

1 Matrix Algebra
and Solution
of Matrix Equations

1.1 INTRODUCTION

Computers are best suited for repetitive calculations and for organizing data into
specialized forms. In this chapter, we review the matrix and vector notation and
their manipulations and applications. Vector is a one-dimensional array of numbers
and/or characters arranged as a single column. The number of rows is called the
order of that vector. Matrix is an extension of vector when a set of numbers and/or
characters are arranged in rectangular form. If it has M rows and N column, this
matrix then is said to be of order M by N. When M = N, then we say this square
matrix is of order N (or M). It is obvious that vector is a special case of matrix when
there is only one column. Consequently, a vector is referred to as a column matrix
as opposed to the row matrix which has only one row. Braces are conventionally
used to indicate a vector such as {V} and brackets are for a matrix such as [M].

In writing a computer program, DIMENSION or DIM statements are necessary
to declare that a certain variable is a vector or a matrix. Such statements instruct
the computer to assign multiple memory spaces for keeping the values of that vector
or matrix. When we deal with a large number of different entities in a group, it is
better to arrange these entities in vector or matrix form and refer to a particular
entity by specifying where it is located in that group by pointing to the row (and
column) number(s). Such as in the case of having 100 numbers represented by the
variable names A, B, …, or by A(1) through A(100), the former requires 100 different
characters or combinations of characters and the latter certainly has the advantage
of having only one name. The A(1) through A(100) arrangement is to adopt a vector;
these numbers can also be arranged in a matrix of 10 rows and 10 columns, or 20
rows and five columns depending on the characteristics of these numbers. In the
cases of collecting the engineering data from tests of 20 samples during five different
days, then arranging these 100 data into a matrix of 20 rows and five columns will
be better than of 10 rows and 10 columns because each column contains the data
collected during a particular day.

In the ensuing sections, we shall introduce more definitions related to vector
and matrix such as transpose, inverse, and determinant, and discuss their manipula-
tions such as addition, subtraction, and multiplication, leading to the organizing of
systems of linear algebraic equations into matrix equations and to the methods of
finding their solutions, specifically the Gaussian Elimination method. An apparent
application of the matrix equation is the transformation of the coordinate axes by a
© 2001 by CRC Press LLC

rotation about any one of the three axes. It leads to the derivation of the three basic
transformation matrices and will be elaborated in detail.

Since the interactive operations of modern personal computers are emphasized
in this textbook, how a simple three-dimensional brick can be displayed will be
discussed. As an extended application of the display monitor, the transformation of
coordinate axes will be applied to demonstrate how animation can be designed to
simulate the continuous rotation of the three-dimensional brick. In fact, any three-
dimensional object could be selected and its motion animated on a display screen.

Programming languages, FORTRAN, QuickBASIC, MATLAB, and Mathe-
matica are to be initiated in this chapter and continuously expanded into higher
levels of sophistication in the later chapters to guide the readers into building a
collection of their own programs while learning the computational methods for
solving engineering problems.

1.2 MANIPULATION OF MATRICES

Two matrices [A] and [B] can be added or subtracted if they are of same order, say
M by N which means both having M rows and N columns. If the sum and difference
matrices are denoted as [S] and [D], respectively, and they are related to [A] and
[B] by the formulas [S] = [A] + [B] and [D] = [A]-[B], and if we denote the elements
in [A], [B], [D], and [S] as aij, bij, dij, and sij for i = 1 to M and j = 1 to N, respectively,
then the elements in [S] and [D] are to be calculated with the equations:

(1)

and

(2)

Equations 1 and 2 indicate that the element in the ith row and jth column of [S]
is the sum of the elements at the same location in [A] and [B], and the one in [D]
is to be calculated by subtracting the one in [B] from that in [A] at the same location.
To obtain all elements in the sum matrix [S] and the difference matrix [D], the index
i runs from 1 to M and the index j runs from 1 to N.

In the case of vector addition and subtraction, only one column is involved (N =
1). As an example of addition and subtraction of two vectors, consider the two
vectors in a two-dimensional space as shown in Figure 1, one vector {V1} is directed
from the origin of the x-y coordinate axes, point O, to the point 1 on the x-axis
which has coordinates (x1,y1) = (4,0) and the other vector {V2} is directed from the
origin O to the point 2 on the y-axis which has coordinates (x2,y2) = (0,3). One may
want to find the resultant of {R} = {V1} + {V2} which is the vector directed from
the origin to the point 3 whose coordinates are (x3,y3) = (4,3), or, one may want to
find the difference vector {D} = {V1} – {V2} which is the vector directed from the
origin O to the point 4 whose coordinates are (x4,y4) = (4,–3). In fact, the vector
{D} can be obtained by adding {V1} to the negative image of {V2}, namely {V2–}
which is a vector directed from the origin O to the point 5 whose coordinates are
(x5,y5). Mathematically, based on Equations 1 and 2, we can have:

s a bij ij ij= +

d a bij ij ij= −
© 2001 by CRC Press LLC

and

When Equation 1 is applied to two arbitrary two-dimensional vectors which
unlike {V1}, {V2}, and {V2–} but are not on either one of the coordinate axes, such
as {D} and {E} in Figure 1, we then have the sum vector {F} = {D} + {E} which
has components of 1 and –2 units along the x- and y-directions, respectively. Notice
that O467 forms a parallelogram in Figure 1 and the two vectors {D} and {E} are
the two adjacent sides of the parallelogram at O. To find the sum vector {F} of {D}
and {E} graphically, we simply draw a diagonal line from O to the opposite vertex
of the parallelogram — this is the well-known Law of Parallelogram.

It should be evident that to write out a vector which has a large number of rows
will take up a lot of space. If this vector can be rotated to become from one column
to one row, space saving would then be possible. This process is called transposition
as we will be leading to it by first introducing the length of a vector.

For the calculation of the length of a two-dimensional or three-dimensional vector,
such as {V1} and {V2} in Figure 1, it would be a simple matter because they are
oriented along the directions of the coordinate axes. But for the vectors such as {R}

FIGURE 1. Two vectors in a two-dimensional space.

R V V{ } = { } + { } = 





+ 





= 





1 2

4

0

0

3

4

3

D V V{ } = { } − { } = 





− 





=
−







1 2

4

0

0

3

4

3

© 2001 by CRC Press LLC

and {D} shown in Figure 1, the calculation of their lengths would need to know the
components of these vectors in the coordinate axes and then apply the Pythagorean
theorem. Since the vector {R} has components equal to rx = 4 and ry = 3 units along
the x- and y-axis, respectively, its length, here denoted with the symbol � �, is:

(3)

To facilitate the calculation of the length of a generalized vector {V} which has
N components, denoted as v1 through vN, its length is to be calculated with the
following formula obtained from extending Equation 3 from two-dimensions to N-
dimensions:

(4)

For example, a three-dimensional vector has components v1 = vx = 4, v2 = vy =
3, and v3 = vz = 12, then the length of this vector is �{V}� = [42 + 32 + 122]0.5 = 13.
We shall next show that Equation 4 can also be derived through the introduction of
the multiplication rule and transposition of matrices.

1.2 MULTIPLICATION OF MATRICES

A matrix [A] of order L (rows) by M (columns) and a matrix [B] of order M
by N can be multiplied in the order of [A][B] to produce a new matrix [P] of order
L by N. [A][B] is said as [A] post-multiplied by [B], or, [B] pre-multiplied by [A].
The elements in [P] denoted as pij for i = 1 to N and j = 1 to M are to be calculated
by the formula:

(5)

Equation 5 indicates that the value of the element pij in the ith row and jth column
of the product matrix [P] is to be calculated by multiplying the elements in the ith
row of the matrix [A] by the corresponding elements in the jth column of the matrix
[B]. It is therefore evident that the number of elements in the ith row of [A] should
be equal to the number of elements in the jth column of [B]. In other words, to
apply Equation 5 for producing a product matrix [P] by multiplying a matrix [A]
on the right by a matrix [B] (or, to say multiplying a matrix [B] on the left by a
matrix [A]), the number of columns of [A] should be equal to the number of row
of [B]. A matrix [A] of order L by M can therefore be post-multiplied by a matrix
[B] of order M by N; but [A] cannot be pre-multiplied by [B] unless L is equal to N!

As a numerical example, consider the case of a square, 3 × 3 matrix post-
multiplied by a rectangular matrix of order 3 by 2. Since L = 3, M = 3, and N = 2,
the product matrix is thus of order 3 by 2.

R r rx y{ } = +[] = +[] =2 2
0 5

2 2 0 5
4 3 5

. .

V v v vN{ } = + +…+[]1
2

2
2 2 0 5.

p a bij ik kj
k

M
=

=∑ 1
© 2001 by CRC Press LLC

More exercises are given in the Problems listed at the end of this chapter for
the readers to practice on the matrix multiplications based on Equation 5.

It is of interest to note that the square of the length of a vector {V} which has
N components as defined in Equation 4, �{V}�2, can be obtained by application of
Equation 5 to {V} and its transpose denoted as {V}T which is a row matrix of order
1 by N (one row and N columns). That is:

(6)

For a L-by-M matrix having elements eij where the row index i ranges from 1
to L and the column index j ranges from 1 to M, the transpose of this matrix when
its elements are designated as trc will have a value equal to ecr where the row index
r ranges from 1 to M and the column index c ranges from 1 to M because this
transpose matrix is of order M by L. As a numerical example, here is a pair of a
3 × 2 matrix [G] and its 2 × 3 transpose [H]:

If the elements of [G] and [H] are designated respectively as gij and hij, then
hij = gji. For example, from above, we observe that h12 = g21 = 5, h23 = g32 = –1, and
so on. There will be more examples of applications of Equations 5 and 6 in the
ensuing sections and chapters.

Having introduced the transpose of a matrix, we can now conveniently revisit
the addition of {D} and {E} in Figure 1 in algebraic form as {F} = {D} + {E} =
[4 –3]T + [–3 1]T = [4+(–3) –3+1]T = [1 –2]T. The resulting sum vector is indeed
correct as it is graphically verified in Figure 1. The saving of space by use of
transposes of vectors (row matrices) is not evident in this case because all vectors
are two-dimensional; imagine if the vectors are of much higher order.

Another noteworthy application of matrix multiplication and transposition is to
reduce a system of linear algebraic equations into a simple, (or, should we say a
single) matrix equation. For example, if we have three unknowns x, y, and z which
are to be solved from the following three linear algebraic equations:

1 2 3

4 5 6

7 8 9

6 3

5 2

4 1

1 6 2 5 3 4

4 6 5 5 6 4

7 6 8 5 9 4

1 3 2 2 3 1

4 3 5 2 6 1

7

















−
−
−

















=
() + () + ()
() + () + ()
() + () + ()

−() + −() + −()
−() + −() + −()

−−() + −() + −()

















=
+ + − − −
+ + − − −
+ + − − −

















=
−
−
−

















3 8 2 9 1

6 10 12 3 4 3

24 25 24 12 10 5

42 40 32 21 16 9

28 10

73 27

114 46

V V V v v vT{ } = { } { } = + +…+2

1
1

2
2

3
2

G H G T[] =
−
−
−

















[] = [] =
− − −





× ×3 2 2 3

6 3

5 2

4 1

6 5 4

3 2 1
 and
© 2001 by CRC Press LLC

(7)

Let us introduce two vectors, {V} and {R}, which contain the unknown x, y,
and z, and the right-hand-side constants in the above three equations, respectively.
That is:

(8)

Then, making use of the multiplication rule of matrices, Equation 5, the system
of linear algebraic equations, 7, now can be written simply as:

(9)

where the coefficient matrix [C] formed by listing the coefficients of x, y, and z in
first equation in the first row and second equation in the second row and so on. That is,

There will be more applications of matrix multiplication and transposition in
the ensuing chapters when we discuss how matrix equations, such as [C]{V} = {R},
can be solved by employing the Gaussian Elimination method, and how ordinary
differential equations are approximated by finite differences will lead to the matrix
equations. In the abbreviated matrix form, derivation and explanation of computa-
tional methods becomes much simpler.

Also, it can be observed from the expressions in Equation 8 how the transposition
can be conveniently used to define the two vectors not using the column matrices
which take more lines.

FORTRAN VERSION

Since Equations 1 and 2 require repetitive computation of the elements in the
sum matrix [S] and difference matrix [D], machine could certainly help to carry out
this laborous task particularly when matrices of very high order are involved. For
covering all rows and columns of [S] and [D], looping or application of DO statement
of the FORTRAN programming immediately come to mind. The following program
is provided to serve as a first example for generating [S] and [D] of two given
matrices [A] and[B]:

x y z

x y z

x

+ + =
+ + =
− − =

2 3 4

5 6 7 8

2 37 9

V x y z

x

y

z

and R
T T{ } = [] =

















{ } = [] =
















 4 8 9

4

8

9

C V R[]{ } = { }

C[] =
− −

















1 2 3

5 6 7

2 3 0
© 2001 by CRC Press LLC

The resulting display on the screen is:

To review FORTRAN briefly, we notice that matrices should be declared as
variables with two subscripts in a DIMENSION statement. The displayed results of
matrices A and B show that the values listed between // in a DATA statment will be
filling into the first column and then second column and so on of a matrix. To instruct
the computer to take the values provided but to fill them into a matrix row-by-row,
a more explicit DATA needs to be given as:

DATA ((A(I,J),J = 1,3),I = 1,3)/1.,4.,7.,2.,5.,8.,3.,6.,9./

When a number needs to be repeated, the * symbol can be conveniently applied
in the DATA statement exemplified by those for the matrix [B].

Some sample WRITE and FORMAT statements are also given in the program.
The first * inside the parentheses of the WRITE statement when replaced by a
number allows a device unit to be specified for saving the message or the values of
the variables listed in the statement. * without being replaced means the monitor
will be the output unit and consequently the message or the value of the variable(s)
will be displayed on screen. The second * inside the parentheses of the WRITE
© 2001 by CRC Press LLC

statement if not replaced by a statement number, in which formats for printing the
listed variables are specified, means “unformatted” and takes whatever the computer
provides. For example, statement number 15 is a FORMAT statement used by the
WRITE statement preceding it. There are 18 variables listed in that WRITE statement
but only six F5.1 codes are specified. F5.1 requests five column spaces and one digit
after the decimal point to be used to print the value of a listed variable. / in a
FORMAT statement causes the print/display to begin at the first column of the next
line. 6F5.1 is, however, enclosed by the inner pair of parentheses that allows it to
be reused and every time it is reused the next six values will be printed or displayed
on next line. The use (*,*) in a WRITE statement has the convenience of viewing
the results and then making a hardcopy on a connected printer by pressing the PrtSc
(Print Screen) key.

INTERACTIVE OPERATION

Program MatxAlgb.1 only allows the two particular matrices having their ele-
ments specified in the DATA statement to be added and subtracted. For finding the
sum matrix [S] and difference matrix [D] for any two matrices of same order N, we
ought to upgrade this program to allow the user to enter from keyboard the order
N and then the elements of the two matrices involved. This is interactive operation
of the program and proper messages should be given to instruct the user what to do
which means the program should be user-friendly. The program MatxAlgb.2 listed
below is an attempt to achieve that goal:
© 2001 by CRC Press LLC

The interactive execution of the problem solved by the previous version Matxalgb.1
now can proceed as follows:
© 2001 by CRC Press LLC

The results are identical to those obtained previously. The READ statement
allows the values for the variable(s) to be entered via keyboard. A WRITE statement
has no variable listed serves for need of skipping a line to provide better readability
of the display. Also the I and E format codes are introduced in the statement 10. Iw
where w is an integer in a FORMAT statement requests w columns to be provided
for displaying the value of the integer variable listed in the WRITE statement, in
which the FORMAT statement is utilized. Ew.d where w and d should both be integer
constants requests w columns to be provided for display a real value in the scientific
form and carrying d digits after the decimal point. Ew.d format gives more feasibility
than Fw.d format because the latter may cause an error message of insufficient width
if the value to be displayed becomes too large and/or has a negative sign.

MORE PROGRAMMING REVIEW

Besides the operation of matrix addition and subtraction, we have also discussed
about the transposition and multiplication of matrices. For further review of computer
programming, it is opportune to incorporate all these matrix algebraic operations
into a single interactive program. In the listing below, three subroutines for matrix
addition and subtraction, transposition, and multiplication named as MatrixSD,
Transpos, and MatxMtpy, respectively, are created to support a program called
MatxAlgb (Matrix Algebra).
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

The above program shows that Subroutines are independent units all started with
a SUBROUTINE statement which includes a name followed by a pair of parentheses
enclosing a number of arguments. The Subroutines are called in the main program
by specifying which variables or constants should serve as arguments to connect to
the subroutines. Some arguments provide input to the subroutine while other argu-
ments transmit out the results determined by the subroutine. These are referred to
as input arguments and output arguments, respectively. In many instances, an argu-
ment may serve a dual role for both input and output purposes. To construct as an
independent unit, a subprogram which can be in the form of a SUBROUTINE, or
FUNCTION (to be elaborated later) must have RETURN and END statements.

It should also be remarked that program MatxAlgb is arranged to handle any
matrix having an order of no higher than 25 by 25. For this restriction and for having
the flexibility of handling any matrices of lesser order, the Lmax, Mmax, and Nmax
arguments are added in all three subroutines in order not to cause any mismatch of
matrix sizes between the main program and the called subroutine when dealing with
any L, M, and N values which are interactively entered via keyboard.

Computed GOTO and arithmetic IF statements are also introduced in the pro-
gram MatxAlgb. GOTO (i,j,k,…) C will result in going to (execute) the statement
numbered i, j, k, and so on when C has a value equal to 1, 2, 3, and so on, respectively.
IF (Expression) a,b,c will result in going to the statement numbered a, b, or c if the
value calculated by the expression or a single variable is less than, equal to, or,
greater than zero, respectively.

It is important to point out that in describing any derived procedure of numerical
computation, indicial notation such as Equation 5 should always be preferred to
facilitate programming. In that notation, the indices are directly used, or, literally
translated into the index variables for the DO loops as can be seen in Subroutine
MatxMtpy which is developed according to Equation 5. Subroutine MatrixSD is
another example of literally translating Equations 1 and 2. For defining the values
of the element in the following tri-diagonal band matrix:
© 2001 by CRC Press LLC

we ought not to write 25 separate statements for the 25 elements in this matrix but
derive the indicial formulas for i,j = 1 to 5:

and

Then, the matrix [C] can be generated with the DO loops as follows:

The above short program also demonstrates the use of the CONTINUE state-
ment for ending the DO loop(s), and the logical IF statements. The true, or, false
condition of the expression inside the outer pair of parentheses directs the computer
to execute the statement following the parentheses or the next statement immediately
below the current IF statement. Reader may want to practice on deriving indicial
formulas and then write a short program for calculating the elements of the matrix:

(10)

C[] =
−

−
−

−























1 2 0 0 0

3 1 2 0 0

0 3 1 2 0

0 0 3 1 2

0 0 0 3 1

c if j i or j iij = > + < −0 2 2, , ,

ci i, ,+ =1 2

ci i, − = −1 3

M[] =

































1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

3 2 1 0 0 0 0 0

4 3 2 1 0 0 0 0

5 4 3 2 1 0 0 0

6 5 4 3 2 1 0 0

7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

As another example of writing a computer program based on indicial notation,
consider the case of calculating ex based on the infinite series:

(11)

With the understanding that 0! = 1, we have expressed the series as a summation
involving the index i which ranges from zero to infinity. A FUNCTION ExpoFunc
can be developed for calculating ex based on Equation 11 and taking only a finite
number of terms for a partial sum of the series when the contribution of additional
term is less than certain percentage of the sum in magnitude, say 0.001%. This
FUNCTION may be arranged as:

To further show the advantage of adopting vector and matrix notation, here let
us apply FUNCTION ExpoFunc to examine the surface z(x,y) = ex + y above the
rectangular area 0≤x≤2.0 and 0≤y≤1.5. The following program, ExpTest, will enable
us to compare the values of ex + y generated by the FUNCTION ExpoFunc and by
the function EXP available in the FORTRAN library (hence called library function).

e
x x x x

i

x
i

x
i

i

i

= + + + +…+ +…

=
=

∞

∑

1
1 2 3

1 2 2

0

! ! ! !

!

The resulting printout is:

It is apparent that two approaches produce almost identical results, so the 0.001%
accuracy appears quite adequate for the x and y ranges studied. Also, arranging the
results in vector and matrix forms make the presentation much easy to comprehend.

We have experienced how the summation process for an indicial formula involv-
ing a Σ should be programmed. Another operation symbol of importance is Π which
is for multiplication of many factors. That is:

(12)

An obvious application of Equation 12 is for the calculation of factorials. For
example, 5! = Πi for i ranges from 1 to 5. As an exercise, we display the values of
1! through 50! with the following program involving a subroutine IFACTO which
calculates I! for a specified I value:

a a a ai

i

N

N

=
∏ = …

1

1 2
© 2001 by CRC Press LLC

The resulting print out is (listed in three columns for saving space)

Another application of Equation 12 is for calculation of the binomial coefficients
for a real number r and an integer k defined as:

(13)

We shall have the occasion of applying Equations 12 and 13 when the finite
differences and Lagrangian interpolation are discussed.

Sample Applications

Program MatxAlgb has been tested interactively, the following are the resulting
displays of four test cases:

r

k
r r r r k

k
r i

i
i

k





= −() −()… − +() = − +

=
∏1 2 1 1

1
!

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

QUICKBASIC VERSION

The QuickBASIC language has the advantage over the FORTRAN language
for making quick changes and then running the revised program without compilation.
Furthermore, it offers simple plotting statements. Let us have a QuickBASIC version
of the program MatxAlgb and then discuss its basic features.
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Notice that the order limit of 25 needed in the FORTRAN version is removed
in the QuickBASIC version which allows the dim statement to be adjustable. ' is
replacing C in FORTRAN to indicate a comment statement in QuickBASIC. READ
and WRITE in FORTRAN are replaced by INPUT and PRINT in QuickBASIC,
respectively. The DO loop in FORTRAN is replaced by the FOR and NEXT pair
in QuickBASIC.

Sample Applications

When the four cases previously run by the FORTRAN version are executed by
the QuickBASIC version, the screen prompting messages, the interactively entered
data, and the computed results are:
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

MATLAB APPLICATIONS

MATLAB developed by the Mathworks, Inc. offers a quick tool for matrix
manipulations. To load MATLAB after it has been set-up and stored in a subdirectory
of a hard drive, say C, we first switch to this subdirectory by entering (followed by
pressing ENTER)

C:\cd MATLAB

and then switch to its own subdirectory BIN by entering (followed by pressing ENTER)

C:\MATLAB>cd BIN

Next, we type MATLAB to obtain a display of:

C:\MATLAB>BIB>MATLAB

Pressing the ENTER key results in a display of:

>>

which indicates MATLAB is ready to begin. Let us rerun the cases of matrix
subtraction, addition, transposition, and multiplication previously considered in the
FORTRAN and QuickBASIC versions. First, we enter the matrix [A] in the form of:

>> A = [1,2;3,4]

When the ENTER key is pressed, the displayed result is:

Matrix [P]
Row 1
 0.1400E+02 0.2000E+02
Row 2
 0.3200E+02 0.4700E+02

A =

1 2

3 4

Notice that the elements of [A] should be entered row by row. While the rows
are separated by ;, in each row elements are separated by comma. After the print
out of the above results, >> sign will again appear. To eliminate the unnecessary line
space (between A = and the first row 1 2), the statement format compact can be entered
as follows (the phrase “pressing ENTER key” will be omitted from now on):

>> format compact, B = [5,6;7,8]

B =

5 6

7 8

Notice that comma is used to separate the statements. To demonstrate matrix sub-
traction and addition, we can have:

>> A-B

ans =

–4 –4

–4 –4

>> A + B

ans =

6 8

10 12

To apply MATLAB for transposition and multiplication of matrices, we can have:

>> C = [1,2,3;4,5,6]

C =

1 2 3

4 5 6

>> C'

ans =

1 4

2 5

3 6
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

>> D = [1,2,3;4,5,6]; E = [1,2;2,3;3,4]; P = D*E

P =

14 20

32 47

Notice that MATLAB uses ' (single quote) in place of the superscripted symbol
T for transposition. When ; (semi-colon) follows a statement such as the D statement,
the results will not be displayed. As in FORTRAN and QuickBASIC, * is the
multiplication operator as is used in P = D*E, here involving three matrices not three
single variables. More examples of MATLAB applications including plotting will
ensue. To terminate the MATLAB operation, simply enter quit and then the
RETURN key.

MATHEMATICA APPLICATIONS

To commence the service of Mathematica from Windows setup, simply point
the mouse to it and double click the left button. The Input display bar will appear
on screen, applications of Mathematica can start by entering commands from
keyboard and then press the Shift and Enter keys. To terminate the Mathematica
application, enter Quit[] from keyboard and then press the Shift and Enter keys.

Mathematica commands, statements, and functions are gradually introduced
and applied in increasing degree of difficulty. Its graphic capabilities are also utilized
in presentation of the computed results.

For matrix operations, Mathematica can compute the sum and difference of
two matrices of same order in symbolic forms, such as in the following cases of
involving two matrices, A and B, both of order 2 by 2:

In[1]: = A = {{1,2},{3,4}}; MatrixForm[A]

Out[1]//MatrixForm =

1 2

3 4

In[1]: = is shown on screen by Mathematica while user types in A =
{{1,2},{3,4}}; MatrixForm[A]. Notice that braces are used to enclose the elements
in each row of a matrix, the elments in a same row are separated by commas, and
the rows are also separated by commas. MatrixForm demands that the matrix be
printed in a matrix form. Out[1]//MatrixForm = and the rest are response of Math-
ematica.

In[2]: = B = {{5,6},{7,8}}; MatrixForm[B]

Out[2]//MatrixForm =

5 6
7 8

In[3]: = MatrixForm[A + B]

Out[3]//MatrixForm =

6 8

10 12

In[4]: = Dif = A-B; MatrixForm[Dif]

Out[4]//MatrixForm =

–4 –4

–4 –4

In[3] and In[4] illustrate how matrices are to be added and subtracted, respec-
tively. Notice that one can either use A + B directly, or, create a variable Dif to
handle the sum and difference matrices.

Also, Mathematica has a function called Transpose for transposition of a
matrix. Let us reuse the matrix A to demonstrate its application:

In[5]: = AT = Transpose[A]; MatrixForm[AT]

Out[5]//MatrixForm =

1 3

2 4

1.3 SOLUTION OF MATRIX EQUATION

Matrix notation offers the convenience of organizing mathematical expression in an
orderly manner and in a form which can be directly followed in coding it into
programming languages, particularly in the case of repetitive computation involving
the looping process. The most notable situation is in the case of solving a system
of linear algebraic equation. For example, if we need to determine a linear equation
y = a1 + a2x which geometrically represents a straight line and it is required to pass
through two specified points (x1,y1) and (x2,y2). To find the values of the coefficients
a1 and a2 in the y equation, two equations can be obtained by substituting the two
given points as:

(1)

and

(2)

1 1 1 2 1() + () =a x a y

1 1 2 2 2() + () =a x a y
© 2001 by CRC Press LLC

To facilitate programming, it is advantageous to write the above equations in
matrix form as:

(3)

where:

(4)

The matrix equation 3 in this case is of small order, that is an order of 2. For
small systems, Cramer’s Rule can be conveniently applied which allows the unknown
vector {A} to be obtained by the formula:

(5)

Equation 5 involves the calculation of three determinants, i.e., , �[C1]�, �[C2]�, and
�[C]� where [C1] and [C2] are matrices derived from the matrix [C] when the first
and second columns of [C] are replaced by {Y}, respectively. If we denote the
elements of a general matrix [C] of order 2 by cij for i,j = 1,2, the determinant of
[C] by definition is:

(6)

The general definition of the determinant of a matrix [M] of order N and whose
elements are denoted as mij for i,j = 1,2,…,N is to add all possible product of N
elements selected one from each row but from different column. There are N! such
products and each product carries a positive or negative sign depending on whether
even or odd number of exchanges are necessary for rearranging the N subscripts in
increasing order. For example, in Equation 6, c11 is selected from the first row and
first column of [C] and only c22 can be selected and multiplied by it while the other
possible product is to select c12 from the second row and first column of [C] and
that leaves only c21 from the second row and first column of [C] available as a factor
of the second product. In order to arrange the two subscripts in non-decreasing order,
one exchange is needed and hence the product c12c21 carries a minus sign. We shall
explain this sign convention further when a matrix of order 3 is discussed. However,
it should be evident here that a matrix whose order is large the task of calculating
its determinant would certainly need help from computer. This will be the a topic
discussed in Section 1.5.

Let us demonstrate the application of Cramer’s Rule by having a numerical case.
If the two given points to be passed by the straight line y = a1 + a2x are (x1,y1) =
(1,2) and (x2,y2) = (3,4). Then we can have:

C A Y[]{ } = { }

C
x

x
A

a

a
Y

y

y
[] =









 { } =









 { } =











1

1
1

2

1

2

1

2

, , and

A c c CT{ } = [] [][] []1 2

C c c c c[] = −11 22 12 21
© 2001 by CRC Press LLC

and

Consequently, according to Equation 5 we can find the coefficients in the
straight-line equation to be:

Hence, the line passing through the points (1,2) and (3,4) is y = a1 + a2x = 1 + x.
Application of Cramer’s Rule can be extended for solving three unknowns from

three linear algebraic equations. Consider the case of finding a plane which passes
three points (xi,yi) for i = 1 to 3. The equation of that plane can first be written as
z = a1 + a2x + a3y. Similar to the derivation of Equation 3, here we substitute the
three given points into the z equation and obtain:

(7)

(8)

and

(9)

Again, the above three equations can be written in matrix form as:

(10)

where the matrix [C] and the vector {A} previously defined in Equation 4 need to
be reexpanded and redefined as:

(11)

C
x

x
[] = = = × − × = − =

1

1

1 1

1 3
1 3 1 1 3 1 21

2

c
y x

y x1
1 1

2 2

2 1

4 3
2 3 1 4 6 4 2[] = = = × − × = − =

C
y

y2
1

2

1

1

1 2

1 4
1 4 2 1 4 2 2[] = = = × − × = − =

a C C a C C1 1 2 22 2 1 2 2 1= [] [] = = = [] [] = = and

1 1 1 2 1 3 1() + () + () =a x a y a z

1 1 2 2 2 3 2() + () + () =a x a y a z

1 1 3 2 3 3 3() + () + () =a x a y a z

C A Z[]{ } = { }

C

x y

x y

x y

A

a

a

a

Z

z

z

z

[] = { } = { } =
















1

1

1

1 1

2 2

3 3

1

2

3

1

2

3

, , and
© 2001 by CRC Press LLC

And, the Cramer’s Rule for solving Equation 10 can be expressed as:

(12)

where [Ci] for i = 1 to 3 for matrices formed by replacing the ith column of the
matrix [C] by the vector {Z}, respectively. Now, we need the calculation of the
determinant of matrices of order 3. If we denote the element in a matrix [M] as mij

for i,j = 1 to 3, the determinant of [M] can be calculated as:

(13)

To give a numerical example, let us consider a plane passing the three points,
(x1,y1,z1) = (1,2,3), (x2,y2,z2) = (–1,0,1), and (x3,y3,z3) = (–4,–2,0). We can then have:

and

According to Equation 13, we find a1 = �[C1]�/�[C]� = 0/(–2) = 0, a2 = �[C2]�/�[C]� =
2/(–2) = –1, and a3 = �[C3]�/�[C]� = –4/(–2) = 2. Thus, the required plane equation is
z = a1 + a2x + a3y = -x + 2y.

QUICKBASIC VERSION OF THE PROGRAM CRAMERR

A computer program called CramerR has been developed as a reviewing exer-
cise in programming to solve a matrix equation of order 3 by application of Cramer

A C C C C
T

{ } = [][][][] []1 2 3

M m m m m m m m m m

m m m m m m m m m

[] = − +

− + −

11 22 33 11 23 32 12 23 31

12 21 33 13 21 32 13 22 31

C

x y

x y

x y

[] = = −
− −

= −
1

1

1

1 1 2

1 1 0

1 4 2

2
1 1

2 2

3 3

C

z x y

z x y

z x y
1

1 1 1

2 2 2

3 3 3

3 1 2

1 1 0

0 4 2

0[] = = −
− −

=

C

z y

z y

z y
2

1 1

2 2

3 3

1

1

1

1 3 2

1 1 0

1 0 2

2[] = =
−

=

C

x z

x z

x z
3

1 1

2 2

1

1

1

1 1 3

1 1 1

1 4 2

4[] = = −
− −

= −
© 2001 by CRC Press LLC

Rule and the definition of determinant of a 3 by 3 square matrix according to
Equations 12 and 13, respectively. First, a subroutine called Determ3 is created
explicitly following Equation 13 as listed below:

To interactively enter the elements of the coefficient matrix [C] and also the
elements of the right-hand-side vector {Z} in Equation 12 and to solve for {A}, the
program CramerR can be arranged as:
© 2001 by CRC Press LLC

1.4 PROGRAM GAUSS

Program Gauss is designed for solving N unknowns from N simultaneous, linear
algebraic equations by the Gaussian Elimination method. In matrix notation, the
problem can be described as to solve a vector {X} from the matrix equation:

(1)

where [C] is an NxN coefficient matrix and {V} is a Nx1 constant vector, and both
are prescribed. For example, let us consider the following system:

(2)

(3)

(4)

If the above three equations are expressed in matrix form as Equation 1, then:

(5,6)

and

(7)

where T designates the transpose of a matrix.

GAUSSIAN ELIMINATION METHOD

A systematic procedure named after Gauss can be employed for solving x1, x2,
and x3 from the above equations. It consists of first dividing Equation 28 by the
leading coefficient, 9, to obtain:

(8)

This step is called normalization of the first equation of the system (1). The next
step is to eliminate x1 term from the other (in this case, two) equations. To do that,
we multiply Equation 8 by the coefficients associated with x1 in Equations 3 and 4,
respectively, to obtain:

C X V[]{ } = { }

9 101 2 3x x x+ + =

3 6 141 2 3x x x+ + =

2 2 3 31 2 3x x x+ + =

C V[] =
















{ } =
















9 1 1

3 6 1

2 2 3

10

14

3

, ,

X

x

x

x

x x x
T{ } =

















= []
1

2

3

1 2 3

x x x1 2 3

1
9

1
9

10
9

+ + =
© 2001 by CRC Press LLC

(9)

and

(10)

If we subtract Equation 9 from Equation 3, and subtract Equation 10 from Equa-
tion 4, the x1 terms are eliminated. The resulting equations are, respectively:

(11)

and

(12)

This completes the first elimination step. The next normalization is applied to
Equation 11, and then the x2 term is to be eliminated from Equation 12. The resulting
equations are:

(13)

and

(14)

The last normalization of Equation 14 then gives:

(15)

Equations 8, 13, and 15 can be organized in matrix form as:

(16)

The coefficient matrix is now a so-called upper triangular matrix since all
elements below the main diagonal are equal to zero.

As x3 is already obtained in Equation 15, the other two unknowns, x2 and x3,
can be obtained by a sequential backward-substitution process. First, Equation 13
can be used to obtain:

3
1
3

1
3

10
31 2 3x x x+ + =

2
2
9

2
9

20
91 2 3x x x+ + =

17
3

2
3

32
32 3x x+ =

16
9

25
9

7
92 3x x+ =

x x2 3

2
17

32
17

+ =

393
153

393
1533x = −

x3 1= −

V

x

x

x

{ } =
































=
−

















1 1 9 1 9

0 1 2 17

0 0 1

10 9

32 17

1

1

2

3

x x2 3

32
17

2
17

32
17

2
17

1
32 2

17
2= − = − −() = + =
© 2001 by CRC Press LLC

Once, both x2 and x3 have been calculated, x1 can be obtained from Equation 8 as:

To derive a general algorithm for the Gaussian elimination method, let us denote
the elements in [C], {X}, and {V} as ci,j, xi, and vi, respectively. Then the normal-
ization of the first equation can be expressed as:

(17)

and

(18)

Equation 17 is to be used for calculating the new coefficient associated with xj

in the first, normalized equation. So, j should be ranged from 2 to N which is the
number of unknowns (equal to 3 in the sample case). The subscripts old and new
are added to indicate the values before and after normalization, respectively. Such
designation is particularly helpful if no separate storage in computer are assigned
for [C] for the values of its elements. Notice that (c1,1)new = 1 is not calculated.
Preserving this diagonal element enables the determinant of [C] to be computed.
(See the topic on matrix inversion and determinant.)

The formulas for the elimination of x1 terms from the second equation are:

(19)

for j = 2,3,…,N (there is no need to include j = 1) and

(20)

By changing the subscript 2 in Equations 19 and 20, x1 term in the third equation
can be eliminated. In other words, the general formulas for elimination of x1 terms
from all equation other than the first equation are, for k = 2,3,…,N

(21)

for j = 2,3,…,N

x x x1 2 3

10
9

1
9

1
9

10
9

1
9

2
1
9

1
10 2 1

9
1= − − = − () − −() = − + =

c c cj new j old old1 1 1 1, , ,() = () ()

v v c
new old old1 1 1 1() = () (),

c c c cj new j old old j old2 2 2 1 1, , , ,() = () − () ()

v v c v
new old old old2 2 2 1 1() = () − () (),

c c c ck j new k j old k l old j old, , , ,() = () − () ()1
© 2001 by CRC Press LLC

(22)

Instead of normalizing the first equation, we can generalize Equations 17 and
18 for normalization of the ith equation, for i = 1,2,…,N to the expressions:

(23)

for j = i + 1,i + 2,…,N and

(24)

Note that (ci,i)new should be equal to 1 but no need to calculate since it is not
involved in later calculation for finding {X}.

Similarly, elimination of xi term from kth equation for k = i + 1,i + 2,…,N
consists of using the general formula:

(25)

for j = i + 1,i + 2,…,N and

(26)

Backward substitution for finding xi involves the calculation of:

(27)

for i = N–1,N–2,…,2,1. Note that xN is already found equal to vN after the Nth
normalization.

Program Gauss listed below in both QuickBASIC and FORTRAN languages
is developed for interactive specification of the number of unknowns, N, and the
values of the elements of [C] and {V}. It proceeds to solve for {X} and prints out
the computed values. Sample applications of both languages are provided immedi-
ately following the listed programs.

A subroutine Gauss.Sub is also made available for the frequent need in the
other computer programs which require the solution of matrix equations.

v v c vk new k old k old old
() = () − () (),1 1

c c ci j new i j old i i old, . ,() = () ()

v v ci new i old i i old
() = () (),

c c c ck j new k j old k i old i j old, , , ,() = () − () ()

v v c vk new k old k i old i old
() = () − () (),

x v c xi i i j j

j i

N

= −
= +
∑ ,

1

© 2001 by CRC Press LLC

QUICKBASIC VERSION

Sample Application
© 2001 by CRC Press LLC

FORTRAN VERSION
© 2001 by CRC Press LLC

Sample Application

GAUSS-JORDAN METHOD

One slight modification of the elimination step will make the backward substi-
tution steps completely unnecessary. That is, during the elimination of the xi terms
from the linear algebraic equations except the ith one, Equations 25 and 26 should
be applied for k equal to 1 through N and excluding k = i. For example, the x3 terms
should be eliminated from the first, second, fourth through Nth equations. In this
manner, after the Nth normalization, [C] becomes an identity matrix and {V} will
have the elements of the required solution {X}. This modified method is called
Gauss-Jordan method.

A subroutine called GauJor is made available based on the above argument. In
this subroutine, a block of statements are also added to include the consideration of
the pivoting technique which is required if ci,i = 0. The normalization steps,
Equations 49 and 50, cannot be implemented if ci,i is equal to zero. For such a
situation, a search for a nonzero ci,k is necessary for i = k + 1,k + 2,…,N. That is,
to find in the kth column of [C] and below the kth row a nonzero element. Once
this nonzero ci,k is found, then we can then interchange the ith and kth rows of [C]
and {V} to allow the normalization steps to be implemented; if no nonzero ci,k can
be found then [C] is singular because the determinant of [C] is equal to zero! This
can be explained by the fact that when ck,k = 0 and no pivoting is possible and the
determinant D of [C] can be calculated by the formula:

(28)

where � indicates a product of all listed factors.

D c c c c ck k N N k k

k

N

= … … =
=

∏1 1 2 2

1

, , , , ,
© 2001 by CRC Press LLC

A subroutine has been written based on the Gauss-Jordan method and called
GauJor.Sub. Both QuickBASIC and FORTRAN versions are made available and
they are listed below.

QUICKBASIC VERSION
© 2001 by CRC Press LLC

FORTRAN VERSION
© 2001 by CRC Press LLC

Sample Applications

The same problem previously solved by the program Gauss has been used again
but solved by application of subroutine GauJor. The results obtained with the Quick-
BASIC and FORTRAN versions are listed, in that order, below:

MATLAB APPLICATIONS

For solving the vector {X} from the matrix equation [C]{X} = {R} when both
the coefficient matrix [C] and the right-hand side vector {R} are specified, MATLAB
simply requires [C] and {R} to be interactively inputted and then uses a statement
X = C\R to obtain the solution vector {X} by multiplying the vector {R} on the left
of the inverse of [C] or dividing {R} on the left by [C]. More details are discussed
in the program MatxAlgb. Here, for providing more examples in MATLAB appli-
cations, a m file called GauJor.m is presented below as a companion of the FOR-
TRAN and QuickBASIC versions:
© 2001 by CRC Press LLC

This file GauJor.m should then be added into MATLAB. As an example of
interactive application of this m file, the sample problem used in the FORTRAN
and QuickBASIC versions is again solved by specifying the coefficient matrix [C]
and the right hand side vector {R} to obtain the resulting display as follows:

The results of the vector {X} and determinant D for the coefficient matrix [C]
are same as obtained before.

MATHEMATICA APPLICATIONS

For solving a system of linear algebraic equations which has been arranged in
matrix form as [A]{X} = {R}, Mathematica’s function LinearSolve can be applied
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

to solve for {X} when the coefficient matrix [A] and the right-hand side vector {R}
are both provided. The following is an example of interactive application:

In[1]: = A = {{3,6,14},{6,14,36},{14,36,98}}

Out[1]: =

{{3, 6, 14}, {6, 14, 36}, {14, 36, 98}}

In[2]: = MatrixForm[A]

Out[2]//MatrixForm: =

3 6 14

6 14 36

14 36 98

In[3]: = R = {9,20,48}

Out[3]: =

{9, 20, 48}

In[4]: = LinearSolve[A,R]

Out[4]: =

{–9,13,–3}

Output[2] and Output[1] demonstrate the difference in display of matrix [A]
when MatrixeForm is requested, or, not requested, respectively. It shows that without
requesting of MatrixForm, some screen space saving can be gained. Output[4] gives
the solution {X} = [–9 13 –3]T for the matrix equation [A]{X} = {R} where the
coefficient matix [A] and vector {R} are provided by Input[1] and Input[3], respectively.

1.5 MATRIX INVERSION, DETERMINANT,
AND PROGRAM MatxInvD

Given a square matrix [C] of order N, its inverse as [C]–1 of the same order is defined
by the equation:

(1)

where [I] is an identity matrix having elements equal to one along its main diagonal
and equal to zero elsewhere. That is:

(2)

C C C C I[] [] = [] [] = []− −1 1

I[] =



















1 0 0

0 1 0 0

0 0 1

. . . .

. . .

.

. . . .

To find [C]–1, let cij and dij be the elements at the ith row and jth column of the
matrices [C] and [C]–1, respectively. Both i and j range from 1 to N. Furthermore,
let {Dj} and {Ij} be the jth column of the matrices [C]–1 and [I], respectively. It is
easy to observe that {Ij} has elements all equal to zero except the one in the jth row
which is equal to unity. Also,

(3)

and

(4)

Based on the rules of matrix multiplication, Equation 1 can be interpreted as
[C]{D1} = {I1}, [C]{D2} = {I2}, …, and [C]{DN} = {IN}. This indicates that program
Gauss can be successively employed N times by using the same coefficient matrix
[C] and the vectors {Ii} to find the vectors {Di} for i = 1,2,…,N. Program MatxInvD
is developed with this concept by modifying the program Gauss. It is listed below
along with a sample interactive run.

QUICKBASIC VERSION

D d d dj lj j Nj

T{ } = …[]2

C D D DN

T[] = …[]−1
1 2
© 2001 by CRC Press LLC

Sample Application

FORTRAN VERSION
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Sample Applications

MATLAB APPLICATION

MATLAB offers very simple matrix operations. For example, matrix inversion
can be implemented as:

To check if the obtained inversion indeed satisfies the equation [A}[A]–1 = [I]
where [I] is the identity matrix, we enter:

Once [A]–1 becomes available, we can solve the vector {X} in the matrix equation
[A]{X} = {R} if {R} is prescribed, namely {X} = [A]–1{R}. For example, may enter
a {R} vector and find {X} such as:
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

MATHEMATICA APPLICATIONS

Mathematica has a function called Inverse for inversion of a matrix. Let us
reuse the matrix A that we have entered in earlier examples and continue to dem-
onstrate the application of Inverse:

In[1]: = A = {{1,2},{3,4}}; MatrixForm[A]

Out[1]//MatrixForm =

1 2

3 4

In[2]: = B = {{5,6},{7,8}}; MatrixForm[B]

Out[2]//MatrixForm =

5 6

7 8

In[3]: = MatrixForm[A + B]

Out[3]//MatrixForm =

6 8

10 12

In[4]: = Dif = A-B; MatrixForm[Dif]

Out[4]//MatrixForm =

–4 –4

–4 –4

In[5]: = AT = Transpose[A]; MatrixForm[AT]

Out[5]//MatrixForm =

1 3

2 4

In[6]: = Ainv = Inverse[A]; MatrixForm[Ainv]

Out[6]//MatrixForm =

–2 1

3
2

1
2

− 





© 2001 by CRC Press LLC

To verify whether or not the inverse matrix Ainv obtained in Output[6] indeed
satisfies the equations [A][A]–1 = [I] which is the identity matrix, we apply Math-
ematica for matrix multiplication:

In[7]: = Iden = A.Ainv; MatrixForm[Iden]

Out[7]//MatrixForm =

1 0

0 1

A dot is to separate the two matrices A and Ainv which is to be multiplied in that
order. Output[7] proves that the computed matrix, Ainv, is the inverse of A! It should
be noted that D and I are two reserved variables in Mathematica for the determinant
of a matrix and the identity matrix. In their places, here Dif and Iden are adopted,
respectively. For further testing, we show that [A][A]T is a symmetric matrix:

In[8]: = S = A.AT; MatrixForm[S]

Out[8]//MatrixForm =

5 11

11 25

And, the unknown vector {X} in the matrix equation [A]{X} = {R} can be
solved easily if {R} is given and [A]–1 are available:

In[9]: = R = {13,31}; X = Ainv.R

Out[9] = {5, 4}

The solution of x1 = 5 and x2 = 4 do satisfy the equations x1 + 2x2 = 13 and 3x1

+ 4x2 = 31.

TRANSFORMATION OF COORDINATE SYSTEMS, ROTATION, AND ANIMATION

Matrix algebra can be effectively applied for transformation of coordinate sys-
tems. When the cartesian coordinate system, x-y-z, is rotated by an angle �z about
the z-axis to arrive at the system x�-y�-z� as shown in Figure 2, where z and z� axes
coincide and directed outward normal to the plane of paper, the new coordinates of
a typical point P whose coordinates are (xP,yP,zP) can be easily obtained as follows:

′ = −() = () + ()
= +

′ = −() = () − ()
= +

x OP OP OP

x y

y OP OP OP

x y

P P z P z P z

P z p z

P P z P z P z

p z p z

cos cos cos sin sin

cos sin

sin sin cos cos sin

sin sin

θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ

θ θ

and

In matrix notation, we may define {P} = [xP yP zP]T and {P'} = [xP' yP' zP']T and
write the above equations as {P'} = [Tz]{P} where the transformation matrix for a
rotation of z-axis by �z is:

(5)

In a similar manner, it can be shown that the transformation matrices for rotating
about the x- and y-axes by angles �x and �y, respectively, are:

(6)

and

(7)

FIGURE 2. The cartesian coordinate system, x-y-z, is rotated by an angle �z about the z-
axis to arrive at the system x�-y�-z�.

′ =z zP P

Tz

z z

z z[] = −
















cos sin

sin cos

θ θ
θ θ

0

0

0 0 1

Tx x x

x x

[] =
−

















1 0 0

0

0

cos sin

sin cos

θ θ
θ θ

Ty

y y

y y

[] =
−















cos sin

sin cos

θ θ

θ θ

0

0 1 0

0

© 2001 by CRC Press LLC

It is interesting to note that if a point P whose coordinates are (xP,yP,zP) is rotated
to the point P' by a rotation of �z as shown in Figure 3, the coordinates of P' can
be easily obtained by the formula {P'} = [Rz]{P} where [Rz] = [Tz]T. If the rotation
is by an angle �x or �y, then {P'} = [Rx]{P} or {P'} = [Ry]{P} where [Rx] = [Tx]T

and [Ry] = [Ty]T.
Having discussed about transformations and rotations of coordinate systems,

we are ready to utilize the derived formulas to demonstrate the concept of ani-
mation. Motion can be simulated by first generating a series of rotated views of
a three-dimensional object, and showing them one at a time. By erasing each
displayed view and then showing the next one at an adequate speed, a smooth
motion of the object is achievable to produce the desired animation. Program
Animate1.m is developed to demonstrate this concept of animation by using a
4 � 2 � 3 brick and rotating it about the x-axis by an angle of 25° and then
rotating about the y-axis as many revolutions as desired. The front side of the
block (x-y plane) is marked with a character F, and the right side (y-z plane) is
marked with a character R, and the top side (x-z plane) is marked with a character
T for helping the viewer to have a better three-dimensional perspective of the
rotated brick (Figure 4). The x-rotation prior to y-rotation is needed to tilt the top
side of the brick toward the front. The speed of animation is controlled by a
parameter Damping. This parameter and the desired number of y-revolutions,
Ncycle, are both to be interactively specified by the viewer (Figure 5).

FIGURE 3. Point P whose coordinates are (xP,yP,zP) is rotated to the point P' by a rotation
of �z.
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

FIGURE 4. The characters F, R, and T help the viewer to have a better three-dimensional
perspective of the rotated brick.

FIGURE 5. The speed of animation is controlled by a parameter Damping. This parameter and
the desired number of y-revolutions, Ncycle, are both to be interactively specified by the viewer.

FUNCTION ANIMATE1(NCYCLE,DAMPING)

Notice that the coordinates for the corners of the brick are defined in arrays xb,
yb, and zb. The coordinates of the points to be connected by linear segments for
drawing the characters F, R, ant T are defined in arrays xf, yf, and zf, and xr, yr,
and zr, and xt, yt, and zt, respectively.

The equations in deriving [Rx] (= [Tx]T) and [Ry] (= [Ty]T) are applied for x-
and y- rotations in the above program. Angle increments of 5 and 10° are arranged
for the x- and y-rotations, respectively. The rotated views are plotted using the new
coordinates of the points, (xbn,ybn,zbn), (xfn,yfn,zfn), etc. Not all of these new
arrays but only those needed in subsequent plot are calculated in this m file.

MATLAB command clg is used to erase the graphic window before a new
rotated view the brick is displayed. The speed of animation is retarded by the “hold”
loops in both x- and y-rotations involving the interactively entered value of the
parameter Damping. The MATLAB command pause enables Figure 4 to be read
and requires the viewer to press any key on the keyboard to commence the animation.
Notice that a statement begins with a % character making that a comment statement,
and that % can also be utilized for spacing purpose.

The xs and ys arrays allow the graphic window to be scaled by plotting them
and then held (by command hold) so that all subsequent plots are using the same
© 2001 by CRC Press LLC

scales in both x- and y-directions. The values in xs and ys arrays also control where
to properly place the texts in Figure 4 as indicated in the text statements.

QUICKBASIC VERSION

A QuickBASIC version of the program Animate1.m called Animate1.QB also
is provided. It uses commands GET and PUT to animate the rotation of the 4 � 3
� 2 brick. More features have been added to show the three principal views of the
brick and also the rotated view at the northeast corner of screen, as illustrated in
Figure 6.

The window-viewport transformation of the rotated brick for displaying on the
screen is implemented through the functions FNTX and FNTY. The actual ranges
of the x and y measurements of the points used for drawing the brick are described
by the values of V1 and V2, and V3 and V4, respectively. These ranges are mapped
onto the screen matching the ranges of W1 and W2, and W4 and W3, respectively.

The rotated views of the brick are stored in arrays S1 through S10 using the
GET command. Animation retrieves these views by application of the PUT com-
mand. Presently, animation is set for 10 y-swings (Ncycle = 10 in the program
Animate1.m, arranged in Line 600). The parameter Damping described in the
program Animate1.m here is set equal to 1500 (in Line 695).

FIGURE 6. Animation of a rotating brick.
© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

1.6 PROBLEMS

MATRIX ALGEBRA

1. Calculate the product [A][B][C] by (1) finding [T] = [A][B] and then
[T][C], and (2) finding [T] = [B][C] and then [A][T] where:

2. Calculate [A][B] of the two matrices given above and then take the
transpose of product matrix. Is it equal to the product of [B]T[A]T?

3. Are ([A][B][C])T and the product [C]T[B]T[A]T identical to each other?

A B C[] = 





[] =
















[] =
− −
− −







1 2 3

4 5 6

6 5

4 3

2 1

1 2

3 4

© 2001 by CRC Press LLC

4. Apply the QuickBASIC and FORTRAN versions of the program Matx-
Algb to verify the results of Problems 1, 2, and 3.

5. Repeat Problem 4 but use MATLAB.
6. Apply the program MatxInvD to find [C]–1 of the matrix [C] given in

Problem 1 and also to ([C]T)–1. Is ([C]–1)T equal to ([C]T)–1?
7. Repeat Problem 6 but use MATLAB.
8. For statistical analysis of a set of N given data X1, X2, …, XN, it is often

necessary to calculate the mean, m, and standard deviation, 5, by use of
the formulas:

and

Use indicial notation to express the above two equations and then develop
a subroutine meanSD(X,N,RM,SD) for taking the N values of X to
compute the real value of mean, RM, and standard deviation, SD.

9. Express the ith term in the following series in indicial notation and then
write an interactive program SinePgrm allowing input of the x value to
calculate sin(x) by terminating the series when additional term contributes
less than 0.001% of the partial sum of series in magnitude:

Notice that Sin(x) is an odd function so the series contains only terms of
odd powers of x and the series carries alternating signs. Compare the
result of the program SinePgrm with those obtained by application of the
library function Sin available in FORTRAN and QuickBASIC.

10. Same as Problem 9, but for the cosine series:

Notice that Cos(x) is an even function so the series contains only terms
of even powers of x and the series also carries alternating signs.

11. Repeat Problem 4 but use Mathematica.
12. Repeat Problem 6 but use Mathematica.

m
N

X X XN= + +…+()1
1 2

σ = −() + −() +…+ −()[]


1
1

2

2

2 2
0 5

N
X m X m X mN

.

Sin x
x x x

! ! !

= − + −…
1 3 5

1 3 5

Cos x
x x x

! ! !

= − + − +…1
2 4 6

2 4 6
© 2001 by CRC Press LLC

GAUSS

1. Run the program GAUSS to solve the problem:

2. Run the program GAUSS to solve the problem:

What kind of problem do you encounter? “Divided by zero” is the mes-
sage! This happens because the coefficient associated with x1 in the first
equation is equal to zero and the normalization in the program GAUSS
cannot be implemented. In this case, the order of the given equations
needs to be interchanged. That is to put the second equation on top or
find below the first equation an equation which has a coefficient associated
with x1 not equal to zero and is to be interchanged with the first equation.
This procedure is called “pivoting.” Subroutine GauJor has such a feature
incorporated, apply it for solving the given matrix equation.

3. Modify the program GAUSS by following the Gauss-Jordan elimination
procedure and excluding the back-substitution steps. Name this new pro-
gram GauJor and test it by solving the matrix equations given in Problems
1 and 2.

 4. Show all details of the normalization, elimination, and backward substi-
tution steps involved in solving the following equations by application of
Gaussian Elimination method:

4x1 + 2x2 – 3x3 = 8

5x1 – 3x2 + 7x3 = 26

–x1 + 9x2 – 8x3 = –10

5. Present every normalization and elimination steps involved in solving the
following system of linear algebraic equations by the Gaussian Elimina-
tion Method:

5x1 – 2x2 + 2x3 = 9, –2x1 + 7x2 – 2x3 = 9, and 2x1 – 2x2 + 9x3 = 41

1 2 3

4 5 6

7 8 10

2

8

14

1

2

3

































=
















x

x

x

0 2 3

4 5 6

7 8 9

1

8

14

1

2

3

































=
−















x

x

x

© 2001 by CRC Press LLC

6. Apply the Gauss-Jordan elimination method to solve for x1, x2, and x3

from the following equations:

Show every normalization, elimination, and pivoting (if necessary) steps
of your calculation.

7. Solve the matrix equation [A]{X} = {C} by Gauss-Jordan method
where:

Show every interchange of rows (if you are required to do pivoting before
normalization), normalization, and elimination steps by indicating the
changes in [A] and {C}.

8. Apply the program GauJor to solve Problem 7.
9. Present every normalization and elimination steps involved in solving the

following system of linear algebraic equations by the Gauss-Jordan Elim-
ination Method:

5x1 – 2x2 + x3 = 4

–2x1 + 7x2 – 2x3 = 9

x1 – 2x2 + 9x3 = 40

10. Apply the program Gauss to solve Problem 9 described above.
11. Use MATLAB to solve the matrix equation given in Problem 7.
12. Use MATLAB to solve the matrix equation given in Problem 9.
13. Use Mathematica to solve the matrix equation given in Problem 7.
14. Use Mathematica to solve the matrix equation given in Problem 9.

MATRIX INVERSION

1. Run the program MatxInvD for finding the inverse of the matrix:

0 1 1

2 9 3

4 24 7

1

1

1

1

2

3

−































=
















x

x

x

3 2 1

2 5 1

4 1 7

2

3

3

1

2

3

−
































=
−
−

















x

x

x

A[] =
















3 0 2

0 5 0

2 0 3
© 2001 by CRC Press LLC

2. Write a program Invert3 which inverts a given 3 × 3 matrix [A] by using
the cofactor method. A subroutine COFAC should be developed for cal-
culating the cofactor of the element at Ith row and Jth column of [A] in
term of the elements of [A] and the user-specified values of I and J. Let
the inverse of [A] be designated as [AI] and the determinant of [A] be
designated as D. Apply the developed program Invert3 to generate all
elements of [AI] by calling the subroutine COFAC and by using D.

3. Write a QuickBASIC or FORTRAN program MatxSorD which will
perform the addition and subtraction of two matrices of same order.

4. Write a QuickBASIC or FORTRAN program MxTransp which will
perform the transposition of a given matrix.

5. Translate the FORTRAN subroutine MatxMtpy into a MATLAB m file
so that by entering the matrices [A] and [B] of order L by M and M by
N, respectively, it will produce a product matrix [P] of order L by N.

6. Enter MATLAB commands interactively first a square matrix [A] and
then calculate its trace.

7. Use MATLAB commands to first define the elements in its upper right
corner including the diagonal, and then use the symmetric properties to
define those in the lower left corner.

8. Convert either QuickBasic or FORTRAN version of the program Matx-
InvD into a MATLAB function file MatxInvD.m with a leading statement
function [Cinv,D] = MatxInvD(C,N)

9. Apply the program MatxInvD to invert the matrix:

Verify the answer by using Equation 1.
10. Repeat Problem 9 but by MATLAB operation.
11. Apply the program MatxInvD to invert the matrix:

Verify the answer by using Equation 1.
12. Repeat Problem 11 but by MATLAB operations.
13. Derive [Rx] and verify that it is indeed equal to [Tx]T. Repeat for [Ry] and

[Rz].
14. Apply MATLAB to generate a matrix [Rz] for θz = 45° and then to use

[Rz] to find the rotated coordinates of a point P whose coordinates before
rotation are (1,–2,5).

A[] =
















1 3 4

5 6 7

8 9 10

A[] =
− − −
− − −
− − −

















9 1 2

3 4 5

6 7 8
© 2001 by CRC Press LLC

15. What will be the coordinates for the point P mentioned in Problem 14 if
the coordinate axes are rotated counterclockwise about the z-axis by 45°?
Use MATLAB to find your answer.

16. Apply MATLAB to find the location of a point whose coordinates are
(1,2,3) after three rotations in succession: (1) about y-axis by 30°, (2)
about z-axis by 45° and then (3) about x-axis by –60°.

17. Change m file Animate1.m to animate just the rotation of the front (F)
side of the 4 � 2 � 3 brick in the graphic window.

18. Write a MATLAB m file for animation of pendulum swing1 as shown in
Figure 7.

19. Write a MATLAB m file for animation of a bouncing ball1 using an
equation of y = 3e–0.1xsin(2x + 1.5708) as shown in Figure 8.

20. Write a MATLAB m file for animation of the motion of crank-piston
system as shown in Figure 9.

21. Write a MATLAB m file to animate the vibrating system of a mass
attached to a spring as shown in Figure 10.

FIGURE 7. Problem 18.
© 2001 by CRC Press LLC

22. Write a MATLAB m file to animate the motion of a cam-follower system
as shown in Figure 11.

23. Write a MATLAB m file to animate the rotary motion of a wankel cam
as shown in Figure 12.

24. Repeat Problem 9 but by Mathematica operation.
25. Repeat Problem 11 but by Mathematica operation.
26. Repeat Problem 14 but by Mathematica operation.
27. Repeat Problem 15 but by Mathematica operation.
28. Repeat Problem 16 but by Mathematica operation.

FIGURE 8. Problem 19.
© 2001 by CRC Press LLC

FIGURE 9. Problem 20.
© 2001 by CRC Press LLC

FIGURE 10. Problem 21.

FIGURE 11. Problem 22.
© 2001 by CRC Press LLC

1.7 REFERENCE

1. Y. C. Pao, “On Development of Engineering Animation Software,” in Computers in
Engineering, edited by K. Ishii, ASME Publications, New York, 1994, pp. 851–855.

FIGURE 12. Problem 23.
© 2001 by CRC Press LLC

	Engineering Analysis
	Table of Contents
	Matrix Algebra and Solution of Matrix Equations
	1.1 Introduction
	1.2 Manipulation of Matrices
	1.2 Multiplication of Matrices
	FORTRAN Version
	Interactive Operation
	More Programming Review
	Sample Applications
	QuickBASIC Version
	Sample Applications
	MATLAB Applications
	Mathematica Applications

	1.3 Solution of Matrix Equation
	QuickBASIC Version of the program CramerR

	1.4 Program Gauss
	Gaussian Elimination Method
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	Gauss-Jordan Method
	QuickBASIC Version
	FORTRAN Version
	Sample Applications
	MATLAB Applications
	Mathematica Applications

	1.5 Matrix Inversion, Determinant, and Program MatxInvD
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Applications
	MATLAB Application
	Mathematica Applications
	Transformation of Coordinate Systems, Rotation, and Animation
	Function Animate1(Ncycle,Damping)
	QuickBASIC Version

	1.6 Problems
	Matrix Algebra
	Gauss
	Matrix Inversion

	1.7 Reference

