereεi → 0.

Yamaguchi [153] generalized Theorem 11.2 as follows.
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THEOREM11.3 (Yamaguchi).If Mi is a sequence ofn-dimensional Riemannian manifold
withKMi

� −1. We assumeB = limGH
i→∞Mi is a smooth Riemannian manifold. Then for

large i there exists a fiber bundleπi :Mi → B. It satisfies(3) above.

See Section 19 for more results on the fiber ofπi :Mi → B in Theorem 11.3.
The idea of the proof of Theorems 11.2, 11.3 is similar to the discussion in Section 9.

Namely we embed the limit spaceB to RX using the distance function (IB :B → RX).
(HereX is a net inB.) We then mapMi to the same space (IMi

:Mi → RX). We cannot
prove thatIMi

is an embedding since there is no bound of injectivity radius ofMi . However
IB is an embedding andIMi

(Mi) is contained in a tubular neighborhoodU(IB(B)) of
IB(B) for large i. Hence we have a composition of three maps,IMi

, the projection of
the normal bundle ofIB(B), and I−1

B . This map is ourπi :Mi → B. To check that it
satisfies (1), (2) we use a parameterized version of the proof of Theorems 10.2, 10.3.�

In general, the limit space as in Problem 11.1 has singularities. Hence Theorem 11.2
does not apply in the general case. However we can use its equivariant version and a trick
(which we explain below) so that we can apply it to the general situation.

LetM be ann-dimensional Riemannian manifold. We define its frame bundle by

FM =
{
(p; e1, . . . , en)

∣∣∣∣∣ p ∈M,(e1, . . . , en) is an orthonormal basis ofTpM

}
.

There exists anO(n) action onFM such thatFM/O(n)=M . In other wordsFM→M is
a principalO(n) bundle. The Riemannian metric determines a connection of this principal
bundle (that is the Levi-Civita connection). Using it we can canonically define anO(n)

invariant Riemannian metric onFM such thatFM→M is a Riemannian submersion and
the fiber∼=O(n) has given the standard metric onO(n). From now on we use this metric
onFM .

THEOREM 11.4 [55]. If Mi ∈Mn(D) and ifY = limGH
i→∞FMi . Then we have the follow-

ing:
(1) Y is a smooth manifold.
(2) O(n) acts by isometries onY such thatlimGH

i→∞Mi = Y/O(n).
(3) There exists a sequence ofO(n)-equivariant Riemannian metric ongi on Y and

εi → 0 such that

1− εi < dY (x, y)

dgi (x, y)
< 1+ εi

for anyx, y ∈ Y , wheredY is the limit metric.
(4) For eachp ∈ Y the connected component of the isotropy group{g ∈O(n) | gp = p}

is Abelian.

To prove Theorem 11.4, we use the notion of fundamental pseudogroup we explained in
the last section as follows. (The idea to use pseudofundamental group to study collapsing
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is initiated by Gromov in [69, Chapter 8].) Letp ∈X. We takepi ∈Mi which converges
to p. We fix smallε and considerπ1(Mi,pi, ε) which acts onB0(ε, TpiMi) such that the
quotient space is isometric to anε-neighborhood ofpi in Mi . (We can define a notion of
action of a pseudogroup to a space and of the quotient space, in a reasonable way.) We can
define the convergence of a pseudogroup action and can find a limit ofπ1(Mi,pi, ε), which
we denote byN . The groupN acts by isometries on the limit̃B(p) of B0(ε, TpiMi). Here
we put a Riemannian metric onBε(0, TpiMi) which is induced onMi by the exponential
map. Since the injectivity radius ofB0(ε, TpiMi) is bounded away from 0, it follows that
we can apply Theorem 3.4 to find thatB̃(p) is a Riemannian manifold ofC1,α-class. The
point here is thatN is in general not discrete and collapsing occurs exactly whenN has
positive dimension. We can show that the group germ of the origin ofN is a Lie group
germ. Note that this is easy in case when the metric onY is smooth. To avoid using a
metric which is not smooth, we approximategMi

by gMi,ε such that

∣∣∇kRgMi ,ε ∣∣<Ck(ε), (11.1a)

e−εgMi
< gMi,ε < e

εgMi
. (11.1b)

Here the left-hand side of (11.1b) is the norm of thekth derivative of the curvature tensor
and the right-hand side is a constant depending onk andε but is independent ofi. The
existence of such approximation is proved in [15] (and generalized in [1] for complete
manifolds).

Then the limit of the ball(B̃(p), g̃Mi,ε) is smooth. ReplacingG by its quotient we may
assume that the action ofG on B̃(p) is effective.

We now consider the frame bundleFB̃(p). Using the fact thatG is effective and iso-
metric onB̃(p), it follows that the action ofN onFB̃(p) is free. ThereforeFB̃(p)/N is
a manifold. We can easily see thatFB̃(p)/N is an open set of the limitY of FMi and
by changingp ∈X it coversY . ThusY is a manifold as required. Using Margulis’ lemma
we find that the connected component ofN is nilpotent. Since the isotropy group ofO(n)
action onY can be identified to the isotropy group ofN action onB̃(p), it follows that
the connected component of the isotropy group is both compact and nilpotent. Hence it is
Abelian. �

Using Theorem 11.4, we can improve Theorem 11.2 as follows.

THEOREM 11.5 [55]. LetMi , Y be as in Theorem11.4. Then there exists̃πi :FMi → Y

for large i with the following properties:
(1) π̃ is a fiber bundle satisfying(1)–(3) of Theorem11.2.
(2) π̃ isO(n)-equivariant and hence induces a mapπ :Mi → Y/O(n).

The proof is an equivariant version of the proof of Theorem 11.4. (Compare Re-
mark 9.1(B).)
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12. Collapsing Riemannian manifolds—II

As we mentioned before there are two approaches to study collapsing Riemannian mani-
folds and we discuss another approach [39,38] in this section. One advantage of this ap-
proach (compared with one we discussed in the last section) is that we do not need to
assume a diameter bound. Let us first give an example to illustrate a new phenomenon
which occurs when we do not assume a diameter bound.

EXAMPLE 12.1 (See [134]). LetΣk be a Riemann surface of genusk > 0. For eachε there
exists a Riemannian metricgk,ε onΣk,0 =Σk \ IntD2 with the following properties:

(1) 0�Kgk,ε �−1.
(2) A neighborhood of the boundary ofΣk,0 is isometric toS1(ε)× [0,1). (HereS1(ε)

is a circle with radiusε.) (See Figure 12.1.)
Now we consider(Σk1,0, gk1,ε)×S1(ε) and(Σk2,0, gk2,ε)×S1(ε) and glue them at their

boundaries by the isometry(s, t) 	→ (t, s), S1(ε)× S1(ε)→ S1(ε)× S1(ε). We thus ob-
tain a family of 3-dimensional Riemannian manifoldsMk1,k2,ε , which satisfy the curvature
condition 0�K �−1. The injectivity radius of it goes to zero everywhere asε→ 0. It is
however easy to see thatMk1,k2,ε is not aS1-bundle over a surface.

See [4] for a more sophisticated construction.

We remark that the diameter ofΣk,ε goes to infinity asε goes to zero. The point of this
example is that in each pieceΣki × S1(ε) there is one direction (the direction of second
factor) which collapses. But in the domain we glue metrics, there are two factors which
collapse. Theorem 11.2 implies that such a phenomenon does not occur. Namely the di-
mension of the collapsing direction is constant in the case when the limit space is compact.
Thus to describe collapsing Riemannian manifolds without diameter bound, we need a lan-
guage to describe the situation where the dimension of the collapsing direction changes.
Cheeger–Gromov [38] used a notion of the local action of a group for this purpose. They
call it anF -structure.

Fig. 12.1.
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DEFINITION 12.1. AnF -structureonM is an open coverM =⋃Ui together with an
action ofT ni on Ũi , which is a finite cover ofUi , with the following properties:

(1) There exists no pointx ∈ Ũi which is fixed by all the elements ofT ni .
(2) If Ui ∩ Uj �= ∅ then there exists a covering spaceπij : Ũij → Ui ∩ Uj , maps

πij,i : Ũij → Ũi , πij,j : Ũij → Ũj such that
(3) πi ◦ πij,i = πj ◦ πij,j = πi,j .
(4) There exists an action ofT nij on Ũij with the property (1).
(5) There exists anni -dimensional subtorusT niij ⊂ T nij and a locally isomorphic group

homomorphismT niij → T ni , such thatπij,i is equivariant. The same holds when we
replacei by j .

Let us consider Example 12.1. We may splitM into two piecesUi ∼=Σki × S1. OnUi
we have anS1-action. These two actions do not coincide on the overlapped partU1∩U2 ∼=
S1 × S1 × (−C,C). Namely theS1-action onU1 is an action on the first factor while the
S1-action onU2 is an action on the second factor. However we have aT 2-action which
contains both actions. This is a typical situation of anF -structure.

The main theorem in [38] is as follows.

THEOREM12.1 (Cheeger–Gromov).If M has anF -structure then there exists a sequence
of metricsgi onM such that|Kgi | � 1 and the injectivity radius of(M,gi) converges to
zero everywhere asi→∞.

The proof is a kind of generalization of the proof of Proposition 11.1. The new point
which appears in the proof of Theorem 12.1 is that we need to control the curvature at
the points where the dimension of the torus acting there changes. Roughly speaking, to
keep the curvature bounded from above and below, we expand the direction normal to the
action. �

The converse of Theorem 12.1 is the main theorem of [39]. Namely

THEOREM 12.2 (Cheeger–Gromov).There exists a positive constantεn such that ifM is
an n-dimensional complete Riemannian manifold such that|KM | � 1 and the injectivity
radius is everywhere smaller thanεn, then there exists anF -structure onM .

Remark12.1. We can modify Theorem 12.2 so that we do not need to assume that the
injectivity radius is small everywhere. Namely we can consider anyM with |KM |� 1, and
construct theF -structure on{p ∈M | iM(p) < ε}.

Let us sketch the proof of Theorem 12.2 very briefly. We assume|KMi
| � 1 and

supiMi
→ 0 whereiMi

is an injectivity radius. We need to construct anF -structure on
Mi for largei. There are two steps to do so. One is to construct a torus action on the finite
cover locally. The other is to glue them. We explain the first step only. The following is the
basis of this step.
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LEMMA 12.3. If a Riemannian manifoldX is complete and flat, then there exists a com-
pact flat submanifoldS without boundary inX such thatX is diffeomorphic to the normal
bundle ofS.

This lemma is a special case of the soul Theorem 16.7 which we will discuss in Sec-
tion 16. By using Theorem 10.1, we find thatS has a finite cover which is a flat torus. So
we can find a torus action on the finite cover ofX in Lemma 12.3. To use Lemma 12.3 in
our situation, we proceed as follows. Letpi ∈Mi andεi = iMi

(pi). We consider the metric
g′i = gMi

/εi and consider the limit(Mi, g
′
i ). (The limit is taken with respect to the pointed

Hausdorff distance which we define in Section 16.) Since the curvature of(Mi, g
′
i ) goes to

zero and since the injectivity radius of(Mi, g
′
i ) at pi is 1 we have a flat manifoldX as a

limit. Also a neighborhood ofpi is diffeomorphic to a compact subset ofX for largei.
This is a very rough sketch. Actually the gluing part (which we do not discuss here) is

harder. �

In the case when we do not assume a diameter bound, there are several possible ways to
define collapsing. One definition is that the injectivity radius becomes small everywhere.
The other one is that the volume becomes small. (Note Theorem 5.6 implies that they are
equivalent in the case when the diameter and the absolute value of the sectional curvature
are bounded.) We call the first one (injectivity radius is small) the collapse and the sec-
ond one (volume is small) the volume collapse. There is an example of a manifold which
admits anF -structure but does not admit a volume collapsed metric. ActuallyCP 2 ad-
mits anF -structure but we can use the fact that its Euler number is nonzero to prove the
nonexistence of a volume collapsed metric. (This example is due to Januszkiewicz. See
[57, p. 229] or [39].) Cheeger–Gromov defined a notion of polarizedF -structure which
implies the existence of a volume collapsed metric. However we do not know whether a
volume collapsed manifold has a polarizedF -structure. So the following problem is still
open.

DEFINITION 12.2 [72]. Aminimal volumeMinVol(M) of a compact manifoldM without
boundary is the infimum of the volume(M,g) whereg is a Riemannian metric onM such
that |Kg|� 1.

PROBLEM 12.1. Does there exists a positive numberεn depending only onn with the
following properties? Ifn-dimensional compact manifoldM satisfies MinVol(M) < εn,
then MinVol(M)= 0.

There are several partial results toward Problem 12.1.

THEOREM 12.4 (Rong [131,130]).In case the dimension ofM is 3 or 4, Problem12.1 is
affirmative.

There is a very sharp result in the case whenM admits a metric of constant negative
curvature.
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THEOREM12.5 (Besson–Courtrois–Gallot [21]).Let ann-dimensional manifoldM admit
a metric of constant curvatureg0. Then ifg is any metric onM with Ricci�−(n− 1) we
haveVol(M,g)� Vol(M,g0).

Theorem 12.5 in particular implies that MinVol(M)= Vol(M,g0).
The answer to Problem 12.1 is affirmative under an additional assumption on the diam-

eter.

THEOREM 12.6 (Cheeger–Rong [40]).There exists a positive numberε(n,D) depending
only onn andD with the following properties. If an n-dimensional compact manifoldM
has a Riemannian metricg such that|Kg| � 1, Diam�D and Vol(M,g) < εn, then for
anyε there exists a Riemannian metricgε onM such that|Kgε |� 1 andVol(M,gε) < ε.

We next describe the result of [34]. We remark that the results in the last section do not
give enough description in the case when the diameter is not bounded. On the other hand, if
we consider the case of an almost flat manifold, for example, theF -structure corresponds
to the action of the center of the nilpotent group, and hence only a part of the collapsed
direction is described by theF -structure. So we need a local action of a nilpotent group
to describe collapsing Riemannian manifolds in the general case. Such a structure may
be called anN -structure. One trouble to define it rigorously is that the noncommutativity
of the group makes it harder to describe a compatibility condition. To have a simplified
description we remark the following fact. In the situation of Theorem 12.2, we can ap-
proximate the metric by one invariant of theF -structure. (Actually the original metric is
“almost invariant” by the action and we can take the average so that it is strictly invariant.)
So in place of writing compatibility of actions, we may state that the actions are isometric
with respect to the metric nearby (which is independent of the chart).

Note that the fact that we can approximate the metric by an invariant one, is also true in
a modified sense for the almost flat manifold and in the situation of Theorem 11.2. Namely
we can make the metric “invariant” of the action of a nilpotent group. We need to remark
however the following. In case ofΓ \N (whereN is a nilpotent group andΓ is a discrete
subgroup), for example, the almost flat metric isnot an invariant of theright action ofN .
Since the induced metric onΓ \N is well defined only if we start with theleft invariant
metric onN , it means that the group acting onΓ \N (equipped with an almost flat metric)
by isometries is only the center ofN . In other words, we can find an isometric action of
N only after taking the infinite (universal) cover. This point is different from the case of
Abelian group (torus).

Now we are going to state the main result of [34]. LetM be a manifold andp ∈M . Let
Up ⊂M be an open neighborhood ofp. We denote by∇g the Levi-Civita connection ofg.

THEOREM 12.7 (Cheeger–Fukaya–Gromov [34]).For eachε > 0 andn ∈ Z+, there ex-
istsρ = ρ(ε,n) > 0 with the following properties. Let (M,g) be a completen-dimensional
Riemannian manifold with|Kg|� 1. Then there exists a metricgε andUp, Ũp,Γp,Np for
eachp ∈M such that:

(1) Np is nilpotent. Γp ⊂Np is a discrete subgroup such thatπ0(Np) is finite andNp
is generated by its connected componentNp,0 andΓp .
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(2) Up is a neighborhood ofp andUp ⊇ Bp(ρ,M).
(3) Np acts on(Ũp, g̃p) by isometry. Here Ũp is a covering space ofUp and g̃p is the

metric induced bygε .
(4) If p̃ ∈ Ũp and[p̃] = p theni

Ũp
(p̃) > ρ.

(5) [Γp : Γp ∩Np,0]< k.
(6) For anyx ∈ Ũp Diam(Γp \Npx) < ε. HereNpx is anNp-orbit.
Moreover we have
(7) e−εg < gε < eεg.
(8) |∇g −∇gε |< ε.
(9) |∇gεRgε |< c(n, i, ε), whereRgε is the curvature tensor ofgε andc(n, i, ε) depends

only onn, i, ε.

Remark12.2. The existence ofgε satisfying (7)–(9) is proved by [15,1].

Remark12.3. The metric satisfying (1)–(6) is called a(ρ, k)-round metric in [34].

We remark that at the point whereiM(p) > ρ we may takeNp = 1 andŨp =Up. Hence
the statement above is obvious.

On the other hand, condition (4) implies that at the pointp where injectivity radius is
small, the groupNp is nontrivial. Hence, together with (1), we obtain a local action of
a torus by restricting the action ofNp to the center. Using (6) and the fact that the local
action of the torus is compatible with the metricgε , we can prove that these actions are
compatible in the sense of Theorem 12.2.

Moreover, in the case when the diameter ofM is smaller than a constant depending only
on ε andn, we can prove that the groupNp is independent of the choice ofp. Hence
its orbits defines a foliation on the frame bundle ofM . It implies Theorem 11.5. Thus
Theorem 12.7 unifies two approaches for collapsing Riemannian manifolds.

The proof of Theorem 12.7 is a combination of the proofs of Theorems 12.2 and 11.5.
We use Theorem 11.5 and its proof (together with some improvement) to findNp locally.
We then glue them in a way similar to the proof of Theorem 12.2. Finally we take the
average and obtain the required metricgε . �

EXAMPLE 12.2. LetΓ be a lattice of a semisimple Lie groupG of noncompact type
andG/K be a symmetric space. We assumeΓ \G/K is noncompact. Then for eachp ∈
G/K the groupΓp = {g ∈ Γ | d(p,gp) < ε} has nilpotent subgroupΓp,0 of finite index
[Γp : Γp,0] < k by Theorem 10.4. (We remark thatΓp may not be contained in a small
neighborhood of the unit inG. But its subgroup of finite index is in a small neighborhood
of the unit.) The Zariski closureNp ⊂G of Γp,0 is a nilpotent group. This is ourNp. The
original metric (the metric of symmetric space) is an invariant of left theNp action.

Hattori [84] found the following. LetM = Γ \G/K be a locally symmetric space of
noncompact type. We assume that it is noncompact and of finite volume. Then the limit
(M,gM/R) asR goes to infinity is a cone of a simplicial complexT which is called
the Tits building. (Here the limit is taken with respect to the pointed Gromov–Hausdorff
distance (Definition 16.3).) Now if we take a simplex� of T then a “neighborhood” of it
in M is diffeomorphic to�× [0,∞)× Γ (�) \N(�). The dimension of the nilmanifold
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Γ (�) \N(�) depends on�. They are glued appropriately, which gives a structure as in
Theorem 12.7.

The following addendum to Theorem 12.7 is useful for various applications.

PROPOSITION12.8 [132]. If a �KM � b in Theorem12.7 then we may choosegε so that
a + ε �KM � b− ε.

13. Collapsing Riemannian manifolds—III

In this section, we review some of the applications of collapsing Riemannian manifolds.
We recall thatMn(D) is the set of isometry classes ofn-dimensional Riemannian manifold
M with Diam(M)�D, |KM |� 1.

THEOREM 13.1 (Fang–Rong [51], Petrunin–Tuschmann [126]).For eachn,D the num-
ber of diffeomorphism classes of simply connected manifoldsM in Mn(D) with finite
π2(M) is finite.

THEOREM 13.2 (Fang–Rong [51], Petrunin–Tuschmann [126]).There existsi(n, δ) > 0
such that ifM is simply connected, π2(M) is finite and if1 �KM � δ > 0, then the injec-
tivity radius ofM is larger thani(n, δ).

We remark that, in case the dimension is even, Theorem 13.2 follows from Theorem 4.3
without assumption onπ2.

EXAMPLE 13.1. We first consider the Lens spaceS3/Zp whereZp ⊂ S1 is a cyclic group
of orderp. Its curvature is 1 and its limit isS2 = S3/S1. This example shows the assump-
tion onπ1(M) is necessary both in Theorems 13.1, 13.2.

The three examples below show that the assumption onπ2(M) is also necessary in
Theorems 13.1, 13.2.

We consider the Lie groupSU(3). It has a metric with positive sectional curvature.
We consider its maximal torusT 2 ⊆ SU(3). Let pi, qi be coprime integers such that
lim pi/qi = α ∈ R \ Q. We identifyT 2 = R2/Z2 and letx, y be coordinates ofR2. We
considerS1

i = {[x, y] ∈ T 2 | y = pix/qi}. We equipMi = S1
i \ SU(3) with quotient Rie-

mannian metric.Mi is a sequence of 7-dimensional manifolds of positive curvature. Us-
ing the fact limpi/qi is irrational, we can easily find that the limit ofMi with respect
to the Gromov–Hausdorff distance isT 2 \ SU(3). We can also prove that the sectional
curvature ofMi is uniformly positive. NamelyC � KMi

� δ > 0 for someδ,C inde-
pendent ofi. (This is a consequence of the fact thatpi/qi converges. We remark that
π2(Mi)∼= π1(S

1)= Z.)
In a similar way we can use theT 2-action toS3 × S3 to get a sequence of metricsgi on

S2 × S3 with C �Kgi � δ > 0 such that(S2 × S3, gi) converges toS2 × S2.
We next consider an action ofT 2×T 2 onSU(3) where the first factor acts by left multi-

plication and the second factor acts by right multiplication. Using an appropriate family of
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S1
i
∼= S1 ⊆ T 2 × T 2, Petrunin–Tuschmann [126] (using Eschenburg [50]) found an exam-

ple ofMi = S1
i \SU(3) with C �KMi

> δ > 0 such thatMi converges toT 2 \SU(3)/T 2.

Remark13.1. A similarπ2-assumption as in Theorem 13.2 was proposed by the author in
[57, Remark 15.10]. However [57, Conjecture 15.7] (by the author) turns out to be false.
A counterexample (due to Petrunin–Tuschmann) is the last example in Example 13.1.

We now sketch the proof of Theorem 13.1. We start with the following

LEMMA 13.3 (Rong [132]).If we assume thatπ1(M) is finite in the situation of Theo-
rem11.5 in addition, then the fiber ofπ :FMi → Y in Theorem11.5 is diffeomorphic to a
flat manifold.

Using the fact that the fundamental group ofMi is finite (here we assume dimMi > 2), it
follows easily that the fundamental group of the fiber has an index finite Abelian subgroup.
Since the fiber is an infranilmanifold the lemma follows immediately. �

Lemma 13.3 implies that we have anF -structure whose orbits are fibers. (Here our
F -structure is one called pureF -structure by Cheeger–Gromov [38]. A pureF -structure is
anF -structure such that all the orbits of the local action have the same dimension.) We next
apply the averaging process in the proof of Theorem 12.7 to the situation of Theorem 11.5
and of Lemma 13.3. Then we have

LEMMA 13.4. In the situation of Lemma13.3,we can approximate the Riemannian metric
onFMi by gε in the same sense as Theorem12.7(7)–(9) so thatgε is an invariant of the
local T k action and of theO(n) action.

Now we start the proof of Theorem 13.1. We assume that Theorem 13.1 is false. Then
there exists a sequenceMi ∈ Mn(D) such thatMi is simply connected,π2(Mi) is finite,
andMi is not diffeomorphic toMj for i �= j . We takeFMi and may assume that it con-
verges toY . Since we approximate the metric by one satisfying Theorem 12.7(7)–(9), it
follows thatY is a smooth Riemannian manifold. We may replaceFMi by its finite cover
F̃Mi so that it has global aT k ×G-action, whereG is a compact group20 and aT k-orbits
are the fibers of the fibratioñFMi → Y . We modify the metric ofF̃Mi so that it isT k×G-
equivariant. The next lemma is the place where we use the key assumption thatπ2(Mi) is
finite.

LEMMA 13.5. If F̃Mi/T
k is G-diffeomorphic toF̃Mj/T

k then F̃Mi is T k × G-
diffeomorphic toF̃Mj .

In fact the torus bundleT k → E → B is determined by the (T k-analogue of) Euler
class∈ Hom(H2(B),π1(T

k)) (which is well defined up to Aut(π1(T
k))). In our case

where π2(F̃Mj ) is finite andπ1(F̃Mj ) is trivial, the Euler class is an isomorphism

20Actually it is finite covering group ofO(n). (It may be disconnected.)
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H2(B)/Tor→ π1(T
k), hence it is unique up to Aut(π1(T

k)). To obtain theT k-equivariant
diffeomorphismF̃Mi → F̃Mj which isG-equivariant also, we use the center of mass
technique (Proposition 8.3). �

We remark thatF̃Mj/T
k has the same dimension asY and F̃Mj/T

k converges toY
with respect to theG-Gromov–Hausdorff topology (which was introduced in [52]). Esti-
mate (9) of Theorem 12.7 implies thatY is a smooth manifold. On the other hand, the
sectional curvature of̃FMj/T

k is bounded from below. Hence Theorem 11.3 implies
that F̃Mj/T

k is diffeomorphic toY for large i. We can use theG-equivariant version
of Theorem 11.3 (which can be proved in the same way as Theorem 11.3 using an embed-
ding to Hilbert space as in [55]21), F̃Mi/T

k is G diffeomorphic toY for large i. Hence
Lemma 13.5 implies that̃FMj is G diffeomorphic toF̃Mj for i, j large. NamelyMi is
diffeomorphic toMj . This is a contradiction. �

To prove Theorem 13.2 we need another result by Petrunin–Rong–Tuschmann.

THEOREM 13.6 [125]. Let M be a compact manifold. We assume thatM admits a se-
quence of metricsgi . We assume thatΛ � Kgi � λ and that the metric spaceX =
limGH

i→∞(M,gi) is of dimension strictly smaller thanM . We also assume that the distance
functiondi :M ×M → R induced bygi converges to a functiond which determines a
pseudometric22 onM .

Thenλ� 0.

Remark13.2. Klingenberg and Sakai conjectured a similar statement, but their conjecture
does not assume the additional assumption thatdi converges to a pseudometric.

To prove Theorem 13.2 using Theorem 13.6 we proceed as follows. We assume that there
existsMi with 1�KKi � δ > 0 and that the injectivity radius goes to 0. We can discuss in
the same way as in the proof of Theorem 11.3 to show thatMi is diffeomorphic toMj .23 By
looking at the proof carefully we may assume that the diffeomorphism almost preserves
distance function. Namely if we identifyMi with Mj then the sequenceM =Mi =Mj

satisfies the assumption of Theorem 13.6. The conclusion of Theorem 13.6 contradicts to
KMi

� δ > 0. �

One of the ideas of the proof of Theorem 13.6 is the following observation. If the col-
lapsing occurs in the same way as in the proof of Proposition 11.1, then the sectional
curvature of the plain spanned byX and other vector is always converges to zero. To make
this simple idea works we need a lot of delicate work which is not described here.�

We next discuss some other applications of collapsing theory.

21See Remark 9.1.
22Namely it satisfies axioms of metric except “d(x, y) implies= y”.
23We use Proposition 12.8 to showΛ+ ε �KMi � λ− ε.
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THEOREM 13.7 (Rong [132]).There existsw(n, δ) such that if a compactn-dimensional
Riemannian manifoldM satisfies1�KM � δ then there exists a cyclic subgroupC of the
fundamental groupπ1(M) such that[π1(M) : C]<w(n, δ).

Remark13.3. If we assume 1� KM � 0, Diam(M) < D, then there exists an Abelian
subgroupC of π1(M) such that[π1(M) : C] < w(n,D) [132]. There are results under
milder assumption that is the case whenM is of almost of nonnegative curvature. See
Section 19.

The following is another application of collapsing theory. This time we apply to mani-
folds of almost nonpositive curvature.

THEOREM 13.8 (Fukaya–Yamaguchi [58]).There existsε(D,n) such that if a compact
n-dimensional Riemannian manifoldM satisfiesDiam(M) � D, ε(D,n) � KM � −1
then the universal covering space ofM is diffeomorphic toRn.

This is a generalization of Hadamard–Cartan’s theorem (Theorem 4.6), which is the case
whenKM � 0.

14. Morse theory of distance function

So far we mainly discussed results assuming the curvature to be bounded from above and
below. From this section on, we consider the case when the curvature is bounded from
below only.

The next theorem is a corollary of Theorem 4.1.

THEOREM 14.1 (Rauch).LetM be a compact manifold without boundary. If there exists
a Morse function onM with two critical points, thenM is homeomorphic to a sphere.

In Section 4, we started with Theorem 4.1 and showed the way to prove sphere theorems,
finiteness theorems and compactness theorems by estimating the number of balls we need
to cover a manifold. The number of contractible open subsets one needs to cover the space
(plus one), is called the Lusternik–Shnirel’man category and is important in Morse theory.
In this section we will try to apply Morse theory directly.

For a given Riemannian manifoldM , a function which is determined automatically from
the metric is a distance functiondp(x)= d(p,x) from a point. (Note we can use the fact
thatp = x is the unique critical point ofx 	→ dp(x) with d(x,p) < iM(p) to prove that
Bp(r,M) is diffeomorphic to a sphere ifr < iM(p).)

The difficulty to apply Morse theory to the distance function is thatx 	→ dp(x) is not
differentiable ford(x,p) > iM(p). (dp is not differentiable atp either. But this does not
cause serious trouble. We may considerd2

p instead, for example.) During the proof of The-
orem 2.5, Grove–Shiohama applied Morse theory away from the ball with radius= iM(p).
After that, their method is used in many other places. The main idea of them is the follow-
ing definition.
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Fig. 14.1.

DEFINITION 14.1. We sayq is a regular point of dp if there exists a nonzero vector
.V ∈ TqM such that for anyminimal geodesic� : [0, d(p, q)] →M joining p andq, the

angle betweend�
dt
(0) and .V is not greater thanπ/2.

For example, letp,q be as in Figure 14.1. It is not clear how many minimal geodesics are
there joiningp with q. But it is easy to see that the direction of any of them is downwards
atq. Henceq is a regular point ofdp.

Remark14.1. We may consider various situations similar to Definition 14.1. For example,
let us consider a continuous functionf which is an infimum of finitely many differentiable
functionsfα locally (namelyf = inf fα).24 In this case we sayq is a regular point of
f if there exists a vector.V ∈ TqM such that, for eachα with f (q) = fα(q), we have
.V (fα) > 0. We can apply a similar argument to a linear combination of finitely manydp ’s
or the infimum of them also. Proposition 14.2 holds for such cases.

Based on Definition 14.1, we can prove the following analogue of the Morse lemma
for dp.

PROPOSITION14.2. If q with a � dp(q) � b is an arbitrary regular point ofdp, and if
Bp(b,M) is compact, thenBp(b,M) \ Bp(a,M)= {q ∈M | a � d(p,q)� b} is homeo-
morphic to a direct product of∂Bp(b,M)= {q ∈M | d(p,q)= b} and[0,1].

The proof is similar to the proof of the following famous

24We remark thatdp may not satisfy this condition in general.
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THEOREM 14.3 (Morse lemma).We assume thatf :M → R is differentiable, and arbi-
trary q with f (q) ∈ [a, b] is a regular point off , and thatf−1([a, b]) is compact. Then
f−1([a, b]) is diffeomorphic tof−1({a})× [0,1].

The proof of Morse lemma uses an integral curve of gradf . (See [103].) Sincedp is not
differentiable, the vector field graddp does not make sense. Instead, we will use the vector
field V constructed below.

For q ∈ Bp(b,M) \Bp(a,M) let Vq = V be the vector∈ TqM as in Definition 14.1. If
we can takeVq depending smoothly onq, then we can take the vector fieldV (q)= Vq in
place of−gradf . (The condition in Definition 14.1 implies thatdp decreases along the
integral curve ofV .)

To find Vq depending smoothly onq, we proceed as follows. We first takẽVq which
may not depend smoothly onq. We extend it to its neighborhood and denote it by the same
symbolṼq . Then ifq ′ is in a small neighborhoodU(q) of q, then the vector̃Vq(q ′) ∈ Tq ′M
satisfies the condition of Definition 14.1. We coverBp(b,M) \Bp(a,M) by finitely many
U(qi)’s. We then take a partition of unityχi and put

V (q)=
∑

χi(q)Ṽqi (q).

It is easy to see that thisV has the required properties.
Using this vector fieldV , the proof of Proposition 14.2 goes in the same way as the

proof of Morse lemma. �

To apply Morse theory ofdp to the proof of Theorem 2.5 we need the following lemma.

LEMMA 14.4. We assume thatM satisfies the assumption of Theorem2.5. Letp,q ∈M
with d(p,q) = Diam(M), and x ∈M be a point different fromp,q. Let �p : [0, d(p, x)]
→M , �q : [0, d(q, x)]→M be minimal geodesics joiningx to p, andx to q, respectively.
(In case there are several of them, we assume any of them have the property below.)

Then the angle between two tangent vectors
d�p
dt
(0) and

d�q
dt
(0) ∈ TxM is greater than

π/2 (see Figure14.2).

The proof of Lemma 14.4 uses Toponogov’s comparison theorem (Theorem 4.7). Under
the assumption of Lemma 14.4 (that isKM � 1/4), Theorem 4.7 implies the following
Sublemma 14.5. Letx, y, z ∈ M . We consider the geodesic triangle whose vertices are
those three points. We denote the length of its edges by|xy| etc. and angles by� xyz etc.
We putX = |yz|, Y = |zx|, Z = |xy|.

SUBLEMMA 14.5. If � zxy � π/2, thencosX2 � cosY2 cosZ2 .

Note that we have

s(Y/2,Z/2, θ,1)� s(Y/2,Z/2,π/2,1)= cos−1(cosY/2 cosZ/2),

wheres(·, ·, ·, ·) is as in Theorem 4.7.
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Fig. 14.2.

We start the proof of Lemma 14.4. We put|�p| = t , |�q | = s, d(p,q) = D. Sincedp
attains its maximum atq it follows thatq is not a regular point ofdp. Hence there exists a
geodesic� joining p andq such that the angle between� and�q is not greater thanπ/2.
We apply Sublemma 14.5 to the geodesic triangle consisting of�, �p, �q and obtain

cos
t

2
� cos

s

2
cos

D

2
. (14.1)

SinceD/2> π/2 we have cosD2 < 0. Therefore one of coss2, cost2 is positive. We may
assume coss2 > 0.

If the angle between�p and�q is not greater thanπ/2, then we can again apply Sub-
lemma 14.5 and obtain

cos
D

2
� cos

s

2
cos

t

2
. (14.2)

Since coss2 > 0, (14.1), (14.2) imply

cos
D

2
� cos2

s

2
cos

D

2
.

We remark that 0<D/2, s < π .25 This is then a contradiction. �

Now Lemma 14.4 implies that ifx �= p,q thenx is a regular point ofdp, dq . In fact,
let V be the tangent vector of�q at x. It follows from Lemma 14.4 that the vector field

25This is a consequence of Myers’ theorem (Theorem 5.4).
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V satisfies the condition in Definition 14.1. Namelyx is a regular point ofdp. Now we
can use Proposition 14.2 to prove thatM is homeomorphic to sphere. Hence we proved
Theorem 2.5. �

We remark that we proved Proposition 4.4 during the proof of Lemma 14.4. In fact, we
proved cost/2> 0 or coss/2> 0 there. It impliest < π or s < π . �

The method we explained above is very useful to study Riemannian manifolds under the
bounds of sectional curvature from below. It is also useful to study Alexandrov spaces (see
Sections 17, 18).

Theorem 2.5 is a sphere theorem. There are several finiteness theorems corresponding
to it. The first one is the following, which is called the Gromov’s Betti number estimate.

THEOREM 14.6 (Gromov [70]).There existsC(n) such that if ann-dimensional compact
Riemannian manifoldM satisfiesKM �−κ (κ � 0) and if its diameter isD then∑

k

rankHk(M;F)�C(n)1+κD.

HereF is an arbitrary field.

Note in the case whenκ = 0, the right-hand side is independent ofD.
It follows from Theorem 14.6 that the connected sum of sufficiently many copies of

CP 2 does not carry a metric of nonnegative sectional curvature.
The proof of Theorem 14.6 is based on Morse theory of a kind of distance function.

Namely we use an idea similar to the Morse inequality to estimate the Betti number in terms
of the number of critical points. However the proof is more involved since Morse theory
of the distance function itself does not work. The actual proof requires more complicated
argument, which we omit here.

There are many other applications of Morse theory of distance functions to metric Rie-
mannian geometry. For example, Gromov used it to show that a complete manifoldM

such that 0>−a2 �KM �−b2 and has finite volume is diffeomorphic to the interior of a
compact manifold with boundary [67].

Let us add a few more remarks to Theorem 2.5. If we assume 1� KM � 1 − ε in
addition in Theorem 2.2, then we can show thatM is not only diffeomorphic but is also
close to a sphere as a Riemannian manifold. Namely if a sequence ofn-dimensional simply
connected Riemannian manifoldsMi satisfies 1� KMi

� 1− 1/i, thenMi converges to
Sn with standard metric with respect to the Gromov–Hausdorff distance.

On the contrary, the corresponding statement in the situation of Theorem 2.5 does not
hold. Namely, let us consider a sequence of Riemannian manifoldsMi such thatKMi

� 1
and that the diameter ofMi converges toπ asi goes to infinity. Then Theorem 2.5 implies
thatMi is homeomorphic to a sphere. However it isnot true that the limit ofMi with respect
to the Gromov–Hausdorff distance is isometric to the sphere with standard metric. We
remark however a Riemannianmanifoldwith diameter= π andKM � 1 (actually weaker
assumption Ricci� n−1 is enough) is isometric to the sphere. (Theorem 21.11 [148,41].)
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Fig. 14.3.

In fact, let us consider the quotient ofS2 by the action ofS2/Zp generated by the ro-
tation of angle 2π/p around the fixed axis. The quotient is a Riemannian manifold with
constant curvature 1, except two points where the axis intersects withS2. We approximate
the quotient space by a Riemannian manifold with curvature� 1 and obtain a sequence
of Riemannian manifoldsMi whose diameter converges toπ andKMi

� 1. The limit is
S2/Zp and is not isometric to the sphere with standard metric. The essential point here is
that the Alexandrov spaceX with diameter= π andKM � 1 is not necessary isometric to
a sphere with standard metric. (Compare Theorem 23.11.) (See Figure 14.3.)

This is related to the fact that the limit of Riemannian manifoldsMi with KMi
� const

is rather different from a Riemannian manifold even in the case when the limit has the
same dimension. For example, we consider a boundaryS of a convex set inR3. There
is a point ofS that has no tangent plane. In the situation when the absolute value of the
sectional curvature is bounded, the Gromov–Hausdorff convergence is equivalent to the
C1,α-convergence of the metric tensor (in the situation when the limit has the same dimen-
sion), by Theorem 3.4. Therefore the limit space has a tangent space everywhere.

By the reason we explained above the following question is yet open.

PROBLEM 14.1. Is there anyεn > 0 such that ifM is ann-dimensional complete Rie-
mannian manifold withKM � 1 and Diam(M) � π − εn, thenM is diffeomorphicto a
sphere?

We remark that in the proof of Theorem 2.5 we consider the distance functionsdp, dq
simultaneously wherep,q lie in the different sides fromx. This is similar to the notion
strainer used in Alexandrov space. (See Section 17.)

15. Finiteness theorem by Morse theory

In this section, we explain the idea of the proof of Theorem 3.5. The first half of it, which
was proved in [78], asserts that the number of homotopy classes represented by an element
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of M′
n(D,v) is finite. (We recall thatM ∈ M′

n(D,v) if KM � 1, Diam(M) � D, and
Vol(M)� v, dimM = n.) In this section we mainly explain this part. The key of the proof
is the following proposition.

PROPOSITION 15.1. There existsε = ε(n,D,v) > 0 such that the following holds for
eachM ∈ M′

n(D,v). Let p,q ∈M with d(p,q) < ε, p �= q. Thenq is a regular point
of dp.

Moreover we have the following. We put� = {(x, x) ∈ M × M | x ∈ M}, �(ε) =
{(x, y) | d(x, y) < ε}. Then� is a deformation retract of�(ε). The deformation retraction
H :�(ε)× [0,1] →�(ε) can be chosen so that the length of the curvet 	→H(p,q, t) is
not greater thanCd(p,q). HereC depends only onn,D,v.

Using Proposition 15.1, the proof of Theorem 3.5 goes in a way similar to the proof
of Proposition 5.5. Namely, from the first half of the Proposition 15.1, we find that the
metric ballsBp(ε,M) of radiusε are contractible inM . On the other hand, the number of
metric ballsBp(ε,M) we need to coverM is estimated in the same way as in Section 5
by using Proposition 5.2. However since it is not clear whether the intersection of finitely
many metric ballsBp(ε,M) is contractible or not in our case, so we need to modify the
proof of Proposition 5.5 a bit. The second half of Proposition 15.1 is used for this purpose.
We omit this part of the proof. �

The proof of Proposition 15.1 is closely related to the proof of Proposition 5.6. So we
first sketch the proof of Proposition 5.6. By Theorem 4.9 we only need to estimate the
lengthε of closed geodesic of minimal length from below forM ∈Mn(D,v). Let � :S1 →
M be the closed geodesic of lengthε. We take an arbitrary pointx ∈M , and let�(t) ∈ �(S1)

be the point of smallest distance fromx. Then� is orthogonal tox�(t) at�(t).26 (Herex�(t)
is a minimal geodesic joiningx and�(t).) We put�(0)= p. Sinced(p, �(t))� ε, it follows
that if d(x,p) is sufficiently larger thanε, then the angle between� andxp is close toπ/2.
We thus have proved the following lemma.

LEMMA 15.2. Let δ,ρ > 0. Then there existsε depending only onn,D,v, δ, such that if
� is a closed geodesic with length< ε and if �(0)= p thenM is contained in the image of
the exponential map of the domain⊂ TpM in Figure 15.1.

We can chooseδ sufficiently small compared to the diameterD, so that the volume of
the image of the domain II in Figure 15.1 is smaller thanv/2. By choosingρ small we may
assume the volume of the image of the domain I in Figure 15.1 is smaller thanv/2 also.
Therefore if there exists a closed geodesic of length< ε, then the volume ofM is smaller
thanv. �

We turn to the proof of Proposition 15.1. It suffices to show the following lemma.

26More precisely in casex is a cut point with respect to the geodesic�. (The notion of the cut point with respect
to a submanifold is defined in a similar way to the notion of cut point from a point. See, for example, [33].)�may
not be orthogonal tox�(t). However this does not cause a trouble for the proof of Lemma 15.2 since the measure
of the set of cut points is zero.
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Fig. 15.1.

Fig. 15.2.

LEMMA 15.3. There existθ = θ(n, v,D) > 0 andε = ε(n, v,D) > 0 with the following
properties. LetM ∈M′

n(D,v), p,q ∈M , d(p,q) < ε. Let �1 and�2 are minimal geodes-
ics joiningp andq. Then the angle between�1 and�2 at p or q is smaller thanπ − θ .

Lemma 15.3 implies thatq in the lemma is a regular point ofdp. The first half of Propo-
sition 15.1 follows from Proposition 14.2. The second half can also be proved in the same
way by examining the proof of Proposition 14.2 carefully. �

The proof of Lemma 15.3 is similar to the proof of Proposition 5.6. Namely we replace
Figure 15.1 by Figure 15.2.

We thus explained an outline of the first half of the proof of Theorem 3.5. The other
half is the finiteness of the number of homeomorphism classes and requires another deep
argument. The main new technique required is the idea from controlled surgery. �

16. Soul theorem and splitting theorem

Typical results on noncompact complete Riemannian manifolds of nonnegative curvature
are the soul theorem and the splitting theorem. They also are very useful to study the local
structure of the Gromov–Hausdorff limit of Riemannian manifolds or its limit.

We first explain why the study of noncompact manifolds is useful to study local structure
of the limit space. Let us begin with the introducing some notations. LetX be a metric
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space and� : [a, b] → X be a continuous map (that is a curve). The length|�| of � is by
definition a supremum of the sum∑

d
(
�(ti), �(ti+1)

)
,

wherea = t0< t1< · · ·< tN = b runs over all partitions (N moves also).

DEFINITION 16.1. We say thatX is a length spaceif for eachp,q ∈ X there exists a
curve joiningp,q of lengthd(p,q).

A complete Riemannian manifold is a length space. The Gromov–Hausdorff limit of
length spaces is also a length space.

DEFINITION 16.2. A complete metric space is said to becompactly generatedif all of its
metric balls are compact.

The set of all isometry classes of compact metric spaces is complete with respect to the
Gromov–Hausdorff distance. A natural metric to put on the set of all isometry classes of
complete compactly generated spaces is pointed the Gromov–Hausdorff distance, which
we define below.

DEFINITION 16.3. Let X,Y be metric spaces andx ∈ X, y ∈ Y . We say that the
pointed Gromov–Hausdorff distancedpGH((X,x), (Y, y)) between (X,x) and (Y, y)
is not greater thanε, if the Gromov–Hausdorff distance between the metric balls
B1/ε(x,X) andB1/ε(y,Y ) is not greater thanε. We write limpGH

i→∞(Xi, xi) = (X,x) if
limi→∞ dpGH((Xi, xi), (X,x))= 0.

The following can be proved in the same way as Theorem 3.2.

THEOREM 16.1. The set of all isometry classes of a pair(M,p) of an n-dimensional
Riemannian manifoldM with RicciM �−(n−1) and a pointp on it is relatively compact
with respect to the pointed Gromov–Hausdorff distance.

Now we can define the tangent cone. Let(X,dX) be a length space andx ∈X.

DEFINITION 16.4. If the limit limpGH
c→∞((X, cdX), x) exists, we call it thetangent cone(at

x ∈X) and write it asTxX.

If X is ann-dimensional Riemannian manifold then the tangent cone ofX is isometric
to Rn at each point.

EXAMPLE 16.1. LetΩ ⊂ Rn be a compact convex set. We putX = ∂Ω and define a
length metric on it. (Namely the distance betweenx, y ∈X is the infimum of the length of
all curves joiningx andy in X.)
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Then tangent coneTxX is described as follows. We consider every ray (half of the
straight line)� : [0,∞)→ Rn such that�(t) ∈ Ω for small t > 0. The set of such� is
an open subset ofRn. Its boundary inRn is the tangent coneTxX.

If the spaceX is not so wild then we may expect the tangent coneTxX exists and a
neighborhood ofx in X is homeomorphic to a neighborhood of the origin (base point) in
TxX. (This holds for Alexandrov spaces, for example. See Theorem 18.1.) Namely we can
study the local structure ofX by studying the tangent coneTxX.

If X is a Gromov–Hausdorff limit of a sequence of Riemannian manifoldsMi and if
the sectional curvature ofMi is bounded from below by a constant independent ofi, then
we may regard the limitX as the space with “curvature bounded from below”. Then the
infimum of the “curvature” of family of length spaces(X, cdX) asc goes to infinity will
become nonnegative. (Note if we multiply the metric byc then the curvature is multiplied
by c−2.) This means that if tangent cone ofX exists, then it is of “nonnegative curvature”.
(The discussion here is informal and heuristic. So for a moment the curvature may either to
the Ricci or the sectional curvature.) This is one of the reasons why the study of noncom-
pact spaces with nonnegative curvature is important in the local theory of spaces which are
a limit of Riemannian manifolds.

By using Gromov’s precompactness theorem (Theorem 16.1) we have the following

PROPOSITION 16.2. Let Mi be a sequence of Riemannian manifolds withRicciMi
>

−(n − 1). Let X = limGH
i→∞Mi . Let x ∈ X and ck be a sequence of positive numbers

with lim ck = +∞. Then there exists a subsequence of((X, ckdX), x) which converges
in pointed Gromov–Hausdorff distance.

In general((X, ckdX), x) itself may not converge. (Namely we need to take a subse-
quence.) HenceX may not have a tangent cone. This is one of the difficulties to study the
family of Riemannian manifolds with Ricci curvature bounded from below.

In caseX is a limit of Riemannian manifolds withsectionalcurvature bounded from
below (or more generally ifX is an Alexandrov space), limc→∞((X, cdX), x) converges
without taking a subsequence (Theorem 17.14).

Let us now state the soul theorem and the splitting theorem. We first define the notions
line and ray. LetX be a length space. A curve� : (a, b)→ X is called a geodesic if it is
length minimizing locally. Namely� is a geodesic if, for eacht ∈ (a, b), there existsε such
thatd(�(t − ε), �(t + ε)) is equal to the length of the restriction of� to (t − ε, t + ε). We
use arc length as a parameter in the next definition.

DEFINITION 16.5. LetX be a length space. A geodesic� : [0,∞)→ X is called aray
if d(�(t), �(s)) = |t − s| for any t, s. A geodesic� : (−∞,∞)→ X is called aline if
d(�(t), �(s))= |t − s| for any t, s.

(The difference between line and ray is the domain of its definition.)
If there exists a tangent coneTxX = limc→∞((X, cdX), x) then it is a union of its rays

� such that�(0) is the base point. We also have the following
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LEMMA 16.3. LetX be a length space and� : (−ε, ε)→ X be a minimal geodesic with
�(0)= x. If the tangent coneTxX exists, then it contains a line.

In fact, since in(X, cdX) there exists a minimal geodesic of lengthcε containing the
origin, its limit in TxX will be a line.

We assume that a complete metric spaceX is a length space and satisfies one of the
following conditions.

CONDITIONS 16.1.
(a) X is a Riemannian manifold of nonnegative sectional curvature.
(b) X = limpGH

i→∞Mi such thatKMi
�−εi , limi→∞ εi = 0 and dimX = dimMi .

(c) X is a Riemannian manifold with nonnegative Ricci curvature.
(d) X = limpGH

i→∞Mi such that RicciMi
�−εi , limi→∞ εi = 0 and Vol(Mi)� v > 0.

The next theorem is called the splitting theorem.

THEOREM 16.4. If X satisfies one of the Conditions16.1 and contains a ray, thenX is
isometric to a direct productR×X0.

Theorem 16.4 is due to Toponogov [149] in case (a), to Cheeger–Gromoll [35] in
case (c), Grove–Petersen [80] and Yamaguchi [153] in case (b) and Cheeger–Colding [28]
in case (d).

We will explain an idea of the proof of the cases (a), (c) later in this section. (Case (b) is
similar to case (a). Case (d) is discussed in Section 23.)

We explain more how to apply it to study the local structure of the limit space. Note
that we can use Theorem 16.4 repeatedly. Namely ifX0 contains a line then we can again
apply the theorem and show that it is a direct product. Therefore if we can repeat it dimX

times, then we can prove thatX =Rn. Lemma 16.3 implies that ifx is an interior point of
a minimal geodesic, thenTxX contains a line. Therefore if we can findn (= dimX) “inde-
pendent” geodesic for whichx is an interior point, then the tangent coneTxX is isometric
to Rn. This may imply thatX is a manifold in a neighborhood ofx. This argument appears
in Sections 17, 18 and in Sections 20, 22, 23.

We next explain an outline of the proof of splitting theorem. The main tool we use is
convexity of Busemann function (it is used also in the proof of the soul theorem). LetX be
a length space and� : [0,∞)→X be a ray.

DEFINITION 16.6. TheBusemann functionis the limitb�(x)= limt→∞(t − d(x, �(t))).

PROPOSITION16.5. If X satisfies either(a) or (b), then the Busemann function of its ray
� is convex.

If X satisfies(c), then the Busemann function of its ray is subharmonic.

In the situation (d) we cannot define subharmonicity in the usual way. So the argument
is more involved. See Section 23 and [26,31].
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The proof of Proposition 16.5 is by a comparison theorem. Namely it follows immedi-
ately from the Laplacian and Hessian comparison theorem (Theorem 16.6) for the distance
function. We remark that the Hessian Hessf of a functionf on a Riemannian manifold is
defined by

(Hessx f )(V,W)= V
(
W(f )

)− (∇VW)(f ) (16.1)

and is a symmetric bilinear mapTxM ⊗ TxM→ R. A functionf is convex if its Hessian
Hessf is nonnegative everywhere.

The Laplacian�f is its trace. Namely

�f (x)=
n∑
i=1

(Hessf )(ei, ei), (16.2)

whereei is an orthonormal basis ofTpM . (We remark that we are using the nonpositive
Laplacian. Namely� = −(d∗d + dd∗).) We say a smooth function is subharmonic if its
Laplacian is nonnegative.

THEOREM 16.6. LetM be a Riemannian manifold andp ∈M . We consider the function
dp(x)= d(p,x).

(1) If KM � κ then

Hessx dp � s′κ(d(p, x))
sκ(d(p, x))

(gx − ddp ⊗ ddp). (16.3)

Hereddp :TxM→R is the exterior derivative ofdp.
(2) If RicciM � κ then

�f (x)� (n− 1)
s′κ (d(p, x))
sκ (d(p, x))

. (16.4)

Heresκ is as in (4.1).

Remark16.1. We remark thatdp is not differentiable outside the ballBp(iM(p),M). So
we need to be more careful to state Theorem 16.6. Precisely speaking (16.3), (16.4) hold
in a barrier sense. See, for example, [26].

We omit the proof of Theorem 16.6. We remark that (16.6) implies Corollary 5.3. In fact

d

dt
Vol
(
Bp(t,M)

) = ∫
∂Bp(t,M)

〈graddp,graddp〉Ω∂Bp(t,M)

=
∫
Bp(t,M)

divgraddpΩM
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� (n− 1)
∫
B0(t,TpM)

s′κ(d(p, x))
sκ(d(p, x))

ΩRn

� d

dt

∫
B0(t,TpM)

sκ
(
d(p,x)

)n
ΩRn

� d

dt
Vol
(
Bp0

(
t,Snκ

))
.

Let us explain how we use Proposition 16.5 to prove Theorem 16.4, in cases (a), (b). We
assume thatX contains a line� :R→X. We then have two rays�± : [0,∞)→X by

�+(t)= �(t), �−(t)= �(−t).

We study their Busemann functionsb�± . The triangle inequality implies

b�+(t)+ b�−(t)� 0. (16.5)

By Proposition 16.5 the right-hand side is convex. Since a bounded convex function is
constant, it follows that�+(t)+ �−(t) is constant. (Actually it is 0.) It follows that�+(t)=
const− �−(t) is convex and is concave. Hence its level surface if totally geodesic. (Here
we sayS ⊂M is totally geodesic if any minimal geodesic ofM joining two points ofS are
contained inS.) This implies Theorem 16.4. In case (c) we use subharmonicity in place of
convexity. �

We next discuss the soul theorem.

THEOREM 16.7 (Cheeger–Gromoll [36,128]).If a complete Riemannian manifoldM has
nonnegative sectional curvature then there exists a compact submanifoldS ⊆M without
boundary, such thatM is diffeomorphic to the normal bundle ofS. MoreoverS is totally
geodesic.

We callS thesoulof M . The basis of the proof of Theorem 16.7 is Proposition 16.5. It
asserts that, for each ray� : [0,∞)→M , the Busemann functionb� is convex. In particular
for anyc the closed set

H(�, c)= {x ∈M | b�(x)� c
}

is convex. The next lemma is the key of the proof of Theorem 16.7. We fixp ∈M and let
Ray(p) be the set of all rays ofM such that�(0)= p.

LEMMA 16.8. The setCc(p)=⋂�∈Ray(p) H(�, c) is compact.

The proof is by contradiction. Namely we assume thatCc(p) is not compact and let
pi ∈ Cc(p) be a divergent sequence. We putd(p,pi) = ti , and let�i : [0, ti] →M be a
minimal geodesic such that�i(0)= p, �i(ti)= pi and that it is parameterized by arc length.
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Since d�i
dt
(0) ∈ TpM is a unit vector, we may take subsequence so that it converges. Let

� : [0,∞)→M be a geodesic such that

lim
i→∞

d�i

dt
(0)= d�

dt
(0).

Since limi→∞ ti =∞, it follows that� is a ray. On the other hand, we have

lim
i→∞b�(pi)=∞.

This contradicts topi ∈ Cc(p). �

Thus, we obtained a compact convex subsetCc(p) of M . We can find a compact convex
submanifoldS in it. The argument to do so is rather technical and is omitted. (See [33,
Chapter 8].)

Perelman [115] proved that if, in the situation of Theorem 16.7, there exists a point
whereKM > 0, then the soulS is a one point. We refer to [63] for other topics related to
the soul theorem.

We remark that we already applied Theorem 16.7 in Section 12 to construct on
F -structure.

17. Alexandrov space—I

In this section and in the next sections, we discuss recent developments [22,119,113] in the
theory of Alexandrov space. A good text book on the contents of this section is [138]. (See
also [127].) In the following sections, we study compactly generated length spaces of finite
Hausdorff dimension only. So we always assume that the length space has this property.

The Alexandrov space is a length space with curvature bounded from below. To define
the notion of curvature for length space, we use a Toponogov type comparison theorem in
the opposite direction. Namely wedefinethe conditionKX � 1 by using the conclusion
of a comparison theorem. However the conclusion of Theorem 4.7 does not (yet) make
sense for length space, since it uses angles. So we consider the following slightly different
version.

We use the notation of Theorem 4.7. LetM be a Riemannian manifold andx, y, z, v,w
∈M . Let x′, y′, z′, v′,w′ ∈ Sn(κ). We assumev ∈ xy, w ∈ xz, v′ ∈ x′y′, w′ ∈ x′z′.

THEOREM 17.1 (Alexandrov–Toponogov).We assumeKM � κ andd(x, y)= d(x′, y′),
d(x, z) = d(x′, z′), d(y, z) = d(y′, z′), d(x, v) = d(x′, v′), d(x,w) = d(x′,w′). u ∈ xy,
u′ ∈ x′y′, v ∈ xz, v′ ∈ x′y′. Then we haved(v,w)� d(v′,w′). (See Figure17.1.)

DEFINITION 17.1 (Alexandrov). A length space of finite dimension is said to be an
Alexandrov spacewith K � κ if the conclusion of Theorem 17.1 holds forX.

Remark17.1. There are several other definitions equivalent to Definition 17.1. We will
explain them later (Theorems 17.9 and 17.10).
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Fig. 17.1.

Remark17.2. There is a notion of Alexandrov space with curvature bounded fromabove.
We do not discuss it in this article. It is proved by Berestovskij that if a length space
is an Alexandrov space with curvature bounded from above and below then it is aC0-
Riemannian manifold. This result is related to Theorem 3.4 but was proved earlier than
that. See [17].

Hereafter we say Alexandrov space for Alexandrov space withK � κ with someκ .
The notion of Alexandrov space was introduced by Alexandrov [6] more than 50 years

ago. There are several related pioneering works around those old days, like Busemann [23].
In [22], Burago–Gromov–Perelman proved several fundamental theorems on Alexandrov
spaces. After that the study of Alexandrov space became very active and important in
metric Riemannian geometry. Their main results are

THEOREM 17.2 (Burago–Gromov–Perelman [22]).LetX be an Alexandrov space. Then
there exists a dense open subsetX0 such that, for eachp ∈X0, there exists a neighborhood
Up and a Lipschitz homeomorphismUp → Vp whereVp ⊂Rn is an open set.

THEOREM 17.3 (Burago–Gromov–Perelman).The Hausdorff dimension of an Alexan-
drov space is an integer and is equal to its topological dimension.

Remark17.3. There are several ways to define topological dimension, that is covering
dimension (big and small), inductive dimension, etc. Theorem 17.3 also implies that they
coincide for Alexandrov spaces.

We do not discuss the proof of Theorem 17.3. (It will follow from Corollary 18.3 in the
next section.) Before explaining some of the ideas of the proof of Theorems 17.2, we give
some examples of Alexandrov spaces.

EXAMPLE 17.1. (0) A Riemannian manifold(M,g) is an Alexandrov space withK � κ ,
if and only if the sectional curvature of(M,g) is greater thanκ everywhere.

(1) LetΩ ⊆ Rn be a compact and convex domain. LetS = ∂Ω . We define the length
metricd onS. Namely, the distance betweenx, y ∈ S is the minimum of the length of the
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curves inS joining x with y. Then we can prove that(S, d) is an Alexandrov space of
curvature� 0.

(2) LetM be a Riemannian manifold withKM � κ andG be a compact group acting
onM by isometry. Then the quotient spaceM/G, equipped with the quotient metric is an
Alexandrov space.

An important example of an Alexandrov space is a Gromov–Hausdorff limit of an Rie-
mannian manifold. Actually we have

PROPOSITION17.4. LetXi be a sequence of compact length spaces andX = limGH
i→∞Xi .

If Xi are Alexandrov spaces withK � κ , then so isX. (Hereκ is independent ofi.)

The proof is elementary.

Remark17.4. Yamaguchi [153] proved that ifM aC∞-manifold andG is a compact Lie
group acting smoothly onM , then there exists a sequence of metricsgi onM such that
Kgi � κ for someκ independent and(M,gi) converges toM/G.

Another source of examples is a cone, which we define below.

DEFINITION 17.2. Let(Y, d) be a metric space. We consider the productT × [0,∞) and
identify (x,0) and (y,0). We thus obtain a spaceCY . We define a cone metric on it as
follows:

d
(
(x, t), (y, s)

)=√t2 + s2 − 2st cosd(x, y).

We denote byo∈ CY the equivalence class of(x,0).

EXAMPLE 17.2. IfY = Sn with KSn ≡ 1, thenCSn is isometric toRn+1.

LEMMA 17.5. If Y is a length space andDiam(Y )� π , thenCY is a length space.

We can prove an analogue of Myers’ theorem (Theorem 5.4) for Alexandrov spaces.
Namely

THEOREM 17.6 [22]. If M is an Alexandrov space withK � 1, thenDiam(Y )� π .

THEOREM 17.7 [22].
(1) If CY is an Alexandrov space, thenY is an Alexandrov space withK � 1.
(2) If dimY > 1 andY is an Alexandrov space withK � 1 thenCY is an Alexandrov

space withK � 0.
(3) In casedimY = 1, the coneCY is an Alexandrov space withK � 0 if and only if

Diam(Y )� π .
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Fig. 17.2.

We do not discuss the proof.
We next discuss an example of a length space which is not an Alexandrov space.

EXAMPLE 17.3. Let us consider a simplicial complexX consisting of three arcs which are
joined at one pointo. (See Figure 17.2.) We can define a metric on it such that the length of
each arc is 1. Letx, y, z be interior points of each of the three simplexes, respectively. We
can choosev =w onxy ∩ xz= xo. Thend(v,w)= 0. But if we choosex′, y′, z′, v′,w′ as
in Theorem 17.1 thend(v′,w′) > 0. (For anyκ .) So the conclusion of Theorem 17.1 does
not hold. NamelyX is not an Alexandrov space.

The argument of Example 17.3 implies the following. We call a map� : (a, b)→ X a
geodesicif for eachc ∈ (a, b) there existsε such that the length of the restriction of� to
(c− ε, c+ ε) is d(�(c− ε), �(c+ ε)).

LEMMA 17.8. If �1, �2 are geodesics on an Alexandrov spaceX and if they coincide on
an open set, then their union is also a geodesic.

In other words, geodesics can never branch.
We next explain some other equivalent definitions of Alexandrov spaces.

THEOREM 17.9. LetX be a length space. We assume that for eachp ∈ X there exists a
neighborhoodU such that the conclusion of Theorem17.1 holds for anyx, y, z,u, v ∈U .
ThenX is an Alexandrov space withK � κ . In other words, the same conclusion holds
globally.

In fact, usually the assumption of Theorem 17.9 is the definition of Alexandrov space.
We discuss another equivalent definition. LetX be a length space andx, y, z ∈ X. Let

κ ∈ R. In caseκ > 0, we assumed(x, y), d(x, z), d(y, z) < π/
√
κ . We choosex′, y′, z′ ∈

Sn(κ) such thatd(x, y)= d(x′, y′), d(y, z)= d(y′, z′), d(x, z)= d(x′, z′). We define

�
κyxz= � y′x′z′.
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THEOREM 17.10. LetX be a length space.
(1) If, for eachp ∈X, there exists a neighborhoodU of p such that

�
κbac+ �

κcac+ �
κcab� 2π

for anda, b, c, d ∈U , thenX is an Alexandrov space withK � κ .
(2) LetX be an Alexandrov space withK � κ and leta, b, c, d ∈X. Then

�
κbac+ �

κcac+ �
κcab� 2π.

Remark17.5. By Theorem 17.6� κbac etc. in (2) is well defined.

The idea that if the comparison theorem holds locally, then it holds globally is due to
Alexandrov and Toponogov. Theorem 17.10 is proved in [22].

We next discuss the angle between geodesics. Hereafter we assume that geodes-
ics are parameterized by arc length. LetX be an Alexandrov space withK � κ and
�1, �2 : [0, c)→X be geodesics such thatp = �1(0)= �2(0).

LEMMA 17.11. If s1 � t1, s2 � t2 then

�
κ�1(s1)p�2(s2)� �

κ�1(t1)p�2(t2).

This follows easily from the definition. Therefore we can define

DEFINITION 17.3. � �1�2 = limt1,t2→0 � κ�1(t1)p�2(t2).

In case�1, �2 are minimal geodesics joiningp to x, y, respectively, we write� xpy =
� �1�2.

Remark17.6. (1) The angle� xpy is independent ofκ .
(2) Two geodesics�1, �2 coincide to each other if� �1�2 = 0.

THEOREM 17.12. If X is an Alexandrov space ofK � κ and x, y, z ∈ X, then we have
d(y, z)� s(d(x, y), d(x, z), � yxz, κ).

Heres is defined in(4.4). In other words, Theorem 4.7 holds for an Alexandrov space.
The other version of the triangle comparison theorem also holds.

THEOREM 17.13. If X is an Alexandrov space withK � κ andx, y, z ∈X, then we have
� yxz� �

κyxz.

Remark17.7. The Toponogov type comparison theorem holds in Alexandrov space.
Hence we can generalize the argument of the last section to prove the splitting theorem
(Theorem 16.4) for an Alexandrov space withK � 0.

As we mentioned before an Alexandrov space has a tangent cone.
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THEOREM 17.14 [22]. If (X,d) is an Alexandrov space withK � κ and x ∈ X, then
limk→∞((X, kd), x) converges with respect to the pointed Gromov–Hausdorff distance.

The limit in Theorem 17.14 is the tangent coneTxX. The tangent cone is related to the
angle between geodesics as follows.

DEFINITION 17.4. Let Σ̃0
x be the set of all geodesics (parameterized by arc length)

� : [0, c)→ X for somec such that�(0) = x. We identify �1 and�2 if they coincide on
a neighborhood of 0. We denote byΣ0

x the set of this equivalence relation. We can easily
show that the angle� defines a metric on it. We define thespace of directionsΣx(X) as
the completion ofΣ0

x .

LEMMA 17.15. If X is an Alexandrov space, thenΣx(X) is an Alexandrov space with
K � 1 andTxX is an Alexandrov space withK � 0.

THEOREM 17.16 [22]. The tangent coneTxX of an Alexandrov spaceX is isometric to
the coneCΣx(X). If dimX = n, thendimΣx(X)= n− 1 anddimTxX = n.

We remark that the second half of Theorem 17.16 is a consequence of Proposition 17.7.
Now we start the discussion of the proof of Theorem 17.1. As we mentioned in the last

section, ifx ∈X is an interior point ofn= dimX “independent” minimal geodesics, then
TxX is isometric toRn, and this implies thatx has neighborhood, homeomorphic toRn.
However the condition about the existence of a geodesic is a bit too strict. So we relax it a
bit. LetX be an Alexandrov space withK � κ .

DEFINITION 17.5. Letx ∈X and(ai, bi)∈X2, i=1, . . . , n. We say that{(ai, bi)}i=1,2,...,n
is an(n, δ)-straineratx, if

�
κaixbi � π − δ,

and

�
κaixaj , � κaixbj , � κbixbj � δ, for i �= j .

A point x ∈ X is said to be(n, δ)-strained if there exists an(n, δ) strainer atx. (See
Figure 17.3.)

Remark17.8. In [22] the strainer is called “explosion” and a strained point is called “burst
point”. The name strainer and strained point seems to be more popular now.

The main step of the proof of Theorem 17.2 is the following

PROPOSITION17.17 ([22, Theorem 9.4] or [138, Theorem 7.4]).If p ∈ X is an (n, δ)-
strained point, then there existsρ > 0, neighborhoodsU ⊂ V ofp, and a mapϕ :V →Rn

with ϕ(p)= 0 with the following properties:
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Fig. 17.3.

(1) d(ϕ(x),ϕ(y)) < 2d(x, y).
(2) Let x ∈ U andX ∈ Rn, with d(ϕ(x),X) < ρ. Then there existsy ∈ V such that

ϕ(y)=X andd(x, y)� Cd(ϕ(x),X), whereC depends only onn andδ.

We remark that (2) implies thatϕ is an open mapping in a neighborhood ofx. Hence
if ϕ is injective thenϕ gives a chart in a neighborhood ofx. We can use the following to
showϕ is injective.

LEMMA 17.18. We may chooseU small enough so that ifϕ is not injective then there
exists an(n+ 1,10δ)-strained point on a small neighborhood ofU .

We remark that the set of all the(n, δ)-strained points is open. On the other hand Propo-
sition 17.17 implies that if a(n, δ)-strained point exists, then the Hausdorff dimension is
not smaller thann.

Hence Proposition 17.17 and Lemma 17.18 imply the following. For each open setU ,
we can findn and a nonempty open subsetU0 ⊂ U consisting of(n, δ)-strained points
such that there are no(n + 1,10δ)-strained points onU . ThenU0 is ann-dimensional
manifold by Proposition 17.17 and Lemma 17.18. The proof of Theorem 17.2 then will be
completed by using the next lemma.

LEMMA 17.19 [22, Corollary 6.5].We assumeX is connected. If U,V are nonempty open
subsets ofX, then the Hausdorff dimension ofU is equal to the Hausdorff dimension ofV .
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We now sketch the proof of Proposition 17.17 and Lemmas 17.18, 17.19. We put

µ= inf
{
d(p,a1), . . . , d(p, an), d(p, b1), . . . , d(p, bn)

}
.

We first explain the idea of the proof of Proposition 17.17. We put

ϕ(x)=−(d(x, a1), . . . , d(x, an)
)+ (d(p,a1), . . . , d(p, an)

)
.

It is easy to see that (1) is satisfied. We show (2). For simplicity, we consider the case
x = p, n= 2. For eachX = (X1,X2) ∈ B0(ρ,R2), we will find w with ϕ(w)= (X1,X2),
d(p,w) � Cd(0,X). We assumeX1,X2 > 0. We first take the pointq1 ∈ pa1 such that
d(p,q1)=X1. We first show

|ϕ(q1)− (X1,0)|
d(0,X)

� τ(ρ, δ|n,κ,µ). (17.1)

In fact we can prove

d(q1, a2)� d(p,a2)− τ(ρ, δ|n,κ,µ)X1

by applying Theorem 17.1, where we putx = a1, y = p, z= v = a2, u= q1.
To prove the opposite inequality we take the pointp′ ∈ b1q1 such thatd(p′, q1)= X1.

We haved(p,p′) � X1τ(ρ, δ|n,κ,µ). In fact, since� κb1pa1 > π − δ, it follows that
� b1q1a1 � �

κb1q1a1> π−δ−τ(ρ|n,κ). Hence� pq1b1< δ+τ(ρ|n,κ). Theorem 17.12
then impliesd(p,p′)�X1τ(ρ, δ|n,κ,µ).

We used(p,p′)�X1τ(ρ, δ|n,κ,µ) to show

|� b1q1a2 − π/2|, |� b1p
′a2 − π/2|< τ(ρ, δ|n,κ,µ). (17.2)

We next apply Theorem 17.1 again by puttingx = q1, y = b1, z = v = a2, u = p′. Then
using (17.2) haved(p′, a2)� d(q1, a2)−τ(ρ, δ|n,κ,µ)X1. Henced(p,a2)� d(q1, a2)−
τ(ρ, δ|n,κ,µ)X1. We have proved (17.1).

We next takew1 ∈ a2q1 such thatd(w1, q1)=X2. Then we have

|ϕ(w1)− (X1,X2)|
d(0,X)

� τ(ρ, δ|n,κ,µ).

We repeat the process replacingp byw1 and obtainw2 such thatd(w1,w2) < C|ϕ(w1)−
(X1,X2)| and

|ϕ(w2)− (X1,X2)|
|ϕ(w1)− (X1,X2)| � τ(ρ, δ|n,κ,µ).

We can definew3, . . . in a similar way.wi is a Cauchy sequence whose limitw has the
required property. �
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Let us prove Lemma 17.18. Letϕ(x) = ϕ(y). Let z ∈ xy with d(x, z) = d(x, y). It is
easy to see that(ai, bi), i = 1, . . . , n, and (x, y) is an (n + 1,2δ)-strainer if d(x, y) is
small. �

Finally we sketch the proof of Lemma 17.19. We may assumeX is compact. Takep ∈ V
and putD = sup{d(p,x) | x ∈ U}. We takeR such thatBp(D/R,X) ⊂ V . We define
Φ :U → V as follows. Forx ∈ V we take a pointΦ(x) ∈ px such thatRd(p,Φ(x)) =
d(p,x). (Note the minimal geodesicpx may not be unique. So we need some technical
argument to findΦ which is measurable.) Definition 17.1 implies that there existsρ > 0
such thatd(Φ(x),Φ(y))� ρd(x, y). It follows that the Hausdorff dimension ofΦ(U) is
not smaller than the Hausdorff dimension ofU . Therefore the Hausdorff dimension ofV
is not smaller than the Hausdorff dimension ofU . We can prove the opposite inequality in
the same way. �

We thus finished a sketch of the proof of Theorem 17.2. �

DEFINITION 17.6. We define theboundary∂X of an Alexandrov spaceX by induction
on dimX as follows. If dimX = 1, thenX is either an arc or a circle. So we can define
its boundary in an obvious way. Suppose∂X is defined forX with dimX < k. Let X be
an Alexandrov space of dimX = k. Then we sayx ∈ ∂X if ∂Σx(X) �= ∅. (We remark that
Σx(X) is an Alexandrov space and dimΣx(X)= k − 1.)

Theorem 17.2 is improved by Otsu–Shioya [112]. To state their results we define the
notion of singular point set in an Alexandrov space more precisely.

DEFINITION 17.7. LetX be ann-dimensional Alexandrov space andδ > 0. We put

Sδ(X)=
{
x ∈X | Vol

(
Σx(X)

)
� Vol

(
Sn−1

)− δ},
S(X)=

⋃
δ>0

Sδ.

We remark that the Alexandrov space version of the following theorem is a motivation
of Definition 17.7.

THEOREM 17.20 (Otsu–Shiohama–Yamaguchi [111]).If an n-dimensional Riemannian
manifoldM satisfiesVol(M) � Vol(Sn) − εn, KM � 1 thenM is diffeomorphic to the
sphere. AlsoM is close toSn with respect to the Hausdorff distance.27

We discuss the idea of the proof of Theorem 17.20 in Section 21.

27This theorem is improved later to Theorem 21.7 and to Corollary 22.4. Before [111], Shiohama [137] proved
thatM is homeomorphic to the sphere under a similar but different assumptionKM � −C, Ricci � (n − 1),
Vol(M)� Vol(Sn)− ε(n,C).
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THEOREM 17.21 (Burago–Gromov–Perelman, Otsu–Shioya).Let X be an Alexandrov
space of dimensionn. Then the Hausdorff dimension ofS(X) is not greater thann− 1.
The Hausdorff dimension ofS(X) \ ∂X is not greater thann− 2.

THEOREM17.22 (Otsu–Shioya [111]).There exists aC0-Riemannian metric onX\S(X)
which induces the metric onX. Moreover there existsX0 ⊂ X \ S(X) such that the
(n-dimensional Hausdorff)measure ofX \X0 is 0 and that there exists manifold structure
ofC1.5-class and a Riemannian structure is ofC0.5-class onX0.

Remark17.9. Actually we need to define aC1.5-structure etc. in the above theorem. This
is becauseX \ S(X), X0 are not open subsets in general. Hence they are not manifolds.
See [112] for the precise statement.

Theorem 17.22 is used by Kuwae–Machigashira–Shioya [99] to develop analysis on
Alexandrov spaces.

We also remark the following

THEOREM 17.23 (Fukaya–Yamaguchi [60]).The isometry group of an Alexandrov space
is a Lie group.

18. Alexandrov space—II

In [119,113] Perelman proved the following two fundamental results on Alexandrov
spaces.

THEOREM 18.1 (Perelman).Let X be an Alexandrov space withK � κ . Then, for any
x ∈X, there exists a neighborhood ofx homeomorphic toTxX, the tangent cone.

THEOREM 18.2 (Perelman).Let Xi be a sequence of Alexandrov spaces withK � κ

whereκ is independent ofi. We assumeX = limGH
i→∞Xi anddimX = dimXi . ThenXi is

homeomorphic toX for large i.

Remark18.1. Both of these theorems are proved in [119]. Later Perelman published an-
other paper [113] where the proof of Theorem 18.1 is given in a simplified way. Perelman
says in [113] that a similar method gives a slight simplification of the proof of Theo-
rem 18.2, but the simplification is not so big compared with the one for Theorem 18.1.
Unfortunately the paper [119] is not yet published.

In fact Theorem 18.1 follows from Theorem 18.2 (and Theorems 17.14, 17.16). However
the proof of Theorem 18.2 requires Theorem 18.1.

In this section we give a review of the proof of Theorem 18.1. Before that let us mention
some of the corollaries of them.

We remark thatTxX is homeomorphic toCΣx(X) by Theorem 17.16. SinceΣx(X)
is again an Alexandrov space, we can apply Theorem 18.1 again. We then find that the
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singularity ofX is obtained locally by taking cones several times. Let us define it more
precisely.

DEFINITION 18.1. We define a connected metrizable spaceX to be anMCS-spaceof
dimensionn inductively onn as follows.

(1) An MCS-space of dimension 2 is a 2-dimensional manifold with or without bound-
ary.

(2) X is an MCS-space of dimensionn if, for eachx ∈X, there exists a neighborhood
U of x and an MCS-spaceYx of dimensionn− 1, such that there exists a homeo-
morphismF from the cone ofYx toU such thatF sends the cone point tox.

The following is immediate from Theorem 18.1.

COROLLARY 18.3. Every Alexandrov space is an MCS-space.

The following is also an immediate corollary.

COROLLARY 18.4. For an Alexandrov spaceX, there existsXk with
⋃
Xk =X such that

Xk is a k-dimensional topological manifold and̄Xk =⋃i�k Xi .

COROLLARY 18.5. An Alexandrov spaceX is locally contractible. If it is compact then
π1(X) andHk(X) are finitely generated.

Hereafter we assume our Alexandrov spaceX has no boundary, for simplicity.28 An idea
used in [113] to prove these result is to generalize Morse theory of the distance function to
an Alexandrov space. Let us give the following definition. HereafterX is an Alexandrov
space withK �−1. Letp ∈X. We putdp(x)= d(x,p).

DEFINITION 18.2. x is said to be aregular pointof dp if there existsξ ∈Σx(X) such that
for each minimal geodesic� joining x to p we have� ξ�′ > π/2. Here�′ ∈Σx(X) is the
equivalence class of� in Σx(X).

Definition 18.2 is a generalization of Definition 14.1. We can generalize Proposition 14.2
also and we further generalize it to Theorem 18.7. For the proof of Theorem 18.1 we need
to use a bit more general function than the distance function and define the “regularity” of
a mapX→Rk for k > 1 also. To state this generalization we need some notations.

DEFINITION 18.3. LetU be an open subset ofX.
(1) An admissible functionf :U →R is a function of the form

f (x)=
m∑
i=1

aiφi
(
d(Ai, x)

)
, (18.1)

28The general case can be handled by taking a doubleX ∪∂X X which is an Alexandrov space by [124].
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whereAi is a compact subset ofX, φi are smooth functions with 0� φ′i � 1 and
ai � 0,

∑
ai � 1.

(2) An admissible mapF :U → Rk is a compositionF = G ◦ .f , whereG is a bi-
Lipschitz homeomorphism and.f = (f 1, . . . , f k) with admissible functionsfi .

Remark18.2. In [113] a more general function (map) is called an admissible function
(map). But only those in Definition 18.3 are used.

ForA⊂X andx ∈X we defineΣ0
x (xA)⊂Σx(X) by

Σ0
x (xA)=

({[�] | � is a minimal geodesic joiningx to a point ofA
})
.

LetΣx(xA)⊂Σx(X) be the closure ofΣ0
x (xA).

ForΛ1,Λ2 ⊂Σx(X) we put

� Λ1Λ2 = inf{� uv | u ∈Λ1, v ∈Λ2}.

For an admissible functionf as in (18.1) we can define its direction derivative
Dxf :Σx(X)→R by

(Dxf )(u)=
∑
i

aiφ
′(d(x,Ai))cos�

(
u,Σx(xAi)

)
.

In caseX is a manifoldDxf is the direction derivative in the usual sense.
If f (1), f (2) are admissible functions as in (18.1) we put〈

Dxf
(1),Dxf

(2)〉
=
∑
i,j

a
(1)
i a

(2)
j φ(1)

′(
d
(
x,A

(1)
i

))
φ(2)

′(
d
(
x,A

(2)
j

))
cos� A(1)i A

(2)
j .

This again coincides with the usual inner product between derivatives in case whenX is a
manifold andf (1), f (2) are differentiable.

DEFINITION 18.4. We sayF :U → Rk whereF = G ◦ .f is ε-regular at p ∈ U if the
following conditions hold. Let us put.f = (f 1, . . . , f k).

(1) For eachi �= j , we have〈Dpf i,Dpf j 〉<−ε.
(2) There existsξ ∈Σp(X) such that(Dpf i)(ξ) <−ε, for eachi.
We sayF is regular if it isε-regular for someε > 0. We sayF is ε-regular onU if it is

ε-regular at every point ofU .

EXAMPLE 18.1. (1) Iff :U →R is defined byf (x)= dp(x). It is an admissible function
and hence is an admissible map. It isε-regular atx for someε > 0 if and only if x is a
regular point off in the sense of Definition 18.2.
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Fig. 18.1.

(2) Let X be a two-dimensional Alexandrov space and(a1, b1), (a2, b2) be a (2, δ)-
strainer atx. Let us defineϕ :X→R2 by

ϕ(x)=−(d(x, a1), d(x, a2)
)+ (d(p,a1), (.p,a2)

)
,

as in the proof of Proposition 17.17. Thenϕ is a homeomorphism in a neighborhood ofx.
We put

p = ϕ−1(r,0), q = ϕ−1(−r/2, r√2/2), r = ϕ−1(−r/2,−r√2/2)

and defineF = .f = (dp, dq). We also setξ ∈Σx(xr). We can prove (1), (2) for sufficiently
smallε. We can generalize this construction to the case of higher dimension and prove that
if x is a(k, δ)-strained point, then there existsF :U →Rk from a neighborhood ofx which
is ε-regular atx. (See Figure 18.1.)

We can prove the following in a way similar to the proof of Proposition 17.17. (See [116,
Lemma 2.3 and the argument just after that].)

LEMMA 18.6. LetF :Bx(ρ,X)→Rn be an admissible map which isε-regular atx. Then
there exists a neighborhoodU ⊆ Bx(ρ,X) of x andδ > 0, with the following property. If
y ∈ U,X ∈ Rk with d(F (v),X) � δ, then there existsz ∈ Bx(ρ,X) such thatF(z) = X

andd(z, y) < Cd(F (v),X). HereC depends only onρ, δ, ε.

Lemma 18.6 implies thatF is an open mapping. In case dimX = k and if there exists
anε-regular map atx, then Lemma 18.6 shows that a neighborhood ofx is a manifold. In
the general case, we have to study the situation wherek < dimX. The following Proposi-
tion 18.7 is the main result in such a case. We need a definition.

DEFINITION 18.5. A mapF :X→ Y between topological spaces is called atopological
submersionatx ∈X if there exists a neighborhoodU of x, a neighborhoodV of F(x), and
a topological spaceW such that there exists a homeomorphismΦ :U ∼= V ×W satisfying
F = Pr1 ◦Φ onU .
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In caseX, Y are smooth manifolds andF is a smooth map,F is a topological submer-
sion if its derivative is of maximal rank.

PROPOSITION18.7 [113, Theorem 1.4].An admissible mapF :X→Rk is a topological
submersion at a regular point.

The following result is also used in the proof of Theorem 18.1.

THEOREM 18.8 (Siebenmann [142, Corollary 6.14]).Every proper topological submer-
sion between MCS-spaces is a locally trivial fiber bundle.

Remark18.3. (1) We remark that ifM,N are smooth manifolds (without boundary) and
if F :M→N is a propersmoothsubmersion thenF is a locally trivial fiber bundle. This
fact can be proved much more easily than Theorem 18.8.

(2) The proof of Theorem 18.8 is based on the isotopy extension theory. We remark that
isotopy extension theory for manifolds (see [48]) was used by Cheeger for the proof of his
finiteness theorem. (See Section 6.)

We next sketch the proof of Proposition 18.7. The difficult case is whenX is of dimen-
sion greater thank. We try to increasek as much as possible, we then arrive at the following
situation.

DEFINITION 18.6. LetF :U → Rk be a regular admissible map from an open setU of
an Alexandrov spaceX. We sayp ∈X is imcomplementableif there exists nog such that
(f 1, . . . , f k, g) is regular atp.

The casek = 0 is included. Namely in that casep ∈ X is imcomplementable if there
exists no admissible function such thatp is regular.

EXAMPLE 18.2. (1) Let us consider the domain{(r cosθ, r sinθ) | θ ∈ [−α,+α], r � 0}.
We glue(r cosα, r sinα) and(r cos−α, r sin−α) to obtain a spaceXα . We can show that
o= [0,0] is imcomplementable if and only ifα � π/2. Actually we putg = d[r,0]. Then
g is regular ifα > π/2. On the other hand, ifα � π/2 then the diameter ofΣoXα is not
greater thanπ/2. Hence it is easy to see that (2) in Definition 18.4 can never be satisfied.29

(See Figure 18.2.)

Fig. 18.2.

29It is easy to see from this argument that in casek = 0 the pointp ∈ X is imcomplementable if and only if
DiamΣp(X)� π/2.
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Fig. 18.3.

(2) Let us next takeX =Xα ×R, whereXα is as above. We definef :X→ R by f =
d(o,−1). It is easy to see that(o,0) is a regular point. Actually we may takeξ =D(o,0)d(o,1).
We can show thatf is imcomplementable at(o,0) if α � π/2. (See Figure 18.3.)

Now the main technical result in [113] is as follows.

LEMMA 18.9 [113, 1.3].If F :U → Rk is admissible and regular atp ∈ U , and if
p is imcomplementable, then there exists an admissible functiong :V → R defined on
an open neighborhoodV of p with the following properties. We write F = G ◦ .f ,
.f = (f 1, . . . , f k).

(1) g � 0 onV andg(p)= 0.
(2) F |g−1(0) :g

−1(0)→Rk defines a homeomorphism onto a neighborhood ofF(p).
(3) (F,g) :V →Rk+1 is regular onV \ g−1(0).
(4) There existsρ > 0 such that{x ∈ V | d(F (x),F (p))� ρ, g(x)�−ρ} is compact.

Let us show how to choose suchg in the case of Example 18.2(2). Namely we have
U =Xα ×R andF = f = d(o,−1). We write a point ofU as([r cosθ, r singθ ], t) and use
r, θ, t as a coordinate. (We taker � 0, θ ∈ [−α,α].) Thenf (r, θ, t)=√(t + 1)2 + r2. We
takeq = (δ,0, δ) and puth= dq . Thenh(r, θ, t)=√(t − δ)2 + r2 + δ2 − 2rδ cos|θ |. It is
easy to see that(f,h) :U →R2 is regular outside on(B(o,0)(ρ,U) \ {o})×R. (We remark
{o} ×R is the set of singular points.)

However if we putg = h then (1), (2) are not satisfied. So we compose it with a home-
omorphism ofR2 so that (1), (2) will be satisfied. (See Figure 18.4.)
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Fig. 18.4.

We consider the setK(v)= {x ∈ U | f (x)= v, r < ρ} where|ρ| and|v| is small. We
can easily check that

h(v,0,0)= sup
{
h(x) | x ∈K(v)}

if α � π/2.30 Namely
(∗) The restriction ofh toK(v) takes its maximum at a unique point.
We remark thatf (v,0,0)= 1+ v andh(v,0,0)=√(v − δ)2 + δ2. So if we put

g(r, v, θ)= h(r, v, θ)−
√(
f (r, v, θ)− 1− δ)2 + δ2,

then (1), (2) are satisfied. We defineG :B
(1,

√
2δ)(ρ,R

2)→R2 by

G(a,b)= (a, b−√(a − 1− δ)2 + δ2
)
,

whereρ- δ. Since(f, g)=G ◦ (f,h), it follows that(f, g) is admissible. It also satisfies
(3) since(f,h) satisfies (3). Thus we constructedg in the case of Example 18.2(2).

In the general case, we need to chooseh more carefully so that it is enough “concave”.
(Then (∗) holds.) The proof of Lemma 18.9 is in [113, Section 3]. �

We can use Lemma 18.9 to complete the proof of Proposition 18.7 as follows. We also
prove the following at the same time.

30This condition is equivalent to the condition that(o,0) is imcomplementable.
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PROPOSITION18.10. If F :X→Rk is an admissible map and ifp ∈X is a regular point,
thenF−1(F (p)) is an MCS-space nearp.

The proof is by downward induction onk. If k = dimX then both Theorem 18.7 and
Proposition 18.10 follow from Lemma 18.6. Let us assume that Theorem 18.7 and Propo-
sition 18.10 are true fork + 1 and prove the casek. We remark that both propositions
are local statements onp.31 In casep is not imcomplementable, then we can increase
k and use the induction hypothesis. So it suffices to consider the case thatp is imcom-
plementable. We apply Lemma 18.9 to getg. Then(F,g)|V \g−1(0) :V \ g−1(0)→ Rk+1

is regular. We can use the induction hypothesis to conclude that it is a topological sub-
mersion and the fibers are MCS-spaces. ThereforeV \ g−1(0) is an MCS-space. Let
(F,g)−1(B0(ρ,Rk)× (−ρ,0))=W . Since

F :W → B0(ρ,R
k)× (−ρ,0) (18.2)

is proper, Theorem 18.8 implies that (18.2) is a locally trivial fiber bundle. Since the base
space is trivial it follows that (18.2) is a trivial bundle. Hence using Lemma 18.9(2), we
can prove Propositions 18.7 and 18.10 forF :U →Rk . Thus the induction works.

We remark that Proposition 18.10 implies Theorem 18.1 by puttingk = 0.
We thus sketched the proof of Theorem 18.1. The proof of Theorem 18.2 uses a similar

argument but more involved. See [119].
Let us compare the results we reviewed in the last and this section so far to the one in

earlier sections, where we consider the case|KM | is bounded. In Section 11, we asked two
questions, Problem 11.1 for a sequenceMi converging toX. (1) was on the singularity of
X and (2) was on the relation between topologies ofMi andX.

In the case|KMi
| � 1, an answer to (1) was Theorem 11.4 and an answer to (2) was

Theorem 11.5 and 12.7.
In our more general case where we assumeKMi

� −1 only, Theorem 18.1 and Corol-
lary 18.3 give a satisfactory answer to (1).

However, results on (2) are not satisfactory. In caseX = limGH
i→∞Mi satisfies dimX =

dimMi , Theorem 18.2 is a satisfactory answer. This is the noncollapsing case. On the
other hand ifX is a smooth Riemannian manifold, Theorem 11.3 by Yamaguchi, gives a
nice answer. Namely there exists a fiber bundleMi →X for largei.32 However, the trick
(taking frame bundles) we explained in Section 11, does not work in our more general
situation to reduce the problem to the case whenX is a manifold. So the result is not yet
satisfactory. There are however several interesting approaches and partial results about the
problem (2) in the caseMi �−1, which we review very briefly here.

First, Theorem 11.3 is generalized to the case when the limitX has a rather mild sin-
gularity. There are two papers about it. In [154], Yamaguchi assumed that for eachx ∈X,
there exists a strainer(ai, bi), i = 1, . . . , n= dimX, with d(x, ai), d(x, bi) > µ> 0 where
µ is independent ofx. Then he concludes that there exists a locally trivial Lipschitz fiber
bundle structureMi →X.33

31So we prove them by induction without assuming completeness ofX.
32Theorem 11.3 does not say much about the fibers. But there are various results which shows that the fibers are

“of nonnegative curvature” in some sense.
33In the preprint version of [154] (which the author has), the locally triviality is not asserted. It is proved in [141].
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Perelman in [117] assumed thatX has no proper extremal set. Here

DEFINITION 18.7. F ⊂X is extremal if for eachp /∈ F , x ∈X, andu ∈Σx(X), we have
Dxdp(u)� 0.

For example,F = {x} consisting of one point is not extremal if and only if there exists an
admissible functionf which is regular atx.

Perelman’s theorem in [117] is that, if there is no extremal set, then there exists
fi :Mi → X such thatπk(Mi,f

−1
i (p)) ∼= πk(X) for eachp ∈ X. The plan proposed by

Perelman [116] then is to stratifyX using an extremal set and to construct a fiber bundle
structure stratawise. This plan is not yet completed.

Shioya–Yamaguchi [141] and Yamaguchi [155,156] studied the case when dimMi =
3,4 without extra assumption onX and gave a satisfactory description in that case. In
this article, we discuss the 3-dimensional case only. LetMi be 3-dimensional Riemannian
manifold withKMi

�−1, andX = limGH
i→∞Mi . We assume dimX � 2. ThenX is home-

omorphic to a manifold with or without boundary. We assume thatX is connected.

THEOREM 18.11 (Shioya–Yamaguchi [141]).We assumedimX = 2.
(1) If ∂X = ∅, then there exists a structure of Seifert fibered spaceMi →X for large i.
(2) If ∂X �= ∅, thenMi is homeomorphic toSeii (X) ∪ (∂X ×D2) whereSeii (X) is a

Seifert fibered space overIntX. We glue it with∂X×D2 where the fibers ofSeii (X)
over the boundary pointx are glued with{x} × ∂D2.

In case dimX = 1 there are two possibilities,X ∼= S1 or [0,1]. In the caseX = S1 there
exists a fiber bundleMi → S1 by Theorem 11.3.

THEOREM 18.12 (Shioya–Yamaguchi [141]).If X ∼= [0,1] thenMi is obtained by gluing
Bi andCi along their boundaries where each ofBi,Ci is homeomorphic to one of the
following 4-manifolds.

(1) D3,
(2) A nontrivial [0,1]-bundle overRP 2,
(3) S1 ×D2,
(4) A nontrivial [0,1]-bundle over the Klein bottle.

The rough idea of the proofs of Theorems 18.11, 18.12 are as follows. In either cases,
we can apply a generalization [154] of Theorem 11.3 except in finitely many points (plus
∂X in case (2) of Theorem 18.11). In the neighborhood of those points we scale the metric
to obtain a noncompact nonpositively curved Alexandrov space. Then applying the soul
theorem (the Alexandrov space analogue of Theorem 16.7). The soulS is an Alexandrov
space of dimension� 2, so it is a manifold with or without boundary. Actually Shioya–
Yamaguchi classified 3-dimensional noncompact complete Alexandrov spaces withK � 0.
In this way, we can classify neighborhoods⊂Mi of a singular point ofX locally. Then the
last step is to glue those local neighborhoods. �

In the case when dimX = 0, we can scale the metric ofMi and obtain a limit of nonzero
dimension. In this way [141] (improving [153,59]) proved the following
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THEOREM 18.13 (Shioya–Yamaguchi).There existsε such that ifM is a Riemannian
3-manifold withKM Diam(M)�−ε, then a finite cover ofM is homeomorphic toS1×S2,
T 3, a nilmanifold or a simply connected Alexandrov space withK � 0.

19. First Betti number and fundamental group

So far we discussed results about sectional curvature. In this section we discuss also Ricci
curvature. The recent progress mainly due to Cheeger–Colding will be discussed in later
sections. In this section, we mainly concern with older results. To study Ricci curvature we
need partial differential equations frequently. But we do not mention them so much.

We first review Theorem 2.3. The proof of Theorem 2.3 is based on the Bochner trick.
The most famous result in metric Riemannian geometry based on the Bochner trick is the
following

THEOREM 19.1 (Bochner [157]).If an n-dimensional compact Riemannian manifoldM
has nonnegative Ricci curvature, then the first Betti number ofM is not greater thann.

The proof of Theorem 19.1 due to Bochner is as follows. Letu be a one-form onM .
Then we have the following equality of Weitzenbeck type. (For proof see [157]. We remark
that we use the nonpositive Laplacian (16.2).)

〈−�u,u〉 = −1

2
�‖u‖2 + 〈∇u,∇u〉 +Ricci(u,u). (19.1)

Letu be a harmonic one-form. We integrate (19.1) overM . The left-hand side is zero (since
u is harmonic) and the integral of the first term in the right-hand side vanish. Therefore we
have ∫

M

〈∇u,∇u〉ΩM +
∫
M

Ricci(u,u)ΩM = 0. (19.2)

(HereΩM is the volume element.) The first term of (19.2) is nonnegative. If we assume
that the Ricci curvature is nonnegative, then the second term also is nonnegative. Therefore
the first and second term both are zero. Namely every harmonic one-form is parallel. Since
a parallel one-form is determined by its value at one point (here we are assuming thatM

is connected), it follows that the dimension of the space of harmonic one forms onM is at
mostn. Theorem 19.1 follows. �

When we try to apply a similar argument to the forms of higher degree and try to estimate
higher Betti numbers by Ricci curvature, we will meet a trouble. In formula (19.1), the third
term involves only Ricci curvature. This is true only for one-forms. A similar formula for
forms of higher degree is much more complicated. The assumption that we need to apply
a similar argument to forms of higher degree is exactly the assumption in Theorem 2.3,
which is much stronger than the one on Ricci curvature.34

34On the other hand, if we write a formula similar to (19.1) for the spinor and Dirac operator the second term
involves only scalar curvature. (See the text book of the Atiyah–Singer index theorem.) A theorem by Lichnerow-
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In Section 16, we discussed the splitting theorem of Riemannian manifolds of nonneg-
ative Ricci curvature (Theorem 16.4). We can prove Theorem 19.1 by using this theorem
also. Actually we have the following

THEOREM 19.2 (Cheeger–Gromoll).If M is a compact manifold with nonnegative Ricci
curvature, then there exists a finite cover̃M of M , such thatM̃ is isometric to the direct
productX× T k , whereX is simply connected andT k is a flat torus.

To prove Theorem 19.2, we consider the universal coveringM̂ . Since we may assume
that the fundamental group ofM is infinite (otherwise we may takeX = M̂), we can prove
that M̂ contains a line.35 Now by applying Theorem 16.4, we find̂M = R × Y . We may
split M̂ =Rk×Y ′ so thatY ′ has noR factor. IfY ′ is not compact, we can showY ′contains
a line by the same argument. Then, by Theorem 16.4,Y ′ has anR factor, a contradiction.
NamelyY ′ is compact. Theπ1M action preserves the splittinĝM =Rk×Y ′. Theorem 19.2
follows easily. �

In casek = n in Theorem 19.2, or in case when the first Betti number is equal to the
dimension in Theorem 19.1, we can show thatM is flat. (We can show this fact either
by Bochner’s proof using (19.1) or by Cheeger–Gromoll’s proof based on the splitting
theorem.)

Theorem 19.2 is generalized by Gromov as follows.

THEOREM 19.3 [69, p. 73].There exists a continuous functionb(n,ρ) of ρ ∈ R with
b(n,0)= n, such that the following holds. If M is ann-dimensional Riemannian manifold
with diameter1,Ricci curvature� ρ, Then its first Betti number is not greater thanb(n,ρ).

COROLLARY 19.4. If M is ann-dimensional Riemannian manifold with diameter1 and
Ricci>−εn, then its first Betti number is not greater thann. Hereεn is a positive number
depending only onn.

Gromov’s proof is based on the estimate of the growth function by using the Bishop–
Gromov inequality (Proposition 5.2) and is closer to the study of the fundamental group
we mention later in this section (Theorem 19.9, Theorem 19.10). The analytic proof, using
a similar idea to Bochner’s, is given by Gallot [61].

As we mentioned before, the idea of the proof of Theorem 19.1 cannot directly be ap-
plied to the study of the second or higher Betti number. In fact, a result similar to Theo-
rem 19.3 does not hold for higher Betti numbers. Namely the statement such as:

“If M is ann-dimensional compact Riemannian manifold with diameter 1, Ricci curva-
ture� ρ, then its Betti number is smaller than a number depending only onρ andn”, is

icz which asserts “ThêA genus of Riemannian manifold of positive scalar curvature is zero” is obtained from
this fact.
35Let pi, qi ∈M with d(pi , qi )→∞. Let xi be the midpoint of a minimal geodesic joiningpi andqi . Moving

them by an action ofπ1(M), we may assume that there existsR independent ofi such thatd(x, xi ) < R. Then a
subsequence of the sequence of geodesics joiningpi, xi , qi has a limit. This limit is a line.
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false. See [135,118] for counter examples. Note that if we replace Ricci� ρ by KM � ρ

in the statement in the parenthesis, then it is Theorem 14.6.
Let us consider the case when equality holds in Corollary 19.4, namely the case Ricci>

−εn and the first Betti number isn.

THEOREM 19.5 (Yamaguchi [153]).There exists a positive numberεn such that ifM is
an n-dimensional Riemannian manifold with diameterDiam(M)KM > −εn, and its first
Betti number isb, then there exists a finite cover̃M ofM and a fiber bundleM̃→ T b over
a b-dimensional torus.

Moreover, if b= dimM , thenM is diffeomorphic to the torus.

Remark19.1. (1) Yamaguchi proved the same conclusion for the fiber of Theorem 11.3.
(2) Yamaguchi [151] proved the same conclusion under a different hypothesisKM � 1,

Diam�D, RicciM �−ε(D,n).
To prove Theorem 19.5, Yamaguchi used Theorem 16.4 case (b). The second half of

Theorem 19.5 is generalized by Colding [46] and Cheeger–Colding [29] as follows.

THEOREM 19.6 [46,29]. If M is an n-dimensional Riemannian manifold with
Diam(M)RicciM > −εn, and its first Betti number isn, thenM is diffeomorphic to a
torus.

Remark19.2. The first half of the statement of Theorem 19.5 does not hold under the
milder assumption Diam(M)RicciM >−εn. Anderson [10] constructed an example ofM

with Diam(M)RicciM >−εn but that has no fibration overT b1(M).

We here explain some of the ideas used by Yamaguchi in [153] to show Theorem 19.5,
which is also used in [46]. (The additional ideas due to [46,29] will be explained in later
sections.)

For simplicity we consider the caseb= n= dimM only. The proof is by contradiction.
By scaling we may assume that there existsMi with Diam(Mi) = 1,KMi

� −εi butMi

is not diffeomorphic toT n. We consider the covering spacêMi →Mi whose covering
transformation group isΓi = Zb. We study the limit of the pair(M̂i,Γi). Here we define

DEFINITION 19.1 [52]. A sequence of pairs((Xi,pi),Γi) of pointed metric spaces
(Xi,pi) and groups of isometriesΓi is said to converge to((X,p),G) with respect
to the equivariant pointed Hausdorff convergenceif there existsϕi :Bpi (1/εi,Xi) →
Bp(1/εi,X), ϕ′i :Bp(1/εi,X)→ Bpi (1/εi,Xi), ψi :Γi → G, ψ ′

i :G→ Γi with εi → 0
such that

(1) ϕi,ϕ′i areεi -Hausdorff approximations and

d
(
x,ϕi

(
ϕ′i (x)

))
< εi, d

(
x,ϕ′i

(
ϕi(x)

))
< εi.

(2) If x, γ (x) ∈ Bpi (1/εi,Xi), γ ∈ Γi , then

d
(
ϕi
(
γ (x)

)
,ψi(γ )

(
ϕi(x)

))
< εi.
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(3) If x, γ (x) ∈ Bpi (1/εi,X), γ ∈ Γi , then

d
(
ϕ′i
(
γ (x)

)
,ψ ′

i (γ )
(
ϕ′i (x)

))
< εi.

We remark that we do not assume thatψi,ψ
′
i are homomorphisms.

We can prove a similar compactness result as Theorem 16.1. Now let us go back to
the proof of Theorem 19.5. Fixpi ∈ M̂i . We may consider the limit((M̂i,Γi),pi) with
respect to the equivariant pointed Hausdorff convergence. However, then the limit may be
a continuous group and is a bit hard to handle. So we use the following lemma.

LEMMA 19.7 [153]. There exist subgroupsΓ ′
i ⊂ Γi of finite index andη,η′ (independent

of i) such that
(1) For eachγ ∈ Γ ′

i with γ �= 1 we haved(pi, γ (pi))� η.
(2) Γ ′

i is generated by elementsγ1, . . . , γn such thatd(pi, γk(pi)) � η′. (Here n =
dimM .)

Lemma 19.7 appeared in the proof by Gromov of Theorem 19.3. The fact thatΓi is
Abelian plays an important role in the proof. We omit the proof of Lemma 19.7.

Now we can consider the limit of the sequence((M̂i,Γ
′
i ),pi). We denote it by

((X,G),p). Using Lemma 19.7 we can easily show thatG∼= Zn and its action is properly
discontinuous. Now we apply the splitting theorem toX and obtainX = Rk × Y where
Y is compact.36 SinceZn acts on it properly discontinuously, it follows thatk = n. Since
dimX � dimM̂i = n, it follows thatX = Rn. We can also prove that̂Mi/Γ

′
i converges

to X/G ∼= T n. We putM̃i = M̂i/Γ
′
i . SinceM̃i is n-dimensional and converges toT n, it

follows from Theorem 11.3 that̃Mi is diffeomorphic toT n. UsingHn(Mi,Q)= n again,
we can show thatMi is homeomorphic toT n. Furthermore we can arrange the covering in-
dexM̃i →Mi so that “Mi is homeomorphic toT N andM ′

i is diffeomorphic toT n” imply
thatMi is diffeomorphic toT n, if � 5. (This point is a standard application of nonsimply
connected surgery.) The last step in the low-dimensional case is a bit complicated and is
omitted. �

Remark19.3. The above argument can be applied to the situation of Theorem 19.6. We
only need to replace the splitting theorem to the one by Cheeger–Colding and Theo-
rem 11.3 by Theorem 22.3. Colding’s argument in [46] (though using Lemma 19.7) is
slightly different. This is probably because the splitting theorem we need for this purpose
was not yet proved at that time.

We next remark the following corollary of Theorem 19.2.

COROLLARY 19.8. If a compact Riemannian manifoldM has nonnegative Ricci curva-
ture, then its fundamental groupπ1(M) contains an Abelian subgroup of finite index.

It seems that series of results related to Corollary 19.8 began with the following theorem.

36I think this was the first place where splitting theorem of the limit (singular) space was applied to study
Riemannian manifold.
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THEOREM 19.9 (Milnor [104]). If a complete manifoldM has nonnegative Ricci cur-
vature and ifG is a finitely generated subgroup ofπ1(M), then G has polynomial
growth.

The definition of a group having polynomial growth is as follows. LetG be a finitely
generated group andg1, . . . , gk generateG. Let fG(N) be the number of elements ofG
which can be written by a product of at mostN of gi or g−1

i .

DEFINITION 19.2. We say thatG haspolynomial growth, if there existsC,K such that
fG(N) < C(N

K + 1).

It is easy to see that this definition is independent of the choice of generator ofG.
The proof of Theorem 19.9 is based on Proposition 5.2 and proceeds as follows. Let

us assumeM is compact for simplicity. LetM̃ be the covering space ofM corresponding
toG. Letp ∈ M̃ . By Proposition 5.2 we have

Vol
(
Bp(R, M̃)

)
� CRn.

By an elementary argument using fundamental domain, we can show the existence ofC

with

C−1<
Vol(Bp(R, M̃))

fπ1(M)(R)
< C.

Theorem 19.9 follows. �

Roughly speaking the growth functionfG evaluates how farG is from being commuta-
tive. In fact, ifG is free and non-Abelian, then there existc,C such that

fG(R) > ce
R/C.

(We say thatG has exponential growth in this case.) On the other hand,G= Zk has poly-
nomial growth.

Gromov [71] proved the following

THEOREM 19.10 (Gromov).A finitely generated groupG has polynomial growth if and
only ifG has a nilpotent subgroup of finite index.

Let us very briefly sketch its proof here. First we recall the following

THEOREM 19.11 (Tits [147]).LetG be a finitely generated subgroup ofGL(n,R). Then
eitherG contains a solvable subgroup of finite index orG contains a noncommutative free
group.
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If G contains a noncommutative free group, we can show thatG is not of polynomial
growth. On the other hand, Milnor proved that a solvable group is of polynomial growth if
and only if it contains a nilpotent group of finite index. Hence to prove Theorem 19.10 it
suffices to embedG to some Lie group. Gromov’s idea is to do so by using Hilbert’s 5th
problem. LetG a group of as in Theorem 19.10. We define a metric (the word metric) on
G as follows. Letγ1, . . . , γn be generators. Letµ1,µ2 ∈G. We defined(µ1,µ2) to be the
smallest numberk such thatµ2 = γ ε1i1 . . . γ

εk
ik
µ1. Hereij ∈ {1, . . . , n}, εj =±1.

Now we consider the limit limGH
N→∞(G,

1
N
d) asN →∞. The assumption thatG is of

polynomial growth is used to show that the limit exists. It is easy to see that the limitG′
has the structure of a group.

We then can use the fact thatG′ acts as isometry on itself preserving the metric and a
solution of Hilbert’s 5th problem, to show thatG′ is a Lie group. So if we can embedG
toG′, we are done. But it is not so easy to embedG toG′. (Actually in caseG is a discrete
subgroup of a nilpotent Lie groupN , the limit isN but has a strange metric called the
Carnot–Carathéodory metric (see [74]).) Therefore we need to discuss it more carefully
and some more technical argument is required. We omit it. �

Theorems 19.9 and 19.10 imply that the finitely generated subgroup of the fundamental
group of a complete manifold of nonnegative Ricci curvature has nilpotent subgroup of
finite index. This fact is generalized by Fukaya–Yamaguchi [59]37 and further by Cheeger–
Colding [46] as follows.

THEOREM 19.12 (Cheeger–Colding).There exists a positive numberεn such that if an
n-dimensional Riemannian manifold satisfiesDiam(M)2 RicciM �−εn, thenπ1(M) con-
tains a nilpotent subgroup of finite index.

We remark that Theorem 19.12 follows Theorem 10.5. We also remark that Theo-
rem 10.5 implies Theorem 19.9. In Theorem 19.12 we cannot replace the conclusion
“nilpotent” by “Abelian”. Namely we cannot replace the assumption Ricci� 0 of Corol-
lary 19.8 by�−εn. The counter example is an almost flat manifold (Example 10.1).

Some more results on the fundamental group is proved in [59] and [60] which we review
here.

A groupΓ is said to be polycyclic if there exists

1= Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γk = Γk, (19.3)

such thatΓi is a normal subgroup ofΓi+1 andΓi+1/Γi is cyclic. The smallest such number
k is called thedegree of polycyclicityof Γ .

THEOREM 19.13 ([59, Theorem 0.6, Corollary 7.20] plus [46]).There existsεn andwn
such that if ann-dimensional Riemannian manifoldM satisfiesRicciM Diam(M) � −εn
thenπ1 contains a normal subgroupΓ such that

37The result of [59] is the same conclusion as Theorem 19.12, but the assumption is on sectional curvature
instead of Ricci curvature.
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(1) [π1(M) : Γ ]�wn.
(2) Γ is polycyclic and its degree of polycyclicity is not greatern.

THEOREM 19.14 (Fukaya–Yamaguchi [60]).For eachD,n there exists a finite set of
groupsG with the following properties. LetM be a manifold withKM � −1, Diam(M)
� D. Then there existsG ∈ G and a surjective homomorphismπ1M → G such that the
kernelΓ satisfies(1), (2) of Theorem19.13.

Theorem 19.14 implies the following. For a groupG let us put

D(G,n)= inf
{
Diam(M) |KM �−1, dimM = n, π1M ⊇G}.

Then, for any sequence of noncommutative simple groupsGi with Gi �=Gj for i �= j , we
have limi→∞D(Gi,n)=∞.

Remark19.4. Theorem 17.23 plays a key role in the proof of Theorem 19.14. So far
the author does not know the proof of the conclusion of Theorem 19.14 under the milder
assumption RicciM � −(n− 1). The trouble is a generalization of Theorem 17.23 to the
limit X of the manifoldsMi with RicciMi

� −δi , whereδi → 0. (Namely the problem
whether the isometry group of suchX is a Lie group or not.) Cheeger–Colding [30] proved
that the group of isometries ofX is a Lie group under the additional assumption Vol(Mi)�
v > 0. Under this additional assumption there is the following result (Anderson [9]): The
number of isomorphism classes ofπ1M of n-dimensional Riemannian manifoldsM with
RicciM �−(n− 1), Vol(Mi)� v > 0, Diam(M)�D, is finite.

We here sketch a part of the proof of Theorem 19.12 given in [59]. Namely we assume
the splitting theorem and explain how to deduce Theorem 19.12 from it. Here we consider
the case Diam(M)KM �−εn38 to simplify the argument.

We first need a lemma on the convergence of groups. IfΓ acts on a metric spaceX by
isometries andp is a base point ofXwe write

Γ (D)= 〈{γ | d(γ (p),p)�D
}〉
.

Here〈A〉 is the subgroup generated byA.

LEMMA 19.15 [59, Theorem 3.10].Let (Xi,Γi,pi) converge to(X,G,q) in the pointed
equivariant Hausdorff distance. We assume that the connected componentG0 ofG is a Lie
group andG/G0 is discrete and finitely presented. We also assume thatX/G is compact.
Moreover we assume thatXi is simply connected andΓi is properly discontinuous and
free.

38If we use Cheeger–Colding’s splitting theorem, a similar argument works. However we need several modifica-
tions on the technical points of the arguments of [59] or given below. Unfortunately the technical details of such
arguments is not written in the literature. The author and T. Yamaguchi are planning to write it and make it public
in the near future. But maybe it is too technical to be included in this article.
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Then there exists a sequence of normal subgroupsΓi,0 converging toG0 such that
Γi/Γi,0 ∼=G/G0 for large i.39

We omit the proof. Now we prove the following

PROPOSITION19.16. Let (Mi,pi) converge to(Rk,0) with respect to the pointed Haus-
dorff distance. AssumeRicciMi

�−(n− 1). Then there existsε > 0 such that the image of
π1(Bpi (ε,Mi)) in π1(Bpi (1,Mi)) has a solvable subgroup of finite index for largei.

The solvability in Theorem 19.12 is the casek = 0 of Proposition 19.16. (The proof of
a more precise statement as in Theorem 19.13 and nilpotency is omitted.)

The proof of Proposition 19.16 is by downward induction onk. The casek = dimMi

follows from Theorem 11.3. We assume Proposition 19.16 is correct fork + m (m > 0)
and show it fork by contradiction.

Let (Mi,pi) as in Proposition 19.16. We use Theorem 11.3 to findVi ⊆ Mi and a
fiber bundlefi :Vi → B0(Ci,Rn) with Ci → ∞. HereVi ⊇ Bpi (Ci/2,Mi). Let δi =
Diam(f−1

i (0)). We take the metricgi,1 = gi/
√
δi . The limit of (Vi, gi,1) with respect to

the pointed Hausdorff distance isRk×Z whereZ is an Alexandrov space withK � 0. Let
Γi = π1(Fi)= π1(Vi). We take((Ṽi , g̃i,1),Γi, p̃i) where(Ṽi , g̃i,1) is the covering space of
Vi equipped with metric induced fromgi,1. Let us take a subsequence and let(V∞,G,q)
be the limit. We apply the splitting Theorem 16.4 toV∞ and findV∞ = R� × Y whereY
is compact. Since(R� × Y)/G∼= Rk ×Z we find thatV∞ = Rk ×R�−k × Y such thatG
acts only onR�−k × Y and(R�−k × Y)/G= Z.

SinceG is a Lie group by Theorem 17.23, it follows that we can take its connected
componentG0. SinceG/G0 is discrete and(R�−k × Y)/G is compact we can prove that
G/G0 has Abelian subgroup of finite index. (This is easy to see ifG acts effectively on
R�−k . The compact factorY only contributes a finite group.) To apply Lemma 19.15 we
replaceV∞ =Rk×R�−k×Y byX = B0(D,Rk)×R�−k×Y for large but fixedD and find
a sequence((Xi, dXi ),Γi,pi) converging to((X,dX),G,q). (We can find suchXi ⊂ Vi
easily by using the fiber bundlefi .)

We now apply Lemma 19.15 to obtainΓi,0.
Since(X,dX) is an Alexandrov space, it follows from Theorem 17.2 that we can find

q ′ nearq andri →∞ such that((X, ridX), q ′) converges to(Rk+m,0) with m> 0. (Note
that since Diam(Z)= 1, it follows thatR�−k × Y is not a point.)

We may replace((Xi, dXi ),Γi,pi) by a subsequence which converges to((Xi, dXi ),
Γi,pi) very quickly compared to 1/ri . Then we findqi such that((Xi, ridXi ),Γi, qi) con-
verges to(Rk+m,G′,0) for someG′. Since we can use the fact thatΓi,0 converges toG0,
the connected Lie group and the convergence is quick compared tori to show thatΓi,0 is
generated byΓi,0(δi)= {γ ∈ Γi,0 | d(γ (qi), qi) < δi} whereδi → 0. Now we apply induc-
tion hypothesis. Then ifε > δi (whereε is as in Proposition 19.16), we find thatΓi,0(δi)
has a solvable subgroup with finite index. This is a contradiction sinceΓi/Γi,0 ∼= G/G0
has an Abelian subgroup with finite index. �
39This lemma is actually weaker than [59, Theorem 3.10]. But it is enough for the present purpose, since we

now have Theorem 17.23.
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20. Hausdorff convergence of Einstein manifolds

In the last four sections, we discuss Gromov–Hausdorff convergence under the assumption
Ricci�−(n− 1).

We first remark that, when we work under the assumption Ricci�−(n− 1), the topol-
ogy can change when we go to the limit, even in the noncollapsing situation, namely in
the situation where we assume Vol� v > 0. Such a phenomenon was first observed in the
study of 4-dimensional Einstein (or complex 2-dimensional Kähler–Einstein) manifold (at
least around 20 years ago as far as I know).

Let us start by a review of the case of Einstein manifolds. LetΓ ⊂ SU(2) be a finite
subgroup. We consider the quotientC2/Γ . It is a Kähler orbifold with isolated singular-
ity at the origin. (This singularity is called the Kleinian singularity.) There is a resolution

called minimal resolution of the Kleinian singularity which we denote bỹC2/Γ →C2/Γ .

Eguchi–Hanson [49] and others constructed a Ricci flat Kähler metricg
C̃2/Γ

on C̃2/Γ

which is asymptotically locally Euclidean (in the sense we define later in Definition 20.1).
(Such a metric is called a gravitational instanton.) Asymptotically locally Euclidean met-

rics onC̃2/Γ are classified by Kronheimer [98].
Suppose(X,gX) is a 4-dimensional Riemannian orbifold locally of Kleinian type.

(NamelyX is locally a quotient ofC2 by a finite groupΓ ⊂ SU(2). We assume also that
the metric onX is a quotient metric with respect to a certainΓ -invariant metric locally.)
We assume thatX is Ricci flat and Kähler. (Namely its Ricci curvature at regular points is
0 and the metric is Kähler at regular point.) We can locally glue the metricgX onX and the
Ricci flat Kähler metricεg

C̃2/Γ
onX to obtain a metricg′ε on the resolutionX̃ of X. g′ε is

almost Ricci flat. We can use the technique of Yau’s proof of the Calabi conjecture [158] to
show that there exists a Ricci flat Kähler metric onX̃ neargε . (See [96,13].) We remark that
(X̃, g′ε) and(X̃, gε) converges to(X,g) with respect to the Gromov–Hausdorff distance.
A typical example is a Kummer surface where we takeX = T 4/Z2 (andΓ = Z2).

Thus, we have

OBSERVATION 20.1. There exists a family of Riemannian manifolds(X,gε), such that
Riccigε ≡ 0, Vol(X,gε)� v > 0 and the limit of(X,gε) asε→ 0 converges to a compact
metric spaceX which is not a manifold.

The construction here is an analogue of Taubes’ construction [145] of anti-self dual
connections on 4 manifolds.

Later Joyce (see [89]) generalized this construction and used it to construct (higher-
dimensional) Riemannian manifolds with exceptional holonomy. (They are in particular
Ricci flat.) Namely Joyce started, for example, with a 7-dimensional flat orbifoldX =
T 7/Γ , which is obtained byT 7, divided by a finite group of isometriesΓ . In his example,
the singular locus ofX is a codimension 4 totally geodesic smooth submanifold (actually

it is a disjoint union ofT 3). Then Joyce gluedT 3 × C̃2/Z2 (equipped with direct product
metric) along a singularity to obtain a Riemannian manifold and used the implicit function
theorem to obtain a manifold with exceptional holonomy. In his construction, we also have
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a family of metricsgε which is of exceptional holonomy (and in particular is Ricci flat)
and which converges toX.

A converse to Observation 20.1 is proved by Nakajima and others as follows.

THEOREM 20.2 (Nakajima [106]).Let gi be a sequence of Einstein metrics withRicci=
±1 or 0, on a4 manifoldsM , such thatVol(M,gi)� v > 0. (Herev is independent ofi.)
Let X = limGH

i→∞(M,gi). Then there exists a finite subsetS ⊂ X such thatX \ S is an
Einstein4-manifold.

Moreover, for everyδ > 0 there exists a diffeomorphismΦi :X \ NδS →M such that
the pullback Riemannian metricΦ∗

i gi converges to the Riemannian metric onX in C∞-
topology.

Remark20.1. In case of 4-dimensional Einstein manifolds, theL2-norm of the curvature∫
Mi

|RMi
|n/2ΩMi

=
∫
M

|RM |2ΩM (20.1)

is a topological invariant and is estimated by the Euler number. This fact is essential in the
proof of Theorem 20.2.40

In case dimMi > 4, the same conclusion as Theorem 20.2 holds under the additional
hypothesis∫

Mi

|RMi
|n/2ΩMi

� C. (20.2)

(In case we assume (20.2) we do not need to fix a topological type ofM .) Namely un-
der assumption (20.2) and Vol(Mi) � v > 0, the limit spaceX of a sequence of Einstein
manifoldsMi has only finitely many singular points.

We remark however the assumption (20.2) is too restrictive to handle the limit of Ein-
stein manifolds. In the example of Joyce mentioned above the limit of a sequence of
7-dimensional Einstein manifolds isT 7/Z2 whose singularity is 3-dimensional. In this
example, theL2-norm of the Ricci curvature is bounded but theL3.5 norm is not bounded.

To study the structure ofMi orX near a singular point∈ S, we use the scaling argument
as follows. For completeness we include the case when dimM is general. Namely we
assume we have a sequence of Einstein manifoldsMi converging toX. We assume (20.2)
and Vol(Mi)� v > 0. (Then the singular point setS of X is of finite order.) Letpi ∈Mi

which converges top∞ ∈ S. We scale the metricgMi
to RigMi

so that|KRigMi | becomes
1 atpi . We then consider the limit((Mi,RigMi

),pi) with respect to the pointed Gromov–
Hausdorff distance. Theorem 16.1 implies that it has a limit, which we denote by(X,gX).

40 (20.1) is scale invariant if and only if dimM = 4. (We do not need the Einstein condition for this.) In this
sense also the situation is very much similar to the study of the Yang–Mills equation in dimension 4. (Compare
also the footnote 15 at the beginning of Section 7.)
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Using the injectivity radius bound we can show that(X,gX) is a Ricci flat Riemannian
manifold. (It is noncompact but complete.) It also satisfies the following condition:{∫

X
|RX|n/2ΩX � C1,

Vol(Bp(R,X))�C2R
n.

(20.3)

(See [14].) We then can apply the following Theorem 20.3. We define

DEFINITION 20.1. A complete pointed Riemannian manifold((X,g),p) is said to be
locally almost Euclidean(abbreviated by ALE hereafter) of orderτ > 0, if there exists a
finite groupΓ ⊂ O(n) and a diffeomorphismΦ :X \ Bp(R,X)→ (Rn \ B0(R,Rn))/Γ
such that∣∣(Φ−1)∗gX − gcan)(x)

∣∣�C|x|−τ , (20.4a)

|(∇kΦ−1)∗gX(x)− (∇kΦ−1)∗gX(y)|
|x − y|α � Cmin

(|x|, |y|)−1−τ−α
, (20.4b)

holds for someα andR. Heregcan is the metric onBp(R,X) � C2R
n induced by the

Euclidean metric onRn.

THEOREM 20.3 (Bando–Kasue–Nakajima [14]).If (X,gX) is ann-dimensional Einstein
manifold satisfying(20.3) then it is ALE of ordern− 1. If (X,gX) is Einstein–Kähler and
n= 4 then it is ALE of ordern.

Combining them we have

THEOREM 20.4 ([14], Anderson [11]).The limit spaceX in Theorem20.2 is an Einstein
orbifold.41

In higher dimensions Theorems 23.16, 23.17 give a natural generalization of the results
we explained here. If we remove the assumption Vol(Mi)� v > 0 (namely if we study the
collapsing situation), then even in the case of Einstein manifold, not so many things are
known. This problem is related to mirror symmetry in string theory and is calling attention
of several differential geometers working on it. There is a result by Gross–Wilson [76]
which discusses the case of K3-surfaces in the collapsing situation and obtains a singular
torus fibration.

We now consider more general Riemannian manifolds under the condition of Ricci cur-
vature below. To obtain a result similar to Theorem 3.4 we need to avoid the phenomenon
we described in Observation 20.1. There are several results assuming a lower bound of
injectivity radius, for this purpose. We denote bySn(D, i > ρ) the set of all isometry
classes ofn-dimensional compact Riemannian manifolds (without boundary) such that
RicciM �−(n− 1), Diam(M)�D andiM � ρ everywhere. Letα ∈ (0,1).
41A similar result holds under an additional assumption (20.2).
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THEOREM 20.5 (Anderson–Cheeger [12]).LetMi ∈Sn(D, i > ρ) andX = limGH
i→∞Mi .

ThenX is a Riemannian manifold ofCα-class and there exist diffeomorphismsϕi :Mi →
X such that(ϕ−1

i )∗gMi
converges togX with respect to theCα-norm.

Remark20.2. Under the stronger assumption|RicciM | � (n − 1), Diam(M) � D and
iM � ρ, Anderson [7] proved a stronger result. Namely the limit spaceX is a C1,α-
Riemannian manifold and(ϕ−1

i )∗gMi
converges togX with respect toC1,α-norm. It was

applied (in [7]) to prove a sphere theorem and a pinching theorem for an almost Einstein
metric.

COROLLARY 20.6. The number of diffeomorphism classes represented by elements of
Sn(D, i > ρ) is finite.

The proof of Theorem 20.5 is quite similar to the arguments in Sections 6–8. Namely
we construct harmonic coordinate and obtain an appropriate estimate. Then the proof is
completed by using the diffeotopy extension theorem (or the center of mass technique
which we can apply to a smooth metric near the limitCα metric). So the new result in [12]
is the following

THEOREM 20.7 [12, Theorem 0.1].There existsC(n,ρ), ε(n,ρ) > 0 with the following
property. LetM ∈ Sn(D, i > ρ). We can then coverM by harmonic coordinatesUi such
that theC1,α-norm of the coordinate transformation is smaller thanC(n,ρ) and theCα-
norm of the metric tensor written in this coordinate is smaller thanC(n,ρ). Moreover for
anyp ∈M , the metric ballBp(ε(n,ρ),M) is contained in someUi .

21. Sphere theorem andL2 comparison theorem

In the last three sections, we concern with the class of Riemannian manifolds with Ricci
curvature bounded from below. Especially we discuss results obtained by Colding and
Cheeger–Colding recently. The surveys [45,47,62] and the book [26] are recommended for
their results. The basic tool to study such Riemannian manifolds is Theorem 5.2. So we
first draw some of its consequences. We put

Ap(a, b;M)=
{
x ∈M | a � d(p,x)� b

}
,

Sp(a;M)=
{
x ∈M | d(p,x)= a}. (21.1)

LEMMA 21.1. If RicciM � κ , a < b < c, then

Vol(Ap(a, b;M))
Vol(Ap0(a, b;Sn(κ)))

� Vol(Ap(b, c;M))
Vol(Ap0(b, c;Sn(κ)))

(21.2)

and

Vol(Sp(a;M))
Vol(Sp0(a;Sn(κ)))

� Vol(Ap(a, b;M))
Vol(Ap0(a, b;Sn(κ)))

� Vol(Sp(b;M))
Vol(Sp0(b;Sn(κ)))

. (21.3)
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(21.2) follows from

Vol(Ap(0, a;M))+Vol(Ap(a, b;M))
Vol(Ap0(0, a;Sn(κ)))+Vol(Ap0(a, b;Sn(κ)))

� Vol(Ap(0, a;M))+Vol(Ap(a, b;M))+Vol(Ap(b, c;M))
Vol(Ap0(0, a;Sn(κ)))+Vol(Ap0(a, b;Sn(κ)))+Vol(Ap0(b, c;Sn(κ)))

.

By taking the limitb→ a andb→ c in (21.2) we obtain (21.3). �

LEMMA 21.2. If RicciM � (n− 1)= dimM − 1 and if p,q ∈M with d(p,q) > π − ε,
then for eachx ∈M we have

d(p,x)+ d(q, x)− d(p,q)� τ(ε|n).

To show the lemma, letδ = d(p,x) + d(q, x) − d(p,q), r = d(p,x) − δ/2, s =
d(p,q) − r = d(q, x) − δ/2. Then (Bp(r,M) ∪ Bq(s,M)) ∩ Bx(δ/2,M) = ∅ and
Bp(r,M)∩Bq(s,M)= ∅. Therefore, by Theorem 5.2, we have

Vol(Bp(r,M)∪Bq(s,M))
Vol(M)

� 1− τ(ε|n), Bx(δ/2,M)

Vol(M)
� Cδn.

Henceδ < τ(ε|n) as required. �

COROLLARY 21.3. If RicciM � (n − 1) = dimM − 1 and if p,q ∈M with d(p,q) >
π − ε, then

Diam
(
M \Bp(π − ε,M))< τ(ε|n).

Corollary 21.3 is an immediate consequence of Lemma 21.2 and Myers’ Theorem 5.4.
We remark that Corollary 21.3 is a version of Proposition 4.4. Namely the conclusion of
Corollary 21.3 is weaker than that of Proposition 4.4, but it holds under milder assumption.

LEMMA 21.4. If RicciM � (n− 1)= dimM − 1 and if p,q ∈M with d(p,q) > π − ε,
then

Vol(Sp(δ;M))
Vol(Sp0(δ;Sn(1)))

� Vol(Sp(π − δ;M))
Vol(Sp0(π − δ;Sn(1))) + τ(ε|δ,n). (21.4)

We remark

Vol(Sp(δ;M))
Vol(Sp0(δ;Sn(1)))

� Vol(Sp(π − δ;M))
Vol(Sp0(π − δ;Sn(1)))

is a consequence of (21.1). Hence (21.4) implies that the ratio of volume Vol(Sp(t;M))/
Vol(Sp0(t;Sn(1))) is almost constant fort ∈ [δ,π − δ].
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Let us prove Lemma 21.4. Letε- ρ- δ. By Corollary 21.3, we have

Aq(δ − 2ρ, δ − ρ;M)
⊆Ap

(
π − δ+ ρ − τ(ε|n),π − δ + 2ρ + τ(ε|n);M). (21.5)

We may assumeρ − τ(ε|n)� 0. We remark

Vol
(
Ap0

(
δ− 2ρ, δ− ρ;Sn(1)))= Vol

(
Ap0

(
π − δ + ρ,π − δ + 2ρ;Sn(1))).

Therefore (21.5) (together with Lemma 21.1) implies the first inequality of

Vol(Aq(δ − 2ρ, δ− ρ;M))
Vol(Ap0(δ − 2ρ, δ− ρ;Sn(1)))

� Vol(Ap(π − δ,π − δ + ρ;M))
Vol(Ap0(π − δ,π − δ + ρ;Sn(1))) + τ(ε|δ,ρ,n)

� Vol(Ap(δ − 2ρ, δ − ρ;M))
Vol(Ap0(δ − 2ρ, δ − ρ;Sn(1))) + τ(ε|δ,ρ,n). (21.6)

Here the second inequality is a consequence of Lemma 21.1. Changing the role ofp andq
we have

Vol(Ap(δ − ρ, δ;M))
Vol(Ap0(δ − ρ, δ;Sn(1)))

� Vol(Aq(δ − ρ, δ;M))
Vol(Ap0(δ − ρ, δ;Sn(1)))

+ τ(ε|δ,ρ,n). (21.7)

Therefore by (21.6), (21.7) and Lemma 21.1 we have

Vol(Sp(π − δ;M))
Vol(Sp0(π − δ;Sn(1))) + τ(ε|δ,ρ,n)�

Vol(Sp(δ;M))
Vol(Sp0(δ;Sn(1)))

as required. �

LEMMA 21.5. If RicciM � κ andp ∈M then

Vol
(
Bp(R,M)

)
� Vol

(
Bp0

(
R,Sn(κ)

))
.

This is an immediate consequence of Theorem 5.2. �

We next discuss sphere theorems. The sphere theorem appearing here can be regarded
as a generalization of Theorem 17.20. So we first sketch its proof. We first remark:

LEMMA 21.6 [79,111].If KM � 1, Vol(M) > Vol(Sn)− ε, then the Gromov–Hausdorff
distance betweenM andSn is smaller thanτ(ε|n).
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Let p ∈ M . We identify TpM with Tp∗S
n for a point p∗ ∈ Sn. We then define

Φ :M→ Sn by Φ = Expp∗ ◦Exp−1
p . Note Exp−1

p is discontinuous. Using Corollary 21.3,
Lemma 21.5 and the Toponogov comparison Theorem 4.7, we can show thatΦ is aτ(ε|n)-
Hausdorff approximation. We omit the details since we discuss a sharper result (Theo-
rem 21.8) later. �

Now under the assumption of Lemma 21.6 we can find pointsp0, . . . , pn, q0, . . . , qn ∈
M such that∣∣d(pi,pj )− π/2∣∣< τ(ε|n), ∣∣d(pi, qj )− π/2∣∣< τ(ε|n),∣∣d(pi, qi)− π ∣∣< τ(ε|n). (21.8)

In fact, if Sn ⊆ Rn+1, the pointsp′i = (0, . . . ,0,
i

1,0, . . . ,0), q ′i = −p′i , satisfy (21.8).
Hence we can choosepi =Φ(p′i ) whereΦ :Sn→M is anε-Hausdorff approximation.

Moreover, in case ofSn, the canonical embeddingISn :Sn→Rn+1 is obtained by

ISn(x)=
(
cosd(p0, x), . . . ,cosd(pn, x)

)
. (21.9)

Now the idea is to embedM in a neighborhood ofSn by using a formula similar to (21.9).
Namely we first take a smooth functionϕi which is close tod(x,pi) up to the first deriva-
tive, if x /∈ Bpi (o(ε),M)∪Bqi (o(ε),M). We then defineIM :M→Rn+1 by

IM(x)=
(
ϕ0(x), . . . , ϕn(x)

)
. (21.10)

We can then prove thatd(IMΦ(x), I (x)) < o(ε) and

dist
(
TI (x)S

n, TIMΦ(x)
(
IM(M)

))
< τ(ε|n).

Here dist in the above formula is a distance as a codimension one linear subspace inRn+1.
We can use these two formulas to prove thatM is diffeomorphic toSn (in a similar way to
Section 9). �

Theorem 17.20 is generalized by Perelman as follows.

THEOREM 21.7 [114]. There existsεn > 0 such that ifM satisfiesRicciM � (n − 1),
Vol(M)� Vol(Sn)− εn, thenM is homeomorphic to a sphere.

Actually Perelman proved thatπk(M) = 1 for k < n under the assumption of Theo-
rem 21.7 and applied the generalized Poincaré conjecture. The idea of the proof is hard to
explain for the author in this kind of article. So we refer [114] or [159]. We will discuss
the proof of a sharper version, Corollary 22.4, in Section 22.

Remark21.1. We remark that a similar sphere theorem replacing volume by diameter does
not holds. Actually Anderson [8] and Otsu [110] found examples of manifolds(M,gi) such
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that Riccigi � (n − 1), Vol(M,gi) � v > 0 and Diam(M,gi)→ π butM �= Sn. (Otsu’s
example isSm × Sn−m and Anderson’s example isCPn or CP 2!CP 2.)

We remark that Vol(Mi) → Vol(Sn) implies DiamMi → π (under the assumption
Riccigi � (n− 1)) by the Bishop–Gromov comparison Theorem 5.2.

Now we start the review of the works of Colding, who began with the following theorem
closely related to Theorems 17.20 and 21.7.

THEOREM21.8 (Colding [43,44]).LetM be ann-dimensional Riemannian manifold with
RicciM � (n− 1).

(1) If Vol(M)� Vol(Sn)− ε thendGH(M,S
n) < τ(ε|n).

(2) If dGH(M,S
n) < ε thenVol(M)� Vol(Sn)− τ(ε|n).

The proof is somewhat similar to the proof of Theorem 17.20. However we need sev-
eral new ideas. Especially we need to develop some method to compareIM (21.10) with
ISn (21.9). In the situation of the proof of Theorem 17.20, this was done by Toponogov’s
comparison theorem. In our situation, Toponogov’s comparison theorem does not apply
since there is no sectional curvature bound. Colding developed theL2-comparison theo-
rem for this purpose. We describe it below.

We considerp∗ ∈ Sn and�∗ : [0, α]→ Sn be a geodesic parameterized by arc length. We
put �∗(0) = q∗, (d�∗/dt)(0) = v∗ ∈ Tq∗Sn. We then puthp∗,α(v∗, t) = cosd(�∗(t),p∗).
We can calculate it easily as

hp∗,α(v∗, t)=
1

sinα

(
d
(
p∗, �(α)

)
sin(α − t)+ d(p∗, �(0))sint

)
. (21.11)

Now we use (21.11) to define a function onM with which we compare the distance
function. Letp ∈M and� : [0, α] →M be a geodesic parameterized by arc length. We
put �(0) = q, (d�/dt)(0) = v ∈ TqM . (� is determined byv so we write� = �v .) Let
f :M→R be a function. We then define

hf,α(v, t)= 1

sinα

(
f
(
�v(α)

)
sin(α − t)+ f (�v(0))sint

)
. (21.12)

We remark thathf,α may be regarded as a function of(v, t) ∈ SM×[0, α], whereSM is the
unit tangent bundleSM = {v ∈ TM | |v| = 1}. In casef (x)= d(p,x), we puthf,α = hp,α .

Now theL2-Toponogov theorem in [44] is as follows.

THEOREM 21.9 [44, Proposition 1.15].Let a0 ∈ [π/2,π). We assumeRicciM � (n− 1)
andp,q ∈M with d(p,q)� π − ε. Then, for α � α0, we have

1

αVol(SM)

∫
v∈SM

∫ α

0

∣∣cosd
(
p,�v(t)

)− hp,α(v, t)∣∣2ΩSM dt

< τ(ε|n,α0), (21.13)
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1

αVol(SM)

∫
v∈SM

∫ α

0

∣∣∣∣ ddt cosd
(
p,�v(t)

)− dhp,α

dt
(v, t)

∣∣∣∣2ΩSM dt

< τ(ε|n,α0). (21.14)

HereΩSM is the Liouville measure. (Hereafter we omit the symbol of volume form in
case it is clear which volume form we use.)

Remark21.2. We remark that (21.13) means that the lengthd(p, �v(t)) is close to the
length of the corresponding triangle inSn in L2-sense.

(21.14) means that the angle� p�v(t)�v(0) is close to the angle in corresponding triangle
in Sn in L2-sense.

Let us explain a part of the ideas of the proof of Theorem 21.9.
We first recall the following. Letλ1(M) denotes the first nonzero eigenvalue of the

Laplacian on (the functions of)M .

THEOREM 21.10 (Lichnerowicz [101], Obata [109]).If an n-dimensional Riemannian
manifold satisfiesRicciM � (n−1) thenλ1(M)�−n. The equality holds if and only ifM
is isometric to the sphere.

The proof can be done by the Bochner formula, in the same way as the argument of
Step 1 below.

We also remark the following theorem by Cheng which is closely related to Theo-
rem 21.10.

THEOREM21.11 [41]. LetM be a compact Riemannian manifolds withRicciM � (n−1).
If Diam(M)� π , thenM is isometric toSn.

What is important for us is that the first eigenfunction ofSn is cosd(p, ·) and is exactly
the function we want study in Theorem 21.10. So the idea of the proof of Theorem 21.10
goes as follows.

Step1. Letf satisfy‖�f + nf ‖< δ, ‖f ‖ = 1. (Here‖ ‖ is theL2-norm.) We prove

1

αVol(SM)

∫
v∈SM

∫ α

0

∣∣f (�v(t))− hf,α(v, t)∣∣2< τ(δ|n), (21.15)

and a similar estimate for thet-derivative of cosf (�v(t))− hf,α(v, t) [44, Lemma 1.4].
This step uses the Bochner–Weitzenbeck formula

1

2
�|∇f |2 = ∣∣Hess(f )

∣∣2 + 〈∇�f,∇f 〉 +Ricci(∇f,∇f ). (21.16)

Here Hess(f )(X,Y )=X(Y(f ))− (∇XY)(f ). (Note we are using the positive Laplacian.)
The proof is a kind of an “almost version” of the proofs of Theorems 21.10 and 21.11. To
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clarify the geometric ideas, avoiding analytic details, we consider the case�f = λf , n�
−λ > 0 and provef (�v(t))= hf,α(v, t). We integrate (21.16) and using

∫
M
〈∇f1,∇f2〉 =

− ∫
M
〈�f1, f2〉, we find∫

M

(∣∣Hess(f )
∣∣2 − |�f |2 + (n− 1)|∇f |2)� 0.

Sinceλ
∫
M
|∇f |2 = ∫

M
〈∇�f,∇f 〉 = − ∫

M
|�f |2, it follows that∫

M

(∣∣Hess(f )
∣∣2 − λ+ n− 1

λ
|�f |2

)
� 0.

By TraceHess(f )=�f and elementary linear algebra, we findλ=−n and

Hess(f )=−fgM. (21.17)

Using the factd2f (�v(t))/dt
2 =Hessf (�̇v(t), �̇v(t)) we have

d2

dt2
f
(
�v(t)

)=−f (�v(t)). (21.18)

f (�v(t))= hf,α(v, t) follows.

Step2. Letp,q ∈M with d(p,q) > π − δ. We considerg(x) = cosd(p,x). We then
find f with ‖�f + nf ‖ < δ and‖f − g‖L2

1
< δ. (‖ ‖L2

1
is the Sobolev norm, that is an

L2-norm up to the first derivative [44, Lemma 1.10].)
The essential part of this step (which is explained below) is to show∣∣∣∣n∫

M

g2 −
∫
M

|∇g|2
∣∣∣∣� τ(δ)Vol(M), (21.19)

∣∣∣∣ ∫ g

∣∣∣∣< τ(δ)Vol(M). (21.20)

In fact, (21.20) implies thatg is almost perpendicular to the 0th eigenfunction of the Lapla-
cian (the constant). Then we can use (21.19) andλ1 � n to get the conclusion.

Let a(v, t) be as in the proof of Theorem 5.2. We extend it as 0 outsideV . (So precisely
speakinga(v, t) is the function which we wrotea′(v, t) in the proof of Theorem 5.2.) By
Lemma 21.4 we have∫

v∈Sn−1
a(v, δ)�

∫
v∈Sn−1

a(v,π − δ)+ τ(ε|δ,n). (21.21)

On the other hand, the mapt 	→ a(v, t) is nondecreasing by the proof of Theorem 5.2. It
follows that∣∣∣∣∫

v∈Sn−1
a(v, s)−

∫
v∈Sn−1

a(v, s′)
∣∣∣∣� τ(ε | δ,n) (21.22)
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for s, s′ ∈ [δ,π − δ]. Therefore∣∣∣∣∫
M

g

∣∣∣∣ = ∣∣∣∣∫
v∈Sn−1

∫ π

t=0
a(v, t)cost sinn−1 t

∣∣∣∣
=
∣∣∣∣∫
v∈Sn−1

∫ π/2

t=0

(
a(v, t)− a(v,π − t))cost sinn−1 t

∣∣∣∣
� τ(ε, δ|n)Vol(M). (21.23)

Moreover using|∇g|2(x)= sin2d(p,x) we have∫
M

|∇g|2 =
∫
v∈Sn−1

∫ π

t=0
a(v, t)sinn+1 t.

On the other hand∫
M

|g|2 =
∫
v∈Sn−1

∫ π

t=0
a(v, t)cos2 t sinn−1 t.

We remark
∫ π

0 sinn+1 t dt = n
∫ π

0 cos2 t sinn−1 t dt . Hence using (21.22) we can easily
show ∣∣∣∣∫

M

|∇g|2 − n
∫
M

|g|2
∣∣∣∣< τ(ε, δ | n)Vol(M). (21.24)

(21.23) and (21.24) complete this step as we mentioned before. �

These two steps and some more arguments imply Theorem 21.9. (The integral in The-
orem 21.9 is taken with respect to the Liouville measure on the unit sphere bundle. In
the argument so far the measure is taken with respect to the measure onM itself (or its
products). They are equivalent by Theorem 5.2.) �

We remark that in Theorem 21.9 we use only a weaker assumption Diam(M)∼ π and
not yet Vol(M)∼ Vol(Sn). (Compare Remark 21.1, which shows that Diam(M)∼ π does
not imply thatdGH(M,S

n) is small.)
Now using Theorem 21.9, the proof of Theorem 21.8 goes roughly as follows.
We first explain (1). Let us assume Vol(M)� Vol(Sn)− δ. It then implies that for each

p ∈M there existsq ∈M such thatd(p,q) > π − τ(δ).42 (This follows from the Bishop–
Gromov Theorem 5.2.) Now we claim

LEMMA 21.12 [44, Lemma 2.25].Under the assumption of Theorem21.8(1) there exist
pi, qi (i = 0, . . . , n) such that(21.8) holds.

42Shiohama–Yamaguchi [140] introduced the notion of radius ofM that is infp supq d(p, q). This assertion
means that the radius ofM is close toπ .
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Once we have Lemma 21.12, we can construct a Hausdorff approximationΦ :M→ Sn

by perturbingx → (cosd(x,p0), . . . ,cosd(x,pn)). In fact, by Theorem 21.8, we can
prove that the functionx 	→ cosd(x,p0) behaves in a similar way (moduloτ(δ)) outside
the set of measureτ(δ). This is enough to show that it is a Hausdorff approximation.�

Remark21.3. As we mentioned before we can use theL2-comparison theorem directly to
show that a map is a Hausdorff approximation. However we cannot use it directly to find a
homeomorphism. This is because theL2-comparison theorem does not tell what happens
on a set of small measure. This point is very different from the Toponogov comparison
theorem, which however works only under the assumption of sectional curvature. We can
use several ‘indirect’ arguments to obtain various topological information using theL2-
comparison theorem. (See the next two sections.)

The proof of Lemma 21.12 uses Theorem 21.7 and goes as follows. We constructpi, qi
(i = 0, . . . , k) satisfying(21.8) by induction onk. Suppose we havepi, qi (i = 0, . . . , k).
We then construct a mapΦk :M→ Rk by x→ (cosd(x,p0), . . . ,cosd(x,pk)). We con-

struct a setAk from of p0, . . . , pk, q0, . . . , qk . In caseM = Sn and pi = (0, . . . ,0,
i

1,
0, . . . ,0) Ak = Rk+1 ∩ Sn = Sk is obtained by joiningpi, qi several times along mini-
mal geodesics. We imitate the construction ofAk from pi , qj in M to obtainAk ⊂M .
(Actually we need to join only by good geodesics�v that is a geodesic such that
cosd(p, �v(t)) − hp,a(v, t) is small. Theorem 21.9 implies that there are enough such
geodesics.)

Now the restriction ofΦk to Ak is similar to the one forSn. HenceΦk(Ak) lies in
a neighborhood ofSk and we may regardAk ∼= Sk . Sincek < n, Theorem 21.7 implies
that Ak is homotopic to zero inM . This implies that there existspk+1 ∈ M such that
Φk(pk+1)= 0. We takeqk+1 with d(pk+1, qk+1) > π − δ. Thus induction works. �

To prove (2) of Theorem 21.8 we proceed as follows. We takepi, qi (i = 0, . . . , n)
such that(21.8) holds. (SincedH (M,Sn) is small we can take suchpi, qi .) We use it to
constructΦ :M→ Sn by Φ̃(x)= (cosd(p0, x), . . . ,cosd(pn, x)), Φ(x)= Φ̃(x)/|Φ̃(x)|.
Using Theorem 21.9, we find that the determinant of the Jacobi matrix ofΦ is almost
everywhere close to 1. It follows that|Vol(M)− Vol(Φ(M))|< τ(δ|n). We need another
idea to show that Vol(Sn \ Φ(M)) < τ(δ|n). Actually for this purpose we need a “local
version” of Theorem 21.13 [43, Proposition 4.5]. We omit it. �

The argument of the proof of Theorem 21.8 is a prototype of the argument which is
used by Colding and Cheeger–Colding at several other places. We explain them more in
the last two sections where the argument is combined with other arguments which are of
more analytic nature.

22. Hausdorff convergence and Ricci curvature—I

In Section 21, we compared the distance function of a manifold of positive Ricci curva-
ture to the one of the round sphere, in the sense ofL2

1-norm. In this section, we compare
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the distance function of a manifold of almost nonnegative Ricci curvature to the one of
Euclidean space.

THEOREM 22.1 (Colding [46, Theorem 0.1]).Let Mi be a sequence ofn-dimensional
Riemannian manifolds withRicciMi

� −(n − 1) and letM∞ be anothern-dimensional
Riemannian manifold. We assumelimGH

i→∞Mi =M∞. Then we have

lim
i→∞Vol(Mi)= Vol(M∞).

Remark22.1. Actually Colding proved the following stronger (local) result in [46]. Let
Mi andM∞ be complete Riemannian manifolds. We assume RicciMi

� −(n − 1). Let
pi ∈Mi , p∞ ∈M∞, andr > 0. We assume that limGH

i→∞Bpi (r,Mi)= Bp∞(r,M∞). Then
limi→∞ Vol(Bpi (r,Mi))= Vol(Bp∞(r,M∞)).

Together with a result by Perelman and using results of controlled surgery, Theorem 22.1
implies the following

THEOREM 22.2 [46]. In the situation of Theorem22.1,Mi is homotopy equivalent toM∞
for large i. MoreoverMi is homeomorphic toM∞ for large i if n �= 3.

Remark22.2. In case the limit space is singular we cannot prove a result similar to Theo-
rem 22.2 because of Example 21.1 by Anderson and Otsu.

The Gromov–Hausdorff limit of the metrics Otsu constructed onS3×S2 is a suspension
of S2 × S2 and hence is not a topological manifold.

Theorem 22.1 follows from Theorem 22.2 roughly in the following way. Choosep∞j ∈
M∞, j = 1, . . . ,N , and smallr > 0 such that

N⋃
i=1

Bp∞j (r,M∞)=M∞,

and

1− δ �
Vol(Bp∞j (r,M∞))
Vol0(B0(r,Rn))

� 1+ δ. (22.1)

Let Φi :M∞ → Mi be an εi Hausdorff approximation withεi → 0. We takepij =
Φi(p

∞
j ) ∈Mi . SincedH (Bpji

(r,Mi),Bpj∞
(r,M∞)) is small it follows from Theorem 22.1

(more precisely its local version stated in Remark 22.1) together with (22.1) that

1− 2δ �
Vol(Bpij

(r,M∞))

Vol0(B0(r,Rn))
� 1+ 2δ. (22.2)
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We can then apply the method of Perelman that appeared in the proof of Theorem 21.6. It
may43 imply thatBpij

((1−ε)r,M∞) is contractible inBpij
(r,M∞). This will imply thatMi

is homotopy equivalent toM in a way similar to the proof of Theorem 3.5 in Section 15.
Using control surgery in a way similar to [122] we can prove thatMi is homeomorphic
toM . �

The proof of Theorem 22.2 is not worked out in so much detail in [46]. However we do
not need to worry about it at all now, since Cheeger–Colding [29] improved Theorem 22.2
as follows.

THEOREM 22.3 [29, Theorem A.1.12].In the situation of Theorem22.1,Mi is diffeomor-
phic toM∞ for large i.

We discuss its proof later in this section. Theorem 22.3 together with Theorem 21.8
immediately imply the following sharpening of Theorem 21.7. (We stated it as Theorem 2.6
in Section 2.)

COROLLARY 22.4 (Cheeger–Colding [29, Theorem A.1.10]).There existsεn > 0 such
that ifM satisfiesRicciM � (n− 1), Vol(M)� Vol(Sn)− εn, thenM is diffeomorphic to
a sphere.

Remark22.3. We remark Theorem 21.8 is used in the proof of Corollary 22.4. The proof
of Theorem 21.8 we sketched in the last section uses Theorem 21.7. However we can avoid
it as follows. Let RicciMi

� (n − 1), Vol(Mi) � Vol(Sn) − εi , whereεi → 0. We may
assume thatMi converges to a metric spaceX. Then, by Theorem 23.11,X is isometric to
a metric suspensionSY , whereSY is defined in Example 23.1(3). Using the assumption
onMi and Theorem 22.5, we can show that the tangent coneTxX of X at any pointx ∈X
is Rn. Therefore, sinceX = SY , it follows thatY = Sn−1. HenceX = Sn (isometric) as
required.

Remark22.4. The assumption of Theorem 22.2 plus an additional assumption RicciMi
� λ

implies that the Riemannian metric ofMi converges to the one ofM in C1,α-topology (af-
ter identifying the manifolds by an appropriate diffeomorphism). ([46, Theorem 0.6].)

We now explain some of the ideas of the proof of Theorem 22.1. The main part of the
proof is the proof of (2) of the following theorem.

THEOREM 22.5 [46, Theorem 0.8 and Corollary 2.19].LetM be ann-dimensional Rie-
mannian manifold withRicciM �−λ andp ∈M .

(1) If Vol(Bp(1,M))� Vol(B0(1,Rn))− ε, then we have

dGH
(
Bp(1,M),B0(1,R

n)
)
< τ(ε,λ|n).

43I wrote “may” here since Perelman did not state this result explicitly and only says that “The Main Lemma
can obviously be modified. . . ” at [114, p. 300]. Indeed it is very likely so. But I did not check it in detail. By the
way, Colding quote [119] in place of [114] at [46, p. 478] just before Theorem 0.4. I believe it is a misprint.
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(2) If dGH(Bp(1,M),B0(1,Rn)) < ε, then we have

Vol
(
Bp(1,M)

)
� Vol

(
B0(1,R

n)
)− τ(ε, λ|n).

An argument to show Theorem 22.1 by using Theorem 22.5(2) is omitted.
Let us sketch how to prove Theorem 22.5(2). We will discuss the proof of Theo-

rem 22.5(1) in the next section. We only show the following version.

LEMMA 22.6. If M satisfiesdGH(Bp(2R,B),B0(2R,Rn)) < ε and RicciM � −λ then
we have

Vol
(
Bp(1,M)

)
�
(
1− τ(ε, λ,1/R|n))Vol

(
B1(1,R

n)
)
.

The argument to show Theorem 22.5(2) using Lemma 22.6 is tricky but technical.
(See [46, p. 494].) (Note the inequality of opposite direction

(1− τ)Vol
(
Bp(1,M)

)
� Vol

(
B1(1,R

n)
)

is a consequence of Theorem 5.2.)
Theorem 22.5 looks similar to Theorem 21.8. The proof of Lemma 22.6 also is similar.

We first need a result corresponding to Theorem 21.13. In the proof of Theorem 21.13 we
consider the functionx 	→ cosd(p,x) in case there existsq with d(p,q) � π − δ. Here
we consider the following functionbi+, i = 1, . . . , n, instead.

Let Φ :B0(2R,Rn) → Bp(2R,M) be an ε-Hausdorff approximation. Letqi =
Φ(0, . . . ,0,

i

1,0, . . . ,0) ∈M . We put

bi(x)= d(x, qi)− d(p,qi), (22.3)

and study it in the ballBp(1,M). We remark thatbi may be regarded as an approximation
of the Busemann function (Definition 16.6). In the proof of the Cheeger–Gromoll splitting
Theorem 16.4, subharmonicity of the Busemann function is the main point.

We chooseρ with 1- ρ-R. We considerbi :Bp(ρ,M)→R such that

�bi = 0, (22.4a)

bi = bi on ∂Bp(ρ,M). (22.4b)

In the case of Euclidean space, the Busemann function is nothing but a linear function. So
we comparebi with a linear function. We putgi(v, t)= bi (�v(t)).

PROPOSITION22.7. For r � α < 1, we have

‖bi − bi‖L2
1(Bp(1,M))

� τ, (22.5a)∫
v∈SBp(1,M)

∣∣∣∣dgi(v, ·)dt
(r)− gi(v,α)− gi(v,0)

α

∣∣∣∣< τ, (22.5b)
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Bp(1,M)

∣∣〈∇bi ,∇bj 〉 − δij
∣∣< τ, (22.5c)∫

Bp(1,M)

∣∣Hess(bi )
∣∣< τ. (22.5d)

Hereτ = τ(λ,ρ/R,1/ρ|n) and‖ ‖L2
1

is theL2-norm up to the first derivative.

The proof of (22.5a) is based on Li–Shoen’s Poincaré inequality [100] (estimate of
the first eigenvalue ofBp(ρ,M)), and the proof of (22.5d) is based on the Bochner–
Weitzenbeck formula (19.1) and Cheng–Yau’s gradient estimate [42]. Then (22.5b) follows
in a way similar as the proof of Theorem 21.9. We can use it to prove (22.5c). �

We put

Φ̃ = (b1, . . . ,bn) :Bp(1,M)→Rn.

(22.5a), (22.5b) imply that it induces anτ -Hausdorff approximation toB0(1,Rn).
(22.5c) implies thatΦ̃ almost preserves volume.

To complete the proof of Lemma 22.6 we need to show that Vol(B0(1,Rn) \
Φ̃(Bp(1,M))) is small. We can prove it as follows.44 Using (22.5) we can find a point
p0 ∈ Bp(1/2,M) such thatΦ̃−1(Φ̃(p0)) = {p0}. (See [26, pp. 53–54] for the proof of
this fact.) On the other hand, sincẽΦ is a τ -Hausdorff approximation, it follows that
Φ̃(∂Bp(1,M))⊂ B1+τ (0,Rn) \B1−τ (0,Rn). Hence

Φ̃∗ :Hn
(
Bp(1,M), ∂Bp(1,M);Z2

)→Hn
(
B1+τ (0,Rn),B1−τ (0,Rn);Z2

)
is well defined. Note

Hn
(
Bp(1,M), ∂Bp(1,M);Z2

)∼=Hn(B1+τ (0,Rn),B1−τ (0,Rn);Z2
)∼= Z2.

UsingΦ̃−1(Φ̃(p0))= {p0} we can show

Φ̃∗ :Hn
(
Bp(1,M), ∂Bp(1,M);Z2

)→Hn
(
B1+τ (0,Rn),B1−τ (0,Rn);Z2

)
is nonzero. This impliesΦ̃(Bp(1,M)) ⊃ B1−τ (0,Rn). This completes the proof of
Lemma 22.6. �

We next sketch the proof of Theorem 22.3 given in [29, Appendix A]. As is mentioned
there this proof is similar to the proof by Cheeger [25] of his finiteness theorem using the
diffeotopy extension theorem (which we explained briefly in Section 6).

44Here we follow [26, pp. 53–54]. Colding’s argument in [46] is a bit different.
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Let us begin with a definition. LetZ be a complete metric space andε, r > 0. (n is a
positive integer.)

DEFINITION 22.1. We say thatZ satisfies theRε,r,n condition if for eachx ∈ Z there
existss < r such that

dGH
(
Bx(s,Z),B0(s,R

n)
)
< εs. (22.6)

THEOREM 22.8 (Cheeger–Colding [29, Theorems A.1.2, A.1.3]).For eachn there ex-
ists εn, independent ofr , such that the following holds. If Z satisfies theRε,r,n condition
with ε < εn, then, for eachs < r , we can associate a smooth Riemannian manifoldZ(s)

with the following properties:
(1) There exists a homeomorphismΦZ,s :Z→ Z(s) which isC1−τ(ε|n)-Hölder contin-

uous. Namely

C−1d(x, y)1+τ(ε|n) �
(
d
(
ΦZ,s(x),ΦZ,s(y)

))
� Cd(x, y)1−τ(ε|n) (22.7)

for eachx, y ∈ Z. MoreoverΦZ,s is ansτ (ε|n) Hausdorff approximation.
(2) Z(s) is ‘well-defined’ and ‘independent’ ofs in the following sense. If u � s then

there exists a diffeomorphism which isC1−τ(ε|n)-Hölder continuous in a way inde-
pendent oft, u. Namely we have

C−1d(x, y)1+τ(ε|n) � d
(
ΦZ,u,s(x),ΦZ,u,s(y)

)
� Cd(x, y)1−τ(ε|n), (22.8)

whereC is independent ofu, s, x, y. MoreoverΦZ,u,s is ansτ (ε|n) approximation
and satisfies

d
(
ΦZ,u,s ◦ΦZ,s(x),ΦZ,u(x)

)
< sτ(ε|n). (22.9)

(3) If Z is a Riemannian manifold then we may chooseΦZ,s to be a diffeomorphism for
sufficiently smalls.

(4) There existsδ(n, r) > 0 dependingn andr such that ifZ,Z′ both satisfyRε,r,n con-
dition with ε < εn, and if dGH(Z,Z

′) < δ(n, r) then there exists a diffeomorphism
Ψ :Z(r/2)→ Z′(r/2) such that

e−τ(ε,δ|r,n) � d(Ψ (x),Ψ (y))

d(x, y)
� eτ(ε,δ|r,n), (22.10)

d
(
Ψ ◦ΦZ,r/2(x),ΦZ′,r/2(x)

)
< τ(ε, δ|r, n). (22.11)

To apply Theorem 22.8 for the proof of Theorem 22.3 we need the following

PROPOSITION 22.9. Let Mi be a sequence ofn-dimensional Riemannian manifolds
and let M∞ be another Riemannian manifold of the same dimension. We assume
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limGH
i→∞Mi =M∞. Then for eachε there existsr such thatMi for large i andM∞ satisfy

theRε,r,n condition.

Proposition 22.9 and Theorem 22.8 immediately imply Theorem 22.3.
Let us prove Proposition 22.9. Under the assumption we haver = r(µ) for eachµ such

that

1−µ� Vol(Bp(r,Mi))

Vol(B0(r,Rn))
� 1+µ

for largei andi =∞ and anyp ∈Mi . (See (22.2).) Then we apply Theorem 5.2 to obtain

1−µ� Vol(Bp(s,Mi))

Vol(B0(s,Rn))
� 1+µ

for anys � r . We now apply Theorem 22.5(1) after scaling to obtain

dGH
(
Bp(s,Mi),B0(s,R

n)
)
< sτ(µ|r, n)

as required. (Note that since we scale the metric by a factor 1/s > 1/r , the curvature will
be Ricci� −(1− n)r2. So the curvature assumption in Theorem 22.5 is satisfied ifr is
small enough.) �

We remark that the independence ofεn of r in Theorem 22.8 played a key role here.
We now prove of Theorem 22.8. Let 100s < r . We will constructZ(s) first. We remark

that by using assumption (22.6) we can find subsets{xi | i ∈ I } ∈ Z such that⋃
i∈I
Bxi (s,Z)= Z, (22.12a)

!
{
i ∈ I | Bxi (30s,Z)∩Bxj (30s,Z) �= ∅}�N(n) (22.12b)

for eachj ∈ I . HereN(n) is independent ofi, s. Let ϕi :Bxi (100s,Z)→ B0(100s,Rn)
be a τ(ε|n)s-Hausdorff approximation. We have aτ(ε|n)s Hausdorff approximation
ϕ′i :B0(100s,Rn) → Bxi (100s,Z) such that dist(ϕ′i ◦ ϕi, id) < τ(ε|n)s and dist(ϕi ◦
ϕ′i , id) < τ(ε|n)s. We consider

ϕji = ϕj ◦ ϕ′i
∣∣
B0(10s,Rn) :B0(10s,Rn)→ B0(35s,Rn) (22.13)

for i ∩ j with Bxi (30s,Z)∩Bxj (30s,Z) �= ∅. It satisfies∣∣d(ϕji(x),ϕji(x))− d(x, y)∣∣< τ(ε|n)s. (22.14)

We here remark the following simple lemma.
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LEMMA 22.10. If ϕji satisfies(22.14) then there existsψ ′
ji :B0(10s,Rn)→ B0(35s,Rn)

satisfying(22.14) and

e−τ(ε|n) �
d(ψ ′

ji(x),ψ
′
ji(x))

d(x, y)
� eτ(ε|n), (22.15a)

d
(
ϕji(x),ψ

′
ji(x)

)
< sτ(ε|n), (22.15b)

|ψ ′
ji |Ck < s−kCk,n. (22.15c)

HereCk,n depends only onk andn.

The proof is an elementary smoothing argument.
We want to construct a smooth manifold by usingψji as a coordinate transformation.

It doesnot satisfyψ ′
kj ◦ψ ′

ji =ψ ′
ki but the following holds ifBxi (20s,Z)∩Bxj (20s,Z)∩

Bxk (20s,Z) �= ∅:

d
(
ψ ′
kj ◦ψ ′

ji(x),ψ
′
ki(x)

)
� sτ (ε|n) (22.16)

for x ∈ B0(20s,Rn). We can now use the argument of [25] to approximateψ ′
ji by ψji

which satisfies (22.15) and

ψkj ◦ψji =ψki. (22.17)

(Note that the number of steps we need to take to achieve (22.17) is controlled by (22.12b).)
We thus constructed a manifoldZ(t) whose coordinate transformation isψji . We can

use a partition of unity to modify the standard metric onRn so that it is compatible
with ψji . HenceZ(t) is a Riemannian manifold. We will constructΦZ,s :Z→ Z(s) later.
At this stage we haveΨZ,s :Z→ Z(s) which is ansτ (ε|n)-Hausdorff approximation.

We next show the ‘well-definedness’ property (2). We first consider the caseu ∈ [s/2, s].
Let us suppose we haveZ(u) for u� s. We use the symbol̃ for points, maps, etc. used to
constructZ(u). (Namely we writeϕ̃

ĩ
, x̃
ĩ
, etc.)

Let Bx̃
ĩ
(30u,Z) ∩ Bxj (30s,Z) �= ∅. We defineΨ

jĩ
:B0(20u,Rn)→ B0(30s,Rn) by

Ψ
jĩ
= ϕj ◦ ϕ̃′

ĩ
. It satisfies

∣∣d(Ψ
jĩ
(x),Ψ

j ĩ
(y)
)− d(x, y)∣∣� τ(ε)s � 2τ(ε)u.

Hence we can approximate it by a smooth mapΦ ′
j ĩ

satisfying (22.15c). It is almost com-

patible with the coordinate transformationsψji ,ψ̃j̃ ĩ . Hence again by an argument similar
to [25] (or by using the center of mass technique) we can approximate it by a diffeomor-
phismΦ

jĩ
(x) which is exactly compatible with the coordinate transformation. We thus

obtainΦZ,s,u, if u ∈ [s/2, s]. It is also ansτ (ε|n)-Hausdorff approximation. LetΦZ,u,s be
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the inverse of it. We remark that we have an inequality

e−τ(ε|n) � d(ΦZ,u,s(x),ΦZ,u,s(y))

d(x, y)
� eτ(ε|n) (22.18)

which is sharper than (22.10) in caseu ∈ [s/2, s].
We remark here that the proof of Theorem 22.8(4) is almost the same as this argument.

(So we do not discuss it.)
Now we continue the proof of (2) for the generalu, s. We may assumeu= 2−ks and put

ΦZ,u,s =ΦZ,u,2u ◦ · · · ◦ΦZ,s/2,s . (22.19)

It is a diffeomorphism. We will check (22.10). Letρ > 0. We first remark thatΦZ,a,b is a
bτ(ε|n)-Hausdorff approximation fora � b. (This is because ifb = 2ka thenΦZ,a,b is a∑k

j=0 τ(ε|n)2−j b-Hausdorff approximation.)
We first take� such that

e−ρ < 1+ 2−�−1

1− 2−�−1
< eρ. (22.20)

Now we takex, y ∈ Z(s). We takek1 such that 2−k1−1s < d(x, y) � 2−k1s. (In case
d(x, y)� s, we putk1 = 0.) Note, ifd(x, y)� s, we have

k1 �−C log
d(x, y)

s
. (22.21)

We use (22.18) and (22.21) and obtain

d(ΦZ,2−k1s,s(x),ΦZ,2−k1s,s(y))

d(x, y)
� ek1τ(ε|n) � Cd(x, y)−τ(ε|n). (22.22)

Combining the inequality of the opposite direction, which can be proved in a similar way,
we have

C−1d(x, y)1+τ(ε|n) � d
(
ΦZ,2−k1s,s(x),ΦZ,2−k1s,s(y)

)
� Cd(x, y)1−τ(ε|n). (22.23)

We next putk2 = k1 + �. We may takeε so small that�τ(ε|n) < ρ. Then we have

e−ρ �
d(ΦZ,2−k2s,s(x),ΦZ,2−k2s,s(y))

d(ΦZ,2−k1s,s(x),ΦZ,2−k1s,s(y))
� eρ. (22.24)

Finally (22.20) implies

e−ρ � d(ΦZ,u,s(x),ΦZ,u,s)

d(ΦZ,2−k2s,s(x),ΦZ,2−k2s,s(y))
� eρ (22.25)
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sinceΦZ,u,2−k2s is an 2−�−k1sτ (ε|n)-Hausdorff approximation andd(x, y) � 2−k1−1s.
The proof of (2) is complete.

We remark here that once the well-definedness property is established (3) is actually
obvious. We only need to takes much smaller than the injectivity radius ofZ.

We finally constructΦZ,s :Z→ Z(s). We putΦji =ΦZ;2−j s,2−i s :Z(2−is )→Z(2−js).
By construction we haveΦkj ◦Φji =Φki . Thus we have an inductive system. Using (2), it
is easy to see that the inductive limit limZ(2−i s) is isometric toZ and there exists a map
Z(s)→ limi→∞Z(2−i s) satisfying the condition of (1).

We thus finished the proof of Theorem 22.8. �

23. Hausdorff convergence and Ricci curvature—II

In this section we continue the discussion about the Gromov–Hausdorff limit of a sequence
of manifoldsMi with RicciMi

� −(n − 1). It is known that the limit spaceX can be
very wild. For example, it may not be locally contractible [102,118]. Nevertheless various
results are known for such limit spaces, some of which we describe in this section.

We first state Theorem 16.4 again.

THEOREM 23.1 (Cheeger–Colding [28]).Let Mi be a sequence ofn-dimensional Rie-
mannian manifolds withRicciMi

> −λi with λi → 0 and let (X,p) = limpGH
i→∞(Mi,pi).

SupposeX contains a line. ThenX is isometric to the direct productR×X′.

Remark23.1. The following slightly more general statement is proved.
Let RicciMi

�−λi with λi → 0, and(X,p)= limpGH
i→∞(Mi,pi). We assumeX∼=Rk×Y

and thatY contains a line. ThenY ∼=R× Y ′.

Before explaining the outline of the proof, we mention several of its applications. One
important application is Theorems 19.12 and 10.5, which we explained already.

To state other applications, we need some definitions.

DEFINITION 23.1. A measured metric space(X,µ) is a pair of a metric spaceX and
a Borel measureµ on it. In this article we always assume thatµ(X) = 1. For a pointed
measured metric space(X,p,µ) we assumeµ(Bp(1,X))= 1.

For a Riemannian manifoldM we use the renormalized volume formµM = ΩM/

Vol(M) and regard it as a measured metric space (unless another measure is specified
explicitly). For a pointed Riemannian manifold(M,p), we use the renormalized volume
formµM =ΩM/Vol(Bp(1,M)).

DEFINITION 23.2 [54]. A sequence of measured metric spaces(Xi,µi) is said to con-
verge to(X,µ) with respect to themeasured Gromov–Hausdorff topologywhich we write
as limmGH

i→∞(Xi,µi) = (X,µ), if there exists a sequence ofεi -Hausdorff approximations
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ϕi :Xi → X with εi → 0, which are Borel measurable and such that, for any continuous
functionf onX, we have

lim
i→∞

∫
Xi

(f ◦ ϕi) dµi =
∫
X

f dµ.

The pointed measured Gromov–Hausdorff convergence is defined in the same way. (To
be precise we need a net in place of a sequence to define a topology. It is an obvious
modification and is omitted.)

Remark23.2. In [75, Chapter 312D], Gromov defined a notion of�λ convergence for
measured metric spaces. It is similar to, but slightly different from, measured Gromov–
Hausdorff topology defined above. Namely there is a situation where the support suppµ

of the limit measure is different fromX. In that case for�λ convergence the limit of
(Xi,µi) is (suppµ,µ), and is different from the limit(X,µ) of the measured Gromov–
Hausdorff topology. However if(Xi,µi) = (Mi,µMi

) is a Riemannian manifold and if
RicciMi

� −(n − 1), then the support of the limit measure is alwaysX itself. (We can
prove it using the Bishop–Gromov inequality.) So the two definitions coincide to each
other.

Measured Gromov–Hausdorff convergence was introduced to study spectra of the
Laplace operator. We mention it later.

LEMMA 23.2 [54]. If limGH
i→∞Xi = X, and if µi is a probability Borel measure onXi ,

then there exists a subsequenceki such thatlimmGH
i→∞(Xki ,µki )= (X,µ).

The proof is elementary.
We remark that the limit measureµ depends on the choice of the subsequence in general.

In fact, let us considerT 2 = S1× S1 with metricgfε = dt2+ ε2f (t)2ds2, wheref :S1 →
R+ is a smooth function. Then(T 2, gε) converges toS1 with standard metric and measure
f dt with respect to the measured Gromov–Hausdorff topology. On the other hand, the
limit in the Gromov–Hausdorff distance is independent off .

We denote bySn(D) the set ofn-dimensional Riemannian manifoldsM with RicciM �
−(n − 1), Diam(M) � D. We denote bySn(∞) the set ofn-dimensional pointed Rie-
mannian manifold(M,p) such that RicciM �−(n−1). Let S̄n(D), S̄n(∞) be the closure
of Sn(D), Sn(∞) with respect to the Gromov–Hausdorff distance, the pointed Gromov–
Hausdorff distance, respectively.

We next define the singularity set and the regular set of a length spaceX ∈ S̄n(D).
We recall that the sequence(X,RidX, x) with Ri →∞ always has a subsequence such
that (X,RidX, x) converges with respect to the pointed Gromov–Hausdorff distance
(Proposition 16.2). However the limit is not unique. (Such an example is constructed in
[29, Section 8].)
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DEFINITION 23.3. We say thatTxX is a tangent coneof X at x if there exists a se-
quenceRi →∞ such that(X,RidX, x) converges to(TxX,o) with respect to the pointed
Gromov–Hausdorff distance.45

DEFINITION 23.4. LetX ∈ S̄n(∞). We say that a pointx ∈X is in Rk if Rk is a tangent
coneTxX of x.

We sayx is regular if it is in R =⋃kRk . Otherwise it is said to besingular and we
denote byS the set of all singular points.

Remark23.3. This definition coincides withS(X) in Definition 17.7 by Otsu–Shioya in
case whenX is an Alexandrov space, because of Theorem 22.5.

One of the main results by Cheeger–Colding on the limit spaceX (in the collapsing
situation) is the following

THEOREM 23.3 (Cheeger–Colding [29]).µ(S)= 0 for any limit measureµ.

Remark23.4. (1) We remark that Theorem 23.3 impliesµ(X \⋃kRk)= 0, but does not
imply the existence ofk such thatµ(X \Rk)= 0.

(2) In Theorem 23.3 the limit measureµ is used. We do not know how to use the Haus-
dorff measure since it is not known whether the Hausdorff dimension ofX ∈ S̄n(D) is an
integer or not.

Here is some very brief idea how a statement like Theorem 23.3 follows from Theo-
rem 23.1. We want to find many pointsx on X ∈ S̄n(D) such thatTxX is a Euclidean
space. A naive idea to find such a point may be as follows. First we consider a minimal
geodesicxy1 and take an interior point on it and put itx1. Then any tangent coneTx1X con-
tains a line and hence splits asTx1X

∼=R×X1. We may next take a pointx2 nearo∈ Tx1X

which is a midpoint of the minimal geodesic. ThenTx2X1 contains a line and henceTx2X1

splits. This process stops after finitely many stages since we can estimate the dimension
of the tangent cone by the Bishop–Gromov inequality. Thus we find nearx some kind of
‘point’ for which a tangent cone isRk . This argument however is too much naive to prove
Theorem 23.3. So we need to work more seriously. See [29, Section 2]. �

We remark that Theorem 23.3 can be applied also to the collapsing situation. Namely
it can be applied to the limitX of Mi such that Vol(Mi)→ 0. Several other results are
proved by Cheeger–Colding in [29,30]. Nevertheless there are yet many things unclear
in the collapsing situation. (In other words, the result in the collapsing situation does not
seem to be in the final form.) So we do not discuss it here. (We will discuss one of the main
results of [31] later.)

45I am sorry that this terminology is inconsistent with one in Definition 16.4, whereTxX is called tangent cone
whenanysuch sequence(X,RidX,x) converges to(Tx,0). In this section we follow Cheeger–Colding and use
this terminology. In Definition 16.4 we followed Burago–Gromov–Perelman.
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In the noncollapsing case, Cheeger–Colding obtained more precise results. We discuss
some of them here. The following theorem is a generalization of Theorem 22.1. We de-
note by Sn(D,v) the set ofn-dimensional Riemannian manifoldsM with RicciM �
−(n−1), Diam(M)�D, Vol(M)� v. We also denote bySn(∞, v) the set ofn-dimen-
sional pointed Riemannian manifold(M,p) such that RicciM �−(n−1), Vol(Bp(1,M))
� v. Let S̄n(D,v), S̄n(∞, v) be the closure ofSn(D,v), Sn(∞, v) with respect to the
Gromov–Hausdorff distance, the pointed Gromov–Hausdorff distance, respectively.

THEOREM23.4 [29, Theorem 5.9].LetMi ∈Sn(∞, v). We assume thatlimpGH
i→∞(Mi,pi)

= (X,p). Then for anyR we have

lim
i→∞Vol

(
Bpi (R,Mi)

)=Hn
(
Bp(R,X)

)
.

HereHn denotes then-dimensional Hausdorff measure.

COROLLARY 23.5 [29]. If X ∈ S̄n(∞, v) then the Hausdorff dimension ofX is n. More-
over any limit measureµ is equal to a multiple of then-dimensional Hausdorff measure.

Corollary 23.5 follows from Theorem 23.4 easily. We explain an idea of the proof of
Theorem 23.4 later in this section.

THEOREM 23.6 [28, Theorem 5.2].LetX ∈ S̄n(∞, v) andx ∈X. Then any tangent cone
TxX is isometric to a coneCY of some length spaceY of diameter� π .

Remark23.5. This result is a kind of generalization of the corresponding result Theo-
rem 17.16 on Alexandrov spaces. However it is not asserted thatCY is unique. Actually
there is a counter example [29, 8.41]. The conclusion of Theorem 23.6 does not hold in the
collapsing situation [29, 8.95].

To prove Theorem 23.6 we need another kind of comparison theorem, which we will
explain later.

To state the next result we need a definition.

DEFINITION 23.5. LetX ∈ S̄n(∞, v). We say thatx ∈ Rε if every tangent coneTxX
satisfies

dGH
(
B0(1, TxX),B0(1,R

n)
)
< ε.

We putSε =X \Rε .

Remark23.6. (1) Using Theorems 22.5, 23.4, we can prove that there existsδ such that
Vol(Bx(r,X))� (1− δ)Vol(B0(r,Rn)) impliesx ∈Rε . Thus Definition 23.5 is equivalent
to Sδ(X) in Definition 17.7.

(2) We can easily see that ifε′ < ε, thenRε′ is contained in the interior IntRε of Rε .
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(3) In the case ofX ∈ S̄n(∞, v), we can easily showR=Rn. Using it, we can easily
proveS =⋃ε>0Sε , R=⋂ε>0Rε .

The following is an analogue of Theorems 17.2 and 17.22.

THEOREM 23.7 [29, Theorem 5.14].There existsε0(n) such that ifX ∈ S̄n(∞, v) and if
ε < ε0(n), then there exists a smooth Riemannian manifoldZ(ε) and a homeomorphism
Φε :Z(ε)→ IntRε such that

C−1d(x, y)1+τ(ε|n) < d
(
Φε(x),Φε(y)

)
<Cd(x, y)1−τ(ε|n).

Theorem 23.7 actually follows easily from Theorem 22.8. Namely we find, for each
ε′ > ε andx ∈Rε , a positive numberr such thatdGH(Bx(r,X),B0(r,Rn)) < ε′. Therefore
any compact subset of IntRε satisfies conditionRε′,r,n for somer . Theorem 23.7 then
follows from Theorem 22.8. �

We next prove Theorem 23.4. For simplicity of notation we assume thatX is compact.
We first proveHn(S) = 0. Letµ be a limit measure. We remark that there existsC1,C2

such that for 0< r � 1 we have

C1r
n � Vol

(
Bp(r,Mi)

)
� C2r

n, (23.1a)

C1r
n � µ

(
Bp(r,X)

)
� C2r

n. (23.1b)

In fact (23.1a) is a consequence of the Bishop–Gromov inequality and Vol(Mi) � v > 0.
Then (23.1b) follows, sinceµ is a limit measure. By Theorem 23.3 we haveµ(S) = 0.
Therefore by (23.1b) and the definition of Hausdorff measure we haveHn(S)= 0.

It follows that

lim
ε→0

Hn(IntRε)=Hn(X). (23.2)

We can take the disjoint union of finitely many ballsUε =⋃j Byj (rj ,X)⊂Rε such that

Hn(X \Uε) < τ(ε), (23.3a)∣∣∣∣ωn∑
j

rnj −Hn(X)

∣∣∣∣< τ(ε), (23.3b)

dGH
(
Byj (rj ,X),B0(rj ,R

n)
)
< 2εrj , (23.3c)

whereωn = Vol(B0(1,Rn)). Here (23.3c) is a consequence ofyj ⊂Rε . Then, for largei,
we have a disjoint union of ballsUε,i =⋃j Byj,i (rj ,Mi)⊂Mi with

dGH
(
Byj,i (rj ,Mi),B0(rj ,X)

)
< 3εrj . (23.4)
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Therefore, by (23.3b), (23.3c), (23.4), and Theorem 22.5 we have∣∣Hn(Uε)−Vol(Uε,i)
∣∣< τ(ε,1/i|n). (23.5)

We thus proved

Hn(X)� Vol(Mi)+ τ(ε,1/i|n).

To prove the opposite inequality, we take finitely many ballsBza (ta,X) such that

X ⊆
⋃
j

Byj (rj ,X)∪
⋃
j

Bza (ta,X), (23.6a)

∑
j

tna � τ(ε). (23.6b)

Then for largei we findza,i such that

Mi =
⋃
j

Byj,i (rj ,Mi)∪
⋃
j

Bza,i (ta,i ,Mi). (23.7)

Since

Vol

(⋃
j

Bza,i (ta,i ,Mi)

)
<Cnt

n
a ,

it follows that

Vol(Mi \Uε,i)� τ(ε|n). (23.8)

Therefore,Hn(X)� Vol(Mi)− τ(ε,1/i|n), as required. �

We now sketch the proof of Theorem 23.1. We start with the following situation.
(A) M is a Riemannian manifold with RicciM �−λ with smallλ.
(B) We assumedGH(BL(z,M),BL(z

′,X)) < ρ/10 and there is a line containingz′.
(HereL is large.)

(C) Letp,q ∈M with d(p,q)= 2L with largeL.
(D) d(z,pq)� ρ/3, |d(z,p)−L|� ρ/3, |d(z, q)−L|� ρ/3.
HereM =Mi , whereMi is as in Theorem 23.1 for largei. Such pair of pointsp,q

exists because of (B).
We want to find a length spaceX′ such thatBz(R,M) is close to aD ball B(x′,0)×

(R,R×X′) in R×X′ with respect to the Hausdorff distance. (Here 1-R- L.)
We use the following function which is an approximation of the Busemann function:

b+(x)= d(p,x)− d(p, z), b−(x)= d(q, x)− d(q, z). (23.9)
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The argument to control them is similar to the proof of Proposition 22.7. However our
problem is a bit different from the situation of Proposition 22.7 where Hausdorff approx-
imation is given by assumption. Our situation is similar to Theorem 22.5(1), where we
use another assumption (which was the almost maximality of the volume in case of Theo-
rem 22.5(1)) to find Hausdorff approximation. In our case, we use the following theorem
by Abresch–Gromoll to obtain some information onb± and improve it by using a similar
argument as in the proof of Proposition 22.7. To state the result by Abresch–Gromoll we
need a notation.

DEFINITION 23.6. Forx,p, q ∈M , anexcessE(x;p,q) is by definition

E(x;p,q)= d(x,p)+ d(x, q)− d(p,q).

THEOREM23.8 (Abresch–Gromoll [2]).If RicciM �−(n−1)λ, d(z,p)� L, d(z, q)� L

and ifE(z;p,q) < ρ, then

E(x;p,q) < τ(ρ,λ,1/L|n,R)

for anyx ∈ Bz(R,M).

Remark23.7. Abresch–Gromoll stated Theorem 23.8 in the caseE(z;p,q)= ρ namely
the casez ∈ pq. The above form is a modification by Cheeger–Colding [28, Proposi-
tion 6.2]. ([26, Theorem 9.1].)

Remark23.8. Abresch–Gromoll used Theorem 23.8 to show the following Theorem 23.9.
It seems that Theorem 23.8 is the first comparison theorem established assuming conditions
on Ricci curvature only.

For a length spaceM andB ⊂A⊆M we denote by Diam(B ⊂A) the following number

sup
p,q∈B

{the length of the shortest curve joiningp andq in A}.

THEOREM 23.9 (Abresch–Gromoll [2]).If M is a complete manifold withRicciM � 0,
infKM >−∞, and

Diam
(
Sp(3R,M)⊆Ap(2R,4R;M)

)
� C/R,

thenM is homotopy equivalent to an interior of a compact manifold with boundary.

Theorem 23.9 is proved by Theorem 23.8 and Morse theory of the distance function in
a way similar to Theorem 14.6.

Let us go back to the discussion of the proof of Theorem 23.1. Theorem 23.8 andb+ +
b− =E(x;p,q)−E(z;p,q) imply

−ρ � b+ + b− � τ
(
L−1, ρ,λ|R,n). (23.10)
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Using the fact thatb± is “almost subharmonic” we have the following formula (23.12). We
defineb+ :Bz(R,M)→R by

�b+ = 0, (23.11a)

b+ = b+ on ∂Bz(R,M). (23.11b)

Then, we can prove

‖b+ − b+‖L2
1(Bz(R,M))

� τ
(
L−1, ρ,λ|R,n). (23.12)

(Here the right-hand side will become small by takingL large,λ,ρ small.)
We now consider the Bochner formula

1

2
�
(|∇b+|

)= |Hessb+|2 +Ricci(∇b+,∇b+). (23.13)

We remark|∇b+| = 1. Hence using (23.12) the integral of the left-hand side of (23.13) is
small. Since RicciM �−(n− 1)λ it follows from (23.13)∫

Bz(R,M)

|Hessb+|� τ
(
L−1, ρ,λ|R,n), (23.14)∫

Bz(R,M)

(|∇b+| − 1
)
� τ
(
L−1, ρ,λ|R,n). (23.15)

We putX′ = b−1+ (0). Now we will use (23.14), (23.15) to show thatBx(R,M) is close to
aR ball inX′ ×R with respect to the Gromov–Hausdorff distance as follows.

Let us takey, z ∈ Bx(R,M). Let y0, z0 ∈X′ such that

d(y, y0)= d(y,X′), d(z, z0)= d(z,X′).

We will prove∣∣d(y, z)2 − d(y0, z0)
2 − (b+(y)− b+(z)

)2∣∣� τ
(
L−1, ρ,λ|R,n). (23.16)

(23.16) obviously implies thaty 	→ (y0,b+(y)) :Bx(R,M) → B(x,0)(R,X
′ × R) is a

Hausdorff approximation and hence

dGH
(
Bx(R,M),B(x,0)(R,X

′ ×R)
)
� τ
(
L−1, ρ,λ|R,n),

which is enough to complete the proof of Theorem 23.1.
Let us sketch the proof of (23.16). For simplicity we takeb+(z)= 0 andz= z0.
Let � : [0, l]→M be a minimal geodesic joiningy0 to y. We putQ(t)= d(�(t), z). Let

γt : [0,Q(t)]→M be a minimal geodesic joiningz to �(t). (See Figure 23.1.)
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Fig. 23.1.

We putht (s)= b+(γt (s)). We remark that

d2ht

ds2
(s)= (Hessb+)

(
γ̇t (s), γ̇t (s)

)- 1. (23.17)

On the other handht (Q(t))= b+(γ (t)) is almost equal tot .46 Hence∥∥∥∥dhtds (s)− t

Q(t)

∥∥∥∥- 1. (23.18)

(Here we remark that (23.17), (23.18) do not hold pointwise but only after integrating over
some domain. We omit the technical difficulty which arises from this point.) By the first
variational formula, we have

dht

ds
(s)= 〈γ̇t (s),∇b+

〉 .= cos� y0γ (t)z= dQ

dt
(t). (23.19)

(Here and hereafter
.= means “almost” equal.)

HenceQ(t) “almost” satisfies the following differential equation:

dQ

dt

.= t

Q(t)
. (23.20)

The solution of (23.20) with initial valueQ(0) = d(y0, z) is Q(t) = √d(y0, z)2 + t2.
Hence att = b+(y) we have (23.16) withz = z0. (See [26, Chapter 9] or [28, Section 6]
for the details of the proof.) �

Here we say a few words about the proof of Remark 23.1. In this situation we can take
not onlyp,q but alsopi, qi , i = 1, . . . , k. Namelyp,q are points close to the line onY and
pi, qi are taken as points close to the point on the coordinate axis ofRk . Using them we

46We can find(d2/dt2)(b+ ◦ γ ) is small in the same way as (23.17). Moreover(d2/dt2)(b+ ◦ γ )(0) is close
to 1 by definition and (23.15).
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obtainb+ together withbi+, i = 1, . . . , k. They all satisfy (23.14), (23.15). Moreover we

have〈∇bi+,∇bj+〉 .= δij whereb0+ = b+. We defineΦ :X→ Rk+1 byΦ = (b0+, . . . ,bk+).
Using it we can construct a pointed Hausdorff approximationX→Φ−1(0)×Rk in a way
similar to the proof of Theorem 23.1. See [29, pp. 425–426], where similar arguments
appears. �

In Section 20 we reviewed several results obtained by theL2 comparison theorem where
we compared a manifold with round sphere. In Section 22 we usedL2 comparison theorem
where the model space was flat Euclidean space. In the proof Theorem 23.1, we compared
a manifold with direct productR × X′. In [28], Cheeger–Colding developed a compari-
son theorem where the model space is a warped product (hereafter we call it the warped
product comparison theorem) and gave various applications. We first review some of its
applications.

One of its applications is Theorem 22.5(1). The following is closely related to it. (Theo-
rem 22.5(1) corresponds to the case whenY = Sn−1.) Cheeger–Colding called this theorem
‘volume cone implies metric cone theorem’.

THEOREM 23.10 (Cheeger–Colding [28]).For eachε there existsδ = δ(ε, n) with the
following property. Let M be an n-dimensional Riemannian manifold withRicciM �
−δ(n− 1). We assume

Vol(Bp(1,M))

Vol(Sp(1,M))
� (1+ δ)Vol(B0(1,Rn))

Vol(S0(1,Rn))
.

Then there exists a length spaceY with Diam(Y )� π such that

dGH
(
Bp(1,M),B0(1,CY )

)
� ε.

We remark thatCY = ([0,∞)× Y)/∼ where(0, x)∼ (0, y) with metric defined in Defi-
nition 17.2.

Another application of the warped product comparison theorem is Theorem 23.11. To
state it we define a warped product.

DEFINITION 23.7. Let (X,gX) be a Riemannian manifold andf : (a, b)→ R+ be a
smooth function. Then thewarped product(a, b)×f X is by definition a product(a, b)×X
equipped with the metricdr2 ⊕ f (r)2gX, wherer is the coordinate of the interval(a, b).

We need to define the warped product for general length space also. LetX be a length
space andf : (a, b)→ R+ be a smooth function. Let� : [α,β] → (a, b) × X be a path
which is, say, Lipschitz continuous. We put�(t)= (r(t), �X(t)). We may change the para-
meter so that�X(t) : [α,β]→X is parameterized by arc length. We then define the length
L(�) of � : [α,β] ×f X by

L(�)=
∫ β

α

√(
(dr/dt)(t)

)2 + f (r(t))2dt.
We thus defined the length space(a, b)×f X.
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EXAMPLE 23.1. (1) The simplest case isf ≡ 1. Then the warped product is the direct
product.

(2) If (a, b) = (0,∞) andf (r) = r , then the warped product(0,∞)×r X is the cone
CX minus 0. If moreoverX = Sn−1 then it isRn \ {0}.

(3) We take(a, b)= (0,π) andf (r)= sinr . In this case the warped product(0,π)×sinr
X is called themetric suspensionSX. In particular the metric suspensionSSn−1 of a round
sphereSn−1 is the round sphereSn.

THEOREM23.11 [28, Theorem 5.14].If RicciM � (n−1), dimM = n and ifDiam(M)�
π − ε then there exists a length spaceX such thatdGH(M,SX) < τ(ε|n).

Remark23.9. It is not true in general thatM is homeomorphic (or homotopy equivalent
to) SX. The counter examples are the ones by Anderson and Otsu we mentioned already.

There are several other applications, for example, to the study of the cone at infinity. We
omit it.

We now explain the idea of the proofs of these theorems. The main idea is to use the
warped product comparison theorem. To state it we need some preliminary discussion.
We begin with a characterization of a warped product. Letf : (a, b)→ R+ be a smooth
function, we put

F(r)=
∫ r

a

f (t) dt, k(r)= df

dr
(r). (23.21)

LEMMA 23.12. LetX be a Riemannian manifold andM = (a, b)×f X. Then we have

Hess(F)= k(r)gM. (23.22)

EXAMPLE 23.2. (1) In caseM =R×1X the direct product.F is linear andk = 0.
(2) In caseM = Rn = CX \ 0 = (0,∞) ×r X, we haveF = r2/2 andk(r) = 1. If

X = Sn−1,M =Rn thenF(x1, . . . , xn)= 1
2(x

2
1 + · · · + x2

n) and (23.22) is obvious.
(3) In caseM = (0,π) ×sinr S

n−1 we haveF(r) = −k(r) = cosr . Formula (23.22)
is (21.17).

Let us prove Lemma 23.12. We put∂r = ∂/∂r . Hess(F)(∂r , ∂r ) = k is obvious since
t 	→ (t,p) is a geodesic. LetV be a vector filed ofX, which we regard a vector field onM .
We have[V,∂r ] = 0. SincegM(V,V )= f 2gX(V,V ) it follows that

−gM(∂r ,∇V V )= gM(∇V ∂r ,V )= gM(∇∂r V ,V )= f kgX(V,V ).

On the other hand,V (F)= 0, ∂r (F)= f . Therefore

Hess(F)(V ,V )=−(∇V V )(F)= f 2kgX(V,V )= kgM(V,V ),

as required. �
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The warped product comparison theorem is an ‘almost version’ of the following con-
verse to Lemma 23.12.

PROPOSITION23.13. If M is a Riemannian manifoldF :M → (α,β) is a fiber bundle.
Suppose that there exists a function whichk :M→R such that

Hessx(F)= k(x)gM. (23.23)

We putX = {x ∈M | F(p) = F(x)}. Then there exists a functionf : (a, b)→ R+ such
that

M ∼= (a, b)×f X (isometry), (23.24a)

F(x)=
∫ r(x)

r(p)

f (t) dt, (23.24b)

k(x)= df

dr

(
r(x)

)
. (23.24c)

Herer :M ∼= (a, b)×f X→ (a, b) is the projection to the first factor.

We now state the warped product comparison theorem. LetM be a complete Riemannian
manifold andK be a compact subset. We put

r(x)= d(x,K)= inf
{
y ∈K | d(x, y)}, (23.25a)

AK(a, b,M)=
{
x ∈M | a < r(x) < b}. (23.25b)

Let f : (a, b)→ R+ be a smooth function and we defineF(r) andk(r) as in (23.21). We
regardr as a function onAK(a, b,M) thenF andk are functions onAK(a, b,M) as well.
The following assumptions are a generalization of similar formulae we met several times
already. For example, (23.14), (23.14) wherek(r)= 0, and (21.17) wherek(r)= cosr .

ASSUMPTION23.1. There exists̃F :AK(a, b,M)→ (a, b) such that

sup|F̃ −F |� ε, (23.26a)

1

Vol(AK(a, b,M))

∫
AK(a,b,M)

|∇F̃ −∇F |� ε, (23.26b)

1

Vol(AK(a, b,M))

∫
AK(a,b,M)

|HessF̃ − kgM |� ε. (23.26c)

Theorem 23.14 asserts under Assumption 23.1 plus some more (which will follow), that
AK(a, b,M) is Gromov–Hausdorff close to some warped product(a, b)×f X.

ASSUMPTION23.2. M is ann-dimensional complete Riemannian manifold withKM �
−Λ. Diam(AK(a, b,M))�D. 0< α′ < α, 0< ξ < α − α′.
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For eachx ∈ r−1(a + α′) there existsy ∈ r−1(b− α′) such that

d ′(x, y)� b− a − 2α′ + ε. (23.27)

THEOREM 23.14 (Cheeger–Colding [28, Theorem 3.6]).Under Assumptions23.1 and
23.2, there exists a length spaceX such that

dGH
((
AK(a + α,b− α,M),d ′

)
, (a + α,b− α)×f X

)
� τ(ε|α′, ξ, n,f,D).

Remark23.10. In Assumption 23.2 and Theorem 23.14 we use the symbold ′ for the met-
ric of subsets ofM . Note that the spaceAK(a, b,M) is not complete. So when we define
the metric functiond :AK(a, b,M)×AK(a, b,M)→R using the Riemannian metric, we
need to be a bit careful. Namely forp,q ∈ AK(a, b,M) we need to take the infimum of
the length of the curves joining them in a slightly larger domain. The metricd ′ stands for
such a metric. We do not define it since it is too technical. See [28, pp. 205–206].

Let us explain the idea of the proof of Theorem 23.14. Actually the idea is quite similar
to one of the proof of (23.16) we discussed already.

We takeX = r−1(a + α). To define a metric on it we consider a broken geodesic on
a small neighborhood and take the infimum of the length of them. Now we construct the
Hausdorff approximationΦ :AK(a + α,b− α,M)→ (a + α,b − α) ×f X. Let y, z ∈
AK(a + α,b− α,M). We takey0, z0 ∈X so thatd(y, y0)= d(y,X), d(z, z0)= d(z,X).
We remarkr(x)= d(x,X)− a − α′. We put

Φ(y)= (r(y), y0
)
,

and will prove thatΦ is a Hausdorff approximation.
We assumez0 = z for simplicity. Let � : [0, l] →M be a minimal geodesic joiningy0

to y. We putQ(t) = d(�(t), z). Let γt : [0,Q(t)] →M be a minimal geodesic joiningz
to �(t).

Actually there is a technical trouble here. Namely sinceAK(a + α,b− α,M) is not
complete, we may not be able to takeγt . By this reason, we need to take a broken geodesic.
(See Figure 23.2.) However since this is a technical point, we forget it and assume that we
can takeγt .

We putht (s)= F̃(γt (s)). By (23.26),ht ‘almost’ satisfies the differential equation

d2ht

ds2
(s)

.=H (ht (s)), (23.28)

whereH(c) = k(F̃−1(c)). We remark that (23.28) is an ordinary differential equation of
second order and hence has unique solution under an appropriate boundary condition. Note
thatht (0)

.= F(a + α), ht (Q(t)) = F(t + a + α). Thusht is determined byQ(t). (Pre-
cisely we have to say thatht is ‘almost’ determined byQ(t) since (23.28) is only ‘almost’
satisfied.) Moreover we have

dht

ds

(
Q(t)

) .= dQ

dt
(t) (23.29)



304 K. Fukaya

Fig. 23.2.

by the same reason as (23.19). Thus, (23.29) becomes a differential equation of first order
onQ and is determined byf . We remark thatQ satisfies an initial value conditionQ(0)=
d(z, y0). Therefore, the value ofQ at t = r(y)− a − α is determined by this equation and
the initial valued(z, y0). (Precisely speaking, we can only say the value ofQ is almost
determined.) By definitionQ(r(y) − a − α) = d(y, z). Since it is almost determined by
d(z, y0) andr(y) andr(z) (which we assumed to be zero for simplicity), it follows thatΦ

‘almost’ preserves the length.
The fact that a small neighborhood of the image ofΦ contains(a + α,b − α) ×f X

follows from (23.27). This is a sketch of the proof of Theorem 23.14. �

We now discuss applications of Theorem 23.14.
We first show how we can use Theorem 23.14 to prove Theorem 22.5(1). Let us assume

Vol(Bp(1,M))� Vol(B0(1,Rn))− ε and RicciM �−λ. We putf (t)= t . Thenk(t)≡ 1,
F(t)= t2/2. We need to check Assumptions 23.1, 23.2. Putr(x)= d(x,p). We calculate

(2− n)
∫
Sp(R,M)

r1−n =
∫
Sp(R,M)

gradr2−n · dn=
∫
Bp(R,M)

�r2−n. (23.30)

Since Vol(Bp(1,M))� Vol(B0(1,Rn))−ε it follows from Lemma 21.1 that
∫
Sp(R,M)

r1−n
= cnVol(Sp(R,M))/Vol(S0(R,Rn)) is almost independent ofR. Hence (23.30) im-
plies

∫
Bp(R,M)\Bp(δ,M) �r

2−n is small. Namelyr2−n is almost a harmonic function on

Bp(R,M) \Bp(δ,M). (We remark thatr2−n is harmonic onRn.) Then we have

�r2−n = (2− n)div
(
r1−n gradr

)= (2− n)r1−n�r + (2− n)(1− n)r−n.
Hence

�r
.= (n− 1)r−1. (23.31)
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And hence

�r2 = 2 div(r gradr)= 2+ 2r�r
.= 2n. (23.32)

We now apply (21.16) tor2/2=F and obtain

n
.= 1

2
�r2 .= |HessF |2 + r2 Ricci(∇r,∇r). (23.33)

Since RicciM �−λ it follows from (23.33) and (23.32) that

HessF .= gM.
Hence if F̃ is an harmonic function which approximatesF we can check Assump-
tions 23.1, 23.2. Therefore Theorem 23.14 implies that there existsX such that

dGH
((
Ap(2δ,1− 2δ,M), d ′

)
, (2δ,1− 2δ)×r X

)
� τ(ε|δ,λ,n).

To complete the proof it suffices to show thatX is close toSn−1 with respect to the
Gromov–Hausdorff distance. We can do it by looking at the proof of Theorem 23.14 in
our case a bit more carefully. Alternatively we can proceed as follows. Takeρ- 1, with
δ - ρn. By the assumption and the Bishop–Gromov inequality we can findp1, q1 such
that 2d(p,p1)= 2d(p,q1)= d(p1, q1). We use it in the same way as in the proof of The-
orem 23.1 to findV1 ⊃ Bp(ρ,M) such thatdGH(V1, [−ρ,ρ]×X1)� ρτ(ε,λ|n). We then
take pointsp2, q2 in a neighborhood ofX1 such that 2d(p2,p)

.= 2d(q2,p)
.= d(p2, q2).

Then we use it in the same way as in the proof of Remark 23.1 to findV2 ⊃ Bp(ρ
2,M)

such thatdGH(V2, [−ρ,ρ]2 × X2) � ρ2τ(ε, λ|n). Repeating thisn times, we obtain
Vn ⊃ Bp(ρ

n,M) such thatdGH(Vn, [−ρ,ρ]n) � ρnτ(ε,λ|n). Sinceδ - ρn it then fol-
lows thatdGH(X,S

n−1)� τ(ε, λ|n). This implies Theorem 22.5(1). �

The proof of Theorem 23.10 is similar to the first half of the proof of Theorem 22.5(1)
and is omitted. �

We next explain the proof of Theorem 23.11. Let RicciM � (n− 1) andp,q ∈M with
d(p,q)� π − ε. Putf (r)= sinr , r(x)= d(x,p), F(r)=−k(r)=−cosr . By (the proof
of) Theorem 21.9 (see (21.17); we remark thatf there is ourF ),

Hess(F) .= k(r)gM.
In this way we can check Assumption 23.1. Assumption 23.2 follows from the Bishop–
Gromov inequality in this case. We thus can apply Theorem 23.14 and prove Theo-
rem 23.11. �

We next explain the idea of the proof of Theorem 23.6. Let((X,dX), x) =
limpGH

i→∞(Mi, xi) with (Mi, xi) ∈ Sn(∞, v). We suppose that a tangent coneTxX =
limpGH

i→∞((X, ridX), x) is not a cone.
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Then there existδ,R,ρ (and a subsequence ofri which we denote by the same symbols)
such that

dGH
(
Ax
(
δ,R; (X, ridX)

)
,Ao(δ,R;CY)

)
> ρ

for a coneCY . We can takeji →∞ such that

dGH
(
Axji

(
δ,R; (Mji , rigMji

)
)
,Ao(δ,R;CY)

)
> ρ/2 (23.34)

for a coneCY . We now claim that

Vol(Sxji+1
(δ/ri+1, (Mji+1, gMji+1

)))

Vol(S0(δ/ri+1,Rn))

> (1+ ε)Vol(Sxji (R/ri, (Mji , gMji
)))

Vol(S0(R/ri,Rn))
(23.35)

for ε independent ofi. In fact, if (23.35) does not hold, then we can apply the argument
of the first half of the proof of Theorem 22.5(1) toAxji (δ,R; (Mji , rigMji

)) and using
Theorem 23.14, we can show that (23.34) does not hold.

Now it is easy to deduce a contradiction from (23.35). By taking a subsequence we may
assume thatδ/ri > R/ri+1. Then (23.35) and the Bishop–Gromov inequality implies that

Vol(Sxji (R/ri, (Mji , gMji
)))

Vol(S0(R/ri,Rn))

> (1+ ε)i−1
Vol(Sxj1 (R/r1, (Mj1, gMj1

)))

Vol(S0(R/r1,Rn))
. (23.36)

This is a contradiction since the left-hand side is bounded asi→∞. �

In [31], Cheeger–Colding studied a convergence of the eigenvalue of the Laplace oper-
ator using the results explained so far. We state their result (without outline of the proof)
here.

We start with a simple example to illustrate that the measured Hausdorff convergence
is related to the eigenvalue of the Laplace operator. Let us considerT 2 = S1 × S2 with
Riemannian metricgfε = dt2 + ε2f (t)2ds2. Heref :S1 → R+. We assume

∫
f dt = 1.

As we mentioned before the limit of(T 2, g
f
ε ) with respect to the measured Hausdorff

topology isS1 with standard metric and measuref dt . The Dirichlet integral on(T 2, g
f
ε ) is

D(h,h)= ε
∫
f (t)

((
dh

dt

)2

+ 1

εf (t)

(
dh

ds

)2)
dt ds.

In case we consider the eigenvalues of the Laplacian which stay bounded asε → 0, it
suffices to considerh which is constant along thes direction. Hence we are to consider the
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bilinear form onL2(S1) defined by

D(h,h)=
∫
f (t)

(
dh

dt

)2

dt.

In [54] the author proved that a similar phenomenon occurs in the situation we discussed
in Section 11. Cheeger–Colding generalized it much and proved the following Theo-
rem 23.15.

THEOREM 23.15 [31, Theorem 7.9].Let Mi ∈ Sn(D). We assume that it converges to
(X,µ) with respect to the measured Hausdorff topology. Then there exists a(unbounded)
symmetric bilinear formD on L2(X,µ) with discrete spectrumλ0(D) = 0< λ1(D) �
λ2(D)� · · · such thatkth eigenvalueλk(−�Mi

) of the Laplace operator(on functions) on
Mi converges toλk(D).

Remark 23.11. (1) In case the multiplicity of eigenvalueλk(D) is m then we put
λk(D)= · · · = λk+m−1(D).

(2) The eigenfunction of−�Mi
converges to the eigenfunctions ofD in an appropriate

sense.

We finally remark that the study of limits of Einstein manifolds (or manifolds with in-
tegral bounds of the curvature tensor) we discussed in Section 20 is improved by [32,27],
etc. Here we restrict ourselves to quote the following Theorems 23.16, 23.17. LetMi be
a sequence ofn-dimensional Riemannian manifolds. We consider the following integral
bounds of the curvature forpi ∈Mi :∫

Bpi (1,Mi)

|RMi
|pΩMi

< C, (23.37)

whereC is independent ofi. LetS , Sk be as in Definitions 23.4.Hm is them-dimensional
Hausdorff measure.

We sayx ∈ S is (n − 4k)-nonexceptionalif there exists a tangent coneTxX which is
not isometric toRn−4k ×C(S4k−1/Γ ) whereΓ ⊂O(4k) is a finite group acting freely on
S4k−1. Otherwisex is said to be(n− 4k)-exceptional. LetNn−4k ⊂ Sn−4k be the set of all
(n− 4k)-nonexceptional points.

THEOREM 23.16 ([32, Theorems 1.15, 1.20], [27, Theorem 6.10]).LetMi ∈ Sn(∞, v)

and limpGH
i→∞(Mi,pi)= (X,p). We assume(23.37) for 1� p � n/2= dimMi/2:

(1) If p is not an integer thenHn−2p(S)= 0.
(2) The Hausdorff dimension ofS is not greater thann− 2p.
(3) If p = 2, thenHn−4(Nn−4)= 0.
(4) If Mi are Kähler andp is an integer, thenHn−2p(S ∩Bp(R,X)) <∞ for anyR.

We remark that in casen = 2 and the manifoldsMi are Einstein, Theorem 23.16(3) is
Theorem 20.4.
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THEOREM 23.17 [27, Theorem 11.1].In the situation of Theorem23.16 we have
(1) If p = 1, then compact subsets ofS are (n− 2) rectifiable.
(2) If eitherp = 2k is an even integer, thenNn−4k ∩Bp(R,X) are (n− 4k)-rectifiable.
(3) Mi are Kähler andp is integer, thenS ∩Bp(R,X) are (n− 2p)-rectifiable.

We remark that as in 4-dimensional case, ifp = 2 and theMi are Einstein, the con-
dition (23.37) can be written in terms of characteristic classes and hence is a topological
one.

These results are parallel to the corresponding results in (higher-dimensional) gauge
theory [105,146].
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1. Introduction

Over the past two decades, contact geometry has undergone a veritable metamorphosis:
once the ugly duckling known as ‘the odd-dimensional analogue of symplectic geometry’,
it has now evolved into a proud field of study in its own right. As is typical for a period
of rapid development in an area of mathematics, there are a fair number of folklore results
that every mathematician working in the area knows, but no references that make these
results accessible to the novice. I therefore take the present article as an opportunity to take
stock of some of that folklore.

There are many excellent surveys covering specific aspects of contact geometry (e.g.,
classification questions in dimension 3, dynamics of the Reeb vector field, various notions
of symplectic fillability, transverse and Legendrian knots and links). All these topics de-
serve to be included in a comprehensive survey, but an attempt to do so here would have
left this article in the ‘to appear’ limbo for much too long.

Thus, instead of adding yet another survey, my plan here is to cover in detail some of
the more fundamental differential topological aspects of contact geometry. In doing so,
I have not tried to hide my own idiosyncrasies and preoccupations. Owing to a relatively
leisurely pace and constraints of the present format, I have not been able to cover quite as
much material as I should have wished. Nonetheless, I hope that the reader of the present
handbook chapter will be better prepared to study some of the surveys I alluded to—a guide
to these surveys will be provided—and from there to move on to the original literature.

A book chapter with comparable aims is Chapter 8 in [1]. It seemed opportune to be
brief on topics that are covered extensively there, even if it is done at the cost of leaving
out some essential issues. I hope to return to the material of the present chapter in a yet to
be written more comprehensive monograph.

2. Contact manifolds

LetM be a differential manifold andξ ⊂ TM a field of hyperplanes onM . Locally such
a hyperplane field can always be written as the kernel of a non-vanishing 1-formα. One
way to see this is to choose an auxiliary Riemannian metricg onM and then to define
α = g(X, .), whereX is a local non-zero section of the line bundleξ⊥ (the orthogonal
complement ofξ in TM). We see that the existence of a globally defined 1-formα with
ξ = kerα is equivalent to the orientability (hence triviality) ofξ⊥, i.e. the coorientability
of ξ . Except for an example below, I shall always assume this condition.

If α satisfies the Frobenius integrability condition

α ∧ dα = 0,

thenξ is an integrable hyperplane field (and vice versa), and its integral submanifolds form
a codimension 1 foliation ofM . Equivalently, this integrability condition can be written as

X,Y ∈ ξ &⇒ [X,Y ] ∈ ξ.
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An integrable hyperplane field is locally of the formdz= 0, wherez is a coordinate func-
tion onM . Much is known, too, about the global topology of foliations, cf. [100].

Contact structures are in a certain sense the exact opposite of integrable hyperplane
fields.

DEFINITION 2.1. LetM be a manifold of odd dimension 2n+ 1. A contact structureis a
maximally non-integrable hyperplane fieldξ = kerα ⊂ TM , that is, the defining 1-formα
is required to satisfy

α ∧ (dα)n �= 0

(meaning that it vanishes nowhere). Such a 1-formα is called acontact form. The pair
(M, ξ) is called acontact manifold.

REMARK 2.2. Observe that in this caseα ∧ (dα)n is a volume form onM ; in particular,
M needs to be orientable. The conditionα ∧ (dα)n �= 0 is independent of the specific
choice ofα and thus is indeed a property ofξ = kerα: Any other 1-form defining the same
hyperplane field must be of the formλα for some smooth functionλ :M → R \ {0}, and
we have

(λα)∧ (d(λα))n = λα ∧ (λdα+ dλ∧ α)n = λn+1α ∧ (dα)n �= 0.

We see that ifn is odd, the sign of this volume form depends only onξ , not the choice
of α. This makes it possible, given an orientation ofM , to speak ofpositiveandnegative
contact structures.

REMARK 2.3. An equivalent formulation of the contact condition is that we have
(dα)n|ξ �= 0. In particular, for every pointp ∈M , the 2n-dimensional subspaceξp ⊂ TpM
is a vector space on whichdα defines a skew-symmetric form of maximal rank, that is,
(ξp, dα|ξp ) is a symplecticvector space. A consequence of this fact is that there exists a
complex bundle structureJ : ξ → ξ compatible withdα (see [92, Proposition 2.63]), i.e.
a bundle endomorphism satisfying
• J 2 =−idξ ,
• dα(JX,JY )= dα(X,Y ) for all X,Y ∈ ξ ,
• dα(X,JX) > 0 for 0 �=X ∈ ξ .

REMARK 2.4. The name ‘contact structure’ has its origins in the fact that one of the first
historical sources of contact manifolds are the so-called spaces of contact elements (which
in fact have to do with ‘contact’ in the differential geometric sense), see [7] and [45].

In the 3-dimensional case the contact condition can also be formulated as

X,Y ∈ ξ linearly independent &⇒ [X,Y ] /∈ ξ ;
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this follows immediately from the equation

dα(X,Y )=X(α(Y ))− Y (α(X))− α([X,Y ])
and the fact that the contact condition (in dimension 3) may be written asdα|ξ �= 0.

In the present article I shall take it for granted that contact structures are worthwhile
objects of study. As I hope to illustrate, this is fully justified by the beautiful mathemat-
ics to which they have given rise. For an apology of contact structures in terms of their
origin (with hindsight) in physics and the multifarious connections with other areas of
mathematics I refer the reader to the historical surveys [87] and [45]. Contact structures
may also be justified on the grounds that they are generic objects: A generic 1-formα on
an odd-dimensional manifold satisfies the contact condition outside a smooth hypersur-
face, see [89]. Similarly, a generic 1-formα on a 2n-dimensional manifold satisfies the
conditionα ∧ (dα)n−1 �= 0 outside a submanifold of codimension 3; such ‘even-contact
manifolds’ have been studied in [51], for instance, but on the whole their theory is not as
rich or well motivated as that of contact structures.

DEFINITION 2.5. Associated with a contact formα one has the so-calledReeb vector
fieldRα , defined by the equations

(i) dα(Rα, .)≡ 0,
(ii) α(Rα)≡ 1.

As a skew-symmetric form of maximal rank 2n, the formdα|TpM has a 1-dimensional
kernel for eachp ∈M2n+1. Hence equation (i) defines a unique line field〈Rα〉 onM . The
contact conditionα ∧ (dα)n �= 0 implies thatα is non-trivial on that line field, so a global
vector field is defined by the additional normalisation condition (ii).

2.1. Contact manifolds and their submanifolds

We begin with some examples of contact manifolds; the simple verification that the listed
1-forms are contact forms is left to the reader.

EXAMPLE 2.6. OnR2n+1 with Cartesian coordinates(x1, y1, . . . , xn, yn, z), the 1-form

α1 = dz+
n∑
j=1

xj dyj

is a contact form.

EXAMPLE 2.7. On R2n+1 with polar coordinates(rj , ϕj ) for the (xj , yj )-plane, j =
1, . . . , n, the 1-form

α2 = dz+
n∑
j=1

r2
j dϕj = dz+

n∑
j=1

(xj dyj − yj dxj )

is a contact form.
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Fig. 1. The contact structure ker(dz+ x dy).

DEFINITION 2.8. Two contact manifolds(M1, ξ1) and(M2, ξ2) are calledcontactomor-
phic if there is a diffeomorphismf :M1 → M2 with Tf (ξ1) = ξ2, whereTf :TM1 →
TM2 denotes the differential off . If ξi = kerαi , i = 1,2, this is equivalent to the exis-
tence of a nowhere zero functionλ :M1 →R such thatf ∗α2 = λα1.

EXAMPLE 2.9. The contact manifolds(R2n+1, ξi = kerαi), i = 1,2, from the preceding
examples are contactomorphic. An explicit contactomorphismf with f ∗α2 = α1 is given
by

f (x, y, z)= ((x + y)/2, (y − x)/2, z+ xy/2),
where x and y stand for (x1, . . . , xn) and (y1, . . . , yn), respectively, andxy stands
for
∑

j xj yj . Similarly, both these contact structures are contactomorphic to ker(dz −∑
j yj dxj ). Any of these contact structures is called thestandard contact structure on

R2n+1.

EXAMPLE 2.10. Thestandard contact structure on the unit sphereS2n+1 in R2n+2 (with
Cartesian coordinates(x1, y1, . . . , xn+1, yn+1)) is defined by the contact form

α0 =
n+1∑
j=1

(xj dyj − yj dxj ).

With r denoting the radial coordinate onR2n+2 (that is,r2 =∑j (x
2
j + y2

j )) one checks

easily thatα0∧ (dα0)
n∧ r dr �= 0 for r �= 0. SinceS2n+1 is a level surface ofr (or r2), this

verifies the contact condition.
Alternatively, one may regardS2n+1 as the unit sphere inCn+1 with complex structureJ

(corresponding to complex coordinateszj = xj + iyj , j = 1, . . . , n+ 1). Thenξ0 = kerα0
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defines at each pointp ∈ S2n+1 the complex (i.e.J -invariant) subspace ofTpS2n+1, that
is,

ξ0 = T S2n+1 ∩ J (T S2n+1).
This follows from the observation thatα =−r dr ◦J . The hermitian formdα(., J.) onξ0 is
called theLevi formof the hypersurfaceS2n+1 ⊂Cn+1. The contact condition forξ corre-
sponds to the positive definiteness of that Levi form, or what in complex analysis is called
thestrict pseudoconvexityof the hypersurface. For more on the question of pseudoconvex-
ity from the contact geometric viewpoint see [1, Section 8.2]. Beware that the ‘complex
structure’ in their Proposition 8.14 is not required to be integrable, i.e. constitutes what is
more commonly referred to as an ‘almost complex structure’.

DEFINITION 2.11. Let(V ,ω) be asymplectic manifoldof dimension 2n+ 2, that is,ω is
a closed (dω= 0) and non-degenerate (ωn+1 �= 0) 2-form onV . A vector fieldX is called
aLiouville vector fieldif LXω= ω, whereL denotes the Lie derivative.

With the help of Cartan’s formulaLX = d ◦ iX + iX ◦ d this may be rewritten as
d(iXω)= ω. Then the 1-formα = iXω defines a contact form on any hypersurfaceM
in V transverse toX. Indeed,

α ∧ (dα)n = iXω ∧ (d(iXω))n = iXω ∧ωn = 1

n+ 1
iX
(
ωn+1),

which is a volume form onM ⊂ V providedM is transverse toX.

EXAMPLE 2.12. WithV = R2n+2, symplectic formω =∑j dxj ∧ dyj , and Liouville
vector fieldX =∑j (xj ∂xj +yj ∂yj )/2= r ∂r/2, we recover the standard contact structure

onS2n+1.

For finer issues relating to hypersurfaces in symplectic manifolds transverse to a Liou-
ville vector field I refer the reader to [1, Section 8.2].

Here is a further useful example of contactomorphic manifolds.

PROPOSITION2.13. For any pointp ∈ S2n+1, the manifold(S2n+1 \ {p}, ξ0) is contacto-
morphic to(R2n+1, ξ2).

PROOF. The contact manifold(S2n+1, ξ0) is a homogeneous space under the natural
U(n+ 1)-action, so we are free to choosep = (0, . . . ,0,−1). Stereographic projection
from p does almost, but not quite yield the desired contactomorphism. Instead, we use
a map that is well known in the theory of Siegel domains (cf. [3, Chapter 8]) and that
looks a bit like a complex analogue of stereographic projection; this was suggested in [92,
Exercise 3.64].

RegardS2n+1 as the unit sphere inCn+1 = Cn × C with Cartesian coordinates
(z1, . . . , zn,w) = (z,w). We identify R2n+1 with Cn × R ⊂ Cn × C with coordinates
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(ζ1, . . . , ζn, s)= (ζ, s)= (ζ,Reσ), whereζj = xj + iyj . Then

α2 = ds +
n∑
j=1

(xj dyj − yj dxj )= ds + i

2
(ζ dζ̄ − ζ̄ dζ )

and

α0 = i

2
(z dz̄− z̄ dz+wdw̄− w̄ dw).

Now define a smooth mapf :S2n+1 \ {(0,−1)}→R2n+1 by

(ζ, s)= f (z,w)=
(

z

1+w,−
i(w− w̄)
2|1+w|2

)
.

Then

f ∗ ds = − i dw

2|1+w|2 +
i dw̄

2|1+w|2 +
i(w− w̄)
2(1+w)

dw

|1+w|2 +
i(w− w̄)
2(1+ w̄)

dw̄

|1+w|2

= i

2|1+w|2
(
−dw+ dw̄+ w− w̄

1+w dw+ w− w̄
1+ w̄ dw̄

)
and

f ∗(ζ dζ̄ − ζ̄ dζ ) = z

1+w
(

dz̄

1+ w̄ − z̄

(1+ w̄)2 dw̄
)

− z̄

1+ w̄
(

dz

1+w − z

(1+w)2 dw
)

= 1

|1+w|2
(
z dz̄− z̄ dz+ |z|2

(
dw

1+w − dw̄

1+ w̄
))
.

Along S2n+1 we have

|z|2 = 1− |w|2 = (1−w)(1+ w̄)+ (w− w̄)= (1− w̄)(1+w)− (w− w̄),
whence

|z|2
(
dw

1+w − dw̄

1+ w̄
)
= (1− w̄) dw− w− w̄

1+w dw− (1−w)dw̄− w− w̄
1+ w̄ dw̄.

From these calculations we concludef ∗α2 = α0/|1+w|2. So it only remains to show that
f is actually a diffeomorphism ofS2n+1 \ {(0,−1)} ontoR2n+1. To that end, consider the
map

f̃ : (Cn ×C) \ (Cn × {−1})→ (Cn ×C) \ (Cn × {−i/2})
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defined by

(ζ, σ )= f̃ (z,w)=
(

z

1+w,−
i

2

w− 1

w+ 1

)
.

This is a biholomorphic map with inverse map

(ζ, σ ) 	→
(

2ζ

1− 2iσ
,

1+ 2iσ

1− 2iσ

)
.

We compute

Imσ = − w− 1

4(w+ 1)
− w̄− 1

4(w̄+ 1)
=− (w− 1)(w̄+ 1)+ (w̄− 1)(w+ 1)

4|1+w|2

= 1− |w|2
2|1+w|2 .

Hence for(z,w) ∈ S2n+1 \ {(0,−1)} we have

Imσ = |z|2
2|1+w|2 = 1

2
|ζ |2;

conversely, any point(ζ, σ ) with Imσ = |ζ |2/2 lies in the image off̃ |S2n+1\{(0,−1)}, that

is, f̃ restricted toS2n+1 \ {(0,−1)} is a diffeomorphism onto{Imσ = |ζ |2/2}. Finally, we
compute

Reσ = − i(w− 1)

4(w+ 1)
+ i(w̄− 1)

4(w̄+ 1)
=−i (w− 1)(w̄+ 1)− (w̄− 1)(w+ 1)

4|1+w|2

= − i(w− w̄)
2|1+w|2 ,

from which we see that for(z,w) ∈ S2n+1 \ {(0,−1)} and with(ζ, σ )= f̃ (z,w) we have
f (z,w)= (ζ,Reσ). This concludes the proof. �

At the beginning of this section I mentioned that one may allow contact structures that
are not coorientable, and hence not defined by a global contact form.

EXAMPLE 2.14. LetM = Rn+1 × RPn with Cartesian coordinates(x0, . . . , xn) on the
Rn+1-factor and homogeneous coordinates[y0 : . . . : yn] on theRPn-factor. Then

ξ = ker

(
n∑
j=0

yj dxj

)
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is a well-defined hyperplane field onM , because the 1-form on the right-hand side is well
defined up to scaling by a non-zero real constant. On the open submanifoldUk = {yk �= 0}
∼=Rn+1 ×Rn of M we haveξ = kerαk with

αk = dxk +
∑
j �=k

(
yj

yk

)
dxj

an honest 1-form onUk . This is the standard contact form of Example 2.6, which proves
thatξ is a contact structure onM .

If n is even, thenM is not orientable, so there can be no global contact form definingξ

(cf. Remark 2.2), i.e.ξ is not coorientable. Notice, however, that a contact structure on a
manifold of dimension 2n+ 1 with n even is alwaysorientable: the sign of(dα)n|ξ does
not depend on the choice of local 1-form definingξ .

If n is odd, thenM is orientable, so it would be possible thatξ is the kernel of a globally
defined 1-form. However, since the sign ofα ∧ (dα)n, for n odd, is independent of the
choice of local 1-form definingξ , it is also conceivable that no global contact form exists.
(In fact, this consideration shows that any manifold of dimension 2n + 1, with n odd,
admitting a contact structure (coorientable or not) needs to be orientable.) This is indeed
what happens, as we shall prove now.

PROPOSITION2.15. Let (M, ξ) be the contact manifold of the preceding example. Then
TM/ξ can be identified with the canonical line bundle onRPn (pulled back toM). In
particular, TM/ξ is a non-trivial line bundle, soξ is not coorientable.

PROOF. For giveny = [y0 : . . . : yn] ∈ RPn, the vectory0 ∂x0 + · · · + yn ∂xn ∈ TxRn+1 is
well defined up to a non-zero real factor (and independent ofx ∈Rn+1), and hence defines
a line�y in TxRn+1 ∼=Rn+1. The set

E = {(t, x, y): x ∈Rn+1, y ∈RPn, t ∈ �y
}

⊂ TRn+1 ×RPn ⊂ T (Rn+1 ×RPn
)= TM

with projection(t, x, y) 	→ (x, y) defines a line sub-bundle ofTM that restricts to the
canonical line bundle over{x}×RPn ≡RPn for eachx ∈Rn+1. The canonical line bundle
overRPn is well known to be non-trivial [95, p. 16], so the same holds forE.

Moreover,E is clearly complementary toξ , i.e.TM/ξ ∼=E, since

n∑
j=0

yj dxj

(
n∑
k=0

yk ∂xk

)
=

n∑
j=0

y2
j �= 0.

This proves thatξ is not coorientable. �

To sum up, in the example above we have one of the following two situations:
• If n is odd, thenM is orientable;ξ is neither orientable nor coorientable.
• If n is even, thenM is not orientable;ξ is not coorientable, but it is orientable.
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We close this section with the definition of the most important types of submanifolds.

DEFINITION 2.16. Let(M, ξ) be a contact manifold.
(i) A submanifoldL of (M, ξ) is called anisotropic submanifold ifTxL ⊂ ξx for all

x ∈ L.
(ii) A submanifoldM ′ of M with contact structureξ ′ is called acontact submanifoldif

TM ′ ∩ ξ |M ′ = ξ ′.

Observe that ifξ = kerα andi :M ′ →M denotes the inclusion map, then the condition
for (M ′, ξ ′) to be a contact submanifold of(M, ξ) is that ξ ′ = ker(i∗α). In particular,
ξ ′ ⊂ ξ |M ′ is a symplectic sub-bundle with respect to the symplectic bundle structure onξ

given bydα.
The following is a manifestation of the maximal non-integrability of contact structures.

PROPOSITION 2.17. Let (M, ξ) be a contact manifold of dimension2n + 1 and L an
isotropic submanifold. ThendimL� n.

PROOF. Write i for the inclusion ofL inM and letα be an (at least locally defined) contact
form definingξ . Then the condition forL to be isotropic becomesi∗α ≡ 0. It follows that
i∗ dα ≡ 0. In particular,TpL⊂ ξp is an isotropic subspace of the symplectic vector space
(ξp, dα|ξp ), i.e. a subspace on which the symplectic form restricts to zero. From Linear
Algebra we know that this implies dimTpL� (dimξp)/2= n. �

DEFINITION 2.18. An isotropic submanifoldL ⊂ (M2n+1, ξ) of maximal possible di-
mensionn is called aLegendrian submanifold.

In particular, in a 3-dimensional contact manifold there are two distinguished types of
knots:Legendrian knotson the one hand,transverse1 knotson the other, i.e. knots that are
everywhere transverse to the contact structure. Ifξ is cooriented by a contact formα and
γ :S1 → (M, ξ = kerα) is oriented, one can speak of apositivelyor negativelytransverse
knot, depending on whetherα(γ̇ ) > 0 orα(γ̇ ) < 0.

2.2. Gray stability and the Moser trick

The Gray stability theorem that we are going to prove in this section says that there are no
non-trivial deformations of contact structures on closed manifolds. In fancy language, this
means that contact structures on closed manifolds have discrete moduli. First a preparatory
lemma.

LEMMA 2.19. Letωt , t ∈ [0,1], be a smooth family of differentialk-forms on a manifold
M and (ψt )t∈[0,1] an isotopy ofM . Define a time-dependent vector fieldXt on M by

1Some people like to call them ‘transversal knots’, but I adhere to J.H.C. Whitehead’s dictum, as quoted in [64]:
“Transversalis a noun; the adjective istransverse.”
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Xt ◦ ψt = ψ̇t , where the dot denotes derivative with respect tot (so thatψt is the flow
ofXt). Then

d

dt
(ψ∗

t ωt )=ψ∗
t (ω̇t +LXtωt ).

PROOF. For a time-independentk-form ω we have

d

dt
(ψ∗

t ω)=ψ∗
t (LXt ω).

This follows by observing that
(i) the formula holds for functions,

(ii) if it holds for differential formsω andω′, then also forω ∧ω′,
(iii) if it holds for ω, then also fordω,
(iv) locally functions and differentials of functions generate the algebra of differential

forms.
We then compute

d

dt
(ψ∗

t ωt ) = lim
h→0

ψ∗
t+hωt+h −ψ∗

t ωt

h

= lim
h→0

ψ∗
t+hωt+h −ψ∗

t+hωt +ψ∗
t+hωt −ψ∗

t ωt

h

= lim
h→0

ψ∗
t+h
(
ωt+h −ωt

h

)
+ lim
h→0

ψ∗
t+hωt −ψ∗

t ωt

h

= ψ∗
t (ω̇t +LXtωt ).

For that last equality observe (regarding the second summand) thatψt+h =ψth ◦ψt , where
ψth denotes, for fixedt and time-variableh, the flow of the time-dependent vector field
Xth :=Xt+h; then apply the result for time-independentk-forms. �

THEOREM2.20 (Gray stability).Letξt , t ∈ [0,1], be a smooth family of contact structures
on a closed manifoldM . Then there is an isotopy(ψt )t∈[0,1] ofM such that

T ψt(ξ0)= ξt for eacht ∈ [0,1].

PROOF. The simplest proof of this result rests on what is known as theMoser trick, intro-
duced by J. Moser [96] in the context of stability results for (equicohomologous) volume
and symplectic forms. J. Gray’s original proof [61] was based on deformation theory à la
Kodaira–Spencer. The idea of the Moser trick is to assume thatψt is the flow of a time-
dependent vector fieldXt . The desired equation forψt then translates into an equation
for Xt . If that equation can be solved, the isotopyψt is found by integratingXt ; on a
closed manifold the flow ofXt will be globally defined.
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Let αt be a smooth family of 1-forms with kerαt = ξt . The equation in the theorem then
translates into

ψ∗
t αt = λtα0,

whereλt :M→R+ is a suitable smooth family of smooth functions. Differentiation of this
equation with respect tot yields, with the help of the preceding lemma,

ψ∗
t (α̇t +LXt αt )= λ̇tα0 = λ̇t

λt
ψ∗
t αt ,

or, with the help of Cartan’s formulaLX = d ◦ iX+ iX ◦ d and withµt = d
dt
(logλt ) ◦ψ−1

t ,

ψ∗
t

(
α̇t + d

(
αt (Xt )

)+ iXt dαt)=ψ∗
t (µtαt ).

If we chooseXt ∈ ξt , this equation will be satisfied if

α̇t + iXt dαt = µtαt . (2.1)

Plugging in the Reeb vector fieldRαt gives

α̇t (Rαt )= µt . (2.2)

So we can use (2.2) to defineµt , and then the non-degeneracy ofdαt |ξt and the fact that
Rαt ∈ ker(µtαt − α̇t ) allow us to find a unique solutionXt ∈ ξt of (2.1). �

REMARK 2.21. (1) Contactformsdo not satisfy stability, that is, in general one cannot
find an isotopyψt such thatψ∗

t αt = α0. For instance, consider the following family of
contact forms onS3 ⊂R4:

αt = (x1dy1 − y1dx1)+ (1+ t)(x2dy2 − y2dx2),

wheret � 0 is a real parameter. The Reeb vector field ofαt is

Rαt = (x1 ∂y1 − y1 ∂x1)+
1

1+ t (x2 ∂y2 − y2 ∂x2).

The flow ofRα0 defines the Hopf fibration, in particular all orbits ofRα0 are closed. For
t ∈R+ \Q, on the other hand,Rαt has only two periodic orbits. So there can be no isotopy
with ψ∗

t αt = α0, because such aψt would also mapRα0 toRαt .
(2) Y. Eliashberg [25] has shown that on the open manifoldR3 there are likewise no

non-trivial deformations of contact structures, but onS1×R2 there does exist a continuum
of non-equivalent contact structures.

(3) For further applications of this theorem it is useful to observe that at pointsp ∈M
with α̇t,p identically zero int we haveXt(p)≡ 0, so such points remain stationary under
the isotopyψt .
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2.3. Contact Hamiltonians

A vector fieldX on the contact manifold(M, ξ = kerα) is called aninfinitesimal auto-
morphismof the contact structure if the local flow ofX preservesξ (the study of such
automorphisms was initiated by P. Libermann, cf. [80]). By slight abuse of notation, we
denote this flow byψt ; if M is not closed,ψt (for a fixed t �= 0) will not in general be
defined on all ofM . The condition forX to be an infinitesimal automorphism can be writ-
ten asT ψt(ξ)= ξ , which is equivalent toLXα = λα for some functionλ :M→R (notice
that this condition is independent of the choice of 1-formα definingξ ). The local flow of
X preservesα if and only if LXα = 0.

THEOREM 2.22. With a fixed choice of contact formα there is a one-to-one corre-
spondence between infinitesimal automorphismsX of ξ = kerα and smooth functions
H :M→R. The correspondence is given by
• X 	→HX = α(X);
• H 	→XH , defined uniquely byα(XH )=H andiXH dα = dH(Rα)α − dH .

The fact thatXH is uniquely defined by the equations in the theorem follows as
in the preceding section from the fact thatdα is non-degenerate onξ and Rα ∈
ker(dH(Rα)α − dH).

PROOF. Let X be an infinitesimal automorphism ofξ . Set HX = α(X) and write
dHX + iX dα = LXα = λα with λ :M → R. Applying this last equation toRα yields
dHX(Rα)= λ. SoX satisfies the equationsα(X)=HX andiX dα = dHX(Rα)α − dHX.
This means thatXHX =X.

Conversely, givenH :M→R and withXH as defined in the theorem, we have

LXH α = iXH dα+ d
(
α(XH )

)= dH(Rα)α,
soXH is an infinitesimal automorphism ofξ . Moreover, it is immediate from the defini-
tions thatHXH = α(XH )=H . �

COROLLARY 2.23. Let (M, ξ = kerα) be a closed contact manifold andHt :M → R,
t ∈ [0,1], a smooth family of functions. Let Xt = XHt be the corresponding family of
infinitesimal automorphisms ofξ (defined via the correspondence described in the pre-
ceding theorem). Then the globally defined flowψt of the time-dependent vector fieldXt
is a contact isotopy of(M, ξ), that is, ψ∗

t α = λtα for some smooth family of functions
λt :M→R+.

PROOF. With Lemma 2.19 and the preceding proof we have

d

dt
(ψ∗

t α)=ψ∗
t (LXt α)=ψ∗

t

(
dHt(Rα)α

)= µtψ∗
t α
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with µt = dHt(Rα) ◦ψt . Sinceψ0 = idM (whenceψ∗
0α = α) this implies that, with

λt = exp

(∫ t

0
µs ds

)
,

we haveψ∗
t α = λtα. �

This corollary will be used in Section 2.5 to prove various isotopy extension theorems
from isotopies of special submanifolds to isotopies of the ambient contact manifold. In a
similar vein, contact Hamiltonians can be used to show that standard general position argu-
ments from differential topology continue to hold in the contact geometric setting. Another
application of contact Hamiltonians is a proof of the fact that the contactomorphism group
of a connected contact manifold acts transitively on that manifold [12]. (See [8] for more
on the general structure of contactomorphism groups.)

2.4. Darboux’s theorem and neighbourhood theorems

The flexibility of contact structures inherent in the Gray stability theorem and the possibil-
ity to construct contact isotopies via contact Hamiltonians results in a variety of theorems
that can be summed up as saying that there are no local invariants in contact geometry.
Such theorems form the theme of the present section.

In contrast with Riemannian geometry, for instance, where the local structure coming
from the curvature gives rise to a rich theory, the interesting questions in contact geometry
thus appear only at the global level. However, it is actually that local flexibility that allows
us to prove strong global theorems, such as the existence of contact structures on certain
closed manifolds.

2.4.1. Darboux’s theorem

THEOREM 2.24 (Darboux’s theorem).Let α be a contact form on the(2n + 1)-dimen-
sional manifoldM andp a point onM . Then there are coordinatesx1, . . . , xn, y1, . . . , yn, z

on a neighbourhoodU ⊂M of p such that

α|U = dz+
n∑
j=1

xj dyj .

PROOF. We may assume without loss of generality thatM =R2n+1 andp = 0 is the origin
of R2n+1. Choose linear coordinatesx1, . . . , xn, y1, . . . , yn, z on R2n+1 such that

onT0R2n+1:

{
α(∂z)= 1, i∂z dα = 0,
∂xj , ∂yj ∈ kerα (j = 1, . . . , n), dα =∑n

j=1dxj ∧ dyj .

This is simply a matter of linear algebra (the normal form theorem for skew-symmetric
forms on a vector space).
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Now setα0 = dz+∑j xj dyj and consider the family of 1-forms

αt = (1− t)α0 + tα, t ∈ [0,1],

on R2n+1. Our choice of coordinates ensures that

αt = α, dαt = dα at the origin.

Hence, on a sufficiently small neighbourhood of the origin,αt is a contact form for all
t ∈ [0,1].

We now want to use the Moser trick to find an isotopyψt of a neighbourhood of the
origin such thatψ∗

t αt = α0. This aim seems to be in conflict with our earlier remark that
contact forms are not stable, but as we shall see presently, locally this equation can always
be solved.

Indeed, differentiatingψ∗
t αt = α0 (and assuming thatψt is the flow of some time-

dependent vector fieldXt ) we find

ψ∗
t (α̇t +LXt αt )= 0,

soXt needs to satisfy

α̇t + d
(
αt (Xt )

)+ iXt dαt = 0. (2.3)

WriteXt =HtRαt + Yt with Yt ∈ kerαt . InsertingRαt in (2.3) gives

α̇t (Rαt )+ dHt(Rαt )= 0. (2.4)

On a neighbourhood of the origin, a smooth family of functionsHt satisfying (2.4) can
always be found by integration, provided only that this neighbourhood has been chosen so
small that none of theRαt has any closed orbits there. Sinceα̇t is zero at the origin, we
may require thatHt(0)= 0 anddHt |0 = 0 for all t ∈ [0,1]. OnceHt has been chosen,Yt is
defined uniquely by (2.3), i.e. by

α̇t + dHt + iYt dαt = 0.

Notice that with our assumptions onHt we haveXt(0)= 0 for all t .
Now defineψt to be the local flow ofXt . This local flow fixes the origin, so there it

is defined for allt ∈ [0,1]. Since the domain of definition inR ×M of a local flow on a
manifoldM is always open (cf. [15, 8.11]), we can infer2 thatψt is actually defined for
all t ∈ [0,1] on a sufficiently small neighbourhood of the origin inR2n+1. This concludes
the proof of the theorem (strictly speaking, the local coordinates in the statement of the
theorem are the coordinatesxj ◦ψ−1

1 , etc.). �
2To be absolutely precise, one ought to work with a familyαt , t ∈R, whereαt ≡ α0 for t � ε andαt ≡ α1 for

t � 1− ε, i.e. atechnical homotopyin the sense of [15]. ThenXt will be defined for allt ∈R, and the reasoning
of [15] can be applied.
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REMARK 2.25. The proof of this result given in [1] is incomplete: It is not possible, as
is suggested there, to prove the Darboux theorem for contactforms if one requiresXt ∈
kerαt .

2.4.2. Isotropic submanifolds Let L ⊂ (M, ξ = kerα) be an isotropic submanifold in a
contact manifold with cooriented contact structure. Write(T L)⊥ ⊂ ξ |L for the sub-bundle
of ξ |L that is symplectically orthogonal toT L with respect to the symplectic bundle struc-
ture dα|ξ . The conformal class of this symplectic bundle structure depends only on the
contact structureξ , not on the choice of contact formα definingξ : If α is replaced byλα
for some smooth functionλ :M → R+, thend(λα)|ξ = λdα|ξ . So the bundle(T L)⊥ is
determined byξ .

The fact thatL is isotropic impliesT L ⊂ (T L)⊥. Following Weinstein [105], we call
the quotient bundle(T L)⊥/T L with the conformal symplectic structure induced bydα
theconformal symplectic normal bundleof L in M and write

CSN(M,L)= (T L)⊥/T L.

So the normal bundleNL= (TM|L)/T L of L in M can be split as

NL∼= (TM|L)/(ξ |L)⊕ (ξ |L)/(T L)⊥ ⊕CSN(M,L).

Observe that if dimM = 2n+ 1 and dimL= k � n, then the ranks of the three summands
in this splitting are 1,k and 2(n− k), respectively. Our aim in this section is to show that
a neighbourhood ofL in M is determined, up to contactomorphism, by the isomorphism
type (as a conformal symplectic bundle) of CSN(M,L).

The bundle(TM|L)/(ξ |L) is a trivial line bundle becauseξ is cooriented. The bundle
(ξ |L)/(T L)⊥ can be identified with the cotangent bundleT ∗L via the well-defined bundle
isomorphism

Ψ : (ξ |L)/(T L)⊥ → T ∗L,

Y 	→ iY dα|T L.

(Ψ is obviously injective and well defined by the definition of(T L)⊥, and the ranks of the
two bundles are equal.)

AlthoughΨ is well defined on the quotient(ξ |L)/(T L)⊥, to proceed further we need
to choose an isotropic complement of(T L)⊥ in ξ |L. Restricted to each fibreξp, p ∈ L,
such an isotropic complement of(TpL)⊥ exists. There are two ways to obtain a smooth
bundle of such isotropic complements. The first would be to carry over Arnold’s corre-
sponding discussion of Lagrangian subbundles of symplectic bundles [6] to the isotropic
case in order to show that the space of isotropic complements ofU⊥ ⊂ V , whereU is an
isotropic subspace in a symplectic vector spaceV , is convex. (This argument uses gener-
ating functions for isotropic subspaces.) Then by a partition of unity argument the desired
complement can be constructed on the bundle level.

A slightly more pedestrian approach is to define this isotropic complement with the help
of a complex bundle structureJ on ξ compatible withdα (cf. Remark 2.3). The condition
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dα(X,JX) > 0 for 0 �=X ∈ ξ implies that(TpL)⊥ ∩ J (TpL)= {0} for all p ∈ L, and so a
dimension count shows thatJ (T L) is indeed a complement of(T L)⊥ in ξ |L. (In a similar
vein, CSN(M,L) can be identified as a sub-bundle ofξ , viz., the orthogonal complement
of T L⊕ J (T L)⊂ ξ with respect to the bundle metricdα(., J.) on ξ .)

On the Whitney sumT L⊕ T ∗L (for any manifoldL) there is a canonical symplectic
bundle structureΩL defined by

ΩL,p(X+ η,X′ + η′)= η(X′)− η′(X) for X,X′ ∈ TpL, η,η′ ∈ T ∗
pL.

LEMMA 2.26. The bundle map

idT L ⊕Ψ :
(
T L⊕ J (T L), dα)→ (T L⊕ T ∗L,ΩL)

is an isomorphism of symplectic vector bundles.

PROOF. We only need to check that idT L⊕Ψ is a symplectic bundle map. LetX,X′ ∈ TpL
andY,Y ′ ∈ Jp(TpL). Write Y = JpZ,Y ′ = JpZ′ with Z,Z′ ∈ TpL. It follows that

dα(Y,Y ′)= dα(JZ,JZ′)= dα(Z,Z′)= 0,

sinceL is an isotropic submanifold. For the same reasondα(X,X′)= 0. Hence

dα(X+ Y,X′ + Y ′) = dα(Y,X′)− dα(Y ′,X)= Ψ (Y )(X′)−Ψ (Y ′)(X)
=ΩL

(
X+Ψ (Y ),X′ +Ψ (Y ′)). �

THEOREM 2.27. Let (Mi, ξi), i = 0,1, be contact manifolds with closed isotropic sub-
manifoldsLi . Suppose there is an isomorphism of conformal symplectic normal bundles
Φ : CSN(M0,L0)→ CSN(M1,L1) that covers a diffeomorphismφ :L0 → L1. Thenφ ex-
tends to a contactomorphismψ :N (L0)→N (L1) of suitable neighbourhoodsN (Li) of
Li such thatT ψ |CSN(M0,L0) andΦ are bundle homotopic(as conformal symplectic bundle
isomorphisms).

COROLLARY 2.28. Diffeomorphic(closed) Legendrian submanifolds have contactomor-
phic neighbourhoods.

PROOF. If Li ⊂Mi is Legendrian, then CSN(Mi,Li) has rank 0, so the conditions in the
theorem, apart from the existence of a diffeomorphismφ :L0 → L1, are void. �

EXAMPLE 2.29. LetS1 ⊂ (M3, ξ) be a Legendrian knot in a contact 3-manifold. Then
with a coordinateθ ∈ [0,2π] alongS1 and coordinatesx, y in slices transverse toS1, the
contact structure

cosθ dx − sinθ dy = 0

provides a model for a neighbourhood ofS1.
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PROOF OF THEOREM 2.27. Choose contact formsαi for ξi , i = 0,1, scaled in such a
way thatΦ is actually an isomorphism of symplectic vector bundles with respect to the
symplectic bundle structures on CSN(Mi,Li) given bydαi . Here we think of CSN(Mi,Li)

as a sub-bundle ofTMi |Li (rather than as a quotient bundle).
We identify (TMi |Li )/(ξi |Li ) with the trivial line bundle spanned by the Reeb vector

fieldRαi . In total, this identifies

NLi = 〈Rαi 〉 ⊕ Ji(T Li)⊕CSN(Mi,Li)

as a sub-bundle ofTMi |Li .
Let ΦR : 〈Rα0〉 → 〈Rα1〉 be the obvious bundle isomorphism defined by requiring that

Rα0(p) map toRα1(φ(p)).
Let Ψi :Ji(T Li)→ T ∗Li be the isomorphism defined by taking the interior product

with dαi . Notice that

T φ ⊕ (φ∗)−1 : (T L0 ⊕ T ∗L0,ΩL0)→ (T L1 ⊕ T ∗L1,ΩL1)

is an isomorphism of symplectic vector bundles. With Lemma 2.26 it follows that

T φ ⊕Ψ−1
1 ◦ (φ∗)−1 ◦Ψ0 :

(
T L0 ⊕ J0(T L0), dα0

)→ (
T L1 ⊕ J1(T L1), dα1

)
is an isomorphism of symplectic vector bundles.

Now let

Φ̃ :NL0 →NL1

be the bundle isomorphism (coveringφ) defined by

Φ̃ =ΦR ⊕Ψ−1
1 ◦ (φ∗)−1 ◦Ψ0 ⊕Φ.

Let τi :NLi →Mi be tubular maps, that is, theτ (I suppress the indexi for better readabil-
ity) are embeddings such thatτ |L—whereL is identified with the zero section ofNL—is
the inclusionL ⊂M , andT τ induces the identity onNL alongL (with respect to the
splittingsT (NL)|L = T L⊕NL= TM|L).

Thenτ1 ◦ Φ̃ ◦ τ−1
0 :N (L0)→N (L1) is a diffeomorphism of suitable neighbourhoods

N (Li) of Li that induces the bundle map

T φ ⊕ Φ̃ :TM0|L0 → TM1|L1.

By construction, this bundle map pullsα1 back toα0 and dα1 to dα0. Hence,α0 and
(τ1 ◦ Φ̃ ◦ τ−1

0 )∗α1 are contact forms onN (L0) that coincide onTM0|L0, and so do their
differentials.

Now consider the family of 1-forms

βt = (1− t)α0 + t
(
τ1 ◦ Φ̃ ◦ τ−1

0

)∗
α1, t ∈ [0,1].
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On TM0|L0 we haveβt ≡ α0 anddβt ≡ dα0. Since the contact conditionα ∧ (dα)n �= 0
is an open condition, we may assume—shrinkingN (L0) if necessary—thatβt is a con-
tact form onN (L0) for all t ∈ [0,1]. By the Gray stability theorem (Theorem 2.20) and
Remark 2.21(3) following its proof, we find an isotopyψt of N (L0), fixing L0, such that
ψ∗
t βt = λtα0 for some smooth family of smooth functionsλt :N (L0)→R+.
(SinceN (L0) is not a closed manifold,ψt is a priori only a local flow. But onL0 it

is stationary and hence defined for allt . As in the proof of the Darboux theorem (Theo-
rem 2.24) we conclude thatψt is defined for allt ∈ [0,1] in a sufficiently small neighbour-
hood ofL0, so shrinkingN (L0) once again, if necessary, will ensure thatψt is a global
flow onN (L0).)

We conclude thatψ = τ1 ◦ Φ̃ ◦ τ−1
0 ◦ψ1 is the desired contactomorphism. �

REMARK 2.30. With a little more care one can actually achieveT ψ1 = id on TM0|L0,
which implies in particular thatT ψ |CSN(M0,L0) =Φ, cf. [105]. (Remember that there is a
certain freedom in constructing an isotopy via the Moser trick if the conditionXt ∈ ξt is
dropped.) The key point is the generalised Poincaré lemma, cf. [80, p. 361], which allows
us to write a closed differential formγ given in a neighbourhood of the zero section of a
bundle and vanishing along that zero section as an exact formγ = dη with η and its partial
derivatives with respect to all coordinates (in any chart) vanishing along the zero section.
This lemma is applied first toγ = d(β1 − β0), in order to find (with the symplectic Moser
trick) a diffeomorphismσ of a neighbourhood ofL0 ⊂M0 with T σ = id on TM0|L0 and
such thatdβ0 = d(σ ∗β1). It is then applied once again toγ = β0 − σ ∗β1.

(The proof of the symplectic neighbourhood theorem in [92] appears to be incomplete
in this respect.)

EXAMPLE 2.31. LetM0 =M1 = R3 with contact formsα0 = dz+ x dy andα1 = dz+
(x + y)dy andL0 = L1 = 0 the origin inR3. Thus

CSN(M0,L0)=CSN(M1,L1)= span{∂x, ∂y} ⊂ T0R3.

We takeΦ = idCSN.
Setαt = dz + (x + ty) dy. The Moser trick withXt ∈ kerαt yieldsXt = −y ∂x , and

henceψt(x, y, z)= (x − ty, y, z). Then

T ψ1 =
1 −1 0

0 1 0
0 0 1

 ,
which does not restrict toΦ on CSN.

However, a different solution forψ∗
t αt = α0 isψt(x, y, z)= (x, y, z− ty2/2), found by

integratingXt =−y2 ∂z/2 (a multiple of the Reeb vector field ofαt ). Here we get

T ψ1 =
1 0 0

0 1 0
0 −y 1

 ,
henceT ψ1|T0R3 = id, so in particularT ψ1|CSN=Φ.
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2.4.3. Contact submanifolds Let (M ′, ξ ′ = kerα′) ⊂ (M, ξ = kerα) be a contact sub-
manifold, that is,TM ′ ∩ ξ |M ′ = ξ ′. As before we write(ξ ′)⊥ ⊂ ξ |M ′ for the symplecti-
cally orthogonal complement ofξ ′ in ξ |M ′ . SinceM ′ is a contact submanifold (soξ ′ is a
symplectic sub-bundle of(ξ |M ′ , dα)), we have

TM ′ ⊕ (ξ ′)⊥ = TM|M ′ ,

i.e. we can identify(ξ ′)⊥ with the normal bundleNM ′. Moreover,dα induces a conformal
symplectic structure on(ξ ′)⊥, so we call(ξ ′)⊥ theconformal symplectic normal bundleof
M ′ in M and write

CSN(M,M ′)= (ξ ′)⊥.

THEOREM 2.32. Let (Mi, ξi), i = 0,1, be contact manifolds with compact contact sub-
manifolds(M ′

i , ξ
′
i ). Suppose there is an isomorphism of conformal symplectic normal bun-

dlesΦ : CSN(M0,M
′
0)→ CSN(M1,M

′
1) that covers a contactomorphismφ : (M ′

0, ξ
′
0)→

(M ′
1, ξ

′
1). Thenφ extends to a contactomorphismψ of suitable neighbourhoodsN (M ′

i )

of M ′
i such thatT ψ |CSN(M0,M

′
0)

andΦ are bundle homotopic(as conformal symplectic
bundle isomorphisms).

EXAMPLE 2.33. A particular instance of this theorem is the case of a transverse knot in a
contact manifold(M, ξ), i.e. an embeddingS1 ↪→ (M, ξ) transverse toξ . Since the sym-
plectic group Sp(2n) of linear transformations ofR2n preserving the standard symplectic
structureω0 =∑n

i=1dxi ∧ dyi is connected, there is only one conformal symplecticR2n-
bundle overS1 up to conformal equivalence. A model for the neighbourhood of a transverse
knot is given by(

S1 ×R2n, ξ = ker

(
dθ +

n∑
i=1

(xi dyi − yi dxi)
))

,

whereθ denotes theS1-coordinate; the theorem says that in suitable local coordinates the
neighbourhood of any transverse knot looks like this model.

PROOF OFTHEOREM2.32. As in the proof of Theorem 2.27 it is sufficient to find contact
formsαi onMi and a bundle mapTM0|M ′

0
→ TM1|M ′

1
, coveringφ and inducingΦ, that

pulls backα1 to α0 and dα1 to dα0; the proof then concludes as there with a stability
argument.

For this we need to make a judicious choice ofαi . The essential choice is made sepa-
rately on eachMi , so I suppress the subscripti for the time being. Choose a contact form
α′ for ξ ′ onM ′. Write R′ for the Reeb vector field ofα′. Given any contact formα for
ξ onM we may first scale it such thatα(R′)≡ 1 alongM ′. Thenα|TM ′ = α′, and hence
dα|TM ′ = dα′. We now want to scaleα further such that its Reeb vector fieldR coincides
with R′ alongM ′. To this end it is sufficient to find a smooth functionf :M→ R+ with
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f |M ′ ≡ 1 andiR′ d(f α)≡ 0 onTM|M ′ . This last equation becomes

0= iR′ d(f α)= iR′(df ∧ α+ f dα)=−df + iR′ dα onTM|M ′ .

SinceiR′ dα|TM ′ = iR′ dα′ ≡ 0, such anf can be found.
The choices ofα′0 andα′1 cannot be made independently of each other; we may first

chooseα′1, say, and then defineα′0 = φ∗α′1. Then defineα0, α1 as described and scaleΦ
such that it is a symplectic bundle isomorphism of(

(ξ ′0)⊥, dα0
)→ (

(ξ ′1)⊥, dα1
)
.

Then

T φ ⊕Φ :TM0|M ′
0
→ TM1|M ′

1

is the desired bundle map that pulls backα1 to α0 anddα1 to dα0. �

REMARK 2.34. The condition thatRi ≡ R′
i alongM ′ is necessary for ensuring that

(T φ ⊕ Φ)(R0) = R1, which guarantees (with the other stated conditions) that
(T φ ⊕ Φ)∗(dα1) = dα0. The conditiondαi |TM ′

i
= dα′i and the described choice ofΦ

alone would only give(T φ ⊕Φ)∗(dα1|ξ1)= dα0|ξ0.

2.4.4. Hypersurfaces Let S be an oriented hypersurface in a contact manifold(M, ξ =
kerα) of dimension 2n+ 1. In a neighbourhood ofS in M , which we can identify with
S ×R (andS with S × {0}), the contact formα can be written as

α = βr + ur dr,

whereβr , r ∈ R, is a smooth family of 1-forms onS andur :S→ R a smooth family of
functions. The contact conditionα ∧ (dα)n �= 0 then becomes

0 �= α ∧ (dα)n = (βr + ur dr)∧ (dβr − β̇r ∧ dr + dur ∧ dr)n
= (−nβr ∧ β̇r + nβr ∧ dur + ur dβr)∧ (dβr)n−1 ∧ dr, (2.5)

where the dot denotes derivative with respect tor . The intersectionT S ∩ (ξ |S) determines
a distribution (of non-constant rank) of subspaces ofT S. If α is written as above, this
distribution is given by the kernel ofβ0, and hence, at a givenp ∈ S, defines either the
full tangent spaceTpS (if β0,p = 0) or a 1-codimensional subspace both ofTpS andξp
(if β0,p �= 0). In the former case, the symplectically orthogonal complement(TpS ∩ ξp)⊥
(with respect to the conformal symplectic structuredα on ξp) is {0}; in the latter case,
(TpS ∩ ξp)⊥ is a 1-dimensional subspace ofξp contained inTpS ∩ ξp.

From that it is intuitively clear what one should mean by a ‘singular 1-dimensional
foliation’, and we make the following somewhat provisional definition.
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Fig. 2. The characteristic foliation onS2 ⊂ (R3, ξ2).

DEFINITION 2.35. Thecharacteristic foliationSξ of a hypersurfaceS in (M, ξ) is the
singular 1-dimensional foliation ofS defined by(T S ∩ ξ |S)⊥.

EXAMPLE 2.36. If dimM = 3 and dimS = 2, then(TpS ∩ ξp)⊥ = TpS ∩ ξp at the points
p ∈ S whereTpS ∩ ξp is 1-dimensional. Figure 2 shows the characteristic foliation of the
unit 2-sphere in(R3, ξ2), whereξ2 denotes the standard contact structure of Example 2.7:
The only singular points are(0,0,±1); away from these points the characteristic foliation
is spanned by

(y − xz) ∂x − (x + yz) ∂y +
(
x2 + y2) ∂z.

The following lemma helps to clarify the notion of singular 1-dimensional foliation.

LEMMA 2.37. Letβ0 be the1-form induced onS by a contact formα definingξ , and let
Ω be a volume form onS. ThenSξ is defined by the vector fieldX satisfying

iXΩ = β0 ∧ (dβ0)
n−1.

PROOF. First of all, we observe thatβ0∧ (dβ0)
n−1 �= 0 outside the zeros ofβ0: Arguing by

contradiction, assumeβ0,p �= 0 andβ0∧(dβ0)
n−1|p = 0 at somep ∈ S. Then(dβ0)

n|p �= 0
by (2.5). On the codimension 1 subspace kerβ0,p of TpS the symplectic formdβ0,p has
maximal rankn− 1. It follows thatβ0 ∧ (dβ0)

n−1|p �= 0 after all, a contradiction.
Next we want to show thatX ∈ kerβ0. We observe

0= iX(iXΩ)= β0(X)(dβ0)
n−1 − (n− 1)β0 ∧ iX dβ0 ∧ (dβ0)

n−2. (2.6)

Taking the exterior product of this equation withβ0 we get

β0(X)β0 ∧ (dβ0)
n−1 = 0.

By our previous consideration this impliesβ0(X)= 0.
It remains to show that forβ0,p �= 0 we have

dβ0
(
X(p), v

)= 0 for all v ∈ TpS ∩ ξp.
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Forn= 1 this is trivially satisfied, because in that casev is a multiple ofX(p). I suppress
the pointp in the following calculation, where we assumen � 2. From (2.6) and with
β0(X)= 0 we have

β0 ∧ iX dβ0 ∧ (dβ0)
n−2 = 0. (2.7)

Taking the interior product withv ∈ T S ∩ ξ yields

−dβ0(X,v)β0 ∧ (dβ0)
n−2 + (n− 2)β0 ∧ iX dβ0 ∧ iv dβ0 ∧ (dβ0)

n−3 = 0.

(Thanks to the coefficientn− 2 the term(dβ0)
n−3 is not a problem forn= 2.) Taking the

exterior product of that last equation withdβ0, and using (2.7), we find

dβ0(X,v)β0 ∧ (dβ0)
n−1 = 0,

and thusdβ0(X,v)= 0. �

REMARK 2.38. (1) We can now give a more formal definition of ‘singular 1-dimensional
foliation’ as an equivalence class of vector fields[X], whereX is allowed to have zeros
and[X] = [X′] if there is a nowhere zero function on all ofS such thatX′ = fX. Notice
that the non-integrability of contact structures and the reasoning at the beginning of the
proof of the lemma imply that the zero set ofX does not contain any open subsets ofS.

(2) If the contact structureξ is cooriented rather than just coorientable, so thatα is well
defined up to multiplication with apositivefunction, then this lemma allows to give an
orientation to the characteristic foliation: Changingα to λα with λ :M→R+ will change
β0 ∧ (dβ0)

n−1 by a factorλn.

We now restrict attention to surfaces in contact 3-manifolds, where the notion of char-
acteristic foliation has proved to be particularly useful.

The following theorem is due to E. Giroux [52].

THEOREM 2.39 (Giroux). Let Si be closed surfaces in contact3-manifolds(Mi, ξi), i =
0,1 (with ξi coorientable), and φ :S0 → S1 a diffeomorphism withφ(S0,ξ0) = S1,ξ1 as
oriented characteristic foliations. Then there is a contactomorphismψ :N (S0)→N (S1)

of suitable neighbourhoodsN (Si) of Si withψ(S0)= S1 and such thatψ |S0 is isotopic to
φ via an isotopy preserving the characteristic foliation.

PROOF. By passing to a double cover, if necessary, we may assume that theSi are ori-
entable hypersurfaces. Letαi be contact forms definingξi . Extendφ to a diffeomorphism
(still denotedφ) of neighbourhoods ofSi and consider the contact formsα0 andφ∗α1 on
a neighbourhood ofS0, which we may identify withS0 ×R.

By rescalingα1 we may assume thatα0 andφ∗α1 induce the same formβ0 on S0 ≡
S0 × {0}, and hence also the same formdβ0.
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Observe that the expression on the right-hand side of Eq. (2.5) is linear inβ̇r andur . This
implies that convex linear combinations of solutions of (2.5) (forn= 1) with the sameβ0

(anddβ0) will again be solutions of (2.5) for sufficiently smallr . This reasoning applies to

αt := (1− t)α0 + tφ∗α1, t ∈ [0,1].

(I hope the reader will forgive the slight abuse of notation, withα1 denoting both a form
onM1 and its pull-backφ∗α1 toM0.) As is to be expected, we now use the Moser trick to
find an isotopyψt with ψ∗

t αt = λtα0, just as in the proof of Gray stability (Theorem 2.20).
In particular, we require as there that the vector fieldXt that we want to integrate to the
flow ψt lie in the kernel ofαt .

On T S0 we have α̇t ≡ 0 (thanks to the assumption thatα0 and φ∗α1 induce the
same formβ0 on S0). In particular, ifv is a vector inS0,ξ0, then by Eq. (2.1) we have
dαt (Xt , v) = 0, which implies thatXt is a multiple ofv, hence tangent toS0,ξ0. This
shows that the flow ofXt preservesS0 and its characteristic foliation. More formally, we
have

LXt αt = d
(
αt (Xt )

)+ iXt dαt = iXt dαt ,
so with v as above we haveLXt αt (v) = 0, which shows thatLXt αt |T S0 is a multiple of
α0|T S0 = β0. This implies that the (local) flow ofXt changesβ0 by a conformal factor.

SinceS0 is closed, the local flow ofXt restricted toS0 integrates up tot = 1, and so the
same is true3 in a neighbourhood ofS0. Thenψ = φ ◦ ψ1 will be the desired diffeomor-
phismN (S0)→N (S1). �

As observed previously in the proof of Darboux’s theorem for contactforms, the Moser
trick allows more flexibility if we drop the conditionαt (Xt ) = 0. We are now going to
exploit this extra freedom to strengthen Giroux’s theorem slightly. This will be important
later on when we want to extend isotopies of hypersurfaces.

THEOREM 2.40. Under the assumptions of the preceding theorem we can findψ :
N (S0)→N (S1) satisfying the stronger condition thatψ |S0 = φ.

PROOF. We want to show that the isotopyψt of the preceding proof may be assumed to
fix S0 pointwise. As there, we may assumeα̇t |T S0 ≡ 0.

If the condition thatXt be tangent to kerαt is dropped, the conditionXt needs to satisfy
so that its flow will pull backαt to λtα0 is

α̇t + d
(
αt (Xt )

)+ iXt dαt = µtαt , (2.8)

whereµt andλt are related byµt = d
dt
(logλt ) ◦ ψ−1

t , cf. the proof of the Gray stability
theorem (Theorem 2.20).

3Cf. the proof (and the footnote therein) of Darboux’s theorem (Theorem 2.24).
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Write Xt = HtRt + Yt with Rt the Reeb vector field ofαt andYt ∈ ξt = kerαt . Then
condition (2.8) translates into

α̇t + dHt + iYt dαt = µtαt . (2.9)

For givenHt one determinesµt from this equation by inserting the Reeb vector fieldRt ;
the equation then admits a unique solutionYt ∈ kerαt because of the non-degeneracy
of dαt |ξt .

Our aim now is to ensure thatHt ≡ 0 onS0 andYt ≡ 0 alongS0. The latter we achieve
by imposing the condition

α̇t + dHt = 0 alongS0 (2.10)

(which entails with (2.9) thatµt |S0 ≡ 0). The conditionsHt ≡ 0 onS0 and (2.10) can be
simultaneously satisfied thanks toα̇t |T S0 ≡ 0.

We can therefore find a smooth family of smooth functionsHt satisfying these condi-
tions, and then defineYt by (2.9). The flow of the vector fieldXt =HtRt +Yt then defines
an isotopyψt that fixesS0 pointwise (and thus is defined for allt ∈ [0,1] in a neighbour-
hood ofS0). Thenψ = φ ◦ψ1 will be the diffeomorphism we wanted to construct. �

2.4.5. Applications Perhaps the most important consequence of the neighbourhood the-
orems proved above is that they allow us to perform differential topological constructions
such as surgery or similar cutting and pasting operations in the presence of a contact struc-
ture, that is, these constructions can be carried out on a contact manifold in such a way that
the resulting manifold again carries a contact structure.

One such construction that I shall explain in detail in Section 3 is the surgery of contact
3-manifolds along transverse knots, which enables us to construct a contact structure on
every closed, orientable 3-manifold.

The concept ofcharacteristic foliationon surfaces in contact 3-manifolds has proved
seminal for the classification of contact structures on 3-manifolds, although it has recently
been superseded by the notion ofdividing curves. It is clear that Theorem 2.39 can be
used to cut and paste contact manifolds along hypersurfaces with the same characteristic
foliation. What actually makes this useful in dimension 3 is that there are ways to manip-
ulate the characteristic foliation of a surface by isotoping that surface inside the contact
3-manifold.

The most important result in that direction is theElimination Lemmaproved by
Giroux [52]; an improved version is due to D. Fuchs, see [26]. This lemma says that under
suitable assumptions it is possible to cancel singular points of the characteristic foliation
in pairs by aC0-small isotopy of the surface (specifically: an elliptic and a hyperbolic
point of the same sign—the sign being determined by the matching or non-matching of
the orientation of the surfaceS and the contact structureξ at the singular point ofSξ ).
For instance, Eliashberg [24] has shown that if a contact 3-manifold(M, ξ) contains an
embedded discD′ such thatD′

ξ has a limit cycle, then one can actually find a so-called
overtwisted disc: an embedded discD with boundary∂D tangent toξ (butD transverse
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to ξ along ∂D, i.e. no singular points ofDξ on ∂D) and withDξ having exactly one
singular point (of elliptic type); see Section 3.6.

Moreover, in the generic situation it is possible, given surfacesS ⊂ (M, ξ) andS′ ⊂
(M ′, ξ ′) with Sξ homeomorphicto S′

ξ ′ , to perturb one of the surfaces so as to getdiffeo-
morphiccharacteristic foliations.

Chapter 8 of [1] contains a section on surfaces in contact 3-manifolds, and in particular
a proof of the Elimination Lemma. Further introductory reading on the matter can be found
in the lectures of J. Etnyre [35]; of the sources cited above I recommend [26] as a starting
point.

In [52] Giroux initiated the study ofconvex surfacesin contact 3-manifolds. These are
surfacesS with an infinitesimal automorphismX of the contact structureξ with X trans-
verse toS. For such surfaces, it turns out, much less information than the characteristic
foliation Sξ is needed to determineξ in a neighbourhood ofS, viz., only the so-called
dividing setof Sξ . This notion lies at the centre of most of the recent advances in the clas-
sification of contact structures on 3-manifolds [55,71,72]. A brief introduction to convex
surface theory can be found in [35].

2.5. Isotopy extension theorems

In this section we show that the isotopy extension theorem of differential topology—an
isotopy of a closed submanifold extends to an isotopy of the ambient manifold—remains
valid for the various distinguished submanifolds of contact manifolds. The neighbourhood
theorems proved above provide the key to the corresponding isotopy extension theorems.
For simplicity, I assume throughout that the ambient contact manifoldM is closed; all
isotopy extension theorems remain valid ifM has non-empty boundary∂M , provided the
isotopy stays away from the boundary. In that case, the isotopy ofM found by extension
keeps a neighbourhood of∂M fixed. A further convention throughout is that our ambient
isotopiesψt are understood to start atψ0 = idM .

2.5.1. Isotropic submanifolds An embeddingj :L→ (M, ξ = kerα) is calledisotropic
if j (L) is an isotropic submanifold of(M, ξ), i.e. everywhere tangent to the contact struc-
tureξ . Equivalently, one needs to requirej∗α ≡ 0.

THEOREM 2.41. Let jt :L→ (M, ξ = kerα), t ∈ [0,1], be an isotopy of isotropic em-
beddings of a closed manifoldL in a contact manifold(M, ξ). Then there is a compactly
supported contact isotopyψt :M→M withψt(j0(L))= jt (L).

PROOF. Define a time-dependent vector fieldXt alongjt (L) by

Xt ◦ jt = d

dt
jt .

To simplify notation later on, we assume thatL is a submanifold ofM andj0 the inclusion
L ⊂M . Our aim is to find a (smooth) family of compactly supported, smooth functions
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H̃t :M → R whose Hamiltonian vector field̃Xt equalsXt alongjt (L). Recall thatX̃t is
defined in terms ofH̃t by

α(X̃t )= H̃t , i
X̃t
dα = dH̃t (Rα)α − dH̃t ,

where, as usual,Rα denotes the Reeb vector field ofα.
Hence, we need

α(Xt )= H̃t , iXt dα = dH̃t (Rα)α − dH̃t alongjt (L). (2.11)

WriteXt =HtRα + Yt with Ht : jt (L)→R andYt ∈ kerα. To satisfy (2.11) we need

H̃t =Ht alongjt (L). (2.12)

This implies

dH̃t (v)= dHt(v) for v ∈ T (jt (L)).
Sincejt is an isotopy of isotropic embeddings, we haveT (jt (L))⊂ kerα. So a prerequisite
for (2.11) is that

dα(Xt , v)=−dHt(v) for v ∈ T (jt (L)). (2.13)

We have

dα(Xt , v)+ dHt(v) = dα(Xt , v)+ d
(
α(Xt)

)
(v)= iv

(
iXt dα+ d(iXt α)

)
= iv(LXt α),

so Eq. (2.13) is equivalent to

iv(LXt α)= 0 for v ∈ T (jt (L)).
But this is indeed tautologically satisfied: The fact thatjt is an isotopy of isotropic embed-
dings can be written asj∗t α ≡ 0; this in turn implies 0= d

dt
(j∗t α)= j∗t (LXt α), as desired.

This means that we can definẽHt by prescribing the value ofH̃t along jt (L)
(with (2.12)) and the differential ofH̃t along jt (L) (with (2.11)), where we are free to
imposedH̃t (Rα) = 0, for instance. The calculation we just performed shows that these
two requirements are consistent with each other. Any function satisfying these require-
ments alongjt (L) can be smoothed out to zero outside a tubular neighbourhood ofjt (L),
and the Hamiltonian flow of this̃Ht will be the desired contact isotopy extendingjt .

One small technical point is to ensure that the resulting family of functionsH̃t will be
smooth int . To achieve this, we proceed as follows. SetM̂ =M × [0,1] and

L̂=
⋃

q∈L, t∈[0,1]

(
jt (q), t

)
,
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so thatL̂ is a submanifold ofM̂ . Let g be an auxiliary Riemannian metric onM with
respect to whichRα is orthogonal to kerα. Identify the normal bundleNL̂ of L̂ in M̂

with a sub-bundle ofT M̂ by requiring its fibre at a point(p, t) ∈ L̂ to be theg-orthogonal
subspace ofTp(jt (L)) in TpM . Let τ :NL̂→ M̂ be a tubular map.

Now define a smooth function̂H :NL̂→ R as follows, where(p, t) always denotes a
point of L̂⊂NL̂.
• Ĥ (p, t)= α(Xt),
• dĤ(p,t)(Rα)= 0,
• dĤ(p,t)(v)=−dα(Xt , v) for v ∈ kerαp ⊂ TpM ⊂ T(p,t)M̂ ,
• Ĥ is linear on the fibres ofNL̂→ L̂.

Let χ : M̂→[0,1] be a smooth function withχ ≡ 0 outside a small neighbourhoodN0 ⊂
τ(NL̂) of L̂ andχ ≡ 1 in a smaller neighbourhoodN1 ⊂N0 of L̂. For (p, t) ∈ M̂ , set

H̃t (p)=
{
χ(p, t)Ĥ (τ−1(p, t)) for (p, t) ∈ τ(NL̂),
0 for (p, t) /∈ τ(NL̂).

This is smooth inp andt , and the Hamiltonian flowψt of H̃t (defined globally sincẽHt is
compactly supported) is the desired contact isotopy. �

2.5.2. Contact submanifolds An embeddingj : (M ′, ξ ′)→ (M, ξ) is called acontact em-
beddingif(

j (M ′), Tj (ξ ′)
)

is a contact submanifold of(M, ξ), i.e.

T
(
j (M)

)∩ ξ |j (M) = Tj (ξ ′).
If ξ = kerα, this can be reformulated as kerj∗α = ξ ′.

THEOREM 2.42. Let jt : (M ′, ξ ′)→ (M, ξ), t ∈ [0,1], be an isotopy of contact embed-
dings of the closed contact manifold(M ′, ξ ′) in the contact manifold(M, ξ). Then there is
a compactly supported contact isotopyψt :M→M withψt(j0(M ′))= jt (M ′).

PROOF. In the proof of this theorem we follow a slightly different strategy from the
one in the isotropic case. Instead of directly finding an extension of the Hamiltonian
Ht : jt (M ′)→ R, we first use the neighbourhood theorem for contact submanifolds to ex-
tendjt to an isotopy of contact embeddings of tubular neighbourhoods.

Again we assume thatM ′ is a submanifold ofM and j0 the inclusionM ′ ⊂ M . As
earlier,NM ′ denotes the normal bundle ofM ′ in M . We also identifyM ′ with the zero
section ofNM ′, and we use the canonical identification

T (NM ′)|M ′ = TM ′ ⊕NM ′.
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By the usual isotopy extension theorem from differential topology we find an isotopy

φt :NM
′ →M

with φt |M ′ = jt .
Choose contact formsα,α′ defining ξ and ξ ′, respectively. Defineαt = φ∗t α. Then

TM ′ ∩ kerαt = ξ ′. Let R′ denote the Reeb vector field ofα′. Analogous to the proof
of Theorem 2.32, we first find a smooth family of smooth functionsgt :M ′ → R+ such
thatgtαt |TM ′ = α′, and then a familyft :NM ′ →R+ with ft |M ′ ≡ 1 and

dft = iR′ d(gtαt ) onT (NM ′)|M ′ .

Thenβt = ftgtαt is a family of contact forms onNM ′ representing the contact structure
ker(φ∗t α) and with the properties

βt |TM ′ = α′,
dβt |TM ′ = dα′,
ker(dβt )= 〈R′〉 alongM ′.

The family (NM ′, dβt ) of symplectic vector bundles may be thought of as a symplectic
vector bundle overM ′ × [0,1], which is necessarily isomorphic to a bundle pulled back
from M ′ × {0} (cf. [74, Corollary 3.4.4]). In other words, there is a smooth family of
symplectic bundle isomorphisms

Φt : (NM
′, dβ0)→ (NM ′, dβt ).

Then

idTM ′ ⊕Φt :T (NM ′)|M ′ → T (NM ′)|M ′

is a bundle map that pulls backβt to β0 anddβt to dβ0.
By the now familiar stability argument we find a smooth family of embeddings

ϕt :N (M ′)→NM ′

for some neighbourhoodN (M ′) of the zero sectionM ′ in NM ′ with ϕ0 = inclusion,
ϕt |M ′ = idM ′ andϕ∗t βt = λtβ0, whereλt :N (M ′)→R+. This means that

φt ◦ ϕt :N (M ′)→M

is a smooth family of contact embeddings of(N (M ′),kerβ0) in (M, ξ).
Define a time-dependent vector fieldXt alongφt ◦ ϕt (N (M ′)) by

Xt ◦ φt ◦ ϕt = d

dt
(φt ◦ ϕt ).
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This Xt is clearly an infinitesimal automorphism ofξ : By differentiating the equation
ϕ∗t φ∗t α = µtφ∗0α (whereµt :N (M ′)→R+) with respect tot we get

ϕ∗t φ∗t (LXt α)= µ̇tφ∗0α =
µ̇t

µt
ϕ∗t φ∗t α,

soLXt α is a multiple ofα (sinceφt ◦ ϕt is a diffeomorphism onto its image).
By the theory of contact Hamiltonians,Xt is the Hamiltonian vector field of a Hamil-

tonian functionĤt defined onφt ◦ ϕt (N (M ′)). Cut off this function with a bump function
so as to obtainHt :M→ R with Ht ≡ Ĥt nearφt ◦ ϕt (M ′) andHt ≡ 0 outside a slightly
larger neighbourhood ofφt ◦ ϕt (M ′). Then the Hamiltonian flowψt of Ht satisfies our
requirements. �

2.5.3. Surfaces in3-manifolds

THEOREM 2.43. Let jt :S→ (M, ξ = kerα), t ∈ [0,1], be an isotopy of embeddings of
a closed surfaceS in a 3-dimensional contact manifold(M, ξ). If all jt induce the same
characteristic foliation onS, then there is a compactly supported isotopyψt :M→M with
ψt(j0(S))= jt (S).

PROOF. Extendjt to a smooth family of embeddingsφt :S×R→M , and identifyS with
S × {0}. The assumptions say that allφ∗t α induce the same characteristic foliation onS.
By the proof of Theorem 2.40 and in analogy with the proof of Theorem 2.42 we find a
smooth family of embeddings

ϕt :S × (−ε, ε)→ S ×R

for someε > 0 with ϕ0 = inclusion,ϕt |S×{0} = idS andϕ∗t φ∗t α = λtφ
∗
0α, whereλt :S ×

(−ε, ε)→ R+. In other words,φt ◦ ϕt is a smooth family of contact embeddings of(S ×
(−ε, ε),kerφ∗0α) in (M, ξ).

The proof now concludes exactly as the proof of Theorem 2.42. �

2.6. Approximation theorems

A further manifestation of the (local) flexibility of contact structures is the fact that a given
submanifold can, under fairly weak (and usually obvious) topological conditions, be ap-
proximated (typicallyC0-closely) by a contact submanifold or an isotropic submanifold,
respectively. The most general results in this direction are best phrased in M. Gromov’s
language ofh-principles. For a recent text onh-principles that puts particular emphasis on
symplectic and contact geometry see [30]; a brief and perhaps more gentle introduction to
h-principles can be found in [47].

In the present section I restrict attention to the 3-dimensional situation, where the rele-
vant approximation theorems can be proved by elementary geometric ad hoc techniques.
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THEOREM 2.44. Let γ :S1 → (M, ξ) be a knot, i.e. an embedding ofS1, in a contact
3-manifold. Thenγ can beC0-approximated by a Legendrian knot isotopic toγ . Alterna-
tively, it can beC0-approximated by a positively as well as a negatively transverse knot.

In order to prove this theorem, we first consider embeddingsγ : (a, b)→ (R3, ξ) of an
open interval inR3 with its standard contact structureξ = kerα, whereα = dz + x dy.
Write γ (t)= (x(t), y(t), z(t)). Then

α(γ̇ )= ż+ xẏ,

so the condition for a Legendrian curve readsż + xẏ ≡ 0; for a positively (respectively
negatively) transverse curve,ż+ xẏ > 0 (respectively< 0).

There are two ways to visualise such curves. The first is via itsfront projection

γF (t)=
(
y(t), z(t)

)
,

the second via itsLagrangian projection

γL(t)=
(
x(t), y(t)

)
.

2.6.1. Legendrian knots If γ (t) = (x(t), y(t), z(t)) is a Legendrian curve inR3, then
ẏ = 0 implies ż = 0, so there the front projection has a singular point. Indeed, the curve
t 	→ (t,0,0) is an example of a Legendrian curve whose front projection is a single point.
We call a Legendrian curvegenericif ẏ = 0 only holds at isolated points (which we call
cusp points), and therëy �= 0.

LEMMA 2.45. Letγ : (a, b)→ (R3, ξ) be a Legendrian immersion. Then its front projec-
tion γF (t)= (y(t), z(t)) does not have any vertical tangencies. Away from the cusp points,
γ is recovered from its front projection via

x(t)=− ż(t)
ẏ(t)

=− dz
dy
,

i.e. x(t) is the negative slope of the front projection. The curveγ is embedded if and only
if γF has only transverse self-intersections.

By aC∞-small perturbation ofγ we can obtain a generic Legendrian curveγ̃ isotopic
to γ ; by aC2-small perturbation we may achieve that the front projection has only semi-
cubical cusp singularities, i.e. around a cusp point att = 0 the curveγ̃ looks like

γ̃ (t)= (t + a,λt2 + b,−λ(2t3/3+ at2)+ c)
with λ �= 0, see Figure3.

Any regular curve in the(y, z)-plane with semi-cubical cusps and no vertical tangencies
can be lifted to a unique Legendrian curve inR3.
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Fig. 3. The cusp of a front projection.

PROOF. The Legendrian condition iṡz+ xẏ = 0. Henceẏ = 0 forcesż= 0, soγF cannot
have any vertical tangencies.

Away from the cusp points, the Legendrian condition tells us how to recoverx as the
negative slope of the front projection. (By continuity, the equationx = dz

dy
also makes

sense at generic cusp points.) In particular, a self-intersecting front projection lifts to a
non-intersecting curve if and only if the slopes at the intersection point are different, i.e. if
and only if the intersection is transverse.

Thatγ can be approximated in theC∞-topology by a generic immersioñγ follows from
the usual transversality theorem (in its most simple form, viz., applied to the functiony(t);
the functionx(t) may be left unchanged, and the newz(t) is then found by integrating the
new−xẏ).

At a cusp point ofγ̃ we haveẏ = ż = 0. Sinceγ̃ is an immersion, this forceṡx �= 0,
so γ̃ can be parametrised around a cusp point by thex-coordinate, i.e. we may choose the
curve parametert such that the cusp lies att = 0 andx(t) = t + a. Sinceÿ(0) �= 0 by
the genericity condition, we can writey(t) = t2g(t)+ y(0) with a smooth functiong(t)
satisfyingg(0) �= 0 (this is proved like the ‘Morse lemma’ in Appendix 2 of [77]). AC0-
approximation ofg(t) by a functionh(t) with h(t)≡ g(0) for t near zero andh(t)≡ g(t)
for |t | greater than some smallε > 0 yields aC2-approximation ofy(t) with the desired
form around the cusp point. �

EXAMPLE 2.46. Figure 4 shows the front projection of a Legendrian trefoil knot.

PROOF OF THEOREM 2.44 (Legendrian case). First of all, we consider a curveγ in
standardR3. In order to find aC0-close approximation ofγ , we simply need to choose
a C0-close approximation of its front projectionγF by a regular curve without vertical
tangencies and with isolated cusps (we call such a curve afront) in such a way, that the
slope of the front at timet is close to−x(t) (see Figure 5). Then the Legendrian lift of this
front is the desiredC0-approximation ofγ .

If γ is defined on an interval(a, b) and is already Legendrian near its endpoints, then
the approximation ofγF may be assumed to coincide withγF near the endpoints, so that
the Legendrian lift coincides withγ near the endpoints.

Hence, given a knot in an arbitrary contact 3-manifold, we can cut it (by the Lebesgue
lemma) into little pieces that lie in Darboux charts. There we can use the preceding recipe
to find a Legendrian approximation. Since, as just observed, one can find such approxi-
mations on intervals with given boundary condition, this procedure yields a Legendrian
approximation of the full knot.
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Fig. 4. Front projection of a Legendrian trefoil knot.

Fig. 5. LegendrianC0-approximation via front projection.

Locally (i.e. in R3) the described procedure does not introduce any self-intersections
in the approximating curve, provided we approximateγF by a front with only transverse
self-intersections. Since the original knot was embedded, the same will then be true for its
LegendrianC0-approximation. �

The same result may be derived using the Lagrangian projection:

LEMMA 2.47. Let γ : (a, b)→ (R3, ξ) be a Legendrian immersion. Then its Lagrangian
projectionγL(t)= (x(t), y(t)) is also an immersed curve. The curveγ is recovered from
γL via

z(t1)= z(t0)−
∫ t1

t0

x dy.
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Fig. 6. Lagrangian projection of a Legendrian unknot.

A Legendrian immersionγ :S1 → (R3, ξ) has a Lagrangian projection that encloses zero
area. Moreover, γ is embedded if and only if every loop inγL (except, in the closed case,
the full loopγL) encloses a non-zero oriented area.

Any immersed curve in the(x, y)-plane is the Lagrangian projection of a Legendrian
curve inR3, unique up to translation in thez-direction.

PROOF. The Legendrian conditioṅz + xẏ implies that if ẏ = 0 then ż = 0, and hence,
sinceγ is an immersion,̇x �= 0. SoγL is an immersion.

The formula forz follows by integrating the Legendrian condition. For a closed curve
γL in the (x, y)-plane, the integral

∮
γL
x dy computes the oriented area enclosed byγL.

From that all the other statements follow. �

EXAMPLE 2.48. Figure 6 shows the Lagrangian projection of a Legendrian unknot.

ALTERNATIVE PROOF OFTHEOREM 2.44 (Legendrian case). Again we consider a curve
γ in standardR3 defined on an interval. The generalisation to arbitrary contact manifolds
and closed curves is achieved as in the proof using front projections.

In order to find aC0-approximation ofγ by a Legendrian curve, one only has to approx-
imate its Lagrangian projectionγL by an immersed curve whose ‘area integral’

z(t0)−
∫ t

t0

x dy

lies as close to the originalz(t) as one wishes. This can be achieved by using small loops
oriented positively or negatively (see Figure 7). IfγL has self-intersections, this approxi-
mating curve can be chosen in such a way that along loops properly contained in that curve
the area integral is non-zero, so that again we do not introduce any self-intersections in the
Legendrian approximation ofγ . �

2.6.2. Transverse knots The quickest proof of the transverse case of Theorem 2.44 is via
the Legendrian case. However, it is perfectly feasible to give a direct proof along the lines
of the preceding discussion, i.e. using the front or the Lagrangian projection. Since this
picture is useful elsewhere, I include a brief discussion, restricting attention to the front
projection.

Thus, letγ (t)= (x(t), y(t), z(t)) be a curve inR3. The condition forγ to be positively
transverse to the standard contact structureξ = ker(dz+ x dy) is thatż+ xẏ > 0. Hence,{ if ẏ = 0, thenż > 0,

if ẏ > 0, thenx >−ż/ẏ,
if ẏ < 0, thenx <−ż/ẏ.
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Fig. 7. LegendrianC0-approximation via Lagrangian projection.

Fig. 8. Impossible front projections of positively transverse curve.

The first statement says that there are no vertical tangencies oriented downwards in the
front projection. The second statement says in particular that forẏ > 0 andż < 0 we have
x > 0; the third, that forẏ < 0 andż < 0 we havex < 0. This implies that the situations
shown in Figure 8 are not possible in the front projection of a positively transverse curve.
I leave it to the reader to check that all other oriented crossings are possible in the front
projection of a positively transverse curve, and that any curve in the(y, z)-plane without the
forbidden crossing or downward vertical tangencies admits a lift to a positively transverse
curve.

EXAMPLE 2.49. Figure 9 shows the front projection of a positively transverse trefoil knot.

PROOF OFTHEOREM 2.44 (Transverse case). By the Legendrian case of this theorem,
the given knotγ can beC0-approximated by a Legendrian knotγ1. By Example 2.29,
a neighbourhood ofγ1 in (M, ξ) looks like a solid torusS1 ×D2 with contact structure
cosθ dx − sinθ dy = 0, whereγ1 ≡ S1 × {0}. Then the curve

γ2(t)= (θ = t, x = δ sint, y = δ cost), t ∈ [0,2π],
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Fig. 9. Front projection of a positively transverse trefoil knot.

is a positively (respectively negatively) transverse knot ifδ > 0 (respectively< 0). By
choosing|δ| small we obtain as good aC0-approximation ofγ1 and hence ofγ as we
wish. �

3. Contact structures on 3-manifolds

Here is the main theorem proved in this section:

THEOREM 3.1 (Lutz–Martinet).Every closed, orientable 3-manifold admits a contact
structure in each homotopy class of tangent2-plane fields.

In Section 3.2 I present what is essentially J. Martinet’s [90] proof of the existence of a
contact structure on every 3-manifold. This construction is based on a surgery description
of 3-manifolds due to R. Lickorish and A. Wallace. For the key step, showing how to extend
over a solid torus certain contact forms defined near the boundary of that torus (which then
makes it possible to perform Dehn surgeries), we use an approach due to W. Thurston and
H. Winkelnkemper; this allows us to simplify Martinet’s proof slightly.

In Section 3.3 we show that every orientable 3-manifold is parallelisable and then build
on this to classify (co-)oriented tangent 2-plane fields up to homotopy.

In Section 3.4 we study the so-called Lutz twist, a topologically trivial Dehn surgery
on a contact manifold(M, ξ) which yields a contact structureξ ′ onM that is not homo-
topic (as 2-plane field) toξ . We then complete the proof of the main theorem stated above.
These results are contained in R. Lutz’s thesis [84]. Of Lutz’s published work, [83] only
deals with the 3-sphere (and is only an announcement); [85] also deals with a more re-
stricted problem. I learned the key steps of the construction from an exposition given in
V. Ginzburg’s thesis [50]. I have added proofs of many topological details that do not seem
to have appeared in a readily accessible source before.

In Section 3.5 I indicate two further proofs for the existence of contact structures
on every 3-manifold (and provide references to others). The one by Thurston and
Winkelnkemper uses a description of 3-manifolds as open books due to J. Alexander; the
crucial idea in their proof is the one we also use to simplify Martinet’s argument. Indeed,
my discussion of the Lutz twist in the present section owes more to the paper by Thurston–
Winkelnkemper than to any other reference. The second proof, by J. Gonzalo, is based
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on a branched cover description of 3-manifolds found by H. Hilden, J. Montesinos and
T. Thickstun. This branched cover description also yields a very simple geometric proof
that every orientable 3-manifold is parallelisable.

In Section 3.6 we discuss the fundamental dichotomy between tight and overtwisted
contact structures, introduced by Eliashberg, as well as the relation of these types of contact
structures with the concept of symplectic fillability. The chapter concludes in Section 3.7
with a survey of classification results for contact structures on 3-manifolds.

But first we discuss, in Section 3.1, an invariant of transverse knots inR3 with its stan-
dard contact structure. This invariant will be an ingredient in the proof of the Lutz–Martinet
theorem, but is also of independent interest.

I do not feel embarrassed to use quite a bit of machinery from algebraic and differential
topology in this chapter. However, I believe that nothing that cannot be found in such
standard texts as [14,77,95] is used without proof or an explicit reference.

Throughout this third section,M denotes a closed, orientable 3-manifold.

3.1. An invariant of transverse knots

Although the invariant in question can be defined for transverse knots in arbitrary contact
manifolds (provided the knot is homologically trivial), for the sake of clarity I restrict
attention to transverse knots inR3 with its standard contact structureξ0 = ker(dz+ x dy).
This will be sufficient for the proof of the Lutz–Martinet theorem. In Section 3.6 I say a
few words about the general situation and related invariants for Legendrian knots.

Thus, letγ be a transverse knot in(R3, ξ0). Pushγ a little in the direction of∂x—notice
that this is a nowhere zero vector field contained inξ0, and in particular transverse toγ—to
obtain a knotγ ′. An orientation ofγ induces an orientation ofγ ′. The orientation ofR3 is
given bydx ∧ dy ∧ dz.

DEFINITION 3.2. Theself-linking numberl(γ ) of the transverse knotγ is the linking
number ofγ andγ ′.

Notice that this definition is independent of the choice of orientation ofγ (but it changes
sign if the orientation ofR3 is reversed). Furthermore, in place of∂x we could have chosen
any nowhere zero vector fieldX in ξ0 to definel(γ ): The difference between the self-
linking number defined via∂x and that defined viaX is the degree of the mapγ → S1

given by associating to a point onγ the angle between∂x andX. This degree is computed
with the induced mapZ ∼= H1(γ )→ H1(S

1) ∼= Z. But the mapγ → S1 factors through
R3, so the induced homomorphism on homology is the zero homomorphism.

Observe thatl(γ ) is an invariant under isotopies ofγ within the class of transverse knots.
We now want to computel(γ ) from the front projection ofγ . Recall that thewrithe of

an oriented knot diagram is the signed number of self-crossings of the diagram, where the
sign of the crossing is given in Figure 10.

LEMMA 3.3. The self-linking numberl(γ ) of a transverse knot is equal to the writhew(γ )
of its front projection.
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Fig. 10. Signs of crossings in a knot diagram.

Fig. 11. Transverse knots with self-linking number±3.

PROOF. Let γ ′ be the push-off ofγ as described. Observe that each crossing of the front
projection ofγ contributes a crossing ofγ ′ underneathγ of the corresponding sign. Since
the linking number ofγ andγ ′ is equal to the signed number of times thatγ ′ crosses
underneathγ (cf. [98, p. 37]), we find that this linking number is equal to the signed
number of self-crossings ofγ , that is,l(γ )=w(γ ). �

PROPOSITION 3.4. Every self-linking number is realised by a transverse link in stan-
dard R3.

PROOF. Figure 11 shows front projections of positively transverse knots (cf. Section 2.6.2)
with self-linking number±3. From that the construction principle for realising any odd
integer should be clear. With a two component link any even integer can be realised.�

REMARK 3.5. It is no accident that I do not give an example of a transverse knot witheven
self-linking number. By a theorem of Eliashberg [26, Proposition 2.3.1] that relatesl(γ )

to the Euler characteristic of a Seifert surfaceS for γ and the signed number of singular
points of the characteristic foliationSξ , the self-linking numberl(γ ) of a knot can only
takeoddvalues.
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3.2. Martinet’s construction

According to Lickorish [81] and Wallace [103]M can be obtained fromS3 by Dehn
surgery along a link of 1-spheres. This means that we have to remove a disjoint set of
embedded solid toriS1 ×D2 from S3 and glue back solid tori with suitable identification
by a diffeomorphism along the boundariesS1 × S1. The effect of such a surgery (up to
diffeomorphism of the resulting manifold) is completely determined by the induced map
in homology

H1
(
S1 × ∂D2)→ H1

(
S1 × ∂D2),

Z⊕Z → Z⊕Z,

which is given by a unimodular matrix
( n q
m p

) ∈GL(2,Z). Hence, denoting coordinates in
S1 × S1 by (θ,ϕ), we may always assume the identification maps to be of the form(

θ

ϕ

)
	→
(
n q

m p

)(
θ

ϕ

)
.

The curvesµ and λ on ∂(S1 × D2) given respectively byθ = 0 andϕ = 0 are called
meridianand longitude. We keep the same notationµ,λ for the homology classes these
curves represent. It turns out that the diffeomorphism type of the surgered manifold is
completely determined by the classpµ + qλ, which is the class of the curve that be-
comes homotopically trivial in the surgered manifold (cf. [98, p. 28]). In fact, the Dehn
surgery is completely determined by the surgery coefficientp/q, since the diffeomorphism
of ∂(S1 ×D2) given by(λ,µ) 	→ (λ,−µ) extends to a diffeomorphism of the solid torus
that we glue back.

Similarly, the diffeomorphism given by(λ,µ) 	→ (λ+kµ,µ) extends. By such a change
of longitude inS1 ×D2 ⊂M , which amounts to choosing a different trivialisation of the
normal bundle (i.e.framing) of S1×{0} ⊂M , the gluing map is changed to

( n q
m−kn p−kq

)
.

By a change of longitude in the solid torus that we glue back, the gluing map is changed
to
( n+kq q
m+kp p

)
. Thus, a Dehn surgery is a so-called handle surgery (or ‘honest surgery’ or

simply ‘surgery’) if and only if the surgery coefficient is an integer, that is,q =±1. For in
exactly this case we may assume

( n q
m p

)= ( 0 1
1 0

)
, and the surgery is given by cutting out

S1 ×D2 and gluing backS1 ×D2 with the identity map

∂
(
D2 × S1)→ ∂

(
S1 ×D2).

The theorem of Lickorish and Wallace remains true if we only allow handle surgeries.
However, this assumption does not entail any great simplification of the existence proof for
contact structures, so we shall work with general Dehn surgeries.

Our aim in this section is to use this topological description of 3-manifolds for a proof
of the following theorem, first proved by Martinet [90]. The proof presented here is in
spirit the one given by Martinet, but, as indicated in the introduction to this third section,
amalgamated with ideas of Thurston and Winkelnkemper [101], whose proof of the same
theorem we shall discuss later.
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THEOREM 3.6 (Martinet). Every closed, orientable3-manifoldM admits a contact struc-
ture.

In view of the theorem of Lickorish and Wallace and the fact thatS3 admits a contact
structure, Martinet’s theorem is a direct consequence of the following result.

THEOREM 3.7. Let ξ0 be a contact structure on a3-manifoldM0. LetM be the manifold
obtained fromM0 by a Dehn surgery along a knotK . ThenM admits a contact structure
ξ which coincides withξ0 outside the neighbourhood ofK where we perform surgery.

PROOF. By Theorem 2.44 we may assume thatK is positively transverse toξ0. Then, by
the contact neighbourhood theorem (Example 2.33), we can find a tubular neighbourhood
ofK diffeomorphic toS1×D2(δ0), whereK is identified withS1×{0} andD2(δ0) denotes
a disc of radiusδ0, such that the contact structureξ0 is given as the kernel ofdθ̄ + r̄2dϕ̄,
with θ̄ denoting theS1-coordinate and(r̄, ϕ̄) polar coordinates onD2(δ0).

Now perform a Dehn surgery alongK defined by the unimodular matrix
( n q
m p

)
. This

corresponds to cutting outS1×D2(δ1)⊂ S1×D2(δ0) for someδ1< δ0 and gluing it back
in the way described above.

Write (θ; r, ϕ) for the coordinates on the copy ofS1×D2(δ1) that we want to glue back.
Then the contact formdθ̄ + r̄2dϕ̄ given onS1 ×D2(δ0) pulls back (alongS1 × ∂D2(δ1))
to

d(nθ + qϕ)+ r2d(mθ + pϕ).

This form is defined on all ofS1×(D2(δ1)−{0}), and to complete the proof it only remains
to find a contact form onS1 ×D2(δ1) that coincides with this form nearS1 × ∂D2(δ1).
It is at this point that we use an argument inspired by the Thurston–Winkelnkemper proof
(but which goes back to Lutz).

LEMMA 3.8. Given a unimodular matrix
( n q
m p

)
, there is a contact form onS1 ×D2(δ)

that coincides with(n+mr2) dθ + (q + pr2) dϕ near r = δ and with±dθ + r2dϕ near
r = 0.

PROOF. We make the ansatz

α = h1(r) dθ + h2(r) dϕ

with smooth functionsh1(r), h2(r). Then

dα = h′1dr ∧ dθ + h′2dr ∧ dϕ

and

α ∧ dα =
∣∣∣∣h1 h2
h′1 h′2

∣∣∣∣ dθ ∧ dr ∧ dϕ.
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Fig. 12. Dehn surgery.

So to satisfy the contact conditionα ∧ dα �= 0, all we have to do is to find a parametrised
curve

r 	→ (
h1(r), h2(r)

)
, 0� r � δ,

in the plane satisfying the following conditions:
1. h1(r)=±1 andh2(r)= r2 nearr = 0,
2. h1(r)= n+mr2 andh2(r)= q + pr2 nearr = δ,
3. (h1(r), h2(r)) is never parallel to(h′1(r), h′2(r)).

Sincenp−mq =±1, the vector(m,p) is not a multiple of(n, q). Figure 12 shows possible
solution curves for the two casesnp−mq =±1.

This completes the proof of the lemma and hence that of Theorem 3.7. �

REMARK 3.9. OnS3 we have the standard contact formsα± = x dy−y dx± (z dt− t dz)
defining opposite orientations (cf. Remark 2.2). Performing the above surgery construction
either on(S3,kerα+) or on(S3,kerα−)we obtain both positive and negative contact struc-
tures on any givenM . The same is true for the Lutz construction that we study in the next
two sections. Hence:A closed oriented3-manifold admits both a positive and a negative
contact structure in each homotopy class of tangent2-plane fields.

3.3. 2-plane fields on3-manifolds

First we need the following well-known fact.

THEOREM 3.10. Every closed, orientable3-manifoldM is parallelisable.

REMARK. The most geometric proof of this theorem can be given based on a structure
theorem of Hilden, Montesinos and Thickstun. This will be discussed in Section 3.5.2.
Another proof can be found in [76]. Here we present the classical algebraic proof.
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PROOF. The main point is to show the vanishing of the second Stiefel–Whitney class
w2(M)=w2(TM) ∈H 2(M;Z2). Recall the following facts, which can be found in [14];
for the interpretation of Stiefel–Whitney classes as obstruction classes see also [95].

There are Wu classesvi ∈Hi(M;Z2) defined by〈
Sqi (u), [M]〉= 〈vi ∪ u, [M]〉

for all u ∈ H 3−i (M;Z2), where Sq denotes the Steenrod squaring operations. Since
Sqi (u)= 0 for i > 3− i, the only (potentially) non-zero Wu classes arev0 = 1 andv1. The
Wu classes and the Stiefel–Whitney classes are related bywq =∑j Sqq−j (vj ). Hence

v1 = Sq0(v1)=w1, which equals zero sinceM is orientable. We concludew2 = 0.
Let V2(R3)= SO(3)/SO(1)= SO(3) be the Stiefel manifold of oriented, orthonormal

2-frames inR3. This is connected, so there exists a section over the 1-skeleton ofM of the
2-frame bundleV2(TM) associated withTM (with a choice of Riemannian metric onM
understood4). The obstruction to extending this section over the 2-skeleton is equal tow2,
which vanishes as we have just seen. The obstruction to extending the section over all of
M lies inH 3(M;π2(V2(R3))), which is the zero group because ofπ2(SO(3))= 0.

We conclude thatTM has a trivial 2-dimensional sub-bundleε2. The complementary
1-dimensional bundleλ = TM/ε2 is orientable and hence trivial since 0= w1(TM) =
w1(ε

2)+w1(λ)=w1(λ). ThusTM = ε2 ⊕ λ is a trivial bundle. �

Fix an arbitrary Riemannian metric onM and a trivialisation of the unit tangent bundle
STM ∼=M × S2. This sets up a one-to-one correspondence between the following sets,
where all maps, homotopies, etc. are understood to be smooth.
• Homotopy classes of unit vector fieldsX onM ,
• Homotopy classes of (co-)oriented 2-plane distributionsξ in TM ,
• Homotopy classes of mapsf :M→ S2.

(I use the term ‘2-plane distribution’ synonymously with ‘2-dimensional sub-bundle of the
tangent bundle’.) Letξ1, ξ2 be two arbitrary 2-plane distributions (always understood to be
cooriented). By elementary obstruction theory there is an obstruction

d2(ξ1, ξ2) ∈H 2(M;π2
(
S2))∼=H 2(M;Z)

for ξ1 to be homotopic toξ2 over the 2-skeleton ofM and, if d2(ξ1, ξ2) = 0 and after
homotopingξ1 to ξ2 over the 2-skeleton, an obstruction (which will depend, in general, on
that first homotopy)

d3(ξ1, ξ2) ∈H 3(M;π3
(
S2))∼=H 3(M;Z)∼= Z

for ξ1 to be homotopic toξ2 over all ofM . (The identification ofH 3(M;Z) with Z is
determined by the orientation ofM .) However, rather than relying on general obstruction
theory, we shall interpretd2 and d3 geometrically, which will later allow us to give a

4This is not necessary, of course. One may also work with arbitrary 2-frames without reference to a metric.
This does not affect the homotopical data.
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geometric proof that every homotopy class of 2-plane fieldsξ on M contains a contact
structure.

The only fact that I want to quote here is that, by the Pontrjagin–Thom construction,
homotopy classes of mapsf :M → S2 are in one-to-one correspondence with framed
cobordism classes of framed (and oriented) links of 1-spheres inM . The general theory
can be found in [14] and [77]; a beautiful and elementary account is given in [94].

For givenf , the correspondence is defined by choosing a regular valuep ∈ S2 for f
and a positively oriented basisb of TpS2, and associating with it the oriented framed
link (f−1(p), f ∗b), wheref ∗b is the pull-back ofb under the fibrewise bijective map
Tf :T (f−1(p))⊥ → TpS

2. The orientation off−1(p) is the one which together with the
framef ∗b gives the orientation ofM .

For a given framed linkL the correspondingf is defined by projecting a (trivial) disc
bundle neighbourhoodL×D2 of L inM onto the fibreD2 ∼= S2−p∗, where 0 is identified
with p andp∗ denotes the antipode ofp, and sendingM − (L×D2) to p∗. Notice that
the orientations ofM and the components ofL determine that of the fibreD2, and hence
determine the mapf .

Before proceeding to define the obstruction classesd2 andd3 we make a short digres-
sion and discuss some topological background material which is fairly standard but not
contained in our basic textbook references [14] and [77].

3.3.1. Hopf’s UmkehrhomomorphismusIf f :Mm → Nn is a continuous map between
smooth manifolds, one can define a homomorphismϕ :Hn−p(N)→ Hm−p(M) on ho-
mology classes represented by submanifolds as follows. Given a homology class[L]N ∈
Hn−p(N) represented by a codimensionp submanifoldL, replacef by a smooth ap-
proximation transverse toL and defineϕ([L]N)= [f−1(L)]M . This is essentially Hopf’s
Umkehrhomomorphismus[73], except that he worked with combinatorial manifolds of
equal dimension and made no assumptions on the homology class. The following theorem,
which in spirit is contained in [41], shows thatϕ is independent of choices (of submanifold
L representing a class and smooth transverse approximation tof ) and actually a homomor-
phism of intersection rings. This statement is not as well known as it should be, and I only
know of a proof in the literature for the special case whereL is a point [60]. In [14] this
map is calledtransfer map(more general transfer maps are discussed in [60]), but is only
defined indirectly via Poincaré duality (though implicitly the statement of the following
theorem is contained in [14], see, for instance, p. 377).

THEOREM 3.11. Let f :Mm → Nn be a smooth map between closed, oriented mani-
folds andLn−p ⊂ Nn a closed, oriented submanifold of codimensionp such thatf is
transverse toL. Writeu ∈Hp(N) for the Poincaré dual of[L]N , that is, u∩ [N ] = [L]N .
Then[f−1(L)]M = f ∗u∩ [M]. In other words: If u is Poincaré dual to[L]N , thenf ∗u ∈
Hp(M) is Poincaré dual to[f−1(L)]M .

PROOF. Sincef is transverse toL, the differentialTf induces a fibrewise isomorphism
between the normal bundles off−1(L) and L, and we find (closed) tubular neigh-
bourhoodsW → L and V = f−1(W) → f−1(L) (considered as disc bundles) such
that f :V → W is a fibrewise isomorphism. Write[V ]0 and [W ]0 for the orientation
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classes inHm(V,V − f−1(L)) andHn(W,W − L), respectively. We can identify these
homology groups withHm(V, ∂V ) andHn(W,∂W), respectively. LetτW ∈Hp(W,∂W)

andτV ∈Hp(V, ∂V ) be the Thom classes of these disc bundles defined by

τW ∩ [W ]0 = [L]N,
τV ∩ [V ]0 =

[
f−1(L)

]
M
.

Notice thatf ∗τW = τV sincef :W → V is fibrewise isomorphic and the Thom class of
an oriented disc bundle is the unique class whose restriction to each fibre is a positive
generator ofHp(Dp, ∂Dp). Writing i :M→ (M,M − f−1(L)) andj :N→ (N,N −L)
for the inclusion maps we have[

f−1(L)
]
M
= τV ∩ [V ]0 = f ∗τW ∩ [V ]0 = f ∗τW ∩ i∗[M],

where we identifyHm(M,M − f−1(L)) with Hm(V,V − f−1(L)) under the excision
isomorphism. Then we have further[

f−1(L)
]
M
= i∗f ∗τW ∩ [M] = f ∗j∗τW ∩ [M].

So it remains to identifyj∗τW as the Poincaré dualu of [L]N . Indeed,

j∗τW ∩ [N ] = τW ∩ j∗[N ] = τW ∩ [W ]0 = [L]N,

where we have used the excision isomorphism between the groupsHn(W,W − L) and
Hn(N,N −L). �

3.3.2. Representing homology classes by submanifoldsWe now want to relate elements
in H1(M;Z) to cobordism classes of links inM .

THEOREM 3.12. Let M be a closed, oriented3-manifold. Any c ∈ H1(M;Z) is repre-
sented by an embedded, oriented link(of 1-spheres) Lc in M . Two linksL0,L1 represent
the same class[L0] = [L1] if and only if they are cobordant inM , that is, there is an
embedded, oriented surfaceS in M × [0,1] with

∂S = L1 0 (−L0)⊂M × {1} 0M × {0},

where0 denotes disjoint union.

PROOF. Given c ∈ H1(M;Z), set u = PD(c) ∈ H 2(M;Z), where PD denotes the
Poincaré duality map from homology to cohomology. There is a well-known isomorphism

H 2(M;Z)∼= [M,K(Z,2)]= [M,CP∞],

where brackets denote homotopy classes of maps (cf. [14, VII.12]). Sou corresponds to
a homotopy class of maps[f ] :M → CP∞ such thatf ∗u0 = u, whereu0 is the positive
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generator ofH 2(CP∞) (that is, the one that pulls back to the Poincaré dual of[CP k−1]CPk
under the natural inclusionCP k ⊂ CP∞). Since dimM = 3, any mapf :M → CP∞ is
homotopic to a smooth mapf1 :M→CP 1. Letp be a regular value off1. Then

PD(c)= u= f ∗
1 u0 = f ∗

1 PD[p] = PD
[
f−1

1 (p)
]

by our discussion above, and hencec= [f−1
1 (p)]. SoLc = f−1

1 (p) is the desired link.
It is important to note that in spite of what we have just said it is not true that

[M,CP∞] = [M,CP 1], since a mapF :M × [0,1]→CP∞ with F(M × {0,1})⊂CP 1

is not, in general, homotopic rel(M × {0,1}) to a map intoCP 1. However, we do have
[M,CP∞] = [M,CP 2].

If two links L0,L1 are cobordant inM , then clearly

[L0] = [L1] ∈H1
(
M × [0,1];Z)∼=H1(M;Z).

For the converse, suppose we are given two linksL0,L1 ⊂M with [L0] = [L1]. Choose
arbitrary framings for these links and use this, as described at the beginning of this sec-
tion, to define smooth mapsf0, f1 :M→ S2 with common regular valuep ∈ S2 such that
f−1
i (p)= Li , i = 0,1. Now identifyS2 with the standardly embeddedCP 1 ⊂ CP 2. Let
P ⊂ CP 2 be a second copy ofCP 1, embedded in such a way that[P ]CP 2 = [CP 1]CP 2

andP intersectsCP 1 transversely inp only. This is possible sinceCP 1 ⊂ CP 2 has self-
intersection one. Then the mapsf0, f1, regarded as maps intoCP 2, are transverse toP
and we havef−1

i (P )= Li , i = 0,1. Hence

f ∗
i u0 = f ∗

i

(
PD[P ]CP 2

)= PD[f−1
i (P )

]
M
= PD[Li]M

is the same fori = 0 or 1, and from the identification[
M,CP 2] ∼=→ H 2(M,Z),

[f ] 	→ f ∗u0

we conclude thatf0 andf1 are homotopic as maps intoCP 2.
Let F :M × [0,1]→CP 2 be a homotopy betweenf0 andf1, which we may assume to

be constant near 0 and 1. ThisF can be smoothly approximated by a mapF ′ :M×[0,1]→
CP 2 which is transverse toP and coincides withF nearM×0 andM×1 (since there the
transversality condition was already satisfied). In particular,F ′ is still a homotopy between
f0 andf1, andS = (F ′)−1(P ) is a surface with the desired property∂S = L1 0 (−L0). �

Notice that in the course of this proof we have observed that cobordism classes of links
in M (equivalently, classes inH1(M;Z)) correspond to homotopy classes of mapsM →
CP 2, whereas framed cobordism classes of framed links correspond to homotopy classes
of mapsM→CP 1.

By forming the connected sum of the components of a link representing a certain class
in H1(M;Z), one may actually always represent such a class by a link with only one
component, that is, a knot.
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3.3.3. Framed cobordisms We have seen that ifL1,L2 ⊂M are links with[L1] = [L2] ∈
H1(M;Z), thenL1 andL2 are cobordant inM . In general, however, a given framing on
L1 andL2 does not extend over the cobordism. The following observation will be useful
later on.

Write (S1, n) for a contractible loop inM with framingn ∈ Z (by which we mean thatS1

and a second copy ofS1 obtained by pushing it away in the direction of one of the vectors
in the frame have linking numbern). When writingL= L′ 0 (S1, n) it is understood that
(S1, n) is not linked with any component ofL′.

Suppose we have two framed linksL0,L1 ⊂M with [L0] = [L1]. Let S ⊂M × [0,1]
be an embedded surface with

∂S = L1 0 (−L0)⊂M × {1} 0M × {0}.

With D2 a small disc embedded inS, the framing ofL1 andL2 in M extends to a framing
of S −D2 in M × [0,1] (sinceS −D2 deformation retracts to a 1-dimensional complex
containingL0 andL1, and over such a complex an orientable 2-plane bundle is trivial).
Now we embed a cylinderS1 × [0,1] in M × [0,1] such that

S1 × [0,1] ∩M × {0} = ∅,
S1 × [0,1] ∩M × {1} = S1 × {1},

and

S1 × [0,1] ∩ (S −D2)= S1 × {0} = ∂D2,

see Figure 13. This shows thatL0 is framed cobordant inM to L1 0 (S1, n) for suitable
n ∈ Z.

Fig. 13. The framed cobordism betweenL0 andL1 0 (S1, n).
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3.3.4. Definition of the obstruction classesWe are now in a position to define the ob-
struction classesd2 andd3. With a choice of Riemannian metric onM and a trivialisation
of STM understood, a 2-plane distributionξ onM defines a mapfξ :M→ S2 and hence
an oriented framed linkLξ as described above. Let[Lξ ] ∈ H1(M;Z) be the homology
class represented byLξ . This only depends on the homotopy class ofξ , since under homo-
topies ofξ or choice of different regular values offξ the cobordism class ofLξ remains
invariant. We define

d2(ξ1, ξ2)= PD[Lξ1] − PD[Lξ2].

With this definitiond2 is clearly additive, that is,

d2(ξ1, ξ2)+ d2(ξ2, ξ3)= d2(ξ1, ξ3).

The following lemma shows thatd2 is indeed the desired obstruction class.

LEMMA 3.13. The2-plane distributionsξ1 andξ2 are homotopic over the2-skeletonM(2)

ofM if and only ifd2(ξ1, ξ2)= 0.

PROOF. Supposed2(ξ1, ξ2)= 0, that is,[Lξ1] = [Lξ2]. By Theorem 3.12 we find a surface
S in M × [0,1] with

∂S = Lξ2 0 (−Lξ1)⊂M × {1} 0M × {0}.

From the discussion on framed cobordism above we know that for suitablen ∈ Z we find
a framedsurfaceS′ in M × [0,1] such that

∂S′ = (Lξ2 0 (S1, n
)) 0 (−Lξ1)⊂M × {1} 0M × {0}

as framed manifolds.
Henceξ1 is homotopic to a 2-plane distributionξ ′1 such thatLξ ′1 andLξ2 differ only by

one contractible framed loop (not linked with any other component). Then the correspond-
ing mapsf ′

1, f2 differ only in a neighbourhood of this loop, which is contained in a 3-ball,
sof ′

1 andf2 (and henceξ ′1 andξ2) agree over the 2-skeleton.
Conversely, ifξ1 andξ2 are homotopic overM(2), we may assumeξ1 = ξ2 onM −D3

for some embedded 3-discD3 ⊂M without changing[Lξ1] and[Lξ2]. Now [Lξ1] = [Lξ2]
follows fromH1(D

3, S2)= 0. �

REMARK 3.14. By [99, §37] the obstruction to homotopy betweenξ andξ0 (correspond-
ing to the constant mapfξ0 :M→ S2) over the 2-skeleton ofM is given byf ∗

ξ u0, where

u0 is the positive generator ofH 2(S2;Z). Sou0 = PD[p] for anyp ∈ S2, and takingp to



Contact geometry 363

be a regular value offξ we have

f ∗
ξ u0 = f ∗

ξ PD[p] = PD
[
f−1
ξ (p)

]= PD[Lξ ] = d2(ξ, ξ0).

This gives an alternative way to see that our geometric definition ofd2 does indeed coincide
with the class defined by classical obstruction theory.

Now supposed2(ξ1, ξ2) = 0. We may then assume thatξ1 = ξ2 onM − int(D3), and
we defined3(ξ1, ξ2) to be the Hopf invariantH(f ) of the mapf :S3 → S2 defined as
f1 ◦ π+ on the upper hemisphere andf2 ◦ π− on the lower hemisphere, whereπ+,π− are
the orthogonal projections of the upper respectively lower hemisphere onto the equatorial
disc, which we identify withD3 ⊂M . Here, given an orientation ofM , we orientS3 in
such a way thatπ+ is orientation-preserving andπ− orientation-reversing; the orientation
of S2 is inessential for the computation ofH(f ). Recall thatH(f ) is defined as the linking
number of the preimages of two distinct regular values of a smooth map homotopic tof .
Since the Hopf invariant classifies homotopy classes of mapsS3 → S2 (it is in fact an iso-
morphismπ3(S

2)→ Z), this is a suitable definition for the obstruction classd3. Moreover,
the homomorphism property ofH(f ) and the way addition inπ3(S

2) is defined entail the
additivity of d3 analogous to that ofd2.

ForM = S3 there is another way to interpretd3. Oriented 2-plane distributions onM
correspond to sections of the bundle associated toTM with fibre SO(3)/U(1), hence to
mapsM→ SO(3)/U(1)∼= S2 sinceTM is trivial. Similarly, almost complex structures on
D4 correspond to mapsD4 → SO(4)/U(2)∼= SO(3)/U(1) (cf. [61] for this isomorphism).
A cooriented 2-plane distribution onM can be interpreted as a triple(X, ξ, J ), where
X is a vector field transverse toξ defining the coorientation, andJ a complex structure
on ξ defining the orientation. Such a triple is called analmost contact structure. (This
notion generalises to higher (odd) dimensions, and by Remark 2.3 everycoorientedcontact
structure induces an almost contact structure, and in fact a unique one up to homotopy as
follows from the result cited in that remark.) Given an almost contact structure(X, ξ, J )

on S3, one defines an almost complex structureJ̃ on TD4|S3 by J̃ |ξ = J and J̃N = X,
whereN denotes the outward normal vector field. So there is a canonical way to identify
homotopy classes of almost contact structures onS3 with elements ofπ3(SO(3)/U(1))∼=
Z such that the value zero corresponds to the almost contact structure that extends as almost
complex structure overD4.

3.4. Let’s twist again

Consider a 3-manifoldM with cooriented contact structureξ and an oriented 1-sphere
K ⊂M embedded transversely toξ such that the positive orientation ofK coincides with
the positive coorientation ofξ . Then in suitable local coordinates we can identifyK with
S1 × {0} ⊂ S1 × D2 such thatξ = ker(dθ + r2dϕ) and ∂θ corresponds to the positive
orientation ofK (see Example 2.33). Strictly speaking, if, as we shall always assume,
S1 is parametrised by 0� θ � 2π , then this formula forξ holds onS1 ×D2(δ) for some,



364 H. Geiges

Fig. 14. Lutz twist.

possibly small,δ > 0. However, to simplify notation we usually work withS1 × D2 as
local model.

We say thatξ ′ is obtained fromξ by a Lutz twistalongK and writeξ ′ = ξK if on
S1 ×D2 the new contact structureξ ′ is defined by

ξ ′ = ker
(
h1(r) dθ + h2(r) dϕ

)
with (h1(r), h2(r)) as in Figure 14, andξ ′ coincides withξ outsideS1 ×D2.

More precisely,(h1(r), h2(r)) is required to satisfy the conditions
1. h1(r)=−1 andh2(r)=−r2 nearr = 0,
2. h1(r)= 1 andh2(r)= r2 nearr = 1,
3. (h1(r), h2(r)) is never parallel to(h′1(r), h′2(r)).

This is the same as applying the construction of Section 3.2 to the topologically trivial
Dehn surgery given by the matrix

(−1 0
0 −1

)
.

It will be useful later on to understand more precisely the behaviour of the map
fξ ′ :M → S2. For the definition of this map we assume—this assumption will be justi-
fied below—that onS1 × D2 the mapfξ was defined in terms of the standard metric
dθ2 + du2 + dv2 (with u,v Cartesian coordinates onD2 corresponding to the polar coor-
dinatesr, ϕ) and the trivialisation∂θ , ∂u, ∂v of T (S1 ×D2). Sinceξ ′ is spanned by∂r and
h2(r) ∂θ − h1(r) ∂ϕ (respectively∂u, ∂v for r = 0), a vector positively orthogonal toξ ′ is
given by

h1(r) ∂θ + h2(r) ∂ϕ,
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which makes sense even forr = 0. Observe that the ratioh1(r)/h2(r) (for h2(r) �= 0) is a
strictly monotone decreasing function since by the third condition above we have

(h1/h2)
′ = (h′1h2 − h1h

′
2)/h

2
2< 0.

This implies that any value onS2 other than(1,0,0) (corresponding to∂θ ) is regular for
the mapfξ ′ ; the value(1,0,0) is attained along the torus{r = r0}, with r0> 0 determined
by h2(r0)= 0, and hence not regular.

If S1×D2 is endowed with the orientation defined by the volume formdθ ∧r dr∧dϕ =
dθ ∧ du ∧ dv (so thatξ andξ ′ are positive contact structures) andS2 ⊂ R3 is given its
‘usual’ orientation defined by the volume formx dy ∧ dz+ y dz∧ dx + z dx ∧ dy, then

f−1
ξ ′ (−1,0,0)= S1 × {0}

with orientation given by−∂θ , since fξ ′ maps the slices{θ} × D2(r0) orientation-
reversingly ontoS2.

More generally, for anyp ∈ S2 − {(1,0,0)} the preimagef−1
ξ ′ (p) (inside the domain

{(θ, r, ϕ): h2(r) < 0} = {r < r0}) is a circleS1 × {u}, u ∈ D2, with orientation given
by−∂θ .

We are now ready to show how to construct a contact structure onM in any given
homotopy class of 2-plane distributions by starting with an arbitrary contact structure and
performing suitable Lutz twists. First we deal with homotopy over the 2-skeleton. One way
to proceed would be to prove directly, with notation as above, thatd2(ξK, ξ)=−PD[K].
However, it is somewhat easier to computed2(ξK, ξ) in the case whereξ is a trivial 2-plane
bundle and the trivialisation ofSTM is adapted toξ . Since I would anyway like to present
an alternative argument for computing the effect of a Lutz twist on the Euler class of the
contact structure, and thus related2(ξ1, ξ2) with the Euler classes ofξ1 andξ2, it seems
opportune to do this first and use it to show the existence of a contact structure with Euler
class zero. In the next section we shall actually discuss a direct geometric proof, due to
Gonzalo, of the existence of a contact structure with Euler class zero.

Recall that the Euler classe(ξ) ∈ H 2(B;Z) of a 2-plane bundle over a complexB (of
arbitrary dimension) is the obstruction to finding a nowhere zero section ofξ over the 2-
skeleton ofB. Sinceπi(S1)= 0 for i � 2, all higher obstruction groupsHi+1(B;πi(S1))

are trivial, so a 2-dimensional orientable bundleξ is trivial if and only if e(ξ) = 0, no
matter what the dimension ofB.

Now let ξ be an arbitrary cooriented 2-plane distribution on an oriented 3-manifoldM .
ThenTM ∼= ξ ⊕ ε1, whereε1 denotes a trivial line bundle. Hencew2(ξ)=w2(ξ ⊕ ε1)=
w2(TM)= 0, and sincew2(ξ) is the mod 2 reduction ofe(ξ) we infer thate(ξ) has to be
even.

PROPOSITION3.15. For any even elemente ∈H 2(M;Z) there is a contact structureξ on
M with e(ξ)= e.

PROOF. Start with an arbitrary contact structureξ0 onM with e(ξ0)= e0 (which we know
to be even). Given any evene1 ∈H 2(M;Z), represent the Poincaré dual of(e0− e1)/2 by
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Fig. 15. Effect of Lutz twist on Euler class.

a collection of embedded oriented circles positively transverse toξ0. (Here by(e0 − e1)/2
I mean some class whose double equalse0 − e1; in the presence of 2-torsion there is of
course a choice of such classes.) Choose a section ofξ0 transverse to the zero section ofξ0,
that is, a vector field inξ0 with generic zeros. We may assume that there are no zeros on
the curves representingPD−1(e0 − e1)/2. Now perform a Lutz twist as described above
along these curves and callξ1 the resulting contact structure. It is easy to see that in the
local model for the Lutz twist a constant vector field tangent toξ0 along∂(S1 ×D2(r0))

extends to a vector field tangent toξ1 over S1 × D2(r0) with zeros of index+2 along
S1 × {0} (Figure 15). So the vector field inξ0 extends to a vector field inξ1 with new
zeros of index+2 along the curves representingPD−1(e1− e0)/2 (notice that a Lutz twist
along a positively transverse knotK turnsK into a negatively transverse knot). Since the
self-intersection class ofM in the total space of a vector bundle is Poincaré dual to the
Euler class of that bundle, this provese(ξ1)= e(ξ0)+ e1 − e0 = e1. �

We now fix a contact structureξ0 on M with e(ξ0) = 0 and giveM the orientation
induced byξ0 (i.e. the one for whichξ0 is a positive contact structure). Moreover, we fix
a Riemannian metric onM and defineX0 as the vector field positively orthonormal toξ0.
Sinceξ0 is a trivial plane bundle,X0 extends to an orthonormal frameX0,X1,X2, hence
a trivialisation ofSTM , withX1,X2 tangent toξ0 and defining the orientation ofξ0. With
these choices,ξ0 corresponds to the constant mapfξ0 :M→ (1,0,0) ∈ S2.

PROPOSITION 3.16. Let K ⊂M be an embedded, oriented circle positively transverse
to ξ0. Thend2(ξK0 , ξ0)=−PD[K].

PROOF. Identify a tubular neighbourhood ofK ⊂M with S1 ×D2 with framing defined
byX1, andξ0 given in this neighbourhood as the kernel ofdθ + r2dϕ = dθ +udv−v du.
We may then change the trivialisationX0,X1,X2 by a homotopy, fixed outsideS1 ×D2,
such thatX0 = ∂θ , X1 = ∂u andX2 = ∂v nearK ; this does not change the homotopical
data of 2-plane distributions computed via the Pontrjagin–Thom construction. Thenfξ0 is
no longer constant, but its image still does not contain the point(−1,0,0).
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Now perform a Lutz twist alongK × {0}. Our discussion at the beginning of this sec-
tion shows that(−1,0,0) is a regular value of the mapfξ :M → S2 associated with
ξ = ξK0 and f−1

ξ (−1,0,0) = −K . Hence, by definition of the obstruction classd2 we

haved2(ξK0 , ξ0)=−PD[K]. �

PROOF OFTHEOREM 3.1. Letη be a 2-plane distribution onM andξ0 the contact struc-
ture onM with e(ξ0) = 0 that we fixed earlier on. According to our discussion in Sec-
tion 3.3.2 and Theorem 2.44, we can find an oriented knotK positively transverse toξ0
with−PD[K] = d2(η, ξ0). Thend2(η, ξ0)= d2(ξK0 , ξ0) by the preceding proposition, and
therefored2(ξK0 , η)= 0.

We may then assume thatη = ξK0 onM −D3, where we chooseD3 so small thatξK0
is in Darboux normal form there (and identical withξ0). By Proposition 3.4 we can find a
link K ′ in D3 transverse toξK0 with self-linking numberl(K ′) equal tod3(η, ξK0 ).

Now perform a Lutz twist ofξK0 along each component ofK ′ and letξ be the resulting
contact structure. Since this does not changeξK0 over the 2-skeleton ofM , we still have
d2(ξ, η)= 0.

Observe thatfξK0
|D3 does not contain the point(−1,0,0) ∈ S2, and—sincefξK0

(D3) is

compact—there is a whole neighbourhoodU ⊂ S2 of (−1,0,0) not contained infξK0
(D3).

Let f :S3 → S2 be the map used to computed3(ξ, ξK0 ), that is,f coincides on the upper
hemisphere withfξ |D3 and on the lower hemisphere withfξK0

|D3. By the discussion in

Section 3.3, the preimagef−1(u) of anyu ∈ U − {(−1,0,0)} will be a push-off of−K ′
determined by the trivialisation ofξK0 |D3 = ξ0|D3. So the linking number off−1(u) with
f−1(−1,0,0), which is by definition the Hopf invariantH(f )= d3(ξ, ξK0 ), will be equal
to l(K ′). By our choice ofK ′ and the additivity ofd3 this impliesd3(ξ, η)= 0. Soξ is a
contact structure that is homotopic toη as a 2-plane distribution. �

3.5. Other existence proofs

Here I briefly summarise the other known existence proofs for contact structures on
3-manifolds, mostly by pointing to the relevant literature. In spirit, most of these proofs
are similar to the one by Lutz–Martinet: start with a structure theorem for 3-manifolds
and show that the topological construction can be performed compatibly with a contact
structure.

3.5.1. Open books According to a theorem of Alexander [4], cf. [97], every closed, ori-
entable 3-manifoldM admits anopen book decomposition. This means that there is a link
L ⊂M , called thebinding, and a fibrationf :M − L→ S1, whose fibres are called the
pages, see Figure 16. It may be assumed thatL has a tubular neighbourhoodL×D2 such
thatf restricted toL× (D2 − {0}) is given byf (θ, r, ϕ) = ϕ, whereθ is the coordinate
alongL and(r, ϕ) are polar coordinates onD2.

At the cost of raising the genus of the pages, one may decrease the number of com-
ponents ofL, and in particular one may always assumeL to be a knot. Another way
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Fig. 16. An open book near the binding.

to think of such an open book is as follows. Start with a surfaceΣ with boundary
∂Σ = K ∼= S1 and a self-diffeomorphismh of Σ with h = id nearK . Form the map-
ping torusTh =Σ × [0,2π]/∼, where ‘∼’ denotes the identification(p,2π)∼ (h(p),0).
Define a 3-manifoldM by

M = Th ∪K×S1

(
K ×D2).

ThisM carries by construction the structure of an open book with bindingK and pages
diffeomorphic toΣ .

Here is a slight variation on a simple argument of Thurston and Winkelnkemper [101] for
producing a contact structure on such an open book (and hence on any closed, orientable
3-manifold):

Start with a 1-formβ0 onΣ with β0 = et dθ near∂Σ =K , whereθ denotes the coor-
dinate alongK andt is a collar parameter withK = {t = 0} andt < 0 in the interior ofΣ .
Thendβ0 integrates to 2π overΣ by Stokes’s theorem. Given any area formω onΣ (with
total area equal to 2π ) satisfyingω = et dt ∧ dθ nearK , the 2-formω − dβ0 is, by de
Rham’s theorem, an exact 1-form, saydβ1, where we may assumeβ1 ≡ 0 nearK .

Setβ = β0 + β1. Thendβ = ω is an area form (of total area 2π ) onΣ andβ = et dθ

nearK . The set of 1-forms satisfying these two properties is a convex set, so we can find a
1-form (still denotedβ) onTh which has these properties when restricted to the fibre over
anyϕ ∈ S1 = [0,2π]/0∼2π . We may (and shall) require thatβ = et dθ near∂Th.

Now a contact formα on Th is found by settingα = β + C dϕ for a sufficiently large
constantC ∈R+, so that in

α ∧ dα = (β +C dϕ)∧ dβ
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the non-zero termdϕ ∧ dβ = dϕ ∧ ω dominates. This contact form can be extended to
all of M by making the ansatzα = h1(r) dθ + h2(r) dϕ onK ×D2, as described in our
discussion of the Lutz twist. The boundary conditions in the present situation are, say,

1. h1(r)= 2 andh2(r)= r2 nearr = 0,
2. h1(r)= e1−r andh2(r)= C nearr = 1.
Observe that subject to these boundary conditions a curve(h1(r), h2(r)) can be found

that does not pass theh2-axis (i.e. withh1(r) never being equal to zero). In the 3-dimen-
sional setting this is not essential (and the Thurston–Winkelnkemper ansatz lacked that
feature), but it is crucial when one tries to generalise this construction to higher dimensions.
This has recently been worked out by Giroux and J.-P. Mohsen [57]. This, however, is only
the easy part of their work. Rather strikingly, they have shown that a converse of this result
holds: Given a compact contact manifold of arbitrary dimension, it admits an open book
decomposition that is adapted to the contact structure in the way described above. Full
details have not been published at the time of writing, but see Giroux’s talk [56] at the ICM
2002.

3.5.2. Branched covers A theorem of Hilden, Montesinos and Thickstun [63] states that
every closed, orientable 3-manifoldM admits a branched coveringπ :M→ S3 such that
the upstairs branch set is a simple closed curve that bounds an embedded disc. (More-
over, the cover can be chosen 3-fold and simple, i.e. the monodromy representation of
π1(S

3 −K), whereK is the branching set downstairs (a knot inS3), represents the merid-
ian ofK by a transposition in the symmetric groupS3. This, however, is not relevant for
our discussion.)

It follows immediately, as announced in Section 3.3, that every closed, orientable
3-manifold is parallelisable: First of all,S3 is parallelisable since it carries a Lie group
structure (as the unit quaternions, for instance). GivenM and a branched coveringπ :
M → S3 as above, there is a 3-ballD3 ⊂M containing the upstairs branch set. Outside
of D3, the coveringπ is unbranched, so the 3-frame onS3 can be lifted to a frame on
M −D3. The bundleTM|D3 is trivial, so the frame defined along∂D3 defines an element
of SO(3) (cf. the footnote in the proof of Theorem 3.10). Sinceπ2(SO(3))= 0, this frame
extends overD3.

In [59], Gonzalo uses this theorem to construct a contact structure on every closed, ori-
entable 3-manifoldM , in fact one with zero Euler class: Away from the branching set one
can lift the standard contact structure fromS3 (which has Euler class zero: a trivialisa-
tion is given by two of the three (quaternionic) Hopf vector fields). A careful analysis of
the branched covering map near the branching set then shows how to extend this contact
structure overM (while keeping it trivial as 2-plane bundle).

A branched covering construction for higher-dimensional contact manifolds is discussed
in [43].

3.5.3. . . . and more The work of Giroux [52], in which he initiated the study of convex
surfaces in contact 3-manifolds, also contains a proof of Martinet’s theorem.

An entirely different proof, due to S. Altschuler [5], finds contact structures from so-
lutions to a certain parabolic differential equation for 1-forms on 3-manifolds. Some of
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these ideas have entered into the more far-reaching work of Eliashberg and Thurston on
so-called ‘confoliations’ [32], that is, 1-forms satisfyingα ∧ dα � 0.

3.6. Tight and overtwisted

The title of this section describes the fundamental dichotomy of contact structures in di-
mension 3 that has proved seminal for the development of the field.

In order to motivate the notion of an overtwisted contact structure, as introduced by
Eliashberg [21], we consider a ‘full’ Lutz twist as follows. Let(M, ξ) be a contact
3-manifold andK ⊂M a knot transverse toξ . As before, identifyK with S1 × {0} ⊂
S1×D2 ⊂M such thatξ = ker(dθ + r2dϕ) onS1×D2. Now define a new contact struc-
ture ξ ′ as in Section 3.4, with(h1(r), h2(r)) now as in Figure 17, that is, the boundary
conditions are now

h1(r)= 1 and h2(r)= r2 for r ∈ [0, ε] ∪ [1− ε,1]

for some smallε > 0.

LEMMA 3.17. A full Lutz twist does not change the homotopy class ofξ as a2-plane field.

PROOF. Let (ht1(r), h
t
2(r)), r, t ∈ [0,1], be a homotopy of paths such that

1. h0
1 ≡ 1, h0

2(r)= r2,
2. h1

i ≡ hi , i = 1,2,
3. hti(r)= hi(r) for r ∈ [0, ε] ∪ [1− ε,1].

Fig. 17. A full Lutz twist.
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Let χ : [0,1]→R be a smooth function which is identically zero nearr = 0 andr = 1 and
χ(r) > 0 for r ∈ [ε,1− ε]. Then

αt = t (1− t)χ(r) dr + ht1(r) dθ + ht2(r) dϕ

is a homotopy fromα0 = dθ + r2dϕ to α1 = h1(r) dθ + h2(r) dϕ through non-zero
1-forms. This homotopy stays fixed nearr = 1, and so it defines a homotopy between
ξ andξ ′ as 2-plane fields. �

Let r0 be the smaller of the two positive radii withh2(r0)= 0 and consider the embed-
ding

φ :D2(r0)→ S1 ×D2,

(r, ϕ) 	→ (
θ(r), r, ϕ

)
,

whereθ(r) is a smooth function withθ(r0) = 0, θ(r) > 0 for 0� r < r0, andθ ′(r) = 0
only for r = 0. We may require in addition thatθ(r)= θ(0)− r2 nearr = 0. Then

φ∗
(
h1(r) dθ + h2(r) dϕ

)= h1(r)θ
′(r) dr + h2(r) dϕ

is a differential 1-form onD2(r0) which vanishes only forr = 0, and along∂D2(r0) the
vector field∂ϕ tangent to the boundary lies in the kernel of this 1-form, see Figure 18.
In other words, the contact planes ker(h1(r) dθ + h2(r) dϕ) intersected with the tangent
planes to the embedded discφ(D2(r0)) induce a singular 1-dimensional foliation on this
disc with the boundary of this disc as closed leaf and precisely one singular point in the

Fig. 18. An overtwisted disc.
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Fig. 19. Characteristic foliation on an overtwisted disc.

interior of the disc (Figure 19; notice that the leaves of this foliation are the integral curves
of the vector fieldh1(r)θ

′(r) ∂ϕ − h2(r) ∂r ). Such a disc is called anovertwisted disc.
A contact structureξ on a 3-manifoldM is calledovertwistedif (M, ξ) contains an

embedded overtwisted disc. In order to justify this terminology, observe that in the radi-
ally symmetric standard contact structure of Example 2.7, the angle by which the contact
planes turn approachesπ/2 asymptotically asr goes to infinity. By contrast, any contact
manifold which has been constructed using at least one (simple) Lutz twist contains a sim-
ilar cylindrical region where the contact planes twist by more thanπ in radial direction (at
the smallest positive radiusr0 with h2(r0)= 0 the twisting angle has reachedπ ).

We have shown the following:

PROPOSITION3.18. Let ξ be a contact structure onM . By a full Lutz twist along any
transversely embedded circle one obtains an overtwisted contact structureξ ′ that is homo-
topic toξ as a2-plane distribution.

Together with the theorem of Lutz and Martinet we find thatM contains anovertwisted
contact structure in every homotopy class of 2-plane distributions. In fact, Eliashberg [21]
has proved the following much stronger theorem.

THEOREM 3.19 (Eliashberg).On a closed, orientable3-manifold there is a one-to-one
correspondence between homotopy classes of overtwisted contact structures and homotopy
classes of2-plane distributions.

This means that two overtwisted contact structures which are homotopic as 2-plane fields
are actually homotopic as contact structures and hence isotopic by Gray’s stability theorem.

Thus, it ‘only’ remains to classify contact structures that are not overtwisted. In [24]
Eliashberg definedtight contact structures on a 3-manifoldM as contact structuresξ for
which there is no embedded discD ⊂M such thatDξ contains a limit cycle. So, by defi-
nition, overtwisted contact structures are not tight. In that same paper, as mentioned above
in Section 2.4.5, Eliashberg goes on to show the converse with the help of the Elimination
Lemma: non-overtwisted contact structures are tight.
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There are various ways to detect whether a contact structure is tight. Historically the
first proof that a certain contact structure is tight is due to D. Bennequin [9, Corollary 2,
p. 150]:

THEOREM 3.20 (Bennequin).The standard contact structureξ0 onS3 is tight.

The steps of the proof are as follows: (i) First, Bennequin shows that ifγ0 is a transverse
knot in (S3, ξ0) with Seifert surfaceΣ , then the self-linking number ofγ satisfies the
inequality

l(γ0)�−χ(Σ).
(ii) Second, he introduces an invariant for Legendrian knots; nowadays this is called the

Thurston–Bennequin invariant: Let γ be a Legendrian knot in(S3, ξ0). Take a vector field
X alongγ transverse toξ0, and letγ ′ be the push-off ofγ in the direction ofX. Then the
Thurston–Bennequin invarianttb(γ ) is defined to be the linking number ofγ andγ ′. (This
invariant has an extension to homologically trivial Legendrian knots in arbitrary contact
3-manifolds.)

(iii) By pushingγ in the direction of±X, one obtains transverse curvesγ± (either of
which is a candidate forγ ′ in (ii)). One of these curves is positively transverse, the other
negatively transverse toξ0. The self-linking number ofγ± is related to the Thurston–
Bennequin invariant and a further invariant (the rotation number) ofγ . The equation relat-
ing these three invariants impliestb(γ )�−χ(Σ), whereΣ again denotes a Seifert surface
for γ . In particular, a Legendrian unknotγ satisfiestb(γ ) < 0. This inequality would be
violated by the vanishing cycle of an overtwisted disc (which hastb = 0), which proves
that(S3, ξ0) is tight.

REMARK 3.21. (1) Eliashberg [25] generalised the Bennequin inequalityl(γ0)�−χ(Σ)
for transverse knots (and the corresponding inequality for the Thurston–Bennequin invari-
ant of Legendrian knots) to arbitrary tight contact 3-manifolds. Thus, whereas Bennequin
established the tightness (without that name) of the standard contact structure onS3 by
proving the inequality that bears his name, that inequality is now seen, conversely, as a
consequence of tightness.

(2) In [9] Bennequin denotes the positively (respectively negatively) transverse push-off
of the Legendrian knotγ by γ− (respectivelyγ+). This has led to some sign errors in the
literature. Notably, the± in Proposition 2.2.1 of [25], relating the described invariants of
γ andγ±, needs to be reversed.

COROLLARY 3.22. The standard contact structure onR3 is tight.

PROOF. This is immediate from Proposition 2.13. �

Here are further tests for tightness:

1. A closed contact 3-manifold(M, ξ) is calledsymplectically fillableif there exists a
compact symplectic manifold(W,ω) bounded byM such that
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• the restriction ofω to ξ does not vanish anywhere,
• the orientation ofM defined byξ (i.e. the one for whichξ is positive) coincides

with the orientation ofM as boundary of the symplectic manifold(W,ω) (which is
oriented byω2).

We then have the following result of Eliashberg [20, Theorem 3.2.1], [22] and Gro-
mov [62, 2.4.D′

2(b)], cf. [10]:

THEOREM 3.23 (Eliashberg–Gromov).A symplectically fillable contact structure is tight.

EXAMPLE 3.24. The 4-ballD4 ⊂ R4 with symplectic formω = dx1 ∧ dy1 + dx2 ∧ dy2
is a symplectic filling ofS3 with its standard contact structureξ0. This gives an alternative
proof of Bennequin’s theorem.

2. Let (M̃, ξ̃ )→ (M, ξ) be a covering map and contactomorphism. If(M̃, ξ̃ ) is tight,
then so is(M, ξ), for any overtwisted disc in(M, ξ) would lift to an overtwisted disc in
(M̃, ξ̃ ).

EXAMPLE 3.25. The contact structuresξn, n ∈N, on the 3-torusT 3 defined by

αn = cos(nθ1) dθ2 + sin(nθ1) dθ3 = 0

are tight: Lift the contact structureξn to the universal coverR3 of T 3; there the contact
structure is defined by the same equationαn = 0, but nowθi ∈ R instead ofθi ∈ R/2πZ
∼= S1. Define a diffeomorphismf of R3 by

f (x, y, z)= (y/n, z cosy + x siny, z siny − x cosy)=: (θ1, θ2, θ3).

Thenf ∗αn = dz + x dy, so the lift of ξn to R3 is contactomorphic to the tight standard
contact structure onR3.

Notice that it is possible for a tight contact structure to be finitely covered by an over-
twisted contact structure. The first such examples were due to S. Makar-Limanov [88].
Other examples of this kind have been found by V. Colin [18] and R. Gompf [58].

3. The following theorem of H. Hofer [65] relates the dynamics of the Reeb vector field
to overtwistedness.

THEOREM 3.26 (Hofer). Let α be a contact form on a closed3-manifold such that the
contact structurekerα is overtwisted. Then the Reeb vector field ofα has at least one
contractible periodic orbit.

EXAMPLE 3.27. The Reeb vector fieldRn of the contact formαn of the preceding exam-
ple is

Rn = cos(nθ1) ∂θ2 + sin(nθ1) ∂θ3.
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Thus, the orbits ofRn define constant slope foliations of the 2-tori{θ1 = const}; in particu-
lar, the periodic orbits ofRn are even homologically non-trivial. It follows, again, that the
ξn are tight contact structures onT 3. (This, admittedly, amounts to attacking starlings with
rice puddings fired from catapults.5)

3.7. Classification results

In this section I summarise some of the known classification results for contact structures
on 3-manifolds. By Eliashberg’s Theorem 3.19 it suffices to list the tight contact structures,
up to isotopy or diffeomorphism, on a given closed 3-manifold.

THEOREM 3.28 (Eliashberg [24]).Any tight contact structure onS3 is isotopic to the
standard contact structureξ0.

This theorem has a remarkable application in differential topology, viz., it leads to a new
proof of Cerf’s theorem [16] that any diffeomorphism ofS3 extends to a diffeomorphism of
the 4-ballD4. The idea is that the above theorem implies that any diffeomorphism ofS3 is
isotopic to a contactomorphism ofξ0. Eliashberg’s technique [22] of filling by holomorphic
discs can then be used to show that such a contactomorphism extends to a diffeomorphism
of D4.

As remarked earlier (Remark 2.21), Eliashberg has also classified contact structures
on R3. Recall that homotopy classes of 2-plane distributions onS3 are classified by
π3(S

2) ∼= Z. By Theorem 3.19, each of these classes contains a unique (up to isotopy)
overtwisted contact structure. When a point ofS3 is removed, each of these contact struc-
tures induces one onR3, and Eliashberg [25] shows that they remain non-diffeomorphic
there. Eliashberg shows further that, apart from this integer family of overtwisted contact
structures, there is a unique tight contact structure onR3 (the standard one), and a single
overtwisted one that is ‘overtwisted at infinity’ and cannot be compactified to a contact
structure onS3.

In general, the classification of contact structures up to diffeomorphism will differ from
the classification up to isotopy. For instance, on the 3-torusT 3 we have the following
diffeomorphism classification due to Y. Kanda [75]:

THEOREM 3.29 (Kanda).Every(positive) tight contact structure onT 3 is contactomor-
phic to one of theξn, n ∈N, described above. For n �=m, the contact structuresξn andξm
are not contactomorphic.

Giroux [54] had proved earlier thatξn for n� 2 is not contactomorphic toξ1.
On the other hand, all theξn are homotopic as 2-plane fields to{dθ1 = 0}. This shows

one way how Eliashberg’s classification Theorem 3.19 for overtwisted contact structures
can fail for tight contact structures:
• There are tight contact structures onT 3 that are homotopic as plane fields but not

contactomorphic.

5This turn of phrase originates from [93].
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P. Lisca and G. Matić [82] have found examples of the same kind on homology spheres
by applying Seiberg–Witten theory to Stein fillings of contact manifolds, cf. also [78].

Eliashberg and L. Polterovich [31] have determined the isotopy classes of diffeomor-
phisms ofT 3 that contain a contactomorphism ofξ1: they correspond to exactly those
elements of SL(3,Z)= π0(Diff (T 3)) that stabilise the subspace 0⊕ Z2 corresponding to
the coordinates(θ2, θ3). In combination with Kanda’s result, this allows one to give an
isotopy classification of tight contact structures onT 3. One particular consequence of the
result of Eliashberg and Polterovich is the following:
• There are tight contact structures onT 3 that are contactomorphic and homotopic as

plane fields, but not isotopic (i.e. not homotopic through contact structures).
Again, such examples also exist on homology spheres, as S. Akbulut and R. Matveyev [2]

have shown.
Another aspect of Eliashberg’s classification of overtwisted contact structures that fails

to hold for tight structures is of course the existence of such a structure in every homotopy
class of 2-plane fields, as is already demonstrated by the classification of contact structures
onS3. Etnyre and K. Honda [37] have recently even found an example of a manifold—the
connected some of two copies of the Poincaré sphere with opposite orientations—that does
not admit any tight contact structure at all.

For the classification of tight contact structures on lens spaces andT 2-bundles overS1

see [55,71,72]. A partial classification of tight contact structures on lens spaces had been
obtained earlier in [34].

As further reading on 3-dimensional contact geometry I can recommend the lucid Bour-
baki talk by Giroux [53]. This covers the ground up to Eliashberg’s classification of over-
twisted contact structures and the uniqueness of the tight contact structure onS3.

4. A guide to the literature

In this concluding section I give some recommendations for further reading, concentrating
on those aspects of contact geometry that have not (or only briefly) been touched upon in
earlier sections.

Two general surveys that emphasise historical matters and describe the development of
contact geometry from some of its earliest origins are the one by Lutz [87] and one by the
present author [45].

One aspect of contact geometry that I have neglected in these notes is the Riemannian
geometry of contact manifolds (leading, for instance, to Sasakian geometry). The survey
by Lutz has some material on that; D. Blair [11] has recently published a monograph on
the topic.

There have also been various ideas for defining interesting families of contact structures.
Again, the survey by Lutz has something to say on that; one such concept that has exhib-
ited very intriguing ramifications—if this commercial break be permitted—was introduced
in [48].
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4.1. Dimension3

As mentioned earlier, Chapter 8 in [1] is in parts complementary to the present notes
and has some material on surfaces in contact 3-manifolds. Other surveys and introduc-
tory texts on 3-dimensional contact geometry are the introductory lectures by Etnyre [35]
and the Bourbaki talk by Giroux [52]. Good places to start further reading are two papers
by Eliashberg: [24] for the classification of tight contact structures and [26] for knots in
contact 3-manifolds. Concerning the latter, there is also a chapter by Etnyre [36] in a com-
panionHandbookand an article by Etnyre and Honda [38] with an extensive introduction
to that subject.

The surveys [20] and [27] by Eliashberg are more general in scope, but also contain
material about contact 3-manifolds.

3-dimensional contact topology has now become a fairly wide arena; apart from the work
of Eliashberg, Giroux, Etnyre–Honda and others described earlier, I should also mention
the results of Colin, who has, for instance, shown that surgery of index one (in particular:
taking the connected sum) on a tight contact 3-manifold leads again to a tight contact
structure [17].

Finally, Etnyre and Ng [40] have compiled a useful list of problems in 3-dimensional
contact topology.

4.2. Higher dimensions

The article [46] by the present author contains a survey of what was known at the time
of writing about the existence of contact structures on higher-dimensional manifolds. One
of the most important techniques for constructing contact manifolds in higher dimensions
is the so-called contact surgery along isotropic spheres developed by Eliashberg [23] and
Weinstein [105]. The latter is a very readable paper. For a recent application of this tech-
nique see [49]. Other constructions of contact manifolds (branched covers, gluing along
codimension 2 contact submanifolds) are described in my paper [43].

Odd-dimensional tori are of course amongst the manifolds with the simplest global
description, but they do not easily lend themselves to the construction of contact struc-
tures. In [86] Lutz found a contact structure onT 5; since then it has been one of the prize
questions in contact geometry to find a contact structure on higher-dimensional tori. That
prize, as it were, recently went to F. Bourgeois [13], who showed that indeed all odd-
dimensional tori do admit a contact structure. His construction uses the result of Giroux
and Mohsen [56,57] about open book decompositions adapted to contact structures in con-
junction with the original proof of Lutz. With the help of the branched cover theorem
described in [43] one can conclude further that every manifold of the formM ×Σ with M
a contact manifold andΣ a surface of genus at least 1 admits a contact structure.

Concerning the classification of contact structures in higher dimensions, the first steps
have been taken by Eliashberg [28] with the development of contact homology, which
has been taken further in [29]. This has been used by Ustilovsky [102] to show that on
S4n+1 there exist infinitely many non-isomorphic contact structures that are homotopically
equivalent (in the sense that they induce the same almost contact structure, i.e. reduction of
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the structure group ofT S4n+1 to 1×U(2n)). Earlier results in this direction can be found
in [44] in the context of various applications of contact surgery.

4.3. Symplectic fillings

A survey on the various types of symplectic fillings of contact manifolds is given by Et-
nyre [33], cf. also the survey by Bennequin [10]. Etnyre and Honda [39] have recently
shown that certain Seifert fibred 3-manifoldsM admit tight contact structuresξ that are
not symplectically semi-fillable, i.e. there is no symplectic fillingW of (M, ξ) even ifW
is allowed to have other contact boundary components. That paper also contains a good
update on the general question of symplectic fillability.

A related question is whether symplectic manifolds can have disconnected boundary
of contact type (this corresponds to a stronger notion of symplectic filling defined via a
Liouville vector field transverse to the boundary and pointing outwards). For (boundary)
dimension 3 this is discussed by McDuff [91]; higher-dimensional symplectic manifolds
with disconnected boundary of contact type have been constructed in [42].

Note added in proof: Eliashberg (Geom. Topol.8 (2004), 277–293) has shown recently
that every contact 3-manifold has a concave filling. This implies, in particular, that semi-
fillable contact manifolds are always fillable.

4.4. Dynamics of the Reeb vector field

In a seminal paper, Hofer [65] applied the method of pseudo-holomorphic curves, which
had been introduced to symplectic geometry by Gromov [62], to solve (for large classes
of contact 3-manifolds) the so-called Weinstein conjecture [104] concerning the existence
of periodic orbits of the Reeb vector field of a given contact form. (In fact, one of the
remarkable aspects of Hofer’s work is that in many instances it shows the existence of a
periodic orbit of the Reeb vector field of any contact form defining a given contact struc-
ture.) A Bourbaki talk on the state of the art around the time when Weinstein formulated
the conjecture that bears his name was given by Desolneux-Moulis [19]; another Bourbaki
talk by Laudenbach describes Hofer’s contribution to the problem.

The textbook by Hofer and Zehnder [70] addresses these issues, although its main em-
phasis, as is clear from the title, lies more in the direction of symplectic geometry and
Hamiltonian dynamics. Two surveys by Hofer [66,67], and one by Hofer and Kriener [68],
are more directly concerned with contact geometry. Of the three, [66] may be the best place
to start, since it derives from a course of five lectures. In collaboration with Wysocki and
Zehnder, Hofer has expanded his initial ideas into a far-reaching project on the characteri-
sation of contact manifolds via the dynamics of the Reeb vector field, see, e.g., [69].
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Introduction

The geometry of complex manifolds, in particular Kaehler manifolds, is an important re-
search topic in Differential Geometry.

In the present chapter, we present the basic notions and certain important results in
complex differential geometry.

First, we define complex and almost complex manifolds and give standard examples.
The most interesting class of complex manifolds are the Kaehler manifolds. Locally,

a Kaehlerian metric differs from the Euclidean metric on the complex spaceCn starting
with the second power of the Taylor series. There are topological obstructions to the ex-
istence of Kaehlerian metrics on a compact complex manifold. We give examples and
counterexamples. We introduce complex space forms and we state a Schur-like theorem
for complex space forms.

Next, we study the differential forms on a Kaehler manifold. Then, we prove the complex
version of Hodge theorem. As an application, it follows that the Betti numbers of odd order
on a compact Kaehler manifold are even. An interesting example of an almost Kaehler
manifold which do not admit any Kaehlerian metric is the Thurston–Abbena manifold.
The Iwasawa manifold is a complex manifold which does not carry any Kaehlerian metric.

The Chern classes are introduced axiomatically and their construction is given. Some
applications are derived.

Last section deals with the deformation of complex structures in the sense of Kodaira.
We state the theorems of existence and completeness. The number of moduli of a compact
complex manifold is introduced.

1. Complex manifolds

An n-dimensionalcomplex manifoldis a pairing(M,A), whereM is a non-empty set and
A= {(Uα,hα) | α ∈A} is a family of mappings satisfying the following properties:

(i) For eachα ∈A, Uα is a subset ofM andhα :Uα →Cn is one-to-one.
(ii) The family {Uα}α∈A is a covering ofM , i.e.,

M =
⋃
α∈A

Uα.

(iii) For eachα,β ∈A, the sethα(Uα ∩Uβ) is an open subset inCn and the mapping

hβ ◦ h−1
α :hα(Uα ∩Uβ)→ Cn

is holomorphic.
(iv) If (M,A′) satisfies the properties (i)–(iii) andA ⊂A′, thenA′ =A (i.e., (M,A)

is maximal).

REMARK. If (M,B) = {(Uβ,hβ) | β ∈ B} is a pairing satisfying the properties (i)–(iii)
and we denote byA the set of all the pairs(U,h), with U ⊂M , h :U → Cn one-to-one
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such that for eachβ ∈ B, h(U ∩ Uβ),hβ(U ∩ Uβ) ⊂ Cn are open sets and the mappings
hβ ◦h−1 :h(U ∩Uβ)→ Cn andh◦h−1

β :hβ(U ∩Uβ)→Cn respectively are holomorphic,
then(M,A) is ann-dimensional complex manifold.

Thus, in order to define a complex structure on a non-empty setM , it is sufficient to
construct a familyB satisfying the properties (i)–(iii).

EXAMPLES. 1. Each open subsetU of Cn admits a canonical complex structure, tak-
ing B = {(U, iU )}, whereiU :U → Cn is the inclusion map ofU into Cn. In particular,
GL(n,C) is a complex Lie group.

2. The complex projective spacePn(C) is an n-dimensional complex manifold. On
Cn+1 − {0}, we define the equivalence relation(

z1, . . . , zn+1)∼ (w1, . . . ,wn+1)
⇔ ∃λ ∈ C− {0} such thatwi = λzi, i ∈ {1, . . . , n+ 1}.

We denote byPn(C) the quotient space

Pn(C)= {[z1, z2, . . . , zn+1] ∣∣ (z1, z2, . . . , zn+1) ∈ Cn+1 − {0}}.
For anyα ∈ {1, . . . , n+ 1}, we putUα = {[z1, z2, . . . , zn+1] | zα �= 0} andhα :Uα →Cn,

hα
[
z1, . . . , zn+1]= ( z1

zα
, . . . ,

zα−1

zα
,
zα+1

zα
, . . . ,

zn+1

zα

)
.

Then the familyB = {(Uα,hα), α ∈ {1, . . . , n+ 1}} satisfies the properties (i)–(iii).
Forα �= β, the mappinghβ ◦ h−1

α is given by

z̄γ = zγ

zβ
, γ /∈ {α,β}; z̄α = 1

zβ
.

EXERCISE. Determine the holomorphic vector fields on the complex projective spaces
P 1(C) andP 2(C).

Solution. Locally, a holomorphic vector fieldv onP 1(C) has the form

v = (az2 + bz+ c) d
dz
, a, b, c ∈ C,

and a holomorphic vector fieldv onP 2(C) is given by

v = (c1 + c2z
1 + c3z

2 + c7
(
z1)2 + c8z

1z2) ∂
∂z1

+ (c4 + c5z
1 + c6z

2 + c7z
1z2 + c8

(
z2)2) ∂

∂z2
,

wherec1, . . . , c8 ∈R.



Complex differential geometry 387

3. The complex Grassmann manifold.
Let Gp(Cn) be the set of allp-dimensional linear subspaces ofCn. We define on

Gp(Cn) a complex structure of dimensionp(n− p).
Let {e1, . . . , en} be the standard basis ofCn. For any sequence 1� i1 < i2 < · · · <

ip � n, let πi1...ip : Cn → Ei1...ip = Span{ei1, . . . , eip } be the orthogonal projection. We
denote by

Ui1...ip =
{
V ∈Gp(Cn); πi1...ip |V is a linear isomorphism

}
.

Let V ∈ Ui1...ip . Then, for eachk ∈ {1, . . . , p}, there exists a uniquefk ∈ V such that
πi1...ip (fk)= eik . Obviously,

fk = eik +
∑

l /∈{i1,...,ip}
clkel .

Consider the mappinghi1...ip :Ui1...ip →Cp(n−p),

hi1...ip (V )=
(
clk
)
k∈{i1,...,ip}, l /∈{i1,...,ip}.

If we putB = {hi1...ip | 1 � i1 < · · ·< ip � n}, thenGp(Cn) becomes a complex mani-
fold of dimensionp(n− p).

REMARK. G1(Cn+1)= Pn(C).

4. The Calabi manifoldsS2m+1 × S2n+1 [9].
The differentiable manifoldM = S2m+1 × S2n+1 has real dimension 2m+ 2n+ 2. We

may consider

S2m+1 =
{
ξ ∈Cm+1

∣∣ m+1∑
α=1

|ξα|2 = 1

}
,

S2n+1 =
{
η ∈Cn+1

∣∣ n+1∑
β=1

∣∣ηβ ∣∣2 = 1

}
,

thenM ⊂Cm+1 ×Cn+1.
Let j ∈ {1, . . . ,m+ 1} andk ∈ {1, . . . , n+ 1} and denote by

Ujk =
{
(ξ, η) ∈M | ξjηk �= 0

}
.

We will construct a family of mappingshjk :Ujk → Cm+n+1, which defines a complex
structure onM . Put
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hjk(ξ, η)

=
(
ξ1

ξj
, . . . ,

ξ j−1

ξj
,
ξ j+1

ξj
, . . . ,

ξm+1

ξj
,
η1

ηk
, . . . ,

ηk−1

ηk
,
ηk+1

ηk
, . . . ,

ηn+1

ηk
, t

)
,

where

t = 1

2πi

(
logξj + i logηk

)
mod(1, i).

5. Each orientable surfaceM is a 1-dimensional complex manifold.
Let g be a Riemannian metric onM . By a theorem of Lichtenstein, locally, the metric

can be written asg = λ2(dx2+dy2), with λ > 0. Puttingz= x+iy,M becomes a complex
manifold of dimension 1.

In particular, the 2-sphereS2 admits a complex structure.
We will give a direct construction of a complex structure onS2.
It is known thatS2 is a 2-dimensional differentiable manifold. Let

S2 = {(u1, u2, u3) ∈ E3
∣∣ (u1)2 + (u2)2+(u3)2 = 1

}
.

Denote byUN = S2 − {N} andUS = S2 − {S}, whereN = (0,0,1) andS = (0,0,−1)
are the north and south poles, respectively. Consider the stereographic projections

hN :UN →R2, hS :US →R2

from the north and south poles, respectively.
Their equations are

hN
(
u1, u2, u3)= ( u1

1− u3
,

u2

1− u3

)
,

hS
(
u1, u2, u3)= ( u1

1+ u3
,

u2

1+ u3

)
,

respectively.
We defineh̃N :UN → C andh̃S :US → C, by

h̃N
(
u1, u2, u3)= u1

1− u3
+ i u2

1− u3

and

h̃S
(
u1, u2, u3)= u1

1+ u3
− i u2

1+ u3
.
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The mapping

hS ◦ h−1
N : C− {0}→ C,

(
hS ◦ h−1

N

)
(z)= 1

z
,

is holomorphic. Thus the familyB = {(UN, ŨN), (US, h̃S)} satisfies the conditions (i)–(iii),
and therefore the sphereS2 is a 1-dimensional complex manifold.

Next, we will indicate one procedure for obtaining new complex manifolds.
LetM be a complex manifold. The set of all automorphisms ofM is a groupG endowed

with the composition of mappings. Any subgroupG of G is called agroup of automor-
phismsofM . For anyp ∈M , the setGp = {g(p) | g ∈G} is theorbit ofG atp. Obviously
Gp ∩Gq �= ∅ if and only if q ∈Gp. The set of all orbits, denoted byM/G, is the quotient
space ofM viaG.

EXAMPLE. LetM =Cn+1 − {0}. Eachg ∈C∗ defines an automorphism ofM by

g :
(
z1, . . . , zn+1) 	→ (

gz1, . . . , gzn+1).
ThusC∗ becomes a group of automorphisms ofM andM/C∗ = Pn(C).
DEFINITION. A groupG of automorphisms of the complex manifoldM is calledproperly
discontinuousif for any compact subsetsK1 andK2 inM , the set{g ∈G | g(K1)∩K2 �= ∅}
is finite.

In this case, each orbitGp is a discrete set.
We say thatG is fixed points free if eachg ∈G− {1M} has no fixed points.

REMARK. In the above example,C∗ is fixed points free, but it is not properly discontinu-
ous.

THEOREM 1.1. Let M be an n-dimensional complex manifold andG a fixed points
free and properly discontinuous group of automorphisms. ThenM/G carries a natural
n-dimensional complex structure induced by the complex structure ofM .

Using this theorem, we can obtain other examples of complex manifolds.

6. The complex torus is defined as follows. Let{ω1, . . . ,ω2n} be 2n vectors inCn lin-
early independent overR. We define a fixed points free and properly discontinuous group
of automorphisms ofCn, by

G=
{
z 	→ z+

2n∑
j=1

mjωj
∣∣mj ∈ Z, j ∈ {1, . . . ,2n}

}
.

The quotient spaceT n = Cn/G, which we call then-dimensional complex torus, be-
comes a complex manifold.
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REMARK. For n = 1, T 1 is an algebraic curve. Ifn � 2, thenT n is not necessarily an
algebraic manifold.T n is an algebraic manifold if and only if its period matrix is a Riemann
matrix (see [54]).

An n-dimensional complex manifoldM is said to be complex parallelizable if there
exist n holomorphic vector fields which are linearly independent at every point ofM .
Every complex torus is complex parallelizable.

H.G. Wang [61] proved that every compact complex parallelizable manifold can be writ-
ten as a quotient spaceG/D of a complex Lie groupG by a discrete subgroupD.

7. The Hopf manifolds.
LetM = Cn − {0} andα1, . . . , αn ∈ C such that|αj |> 1 (j ∈ {1, . . . , n}) and letG be

the cyclic group spanned by the automorphismg of M , given by

g : z= (z1, . . . , zn
) 	→ g(z)= (α1z

1, . . . , αnz
n
)
.

Applying the above theorem,M/G has a complex structure; it is called Hopf manifold.
It is known (see [37]) thatM/G is diffeomorphic withS1 × S2n−1.

Thus, Hopf manifolds are a particular case of Calabi manifolds. We want to point out
that they are not algebraic manifolds.

EXERCISE. LetL= {([z], ξ) ∈ Pn(C)×Cn+1 | ξ ∈ [z]}. Prove that(L,pr1,P n(C)) is a
holomorphic vector bundle of rank 1 (called thetautological vector bundleover the com-
plex projective space).

8. The blowing-up at a point.
Consider a small ballB = Br(0)⊂ Cn, with n� 2. Letz= (z1, . . . , zn) be the standard

coordinates ofCn. Theblowing-upof B at 0, denoted bȳB, is the complexn-dimensional
manifold defined by

B̄ = {(z,w) ∈ B × Pn−1(C) | ziwj = zjwi, ∀1� i < j � n
}
,

wherew = [w1, . . . ,wn] ∈ Pn−1(C). If we coverPn−1(C) by the open subsetsUi = {w ∈
Pn−1(C) |wi �= 0}, i = 1, . . . , n, thenB×Pn−1(C) is covered by the open subsetsB×Ui ,
1� i � n. In eachB ×Ui , holomorphic coordinates are given by(

z1, . . . , zn,
w1

wi
, . . . ,

wi−1

wi
,
wi+1

wi
, . . . ,

wn

wi

)
andB̄ ∩ (B ×Ui) is defined by then− 1 equations

zj = zi w
j

wi
, 1� j � n, j �= i.

HenceB̄ is a complex submanifold of dimensionn in B × Pn−1(C).
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9. A Stein manifoldis a closed complex submanifold in someCm. It is clear that any
closed submanifold of a Stein manifold is also Stein and the product of two Stein manifolds
is Stein.

Stein manifold can also be defined intrinsically. For this purpose, letM ⊂ Cm be such
a manifold of dimensionn and denote byO(M) the ring of global holomorphic functions
onM . ThenM satisfies the following:

(i) M is holomorphically convex, that is, for any compactK ⊂M , the set

K̂ :=
{
x ∈M ∣∣ ∣∣f (x)∣∣� sup

K

|f |, ∀f ∈O(M)
}

is also compact.
(ii) Given any two distinct pointsx, y ∈M , there existsf ∈O(M) such thatf (x) �=

f (y).
(iii) Given anyx ∈M , there existf1, . . . , fn in O(M) such that(f1, . . . , fn) gives holo-

morphic coordinates in a neighborhood ofx.
Conversely, any complex manifoldM satisfying conditions (i)–(iii) is Stein (see [26] for

a proof).
A Stein manifold is always non-compact (by the maximum principle, a compact com-

plex manifold does not admit any non-constant holomorphic function). Any non-compact
Riemann surface is Stein [26]. So, in a way, the Stein manifolds are generalizations in high
dimensions of the non-compact Riemann surfaces (while the projective manifolds gener-
alize the compact Riemann surfaces).

2. Almost complex structures

In this section, we define the notion of an almost complex structure and we investigate the
existence of such structures on spheres.

An almost complexstructure on a (real) differentiable manifoldM is an anti-involutive
endomorphismJ of the tangent bundleTM (i.e., the mapJ :TM→ TM is differentiable
and at eachp ∈M , the linear endomorphismJp = J |TpM :TpM → TpM satisfiesJ 2

p =
−1TpM ). The pairing(M,J ) is called an almost complex manifold.

PROPOSITION2.1. Any almost complex manifold has even dimension and is orientable.

The existence of an almost complex structure on an orientable 2n-dimensional manifold
M means that the tangent bundleTM admits a reduction from theGL(2n,R)-structure
to theGL(n,C)-structure. So the existence problem for an almost complex structure is a
purely algebraic topological one.

An infinitesimal automorphism of an almost complex structureJ onM is a vector field
X such thatLXJ = 0, whereLX denotes the Lie differentiation with respect toX. It is
known that a vector fieldX is an infinitesimal automorphism ofJ if and only if it generates
a local 1-parameter group of local almost complex transformations.
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PROPOSITION2.2. A vector fieldX is an infinitesimal automorphism of an almost com-
plex structureJ on a manifoldM if and only if

[X,JY ] = J [X,Y ], ∀Y ∈ Γ (TM).

PROPOSITION2.3. Each complex manifold admits a canonical almost complex structure.

PROOF. LetM be ann-dimensional complex manifold and(z1, . . . , zn) a system of local
holomorphic coordinates. We putzk = xk + iyk , k ∈ {1, . . . , n}.

The canonical almost complex structureJ onU is given by

J

(
∂

∂xk

)
= ∂

∂yk
, J

(
∂

∂yk

)
=− ∂

∂xk

(
k ∈ {1, . . . , n}).

It is easy to see that the definition ofJ does not depend on the local holomorphic coor-
dinates andJ is an almost complex structure. �

PROPOSITION2.4. On a complex manifoldM , the Lie algebra of infinitesimal automor-
phisms of the complex structureJ is isomorphic with the Lie algebra of holomorphic vector
fields, the isomorphism being given byX 	→ 1

2(X− iJX).

EXAMPLES. 1. Let S2 be the 2-sphere andH the quaternion algebra. We denote by
{e0, e1, e2, e3} the standard basis ofH ∼=R4.

The quaternion multiplication has the following table:

· e0 e1 e2 e3

e0 e0 e1 e2 e3
e1 e1 −e0 e3 −e2
e2 e2 −e3 −e0 e1
e3 e3 e2 −e1 −e0

ConsiderR3 = {q ∈ H | q = x1e1 + x2e2 + x3e3, x
1, x2, x3 ∈ R}. For q, q ′ ∈ R3, one

has

qq ′ = −〈q, q ′〉e0 + q × q ′,

where〈q, q ′〉 is the Euclidean inner product inR3 andq × q ′ ∈R3 is the vector product.
For eachp ∈ S2, the tangent spaceTpS2 can be identified with

p⊥ = {y ∈ R3 | 〈p,y〉 = 0
}
.

An almost complex structureJp :TpS2 → TpS
2 is given by

Jp(y)= yp, y ∈ TpS2.
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REMARK. It is easy to see thatJ is the canonical almost complex structure associated
with the standard complex structure ofS2.

2. Let S6 be the 6-sphere andCa= H × H ∼= R8 the Cayley algebra of octanions. An
almost complex structure onS6 is defined by

Jx :TxS
6 → TxS

6, Jx(y)= yx,
wherex ∈ S6, y ∈ TxS6 andyx is the Cayley multiplication.

Clearly this almost complex structure is not associated with a complex structure onS6.

REMARK. The existence of a complex structure onS6 is still an open problem.

3. LetM be a 6-dimensional orientable manifold andg :M → S6 the spherical map
of Gauss. The tangent spacesTpM andTg(p)S6 are parallel inR7 and can be naturally
identified. Hence every almost complex structure onS6 induces an almost complex struc-
ture onM . WhenJ is the standard complex structure onS6, the induced almost complex
structure onM coincides with the one constructed by Calabi [8].

THEOREM 2.5 [34]. If the sphereSn admits an almost complex structure, then the tangent
bundleT Sn+1 is trivial.

On the other hand, it is known that the spheres having trivial tangent bundle areS1, S3

andS7 (see [3]). Thus, only the spheresS2 andS6 carry almost complex structures.
On an almost complex manifold(M,J ), theNijenhuistensor fieldNj is defined by

NJ (X,Y )= [JX,JY ] − J [JX,Y ] − J [X,JY ] − [X,Y ],
for any vector fieldsX,Y tangent toM , where[·, ·] denotes the Lie bracket.

The Nijenhuis tensor field of every almost complex structure on a 2-dimensional ori-
entable manifold vanishes identically.

The converse of Proposition 2.3 is false. We have the following

THEOREM 2.6 (Newlander–Nirenberg [51]).Let J be an almost complex structure on a
2n-dimensional differentiable manifoldM . The necessary and sufficient condition forM
to be a complex manifold with associated almost complex structureJ is the vanishing of
the Nijenhuis tensor field.

REMARK. If (M,J ) is analytic, an elegant proof is given in [36].

3. Dolbeault Lemma

LetM be ann-dimensional complex manifold and(z1, . . . , zn) local holomorphic coordi-
nates onM . If zk = xk + iyk (k ∈ {1, . . . , n}), then:

dzk = dxk + i dyk, dz̄k = dxk − i dyk,
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∂

∂zk
= 1

2

(
∂

∂xk
− i ∂

∂yk

)
,

∂

∂z̄k
= 1

2

(
∂

∂xk
+ i ∂

∂yk

)
,

for anyk ∈ {1, . . . , n}.
Locally, a(p, q)-differential formω onM is written as

ω=
∑

j1<···<jp
k1<···<kq

ωj1...jpk̄1...k̄q
dzj1 ∧ · · · ∧ dzjp ∧ dz̄k1 ∧ · · · ∧ dz̄kq .

The exterior derivativedω of a (p, q)-differential formω is decomposed as

dω= ∂ω+ ∂̄ω,
where

∂ω=
∂ωj1...jpk̄1...k̄q

∂zj
dzj ∧ dzj1 ∧ · · · ∧ dzjp ∧ dz̄k1 ∧ · · · ∧ dz̄kq ,

∂̄ω=
∂ωj1...jpk̄1...k̄q

∂z̄k
dz̄k ∧ dzj1 ∧ · · · ∧ dzjp ∧ dz̄k1 ∧ · · · ∧ dz̄kq .

By analogy with the de Rham cohomology on a differentiable manifold, one defines the
Dolbeaultcohomology on a complex manifoldM with respect to the differential opera-
tor ∂̄ .

Denote byEp,q(M) the set of all(p, q)-differential forms onM and

Zp,q(M, ∂̄)= {ω ∈ Ep,q(M) | ∂̄ω= 0
}
,

Bp,q(M, ∂̄)= {ω ∈ Ep,q(M) | ∃θ ∈ Ep,q−1(M) such thatω= ∂̄θ}.
ObviouslyZp,q(M, ∂̄) andBp,q(M, ∂̄) are submodules ofEp,q(M) over the ring of

holomorphic functionsO(M) andBp,q(M, ∂̄)⊂ Zp,q(M, ∂̄).
TheDolbeaultcohomology groups are defined by

Hp,q(M, ∂̄)= Zp,q(M, ∂̄)/Bp,q (M,∂̄).

The operator̄∂ satisfies a Poincaré-like Lemma, known as Dolbeault Lemma.

THEOREM3.1 (Dolbeault Lemma).LetD′ ⊂D ⊂Cn be complex polydiscs of radiir ′ < r
andω ∈ Ep,q(D), q � 1, such that∂̄ω = 0. Then there existsθ ∈ Ep,q−1(D) satisfying
ω= ∂̄θ onD′.

Using the abstract theorem of de Rham, one may prove, by the help of Dolbeault Lemma,
that

Hp,q(M, ∂̄)∼=Hq(M,Ωp),

whereΩp is the sheaf of the holomorphicp-forms on the complex manifoldM (see [62]).
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4. Kaehler manifolds

Let (M,J ) be an almost complex manifold. A Hermitian metric onM is a Riemannian
metricg invariant byJ , i.e.,

g(JX,JY )= g(X,Y ), ∀X,Y ∈ Γ (TM).

Every almost complex manifold admits a Hermitian metric.
Any Hermitian metric g on the almost complex manifoldM determines a non-

degenerate 2-formω(X,Y ) = g(JX,Y ), X,Y ∈ Γ (TM), called thefundamental(or
Kaehler) 2-form. Clearlyω(JX,JY )= ω(X,Y ).

An (almost) complex manifoldM endowed with a Hermitian metricg is called an (al-
most) Hermitian manifold.

For any vector fieldsX,Y,Z on an almost Hermitian manifoldM one has the following
formula:

4g
(
(∇XJ )Y,Z

)= 6dω(X,Y,Z)− 6dω(X,JY,JZ)+ g(NJ (Y,Z), JX),
where∇ is the Levi-Civita connection with respect tog.

Let (M,g) be ann-dimensional Hermitian manifold andω its fundamental 2-form. Lo-
cally, we may write:

g =
n∑

j,k=1

gjk̄ dz
j dz̄k =

n∑
j=1

ϕj ⊗ ϕ̄j ,

ω= i
n∑

j,k=1

gjk̄ dz
j ∧ dz̄k,

where{ϕ1, . . . , ϕn} ⊂ E1,0(M) is a local orthonormal frame.

LEMMA 4.1. There exists a unique matrixψ of 1-forms such that
(i) ψij + ψ̄ji = 0,

(ii) dϕi =ψji ∧ ϕj + τi ,
whereτj are (2,0)-forms, called torsion2-forms.

J.A. Schouten, D. van Dantzig [53] and E. Kähler [32] discovered an important class of
Hermitian manifolds, known as Kaehler manifolds.

DEFINITION. An (almost) Hermitian manifold is said to be (almost) Kaehlerian if the
fundamental 2-formω is closed.

The following theorem provides equivalent conditions to the definition of a Kaehler
manifold.
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THEOREM 4.2. Let (M,g) be ann-dimensional Hermitian manifold and∇ the Levi-
Civita connection with respect tog. Then the following assertions are equivalent to each
other:

(i) M is a Kaehler manifold.
(ii) The canonical almost complex structureJ onM is parallel with respect to∇, i.e.,

∇J = 0.
(iii) The torsion2-formsτj vanish identically, for all j ∈ {1, . . . , n}.
(iv) For anyz0 ∈M , there exist local holomorphic coordinates(z1, . . . , zn) in a neigh-

borhood ofz0 such that

gjk̄ = δjk + hjk,

with hjk(z0)= ∂hjk

∂zl
(z0)= 0.

(v) Locally, there exists a real differentiable functionF such that the fundamental
2-formω is given by

ω= i∂∂̄F.

PROOF. (i) ⇔ (ii) Straightforward calculations lead to

2g
(
(∇XJ )Y,Z

)= 3dω(X,Y,Z)− 3dω(X,JY,JZ)

and

3dω(X,Y,Z)=−g(X, (∇ZJ )Y )+ g(Y, (∇XJ )Z)− g(Z, (∇Y J )X),
respectively, for any vector fieldsX,Y,Z onM .

(i) ⇔ (iii) Computing, we find

−i dω = dϕj ∧ ϕ̄j − ϕj ∧ dϕ̄j
= ψkj ∧ ϕk ∧ ϕ̄j − ϕj ∧ ψ̄kj ∧ ϕ̄k + τj ∧ ϕ̄j − ϕj ∧ τ̄j .

Since

ψkj ∧ ϕk ∧ ϕ̄j − ϕj ∧ ψ̄kj ∧ ϕ̄k =ψkj ∧ ϕk ∧ ϕ̄j + ϕj ∧ψjk ∧ ϕ̄k = 0

andϕj ∈ E1,0(M) andϕ̄j ∈ E0,1 are linearly independent at every point, one getsdω = 0
if and only if τj = 0, ∀j ∈ {1, . . . , n}.

(iv) ⇒ (i) is trivial.
(i) ⇒ (iv) We assume that(M,g) is a Kaehler manifold. Locally, we may write:

ω= i(δjk + ajklzl + ajkl̄ z̄l + h′jk)dzj ∧ dz̄k,
with h′jk(z0)= ∂h′jk

∂zl
(z0)= 0.
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Then, one has

gkj̄ = gjk̄ ⇒ ajkl̄ = akjl,
dω= 0 ⇒ ajkl = alkj .

If we change the local holomorphic coordinates by

zj =wj − 1

2
amjlw

lwm,

we get

dzj = dwj − amjlwl dwm

and

−iω = (dwj − amjlwl dwm)∧ (dw̄j − ajqp̄w̄p dw̄q)
+ (ajklwl + ajkl̄w̄l)dwj ∧ dw̄k + h′′jk dwj ∧ dw̄k

= (δjk + ajklwl + ajkl̄w̄l − ajklwl − ajkl̄w̄l + hjk)dwj ∧ dw̄k
= (δjk + hjk) dwj ∧ dw̄k,

with h′′jk(z0)= ∂h′′jk
∂wl

(z0)= 0 andhjk(z0)= ∂hjk

∂wl
(z0)= 0.

(v) ⇒ (i) is trivial.
(i) ⇒ (v) Let (M,g) be a Kaehler manifold. Since its fundamental 2-formω is closed,

locally, there exists a real differentiable 1-formϕ such thatdϕ = ω. Then we haveϕ =
θ+θ ′, with θ a(1,0)-form andθ ′ a(0,1)-form. Butϕ is real, thenθ ′ = θ̄ and soϕ = θ+ θ̄ .
It follows that

dϕ = ∂θ + ∂̄θ + ∂θ̄ + ∂̄ θ̄ .

Sinceω is a(1,1)-form, we obtain∂θ = 0 and∂̄ θ̄ = 0. By Dolbeault Lemma, there exists
a complex functionf such thatθ̄ = ∂̄f . Therefore, we have

ω= dϕ = ∂∂̄f + ∂̄∂f̄ = ∂∂̄(f − f̄ );

butf − f̄ is purely imaginary, soF =−i(f − f̄ ) is real andω= i∂∂̄F .

COROLLARY 4.3. Let M be a Kaehler manifold, R its curvature tensor field andS its
Ricci tensor field, respectively. Then:

(i) R(X,Y )J = JR(X,Y ), R(JX,JY )=R(X,Y );
(ii) S(JX,JY )= S(X,Y ), S(X,Y )= 1

2 TraceJR(X,JY ),
for anyX,Y ∈ Γ (TM).
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REMARK 1. The condition (iv) of Theorem 4.2 is equivalent to the existence of an ortho-
normal frame{ϕ1, . . . , ϕn} of (1,0)-forms in the neighborhood of any pointz0 ∈M such
thatdϕj (z0)= 0.

We obtain the followinggeneral principle:
Any identity in terms of the Hermitian metric and its first order derivatives which holds

true onCn equipped with the canonic Euclidean metric, holds also on any Kaehler manifold
endowed with the corresponding metric.

REMARK 2. If the local expression of the fundamental 2-form of a Kaehler manifold is

ω= i∂∂̄F = i ∂2F

∂zj ∂z̄k
dzj ∧ dz̄k,

then the coefficients of the Hermitian metricg are

gjk̄ =
∂2F

∂zj ∂z̄k
, ∀j, k ∈ {1, . . . , n}.

EXAMPLES OF KAEHLER MANIFOLDS. 1. The complex spaceCn endowed with the
Euclidean metricg =∑n

k=1dz
k dz̄k is a complete, flat Kaehler manifold.

2. Let T n = Cn/G be a complex torus (see Example 6 in Section 1) endowed with the
Hermitian metric induced by the Euclidean metric onCn. The complex tori are the only
complex parallelizable manifolds which admit Kaehler metrics [61].

3. The complex projective spacePn(C).
Let (z1

j , . . . , z
j−1
j , z

j+1
j , . . . , zn+1

j ) be local holomorphic coordinates onUj ⊂ Pn(C).
We put

fj (z)=
n+1∑
k=1

∣∣zkj ∣∣2,
wherezjj = 1. Then the 2-formω, defined onUj by

ω= i∂∂̄ logfj ,

is globally defined onPn(C) and closed.
For j = n+ 1, fn+1 = 1+∑n

k=1 |zk|2 and

ω= i (1+ z
s z̄s) dzk ∧ dz̄k − z̄k dzk ∧ zj dz̄j

(1+ zs z̄s)2 .
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Thus the Kaehlerian metricg associated toω has the coefficients

gjk̄ =
(1+ zs z̄s)δjk − zkz̄j

(1+ zs z̄s)2 .

This metric is known as theFubini–Studymetric.

4. The complex Grassmann manifoldGp(Cp+q) endowed with a generalized Fubini–
Study metric (see [36]).

5. LetDn = IntS2n−1 be the complex unit disk inCn, i.e.,

Dn =
{
z ∈Cn;

n∑
j=1

∣∣zj ∣∣2< 1

}
.

Putω=−i∂∂̄ log(1−∑n
j=1 |zj |2). The associated Kaehlerian metric is

gjk̄ =
(1− zs z̄s)δjk + z̄j zk

(1− zs z̄s)2 .

This metric is called theBergmanmetric.

6. Any complex submanifold of a Kaehler manifold is a Kaehler manifold. Moreover it
is a minimal submanifold. In particular, any algebraic manifold is Kaehlerian.

7. Any orientable surface is a Kaehler manifold.

A topological obstruction to the existence of Kaehlerian metrics on a compact complex
manifold is given by the following

THEOREM 4.4. On a compact Kaehler manifold, the de Rham cohomology groups of even
order are non-trivial.

PROOF. LetM be ann-dimensional compact Kaehler manifold. Denote byωn = ω ∧ · · ·
∧ω (n times).

Sinceωn nowhere vanishes,M is orientable. We consider the orientation onM such that
ωn be positive. Then∫

M

ωn > 0.

On the other hand, sinceM is compact, Stokes theorem implies thatωn cannot be exact.
Thus[ωn] �= 0 inH 2n(M,d).

We will prove that[ωk] �= 0 inH 2k(M,d), for anyk ∈ {1, . . . , n− 1}.
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We assume there existsθ ∈ E2k−1(M) such thatωk = dθ . Then

ωn = ωk ∧ωn−k = dθ ∧ωn−k = d(θ ∧ωn−k),
which is a contradiction. ThereforeH 2k(M,d) �= 0, ∀k ∈ {1, . . . , n}. ObviouslyH 0(M,d)

�= 0. �

COROLLARY 4.5. The Calabi manifoldsS2m+1 × S2n+1 do not admit any Kaehlerian
structure if(m,n) �= (0,0). In particular, Hopf manifolds are not Kaehler manifolds.

In Section 7, we will state an important result concerning the Betti numbers of odd order
on a compact Kaehler manifold. As an application, we will construct an example of an
almost Kaehler manifold which does not admit any Kaehlerian metric.

By using the decomposition theorem of de Rham and a result of J.I. Hano and Y. Mat-
sushima [27], we state the following theorem of decomposition for Kaehler manifolds.

THEOREM 4.6. LetM be a simply connected complete Kaehler manifold. Then it is holo-
morphically isometric to a direct productM0 ×M1 × · · · ×Mk , whereM0 is a complex
Euclidean space andM1, . . . ,Mk are simply connected, complete, irreducible Kaehler
manifolds. Moreover, such a decomposition is unique.

A sufficient condition for a compact Kaehler manifold to be isometric to a complex
projective space was proved by M. Berger [5].

THEOREM 4.7. LetM be a compact Kaehler manifold with positive sectional curvature
and constant scalar curvature. ThenM is isometric to a complex projective space.

THEOREM4.8 (Kodaira–Yau).Any compact Kaehler manifold homeomorphic toPn(C) is
analytic diffeomorphic toPn(C). Whenn= 2, one can drop the Kaehlerness assumption.

T. Frankel [21] proved that a compact Kaehler surface with positive bisectional curvature
must be analytic isometric to the complex projective planeP 2(C). He conjectured that the
same be true in higher dimension. This is known as the Frankel’s conjecture. It was proved
by Y.T. Siu and S.T. Yau [55] using a differential geometric method. An algebraic proof of
Frankel’s conjecture is due to S. Mori [49].

Recall a nice result of H. Wu, which says that the universal covering space of any com-
plete Kaehler manifold with non-positive sectional curvature is always a Stein manifold
(see [65]).

THEOREM4.9 (Wu). Any simply-connected, complete Kaehler manifold with non-positive
sectional curvature is a Stein manifold.
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5. Complex space forms

We recall the geometric interpretation of thesectional curvatureof the plane section
spanned by the linearly independent vectorsu,v ∈ TpM , p ∈M . It is the Gauss curva-
ture of the surface

(λ,µ) 	→ expp(λu+µv).

PROPOSITION5.1. LetM be a Kaehler manifold of complex dimensionn > 1. If M has
constant sectional curvature, then it is flat.

REMARK. It is known that in this caseM is locally isometric to the complex Euclidean
spaceCn.

Thus, the notion of constant sectional curvature for a Kaehler manifold is not essential.
For this reason, one introduces the notion of holomorphic sectional curvature.

Let M be a Kaehler manifold andJ its canonical almost complex structure. The sec-
tional curvature of a holomorphic plane sectionπ (i.e., Jπ = π ) is called aholomorphic
sectional curvatureof M .

Since the plane sectionπ is invariant byJ , we may choose an orthonormal basis
{X,JX} of π , with unit X. Then, the holomorphic sectional curvatureK(π) is given by
K(π)=R(X,JX,X,JX).

A version of the well-known Schur theorem holds for Kaehler manifolds.
The curvature tensor field of a Kaehler manifold satisfies the following identities:

(i) R(X,Y,Z,W)=−R(Y,X,Z,W)=−R(X,Y,W,Z);
(ii) R(X,Y,Z,W)=R(Z,W,X,Y );

(iii) R(X,Y,Z,W)+R(X,Z,W,Y )+R(X,W,Y,Z)= 0;
(iv) R(JX,JY,Z,W)=R(X,Y,JZ,JW)=R(X,Y,Z,W),

for any vector fieldsX,Y,Z,W onM .

DEFINITION. LetM be a Kaehler manifold. If the holomorphic sectional curvature func-
tion is constant for all holomorphic plane sectionsπ in TpM and all pointsp ∈M , thenM
is said to be acomplex space formor a space of constant holomorphic sectional curvature.

A complex space form having constant holomorphic sectional curvaturec is denoted
byM(c).

Using similar ideas as in the proof of Schur theorem, we state the following

THEOREM 5.2. LetM be ann-dimensional(n � 2) connected Kaehler manifold. If the
holomorphic sectional curvature depends only on the pointp ∈M (and does not depend
on the holomorphic plane sectionsπ in TpM), thenM is a complex space form.

The proof can be read in [36] or [63].
The curvature tensorR of a complex space formM(c) is given by
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R(X,Y,Z,W) = c

4

{
g(X,Z)g(Y,W)− g(X,W)g(Y,Z)

− g(JX,W)g(JY,Z)+ g(JX,Z)g(JY,W)
+ 2g(X,JY )g(Z,JW)

}
,

for any vector fieldsX,Y,Z,W onM(c).
Then its Ricci tensor is given byS = 1

2(n+ 1)cg. Thus each complex space form is an
Einstein space.

EXAMPLES. 1. The complex Euclidean spaceCn endowed with the Euclidean metric is a
flat complex space form (c= 0).

2. The complex projective spacePn(C) endowed with the Fubini–Study metric has pos-
itive constant holomorphic sectional curvature (c= 4).

3. The complex unit diskDn endowed with the Bergman metric has negative constant
holomorphic sectional curvature (c=−4).

Conversely, one has the following result of [28] and [31] (see also [36]).

THEOREM 5.3. Let M be ann-dimensional simply connected complete complex space
form. ThenM is isometric to either the complex Euclidean spaceCn, the complex pro-
jective spacePn(C), or the complex unit diskDn, according asc = 0, c > 0 or c < 0,
respectively.

We mention that a complete Kaehler manifold of positive constant holomorphic sec-
tional curvature is necessarily simply connected (see [57,35]).

Necessary and sufficient conditions for a Kaehler manifold to be a complex space form
are given by the following theorem of K. Nomizu [52].

THEOREM 5.4. LetM be a2n-dimensional Kaehler manifold. The following assertions
are equivalent:

(i) M is a complex space form;
(ii) M satisfies the axiom of holomorphic2k-planes, for somek, 1 � k � n − 1,

i.e., for any 2k-dimensional holomorphic subspaceS of TpM , there exists a
2k-dimensional totally geodesic submanifoldV of M containing p, such that
TpV = S, for all p ∈M ;

(iii) M satisfies the axiom of totally realk-planes, for somek, 2� k � n, i.e., for any
k-dimensional totally real subspaceS of TpM , there exists ak-dimensional totally
geodesic submanifoldV ofM containingp, such thatTpV = S, for all p ∈M .

The Bochner curvature tensorB on ann-dimensional Kaehler manifoldM is defined by

B(X,Y )Z = R(X,Y )Z − 1

2n+ 4

[
g(Y,Z)QX− g(QX,Z)Y + g(JY,Z)QJX
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− g(QJX,Z)JY + g(QY,Z)X− g(X,Z)QY + g(QJY,Z)JX
− g(JX,Z)QJY − 2g(JX,QY)JZ − 2g(JX,Y )QJZ

]
+ τ

(2n+ 2)(2n+ 4)

[
g(Y,Z)X− g(X,Z)Y + g(JY,Z)JX

− g(JX,Z)JY − 2g(JX,Y )JZ
]
,

whereQ andτ denote the Ricci operator and scalar curvature, respectively.
M. Matsumoto and S. Tanno [41] proved the following result.

THEOREM 5.5. If a Kaehler manifold with vanishing Bochner curvature tensor has con-
stant scalar curvature, then either

(i) M is a complex space form, or
(ii) M is locally the Riemannian product of two complex space formsM1(c) and

M2(−c).

Recently, T. Adachi and S. Maeda [2] gave characterizations of complex space forms in
terms of geodesics and circles on their geodesic spheres.

THEOREM 5.6. A Kaehler manifoldM of complex dimensionn � 2 is a complex space
form if and only if, at an arbitrary pointp ∈M , every sufficiently small geodesic sphere
has constant structure torsion.

THEOREM 5.7. A Kaehler manifoldM of complex dimensionn� 2 is flat if and only if,
at an arbitrary pointp ∈M and for a sufficiently smallr > 0, there existskp,r > 0 such
that every circle of curvaturekp,r on a geodesic sphereGp,r with radiusr has constant
first curvature as a curve inM .

For complex submanifolds in the complex Euclidean space, we state the following re-
sults.

THEOREM 5.8 (Smyth–Chern).Let M be an n-dimensional complex submanifold of
Cn+1. If M has constant Ricci curvature, then it must be flat and totally geodesic.

THEOREM 5.9 [59]. LetM be ann-dimensional complex submanifold ofCn+2. If M has
constant Ricci curvature, then it must be flat and totally geodesic.

More generally, any Kaehler–Einstein submanifoldM in a complex Euclidean spaceCm

is totally geodesic [60].

6. Laplace–Beltrami operator on a Hermitian manifold

In this section, we define the Laplace–Beltrami operator on a Hermitian manifold and state
its general properties.
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Let (M,J,g) be ann-dimensional Hermitian manifold andω its fundamental 2-form.
Then, locally, one has

ωn = inn!(detg)dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.
If we put,zα = x2α−1 + ix2α , then

ωn

n! = 2n(detg)dx1 ∧ · · · ∧ dx2n

is the standard volume form onM .
In particular, the volume ofM is given by 1

n!
∫
M
ωn. In general, ifN is ak-dimensional

complex submanifold ofM , the volume ofN is given by

vol(N)= 1

k!
∫
N

ωk.

This result is known as Wirtinger’s theorem (see [65]).
We can define the integral of a continuous functionf onM by∫

M

f (z)
ωn

n! =
∫
M

f (z)2n(detg)dx1 . . . dx2n.

Let ϕ,ψ ∈ Ep,q(M). Locally, we may write

ϕ(z)= ϕα1...αpβ̄1...β̄q
(z) dzα1 ∧ · · · ∧ dzαp ∧ dz̄β1 ∧ · · · ∧ dz̄βq ,

ψ(z)=ψα1...αpβ̄1...β̄q
(z) dzα1 ∧ · · · ∧ dzαp ∧ dz̄β1 ∧ · · · ∧ dz̄βq ,

with 1� α1< · · ·< αp � n, 1� β1< · · ·< βq � n.
Sometimes, we will use the abbreviated notation

ϕ(z)= ϕApB̄q (z) dzAp ∧ dz̄Bq .

The scalar product at a pointz ∈M is given by

(ϕ,ψ)(z)= ϕα1...αpβ̄1...β̄q
(z)ψ̄α1...αpβ̄1...β̄q (z),

where

ψ̄α1...αpβ̄1...β̄q (z)= gλ̄1α1 . . . gλ̄pαpgβ̄1µ1 . . . gβ̄qµqψλ1...λpµ̄1...µ̄q (z).

The (global) scalar product is defined by

〈ϕ,ψ〉 =
∫
M

(ϕ,ψ)(z)
ωn

n! .

For anyϕ,ψ ∈ Ep,q(M), we have:
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(i) 〈ϕ,ψ〉 = 〈ψ,ϕ〉;
(ii) 〈ϕ,ϕ〉� 0,

〈ϕ,ϕ〉 = 0⇔ ϕ = 0.
The norm ofϕ is given by‖ϕ‖2 = 〈ϕ,ϕ〉.

PROPOSITION6.1. For eachψ ∈ Ep,q(M), there exists a unique∗ψ̄ ∈ En−p,n−q(M) such
that

(ϕ,ψ)(z)
ωn

n! = ϕ(z)∧ ∗ψ̄(z), ∀ϕ ∈ Ep,q(M).

If ψ(z)=ψApB̄q (z) dzAp∧dz̄Bq , we denoteAn−p = (αp+1, . . . , αn), withαp+1< · · ·<
αn and{α1, . . . , αp,αp+1, . . . , αn} = {1, . . . , n}. Then

∗ψ̄(z)= in(−1)k
∑
Ap,Bq

ε

(
Ap An−p
Bq Bn−q

)
(detg)ψ̄ApB̄q (z) dzAn−p ∧ dz̄Bn−q ,

wherek = 1
2n(n− 1)+ (n− p)q.

COROLLARY 6.2. For eachψ ∈ Ep,q(M), one has

∗ψ(z)= in(−1)
n(n−1)

2 +np ∑
Ap,Bq

ε

(
Ap An−p
Bq Bn−q

)
(detg)ψĀpBq dzBn−q ∧ dz̄An−p .

The linear operator∗ :Ep,q(M)→ En−q,n−p(M) has the following properties:
(i) ∗ψ = ∗ψ̄ ;

(ii) ∗ ∗ψ = (−1)p+qψ ,
for eachψ ∈ Ep,q(M).

We may write

〈ϕ,ψ〉 =
∫
M

ϕ ∧ ∗ψ̄, ∀ϕ,ψ ∈ Ep,q(M).

DEFINITION. Let (M,g) be a compact Hermitian manifold. The operator

δ :Ep,q(M)→ Ep,q−1(M), q � 1,

defined by

δ =−∗ ∂∗,

is a differential operator of order 1.
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THEOREM 6.3. LetM be a compact Hermitian manifold. Then the differential operatorδ
is the formal adjoint of the operator̄∂ , i.e.,

〈∂̄ϕ,ψ〉 = 〈ϕ, δψ〉, ∀ϕ ∈ Ep,q−1(M), ψ ∈ Ep,q(M).

PROOF. Stokes Theorem implies:

0=
∫
M

d(ϕ ∧ ∗ψ̄)=
∫
M

∂̄(ϕ ∧ ∗ψ̄)=
∫
M

∂̄ϕ ∧ ∗ψ̄ − (−1)p+q
∫
M

ϕ ∧ ∂̄ ∗ ψ̄

=
∫
M

∂̄ϕ ∧ ∗ψ̄ −
∫
M

ϕ ∧ ∗δψ = 〈∂̄ϕ,ψ〉 − 〈ϕ, δψ〉.

If ψ ∈ Ep,q(M), then

(δψ)Āpβ2...βq (z)=− 1

detg

∂

∂zβ

[
(detg)(z)ψβĀpβ2...βq (z)

]
. �

DEFINITION. The Laplace–Beltrami operator

� :Ep,q(M)→ Ep,q(M)

is defined by

�= ∂̄δ + δ∂̄.

COROLLARY 6.4. For eachϕ ∈ Ep,q(M),

(�ϕ)(z)=−gβ̄α(z) ∂2

∂zα∂z̄β
ϕApB̄q (z) dz

Ap ∧ dz̄Bq +Lϕ(z),

whereL is a differential operator of order1 whose coefficients are polynomials ofgαβ̄ , g
β̄α

and their first order partial derivatives.

THEOREM 6.5. The Laplace–Beltrami operator on a compact Hermitian manifold is self-
adjoint and positive definite, i.e.,

(i) 〈�ϕ,ψ〉 = 〈ϕ,�ψ〉,
(ii) 〈�ϕ,ϕ〉 = ‖∂̄ϕ‖2 + ‖δϕ‖2,

for anyϕ,ψ ∈ Ep,q(M).

A differential formϕ ∈ Ep,q(M) is calledharmonicif �ϕ = 0.
Obviously, a differential formϕ ∈ Ep,q(M) is harmonic if and only if it is̄∂-closed and

δ-closed.
We denote byHp,q = {ϕ ∈ Ep,q(M) | ϕ harmonic}.
Any self-adjoint and positive definite differential operator satisfies the following kernel-

image theorem.
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THEOREM 6.6 [37]. Ep,q(M)=Hp,q ⊕�Ep,q(M), with mutually orthogonal factors.

COROLLARY 6.7. Ep,q(M)=Hp,q ⊕ ∂̄Ep,q−1(M)⊕ δEp,q+1(M), all factors being mu-
tually orthogonal.

Using the above results, we may prove the following important theorem.

THEOREM 6.8 (Hodge).Let M be a compact Hermitian manifold. Then the Dolbeault
cohomology groupHp,q(M, ∂̄) is isomorphic toHp,q .

Dolbeault theorem (see, for instance, [20]) implies the following

THEOREM 6.9 (Hodge–Dolbeault).LetM be a compact Hermitian manifold. Then

Hq(M,Ωp)∼=Hp,q, ∀q ∈N.

COROLLARY 6.10. LetM be a compact Hermitian manifold. ThenHq(M,Ωp) is a finite-
dimensional linear space.

7. Harmonic differential forms on Kaehler manifolds

LetM be a Kaehler manifold and� and� the Laplacians with respect tō∂ andd , respec-
tively.

On the complex Euclidean space endowed with the Euclidean metric, by a straightfor-
ward computation, we get

�= 1

2
�.

We will show that this relation holds on any Kaehler manifold.
Define an operatorL :Ep,q(M)→ Ep+1,q+1(M), by

L(η)= ω ∧ η.

LetΛ= L∗ :Ep,q(M)→ Ep−1,q−1(M) be its adjoint. Also, define the operator

dc = i

4π
(∂̄ − ∂).

Obviously

ddc =−dcd = i

2π
∂∂̄.

PROPOSITION7.1. On any Kaehler manifold, we have the following relations:
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(i) [Λ,d] = −4πdc∗;
(ii) [L,d∗] = 4πdc.

PROOF. It is easy to see that (i) and (ii) are equivalent each other. By decomposition, the
relation (i) is equivalent to{[Λ, ∂̄] = −i∂∗,

[Λ,∂] = iδ.

SinceΛ, d anddc are real operators, each of these relations implies the others. We will
prove that

[Λ,∂] = iδ.

First, we prove it onCn equipped with the Euclidean metric.
We introduce new operators acting on the differential forms with compact support onCn.

For anyk ∈ {1, . . . , n}, let ek :Ep,q0 (Cn)→ Ep+1,q
0 (Cn), given by

ek(ϕ)= dzk ∧ ϕ,

andēk :Ep,q0 (Cn)→ Ep,q+1
0 (Cn), given by

ēk(ϕ)= dz̄k ∧ ϕ.

Let ik andīk be the adjoint operators ofek andēk , respectively. Clearlyek, ēk, ik andīk
are linear overC∞(Cn).

One hasik(dzJ ∧ dz̄K)= 0, if k /∈ J .
Since(dzk, dzk)= 2, it follows that

ik
(
dzk ∧ dzJ ∧ dz̄K)= 2dzJ ∧ dz̄K.

Indeed, (
ik
(
dzJ ∧ dz̄K), dzL ∧ dz̄M)= (dzJ ∧ dz̄K, dzk ∧ dzL ∧ dz̄M)= 0

and (
ik
(
dzk ∧ dzJ ∧ dz̄K), dzL ∧ dz̄M) = (dzk ∧ dzJ ∧ dz̄K, dzk ∧ dzL ∧ dz̄M)

= 2
(
dzJ ∧ dz̄K, dzL ∧ dz̄M),

respectively.
Similarly

īk
(
dzJ ∧ dz̄K)= 0, k /∈K,
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and

īk
(
dz̄k ∧ dzJ ∧ dz̄K)= 2dzJ ∧ dz̄K.

Also

ikek
(
dzJ ∧ dz̄K)= {0, k ∈ J,

2dzJ ∧ dz̄K, k /∈ J,

ekik
(
dzJ ∧ dz̄K)= {2dzJ ∧ dz̄K, k ∈ J,

0, k /∈ J.

Thenikek + ekik = 2 id and similarlyīk ēk + ēk īk = 2 id.
For k �= l, we have

ikel
(
dzk ∧ dzJ ∧ dz̄K)= ik(dzl ∧ dzk ∧ dzJ ∧ dz̄K)

= ik
(−dzk ∧ dzl ∧ dzJ ∧ dz̄K)=−2dzl ∧ dzJ ∧ dz̄K

=−2el
(
dzJ ∧ dz̄K)=−elik

(
dzk ∧ dzJ ∧ dz̄K),

ikel
(
dzJ ∧ dz̄K)= elik(dzJ ∧ dz̄K)= 0, k /∈ J.

Thusekil + ilek = 0.
We consider the differential operators∂k and∂̄k onEp,q0 (Cn), given by

∂k
(
ϕAB̄ dz

A ∧ dz̄B)= ∂ϕAB̄

∂zk
dzA ∧ dz̄B,

∂̄k
(
ϕAB̄ dz

A ∧ dz̄B)= ∂ϕAB̄

∂z̄k
dzA ∧ dz̄B.

We remark that∂k and∂̄k commute withel , ēl , il andīl .
Letψ ∈ C∞(Cn). Then, integrating by parts, we obtain

〈−∂̄kϕ,ψ dzL ∧ dz̄M 〉= 〈−∂ϕLM̄
dz̄k

dzL ∧ dz̄M,ψ dzL ∧ dz̄M
〉

= 2|L|+|M|
∫

Cn
−∂ϕLM̄

∂z̄k
ψ̄ = 2|L|+|M|

∫
Cn
ϕLM̄

∂ψ̄

∂z̄k

= 2|L|+|M|
∫

Cn
ϕLM̄

∂ψ

∂zk
= 〈ϕLM̄ dzL ∧ dz̄M, ∂k(ψ dzL ∧ dz̄M)〉

= 〈ϕ, ∂k(ψ dzL ∧ dz̄M)〉.
Thus the adjoint of∂k is−∂̄k and the adjoint of̄∂k is−∂k , respectively.
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One has

∂ = ∂kek = ek∂k,
∂̄ = ∂̄k ēk = ēk ∂̄k

and

δ =−∂kīk,
∂∗ = −∂̄kik,

respectively. Also

L= i

2
ekēk,

Λ=− i
2
īkik.

Therefore

Λ∂ = − i
2
īkik∂lel =− i

2
∂l īkikel =− i

2

(∑
k

∂k īkikek +
∑
k �=l

∂l īkikel

)

= i

2

∑
k

∂k īkekik − i
∑
k

∂k īk + i

2

∑
k �=l

∂l īkelik

= − i
2

∑
k

∂kek īkik − i∂k īk − i

2

∑
k �=l

∂lel īkik =− i
2
∂lel īkik − i∂k īk.

Consequently,

Λ∂ = ∂Λ+ iδ,

i.e., the desired equation is proved onCn.
If M is a Kaehler manifold, in a neighborhood of anyz0 ∈M we can choose an ortho-

normal frame{ϕ1, . . . , ϕn} of (1,0)-forms such thatdϕj (z0) = 0. The expression ofΛ is
the same, substitutingdzJ by ϕJ . Also the computation of[Λ, ∂̄] is the same as above, by
using∂̄ϕj .

Since[Λ, ∂̄] contains only first order partial derivatives, all the other terms will contain
∂̄ϕj , which vanishes atz0. Therefore the identity to prove holds atz0, and thus everywhere
onM . �

COROLLARY 7.2. LetM be a Kaehler manifold. Then
(i) [L,�] = 0;

(ii) [Λ,�] = 0.
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PROOF. Sinceω is closed, one has

d(ω ∧ η)= ω ∧ dη,

i.e., [L,d] = 0.
Taking the adjoint, we find[Λ,d∗] = 0. Also

Λ� = Λ(dd∗ + d∗d)= (dΛd∗ − 4πdc∗d∗)+ d∗Λd
= dΛd∗ + (4πd∗dc∗ + d∗Λd)= (dd∗ + d∗d)Λ=�Λ. �

COROLLARY 7.3. On any Kaehler manifold, the following identity holds:

�= 1

2
�.

PROOF. First, we prove that

∂δ + δ∂ = 0.

We know thatΛ∂̄ − ∂̄Λ= iδ. Then

i(∂δ + δ∂)= ∂(Λ∂ − ∂Λ)+ (Λ∂ − ∂Λ)∂ = ∂Λ∂ − ∂Λ∂ = 0.

Next

� = (∂ + ∂̄)(∂∗ + δ)+ (∂∗ + δ)(∂ + ∂̄)
= (∂∂∗ + ∂∗∂)+ (∂̄δ+ δ∂̄)+ (∂δ + ∂̄∂∗ + ∂∗∂̄ + δ∂)
= (∂∂∗ + ∂∗∂)+ (∂̄δ+ δ∂̄)=�∂ +�.

We have to show that�∂ =�. One has

−i�∂ = ∂(Λ∂̄ − ∂̄Λ)+ (Λ∂̄ − ∂̄Λ)∂ = ∂Λ∂̄ − ∂∂̄Λ+Λ∂̄∂ − ∂̄Λ∂,
i�= ∂̄(Λ∂ − ∂Λ)+ (Λ∂ − ∂Λ)∂̄ = ∂̄Λ∂ − ∂̄∂Λ+Λ∂∂̄ − ∂Λ∂̄.

The last two equations imply�∂ =�. �

COROLLARY 7.4. On any compact Kaehler manifold,� preserves the degree of complex
differential forms, i.e.,

[�,πp,q ] = 0,

whereπp,q :E(M)→ Ep,q(M) is the standard projection.
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NOTATIONS.

Hp,q
d (M)= {η ∈ Ep,q(M) |�η= 0

}
,

Hr
d (M)=

{
η ∈ E r (M) |�η= 0

}
,

H
p,q
d (M)= Zp,qd (M)/Zp,qd (M)∩Imd .

COROLLARY 7.5. On any compact Kaehler manifold, one has:
(i) Hr

d (M)=
⊕

p+q=rH
p,q
d (M);

(ii) Hp,q
d (M)=Hq,p

d (M).

Moreover, there exists an isomorphismHp,q
d (M)∼=Hp,q

d (M).
Applying the above results, we find the following

THEOREM 7.6 (Hodge).If M is a compact Kaehler manifold, then:
(i) Hr

d (M,C)
∼=⊕p+q=r H

p,q
d (M);

(ii) H
p,q
d (M)∼=Hq,p

d (M).

Since�= 2�, one hasHp,q
d (M)=Hp,q , and so,

H
p,q
d (M)∼=Hp,q(M, ∂̄)∼=Hq(M,Ωp).

In particular, forq = 0,

H
p,0
d (M)=H 0(M,Ωp).

Therefore, the holomorphic differential forms are harmonic on any compact Kaehler
manifold.

THEOREM 7.7. The Betti numbers of odd order of a compact Kaehler manifold are even.

PROOF. Define the Hodge numbers by

hp,q(M)= dimHp,q
d (M).

Hodge theorem implies

br(M)=
∑

p+q=r
hp,q(M),

hp,q(M)= hq,p(M).
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Therefore

b2q+1(M)= 2
q∑
p=0

hp,2q+1−p(M)

is an even number. �

REMARK. The converse of Theorem 7.7 is not true. However, for dimM = 2, using a re-
sult of Miyaoka which says that any elliptic surface with first Betti number even is Kaehler,
the following result holds (see [65]).

THEOREM 7.8. A compact complex surface is Kaehler if and only if its first Betti number
b1(M) is even.

COROLLARY 7.9. On a compact Kaehler manifold, each holomorphic differential form is
d-harmonic, in particular d-closed.

REMARK. Corollary 7.8 is not true ifM is not compact.
Indeed, a non-constant holomorphic function onCn is a holomorphic form, but it is not

d-closed.

COROLLARY 7.10.

Hq
(
Pn(C),Ωp

)=Hp,q
(
Pn(C), ∂̄

)= {0, p �= q,
C, p = q.

COROLLARY 7.11. There do not exist non-zero global holomorphic forms on the complex
projective spacePn(C).

Finally, we state the∂∂̄-lemma (see [65]).

THEOREM 7.12 (∂∂̄-lemma). LetM be ann-dimensional compact Kaehler manifold and
ψ ∈ Ep,q(M) a d-closed differential form, withp,q > 0. If ψ is exact with respect to either
d, ∂ or ∂̄ , thenψ is ∂∂̄-exact, i.e., there existsϕ ∈ Ep−1,q−1(M) such thatψ = ∂∂̄ϕ. If, in
addition, p = q andψ is real, then we can chooseϕ such thatiϕ be real.

REMARKS. This lemma is global, unlike the Poincaré Lemma. Both the compactness and
Kaehlerness are crucial. However, if a compact complex manifoldM is birational to a
Kaehler manifold, then the∂∂̄-lemma still holds true even ifM is not Kaehler.

8. Applications

An interesting application of Theorem 7.7 is the construction of an almost Kaehler mani-
fold which do not admit any Kaehlerian metric (see [1]).
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LetH ⊂GL(3,R) be theHeisenberg group, i.e.,

H =
{(1 x z

0 1 y

0 0 1

)
; x, y, z ∈R

}
.

We denote byΓ the maximal discrete subgroup ofH defined as the set of all matrices of
H with integer entries. SinceΓ is closed,H/Γ is a homogeneous space. LetS1 = {e2πit |
t ∈ R} be the unit circle.

We investigate the compact homogeneous spaceM =H/Γ × S1.
A basis in the Lie algebra of the Heisenberg groupH is

X1 = ∂

∂x
, X2 = ∂

∂y
+ x ∂

∂z
, X3 = ∂

∂z
.

These vector fields are invariant under the action ofΓ , thus they induce linearly inde-
pendent vector fieldse1, e2, e3 onH/Γ . Let e4 = d

dt
be the standard vector field onS1.

The dual 1-forms to the vector fieldsX1,X2,X3 are

θ1 = dx, θ2 = dy, θ3 = dz− x dy.

Together withdt , they induce the linearly independent 1-formsα1, α2, α3, α4 onM .
We define a 2-formω of maximum rank onM , by

ω= α4 ∧ α1 + α2 ∧ α3.

Moreover,ω is closed because

π∗(dω)= d(π∗ω)= d(dt ∧ dx + dy ∧ (dz− x dy))= 0,

whereπ :H × S1 →M is the standard projection.
We consider the invariant Riemannian metricg̃ on the manifoldH × S1, defined by

g̃ = dx2 + dy2 + (dz− x dy)2 + dt2.

With respect tõg, the vector fields{X1,X2,X3,
d
dt
} form an orthonormal frame.

The Riemannian metricg induced byg̃ onM is given by

g = α2
1 + α2

2 + α2
3 + α2

4.

The frame{e1, e2, e3, e4} is orthonormal with respect tog.
An almost complex structureJ onM can be defined by

Jej = (−1)j e5−j , j ∈ {1,2,3,4}.
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A straightforward computation shows that

ω(ei, ej )= g(J ei, ej ), ∀i, j ∈ {1,2,3,4},

i.e.,ω is the fundamental 2-form on the almost Hermitian manifold(M,J,g). Sinceω is
closed,M becomes an almost Kaehler manifold.

Because the dimension ofH 1(M,R) is 3 (see [1]), it follows thatM does not admit any
Kaehlerian metric.

One can prove thatM is the total space of a locally trivial fibering over the torusT 2 with
fibersT 2. Some authors callM a Thurston torus (see [1,58]).

Finally, we will give an example of a compact complex manifold which does not admit
any Kaehlerian metric.

This example shows that Theorem 7.8 is not true if dimM > 2.

EXAMPLE (The Iwasawa manifold, see[65]). We consider the complex Lie group

G=
{(1 x z

0 1 y

0 0 1

)
; x, y, z ∈ C

}

in GL(3,C). ObviouslyG is biholomorphic toC3.
Let Γ be the subgroup ofG of all matrices withx, y, z belonging to the ring of Gauss

integersZ[i]. Γ acts onG by left multiplication. This action has no fixed points and is
properly discontinuous, then the quotient spaceM =G/Γ is a complex manifold, called
theIwasawa manifold.

We consider the global 1-forms

ψ1 = dx, ψ2 = dy, ψ3 = dz− x dy

on G. Obviouslyψ1,ψ2,ψ3 are invariant byΓ , then they induce global holomorphic
1-forms onM . We see that

dψ3 =−dx ∧ dy �= 0.

Therefore Corollary 7.9 implies that the Iwasawa manifold does not admit any
Kaehlerian metric.

We remark that the above defined holomorphic 1-forms are linearly independent onM ,
so they give a trivialization of the cotangent bundle ofM . Such a manifold is calledcom-
plex parallelizable.

One can prove (see [65]) that

h1,0 = 3, h3,0 = h0,3 = 1, h2,0 = 3,

h0,1 = h0,2 = 2, h1,1 = h1,2 = h2,1 = 6.
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Also, we can computeb1(M)= 4.
It is clear that the map(x, y, z) 	→ (x, y) makesM a holomorphic fiber bundle over a

complex 2-torusB, with fibersF being a complex 1-torus.

REMARK [65]. By the Fröhlicher spectral sequence, the Hodge numbers and Betti num-
bers of any compact complex manifoldM always satisfy∑

p+q=r
hp,q(M)� br(M),

∑
p,q

(−1)p+qhp,q(M)=
∑
r

(−1)rbr (M).

Moreover, one has the following monotonicity of the Betti numbers on ann-dimensional
Kaehler manifold:

1� b2(M)� b4(M)� · · ·� b2s(M),

b1(M)� b3(M)� · · ·� b2s+1(M),

wheres = [n2] is the largest integer less than or equal ton
2.

For compact complex surfaces, we mention the following results [65].

LEMMA 8.1. On a compact complex surfaceM , Hr,0(M) ∩ H̄ r,0(M)= 0 in Hr(M), for
r = 1,2. Also

2h1,0(M)� b1(M)� h1,0(M)+ h0,1(M).

COROLLARY 8.2. For any compact complex surfaceM , b1(M) = h1,0(M) + h0,1(M).
Furthermore, eitherh1,0(M)= h0,1(M) or h0,1(M)= h1,0(M)+1. In the first caseb1(M)

is even, while in the second caseb1(M) is odd.

9. Chern classes

Let (E,π,M) be a holomorphic line bundle (i.e., a holomorphic vector bundle of
rank 1). We consider a locally finite coveringU = (Uj )j∈I of M such thatπ−1(Uj ) and
Uj ×C are analytic isomorphic.

Then(z, ξj ) ∈Uj ×C and(z, ξk) ∈Uk ×C define the same point inE if ξj = fjk(z)ξk ,
where the transition functionfjk is holomorphic and does not vanish onUj ∩ Uk . It is
easily seen thatfik(z)= fij (z)fjk(z).

Let O∗
p be the set of the germs of holomorphic functions which do not vanish atp ∈M .

ThenO∗
p is a group with respect to the multiplication of functions. If we regard it as a

Z-module, we define the sheafO∗ =⋃p∈M O∗
p of the germs of holomorphic functions

nowhere zero onM . ObviouslyO∗ is an open subset ofO.
Let g be a holomorphic function defined on the open subsetW of M . We denote

e(g)= f , wheref (z) = e2πig(z). Thus e defines a sheaf morphisme :O → O∗. Since
Ker e= Z, one has the following exact sequence:

0→ Z →i O→e O∗ → 1.
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It determines the long exact cohomology sequence

· · ·→H 1(M,O)→H 1(M,O∗)→δ∗ H 2(M,Z)→ ·· · .

Considering the transition functionsfjk of a holomorphic line bundle(E,π,M) as sec-
tionsfjk ∈ Γ (Uj ∩Uk,O∗) of O∗ overUj ∩Uk �= ∅, {fjk} determines a 1-cocycle; then
{fjk} ∈Z1(U,O∗).

We may assume that everyUj is a coordinate polydisc. Then the sequence

· · ·→H 1(Uj ,O)→H 1(Uj ,O∗)→δ∗ H 2(Uj ,Z)→ ·· ·

is exact.
By applying Dolbeault theorem, one has

H 1(Uj ,O)∼=H 0,1(Uj , ∂̄).

Using Dolbeault Lemma, for anȳ∂-closed formϕ ∈ E0,1(Uj ), there existsψ ∈ C∞(Uj )
such thatϕ = ∂̄ψ . ThereforeH 1(Uj ,O)= 0.

ButH 2(Uj ,Z)= 0, thusH 1(Uj ,O∗)= 0. It follows that

H 1(U,O∗)=H 1(M,O∗).

Thus, the 1-cocycles{fjk} and{gjk} in Z1(U,O∗) belong to the same cohomology class
if and only if there exists{hj } ∈ C0(U,O∗) such that{fjkg−1

jk } = δ{hj }, i.e., fjkg
−1
jk =

hkh
−1
j , or equivalently,

gjk = hjfjkh−1
k .

Consequently,{fjk} and {gjk} belong to the same cohomology class if and only if are
transition functions for the same holomorphic line bundleE.

Thus, we may identify one holomorphic line bundle with the cohomology class of the
1-cocycle{fjk}, i.e.,

E 	→ [{fjk}] ∈H 1(M,O∗).

ThenH 1(M,O∗) becomes the group of holomorphic line bundles overM , having the
tensor product as group law.

DEFINITION. For each holomorphic line bundleE ∈ H 1(M,O∗), δ∗E ∈ H 2(M,Z) is
called theChern classof E. We denotec(E)= δ∗E.

LetU = (Uj )j∈I be a locally finite covering ofM such thatUj ∩Uk be simply connected
andUj ∩Uk ∩Ul connected.

LetE = [{fjk}] ∈H 1(M,O∗), with {fjk} ∈ Z1(U,O∗).
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Sincefjk is holomorphic and does not vanish on a simply connected open set, each leaf
of logfjk is a well-defined holomorphic function onUj ∩Uk . Put

gjk(z)= 1

2πi
logfjk(z).

One hasgjk(z) = −gkj (z) ande(gjk(z) − gik(z) + gij (z)) = 1. Thuscijk = gjk(z) −
gik(z) + gij (z) is a constant integer onUi ∩ Uj ∩ Uk �= ∅. Becausee{gjk} = {fjk} and
δ{gjk} = {cijk} ∈ Z2(U,Z), thenδ∗E is represented by the 2-cocycle{cijk}.

Therefore, the Chern class ofE is given byc(E)= [{cijk}], where

cijk = 1

2πi
(logfjk − logfik + logfij ).

Next, we will define axiomatically the Chern classes of a complex vector bundle of rank
l over a differentiable manifold (see [22]).

AXIOM 1. For each complex vector bundleE overM and anyi ∈ N, the Chern class
ci(E) ∈H 2i (M,R) andc0(E)= 1.

The total Chern class ofE is

c(E)=
∞∑
i=0

ci(E).

AXIOM 2. LetE be a complex vector bundle overM andf :M ′ →M a differentiable
map. Then

c
(
f−1E

)= f ∗(c(E)) ∈H ∗(M ′,R),

wheref−1E is the complex vector bundle overM ′ induced byf fromE.

AXIOM 3 (Whitney sum formula). LetE1, . . . ,Eq be complex line bundles (i.e., complex
vector bundles of rank 1) over the differentiable manifoldM (their fibre isC) andE1 ⊕
· · · ⊕ Eq their Whitney sum, i.e.,E1 ⊕ · · · ⊕ Eq = d−1(E1 × · · · × Eq), with d :M →
M × · · · ×M (q times),d(x)= (x, . . . , x). Then

c(E1 ⊕ · · · ⊕Eq)= c(E1) . . . c(Eq).

Consider the complex projective spacePn(C) as the set of the complex lines inCn+1.
The groupC∗ = C − {0} acts onCn+1 − {0} by complex multiplication. ThusPn(C) =
(Cn+1−{0})/C∗ . We equipPn(C) with the quotient topology and denote byLn the tauto-
logical vector bundle overPn(C).

Ln =
{([z], ζ ) ∈ Pn(C)×Cn+1 | ζ ∈ [z]}.

Its dual vector bundleL∗n is called the hyperplane bundle.
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Let (z0, . . . , zn) be the coordinates onCn+1 and

Uj =
{[z] ∈ Pn(C) | zj �= 0

}
.

The transition functions of the tautological vector bundle are:

fjk
([z])= zj

zk
onUj ∩Uk.

AXIOM 4 (Normalization). The Chern class−c1(L1) is the generator ofH 2(P 1(C),Z),
i.e., the integral ofc1(L1) onP 1(C) is equal to−1.

We will construct the Chern classes of a complex vector bundleE of rank l over a
differentiable manifoldM .

A connection∇ onE is a differential operator of first order∇ :Γ (E)→ Γ (T ∗M ⊗E),
such that

∇(f σ )= df ⊗ σ + f∇σ,

for everyf ∈ C∞(M) andσ ∈ Γ (E).
Let {σ1, . . . , σl} be a local frame of sections onE. Then, each sectionσ ∈ Γ (E) can be

written, locally, as

σ(x)= f i(x)σi(x), f i ∈ C∞(M).

Computing, we get

∇σ = df i ⊗ σi + f i∇σi = df i ⊗ σi + f iωji ⊗ σj ,

where∇σi = ωji ⊗ σj .
The connection 1-formω, defined byω = (ωji ), is a matrix of 1-forms. The connection

∇ is uniquely determined by the connection 1-formω.
With respect to another local frame,σ ′i = hji σj , one has

ω
′j
i = dhki

(
h−1)j

k
+ hki ωlk

(
h−1)j

l
,

or matriceally,

ω′ = dh · h−1 + hωh−1.

The connection∇ can be extended to

Γ (∧pT ∗M ⊗E)→ Γ
(∧p+1T ∗M ⊗E),
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such that

∇(θp ⊗ σ)= dθp ⊗ σ + (−1)pθp ∧∇σ.

By a straightforward calculation, we find

∇2(f σ )=∇(df ⊗ σ + f∇σ)= f∇2σ,

i.e.,∇2 isC∞-linear.
We can write(∇2σ)(x0)=Ω(x0)σ (x0), where the curvature formΩ is a section in the

bundle∧2T ∗M ⊗End(E).
In local coordinates, one has

Ω
j
i = dωji −ωki ∧ωjk or Ω = dω−ω ∧ω.

ThusΩ transforms as a tensor, i.e.,Ω ′j
i = hki Ωl

k(h
−1)

j
l orΩ ′ = hΩh−1.

LEMMA 9.1. Let ∇ be a connection on a complex vector bundleE. Then there exists a
local frame{σ1, . . . , σl} such that at a fixed pointx0 one has

ω(x0)= 0, dΩ(x0)= 0.

REMARK. Generally we cannot find a parallel frame such thatω = 0 in a neighborhood
of x0 (this would imply∇2 = 0).

Let (Aij )i,j=1,...,l ∈ End(Cl) andP : End(Cl )→ C a polynomial map. We assume that
P is invariant (that is,P(hAh−1) = P(A), ∀h ∈ GL(l,C)). We defineP(Ω) as an even
differential form onM . SinceP is invariant, we can putP(∇)= P(Ω), independently of
the frame.

DEFINITION. c(A)= det(I − 1
2πi A)= 1+ c1(A)+· · ·+ cl(A) is calledtotal Chern form.

ch(A)= Tr e− A
2πi = Tr

∑∞
j=0(− A

2πi )
j /j ! is theChern character.

Thuscj (A) represents the homogeneous part of orderj in c(A), cj (∇) ∈ ∧2j (M). Anal-
ogously

ch(A)=
∞∑
j=0

chj (A),

with

chj (A)= 1

j ! Tr

(
− A

2πi

)j
.
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Generally, ch(A) is not polynomial, but substitutingA by Ω , the sum becomes finite,
because TrΩj = 0, for 2j > dimM .

The differential formP(∇) depends on the connection∇. But it is easily proved that it
is closed and as an element of the de Rham cohomologyP(∇) does not depend on∇ and
defines a cohomology class denoted byP(E).

Let ∇t = t∇1 + (1− t)∇0. Its connection 1-form isωt = ω0 + tθ , with θ = ω1 − ω0.
Then

θ ′ = ω′1 −ω′0 = h(ω1 −ω0)h
−1 = hθh−1.

LetΩt be the curvature form of the connection∇t . Then

P(θ,Ωt , . . . ,Ωt ) ∈ ∧2k−1(T ∗M)

is invariant and

P(∇1)− P(∇0)=
∫ 1

0

d

dt
P (Ωt , . . . ,Ωt ) dt = k

∫ 1

0
P(Ω ′

t ,Ωt , . . . ,Ωt ) dt.

Putting

T P (∇0,∇1)= k
∫ 1

0
P(θ,Ωt , . . . ,Ωt ) dt,

one finds

dP (θ,Ωt , . . . ,Ωt )= P(Ω ′
t ,Ωt , . . . ,Ωt ).

We assume that the matrixA= diag(λ1, . . . , λl) be diagonal. Thencj (A) is an elemen-
tary symmetric function of orderj with respect toλ1, . . . , λl , because

det(I +A)=
k∏
j=1

(1+ λj )= 1+ s1(λ)+ · · · + sl(λ).

By applying the fundamental theorem of symmetric polynomials, there exists a unique
polynomialQ such thatP(A)=Q(c1, . . . , cl)(A).

Since the diagonalizable matrices are dense, we obtain the following

THEOREM 9.2. For any complex vector bundlesE, E1 andE2, we have:
(i) c(E1 ⊕E2)= c(E1)c(E2);

(ii) c(E∗)= 1− c1(E)+ c2(E)− · · · + (−1)lcl(E);
(iii) ch(E1 ⊕E2)= ch(E1)+ ch(E2);
(iv) ch(E1 ⊗E2)= ch(E1)ch(E2).
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Summarizing, one has:
LetE be a complex vector bundle overM , with fiberCl .
We define the polynomial functionsf0, . . . , fl on the Lie algebragl(l,C), by

det

(
λIl − 1

2πi
X

)
=

l∑
k=0

fk(X)λ
l−k, X ∈ gl(l,C).

Then there exists a uniqueγk ∈ Z2k(M,R) such that

π∗γk = fk(Ω).

Therefore we may write

det

(
Il − 1

2πi
Ω

)
= π∗(1+ γ1 + · · · + γl).

THEOREM 9.3. The Chern classck(E) of a complex vector bundleE overM is repre-
sented by the closed2k-formγk defined above.

If we express the curvature formΩ by a matrix-valued 2-form(Ωi
j ), then the 2k-form

γk representing thekth Chern classck(E) can be written as follows:

π∗γk = (−1)k

(2πi)kk!
∑

δ
j1...jk
i1...ik

Ω
i1
j1
∧ · · · ∧Ωik

jk
,

where the summation is taken over all ordered subsets(i1, . . . , ik) of k elements from
(1, . . . , l) and all permutations(j1, . . . , jk) of (i1, . . . , ik) and the symbolδj1...jki1...ik

denotes
the sign of the permutation(i1, . . . , ik)→ (j1, . . . , jk).

REMARK. LetE be a Hermitian vector bundle over a complex manifoldM with fibre Cl

and fibre metrich. Since the first Chern classc1(E) can be represented by a closed 2-form
γ1 onM such thatπ∗γ1 =− 1

2πi traceΩ , we may prove thatc1(E) can be represented by
the closed 2-form 1

2πi ∂̄∂ logH , whereH = det(hαβ̄ ). Also

γ2 =− 1

8π2

∑
α,β

Ωα
α ∧Ωβ

β −Ωα
β ∧Ωβ

α .

For real vector bundles one defines an analogue of Chern classes, calledPontrjagin
classes.

LetE be a real vector bundle overM andEc =E⊗R C its complexified vector bundle.
The Pontrjagin classes are given by

pj (E)= (−1)j c2j (E
c) ∈H 4j (M,R),
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wherec2k(E
c) denotes the 2kth Chern class of the complex vector bundleEc. The total

Pontrjagin classp(E) is defined to be

1+ p1(E)+ p2(E)+ · · · ∈H ∗(M).

In particular, the Chern classes over the complex projective spacePn(C) are deter-
mined. Letsj = (z0

j , . . . , z
n
j ) be a section of the tautological bundleLn overUj . Then

sj = (zjk )−1sk .
The coordinate functionszj on Cn+1 are global holomorphic sections onL∗n. On the

trivial vector bundlePn(C)×Cn+1 there exists a natural Hermitian product, which gives
rise to a metric on the fibres ofLn. Define

x =−c1(Ln)=− 1

2πi
∂∂̄ log

(
1+ |zj |2

)
.

Obviouslyx is a closed 2-form onPn(C) invariant under the action ofU(n+ 1).

THEOREM 9.4. If x =−c1(Ln), then:
(a)

∫
Pn(C) x

n = 1;
(b) H ∗(P n(C),C) is a polynomial ring with generators{1, x, . . . , xn};
(c) If i :Pn−1(C)→ Pn(C) is the standard inclusion, theni∗x = x.

LEMMA 9.5.
(a) There exists a short exact sequence of holomorphic vector bundles

0→∧1,0(Pn(C))→ Ln ⊕ · · · ⊕Ln→ θ1 → 0,

whereθ1 is the trivial vector bundle of rank1.
(b) There exists an isomorphism of complex vector bundles

TCP
n(C)⊕ θ1 ∼= L∗n ⊕ · · · ⊕L∗n (n+ 1 times).

COROLLARY 9.6 [22].
(a) c(TCP

n(C))= (1+ x)n+1;
(b) p(T P n(C))= (1+ x2)n+1.

B.Y. Chen and K. Ogiue [16] proved the following results on complex space forms, in
terms of their Chern numbers (the Chern numbers of the tangent bundle).

THEOREM 9.7. If M is an n-dimensional complex space form(n � 2), then c2 =
1
2(n/(n+ 1))c2

1.

THEOREM 9.8. LetM be ann-dimensional compact Kaehler–Einstein manifold(n� 2).
If c2 = 1

2(n/(n+ 1))c2
1, thenM is a complex space form.



424 I. Mihai

THEOREM 9.9. Let M be ann-dimensional compact Kaehler manifold with vanishing
Bochner curvature tensor(n � 2). If c2 = 1

2(n/(n + 1))c2
1, thenM is a complex space

form.

As an application, we study the nucleus of a nearly-Kaehler manifold. Recall that an
almost Hermitian manifold(M,J,g) is nearly-Kaehlerif (∇XJ )X = 0, ∀X ∈ Γ (TM),
where∇ is the Levi-Civita connection with respect tog.

We recall the following results (see [23]).

THEOREM9.10. LetM be a realn-dimensional nearly-Kaehler manifold. Then we have:
(i) If n= 4, thenM is Kaehlerian.

(ii) If n= 6, thenM is Einstein.
(iii) If n= 8 andM is complete and simply connected, thenM isM1 ×M2, whereM1

is a 6-dimensional Einstein nearly-Kaehler manifold andM2 is a 2-dimensional
Kaehler manifold.

As an example of a non-Kaehler nearly-Kaehler manifold we mention the 6-dimensional
sphereS6.

On a nearly-Kaehler manifoldM , A. Gray [23] considered the distribution defined by

Dx =
{
X ∈ TxM | (∇XJ )Y = 0, ∀Y ∈ TxM

}
,

for eachx ∈M . He proved that this distribution is integrable and its integral submanifolds
are Kaehler manifolds. Such an integral submanifold is called a nucleus ofM . The nucleus
M ′ of a nearly-Kaehler manifold is a minimal submanifold (see [19]).

The first Chern classc1(TM) is represented by

γ1(X,Y )= 1

2π

n∑
i=1

R(X,Y, ei, J ei)= 1

2
g
(
(∇XJ )ei, J

(
(∇Y J )ei

))
,

where{e1, . . . , en} is a local orthonormal frame onM .
On the other hand, sinceM ′ is a Kaehler manifold,c1(TM

′) is represented by

γ ′1(X,Y )=
1

4π
Ric(JX,Y ).

By a straightforward computation we findc1(TM|M ′)= 2c1(TM
′).

But c1(TM|M ′)= c1(TM
′)+ c(T ⊥M ′), thus

c1(TM
′)= c1(T

⊥M ′).

A holomorphic line bundleL over a compact complex manifoldM is said to bepositive,
denoted byL> 0, if it admits a Hermitian metric whose curvature is positive everywhere.
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THEOREM9.11 (Kodaira–Nakano vanishing).If M is ann-dimensional compact Kaehler
manifold andL is a positive line bundle overM , then Hp,q(M,L) = 0, whenever
p+ q > n.

THEOREM 9.12 (Kodaira vanishing).Let M be a compact complex manifold andL a
positive line bundle overM . Then for any holomorphic vector bundleE overM , there
exists a positive integerm0 such thatHq(M,L⊗m⊗E)= 0, for all q > 0 and allm�m0.

THEOREM 9.13 (Kodaira embedding).On a compact complex manifoldM , any positive
line bundleL is ample, i.e., there exists a positive integerm such thatL⊗m gives an em-
bedding ofM into somePN(C).

E. Calabi [7] raised the famous conjecture about prescribing the Ricci curvature on a
compact Kaehler manifold. That is, supposeM is a compact Kaehler manifold andψ a
real(1,1)-form representingc1(M). Then does there exist a Kaehler metricg onM whose
Ricci form isψ?

S.T. Yau [64] solved this conjecture. More precisely, he proved the following

THEOREM9.14. Let(M,h) be a compact Kaehler manifold andψ a real(1,1)-form rep-
resentingc1(M). Then there exists a unique Kaehler metricg onM such that its Kaehler
2-formωg satisfies[ωg] = [ωh] in H 1,1(M) and its Ricci form isψ .

COROLLARY 9.15. LetM be a compact Kaehler manifold. If c1> 0 (or c1< 0), i.e., the
(1,1)-cohomology classc1 (or −c1) is represented by some positive(1,1)-form, then in
any given Kaehler class, there exists a Kaehler metric with positive(or negative) Ricci
curvature. If c1 = 0 in H 2(M), then in any given Kaehler class, there exists a Ricci flat
Kaehler metric.

THEOREM 9.16 [4]. LetM be a compact Kaehler manifold withc1< 0. Then there exists
a unique Kaehler–Einstein metric with Ricci curvature−1.

The Chern numbers of a compact Kaehler manifoldM satisfy the following inequality,
due to S.T. Yau (see [65]).

THEOREM 9.17. Let M be an n-dimensional(n � 2) compact Kaehler manifold. If
c1< 0, then

cn1 � (−1)n
2(n+ 1)

n
cn−2

1 c2,

and the equality holds if and only if the universal cover ofM is the unit ball inCn. If
c1 = 0, then the cup productc2[ω]n−2 � 0, for any Kaehler class[ω], and the equality
occurs when and only when a finite cover ofM is a complex torus.
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Whenn = 2, this means, ifc1 = 0, thenc2 � 0; andc2 = 0 only whenM is covered
by a complex 2-torus. Ifc1 < 0, thenc2

1 � 3c2, with equality holding if and only ifM is
covered by the unit ballB2 in C2.

It turns out that for surfaces, the inequalityc2
1 � 3c2 holds even without the assumption

c1< 0. It is called the Miyaoka–Yau inequality.

10. Deformation of complex structures

This section is based on the monograph of K. Kodaira [37]. We state some basic notions
and the theorems of existence and completeness, respectively. We give several examples.

DEFINITION. Let B ⊂ Cm a domain (connected and open) and a family{Mt | t ∈ B} of
compact complex manifolds (Mt depends ont = (t1, . . . , tm) ∈ B). We call {Mt | t ∈ B}
acomplex analytic family of compact complex manifoldsif there exists a complex manifold
M and a holomorphic map̃ω :M→ B satisfying the following conditions:

(i) For all t ∈ B, ω̃−1(t) is a compact complex submanifold ofM;
(ii) Mt = ω̃−1(t);

(iii) ω̃ is a submersion, i.e., the rank of the Jacobian ofω̃ ism at every point ofM.

Locally, condition (iii) may be written as follows. Let(z1
q, . . . , z

n
q, z

n+1
q , . . . , zn+mq ) be

local coordinates onM and(t1, . . . , tm)= ω̃(z1
q, . . . , z

n
q, z

n+1
q , . . . , zn+mq ).

Then, condition (iii) becomes:

rank
∂(t1, . . . , tm)

∂(z1
q, . . . , z

n
q, z

n+1
q , . . . , zn+mq )

=m.

Therefore one may choose a locally finite coveringU = (Uj )j�1 with coordinate poly-
discs such that

(a) zj (p)= (z1
j (p), . . . , z

n
j (p), t

1, . . . , tm), where(t1, . . . , tm)= ω̃(p).
(b) A system of local holomorphic coordinates onMt is given by

p 	→ (
z1
j (p), . . . , z

n
j (p)

)
, Uj ∩Mt �= ∅.

For j, k � 1 withUj ∩Uk �= ∅, the coordinate transformation is denoted by

fjk :
(
z1
k, . . . , z

n
k , t
) 	→ (

z1
j , . . . , z

n
j , t
)
,

or, equivalently,

zαj = f αjk
(
z1
k, . . . , z

n
k , t

1, . . . , tm
)
, α ∈ {1, . . . , n}.

The above definition can be extended to the case whenB is a complex manifold.
In the following, a complex analytic family of compact complex manifolds is denoted

by (M,B, ω̃).
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EXAMPLES. 1. LetB = {ω ∈ C | Imω > 0} andGω = {mω + n | m,n ∈ Z}. The family
{Cω | Imω > 0}, whereCω =C/Gω is a complex analytic family.

We want to remark thatCω andCω′ are analytic isomorphic if and only if

ω′ = aω+ b
cω+ d , a, b, c, d ∈ Z, ad − bc= 1.

DEFINITION. Let M andN be two compact complex manifolds. ThenN is said to be
a deformationof M if there exists a complex analytic family(M,B, ω̃) such thatM =
ω̃−1(t0) andN = ω̃−1(t1), with t0, t1 ∈ B.

Two complex analytic families(M,B, ω̃) and (N ,B,π) are calledholomorphically
equivalentif there exists an analytic isomorphismΦ :M→ N such thatπ ◦ Φ = ω̃. In
this case,Mt andNt are analytic isomorphic viaΦ, for all t ∈ B.

Let M be a compact complex manifold andB an arbitrary complex manifold. Then
(M × B,B,pr2) is a complex analytic family, wherepr2 :M × B→ B is the projection
on the second factor.

A complex analytic family holomorphically equivalent to(M × B,B,pr2), with M =
ω̃−1(t0), t0 ∈ B, is calledtrivial . If (M,B, ω̃) is trivial, then∀t ∈ B, Mt = ω̃−1(t) is
analytic isomorphic toM .

Let (M,B, ω̃) be a complex analytic family andU ⊂ B a subdomain. Denoting by
MU = ω̃−1(U) andω̃U = ω̃|U , the complex analytic family(MU ,U, ω̃U ) is therestric-
tion of (M,B, ω̃) toU .

The complex analytic family(M,B, ω̃) is calledlocally trivial if for eacht ∈ B, there
existst ∈U ⊂ B such that(MU ,U, ω̃U ) is trivial.

THEOREM 10.1 [37]. Let (M,B, ω̃) be a complex analytic family of compact complex
manifolds andt0 ∈ B. ThenMt = ω̃−1(t) isC∞-diffeomorphic toMt0, for any t ∈ B.

2. LetW =C2 − {0} andgt an automorphism ofW defined by

gt
(
z1, z2)= (αz1 + tz2, αz2),

where 0< |α|< 1 andt ∈ C. LetGt = {gmt |m ∈ Z} be the infinite cyclic group spanned
by gt . We consider the complex surfaceMt =W/Gt . We see thatM0 is a Hopf surface.

It is easy to prove that{Mt | t ∈ C} is a complex analytic family.
Let U = C− {0}. Then the restriction of(M,C, ω̃) to U is trivial. ThusMt is analytic

isomorphic toM1, ∀t �= 0. ButM0 andM1 are not analytic isomorphic (see [37]). On the
other hand, by Theorem 10.1 they areC∞-diffeomorphic.

3. We writeP 1(C)=C∪{∞} asP 1(C)=U1∪U2, withU1 =C andU2 = P 1(C)−{0}.
We denote byz1, z2 the non-homogeneous coordinates onU1 andU2, respectively. On
U1 ∩U2, one hasz1z2 = 1.

For anym ∈N, we defineM̃m = (U1 ×P 1(C))∪ (U2 ×P 1(C)), where(z1, ζ1) ∈U1×
P 1(C) and(z2, ζ2) ∈U2 × P 1(C) are identified if and only if

z1z2 = 1, ζ1 = zm2 ζ2.
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We can define a complex analytic family{Mt | t ∈ C} with M0 = M̃m. Fix a natural
numberk � m

2 and put

Mt =
[(
U1 × P 1(C)

)∪ (U2 × P 1(C)
)]/

∼,

where

(z1, ζ1)∼ (z2, ζ2) ⇔
{
z1z2 = 1,
ζ1 = zm2 ζ2 + tzk2.

For t = 0,M0 = M̃m and fort �= 0,Mt = M̃m−2k . Thus, for any natural numberk � m
2 ,

M̃m is a deformation ofM̃m−2k . Therefore, puttingk = m
2 , if m is even, andk = m

2 − 1
2, if

m is odd, it follows thatM̃m is a deformation ofM̃0 = P 1(C)×P 1(C), if m is even, and a
deformation ofM̃1, if m is odd, respectively. One can prove thatM̃1 andP 1(C)× P 1(C)
are not diffeomorphic.

Consequently,M̃m andM̃n are diffeomorphic ifm≡ n (mod 2), but they are not analytic
isomorphic, ifm �= n.

We will state a necessary and sufficient condition for a complex analytic family to be
locally trivial.

Let (M,B, ω̃) be a complex analytic family of compact complex manifolds and{(zj , t)}
its system of local coordinates. The transition maps

zαj = f αjk
(
z1
k, . . . , z

n
k , t

1, . . . , tm
)
, α ∈ {1, . . . , n},

are holomorphic inz1
k, . . . , z

n
k , t1, . . . , tm.

OnUi ∩Uj ∩Uk �= ∅, one hasfik(zk, t)= fij (fjk(zk, t), t).
Assumem= 1.
The above relation can be written as

f αik(zk, t)= f αij
(
f 1
jk(zk, t), . . . , f

n
jk(zk, t), t

)
, α ∈ {1, . . . , n},

or equivalently, using holomorphic vector fields,

n∑
α=1

∂f αik(zk, t)

∂t
· ∂

∂zαi
=

n∑
α=1

∂f αij (zj , t)

∂t
· ∂

∂zαi
+

n∑
β=1

∂f
β
jk(zk, t)

∂t
· ∂

∂z
β
j

.

We introduce the holomorphic vector fields

θjk(t)=
n∑
α=1

∂f αjk(zk, t)

∂t
· ∂

∂zαj
,

where we putzk = fkj (zj , t). Thus, one gets

θik(t)= θij (t)+ θjk(t).
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LetΘt be the sheaf of the germs of holomorphic vector fields onMt . Then

θjk(t) ∈ Γ (Uj ∩Uk,Θt )
defines a 1-cocycle with respect to the coveringUt = (Uj )j�1 on Mt , i.e., {θjk(t)} ∈
Z1(Ut ,Θt ). Denote byθ(t) ∈H 1(Mt ,Θt ) the cohomology class of the 1-cocycle{θjk(t)}.

Intuitively, θ(t) represents the “derivative” of the complex structure ofMt with respect
to t .

DEFINITION. θ(t) is called theinfinitesimal deformationof the complex manifoldMt . We
will use the notation

dMt

dt
= θ(t).

It is easy to see that the infinitesimal deformation does not depend on the local coordinate
system.

Let nowm� 1. For the tangent vector

∂

∂t
=

m∑
λ=1

cλ
∂

∂tλ
∈ TtB, cλ ∈ C,

we put

θjk(t)=
n∑
α=1

∂f αjk(zk, t
1, . . . , tm)

∂t
· ∂

∂zαj
, zk = fkj (zj , t).

The cohomology classθ(t) ∈H 1(Mt ,Θt ) of the 1-cocycle{θjk(t)} is the infinitesimal
deformationalong ∂

∂t
and is denoted by∂Mt

∂t
. The map

ρt :TtB→H 1(Mt ,Θt ),

ρt :
∂

∂t
	→ ρt

(
∂

∂t

)
= ∂Mt

∂t

is C-linear.
Obviously, if a complex analytic family(M,B, ω̃) is locally trivial, thenρt = 0,∀t ∈ B.
Conversely, we have the following

THEOREM 10.2 [37]. Let (M,B, ω̃) be a complex analytic family of compact com-
plex manifolds. If dimH 1(Mt ,Θt ) does not depend ont ∈ B and ρt = 0, ∀t ∈ B, then
(M,B, ω̃) is locally trivial.

Let (M,B, ω̃)= {Mt | t ∈ B} be a complex analytic family of compact complex man-
ifolds andh :D→ B a holomorphic map defined on the domainD ⊂ Cr . Define a holo-
morphic mapΠ :M × D → B × D, by Π(p, s) = (ω̃(p), s) = (t, s). Then (M × D,
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B ×D,Π) is a complex analytic family overB ×D. ObviouslyΠ−1(t, s) =Mt × {s}.
The graph ofh

G= {(h(s), s) ∈ B ×D | s ∈D}
is a complex submanifold inB ×D. Sincepr2 :B ×D→D induces an analytic isomor-
phism ofG onD, we identifyG andD, viapr2. N =Π−1(G) is a complex submanifold
of M×D. Thus, we obtain the complex analytic family(N ,D,π), whereπ = pr2 ◦Π ,
which is called the complex analytic familyinducedby h from (M,B, ω̃).

The relationship between the infinitesimal deformations of the complex analytic families
(M,B, ω̃) and(N ,D,π), respectively, is given by

∂Mh(s)

∂s
=

m∑
λ=1

∂tλ

∂s
· ∂Mt

∂tλ
, t = h(s),

for any tangent vector∂
∂s
∈ TsD.

REMARK. The assumption in Theorem 10.2 is essential.
Indeed, consider the complex analytic family(M,C, ω̃) given in Example 2. We saw

that it is trivial overU =C− {0}, butM0 andMt , with t �= 0, are not analytic isomorphic.
Let (N ,C,π) be the complex analytic family induced by the holomorphic maph(s)=

s2 from (M,C, ω̃). Then, one has

ρs

(
d

ds

)
= dMs2

ds
= dt

ds
· dMt

dt
= 2s

dMt

dt
.

Therefore,ρs = 0, ∀s ∈C, but the family(N ,C,π) is not locally trivial.
Computing, one gets

dimH 1(Mt ,Θt )=
{

4, t = 0,
2, t �= 0.

If (M,B, ω̃) is a complex analytic family of compact complex manifolds, with 0∈
B ⊂ C a domain, the infinitesimal deformationθ = ( dMt

dt
)t=0 ∈ H 1(M,Θ), whereM =

ω̃−1(0).
Conversely, we may state the following problem. LetM be a compact complex man-

ifold and θ ∈ H 1(M,Θ). Does there exist a complex analytic family(M,B, ω̃), with
0∈ B ⊂C, such that

ω̃−1(0)=M,
(
dMt

dt

)
t=0

= θ?

We denote by[·, ·] the Lie bracket of vector fields and by[θ, θ ] the cohomology class of
[θij , θjk].
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THEOREM10.3. LetM be a compact complex manifolds andθ ∈H 1(M,Θ). A necessary
condition for the existence of a complex analytic family of compact complex manifolds
(M,B, ω̃) such thatω̃−1(0)=M and( dMt

dt
)t=0 = θ , is [θ, θ ] = 0.

We call[θ, θ ] the primary obstruction.

THEOREM OF EXISTENCE[37]. LetM be a compact complex manifold. If H 2(M,Θ)= 0,
then, for eachθ ∈H 1(M,Θ), there exists a complex analytic family of compact complex
manifolds(M,B, ω̃), with 0∈ B ⊂C, such that

ω̃−1(0)=M,
(
dMt

dt

)
t=0

= θ.

A complex analytic family(M,B, ω̃) is said to beeffectively parametrizedif for any
t ∈ B, ρt :TtB→H 1(Mt ,Θt ) is one-to-one.

Let (M,B, ω̃) be a complex analytic family of compact complex manifolds andt0 ∈ B.
Then(M,B, ω̃) is calledcompleteat t0 if for any complex analytic family(N ,D,π) such
that 0∈ D ⊂ Cl andπ−1(0) = ω̃−1(t0), there exists a domainE with 0 ∈ E ⊂ D and a
holomorphic maph :E→ B, s 	→ t = h(s), with h(0) = t0, such that(NE,E,π) is the
complex analytic family induced byh from (M,B, ω̃), whereNE = π−1(E).

SinceNs = π−1(s) is a deformation ofN0 =Mt0, if (M,B, ω̃) is complete att0 ∈ B,
then it contains all deformationsNs of Mt0, for s sufficiently small.

A complex analytic family(M,B, ω̃) of compact complex manifolds is calledcomplete
if it is complete at any pointt ∈ B.

DEFINITION. LetM be a compact complex manifold. If there exists a complete and ef-
fectively parametrized complex analytic family(M,B, ω̃), with 0∈ B ⊂ Cm andω̃−1(0)
=M , thenm= dimB is called themoduli numberof M , which is denoted bym(M).

If such a complex analytic family does not exist, the moduli number ofM cannot be
defined.

THEOREM OF COMPLETENESS[37]. Let (M,B, ω̃) be a complex analytic family of com-
pact complex manifolds, with t0 ∈ B ⊂Cm, ρt :TtB→H 1(Mt ,Θt ),

ρt :
∂

∂t
	→ ρt

(
∂

∂t

)
= ∂Mt

∂t
.

If ρt0 is surjective, i.e., ρt0(Tt0B)=H 1(Mt0,Θt0), then(M,B, ω̃) is complete att0.

The following result follows.
If (M,B, ω̃) is an effectively parametrized complex analytic family andm= dimB =

dimH 1(Mt ,Θt ), thenm=m(M).

4. Let Pn(C) be the complex projective space. SinceH 1(P n(C)) = 0, then
m(Pn(C))= 0.
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5. For the complex torusT n = Cn/G one has dimH 1(T n,Θ) = n2. Thus the moduli
number ofT n is n2 (see [37]).

We derive some applications of the theorems of existence and completeness.

THEOREM 10.4. LetM be a compact complex manifold such thatH 2(M,Θ)= 0 and the
moduli numberm(M) is defined. Thenm(M)= dimH 1(M,Θ).

THEOREM 10.5. Let M be a compact complex manifold withH 2(M,Θ) = 0. Then
its moduli numberm(M) is defined if and onlydimH 1(Mt ,Θt ) does not depend on
t ∈ �, where0 ∈ � ⊂ B is sufficiently small. In this case, the complex analytic family
(M�,�, ω̃) is complete and effectively parametrized.

THEOREM 10.6. Let M be a compact complex manifold, with H 0(M,Θ) = 0 and
H 2(M,Θ)= 0. Then its moduli numberm(M) is defined andm(M)= dimH 1(M,Θ).

EXAMPLE. Consider the complex analytic family constructed in Example 3 above. One
has

dimH 1(M̃m,Θ)=
{

0, m= 0,1,
m− 1, m� 2.

Putm= 2 andk = 1, i.e.,

Mt =
[(
U1 × P 1(C)

)∪ (U2 × P 1(C)
)]/

∼, U1 =U2 =C,

where(z1, ζ1)∼ (z2, ζ2) if and only if

z1z2 = 1, ζ1 = z2
2ζ2 + tz2.

SinceM0 = M̃2 andMt = M̃0, it follows that

dimH 1(Mt ,Θt )=
{

1, t = 0,
0, t �= 0.

The infinitesimal deformationdMt

dt
∈ H 1(Mt ,Θt ) is the cohomology class of the

1-cocycle

θ12(t)= ∂f 2
12(z2, ζ2, t)

∂t
· ∂

∂ζ1
= z2

∂

∂ζ1
.

For t = 0, {z2
∂
∂ζ1

} is a basis inH 1(M0,Θ0)=H 1(M̃2,Θ). Thusρ0 :T0C→H 1(M0,Θ0)

is surjective. By the Theorem of completeness, the family{Mt | t ∈ C} is complete att = 0.
One hasH 2(M̃2,Θ) = 0. Applying the Theorem of existence, there exists a complex

analytic family(M,B, ω̃) such thatω̃−1(0)= M̃2 andρ0 :T0B→H 1(M̃2,Θ) is an iso-
morphism, where 0∈ B ⊂C. This family is nothing but{Mt | t ∈C}.



Complex differential geometry 433

For t �= 0, H 1(Mt ,Θt ) = 0. It follows that dMt

dt
= 0, thus the family{Mt | t ∈ C} is

complete at eacht .
Summarizing, the complex analytic family{Mt | t ∈ C}, satisfiesH 1(M0,Θ0)= 1 and

H 1(Mt ,Θt ) = 0, for t �= 0. Thus, by Theorem 10.5, the moduli numberm(M̃2) cannot
be defined (althoughH 2(M̃2,Θ) = 0). Consequently, the assumptionH 0(M,Θ) = 0 in
Theorem 10.6 cannot be omitted.

Later, M. Kuranishi [38] proved the Theorem of existence for general case.

THEOREM 10.7. For any compact complex manifoldM , there exists a complete complex
analytic family{Mt | t ∈ B}, 0∈ B, withM0 =M .

In this case, one has

dimB � dimH 1(M,Θ)− dimH 2(M,Θ).

From this inequality, it follows that

m(M)� dimH 1(M,Θ)− dimH 2(M,Θ),

providedm(M) is defined.
The Kodaira’s conjecturem(M)= dimH 1(M,Θ) [37] turned out to be false.
First, D. Mumford [50] constructed a counterexample to this conjecture. He constructed

a 3-dimensional complex manifoldM = µC(P 3(C)) obtained fromP 3(C) by a monoidal
transformationµC , whose center is a certain curveC ⊂ P 3(C) of genus 24 and degree 14.

Moreover, A. Kas found a 2-dimensional counterexample (see [33]).
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Introduction

The purpose of the present compendium is a short presentation of the geometrical theory of
Lagrange spaces. In the last 20 years, geometers, mechanicians and physicists from all over
the world worked in this field. I mention only some of them: P.L. Antonelli, M. Anastasiei,
G.S. Asanov, M. Crampin, R.S. Ingarden, M. Matsumoto, R. Miron, H. Rund, S. Ikeda,
H. Shimada, L. Tamassy and P. Stavrinos.

After the explicit formulation, in 1980, of the notion of Lagrange space, due to the
present author [15,16], some excellent books on the geometrical study of these spaces,
as well as their applications to Mechanics, Physics and Mathematical Biology, have been
published. The bibliography therein is a selection of books and papers on these topics.

Therefore, in the present compendium I sketch the general framework of the Lagrange
geometry, based on the books of R. Miron [16–18], R. Miron and M. Anastasiei [19,20],
R. Miron, D. Hrimiuc, H. Shimada and S. Sabău [22] and R. Miron, M. Anastasiei and
I. Bucătaru [21]. A short presentation of the geometry of higher-order Lagrange spaces is
presented at the end of this compendium.

Since the geometry of the tangent bundle(TM,π,M) of a manifoldM is a basic tool in
the study of Lagrange geometry, I devote the first section to the geometry ofTM , pointing-
out the main geometrical objects, as: Liouville vector fieldC, almost tangent structureJ ,
semispray and nonlinear connection.

In the second section, I introduce the notion of a Lagrange spaceLn = (M,L(x, y)),
with LagrangianL :TM → R and fundamental tensorgij , assumed nonsingular and of
constant signature. The known Lagrangian from Electrodynamics assures the existence of
Lagrange spaces.

The variational problem associated to the integral of action

I (c)=
∫
L(x, ẋ) dt

allows to determine the Euler–Lagrange equations, conservation law of the energyEL,
as well as the canonical semisprayS of Ln. The canonical semisprayS determines the
canonical nonlinear connectionN and the metricalN -linear connectionD, given by the
generalized Christoffel symbols. The structure equations ofD are derived. This theory
is applied to the study of the electromagnetic and gravitational fields of the spaceLn. An
almost Kählerian model is constructed and the notion of a generalized Lagrange spaceGLn

is defined.
The third section is entitledFinsler spacesFn = (M,F(x, y)). The class of these spaces

is a subclass of that of Lagrange spaces. It follows that the geometry of Finsler spacesFn

can be constructed only by means of Analytical Mechanics principles.
But, since a Riemann spaceRn = (M,g) is a particular Finsler spaceFn = (M,F(x, y)),

we get the following remarkable sequence of inclusions:
(I) {Rn} ⊂ {Fn} ⊂ {Ln} ⊂ {GLn}.
Thus, the Lagrangian geometry is the geometrical study of this sequence.
Sections 4 and 5 are devoted to the natural extension of the Lagrangian geometries

to higher order, extremely important in the Lagrangian Mechanics of the accelerations
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of order k � 1 (k ∈ N∗). We introduce the bundle(T kM,πk,M), the Lagrange spaces
L(k)n = (M,L) and study the solution of the classical problem of the prolongation of
Riemannian structures given on the base manifoldM to T kM . It gives some interesting
examples of spacesL(k)n. The variational calculus applied to the integral of action

I (c)=
∫ 1

0
L

(
x(t),

dx

dt
, . . . ,

1

k!
dkx

dtk

)
dt

leads to the Euler–Lagrange equations and to thek-semisprayS, which determines a non-
linear connectionN and anN -linear connectionD. These two geometrical object fields
govern the geometry of Lagrange spaces of orderk, L(k)n.

Also, the generalized Lagrange spaces of orderk, G(k)n = (M,gij ) are defined and
studied. Following the classical theory, from the casek = 1, one defines the notion of
Finsler space of orderk, F (k)n = (M,F), and show that the sequence (I) holds fork � 1.

I want to remark that this compendium is not only an introduction to the Lagrangian
geometries, it is also an useful geometrical instrument for their applications to Variational
Calculus, Analytical Mechanics, Physics, Biology, Optimal Control, etc.

1. Tangent bundle

The geometry of a Lagrange space over a finite-dimensional manifoldM has been in-
troduced and studied as a subgeometry of the geometry of the tangent manifoldTM by
R. Miron and his coworkers [16–18]. We start with the study of the geometry of the tangent
bundle(TM,π,M). The tangent manifoldTM carries some natural object fields, as: the
Liouville vector fieldC, the tangent structureJ , the vertical distributionV , the notion of a
semisprayS. We can develop a very consistent geometry ofTM based on this concept of
semispray.

In the following, we assume all the geometrical object fields and mappings to be
C∞-differentiable and we express this by the words “differentiable” or “smooth”.

1.1. The manifoldTM

The differentiable structure onTM is induced by that of the base manifoldM such that the
natural projectionπ :TM→M is a differentiable submersion and the triple(TM,π,M) is
a differentiable vector bundle. LetM be a real,n-dimensional differentiable manifold and
(U,ϕ = (xi)) a local chart in a neighborhood of a pointx ∈M . Then any curveσ : I →M ,
Imσ ⊂U , which passes throughx at t = 0 is analytically represented byxi = xi(t), t ∈ I ,
ϕ(x)= (xi(0)) (i, j, . . .= 1, . . . , n). The tangent vector[σ ]x is determined by the coeffi-
cients

xi = xi(0), yi = dxi

dt
(0).
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Then the pair(π−1(U),Φ), with Φ([σ ]x) = (xi, yi) ∈ R2n, ∀[σ ]x ∈ π−1(U), is a local
chart. It will be denoted by(π−1(U),φ = (xi, yi)). The set of these “induced” local charts
determines a differentiable structure onTM such that(TM,π,M) is a differentiable vec-
tor bundle.

A change of coordinates onM , (U,ϕ = xi)→ (V ,ψ = x̃i ), with rank( ∂x̃
i

∂xj
) = n, de-

termines the corresponding change of coordinates onTM : (π−1(U),Φ = (xi, yi))→
(π−1(V ),Ψ = (x̃i , ỹi )), given by x̃

i = x̃i (xj ), rank
(
∂x̃i

∂xj

)= n,
ỹi = ∂x̃i

∂xj
yj .

(1.1.1)

The determinant of the Jacobian ofΨ◦Φ−1 is det( ∂x̃
i

∂xj
)2 > 0. Thus the manifoldTM is

orientable and of dimension 2n.
The tangent spaceTuTM at a pointu ∈ TM to TM is a 2n-dimensional vector space,

having the natural basis{ ∂
∂xi
, ∂
∂yi

} at u. A change of coordinates (1.1.1) onTM implies
the change of natural basis, atu as follows:

∂
∂xi

= ∂x̃j

∂xi
∂
∂x̃j

+ ∂ỹj

∂xi
∂
∂ỹj
,

∂
∂yi

= ∂x̃j

∂xi
∂
∂ỹj
.

(1.1.2)

A vectorXu ∈ TuTM is given byX =Xi(u) ∂
∂xi

+Y i(u) ∂
∂yi

. Then a vector fieldX onTM
is a sectionX :TM → T TM of the bundleτ :T TM → TM , given byτ(x, y,X,Y ) =
(x, y). We denote byπ∗ the projectionπ∗ :T TM→ TM with π∗(x, y,X,Y )= (x,X).

From the formula (1.1.2) we can see that( ∂
∂yi
) at a pointu ∈ TM span ann-dimensional

vector subspaceV (u) of TuTM . It is called the vertical subspace. The mapV :u ∈
TM → V (u) ⊂ TuTM is an integrable distribution called the vertical distribution. Then
V TM =⋃u∈TM V (u) is a subbundle of the tangent bundle(T TM,π,TM) to TM . Since
π :TM →M is a submersion, it follows thatπ∗,u :TuTM → Tπ(u)M is an epimorphism
of linear spaces. The kernel ofπ∗,u is exactly the vertical subspaceV (u).

We denote byX v(TM) the set of all vertical vector field onTM . It is a real subalgebra
of Lie algebra of vector fields onTM , X (TM).

Consider the cotangent spaceT ∗
u TM , u ∈ TM . It is the dual of the spaceTuTM and

(dxi, dyi)u is the natural cobasis with respect to (1.1.1) we have

dx̃i = ∂x̃i

∂xj
dxj , dỹi = ∂x̃i

∂xj
dyj + ∂ỹi

∂xj
dxj . (1.1.3)

The almost tangent structureJ of the tangent bundle is defined by

J = ∂

∂yi
⊗ dxi. (1.1.4)
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By means of (1.1.2) and (1.1.3) we can prove thatJ is globally defined onTM and that
we have

J

(
∂

∂xi

)
= ∂

∂yi
, J

(
∂

∂yi

)
= 0. (1.1.4′)

It follows that the following formulae hold:

J 2 = J ◦ J = 0, KerJ = ImJ = V TM.
The almost cotangent structureJ ∗ is defined by

J ∗ = dxi ⊗ ∂

∂yi
.

Therefore, we obtain

J ∗
(
dxi
)= 0, J ∗

(
dyi
)= dxi.

The Liouville vector field oñTM = TM \ {0} is given by

C= yi ∂
∂yi

. (1.1.5)

It is globally defined oñTM andC �= 0.
A smooth functionf :TM → R is calledr-homogeneous (r ∈ Z) with respect to the

variablesyi if f (x, ay)= arf (x, y), ∀a ∈ R+. The Euler theorem holds: A functionf ∈
F(TM) differentiable onT̃ M is r-homogeneous with respect toyi if and only if

LCf =Cf = yi ∂f
∂yi

= rf, (1.1.6)

LC being the Lie derivation with respect toC.
A vector fieldX ∈ X (TM) is r-homogeneous with respect toyi if LCX = (r − 1)X,

whereLCX = [C,X].
Finally a 1-formω ∈X ∗(TM) is r-homogeneous ifLCω= rω.
Obviously, the notion of homogeneity can be extended to a tensor fieldT of type (r, s)

on the manifoldTM .

1.2. Semisprays on the manifoldTM

The notion of semispray on the total spaceTM of the tangent bundle is strongly related to
the second-order differential equations on the base manifoldM :

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0. (1.2.1)
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Writing Eq. (1.2.1), onTM , in the equivalent form

dyi

dt2
+ 2Gi(x, y)= 0, yi = dxi

dt
, (1.2.2)

we remark that with respect to the change of coordinates (1.1.1) onTM , the func-
tionsGi(x, y) transform according to:

2G̃i = ∂x̃i

∂xj
2Gj − ∂ỹi

∂xj
yj . (1.2.3)

But (1.2.2) are the integral curve of the vector field:

S = yi ∂
∂xi

− 2Gi(x, y)
∂

∂yi
. (1.2.4)

By means of (1.2.3) one proves thatS is a vector field globally defined onTM . It is
called a semispray onTM andGi are called the coefficients ofS.
S is homogeneous of degree 2 if and only if its coefficientsGi are homogeneous func-

tions of degree 2. IfS is 2-homogeneous then we say thatS is a spray.
If the base manifoldM is paracompact, then always there exist semisprays onTM .

1.3. Nonlinear connections

As we have seen in Section 1.1, the vertical distributionV TM is a regular,n-dimensional,
integrable distribution onTM . Then it is naturally to search for a complementary distrib-
ution ofV TM . It will be called a horizontal distribution. Such a distribution is equivalent
to a nonlinear connection.

Consider the tangent bundle(TM,π,M) of the base manifoldM and the tangent bun-
dle (T TM,π∗, TM) of the manifoldTM . As we know the kernel ofπ∗ is the vertical
subbundle(V TM,πV ,TM). Its fibres are the vertical spacesV (u), u ∈ TM .

A vector fieldX ∈X (TM), is given locally by

X =Xi(x, y) ∂
∂xi

+ Y i(x, y) ∂
∂yi

,

or shorterX = (xi, yi,Xi, Y i).
The mappingπ∗ :T TM→ TM has the local formπ∗(x, y,X,Y )= (x,X). The points

of the submanifoldV TM are of the form(x, y,O,Y ).
Let us consider the pull-back bundle

π∗(TM)= TM×πTM = {(u, v) ∈ TM × TM | π(u)= π(v)}.
The fibresπ∗u (TM) of π∗(TM) are isomorphic toTπ(u)M . Then, we define the follow-

ing morphism:π ! :T TM −→ π∗(TM) by π !(Xu) = (u,π∗,u(Xu)). Therefore we have
Kerπ ! = Kerπ∗ = V TM .
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The following sequence is exact:

0−→ V TM
i−→ T TM

π !−→ π∗(TM)−→ 0. (1.3.1)

DEFINITION 1.3.1. A nonlinear connection on the tangent manifoldTM is a left splitting
of the exact sequence (1.3.1).

Consequently, a nonlinear connection onTM is a vector bundle morphismC :T TM→
V TM such thatC ◦ i = 1V TM .

The kernel of the morphismC is a vector subbundle of the tangent bundle
(T TM,π∗, TM), denoted by(NTM,πN,TM) and called thehorizontalsubbundle. Its
fibresN(u) determine a regularn-dimensional distributionN :u ∈ TM→N(u)⊂ TuTM ,
complementary to the vertical distributionV :u ∈ TM→ V (u)⊂ TuTM , i.e.,

TuTM =N(u)⊕ V (u), ∀u ∈ TM. (1.3.2)

Therefore, a nonlinear connection onTM induces the Whitney sum

T TM =NTM ⊕ V TM. (1.3.2′)

The converse statement is also true.
An adapted local basis to the direct decomposition (1.3.2) has the form( δ

δxi
, ∂
∂yj
)u,

where

δ

δxi
= ∂

∂xi
−Nj

i (x, y)
∂

∂yj
(1.3.3)

and δ
δxi

|u (i = 1, . . . , n) are vector fields belonging toN(u).
They aren-linearly independent vector fields and are independent from the vector fields

( ∂
∂yi
)u, i = 1, . . . , n, which belong toV (u).

The functionsNj
i (x, y) are called the coefficients of the nonlinear connection, denoted

in the following byN .
Remarking thatπ∗,u :TuTM → Tπ(u)M is an epimorphism and the restriction ofπ∗,u

toN(u) is an isomorphism, we can take the inverse maplh,u, the horizontal lift determined
by the nonlinear connectionN .

Consequently, the vector fieldsδ
δxi

|u are given by

(
δ

δxi

)
u

= lh,u
(
∂

∂xi

)
π(u)

.

With respect to a change of local coordinates on the base manifoldM we have ∂
∂xi

=
∂x̃j

∂xi
θ
∂x̃j

.
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Then, with respect to (1.1.1),( δ
δxi
)u are changed by

δ

δxi
= ∂x̃j

∂xi

δ

δx̃j
. (1.3.4)

It follows from (1.3.3) that the coefficientsNi
j (x, y) of the nonlinear connectionN , with

respect to a change of local coordinates on the manifoldTM , are transformed by the rule:

∂x̃j

∂xk
Nk
i = Ñj

k

∂x̃k

∂xi
+ ∂ỹj

∂xi
(1.3.5)

and conversely.
It is known [22] that there exists a nonlinear connection onTM if M is a paracompact

manifold.

THEOREM 1.3.1. If S is a semispray with the coefficientsGi(x, y), then the functions

Ni
j (x, y)=

∂Gi

∂yj
(1.3.6)

are the coefficients of a nonlinear connectionN .

Indeed, the formula (1.2.3) and∂
∂yi

= ∂x̃j

∂xi
∂
∂ỹj

give the rule of transformation (1.3.5) for

Ni
j defined by (1.3.6).

The adapted dual basis{dxi, δyi} of the basis( δ
δxi
, ∂
∂yi
) has the 1-formsδyi as follows:

δyi = dyi +Ni
j dx

j . (1.3.7)

With respect to a change of coordinates, (1.1.1), we have

dx̃i = ∂x̃i

∂xj
dxj , δỹi = ∂x̃i

∂xj
δyj . (1.3.7′)

Now, we can consider the horizontal and vertical projectorsh andv with respect to the
direct decomposition (1.3.2):

h= δ

δxi
⊗ dxi, v = ∂

∂yi
⊗ δyi . (1.3.8)

Some remarkable geometric structures, as the almost product structureP and almost
complex structureF, are determined by the nonlinear connectionN :

P= δ

δxi
⊗ dxi − ∂

∂yi
⊗ δyi = h− v, (1.3.9)
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F= δ

δxi
⊗ δyi − ∂

∂yi
⊗ dxi. (1.3.9′)

It easily seen thatP andF are globally defined oñTM and

P ◦ P= Id, F ◦ F=−Id. (1.3.10)

With respect to (1.3.2) a vector fieldX ∈X (TM) can be uniquely written as

X = hX+ vX =XH +XV , (1.3.11)

with XH = hX andXV = vX.
A 1-form ω ∈X ∗(TM) has the similar form

ω= hω+ vω,
wherehω(X)= ω(XH), vω(X)= ω(XV ).

A tensor fieldT on TM of type (r, s) is called a distinguished tensor field (shortly a
d-tensor) if

T (ω1, . . . ,ωr ,X1, . . . ,Xs)= T (ε1ω1, . . . , εrωr , ε1X1, . . . , εsXs),

whereε1, . . . , εr , . . . areh or v.
ThereforehX = XH , vX = XV , hω = ωH , vω = ωV ared-vectors andd-covectors,

respectively. With respect to the adapted basis( δ
δxi
, ∂
∂yi
), we have

XH =Xi(x, y) δ
δxi

, XV = Ẋi ∂
∂yi

and

ωH = ωj (x, y) dxj , ωV = ω̇j δyj .
A change of local coordinates onTM , (x, y)−→ (x̃, ỹ), leads to the change of coordi-

nates ofXH,XV ,ωH ,ωV , by using the classical rules of transformation:

X̃i = ∂x̃i

∂xj
Xj , ωj = ∂x̃i

∂xj
ω̃i , etc.

So, ad-tensorT of type(r, s) can be written as

T = T i1...irj1...js
(x, y)

δ

δxi1
⊗ · · · ⊗ ∂

∂yir
⊗ dxj1 ⊗ · · · ⊗ δyjs . (1.3.12)

A change of coordinates (1.1.1) implies

T̃
i1...ir
j1...js

(x̃, ỹ)= ∂x̃i1

∂xh1
· · · ∂x̃

ir

∂xhr

∂xk1

∂x̃j1
· · · ∂x

ks

∂ỹjs
= T h1...h2

k1...ks
. (1.3.12′)



Compendium on the geometry of Lagrange spaces 447

Next, we study the integrability of the nonlinear connectionN and of the structuresP
andF.

Since( δ
δxi
), i = 1, . . . , n, is an adapted basis toN , according to the Frobenius theorem

it follows thatN is integrable if and only if the Lie brackets[ δ
δxi
, δ
δxj

], i, j = 1, . . . , n, are
vector fields on the distributionN .

But we have[
δ

δxi
,
δ

δxj

]
=Rhij

∂

∂yh
, (1.3.13)

where

Rhij =
δNh

i

δxj
− δNh

j

δxi
. (1.3.13′)

It is not difficult to prove thatRhij are the coordinates of ad-tensor field of type(1,2),
called thecurvaturetensor of the nonlinear connectionN .

We state the following

THEOREM 1.3.1. The nonlinear connectionN is integrable if and only if its curvature
tensorRhij vanishes.

The weak torsionthij of N is defined by

thij =
∂Nh

i

∂yi
− ∂Nh

j

∂yi
. (1.3.14)

It is a d-tensor field of type(1,2) too. We say thatN is a symmetric nonlinear connection
if its weak torsionthij vanishes.

THEOREM 1.3.2.
(1) The almost product structureP is integrable if and only if the nonlinear connection

N is integrable.
(2) The almost complex structureF is integrable if and only if the symmetric nonlinear

connectionN is integrable.

The proof is simple using the Nijenhuis tensorsNP andNF. The expression ofNP is

NP(X,Y )= P2[X,Y ] + [PX,PY ] − P[PX,Y ] − P[X,PY ],
∀X,Y ∈ χ(TM).

Also we can see that any structureP or F characterizes the nonlinear connectionN [21].
Autoparallel curves of a nonlinear connection can be obtained considering the horizontal

curves as follows.
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A curvec : t ∈ I ⊂R→ (xi(t), yi(t)) ∈ TM has the tangent vectorċ given by

ċ= ċH + ċV = dxi

dt

δ

δxi
+ δyi

dt

∂

∂yi
, (1.3.15)

where

δyi

dt
= dyi

dt
+Ni

j (x, y)
dxj

dt
. (1.3.15′)

The curvec is ahorizontal curveif ċV = 0 or δy
i

dt
= 0.

Obviously, if the functionsxi(t), t ∈ I , are given andyi(t) are the solutions of the
system of differential equations, then we have an horizontal curvexi = xi(t), yi = yi(t)

in TM with respect toN .

In the caseyi = dxi

dt
, the horizontal curves are called the autoparallel curves of the non-

linear connectionN . They are characterized by the system of differential equations

dyi

dt
+Ni

j (x, y)
dxj

dt
= 0, yi = dxi

dt
. (1.3.16)

A theorem of existence and uniqueness of the autoparallel curves of a nonlinear connec-
tionN , given by its coefficientsNi

j (x, y), holds.

1.4. N -linear connections

An N -linear connection on the manifoldTM is a special linear connectionD on TM ,
which preserves by parallelism the horizontal distributionN and the vertical distribu-
tion V . We study such linear connections determining the curvature, torsion and structure
equations.

Throughout this subsectionN is an a priori given nonlinear connection with the coeffi-
cientsNi

j .

DEFINITION 1.4.1. A linear connectionD on the manifoldTM is called adistinguished
connection(shortly d-connection) if it preserves by parallelism the horizontal distribu-
tionN .

Thus, we haveDh= 0. It follows that we also haveDv = 0 andDP= 0.
If Y = YH + YV we get

DXY = (DXYH )H + (DXYV )V , ∀X,Y ∈ χ(TM).

PROPOSITION1.4.1. For a d-connection the following conditions are equivalent:
(1) DJ = 0;
(2) DF= 0.
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DEFINITION 1.4.2. Ad-connectionD is called anN -linear connectionif the structureJ
(or F) is absolute parallel with respect toD, i.e.,DJ = 0.

With respect to an adapted basis, anN -linear connection has the form:
D δ

δxj

δ
δxi

= Lhij δ
δxh
, D δ

δxj

∂
∂yi

= Lhij ∂
∂yh

,

D ∂

∂yj

δ
δxi

= Chij δ
δxh
, D ∂

∂yj

∂
∂yi

= Chij ∂
∂yh

.
(1.4.1)

The set of functionsDΓ = (Ni
j (x, y),L

h
ij (x, y),C

h
ij (x, y)) are called the local co-

efficients of theN -linear connectionD. SinceN is fixed, we denote sometimes by
DΓ (N)= (Lhij (x, y),Chij (x, y)) the coefficients ofD.

For instance, theBΓ (N) = (
∂Nh

i

∂yj
,0) are the coefficients of a specialN -linear connec-

tion, derived only by the nonlinear connectionN . It is called theBerwald connectionof the
nonlinear connectionN . We can prove this affirmation showing that the system of func-

tions(
∂Nh

i

∂yj
) has the same rule of transformation, with respect to (1.1.1), as the coefficients

Lhij . Indeed, under a change of coordinates (1.1.1) onTM , the coefficients(Lhij ,C
h
ij ) are

transformed by the rules: L̃
h
ij = ∂x̃h

∂xs
Lspq

∂xp

∂x̃i
∂xq

∂x̃j
− ∂2x̃h

∂xp∂xq
∂xp

∂x̃i
∂xq

∂x̃j
,

C̃hij = ∂x̃h

∂xs
Cspq

∂xp

∂x̃i
∂xq

∂x̃j
.

(1.4.2)

So, the horizontal coefficientsLhij of D have the same rule of transformation as the local

coefficients of a linear connection on the base manifoldM . The vertical coefficientsChij
are the components of ad-tensor field of type(1,2).

But, conversely, if the set of functions(Lijk(x, y),C
i
jk(x, y)) are given, having the prop-

erty (1.4.2), then the equalities (1.4.1) determine anN -linear connectionD onTM .
To an N -linear connectionD on TM we shall associate two operators ofh- and

v-covariant derivation on the algebra ofd-tensor fields. For eachX ∈ χ(TM) we set:

DH
X Y =DXH Y, DH

X f =XHf, ∀Y ∈ χ(TM), ∀f ∈F(TM). (1.4.3)

If ω ∈ χ∗(TM), we obtain(
DH
X ω
)
(Y )=XH (ω(Y ))−ω(DH

X Y
)
. (1.4.3′)

Thus we may extend the action of the operatorDH
X to anyd-tensor field by asking that

DH
X preserves the type ofd-tensor fields, isR-linear, satisfies the Leibniz rule with respect

to tensor product and commutes with the operation of contraction.DH
X will be called the

h-covariant derivationoperator.
In a similar way, we set

DV
XY =DXV Y, DV

Xf =XV (f ), ∀Y ∈ χ(TM), ∀f ∈F(TM), (1.4.4)
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and

DV
Xω=XV (ω(Y ))−ω(DV

XY
)
, ∀ω ∈ χ(TM).

Also, we extend the action of the operatorDV
X to anyd-tensor field.DV

X is called the
v-covariant derivationoperator.

Consider now ad-tensorT given by (1.3.12). According to (1.4.1), theh-covariant
derivative ofT is given by

DH
X T =XkT i1...irj1...js |k

δ

δxi1
⊗ · · · ⊗ ∂

∂yir
⊗ dxj1 ⊗ · · · ⊗ dxjs , (1.4.5)

where

T
i1...ir
j1...js |k =

δT
i1...ir
j1...js

δxk
+Li1pkT pi2...irj1...js

+ · · · +LirpkT i1...ir−1p

j1...js

−Lpj1kT
i1...ir
pj2...js

− · · · −LpjskT
i1···ir
j1...js−1p

. (1.4.5′)

Thev-covariant derivativeDV
XT is

DV
XT =XkT i1...irj1...js

∣∣
k

δ

δxi1
⊗ · · · ⊗ ∂

∂yir
⊗ dxj1 ⊗ · · · ⊗ dxjs , (1.4.6)

where

T
i1...ir
j1...js

∣∣
k
= ∂T

i1...ir
j1...js

∂yk
+Ci1pkT pi2...irj1...js

+ · · · +CirpkT i1...ir−1p

j1...js

−Cpj1kT
i1...ir
pj2...js

− · · · −CpjrkT
i1...ir
j1...js−1p

. (1.4.6′)

For instance, ifg is ad-tensor of type(0,2) having the componentsgij (x, y), we have

gij |k = δgij

δxk
−Lpikgpj −Lpjkgip,

gij |k = ∂gij

∂yk
−Cpikgpj −Cpjkgip. (1.4.7)

For the operators “|” and “|” we use the same denominations ofh- andv-covariant deriva-
tions.

The torsionT of anN -linear connection is given by

T (X,Y )=DXY −DYX− [X,Y ], ∀X,Y ∈ χ(TM). (1.4.8)
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The horizontal parthT (X,Y ) and the vertical partvT (X,Y ), for X ∈ {XH,XV } and
Y ∈ {YH ,YV } determine fived-tensor fields associated to the torsionT :



hT (XH ,YH )=DH
X Y

H −DH
Y X

H − [XH,YH ]H ,
vT (XH ,YH )=−v[XH,YH ]V ,
hT (XH ,YV )=−DV

Y X
H − [XH,YV ]V ,

vT (XH ,YV )=DH
X Y

V − [XH,YV ]V ,
vT (XV ,YV )=DV

XY
V −DV

Y X
V − [XV ,YV ]V .

(1.4.9)

With respect to an adapted basis, the components of the torsion are

hT

(
δ

δxi
,
δ

δxj

)
= T kji

δ

δxk
, vT

(
δ

δxi
,
δ

δxj

)
=Rkji

∂

∂yk
,

hT

(
∂

∂yi
,
δ

δxj

)
= Ckji

δ

δxk
, vT

(
∂

∂yi
,
δ

δxj

)
= P kji

∂

∂yk
,

vT

(
∂

∂yi
,
∂

∂yj

)
= Skji

∂

∂yk
, (1.4.9′)

whereCijk are thev-coefficients ofD, Rijk is the curvature tensor of the nonlinear connec-
tionN and

T ijk = Lijk −Likj , Sijk = Cijk −Cikj , P ijk =
∂Ni

j

∂yk
−Likj . (1.4.10)

TheN -linear connectionD is said to be symmetric ifT ijk = Sijk = 0.
Next, we study the curvature of anN -linear connectionD:

R(X,Y )Z =DXDYZ −DYDXZ −D[X,Y ]Z, ∀X,Y,Z ∈ χ(TM). (1.4.11)

SinceD preserves by parallelism the distributionsN andV , it follows that the operator
R(X,Y )=DXDY −DYDX−D[X,Y ] carries the horizontal vector fieldsZH into horizon-
tal vector fields and vertical vector fields into vertical vector fields. Consequently we have
the formula

R(X,Y )Z = hR(X,Y )ZH + vR(X,Y )ZV , ∀X,Y,Z ∈ χ(TM).

SinceR(X,Y )=−R(Y,X), we obtain
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THEOREM 1.4.3. The curvatureR of anN -linear connectionD on the tangent manifold
TM is completely determined by the following sixd-tensor fields:

R(XH ,YH )ZH =DH
XD

H
Y Z

H −DH
Y D

H
X Z

H −D[XH ,YH ]ZH ,
R(XH ,YH )ZV =DH

XD
H
Y Z

V −DH
Y D

H
X Z

V −D[XH ,YH ]ZV ,
R(XV ,YH )ZH =DV

XD
H
Y Z

H −DH
Y D

V
XZ

H −D[XV ,YH ]ZH ,
R(XV ,YH )ZV =DV

XD
H
Y Z

V −DH
Y D

V
XZ

V −D[XV ,YH ]ZV ,
R(XV ,YV )ZH =DV

XD
V
Y Z

H −DV
Y D

V
XZ

H −D[XV ,YV ]ZH ,
R(XV ,YV )ZV =DV

XD
V
Y Z

V −DV
Y D

V
XZ

V −D[XV ,YV ]ZV .

(1.4.12)

The tangent structureJ is absolutely parallel with respect toD. Then we have

JR(X,Y )Z =R(X,Y )JZ.

ThusR(X,Y )Z has only three essential components

R
(
XH,YH

)
ZH , R

(
XV ,YH

)
ZH , R

(
XV ,YV

)
ZH .

With respect to an adapted basis, these are:

R

(
δ

δxk
,
δ

δxj

)
δ

δxh
=Rihkj

δ

δxi
,

R

(
∂

∂yk
,
δ

δxj

)
δ

δxh
= P ihkj

δ

δxi
,

R

(
∂

∂yk
,
∂

∂yj

)
δ

δxh
= Sihkj

δ

δxi
. (1.4.13)

The other three components are obtained by applying the operatorJ to the previous
ones. So, we haveR( δ

δxh
, δ
δxj
) ∂
∂yh

= Rihjk
∂
∂yh

, etc. Therefore, anN -linear connection

DΓ = (Ni
j ,L

i
jk,C

i
jk) has only three local componentsRihjk , P

i
hjk andSihjk . They are

given by

Rihjk =
δLihj

δxk
− δLihk

δxj
+LshjLisk −LshkLisj +CihsRsjk,

P ihjk =
∂Lihj

∂yk
−Cihk|j +CihsP sjk,

Sihjk =
∂Cihj

∂yk
− ∂Cihk

∂yj
+CshjCisk −CshkCisj . (1.4.14)
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If Xi(x, y) are the components of ad-vector field onTM then from (1.4.12) we may
derive the Ricci identities with respect to anN -linear connectionD,

Xi|j |k −Xi|k|j =XsRis jk −Xi|sT sjk −Xi |sRsjk,
Xi|j |k −Xi |k|j =XsP is jk −Xi|sCsjk −Xi |sP sjk,
Xi |j |k −Xi |k|j =XsSis jk −Xi |sSsjk. (1.4.15)

We deduce some fundamental identities for theN -linear connectionD, by applying the
Ricci identities to the Liouville vector fieldC= yi ∂

∂yi
. Considering thed-tensors

Di
j = yi|j , dij = yi |j , (1.4.16)

calledh- andv-deflectiontensors ofD, we obtain

THEOREM 1.4.2. For anyN -linear connectionD the following identities hold:

Di
k|h −Di

h|k = ysRis kh −Di
sT

s
kh − disRskh,

Di
k|h − dih|k = ysP is kh −Di

sC
s
kh − disP skh,

dik|h − dih|k = ysSis kh − disSskh. (1.4.17)

Other fundamental identities are the Bianchi identities obtained writing in the adapted
basis the following Bianchi identities:

Σ
[
DXT (Y,Z)−R(X,Y )Z + T (T (X,Y ),Z)]= 0,

Σ
[
(DXR)(U,Y,Z)+R

(
T (X,Y ),Z

)
U
]= 0, (1.4.18)

whereΣ means cyclic summation overX,Y,Z.

1.5. Parallelism. Structure equations

LetDΓ (N)= (Lijk,C
i
jk) be anN -linear connection and an adapted basis( δ

δxi
, ∂
∂yi
), i =

1, n.
As we know, a curvec : t ∈ I → (xi(t), yi(t)) ∈ TM , has the tangent vectorċ= ċH + ċV

given by (1.3.15), i.e.,̇c = dxi

dt
δ
δxi

+ δyi

dt
∂
∂yi

. The curvec is horizontal if δy
i

dt
= 0, and it is

an autoparallel curve with respect to the nonlinear connectionN if δyi

dt
= 0, yi = dxi

dt
.

We denote

DX

dt
=DċX, DX = DX

dt
dt, ∀X ∈ χ(TM). (1.5.1)
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Here DX
dt

is the covariant differential ofX along the curvec with respect to theN -linear
connectionD.

SettingX =XH +XV , XH =Xi δ
δxi

, XV = Ẋi ∂
∂yi

, we have

DX

dt
= DXH

dt
+ DXV

dt

=
{
Xi|k

dxk

dt
+Xi |k δy

k

dt

}
δ

δxi
+
{
Ẋi|k

dxk

dt
+ Ẋi |k δy

k

dt

}
. (1.5.2)

Consider theconnection1-formsof D,

ωij = Lijk dxk +Cijk δyk. (1.5.3)

ThenDX
dt

takes the form

DX

dt
=
{
dXi

dt
+Xs ω

i
s

dt

}
δ

δxi
+
{
dẊi

dt
+ Ẋs ω

i
s

dt

}
∂

∂yi
. (1.5.4)

The vector fieldX on TM is said to be parallel along the curvec with respect to
theN -linear connection ifDX

dt
= 0. Using (1.5.2), the equationDX

dt
= 0 is equivalent to

DXH

dt
= 0, DX

V

dt
= 0. According to (1.5.4) we obtain the following

PROPOSITION1.5.1. The vector fieldX =Xi δ
δxi

+ Ẋi ∂
∂yi

∈ χ(TM) is parallel along the

parametrized curvec in TM with respect to theN -linear connectionDΓ (N)= (Lijk,Cijk)
if and only if its coefficientsXi(x(t), y(t)) and Ẋi(x(t), y(t)) are solutions of the linear
system of differential equations

dZi

dt
+Zs(x(t), y(t))ωis(x(t), y(t))

dt
= 0.

A theorem of existence and uniqueness for parallel vector fields along a curvec on the
manifoldTM can be formulated in the classical way.

The horizontal geodesicof D are the horizontal curvesc : I → TM with the property

Dċċ= 0. TakingXi = dxi

dt
, Ẋi = δyi

dt
= 0, we get

THEOREM 1.5.1. The horizontal geodesics of anN -linear connection are characterized
by the system of differential equations:

d2xi

dt2
+Lijk(x, y)

dxj

dt

dxk

dt
= 0,

dyi

dt
+Ni

j (x, y)
dxj

dt
= 0. (1.5.5)

Now we can consider a curvecVx0
on the fibreTx0M = π−1(x0). It is represented by

xi = xi0, yi = yi(t), t ∈ I,
cvx0

is called averticalcurve ofTM at the pointx0 ∈M .
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Thevertical geodesicof D are the vertical curvescvx0
with the propertyDċvx0 ċ

v
x0
= 0.

THEOREM 1.5.2. The vertical geodesics at a pointx0 ∈M of anN -linear connection
DΓ (N)= (Lijk,Cijk) are characterized by the following system of differential equations:

xi = xi0,
d2yi

dt2
+Cijk(x0, y)

dyj

dt

dyk

dt
= 0. (1.5.6)

Obviously, the local existence and uniqueness of horizontal or vertical geodesics are
assured by giving initial conditions.

Now, we determine the structure equations of anN -linear connectionD, considering
the connection 1-formsωij , defined by (1.5.3).

LEMMA 1.5.1. The exterior differential of the1-formsδyi = dyi +Ni
j dx

j are given by

d
(
δyi
)= 1

2
Rijs dx

s ∧ dxj +Bijs δys ∧ dxj , (1.5.7)

where

Bijk =
∂Ni

j

∂yk
. (1.5.7′)

REMARK. Bijk are the coefficients of the Berwald connection.

LEMMA 1.5.2. With respect to a change of local coordinates on the manifoldTM , the
following 2-forms:

d
(
dxi
)− dxs ∧ωis, d

(
δyi
)− δys ∧ωis

transform as the components of ad-vector field.
The2-forms

dωij −ωsj ∧ωis
transform as the components of ad-tensor field of type(1,1).

THEOREM 1.5.3. The structure equations of anN -linear connection(Lijk,C
i
jk) =

DΓ (N) on the manifoldTM are given by

d
(
dxi
)− dxs ∧ωis =− (0)

Ω
i,

d
(
δyi
)− δys ∧ωis =− (1)

Ω
i,

dωij −ωsj ∧ωis =−Ωi
j , (1.5.8)
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where
(0)
Ω i and

(1)
Ω i are the torsion2-forms

(0)
Ω
i = 1

2
T ijk dx

j ∧ dxk +Cijk dxj ∧ δyk,
(1)
Ω
i = 1

2
Rijk dx

j ∧ dxk + P ijk dxj ∧ δyk +
1

2
Sijk δy

j ∧ δyk, (1.5.9)

and the curvature2-formsΩi
j are given by

Ωi
j =

1

2
Rij kh dx

k ∧ dxh + P ij kh dxk ∧ δyh +
1

2
Sij kh δy

j ∧ δyh. (1.5.10)

PROOF. By means of Lemma 1.5.2, for anN -linear connectionD, the general struc-
ture equations of a linear connection onTM take the form (1.5.8). Using the connection

1-formsωij and formula (1.5.7), we can calculate the forms
(0)
Ω i ,

(1)
Ω i andΩi

j .
Then it is very easy to determine the structure equations (1.5.9). �

REMARK. The Bianchi identities of anN -linear connectionD can be obtained from (1.5.8)
by calculating the exterior differential of (1.5.8), modulo the same system (1.5.8) and using

the exterior differential of
(0)
Ω i ,

(1)
Ω i andΩi

j .

2. Lagrange spaces

The notion of Lagrange spaces was introduced and studied by the present author [15,19,20].
The term “Lagrange geometry” belongs to J. Kern [11]. We study the geometry of La-
grange spaces as a subgeometry of the geometry of the tangent bundle(TM,π,M) of a
manifoldM , using the principles of Analytical Mechanics given by variational problem on
the integral of an action of a regular Lagrangian, the law of conservation, Nöther theorem,
etc. Remarking that the Euler–Lagrange equations determine a canonical semisprayS on
the manifoldTM , we can study the geometry of a Lagrange space using this canonical
semi-sprayS and the methods given in the first section.

Starting 1987, the author, alone or in collaboration, published some books [19] on the
Lagrange spaces and the Hamilton spaces [18–20,22], as well as the higher-order Lagrange
and Hamilton spaces [22].

The present section is based on the above mentioned books.

2.1. The notion of Lagrange space

First we define the notion of a differentiable Lagrangian over the tangent manifoldsTM

andT̃ M = TM \ {0},M being a realn-dimensional manifold.
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DEFINITION 2.1.1. A differentiable Lagrangian is aC∞-mappingL : (x, y) ∈ TM →
L(x, y) ∈ R on T̃ M and continuous on the null section 0 :M → TM of the bundle
π :TM→M .

The Hessian of a differentiable LagrangianL, with respect toyi , has the components

gij = 1

2

∂2L

∂yi∂yj
. (2.1.1)

The set of functionsgij (x, y) are the components of a symmetricd-tensor field covariant
of order 2.

DEFINITION 2.1.2. A differentiable LagrangianL is calledregular if:

rank
(
gij (x, y)

)= n, on T̃ M. (2.1.2)

Now we can give the definition of a Lagrange space.

DEFINITION 2.1.3. A Lagrange space is a pairLn = (M,L(x, y)), whereM is a smooth,
realn-dimensional manifoldM andL(x, y) a regular LagrangianL(x, y), for which the
d-tensorgij has a constant signature over the manifold̃TM .

We say thatL(x, y) is the fundamental functionandgij (x, y) is the fundamental(or
metric) tensor of the Lagrange space.

EXAMPLES.
(1) Every Riemannian manifold(M,gij (x)) determines a Lagrange spaceLn =

(M,L(x, y)), where

L(x, y)= gij (x)yiyj . (2.1.3)

Therefore, if a manifoldM is paracompact, then there exists a LagrangianL(x, y)

such thatLn = (M,L(x, y)) is a Lagrange space.
(2) LetL be the following Lagrangian from Electrodynamics:

L(x, y)=mcγij (x)yiyj + 2e

m
Ai(x)y

i + U(x), (2.1.4)

whereγij (x) is a pseudo-Riemannian metric,Ai(x) a covector field andU(x) a
smooth function,m,c, e are constants. The corresponding Lagrange space is called
the Lagrange space of Electrodynamics.

We already have seen thatgij (x, y) is ad-tensor field, i.e.,

g̃ij (x̃, ỹ)= ∂xh

∂x̃i

∂xk

∂x̃j
, ghk(x, y).
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THEOREM 2.1.1. For a Lagrange spaceLn the following properties hold:
(1) The system of functions

pi = 1

2

∂L

∂yi
(2.1.5)

determine ad-covector field.
(2) The functions

Cijk = 1

4

∂3L

∂yi∂yj ∂yk
= 1

2

∂gij

∂yk
(2.1.6)

are the components of a symmetricd-tensor field of type(0,3).
(3) The1-forms

ω= pi dxi = 1

2

∂L

∂yi
dxi (2.1.7)

depend only on the LagrangianL and is globally defined on the manifold̃TM .
(4) The2-form

θ = dω= dpi ∧ dxi (2.1.8)

is globally defined oñTM and is a symplectic structure onTM .

2.2. Variational problem. Euler–Lagrange equations

The variational problem can be formulated for differentiable Lagrangians and can be solved
in the case when the integral of action is defined on parametrized curves.

LetL :TM→R be a differentiable Lagrangian andc : t ∈ [0,1]→ (xi(t)) ∈U ⊂M be
a smooth curve, with a fixed parametrization, having Imc ⊂ U , whereU is a domain of a
local chart on the manifoldM . The curvec can be extended toπ−1(U)⊂ T̃ M by

c̃ : t ∈ [0,1]→
(
xi(t),

dxi

dt
(t)

)
∈ π−1(U).

So, Imc̃⊂ π−1(U).
The integral of action of the LagrangianL on the curvec is given by the functional

I (c)=
∫ 1

0
L

(
x,
dx

dt

)
dt. (2.2.1)

Consider the curves

cε : t ∈ [0,1]→ (
xi(t)+ εV i(t)) ∈M (2.2.2)
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which have the same end pointsxi(0) andxi(1) as the curvec, V i(t) = V i(xi(t)) being
a regular vector field on the curvec, with the propertyV i(0)= V i(1)= 0 andε is a real
number, sufficiently small in absolute value, so that Imcε ⊂U .

An extension of the curvecε to T̃ M is given by

c̃ε : t ∈ [0,1] 	→
(
xi(t)+ εV i(t), dx

i

dt
+ ε dV

i

dt

)
∈ π−1(U).

The integral of action of the LagrangianL on the curvecε is given by

I (cε)=
∫ 1

0
L

(
x + εV, dx

dt
+ ε dV

dt

)
dt. (2.2.1′)

A necessary condition forI (c) to be an extremal value ofI (cε) is

dI (cε)

dε

∣∣∣∣
ε=0

= 0. (2.2.3)

Under our conditions of differentiability, the operatord
dε

and the operator of integration
commute.

From (2.2.1) we obtain

dI (cε)

dε
=
∫ 1

0

d

dε
L

(
x + εV, dx

dt
+ ε dV

dt

)
dt. (2.2.4)

But we have

d

dε
L

(
x + εV, dx

dt
+ ε dV

dt

)∣∣∣∣
ε=0

= ∂L

∂xi
V i + ∂L

∂yi

dV i

dt

=
{
∂L

∂xi
− d

dt

∂L

∂yi

}
V i + d

dt

{
∂L

∂yi
V i
}
, yi = dxi

dt
.

Substituting in (2.2.4) and taking into account the fact thatV i(x(t)) is arbitrary, we obtain
the following theorem.

THEOREM 2.2.1. A necessary condition for the functionalI (c) to be an extremal value of
I (cε) is that the curvec(t)= (xi(t)) satisfy the Euler–Lagrange equations:

Ei(L) := ∂L

∂xi
− d

dt

∂L

∂yi
= 0, yi = dxi

dt
. (2.2.5)

For the Euler–Lagrange operatorEi = ∂
∂xi

− d
dt

∂
∂yi

, we have

THEOREM 2.2.2. The following properties hold true:
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(1) Ei(L) is ad-covector field;
(2) Ei(L+L′)=Ei(L)+Ei(L′);
(3) Ei(aL)= aEi(L), a ∈R;
(4) Ei(dFdt )= 0, ∀F ∈F(TM) with ∂F

∂yi
= 0.

The notion ofenergy of a LagrangianL can be introduced as in Theoretical Mechan-
ics [26,27], by

EL = yi ∂L
∂yi

−L. (2.2.6)

THEOREM 2.2.3. For every smooth curvec on the base manifoldM , one has

dEL

dt
=−dx

i

dt
Ei(L), yi = dxi

dt
. (2.2.7)

Consequently:

THEOREM 2.2.4. For any differentiable LagrangianL(x, y), the energyEL is conserved
along every solutionc of the Euler–Lagrange equations

Ei(L)= 0,
dxi

dt
= yi.

A Nöther theorem can be proved [20]:

THEOREM 2.2.5. For any infinitesimal symmetry onM × R of the LagrangianL(x, y)
and for any smooth functionφ(x), the function

F(L,φ)= V i ∂L
∂yi

− τEL − φ(x)

is conserved on every curvec, solution of the Euler–Lagrange equationsEi(L) = 0,
yi = dxi

dt
.

REMARK. An infinitesimal symmetry onM × R is given byx′i = xi + εV i(x, t), t ′ =
t + ετ(x, t).

2.3. Canonical semispray. Nonlinear connection

Now we can apply the previous theory to the study of the Lagrange spaceLn =
(M,L(x, y)). As we shall see,Ln determines a canonical semisprayS andS gives a canon-
ical nonlinear connection on the manifold̃TM .

As we know, the fundamental tensorgij of the spaceLn is nondegenerate andEi(L) is
ad-covector field, so the equationsgijEj (L)= 0 have a geometrical meaning.
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THEOREM 2.3.1. If Ln = (M,L) is a Lagrange space, then the system of differential
equations

gijEj (L)= 0, yi = dxi

dt
(2.3.1)

can be written in the form:

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0, yi = dxi

dt
, (2.3.1′)

where

2Gi(x, y)= 1

2
gij
{

∂2L

∂yj ∂xk
yk − ∂L

∂xj

}
. (2.3.2)

PROOF. We have

Ei(L)= ∂L

∂xi
−
{
∂2L

∂yi∂xk
+ 2gij

dyj

dt

}
, yi = dxi

dt
.

So, (2.3.1) implies (2.3.1′), (2.3.2). �

The previous theorem shows that the Euler–Lagrange equations for a Lagrange space
are given by a system ofn second-order ordinary differential equations. According to Sec-
tion 1.2, it follows that Eqs. (2.3.1) determine a semispray with the coefficientsGi(x, y):

S = yi ∂
∂xi

− 2Gi(x, y)
∂

∂yi
. (2.3.3)

S is called the canonical semispray of the Lagrange spaceLn.
By means of Theorem 1.3.1, it follows that:

THEOREM 2.3.2. Every Lagrange spaceLn = (M,L) has a canonical nonlinear connec-
tionN which depends only on the fundamental functionL. The local coefficients ofN are
given by

Ni
j =

∂Gi

∂yj
= 1

4

∂

∂yj

{
gik
(

∂2L

∂yk∂xh
yh − ∂L

∂xk

)}
. (2.3.4)

PROPOSITION 2.3.1. The canonical nonlinear connectionN is symmetric, i.e., t ijk =
∂Ni

j

∂yk
− ∂Ni

k

∂yj
= 0, and is invariant with respect to the Carathéodory transformation

L′(x, y)= L(x, y)+ ∂ϕ(x)

∂xi
yi .



462 R. Miron

Indeed, we have

Ei(L
′)=Ei

(
L(x, y)+ dϕ

dt

)
=Ei(L).

Thus,Ei(L′(x, y))= 0 determines the same canonical semispray as the one determined
by Ei(L(x, y)) = 0. Therefore Carathéodory transformation [19] preserves the nonlinear
connectionN .

EXAMPLE. On the Lagrange space of Electrodynamics,Ln = (M,L(x, y)), where
L(x, y) is given by (2.1.4) withU(x)= 0, the canonical semispray has the coefficients:

Gi(x, y)= 1

2
γ ijk(x)y

j yk − gij (x)Fjk(x)yk, (2.3.5)

whereγ ijk(x) are the Christoffel symbols of the metric tensorgij (x) = mcγij (x) of the
spaceLn andFjk is the electromagnetic tensor

Fjk(x, y)= e

2m

(
∂Ak

∂xj
− ∂Aj

∂xk

)
. (2.3.6)

Therefore, the integral curves of the Euler–Lagrange equation are given by the solutions
of theLorentz equations:

d2xi

dt2
+ γ ijk(x)

dxj

dt

dxk

dt
= gij (x)Fjk(x)dx

k

dt
. (2.3.7)

According to (2.3.4), the canonical nonlinear connection of the Lagrange space of Elec-
trodynamicsLn has the local coefficients

Ni
j (x, y)= γ ijk(x)yk − gik(x)Fkj (x). (2.3.8)

We remark that the coefficientsNi
j are linear with respect toyi .

PROPOSITION2.3.2. The Berwald connection of the canonical nonlinear connectionN

has the coefficientsBΓ (N)= (γ ijk(x),0).
PROPOSITION2.3.3. The solutions of the Euler–Lagrange equations and the autoparallel
curves of the canonical nonlinear connectionN are given by the Lorentz equations(2.3.7).

THEOREM 2.3.3. The autoparallel curves of the canonical nonlinear connectionN are
given by the following system:

d2xi

dt2
+Ni

j

(
x,
dx

dt

)
dxj

dt
= 0,

whereNi
j are given by(2.3.4).
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2.4. Hamilton–Jacobi equations

Consider a Lagrange spaceLn = (M,L(x, y)) andN(Ni
j ) its canonical nonlinear connec-

tion. The adapted basis( δ
δxi
, ∂
∂yi
) to the horizontal distributionN and the vertical distribu-

tion V has the horizontal vector fields:

δ

δxi
= ∂

∂xi
−Nj

i

∂

∂yj
. (2.4.1)

Its dual basis is(dxi, δyi), with

δyi = dyi +Ni
j dx

j . (2.4.2)

Theorem 2.1.1 gives the momenta

pi = 1

2

∂L

∂yi
, (2.4.3)

the 1-form

ω= pi dxi (2.4.4)

and the 2-form

θ = dω= dpi ∧ dxi. (2.4.5)

These geometrical object fields are globally defined oñTM . Clearlyθ is a symplectic
structureon the manifoldT̃ M .

PROPOSITION2.4.1. With respect to an adapted basis, the2-form θ is given by

θ = gij δyi ∧ dxj . (2.4.6)

Indeed,

θ = dpi ∧ dxi = 1

2

(
δ

δxs

∂L

∂yi
dxs + ∂

∂ys

∂L

∂yi
δys
)
∧ dxi

= 1

4

(
δ

δxs

∂L

∂yi
− δ

δxi

∂L

∂ys

)
dxs ∧ dxi + gis δys ∧ dxi.

But is easily seen that the coefficient ofdxs ∧ dxi vanishes.
The triple(T̃ M, θ,L) is called a Lagrangian system.
The energyEL of the spaceLn is given by (2.2.6). DenotingH = 1

2EL, L= 1
2L, then

(2.2.6) can be written as

H= piyi −L(x, y). (2.4.7)
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Along the integral curves of the Euler–Lagrange equations (2.2.5), we have

∂H
∂xi

=− ∂L
∂xi

=−dpi
dt
,

and from (2.4.7), we get

∂H
∂pi

= yi = dxi

dt
.

So, we obtain

THEOREM 2.4.1. Any integral curve of the Euler–Lagrange equations satisfies the
Hamilton–Jacobi equations:

dxi

dt
= ∂H
∂pi

,
dpi

dt
=− ∂H

∂xi
, (2.4.8)

whereH is given by(2.4.7)andpi = 1
2
∂L
∂yi

.

EXAMPLE. For the Lagrange space from Electrodynamics with the fundamental func-
tionL(x, y), from (2.1.4) andU(x)= 0, we obtain

H= 1

2mc
γ ij (x)pipj − e

mc2
Ai(x)pi + e2

2mc3
Ai(x)Ai(x)

(Ai = γ ijAj ).

Then, we may write the Hamilton–Jacobi equations.
Sinceθ is a symplectic structure oñTM , then its exterior differentialdθ vanishes. With

respect to an adapted basis

dθ = dgij ∧ δyi ∧ dxj + gij d δyi ∧ dxj = 0

gives

1

2

(
δgij

δxk
− δgik

δxj

)
δyi ∧ dxj ∧ dxk + 1

2

(
∂gij

∂xk
− ∂gkj

∂yi

)
δyk ∧ δyi ∧ dxj

+gij
(

1

2
Rirs dx

s ∧ dxr +Birs δys ∧ dxr
)
∧ dxj = 0.

Thus, we obtain

THEOREM 2.4.2. For any Lagrange spaceLn the following identities hold:

gij‖k − gik‖j = 0, gij‖k − gik‖j = 0. (2.4.9)
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Indeed, taking into account theh- and v-covariant derivations of the metricgij with

respect to Berwald connectionBΓ (N)= ( ∂N
i
j

∂yk
,0), i.e.,

gij‖k = δgij

δxk
−Brikgkj −Brjkgir

andgij‖k = ∂gij

∂yk
, and using the equations

∂gij

∂yk
= 2Cijk , Bijk = Bikj , we obtain (2.4.9).

2.5. MetricalN -linear connections

LetN(Ni
j ) be the canonical nonlinear connection of the Lagrange spaceLn = (M,L) and

D anN -linear connection with the coefficientsDΓ (N) = (Lijk,C
i
jk). Then, theh- and

v-covariant derivations of the fundamental tensorgij , gij |k andgij |k are given by (1.4.7).
Applying the theory ofN -linear connections, one proves the following

THEOREM 2.5.1.
(1) On the manifold̃TM there exist only oneN -linear connectionsD which verifies the

following axioms:
(A1) N is canonical nonlinear connection of the spaceLn;
(A2) gij |k = 0 (D is h-metrical);
(A3) gij |k = 0 (D is v-metrical);
(A4) T

i
jk = 0 (D is h-torsion free);

(A5) S
i
jk = 0 (D is v-torsion free).

(2) The coefficientsDΓ (N)= (Lijk,Cijk) ofD are expressed by the following general-
ized Christoffel symbols:

Lijk =
1

2
gir
(
δgrk

δxj
+ δgrj

δxk
− δgjk

δxr

)
,

Cijk =
1

2
gir
(
∂grk

∂yj
+ ∂grj

∂yk
− ∂gjk

∂yr

)
. (2.5.1)

(3) This connection depends only on the fundamental functionL(x, y) of the Lagrange
spaceLn.

TheN -linear connectionD given by the previous theorem is called thecanonical met-
rical connectionand is denoted byCΓ (N)= (Lijk,Cijk).

The connection 1-formsωij of CΓ (N) are

ωij = Lijk dxk +Cijk δyk. (2.5.2)
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THEOREM2.5.2. The canonical metrical connectionCΓ (N) satisfies the following struc-
ture equations:

d
(
dxi
)− dxk ∧ωik =− (0)

Ω
i,

d
(
δyi
)− δyk ∧ωik =− (1)

Ω
i,

dωij −ωkj ∧ωik =−Ωi
j , (2.5.3)

where the torsion2-forms
(0)
Ω i and

(1)
Ω i are

(0)
Ω
i = Cijk dxj ∧ δyk,

(1)
Ω
i = 1

2
Rijk dx

j ∧ dxk + P ijk dxj ∧ δyk (2.5.4)

and the curvature2-formsΩi
j are

Ωi
j =

1

2
Rij kh dx

k ∧ dxh + P ij kh dxk ∧ δyh +
1

2
Sij kh δy

k ∧ δyh. (2.5.4′)

The torsiond-tensorsRijk , P
i
jk are given by (1.3.13′) and (1.4.10), and the curvature

d-tensorsRij kh, P ij kh, Sij kh have the expressions (1.4.14).

Starting from the canonical metrical connectionCΓ (N) = (Lijk,C
i
jk), we can de-

rive otherN -linear connections depending only on the spaceLn: Berwald connection

BΓ (N)= (
∂Ni

j

∂yk
,0), Chern–Rund connectionRΓ (N)= (Lijk,0) and Hashiguchi connec-

tionHΓ (N)= ( ∂N
i
j

∂yk
,Cijk). The following commutative diagram holds [19,20]:

RΓ (N)

↗ ↘
CΓ (N) −→ BΓ (N)

↘ ↗
HΓ (N)

Some properties of the canonical metrical connectionCΓ (N) are given by

PROPOSITION2.5.1. We have:
(1)

∑
(ijk) Rijk = 0 (Rijk = gihRhjk).

(2) Pijk = gihP hjk is totally symmetric.
(3) The covariant curvatured-tensorsRijkh = gjrR

r
i kh, Pijkh = gjrP

r
i kh and Sijkh =

girS
r
i kh are skew-symmetric with respect to the first two indices.
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(4) Sijkh = CiksCsjh −CihsCsjk .
(5) Cikh = gisCsjh.

These properties can be proved usingdθ = 0, Ricci identities applied for the fundamen-
tal tensorgij and the equationsgij |k = 0, gij |k = 0.

By the same method we can study the metrical connections with a priori givenh- and
v-torsions.

THEOREM 2.5.3.
(1) There exists a uniqueN -linear connectionD̄Γ (N)= (L̄ijk, C̄ijk) which satisfies the

following axioms:
(A′

1) N is canonical nonlinear connection of the spaceLn;
(A′

2) gij |k = 0 (D̄ is h-metrical);
(A′

3) gij |k = 0 (D̄ is v-metrical);
(A′

4) The torsionh-tensorT̄ ijk is a priori given;

(A′
5) The torsionv-tensorS̄ijk is a priori given.

(2) The coefficients(L̄ijk, C̄
i
jk) of D̄ are given by

L̄ijk = Lijk +
1

2
gih
(
gjr T̄

r
kh + gkr T̄ rjh − ghr T̄ rkj

)
,

C̄ijk = Cijk +
1

2
gih
(
gjr S̄

r
kh + gkr S̄rjh − ghr S̄rkj

)
, (2.5.5)

where(Lijk,C
i
jk) are the coefficients of the canonical metrical connection.

From now on,T̄ ijk, S̄
i
jk will be denoted byT ijk, S

i
jk and theN -linear connection given

by the previous theorem will be calledmetricalN -connectionof the Lagrange spaceLn.
Some particular cases can be studied using the expressions of the coefficientsL̄ijk

andC̄ijk . For instance, the semi-symmetric case will be obtained takingT ijk = δij σk− δikσj ,
Sijk = δij τk − δikτj .

PROPOSITION 2.5.2. The Ricci identities of the metricalN -linear connectionDΓ (N)
are given by:

Xi|j |k −Xi|k|j =XrRir jk −Xi|rT rjk −Xi |rRrjk,
Xi|j |k −Xi |k|j =XrP ir jk −Xi|rCrjk −Xi |rP rjk,
Xi |j |k −Xi |k|j =XrSir jk −Xi |rSrjk. (2.5.6)

Of course these identities can be extended to ad-tensor field of type(r, s).
Denoting

Di
j = yi|j , dij = yi |j , (2.5.7)
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we have theh- andv-deflection tensors. They have the known expressions:

Di
j = ysLisj −Ni

j , dij = δij + ysCisj . (2.5.7′)

According to Ricci identities (2.5.6), we obtain

THEOREM 2.5.4. For any metricalN -linear connection the following identities hold:

Di
j |k −Di

k|j = ysRis jk −Di
sT

s
jk − disRsjk,

Di
j |k − dik|j = ysP is jk −Di

sC
s
jk − disP sjk,

dij |k − dik|j = ysSis jk − disSsjk. (2.5.8)

2.6. The electromagnetic fields and the gravitational fields

Let consider a Lagrange spacesLn = (M,L) endowed with the canonical nonlinear con-
nectionN and with the canonical metricalN -connectionCΓ (N)= (Lijk,Cijk).

The covariant deflection tensorsDji anddji are given byDij = gisDs
j , dij = gisdsj . We

have

Dij |k = gisDs
j |k, dij |k = gisdsj |k,

etc. Then one has

PROPOSITION2.6.1. The covariant deflection tensorsDij anddij of the canonical met-
rical N -connectionCΓ (N) satisfy the identities

Dij |k −Dik|j = ysRsijk − disRsjk,
Dij |k − dik|j = ysPsijk −DisCsjk − disP sjk,
dij |k − dik|j = ysSsijk. (2.6.1)

The Lagrangian theory of Electrodynamics leads to introduce the electromagnetic tensor
fields [19,20].

DEFINITION 2.6.1. Thed-tensor fields

Fij = 1

2
(Dij −Dji), fij = 1

2
(dij − dji) (2.6.2)

are theh- andv-electromagnetic tensorof the Lagrange spaceLn = (M,L).

Therefore, the Bianchi identities forCΓ (N) and the identities (2.6.1) imply the follow-
ing important result.
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THEOREM 2.6.1. The following generalized Maxwell equations hold:

Fij |k + Fjk|i + Fki|j =−
∑
(ijk)

CiosR
s
jk,

Fij |k + Fjk|i + Fki |j = 0, (2.6.3)

whereCios = Cijsyj and
∑

(ijk) is cyclic sum.

COROLLARY 2.6.1. If the canonical nonlinear connectionN of the spaceLn is inte-
grable, then Eqs. (6.3)reduce to:∑

(ijk)

Fij |k = 0,
∑
(ijk)

Fij |k = 0. (2.6.3′)

If we put

F ij = gisgjrFsr (2.6.4)

and

hJ i = F ij|j , vJ i = F ij |j , (2.6.5)

then one can prove

THEOREM 2.6.2. The following laws of conservation hold:

hJ i|i =
1

2

{
F ij (Rij −Rji)+ F ij |rRrij

}
,

vJ i |i = 0, (2.6.6)

whereRij is the Ricci tensorRhi jh.

REMARK. On the Lagrange space of Electrodynamics the tensorFjk is given by (2.3.6).
Then Fij (x) satisfy the Maxwell equations

∑
(ijk) Fij |k = 0 andFij |k = 0, hj i|i = 0,

vj i = 0.

Now, considering the lift tõTM of the fundamental tensorgij (x, y) of the spaceLn,
given by

G= gij dxi ⊗ dxj + gij δyi ⊗ δyj

we obtain the Einstein equations of the canonical metrical connectionCΓ (N) [19,20]. The
Ricci curvature and scalar curvature satisfy

Rij =Rhi jh, Sij = Shi jh, P ′
ij = Phi jh, P ′′

ir = Phi hj ,
R = gijRij , S = gijSij . (2.6.7)
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Let denote by
H

T ij ,
V

T ij ,
1
T ij and

2
T ij the components w.r.t. an adapted basis( δ

δxi
, ∂
∂yi
) of

the energy momentum tensor on the manifold̃TM . Thus we obtain [19,20]

THEOREM 2.6.3.
(1) The Einstein equations of the Lagrange spaceLn = (M,L(x, y)) with respect to the

canonical metrical connectionCΓ (N)= (Lijk,Cijk) are as follows:

Rij − 1

2
Rgij = κ

H

T ij , P ′
ij = κ

1
T ij ,

Sij − 1

2
Sgij = κ

V

T (i)(j), P ′′
ij = κ

2
T ij , (2.6.8)

whereκ is a real constant.

(2) The energy momentum tensors
H

T ij and
V

T ij satisfy the following laws of conserva-
tion:

κ
H

T ij=−1

2

(
P ihjs R

s
hi + 2RsijP

i
s

)
, κ

V

T

i

j |i = 0. (2.6.9)

The physical background of the previous theory is discussed by S. Ikeda in the last
chapter of [20].

The previous theory is very simple for the particular Lagrange spacesLn having vanish-
ing tensorPhi jk .

COROLLARY 2.6.2.
(1) If the canonical metrical connectionCΓ (N) has the propertyP ij kh = 0, then the

Einstein equations are

Rij − 1

2
Rgij = κ

H

T ij , Sij − 1

2
Sgij = κ

V

T (i)(j) . (2.6.10)

(2) The following laws of conservation hold:

H

T

i

j |i= 0,
V

T

i

j|i = 0.

REMARK. The Lagrange space of ElectrodynamicsLn has CΓ (N) = (γ ijk(x),0),

P ij kh = 0, Sij kh = 0. The Einstein equations (2.6.10) reduce to the classical Einstein equa-
tions of the spaceLn.

2.7. The almost Kählerian model of a Lagrange spaceLn

A Lagrange spaceLn = (M,L) can be thought as an almost Kähler space on the manifold
T̃ M = TM \ {0}, called the geometrical model of the spaceLn.
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The canonical nonlinear connectionN determines an almost complex structureF(T̃ M),
expressed in (1.3.9′), i.e.,

F= δ

δxi
⊗ δyi − ∂

∂yi
⊗ dxi. (2.7.1)

We know thatF is integrable if and only ifRijk = 0.

F is globally defined oñTM and it can be considered as anF(T̃ M)-linear mapping
from χ(T̃M) to χ(T̃M):

F

(
δ

δxi

)
=− ∂

∂yi
, F

(
∂

∂yi

)
= δ

δxi
(i = 1, . . . , n). (2.7.1′)

The lift of the fundamental tensorgij of the spaceLn with respect toN is defined by

G= gij dxi ⊗ dxj + gij δyi ⊗ δyj . (2.7.2)

ObviouslyG is a (pseudo-)Riemannian metric on the manifold̃TM .

THEOREM 2.7.1.
(1) The pair(G,F) is an almost Hermitian structure oñTM , determined only by the

fundamental functionL(x, y) ofLn.
(2) The almost symplectic structure associated to the structure(G,F) is given by

θ = gij δyi ∧ dxj . (2.7.3)

(3) The space(T̃ M,G,F) is almost Kählerian.

Indeed:
(1) N,G,F are determined only byL(x, y).
We haveG(FX,FY)=G(X,Y ), ∀X,Y ∈ χ(T̃M).
(2) With respect to an adapted basis, (2.7.3) impliesθ(X,Y )=G(FX,Y).
(3) Taking into account Theorem 2.1.1, it follows thatθ is a symplectic structure (i.e.,

dθ = 0).
The spaceH 2n = (T̃ M,G,F) is called the almost Kählerian modelof the Lagrange

spaceLn. It has a remarkable property, given by the following theorem.

THEOREM 2.7.2. The canonical metrical connectionD with coefficientsCΓ (N) =
(Lijk,C

i
jk) of the Lagrange spaceLn is an almost Kählerian connection, i.e.,

DG= 0, DF= 0. (2.7.4)

We can use this geometrical model for studying the geometry of the Lagrange spaceLn.

For instance, the Einstein equations of the (pseudo-)Riemannian space(T̃ M,G) equipped
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with the canonical metrical connectionCΓ (N) are the Einstein equations of the Lagrange
space studied in the previous subsection.

G.S. Asanov [16,19,20] showed that the metricG given by the lift (2.7.2) does not satisfy
the principle of the post-Newtonian calculus. This fact holds because the two terms ofG
have not the same physical dimensions. This is the reason to introduce a new lift [19,20],
which can be used in Gauge theory of physical fields.

Let consider the scalar field

ε = ‖y‖2 = gij (x, y)yiyj , (2.7.5)

called the absolute energy of the Lagrange spaceLn [19].
We assume‖y‖2> 0 and consider the following lift of the fundamental tensorgij :

0
G= gij dxi ⊗ dxj + a2

‖y‖2
gij δy

i ⊗ δyj , (2.7.6)

wherea > 0 is a constant, imposed by applications to Theoretical Physics (in order to
preserve the physical dimensions of that two terms ofG̃).

Let consider also the tensor field

0
F=−‖y‖

a

∂

∂yi
⊗ dxj + a

‖y‖
δ

δxi
⊗ δyi, (2.7.7)

on T̃ M and the 2-form

0
θ= a

‖y‖θ, (2.7.8)

whereθ is defined by (2.7.3).

THEOREM 2.7.3.

(1) The pair(
0
G,

0
F) is an almost Hermitian structure on the manifold̃TM , depending

only on the fundamental functionL(x, y) of the spaceLn.

(2) The almost symplectic structure
0
θ associated to the structure(

0
G,

0
F) is given

by (2.7.8).

(3)
0
θ being conformal to symplectic structureθ , the pair (

0
G,

0
F) is conformal to the

almost Kählerian structure(G,F).

2.8. Generalized Lagrange spaces

A first natural generalization of the notion of Lagrange space is provided by the notion of
a generalized Lagrange space. This notion was introduced by the present author in [19,20].
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DEFINITION 2.8.1. A generalized Lagrange space is a pairGLn = (M,gij (x, y)), where
gij (x, y) is a symmetricd-tensor field of type(0,2), having the rankn and constant sig-
nature onT̃ M .

We continue to callgij (x, y) thefundamentaltensor onGLn.
One easily seen that any Lagrange spaceLn = (M,L(x, y)) is a generalized Lagrange

space with the fundamental tensor

gij (x, y)= 1

2

∂2L(x, y)

∂yi∂yj
. (2.8.1)

But not any generalized Lagrange spaceGLn is a Lagrange spaceLn.
Indeed, ifgij (x, y) is given, the system of partial differential equations (2.8.1) does not

admit always solutionsL(x, y).

PROPOSITION2.8.1.
(1) A necessary condition in order that the system(2.8.1)admits a solutionL(x, y) is

that thed-tensor field
∂gij

∂yk
= 2Cijk be completely symmetric.

(2) If the condition(1) is verified and the functionsgij (x, y) are 0-homogeneous with
respect toyi , then the function

L(x, y)= gij (x, y)yiyj +Ai(x)yi +U(x) (2.8.2)

is a solution of the system of partial differential equations(2.8.1)for any arbitrary
d-covector fieldAi(x) and any arbitrary functionU(x) on the base manifoldM .

If the system (2.8.1) does not admit any solution, we say that the generalized Lagrange
spaceGL2 = (M,gij (x,y)) is not reducible to a Lagrange space.

REMARK 2.8.1. The Lagrange spacesLn with the fundamental function (2.8.2) gives an
important class of Lagrange spaces which includes the Lagrange space of Electrodynamics.

EXAMPLES.
(1) The pairGLn = (M,gij ) with the fundamental tensor field

gij (x, y)= e2σ(x,y)γij (x), (2.8.3)

whereσ is a function onT̃ M and γij (x) is a pseudo-Riemannian metric on the
manifoldM , is a generalized Lagrange space if thed-covector field ∂σ

∂yi
does not

vanish.
It is not reducible to a Lagrange space. R. Miron and R. Tavakol [20] proved that

GLn = (M,gij (x, y)) defined by (2.8.3) satisfies the Ehlers–Pirani–Shield’s axioms
of General Relativity.
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(2) The pairGLn = (M,gij (x, y)), with

gij (x, y)= γij (x)+
(

1− 1

n2(x, y)

)
yiyj , yi = γij (x)yj , (2.8.4)

whereγij (x) is a pseudo-Riemannian metric andn(x, y) > 1 is a smooth function
(n is a refractive index), is a generalized Lagrange spaceGLn, which is not reducible
to a Lagrange space.

The restriction of the fundamental tensorgij (x, y) to a sectionSV : xi = xi, yi = V i(x)
(V i being a vector field) of the bundleπ :TM→M , is given bygij (x,V (x)). It provides
the known Synge’s metric tensor of Relativistic Optics [20].

For a generalized Lagrange spaceGLn = (M,gij (x, y)), an important problem is to
determine a nonlinear connection obtained from the fundamental tensorgij (x, y). In the
particular cases given by the previous two examples, this is possible, but not generally.

We point-out a method to determine a nonlinear connectionN , strongly related to the
fundamental tensorgij of the spaceGLn, if such a nonlinear connection exists.

Consider theabsolute energyε(x, y) of the spaceGLn:

ε(x, y)= gij (x, y)yiyj , (2.8.5)

ε(x, y) is a Lagrangian.
The Euler–Lagrange equations ofε(x, y) are

∂ε

∂xi
− d

dt

∂ε

∂yi
= 0, yi = dxi

dt
. (2.8.6)

Of course, according to the general theory, the energyEε of the Lagrangianε(x, y) isEε =
yi ∂ε
∂yi

− ε and it is preserved along the integral curves of the differential equations (2.8.6).

If ε(x, y) is a regular Lagrangian (in this case we say that the spaceGLn is weakly
regular), it follows that the Euler–Lagrange equations determine a semispray with the co-
efficients

2Gi(x, y)=∨
g
is
(

∂2ε

∂ys∂xj
yj − ∂ε

∂xs

) (∨
gij= 1

2

∂2ε

∂yi∂yj

)
. (2.8.7)

Consequently, the nonlinear connectionN with the coefficientsNi
j = ∂Gi

∂yj
is determined

only by the fundamental tensorgij (x, y) of the spaceGLn.
In the case when we can not derive a nonlinear connection from the fundamental

tensorgij , we give a priori a nonlinear connectionN and study the geometry of the
pair (GLn,N) by the methods of the geometry of Lagrange spaceLn.

For instance, using an adapted basis( δ
δxi
, ∂
∂yi
) to the distributionsN andV , respectively,

and its dual basis(dxi, δyi), we can liftgij (x, y) to T̃ M :

G(x,y)= gij (x, y) dxi ⊗ dxj + a

‖y‖2
gij (x, y) δy

i ⊗ δyj
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and consider the almost complex structure

F=−‖y‖
a

∂

∂yi
⊗ dxi + a

‖y‖
δ

δxi
⊗ δyi,

with ε(x, y) > 0 and‖y‖ = ε1/2(x, y).
The space(T̃ M,F) is an almost Hermitian space associated to the pair(GLn,N).

3. Finsler spaces

An important class of Lagrange spaces is provided by the Finsler spaces.
The notion of Finsler space was introduced by Paul Finsler in 1918 and was developed by

remarkable mathematicians, as L. Berwald, E. Cartan, H. Busemann, H. Rund, S.S. Chern,
M. Matsumoto [4,6,14,19,24] and many others.

This notion is a generalization of a Riemann space, which gives an important geomet-
rical framework in Theoretical Physics. Therefore, the Finsler spaces are basically in the
geometrical theory of physical fields [8,10,20,28,29].

In the last 40 years, some remarkable books on Finsler geometry and its applications
were published by H. Rund, M. Matsumoto, R. Miron and M. Anastasiei, A. Bejancu,
Abate-Patrizio, D. Bao, S.S. Chern and Z. Shen, P. Antonelli, R. Ingarden and M. Mat-
sumoto, R. Miron, D. Hrimiuc, H. Shimada and S. Sabău, G.S. Asanov, M. Crampin,
P.L. Antonelli, S. Vacaru and S. Ikeda.

In the present section, we study the Finsler spaces, considered as Lagrange spaces and
applying the mechanical principles. This method simplifies the theory of Finsler spaces. We
will study: Finsler metric, Cartan nonlinear connection derived from the canonical spray,
Cartan metrical connection and its structure equations. Some examples: Randers spaces,
Kropina spaces and some new classes of spaces more general than Finsler spaces: almost
Finsler Lagrange spaces and Ingarden spaces.

3.1. Finsler metrics

DEFINITION 3.1.1. A Finsler spaceis a pairFn = (M,F(x, y)), whereM is a real
n-dimensional differentiable manifold andF :TM → R is a scalar function which sat-
isfies the following axioms:

(1) F is a differentiable function oñTM and continuous on the null section of the
bundleπ :TM→M .

(2) F is a positive function.
(3) F is positive 1-homogeneous with respect to the variablesyi .
(4) The Hessian ofF 2, having the components

gij (x, y)= 1

2

∂F 2

∂yi∂yj
, (3.1.1)

is positive definite on the manifold̃TM .
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Of course, the axiom (4) is equivalent to the following:
(4′) The pair(M,F 2(x, y))= LnF is a Lagrange space with positive definite fundamen-

tal tensorgij . LnF is called the Lagrange space associated to the Finsler spaceFn.
It follows that all properties of the Finsler spaceFn derived from the fundamen-
tal functionF 2 and the fundamental tensorgij are the properties of the associated
Lagrange spaceLnF .

REMARKS.
(1) Sometimes we ask forgij to be of constant signature and rank(gij (x, y)) = n on

T̃ M .
(2) Any Finsler spaceFn is a Lagrange spaceLnF , but the converse does not hold.

EXAMPLES.
(1) A Riemannian manifold(M,γij (x)) determines a Finsler spaceFn = (M,F(x, y)),

where

F(x, y)=
√
γij (x)yiyj . (3.1.2)

The fundamental tensor isgij (x, y)= γij (x).
(2) Let consider in a preferential local system of coordinates, the following function:

F(x, y)= 4
√(
y1
)4 + · · · + (yn)4. (3.1.3)

ThenF satisfies the axioms (1)–(4). This example is due to B. Riemann.
(3) Antonelli–Shimada’s ecological metric is given, in a preferential local system of

coordinates oñTM , by

F(x, y)= eφL, φ = αixi (αi are positive constants),

where

L= {(y1)m + (y2)m + · · · + (yn)m}1/m
, m� 3, (3.1.4)

with m an even integer.
(4) Randers metric is defined by

F(x, y)= α(x, y)+ β(x, y), (3.1.5)

whereα2(x, y) := aij (x)yiyj , (M,aij (x)) is a Riemannian manifold andβ(x, y) :=
bi(x)y

i .

The fundamental tensorgij is expressed by

gij = α + β
α

hij + didj , hij := aij−
0
li

0
lj ,
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di = bi+
0
li ,

0
li := ∂α

∂yi
. (3.1.5′)

One can prove thatgij is positive definite under the conditionb2 = aij bibj < 1. In this
case, the pairFn = (M,α + β) is a Finsler space.

The first example motivates the following theorems.

THEOREM 3.1.1. If the base manifoldM is paracompact, then there exist functions
F :TM→R such that the pair(M,F) is a Finsler spaces.

THEOREM 3.1.2. The system of axioms of a Finsler space is minimal.

We state some properties of a Finsler spaceFn:
(1) The components of the fundamental tensorgij (x, y) are 0-homogeneous with re-

spect toyi .
(2) The components of the 1-form

pi = 1

2

∂F 2

∂yi
(3.1.6)

are 1-homogeneous with respect toyi .
(3) The components of the Cartan tensor

Cijk = 1

4

∂3F 2

∂yi∂yj ∂yk
= 1

2

∂gij

∂yk
(3.1.7)

are 1-homogeneous with respect toyi . Consequently we have

Coij = ysCsij = 0. (3.1.8)

If Xi and Y i are d-vector fields, then‖X‖2 := gij (x, y)X
iXj and 〈X,Y 〉 :=

gij (x, y)X
iY j are scalar fields.

Assuming‖X‖u �= 0, ‖Y‖u �= 0, the angleϕ = � (X,Y ) at a pointu ∈ T̃ M is given by

cosϕ = 〈X,Y 〉(u)
‖X‖u · ‖Y‖u .

The vectorsXu,Yu are orthogonal if〈X,Y 〉(u)= 0.

PROPOSITION3.1.1. On a Finsler spaceFn, the following identities hold:
(1) F 2(x, y)= gij (x, y)yiyj .
(2) piyi = F 2.
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PROPOSITION3.1.2.
(1) The1-form

ω= pi dxi (3.1.9)

is globally defined oñTM .
(2) The2-form

θ = dω= dpi ∧ dxi (3.1.10)

is globally defined oñTM .
(3) θ is a symplectic structure oñTM .

DEFINITION 3.1.2. A Finsler spaceFn = (M,F) is calledreducibleto a Riemann space
if its fundamental tensorgij (x, y) does not depend on the variablesyi .

PROPOSITION3.1.3. A Finsler spaceFn is reducible to a Riemann space if and only if
the tensorCijk vanishes identically oñTM .

3.2. Geodesics

On a Finsler spaceFn = (M,F(x, y)), one defines the notion of arclength of a smooth
curve. Letc be a parametrized curve on the manifoldM

c : t ∈ [0,1]→ (
xi(t)

) ∈U ⊂M, (3.2.1)

U being a domain of a local chart onM .
The extensioñc of c to T̃ M has the equations

xi = xi(t), yi = dxi

dt
(t), t ∈ [0,1]. (3.2.1′)

Thus the restriction of the fundamental functionF(x, y) to c̃ is F(x(t), dx
dt
(t)), t ∈ [0,1].

We define thelengthof the curvec with extremitiesc(0), c(1) by the number

�(c)=
∫ 1

0
F

(
x(t),

dx

dt
(t)

)
dt. (3.2.2)

The number�(c) does not depend on the local coordinates oñTM and, by means of
the 1-homogeneity of function theF , �(c) does not depend on the parametrization of the
curvec, �(c) depends only on the curvec.

We can chose a canonical parameter onc, considering the following functions = s(t),

t ∈ [0,1],

s(t)=
∫ t

t0

F

(
x(τ),

dx

dt
(τ )

)
dτ.
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This function is derivable and its derivative is

ds

dt
= F

(
x(t),

dx

dt
(t)

)
> 0, t ∈ (0,1).

So the functions = s(t), t ∈ [0,1], is inversible. Lett = t (s), s ∈ [s0, s1] be its inverse.
The change of parametert→ s has the property

F

(
x(s),

dx

ds
(s)

)
= 1. (3.2.3)

Variational problem on the functional� gives the curves oñTM which extremize the
arclength. These curves are the geodesics of the Finsler spaceFn. Thus, they are the solu-
tions of the Euler–Lagrange equations:

∂F

∂xi
− d

dt

(
∂F

∂yi

)
= 0, yi = dxi

dt
. (3.2.4)

The system of differential equations (3.2.4) is equivalent to the following system:

∂F 2

∂xi
− d

dt

∂F 2

∂yi
=−2

dF

dt

∂F

∂yi
, yi = dxi

dt
.

THEOREM 3.2.1. The geodesics parametrized by arclength of the Finsler spaceFn are
the solutions of the system of differential equations

Ei
(
F 2) := ∂F 2

∂xi
− d

ds

∂F 2

∂yi
= 0, yi = dxi

ds
. (3.2.5)

Now, remarking thatF 2 = gij yiyj , the previous equations can be written in the form:

d2xi

ds2
+ γ ijk

(
x,
dx

ds

)
dxj

ds

dxk

ds
= 0, yi = dxi

ds
, (3.2.6)

whereγ ijk are the Christoffel symbols of the fundamental tensorgij :

γ ijk =
1

2
gir
(
∂grk

∂xj
+ ∂gjr

∂xk
− ∂gjk

∂xr

)
. (3.2.7)

A theorem of existence and uniqueness of the solutions of the differential equa-
tions (3.2.6) holds.
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3.3. Cartan nonlinear connection

Considering the Lagrange spaceLnF = (M,F 2) associated to the Finsler spaceFn =
(M,F), we can obtain some main geometrical object field ofFn.

Theorem 2.3.1 affirms:

THEOREM 3.3.1. On a Finsler spaceFn, the equations

gijEj
(
F 2) := gij(∂F 2

∂xj
− d

dt

∂F 2

∂yj

)
= 0, yi = dxi

dt
,

can be written in the form

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0, yi = dxi

dt
, (3.3.1)

where

2Gi(x, y)= γ ijk(x, y)yj yk. (3.3.1′)

Consequently Eqs. (3.3.1) give the integral curves of the semispray

S = yi ∂
∂xi

− 2Gi(x, y)
∂

∂yi
. (3.3.2)

SinceGi are 2-homogeneous functions with respect toyi , it follows thatS is aspray.
S determines a canonical nonlinear connectionN with the coefficients

Ni
j =

∂Gi

∂yj
= 1

2

∂

∂yj

{
γ irs(x, y)y

rys
}
. (3.3.3)

N is called the Cartan nonlinear connection of the spaceFn.
The tangent bundleT (TM), the horizontal distributionN and the vertical distribution

V give the direct decomposition of vector spaces

Tu(T̃ M)=N(u)⊕ V (u), ∀u ∈ T̃ M. (3.3.4)

An adapted basis toN andV is ( δ
δxi
, ∂
∂yi
) and its dual adapted basis is(dx, δyi), where


δ
δxi

= ∂
∂xi

−Nj
i (x, y)

∂
∂yj
,

δyi = dyi +Ni
j (x, y) dx

j .
(3.3.4′)
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THEOREM 3.3.2.
(1) The horizontal curves inFn are given by

xi = xi(t), δyi

dt
= 0.

(2) The autoparallel curves of the Cartan nonlinear connectionN coincide with the
integral curves of the sprayS, defined by(3.3.2).

3.4. Cartan metrical connection

LetN(Ni
j ) be the Cartan nonlinear connection of the Finsler spaceFn. According to Sec-

tion 2.5, one introduces the canonical metricalN -linear connection of the spaceFn.
For Finsler spaces, the system of axioms from Theorem 2.5.1, can be written in the

Matsumoto’s form [14,20].

THEOREM 3.4.1.
(1) For any Finsler spaceFn = (M,F), there exists a unique linear connectionD on

the manifoldT̃ M , with the coefficientsCΓ = (Ni
j ,F

i
jk,C

i
jk), which satisfies the

following axioms:
(A1) The deflection tensor fieldDi

j = yi|j vanishes;
(A2) gij |k = 0 (D is h-metrical);
(A3) gij |k = 0 (D is v-metrical);
(A4) T

i
jk = 0 (D is h-torsion free);

(A5) S
i
jk = 0 (D is v-torsion free).

(2) The coefficients(Ni
j ,F

i
jk,C

i
jk) are as follows:

(a) Ni
j are the coefficients of the Cartan nonlinear connection;

(b) F ijk,C
i
jk are expressed by the generalized Christoffel symbols:

F ijk =
1

2
gis
(
δgsk

δxj
+ δgjs

δxk
− δgjk

δxs

)
,

Cijk =
1

2
gis
(
∂gsk

∂yj
+ ∂gjs

∂yk
− ∂gjk

∂ys

)
. (3.4.1)

(3) This connection depends only on the fundamental functionF .

The proof can be found in the books [19,20].
The previous connection is called the Cartan metrical connection of the Finsler space

Fn.
Now we can develop the geometry of Finsler spaces, exactly as the geometry of the

associated Lagrange spacesLnF = (M,F 2).
Also, in the case of Finsler spaces, the geometrical modelH 2n = (T̃ M,G,F) is an

almost Kählerian space.
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A very interesting example is given by the Randers spaces, introduced by R.S. Ingarden.
A Randers space is a Finsler spaceFn = (M,α + β) equipped with a Cartan nonlinear

connectionN and denoted byRFn = (M,α + β,N).
The geometry of these spaces are very intensively studied by many geometers. We refer

to the monograph of D. Bao, S.S. Chern and Z. Shen [6].
The Randers spacesRFn can be generalized considering the Finsler spacesFn =

(M,α + β), whereα(x, y) is the fundamental function of a Finsler spaceF ′n = (M,α).
The Finsler spaceFn = (M,α + β) equipped with the Cartan nonlinear connectionN of
the spaceF ′n = (M,α) is a generalized Randers space [19,20]. Obviously, this notion has
some advantages, since we can consider some remarkable Finsler spacesF ′n.

As an application of the previous notions, we define the notion of Ingarden spaceIFn

[3,1]. This is the Finsler spaceFn = (M,α + β) equipped with the nonlinear connection
N = γ ijk(x)y

k − F ij (x), γ
i
jk(x) being the Christoffel symbols of the Riemannian metric

aij (x), which definesα2 = aij (x)yiyj and the electromagnetic tensorF ij (x) determined by

β = bi(x)yi . While the spacesRFn have not the electromagnetic fieldF = 1
2(Dij −Dji),

the Ingarden spaces have such tensor fields and they give the well-known Maxwell equa-
tions [19]. Also, the autoparallel curves of the nonlinear connectionN are given by the
known Lorentz equations.

An example of a special Lagrange space derived from a Finsler one [19] is the following.
Let consider the Lagrange spaceLn = (M,L(x, y)), with the fundamental function

L(x, y)= F 2(x, y)+ β,
whereF is the fundamental function of a priori given Finsler spaceFn = (M,F) and
β = bi(x)yi .

These spaces are calledalmost Finsler Lagrange spaces(shortly AFL-spaces) [19,20].
They generalize the Lagrange space from Electrodynamics.

Indeed, the Euler–Lagrange equations of AFL-spaces are exactly the Lorentz equations

d2xi

dt2
+ γ ijk(x, y)

dxj

dt

dxk

dt
= 1

2
F ij (x)

dxj

dt
.

As a conclusion of these three sections, we remark that the class of Riemann spaces{Rn}
is a subclass of the class of Finsler spaces{Fn}, the class{Fn} is a subclass of the
class of Lagrange spaces{Ln} and this is a subclass of the class of generalized Lagrange
spaces{GLn}. So, we have the following sequence of inclusions:

(I) {Rn} ⊂ {Fn} ⊂ {Ln} ⊂ {GLn}.
Therefore, we can say that the Lagrange geometry is the geometric study of the terms of

the sequence of inclusions (I).

4. The geometry ofT (k)M

The importance of Lagrange geometries consists by the fact that the variational problems
for Lagrangians have several applications to various fields, as: Mathematics, Physics, The-
ory of Dynamical Systems, Optimal Control, Biology, Economy, etc.
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All the above mentioned applications have imposed also the introduction of the notion
of higher-order Lagrange spaces. The base manifold of such space is the bundle of accel-
erations of higher order. The methods used in the construction of the geometry of higher-
order Lagrange spaces are the natural extensions of those used in the theory of Lagrangian
geometries exposed in Sections 1–3.

The concept of higher-order Lagrange space was introduced by the present au-
thor [16,17]. The problems raised by the geometrization of Lagrangians of orderk > 1 have
been investigated by many mathematicians: Ch. Ehresmann, P. Libermann, J. Pommaret,
J.T. Synge, M. Crampin, P. Saunders, G.S. Asanov, D. Krupka, M. de Léon, H. Rund,
W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D. Grigore, R. Miron et al. [12,9,16,
31].

In this section we present, briefly, the following problems:
(1) The geometry of total space of the bundle of higher-order accelerations.
(2) The definition of higher-order Lagrange space, based on nondegenerate Lagrangians

of orderk � 1.
(3) The problem of prolongation of Riemannian structures given on the base manifold

M to Riemannian structures on the total space of the bundle of accelerations of order
k � 1; we prove the existence of Lagrange spaces of orderk � 1.

(4) The elaboration of the geometrical ground for variational calculus involving La-
grangians which depend on higher-order accelerations.

(5) The introduction of the notion of higher-order energies and proof of the conservation
law.

(6) The notions ofk-semispray, nonlinear connection, the canonical metrical connection
and the structure equations.

(7) The Riemannian(k − 1)n-almost contact model of the Lagrange space of orderk.
For more information, we refer to the books [19,20,22].

4.1. The bundle of acceleration of orderk � 1

In Analytical Mechanics a realn-dimensional differentiable manifoldM is considered as
the space of configurations of a physical system. A point(xi) ∈M is called a configu-
ration. A mappingc : t ∈ I → (xi(t)) ∈ U ⊂M is a law of moving (evolution),t is the

time, a pair(t, x) is an event and thek-tuple( dx
i

dt
, . . . , 1

k!
dkxi

dtk
) gives the velocity and gen-

eralized accelerations of order 1, . . . , k − 1. The factors1
h! (h = 1, . . . , k) are introduced

here for the simplicity of calculus. In this section, we omit the word “generalized” and call
1
h!
dhxi

dth
shortly, the acceleration of orderh. A law of movingc : t ∈ I → c(t) ∈ U is called

a parametrized curve by timet .
In order to obtain the differentiable bundle of accelerations of orderk, we use the ac-

celerations of orderk, by means of the geometrical concept of contact of orderk for two
curves on the manifoldM .
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Two curvesρ,σ : I →M in M have at the pointx0 ∈M , ρ(0)= σ(0)= x0 ∈U (U is a
domain of a local chart onM) have acontactof orderk if we have

dα(f ◦ ρ)(t)
dtα

∣∣∣∣
t=0

= dα(f ◦ σ)(t)
dtα

∣∣∣∣
t=0

(α = 1, . . . , n). (4.1.1)

It follows that: the curvesρ andσ have at the pointx0 = ρ(0)= σ(0) a contact of order
k if and only if the accelerations of order 1,2, . . . , k on the curveρ at x0 have the same
values as the corresponding accelerations on the curveσ at the pointx0.

The relation “to have a contact of orderk” is an equivalence. Let[ρ]x0 be a class of
equivalence andT kx0

M the set of equivalence classes. Consider the set

T kM =
⋃
x0∈M

T kx0
M, (4.1.2)

πk : [ρ]x0 ∈ T kM→ x0 ∈M, ∀[ρ]x0. (4.1.2′)

Thus the triple(T kM,πk,M) can be endowed with a natural differentiable structure,
exactly as in the casesk = 1, when(T 1M,π1,M) is the tangent bundle.

If U ⊂ M is a coordinate neighborhood on the manifoldM , x0 ∈ U and the curve
ρ : I →U , ρ0 = x0 is analytical onU , given by the equationsxi = xi(t), t ∈ I , thenT kx0

M

can be represented by

xi0 = xi(0), y
(1)i
0 = dxi

dt
(0), . . . , y

(k)i
0 = 1

k!
dkxi

dtk
(0). (4.1.3)

Setting

φ :
([ρ]x0

) ∈ T kM→ φ
([ρ]x0

)= (xi0, y(1)i0 , . . . , y
(k)i
0

) ∈R(k+1)n, (4.1.4)

it follows that the pair((πk)−1(U),φ) is a local chart onT kM induced by the local chart
(U,ϕ) on the manifoldM .

So a differentiable atlas of the manifoldM determines a differentiable atlas onT kM and
the triple(T kM,πk,M) is a differentiable bundle. Of course the mappingπk :T kM→M

is a submersion.
(T kM,πk,M) is called thek-accelerations bundle or tangent bundle of orderk or

k-osculator bundle [16]. A change of local coordinates(xi, y(1)i , . . . , y(k)i)→ (x̃i , ỹ(1)i ,

. . . , ỹ(k)i) on the manifoldT kM , according to (4.1.3), is given by

x̃i = x̃i (x1, . . . , xn), rank
(
∂x̃i

∂xj

)= n,
ỹ(1)i = ∂x̃i

∂xj
y(1)j ,

2ỹ(2)i = ∂ỹ(1)i

∂xj
y(1)j + 2∂ỹ

(1)i

∂y(1)j
y(2)j ,

...

kỹ(k)i = ∂ỹ(k−1)i

∂xj
y(1)j + 2∂ỹ

(k−1)i

∂y(1)j
y(2)j + · · · + k ∂ỹ(k−1)i

∂y(k−1)j y
(k)j .

(4.1.5)
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We have the following identities:

∂ỹ(α)i

∂xj
= ∂ỹ(α+1)i

∂y(1)j
= · · · = ∂ỹ(k)i

∂y(k−α)j
(
α = 0, . . . , k− 1, y(0) = x). (4.1.5′)

We denote a pointu ∈ T kM by u= (x, y(1), . . . , y(k)) and its coordinates by(xi, y(1)i ,
. . . , y(k)i).

A section of the bundle(T kM,πk,M) is a mappingS :M→ T kM satisfyingπk ◦ S =
1M . A local sectionS has the propertyπk ◦ S|U = 1U .

If c : I →M is a smooth curve, locally represented byxi = xi(t), t ∈ I , then the map-
ping c̃ : I → T kM given by

xi = xi(t), y(1)i = 1

1!
dxi

dt
(t), . . . , y(k)i = 1

k!
d(k)xi

dtk
(t), t ∈ I, (4.1.6)

is the extension of orderk to T kM of c. We haveπk ◦ c̃= c.
If the differentiable manifoldM is paracompact, thenT kM is a paracompact manifold.
We shall use the manifold̃TM = T kM \ {0}, where 0 is the null section ofπk .

4.2. Liouville vector fields

The natural basis at a pointu ∈ T kM of Tu(T kM) is given by(
∂

∂xi
,

∂

∂y(1)i
, . . . ,

∂

∂y(k)i

)
u

.

A change of local coordinates changing (4.1.5) transforms the natural basis by the follow-
ing rule:

∂

∂xi
= ∂x̃j

∂xi

∂

∂x̃j
+ ∂ỹ(1)j

∂xi

∂

∂ỹ(1)j
+ · · · + ∂ỹ(k)j

∂xi

∂

∂ỹ(k)j
,

∂

∂y(1)i
= ∂ỹ(1)j

∂y(1)i

∂

∂ỹ(1)j
+ · · · + ∂ỹ(k)j

∂y(1)i

∂

∂ỹ(k)j
,

...

∂

∂y(k)i
= ∂ỹ(k)j

∂y(k)i

∂

∂ỹ(k)j
, (4.2.1)

at the pointu ∈ T kM .
The natural cobasis(dxi, dy(1)i , . . . , dy(k)i)u is transformed by (4.1.5) as follows:

dx̃i = ∂x̃i

∂xj
dxj ,
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dỹ(1)i = ∂ỹ(1)i

∂xj
dxj + ∂ỹ(1)i

∂y(1)j
dy(1)j ,

...

dỹ(k)i = ∂ỹ(k)i

∂xj
dxj + ∂ỹ(k)i

∂y(1)j
dy(1)j + · · · + ∂ỹ(k)i

∂y(k)j
dy(k)j . (4.2.1′)

The formulae (4.2.1) and (4.2.1′) allow to determine some important geometric object
fields on the total space of accelerations bundleT kM .

The vertical distributionV1 is locally generated by the vector fields{ ∂

∂y(1)i
, . . . , ∂

∂y(k)i
},

i = 1, . . . , n. V1 is integrable and of dimensionkn. The distributionV2 locally generated
by { ∂

∂y(2)i
, . . . , ∂

∂y(k)i
} is also integrable, of dimension(k − 1)n and it is a subdistribution

of V1. This procedure may be continued.
The distributionVk locally generated by{ ∂

∂y(k)i
} is integrable and of dimensionn. It is a

subdistribution of the distributionVk−1. We have the following sequence:

V1 ⊃ V2 ⊃ · · · ⊃ Vk.

Using again (4.2.1), we deduce:

THEOREM 4.2.1. The following operators in the algebra of functionsF(T kM):

1
Γ= y(1)i ∂

∂y(k)i
,

2
Γ= y(1)i ∂

∂y(k−1)i
+ 2y(2)i

∂

∂y(k)i
,

...

k

Γ= y(1)i ∂

∂y(1)i
+ 2y(2)i

∂

∂y(2)i
+ · · · + ky(k)i ∂

∂y(k)i
(4.2.2)

are vector fields onT kM . They are independent on the manifold̃T kM and
1
Γ⊂ Vk ,

2
Γ⊂

Vk−1, . . . ,
k

Γ⊂ V1.

The vector fields
1
Γ ,

2
Γ , . . . ,

k

Γ are called theLiouville vector fields.

THEOREM 4.2.2. For any functionL ∈F(T̃ kM), the following entries are1-forms on the

manifoldT̃ kM :

d0L= ∂L

∂y(k)i
dxi,
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d1L= ∂L

∂y(k−1)i
dxi + ∂L

∂y(k)i
dy(1)i ,

...

dkL= ∂L

∂xi
dxi + ∂L

∂y(1)i
dy(1)i + · · · + ∂L

∂y(k)i
dy(k)i . (4.2.3)

Clearly,dkL= dL.
In applications, we also use the nonlinear operator

Γ = y(1)i ∂
∂xi

+ 2y(2)i
∂

∂y(1)i
+ · · · + ky(k)i ∂

∂y(k−1)i
. (4.2.4)

It is not a vector field oñT kM .

DEFINITION 4.2.1. A k-tangent structureJ on T kM is an F(T kM)-linear mapping
J :X (T kM)→X (T kM):

J

(
∂

∂xi

)
= ∂

∂y(1)i
, J

(
∂

∂y(1)i

)
= ∂

∂y(2)i
, . . . ,

J

(
∂

∂y(k−1)i

)
= ∂

∂y(k)i
, J

(
∂

∂y(k)i

)
= 0. (4.2.5)

It is not difficult to see thatJ has the properties:
(1) J is globally defined onT kM ,
(2) J is an integrable structure,
(3) J is locally expressed by

J = ∂

∂y(1)i
⊗ dxi + ∂

∂y(2)i
⊗ dy(1)i + · · · + ∂

∂y(k)i
⊗ dy(k−1)i , (4.2.6)

(4) ImJ = KerJ , KerJ = Vk ,
(5) rankJ = kn,

(6) J
k

Γ=k−1
Γ , . . . , J

2
Γ= 1

Γ , J
1
Γ= 0,

(7) J ◦ J ◦ · · · ◦ J = 0 (k+ 1 factors).
In the next subsection, we shall use the functions

I1(L)= L 1
Γ
L, . . . , I k(L)= L k

Γ
L, ∀L ∈F

(
T kM

)
, (4.2.6)

whereL α
Γ

is the operator of Lie derivation with respect to the Liouville vector field
α

Γ .

The functionsI1(L), . . . , I k(L) are called themain invariantsof the functionL. They
play an important role in the variational calculus.



488 R. Miron

4.3. Variational problem

DEFINITION 4.3.1. A differentiable Lagrangian of orderk is a mappingL : (x, y(1), . . . ,

y(k)) ∈ T kM → L(x, y(1), y(k)) ∈ R, differentiable onT̃ kM and continuous on the null

section 0 :M→ T̃ kM of the bundle(T kM,πk,M).

If c : t ∈ [0,1] → (xi(t)) ∈ U ⊂ M is a curve, with extremitiesc(0) = (xi(0)) and

c(1)= (xi(1)) andc̃ : [0,1]→ T̃ kM is its extension, then the integral of action ofL ◦ c̃ is
defined by

I (c)=
∫ 1

0
L

(
x(t),

dx

dt
(t), . . . ,

1

k!
dkx

dtk
(t)

)
dt. (4.3.1)

REMARK. One proves [16] that ifI (c) does not depend on the parametrization of the
curvec, then the following Zermelo conditions hold:

I1(L)= · · · = I k−1(L)= 0, I k(L)= L. (4.3.2)

Generally, these conditions are not satisfied.
The variational problem involving the functionalI (c) from (4.3.1) will be studied as a

natural extension of the theory exposed in Section 2.2.
On the open setU , we consider the curves

cε : t ∈ [0,1]→ (
xi(t)+ εV i(t)) ∈M, (4.3.3)

whereε is a real number, sufficiently small in absolute value such that Imcε ⊂U , V i(t)=
V i(x(t)) being a regular vector field onU , restricted toc. We assume all curvescε have the
same end pointsc(0) andc(1) and their osculating spaces of order 1,2, . . . , k−1 coincide
at the pointsc(0), c(1). This means:

V i(0)= V i(1)= 0,

dαV i

dtα
(0)= dαV i

dtα
(1)= 0 (α = 1, . . . , k − 1). (4.3.3′)

The integral of actionI (cε) of the LagrangianL is:

I (cε)=
∫ 1

0
L

(
x + εV, dx

dt
+ ε dV

dt
, . . . ,

1

k!
(
dkx

dtk
+ ε d

kV

dtk

))
dt. (4.3.4)

A necessary condition forI (c) to be an extremal value forI (cε) is

dI (cε)

dε

∣∣∣∣
ε=0

= 0. (4.3.5)
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Thus, we have

dI (cε)

dε
=
∫ 1

0

d

dε
L

(
x + εV, dx

dt
+ ε dV

dt
, . . . ,

1

k!
(
dkx

dtk
+ ε d

kV

dtk

))
dt.

The Taylor expansion ofL at ε = 0, gives

dI (cε)

dε

∣∣∣∣
ε=0

=
∫ 1

0

(
∂L

∂xi
V i + ∂L

∂y(1)i

dV i

dt
+ · · · + 1

k!
∂L

∂y(k)i

dkV i

dtk

)
dt. (4.3.7)

Now, using the notations

◦
Ei(L) := ∂L

∂xi
− d

dt

∂L

∂y(1)i
+ · · · + (−1)k

1

k!
dk

dtk

∂L

∂y(k)i
(4.3.8)

and

I1
V L= V i ∂L

∂y(k)i
, I2

V (L)= V i
∂L

∂y(k−1)i
+ dV i

dt

∂L

∂y(k)i
, . . . ,

I kV = V i ∂L

∂y(1)i
+ dV i

dt

∂L

∂y(2)i
+ · · · + 1

(k − 1)!
dk−1V v

dtk−1

∂L

∂y(k)i
, (4.3.9)

we obtain the identity

∂L

∂xi
V i + ∂L

∂y(1)i

dV i

dt
+ · · · + 1

k!
∂L

∂y(k)i

dkV i

dtk

= ◦
Ei(L)+ d

dt

{
I kV (L)−

1

2!
d

dt
I k−1
V (L)+ · · · + (−1)k−1 1

k!
dk−1

dtk−1
I1
V (L)

}
.

(4.3.10)

Applying (4.3.7) and taking account of (4.3.10) and (4.3.3′), with

IαV (L)
(
c(0)

)= IαV (L)c(1)= 0 (α = 1,2, . . . , k),

we get

dI (cε)

dε

∣∣∣∣
ε=0

=
∫ 1

0

0
Ei(L)V

i dt. (4.3.11)

SinceV i(t) is an arbitrary vector field, Eqs. (4.3.5) and (4.3.11) lead to the following
result.
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THEOREM 4.3.1. In order that the integral of actionI (c) to be an extremal value for
the functionalsI (cε), given by(4.3.4), is necessary that the following Euler–Lagrange
equations hold:

0
Ei(L) := ∂L

∂xi
− d

dt
∂L

∂y(1)i
+ · · · + (−1)k 1

k!
dk

dtk
∂L

∂y(k)
= 0,

y(1)i = dxi

dt
, . . . , y(k)i = 1

k!
dkxi

dtk
.

(4.3.12)

One proves [16] that
0
Ei(L) is a covector field. Consequently the equation

0
Ei(L) = 0

has a geometrical meaning.
Consider the scalar field

Ek(L)= I k(L)− 1

2!
d

dt
I k−1(L)+ · · · + (−1)k−1 1

k!
dk−1

dtk−1
I1(L)−L. (4.3.13)

It is called theenergy of orderk of the LagrangianL.

THEOREM 4.3.2 [16]. For any LagrangianL(x, y(1), . . . , y(k)), the energy of orderk,

Ek(L), is conserved along every solution of the Euler–Lagrange equations
0
Ei(L) = 0,

y(1)i = dxi

dt
, . . . , y(k)i = 1

k!
dkxi

dtk
.

REMARK. Introducing the notion of energy of order 1,2, . . . , k−1, we can prove a Nöther
theorem for the Lagrangians of orderk.

Now we remark that for anyC∞-function φ(t) and any differentiable Lagrangian
L(x, y(1), . . . , y(k)), the following equality holds:

0
Ei(φL)= φ

0
Ei(L)+ dφ

dt

1
Ei(L)+ · · · + dkφ

dtk

k

Ei(L), (4.3.14)

where
1
Ei(L), . . . ,

k

Ei(L) are d-covector fields (called Graig–Synge covectors [16]). We
consider the covector

k−1
Ei (L)= (−1)k−1 1

(k − 1)!
(

∂L

∂y(k−1)i
− d

dt

∂L

∂y(k)i

)
. (4.3.15)

It is important in the theory ofk-semisprays on Lagrange spaces of orderk.
The Hamilton–Jacobi equations of a spaceLn = (M,L(x, y)) introduced in Section 2.4

can be extended to higher-order Lagrange spaces by using the Jacobi–Ostrogradski mo-

menta. Indeed, the energy of orderk, Ek(L), is a polynomial function indx
i

dt
, . . . , d

kxi

dtk
,

given by

Ek(L)= p(1)i dx
i

dt
+ p(2)i d

2xi

dt2
+ · · · + p(k)i d

kxi

dtk
−L, (4.3.16)
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where

p(1)i = ∂L

∂y(1)i
− 1

2!
d

dt

∂L

∂y(2)i
+ · · · + (−1)k−1 1

k!
dk−1

dtk−1

∂L

∂y(k)i
,

p(2)i = 1

2!
∂L

∂y(2)i
− 1

3!
d

dt

∂L

∂y(3)i
+ · · · + (−1)k−2 1

k!
dk−2

dtk−2

∂L

∂y(k)i
,

...

p(k)i = 1

k!
∂L

∂y(k)i
. (4.3.17)

p(1)i , . . . , p(k)i are calledthe Jacobi–Ostrogradski momenta.
The following important result has been established by M. de Léon and others [16].

THEOREM 4.3.3. Along the integral curves of the Euler–Lagrange equations
0
Ei(L)= 0,

the following Hamilton–Jacobi–Ostrogradski equations hold:

∂Ek(L)
∂p(α)i

= dαxi

dtα
(α = 1, . . . , k),

∂Ek(L)
∂xi

=−dp(1)i
dt

,

1

α!
∂Ek(L)
∂y(α)i

=−dp(α+1)i

dt
(α = 1, . . . , k − 1).

REMARK. The Jacobi–Ostrogradski momenta determine the 1-forms:

p(1) = p(1)i dxi + p(2)i dy(1)i + · · · + p(k)i dy(k−1)i ,

p(2) = p(2)i dxi + p(3)i dy(1)i + · · · + p(k)i dy(k−2)i ,

...

p(k) = p(k)i dxi .

4.4. Semisprays. Nonlinear connections

A vector fieldS ∈ χ(T kM) with the property

JS = k

Γ (4.4.1)

is called ak-semisprayonT kM . S is uniquely written in the form
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S = y(1)i ∂
∂xi

+ · · · + ky(k)i ∂

∂y(k−1)i
− (k + 1)Gi

(
x, y(1), . . . , y(k)

) ∂

∂y(k)i
,

(4.4.2)

or shortly,

S = Γ − (k + 1)Gi
∂

∂y(k)i
. (4.4.2′)

The set of functionsGi is the set of thecoefficientsof S. With respect to (4.1.5), Sec-
tion 4.1,Gi are transformed by

(k + 1)G̃i = (k + 1)Gj
∂x̃i

∂xj
− Γ ỹ(k)i . (4.4.3)

A curve c : I →M is called ak-path on M with respect toS if its extensionc̃ is an
integral curve ofS. A k-path is characterized by the(k + 1)-differential equation:

dk+1xi

dtk+1
+ (k + 1)Gi

(
x,
dx

dt
, . . . ,

1

k!
dkx

dtk

)
= 0. (4.4.4)

We shall show that ak-semispray determines the main geometrical object fields onT kM ,
as: the nonlinear connectionN , theN -linear connectionD and their structure equations.
The connectionsN andD are basic for the geometry of the manifoldT kM .

DEFINITION 4.4.1. A subbundleHT kM of the tangent bundle(T T kM,dπk , T kM) com-
plementary to the vertical subbundleV1T

kM :

T T kM =HT kM ⊕ V1T
kM (4.4.5)

is called anonlinear connection.

The fibres ofHT kM determine a horizontal distribution

N :u ∈ T kM→Nu =HuT kM ⊂ TuT kM, ∀u ∈ T kM,

complementary to the vertical distributionV1, i.e.,

TuT
kM =Nu ⊕ V1,u, ∀u ∈ T kM. (4.4.5′)

If the base manifoldM is paracompact, then there exist nonlinear connections onT kM .
The local dimension ofN is n= dimM .
Consider a nonlinear connectionN and denote byh andv the horizontal and vertical

projectors with respect toN andV1:

h+ v = I, hv = vh= 0, h2 = h, v2 = v.
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As usual we denote

XH = hX, XV = vX, ∀X ∈ χ(T kM).
A horizontal lift with respect toN is aF(M)-linear mappinglh :X (M)→ X (T kM)

which has the properties

v ◦ lh = 0, dπk ◦ lh = Id .

There exists a unique local basis adapted to the horizontal distributionN . It is given by

δ

δxi
= lh

(
∂

∂xi

)
(i = 1, . . . , n). (4.4.6)

The linearly independent vector fields of this basis can be uniquely written in the form:

δ

δxi
= ∂

∂xi
−Nj

i
(1)

∂

∂y(1)j
− · · · −Nj

i
(k)

∂

∂y(k)j
. (4.4.7)

The systems(Nj
i

(1)
, . . . ,N

j
i

(k)

) of differential functions onT kM gives thecoefficientsof the

nonlinear connectionN .
By means of (4.4.6), it follows that:

PROPOSITION4.4.1. With respect to a change of local coordinates on the manifoldT kM ,
we have

δ

δxi
= ∂x̃j

∂xi

δ

δx̃j
, (4.4.7′)

and

Ñ i
m

(1)

∂x̃m

∂xj
=Nm

j

(1)

∂x̃i

∂xm
− ∂ỹ(1)i

∂xj
,

...

Ñ i
m

(k)

∂x̃m

∂xj
=Nm

j

(k)

∂x̃i

∂xm
+ · · · +Nm

j

(1)

∂ỹ(k−1)i

∂xm
− ∂ỹ(k)i

∂xj
. (4.4.8)

REMARK. Equations (4.4.8) characterize a nonlinear connectionN with the coefficients
N
j
i

(1)
, . . . ,N

j
i

(k)

.

These considerations lead to an important result.
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THEOREM 4.4.1 (I. Buc̆ataru [16]). If S if a k-semispray onT kM , with the coefficients
Gi , then the following system of functions:

Ni
j

(1)

= ∂Gi

∂y(k)i
, Ni

j

(2)

= ∂Gi

∂y(k−1)i
, . . . , Ni

j

(k)

= ∂Gi

∂y(1)j
(4.4.9)

gives the coefficients of a nonlinear connectionN .

The k-tangent structureJ , defined by (4.2.5), transforms the horizontal distribution
N0 = N into a vertical distributionN1 ⊂ V1 of dimensionn, complementary to the dis-
tributionV2. Then it transforms the distributionN1 into the distributionN2 ⊂ V2, comple-
mentary to the distributionV3, and so on. Of course we have dimN0 = dimN1 = · · · =
dimNk−1 = n.

Therefore we can write:

N1 = J (N0), N2 = J (N1), . . . , Nk−1 = J (Nk−2), (4.4.10)

and we obtain the direct decomposition:

TuT
kM =N0,u ⊕N1,u ⊕ · · · ⊕Nk−1,u ⊕ Vk,u, ∀u ∈ T kM. (4.4.11)

An adapted basis toN0, N1, . . . ,Nk−1, Vk is given by{
δ

δxi
,

δ

δy(1)i
, . . . ,

δ

δy(k−1)i
,

∂

∂y(k)i

}
(i = 1, . . . , n), (4.4.12)

where 
δ

δy(1)i
= ∂

∂y(1)i
−Nj

i
(1)

∂

∂y(2)i
− · · · − N

j
i

(k−1)

∂

∂y(k)i
,

...
δ

δy(k−1)i = ∂

∂y(k−1)i −Nj
i

(1)

∂

∂y(k)j
.

(4.4.13)

With respect to (4.1.4), we have

δ

δỹ(α)i
= ∂x̃j

∂xi

δ

δỹ(α)j

(
α = 0,1, . . . , k, y(0)i = xi, δ

δy(k)i
= ∂

∂y(k)i

)
.

(4.4.14)

Let h,v1, . . . , vk be the projectors determined by (4.4.11):

h+
k∑
1

vα = I, h2 = h, vαvα = vα, hvα = 0;

vαh= 0, vαvβ = vβvα = 0 (α �= β).
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If we denote

XH = hX, XVα = vαX, ∀X ∈X
(
T kM

)
, (4.4.15)

we have

X =XH +XV1 + · · · +XVk . (4.4.16)

With respect to the adapted basis (4.4.12), one has

XH =X(0)i δ
δxi

, XVα =X(α)i δ

δy(α)i
(α = 1, . . . , k).

THEOREM 4.4.2. The nonlinear connectionN is integrable if and only if[
XH,YH

]Vα = 0, ∀X,Y ∈ χ(T kM) (α = 1, . . . , k).

4.5. The dual coefficients of a nonlinear connection

Consider a nonlinear connectionN , with the coefficients(Ni
j

(1)

, . . . ,Ni
j

(k)

). The dual basis of

the adapted basis (4.4.12) has the form(
δxi, δy(1)i , . . . , δy(k)i

)
, (4.5.1)

where 

δxi = dxi,
δy(1)i = dy(1)i +Mi

j

(1)

dxj ,

...

δy(k)i = dy(k)i +Mi
j

(1)

dy(k−1)j + · · · + Mi
j

(k−1)

dy(1)j +Mi
j

(k)

dxj ,

(4.5.2)

and 
Mi
j

(1)

=Ni
j

(1)

, Mi
j

(2)

=Ni
j

(2)

+Nm
j

(1)

Mi
m

(1)
, . . . ,

Mi
j

(k)

=Ni
j

(k)

+ Nm
j

(k−1)

Mi
m

(1)
+· · · +Nm

j

(1)

Mi
m

(k−1)
.

(4.5.3)

The system of functions(Mi
j

(1)

, . . . ,Mi
j

(k)

) is called the system of dual coefficients of the

nonlinear connectionN . If the dual coefficients ofN are given, then we uniquely obtain
from (4.5.3) theprimal coefficients(Ni

j

(1)

, . . . ,Ni
j

(k)

, ) of N .



496 R. Miron

With respect to (4.1.4), the dual coefficients ofN are transformed by the rule

Mm
j

(1)

∂x̃i

∂xm
= M̃i

m
(1)

∂x̃m

∂xj
+ ∂ỹ(1)i

∂xj
,

...

Mm
j

(k)

∂x̃i

∂xm
= M̃i

m
(k)

∂x̃m

∂xj
+ M̃i

m
(k−1)

∂ỹ(1)m

∂xj
+ · · · + M̃i

m
(1)

∂ỹ(k−1)m

∂xj
+ ∂ỹ(k)i

∂xj
. (4.5.4)

These transformations of the dual coefficients characterize the nonlinear connectionN .

THEOREM 4.5.1 (R. Miron, Gh. Atanasiu [16]).For any k-semisprayS with the coeffi-
cientsGi , the functions

Mi
j

(1)

= ∂Gi

∂y(k)j
, Mi

j

(2)

= 1

2

(
SMi

j

(1)

+Mi
m

(1)
Mm
j

(1)

)
, . . . ,

Mi
j

(k)

= 1

k

(
S Mi

j

(k−1)

+Mi
m

(1)
Mm
j

(k−1)

)
(4.5.5)

are the dual coefficients of a nonlinear connection, which depends only on thek-semi-
sprayS.

As an application we can prove

THEOREM 4.5.2.

(I) With respect to an adapted basis(4.4.12),the Liouville vector fields
1
Γ , . . . ,

k

Γ can
be expressed by

1
Γ= z(1)i δ

δy(k)i
,

2
Γ= z(1)i δ

δy(k−1)i
+ 2z(2)i

δ

δy(k)i
,

...

k

Γ= z(1)i δ

δy(1)i
+ 2z(2)i

δ

δy(2)i
+ · · · + kz(k)i δ

δy(k)i
, (4.5.6)

where
z(1)i = y(1)i , 2z(2)i = 2y(2)i +Mi

m
(1)

y(1)m, . . . ,

kz(k)i = ky(k)i + (k − 1)Mi
m

(1)
y(k−1)m + · · · + Mi

m
(k−1)

y(1)m.
(4.5.7)
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(II) With respect to(4.1.4),we have

z̃(α)i = ∂x̃i

∂xj
z(α)j (α = 1, . . . , k). (4.5.7′)

This is the reason for which we callz(1)i , . . . , z(k)i the distinguished Liouville vector
fields(shortly,d-vector fields). These vectors are important in the geometry of the manifold
T kM .

A 1-form ω ∈X ∗(T kM) is uniquely written as

ω= ωH +ωV1 + · · · +ωVk ,

where

ωH = ω ◦ h, ωVα = ω ◦ vα (α = 1, . . . , k).

For any functionf ∈F(T kM), the 1-formdf is

df = (df )H + (df )V1 + · · · + (df )Vk .

With respect to an adapted cobasis, one has

(df )H = δf

δxi
dxi, (df )Vα = δf

δy(α)i
δy(α)i (α = 1, . . . , k). (4.5.8)

Let γ : I → T kM be a parametrized curve, locally expressed by

xi = xi(t), y(α)i = y(α)i(t) (t ∈ I ) (α = 1, . . . , k).

The tangent vector fielddγ
dt

is given by

dγ

dt
=
(
dγ

dt

)H
+
(
dγ

dt

)V1

+ · · · +
(
dγ

dt

)Vk
= dxi

dt

δ

δxi
+ δy(1)i

dt

δ

δy(1)i
+ · · · + δy(k)i

dt

δ

δy(k)i
.

The curveγ is called horizontal ifdγ
dt

= (
dγ
dt
)H . It is characterized by the system of

differential equations

xi = xi(t), δy(1)i

dt
= 0, . . . ,

δy(k)i

dt
= 0. (4.5.9)

A horizontal curveγ is called anautoparallelcurve of the nonlinear connection ifγ = c̃,
where˜̃c is the extension of a curvec : I →M .
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Theautoparallelcurves of the nonlinear connectionN are characterized by the system
of differential equations

δy(1)i

dt
= 0, . . . ,

δy(k)i

dt
= 0,

y(1)i = dxi

dt
, . . . , y(k)i = 1

k!
dkxi

dtk
. (4.5.9′)

4.6. Prolongation to the manifoldT kM of the Riemannian structures given on the base
manifoldM

Applying the previous theory of nonlinear connections on the total space of the accelera-
tions bundleT kM , we can solve the classical problem of the prolongation of a Riemann
(or pseudo-Riemann) structureg given on the base manifoldM . This problem was stated
by L. Bianchi and was studied by several remarkable mathematicians, as: E. Bompiani,
Ch. Ehresmann, A. Morimoto and S. Kobayashi. But the solution of this problem, as well
as the solution of the prolongation toT kM of the Finsler or Lagrange structures have been
recently given by R. Miron and Gh. Atanasiu [16]. We will expose it here with very few
proofs.

LetRn = (M,g) be a Riemann space,g being a Riemannian metric defined on the base
manifoldM , having the local coordinatesgij (x), x ∈U ⊂M . We extendgij to π−1(U)⊂
T kM , by setting(

gij ◦ πk
)
(u)= gij (x), ∀u ∈ π−1(U), πk(u)= x.

The functionsgij ◦ πk will be denoted bygij .
The problem of prolongation of the Riemannian structureg to T kM may be formulated

as follows.
Let g be a Riemannian structureg on the manifoldM . Find a Riemannian structureG

onT kM such thatG is determined only byg.
As usually, we denoted byγ ijk(x) the Christoffel symbols ofg.

THEOREM 4.6.1. There exist nonlinear connectionsN on the manifold̃T kM determined
only by the given Riemannian structureg(x). One of them has the following dual coeffi-
cients:

Mi
j

(1)

= γ ijm(x)y(1)m,

Mi
j

(2)

= 1

2

{
Γ Mi

j

(1)

+Mi
m

(1)
Mm
j

(1)

}
,

...
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Mi
j

(k)

= 1

k

{
Γ Mi

j

(k−1)

+Mi
m

(1)
Mm
j

(k−1)

}
, (4.6.1)

whereΓ is the operator defined by(4.2.4).

REMARK. Γ can be substituted with anyk-semisprayS, sinceMi
j

(1)

, . . . , Mi
j

(k−1)

do not de-

pend on the variablesyk .

One proves thatN is integrable if and only if the Riemann spaceRn = (M,g) is locally
flat.

Let consider the adapted cobasis(δxi, δy(1)i , . . . , δy(k)i) to the nonlinear connectionN
and to the vertical distributionsN

(1)
, . . . , N

(k−1)
, Vk . It depends on the dual coefficients (4.6.1),

so it depends only on the structureg(x).
Now, consider the followinglift of g(x) to T kM :

G= gij (x) dxi ⊗ dxj + gij (x) δy(1)i ⊗ δy(1)j + · · · + gij (x) δy(k)i ⊗ δy(k)j .
(4.6.2)

THEOREM 4.6.2. The pair ProlkRn = (T̃ kM,G) is a Riemann space of dimension
(k + 1)n, whose metricG given by(4.6.2)depends only on the a priori given Riemann
structureg(x).

The announced problem is solved.
We point-out some remarks:
(1) Thed-Liouville vector fieldsz(1)i , . . . , z(k)i , from (4.5.7) are constructed only by

using the Riemannian structureg:
(2) The following function:

L
(
x, y(1), . . . , y(k)

)= gij (x)z(k)iz(k)j (4.6.3)

is a regular Lagrangian which depends only on the Riemann structuregij (x).
(3) The previous theory holds good for pseudo-Riemannian structuresgij (x) too.

4.7. N -linear connections onT kM

The notion of anN -linear connection on the manifoldT kM can be studied as a natural
extension of that ofN -linear connection onTM , defined in Section 1.4.

LetN be a nonlinear connection onT kM having the primal coefficientsNi
j

(1)

, . . . ,Ni
j

(k)

and

the dual coefficientsMi
j

(1)

, . . . ,Mi
j

(k)

.
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DEFINITION 4.7.1. A linear connectionD on the manifoldT kM is calleddistinguished
if D preserves by parallelism the horizontal distributionN . It is anN -linear connection if
one has the following property:

DJ = 0. (4.7.1)

THEOREM 4.7.1. A linear connectionD onT kM is anN -linear connection if and only if
(DXY

H )Vα = 0 (α = 1, . . . , k),

(DXY
Vα )H = 0, (DXY

Vα )Vβ = 0 (α �= β);
DX(JY

H )= JDXYH , DX(JV
α)= JDXV α.

(4.7.2)

Of course, for anyN -linear connectionD we have

Dh= 0, Dvα = 0 (α = 1, . . . , k).

Since

DXY =DXH Y +DXV1Y + · · · +DXVk Y,

setting

DH
X =DXH , D

Vα
X =DXVα (α = 1, . . . , k),

we can write

DXY =DH
X Y +DV1

X Y + · · · +DVk
X Y. (4.7.2)

The operatorsDH,DVα are not covariant derivations, but they have similar properties
with the covariant derivations. The notion ofd-tensor fields can be introduced and studied
exactly as in Section 1.3.

With respect to the adapted basis (4.4.12) and its adapted cobasis (4.5.1), we represent a
d-tensor field of type(r, s) as

T = T i1...irj1...js

δ

δxi1
⊗ · · · ⊗ δ

δy(k)ir
⊗ dxj1 ⊗ · · · ⊗ δy(k)js . (4.7.3)

A transformation of coordinates (4.1.4), determines the following transformation rules:

T̃
i1...ir
j1...js

= ∂x̃i1

∂xh1
· · · ∂x̃

ir

∂xhr

∂xk1

∂xj1
· · · ∂x

ks

∂xjs
T
h1...hr
k1...ks

. (4.7.3′)

Thus,{1, δ
δxi
, . . . , δ

δy(k)i
} generate the tensor algebra ofd-tensor fields.

The theory ofN -linear connections, described in Section 1 fork = 1, can be extended
step by step toN -linear connections on the manifoldT kM .
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With respect to the adapted basis (4.4.12), anN -linear connectionD has the following
form:

D δ

δxj

δ

δxi
= Lmij

δ

δxm
, D δ

δxj

δ

δy(α)i
= Lmij

δ

δy(α)m
(α = 1, . . . , k),

D δ

δy(β)j

δ

δxi
= Cmij

(β)

δ

δxm
, D δ

δy(β)j

δ

δy(α)i
= Cmij

(β)

δ

δy(α)m

(α,β = 1, . . . , k). (4.7.4)

The system of functions

DΓ (N)=
(
Lmij ,C

m
ij

(1)

, . . . ,Cmij
(k)

)
(4.7.5)

representsthe coefficientsof D.
With respect to (4.1.4),Lmij are transformed by the same rule as the coefficients of a

linear connection defined on the base manifoldM . Other coefficientsChij
(α)

(α = 1, . . . , k)

are transformed as thed-tensors of type(1,2).
If T is a d-tensor field of type(r, s) given by (4.7.3) andX = XH = Xi δ

δxi
, then, by

means of (4.7.4), one has

DH
X T =XmT i1...irj1...js |m

δ

δxi1
⊗ · · · ⊗ δ

δy(k)ir
⊗ dxj1 ⊗ · · · ⊗ δy(k)js , (4.7.6)

where

T
i1...ir
j1...js |m = δT

i1...ir
j1...js

δxm
+Li1hmT hi2...irj1...js

+ · · · −LhjsmT i1...irj1...h
. (4.7.7)

The operator “|” is be calledtheh-covariant derivative.

Consider thevα-covariant derivativesDVα
X , for X =

(α)

Xi δ

δy(α)i
(α = 1, . . . , k). Then,

(4.7.3) and (4.7.4) lead to

D
Vα
X T =

(α)

Xm T
i1...ir
j1...js

(α)| m δ

δxi1
⊗ · · · ⊗ δ

δy(k)ir
⊗ dxj1 ⊗ · · · ⊗ dxjs , (4.7.8)

where

T
i1...ir
j1...js

(α)| m=
δT

i1...ir
j1...js

δy(α)m
+Ci1hm

(α)

T
hi2...ir
j1(α)js

+ · · · −Chjsm
(α)

T
i1...ir
j1...js−1h

(α = 1, . . . , k).

The operators “
(α)| ”, α = 1, . . . , k, are calledvα-covariant derivatives.
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Any operators “|” or “
(α)| ” has the usual properties with respect to the sum and tensor

product ofd-tensors.
Now, with respect to the adapted basis (4.4.12), we can determine the torsionT and the

curvatureR of anN -linear connectionD, following the same method as in the casek = 1.
We have the following toriond-tensors:

T ijk = Lijk −Likj , Sijk
(α)

= Cijk
(α)

−Cikj
(α)

= 0 (α = 1, . . . , k) (4.7.9)

and curvatured-tensors

Rihjm, P
(α)

i

h jm

, S
(βα)

i

h jm

(α,β = 1, . . . , k). (4.7.10)

The connection 1-forms of theN -linear connectionD are

ωij = Lijh dxh +Cijh
(1)

δy(1)h + · · · +Cijh
(k)

δy(k)h. (4.7.11)

THEOREM 4.7.2. The structure equations of anN -linear connectionD on the manifold
T kM are given by

d
(
dxi
)− dxm ∧ωim =− (0)

Ω
i,

d
(
δy(α)i

)− δy(α)m ∧ωim =− (α)

Ω
i,

dωij −ωmj ∧ωim =−Ωi
j , (4.7.12)

where
(0)
Ω i ,

(α)

Ω i are the torsion2-forms(see[16]) andΩi
j are the curvature2-forms

Ωi
j =

1

2
Rij pq dx

p ∧ dxq

+
k∑

α=1

P ij pq
(α)

dxp ∧ δy(α)q +
k∑

α,β=1

Sij pq
(αβ)

δy(α)p ∧ δy(β)q .

The Bianchi identities ofD can be derived from (4.7.12).
The nonlinear connectionN and theN -linear connectionD allow to study the geomet-

rical properties of the manifoldT kM equipped with these two geometrical object fields.

5. Lagrange spaces of higher order

The concept of higher-order Lagrange space was introduced and studied by the present
author [16,17].
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A Lagrange space of orderk is defined as a pairL(k)n = (M,L), whereL :T kM → R
is a differentiable regular Lagrangian having the fundamental tensor of constant signature.
Applying the variational problem to the integral of action ofL, we determine a canonical
k-semispray, a canonical nonlinear connection and a canonical metrical connection. All
these notions are basic for the geometry of the spaceL(k)n.

5.1. The spacesL(k)n = (M,L)

DEFINITION 5.1.1. A Lagrange space of orderk � 1 is a pair L(k)m = (M,L),
where M is a real n-dimensional manifoldM and L : (x, y(1), . . . , y(k)) ∈ T kM →
L(x, y(1), . . . , y(k)) ∈R a differentiable Lagrangian, such that its Hessian, whose elements
are

gij = 1

2

∂2L

∂y(k)i∂y(k)j
, (5.1.1)

satisfies

rank(gij )= n on T̃ kM (5.1.2)

and thed-tensorgij has a constant signature.

Of course, we can prove thatgij is a symmetricd-tensor field of type(0,2). It is called
the fundamental(or metric) tensor of the spaceL(k)n, while L is called itsfundamental
function.

The geometry of the manifoldT kM equipped withL(x, y(1), . . . , y(k)) is called the
geometry of the spaceL(k)n. We study this geometry using the theory from the previ-
ous section. Consequently, starting from the integral of actionI (c) = ∫ 1

0 L(x,
dx
dt
, . . . ,

1
k!
dkx
dtk
) dt , we determine the Euler–Lagrange equations

0
Ei(L) = 0 and the Craig–Synge

covectors
1
Ei(L), . . . ,

k

Ei(L). According to (4.3.15), one gets

THEOREM 5.1.1. The equationsgij
k−1
Ei (L)= 0 determine ak-semispray

S = y(1)i ∂
∂xi

+ 2y(2)i
∂

∂y(1)i
+ · · · + ky(k)i ∂

∂y(k−1)i
− (k + 1)Gi

∂

∂y(k)i
,

(5.1.3)

where the coefficientsGi are given by

(k + 1)Gi = 1

2
gij
{
Γ

(
∂

∂y(k)i

)
− ∂

∂y(k−1)i

}
, (5.1.4)

andΓ is the operator defined by(4.2.4).
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The semisprayS depends only on the fundamental functionL. S is called canonical and

is globally defined on the manifold̃T kM .
Taking into account Theorem 4.5.1, we have

THEOREM 5.1.2. The system of functions

Mi
j

(1)

= ∂Gi

∂y(k)j
, Mi

j

(2)

= 1

2

(
SMi

j

(1)

+Mi
m

(1)
Mm
j

(1)

)
, . . . ,

Mi
j

(k)

= 1

k

(
S Mi

j

(k−1)

+Mi
m

(1)
Mm
j

(k−1)

)
(5.1.5)

are the dual coefficients of a nonlinear connectionN determined only by the fundamental
functionL of the spaceL(k)n.

N is the canonical nonlinear connection ofL(k)n.
The adapted basis{ δ

δxi
, δ

δy(1)i
, . . . , δ

δy(k)i
} has its dual{δxi, δy(1)i , . . . , δy(k)i}. They are

constructed by the canonical nonlinear connection. So, the horizontal curves are character-
ized by the system of differential equations (4.5.9), and the autoparallel curves ofN are
given by (4.5.9′).

The condition thatN be integrable is expressed by[ δ
δxi
, δ
δxj

]Vα = 0 (α = 1, . . . , k).

5.2. Examples of spacesL(k)n

(1) Let consider the Lagrangian

L
(
x, y(1), . . . , y(k)

)= gij (x)z(k)iz(k)j , (5.2.1)

wheregij (x) is a Riemannian (or pseudo-Riemannian) metric on the base manifold
M andz(k)i is the Liouvilled-vector field

kz(k)i = ky(k)i + (k − 1)Mi
m

(1)
y(k−1)m + · · · + k Mi

m
(k−1)

y(1)m, (5.2.2)

constructed by means of the dual coefficients of the canonical nonlinear connec-
tion N from the problem of prolongation toT kM of gij (x) (see (4.6.1)). Then the
Lagrangian depends only ongij (x).

The pairL(k)n = (M,L) is a Lagrange space of orderk. Its fundamental tensor is
gij (x), because thed-vectorz(k)i is linearly in the variablesy(k)’s.

(2) Let
◦
L(x, y

(1)) be the Lagrangian from Electrodynamics

◦
L
(
x, y(1)

)=mcγij (x)y(1)iy(1)j + 2e

m
bi(x)y

(1)i . (5.2.3)
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Let N be the nonlinear connection given by Theorem 4.6.1, arisen from the prob-
lem of prolongations toT kM of the Riemannian (or pseudo-Riemannian) struc-
tureγij (x) and the Liouville tensorz(k)i constructed by means ofN . Then the pair
L(k)n = (M,L), with

L
(
x, y(1), . . . , y(k)

)=mcγij (x)z(k)iz(k)j + 2e

m
bi(x)z

(k)i (5.2.4)

is a Lagrange space of orderk. It is the prolongation to the manifoldT kM of the

Lagrangian
◦
L of Electrodynamics.

These examples prove the existence of Lagrange spaces of orderk.

5.3. Canonical metricalN -connection

Consider the canonical nonlinear connectionN of a Lagrange space of orderk, L(k)n =
(M,L).

An N -linear connectionD with the coefficientsDΓ (N)= (Lijk,Cijh
(1)

, . . . ,Cijh
(k)

) is called

metricalwith respect to metric tensorgij if

gij |h = 0, gij
(α)| h= 0 (α = 1, . . . , k). (5.3.1)

We can prove a theorem similar to Theorem 2.5.1.

THEOREM 5.3.1. The following properties hold:

(I) There exists a uniqueN -linear connectionD on T̃ kM satisfying the axioms:
(1) N is the canonical nonlinear connection of the spaceL(k)n.
(2) gij |h = 0 (D is h-metrical).

(3) gij
(α)| h= 0 (α = 1, . . . , k) (D is vα-metrical).

(4) T ijh = 0 (D is h-torsion free).

(5) Sijh
(α)

= 0 (α = 1, . . . , k) (D is vα-torsion free).

(II) The coefficientsCΓ (N) = (Lhij ,C
h
ij

(1)

, . . . ,Chij
(k)

) of D are given by the generalized

Christoffel symbols:

Lhij =
1

2
ghs
(
δgis

δxj
+ δgsj

δxi
− δgij

δxs

)
,

Chij
(α)

= 1

2
ghs
(
δgis

δy(α)j
+ δgsj

δy(α)i
− δgij

δy(α)s

)
(α = 1, . . . , k). (5.3.2)

(III) D depends only on the fundamental functionL of the spaceL(k)n.
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The connectionD from the above theorem is called thecanonical metricalN -connec-
tion and its coefficients (5.3.2) are denoted byCΓ (N).

The geometry of the Lagrange spacesL(k)n can be developed by means of these two
canonical connections,N andD.

5.4. The Riemannian(k − 1)n-contact model of the spaceL(k)n

The almost Kählerian model of the Lagrange spacesLn exposed in Section 2.7 can be
extended to a corresponding model of higher-order Lagrange spaces. In this case, it is a

Riemannian almost(k − 1)n-contact structure on the manifold̃T kM .
The canonical nonlinear connectionN of the spaceL(k)n = (M,L) determines the fol-

lowing F(T̃ kM)-linear mappingF :X (T̃ kM)→ X (T̃ kM), defined on the adapted basis
toN and toNα , by

F

(
δ

δxi

)
=− ∂

∂y(k)i
,

F

(
δ

δy(α)i

)
= 0 (α = 1, . . . , k − 1),

F

(
∂

∂y(k)i

)
= δ

δxi
(i = 1, . . . , n). (5.4.1)

THEOREM 5.4.1. We have:
(1) F is globally defined oñT kM .

(2) F is a tensor field of type(1,1) on T̃ kM .
(3) KerF=N1 ⊕N2 ⊕ · · · ⊕Nk−1, ImF=N0 ⊕ Vk .
(4) rank‖F‖ = 2n.
(5) F3 + F= 0.

ThusF is an almost(k − 1)n-contact structure oñT kM , determined byN .

Let ( ξ
1a
, ξ
2a
, . . . , ξa

(k−1)a
) (a = 1, . . . , n) be a local adapted basis to the direct decomposi-

tionN1 ⊕ · · · ⊕Nk−1 and(
1a
η ,

2a
η , . . . ,

(k−1)a
η ) its dual basis.

Thus the set(
F, ξ

1a
, . . . , ξ

(k−1)a
,

1a
η , . . . ,

(k−1)a
η
)

(a = 1, . . . , n− 1) (5.4.2)

is a(k − 1)n-almost contact structure.
Indeed, (5.4.1) implies

F( ξ
αa
)= 0,

αa
η ( ξ

βb

)=
{
δab , for α = β,
0, for α �= β (α,β = 1, . . . , (k − 1)),
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F2(X)=−X+
n∑
a=1

k−1∑
α=1

αa
η (X) ξ

αa
, ∀X ∈X

(
T kM

)
,
αa
η ◦ F= 0.

LetNF be the Nijenhuis tensor of the structureF,

NF(X,Y )= [FX,FY ] + F2[X,Y ] − F[FX,Y ] − F[X,FY ].
The structure (5.4.1) is said to be normal if

NF(X,Y )+
n∑
a=1

k−1∑
α=1

d
αa
η (X,Y )= 0, ∀X,Y ∈X

(
T kM

)
.

A characterization of the normality of the structureF is given by the following

THEOREM 5.4.2. The almost(k − 1)n-contact structure(5.4.2) is normal if and only if,

for anyX,Y ∈X (T̃ kM), we have

NF(X,Y )+
n∑
a=1

k−1∑
α=1

d
(
δy(α)a

)
(X,Y )= 0.

The lift of the fundamental tensorgij of the spaceL(k)n with respect toN is defined by

G= gij dxi ⊗ dxj + gij δy(1)i ⊗ δy(1)j + · · · + gij δy(k)i ⊗ δy(k)j . (5.4.3)

Obviously,G is a pseudo-Riemannian structure on the manifold̃T kM , determined only
by the spaceL(k)n.

THEOREM 5.4.3. The pair(G,F) is a Riemannian(k − 1)n-almost contact structure on

T̃ kM .

In this case, the following condition holds:

G(FX,Y)=−G(FY,X), ∀X,Y ∈X
(
T̃ kM

)
.

Therefore, the triple(T̃ kM,G,F) is a metrical(k − 1)n-almost contact space, called the
geometrical model of the Lagrange spaceL(k)n of orderk.

Using this space, we can study the electromagnetic and gravitational fields on the
spacesL(k)n [16].

5.5. Generalized Lagrange spaces of orderk

The notion of a generalized Lagrange space of higher order is a natural extension of that
studied in Section 2.



508 R. Miron

DEFINITION 5.5.1. A generalized Lagrange space of orderk is a pairGL(k)n = (M,gij ),
whereM is a real differentiablen-dimensional manifold andgij a symmetricd-tensor field

of type(0,2) on T̃ kM , having the properties:

(a) gij has a constant signature oñT kM ;

(b) rank(gij )= n on T̃ kM .
gij is called thefundamental tensorof GL(k)n.

Any Lagrange space of orderk, L(k)n = (M,L), determines a spaceGL(k)n with funda-
mental tensor

gij = 1

2

∂2L

∂y(k)i∂y(k)j
. (5.5.1)

The converse statement does not hold. Ifgij (x, y
(1), . . . , y(k)) is a priori given, it is pos-

sible that the system of partial differential equations (5.5.1) does not admit any solution
L(x, y(1), . . . , y(k)). A necessary condition that the system (5.5.1) admits solutionsL is
that thed-tensor field

C
(k)ijh

= 1

2

∂gij

∂y(k)h
(5.5.2)

be completely symmetric.
If the system (5.5.1) has solutions with respect toL, we say that the spaceGL(k)n is

reducible to a Lagrange space of orderk. Otherwise,GLn is said to be nonreducible to a
Lagrange spaceL(k)n.

EXAMPLES.
(1) Let R = (M,γij (x)) be a Riemannian space andσ ∈ F(T kM). Consider the

d-tensor field:

gij = e2σ (γij ◦ πk). (5.5.3)

If ∂σ

∂y(k)h
is a nonvanishingd-covector on the manifold̃T kM , then the pairGL(k)n =

(M,gij ) is a generalized Lagrange space of orderk and it is not reducible to a
Lagrange spaceL(k)n.

(2) LetRn = (M,γij (x)) be a Riemann space and ProlkRn be its prolongation of order

k to T̃ kM .
Consider the Liouvilled-vector fieldz(k)i of ProlkRn. It is expressed by the for-

mula (4.5.7), Section 4.5. We can introduce thed-covector fieldz(k)i = γij z(k)j .
We assume that there exists a functionn(x, y(1), . . . , y(k))� 1 on T̃ kM . Thus

gij = γij +
(

1− 1

n2

)
z
(k)
i z

(k)
j (5.5.4)
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is the fundamental tensor of a spaceGL(k)n. This space is not reducible to a space
L(k)n, if the functionn �= 1.

These two examples prove the existence of generalized Lagrange spaces of orderk.
In the last example,k = 1 leads to the metric (2.8.4) of the Relativistic Optics (n being

the refractive index).
On a generalized Lagrange spaceGL(k)n is difficult to find a nonlinear connectionN

derived only by the fundamental tensorgij . Therefore, assuming thatN is a priori given, we
shall study the pair(N,GL(k)n). Thus, a theorem of existence and uniqueness of metrical
N -linear connections holds:

THEOREM 5.5.1.
(1) There exists a uniqueN -linear connectionD satisfying

gij |h = 0, gij
(α)| h = 0 (α = 1, . . . , k),

T ijk = 0, Sijk
(α)

= 0 (α = 1, . . . , k).

(2) The coefficients ofD are given by the generalized Christoffel symbols(see(5.3.2)).
(3) D depends only ongij andN .

Using this theorem, we may study the geometry of Generalized Lagrange spaces.

5.6.

The notion of Finsler spaces of orderk, introduced by the present author, was investigated
in the bookThe Geometry of Higher-Order Finsler Spaces, Hadronic Press, 1998. It is

a natural extension to the manifold̃T kM of the theory of Finsler spaces given in Sec-
tion 3. A substantial contribution in the geometry of these spaces is due to H. Shimada and
S. Sab̆au [17].

The impact of such spaces in Differential Geometry, Variational Calculus, Analytical
Mechanics and Theoretical Physics is decisive. Finsler spaces play an important role in ap-
plications to Biology, Engineering, Physics or Optimal Control. Also, the introduction of
the notion of Finsler space of orderk is required by the solution of the problem of prolon-
gation toT kM of the Riemannian or Finslerian structures defined on the base manifoldM .

In order to introduce the Finsler space of orderk we need some considerations on the
concept of homogeneity of functions on the manifoldT kM [17].

A functionf :T kM→R,C∞-differentiable oñT kM and continuous on the null section
of the bundleπk :T kM→M , is called homogeneous of degreer ∈ Z on the fibres ofT kM
(briefly r-homogeneous) if for anya ∈R+ we have

f
(
x, ay(1), a2y(2), . . . , aky(k)

)= arf (x, y(1), . . . , y(k)).
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The Euler theorem holds:

A functionf ∈ F(T kM), differentiable onT̃ kM and continuous on the null section of
πk is r-homogeneous if and only if

L k
Γ
f = rf, (5.6.1)

L k
Γ

being the Lie derivative with respect to the Liouville vector field
k

Γ .

A vector fieldX ∈X (T kM) is r-homogeneous if

L k
Γ
X = (r − 1)X. (5.6.1′)

DEFINITION 5.6.1. A Finsler space of orderk, k � 1, is a pairF (k)n = (M,F), whereM
is a real differentiable manifold of dimensionn andF :T kM → R a function having the
following properties:

(1) F is differentiable onT̃ kM and continuous on the null section of the bundle
(T kM,πk,M).

(2) F is positive.
(3) F is k-homogeneous on the fibres of the bundleT kM .
(4) The Hessian ofF 2, having the elements

gij = 1

2

∂2F 2

∂y(k)i∂y(k)j
, (5.6.2)

is positive definite oñT kM .

It follows that the fundamental tensorgij is nonsingular and 0-homogeneous on the
fibres ofT kM .

Also, we remark that any Finlser spaceF (k)n can be considered as a Lagrange space
L(k)n = (M,L), whose fundamental functionL is F 2.

By means of the solution of the problem of prolongation of a Finsler structureF(x, y(1))

to T kM , we can construct some important examples of spacesF (k)n.
A Finsler space with the propertygij depend only on the pointsx ∈M is called a Rie-

mann space of orderk and denoted byR(k)n.
Consequently, we have the following sequence of inclusions, similar with that from Sec-

tion 3: {
R(k)n

}⊂ {F (k)n}⊂ {L(k)n}⊂ {GL(k)n
}
. (5.6.3)

We may say that the Lagrange geometry of orderk is the geometrical theory of the
sequence (5.6.3).
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Of course the geometry ofF (k)n can be studied as the geometry of the Lagrange space of
orderk,L(k)n = (M,F 2). Thus the canonical nonlinear connectionN is the Cartan nonlin-
ear connection ofF (k)n and the metricalN -linear connectionD is the CartanN -metrical
connection of the spaceF (k)n [16,17].
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Preface

Since Lorentz–Minkowski spacetime was extended to a curved spacetime by A. Einstein
in order to model nonzero gravitational fields, Lorentzian geometry has been the mathe-
matical theory which is used by general relativity. In the beginning, this geometry had es-
sentially a local character, perhaps under the influence of a first great interest for accurate
descriptions of our nearest universe. The important contributions to singularity theory of
S.W. Hawking, R. Penrose, R.P. Geroch and others, in the 70’s, made use of sophisticated
global techniques inspired on an extraordinarily developed Riemannian geometry, allowed
Lorentzian geometry to pass from language and terminology to the basic tool to predict
the behavior of the entire universe in the past and the future. This situation was a great
incentive for the development and advance of new techniques in the study of cosmological
models more and more adapted to the physical reality. Now, Lorentzian geometry is a very
active research area of differential geometry with specific problems of purely geometric
nature and interest.

Our main aim with these lecture notes is to give an extensive panoramic view of the
research on four relevant topics on Lorentzian geometry. From natural limitations of time
and space, we have to make a choice for our contribution. This has not been an easy job,
because the number of interesting research areas in Lorentzian geometry is impressive and
increases every year. For convenience of the reader, we have dealt with important basic
results before introducing several current problems and open questions. We have some-
times compared several Lorentzian results to Riemannian or indefinite (non-Lorentzian)
ones, emphasizing on mathematical behaviors which are specific of Lorentzian geometry.
Definitively, we have tried to show the reader a part of the wonderful world of research in
Lorentzian geometry.

1. Some aspects on the topology of Lorentzian manifolds

A Lorentzian manifold is ann(� 2)-dimensional semi-Riemannian manifold with index
one; that is with signature(+, . . . ,+,−). An n-dimensional semi-Riemannian manifold
of indexs such that 0< s < n is said to be indefinite.

1.1. Lorentzian metrics and line fields1

It should be noted that if a manifold in the terminology of [51] is considered; i.e. without
the assumption of having a countable basis in its topology, then it can be shown [57] that

PROPOSITION. If a manifold (in the previous sense) admits a Lorentzian metric, then it
must be paracompact.

1This subsection is based on a talk [22] given by the second author in the Seminar of Geometry of Kyungpook
National University, Taegu, Korea, in November, 1998.
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More generally, it was shown in [84, Corollary 25] that the same conclusion holds if
one assumes the existence of an affine connection (therefore, paracompactness is also
achieved if the existence of an indefinite Riemannian metric is assumed). Now consider
a paracompact manifold2 M , it is classical that, by using a partition of the unity, we can
always construct a Riemannian metric onM . But, the same procedure does not work in the
Lorentzian case. In fact, although we can consider a Lorentzian metric on each coordinate
open subset ofM , it may be not possible to glue the locally defined Lorentzian metrics, as
in the Riemannian case, to produce a Lorentzian metric defined on the whole manifoldM .
Therefore, it is natural to ask

When does a manifold admit a Lorentzian metric?

The answer is the well-known result:

PROPOSITION. An n(� 2)-dimensional manifoldM admits a Lorentzian metric if and
only if it admits a1-dimensional distribution.

To sketch the proof, Greub, Halperin and Vanstone [37] consider a Lorentzian metricg

onM , and letgR be an arbitrary Riemannian metric onM . A (1,1)-tensor fieldP onM
can be defined by

g(u, v)= gR
(
P(u), v

)
for all u,v ∈ TpM , p ∈M . Clearly,P is gR-selfadjoint and, hence, at any pointp ∈M ,
there is agR-orthonormal basis ofTpM consisting of eigenvectors ofP . None of the
eigenvalues is zero,n−1 are positive and one is negative. PutDp the eigenspace associated
to the negative eigenvalue ofP atp, thenD defines a 1-dimensional distribution (or line
field) onM . It should be noted thatD clearly depends on the arbitrary Riemannian metric
chosengR .

Conversely, if a 1-dimensional distributionD onM is given, fix an arbitrary Riemannian
metricgR onM . There exist an open covering{Uα} of M and vector fieldsXα ∈ X(Uα)

such that we can write locally,

D = Span{Xα}, with gR(Xα,Xα)= 1.

By putting

gL(u, v)= gR(u, v)− 2gR
(
u,Xα(p)

)
gR
(
v,Xα(p)

)
,

for any tangent vectorsu,v ∈ TpM with p ∈ Uα , it is easily deduced thatgL does not
depend onα and provides us with the desired Lorentzian metric onM .

Any noncompact manifold admits a nonvanishing vector field. Thus, as a direct conse-
quence of last result, anyn(� 2)-dimensional noncompact manifold admits a Lorentzian

2Along this paper a manifold will be assumed to be of classC∞ and with a countable basis in its topology.
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metric. On the other hand, ann(� 2)-dimensional compact manifoldM admits a 1-dimen-
sional distribution if and only if its Euler–Poincaré characteristicχ(M) is zero. Therefore,
any(2n+ 1)-dimensional compact orientable manifold admits a Lorentzian metric.

The existence of a 1-dimensional distribution on a manifold is closely related to the
existence of a nonvanishing vector field. In fact, it is a standard topological result that

PROPOSITION. An n(� 2)-dimensional compact manifoldM admits a nonvanishing vec-
tor field if and only ifχ(M)= 0.

On a simply connected manifold (compact or not), every 1-dimensional distribution on
M arises from a global nonvanishing vector fieldX ∈X(M). But,

A 1-dimensional distribution cannot be lifted in general to a global nonvanish-
ing vector field,

as the following example [36] shows.

Let M = S1 × SO(3). SinceM is parallelizable, every vector fieldX ∈ X(M) can be
contemplated as a map

X :M→R4

and, by fixing a diffeomorphismψ :RP 3 → SO(3), a 1-dimensional distributionD as a
map

D :M→ SO(3).

In particular, the canonical projection on the second factorD2 defines a natural 1-dimen-
sional distribution onM = S1 × SO(3). If we assume thatD2 lifts to a vector fieldX
without any zero, then, taking into account thatR4 − {0} is simply connected, one easily
shows thatSO(3) would be also simply connected, which is not true. HenceD2 cannot be
lifted to a global vector field onS1 ×SO(3).

1.2. Structure of globally hyperbolic spacetimes

Several causality conditions on a spacetimeM (i.e. a time oriented Lorentzian manifold)
are now related to topological and metric properties ofM . Recall that(M,g) is called
strongly causal atp ∈M if for any neighborhoodO of p there is a neighborhoodU ⊂O
of p such that every causal curve segment with endpoints inU lies entirely inO, (M,g) is
strongly causal if it is strongly causal at any point [63, Chapter 14].

As usual, we shall write

J+(p)= {x ∈M: p � x} and J−(p)= {x ∈M: x � p}
for causal future and causal past ofp, respectively. If a spacetime(M,g) is strongly causal
and for eachp,q ∈M the setJ+(p)∩ J−(q) is compact,(M,g) is called globally hyper-
bolic [63, Chapter 14].
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Global hyperbolicity is one of the most important causality conditions which are im-
posed to spacetime. Global hyperbolic spacetimes have the relevant property that any pair
of causally related points may be joined by a nonspacelike geodesic segment of maximal
length.

In a classical result [35], Geroch proved that if(M,g) is globally hyperbolic, then it
admits a topological Cauchy hypersurfaceS, and therefore there is a homeomorphism

Φ :M→R× S.

In global Lorentzian geometry, it has been a challenge to improve this topological fact
to a smooth result. Although Seifert [83] claimed the existence of smooth Cauchy hyper-
surfaces, several authors have pointed out that his proof is complicated and seems unclear,
see [12] for a detailed discussion of this topic and also the references therein. In fact, most
of Lorentzian geometers do not affirm that such a smooth Cauchy hypersurface must exist
and in the reference book [10, p. 65] this folklore question appears as open. From the be-
ginning of Causality theory, the question of existence in any globally hyperbolic spacetime
of a smooth spacelike Cauchy hypersurface has been widely analyzed.

An elegant and clear proof for the existence of a smooth spacelike Cauchy hypersurface
on every globally hyperbolic spacetime(M,g) has been recently given in [12]. And so,
a global diffeomorphism betweenM andR×S, whereS is any Cauchy hypersurface exists
for every globally hyperbolic spacetime. The proof of this remarkable result goes, roughly
speaking, by following two steps. First, by fixing two Cauchy (topological) hypersurfaces
S1 andS2 with S1 in the past ofS2, Bernal and Sánchez construct for each pointp ∈ S2
a smooth functionhp with compact support such that∇hp is timelike or 0 in the past
of S2. Secondly, by using paracompactness, a locally finite set of these functionshp can be
summed in such a way that the sum,h, restricted toJ+(S1)∩ J+(S2) admits regular level
hypersurfaces which provide us the desired smooth Cauchy hypersurface.

As a natural continuation, the same authors [13] have improved the above result into
a metric splitting theorem for globally hyperbolic spacetime (see also [80]). The split-
ting problem has become an important subject in global Lorentzian geometry (see, for
instance, [10, Chapter 14]). Classically, if a Lorentzian manifold(M,g) is under a suitable
assumption of prototype splitting Lorentzian results, then an isometry between(M,g) and
a Lorentzian product manifold(R×S,−dt2+ ḡ), where(S, ḡ) is a Riemannian manifold,
is provided.

As far as we know, a new splitting philosophy has been introduced in [13] where the
Lorentzian metricg does not appear as a sum of metric tensors. This splitting theorem
becomes an important result in global Lorentzian geometry, and it is stated as follows.

THEOREM. Any globally hyperbolic spacetime(M,g) is isometric to(
R× S,−β dT 2 + ḡ),

whereS is a smooth spacelike Cauchy hypersurface, T :R× S→R is the natural projec-
tion, β :R× S→ (0,∞) a smooth function, andḡ a 2-covariant symmetric tensor field on
R× S, satisfying:
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1. ∇T is timelike andT is a time function.
2. Each hypersurfaceST at constantT is a spacelike Cauchy hypersurface.
3. The radical ofḡ at each(t, x) ∈R× S is Span{∇T (t, x)}.

2. Geodesics and completeness

Let (M,g) be a Lorentzian manifold and letp ∈ M . The causal character of a tan-
gent vectorv ∈ TpM is timelike(respectivelynull, spacelike) if g(v, v) < 0 (respectively
g(v, v)= 0 andv �= 0, g(v, v) > 0 orv = 0). If γ is a geodesic of(M,g), we will say that
it is timelike, null or spacelike according to the causal character of its velocityγ ′. An inex-
tendible geodesic is calledcompleteif it is defined for allt ∈R, andincompleteotherwise.
The Lorentzian manifold(M,g) is said to betimelike, null or spacelike complete, accord-
ing to the causal character of its complete geodesics. It is said (geodesically)completeif
any of its inextendible geodesics is complete.

2.1. Completeness in the Lorentzian setting

There is no analogous result to the Hopf–Rinow theorem for Lorentzian manifolds. In
fact, there are well-known examples of compact Lorentzian manifolds which are incom-
plete, cf. [71] and references therein (see also [69]). For an incomplete compact Lorentzian
manifold(M,g) we can assert that there is no Riemannian metric onM such that its Levi-
Civita connection agrees with the one of the Lorentzian metricg, giving a distinguishing
feature of global Lorentzian geometry from the global Riemannian one. Thus, it seems
natural to find geometric assumptions which, imposed to a compact Lorentzian manifold,
could achieve its completeness.

On the other hand, geodesics in a Lorentzian manifold are separated into three classes
according to their causal character, and another natural question on completeness arises in
the Lorentzian setting.

Are the three kinds of causal completeness logically independent?

In the noncompact case there are several answers to this question. Kundt in [55] showed
the first example of a Lorentzian manifold which is complete in a causal character but in-
complete in another one. Geroch [34] and Beem [9] gave the remainder examples to show
that there is no logical dependence among these completeness conditions in the noncom-
pact case. Nevertheless, in several particular cases there are relations among them, recall,
for example, that Lafuente in [56] proved the complete logical equivalence among the three
types of completeness for locally symmetric Lorentzian manifolds, and it is a classical re-
sult that any symmetric semi-Riemannian manifold is complete. More general symmetry
conditions as semi-symmetry and pseudo-symmetry have shown to be fruitful both in geo-
metry and physics [42]. It is natural to ask the question whether the Lafuente result could
be given for these Lorentzian manifolds.

In [69] it was conjectured that an incomplete compact Lorentzian manifold must be null
incomplete. A partial answer has been given by Carrière and Rozoy in [20] for Lorentzian
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metrics on a torus showing that the conjecture is generically true (in measure theory sense).
They argued how a counter-example can be found (but they did not construct it). As far as
we know, this problem remains open (see [71] for related questions).

The above examples of Lorentzian manifolds, which are complete in one causal char-
acter but incomplete in another one, are constructed by taking a Lorentzian manifold and
multiplying its metric tensor by a suitable conformal factor. In general,

Can completeness be gained(or lost) by conformal changes of the metric ten-
sor in the Lorentzian setting?

For globally hyperbolic spacetimes, which are noncompact Lorentzian manifolds, the
works of Seifert [82] and Clarke [23] allow us to say that all globally hyperbolic space-
times are conformally timelike and null complete; that is, a metric which is pointwise
conformal to the given one, is timelike and null complete (recall that Nomizu and Ozeki
proved [62] that any Riemannian metric on a noncompact manifold is pointwise conformal
to a complete metric). But it is not known, even in this case, what occurs for spacelike
completeness. On the other hand, for compact Lorentzian manifolds, null completeness is
a conformal invariant but the problem is open for spacelike and timelike completeness.

A manifoldM is said to be ofLorentzian typeif it admits a Lorentzian metric. From the
results in Section 1.1, we know thatM is of Lorentzian type if and only if it is noncompact
or it is compact with zero Euler–Poincaré characteristic.

Does a Lorentzian type manifold admit a complete Lorentzian metric?

Some partial answers will be given, after the introduction of suitable techniques, in the
next subsection.

Finally, recall also that, from the Hopf–Rinow theorem, a complete Riemannian mani-
fold is always geodesically connected. In the noncompact Lorentzian case this property
does not hold, the de Sitter spaceSn1 being an example of a complete Lorentzian manifold
which is not geodesically connected. Moreover, an incomplete Lorentzian manifold may
be geodesically connected or geodesically nonconnected [32] (see also [81]).

2.2. Completeness and symmetries

It is well known that a homogeneous Riemannian manifold must be complete. But the
same assertion is not true in the Lorentzian case; thus, there exist (noncompact) homoge-
neous Lorentzian manifolds which are incomplete (see [63], for instance). Nevertheless,
Marsden [58] proved

THEOREM. Any compact homogeneous Lorentzian3 manifoldM must be complete.

The proof consists of constructing a partition of the tangent bundle into compact sub-
sets which are invariant under the geodesic flow. So, any inextendible geodesic must be
complete (see [71] for details). It should be remarked that an essential fact in the proof is

3or indefinite
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to assert that for each pointp ∈M there existn (= dimM) globally defined Killing vec-
tor fields which are independent atp (note that the Killing vector fieldK which extends
v ∈ TpM preserves the causal character ofv nearp, but, of course, it could change far
from p). In the same philosophy of the Marsden result, but now making use of a different
assumption, the second author and M. Sánchez [73] proved

THEOREM. A compact Lorentzian manifold(M,g) which admits a timelike conformal
vector fieldK , must be complete.

The idea of the proof is to see that any geodesicγ : [0, b[ →M , 0< b <∞, has its
velocityγ ′ contained in a compact subset ofTM . According to the assumptions, it is only
necessary to check thatg(K ◦ γ, γ ′) is bounded. But we have

d

dt
g(K ◦ γ, γ ′)= 1

2
Cσ ◦ γ,

whereC is the constantg(γ ′, γ ′) andσ is defined byLKg = σg. Therefore,d
dt
g(K ◦γ, γ ′)

and, as a consequenceg(K ◦ γ, γ ′), is bounded on[0, b[.
Kamishima proved in [47], making use of a different technique, that a compact

Lorentzian manifold of constant sectional curvature which admits a timelike Killing vector
field, must be complete. The previous result does not use any assumption on the curvature
and, moreover, it is stated in terms of conformal vector fields.

It should be emphasized that simply the existence of a nontrivial Killing vector field
does not imply the completeness of a compact Lorentzian manifold, as the Clifton–Pohl
torus shows. Even more, completeness is not obtained if the assumption of the existence of
a timelike conformal vector field is extended to the existence of a causal conformal vector
field. In fact, the following Lorentzian metric onR2:

g = (1− cos2πx)
(
dx2 − dy2)+ (1+ cos2πx)(dx ⊗ dy + dy ⊗ dx)

may be naturally induced on a torusT2 and the vector field∂/∂y defines a causal Killing
vector field onT2, but this Lorentzian torus is incomplete (see [70] for details).

As a practical consequence we can give a partial answer to the question previously
stated. In fact, letM be a compact manifold of Lorentzian type. Assume there exists
K ∈ X(M) such thatK(p) �= 0, for all p ∈M , and its flow defines an action ofS1 onM .
As consequence of [64, Theorem 4.3.1] we have a Riemannian metricgR onM such that
K is Killing for gR (see [88, Section 3] for the explicit construction). Now

gL = gR − 2

gR(K,K)
ω⊗ω,

whereω(X) = gR(K,X) for all X, is a Lorentzian metric onM andK is Killing and
timelike forgL. Therefore,gL is complete.

Finally, it should be noted that a generalization of the previous completeness theorem
was given in [72].
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2.3. Completeness and curvature

Now, another viewpoint is discussed to study the completeness of compact Lorentzian
manifolds.

How can the curvature of a compact Lorentzian manifold influence complete-
ness?

Carrière [19] gave an important answer when he solved a famous conjecture by Markus on
affine manifolds. In particular, he proved that a compact flat Lorentzian manifold must be
geodesically complete. Later, Klinger [50] dealt with the case of nonzero constant sectional
curvature. Carrière and Klinger results give

THEOREM. Every compact Lorentzian manifold of constant sectional curvature must be
geodesically complete.

Of course, there exist well-known examples of compact Lorentzian manifolds of con-
stant sectional curvaturec both in the casesc = 0 andc < 0. But for the casec > 0, one
can deduce the following remarkable result.

THEOREM. There are no compact Lorentzian manifolds(M,g) of constant sectional cur-
vaturec > 0.

In the 2-dimensional case, it is an easy consequence of the Gauss–Bonnet theorem for
Lorentzian metrics (see [8] or [14], for instance). For then(� 3)-dimensional case, recall
that there is a classical result of Calabi and Markus [18] (see also [63, Proposition 9.16])
which asserts that the fundamental groupπ1(M) is finite when(M,g) is a complete
Lorentzian manifold with dimM = n � 3 and constant sectional curvaturec > 0. If M
is additionally assumed to be compact, then we have, making use of the Klinger result,
that(M,g) should be complete. Therefore,(M,g) will be isometric to a finite quotient of
the De Sitter spaceSn1(1/

√
c) (see [63, Corollary 8.26], for instance). This contradicts the

compactness ofM .
Nevertheless, Einstein Lorentzian manifolds with positive Ricci curvature were shown

to exist in the compact case [89].
As a complement to the Carrière and Klinger results, one could ask if the sectional curva-

ture of a compact Lorentzian manifold, when it is not constant, is related to completeness.
The answer is the following surprising fact [70].

THEOREM. There are two Lorentzian metrics on the2-dimensional torus with the same
Gauss curvature at each point and one is geodesically complete whereas the other one is
not.

3. Curvature of Lorentzian manifolds

Let (M,g) be ann(� 2)-dimensional (connected) Lorentzian manifold. We shall write
∇ for its Levi-Civita connection,R for its Riemannian curvature tensor,4 Ric for its Ricci

4According our convention,R(X,Y )Z =∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, is the curvature tensor.
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tensor,R̃ic for its associated quadratic form,S for its scalar curvature andK for its sectional
curvature on nondegenerate tangent planes.

3.1. Sectional curvature

For a Lorentzian5 manifold (M,g), the sectional curvatureK is defined, on nondegener-
ate tangent planes, exactly as in the Riemannian case. Recall that a planeΠ of TpM is
said to be nondegenerate (respectively spacelike, Lorentzian) whenever the restriction of
g toΠ is nondegenerate (respectively positive definite, Lorentzian). Nevertheless, the be-
havior ofK presents here several remarkable differences to the definite case. The pioneer
contribution to the study of the sectional curvature in this setting was done by Wolf [90,
Theorems 2.9, 4.1] who showed that among the isotropic manifolds with indefinite met-
ric, only the ones of constant sectional curvature have bounded sectional curvature. Later,
Kulkarni proved an amazing result [53], without any assumption of homogeneity.

THEOREM. If (M,g) is ann(� 3)-dimensional Lorentzian manifold and its sectional cur-
vature is bounded from above(or from below) for all nondegenerate tangent planes, then
(M,g) has constant sectional curvature.6

It is interesting to point out that the proof of the Kulkarni theorem works pointwise, that
is

PROPOSITION. For every pointp in anyn(� 3)-dimensional Lorentzian manifold, (M,g),
the following conditions onTpM are equivalent:

1. K is constant on nondegenerate planes ofTpM .
2. There exists a constanta ∈ R such thata � K, or there exists a constantb ∈ R such

thatK � b, on nondegenerate planes ofTpM .

Therefore, making use of the classical Schur theorem,(M,g) will have constant sec-
tional curvature ifK is pointwise bounded.

It follows from the Kulkarni theorem that the concepts of ann(� 3)-dimensional
Lorentzian (or indefinite) manifold being positively curved or negatively curved based on
the sign ofK are vacuous, except in the case of constant curvature; in particular, pinch-
ing results onK have no meaning in the Lorentzian setting. This fact contrasts with the
Riemannian case, where the inequalities on sectional curvature has been used to get very
strong well-known pinching theorems.

For anyn(� 3)-dimensional Lorentzian manifold(M,g), its sectional curvatureK can
be considered as a function

K :G∗
2(M)→R

5or indefinite
6Of course, the Kulkarni result remains true for any indefinite Riemannian manifold.
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on the GrassmannianG∗
2(M) of all nondegenerate tangent planes onM . Of course,G∗

2(M)

is a proper open subset of the ordinary GrassmannianG2(M) of all tangent planes onM ,
andK is continuous onG∗

2(M). Note that even ifM is assumed to be compact,G∗
2(M)

will be not compact because its fiber is not compact, and henceK has neither maximum
nor minimum unless it is constant, as the Kulkarni theorem asserts. This is in contrast with
the Riemannian case, whereK :G2(M)→R has a maximum and a minimum values when
M is compact [15, Section 9.3].

The Kulkarni result was the starting point for a wide research on the sectional curvature
of Lorentzian (or indefinite) metrics. Among them, Dajczer and Nomizu [25] (see also [63,
Proposition 8.28]) proved

THEOREM. If the sectional curvature of ann(� 3)-dimensional Lorentzian7 manifold is
bounded in absolute value on all timelike(or spacelike) tangent planes, then the manifold
must have constant sectional curvature.

Moreover, Nomizu found in [61]

THEOREM. Assume that, for each spacelike tangent vectorv ∈ TpM of a Lorentzian7

manifold(M,g), there is a numberδ > 0 such that the sectional curvature satisfies∣∣K(Π)∣∣� δ

for all spacelike(respectively Lorentzian) tangent planesΠ containingv (i.e. every pencil
of spacelike(respectively Lorentzian) planes determined byv). Then(M,g) has constant
sectional curvature.

Beem and Parker [11] studied the value distribution of the sectional curvature of
Lorentzian (and indefinite) metrics as follows. For a pointp of a Lorentzian manifold
(M,g), let It (respectivelyIs ) be the image underK of all Lorentzian (respectively space-
like) planes atTpM . Clearly, if K is constantc at p, thenIt = Is = {c}. Otherwise, we
have

THEOREM. Let p be a point of a Lorentzian manifoldM of dimensionn� 3. If the sec-
tional curvature is not constant atp, then bothIs andIt are intervals of infinite length.

More recently, Kishta [49] proved, as a nice application of the Kulkarni result.

THEOREM. If for everyp ∈M the subgroup of isometries fixing the pointp is transitive
on the unit timelike tangent vectors ofTpM , thenM has constant sectional curvature.

On the other hand, in [25] (see also [10, Lemma 2.1]) several boundedness conditions
of the Ricci curvature are studied. It is proved that

7or indefinite
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PROPOSITION. For everyn(� 3)-dimensional Lorentzian8 manifold, each of the following
conditions implies that(M,g) is Einstein(i.e. Ric= λg, for someλ ∈R),

1. For every null tangent vectorv we haveR̃ic(v)= 0.
2. For every unit timelike tangent vectorw we have|R̃ic(w)| � δ, whereδ is a fixed

positive number.

3.2. Volume comparison and curvature

Roughly, bound specifications on the sectional curvature force Lorentzian manifolds to
have constant sectional curvature. So, this is an a priori difficulty to think about Lorentzian
volume comparison results (of course, a Lorentzian metric has a canonical measure which
is analogously defined to the canonical measure of a Riemannian metric). Nevertheless,
some comparison results between volumes of Lorentzian manifolds have been obtained
by Andersson and Howard in [7] making use of an inequality on the curvature tensor.
On the other hand, Ehrlich, Jung and Kim [29] also obtained volume comparison results
considering inequalities involving the sectional curvature on tangent planes with a definite
causal character.

As noted by Ehrlich and Sánchez [31], there are another two difficulties in order to state
volume comparison results in Lorentzian geometry:

1. Let I+(p) be the chronological future ofp [10, p. 5] in a time oriented Lorentzian
manifold (M,g) andd the Lorentzian distance function [10, p. 8] of(M,g). The
inner metric ballsB+(p, ε)= {q ∈ I+(p): d(p,q) < ε}, ε > 0, need not to be open
subsets inM .

2. It can be showed that for any pair of Lorentzian space formsQ(c), Q̂(ĉ), with dif-
ferent sectional curvaturesc and ĉ, and for any pointp ∈ Q(c) there are two nor-
mal neighborhoodsW,W ′ of p such that the corresponding transplanted neighbor-
hoodsŴ , Ŵ ′ of p̂ in Q̂(ĉ) satisfy Vol(W) < Vol(Ŵ ) and Vol(W ′) > Vol(Ŵ ′) (see
[31, Corollary 5.3] for details).

Ehrlich and Sánchez introduced in [31] the notion ofstandard subset for comparison of
Lorentzian volumes at a pointp, in order to avoid such difficulties. They call a subset
U ⊂M to be standard for comparison of Lorentzian volumes at a pointp if there is an
openŨ ⊂ TpM satisfying:

1. Ũ is an open subset ofJ+(0p), the causal future of the origin inTpM .
2. Ũ is starshaped from the origin (i.e. ifv ∈ Ũ , then tv ∈ Ũ for any t ∈ (0,1)), the

exponential map atp, expp, is defined on allŨ , and the restriction of expp to Ũ is a

diffeomorphism onto its imageU = expp(Ũ).

3. The closure ofŨ is compact.
Let Q(c) be ann-dimensional Lorentzian space form of constant sectional curvature

c ∈R. Choosep0 ∈Q(c) andi :TpM→ Tp0Q(c) a linear isometry. We consider

F = expp0
◦ i ◦ (expp|U)−1 :U →Q(c)

and putŨ0 = i(Ũ ), U0 = expp0
(Ũ0)= F(U).

8or indefinite
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A tangent vectorv toU is said to beradial if it can be written as

v = d

dt

∣∣∣∣
t0

expp(tup)

for someup ∈ TpM . A tangent planeΠ toU is said to beradially timelikeif it contains a
timelike radial tangent vector.

Now, we can state the following Günther–Bishop type theorem for Lorentzian manifolds
[31, Theorem 2.1].

THEOREM. Let (M,g) be a Lorentzian manifold, let U be a standard subset for compar-
ison of Lorentzian volumes at a pointp ∈M , and assume the following two conditions
hold:

1. For any radially timelike tangent planeΠ we haveK(Π)� c, and
2. expp0

: Ũ0 →U0 is a diffeomorphism.
Then

Vol(U)� Vol(U0)

and equality holds if and only ifF :U →U0 is an isometry.

A Lorentzian result analogue to the classical Bishop comparison theorem has been also
given in [31, Theorem 2.2] and it is stated as follows.

THEOREM. Let (M,g) be a Lorentzian manifold, letU be a standard subset for compari-
son of Lorentzian volumes at a pointp ∈M , and assume

R̃ic(v)� (n− 1)cg(v, v),

for any timelike radial vectorv tangent toU . Then

Vol(U)� Vol(U0)

and equality holds if and only ifF :U →U0 is an isometry.

Finally, it should be noted that a Bishop–Gromov type theorem has been also proved in
[31, Theorem 2.3].

3.3. Null sectional curvature

For anyn(� 3)-dimensional Lorentzian manifold(M,g), as mentioned before, the Grass-
mannian of nondegenerate tangent planesG∗

2(M) on M is a proper open subset of the
Grassmannian of all tangent planesG2(M). Put

Go2(M)=G2(M) \G∗
2(M),
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the Grassmannian of degenerate tangent planes onM . Go2(M) is not in the domain of the
sectional curvatureK. In a natural way it appears

When canK be continuously extended toGo2(M)?

Degenerate tangent planes play an important role in the study of the geometry of
Lorentzian manifolds. In fact, Harris introduced the notion of null sectional curvature for
degenerate tangent planes [43], which has shown to be fruitful to get some comparison
theorems [43] and to characterize Robertson–Walker spacetimes [44] (see also [10, Defini-
tion A.6]). The null sectional curvature is defined as follows, letΠ ⊂ TpM be a degenerate
(or null) tangent plane andv ∈Π a null tangent vector, then the null sectional curvature of
Π with respect tov is given by

Kv(Π)= g(R(x, v)v, x)

g(x, x)
,

wherex is any nonnull vector inΠ . Note thatKv(Π) is independent of the choice of
the nonnull vectorx ∈ Π , but it does depend quadratically onv. Therefore, it is not, in
general, a function on the Grassmannian of degenerate tangent planesGo2(M). It should be
remarked that the null sectional curvature is a Lorentzian notion and cannot be defined for
general indefinite metrics.

For a Lorentzian manifold, its null sectional curvature is a useful tool to get global
information as the following facts show. First, Harris showed [43, Proposition 2.3]

PROPOSITION. The null sectional curvature vanishes on any degenerate tangent plane of
ann(� 3)-dimensional Lorentzian manifold(M,g) if and only if it has constant sectional
curvature.

This result can be used to give an answer to the previous question reproving a well-
known theorem by Thorpe [87]. In fact, it is remarkable thatK may be continuously ex-
tended toGo2(M) if and only if (M,g) has constant sectional curvature.

Moreover, the Ricci tensor on a null tangent vectorv can be easily obtained as a sum of
then− 2 null sectional curvatures of degenerate planes throughv,

R̃ic(v)=
n∑
i=3

Kv(Πi),

whereΠi = Span{v, ei} and {e3, . . . , en} are tangent vectors such thatg(v, ei) = 0 and
g(ei, ej )= δij .

The null sectional curvature may be also related with conjugate points along null geo-
desics. Roughly speaking, in these results the null sectional curvature plays an analogous
role as the sectional curvature does in the Riemannian case. In fact, the following result
[43, Proposition 2.6], may be seen as a null analogue to the classical Bonnet–Myers theo-
rem.
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THEOREM. Let γ : [0, a] →M be a null geodesic in ann(� 3)-dimensional Lorentzian
manifold(M,g). Suppose that for someδ > 0 we have

Kγ ′(t)(Π)� δ

for every degenerate tangent plane containingγ ′(t). If a � π/
√
δ, then there exists onγ a

conjugate point toγ (0).

More recently, a Morse–Schönberg type theorem was stated in [38, Proposition 4.4] as
follows.

THEOREM. Let γ : [0, a] →M be a null geodesic in ann(� 3)-dimensional Lorentzian
manifold(M,g). Suppose that for someδ > 0 we have

Kγ ′(t)(Π)� δ

for every degenerate tangent plane withγ ′(t) ∈Π , andγ (a) is a conjugate point toγ (0)
alongγ , then

a � π/
√
δ.

For a time oriented Lorentzian manifold(M,g), there is a natural way to consider the
null sectional curvature as a function onGo2(M). In order to do that, we make a choice
of a (globally defined) timelike vector fieldZ ∈X(M), then define the null congruence on
(M,g) relative toZ as the subset of the tangent bundleTM given by

CZM = {v ∈ TM: g(v, v)= 0 andg(v,Zπ(v))= 1
}
,

whereπ :TM →M is the natural projection [44,52]. It is not difficult to see thatCZM

is in fact a codimension two submanifold ofTM . Now, an algebraic reasoning (strongly
dependent on the Lorentzian character of the metric tensor) says that for each degenerate
tangent planeΠ ⊂ TpM , there exists a unique null tangent vector inΠ ∩CZM . Therefore,
we can define aZ-normalized null sectional curvature,KZ , by putting

KZ(Π)=K(Π∩CZM)(Π).

Contrary to the well-known behavior of the sectional curvature described by the clas-
sical Schur lemma, theZ-normalized null sectional curvature may be a nonconstant
point function on the Lorentzian manifold(M,g). In fact, if we normalizeZ to get
U = [−g(Z,Z)]−1/2Z, it is shown in [52] and [44] that

THEOREM. For any n(� 3)-dimensional time oriented Lorentzian manifold(M,g), the
following assertions are equivalent:

(a) There exists a(smooth) function ν :M → R such that for eachp ∈ M we have
ν(p)=KU(Π), for every degenerate tangent planeΠ ⊂ TpM .
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(b) The Riemannian curvature tensor of(M,g) satisfies
1. R(X,Y )V = k{g(Y,V )X− g(X,V )Y },
2. R(X,U)U = θX,
for all X,Y,V ∈U⊥, wherek, θ ∈ C∞(M).

It should be noted that if the previous assertion (b) holds, then all tangent planes con-
tainingUp have the same sectional curvature−θ(p), and all tangent planes contained in
U⊥
p have the same sectional curvaturek(p), for anyp ∈M . As a direct consequence we

getν(p)= θ(p)+ k(p), for all p ∈M . Observe also that theZ-normalized null sectional
curvature satisfiesKZ = ν

−g(Z,Z) .
Previous items (b.1) and (b.2) are shown to be equivalent whenn� 4 [52], to the notion

of infinitesimal isotropy of the Lorentzian manifold(M,g) relative toU , as introduced by
Karcher in [48]. In that paper, looking for a characterization of Friedmann cosmological
models, Karcher proved that

THEOREM. A Lorentzian manifold(M,g), dimM � 4, is infinitesimal isotropic relative
to a unit timelike vector fieldU , with everywhere nonzeroU -normalized null sectional
curvature, if and only if(M,g) satisfies the following conditions:

1. The distributionU⊥ is integrable.
2. The integral manifolds ofU⊥ are totally umbilical and have constant sectional cur-

vature.
3. The manifold(M,g) is locally conformal to a flat Lorentzian space.

Although dimension 3 seems to be nonrelevant from a physical point of view, it would be
an interesting problem to decide if the Karcher result can be extended to that dimension.
In [38] a negative answer was given to that question. In fact, consider the (unit) sphere
S3 endowed with the Lorentzian metricg given byg = g0 − 2ω ⊗ ω (compare togL in
Section 1.1), whereg0 is the canonical Riemannian metric onS3 andω(v) = g0(v,Up),
for all v ∈ TpS3,Up = ip, for all p ∈ S3. ClearlyU is a unit timelike vector field onS3 and
it can deduced that the Lorentzian manifold(S3, g) has nonzero constantU -normalized
null sectional curvature but the distributionU⊥ is not integrable.

We finish this subsection with a question which naturally arises in this setting. The null
sectional curvature has been considered as a function on the setGo2(M) of all degenerate
tangent planes on the time oriented Lorentzian manifold(M,g). So, it is natural to ask

Is there a (smooth) manifold structure onGo2(M) such that theZ-normalized
null sectional curvatureKZ becomes a smooth function onGo2(M)?

In order to face the question let us consider the Lorentz–Minkowski spaceLn = (Rn, g1 =
−dx2

1 +
∑n

i=2dx
2
i ), with n � 3, the GrassmannianG2(Rn) of all 2-dimensional linear

subspaces ofRn, and put

Λn =
{
Π ∈G2(R

n): g1|Π is degenerate
}
.

It is not difficult to show thatΛn is a (regular) compact submanifold ofG2(Rn) with
dim(Λn)= 2n− 5.
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Now, for ann(� 3)-dimensional Lorentzian manifold(M,g), Go2(M) can be naturally
endowed with a manifold structure such that it becomes a submanifold ofG2(M) and such
that it is a fiber bundle overM with fiber typeΛn.

On the other hand, the null congruence associated to a timelike vector fieldZ is an
orientable submanifold ofTM and the mapπ :CZM →M is a fiber bundle with fiber
typeSn−2. The natural projection

p :Go2(M)→ CZM, Π 	→Π ∩CZM,
gives us a fiber bundle with fiber the real projective spaceRPn−3.

These facts can be summarized in the following diagram:

Λn Sn−2

↓ ↓
RPn−3 → Go2(M)

p−→ CZM

π ◦ p↘ ↙ π

M

(see [65] for details).
TheZ-normalized null sectional curvature is then written as follows:

KZ(Π)=Kp(Π)(Π),

and so, an analogous argument as the one in [15, Proposition 9.3.1] permits us to show that
KZ is in fact a smooth function

KZ :Go2(M)→R.

In particular, it is continuous. Taking into account thatGo2(M) is compact wheneverM is
compact, we can assert

PROPOSITION. For every time oriented compactn(� 3)-dimensional Lorentzian manifold
(M,g) and a timelike vector fieldZ onM , there exista, b ∈R such that itsZ-normalized
null sectional curvatureKZ satisfies

a � KZ � b.

3.4. Null conjugate points and curvature

The null congruence associated to a timelike vector fieldZ on a time orientedn(� 3)-
dimensional Lorentzian manifold(M,g) may be endowed with a natural Lorentzian met-
ric. In order to see that, consider the Sasaki metric onTM , induced from the Lorentzian
metricg, which is semi-Riemannian with index 2. Its restriction toCZM is a Lorentzian
metric ĝ and the natural projectionπ :CZM→M then becomes a semi-Riemannian sub-
mersion with spacelike fibers [38,39].

This procedure permits us to construct from each time orientedn(� 3)-dimensional
Lorentzian manifold(M,g) and a timelike vector fieldZ ∈ X(M), a new 2(n − 1)-
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dimensional Lorentzian manifold. It should be noted that forn = 3, (CZ(M), ĝ) is a
4-dimensional Lorentzian manifold and the horizontal lift throughπ of Z gives a time-
like vector field onCZ(M). Thus, the null congruence on a time oriented 3-dimensional
Lorentzian manifold gives a 4-dimensional spacetime.

In order to check this construction produces many Lorentzian metrics, recall the follow-
ing result by Mounoud [59] (see also [60]).

THEOREM. LetM be a3-dimensional orientable compact manifold andL(M) the space
of all Lorentzian metrics onM . ThenL(M), for a natural topology, possesses an infinity
of connected components.

Now, consider for instanceM = S3. In this case every Lorentzian metricg onS3 is time
orientable, and so, ifZ denotes a timelike vector field of(S3, g), then associated tog and
Z we have the corresponding 4-dimensional spacetime(CZ(S3), ĝ).

No extra hypothesis on the timelike vector fieldZ of (M,g) has been assumed until now.
Next, we are going to impose a geometric assumption onZ which becomes a certain type of
natural symmetry ofg. The concept of symmetry is basic in physics. In general relativity,
symmetry is usually based on a local one-parameter group of isometries generated by a
Killing or, more generally conformal, vector field. In fact, the main simplification for the
search of exact solutions to the Einstein equation is to assume, a priori, the existence of
such symmetries [24,28]. We remark that a completely general approach to symmetries
in general relativity has been developed in [96]. In the above mentioned references, the
causal character of the Killing or conformal vector field is not always prefixed. However, it
is natural to assume that this vector field is timelike. This is supported by very well-known
examples of exact solutions. At the same time, under this assumption, the integral curves
of such vector field provide a privileged class of observers (in the sense of [77]) or test
particles in spacetime.

Let us now consider the case that the timelike vector fieldZ on (M,g) is conformal.
ThenCZM possesses two important properties [38,39]:

(1) CZM is invariant by the geodesic flow and so, for every null geodesicγv of (M,g),
with v ∈ CZM , we haveγ ′v(t) ∈ CZM , providedγv(t) is defined, and the velocity
curveγ ′v gives rise to a null geodesic of(CZM, ĝ). Furthermore, each null geodesic
β of (M,g) may be reparametrized to obtain a null geodesicα that satisfiesα′(t) ∈
CZM for all t whereα is defined. In fact, it can be shown thatg(β ′,Z) = a ∈ R,
a �= 0 thus, if we putα(t)= β(t/a) then, we achieveg(α′,Z)= 1.

(2) The canonical measuredµĝ associated with the Lorentzian metricĝ on CZM is
preserved by the geodesic flow{Φt }, which, making use of the completeness result
in Section 2.2, gives us the following

THEOREM. For anyn(� 3)-dimensional compact Lorentzian manifold(M,g) which ad-
mits a timelike conformal vector fieldZ, we have∫

CZM

(f ◦Φt)dµĝ =
∫
CZM

f dµĝ,

for everyf ∈ C0(M) and t ∈R.
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We end this subsection with several integral inequalities which relate null conjugate
points to global geometric properties. They will require the previous quoted properties of
CZM for the proofs. Moreover, null sectional curvature is used in order to characterize
when equalities hold.

THEOREM. Let (M,g) be ann(� 3)-dimensional compact Lorentzian manifold which
admits a timelike conformal vector fieldZ. If there existsa ∈ (0,∞) such that every null
geodesicγv : [0, a]→M , with v ∈ CZM , has no conjugate point ofγv(0) in [0, a), then

Vol(CZM, ĝ)�
a2

π2(n− 2)

∫
CZM

R̃icdµĝ. (3.1)

Moreover, equality holds if and only if the(Z/
√−g(Z,Z))-normalized null sectional cur-

vature of(M,g) is the point function−π
2g(Z,Z)

a2 .

(See [38, Theorem 3.2] for details.) Under the same assumptions of the above result
(compactness and existence of a timelike conformal vector fieldZ). It is shown in [41,
Theorem 4.1] that

THEOREM. If (M,g) has no null conjugate points(i.e. if any null geodesic has no conju-
gate points) then,∫

CZM

R̃icdµĝ � 0, (3.2)

and equality holds if and only if(M,g) has constant sectional curvaturec� 0.

As showed in [38], the integral
∫
CZM

R̃icdµĝ may be computed in terms of geometric
quantities on(M,g). Concretely,∫

CZM

R̃icdµĝ = ωn−2

n− 1

∫
M

[
nR̃ic(U)+ S][−g(Z,Z)]−n2 dµg, (3.3)

whereωn−2 is the volume of the(n−2)-dimensional standard Riemannian sphere andU =
Z/

√−g(Z,Z). This permits to write the previous results by means of integral inequalities
onM , without explicit mentioning the null congruenceCZM . However, these expressions
are formally more complicated that the above ones.

Concerning general facts on null conjugate points in Lorentzian manifolds, there is a
simple but surprising result [63, Example 10.11] which asserts that

PROPOSITION. There are no conjugate points along any null geodesic in a Lorentzian
manifold of constant sectional curvature.

Of course, the converse is not true. The following question arises then in a natural way.

When does a Lorentzian manifold with no conjugate points along its null geo-
desics has constant sectional curvature?
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Under the assumption of compactness and the existence of a timelike conformal vector
field, the integral inequality (3.2) gives an answer to this question.

If the conformal vector fieldZ is specialized to be Killing, then the above inequalities
may be notably improved by using the following result [38, Lemma 3.7].

PROPOSITION. Let (M,g) be ann-dimensional compact Lorentzian manifold that admits
a timelike Killing vector fieldZ. Then,∫

M

R̃ic(U)
[−g(Z,Z)]−n2 dµg � 0, (3.4)

and equality holds if and only ifZ is parallel.

Using the previous result, we get [38, Corollary 3.8]

THEOREM. Let (M,g) be ann(� 3)-dimensional compact Lorentzian manifold that ad-
mits a timelike Killing vector fieldZ. If there isa ∈ (0,+∞) such that every null geodesic
γv : [0, a]→M , v ∈ CZM , has no conjugate point ofγv(0) ∈ [0, a), then∫

M

[−g(Z,Z)]−n+2
2 dµg � a2

π2(n− 1)(n− 2)

∫
M

S
[−g(Z,Z)]−n2 dµg.

Moreover, equality holds if and only ifg(Z,Z) is constant and the universal covering of
(M,g) is isometric to the semi-Riemannian product(

R× Sn−1(r),−dt2 + g0),
wherer = a/(√−g(Z,Z))π is the radius of the sphere.

And under the same assumptions of previous result [41, Theorem 4.4]

THEOREM. If (M,g) has no conjugate points along its null geodesic, then∫
M

S
[−g(Z,Z)]−n2 dµg � 0,

and equality holds if and only if(M,g) is isometric to a flat Lorentziann-torus up to a
(finite) covering. In particular, in this caseU is parallel, the first Betti number ofM is not
zero and the Levi-Civita connection ofg is Riemannian.

The integral inequalities (3.1) and (3.2) have been used in [38] to show several properties
of null geodesics of the natural Lorentzian metric on the odd dimensional sphereS2n+1 (see
Section 3.3) and, so, to describe the topology of the null conjugate locus of any point of
S2n+1 [40].

We are going to show two applications of these integral inequalities in very different
stages.
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In Riemannian geometry there is a classical remarkable result of Hopf [46] which asserts
that a Riemannian torus with no conjugate points must be flat. In contrast, any Lorentzian
surface is free of null conjugate points (see [10, Lemma 10.45], for instance). Moreover,
the above explained integral tools work for any dimensionn� 3. However, in [41, Theo-
rem 4.8] it has been shown that

THEOREM. A compact Lorentzian surface admitting a timelike Killing vector field with no
conjugate points along its timelike(or spacelike) geodesics must be flat.

It should be noted that the assumption is made on timelike (or spacelike) conjugate
points, but if(S, g) is a Lorentzian surface free of timelike (or spacelike) conjugate points,
then the Lorentzian manifold(S×S1, g+ dθ2) is free of null conjugate points. This prod-
uct is compact wheneverS is compact and, moreover, it inherits a natural timelike Killing
vector field fromS. Therefore the integral inequality (3.2) works on(S × S1, g + dθ2),
concluding the sketch of proof.

Consider now a Lorentzian torus which admits a timelike Killing vector field. Then it
must be (globally) conformally flat [78]. Note that an answer to the question

When is a Lorentzian torus which admits a timelike Killing vector field flat?

is given making use of previous theorem.
On the other hand, letP(B,S1) be a principal fiber bundle with structure groupS1 and

projectionτ :P → B over ann-dimensional manifoldB. From each Riemannian metric
gB onB and each connection formω :T P → iR = s1, we define a Lorentzian metricgω

onP as follows:

gω(X,Y )= gB
(
τ∗(X), τ∗(Y )

)+ gs1

(
ω(X),ω(Y )

)
,

wheregs1(it1, it2)=−t1t2. The Lorentzian metricgω is called a Kaluza–Klein metric onP
(the metric given in Section 3.3 onS3 may be of course obtained with this procedure on
the Hopf fibration).

PROPOSITION. If B is compact and simply connected and(P,gω) has no conjugate points
along its causal geodesics, thenP � B × S1 (i.e. the principal bundleP(B,S1) must be
trivial ).

In order to sketch the proof, note that the fundamental vector fieldi∗ ∈ X(P ) corre-
sponding toi ∈ s1 is a unit timelike Killing vector field. For everyk ∈ Z, k � 1, let
(Tk = S1×· · ·×S1, h) be ak-dimensional Riemannian flat torus. The Lorentzian manifold
(P × Tk, gω + h) has no conjugate points along its null geodesics. Moreover,i∗ may be
seen as a timelike Killing vector field onP ×Tk . Therefore, a straightforward computation
from (3.2) and (3.3) gives∫

P

[
(n+ k+ 1)R̃ic(i∗)+ S]dµgω � 0.
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Thus, ∫
P

R̃ic(i∗) dµgω � 0

and from (3.4) we get thati∗ must be parallel, therefore the curvature ofω vanishes identi-
cally. The announced result easily follows taking into account thatB is simply connected.

We end the subsection with a result related to the previous inequality (3.2). In fact, the no
conjugacy assumption on a fixed causal geodesic of a Lorentzian manifold has been used
by Ehrlich and Kim in [30] to obtain a generalization of the Hawking–Penrose conjugacy
theorem [45] of singularity theory, which is stated as follows.

THEOREM. Letγ : (−∞,+∞)→M be a complete nonspacelike geodesic in a Lorentzian
manifold(M,g) (of dimM � 3 if γ is null) without conjugate points. Then,

lim inf
s→+∞

∫ s

−s
R̃ic(γ ′) dt � 0.

Moreover, if γ is timelike then equality holds if and only if

K(Π)= 0,

for every Lorentzian tangent plane containingγ ′(t). In the case thatγ is null, equality
holds if and only if

Kγ ′(t)(Π)= 0,

for every degenerate tangent planeΠ containingγ ′(t).

4. The Bochner technique on Lorentzian manifolds

4.1. Focusing aims and difficulties

Classically, the Bochner technique consists of the vanishing of certain geometric objects
of interest on a Riemannian manifold under the assumption of positive or negative definite
curvature everywhere. This technique constitutes now a basic topic in Riemannian geome-
try, and its extension to Lorentzian geometry is not by any means obvious. Although the
actual development of the Bochner technique has been impressive [66, Chapter 7], [93]
and references therein, [85], we recall two pioneering and important results for testing the
serious difficulties of a direct application of the Bochner technique to Lorentzian geometry.

THEOREM. Let(M,g) be ann(� 2)-dimensional Riemannian manifold such that its Ricci
tensor is negative semi-definite everywhere and negative definite at some pointp0. If X is
a Killing vector field on(M,g) such that the function|X|2 has a relative maximum, then
X = 0.
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This result is essentially the famous theorem by Bochner in [16], including the improve-
ment by Wu in [92]. A well-known geometric consequence can be derived from this result
on the isometry Lie group Iso(M,g) of a compact Riemannian manifold(M,g), which is
also compact (see, for instance, [51, Chapter VI, Theorem 3.4]). In fact, taking into account
that, under the compactness assumption, the Lie algebra of Iso(M,g) is naturally identified
with the Lie algebra of Killing vector fields on(M,g), we have

COROLLARY. Let(M,g) be a compact Riemannian manifold. If its Ricci tensor is negative
semi-definite everywhere and negative definite at some pointp0, thenIso(M,g) is finite.

The proof of the Bochner theorem follows from the elementary maximum principle for
subharmonic functions and the following well-known formula:

�
1

2
|X|2 = |∇X|2 − R̃ic(X), (4.1)

where� is the Laplacian on functions,|X|2 = g(X,X) and |∇X|2 = g(∇X,∇X) is the
square norm of the(1,1)-tensor field∇X.

Of course, formula (4.1) remains true for a Killing vector fieldX on any semi-
Riemannian manifold(M,g). But:
• Although the D’Alembertian� of a Lorentzian metricg is defined formally equal

to the Laplacian in the Riemannian case, and formula (4.1) holds if we change the
Laplacian� to the D’Alembertian�, it should be noticed that� is not an elliptic
operator, and so�f = 0 on a compact Lorentzian manifold does not imply thatf is
constant.

• The induced metric on(1,1)-tensor fields is indefinite in the Lorentzian case and so
|∇X|2 has no definite sign, even in the case whereX is Killing.

• The negative semi-definite Ricci tensor assumption is not realistic in the Lorentzian
case. Note that if Ric= λg holds and Ric is negative (or positive) semi-definite then
λ= 0.

• Finally, the isometry group Iso(M,g) of a Lorentzian manifold(M,g) is also a Lie
group. However, in general the compactness ofM does not imply that Iso(M,g) is
compact [26] (see also [78,79]).

In spite of these difficulties, the Bochner technique has been introduced in Lorentzian
manifolds [74–76,68] (see also [86]). In this section, we will summarize strategies and
main results with outlined proofs from these papers. Comments relating to the Riemannian
case will be also included. This development of the Bochner technique is indeed a part of
the analysis on manifolds in the Lorentzian case (compact Lorentzian manifolds are also
of interest in physics [95]).

4.2. Integral approach in the compact case

Let (M,g) be an arbitrary semi-Riemannian manifold, then for anyX ∈X(M) we have

X div(X)=−R̃ic(X)+ div(∇XX)− trace
(
A2
X

)
, (4.2)
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where div denotes the divergence on(M,g) andAX is the linear operator onTpM de-
fined byAX(v) = −∇vX, for any v ∈ TpM . Note that it satisfies traceAX = −div(X).
Furthermore, ifX is assumed to be Killing then div(X) = 0, ∇ 1

2|X|2 = −∇XX and
trace(A2

X)=−|∇X|2 and so (4.2) reduces to Eq. (4.1).
Since div(div(X)X) = X div(X) + (div(X))2, if M is compact, we can deduce

from (4.2), making use of the classical divergence theorem,∫
M

{
R̃ic(X)+ trace

(
A2
X

)− (traceAX)
2}dµg = 0, (4.3)

wheredµg is the canonical measure induced fromg.
In the Riemannian case the differenceδX = trace(A2

X)− (traceAX)2 is signed in some
relevant cases, e.g.,δX � 0 if X is conformal (Killing, in particular), andδX � 0 if X
is harmonic. However, none of them yield a constant sign forδX in the Lorentzian case
even assuming thatX has a fixed causal character. For instance, ifX is Killing, the linear
operatorAX is skew-adjoint with respect to the Lorentzian metricg. Hence, traceAX =
−div(X)= 0 andδX = trace(A2

X). Contrary to the definite case, the last equality does not
give a sign toδX.

We are going to introduce a special kind of vector fields on Lorentzian manifolds which
allow us to avoid these difficulties. Recall that areference frameon a Lorentzian manifold
(M,g) is a vector fieldZ onM which satisfiesg(Z,Z)=−1. In general relativity, a ref-
erence frame in spacetime is seen as a vector field such that each of its integral curves is
an observer (i.e. a particle with unit mass) [77, Definition 2.3.1]. IfZ is a reference frame
in (M,g) then we can write the following orthogonal decomposition:

TpM = Span{Zp} ⊕Z⊥
p ,

at anyp ∈M , whereZ⊥
p = (Span{Zp})⊥ is theg-orthogonal complement of Span{Zp}.

Clearly,Z⊥
p is spacelike andAZ-invariant. So, we callA′

Z the corresponding linear oper-
ator ofZ⊥

p . Besides the algebraic advantages ofA′
Z overAZ , A′

Z contains almost all the
information thatAZ does. In fact, a direct computation yields

traceA′
Z = traceAZ and trace

(
A′2
Z

)= trace
(
A2
Z

)
.

Consequently, for a reference frameZ the differenceδZ is expressed asδZ = trace(A′2
Z)−

(traceA′
Z)

2. Now we can decomposeA′
Z = S′Z + H ′

Z , at anyp ∈M , whereS′Z (respec-
tively H ′

Z) is self-adjoint (respectively skew-adjoint) with respect to the positive definite
inner productg|Z⊥

p
. An easy algebraic argument shows thatδZ =−σ ′Z+ trace(H ′2

Z), where

σ ′Z = (traceS′Z)2 − trace(S′2Z). Now we are in a position to state [75]

THEOREM. Let (M,g) be ann-dimensional compact Lorentzian manifold. For any refer-
ence frameZ on (M,g) we have∫

M

{
R̃ic(Z)− σ ′Z + trace

(
H ′2

Z

)}
dµg = 0.
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We will call this integral formula theLorentzian Bochner formula.
If dimM = 2 thenA′

Z = λ(p)I , at anyp ∈M , and thereforeH ′
Z = 0 andσ ′Z = 0, taking

into account that the Gauss curvature of(M,g) satisfiesK=−R̃ic(Z), then the Lorentzian
Bochner formula reduces to

∫
M
K dµg = 0, which is the well-known Gauss–Bonnet theo-

rem for time-orientable Lorentzian metrics (and hence for any Lorentzian metric) onM .
Note that trace(H ′2

Z) � 0 and equality holds atp ∈M if and only if H ′
Z = 0 at this

pointp, and so we get [75]

THEOREM. Let (M,g) be ann(� 3)-dimensional compact Lorentzian manifold and letZ

be a reference frame on(M,g). If σ ′Z � 0, then∫
M

R̃ic(Z)dµg � 0

and equality holds if and only ifH ′
Z = 0 andσ ′Z = 0.

There are remarkable families of reference framesZ of geometric interest which sat-
isfy the assumptionσ ′Z � 0. In fact, a reference frameZ is said to bespatially con-
formal (respectivelyspatially stationaryor rigid) if (LZg)(U,V ) = 2ρg(U,V ), where
ρ :M→ R (respectively(LZg)(U,V )= 0) for all U,V⊥Z [77,33]. It is easy to see that
a reference frameZ is spatially conformal (respectively spatially stationary) if and only
if tA′

Z = −A′
Z − 2ρI , wheretA′

Z denotes the adjoint operator ofA′
Z andI the identity

transformation ofZ⊥
p (respectivelytA′

Z =−A′
Z). A Lorentzian manifold which admits a

timelike conformal (respectively Killing) vector field is calledconformally stationary[3]
(respectivelystationary).

The study of conformal vector fields in semi-Riemannian geometry is a subject of inter-
est [54] and the existence of a timelike conformal (or Killing) vector field on a Lorentzian
manifold has been shown to be useful in solving several mathematical problems [47,71,
2–5] (see also Section 3.4).

Note that ifX is a timelike conformal (respectively Killing) vector field on(M,g), then
the reference frameZ = (1/

√−g(X,X))X is spatially conformal (respectively spatially
stationary). However, there exist spatially conformal reference frames which cannot be
obtained in that way. In fact, if dimM = 2, then every reference frame is indeed spatially
conformal. But a (time-orientable) incomplete Lorentzian torus does not admit a timelike
conformal vector field as showed in Section 2.2.

If Z is a spatially conformal reference frame thenS′Z =−ρI andσ ′Z = (n−1)(n−2)ρ2.
Therefore, we get [75]

THEOREM. Let (M,g) be ann(� 3)-dimensional compact Lorentzian manifold. If (M,g)
admits a spatially conformal reference frameZ, then∫

M

R̃ic(Z)dµg � 0

and equality holds if and only ifA′
Z = 0.
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The equality case in previous result can be improved by assuming thatZ is rigid. Taking
into account that whenZ is rigid, A′

Z = 0 holds if and only ifZ is irrotational (i.e. the
distributionZ⊥ is integrable), we get [74]

COROLLARY. Let (M,g) be ann(� 3)-dimensional compact Lorentzian manifold admit-
ting a rigid reference frameZ. Then∫

M

R̃ic(Z)dµg � 0

and equality holds if and only ifZ is irrotational.

As a direct consequence we have [75]

COROLLARY. If an n(� 3)-dimensional compact Lorentzian manifold(M,g) is Einstein
with Ric = λg, λ ∈ R, and admits a spatially conformal reference frame(in particular,
a timelike conformal vector field), thenλ� 0.

Kamishima proved in [47, Theorem A] that if a compact Lorentzian manifold with con-
stant sectional curvaturec ∈ R admits a timelike Killing vector field, thenc � 0. So the
previous corollary is a clear extension to his result. It should be noted that the tools by
Kamishima in [47] are strongly depending on the Lie group machinery of Lorentzian space
forms, and therefore very different from the ones involved in this technique.

The following classification theorem was given in [74] for the Killing case and later
extended in [75] to the conformal case.

THEOREM. Let (M,g) be a Ricci-flatn(� 3)-dimensional compact Lorentzian manifold.
If (M,g) admits a timelike conformal vector fieldX, then

X is parallel, the first Betti number ofM is not zero and the Levi-Civita connection ofg is
Riemannian.

Moreover, if one of the following conditions holds:
(1) (M,g) is homogeneous,
(2) (M,g) is flat (in particular if n= 3),
(3) n= 4,

then(M,g) is isometric(up to a finite covering in the cases(2) and(3)) to a flatn-dimen-
sional Lorentzian torus.

That a flat compact Lorentzian manifold admitting a timelike Killing vector field is
affinely diffeomorphic to a Riemannian manifold with nonzero first Betti number was
proved by Kamishima in [47, Theorem A(1)]. The previous theorem then is a wide ex-
tension of his result.

A compact Ricci-flat Lorentzian manifold admitting a timelike conformal vector field
is not necessarily either flat or diffeomorphic (up to a covering) to ann-torus. A (nonho-
mogeneous) counterexample for any dimensionn � 5 can be constructed as follows. Let
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N ⊂ CPm be a compact complex hypersurface with degreem + 1 of the complex pro-
jective spaceCPm with complex dimensionm � 3. For instance, ifm = 3, N is a K3
complex surface. The first Chern class ofN vanishes and therefore, by a well-known
theorem by Yau [94],N admits a Ricci-flat but nonflat Riemannian metricgN . If we

put M = S1× (k)· · · ×S1 × N , endowed with the Lorentzian metric−dθ2 + gN , where
dθ2 is the usual Riemannian metric ofS1, whenk = 1, and with the Lorentzian metric
−dθ2

1 + dθ2
2 + · · · + dθ2

k + gN whenk � 2, then we get the desired example.
On the other hand, it is known that there exist flatn-dimensional compact Lorentzian

manifolds,n� 3, which cannot be covered by ann-torus (see [47] and references therein).
Thus, the previous result can be seen as an obstruction to the existence of timelike confor-
mal vector fields on these Lorentzian manifolds.

Whereas a Ricci-flat homogeneous Riemannian manifold must be flat [1], there exist
Ricci-flat homogeneous Lorentzian manifolds which are not flat [17]. In a natural way, the
following question arises.

When is a Ricci-flat homogeneous Lorentzian manifold flat?

An answer is then given in the above theorem.
We end this subsection giving another application of the previous result. Making use of

the De Rham–Wu decomposition theorem [91] we get the following obstruction [75].

THEOREM. If an n(� 3)-dimensional compact Lorentzian manifold(M,g) is simply-
connected and satisfiesRic(Y,Y ) � 0 for all timelike Y, then (M,g) admits no timelike
conformal vector field.

4.3. Hessian approach in the noncompact case

In the last subsection, the previous strategy for applying the Bochner technique on Lo-
rentzian manifolds will be changed. Compactness is not assumed and projective (in par-
ticular affine) vector fields are considered. These vector fields have a rich, wide geome-
try [27,67,6] which has also shown to be useful in physics to analyze spacetime (see
[27, Chapters 7, 8] and references therein); in particular the existence of the symmetry of
a spacetime defined by a projective or affine vector field has provided new exact solutions
for the Einstein equation.

Recall that a vector fieldX on a Lorentzian9 manifold(M,g) is said to beprojectiveif its
local flows preserve geodesics of(M,g) in a set-theoretic sense. If the fluxes ofX preserve
geodesics in a mapping sense then it is calledaffine. It is known thatX is projective if and
only if there exists a 1-formµ onM such that

(LX∇)(U,V )= µ(U)V +µ(V )U,

for all U,V ∈X (M), in factµ= (1/(n+ 1))d(div(X)) (see [67, Propositions 5.27, 5.28],
for instance). Note thatX is affine ifµ= 0.

9or semi-Riemannian
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Therefore, ifX is projective, we get

∇U∇V X−∇∇UV X =R(U,X)V +µ(U)V +µ(V )U,

for all U,V ∈X(M).
Now, we want to compute the Hessian of the function1

2|X|2, whereX is a projective
vector field onM . Using the previous formula we get(

Hess
1

2
|X|2

)
(U,V ) = −g(R(U,X)X,V )+ g(∇UX,∇V X)

+µ(U)g(X,V )+µ(V )g(X,U), (4.4)

for all U,V ∈X(M).
Now, we are in a position to state [76]

THEOREM. Let (M,g) be ann(� 2)-dimensional Lorentzian manifold and letX be a
projective vector field onM . If the function|X|2 attains a relative maximum at somep0 ∈
M andXp0 is causal, then

g
(
R(v,Xp0)Xp0, v

)
� 0,

for all v ∈ Tp0M orthogonal toXp0, and therefore

R̃ic(Xp0)� 0.

In particular:
(a) If Xp0 is timelike, then the sectional curvature of any(nondegenerate) planeΠ in

Tp0M containingXp0 satisfies

K(Π)� 0, (4.5)

and if the equality holds for such planesΠ , then∇vX = 0 for all v ⊥Xp0.
(b) If Xp0 is null, then∇Xp0

X is proportional toXp0. In the casen � 3, the null sec-
tional curvature with respect toXp0 of any degenerate planeΠ containingXp0

satisfies

KXp0
(Π)� 0.

If the equality holds for all such planes, then∇vXp0 is proportional toXp0 for all
v ⊥Xp0.

We only give a sketch of the proof for the timelike case (the lightlike case works
similarly). As p0 is a critical point of the function|X|2 theng(∇wX,Xp0) = 0, for all
w ∈ Tp0M . WhenXp0 is timelike, the fact∇wX ⊥ Xp0 impliesg(∇wX,∇wX) � 0, and
equality holds for some vectorw if and only if ∇wX = 0. On the other hand, ifp0 is
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assumed to be a relative maximum, then(Hess1
2|X|2)p0 must be negative semi-definite.

Therefore, from (4.4) we get

g
(
R(v,Xp0)Xp0, v

)
� g(∇vX,∇vX)� 0, (4.6)

for all v ∈ Tp0M orthogonal toXp0. Now (4.6) clearly implies (4.5). Moreover,∇vX is
spacelike and, therefore, the consequence of the equality in (4.5) follows on from (4.6).

As a consequence previous result yields [76]

COROLLARY. If an n(� 3)-dimensional compact Lorentzian manifold(M,g) is Einstein
with Ric= λg, λ ∈R, and admits a timelike projective vector field, thenλ� 0.

Now, the assumption in the previous theorem on the vector field is changed to a stronger
one. Suppose thatX is affine and leave the remaining assumptions the same. From (4.4)
with µ= 0 we get

0�
(

Hess
1

2
|X|2

)
p0

(Xp0,Xp0)= g(∇Xp0
X,∇Xp0

X),

which implies∇Xp0
X = 0. We can state then the following result [76].

PROPOSITION. Let(M,g) be ann(� 2)-dimensional Lorentzian manifold and letX be an
affine vector field onM . If the function|X|2 attains a relative maximum at somep0 ∈M ,
Xp0 is timelike and

K(Π)= 0,

for any planeΠ in Tp0M containingXp0, then(∇X)p0 = 0.

We end this subsection with a result which shows how the Bochner technique can be
applied to get nonexistence results of certain types of Lorentzian manifolds.

PROPOSITION. Let (M,g) be a Lorentzian manifold with dimension2n, n� 1, and letX
be a Killing vector field on(M,g). Assume the function|X|2 attains a local minimum at
p0 ∈M and|X|2(p0) < 0. Then there is a tangent planeΠ ⊂ TpM such thatXp ∈Π and

K(Π)� 0.

The proof easily follows if we note that the spacelike subspaceX⊥
p0

of Tp0M is AX-
invariant and has dimX⊥

p = 2n − 1. Therefore, the corresponding operatorA′
X of X⊥

p0
must have at least an eigenvalue which is zero becauseA′

X is skew-adjoint. Hence, there
existsv ∈X⊥

p0
, v �= 0, such that∇v0X = 0.

On the other hand,(Hess1
2|X|2)p0 must be positive semi-definite becausep0 is as-

sumed to be a local minimum and therefore (4.4) is claimed to getK(Π) � 0, where
Π = Span{v,Xp0}.
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COROLLARY. There exists no2n(� 4)-dimensional compact Lorentzian manifold which
admits a timelike Killing vector field and satisfies

K(Π) < 0,

for any Lorentzian tangent planeΠ .

Using the Gauss–Bonnet–Chern formula [21], one can deduce that an even dimensional
compact semi-Riemannian manifold with constant sectional curvaturek �= 0 has nonzero
Euler–Poincaré characteristic. Therefore, there exists no even dimensional compact Lo-
rentzian manifold with nonzero constant sectional curvature (recall that, for the case of
positive constant sectional curvature, this assertion is contained in the consequence of the
Klinger theorem stated in Section 2.3).

Note that only the assumption on the behavior of the sectional curvature on Lorentzian
planes, in previous corollary, does not give in general a concrete sign to the integrand
function in the Gauss–Bonnet–Chern formula.
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