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Preface

In this country today there are two conflicting forces acting on the
mathematical curriculum and these are thrown into sharp contract
when we consider Engineering Mathematics. Engineering Mathemat-
ics consists of a large body of material and techniques which is tra-
ditionally used by Engineers and Scientists in order to develop their
theoretical work. As more of this work is developed the pressure is in-
creased for students to acquire the necessary mathematical skills and
techniques earlier. Set against this, there has been a general reduction
in the numbers of young people who choose to study A-level math-
ematics at school. The examination boards have responded to this
unpopularity by reducing the quantity of material which is included
in the A-level syllabus and the level of skill required. Consequently,
knowledge and facility, regarded as routine 10 years ago, is now not
generally acquired until the student becomes an undergraduate.

The ‘one still point in this turning world’ is the unfortunate stu-
dent. It can be argued that students are getting brighter but, due to
the pressures which have already been mentioned, their mathematical
experience on entering University does not reflect this. This new edi-
tion attempts, in some measure, to resolve these opposing forces by
adopting on the one hand a very elementary starting point and includ-
ing, on the other, some relatively advanced material. The first two
chapters have been rewritten to make them more accessible. In this
way an intelligent student, by sheer dint of determination and effort,
should be able to raise the level of his or her individual expertise.

Thirty years ago Fourier series and Laplace transforms were regarded
as part of the second year syllabus for most Engineering courses. Nowa-
days Engineers and Scientists require them early on and therefore these
topics have been included and the text written to make them accessible
to the well motivated student.

A number of extra exercises have been also provided and most of
the chapters have the benefit of these additions. As usual, F. Smiley
painstakingly worked through all of them. Needless to say any errors
or omissions are entirely the responsibility of the author.

The supplementary material needed for this edition was produced in
LaTeX and the author is greatly indebted to his friend and colleague
Dr David Divall for using his considerable skill and effort to develop
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a LaTeX house style which resembles that which had been adopted
by the publisher in the earlier editions. Any success which has been
achieved in this regard is due entirely to his efforts.

Naturally all students wish to pass their mathematics examinations
and this book aims to help them to achieve this. However this is not its
sole purpose. Another aim is to give students the competence and the
confidence to use mathematical ideas and techniques in their chosen
field. We are trying not to ‘cap’ the flow of oil but to harness it and
to make use of it. Consequently this book is not for the dull witted or
the pig ignorant. It is not an end but a beginning for it is an invitation
to acquire skill and power. We are not trying to switch out lights, we
are trying to turn them on!

The author hopes that this new edition will prove popular with both
staff and students.

C.W.E.
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To the student

There are essentially two different ways in which you can use this book.
Each of them depends on your past experience of the topic; whether it is a
new topic or one with which you are familiar.

NEW TOPICS

O Work your way through the chapter with the aid of a note pad, making
sure that you follow the worked examples in the text.

O When you come to a workshop be resolute and do not read the solutions
until you have tried to work them out.

O Attempt the assignment at the end of the chapter. If there are any diffi-
culties return to the workshop.

O Spend as much time as possible on the further exercises.

FAMILIAR TOPICS

O Start with the assignment, which follows the text, and see how it goes.

O If all is well continue with the further exercises.

O If difficulties arise with the assignment backtrack to the workshop.

O If difficulties arise in the workshop backtrack to the text.

O Read through the chapter to ensure you are thoroughly familiar with
the material.
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This opening chapter is designed to lay the foundations of the
work which we have to do later. We will therefore describe some
notation and examine both arithmetic and algebraic processes.

After completing this chapter you should be able to

[J Approximate calculations to a given number of decimal places and to
a given number of significant figures;

(1 Apply the rules of elementary algebra correctly;
[ Distinguish between identities and equations;
(] Evaluate binomial coefficients and apply the binomial theorem.

At the end of this chapter we shall solve a practical problem involving
the force on a magnetic pole.

1.1 ARITHMETIC

We are all familiar with the basic operations of arithmetic. These are
addition and multiplication. The first numbers which we encounter are
the ‘whole’ numbers, which we shall call the natural numbers

1,2, 3, 4, ...

You will notice that we have not included zero as one of the natural
numbers; some people do and some people don’t!

We can add or multiply any two natural numbers together without
obtaining results which go beyond this set of numbers.

12+13 = 25
12x13 = 156
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Both 25 and 156 are natural numbers too.

When we introduce the operation of subtraction it is necessary to
widen the concept of number to include the negative whole numbers
and zero. These numbers are known as integers

e =2,-1,0,1,2,3, ...

We observe of course that every natural number is an integer.

Although the integers are sufficient for simple barter of discrete (indi-
vidually distinct) objects, they are unable to cope with division. The
operation of division forces us to extend the concept one stage further.

Any number which can be expressed in the form p/q, where p and ¢
are integers is known as a rational number.

O 3 is a rational number since 3 = 3/1, 0.25 is a rational number since
0.25 =1/4, 1/3 is a rational number and is 0.333.. ..

The process of division leads to decimal expansions. The digits in the
decimal expansion fall either to the left or the right of the decimal
point.

O In the number 7.2386941, 2 is in the first decimal place, 3 is in the
second decimal place and 9 is in the fifth decimal place.

Decimal expansions fall into two classes; finite decimal expansions and
infinite decimal expansions. When finite decimal expansions are read
from the left to the right, every digit in a decimal place beyond a
certain point is zero. When infinite decimal expansions are read from
the left to the right, however large the decimal place, there is always
a digit with a larger decimal place which is non-zero.

Sometimes a set of digits in an infinite decimal expansion repeats
without end. This set of digits is said to recur and in these circum-
stances the expansion corresponds to a rational number. However some
infinite decimal expansions never recur and these correspond to ir-
rational numbers. The collection of all the numbers we have been
describing is usually referred to as the collection of real numbers.

1.2 REPRESENTATION
Although theoretically we can add, multiply, subtract and divide dec-

imal fractions in whatever way they are expressed, in practice this
becomes awkward.

O Multiply 998954.32 by —0.0001334684
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To facilitate calculations we introduce the scientific notation. In the
scientific notation each number is written as a number greater than
—10 but less than 10 and the decimal point is adjusted by multiplying
or dividing by an appropriate power of 10.

Therefore, in the example, 998954.32 and —0.0001334684 become

9.9895432 x 10° and — 1.334684 x 1074

respectively.

It is easy to convert a number into scientific notation. Remember
that each time we multiply a number by 10 we move the decimal point
one step to the right. Consequently each time we divide by 10 (or
equivalently multiply by 10~!) we move the decimal point one step to
the left.

For the first number we needed to move the decimal point 5 steps
to the left. This is equivalent to multiplying by 10~° and so to correct
this, we multiply the number we have obtained by 10°.

998954.32 = 9.9895432 x 10°

For the second number we needed to move the decimal point 4 steps
to the right. This is equivalent to multiplying by 10* and so to correct
this, we multiply the number we have obtained by 10~*.

—0.0001334684 = —1.334684 x 10~*

These can now be multiplied together and the result expressed in sci-
entific notation too
998954.32 x —0.0001334684

(9.9895432 x 10°) x (—1.334684 x 107%)
—(9.9895432 x 1.334684) x 10
—13.33288348 x 10

—1.333288348 x 10?

|
Hand calculators automatically make use of scientific notation. They
normally record the power of 10 (but not the number 10 itself) on the
far right of the display. Some calculators give the option of expressing
every number in scientific form.

1.3 DECIMAL PLACES AND SIGNIFICANT FIGURES

It is not normally possible to perform all calculations exactly. In such
circumstances it is usual to perform arithmetic using numbers accurate

to a fixed number of decimal places or a given number of significant
figures.
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Significant figures are determined by locating the first non-zero digit
from the left of the number. From this position we count to the right
to determine where the number needs to be truncated. When this is
done notice is taken of the part which is to be discarded and some
adjustment to the last digit in the truncated number may be made. It
may be necessary to include some trailing zeros when giving a number
correct to a given number of significant figures.

Decimal places are counted to the right of the decimal point. The
rule for rounding numbers is complicated to describe but fairly simple

to apply.

o If the first digit in the discarded part is 6 or more then the number
is ‘rounded up’ and the last digit is increased by 1.

o If the first digit in the discarded part is 4 or less then the number
is truncated without change.

o If the first digit in the discarded part is 5 and it contains other
non-zero digits then the number is rounded up so the last digit is
increased by 1.

There is one case remaining. This is the vexed question of what to do
when the first digit of the discarded part is 5 and all other digits in it
are zero. Here there is no general consensus. Those who always round
up introduce a bias automatically. To compensate for this, numerical
analysts favour rounding-up the truncated decimal where necessary so
that the last digit becomes even. This is the approach we shall adopt.
The following examples illustrate all the situations which arise.

O Express each of the following numbers correct to 5 significant figures

0.0001234, 1,548,796, 854, 1,548,746, 854,
0.100005, 0.100015, 11.11

When a number is to be expressed correct to 5 significant figures then
the 5 figures are given, even if some of them are zero. Therefore we
obtain

0.00012340 we need a trailing zero.
1,548,800,000 96854 discarded so number rounded up
1,548,700,000 46854 discarded so number unchanged

0.10000 5 is discarded but 0 is even
0.10002 5 is discarded, 1 is odd, round-up
11.110 a trailing zero is needed

0O Give the following decimal fractions correct to 5 decimal places

2.3657842,  34.574836242, 3.769845,
3.769835, 3.769845000001,  0.000005
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2.36578 discarded digits 42, so no round-up
34.57484 discarded digits 6242, so round-up
3.76984 discarded digit 5, but 4 is even
3.76984 discarded digit 5, round-up 3 to 4
3.76985 discarded digits 5000001 so round-up
0.00000 discarded digit 5 and 0 is even.

1.4 PRECEDENCE

When performing numerical calculations it is necessary to establish an
order of precedence. Without this, an expression such as 2 +4 x 5
would be ambiguous, for we could first add 2 to 4 and then multiply
the result by 5 to obtain 30 or alternatively we could add 2 to the result
of multiplying 4 and 5 to obtain 22. One way round this problem is to
use brackets to distinguish the two situations. We can do this provided
we understand that things in brackets must always be worked out first.
We then have the two situations

(2+4) x5 = 6x5
= 30

24+(4x5) = 2+20
22

In fact an order of precedence for these elementary mathematical oper-
ations is well established. It is simply that multiplication and division
take precedence over addition and subtraction. However, as we have
said, anything in brackets must be calculated first.

Brackets are very important and must never be discarded lightly.
They should always be introduced whenever any ambiguity could arise.

O The expression 144 + 16 + 3 is meaningless because it is ambiguous.
To see this we merely need to consider its two possible meanings

(144+16)+3 = 9+3

=3
144+ (16 +3) = 144+(13—6)
= 27

[ |
Many years ago somebody coined an acronym BODMAS to help stu-
dents to learn the order of precedence. The letters stand for Brackets,
Of, Division, Multiplication, Addition, Subtraction.
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The word ‘of’ occurs in calculations such as ‘3% of £35 is £1.05p’
but is really only there to make the acronym memorable.

BODMAS has its uses but implies that division takes precedence
over multiplication whereas in fact division and multiplication have
equal status. Similarly addition and subtraction have equal status.
Fortunately this can cause no error. To illustrate this point note that
the BODMAS rule gives

3x12+9

I

3x(12+9)
3% (3)
=4

Il

Whereas the alternative is

3x12+9 = (3x12)+9
36+ 9

1.5 SET NOTATION

We sometimes represent the set of all the natural numbers
1,2,3,4,...

by N and then use the notation z € N to indicate that z ‘is a member
of the set’ N. Likewise we write ¥ € N to indicate that y ‘is not a
member of the set’ N

So3 € Nbut 2.5 ¢ N.

We denote the set which contains all the natural numbers and also 0
by Ny. We shall occasionally find this notation quite useful.
The set of all the integers

—2,-1,0,1, 2,3, ...

is denoted by Z. We know that every natural number is an integer and
this is expressed by saying that N is a subset of Z. In symbols this is

Ncz

In general a set A is a subset of a set B if whenever z is a member of
the set A then z is also a member of the set B. In symbols:

A C B if and only if whenever z € A then z € B
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We can also write B D A to denote the same property. It follows that
if both A C B and B C A then the two sets A and B have precisely
the same elements and therefore we can write A = B.

We have seen that a rational number is any number which can be
expressed in the form p/q where p and ¢ are integers. The set of rational
numbers is represented by Q and the set of all the real numbers is
represented by R.

We therefore have

NCZCQCR
We shall extend this notation a little further in Chapter 2.

1.6 DEDUCTIONS

In some ways mathematics is rather like a very large but incomplete
jigsaw puzzle. Over the years mathematicians have been able to put
some of the pieces together but there are an infinity of pieces and an
infinity of gaps. The key concept which distinguishes mathematics
from other subjects is the notion of proof. We shall have more to say
about proof in Chapter 2 but we shall shortly begin to experience the
idea at first hand. We shall consider, in the first instance, two types
of proof - direct proof and indirect proof.

Let us consider for the moment what is meant by a direct proof.
Suppose it is known that a particular machine, which uses water pres-
sure as its power source, is in perfect working order. Suppose it is also
known that water at the correct pressure is being supplied. We can
then deduce that the machine is functioning correctly. This deduction
is an example of a direct proof.

For an indirect proof suppose that we know that water at the correct
pressure is being supplied but that the machine is not functioning
correctly. We can deduce that the machine is not in perfect working
order. How? Well, if it were, then by the direct proof we have already
given, we should be able to deduce that the machine is functioning
correctly. However we know that it is not functioning correctly and
consequently it is not in perfect working order.

In general if we wish to deduce something using an indirect proof
we take the opposite statement and see if we can deduce a contradic-
tion of some kind. This is a rather more belligerent approach to the
deductive process. In practical terms, if we wished to show that a
machine was essential to the manufacturing process we could see what
happened if we shut it down completely. We should either be able to
continue manufacturing, however inefficiently, or we should not. If the
manufacturing process comes to a halt then we can deduce that the
machine was essential to the manufacturing process.

It is important also to realize that we must not jump to false con-
clusions. For example, in the case of the water powered machine, if we
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know that water at the correct pressure is being supplied and that the
machine is functioning correctly we are not able to deduce that the
machine is in perfect working order. In fact, we cannot deduce very
much in these circumstances; the machine might be in perfect work-
ing order or it might not be. To see this you only have to imagine a
machine which was required to rotate and to irrigate crops. It may be
doing this but some of its outlets could be obstructed so that it is not
in fact in perfect working order.

In the next section we shall begin to prove things directly and in-
directly but it is not until Chapter 2 that we put things into a more
formal setting.

1.7 ALGEBRA

We use the same conventions as we used in arithmetic when we use
algebra. In algebra we use symbols to represent various things. To
start with, we use these symbols to represent numbers, and this is
called elementary algebra. We can add two numbers a and b and the
result will be represented by a+b. If we multiply two numbers a and b
we can represent the result, known as the product of the two numbers,
in several ways; a X b, a - b or even ab. So if we see the symbol uv and
if we know that v and v are numbers then we know that

UV =uU X v

We write a x a as a®> and a x a X a as a3. In general the positive

exponent tells us how many times a occurs in the product.

We now list the algebraic rules which we shall need. Some of these
will be listed under rules of addition and rules of multiplication since
these are the two principal operations which we perform on numbers.
Then we shall list the rule which interlinks these two operations.

1.8 RULES OF ELEMENTARY ALGEBRA

These rules are easily verified for a few numbers but what we are saying
is that they are true for all numbers.

ADDITION RULES

1 Given any two numbers a and b their sum a + b is also a number.

2 Given any three numbers a, b and c then

a+(b+c)=(a+b)+c
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3 There is a number 0 such that for every number a,
a+0=0+a=a.

4 To each number a there corresponds another number, designated
by —a, such that

5 Given any two numbers a and b then a +b=0+a.

We can use these rules to carry out our first logical deduction.

O The number —a is known as the additive inverse of a. Show that
no number can have two additive inverses.

We do this by means of an indirect proof. That is, we shall suppose
that there is some number a which has two additive inverses —a,, and

—ay and then deduce that —a; = —a,.

Now —a3=(-a1)+ using rule 3
=(—-a1) + ( +(—as)) using rule 4
= ((- a1) a) + (—a) using rule 2
=0+ (~a using rule 4

!
=)
N

using rule 3

|

The fact that there is only one additive inverse corresponding to

each number justifies our use of the symbol —a for the additive inverse
of a.

[J Show that if a + x = a + y then z = y.

It is clear how we must do this. We must ‘take away’ @ from each side
of the equation. In other words we must add the additive inverse of a
to each side.

Here are the steps. See if you can see which rule is applied in each
case.

(-a)+(a+2) = (-a)+(a+y)

(ma)+a)+z = ((—a)+a)+y
0O+z = O0+y
r =y

First we used rule 2 (the associative rule), then rule 3 (the definition
of an additive inverse) and finally rule 4 (the property of 0) led to the
required conclusion. u

We now know that if we subtract the same number from each side
of an equation then the equation remains true.
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O You may care to prove that —(—a) = a; the technique employed is
very similar.

Since —a is a number, it has an additive inverse —(—a). Moreover
(—a) + (=(—a)) = 0. But (—a) + a = 0 and therefore

(—a) +(—(-0)) = (-a) +a

By the previous example we have —(—a) = a, as required. [ |

We write a — b instead of a + (—b) and thereby extend our algebraic
operations to include subtraction.

We now turn our attention to the multiplication rules and you will
observe that they follow a similar pattern to those of addition.

MULTIPLICATION RULES

1 Given any two numbers a and b, their product ab is also a number.
2 Given any three numbers a, b and ¢ then

a-(b-c)=(a-b)-c
3 There is a number 1 such that for every number a,
axl=1xa=a

4 To each number a (# 0) there corresponds another number des-
ignated by a~! such that

a-a” " =a" " a=1
5 Given any two numbers a and b then ab = ba.

The number a™! is known as the multiplicative inverse of a. A similar
argument that we used before can be used to show that each number
has a unique multiplicative inverse and that ifa-y =a-z and ifa # 0
then y = 2.

This is known as the cancellation law.

If, when b # 0, we write a + b (or a/b) for ab™! we can extend our
algebraic operations to include division. We remark that when a # 0
we write a’ = 1 and a~? instead of 1/a? and so forth.

Lastly we need to state the rule which enables the operations of
multiplication and division to interact with one another. This rule is
known as the distributive rule.

Given any three numbers a, b and ¢ then a(b +¢) = ab+ ac
O Show that a - 0 = 0 for every number a.
For any number a we have
a-0=a-(0+0)=a-0+a-0
andsoa-0=0. |
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O Show that a(—b) = —(ab).

We need to show that a(—b) when added to ab gives 0, for then a(—b)
will be the additive inverse of ab and this is —(ab). Now

ab+a(-b)=alb+(-b)=a-0=0

as required. [ ]

[0 Show that the distributive rule works with a negative by showing
a(b—c) =ab—ac.
a(b—c) a(b+[—c]) definition of ‘-’
ab+a[—c]  distributive rule
ab+ [—(ac)] previous example
ab — ac definition of ‘-’

i

n
We need to become very familiar with these algebraic rules so that we
can expand out brackets quickly and accurately without batting an
eyelid.

[0 The English poet W. H. Auden reported that he had learnt in math-

ematics the extraordinary rhyme

‘Minus times minus is equal to plus
the reason for this we need not discuss!’

Discuss the reason for this!

It is not clear exactly what is meant by these words; there are two
possibilities. However we have already shown that —(—a) = a and so
we need only to justify the equation

(-1)x(-1)=1
Now 1 + (—1) = 0 and so multiplying by a
ax[l+(-1)])=ax0=0
Therefore
axl+ax(-1)=0
S0
a+ax(-1)=0

and consequently
ax(-1)=-a

Replacing a by ~1 we now have

consequently
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as required. ]
This is a useful rule because it enables us to simplify complicated
expressions involving minus signs.
Now it is time for you to try a few exercises. We shall tackle these
step by step. Only move on to the next step when you have completed
each one to the best of your ability.

1.9 Workshop

Here are several problems to try. We shall solve them one after another.
However if you find you can do the first one, why not try them all before
looking ahead to see if you have them right?

Alternatively if you feel you need to take things rather slower to
build up your confidence then just go ahead one step at a time.

Exercise Multiply out each of the following
1 (a+b)(b+¢)
2 (a+2b)(b—2a)
3 alb—c)+b(c—a)+cla—0b)
4 (a—b)%+2ab

We can treat a + b as a single number to obtain

(a+b)(b+c) (@+b)-b+(a+b)-c

= ab+b®+ac+be

Again a + 2b can be treated as a single number initially. So that

(a+2b)(b — 2a)

(@a+2b)-b— (a+2b)-(2a)
ab + 2b* — 2a% — 4ab
20% — 24 — 3ab

We multiply out each term in turn to obtain
a(b—c)+b(c—a)+cla—0b)

= ab—ac+bc—ba+ca—ch
= ab—ca+bc—ab+ca—bc
0
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It helps to write the square as two brackets 4

(a — b)? + 2ab (a—b)(a—b) + 2ab
(@—b)-a—(a—>)-b+2ab
a-a—b-a—a-b+b-b+2ab
— a2+b2

Il

n

Check the following relationships carefully and then commit them to
memory; forwards and backwards. They are very useful and often arise
in algebraic work.

(a+b)? = a®+ b+ 2ab

(a—b)? = a>+b? - 2ab

a? - = (a+b)(a—0b)

a® -5 = (a—0b)(a®+ab+ 0%

a+b = (a+b)(a® - ab+b?)

Now check that you have understood and learnt them by attempting !5
the following example.

> Exercise Express each of the following as a product of algebraic factors.
1221

281
3r4-1
4 23 +8

5 (z+1)2~(x~-1)?

How many factors did you get for each one? There should have been 6

2,2,3,2,1 respectively.
Here are the results.

122 -1=22-12=(z+1)(z-1) :]7

278 -1=(z-1)(z*+z+1)
328 —1=(22-(1)2= (22~ 1)(22 +1)
= (z-1)(z+1)(z® +1)
428 +8=0+2=(z+2) (22~ 2z +4)
5(+1)2~(z-1)2= [(:1:+1)—(x—1)][(:1:+1)+(z—1)]
=2(2z] =4z
You could also obtain this by multiplying out each expression.
Now for a tricky one.
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D> Exercise Express z* + 1 as a product of algebraic factors.
Here is a hint
(z® +1)?

Does that help?

(% +1)* - 227

(2* +1)* - (v22)°

[(z2 + 1) — v2z][(z* + 1) + /22]
= [z - 2z + 1][z* + /27 + 1]

8
S

+

—

i n

I

We have already seen that it is possible to use the rules of algebra to
expand certain expressions. For example we saw that

(a+b)? = a®+ 2ab +b?

Sometimes it is necessary to reverse this process and collect algebraic
terms together. There is only one way to acquire this skill and that is
by repeated practice.

D> Exercise Simplify each of the following expressions.
1 1+ 4z + 4x?
2 9 — 6z + z?
3 1+ 1022 + 2513

9 The keys to the problem are pattern and factorization.

1 1+4z+42% = (1+22)(1+22) = (1 + 22)* = (22 + 1)?
29-6r+22=32-2-3-2+12
=0B-17)3-1)=0B-1)*= (- 3)?
3 7+ 1022 + 2523 = z(1 + 10z + 25z?)
=z(1+2-1-[5z] + [5z]%)
=z-(1+52)?=(52+ 1)z
We notice that in this example there are several different but equivalent
answers. ]
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1.10 IDENTITIES AND EQUATIONS

Whenever we have a expression which involves the sign ‘=" we say we
have an equation.
For example

t4+7=0, z(r+2)=3, z°+8=0

are all examples of equations.

Very often the equation contains an unknown quantity which we are
required to determine. The process of determining the unknown is
called solving the equation and the unknown itself is called a solution
or root of the equation. Some equations have many roots.

We have already seen how to solve some equations. For example the
equation

z+a=0
where a is a constant (a number which is known) and z is the unknown
number has the solution z = —a.

We can generalize this very slightly to solve any linear equation. A
linear equation is an equation of the form

ax+b=0

where a and b are constants (¢ # 0) and z is the unknown. We have
az = —b and so z = —b/a.

Occasionally an equation is true for all the numbers for which it is
defined. We have already seen examples of this such as

a? — b = (a—-b)(a+b)

Such an equation is called an identity and sometimes the equals sign
is replaced by ‘=’ to emphasize this. So we could write

a> - =(a—-b)(a+b)

0O In each of the following equations decide which are equations and
which are identities. Solve the equations.

14z — 22 =22 (22 - 1)(2z + 1)
2z(z+1)(z+2)=(z+1)(z+2)(z+3)
3z+1)(z—-2)=22-z3-2
4(z+3)(z—-2)=12>-52-6

1 This is an identity

4zt -’ =22 (42’ - 1) =2 2z - 1)(2z + 1)
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2 This is an equation. We can only cancel out
(z+1)(z+2)

if it is non-zero. We should then obtain x = x + 3, which has no
solution. Consequently

(z+1)(z+2)=0

and so eitherz +1=0o0r z + 2 =0.
Consequently we have the two roots £ = —1 and z = —2.

3 This is an identity. Multiplying out we obtain,
(z+1)(z-2)=2>~-22+2—-2=12"-1—2
4 Be careful! This is an equation.
(x+3)(z—-2)=2>-52—-6
s)

224372 —-22-6 = z*—5x—6

’+z-6 = 7z -52-6
sor = -3z
and 6z = 0
thereforez = 0

1.11 SIMULTANEOUS EQUATIONS

Some of the language which is used to describe algebraic expressions
can be a little confusing at first. Two words in particular can cause
confusion, these are ‘term’ and ‘coefficient’. We shall illustrate how
these words are used by referring to a specific expression. The expres-
sion we shall take is

zt —32% + 1122 — 252 + 16

2 refers to all that part of the expression which con-

2

The ‘term in z
tributes to z raised to the power of 2. In the example, the term in z
is 11z%2. Likewise the term in x is —25z. Notice that the sign must
also be included. The constant term is 16, the z® term is —3z% and
the term of the fourth degree in z is z*.

The ‘coefficient of 22’ is the number which must be multiplied by z2
to give the term in z2. In other words, the coefficient of z2 is the term
in 22 divided by z2.

In the example the coefficient of z* is 1, the coefficient of z° is 3,
the coefficient of 22 is 11 and the coefficient of z is —25.
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Right! Now that we have got that clear we shall proceed to consider
the solution of simultaneous equations. Naturally we shall use the rules
of elementary algebra which we have described to solve them.

For instance, we may be given a pair of linear equations which are
known to hold simultaneously. Specifically, suppose that

ar+by = h
cx+dy = k

where a, b, c and d are constants. We are required to obtain z and y.

We shall have quite a lot to say about such systems of simultaneous
equations when we discuss matrices in Chapter 13 but for the moment
we shall simply discuss how to solve these equations.

The technique which is employed is known as the elimination method.
We multiply through each equation by suitable numbers so that the co-
efficients of one of the unknowns become the same. We then subtract
the equations we have obtained to produce a single linear equation
which is easily solved. ’

O Solve each of the following pairs of simultaneous equations.
lx+2y=11,z—y=2
23z —4y=10,5z + 2y = 34
1

T+ 2y
T—-y

11

2

Subtract the second equation from the first to eliminate x
2y —(~y)=11-2

So that 3y = 9 and so y = 3. Substituting back into the second
of the equations now gives x = y + 2 and so z = 5.

3r—4y = 10
or+2y = M

Here we can multiply the second equation by 2 so that apart from
a change of sign the coefficients of y will be the same. We can
then add the equations together to eliminate y.

3z—4y = 10
10z +4y = 68

Adding these equations we now obtain 13z = 78 from which z =
6. The first equation then gives 4y = 3z — 10 = 18 — 10 = 8 from
which y = 2. ]
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It is always worth checking that the values of z and y which have been
obtained do in fact satisfy the equation. We have only considered
a pair of simultaneous algebraic equations in two unknowns but the
technique clearly extends to a system of n equations in n unknowns.
Naturally the more equations the more tedious the elimination is likely
to become. We shall consider systematic methods of solving such sets
of simultaneous equations in Chapter 13.

1.12 RATIONAL EXPRESSIONS

One of the most useful algebraic processes involves collecting terms to-
gether in a single expression. Here some of the processes of elementary
arithmetic can be mimicked. For example, to simplify 1/2+1/4+1/6,
we take the terms over a ‘common denominator’. That is, we look for
a natural number which is exactly divisible by 2,3 and 6. Preferably
we look for the lowest common multiple of these numbers but if we
can’t spot it we can always multiply all these denominators together
to obtain one. Here we see that 12 is the lowest common multiple. This
means that, if we ensure that each of these numbers is expressed with
12 as a denominator, we can collect them all together over a common
denominator.

1_6 3 2 _6+3+2 11
6 12 12 12 12 12
It is usual to leave out the second step of this process because, once
the common denominator is known, the corresponding numerators can
be found by dividing the individual denominators into it.

We can apply the same principle to algebraic quotients but before
we do so we shall look at one more numerical example to establish the
pattern.

0O Without using a calculator (or using mental arithmetic) simplify
2/3+1/2+5/6.

Here the lowest common multiple of all these denominators is 6 and so
we proceed as follows

5_4+345 12,

1
37376 6 6

Now let’s apply the same process to algebraic symbols.

O Simplify 1/(z+ 1)+ 1/(z - 1)
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We have (z + 1)(z — 1) as a common denominator so

1 1 z—1 T+1
s+l -1 - G@+)e-D) @+)E-1
(-1 +(z+1)

(z+1)(z-1)
_ 2z
|

n

It is necessary to be able to simplify expressions of this form con-
fidently. The basic principle underlying what we are doing can be
expressed by

a b a+b

c ¢ c
In other words expressions can be collected over a common denomina-
tor.

This is a direct consequence of the distributive rule, from which
a-cl+b-ct=(a+b)c!

You need to be alert to the fact that expressions cannot be collected
under a common numerator. In other words

a a a
3o bre

This is because
a-bl+a-ct#alb+c)!
This is an error which occurs surprisingly frequently. Do avoid making
this mistake!
We shall also need to be able to reverse the process we have de-
scribed. This will be one of our studies in Chapter 2 when we describe
how to put a rational expression into partial fractions.

(0 Obtain a and b if
T _ a b
x2—4:x—2+x+2
The expression on the right is
a(z+2)+b(z -2) a(z+2)+bz—2)
(z-2)(z+2) z?2 -4
We shall have an identity only if the corresponding numerators are
identically equal

z=alz+2)+b(z-2)
In order to obtain a and b we are now entitled to put in any values of

z, including z = 2 and z = —2. If we do this we deduce 2 = 4a and
~2=—4b. Soa=1/2and b=1/2. [
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1.13 REARRANGING EQUATIONS

Sometimes the quantity which we wish to calculate is concealed in an
equation and we need to rearrange the equation to obtain it. Under
such circumstances we say that the unknown is given implicitly by the
equation and we wish to obtain it ezplicitly. The equations we have
been solving have expressed the unknown implicitly and the process of
solving the equation has been to make these unknowns explicit.

[0 The equation PV = RT relates pressure P, volume V and tempera-
ture T. R is a known constant. Express P,V and T explicitly in terms
of the other variables.

From PV = RT we obtain, by division,

RT

P="
vV

RT

V—T
PV
T=—x

(0 The period of a simple pendulum is given by T = a - /(I/g) where
a and g are constant and [ is the length of the pendulum. Obtain [
explicitly.

From T = a - /(I/g) we have on squaring
T?=d’-(I/g) = (a® - 1)/g
s0 T? - g = a®- | therefore | = (T? - g)/a® = g - (T/a). |

1.14 QUADRATIC EQUATIONS

We have already seen how to solve any linear equation in a single
unknown. This is an equation of the form

az+b=0

where a and b are constants (a # 0).
We now turn our attention to the quadratic equation

ar?+bz+c=0

where a,b and c are constants (a # 0).



QUADRATIC EQUATIONS 21

Before we deal with the general case, we shall consider one or two
simple cases which can be solved easily.
O Solve 7% — 10z + 25 = 0.
We may factorize the left side of the equation to obtain
(z-5)(z-5)=(z-5%*=0

The cancellation law now shows that if z — 5 # 0 then £ — 5 = 0.

We conclude that in any event z — 5 = 0 and so z = 5.

This is known as a repeated root since, in a sense, it satisfies the
equation twice. [ ]
O Solve z2 -9z + 14 =0

We shall solve this in two ways. The second method will lead into the
general method.
1 Factorizing we obtain

(z-2)z-7)=0

By the cancellation law one of these factors must be zero and so we
deduce that either z — 2 = 0 or z — 7 = 0. Consequently the solutions
arer=2andz=7.

2 We can rearrange the equation in the form
(z+a) =k

where a is half the coefficient of z.
In this case we obtain

9\? 81
(1‘—5) —Z+14—0

9\? 81 25 5)2
(“5) —1—14—1-(5)

Now we have an equation of the form X? = A2 from which we deduce
X2 A2 = (X — A)(X +A) =0

andso X = A or X = —A.
In this case

9 5 9 5
TTTMt T Ty
Consequently
14 4
a:=—2 =7orz=§=2

|
Of course, in this particular example, it was much easier to factorise the
quadratic at the outset. However this method provides the springboard
for a general idea known as completing the square.
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We now turn our attention to the more general quadratic equation
ar’ +bx+c=0

where a,b and c are constants (a # 0).
First divide through by a so that the coefficient of 22 is 1, so that

c

b
?+-z+-=0
a a

Remember that to ‘complete’ the square we need to add to z half the
coefficient of z and then adjust the algebra to maintain the equation.

Here we obtain ) )
z + Y _ (L + oo
2a 2a a

m+b oo _c
2a "~ (22)? a

So

Y dac
(202 (20)?
b —dac
= T(ay
Taking the square root we now have
+./(b? — dac)
i %

From which
—b+ /(b? — 4ac)
N 2a
This is known as the formula for solving a quadratic equation.

It is important to note that the equation has equal roots when the
‘discriminant’, b? — 4ac, is zero and that, when the discriminant is
negative, there are no real roots. We shall return to this point in
Chapter 10 when we consider complex numbers.

1.15 POLYNOMIALS

In general a polynomial P is defined by
P(z) = apz™ + ap 12"+ -+ a1z + ag

where the ‘a’s, which are known as the coefficients, are constants and
n is a natural number. The expression P(z) is known as a polynomial
in z.
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O If P is defined by
P(z)=2*+4s"+z+1

then P is a polynomial and z* + 4z + z + 1 is the corresponding
polynomial in z.

If the leading coefficient a,, is non-zero then the polynomial is said
to have degree n. [ |
0O z2 + 1 and 2z° — 23 + 1 are polynomials in z of degree 2 and 5
respectively.

If the degree of one polynomial is less than the degree of another it
is possible to divide one into the other to obtain a quotient and a
remainder.

O Divide z? + 1 into 2z° — z3 4+ 1 to obtain a quotient Q(z) and a
remainder R(z).

We wish to obtain polynomials in z, Q(z) and R(z), where the degree
of R(z) is less than that of 22 + 1, such that

27° — 2 + 1= (22 +1) - Q(z) + R(x)

We begin by observing that to obtain the leading term 2z° we must
multiply 22 + 1 by 2z3. We do this and then add and subtract terms
as necessary to maintain the equality. This procedure is repeated as
many times as are necessary in order to achieve the required result. So

225 — 234+ 1=20%(2? +1) — 32° + 1
Notice that —3z® has degree greater than z% + 1 and so we can repeat
the process.
20 — 23 +1 = 2232 +1)-323 +1
= 223z +1) = 3z(z® + 1) + 3z + 1
= (z°+1)-(22° - 3z) + 3z + 1

Therefore the quotient Q(z) = 2z® ~ 3z and the remainder R(z) =
3z + 1. It follows that

225 — g3 + 1 3z+1
=923 -3
72 +1 o x+m2+l

This process is sometimes known as the method of ‘short’ division. W

An expression which is the quotient of two polynomials in z is known
as a rational expression in z. If the degree of the numerator is n and
the degree of the denominator is m then the degree of the rational
expression is defined to be n — m. ‘
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THE REMAINDER THEOREM

We have considered what happens in general when one polynomial
is divided by another of smaller degree. However we obtain a useful
result by considering what happens when a polynomial P(z) of degree
at least 1 is divided by x — a. In general we obtain

P(z)=(z—a)Q(z)+ R

where ()(z) is the quotient and the constant R is the remainder.
We observe that putting z = a we obtain

P(a) =R

so that the remainder, when the polynomial P(z) is divided by z — a,
can be obtained by evaluating the polynomial at z = a.

It follows therefore that if P(a) = 0 then the remainder is zero and so
the polynomial has x—a as a factor. This result can be extremely useful
if we are required to factorise a polynomial or to solve a polynomial
equation.

1.16 THE BINOMIAL THEOREM

It is easy to verify, by direct multiplication, that

1+2)° = 1
14z) = 14z
1+ 2z + 22

14z = 143z+322+2°
1+2)* = 1+ 4z +62% + 42° +

N SN TN N N
—
+
S

N —
Y
it

A pattern is emerging for these coefficients which is often referred to
as Pascal’s triangle. Let’s look at it.

[—y

(1)

——

—
ISQNULN &)
N

1

3 1
6 4 1

Each entry consists of the sum of the entry above, and the entry above
and to the left. The circled numbers illustrate this feature; 3 is the

sum of 2 and 1.
Using this idea, see if you can write down the next line.
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Here it is:
1 5 10 10 5 1

So we may conjecture that
(1+1)® =1+ 52+ 102% + 10z* + 5z + 1°

and indeed direct multiplication will verify this fact.

Before we take this story any further we shall introduce some notation
which you may not have come across before. Suppose n is a natural
number then the symbol n! is known as factorial n and is defined by

M=nxn-1)x---x3x2x1
So that
Bl=5x4x3x2x1=120

One way to think of n! is that it is the number of ways in which we
can arrange n books on a shelf. For example, if n = 3 and we have
three books A, B and C, the six possible arrangements are

ABC, BCA, CAB, ACB, BAC, CBA
This interpretation is even consistent with 0!, which we define to be 1,

for if there are no books, there is only one way to arrange them and
that is to leave the shelf empty!

Using the factorial symbol we can now define another symbol which is
known as the symbol for the binomial coefficients. Suppose that n and
r are both positive integers and that r is less than or equal to n. We

define
ny _ n!
T ) (n—r)r!

Using this notation we see that
3 _ 3! ) _3x2><1_3
2 ) 7 3-22r 12 Ix2x1

5 _ 5! 5! _5x4><3><2x1__10
2] 7 (5-2)217 312 T 3x2x1x2x1

If we calculate ( : ) for n and r less than 5, we see that Pascal’s

triangle can be written



26  BASIC IDEAS

o) (1) (2) (3) (3)

This enables us to conjecture the general formula for (1+z)". We have

(1+x>":(g)+(’;)z+(g)xz+...+<z>xn

This is known as the binomial theorem. We shall extend it later to
other values of n.

O Obtain the coefficient of 27 in the binomial expansion of (1 + z)!2.

The coefficient of z7 in the expansion of (1 + z)" is ( T7L ) So the
coefficient of z7 in the expansion of (1 + z)'? is

<12> 12! 12x11x10x9x 8

7 ) TET T Bxaxdxoxl 2

|
If we glance back at Pascal’s triangle we observe that each row appears
to be symmetrical about its midpoint. In other words reading from left
to right or reading from right to left seems to give an identical sequence
of numbers. We have previously observed that each entry in the table
appears to be the sum of two entries in the row above. These are
two significant features of the binomial coefficients which we can now
prove.

[0 Deduce the following identities which are satisfied by the binomial

coefficients.
n
n—r

(7))
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2 (nﬁr):[n—(n—:;]!(n—r)!‘r!(nn!—m!:(7)

() ()

. (n=1)! (n—1)!
B G s T R P e 3 [ RY
(n=1) (n—1)!

(n=—r=1)'rt" (n—r)! (r—1)!

_ (n—1)! [1 1 ]

n—r—1)(r-1)! |r n-—r

THE 3 AND [] NOTATION

Sooner or later we shall have to introduce the ‘sigma’ notation and
there is no time like the present! This symbol, which is also known
as the summation symbol ), provides a useful method for writing a
large sum of terms in a compact form. There is also a corresponding
symbol, [T, which can be used to represent a product of terms and so
while we are about it we shall introduce this too.

Suppose we w I‘ite
n

r=0

This means that we allow r to take on all integer values from 0 to n
(including 0 and n) in the symbol ( Z ) and add the results. Conse-
quently

S (5)=(5)+ ()= (5)+(2)

The binomial expansion can therefore be written compactly as

(1+x)"=i(:f,>x’

r=0
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In a similar way we define [] to be a product, rather than a sum. Using
this symbol the product of the same set of terms could be written as

I (7)

() =(5) (1)< (3) (%)

So, for example,

So that

H r=1x2x3---x(n—1)xn=n!

r=1

(O Show that if n is a positive integer then

n

(a+b)"zz<¢>an—rbr=z":(v:>arbn_,

r=0 r=0

(a+d)" = (a [1+E]) =a" (1+E)
a a

This is now in a form in which we can apply the binomial theorem
with z = b/a. So

@ror = 3 (") ()

a = a ZO r "

s
T

r=0

We have

Clearly if we interchange a and b the result will be unchanged and so

w352 )erv 3 (o

r=0 r=0

Now it’s time for you to take a few steps on your own just to make
sure you can handle problems involving the binomial theorem and the
binomial coeflicients.
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1.17 Workshop

D> Exercise Show that if n is any natural number

(3)° (1) ()(2) =

2()=*
T
r=0

Have a go at this and then see if you did the right thing.

that is

We merely need to use the binomial theorem

(1+x)"=zn:(j}>xf

r=0
and put z = 1 to obtain the required identity.

If you were right then move ahead to step 4. If you didn’t quite
manage it then try this.

D Exercise If we choose any row in Pascal’s triangle and alternate the
signs, the sum is 0. For example, if n = 5 then

1-54+10-10+5-1=0
Prove that this property holds for all natural numbers n.

As soon as you have done this, take the next step.

=

Again we must use the binomial theorem

(1+x)":2n:(f)x’

r=0
However, this time we put z = —1 to deduce
n
_ n _1\r
0= Z% ( r > (-1)
r=

which is precisely what we wished to show.

=

D> Exercise Obtain a relationship between h and & if the constant terms

in the binomial expansions of

8 4
<h$2 - —k§> and <hz + ﬁ)
x T

are equal.
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Give this a little thought and as soon as you are ready, step forward!

We notice that in each case the constant term will be the middle term
in the binomial expansion of (a + b)". It is only in these that all the
powers of x will cancel out.

The constant term in the first occurs when r = 4 and the constant
term in the second occurs when r = 2.

In the first we have a = hz? and b = —k/z? so the constant term is
8 E\* 8x7x6x5
( 4 ) (ha)’ (—E> TIx2x3x 4h4k4 = TOR°K*

Whereas in the second we obtain

2
( 5 ) (ho)? (g) - %—i—;’-h%& — 6h2K2

Therefore
70h*k* = 6h%k?
35h%% = 3

This is the relationship which we were required to obtain.

If you made a mistake or feel you would like some more practise then
do the next exercise. Otherwise you may move through to the top of
the steps.

Exercise Obtain the approximate value of

2\ 5
= 1+x+z—
v )

if z is so small that terms in x of degree higher than 3 may be neglected.

We use the notation =~ instead of the equality sign = if two things
are ‘approximately’ equal to one another.

Do your best with this one and then step ahead.

We have
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Since terms of degree higher than 3 in z may be neglected, we obtain
2
5 a? 5 z?
o= (§) (0 5) 4 (3) (4 %)
3
5 z?
(5)(+3)
145 z?\ 5x4 2+2mm2 +5X4X3x3
Ty e\t T Ix2x3

5¢ 2 3 3
1+5$+—é—+10$ + 10x° + 10x

Q

Il

252

I

145z + + 2023

1.18 THE GENERAL BINOMIAL THEOREM

We introduced a special notation for the binomial coefficients and we
defined

<n) n! nx(n—-1)x-x(n—r+1)

(n—r)r! I1X2%x---Xr

This second form can be used to define ( 7: ) even when n is not a

natural number.

This is particularly important because although we have inferred the
binomial expansion from a pattern which we observed when n is a
natural number, it is in fact valid for all real numbers n, provided
—1 < z < 1. The expansion then becomes

(1+x)"=§:<?>$’

r=0

The symbol oo which appears above the summation sign indicates that
we no longer have a finite expansion but instead have an infinite series.
We shall discuss infinite series in some detail in Chapters 8 and 9 but
for the moment it will be sufficient to think of them as adding terms
indefinitely.

The sum of the first N terms will either approach some fixed number,
as N increases, in which case the series is said to converge, or it will
not, in which case the series is said to diverge.
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The binomial theorem states that provided —1 < z < 1 then the

series
oo
z n
T

r=0

converges and moreover that it converges to

(1+z)"

The binomial theorem in its general form can prove quite useful if we
wish to determine an approximate value for an expression involving
powers of 1 + x where —1 < £ < 1. When z is numerically small we
may be able to neglect all but very small powers of z. It is easy to
convince yourself, by using a calculator, that when —1 < = < 1, large
powers of x are extremely small.

It must be stressed that these properties are not self-evident and in
fact require quite advanced mathematics to put them on a rigorous
footing. Nevertheless we shall be content, for the moment, to apply
them and we conclude this chapter by giving a practical application.

1.19 Practical

ELECTRICAL FORCE

A magnetic pole, distance x from the plane of a coil of radius a, and
on the axis of the coil, is subject to a force

kx

= m (]C constant)

when a current flows in the coil. Show that:
a if z is small compared with a then

kx  5kz®
F~ @ 247

b if z is large compared with a then

kK 5ka?
ot 216

Try a, then move ahead for the solution.
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a We have z/a is small, and so we rearrange the expression for F' so
that we can expand it by the binomial theorem

kx
(a® + 22372

kx
a1 + (z/a)?]5/2

- ST
E-3 6]

neglecting terms in z/a of degree higher than 2. So

F =

2
|

Fa kz 5ka3
ad 2a”

Now see if you can do the second part. Remember that here z is large
compared with a.

b We rearrange the expression for F' in terms of a/z, which is small,
with a view to using the binomial expansion in a very similar way to
that of a.

kx
251 + (a/z)?]>/

- 2@
-]

neglecting terms in a/z of degree higher than 2. So

Q

F k 5ka?
28
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SUMMARY

[J We have seen how to classify real numbers into natural num-
bers N, integers Z, rational numbers Q and real numbers R.

NCZcQcR

(0 We have seen how to approximate numbers to a given num-
ber of decimal places or a given number of significant figures.

[0 We have examined the rules of elementary algebra, distin-
guished between identities and equations, and seen how to
solve the quadratic equation

ar? +br+c¢c=0
to obtain

—b = +/(b* — 4ac)
=
2a

[0 We investigated the general expansion of (1 + )", where n
is a natural number.

(1+z)"=z":<’;> z"

r=0

EXERCISES

1 For each of the following pairs of numbers obtain the sum and the
product in scientific notation giving the answers correct to (1) 3
decimal places (2) 4 significant figures

a 6.23509, 11.4731
b 16.2536, 0.0001124
¢ 0.00045792, 0.000059634
d 1.0000523, 154.000002
2 Give each of the following numbers (1) correct to 5 significant
figures (2) correct to 5 decimal places
a 217.385, b 0.0002843, c 11.1 d 432.495,
e 1.0000472, £ 1.00005 g 1.000050001
3 Multiply out each of the following algebraic expressions
a (a + 3b)(a — 2b)
b (u—v)(v—w)(w—u)
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c (z+2y)(y + 22) (2 + 22)
d (a® +b*)(a — b)(a +b)
4 Factorize each of the following expressions
a a® + 3a%b + 2ab?
b z3 + 22y — dzy? — 4¢3
c ud — Tu?v + Tuv? — 23
d zy? — 22y
5 Rearrange the following equations to give x explicitly in terms of
y
al/z+1/y=1
by=(z+1)/(z-1)
cy=1//(1+y/z)
d1/1-z)-1/(1-y)=z—y
6 Solve the following sets of simultaneous equations
az+2y=73r—-4y=1
b2u+3v=213u+2v=19
c3p—-2¢g=11,2p+ 3¢ =29
dbh—-3k=7,3h+5k=11
7 Prove the following identities
a(a+b)(b+c)(c+a)
=a(b? + c?) + b(c® + a?) + c(a® + b*) + 2abc
ba’b—c)+b(c—a)+Ea—b)+(a—b)(b-c)(c—a)=0
8 Classify the real roots of the following equations into natural num-
bers, integers, rational numbers, real numbers:
auv’+u—-2=0
bu!+u+2=0
cu?4+2u—-2=0
du?-3u+2=0
eu’+3u+2=0
f2u?-3u+1=0
9 Write down the first three terms in the binomial expansion, in
ascending powers of z, of
a(l-2z)
b (z + 3)7
c (2z - 3)®
d (4 - 53)1?
e (3 +5z)%/3
f(zr-3)2
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ASSIGNMENT

1

6

7
8

Find all real solutions of the following equations and classify them
into real numbers, rational numbers, integers, natural numbers:

ar’?-z=6
b3y?-Ty+2=0
cul+1=2/u?
dv?+15/v2 =8
edr’ —4r+1=0
Simplify
1-zt
(1-z)(1+2?)

A resistance r is given by the formula 1/r = 1/r{ +1/r;, where r;
and 7y are other resistances. Obtain an explicit rational expres-
sion for 7 in terms of r; and r,.

By first putting z = 1/u and y = 1/v, or otherwise, solve the
following equations

a2/u-1/v=4,1/u+3/v=9
b4/u+3/v=223/u-2/v=2_8

¢ 5v — 3u = Tuv, 3v + 4u = 10uv

du=v—uv,6uv=4v -1

Decide, in each case,which of the following are identities and
which are equations. If they are equations then solve them.

a (2z +3)? - 2(z + 3)(2z + 3) + (z + 3)? = z?
b(z+3)/(x?+3z+2)-1/(z+1)+1/(z+2) ==z
c(z—1)+(z~-4)?=(z-2)?+ (z —3)2 +2?

Determine the value of & if the coefficient of z!2 in the binomial
expansion of (1 + kz3)!% is known to be 455/27.

Obtain the constant term in the binomial expansion of [z—(1/z)]8.
The binomial expansions of (1 + az®)* and (1 — bz?)% both have
the same coefficient of z°. Show that

3a% +10% = 0.

FURTHER EXERCISES

1

For each of the following equations, classify the real solutions into
natural numbers, integers, rational numbers, real numbers.

a(2zr—-1)(2z-4)+2=0
bz-1/z=1-5/z
c(z-3)?+6(x—3)+6=0
d(Vr—1/\/z)t=1-1/z
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2 Factorize each of the following algebraic expressions completely
a a* — 5a%b? + 4b*
b 4u? — 17u?v? + 4v*
¢ [(u+v)? = (u—v)’[(v+w) - (v—w)’
d z° — 10z* + 35z° — 5022 + 24z

3 Show that twice the coefficients of z3 in (3z +2)° is equal to three
times the coefficient of z* in (2z + 3)°.

4 Write down the first four terms in the binomial expansion of
a(l+ x)m
b(l1+z)™!
(1 _ x) 1/2
d (1-3z)-%3
(4 T )3/2
5 A trapezium has height h and parallel sides of length a and b. If
the distance d of the centre of mass from the side of length a is
given by
_h(2b+a)
"3 (a+b)
express b explicitly in terms of a, d and h.

6 The surface area of a rubber tyre is given by S = 4n%ab where
a is the radius of a circular cross-section of the tyre and b is
the distance of the centre of this section from the centre of the
ring. Express the area S in terms of the internal radius r and the
external radius R of the ring.

7 When two resistances r; and ry are arranged in parallel their
combined resistance r is given by the formula 1/r = 1/r; + 1/r
but when they are arranged in series their combined resistance
T is given by the formula r = r; + 5. If an electromotive force
(EMF) E is applied to a resistance r the current i is given by
E=qr.

Two resistances r; and 7, are first arranged in series and then in
parallel. In each case a constant potential difference F is applied
and the current to the combined resistance is measured. If these
measurements are ¢; and i; respectively obtain formulae for r;
and 7y explicitly in terms of E, i; and %,.

8 Obtain the displacement z in terms of the velocity v if

1
=2k (2 -1
T a

where k and a are known constants.

9 The torque T exerted by an induction motor is given by
ARs

Obtain the ratio s/R explicitly in terms of A, X and T only.

T =
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10

11

12

13

14

15

16
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A hemispherical shell has inner and outer radii @ and b respec-
tively. It is found that the distance d of the centre of mass from
the centre of the bounding sphere is given by

_ 3(a+b)(a® +b?)
~ 8(a? + ab +8?)

If a + b = h, express a/b explicitly in terms of d and h.

By putting y = z — h, or otherwise, show that, if powers of
(z — y)/z higher than degree 2 may be neglected, then

102—312z T—y +1 z—y\?
2zy T 2 T
The flow of water through a pipe is given by G = \/[(3d)° H/L].

if d decreases by 1% and H by 2%, use the binomial theorem to
estimate the decrease in G.

The resonant frequency of a circuit of inductance L and capaci-
tance C with negligible resistance is given by f = 1/[2r/(LC)].
If L and C increase respectively by 1% and 2%, estimate the
percentage error in f.

The safe load W that can be carried by a beam of breadth b,
depth d and length ! is proportional to bd®/I. Use the binomial
theorem to estimate the percentage change in W if for a given
beam the breadth is increased by 1%, the depth is decreased by
3% and the length is decreased by 3%.

The field strength of a magnet at a point on the z-axis at distance
z from the centre is given by

M 1 1

T2 |(z—a? (z+a)?

where M is the moment and 2a is the length of the magnet. Show
that if « is large compared with a then H = 2M/z3.

A string is stretched between two points A and B distance [ apart.
A point P on the string distance d from A is pulled transversely
through a small distance z. Show that the increase in the length
of the string is approximately [z2/2d(1 — d).
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In Chapter 1 we examined the algebraic rules which numbers
obey. In this chapter we shall discuss some useful mathematical
concepts including inequalities and the laws of logarithms.

After completing this chapter you should be able to

L1 Apply the laws of indices and logarithms;

[1 Solve simple inequalities;

[ Resolve a rational expression into partial fractions;

[J Construct examples of direct proofs and indirect proofs;

[J Use the method of proof known as ‘mathematical induction’.

At the end of this chapter we shall solve a practical problem concerning
a gas cylinder.

2.1 INDICES AND LOGARITHMS

Years ago all calculations of any difficulty had to be performed using
tables of logarithms. It was therefore essential to become skilled in
the use of these tables. With modern calculators this is no longer
necessary, but it remains important to have a clear understanding of
the rules which underpin them.

INDICES

We first explain what we mean by a”, where r is any real number and
a is a strictly positive real number. We shall build up to the general
idea in stages and so we start with » = n, a natural number.

In fact a™ where n is a natural number will be defined when a is any
real number. This is a luxury which we shall not be able to afford for
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general 7.

and in general

1

a"=aa" wheren>1

It follows that a™ is simply the product of a with itself n times.
If a # 0, we define a® = 1 and, if n is a natural number,

This extends the definition to a”, where r is any integer.

When we consider the definition carefully, we obtain when a # 0:

1 a? a7 = aP™?
2 (aP)? = o
where p and ¢ are any integers.

These two rules are often referred to as the laws of indices, and as
we extend the definition of a™ we shall require these rules to remain
true. One of the prices we have to pay for this is that we will have to
restrict the definition of a” to a > 0. Henceforward we shall suppose
therefore that a > 0.

Suppose next that r is a rational number. So r = p/q, where p and
g are integers. We define a?/9 to be the positive real number z which
satisfies the equation z7 = a”.

There is in fact one and only one such real number but the proof
of this, which relies on a theorem known as the intermediate value
theorem, is outside the scope of our work.

O 22 is therefore the /positive real number z which satisfies the equa-
tion 2 = 2, so that 21/2 = /2 ~ 1.414.

Lastly, for those who are interested, we extend the definition of a” to
the case where r is any real number. If r is a rational number then we
have already defined a”, so we may suppose r is an irrational number.
Consider the non-recurring non-terminating infinite decimal expansion
which corresponds to r and let

T1,7T2,73, "y Thky" "

denote successive rational approximations to 7, so that r is obtained
by truncating the decimal expansion for r after k£ decimal places.
We now consider the numbers

a™,a,a’, Ak
Each one of these has been defined because r; is a rational number. The

number to which these are successive approximations is the number we
call a”.
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It will be appreciated that this idea is quite sophisticated and it
leaves a number of questions. For instance, how do we know that the
numbers

arl,arz,arf-", e ,ar’ﬂ, e

are successive approximations to a number at all? Such questions are
rather subtle and will not be discussed here. It will be sufficient for
our purposes to know that a” has been defined when ¢ > 0 and that
the laws of indices hold.

la" a®* =a™t*

2 (ar)s — ars

where r and s are any real numbers.

[J Using a calculator and employing six successive approximations to
m, obtain six successive approximations to 2.

We have 7 = 3.141 59. . ., from which we obtain the successive approx-

imations
23’ 23.1’ 23.14’ 23.141, 23.1415’ 03.14159

That is,
8,8.574,8.815,8.821, 8.824, 8.825

LOGARITHMS

From the laws of indices we obtain the laws of logarithms. Logarithms
are important because they provide a transformation which enables the
arithmetical processes of multiplication and division to be replaced by
those of addition and subtraction.

Suppose a = b°. Then c is said to be the power to which b has been
raised to produce a. We then write

c=logya

which is called the logarithm of a to the base b.
So the equations

a = b and c=log,a
are equivalent to one another.

In words, the logarithm of a number is the power to which the base
must be raised to obtain the number.

Any positive number, except 1, is suitable as a base. In practice two
bases are used:
1 Base 10: this produces the common logarithms
2 Base e: this produces the natural logarithms (also known as Nape-
rian logarithms).

The number e (= 2.71828) is an irrational number. The reason why
it is chosen and called the natural base will become clearer when we
deal with differentiation (Chapter 4).
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It is usual to write y = logz instead of y = log,yz, and y = Inzx
instead of y = log, .
When the laws of indices are transformed into logarithmic notation,
they result in the laws of logarithms:
1 log,(ab) = log,a + log, b
2 log,(a/b) = log,a — log, b
3 log.(a") =rlog.a
4 log, b =log.b/log.a (a+#1)
The last rule is usually called the formula for a change of base.

[J Use the laws of indices to deduce
log,(ab) = log,a + log, b
Let log,a = z and log,b = y. Then a = c* and b = ¢¥, and so
ab = c*c! = "t

Consequently z + y = log,(ab). [ |
Now one for you to try.

[0 Deduce, using the laws of indices,
log (a/b) = log, a — log,b

Have a go at this; it’s very similar to the previous example.

This is what you should write. Let log.a = = and log,b = y. Then
a=c" and b= c¥, and so

a c* _ _ -
—=—=c ()= c V="
b v

Therefore
log.(a/b) =z —y =log.a — log, b

|
Was all well? If you would like some more practice then try this.

O Deduce, using the laws of indices,
alog.(a") =rlog,a
b log, b = log, b/ log.a

Here is the working:

a Suppose log_a = b. Then a = c’, and therefore a” = (c®)" = c™.
Consequently, log,(a") = 7b = rlog, a.

b Suppose log,b =y and log.a = z. Then b = ¢¥ and a = ¢*, and so

b =(¥)*=c"=(c)Y =a’
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It follows that
b= (bz)l/z — (ay)l/ac — ay/z

from which
log, b ¥ — o8
8a z log.a
Note that log, a # 0, since if log.a = 0 then a = 1. |

Logarithms are very important for solving algebraic equations in which
indices are present. However, it is easy to make mistakes. One of the
commonest errors is to assume that the logarithm of a sum is the sum
of the logarithms. This kind of rule is known as a linearity rule;
unfortunately logarithms do not comply with it. Let us be specific and
examine how the error is usually made.

(J Solve the equation
474+2°-2=0

You can try this first and then examine the correct working afterwards.

The following working is the correct working. First,

442" -2=0
So
27427 -2 = 0
(252 +27-2 = 0
Consequently

(2°+2)(2°-1)=0

So either 2* + 2 = 0 or 2 = 1. Now 2% > 0 for all real numbers z. So
the only possibility is 2* = 1, from which z = 0. |

Now let’s examine some incorrect working of the type which is fre-
quently seen by examiners. In order not to mislead the unwary we
shall avoid the equality sign - it cuts against the grain to use it - and
instead use the symbol ||. See how many errors you can spot in the
following incorrect working of the previous example.

Taking logarithms

zln4d+zIn2—-1n2||0
So

2zIn2+zln2-Imn2 || 0
(3z—-1)ln2 || 0

So z|1/3.
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The trouble is that on rare occasions nonsense like this can even lead
to the correct answer! There are two glaring errors:
1 You cannot ‘take logarithms’ of both sides in the way that has been
shown. The temptation to saunter through the equation from left to
right dispensing logarithmic transformations on every term encoun-
tered seems to be so strong that many people find it irresistible. How-
ever, as we have remarked, logarithmic transformations are not linear
and so the procedure is not valid.
2 Without even bothering to mention it, the assumption has been
made that In0 = 0. However, since e® = 1, € # 0. In fact In0 has no
meaning.

Here is an example for you to try. Do be careful!
[0 Obtain all real solutions of the equation
2% - 27%5 4+ 256 = 0

When you have solved the problem, look to see if you are right.

The easiest way to solve this is to put « = 2% and obtain a quadratic
equation in u. For if u = 2%,

221: — (21)2 — uZ

and
2%+5 — 97 95 — 39y

So the equation becomes

u?—32u+256 = 0

w-2%2u4+28 =0
(u—2Y%u-2% = 0
Therefore u = 2% = 24, and so = = 4. n

2.2 INEQUALITIES

In Chapter 1 we considered identities and equations and used the al-
gebraic properties of the real numbers to solve some of them. When
we come to examine inequalities we need some further algebraic rules.
First, though, we describe the notation.

We write a > b if and only if the number a is greater than the
number b. This is known as a strict inequality. The symbol ‘>’ is
called ‘greater than’.

We write a > bif and only if the number a is greater than, or possibly
equal to, the number b. The symbol ‘>’ is called ‘greater than or equal
to’.



RULES FOR INEQUALITIES 45

[J For the numbers —4, 0, z2 write down the 8 correct statements
which can be written using the symbols > and > and just two of the
numbers.

We need to choose two numbers (not necessarily distinct) and one of
the symbols. We have

N

o
8
NN
\YAVY
8

oo
vV VWV
|
8
o

—4
0
z2

\WAVAWV]
QSO

[3%]
N

[ |
You may be a little puzzled by the inclusion of 0 > —4 and 22 > —4
since we know that 0 > —4 and z? > —4. However if you consider
the meaning of the symbol > carefully you should appreciate that 0 is
indeed ‘greater than or equal to’ —4. You need to be very strict about
the precise meanings of words and expressions and in that way avoid
misunderstandings and errors.

In like manner we define the symbols < and <; called ‘less than’ and
‘less than or equal to’ respectively.

We write a < b if and only b > a. Similarly we write a < b if and
only if b > a.

In general inequalities are difficult to solve. However there are some
which are quite amenable and these are the ones which we shall con-
sider shortly.

One of the ideas which we shall employ is that if we take the product
or quotient of two numbers of the same sign then the result is positive,
whereas if we take the product or quotient of two numbers of opposite
sign then the result is negative. This relatively simple idea, that ‘two
negatives cancel one another out’, can be used to solve a number of
inequalities.

When it comes to the algebraic processes, which we shall explore, it
is necessary to state three simple rules. These are known as the order
axioms for the real number system.

2.3 RULES FOR INEQUALITIES

1 For any real number a, just one of the following is true:

a>0 a=0 a<0
2Ifa>0andb>0thena+b>0andab>0
3a>bifandonlyifa—5>0

You may feel that the first of these rules is self-evident. However, we
shall meet many other mathematical objects for which inequalities are
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meaningless. Relatively simple examples of these are complex numbers
(Chapter 10), matrices (Chapter 11) and vectors (Chapter 14). There
is often a human hankering to compare things. People ask who was
the greatest composer or the greatest film star, for instance, but these
questions are without answer. Anything with more than one attribute
is unlikely to satisfy the first rule (the law of trichotomy).

The second rule gives us the method for dealing algebraically with
inequalities. However we need to be rather careful because although
some of the rules which we apply to equations will also work with
inequalities they do not all work. Unfortunately this can be a source
of much error.

We deduce two properties. The first one is familiar to us because we
know that it applies to equations.
Property 1 If a > b and ¢ is any real number then

a+c>b+c
Proof By rule 3 we deduce that a + ¢ > b + ¢ if and only if
(@+c¢)—(b+c)>0

But this is true if and only if a — b > 0. Again by rule 3 this holds if
and only if ¢ > b. Now we were given that a > b and, since every step
in the argument is an ‘if and only if’ condition, we deduce that

a+c>b+ec

This means that we can add or subtract any number from each side
of an inequality and still preserve the inequality. This is intuitively
clear. If one body is hotter than another and their temperatures are
both increased or decreased by the same amount then the hotter body
remains hotter.

Property 2 If ¢ > b and c is any real number then

1ac>bc ifc>0
2ac<bc ife<0

It is the second part of this property which is often overlooked and
which results in errors.

Proof

1 We have a — b > 0 and ¢ > 0 and so by rule 2, (a — b)c > 0 from
which ac — be > 0. Therefore by rule 3, ac > be.

2 We have a — b > 0 and —c > 0 and so by rule 2, (a — b)(—c) > 0
from which bc — ac > 0. Therefore by rule 3, bc > ac and so ac < be.
In plain language this means that, when we are multiplying an inequal-
ity by a positive number, the direction of the inequality is preserved.
However, when we are multiplying an inequality by a negative number,
the direction of the inequality is reversed.
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There are a number of methods which can be applied to solve inequal-
ities and we shall illustrate them by solving the same problem in a
variety of ways. It is important to study each of these methods care-
fully in order to understand fully how each is applied.

[J Determine those real numbers z which satisfy

z>1/z

Method 1 (Algebraic)

We would like to multiply through by z but we need to be aware of
the possibility that = could be negative. There are therefore two cases
to consider.

Case 1 (z > 0) We obtain 22 > 1 and so 22 — 1 > 0. Therefore

(z-1(z+1)>0

We deduce that z — 1 and z + 1 must both have the same sign. So
either both z > 1and z > —~1 orboth z < 1 and z < —1.

The first condition is satisfied if and only if z > 1, and the second
if and only if £ < —1. However £ > 0 and so the second can be
discounted. Therefore we deduce that z > 1 is a solution.

Case 2 (z < 0) Here we obtain, on multiplying through by «,

<1

and so
2-1<0

Consequently,
(z-1)(z+1)<0

Therefore £ — 1 and z + 1 must both have the opposite sign. So either
z > 1and £ < —1 (impossible) or z < 1 and z > —1. We can express
this by the compound symbol -1 < z < 1.
Note We can only sandwich inequalities together in this way when
they all have the same direction.

However r < 0 and so we deduce —1 < z < 0. Therefore we have
solved the inequality by obtaining the set of numbers which satisfy it.

z>1/zifandonlyifz>1o0or —1<2z<0.

This algebraic method is of great generality and can be used effectively
to solve many inequalities. ]
There is a second approach we can use and we illustrate this method
by solving the same inequality again.
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O Determine those real numbers x which satisfy
z>1/x

Method 2 (Analytic)

We employ rule 3 for inequalities and show how effective it can be.
Therefore we write E = z — 1/z and determine when E > 0.
Now )

E=z_l=x lz(z )(z+1)
z z z

Each of the terms in this quotient, z — 1, z+ 1 and x, changes sign just
once as z increases through negative numbers to positive numbers.

The critical numbers at which the sign changes occur are x = 1,z =
—1 and z = 0. We arrange these critical numbers in ascending order
and investigate the sign of the quotient E by constructing a table in
which the signs of the constituent terms are shown.

Term |[z2<-1|-1<z<0]0<z<1l]z>1
z+1 - + + +
z - - + +
z—1 - - - +
E — + - +

In the table, we merely need to count up to see if there is an odd
number of negative signs or an even number of negative signs. An odd
number of signs means that E is negative whereas an even number of
signs means that E is positive. We conclude therefore that the solution
of the inequality is either —1 <z <0 or z > 1. ]

There is a third approach we can use and so we illustrate this method
by solving the same inequality yet again.

[0 Determine those real numbers = which satisfy
z>1/z

Method 3 (Graphical)
If you are unfamiliar with drawing graphs you will have to delay con-
sidering this method until you have read Chapter 3.

We draw graphs of y = z and y = 1/z on the same diagram. The
basic idea is to compare the two graphs (Fig. 2.1) and to find those
values of z for which y = z is ‘above’ y = 1/z.

The graph of y = z is a straight line and the graph of y = 1/z is a
rectangular hyperbola, but we do not need to know the names; we only
need to be able to plot them in order to solve the problem. Graphics
calculators provide a method of doing this automatically. We shall
consider ideas for obtaining rough sketches of graphs in Chapter 5.
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y-axis y=1/z

0 1 T-axis

Fig. 2.1 Graphical solution of z > 1/z.

We observe that the graphs intersect when z = 1 and when z = —1
and from them deduce immediately that the inequality holds when
z>1land -1<z<0. ]

In situations where the possibility of equality is included it is necessary
to examine the sign of the inequality at the critical numbers too. For
instance the inequality £ > 1/z has solutions -1 < z < 0 and z > 1.
Note in particular that 1/z is meaningless when z = 0.

O Show that if a > 0 and b > 0 and a® > b? then a > b. In words, the
inequality is preserved when we take the positive square root.

We prove this by an indirect method: we show that only a > b is possi-
ble because if any of the alternatives were to hold then a contradiction
would result. There are just three possibilities: aa = bba < b ¢
a>b.

a We can reject a = b immediately, since then

a? -0 =(a+b)(a-b)=0

which contradicts a — b* > 0.
b If a < b then b~ a > 0 and we know that b + a > 0. Therefore
(b+a)(b—a) > 0 and so b* — a? > 0 which is a contradiction.
Only case ¢ remains, and we deduce that a > b. |
A similar method can be used to show that if @ > 0 and b > 0 and
a? > b then a > b.

It is essential to note that in order to apply this property both a and
b must be positive. For example (—3)% > 22 but —3 < 2. Trouble soon
occurs if you overlook considerations of this kind.
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THE TRIANGLE INEQUALITY

One useful notation which we shall employ from time to time is the
modulus symbol. We write |a| for the absolute value of a. Thus if a
is any real number,

la| = a when a > 0
laj= —a whena<0

For example, | — 3| = 3 and |5| = 5.

An inequality involving the modulus sign which we shall encounter
occasionally is the triangle inequality. It can be interpreted physi-
cally as saying that the sum of the lengths of two sides of a triangle is
always greater than or equal to the length of the third side. Geomet-
rically this is obvious, but algebraically it is not quite so clear. Here it
is:

The triangle inequality
la+b] < |a| + |b]

whenever a and b are real numbers.

If you substitute a few numbers, you will soon convince yourself of
the truth of this assertion.

To prove it we proceed as follows:

(laf + [bl)?

lal® + 2|al[b] + [b]*
a® + 2|al|b| + b?
a? + 2ab + b*

(a + b)?

la + b|?

W Il

So that taking the positive square root,
la| + [b] = |a + b]

or
la +b] < |a| + |b]

2.4 PARTIAL FRACTIONS

In Chapter 1 we saw how we could collect a sum of rational expressions
together over a common denominator and thereby simplify it. If we
reverse this process we say we have put the rational expression into
partial fractions. ‘We shall now see how this is done.
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To resolve a rational expression into partial fractions we first ensure
that the numerator is of degree less than that of the denominator. If
this is not already the case we must divide the denominator into the
numerator. For example, take the expression

_ 223 — 1
4 r2-z-1

Here the denominator needs to be divided into the numerator. We can
use ‘short’ division by observing that

20 —1=2(r"+2*~z-1) - 222+ 2z + 1

so that
R - 273 — 1
B+r2-z-1
222 -2z — 1

B t+a2-z-1
Next we factorize the denominator as far as possible:
P+t —z-1=@-1)(2?+2c+1) = (- 1)(z+1)?

To each factor of the denominator there corresponds a partial fraction.
There are two cases:

1 If the factor is not repeated then the numerator of the partial fraction
has degree less than its denominator.

For example, if the factor is £ — 1 (that is, a polynomial of degree
1) then the corresponding numerator will be a constant, A say (that
is, a polynomial of degree 0). Again, if the factor is 2% + 1 (that is,
a polynomial of degree 2) then the corresponding numerator will have
the form Az + B (that is, a polynomial of degree 1).

2 If the factor is repeated r times then there correspond r partial
fractions, one to each power of the factor.

For example, if the denominator was (2z? + 1), we should obtain
three corresponding partial fractions with denominators 222 +1, (222 +
1)?, and (222 + 1)3 respectively. The form of each of the numerators is
then identical and is determined by the factor itself; each numerator
has degree less than that of the factor. So in this example we should
obtain

Az + B Cz+D Ez+ F

2w+ 1 @212 T G 1)

Finally, the unknown constants are obtained by using the fact that
we require an identity.
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O Resolve into partial fractions
_ 222 — 1
T 42—z -1
We have already shown that
222 -2z -1
B+22-z-1
272 -2z~ 1
(z - 1)(z +1)?

A N B 4 C
t—1 z+1 (z+1)2

R =

= 92—

= 2_

We therefore require
222 -2z -1 _ A + B 4 C
(z-1)(z+1)?% = z-1 z+1 (z+1)?

Az+1)2+B(z-1)(z+1)+C(z - 1)
(z —1)(z+1)?

So we require
212 - 2r —1=A(z+1)*+ Bz - 1)(z+ 1)+ C(z - 1)

We may either equate coefficients or put in values of z. In any case our
aim is to determine A, B and C as easily as possible. Putting z =1
gives 2—2—1=4A4,s0 A= —1/4. Putting z = —1 gives 2+ 2 -1 =
—2C, so C = —3/2. Finally, putting x =0 gives -1=A - B - C, so
B=A-C+1=-1/4+3/2+1=9/4.

Consequently

_ (=1/4) , (9/4) | (=3/2)
Ro=2- z-1 Jra:-i—l_i_(a:+1)2
1 9 3

= 2N o) 1w+ D) T2y

[
It is always possible to check your working by recombining the partial
fractions. In the previous example we obtain:

(@+1)° =9z - 1)(z +1) +6(z — 1)
Az —1)(z+1)?

(z2+2z+1) - 9(z* - 1)+ 6(z - 1)
T DT 1P

RHS = 2+
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8(x — 1)(z +1)2 — 82 + 8z + 4

Az~ 1)(z + 1)
8z —1)(z+1)—82?+8x+4
B 4(z —1)(z +1)2

8(x® —z+22—1)— 822 +8x +4
- DE 11y

_ 8z% — 4
4z - 1)(x +1)2
213 — 1

R

THE COVER-UP RULE

Although the technique always works, as you can see it can be rather
long. A short cut is available for obtaining the partial fractions corre-
sponding to factors which are linear (that is, polynomials of degree 1).
This method is known as the cover-up rule and is simple to apply.

First we ensure, by dividing out if necessary, that the numerator of
the rational expression has degree less than that of the denominator.
Secondly we factorize the denominator and select the required factor.
We cover up this factor and imagine that it has been put equal to zero.
This will give a value for (say) . Then we substitute this value for z
in that part of the rational expression which remains uncovered. This
procedure produces the required constant.

[0 Take the rational expression

272 -2z -1
(- 1D)(z+1)?
The denominator is already factorized and is of greater degree than the
numerator. Suppose we require the constant numerator corresponding
to the factor z — 1. We cover up z — 1 and imagine it has been put

equal to 0, and thus obtain z = 1. This is the value of  which we
must substitute into the remnant to give the required constant:

2z2—2x—1_>2x1—2—1_ 1
<(z+1)2?  ><(1+4+1)2 4

R=

n
It is interesting to notice that, in the case of a repeated linear factor,
the cover-up technique produces the constant numerator correspondmg
to the denominator of highest degree. In the previous example,
222 -2z -1 2(-1)? -2(-1)-1 3

(x—1)><—> (-1-1)>< 2
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The cover-up rule can be quite useful for cutting down the amount of
algebra that would otherwise be necessary. Let’s summarize the rule.
To obtain the constant numerator corresponding to a distinct linear
factor ax + b, where a and b are constant:
1 Cover up the factor az + b in the denominator and imagine that it
has been put equal to zero;
2 Substitute the value of z obtained in this way into the rest of the
rational expression, and the result is the required constant.
Most students use a finger to cover up the linear factor but any other
convenient part of the anatomy will do.
Now for some more steps.

2.5 Workshop

Exercise Use the cover-up rule to resolve into partial fractions

3z +1
z(z — 2)

First find the numerator corresponding to the fraction with denomina-
tor z and then take step 2.

For the numerator corresponding to z we put z = 0 into

(3z + 1)/(z — 2), which gives —1/2.

Did you manage that all right? If you did then complete the resolution
into partial fractions. If you made a mistake then take great care when
obtaining the numerator corresponding to z—2, and check algebraically
by recombining your answer that it is correct.

As soon as you are ready, take another step.

>

For the numerator corresponding to z —2 we put z = 2 into (3z+1)/z
which gives (6+1)/2 = 7/2. Therefore
3z +1 1 7

e=2) 2 2z-2)

If you are still making mistakes, you should read the section on the
cover-up method again to make sure you understand how to apply it
correctly.

Now go on to this exercise.
Exercise Resolve into partial fractions

2 +2r -3
34+ 22241z



WORKSHOP 55

First use ‘short’ division to divide the denominator into the numerator
and then move to step 4 to see if you have the right answer.

=l
*+22-3 = x(@*+222+2)-22° -2 + 22 -3

= z(z®+22% +2) - 2(z® + 22% + ) + 3% + 4z - 3

= (z-2)(z* +22% + 1)+ 32 + 4z -3

So we have

+2c -3 3z2+4z -3
ST T o gy T
3 4+222+ 1 3 4+222 42

322 +4z -3

d =

an @ 3+ 222+ 1

remains to be resolved.

Now factorize the denominator D of ) as far as possible and write
down the form of the resolution. Then step ahead.

2 +22% v =z(z? + 22+ 1) = z(z + 1)?

Here the factors of the denominator are = and x+1 (repeated). There-
fore we shall obtain partial fractions with denominators z, z + 1 and
(z +1)%, and the numerators will all be constant. So

3c>+4z-3 A B C
Q= 2 =77 +
3+2r24+z z z+1 (z+1)?

Without using the cover-up method, obtain the constants A, B and
C. Then go on to step 6.

If the partial fractions are recombined, the two numerators must be 6

identically equal. Now

A B C  Alz+1)*+Bz(z+1)+Cxz

+ + =
z z+1 (z+1)? z(z + 1)?

Therefore we require

322 +4z-3=A(z+ 1)+ Bz(z + 1)+ Cx
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The constants A, B and C can be obtained either by substituting
values of z into the identity, or by comparing the coefficients of powers
of z on each side of it. In practice a mixture of the methods is usually
the quickest.

Here if we put £ = 0 we obtain A = —3. If we put £ = —1 we obtain
3-4-3=-C, so C = 4. If we examine the coefficient of z? on each
side of the identity we obtain 3 = A + B, and so B = 6. Therefore

4+ 22 -3 3 6 4

ZTerTY g
3 +212 +z z x+1+(x+1)2

2.6 SET NOTATION

We have already described some standard sets of numbers N, Z, Q and
R. In fact sets often arise in one form or another, so before we pro-
ceed any further we shall outline the set notation that is commonly
employed.

A set can be described best by using the notation

{z|P(2)}

where P(z) is some statement about z, for example z € Q. The
notation means ‘the set of all things = which satisfy the condition
P(z)

O {z|z € Z,z > 0}
This is the set of all elements x satisfying the two conditions
1 z is an integer

2 z is strictly positive

We already have a name for this set - the natural numbers. So
N={z|z € Z,z > 0}

n
If modulus signs are in use, then to avoid confusion the vertical line
which appears in the notation {z|P(z)} is usually replaced by a colon,
so that we write
{z: P(z)}

Of course small finite sets can usually best be described by displaying
their elements. For example {1,2,3,4,5} is the set consisting of the
first five natural numbers.
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There are one or two other pieces of general set notation which we shall
use occasionally.
The difference A\ B of two sets is defined by

A\B={z|z € Aand z ¢ B}

The difference A\ B is the set of all elements which are elements of A
but not elements of B,

OI = R\Q is the set of all real numbers which are not rational
numbers; that is, it is the set of irrational numbers.

|
If a and b are real numbers, a < b, we define

0,6 = {ale € Ria <& < b}

(a,b) ={z|]z € Rya < z < b}

These are called real intervals. The first one is called the closed
interval between a and b, while the second is called the open interval
between a and b.

The important theoretical distinction between a closed interval and
an open interval is that a closed interval includes the two end points a
and b whereas an open interval does not include either a or b.

Note that in Chapter 3 we shall introduce the symbol (a,b) as an
ordered pair of numbers to represent a point, but here we are using it
to represent an open interval. Surely this is unsatisfactory; what are
we going to do about it?

Well, we shall adopt the view that the context should make clear
whether (a,b) is an ordered pair of real numbers or an open interval.
Some books have introduced the symbol ]a,b[ to represent an open
interval, but in mathematical work it is quite common to use the same
notation in different contexts for different things, and we should be
sufficiently broad-minded to be flexible.

2.7 FUNCTIONS

Mathematics is concerned with relationships between things, and it
is through the generality of these relationships that it is possible to
apply mathematics to a variety of situations. For instance there is a
relationship between the force applied to the centre of a beam which
is freely supported at each end and the deflection at that point. The
force of course could arise from many different sources - a heavy weight
suspended from it, or a person standing on it.
Equations often relate two or more variables. For example:

y=1z>+2
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L1
=z —
y z

x2+y2=1

When the relationship between two variables z and y is such that given
any z there corresponds at most one y, we say we have a function and
write y = f(z). The set of numbers z for which f(z) is defined is called
the domain of the function, and each element in the domain is called
an argument of the function.

A function therefore has two essential ingredients:

1 The domain, the set of arguments of the function, the possible values
for z;

2 The rule f which assigns to each element in the domain a unique
value f(z).

Strictly there is another essential ingredient: the set consisting of all
possible values of the function.

Although when we specify the rule and domain, we may not be able
to say precisely what the values of the function will be, we are nor-
mally able to state some set which includes all the possible values. For
example we may know that all the values are real numbers. Therefore
when we give a formal definition of a function we shall also specify
a set which includes all the values of f. This set we shall call the
codomain.

We write f : A — B to indicate that f is a function with domain A
and codomain B. Then:

1If f: A— Band B C R then f is said to be a real-valued
function.

2If f: A— B and both A C Rand B C R then f is said to be a real
function.

In this chapter we shall confine our attention to real functions.

O f:R — R defined by f(z) =2?+2 (z € R)

Here the rule is ‘square the number and add 2’. This rule can be
applied to all real numbers and there is no ambiguity about the result,
so we have a function. |

O f:N — R defined by f(z) =z +z7! (z€N)

Here the rule ‘add the number to its reciprocal’ can certainly be applied
to every natural number, since 0 is not a natural number. The result in
each case is a unique real number and consequently we have a function.

On the other hand if we attempted to extend this rule to Z we should
no longer have a function because the number 0 in the domain has not
been assigned a value. Indeed the rule could be applied to other sets
of real numbers (in fact to any number except 0), but we specified the
domain as N and if we change the domain we change the function. W
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THE MAXIMAL DOMAIN

In some cases an equation which defines a function is given but no
indication is provided of either the domain or the codomain. Strictly
speaking the definition is then deficient. One way round the difficulty is
to take the codomain as R and the domain to be all those real numbers
for which the rule is valid. That is, f : A — R and A is the maximal
subset of R which satisfies the condition

ifz € A then f(z) eR

This convention is sometimes called the convention of the maximal
domain.

O Using the convention of the maximal domain, the equation f(z) =
¢ + z~! defines a function f: A — R where A =R\ {0}. [ |

In the formal notation for a function
f:A—>B

A is the domain, f is the rule, f(A) is the image set and B is the
codomain.

In practice it is often useful to write y = f(z) and so to specify
a variable y in terms of a variable z. The same function would be
determined by using z and t, say, instead of y and z respectively. For
this reason y and z are sometimes called dummy variables.

When the notation y = f(z) is used it is customary to call z the
independent variable and y the dependent variable. The reason-
ing behind this is that y is determined once z is known. Sometimes
the fact that y is given in terms of z is indicated by writing y = y(z)
and saying that ‘y is a function of z’. This notation has its uses and
consequently its adherents.

2.8  METHODS OF PROOF

Mathematics is founded on the idea of proof. One method of proof is
known as the axiomatic method and requires three essential ingredi-
ents - axioms, logic and theorems. Axioms are statements which we
accept as being true and so do not require proof. Logic is the set of
rules which enables us to deduce further statements from the axioms
and theorems are the statements which have been deduced.

We shall represent simple statements by letters in lower case such
as p,q,r,s and t. A simple statement is a statement which is either
true or false but not both. You are probably aware that there are some
statements which are neither true nor false and other statements which
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are both true and false. The statements: ‘this computer is fast’ and
‘this sentence has too many letters’ are examples of statements which
we should exclude from our system. We should include statements such
as ‘3 is greater than 2’ which we know to be true and ‘the product of
two negative integers is a negative integer’ which we know to be false.

We write p = ¢ if and only if by using the logic the statement ¢ can
be deduced from the statement p. p is sometimes called a premise
and g a conclusion. When p = ¢ is expressed in words we say ‘p
implies ¢’.

We shall begin by considering two standard methods of proof - di-
rect proof and indirect proof.

DIRECT PROOF

A direct proof involves what is known as a ‘chain of argument’. In
complicated proofs it is often necessary to apply several chains of ar-
guments before the required conclusion can be drawn. A chain of
argument relies on the following logical principle:

Ifp=>qandg=rthenp=>r

You can argue this principle in the following way. We know that if
p is true then ¢ is true. We also know that if ¢ is true then r is true.
Consequently if p is true, g is true and r is true. This idea is basic
to human activity and you will be able to think of many situations
where this principle applies in life. For example, an employer pays the
worker and the worker does the job. It is important to realize that no
conclusion can be drawn if r is true. In the example, if the job is done
it may not have been done by the worker and even if it was, we cannot
deduce that the employer has paid the worker.

This is an important point because to some extent this is the place
where mathematics departs from other subjects. Many subjects use
‘evidence’ to support a particular hypothesis, and given enough ev-
idence the theory will be accepted. Even statistics which is closely
related to mathematics does not claim to prove anything. A statis-
tician will say that some hypothesis or another is true at the 95%
confidence level but never with certainty. You are probably aware that
‘circumstantial evidence’ is used in legal circles too to gain convictions
and many appeals result from challenging this kind of evidence.

Mathematics itself uses circumstantial evidence in order to make
conjectures but distinguishes clearly between a conjecture and a the-
orem. Conjectures are ‘guesses’ which may be true but which, if they
are to be accepted, require proof. There have been some notorious con-
jectures; two which were around for many years and were only proved
in modern times after considerable effort were Fermat’s last theorem
(1637-1993) and the four-colour theorem (1852-1976). There are many
other conjectures still to be settled!

Science and Technology are founded on experimentation and insight.
Successful participants do not make wild generalizations but instead
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assemble evidence and then design experiments to test their theories.
Such activity is good science but it is not mathematics.

So that we get a clear idea of a direct proof we shall look at two
examples. These involve the ideas of odd and even numbers. You will
probably know that an even number is an integer which can be divided
exactly by 2. In other words if p is an even number then p = 2r where
7 is an integer. Any integer which is not even is called odd. Any odd
number ¢ can therefore be expressed as ¢ = 2r+1 where r is an integer.
For the record we note that 0 is an even number.

[0 Prove that the square of every even number is an even number.

Proof Suppose that p is an even number then p = 2r where 7 is an
integer. We now have

P o= (2r)
= 4r?
2(2r?)

Now 2r? is also an integer and so, by definition, we can deduce that p?
is an even number. ]

Now see if you can prove a similar property for odd numbers.

Exercise Prove that the square of every odd number is an odd number.

Proof Suppose p is an odd number then p = 2r 4+ 1 where 7 is an
integer. We now have

P’ = (2r+1)2
4rt 4+ 4r + 1
2(2r* 4+-2r) +1

Now 2r% + 2r is also an integer and so, by definition, we can deduce
that p? is an odd number. [ |

INDIRECT PROOF

The negation of a statement is the logical opposite of the statement.
So that whenever the statement p is true, the negation of p is false and
whenever the statement p is false, the negation of p is true. We shall
represent the negation of p by ~ p.

Suppose we wish to prove the statement g, which we believe is a
consequence of the statement p; which is known to be true. We need
to prove p = q¢. An indirect proof is obtained by taking the two
statements p and ~ ¢ and by means of a chain of argument obtaining
a contradiction. This contradiction can take many forms but in all
circumstances there is a statement r, which is the result of the logical
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argument, and which is both true and false. Given that the logic is
correct we conclude that ~ ¢ is false, and so q is true.

In England in the seventeenth century there was a series of trials for
witchcraft. The method of testing a suspect for witchcraft has many
of the ingredients of an indirect proof. The unfortunate individual
was thrown into deep water. If the person floated then witchcraft was
‘proved’ and the individual was then hanged. If the person sank (and
thereby drowned) then this was a ‘proof’ of innocence!

As a simple algebraic example of an indirect proof we shall prove the
converse of the property which we have just proved concerning odd and
even numbers.

[0 Prove that p is an even number if and only if p? is an even number.

Proof We have already shown that if p is even then p? is even. It
remains to show that if p? is even then p is even.

Now an integer is either even or odd and so let us suppose that p is
odd. We seek a contradiction. By the previous exercise we can deduce
that p? is also odd. This means that p* is both odd and even which is
impossible. Consequently p must be even. |

A rather more interesting example of an indirect proof is provided
by the next example.

[0 Prove that /2 is an irrational number.

Proof We suppose that, on the contrary, /2 is a rational number and
seek a contradiction. Suppose then

V2=

Q13

where p and ¢ are integers. We can suppose further that there is no

integer greater than 1 which divides both p and g, for if there were we

could cancel it out and thereby reduce p and ¢ to smaller integers.
Squaring the equation gives

_p
te
so that
p2 — 2q2

Now this implies that p? is even, and so p must be even too. There-
fore if we put p = 2r then r is an integer. We then obtain, substituting
for p,
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(2r)? = 2¢°
4r? = 2¢°
2,,,2 — q2

Now this implies that g2 is even, and so ¢ must be even too. However
this is the crunch! We have deduced that both p and ¢ are even, and
yet we know that p and ¢ have no common factor. This contradiction
shows that our initial assumption that /2 was a rational number must
be false. |

It is interesting to remark that when the irrationality of 1/2 was first
discovered, by the ancient Greeks (circa 420 BC), it caused a major
philosophical upset.

MATHEMATICAL INDUCTION

We must not disguise the fact that the rules we have given for deal-
ing with real numbers do not tell the whole story. For a complete
description we would need one further axiom known as the axiom of
completeness. We shall not describe this axiom because it is requires
somewhat sophisticated mathematics but instead we remark that one
of the consequences is a method of proof which is known as induction.

Suppose we have some statement S(n) which we wish to prove is true
for all natural numbers nn. The principle of mathematical induction
states that it is only necessary to prove two things:

1 5(1) is true;
2 If S(k) is true then S(k + 1) is true.

We often experience inductive processes in practice. One example is
that of a petrol engine. In order for the engine to fire it must first be
‘turned over’. This corresponds to condition 1. Each time the engine
turns over it generates just enough electricity to fire the engine again.
This corresponds to condition 2. Provided condition 2 continues to
hold the engine will run even if the battery is flat. If you have ever had
the experience of driving a car with a flat battery you will appreciate
the need for both these conditions!

Once you get the idea of mathematical induction you will find it
quite straightforward. We shall look at one or two examples to see
how it works.

[J Show that for all natural numbers n

1
1+2+3+-~+n=§Mn+D
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Suppose S(n) is the statement
1
L4243+ +n=zn(n+1)

We wish to prove that S(n) is true for every natural number n.
By the principle of mathematical induction we are required to prove
just two things:
1 S(1) is true;
2 If S(k) is true then S(k + 1) is true.

We proceed as follows:
1 To show S(1) is true we must show that

1
1=31(1+1)

This is done by simply evaluating the right-hand side.
2 Suppose S(k) is true for some natural number k. Then

1
L4243+ +k=ck(k+1)

(This statement, S(k), is often known as the induction hypothesis.)
We are required to show that S(k + 1) is true. In other words

1
1+2434+---+(k+1)= 5(k+1)[(k+1)+1]
Notice that we write down S(k + 1) simply by replacing n by £+ 1 in
S(n).
Remember that we are entitled to use the induction hypothesis to
show that S(k + 1) is true.

To accomplish this we shall take the left-hand side and demonstrate
that using the induction hypothesis we can deduce the right-hand side.

LHS = 14+2+3+---k+(k+1)
= [1+2+---+kl+(k+1)

1
= 5k(k+1)+(k+1)
(using the induction hypothesis)

(k+1)(k +2)

N = DN} =

(k+1)[(k+1)+1]

= RHS
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]
That’s all there is to it! Of course a proof by induction differs from
a deductive proof because we need to know the formula that we wish
to prove. However, it is a very useful technique because it is often
possible to spot a pattern in mathematical work, infer a formula and
then use induction to settle the matter.
There will be various occasions when we shall point out where a
proof by induction would be appropriate. Now here is an example for
you to try.

(0 Show that if n is any natural number then

2
12+32+52+---+(2n—1)2=ﬂ4nTl—)

In other words, we have a formula for the sum of the squares of the
first n odd numbers.

We have the statement S(n), so you can write down the induction
hypothesis S(k) and also the statement, S(k + 1), which we must de-
duce. Don’t forget that we must check that S(1) is true as well.

Try it yourself and see how it goes.

S(n) is the statement

2 _
12+3"’+52+-~-+(2n—1)2=TL(ZIL?)—12
and so S(k) is the statement
2 _
12+32+52+---+(2k—1)2:k(4k_39

1 To show that S(1) is true we merely need to check that

2 (A2 - 1)
3
Each side of this equation has the value 1 and so S(1) is true.

2 We must prove that

(k+1)[4(k+1)2 1]
3

P+3% 45+ +2(k+1) -1 =

and of course we must expect to use the induction hypothesis to do
this.
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We work on the left-hand side
LHS = 12432 +5%+---+[2(k+1) - 1]?

= 12432 +5%+-- -+ (2k +1)°

= [12+3%+52+ -+ (2k - 1) + (2k + 1)?
(here we have written down the last two terms)

k(4k? —1
_ ke 1) 3 )+(2k+1)2

(using the induction hypothesis)

To complete this we must use some algebra to reduce this expression
to the right-hand side of S(k + 1). Continuing we obtain

k(2k — 1)(2k + 1)
3

+ (2k +1)?

(2k+1)

EQ%:iL+@k+U

k(2k—1)+3(2k+1)
3

2%k% -~ k+6k+3
3

2k24+5k+3
3

A glance at the expression we wish to obtain gives us the clue to
factorizing:

Il

(2k+1)

= (2k+1)

= (2k+1)

(2% +1) (k + 1);2k +3)

(2k +1)(2k + 3)
3

4k® + 8k +3
3
4(k+1)? -1
3
(k+1)[4(k + 1)2-1]
3

Il

= (k+1)

(k+1)

Il

= (k+1)

= RHS
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We have shown the two parts

1 5(1) is true;

2 If S(k) is true then S(k + 1) is true.

Therefore, by induction, we have shown that S(n) holds for every nat-
ural number n. a
Finally we remark that although we used only S(k), our induction
hypothesis, we would have been entitled to use S(r), for all r < k.
When this is done it is usually known as using strong induction.

Lastly in this chapter we consider a problem which shows how the
theory of partial fractions can be combined with the binomial theorem
to produce an approximate formula.

2.9 Practical

LEAKING FUEL

The fuel reserve contained in a leaking gas cylinder is known to be
given by the following formula:

R=2P[ (t+1)% +¢2 ]

(2+1t)(1+12)

where t represents time and P is the initial reserve. Express R in
partial fractions, and show that it can be approximated by

Rzg[(t+3)2—5]

provided ¢ is small.

Try this on your own first. If you are successful then look to see if
you have everything correctly. If you are unsuccessful then read just
enough to get going again and try once more. The full solution follows.

We have

22 42t + 1

2+ +12)
A Bt+C

2P |[—m 4+ ———
[2+t+ 1+t2]

R = 2P

I

where A, B and C are constants. So

R—op [A(l +t2) + (2+t)(Bt+C)]

(24+18)(1 +12)
We obtain the identity

22+ 2t +1=A(1+1t%) + (2+1)(Bt+C)
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It follows that
1=4A+2C 2=A+B 2=2B+C

from which A =1, B =1 and C = 0. Consequently,

R = 2P el

2+t 1412
1 A 2y-1
= 2P |z(14+ )" +t(1+1¢%)
2 2
1 t 2
~ 2P [-(1--+—
_2(1 2+4)+t]

Here we have neglected terms in ¢ of degree higher than 2. So

RN

R
)
|

|

|

|
+

|
+

P
1 [4 + 6t +t?]

P
4

Il

[(t + 3)* - 5
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SUMMARY

These are the things you should be able to do after completing
this chapter:

[0 Apply the laws of indices and logarithms correctly

[0 Solve inequalities using algebraic, analytic and graphical
techniques

O Resolve a rational expression into partial fractions

O Distinguish between direct and indirect proofs and supply
examples of them.

O Prove statements for all natural numbers n using the prin-
ciple of mathematical induction.

EXERCISES
1 Simplify, using the laws of indices

a

8%/3 x 321/% = 16%/4
b

12572 x 27'/4 + 61/2
C

(1+2)4(1 —z%)
(1-z2)3

d

(a2 _ b2)5(a4 _ b4)
(a® + b%)(a + b)?

2 Solve the equations, where z is real,
ae¥® =4e"+5
b2 -5x2°4+4=0
c6"—9x2"-8x3+72=0
d 15° + 15 = 3°*+1 + 52+!

3 Decide, in each case, which of the following are identities and
which are equations. If they are equations then solve them.
ae®+2=2(2"-1)

b In(z — 1) + In(z + 1) = In(2z)
cln(l-1/z)+In(1 +1/z)' =In[l - 2/(z + 1)]
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4 Express z in terms of a, as simply as possible, in each of the
following:

alnz =2In(a+1) - In(a® - 1)
be® = {ea+1 . ea—l}2
cIn(z? - 1) —ln(z — 1) = In(a® — 1) — In(a + 1)
de*. (e—w)2 — (e—a)3 (ea)4
5 Obtain those real numbers for which the following inequalities
hold:
a(z—-2)(z+2)>0
b(r-3)(2x+3)<0
cl/z+1/(z—-1)>0
6 Resolve the following into partial fractions:

a
1
(x —1)(z - 3)
b
_*r
2+ 7+ 12
C
2z + 1
73 + 512 + 61
d
r—17

3 —-322 -9z -5

7 Prove, using a direct proof, that
a the sum of two even numbers is always even
b the sum of two odd numbers is always even
¢ the sum of an odd number and an even number is always an
odd number.

8 Use mathematical induction to prove that for all natural numbers
n)
al+3+5+--+(2n—-1)=n?
b13+3+5+ -+ (2n-1)3=n?2n2-1)

ASSIGNMENT

1 Use the laws of indices to show that

(16)%* (25)2 8

(81)1/4 (125)13 3

2 Simplify
(1-22)3(1 — 3z + 2z%)* (1+12)3
(1 -z —222)8 (1-2)7
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3 Solve the equation

232 —3x 221+1 + 2I+3 =0

4 If z = log, b, y =log,c and z = log, a, show that zyz = 1.
5 If z = log,(bc), y = logy(ca) and z = log (ab), show that

Yyz=r+y+z+2
6 If z = log,(b/c), y = log,(c/a) and z = log.(a/b), show that
ryz+zr+y+z=0

7 Solve the following inequalities for real
ar(z?-4)>0
bz?-5z-6<0
cl/(z—-1)+1/(z*-1)<1/(z+1)

8 Resolve into partial fractions:

a
2 +2x -1
-z
b
33+ 522 -z -1
78 + x?
C

Az + 2 — 1122 + 2 —- 20
Tt — 372 -4

9 Show by means of a direct proof that the sum of two rational
numbers is always a rational number.

10 Show by means of an indirect proof that the sum of a rational
number and an irrational number is always an irrational number.
By considering 3 — /2 and /2 (or any other suitable example)
show that the sum of two irrational numbers is not necessarily an
irrational number.

11 Use mathematical induction to prove that for every natural num-
ber n,
al?+22+32+..-+nl=n(n+1)(2n+1)/6
b13+22+3+ - .n®=[n(n+1)/2?

FURTHER EXERCISES

1 Use the laws of indices to show that

(25)1/2(8)1/3 5

(27)13(16)1/4 ~ 3
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Solve the equation
e+ +e ¥ +e T =3(e ¥ +e%)

Decide which of the following are identities and which equations.
If they are equations then solve them.

aln(z! — 1) =In(z — 1) + In(z + 1) + In(z? + 1)
b In(z +z%) =Ilnz + Inz?

¢ In(z? — 1) = 3[In(z — 1) + In(z + 1)]

d e?’e” = (e%)?

e e:e2ze3z — (ez:)ﬁ

Solve the inequality
2z
—_——>1
(z+2)(z-1)
Express in partial fractions
a
-5
(z-1)%(z2-3z+2)
b
(% +1)?
(@ -1
Use the convention of the maximal domain to write down the

domain of the real function f defined by

a f(z)=(*-1)"

b f(z) = (2 - 1)71/?

c f(z) = (22 —1)"V2 + (1 — 22)"1/2

Prove that the product of two rational numbers is always a ratio-

nal number. By means of an example show that the product of
two irrational numbers is not necessarily an irrational number.

8 Prove that the product of an irrational number and a non-zero

rational number is always an irrational number.

9 Prove that for all natural numbers n

al-2+2:3+---4+n(n+1)=n(n+1)(n+2)/3
b1:2242-32+---n(n+1)2=n(n+1)(n+2)(3n+5)/12
c

1 1 1 n

x2 ox3 TR ntl

10 By first expressing

1
(n+1)(n+2)
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in partial fractions show that
N

1 N
Z(n+1)(n+2):2(N+2)

n=1

11 The Heaviside unit function H is defined by

H(t) = 1 whent>0
= 0 whent<0

a Write down the domain and image set of H.

b Show that if a constant voltage E is applied to a circuit, between
time ¢t = 0 and ¢ = 1 only, then the voltage at time ¢ is given by
E(t)=E[H(t) - H(t - 1)].

c Express by means of a single equation, using the Heaviside unit
function, the current i(¢) in a circuit satisfying

it)= t when 0 <t <1
= 2-¢ when 1 <t <2
0 otherwise

12 The number n of terminals on a circuit board is known to satisfy
the inequality n3 — 7n? + 5n — 35 < 0. What is the maximum
number?

13 The proportion p of purified oil which can be produced by an oil
filter is known to satisfy 2(p® + 1) < (p — 2)%. Show that it can
purify at most 50% of the oil.

14 Verify that
(' +zv2+1)(2® —zy/2+ 1) =2t + 1

and thereby resolve 1/(z* + 1) into partial fractions.
15 Use the fact that (a — b)2 > 0 for all real numbers a and b to

deduce s
a®+b
>ab
5 20
so that if z and y are positive,
T+y
5~ 2 V()

(The arithmetic mean of two numbers is greater than or equal to
the geometric mean.)

Show that if two resistors are combined in series the total resis-
tance is always greater than if they are combined in parallel.
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17

18
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The volume of a spherical raindrop of liquid decreases due to
evaporation by one-half in 1 hour. The radius of the drop is given
by r = —kt + ro, where 7¢ is the initial radius. If £ is a constant
and t denotes time, show that the time taken for the drop to
evaporate completely is (1 — 27/3)~! hours.

The law governing radioactive decay is p = poe™*t, where p is the
intensity at time ¢ and pg is the initial intensity. Show that if p =
Po/2 when t = h then the time taken for the initial radioactivity
to decay 99% is 2hlog, 10.

The depth z to which a drill applied under constant pressure will
sink into rock over time ¢ is given by

1 t
xz_ln[liﬂ]
w w

where w, p and v are constants. Show that the time T taken to
drill from a depth z to a depth z + h is

T=2 e¥=(e¥h — 1)
vp

The charge on a leaking capacitor is given by

2Qo

@= 1+1)(2+10)

where ¢ is time (seconds) and Qo is the initial charge (farads).
Express @) in partial fractions, and show that it is approximately
(1 —3t/2 + 7t2/4)Qq provided ¢ is small.

The output of a system at time ¢ is given by
A=1-[1+t"/(s+ 1)

where s is the imposed signal and ¢ is time in seconds. If s =
t(1+t)? at time ¢, resolve A into partial fractions and show that
if terms in ¢ of degree greater than 4 may be neglected then A = t*.
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In the last two chapters we described some of the basic terminology
which we need. We also picked up a few techniques which should
prove useful later on. Soon we shall begin to develop the differential
calculus, but before we do that we must make sure that we can
handle any geometrical or trigonometrical problem that arises.

After working through this chapter you should be able to

O Use circular functions, recognize their graphs and be able to deter-
mine their domains;

O Solve equations involving circular functions;

O Recognize the equations of standard geometrical curves;

O Transform equations involving polar coordinates into those involv-
ing cartesian coordinates.

At the end of this chapter we shall solve practical problems in survey-

ing and in circuits.

This chapter contains background work, and so it is possible that much of it
will be familiar to you. If this is the case, then it is best to regard it as revi-
sion material. We shall be reviewing work on elementary trigonometry and
coordinate geometry. If any section is very well known to you then simply
read it through and devote your attention to that which is less familiar.

3.1 COORDINATE SYSTEMS

You are probably quite familiar with the cartesian coordinate system. In
this system every point in the plane is determined uniquely by an ordered
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y-axis
A
Second quadrant First quadrant
x| P
Iyl
o] ’x-axis
Third quadrant Fourth quadrant

Fig. 3.1 The cartesian system.

pair of numbers (x, y). To do this, two fixed straight lines are laid at right
angles to one another; these are called the x-axis and the y-axis. Their
point of intersection is represented by O and is called the origin (Fig. 3.1).
The quadrants so formed are labelled anticlockwise as the first quadrant,
second quadrant, third quadrant and fourth quadrant respectively.

Given any point P, the absolute values of x and y are then obtained from
the shortest distance of P to the y-axis and the x-axis respectively. The
following conventions then hold:

First quadrant x=0,y=0

Second quadrant x=<0,y=0

Third quadrant x=0,y=0

Fourth quadrant x=0,y=0

In this way, given any point in the plane we obtain a unique ordered pair
(x, y) of real numbers. Conversely, given any ordered pair (x, y) of real
numbers we obtain a unique point in the plane. We therefore identify the
point P with the ordered pair (x, y) and refer to the point (x, y).

If P is the point (x, y), x and y are known as the cartesian coordinates of
the point P; x is called the abscissa and y is called the ordinate.

This simple idea was initially due to the famous French philosopher
Descartes and enabled algebra and geometry, two hitherto separate
branches of mathematics, to be united. It is difficult to overestimate the
benefits of this unification for science and technology, but Descartes threw
it out almost as an afterthought to his philosophical treatise. The name
‘cartesian system’ comes from the latinized form of Descartes.

The cartesian system is not the only system which can be used to represent
points in the plane. Another is the polar coordinate system.
In the polar coordinate system there is a fixed point O, called the origin,
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r

\o

(o] X

Fig. 3.2 The polar system.

and a fixed line emanating from O called the initial line OX (Fig. 3.2). Itis
convenient to identify the initial line with the positive x-axis, although this
identification is by no means essential. A point P is then determined by r,
its distance from O, and by 0, the angle XOP measured anticlockwise. In
this way, given any point in the plane we obtain an ordered pair of real
numbers (r, ) where r = 0. Of course if we increase 6 by 2w, a whole
revolution, then we shall obtain the same point as before. In order to
establish a unique representation we restrict 0 so that 0 < 0 < 2.

There is a minor problem when r = 0, since we then lose our one-to-one
correspondence between points in the plane and ordered pairs of real num-
bers of the form (r, 8). For example (0, &) and (0, t/2) both correspond to
the origin. One way of avoiding this problem is to insist that if r = 0 then
the origin will be the unique point (0, 0): r = 0, 6 = 0. However, we shall
not do this as the procedure creates more difficulties than it resolves.
Instead we shall avoid representing the origin and insist that r > 0.

In fact the convention 0 < 0 < 2 is only used occasionally in coordinate
geometry. Unfortunately we shall adopt a different convention, namely
—n < 6 < @, when we deal with complex numbers (Chapter 10). The
causes for this are historical and not mathematical, and this goes some way
towards explaining why they are illogical.

3.2 CIRCULAR FUNCTIONS

It is possible to define the circular functions cos 8 and sin 6 for any angle 6
by using cartesian coordinate geometry and a circle centred at the origin
with radius . In Fig. 3.3, let X be the point where the circle crosses the posi-
tive x-axis, and let the point P on the circle be such that ZXOP = 0. If P is
the point (x, y) then OP = r > 0 and

cos 6 = a sin 6 = y
r r

It follows immediately that

1 If 0 <0 < n/2 then cos 8 > 0 and sin 6 > 0;

2 If n/2 < 6 < m then cos 6 < 0 and sin 8 > 0;
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y-axis

ﬂk

/

Ll .
X-axis

Fig. 3.3 The generating circle.

3Ifn <0< 3n/2thencos B < 0andsinf <0;
4 If 3n/2 < 0 < 2w then cos 6 > 0 and sin 6 < 0.

O Use the definition to evaluate cos 8 and sin 6 when 0 € {0, /2, &, 2n}.
When
a 0 =0thenx =randy = 0, so that

cosO =r/r=1andsin8® =0/r =20
b 6 = m/2 thenx = 0 and y = r, so that

cos=0r=0andsin® =rr=1
¢ 6 =nthenx = —rand y = 0, so that

cos 0= —r/r=—1landsin® =0/r =20
d 6 = 2x then P is in the same position as when 6 = 0, so that
cos2n =cos 0 =1andsin2n =sin 0 =0 |

Now cos (0 + 2x) = cos 6 and sin (8 + 2m) = sin 6, so the circular func-
tions are said to be periodic functions. In fact 7 = 2 is the smallest positive
number such that both cos (8 + T) = cos 0 and sin (8 + T) = sin 6. Con-

sequently 7" = 27 is called the period of the circular functions. In other
words, if we increase the argument by 2z then the same value is obtained.
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Fig. 3.4 (a) The sine function (b) The cosine function.
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We can use these general definitions to draw the graphs of the circular
functions. In fact once their values are known for arguments in the interval
[0, /2] the rest can be deduced by symmetry. You have probably seen the

graphs of the sine and cosine functions before (Fig. 3.4).

The other circular functions, known as tangent, cotangent, secant and

cosecant, can be defined in terms of cosine and sine. In fact

sin 6
tan 6 =
cos 0
1
sec O =
cos O

cot O

cosec 0

cos 0
sin 9
1
sin 0

However, whereas cosine and sine have the real numbers R as their do-

main, these subsidiary functions are not defined for all real numbers.

0 Obtain the domain of each of these subsidiary circular functions by

using the convention of the maximal domain.

a tan 0 is defined whenever cos 6 # 0. From Fig. 3.4 we see that this is
when 0 is not an odd multiple of n/2. Any odd number can be written
in the form 2n + 1 where n € Z. Therefore the domain of the tangent

function is

A={xlxeR,x#Q2n+1)n2,ne Z}

b cot 0 is defined whenever sin 8 # 0. So 6 must not be a multiple of .
Therefore the domain of the cotangent function is

A={x|lxeR, x#nn.,nel)
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Fig. 3.5 The tangent function.
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Fig. 3.6 The cosecant function.

The domains of the secant and cosecant are the same as those of the
tangent and cotangent respectively. [ |

The graph of y = tan x shows that the tangent function has period n
(Fig. 3.5).

The graph of the sine, cosine and tangent functions can be used to
draw the graphs of the cosecant (Fig. 3.6), secant (Fig. 3.7) and cotangent
functions. The graph of y = sec x has the same shape as the graph of
y = cosec x. To obtain the graph of y = cosec x from the graph of y = sec x
we merely need to relocate the y-axis through x = m/2 and relabel.
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y-axis

———— e e, e —

)

Fig. 3.7 The secant function.

You will remember that we write cos” 6 instead of (cos 8)" when n is a
natural number. This must not be confused with cos (n6), and you should
be alert to the fact that this notation does not hold good when » is a nega-
tive integer. In particular,

cos™! 6 # (cos 6)7!

We know that (cos 8) ™! is sec 0, and in fact cos™' 6 has a totally different
meaning. Do watch out for this; it is a common mistake!

You may well have spent a long time in the past establishing identities
between circular functions. We can deduce one well-known identity
straight away:

cos’ 0 + sin® 0 = 1
To show this we evaluate the expression on the left:
X2y x4yt

cos? B +sin*f=5+5="—F—=1

2 2
r2 r r

[

This is an identity; it holds for all 0.
All the remaining identities involving circular functions can be deduced
from the expansion formula

sin (A + B) = sin A cos B + cos A sin B

O Deduce from the expansion formula for sin (A + B) the expansion
formulas for a sin (A — B) b cos (A + B).
a We have

sin (A — B)

sin (A + [-B])
sin A cos [-B] + cos A sin [—B]

Now from the definitions (or from the graphs) we have .
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b

cos [-B} = cos B and sin [~B] = —sin B
from which we have
sin (A — B) = sin A cos B — cos A sin B
Putting A = n/2 enables us to deduce first
sin (/2 — B) = sin x/2 cos B — cos /2 sin B = cos B
Therefore

cos (A + B) = sin (m/2 ~ [A + B])

sin (/2 — A] — B)

sin (m/2 — A) cos B — cos (/2 — A) sin B
= cos A cos B — sin [n/2 — (/2 — A)] sin B
= cos A cos B — sin A sin B

Il

Of course all this is rather algebraic and in some ways rather contrived, but
the point is that starting with very little we can build up a host of identities.

3.3 TRIGONOMETRICAL IDENTITIES

Here is a list of most of the trigonometrical identities that you will have

met:
1 cos (A + B) = cos A cos B—sinAsinB
2 cos (A — B) =cos A cos B + sinAsinB
3 sin (A + B) = sin A cos B + cos A sin B
4 sin (A — B) = sin A cos B — cos A sin B
tan A + tan B
Stan(A+B)_1—tanAtanB
tan A — tan B
6tan(A_B)_1+tanAtanB
7 cos 20 = cos? 0 —sin®0 =1 —2sin>0 =2cos?@ — 1
8 sin 20 = 2 sin 6 cos O
2 tan 6
9tan26——1—_——m
C+D C-D
10 cos C + cos D = 2 cos 2 cos >
. C+D . C-D
11 cos C — cos D = —2 sin 5 sin >
. C+ D C-D
12 sin C + sin D = 2 sin > cos >
cC+D .  C-D
13

sin C — sin D = 2 cos > sin >
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14 1 + tan® 0 = sec® 0
15 1 + cot’ 8 = cosec® 0

You might like to have a go at deducing these from the identities we already
have. If you need any hints then observe that identity 5 can be deduced
by dividing 3 by 1. Similarly, 6 can be deduced by dividing 4 by 2. The
identities 7, 8 and 9 are obtained from 1, 3 and 5 respectively by putting
A = B = 6. It is possible to deduce 10 by the addition of 1 and 2, whereas
subtracting these identities results in 11. Similarly 12 and 13 can be deduced
from 3 and 4. Lastly the identities 14 and 15 can be obtained by dividing
cos® 8 + sin® @ = 1 by cos® 8 and sin® @ respectively.

34 THEFORM acos O + bsin @

You probably already know that it is possible to express a cos 0 + b sin 0

in the form R cos (8 — a). This is used quite frequently, and so we shall

describe briefly how it is done (see Fig. 3.8).

1 We put the point P (a,b) in the plane using cartesian coordinate
geometry.

2 The angle a which can be read directly from the diagram is ZXOP.

3 R is the distance OP.

It is easy to see why this works because we have

acos 0 + b sin 0 = R[(a/R) cos 8 + (b/R) sin 6]
= R(cos a cos 0 + sin a sin 0]
= Rcos (0 — a)

O Express sin 8 — cos 0 in the form R cos (6 — «).
We begin by expressing sin 8 — cos 6 in the form a cos 8 + b sin 0.

sin @ — cos O = —cos 6 + sin 6, and so a = —1 and b = 1. Putting the
y-axis
A
Pla,b)
R
(x L
0 X ™ x-axis

Fig. 3.8 Triangle relating a, b, R and .
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point (—1,1) on Fig. 3.8 shows that R = }/2 and a = 3xn/4. Consequently
sin ® — cos O = V2 cos (8 — 3m/4) [ ]

3.5 SOLUTIONS OF EQUATIONS

To solve the equation sin 8 = sin a, where a is constant, we need a formula
which will express 0 in terms of . Of course 6 = a is one solution but in
fact there are many others. The graph of y = sin x enables us to determine
this formula (Fig. 3.9).

As we observed, 8 = a is one solution of the equation, and since the sine
function has period 2x we can deduce that 8 = 2n + a is also a solution.
Generalizing, we deduce that 6 = 2kt + a is a solution, where k is any
integer. This provides a whole set of solutions.

However, we have not finished because the symmetry of the sine
function gives another solution, 8 =  — a. Moreover we can add any
integer multiple of 2x to this and always obtain another solution. So
6 = 3n — ais a solution, and in general 8 = (2k + 1)m — « is a solution,
where k is any integer. This provides a second set of solutions. If we glance
at the graph we can see how all these solutions arise and also that there are
no more.

We can write the general solution in the form

0 =nn+ (-1)a

where n is any integer. We see that when n is even we obtain the first set of

solutions, whereas if n is odd we obtain the second set.
Similar arguments can be used to show that:

1 If cos 8 = cos a, where a is a constant, then 8 = 2nnt *+ a, where # is any
integer.

2 If tan 8 = tan a, where a is a constant, then 6 = nrt + a, where n is any
integer.

Fig. 3.9 Solutions of sin 6 = sin a.
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O Obtain all the solutions of the equation sin 2x = cos x in the interval
[0,2m].

We have 2 sin x cos x = cos x, so cos x = 0 or 2 sin x = 1. Remember to
allow for the case cos x = 0. If you don’t you will lose some solutions and
this may be very important.

Now cos 71/2 = 0 and sin /6 = 1/2, so we have reduced the equation to
two cases: cos x = cos /2, and sin x = sin /6.

1 If cos x = cos m/2 then x = 2nm + 7/2. Now we must pick out those
solutions in the required interval:

n=0 = x=*n/2, n/2 is in range
n=1 = x=2n % n/2, 3n/2 is in range
n=—1=x=-2n % n/2, out of range

I

Clearly other integer values for n will be out of range.
2 If sin x = sin 7/6 then x = nn + (—1)" (7/6). Again we pick out those
solutions which are in range:

n =0 = x = n/6, which is in range

n=1 = x=na— n/6 = 51/6, which is in range
n=2 = x=2n + n/6, out of range
n=—1=x= —xn + 7/6, out of range

All other integer values for n will be out of range.
Finally we state the set of solutions in the interval [0, 2x]:

{n/2, 3n/2. 7/6, Sn/6} |

Have you met the symbol = before? It is the one-way implication symbol;
it means ‘implies’. It is quite useful; you sometimes see it on traffic signs!

Now it’s time for you to solve some problems. If you are unsure of the
material, this is a good time to revise it. When you are ready, step ahead.

3.6 Workshop

1
D>Exercise Solve the equation £

cos 2x = 3 cosx — 2

to obtain all solutions in the interval [—m, x].
You need to remember your trigonometrical identities. There is a lot to
be said for knowing them inside out.

If we use cos 2x = 2 cos? x — 1 we reduce the equations to a quadratic dz
equation in cos x:
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2cos?x —1=3cosx — 2
so that
2cos’x —3cosx +1=0
Now this factorizes to give
2cosx = 1)(cosx — 1) =0

from which either cos x = 1/2 or cos x = 1. However, cos n/3 = 1/2 and

cos 0 = 1. So we can use the general solution of the equation cos 08 = cos o,

that is 8 = 2nm + q, to obtain the general solution of this equation in the

two cases:

1 cos x = cos /3 = x = 2nn *+ n/3 where n € Z. We have to select those
values of n which give solutions in the interval [—m, m]. We shall con-
sider the positive and negative signs separately. If x = 2nn + /3 then

n=—1=x = —5n/3, out of range
n=0 = x=m/3,in range
n=1 = x = 7r/3, out of range

If x = 2nt — n/3 then

n = —1 = x = -7n/3, out of range
n=0 = x = —mn/3,in range
n=1 = x=5n/3, out of range

2 cos x = cos 0 = x = 2nm, and so x = 0 is the only solution in range.
Therefore the solution set is {—x/3, 0, 7/3}.
If you managed that, then go on to the next exercise.

>>Exercise Obtain the general solution of the equation
sin 20 = 2 cos 8 + sin 9 — 1

Try this one carefully. Don’t forget those identities. Then step ahead.

We use sin 20 = 2 sin 0 cos 0 to obtain

2sin@cos®=2cosB +sinB —1
2sinBcosB —2cosO—sinB+1=0

and this factorizes to give
(sin® — 1) (2cos8—-1)=0

from which sin ® = 1 or cos 8 = 1/2. There are therefore two sets of
solutions:

1sin0® =sinn/2=0=nn+ (—1)'n/2, where n €7,

2 cos O =cos /3 =0 =2nn + n/3, wheren eZ .
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3.7 COORDINATE GEOMETRY

Coordinate geometry is an algebraic description of geometry. It is essential
for us to be able to recognize certain geometrical objects when they are
expressed in algebraic form. Straight lines, circles and other curves can be
represented by equations and we shall study the simplest of these.

We begin by obtaining the coordinates of a point midway between two
others.

O If P, and P, are the points (x;,y,) and (x,, y,) respectively, obtain the
cartesian coordinates of the point M, the midpoint of P, P, (Fig. 3.10).
Let M be the point (x,y). Then, using parallels,
X=X =X3— X
Yy=—n=Y2—Yy
So
Xt ity
2 - YT 2 "

For example, the midpoints of the sides of the triangle with vertices (2, 6),
(4,0) and (-6, 6) are given by

(z[2 + 4]. 36 + 0]) = (3.3)
(z[2 = 6]. 3[6 + 6]) = (=2.6)
(2[4 - 6]. 3[0 + 6]) = (~1.3)

i

LOCUS PROBLEMS

We shall use the methods of coordinate geometry to obtain the equations
of several curves. To do this we consider a general point P(x,y) on the

y-axis

A

0 ™ x-axis

Fig. 3.10 The midpoint M of the line P,P,.
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curve and obtain an equation relating x and y such that

1 If P is on the curve the equation holds;

2 If the equation holds then P is on the curve.

An equation which satisfies this condition is often called the locus of the
point P; the Latin word locus means ‘place’.

CHANGE OF AXES

When we identify a point P with an ordered pair of real numbers we must
appreciate that this is relative to the cartesian coordinate system we have
chosen. The same curve can have a very different equation if the axes are
transformed in some way.

A translation is a change of axes in such a way that the new x-axis and
the new y-axis are respectively parallel to the old ones. A rotation is a
change of axes in which the origin remains fixed and axes rotate anti-
clockwise through some angle 0.

Any movement of axes in the plane can be regarded as a translation
followed by a rotation. We shall therefore consider the effects of these two
transformations.

TRANSLATION

Suppose new axes X and Y are chosen which are parallel to the x and y
axes. Suppose also the new origin O’ is the point (h, k) relative to the
system Oxy (see Fig. 3.11).

Then if P is a general point we may suppose that P is the point (x, y)
relative to Oxy and (X, Y) relative to O’XY. We obtain

x=X+h, y=Y+k

Y-axis
y-axis A
A
(x.y)
B 7 (X,Y)
ul -
(o} X-axis
(0] >x-axis

Fig. 3.11 A translation.
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This is the change of coordinates corresponding to a translation of the
origin to the point (h, k).

0 If the origin is translated to the point (1, 3), obtain the corresponding
equation for the curve x* + xy = y2.
Denoting the new axes by X and Y we have
x=X+1, y=Y+3
so that
X+ 1)+ X+ 1)(Y+3)=(Y+3)
X+2X+1+XY+Y+3X+3=Y>+6Y+9
X-Y’+ XY +5X-5Y=5

We may now drop the X and Y in favour of the usual x and y since we have
done with the old coordinate system for good. Therefore the new equation
is

2=y +xy+5c—-5p=5 [ ]

ROTATION

Suppose the axes Oxy are rotated anticlockwise through 6 to produce OXY
and that P is a general point. Let OP = r and suppose that ZXOP = a
(Fig. 3.12).

Relative to OXY, P is the point (r cos a, r sin ), whereas relative to
Oxy, P is the point (r cos [0 + a], r sin [8 + «a]). Therefore

X = rcos a, Y =rsina
x=rcos(0+a), y=rsin(6+ a)

So

x = r(cos 8 cos a — sin 0 sin a)
= Xcos 8 — Ysin0

y-axis
Y-axis A

X-axis

5
H
J

0 Xx-axis

Fig. 3.12 A rotation.
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r(sin 8 cos a + cos O sin a)

y=
= Xsin0 + Ycos 0

We therefore have the change of coordinates

x=XcosO —Ysin0
y=Xsin8 + Y cos 6

for an anticlockwise rotation of the axes through an angle 0.

» O Obtain the equation of the curve 4x* + 6y* = 25 if the axes are rotated
anticlockwise through m/4.
Here 6 = /4 and so the change of coordinates is

x = X(1V2) - Y(IIV2) = (X - Y)V2
y = X(1/V2) + Y(I/V2) = (X + V)/V2

Substituting into the equation gives

2X -V +3X+ YY) =25
2(X? —2XY + Y?) + 3(X* + 2XY + Y) =25
5X% 4+ 2XY + 5Y? =25

So that reverting to x and y we have finally
5¢2 + 2xy + 5y =25 [ |

3.8 THE STRAIGHT LINE

A straight line can be fixed in the plane in several ways. First, we can specify
a point P, (x;, y,) on the straight line and also the slope m of the line. If
P (x, y) is a general point on the line, we have

m = tan 0 = slope PP, = —— =

y-axis
A
P
/((,y)
P, M
(P
e ..

ol 7 ~ x-axis

Fig. 3.13 Straight line; fixed slope through fixed point.



THE STRAIGHT LINE 91

y-axis

A #

(/x,y)
)

P‘/ (x2.y2)

(xy,y1)

/

Lol -
o~ x-axis

Fig. 3.14 Straight line; two fixed points.

Therefore
y—yi=mx—x)

A second way of fixing a straight line is to specify two points P; (x;, y;) and
P5 (x3, y,) on the line (Fig. 3.14). Then if P (x, y) is a general point on the
line we have

slope PP; = slope P,P,
Y=V _Y2—N

X — X Xy — Xy

or
Y- _X*X— X
Ya—= Y1 X2— X

It is interesting to note that there are several other equivalent forms for this
equation, and these can be obtained by equating the slopes of any two
distinct pairs of points chosen from P, P, and P.

O Putting slope PP, = slope PP, yields the equation

Yy N _X— X
Y=Yz X~ X

Show that this equation can be rewritten in the form
Yy N _ X" X
Y2=)1 X227 X

We have

x—x2)(y—y) = —x)(y—y2)
So

Xy — X2y = Xy + X2¥; =Xy — Xy, — X1y + X1y
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—X2y — Xy1 * X2y = —Xy2 — X1y + X1)2
x(y2 — y1) — x1y2 + X1y1 = y(x2 — x1) — yix2 + yixi
x=x)(y2—y) = (y —y)(x2 — x1)

Therefore
Y—n _X— %
Ya— Y1 X2 — X

as required. u

O Obtain the equation of the straight line joining the points (=3, 7) to
5, 1).
We may use the formula
Yy _X—Xx
Y2—= Y1 X2— X
where (x;,y;) = (-3,7) and (x3,y,) = (5,1). So
y—-7_x=-(3)
1-7 5-(-3)

y—-7 x+3
-6 8
8(y —7) = —6(x + 3)
8y + 6x = 56 — 18
4y + 3x = 19
This is the required equation. |

EQUATION OF A STRAIGHT LINE

Any equation of the form ax + by = ¢, where a, b and c are real constants,
represents the equation of a straight line. Conversely, any straight line has
an equation of the form ax + by = c for some real constants a, b and c.

There are two other forms of the equation of a straight line which are
often useful. One is for the straight line with slope m which has an intercept
c on the y-axis. In other words, this is the line through (0, ¢) with slope m:

y —c=mx —0)
Therefore
y=mx +c¢

This is the most commonly used equation of a straight line.

Another form is for the straight line which has intercepts @ and b on the
x-axis and y-axis respectively. In other words, we are looking for the straight
line which passes through the points (a,0) and (0, b) (Fig. 3.15). Therefore
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/

of \ " x-axis

Fig. 3.15 Straight line; fixed intercepts.

y—-b x-0
~b a-0
y
—Z 4 - =
b 1 a
So
Xy
“+2=1
a b

ANGLE BETWEEN TWO STRAIGHT LINES

Suppose we have two straight lines with slopes m,; and m; respectively
(Fig. 3.16). Then if m, = tan 8, and m, = tan 6, the angle 0 between the
lines is given by 6 = 0, — 0,. So

y-axis m,

0 x-axis

Fig. 3.16 Angle between two straight lines.
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tan 6 = tan (0, — 0,)
_ tan 6, — tan 6,
"1+ tan 6, tan 6,
_m - m,
1+ mym,

This is valid provided 1 + mym, # 0. If m; = m, then tan 6 = 0 as the
straight lines are parallel.
Also
cot 8 = cot (6, — 6,)
cot 6, cot 6, + 1

- cot 6, — cot 6,

_ (VUmy)(Umy) + 1

 (Umy) = (Umy)

_1+mm

m; —m

If the lines are mutually perpendicular then 8 = n/2, so cot 6 = 0 and there-
fore mym, = —1.

One small point needs to be made. We have been considering straight
lines with slope m. What happens if the line is parallel to the y-axis? We
know that tan 0 is not defined when 8 = m/2, so what do we do? We divide
through by m and note that, as 8 approaches nt/2, 1/m = cot 6 approaches
0.

O Obtain the equation of the straight line parallel to the y-axis through the
point (3, 7).
The equation of a straight line with slope m through the point (3, 7) is

y=T=m(x-3)
So

-7
Y lox-3
m
Now as m gets larger and larger, x — 3 gets closer and closer to 0. So the

required line is x = 3. |

3.9 THE CIRCLE

A circle has the property that every point on it is at the same distance from
a fixed point C, its centre. We begin by obtaining a formula for the distance
between two points P and Q (Fig. 3.17).



y-axis

THE CIRCLE

A Q
Y=y,
P R
Xo= X,
0 ;x-axis
Fig. 3.17 Two points P and Q.

y-axis

A P
0 ;x-axis

Fig. 3.18 Circle; centre (h, k), radius r.

Suppose P is (x;, y;) and Q is (x,, y,). Then
PQ? = PR* + RQ?

= (2 —x1)° + (y2 — y1)?

So

PQ =V[(x2 = x))* + (2 — y1)?]

Although we have shown this only in the case where P and Q are as on the
diagram, the formula is valid wherever P and Q are positioned.

Suppose now we have a circle radius r with its centre at the point (h, k)
(Fig. 3.18). Then if P (x, y) is a general point on the circle, we have PC? =

r?. So

(c— )+ (y - k)2 =

95

Conversely, any point (x, y) which satisfies this equation lies on the circle.
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If we expand this equation we obtain
x* = 2hx + h* + y* = 2ky + k* = r?
So
X +y?—2hx —2ky + B2+ k*—-r*=0

We can use this to obtain criteria for an equation to be the equation of a
circle:

1 The equation must be of degree 2 in the two variables x and y;

2 The coefficient of x* must equal the coefficient of y?;

3 There must be no xy term.

Such an equation is traditionally written in the form

>+ yP+2ex+2fy+c=0
so that completing the square we obtain
x+?+(+f=g+f-c

Therefore provided g* + f> — ¢ > 0 we have a circle. The circle has centre
(—g, —f) and radius V(g% + f? - ¢).

O a Obtain the centre and radius of the circle
¥*+y?P—4dx+6y+8=0

b Obtain the equation of the circle with centre (—1, 5) and radius 7 in the
standard form

4+ yP+2ex+2fy+c=0

The procedures are as follows:
a If we compare the given equation with the standard equation of the
circle

>+ yP+2ex+2fy+c=0

We have g = =2, f = 3 and ¢ = 8. So the centre is the point (2, —3)
and the radius is

Vg +fP—c)=V@Ed+9-8=V5
b The equation of the circle is
(=7 + (y — k7 =1

where (h, k) is the centre and r is the radius. Here h = —1, k = 5 and
r = 7, so that

(x+ 12+ (y-5>=49
+2+1+y* =10y +25=49
x>+ y2+2x— 10y —23 =0 |
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PARAMETRIC FORM

Another way of representing a curve is to express each of the two variables
x and y in terms of some third variable 6 which is known as a parameter.
This is done in such a way that
1 Every value of 8 corresponds to a unique point on the curve; and
2 Every point on the curve corresponds to a unique value of 6.
We can therefore talk about the point 6.

If we were to eliminate 6 we should obtain the cartesian equation of the
curve.

O For the circle x> + y2 = 4’ we have a parametric form x = a cos 0,
y = a sin 0. [ ]

3.10 THE CONIC SECTIONS

If we take a right circular cone and cut it through in various positions we
obtain standard curves known as the parabola, the ellipse and the hyper-
bola. Each of these curves can be defined as a locus in much the same way
as we defined the circle as a locus.

We consider a fixed straight line called the directrix and a fixed point S
called the focus (Fig. 3.19). If P is a general point, suppose L is a point on
the directrix such that the line PL and the directrix are perpendicular to
one another. If the ratio PS/PL is a constant then the locus of P is one of
the conic sections. The ratio e = PS/PL is known as the eccentricity. We
consider the three casese = 1, e < 1 and e > 1.

THE PARABOLA (e = 1)

Suppose we choose the x-axis to be the line through the focus S perpendi-
cular to the directrix, and the origin to be the point on the x-axis midway
between the focus and the directrix (Fig. 3.20). If S is the point (a, 0) then

Fig. 3.19 Directrix and focus.
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y-axis
A
L g
[T bey)
o S =x-axis
Fig. 3.20 The parabola.
the directrix has the equation x = —a. Now if P is a general point on the

parabola we have

PS = V[(x — a)* + y?]
PL=x+4+a

However, PS = PL and so we have
(x —a)’ + y* = (x + a)?
Therefore we obtain the standard cartesian form for the parabola as
y:=(x + a)> — (x — a)® = dax
O Obtain the equation of the directrix and the position of the focus for the
parabola y* = 16x.
We compare with the standard equation y* = 4ax and obtain a = 4.

Consequently the focus S is the point (4, 0) and the equation of the direct-
rixisx + 4 = 0. |

The usual parametric form of the parabola y*> = 4ax is x = at* and y = 2at.
Clearly if we eliminate ¢ we obtain
y? = 4a*t* = 4a(at?) = dax

So a general point ¢ on the parabola is (at*, 2at).

THE ELLIPSE (e < 1)

It is convenient to choose our focus to be (—ae, 0) and the directrix as the
line x = —ale (Fig. 3.21). Then

PS? = (x + ae)® + y?

PL? = (x + ale)®
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(-2,0) w y * x-axis

Fig. 3.21 The ellipse.

Now PS/PL = e, so that
(x + ae)® + y* = eX(x + ale)® = (ex + a)?
Therefore
(x +ae)> — (ex +a)’ +y> =0
x*1-e)—a?(1-e)+y*=0

X2 y2

+ -
a’>  a*(1 - €Y

Now e < 1, and so we may put b> = a*(1 — ¢?) to obtain the standard car-
tesian form for the ellipse as

2 2

Xy
e + el =1

The axes of symmetry are known as the major axis and the minor axis. The

major axis has length 2a and the minor axis has length 2b.

The symmetry of this curve suggests that it must be possible to define it in
terms of another focus and another directrix. In fact the point (ae, 0) pro-
vides a second focus, and the line x = a/e the corresponding directrix. From
Fig. 3.22

PS; PS,

—_— = =

L, PL,
so that

PS|+PSZ ePL1+€PL2
e(PLl + PL2) = eLle

e(2ale) = 2a

This says that at any point on the ellipse the sum of the distances to the foci
is constant and equal to the length of the major axis. This property has
practical uses. For example, gardeners sometimes use it to mark out the
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y-axis
A

N
T

L

L,

/

Fig. 3.22 The two foci of an ellipse.

boundary of an elliptical flower-bed. To do this two pegs are secured at the
foci and a piece of rope equal in length to the major axis joins the two pegs.
When the rope is held taut along the ground an ellipse can be traced out.

There are many possible parametric forms for the ellipse. The one which
is usually employed is x = a cos 8 and y = b sin 0. Eliminating 0 using
cos® © + sin? @ = 1 gives the ellipse in cartesian form.

THE HYPERBOLA (e > 1)

We choose the focus to be (—ae, 0) and the directrix to be the line
x = —ale. However, since e > 1 the position of the focus is to the left of
the directrix (Fig. 3.23). Then

PS? = (x + ae)® + y?
PL? = (x + ale)®
3

L L {x.y)

(-ae,0)
/

Fig. 3.23 The hyperbola.
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Now PS/PL = e, so that
(x + ae)®> + y* = eX(x + ale)* = (ex + a)®
Therefore

x + ae)’> — (ex + a)* + y* =0
y
x’(1 — &) + y? =a*(1 — &)
(e —-1)—y>*=a* - 1)

Now e > 1, and so we may put b*> = a’(¢? — 1) to obtain the standard car-
tesian form for the hyperbola as

2

[

SRy
(= |‘<
N
I
e

There are several parametric forms for the hyperbola. The one which is
usually chosen is x = a cosh u, y = a sinh u, which involves hyperbolic
functions. Until we study these functions (Chapter 5) we shall have to be
content with another parametric form, such as x = asec 6, y = b tan 6.
Note that

N
<
¥}

|

2=sec26—tan29=l

Qlk
[\S]
Qu

The straight lines y = *(b/a)x are the asymptotes of the hyperbola. The
tangents approach these straight lines as |x| increases in magnitude. Some
books refer to them as ‘tangents at infinity’, but this does not really mean
very much. If b = a then the asymptotes are the straight lines y = x and
y = —x, which are mutually perpendicular, and the hyperbola is called a
rectangular hyperbola. Moreover, if we rotate the curve anticlockwise
through /4 we can use the asymptotes as axes. This implies that the axes
have been rotated clockwise through n/4.

Suppose b = a. Then we have x* — y*> = 4. For a rotation of —n/4 we
have

x = X cos (—n/4) — Ysin (—n/4) = (X + Y)/)2
y = Xsin (—n/4) + Y cos (—n/d) = (=X + Y)/V2

So

=y =X+ Y- (X-Y)2
=2XY = a*

So writing ¢ = a/)/2 and changing the notation X and Y to the more usual x
and y, we have xy = 2.
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The usual parametric representation for the rectangular hyperbola xy = ¢
isx =ctand y = c/t.

Now it’s time to take a few more steps.

3.11 Workshop

1
_il Exercise Identify the polar equation

r? = 8 cosec 20

by transforming it into cartesian coordinates, or otherwise.

The phrase ‘or otherwise’ is used quite often in examination questions.
Theoretically it means that if you can think of a different method you are at
liberty to use it. In practice it often means ‘or otherwise try another
question’!

2

We use x = r cos 8 and y = r sin 0, from which r = Y(x? + y?) and
tan = y/x. Given the equation r* = 8 cosec 26, if we multiply through
by sin 20 we obtain

r? sin 20 = 8
and since sin 20 = 2 sin 6 cos 0 we have

2r’sin O cos 6 = 8
r? sin 0 cos O = 4

That is, xy = 4.

We should now recognize this as the equation of a rectangular hyperbola
in which the axes coincide with the asymptotes.

If that went well, then move ahead to step 4. Otherwise, try the next
exercise. Remember that to transform from polar coordinates to cartesian
coordinates we must use x = r cos 6 and y = r sin 6. Once r and 0 have
been eliminated it is then just a question of identifying the curve.

D> Exercise Identify the curve which has the equation in polar coordinates

r’(cos 206 — 3) + 10 =0

When you have done this move forward.

3

If we remember the identity cos 20 = 2 cos?> © — 1 it will help. In fact any
of the three identities expressing cos 26 in terms of sin 6 and/or cos 0
will do. We obtain
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r’(2cos’ 6 — 1 — 3) + 10
r’(cos? 8 —2) + 5

5

5

r?cos> 0 — 2r* +
x2 = 2% + yH) +
x2 + 2y?

We recognize this as the equation of an ellipse:

Il

0
0
0
0
S

y2

(2)

The major axis has length 2a = 25 and the minor axis has length 2b =
2V (5/2) = V10.

If there are any problems remaining, then make sure you follow all the
stages. You will have another chance to tackle one of these when you work
through the problems at the end of the chapter. Now step ahead.

2
X
— + 1
5

D>Exercise Identify the curve which has the equation d“
(x +y)* =40y + 1)

Be just a little careful here. Try it, then step forward.

This is one of those problems where you can be too clever! You may think — ®
that the equation has the form Y? = 4X, where Y =x + yand X = xy + I,

and be led by this to conclude that the equation was that of a parabola.
However, the change of coordinates does not correspond to a movement of

axes and so does not preserve geometrical shapes. Instead we do something
much more mundane. We multiply out and rearrange the equation:

(x +y)° = 4xy + 1)

x2+ 2y +yP=dxy + 4
x2—2xy +y*=4
(x—yyY—-4=0
[(x=») - 2l[(x—-y)+2]=0

Sox—y—2=0o0rx—y+2=0, and we therefore have the equation of a
pair of parallel straight linesy = x — 2 and y = x + 2.

If you were right, then on you stride to step 7. Otherwise try this
exercise.

D>Exercise Describe the geometrical curve which has the equation
(x+y)?=(x+8) (x +2y) + 8(x — 2y)

This should cause you no trouble.
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‘Ls_b We do the obvious thing and multiply out the equation with a view to
simplifying it:
x* + 2xy + y? = x* + 8 + 2xy + 16y + 8x — 16y
Almost everything cancels out, and we are able to reduce the equation to
y? = 16x

We recognize this as the equation of a parabola in the standard form
y* = 4ax, where a = 4. So the focus is the point (4, 0) and the directrix
is the line x = —4.

7L Exercise Obtain the condition that the line y = mx + c intersects the
parabola y* = 4ax in two coincident points. Thereby obtain the equation of
the tangent to the parabola y? = 4ax with slope m.
We shall see in Chapter 6 how we can obtain the equation of the tangents
to each of the conics at a general point by using calculus, but for the moment
we shall restrict ourselves to algebraic methods.

8 l:| The two ‘curves’ y* = 4ax and y = mx + c intersect when

(mx + ¢)? = dax
m’x* + 2mex + ¢ = dax
m*? + 2(mc — 2a)x + 2 =0

In general, if (mc — 2a)? > m?c?, there will be two real solutions for x and
so two points where the straight line intersects the parabola. However, in
the special case (mc — 2a)? = m?c? the roots coincide and we have a tangent.
This gives

m?c® — damc + 4a®> = m*c*> and so mc = a

that is ¢ = a/m. So the equation of the tangent is

a
y=mx+c=mx + —
m

If that went well, then finish with this exercise.

D> Exercise Obtain the equation of the tangent with slope m to the circle
x? + y2 =r?
This is just like the last one, and so there should be no problems. Try it,
then take the final step.

95 We use the equation of the straight line in the form y = mx + ¢ and we
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wish to obtain ¢, given that this straight line is a tangent. Substituting into
x? + y* = r* we have

x? + (mx + ¢)* = r?
x2 + mi? + 2mex + 2 =1r?
(m*+ Dx*+2mex + > —r* =0

If this quadratic equation is to have equal roots then

dm’c* = 4(m* + 1)(c* — r?)
m?c? = m*c> — m*r* + ¢ - r?

2 = (m* + 1)r?

Therefore ¢ = +r)(m? + 1), and so there are two tangents:
y=mx £ry(m*+ 1)

You didn’t overlook the minus sign, did you?

Here now are a couple of problems which arise in applications.

3.12 Practical

TOWER HEIGHT

A surveyor finds that from the foot of a tower the elevation of a mast is 99
but that from the top of the tower the elevation is only 80. The tower and
the mast are both built on ground at the same horizontal level, and the
height of the tower is h.

Show that the horizontal distance from the tower to the mast is

d = h cosec 6 cos 80 cos 90

Obtain an expression for /, the height of the mast, in terms of 4 and 6.
You should be able to try this on your own. When you have made an
attempt, read on and examine the solution.

The arrangement is shown in Fig. 3.24. We have
l/d = tan 96
and

(! — h)/d = tan 86
I/d — h/d = tan 86

From these equations,
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[
7
7
/
/7
/7
7/
/
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7
/

h /
Ao o

d fo

Fig. 3.24 Representation of tower and mast.

h/d = tan 96 — tan 86
sin 98  sin 80
- cos 99 cos 80
sin 96 cos 860 — cos 90 sin 80
cos 90 cos 80
sin (96 — 86)
= cos 90 cos 860
sin 0
~ cos 98 cos 80

Therefore
d = h cosec 8 cos 80 cos 96
Also
[ = d tan 98 = h cosec 0 cos 86 sin 96

CIRCUIT ADMITTANCE

This problem uses some of the geometry we have developed.
The admittance of an RC series circuit may be represented by the point

P(x,y), where
~R/(R?+—
B w?C?

= (Ge)/ (% + 5

Eliminate o to determine the admittance locus — the equation relating x
and y. Show how P moves on this curve as o increases from 0 without
bound.
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It is worthwhile seeing if you can sort this out for yourself before you

move on.
We have
1
=R’ + 02C?
1, 1
oCy e
So
R_1 1 _R
x  oCy oC  x
Substituting back into (1) we have
B_ = R%? + .Biz_
x x?

Rx = R&* + R*?

Therefore

2+ 2_£=O
X y R

<x_i)2+ S
2R Y T a4R?

(1)

)

So P is on a circle of centre (1/2R, 0) and radius 1/2R (Fig. 3.25).

When w # 0 we have
‘= Rw?C?
- R?0?C? + 1

_ wC
Y = RCT + 1

(7%,0)

Fig. 3.25 The admittance locus.
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As  — 0 we have (x,y) — (0,0), the origin. For @ > 0 we have y > 0
and, as o increases without bound, (x,y) — (1/R,0). The movement of P
is therefore confined to the upper semicircle (Fig. 3.26).

Y

Sl-¢
=

Fig. 3.26 The path of P.
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SUMMARY

O We have defined the circular functions, drawn their graphs and
deduced some of their properties. Two key identities are
cos’ 6 + sin* 6 = 1
sin (A + B) = sin A cos B + cos A sin B
O We have obtained the general solution of equations involving circular
functions
sin 0 = sina = 0 = nn + (—1)"a
cosO =cosa=0=2nt+a
tan@ = tana =0 = nw + «

where # is any integer.
O We have obtained the standard equations of the straight line

ay—y =mx-—x) (slope m, through (x;,y,))
Yy h _XxXx—x
2=V X2—Xx

b

(through (x;,y;) and (x,,y,))

cy=mx+c¢c (slope m, y-intercept c)
d 5 + % =1 (x-intercept a, y-intercept b)

0O We have shown that the angle between two straight lines with slopes
m, and m; respectively is given by
tan § = — "2
1+ myms;
The lines are parallel if and only if m; = m,.
The lines are mutually perpendicular if and only if m;m, = —1.
0 We have obtained the equations in standard form of the conic
sections

>+ 2+ 2 +2fy +c=0 (the circle)
y? = dax (the parabola)
x? P .
e + 5 1 (the ellipse)
2 2
x
i i—z =1 (the hyperbola)

0 We have transformed polar equations into cartesian equations using
the relationships

x=rcos 9 y = rsin 0
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EXERCISES

1 Establish the following identities:
a cos30 = cosO (cos20 — 2sin’0)
b sin40 = 4(sin6cos>0 — cos B sin> )
¢ tan® + cot® = secOcosecH
d cos26 + sin26 = (cos® + sin6)?> — 2sin’@
tan® (3 — tan’0)
(1 — tan?6)(1 — tan 6 tan26)
2 Solve the following equations in the interval [0, 2r):

e tan30 =

asin36 =1

b tan46 = -1

¢ cosO +sinf =1

d cot?’8 =1

e cos® = 2cos’6 — 1
2tan©

f tan30 = 1~ tanZ6

3 Express in the form Rcos (8 — o)
a cosO + 2)y2sin@
b 3sin@® — y7cos@
¢ 4cos6 — 3sin0

4 Identify each of the following curves:
a(x+42+(y+32=8+6y+50
R

X y xy

c(y-1)-@x-17=2r-1
dx?+4y=y"+2x+19

§ Identify these polar equations by transforming them to cartesian form:

)

2
b r2cos26 + 2r(sin® — 2cosB) = 1
¢ r’(1 + cos?@) = 4

= cosBO — sin0®

d rsin20 + 2sin® — 2cos6 = -I;Q

6 Determine the equation of each of the following:
a the straight line through (—1,2) with slope 3
b the straight line through (1, —4) with slope —5
¢ the straight line through (2,5) and (—4,6)
d the straight line through (—1,4) and (3,2)
e the straight line with x intercept —3 and y intercept 5
f the straight line with x intercept 2 and y intercept —3
g the straight line with slope 3 and y intercept —5
h the straight line with slope ~2 and y intercept 4
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i the circle centre (1,2) with radius 4
j the circle centre (2, —3) with radius 5
7 For each of the following straight lines determine the slope, the x
intercept and the y intercept:
ax+4y =12
b2x+3y+6=0
c2x+3)+5(y—-2)=7
d4x-2)+3(y+1) =9
8 For each of the following circles determine the centre and the radius:
ax’+y’+4x+6y+9=0
bx>+y*+6x+8 +21=0
ex’+y? -2 +4y-4=0
d (x -y +@x+y?=12x+4y + 30

ASSIGNMENT

1 Show that

cos 0 l+sin 2
1+sin6 cos®  cos

2 Use the expansion formula for sin (A + B) to express sin 30 entirely in
terms of sin 8. Hence, or otherwise, solve the equation

6 — 8 sin” @ = cosec 0
3 Obtain all solutions in the interval [0, 27] of the equation
2 cos® 0 + cos 260 = cos O
4 Obtain the general solution of the equation
sin 40 + 2sin 20 + 2sin® 9 = 2

5 Simplify and thereby identify each of the following equations as curves in
the cartesian coordinate system:
a2x+y)P+@x-2)2=16
b(x+y)x+5y) —6x(y —5=0
c (y+xP2=xQ2y+1)+16
d (y+x)?=x(2y+x)+ 16
eBx-yx+y—-DHx-y+2)=0
In each case give a rough sketch.

6 Express in the form R cos (6 — a)
acosO +sin0
b sin® + V3 cos 0

7 By expressing the polar equation
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r*(1 — 7 cos 26) = 10

in cartesian form, or otherwise, identify the curve.

FURTHER EXERCISES

1 Establish the following identities:
a sin 6/(1 + cos 8) = tan (0/2)
b (1 + cos 20)/(1 ~ cos 26) = cot® §
¢ cot O —tan 6 = 2 cot 20
d cosec 20 — cot 26 = tan 0

2 Solve each of the following equations to obtain 0 € R:
asec’6=1+tan0
b tan* 6 =9
c1l+sinB +sin?0=0
d2—cosO+2cos’0—cos’0=0
el+sinB+cosB =10

3 Show that

cos 2n@ + sin2(n+1)0  cos 2(n—1)8 + sin 2n0
cos 2n+1)6 + sin 2n+1)0  cos (2r—1)0 + sin (2n—1)0

Hence or otherwise show that

cos 120 + sin 1460 1 + sin 260
cos 130 + sin 130 cos 6 + sin 0

4 Show that the equation of the chord joining two points (a,,b,) and
(a2, by) on the rectangular hyperbola xy = c? is

X y

+ =1
a, + a, b1+b2

5 Show that

sin O + sin 30 + sin 56 + sin 70
cos O + cos 30 + cos 50 + cos 76

= tan 40

6 A surveyor stands on the same horizontal level as a television mast at
a distance d from its base. The angle of elevation of a point P on the
mast is 0 and the angle of elevation of the top of the mast is ¢.
Show that the distance from the point P to the top of the mast is
d sin (¢ — 0)/cos O cos .

7 A simple pendulum of length L swings so that it subtends an angle 6
with the vertical. Show that the height of the pendulum bob above its
lowest position is 2L sin® (6/2).

8 Obtain the axis of symmetry and the position of the focus of the conic
2% = x + 4y.
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A symmetrical parabolic arch has a span of 24 metres and a height of
20 metres. Determine the height of the arch at a distance 3 metres from
the axis of symmetry.

A symmetrical road bridge has the shape of half an ellipse. Its span is
30 metres and its height is 20 metres. Determine the height at a distance
of 12 metres from the axis of symmetry.

A symmetrical parabolic bridge has a height of 4 metres and a span of
8 metres. A vehicle is 4 metres broad and has a height just over
3 metres. Can the vehicle pass under the bridge? Determine the
maximum head height which a vehicle 3 metres wide can have to pass
under the bridge without contact.

A beam of length / lies in a vertical plane and rests against a cylindrical
drum of radius a which is lying on its side. The foot of the beam is a
distance x from the point of contact of the cylinder and the ground.
Calculate the height of the top of the beam above the ground.

In a plane representing an electric field, O and A denote the cross-
sections of charged wires. The distance OA is 8 units. When the point
P moves in this plane in such a way that OP = 34 P then P moves on an
equipotential surface. Show that the equipotential surface is a circle of
radius 3 units.

Two rods AB and AC of length p and g (p > q) respectively are jointed
together at one end A. The other ends, B and C, are secured to a wall
with B vertically above C so that the distance BC is h. If C is moved a
distance x down the wall away from B, show that A drops or rises by an
amount x/2 — (p* — ¢*)x/2h(h + x).

When a surveyor is at a radial distance r from a church spire, the
angle of elevation of the base is  and the angle of elevation of the
top is 6 + a. Obtain tan  where (3 is the difference in the angles
of elevation between the top and the bottom if the surveyor is at
a distance r + ¢.

A cliff of height h above sea level is being eroded by wind and
sea. A surveyor stands on the edge and finds that the angle of
declination of a rock on the horizon is . One year later the height
of the cliff is unchanged but the angle of declination of the rock
has been decreased by a. Ignoring the curvature of the earth
determine the distance d that the cliff has been eroded.

A symmetrical arch of height h is in the shape of a parabola and
its span at ground level is 2r. A ladder rests tangentially against
the arch, in its plane, in such a way that the top of the ladder
just touches the arch. If the foot of the ladder is at a horizontal
distance d from the centre of the arch, determine the length [ of
the ladder in terms of h, r if d = 5r/4.



Limits, continuity and
differentiation 4

Now that we have acquired the basic algebraic and geometrical tools
that we need, we can begin to develop the calculus.

After completing this chapter you should be able to

O Evaluate simple limits using the laws of limits;

O Decide, in simple cases, whether a function is continuous or not;

O Perform the processes of elementary differentiation;

O Obtain higher-order derivatives of a product using Leibniz’s
theorem;

O Apply differentiation to calculate rates of change.

At the end of this chapter we shall solve practical problems concerning

cylinder pressure and the seepage of water into soil.

4.1 LIMITS

One of the most important concepts in mathematics and therefore in its ap-
plications is that of a limit. We are often concerned with the long-term
effects of things, or with what is likely to happen at a point of crisis —
profitability, state of health, buoyancy, or stability of a structure. Such
considerations often involve a limiting process.

We shall meet this idea in several ways. In the first instance we consider
the limit of a function at a point. Suppose y = f(x) has the property that
f(x) can be arbitrarily close to / just by choosing x (# a) sufficiently close to
a. If so, we say that f(x) tends to a limit / as x tends to a, and write

fx)>1 as x—>a
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Alternatively we say that f has a limit / at @, and write
! = lim f(x)

We do not insist that f(a) is defined, or, if it is defined, that its value shall
be equal to /. In other words, the point a need not be in the domain of the
function and, even if it is, the value at the point 2 need not be /. Indeed we
are not interested at all in what happens at x = a; we are interested only in
what happens when x is near a.

O Suppose

2 -3 2

then the domain of this function consists of all real numbers other than
x = 1; so f(x) is not defined when x = 1. On the other hand, when x # 1 we
may simplify the expression for y to

_@x=2x-1) _

= P— x—2

The function is shown in Fig. 4.1: we use a hollow circle to represent a
missing point. Now f(x) can be made arbitrarily close to —1 just by choos-
ing x sufficiently near to 1. Therefore

lim f(x) = lim (x — 2) = —1

However, we cannot make f(x) equal to —1 because f(x) is not defined
when x is equal to 1. n

{J Obtain lim f(x) in each of the following cases:
x—a

y-axis
A
ol u 2 ?x-axis
t
- 1 b — .
-2

Fig. 4.1 The graph of f.
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¥ —4x+3
af(x)_x2_2x_3 a=3
e — 1
bf)=o—o= a=0
a We have
(=3 x-1
&)= e+
so that when x # 3
x—1
f(x)_x+1
Therefore as x — 3,
3-1 2 1
W=33173172
b We have
e -1
) = F—2=

If we try to put x = 0 straight away we get
1)~ 3

which is undefined. Therefore we must be more subtle. If we multiply
numerator and denominator by e* (which is always non-zero) we obtain

X Zx_l
foy = S =D e

provided x # 0. So that as x — 0, f(x) — e’ = 1. |

4.2 THE LAWS OF LIMITS

The following rules are often known as the laws of limits:

1 lim [f(x) + g(x)] = lim f(x) + lim g(x)

2 lim [kf(x)] = k lim f(x) ke R

3 lim [f(x) g(x)] = lim f(x) lim g(x)

4 1f lim g(x) # 0, then lim [f(x)ig)] = | 1im 70) | /] im go]
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These rules are to be interpreted carefully in the following way. If the
right-hand side exists then the left-hand side exists and the two are equal. If

the right-hand side does not exist, then the rule cannot be applied.

O From the graphs of the circular functions (Figs 3.4, 3.5) it is clear that

lim sinx =0
x—0
limcos x =1
x—0
lim tan x = 0
x—0

Obtain

. osinx — 1
a lim ——

x—0 2 COS X
cosx — 1

b lim -
r—0 2 sin x

a Using the laws of limits,

sinx-l_,l(if(l,(smx_l)

)I(Ln(ll 2cos x lin}) (2 cos x)
_)l(l_)ﬂ(l)(smx—l)zo_1=—l
2 lin(l) (cos x) 2 x1 2

Here the procedure is justified by the result; if you like, the end justifies
the means! However, if the application of the rules produces at any stage
an expression which is meaningless, we shall need to think again!
b If we go straight into the laws of limits we shall meet a problem:
cos x — 1 ll_r)n() (cos x — 1)
w0 2sinx  lim (2 sin x)

x—)
lanz) (cosx) — 1 1-1 0

25im (sinx) 2x0 0

x—()

At each stage we were able to carry out the simplification only on the
understanding that the expression which resulted would be meaningful.
However, 0/0 is indeterminate and so the procedure fails. The problem
must be tackled differently. One way to sort things out is to try to
express f(x) in an alternative form when x # 0:

cosx — 1 (cosx — 1)(cos x + 1)

flx) = =

2 sin x 2 sin x(cos x + 1)




118  LIMITS, CONTINUITY AND DIFFERENTIATION

__cosfx—-1 —sin® x
" 2sin x(cos x + 1) 2 sin x(cos x + 1)
—sin x
= ———— ided x # 0
2(cos x + 1) provided x
Therefore
—sin x
. = i ——Snx
}13(1) fx) x50 2(cos x + 1)
— lim sin x
= _ x—0 = O — 0 .
2limcosx +2 2+ 2

x—0

4.3 Workshop

1
-i_’ Exercise Here are two limits for you to try; they are very similar to the
ones we have just done.

. (sinx — 1) tan x
a lim
x—0 2 cos x
b lim (cos x - 1) cot x
x—0 2 sin x
When you have completed a, take the next step and see if you are right.

2 b For a we have
lim (sin x — 1) tan x

., (sinx —1)tanx ,.p

)lcl—r»% 2 cos x - lin(l) (2 cos x)
lim (sin x — 1) lim tan x
- x>0 x—0
2 lim cos x
x—0
_—=1x0
2x1

How did you get on with that? If you made a mistake, look carefully at the
laws of limits and see how they are applied. Problem b, like the example
we have just done, requires some work before we take limits. Try it and
see how it goes; then step ahead.

3L In b we cannot apply the laws of limits directly because the result is
meaningless. However,
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(cosx — 1) cotx (cosx — 1) cos x
2 sin x N 2 sin’ x
(cos x — 1) cos x
- 2(1 — cos® x)
_ (cosx — 1) cosx
"~ 2(1 = cos x)(1 + cos x)

_ —COoS X
~ 2(1 + cos x)
Therefore
lim (cos x — 1) cot x _ lim — 08 %
e 2 sin x i 2(1 + cos x)
__—t _ 1
20 +1) 4

Did you manage that?

The important fact that we need to remember about the limit of a function
is that we are not at all concerned with the values of the function at the
point. We are only interested in the values of the function near the point.
In Fig. 4.2

lim f(x) = [ # f(a)

Although the ‘limit / of f(x) as x tends to a’ is only meaningful if / is a real
number, we shall allow a slight extension of the notation. It is convenient
but slightly absurd to write

lim f(x) = o«

xX—a

provided f(x) can be made arbitrarily large just by choosing x sufficiently

y = flx}

(o]
©

Lol .
X-axis

Fig. 4.2 The limit of a function.
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close to a (x # a). That is, f(x) can be made larger than any pre-assigned
real number merely by choosing x close enough to the point a. Similarly,

lim fx) = —o

means that f(x) can be made less than any pre-assigned number merely by
choosing x sufficiently close to a (x # a).

O We have

lim cosec? x = ®

x>0

The notation is slightly misleading because of course there is no limit! W

Likewise we write
lim f(x) =1

if f(x) can be made arbitrarily close to / merely by choosing x sufficiently
large, and

lilllw fx) =1

if f(x) can be made arbitrarily close to / merely by choosing the magnitude
of x sufficiently large, where x < 0.

4.4 RIGHT AND LEFT LIMITS

We can extend the idea of a limit in a number of ways. One way, which is
quite useful for applications, arises when f(x) can be made arbitrarily close
to r by choosing x (>a) sufficiently close to a. Here we are considering
values of x greater than a, and so the limit is obtained as we approach the
point a from the right-hand side. We call it a right-hand limit (Fig. 4.3). We
write

)
/

© - ——

~ x-axis

0

Fig. 4.3 Right-hand and left-hand limits.
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lim+ f&x) =r

Similarly, if f(x) can be made arbitrarily close to / by choosing x (<a)
sufficiently close to a, we have a left-hand limit (Fig. 4.3). We write

lim f(x) =/
If
lim f(x) = lim f(x) =k
x—a+ x—a—
then
lim f(x) = k
INEQUALITIES

There is one further property of limits which we shall find particularly
useful later and which we now describe briefly. It enables us to compare
limits by comparing the functions which give rise to them.
Suppose
1 For all x in some open interval containing the point a, 0 < f(x) < g(x);
2 Both lim f(x) and lim g(x) exist.
x—a X—a
Then
0 < lim f(x) < lim g(x)
X—a X—d
It must be stressed that both requirements must be met before we assert
confidently that one limit is bounded above by another. Here are the
conditions in words:
1 Each function must be positive, and one must be greater than the other;

2 Both limits must exist.
An analogous property holds for right-hand and left-hand limits.

4.5 CONTINUITY

Most of the functions which we have met in our mathematical work have
the property
lim f(x) = f(a)

This in effect says that the.e are no breaks in the graph of the function.
Specifically, if for some point @ we have
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lim f(x) = f(a)

then the function f is said to be continuous at a. Moreover, if the function
fis continuous at all points of its domain we say it is a continuous function.

Intuitively, then, a continuous function has its graph all in one piece.
However, this statement can be a little misleading.

0 y = tan x is defined whenever x is not an odd multiple of 7/2. It is con-
tinuous at all points where it is defined, and so is a continuous function.
However, the graph is certainly not in one piece (Fig. 4.4). |

The function in Fig. 4.5, although satisfying the requirements of a

y-axis

A

T
2

—— WL T
M
N
Y
x
®
x
v

I I
I !
I I
I !
| |
| I
I I
I |
3! arp— 0
7l |
I I
| I
I |
I |
| !
I I
I I

Fig. 4.4 The tangent function.

y-axis
A y = fix)

//\\/Mv/v .

Xx-axis

'\/

Fig. 4.5 A continuous function.
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continuous function, is not the kind of function with which we are familiar.
It isn’t smooth, and there are several points at which it is impossible to
draw a tangent.

4.6 DIFFERENTIABILITY

Suppose y = f(x) is a smooth curve and that x determines a general point
P on it (Fig. 4.6). Suppose also that k is small and Q corresponds to
x = a + h. Using the notation shown in the diagram, the slope of the
chord PQ is given by

QR _flath) — fla) _flat+h) - f(a)
PR~ (a+h) —a h

slope PQ =

Suppose now we consider what happens as 4 is made small (2 # 0). Q
moves closer to P, and intuitively the slope of the chord PQ becomes
arbitrarily close to the slope of the tangent at P. So

slope of tangent at P = 11 Ow

If this limit exists then the function f is said to be differentiable at the
point a. If f is differentiable at all its points then f is said to be a
differentiable function. We write

dy _ f(x+h) f(x)

dx h—>0

We call this the derivative of f at x, and represent it by f'(x). The process
by which f'(x) is calculated from f(x) is called differentiation with respect
to x.

y =flx)

>
x-axis

Fig. 4.6 Two neighbouring points on a smooth curve.
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DIFFERENTIALS

Although we have used the notation dy/dx for the derivative of f at x, we
have given no meaning to dy and dx which would enable them to be used
separately. It is important to appreciate that the derivative is a limit; we
may write dx = h and 8y = f(x + h) — f(x) so that

dy . Oy

dx 511210 ox
but once the limit has been taken dy and dx become welded together and
cannot be separated.

Nevertheless it is convenient to have an interpretation for dy and dx so
that they can be used separately and are consistent with this definition of a
derivative. Accordingly we define dx to be any change in x (not necessarily
small) and define dy by the formula dy = f'(x) dx. This is consistent with
the definition of a derivative because when dx # 0 we have dy/dx = f'(x) as
before. When dx and dy are used in this way they are called differentials.
Note that if dx is a change in x, dy is not the corresponding change in y.
However, if dx is numerically small then dy does approximate to the
corresponding change in y.

RULES

The laws of limits enable us to deduce rules for differentiation. In what
follows it will be supposed that u = u(x) and v = v(x) can be differentiated
with respect to x and that & is a real constant.

d du dv
1 ar (u+v)= e + ar (the sum rule)
d du
2 i (ku) = ka—x- (the factor rule)
3 % (uv) = ug}‘i + vg—g (the product rule)
4 Suppose y = y(u) and u = u(x) are both differentiable. Then
dy _dy du (the chain rule)
dx dudx

These are the basic rules for differentiation and, together with the deriva-
tives of a few functions, they can be used to obtain the derivative of any
function you are likely to need. Here is a short list of derivatives; if you
were cast away on a desert island these would be sufficient for you to
deduce all the standard forms:

1 % (x") = nx""! (neR)
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3 i (sin x) = cos x

Imagine for the moment that we are marooned on a desert island. There
is a ship ready but the captain has gone mad and will not rescue us unless
we can supply some simple derivatives. Let’s try to build up some of the
standard forms. See also Table 15.1,

J Deduce the quotient rule

46 (8,2 /s
dxv_vdx udx Y

d d
LHS = —(E) =— (w™)

dx\v dx
= ui(v Y+ li(u) (product rule)
- Tdx dx p
L P N LA -
= udv( ) 3 + o (chain rule)

5 dv _, du .
= u(— oyl = d
u(—v )d P (derivative 1)
d d

= (Vd_z - ud—:> / v = RHS (elementary algebra)

|
O Use the rules and the standard forms to obtain

d
a (cos x)

d

b a (tan x)
d

C a (sec x)
d

d d_x (ln x)

e % (a¥) (a > 0)

a We have cos x = sin (/2 — x). So



126 LIMITS, CONTINUITY AND DIFFERENTIATION
d d .
a(cos x) = a[sm (/2 — x)]
Put u = /2 — x; then

d d .
a(cos x) = a(sm u)

d . du .
= a(sm u) P (chain rule)
d ..
= Cos ua(n/Z - x) (derivative 3)

d d
cos u [ga(xo) - a(x)]

=cosu (0 — 1) = —cos (/2 — x) = —sin x
b We have
d d /sin x
— t - —
dx( an x) dx (cos x)
d . . d )
= | cos x —(sin x) — sin x —(cos x) | / cos* x
dx dx
cos® x + sin” x 2
= 5 =—>— =sec" x
cos” x cos” x
¢ We have

d d ~1
dx(sec X) = dx[(cos x)7]
Put u = cos x. Then
d,ny_ 94, i du
dx(u )= du(u ) dx

d
= —u~2—(cos x)

dx
il (—sin x) sin x sec x tan
= —sin x) = = X X
cos? x cos® x
d Let y = In x. Then x = ¢”. So
d d d dy
—_— —_ — Yy = — (Y} —
dx(x) dx(e ) dy ¢’) dx
Therefore
d
1=¢ d_y =X &y

dx dx
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dy 1

dx x

elety=a" Thenlny =Ina* = x Ina. So

d d
a(ln y) = a(x In a)

Therefore
d dy
dy(ln y)dx =Ina
So
1d
A In a
ydx
d
ﬁ = (In a) a* [ |

If y = f(x) then dy/dx = f'(x), and we say that f(x) has been differentiated
with respect to x. We may consider differentiating again with respect to x,
and so we define the higher-order derivatives:

d>y d /(dy .,
i~ 3 (@) o =1
d>y d [(d¥
dx N _x (dx2> =100
In general,
4y _
dx” - f (x)

is the result of differentiating » times with respect to x, and is known as the
nth-order derivative of f(x) with respect to x.

4.7 LEIBNIZ’S THEOREM

One rule which generalizes to higher-order derivatives is the product rule.
The first few derivatives will establish the pattern. For the purposes of
this section only we shall use a special subscript notation y,, to represent
d4"y/dx".
The product rule is
dv  du

a(uv) = ua + av
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so that
(uv)l = uvy + y1v

Now

d? d / dv du
a-x—z(uv) =—\u—+ —v

dx dx dx
( d*v N dudv) <dudv + d’u
= u—— ——— —_— _——
dx*  dxdx dxdx dx2V

(using the product rule again)
_ d_zv_ + Zg_lf_d_v + @
M T Cdxdx T oan”
So

Uv)y = uv, uv Uv
+ 2uvy +

O Show by applying the product rule yet again that
(uv)s = uvy + 3uyvy + 3upvy + usv

When you have managed this, read on. |

Here is the pattern which is emerging as we apply the product rule
repeatedly. Look at it and see if it reminds you of anything:

(wv); = uvy + uyy
(uv), = uvy + 2uyvy + wpv
(uv)s = uvsy + 3uvy + 3upvy + uzv

Look at the coefficients. Yes! They are the binomial coefficients.
Remember

n n!
= (re Ng,ne Ny r=<n)
r (n—n'r

So if we put them in we obtain

(wv), = (;) uv; + <i) uv
(w), = ((2)) uvy, + G) vy + (2) Uzv
= () s () o () + () o

In general

N
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n n n
(wv), = 0 Uypv, + 1 Uy, + ’ P )

n n
+...+<>u,v,,_,+...+<)u,,v(, (n eN)
r n

n
n
= z ( ) uv,_, where uy = u, vy = v

r=0 \I

Remember that the summation sign simply tells us to let r take on all
integer values between 0 and n and then add up the results.

This formula, which enables us to differentiate a product n times, is
known as Leibniz’s theorem. It can be proved by mathematical induction.

O Ify = f(x) = x*¢*, obtain f"(x).

Here we have a product, and so we use Leibniz’s theorem. We must
decide which factor to designate as u and which as v. The expansion will
terminate after a few terms if we put u = x” because after differentiating u
three times with respect to x the result is zero:

u=x, u=3x% wu=6x, u3=6

Now v = e*,so v, = 2¢*, v, = 2%¢*, and in general v, = 2"e?* Therefore

n n
Uy, + 1 Uv,—1 + ) UpVy_y + ...

x3 n e2x + (’;) (3x2) (2n—162x)

Il

(uv),

+ (;’) (6x) (2"%e>) + (;’) (6) (2" e™)

x*2"e™ + n(3x%) (2" 'e¥)

n(n — 1) ne2.2¢ M=) (n~-2) _ .,
+————2 6x2" e + %2 %3 62" ¢
= [x*2" + 3nx*2""' + 3n(n — Dx2" 2 + n(n — 1) (n—2)2" 3 e>
[ ]
O Obtain the nth derivative of x?y with respect to x, where y = y(x).
Here we take u = x°, sou, = 2x, u, = 2and v = y. So
) ) n n
(x y)n = XYn + 1 2xyn—l + 2 2}’n—2
= x%, + 2nxy,_, + n(n — 1) y,_» [ ]
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show that
dn+1

ay

d Ton+l

y

+ (n +1) =0 forn=3

We differentiate each side of the equation with respect to x using Leibniz’s

theorem:
d
(x .Ei-),, = (xyl)n

n
= XYn+1 +

1) 1y, = Xyni1 + ny,

Now
() =2 (), =2, (x),=0 (n=3)
Consequently for n = 3 we have

XYn+1 + ny, + Yn = 0
So

n+1 n

y+m+ndy

X il 0 forn=3 ]

4.8 TECHNIQUES OF DIFFERENTIATION

Do not forget that very often if you pause and think for a few moments you
can save yourself a lot of needless work. This is particularly true when it
comes to differentiation, where a little algebraic simplification at the outset
can make things very much easier.

O Differentiate with respect to x
1 — sin x |2
1+ sinx
where x € (—n/2, n/2).

We could of course hit this head on and give it the full works, differen-
tiating using the chain rule and the quotient rule. Instead we shall tame it
first by multiplying numerator and denominator by 1 — sin x inside the
root. Algebraically this leaves everything the same, but from our point of
view it will help greatly. So

1 —sinx(1—-sinx)|"> [ =sinx) (1 —sinx)]"?
1 + sin x (1 — sin x) (1 + sin x) (1 — sin x)

_ [(1 — sin x)z]l/2

(1 - sin? x)
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_ [(1 — sin x)z]uz

0082 X

5 [(1 — sin x)]
N cos x

sec x — tan x

After all that excitement we mustn’t forget to differentiate:

d
& _ sec x tan x — sec’ x
dx

Whenever we have a complicated expression to differentiate, it is worth
looking to see if it can be simplified algebraically first. n

Before we consider any further techniques, here are a few steps to get you
used to using the chain rule without making a formal substitution.

4.9 Workshop

1
> Exercise Differentiate with respect to ¢: i
aln (22 +1)
b sin® ¢
¢ sin 3¢
d sin
Try each one of these. Remember that the idea is to avoid having to write
out all the details of a substitution. We differentiate with respect to ‘the
thing in brackets’, then multiply by the derivative of ‘the thing in brackets’
with respect to ¢.

For a we have l,;|2

%[m Qe + 1)) = %m Qe + 1)%

B d
T2+ 1de
&
T2+ 1

2 +1)

If you made a mistake, check your working for b, ¢ and d before you step
ahead for the solutions.

For b we obtain d 3
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9 r6in® ] = i in 1)
dt[sm f] = (sm 1)

T )(sm 1> —= ( )

= . 2 >~ .
3 (sin ¢) dt(sm f)

= 3 sin® t cos ¢

If you made a mistake here, possibly you confused sin® ¢ with either sin 3¢
or sin £. It is important to realize that these are three different expressions.

4 E_‘ Next, for ¢ we have

d
dt[sm 3] = a( )sm (3t) (3t)
= (cos 3t) 3 = 3 cos 3¢
5 5 Finally, for @ we obtain
: d ( )
= 3 = 3
dt[smt] a( )sm )

= cos (t3)d_t(t3) = 312 cos

If you managed all those without difficulty you should be able to skip up
the steps with ease. For further practice here is another problem.

D>Exercise Differentiate with respect to u:
a exp (sin 2u)
b In[1 + sin® Qu + 1)]
¢ exp2ucos 3u + 1)
Try them all and check your answers step by step.

| sin 2u
] =

du

d i d
——[eGi 2“’]a(sin 2u)

d()

: d
= ¢’in Z“d—l;(sin 2u)

= g8in 2“%[sin (Qu)] a%(Zu)
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= ™" 2“ cos 2u 2
= 2e8i" 24 cog 2y

Next, for b we obtain

d In [1 + sin® Qu + 1)]
du

ol
_E[_]ln [1 + sin® Qu + 1)] []
1

T 1+ sin? (2u+l)d [1+sm (2u+ 1)

1
= + 1))?
1 + sin? Qu + 1) du [sm (2u J

1
= 1 + sin® Qu + 1) d[ ][Sln Qu + 1)]2_[ ]

1 . .
=T+ sin? Qu ¥ 1)2 [sin 2u + 1)]dusm Qu+1)
1
= 2sin Qu + 1 +
T+ s Qu+ 1) sin (2u )cos Qu +1)2
_4 sin Qu + 1) cos Qu + 1)

1 + sin? Qu + 1)

o

Finally, for ¢ we have

Ed;[ez“ cos (3u + 1)]

d d
2u 2u
e du[cos BGu+ 1] +cosBu+1) du[e ]

= e?“ [—sin Bu + 1)] 3 + cos (Bu + 1) e** 2
= e2“[=3sin Bu + 1) + 2 cos Bu + 1)]

Now we are ready to continue.

4.10 LOGARITHMIC DIFFERENTIATION

It is not always possible to simplify an expression, but if it is a product or
a quotient it may help to ‘take logarithms’ before differentiating. By this
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means we avoid the use of the product rule, but more importantly we avoid
the very awkward quotient rule. Two examples will illustrate this technique.

O Differentiate with respect to x
(1 +x)sin’x
Y= +a) (1 —x7
Before taking logarithms we should be assured that both sides are positive.
This is certainly true if x € (=1, 1), and so we shall suppose that we are
within this interval. Using the laws of logarithms (see Chapter 1)
Iny=In(1+x)+In(sin’x) —In (1 + 4x) — In (1 — x)?
=In(l1+x)+2In(sinx) —In(1+4x)~3In(l —x)

Now differentiating throughout with respect to x gives
1dy 1 +2c0sx_ 4  3(=1)
ydx 1+x sin x 1+4 1-x

d_y__( 1 2cosx 4 3 (1 + x) sin® x -
dx 1+x sin x l1+4 1-x)(1+4)(1Q-x)?
(0 Differentiate x* with respect to x (>0).
Let y = x*. Then
Iny=In(x*)=xInx
So
d d d
= == -, 9 +
i (Iny) i (xInx) =x ix (Inx) + (Inx) 1
Therefore
1y _ x-—+Inx
ydx x
So
d_ (1+Inx)=x*1+Inx) n
ax 7

4.11 IMPLICIT DIFFERENTIATION

Occasionally when y is given in terms of x this is not expressed explicitly;
instead, y and x are related by an equation. We sometimes say that y is
given implicitly in terms of x. For example if x and y are related by the
equation
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2 4+3xy+y> =5

then y is given implicitly in terms of x.

To differentiate y with respect to x it is not necessary first to express y
explicitly in terms of x. Instead we can differentiate both sides of the equa-
tion with respect to x and use the chain rule. Here

d N
S0 =F0)

0 Obtain the first derivative of y with respect to x at the point (1, 1) if
¥ +3xy+y =5

We should check that the point (1, 1) lies on the curve. It does because
x = 1 and y = 1 satisfy the equation. Now we go through the equation,
differentiating with respect to x and using the chain rule:

dy 2 dy _
2x+3xdx+3y+3y dx_o

dy
3(x+y2)a;= ~2x — 3y

dy = —-2x -3y
dx  3(x + y?
When x = 1 and y = 1 we obtain
dy -5
dx 6 "

4.12 PARAMETRIC DIFFERENTIATION

If a function is defined parametrically then it is better to use the chain rule
to obtain its derivative in terms of the parameter. Of course theoretically
we could eliminate the parameter and differentiate in the ordinary way.
However, in practice this may not be possible.

Therefore if y = y(f) and x = x(£) we have

dy _ dy dt
dx  dr dx
and because
| _dx_dedr
dx  dr dx

we obtain
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dy _dy /dx

dx ~ dt/ dt
There is one very important point to watch out for, and it is a frequent
cause of error. Although

dy _dydt
dx drdx

a similar result does not hold for second-order derivatives. In symbols,
dx* * drfdx?

In fact if you look carefully you will see that not even the notation leads

you to believe this will work. Nevertheless many examination scripts con-

tain attempts at solutions to differentiation problems which try to use this.

It is a very popular mistake!

In order to obtain the second-order derivative it is necessary to use the
chain rule again because the first derivative will be in terms of «:

d’y  d (dy\ _ d/dy)d:
de® 832(5;) B d_t<a)d_x
_d/dydr\dt
T de (d—t Zﬁ) dx
O Ify = cos ¢ + sin z and x = tan ¢, obtain the first-order and second-order
derivatives of y with respect to x.

As you can see, it would not be easy to eliminate . So we use the chain
rule

dy _ dydt
dx drdx
Now
%yt-=-(%(cost+sint)
= —sint + cos ¢
Also
dx

—_——= — = 2
- dr (tan f) = sec* ¢

Therefore the first-order derivative is

dy dydt —sint+ cost
dx  dr dx sec’ ¢
= —sin t cos® t + cos’ ¢
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We use the chain rule again to obtain the second-order derivative:
g
d? . dr
d_); =3 (cos® t — sin t cos? 1) ax
X
= {3 cos’ t (—sin f) — [sin ¢ 2 cos ¢ (—sin ) + cos’ ¢ cos t]} cos® ¢

See how we use the chain rule here without the formal substitution. To
differentiate cos® ¢ with respect to ¢, we first differentiate cos® t with respect
to cos ¢ to obtain 3 cos? ¢ and then multiply this by —sin ¢, the derivative of
cos ¢t with respect to .
Now we simplify:
d’y 2 o ‘2 3 2
i (=3 cos“tsint + 2sin” £ cos t — cos” t) cos” ¢
= (=3 costsint + 2 sin® t — cos® 1) cos® ¢
= [-3 cos tsin t + 2(1 — cos® {) — cos® t] cos® ¢
= (=3 costsint+ 2 — 3 cos t) cos® t
= 2 cos® t — 3 cos* t{cos t + sin 1)

If you use the chain rule correctly and don’t invent your own version,
nothing should go wrong. n

4.13 RATES OF CHANGE
We can apply differentiation to obtain the rates at which variables change.

O A spherical balloon is pumped up at a constant rate of 1 m*s. Obtain
the rate of change of the radius at the instant when it is 0.5 m.

We may denote the volume of the balloon by V and the radius by r.
As time increases, r and V change. We have the following relationship
between V and r:

4
V=§J'tr3

We know that dV/d¢ is constant at 1 m%/s, and we wish to determine dr/dz.
This is a simple application of the chain rule:

v 4 ,dr
dt-33m de
dr

= 4ur® —
gy

Therefore substituting into this equation we obtain

dr 1 1

ar T amosy w8 -
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Are you ready for some steps? If not then read through the chapter again
to familiarize yourself with it.

1
\—E—Ll Exercise Evaluate the following limit:

4.14 Workshop

. 2 tan x
lim (————
x—m2 \1 — tan“ x

As soon as you have had a crack at this, move on and see if you are right.

2

We cannot put x = 7t/2 since tan 7/2 is not defined. Therefore some other
approach must be used. Here is one:

2 tan x
tan 2x = ————>5—
an 1 — tan® x
So
. 2 tan x )
Jm, <1 — tan’ x) = Jim, (tan 2x)=0

If this has worked out well you may proceed directly to step 4. If you didn’t
get the limit correct then you will need to make sure you follow what has
been done before you proceed. If you feel you would like some more
practice then here is another problem.

>Exercise Determine the following limit:

. 1 —sinx
lim | ———
x—n2 \ 2 Cos” X

When you are ready, take the next step.

3

If we attempt to put x = 7/2 we obtain the undefined expression 0/0. Here
is one way of proceeding:

l—sinx 1-sinx 1
2 cos® x —2(1—-sin2x)_2(1+sinx)

1 1asx—>n/2
—_ = =
20+1) 4

Now step ahead.
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C>Exercise A function f is defined by ﬁ‘
2 sin x
= —— 0
() sec x tan x b # 0)
fx) =2 (x=0)

Use the convention of the maximal domain to describe the domain. Then
decide whether or not the function is continuous at 0.
Make a good attempt at this one, then move to step 5 for the answer.

By the convention of the maximal domain (Chapter 2) the function is S
defined at all points where sec x tan x is not zero. Now sec x is never zero,

and tan x is only zero when x is a multiple of &. So the domain consists of

all the real numbers except for a non-zero multiple of x. (f(0) is defined
separately.) Notationally the domain is

A={rlreR,r# nn,wheren € Z, n # 0}
If

lim f(x) = £(0)

then the function is continuous at 0. We have

)
lim f(x) = lim (ﬂi—>

x—0 \Sec x tan x
. 2 sin x cos® x
= lim |———
x—0 Sin x

= lirr(l) (2 cos?x) =2

Also by definition f(0) = 2, and so the function f is continuous at 0.
If you had trouble with the description of the domain it may repay you
to concentrate some attention on Chapter 2.

Before we leave limits and continuity here is one more problem. It should
cause no difficulty now.

D>Exercise The real function f is defined by

2x __
=5 #0
) = k (x=0)

Calculate the value of k if it is known that f is continuous.
Best foot forward!
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6 _\—_IFor continuity we require f(x) — f(0) as x — 0, so that

2x _
k=limex 1
x-0 e* — 1
— lim (e —i) (e*+1)
x—0 e —1

=lirr(1)(e"+1)=1+1=2

Now move on to the next exercise.

D>Exercise Obtain the nth derivative with respect to x of
s &y
dx®
where y = y(x) and n is any natural number.

Leibniz was one of the great philosophers, but you shouldn’t need to
ponder too deeply about this.

7

We must calculate (x%y;),, where we are using the subscript notation to
denote differentiation with respect to x. Now
w),=uv, +nuv,.1+ ... +uyy

Put u = x>: then u; = 3x%, u, = 6x, u3 = 6. It follows that u, = 0 for r > 3.
Put v = y;3: then vy = y4, v; = ys, ..., v, = y,3. Substituting into
Leibniz’s formula, we obtain

3. o3 2 n(n—1) n(n—1)(n—2)
(xy3)n_xyn+3+n3xyn+2+ 1x2 6xy,,+1+ 1)(_2 ———X3 6y,1
= x3y,e3+n3x%,00 + 3n(n — Dxy,4 + n(n— 1) (n - 2)y,
dn+3y n+2y dn+1y
=y’ e + 3nx? o +3n(n — 1)x T
d"y

+nn—1)(n _2)dx"

Did that go well? If it didn’t, here is another problem. If it did, you can
miss this one out and step ahead to step 9.

>Exercise Show that if

— 4y =
xdx y €
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then

n+1 n

d "
Xt () T =27 (ne N

Step ahead for the answer.

Using the subscript notation, we have (—’—1’8‘\

xy, + vy =e™

If throughout we differentiate n times with respect to x we obtain
(xyl)n + Yo = (el\)u

Now (e*), = 2e™, so (e™), = 2’e™ and in general (e?), = 2"e>". Using
Leibniz’s formula on the first term in the equation, we have

[x))u+] + n(l)y”] +y,= 2”62'\
So

dn+l dn 5
x R A 1)d—{_ 27eX  (neNy)

One last exercise will reinforce much that we have covered.

-
9
>Exercise Suppose that y = e + e™ and z = x%y. Calculate d'’z/dx"? [ij—}
when x = 0.
Think about this and then try it out for yourself before stepping on.

We could evaluate x’y and differentiate the result twelve times, but that ‘:“0
would be tedious. Instead we apply Leibniz's formula to differentiate
Z n times:

= (xy),

n(n — 1) 61y, + nn—1)(n - 2)

3 2
=x%, + n3c%y,_, +
X Yn RIX"Y -1 1X2 2 6

6}):1—3
Nowy =e* + e*, 50y, = 2e* + 3e™, and in general y, = 2"e? + 37e™.
So putting x = 0 in the expression for z, produces

2, =0+0+0+n(n-1)(n-2) (271 +3"71)
=n(n—1) (n —2) (2" +3"7%)

Finally when n = 12 we obtain
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d'?z

2= 12x11x10 (2° + 3% = 26657400

Now for two applications.

4.15 Practical

CYLINDER PRESSURE

The pressure inside a cylinder is given by

k
P =
na’x

where a and k are constants and x is allowed to change; initially x = a.
Obtain the pressure gradient dP/dt, in terms of the initial pressure P,, at
the instant when x has doubled its initial value if x is moving at a constant
rate of 1 m/s.

Try this; it is not at all difficult.

We require dP/dt, and so we differentiate through the equation using the
chain rule. We obtain

dpP —k dx

dt  maix® dt

Now dx/dt = 1, and so when x = 2a
ar _ -k
dt  4ma*

The initial pressure is given by P, = k/na’, so k = Pyna®. Therefore the
pressure gradient when x = 2a is given by

d_I) _P()Tcas_~&

dr 4na* 4a

WATER SEEPAGE

Let’s apply differentiation to solve another problem.

A crater, in the shape of part of a sphere of radius r, has been dug in
porous soil by construction workers. The work has been interrupted by
heavy rain. Water is falling at a constant rate w m%/s per unit horizontal
surface area and is seeping into the surrounding soil at a constant rate
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of p m%s per unit area of soil-water contact. When the water pool has
depth h and surface diameter 2a it can be shown that the area of soil—
water contact is w(h* + a?) and that the volume of water then present
is wh(h? + 3a%)/6.
Obtain the rate at which the depth 4 is increasing. Deduce that if p = w/2
then
dh  w(a® — h?

dt 2a°
Deduce also that, in the steady state (when dh/dt = 0),
p = wa*/(a® + h?)

Try this problem, and then follow the solution through stage by stage when
you are ready.

The water pool is shown in Fig. 4.7. We have

r=(r-h?+d
=r2 = 2hr + ¥ + &

So 2hr — h? = 4>

Now the rate at which the volume is increasing can be obtained by con-
sidering the water which comes in and subtracting the water which seeps
out. The amount which comes in each second is proportional to the air—
surface area: the amount which seeps out is proportional to the soil—water
area. Therefore

dv
T wna® — pn(a® + h?)
AT
/// N
/ \
/ \
/ \
' |
[
\ / |
\ r /
\ -3/ r r~h
-« ——
(a) (b)

Fig. 4.7 (a) Representation of the crater (b) Triangle relating r, h and a.



144  LIMITS, CONTINUITY AND DIFFERENTIATION

If you didn’t get to this stage, see if you can make the next move on your
own before you check ahead.

We have
3 2
vt et
=%hs+£2@—(2hr—h2)
= nrh? — RT}P
So
%—‘; = anh%? - nhzi—}:

5 dh

=n(2rh — h )dt
dh

=nhQr - h)a

If you have been unsuccessful to this stage, see if you can take over the
problem now. It’s simply a question of substitution to find the rate of
increase of water depth.

Therefore

nth(2r — h)(;—}: = n(wa® — pa® — ph?)

dh
h(2r — h)a—t = (w — p)a® — ph?

h
241 _ 2 12
adt (w — p)a ph
do _ o _ o _ (ﬁz
dt p—p a

If p = w/2 then we deduce that

Finally we require the formula for the steady-state seepage rate. We have
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dh/dt = 0, and so

h2
-l

h2
P+P<;>

wa2

PR

S
Il

O

SUMMARY

To evaluate lim f(x) we examine the behaviour of f(x) near the point

X—a

a but not at the point a.
We can use the laws of limits freely provided the result is meaningful:
0/0, oo/, and 0« are not meaningful.

A function is continuous if lim f(x) = f(a) for all points a in its
domain.
We define

d _

dy _ . fw+ ) = )

dx  »>0 h

and from this definition the rules of elementary differentiation
follow. We considered some of the techniques of differentiation too.
Leibniz’s theorem

n n
(uv),, = uv, + <1>u1v,,_1 + ...+ (n) u,v

can be used to differentiate a product n times.

EXERCISES

1 Differentiate each of the following with respect to x:

a

3x2+5x + 1

b x* — 2x?
¢ X2 4 12

d

(x +2)°

e sin(3x + 4)
f tan?3x
g In(2x* + 1)
h x%sinx?
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2 Differentiate each of the following with respect to ¢:
(F+ D)t +2)
(FZ+2)(+1)
(t+ D¢+ 2)°
(t + 3)?
sintcos 2t
sect
e +1
e -1
3 If x varies with ¢, obtain an expression for dy/d¢ in terms of x and the
variable a = dx/dt in each of the following:
ay=ux’
b y = sinx?
¢ y = In(sinx)
dy’>=c¢e"
4 Obtain

b

sin 3x
+
d lim {3lnx 1}

= (2lnx — 5§

x—()

ASSIGNMENT

1 Obtain
sin x — COS x

a lIm
x— /4 cos 2x

. 2cosx — 1

b lim ————

x—n3  sin 3x
tan x

¢ lim ———
x—n2 Cos x — 1

x—x 3% — 1
2 Obtain the value of f(0) if the following functions are known to be
continuous at 0:
cos x — 1
2 )= i x
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sin® x
b fx) = cos’x — 1
3 Show that if y = sin? (2x) then
dzy
_— = — 1
2 8 6y

4 Differentiate each of the following with respect to x:
a xln x
b e* tan 2x

5 If X2 + 2xy — y*> = 16, show that

6 If x =t + sintand y = ¢ + cos ¢, obtain dy/dx and show that

d2
( +cost)3d—x};=sint— cost — 1

FURTHER EXERCISES

1 Differentiate each of the following with respect to x:
a(2x+1)(4x -7
bx—-1)(x—-2)x-3)
c (2 — )2
d (x* + 3)/(x* = 3)
e (a + bx™)", a, b, m and n constant.
f tan (ax + b), a and b constant.
g V(cosec x?)
2 Obtain the first four derivatives with respect to x of
ax’
b V(x+ 1)

¢ cos x

d x?e*
3 If y* = sec 2x, show that d’y/dx* = 3y°> — y
4 If y = sin 2t and x = cos ¢, obtain d?*y/dx?
5 If x = cos® 8 and y = sin> @, obtain dy/dx and show that

d?y 1
dx> 3 cos* 0 sin 6
& Use the chain rule to show that

d% (dx\® d*
(o) + 50
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7

8

10

11

12

13

14

15

16

17

If y is real and satisfies the equation y*> + y = x, show that dy/dx =
v/(3x — 2y).

Show that

a )l(in% [(x® = x — 6)/(x* + x — 12)] = 5/7

b lii% {[@+x)? -1 =-x%/2x} =2
c li_[)l’(l) {[(@ + x)* = (@ — x)’)/2x} = 3a?

Evaluate
a lirr(l) {[1/(x = 1) = Ux])/[1/(x — 2) + Vx]}

b lin} {[U(x — 1) = 1/x] [1/(x = 2) + lx]}
Show that, for x > 0,

V2 +x + 1) <x + 1/2 + 3/8
V2 —x+ 1) <x— 12+ 1/

Deduce that
lim Y2 +x+ 1)+ VP —-x+1)—2]=0

The rate at which the surface area of a bubble is increasing is kA, where
A is its surface area and k& is a constant. If the bubble is spherical, obtain
the corresponding rate at which the volume is increasing.

Show that if a probe moves in a straight line in such a way that its speed
is proportional to the square root of its distance from a fixed point on
the line, then its acceleration is constant.

The retaining strut on a step ladder breaks, and as the ladder collapses
the vertical angle increases at a constant rate. Show that the rate of
increase of the distance between the feet is proportional to the height.
A uniform beam is clamped horizontally at one end and carries a vari-
able load w = w(x), where x is the distance from the fixed end. If the
transverse deflection of the beam is y(x) = —x*e ™, obtain an expres-
sion for w, given that w = EId*y/dx* and EI is the flexural rigidity of
the beam.

A mooring buoy in the shape of a right circular cone, with the diameter
of its base equal to its slant height, is submerged in the sea. Marine mud
is deposited on it uniformly across the surface at a constant rate o.
Calculate the rate at which the surface area is increasing in terms of
the height of the cone.

The content V cm® and the depth p cm of water in a vessel are con-
nected by the relationship V = 3p* — p* (p > 2). Show that if water is
poured in at a constant rate of O cm?/s then, at the moment when the
depth is p, it is increasing at a rate ¢ = Q3p(2 — p)]™".

A beam of length / m has one end resting on horizontal ground and
the other leaning against a vertical wall at right angles to it. It begins to
slip downwards. Show that when the foot of the beam is x m from the
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wall and moving at & m/s away from it, the top is descending at a rate
xh/(1? — x*)'? m/s.
A rope [ m long is attached to a heavy weight and passed over a pulley
h m above the ground (24 < [). The other end of the rope is tied to a
vehicle which moves at a constant rate u in a radial direction away from
the vertical line of the weight and the pulley. Calculate (a) the rate at
which the weight is rising when the vehicle is x m from the vertical
line of the weight and the pulley, and (b) the rate at which the angle
between the rope and the ground is changing.
Sand falls from a chute and forms a conical pile in such a way that the
vertical angle remains constant. Suppose  is the base radius and # is the
height at time ¢.
a Show that if r is increasing at a rate o cm/s then the volume is
increasing at a rate mrho cm/s.
b Show that if the height 4 is increasing at a rate 3 cm/s then the
exposed surface area is increasing at a rate 2nurBY (h? + r?)/h cm?/s.
(The volume of the cone is nr’h/3 and the surface area is mrl, where
[ is the slant height.)
A body moves in a straight line in accordance with the equation
s = t*/(1 + t*), where t is time in seconds and s is the distance travelled
in metres. Show that 0 < s < 1. Show also that the speed u and
acceleration f are given at time ¢ by

u =sin 0 (1 + cos 0)/2
f=1Q2cos 6 —1)(1+ cos 0)%/2

where ¢t = tan (6/2).

A landmark on a distant hill is x metres from a water tower. The angle

of elevation from the top of the tower is observed to be 0 degrees,

whereas the angle of elevation from the foot of the tower is observed to

be 8 + & degrees.

a How high is the water tower?

b Show that if A4 is small then the height of the water tower is
approximately mxh/180 cos® 0.

Obtain dy/dx in each of the following
ay=x3sin2z

b x =tsint, y = cost
crl+y’=yev

The volume of a rubber tyre is given by V = 272a%b and its
surface area is given by S = 4n2ab where a and b are related to
the internal radius r and the external radius R by the equations
R=b+a,r =0b—-a. The tyre is inflated in such a way that the
internal radius r remains constant. Show that the rate of increase
in volume of the tyre, at the instant at which the rate of increase
of the surface area is (a + b)?, is a(a + b)(a + 2b)/2.



5 Hyperbolic functions

Although we have now explored some of the basic terminology of
mathematics and developed the techniques of the differential cal-
culus, we need to pause to extend our algebraic knowledge. In this
chapter we shall describe a class of functions known as the hyper-
bolic functions which are very similar in some ways to the circular
functions. We shall use the opportunity to consider in detail what is
meant by an inverse function.

After studying this chapter you should be able to

O Use the hyperbolic functions and their identities;

O Solve algebraic equations which involve hyperbolic functions;

O Differentiate hyperbolic functions;

O Decide when a function has an inverse function;

O Express inverse hyperbolic functions in logarithmic form.

We shall also consider a practical problem concerning the sag of a
chain.

5.1 DEFINITIONS AND IDENTITIES

The hyperbolic functions are in some ways very similar to the circular func-
tions. Indeed when we deal with complex numbers (Chapter 10) we shall
see that there is an algebraic relationship between the two. Initially we
shall discuss the hyperbolic functions algebraically, but later we shall see
that one of them arises in a physical context.

The functions cosine and sine are called circular functions because
x = cos 8 and y = sin 0 satisfy the equation x* + y> = 1, which is the equa-
tion of a circle. The functions known as the hyperbolic cosine (cosh) and
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the hyperbolic sine (sinh) are called hyperbolic functions because x = cosh u
and y = sinh u satisfy the equation x> — y* = 1, which is the equation of a
rectangular hyperbola.

We shall define the hyperbolic functions and use these definitions to sketch
their graphs. Here then are the definitions:
Uy amu u _ —u
coshu=e——2e—— sinhu=%
Now the exponential function has domain R and consequently both cosh u
and sinh u are defined for all real numbers u.
To obtain a sketch of the graphs of y = cosh x and y = sinh x we can use
the graphs of y = e”.

y=coshx

If the graphs of y = e* and y = e are both drawn on the same diagram
(Fig. 5.1) then chords can be drawn parallel to the y-axis between these
two curves. The midpoints of these chords then lie on the curve y = cosh x.

The hyperbolic cosine curve is one which arises in practice. It is often called
the catenary. If a heavy rope or chain is freely suspended between two
fixed points, the shape it assumes is that of the catenary. This has to be
taken into account when, for example, suspension bridges are designed. At
one time surveyors had to make a ‘catenary correction” when using steel
tape measures, but with modern electronic measuring devices this is not
necessary.

y-axis
y=e
A ,
y = cosh x

Fig. 5.1 The graph of y = cosh x, by construction.
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y-axis

ﬂ\
]

Fig. 5.2 The graph of y = sinh x, by construction.

y=sinhx

We draw the graphs of y = e* and y = —e ™ on the same diagram (Fig. 5.2)
and draw chords parallel to the y-axis between the two curves. The mid-

points of the chords then lie on the curve y = sinh x.

We define the hyperbolic tangent, cotangent, secant and cosecant by

imitating the definitions for circular functions:

sinh x cosh x
tanh x = coth x = —
cosh x sinh x
1 1
sech x = cosech x = —
cosh x sinh x

Strictly it is not necessary to know how to pronounce these new functions,
but for completeness we shall indicate the standard practice. The hyper-
bolic functions cosh and coth are pronounced as they are written; sinh is
pronounced ‘shine’; tanh is pronounced ‘than’ but with a soft ‘th’ as in

‘thank’; sech is pronounced ‘sheck’ and cosech as ‘cosheck’.

From the definitions we obtain

hx + sinh ef+e™ ef—e*
cosh x + sinh x = =
2 2
. e*+e™* ef—e7*
cosh x — sinh x = 2 — 2 =
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Therefore

cosh? x — sinh? x = (cosh x + sinh x) (cosh x — sinh x)
=e'e " =1

So we have the identity
cosh? x — sinh? x = 1

(this corresponds to the circular identity cos? x + sin® x = 1).
We can either appeal to the symmetry of the graphs or use the definitions
to deduce that

cosh (—x) = cosh x
sinh (—x) = —sinh x

and therefore

tanh (—x) = —tanh x

We have already come across one identity involving hyperbolic functions:
cosh? x — sinh? x = 1

In fact corresponding to every identity involving circular functions there is
an identity involving hyperbolic functions. There is a rule for converting
identities involving circular functions into those involving hyperbolic func-
tions. The rule is if there is a product of two sines or an implied product of
two sines, the term changes sign. Although this can be applied in reverse it
is easy to make mistakes, and so we shall avoid it altogether.

Here is a list of the main identities:

cosh (x + y) = cosh x cosh y + sinh x sinh y
cosh (x — y) = cosh x cosh y — sinh x sinh y
sinh (x + y) = sinh x cosh y + cosh x sinh y
sinh (x — y) = sinh x cosh y — cosh x sinh y

O Use the basic definitions to establish the identity

cosh (x + y) = cosh x cosh y + sinh x sinh y
We have
TteTel+e ef—efer—e7

€
LHS =
S 2 2 * 2 2

1
= Z(e"ey +e'er+e el +e e

+e'e’ —efe™ —e e + e Ve V)
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= %(2ex+y + 2e~C+))

ex+y + e —(x+y)

== =RHS n

Now one for you to try!

O Use the basic definitions to establish the identity
sinh (x — y) = sinh x cosh y — cosh x sinh y

Make a good effort. Check carefully before you begin that you follow all
the stages in the one we have just done — and then best foot forward!

We have

sinh x cosh y — cosh x sinh y
ef—e “eP+e? e +e Fer—e”

2 2 2 2

_1 e'e’ +e'e’ —e ¥ —e e
4
—(e'e? —e'e P +e e —e e ™))
1 XoV XaQ—)y —XaYy X5
=Z(ee- +e'e™ —e e’ —e e’

—efe’ +efe™ —eFe¥ + e e™)
1 _ _

= Z(Ze" Yy —2e™Y)
eX Yy — e—(x—y)

= ————— =sinh (x - y) .

Good! If you need any more practice you can always try the other two
identities.

We defined the hyperbolic functions in terms of exponential functions, and
so it is perhaps not surprising that we need our work on logarithms (Chapter
1) when solving equations involving hyperbolic functions.

O Obtain all the real solutions of the equation

coshx +sinhx =1
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There are two approaches, each valid and so we shall solve the equation in
two different ways.
1 We know cosh? x — sinh? x = 1, and so

(cosh x — sinh x) (cosh x + sinh x) = 1
Here cosh x + sinh x = 1, and therefore cosh x — sinh x = 1. So
(cosh x + sinh x) + (cosh x — sinh x) = 2

Therefore 2 cosh x = 2, so cosh x = 1 and x = O is the only solution. Here
we have used a hyperbolic identity to sort out the problem.
2 From the definitions,

Soe* = 1 and therefore x = 0. |

In this example it was much easier and more direct to use the definitions at
the outset. However, this is not always the case.
d Solve the equation

8 sinh x = 3 sech x

We begin by writing the equation in terms of sinh x and cosh x:

8 si =
sinh x cosh x

So sinh x cosh x = 3/8. Therefore 2 sinh x cosh x = 3/4, and sinh 2x = 3/4.
Now (e** — e *)/2 = 3/4. Therefore 2¢** — 2e "2 = 3. Multiplying by
e gives

2(e*)? — 2 = 3e¥
2(e¥)? —3e* ~-2=0
e+ 1) (e*-2)=0

So either 2¢* + 1 = 0 or e® — 2 = 0. Since ¢* > 0, only e”* — 2 = 0is a
possibility. So 2x = In 2 and therefore x = (In2)/2 = In }/2. |
Why not try one yourself?

O Solve the equation
3 sinh 3x = 13 sinh x

There are many approaches to this problem. If you obtain the correct
answer it is probable that your working is basically correct.
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Here is one solution:

3 sinh 3x = 13 sinh x
3(sinh 3x — sinh x) = 10 sinh x

By identity,
3(2 cosh 2x sinh x) = 10 sinh x

So either sinh x = 0, from which x = 0; or 6 cosh 2x = 10, from which
3(e* + e~%) = 10. For the latter case, multiply by e** to obtain

3(e*)? + 3 = 10e*
(3> — 1) (€ — 3) = 0

Therefore e = 1/3 or e = 3. So 2x = In (1/3) = —In 3 or 2x = In 3.
The three solutions are therefore x = G and x = +In }/3. [ |

5.2 DIFFERENTIATION OF HYPERBOLIC FUNCTIONS

We may use the basic rules of differentiation to obtain the derivatives of
the hyperbolic functions. All we need to do is use the basic definitions,
remembering that
e*+e” . e —e™"
coshx = ———— and sinhx = ———
2 2
You might like to try these on your own. Afterwards you can look to see if
you were correct.

The derivative of cosh x is found as follows:
i e*+e "
dx 2
_1d
T 2dx

1 1 —
—Ee +2( e

X
e* —e .
= ———— =sinh x

2

d
d_x(COSh x) =

e"+lie“"
2dx

—X

The derivative of sinh x is found as follows:

d . de" —e™
a(smh x) = o >

_1d , 1d _,
“2dx S T2dx°
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1, 1 .
—ze —2(—1)6
et +e™”

> = cosh x

Therefore

1 When we differentiate the hyperbolic cosine we obtain the hyperbolic
sine;

2 When we differentiate the hyperbolic sine we obtain the hyperbolic
cosine.

Quite remarkable, isn’t it?

The derivatives of the other hyperbolic functions can now be obtained
from these by applying the rules for differentiation. Try some of these
yourself. They are good exercise in differentiation and therefore well
worth attempting.

Here is the working for each one.
d d
i (tanh x) = i (

_ cosh x cosh x — sinh x sinh x
cosh? x

sinh x
cosh x

cosh? x — sinh? x
cosh? x

1
= 5— = sech? x
cosh” x

d d /cosh x

- th —_—

dx (coth x) dx <sinh x)

sinh x sinh x — cosh x cosh x
sinh? x

cosh? x — sinh? x
sinh? x

-1
= ——— = —cosech® x
sinh” x

d d 1
a(seCh *) = dx (cosh x)

d -1
= i (cosh x)

= —(cosh x)™? sinh x

sinh x
= - >— = —sech x tanh x
cosh” x
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d d 1
a(cosech x) = dx (sinh x)

d
=% (sinh x)~!
= —(sinh x)™2 cosh x
cosh x
= T a2 e = —cosech x coth x

Did you try those with success?

5.3 CURVE SKETCHING

We are about to draw the graph of y = tanh x, and so this is a good oppor-

tunity to refresh our memories about how to sketch curves which have

equations expressed in cartesian form (Chapter 3). We have already used

one method when we sketched the graphs of y = sinh x and y = cosh x

(Figs 5.1, 5.2). There we were able to use a known graph y = e*,

There are several things we can do to gain pieces of information which
help us to sketch curves:

1 Obtain the points where the curve crosses the axes. This will certainly
help to locate the curve.

2 Look to see if there are any values of x or y where the curve is not de-
fined. For example, if there are any values of y which make x> < 0, the
curve doesn’t appear for these values of y.

3 Look to see if there are any values of x which make y large or any values
of y which make x large.

4 Look to see if the graph is symmetrical about either or both of the axes.

If when we replace x in the equation by —x the same equation results, then

the curve is symmetrical about the y-axis. Similarly if we replace y by ~y

in the equation and the equation remains the same, then the curve is
symmetrical about the x-axis.

O y? = 16x is symmetrical about the x-axis but not about the y-axis. This
follows because (—y)? = 16x but y> # 16(—x). In the same way the curve
x* + 3x%y = 4 is symmetrical about the y-axis. [ ]

5 Look to see if the graph is skew symmetrical, that is symmetrical with
respect to the origin.

In other words, if we join a point on the curve to the origin and produce an

equal length, do we always obtain another point on the curve? There is a

simple test for this. If we replace x and y simultaneously in the equation of

the curve by —x and —y respectively, the equation will remain the same if

and only if the graph is symmetrical with respect to the origin.
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O x* + xy + y* = 16 is symmetrical with respect to the origin because
(—x)* + (—x) (—y) + (=y)* = 16. Similarly y = sin x is symmetrical with
respect to the origin because (—y) = sin (—x). ]

Another way of thinking about symmetry with respect to the origin is that

if we rotate the curve through m the graph will be unchanged.

6 Examine the behaviour of dy/dx, particularly near the origin and as
|x| = o.

7 See if there are any points at which the curve attains a local maximum, a
local minimum or a point of inflexion. We shall see in Chapter 8 how to
obtain and classify these points.

THE GRAPH OF y = tanh x

We now turn our attention to the problem of drawing the graph of y =
tanh x. We begin by finding out more about tanh x:

sinhx e*—e™

1 tanh x = =— =
coshx e+ e

1 — e

T l+ e

(dividing top and bottom by e*). Now as x — = we have e * — 0 and so

e”** — 0. Consequently

1 -0
tanhx - ——=1lasx —»

1+0
2 tanh x = ex——e_x

e +e

_ er -1

e+ 1
(multiplying top and bottom by e*¥)

(™ +1 -2 2
e*+1 e + 1

Now e is always positive, and so tanh x < 1 for all x.

sinh 0
3 tanh 0 = =0
an cosh 0
4 i(tanh x) = sech’ x < 1
dx

The maximum value of the slope is attained at the origin; it then de-
creases as x increases. In fact dy/dx — 0 as x — .
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y-axis
A
e Y
y = tanh x
[9 > x-axis
i Lttt
Fig. 5.3 The hyperbolic tangent function.
sinh (—x e ~—e*
5 tanh (—x) = (=x) _ = —tanh x

" cosh (-x) e* +¢f

Consequently the curve is symmetrical with respect to the origin.
If we put all this information together we obtain a good idea of the shape
of the curve. This is shown in Fig. 5.3.

Now it’s time for you to solve some problems. If you are unsure of the
material this is a good time to look back once more. If you are ready, then
here we go.

5.4 Workshop

1
Li——-‘ Exercise Using the definitions of the hyperbolic functions, show that
cosh 2x = 1 + 2 sinh? x

Don’t move on until you have attempted this!

2 Notice that we have been asked to use the definitions, so we must do so.
We must not assume the expansion formulas, for example. Now

ex_e—x2
142 (555

2% _ —2x
1+2<e 2+e )

RHS

4

2x+ —2x
=_e___2_e___=LHS
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Did you get that right? If so, then move on to step 4. If not, possibly the
trouble arose because you did not apply the definitions correctly. Let’s see
if we can sort things out in the next exercise.

> Exercise Use the definitions of the hyperbolic functions to show that

2 tanh x

tanh 2y = ———
anf 2x 1 + tanh® x

Remember: we must go back to the definitions.
Try it, then step ahead.

We have d 3

sinhx (" —e™)/2
coshx (e + e ™)/2
_e"—e_"_ez"—l
Tet4e™r ¥ 41

tanh x =

So
2x _ 2
l1+tanh®>x =1+ (%X—l>
e+ 1
G  Calal
h (e + 1)?
e 2eP 4+ 1+ 26+ ]
B (e + 1)
_ 2(64" +1)
(e + 1)?
Therefore
2tanhx  _e™ — 1 (e + 1)

1+ tanh®>x “ e+ 126e* + 1)
(e -D(eF+1)

e +1
€ 1 _ anh2
= = tan X
e +1

If you were unable to do this then look carefully at the working and go
back to step 1. Otherwise step forward.

4
D>Exercise  Use the expansion formula for sinh (x + y) and cosh (x + y) to Ii
obtain the expansion formula
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tanh x + tanh y
1 + tanh x tanh y

tanh (x + y) =

You can take this in your stride.

5 5 The expansion formulas we need are

sinh (x + y) = sinh x cosh y + cosh x sinh y
cosh (x + y) = cosh x cosh y + sinh x sinh y

Therefore

sinh (x + y) _ sinh x cosh y + cosh x sinh y
cosh (x + y)  cosh x cosh y + sinh x sinh y

tanh (x + y) =

So that dividing numerator and denominator by cosh x cosh y we obtain

tanh x + tanh y
1 + tanh x tanh y

tanh (x + y) =

If you succeeded in getting this right, then move on to step 7. Otherwise,
check carefully so that you see what has been done and then tackle the next
problem.

D>Exercise Using the expansion formulas for sinh (x + y) and cosh (x + y),
obtain the formula

cothx cothy + 1
coth x + coth y

coth(x +y) =

Try it, then move on.

6 ':) As before we obtain

coth (x + y) =

cosh x cosh y + sinh x sinh y
sinh x cosh y + cosh x sinh y

So dividing numerator and denominator by sinh x sinh y produces

coth x cothy + 1
coth x + coth y

coth (x + y) =

Now for another step!

7
:L_J Exercise Obtain all real solutions of the equation
13 tanh 3x = 12
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Try this and move on only when you have made a good attempt.

Here is the working: d 8

e —1 12
e*+1 13

tanh 3x =

So
13(e™ — 1) = 12(e* + 1)

Consequently e = 25 and therefore 6x = In25 =21n 5. Sox = (1/3) In 5.

If you didn’t get that right then you should check through each stage to
make sure there are no misunderstandings. As soon as you are ready, try
the next problem and take the final step.

D>Exercise Obtain all the real solutions of the equation
4 sinh 4x — 17 sinh 3x + 4 sinh 2x = 0

You may need to think about this a little.

At first sight this might seem rather tricky — until you realize that it is pos-
sible to combine two of these hyperbolic sines together, using an identity as
follows:

4 sinh 4x — 17 sinh 3x + 4 sinh 2x = 0
4(2 sinh 3x cosh x) — 17 sinh 3x = 0

Therefore either sinh 3x = 0or 8 coshx = 17. If sinh 3x = O thenx = 0. If
8 cosh x = 17 then

4 + e ") =17
4(e)’ +4—17e =0
de* —1)(e"-4)=0
Therefore either e* = 1/4 or ¢* = 4. From this we obtain x = In (1/4) =

—2In2o0rx=21In2.
So the three solutions are x = 0 and x = +2 In 2.

5.5 INJECTIVE FUNCTIONS

You will remember from Chapter 2 how we defined a function f: A — B
to be a rule which assigned to each element x in the domain A a unique
element y in the codomain B. We wrote y = f(x).

Now there is nothing in the definition to suggest that two different
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elements of A cannot be assigned to the same element of B. Indeed there
are many functions which have this property.

O Consider y = x2. By the convention of the maximal domain we have
domain R: in other words, the domain consists of all the real numbers.
Each real number x determines a unique value of y, but the same value of
y is determined by two distinct arguments x. For instance

(=2’ =4=2°

so that when x = 2 or x = —2 we obtain the same value for y. |

On the other hand there are some functions which do have the property
that if x; # x, then f(x;) # f(x).

O Consider y = 1/x. By the convention of the maximal domain this func-
tion has domain R\ {0}: that is, the domain consists of all the real
numbers except 0. In this instance if x; # x, then f(x,) # f(x2).

To show this we simply show that if f(x;) = f(x,) then it follows that
x1 = xp. If f(x;) = f(x,) then 1/x; = 1/x,, and so multiplying by x,x, we
obtain x, = x,. [ |

A function f: A — B which has the property that, for all x,, x, € A, if
X1 # x, then f(x;) # f(x,) is called an injection (or a one-one function).

In practice injections are easy to recognize from their graphs since any
line parallel to the x-axis must cut the curve at most once. Algebraically we
can deduce a function is an injection by considering the implications of the
equation f(x;) = f(x;). If we can deduce that x, = x, then we have an
injection, whereas if we can find x; and x, which are unequal and have
f(x1) = f(x,) then we do not have an injection.

O Decide which, if either, of the following functions is an injection:
y = sinh x; y = cosh x.

Notice how the language has been misused here. The equation identifies
an equation with a function, which is rather like identifying a person with
his occupation. However, provided we know what is meant there is no
difficulty. Mathematics is a language, and we must get used to various
dialects — and even on occasion tolerate bad grammar!

First, suppose sinh x; = sinh x,. Then

X2

—e " e —e®

22

X1 —X1

[

So

X2 —X1 —X2

et — e =¢
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1 1
=& o=

eX: — eXl
- eXle*?

e.X] — ex: —_ (exz _ exl) ex|+xz

Now if e*' — e** # 0 we have e*'**2 = —1, which is impossible. Therefore
e¢*' = e** and consequently x; = x,. So y = sinh x defines an injection.
Secondly, suppose cosh x; = cosh x,. Then

e+ e™ et 4e™

2 - 2
So
et — Xt =R — gTX1
11
e*? eM
exl _ exz
eX1eX2

exn _ exz — (Cxl _ exz) ex1+x2

Now if e — e** # 0 we have e* ™ = 1 and so x; + x, = 0, that is

X1 = —x,. In other words, y = cosh x does not define an injection because
cosh (—u) = cosh u for all real numbers u.

We could if we wished deduce the same results by looking at the graphs.

a

O Determine which, if any, of the following equations define functions
which are injections: (a) y = x> (b) y = 1/x* (c) y = tanh x.

When you have had a try at these, move on to check if you have them
correct.

a Suppose x} = x3. Then x} — x3 = 0, and so
(1~ x)(xf + X0, + x5) =0
If x; # x, then
P+ 3+ xx,=0
But
xf+ a3+ xx =30+ )+ 3]+ A)

is a sum of squares and is therefore only zero when both x; and x, are
zero. Therefore we have an injection.
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y-axis

A ymx

/

0 7 x-axis

Fig. 5.4 The graph of y = x°.

Alternatively a simple sketch of y = x* will establish the same result
(Fig. 5.4).
b The domain of this function (by the convention of the maximal domain)
is R\ {0}. Moreover

11 _ 1
(=27 4 (@

and so there are two points in the domain at which the value of the func-
tion is the same. Therefore the function is not an injection.
Again the graph y = 1/x? shows immediately that the function is not
injective (Fig. 5.5).
¢ Suppose tanh x; = tanh x,. Then

ern -1 e2x: +1

e + 1 e + 1

So
(e2x| _ 1)(62xz + 1) — (CZXz _ 1) (e2xn + 1)
e2x1 . e2x: — er: _ er1
e2,\'1 — e2xz

Therefore e~ = 1, s0 x; — x, = 0 and x; = x,. So we have an
injection. This property may be inferred directly from the graph of
y = tanh x (Fig. 5.3). |

Although a graph enables us to see whether or not a function is an injec-
tion, the algebraic approach is necessary to establish the fact.

The special feature possessed by an injection can be represented dia-
grammatically as in Fig. 5.6.
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/

Ll .
X-axis

Fig. 5.5 The graph of y = 1/x°.

f : A— B (an injection)

5.6 SURJECTIVE FUNCTIONS

When we introduced the notion of a function (Chapter 2) we observed that
if f: A — B then it is possible to have members of the codomain B which
are not in fact values of the function at all.

O f: R — R defined by f(x) = tanh x whenever x € R. Here we know that
—1 < tanh x < 1 and so there is no x € R such that tanh x = 2. |

In fact we gave a special name to the set of values of a function. Do you
remember what it is called? It is the image set (or range) of the function
and is denoted by f(A).

However, for some functions the image set is indeed the codomain. Such
functions are somewhat unusual and are given a special name: they are
called surjections (or onto functions). The test of whether or not a function



168 HYPERBOLIC FUNCTIONS

f:A— Bisasurjection is whether or not f(A) = B. That is, whether or not
for each y € B there exists some x € A such that f(x) = y.

O Consider the functions with codomain R defined by each of the follow-

ing equations: (a) y = tan x (b) y = cosh x.
A graph can often be useful in helping to decide whether or not a func-

tion is a surjection.

a From the graph of y = tan x (Fig. 5.7) it is clear that every real num-
ber is a value of the function. In fact given any y € R there exists some
x € (—n/2, m/2) such that y = tan x. We conclude that the tangent func-
tion is a surjection.

b From the graph of y = cosh x (Fig. 5.8) it is clear that there are some

y-axis

A

/

NI
[SIE]

| |
| |
' |
| !
| |
| |
| I
| |
] |
I ! >
! | x-axis
| |
| |
| |
| |
| |
]
' |
' !
' |
|
h |

Fig. 5.7 The tangent function.

y-axis
A

y = coshx

/

» .
0 X-axis

Fig. 5.8 The hyperbolic consine function.



SURJECTIVE FUNCTIONS 169

real numbers y which are not values of the function. This is because
cosh x = 1 for all x € R, and therefore if y < 1 there is no real number
x such that y = cosh x. Consequently the hyperbolic cosine function is
not a surjection. [ ]

O For each of the following functions the convention of the maximal
domain is to be used to obtain the domain and codomain. Decide in each
case whether or not the function is a surjection.

a y =sinhx

by=x?

cy=x.

Have a go at these. Don’t be afraid to use the graphs to make your
decisions.

a If we are given any real number y, it is possible to obtain a real number
x such that y = sinh x. This is clear from the graph (Fig. 5.9) and so we
have a surjection.

b If x is any real number then x* = 0. Consequently if y is negative there is
no real number x such that y = x? (Fig. 5.10). Therefore we do not have
a surjection.

¢ From the graph (Fig. 5.11) it is clear that if y is any real number then
there exists some real number x such that y = x>. Therefore the function
is indeed a surjection. [ |

Once more we can use a diagram to represent the special property a func-
tion has when it is a surjection: see Fig. 5.12.

y-axis

A

y =sinh x

_——— e ——

—— ——

/

0 " x-axis

Fig. 5.9 The hyperbolic sine function.
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y-axis
A
y =x?
0 4?mm
Fig. 5.10 The graph of y = x°.
y-axis
A
y=x’
— — e —— —
|
|
i,
(o] Xx-axis

Fig. 5.11 The graph of y = x°.

Sy /
) (F

f:A—>8 f: A — 8 (asurjection)

Fig. 5.12
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5.7 BIECTIVE FUNCTIONS

A function which is both an injection and a surjection is called a bijection.
Such a function can be represented by Fig. 5.13.

Now if f: A — B is a bijection then to each y € B there corresponds a
unique x € A such that y = f(x). This means that the action of the function
fcan be reversed. Therefore there is a function g: B— A such thatifx € A
and y = f(x) then g(y) = x.

The function g is called the inverse function of f and is usually repre-
sented by f~!. Although there are good theoretical reasons for this nota-
tion, which we explore further in the context of linear operators (Chapter
22), it can cause problems to the unwary. You must remember that f~!(x)
is not the same as [ f(x)] ! and be vigilant about this, or nasty errors will be
the result. You have been warned!

Soif f: A — B is a bijection there exists an inverse function f~': B — A
such that
1 If x € A then f![f(x)] = x;

2 Ify € Bthen f[f'(y)] = .

Ay

N

f: A~ B (a bijection)

Fig. 5.13

00 Show that the function defined by y = sinh x is a bijection and give an
explicit expression for its inverse function using logarithms.

By the convention of the maximal domain, the domain and codomain
are both R and we have already shown that this function is both an injec-
tion and a surjection. Consequently it is a bijection and so has an inverse
function.

Suppose y = sinh x. We must reverse this formula to express x in terms
of y:

X

e —¢
=‘h =
y = sinh x >

—X

X

So e* — e™* = 2y. Therefore

(€ = 2p(e") =1 =0
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This is a quadratic equation in e* and so we can solve it:
=y VO 1)

At first sight this might appear to give two solutions. However, V(y* + 1)
> y for all real numbers y, and so, since e* is always positive, the negative
sign must be rejected. Consequently

"=y +V(+1)

andsox = In [y + V(y* + 1)].

Interchanging the symbols x and y (since it is usual to use x for points
in the domain and y for points in the codomain) we deduce the inverse
function is defined by

y=In[x + y({x*+ 1)]
or

sinh™ x = In [x + V(x* + 1)] [ ]

5.8 PSEUDO-INVERSE FUNCTIONS

Bijections are comparatively rare, and so usually it is necessary to modify
either the domain, the codomain or both in order to obtain a function which
has an inverse. When this is done the inverse functions are not of course
the inverses of the original functions, because the original functions are not
bijections and so have no inverses. This fact is often obscured, but most
people avoid the difficulty by giving these pseudo-inverse functions the
name principal inverse functions.
An example will illustrate how this is done.

[0 Obtain the principal inverse hyperbolic cosine function and express it in
logarithmic form.

We already know that the function defined by y = cosh x is neither an
injection nor a surjection (Fig. 5.14). We can obtain an injection by re-
stricting the domain to Ry, the positive real numbers including 0. The
codomain must also be modified because, as we have observed, coshx = 1
for all real x.

Suppose now that A = Ry, that B= {r|re R,r= 1} and thatf:A— B
is defined by f(x) = cosh x (x € A). Then f is a bijection and so has an
inverse function f~': B— A. To obtain f~'(y) explicitly we need to reverse
the formula for y = cosh x.

Suppose y = cosh x. Then

e +e”

= h =
y = cosh x >
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y-axis
A
y = cosh x
1
0 =x-axis
Fig. 5.14 The hyperbolic cosine function.
So e* + e™* = 2y. Therefore
€)? -2y +1=0
and so
=y V(- 1)
Now
+ V(- 1)
— 2 1) = . 2 _ 1 y____—
y = V(y Y= -V )]y VR =D
_b VO =Dy + VO - 1)
y+ V(- 1)
V-0 -1 _ 1
y+VpP =1 y+V(»* -1
So either
e =y+V(* -1
or
e =[y+ V(- D!
e =y +V(*-1)
Therefore

*x=In[y +V(y* - 1)]
x=xIn[y+V(*-1)

173
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But x € A and so x = 0; therefore we must reject the negative value. So
x=In[y+V(y - 1]

The function defined in this way is called the principal inverse hyperbolic
cosine function. Interchanging x and y we have

cosh™' x =In [x + V(x* — 1)]

Of course we could have chosen a different restriction such as R, for the
domain of the hyperbolic cosine. We have restricted the function so that
continuity is not lost and selected positive numbers in preference to nega-
tive numbers. Until such a time as there is a campaign for equal rights for
negative numbers, nobody is likely to object overmuch. |

O Show that y = In x defines a bijection and obtain the inverse explicitly.

Try this. There is no need to modify the domain or codomain, but
naturally you will need to use the convention of the maximal domain to
obtain the domain and codomain.

The convention of the maximal domain gives the domainas R* = {r|r e R,
r > 0} and the codomain as R. The graph of y = In x (Fig. 5.15) shows that
we have a bijection. Now if y = In x then x = ¢*. Therefore the inverse
function is the function g: R — R™ defined by g(x) = e* (x € R). [ |

Observe how we can obtain the graph of an inverse function from the graph

of the function itself. Imagine that the graph y = f(x) is drawn on a sheet of

glass. Lift the sheet of glass away from the paper, turn it over and put it
y-axis y-axis

A A y =e”

y=Inx

g

/
/

(a)

0 1 ~ x-axis 0 "~ x-axis

{b)

Fig. 5.15 (a) The logarithmic function (b) The exponential function.
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y-axis
A y-axis
y =sinh x A
y =sinh ' x
o] =x-axis (o] =x-axis
(a) {b)

Fig. 5.16 (a) The hyperbolic sine function (b) The inverse hyperbolic sine function.

down with the x-axis where the y-axis was and the y-axis where the x-axis
was. All that remains to be done is to relabel the x-axis and y-axis in the
usual way.

O Fig. 5.16 shows the function y = sinh x and its inverse. ]

5.9 DIFFERENTIATION OF INVERSE FUNCTIONS

In the case of the inverse hyperbolic functions we can differentiate them if
we wish by using the logarithmic equivalent. However, this luxury is not
generally available and when it isn’t we must resort to the definition.

Suppose y = f~'(x). Then f(y) = x and so, differentiating throughout
with respect to x,

AN
f(}’)a—l

It is now simply a matter of eliminating y to obtain the derivative of the
inverse function £~

0 The inverse sine function is defined as the inverse of the bijection
obtained by restricting the domain of the sine function to the interval
[=n/2,7/2). Show that

dy 1

dx Y1 - x)
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y-axis y-axis
A A
AN
y =sinx ra “

" T~ 2 y =sin"'x

v Y L . v v - .
- 0 o x-axis -1 (o) 1 Xx-axis
2 2
Se-- -1 i
‘\\ 2
~
(a) (b)

1

Fig. 5.17 (a) The graph of y = sin x; x € [—n/2, n/2] (b) The graph of y = sin™" x.

and justify the choice of sign.
If y = sin™! x then we know that x = sin y. So differentiating throughout
with respect to x we get

1=cosyg—i

Now cos? y + sin? y = 1, and so
cosy = xJ(1 —sin? y) = £y(1 — x?)
So we have

dy +1

dx  y(1 - x?)
Now comes the crunch. If we had been sloppy about taking the square root
and had ignored the negative sign, then we should be unaware that there
was a crunch at all! A glance at the graph of y = sin™' x (Fig. 5.17) tells us
that the slope is always positive and so the negative can now be rejected
with confidence. Naturally if we had taken a different restriction of the sine
function to obtain our bijection, such as [7/2, 37/2], we could have obtained
a negative slope instead! [ |

5.10 THE INVERSE CIRCULAR FUNCTIONS
Here is a complete list of the principal inverse circular functions. As you

can see, the domains and codomains of the circular functions have had to
be modified to produce bijections.
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1IfA =[-n/2,n/2]and B = [-1,1],
f:A — B defined by f(x) = sinx (x € A)

is a bijection and its inverse is the principal inverse sine function. Both
the domain and the codomain needed modification.
2IfA =[0,n] and B = [-1,1],

f:A — B defined by f(x) = cos x (x € A)

is a bijection and its inverse is the principal inverse cosine function. Both
the domain and the codomain needed modification.
3IfA = (—n/2,n/2) and B = R,

f:A — B defined by f(x) = tan x (x € A)

is a bijection and its inverse is the principal inverse tangent function. The

domain needed modification.
4IfA =[0,n]\{n/2} and B = {r:re R, |r| = 1},

f:A — B defined by f(x) = sec x (x € A)

is a bijection and its inverse is the principal inverse secant function. Both
the domain and the codomain needed modification.
5IfA=[-n/2,n/2]\{0} and B = {r:r e R, |r| = 1},

f:A — B defined by f(x) = cosec x (x € A)

is a bijection and its inverse is the principal inverse cosecant function.
Both the domain and the codomain needed modification.
6 If A =[0,n] and B = R,

f:A — B defined by f(x) = cot x (x € A)

is a bijection and its inverse is the principal inverse cotangent function.
The domain needed modification.

Now it’s time to take a few steps. As soon as you are ready, press ahead.

5.11 Workshop

1

D>Exercise Show that the function defined by y = tanh x is not a bijection, [i
but that by restricting the codomain to (—1, 1) a bijection is obtained. The
principal inverse hyperbolic tangent function tanh™! is the inverse of this
modified function. Deduce that

1 14+ x
tanh™! x = - :
anh™ " x 21n<1_x>

and give a rough sketch of the graph.
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Try this carefully before you proceed.

21 We saw when we drew the graph of y = tanh x (Fig. 5.3) that, for all real x,
—1 < tanh x < 1. Therefore it is necessary to restrict the codomain to
(—1.1) to obtain a surjection. The function is an injection, and therefore
if A= Rand B = (—1,1) the function

f:A — B defined by f(x) = tanh x (x € A)
is a bijection and has an inverse function tanh™'.

We obtain the graph of y = tanh™' x by interchanging the positions of
the x-axis and the y-axis. We need a three-dimensional transformation to
achieve this. Another way of looking at this transformation is as a two-
stage operation. First we twist the graph of y = tanh x anticlockwise by 7/2.
Then we flip it over, that is we reflect it in the x-axis which is now vertical.
Finally we relabel the axes (Fig. 5.18).

If y = tanh x then

3 el\ -1
YT
ver +1)=e" -1
1+ y=e*(-y)
> 1+
[
L=y
y-axis y-axis |
A ! A |
| | y = tanh™'x
1 ! I
———————————————— | |
y = tanh x | |
! I
> | L
(0) x-axis | 0 ] X-axis
I |
I I
________________ | |
-1
I I
[ I
I |
(a)

(b)

Fig. 5.18 (a) The graph ot v = tanh 1 (b) The graph of y = tanh ™' x.
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Therefore

1 1+y
w=3n(r)

1 1+x
_l = =
tanh™" x 21n(1—x)

So

If you managed to do all that correctly then you may move ahead to step 4.
If there were unresolved problems then at this stage you should go through
the theory of inverse functions once more. When you have smoothed out
any difficulties, try the next exercise.

D>Exercise Explain why the function defined by y = cosech x is not a bijec-
tion. Show that by removing a single point from both the domain and the
codomain a bijection can be obtained. The principal inverse hyperbolic
cosecant is the inverse of this modified function. Draw its graph and show

that
1
cosech™! x = In [l + \/(—2 + 1)]
X X

The graph of y = cosech x (Fig. 5.19) can be deduced easily from the graph I:l 3
of y = sinh x (Fig. 5.2).

There is no value of x for which cosech x = 0, and so the function is not a
surjection. Therefore there is no bijection, and consequently no inverse
function. However, if we take

A=B={r|lreR,r#0}

then
f:A — B defined by f(x) = cosech x (x € A)

is a bijection. Its inverse can be drawn in the usual way (Fig. 5.20).
Now if y = cosech x then y = 1/sinh x. So sinh x = 1/y, from which

x = sinh™! G)

so that

cosech™'y = In B + \/()% + 1)] (y #0)
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y-axis

A

y = cosech x
0 >x-axis
Fig. 5.19 The graph of y = cosech x.

y-axis

A

y = cosech 'x

0 =x-axis

Fig. 5.20 The graph of y = cosech™" x.
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cosech™ x = In [1 + \/<l2 + l)]
x x

Now we come to the problem of differentiation of inverse functions.

or in terms of x

q
D-Exercise Differentiate cosec™! x with respect to x. /i
Try this, then step forward.

If y = cosec™! x then x = cosec y, so that differentiating with respect to x |:‘5

1 = —cosec y cot y %

Now 1 + cot? y = cosec? y, so
coty = +Y(cosec?y — 1) = £y(x* — 1)

Therefore
— dy
1= 2 1) =
FxY@x? - 1) ir
dy __ *1
dx  xV(x*-1)

It remains to decide which sign is the correct one. If we sketch the graph
of y = cosec™ x (Fig. 5.21, overleaf) we see that the slope is negative, and
so the negative sign must be chosen:

dy _ -1
dx  xyY(x*-1)
If you discussed the choice of sign and succeeded in obtaining the correct

derivative, then try one last problem. If you omitted to consider the sign or
if you made an error, take care with this one.

D-Exercise Differentiate sech x and sech™ x with respect to x.
Have a go at both of these, then step ahead.

First, if y = sech x then y = (cosh x)~'. Therefore, using the chain rule l:‘e
(Chapter 4),
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y-axis

A

Fig. 5.21 The graph of y = cosec™' x.

dy .
o (cosh x)™* sinh x

sinh x
cosh? x

= —sech x tanh x

Secondly, if y = sech™! x then x = sech y. So
dy
1 = —sech y tanh y —=
sech y tanh y =

Now 1 — tanh? y = sech? y, so
tanh y = £¥/(1 — sech? y) = V(1 — x?)

Therefore

dx  x/(1 — x?)
It remains to decide which sign is the correct one. If we sketch the graph
of y = sech™' x (Fig. 5.22) we see that the slope is negative, and so the
negative sign must be chosen:
dy _ ~1
dx  x¥(1 - x?
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y-axis

A

y =sech™'x

/

[4] " x-axis

Fig. 5.22 The graph of y = sech™! x.

5.12 THE INVERSE HYPERBOLIC FUNCTIONS

For the sake of completeness we state the bijections which have inverses
known as the principal inverse hyperbolic functions:
1IfA=B=R,

f:A — B defined by f(x) = sinh x (x € A)

is a bijection and its inverse is the inverse hyperbolic sine function. No
modification to the domain or the codomain was needed.
2IfA=Ryand B={r|lreR,r=1},

f:A — B defined by f(x) = cosh x (x € A)

is a bijection and its inverse is the principal inverse hyperbolic cosine
function. Both the domain and the codomain needed to be modified.
3IfA=RandB=(-1,1),

f:A — B defined by f(x) = tanh x (x € A)

is a bijection and its inverse is the principal inverse hyperbolic tangent
function. The codomain needed modification.
4IfA=RgandB={rlreR,0<r<1} =(0,1],

f:A — B defined by f(x) = sech x (x € A)

is a bijection and its inverse is the principal inverse hyperbolic secant
function. Both the domain and the codomain needed modification.
5IfA=B=R\{0},

f:A — B defined by f(x) = cosech x (x € A)
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is a bijection and its inverse is the principal inverse hyperbolic cosecant
function. Both the domain and the codomain needed modification.
6 IfA=R\{0}and B={r:reR,|r|>1},

f:A — B defined by f(x) = coth x (x € A)

is a bijection and its inverse is the principal inverse hyperbolic cotangent
function. Both the domain and the codomain needed modification.

Now it remains only to work through an application.

5.13 Practical

SAGGING CHAIN
A chain hangs in the shape of the curve
y = ¢ cosh (x/c¢)

It is suspended from two points at the same horizontal level and at distance
2d apart. Obtain an expression for the sag at the midpoint, if the angle of
slope at the ends is 0° to the horizontal.

It is worthwhile seeing if you can make progress on your own. We shall
solve the problem stage by stage, so try it first and then see how it goes.

The sagging chain is shown in Fig. 5.23. Using the diagram, we have dy/dx
= tan 6 when x = d. So tan 8 = sinh (d/c). Therefore, using the result in
section 5.7,

d/c = sinh™! (tan 0) = In [tan 8 + V(1 + tan? 0)]
= |n (tan O + sec 0)

Consequently

¢ = d/In (tan 0 + sec 0)

y-axis

A

\o

QU — — —
y

0 ~ x-axis

Fig. 5.23 The graph of y = ¢ cosh (x/c).
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Now that you know c, even if you weren’t able to obtain it, you may be
able to continue. Before doing so, make sure you follow all the stages.

The sag is the difference between the y value at x = d and the y value at
x = 0, namely c. Therefore

sag = c cosh (d/c) — ¢ = ¢ [cosh (d/c) — 1]
Now sinh (d/c) = tan 0, and so
cosh? (d/c) = 1 + sinh? (d/c) = 1 + tan® § = sec® 0
Therefore
sag = c (sec 8 — 1) = d (sec 6 — 1)/In (tan 6 + sec 68)

Although in some ways this problem has been rather straightforward, it
is not without practical significance. For instance, it would enable us to
calculate the amount of clearance which a vehicle would have.

SUMMARY

0 We defined the hyperbolic functions
x e X X _ e 7%
cosh x = — sinhx=——2——
and drew their graphs.
O We obtained identities and solved equations involving hyperbolic
functions.
O We differentiated the hyperbolic functions

d . d .
a;(cosh x) = sinh x ix (sinh x) = cosh x

We examined functions to see if they had inverses.
We defined the principal inverse hyperbolic functions and obtained
logarithmic equivalents

cosh™'x =In [x + V(x* — 1)]
sinh™'x = In [x + V(x* + 1)]

oo

EXERCISES

1 Establish each of the following identities:
a 2sinh’x = cosh2x — 1
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cothxcothy + 1

cothy + cothx
tanhx — tanhy

1 — tanhxtanhy
d 8sinh*u + 4cosh2u = 3 + cosh4u
e cosh4u = 8cosh*u — 4cosh2u — 3
2 Solve the following equations, where x is a real number:
a 1 + sinh2x = 10coshx — cosh2x
b xcoshx — sinhx + 1 = coshx — xsinhx + x
¢ cosh2x — 7(coshx — 1) —~ 1 = 7(sinhx — 1) — sinh2x + 1
d 12(sechx — 1) = 1 — 13 tanh®x
3 Differentiate, with respect to ¢,
a sech 3¢
b t?sinh2¢
sinh ¢
c
cosh 2¢
d sechtcosech 2t
e V(secht?)
f sech’yt
4 Differentiate, with respect to ¢,
a cosh™' (2> + 1)
b tanh™! (12 + 1)
¢ sinhtcosh™ !¢
d In[cosh™'¢]
e cosh™'[In¢]
1

sinh~!'¢

b coth(x +y) =

¢ tanh(x — y) =

ASSIGNMENT

1 Solve for real x the equations
a 2 sinh 2x = 1 + cosh 2x
b 2 sinh 6x = 5 sinh 3x
2 Prove that if a = cosh x + sinh x and b = cosh x — sinh x then
aab =1
b a® + b*> = 2 cosh 2x
¢ @ — b*> = 2sinh 2x
3 Solve the equation

1 + sinh 2x sinh 3x = (4/3) sinh 3x + (3/4) sinh 2x
4 Obtain all the real numbers x which satisfy the equation

2sinh2x —4sinhx —3coshx +3 =0
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$ If u = cosh x + sinh x and v = cosh x sinh x, show that u* = 4u?v + 1.
6 If y = In x, show that

¥+ 1 ) x> -1
o and sinhy = o

Hence, or otherwise, show that
a If cosh y = athen x = a + J(a® — 1); whereas
b If sinhy = a thenx = a + V(a® + 1).

coshy =

7 If
_ sin"lx
YEVa T 0
show that

2\ 172
(l+x2)g—i+xy=<l+x>

1 - x?

FURTHER EXERCISES

1 By first simplifying each expression, or otherwise, differentiate with
respect to x
aexp[ln(x™') +2Inx]
b tan™' [(1 — cos x)/sin x]
Simplify your answer as far as possible.
2Ify =xtan™' x — In (1 + x*)"2, show that

2 dzy _
1+ x%) o= 1

3 Differentiate with respect to x

a cos™! (3 cos x)

b tan™' [(x* — 1)/2x]

¢ tan™' [(1 + sin x)/(1 — sin x)]
4 If a = sinh 2x and b = tanh x, show that 2b + ab® = 4.
5 Show that

a sinh (sinh™ a — sinh™' b) = af/(b? + 1) — bY(a® + 1)

b cosh (sinh™ a — sinh™' b) = V[(a®> + 1) (b* + 1)] — ab
6 Establish each of the following from the definitions:

a cosech’ u = coth® u — 1

b cosh? u — sinh® u = 1

¢ cosh 2u = cosh? u + sinh? u

d cosh (¥ + v) = cosh u cosh v + sinh u sinh v

e sinh (v + v) = sinh u cosh v + cosh u sinh v
7 Solve

acosh2x —S5coshx +3 =0
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8

10

11

12

13

b 2 coshx + sinhx + sinh2x + 1 =0

¢ cosh x + cosh 2x = 2

A laser beam cuts a groove in a plate. The distance of the point of

contact from a pivot is given at time t by r = a (1> — 2t + 2), where

0 =< ¢t = 10 and a is positive.

a What is the shortest distance from the groove to the pivot?

b If the groove is in the shape of a straight line, determine the interval
over which the beam etches the groove more than once.

¢ Show that the cutting process consists of three phases: clean plate
is cut; plate is cut a second time; clean plate is cut. Determine the
lengths of the time intervals for each phase.

An automatic paint spraying machine sprays paint at a height 4 (metres)

at time ¢ (seconds) given by & = sin 2f + cos 21 + 2.

a Determine the maximum and minimum heights at which the machine
operates.

b How long should the machine be applied if each point is to be
painted twice?

¢ At what time will the paint head be at its lowest height?

The input / and the output E of an experiment are related by E =

cos 21 + cos I + 2. The experimenter wishes to be able to read the

output and thereby determine the input uniquely. Practical considera-

tions restrict possible inputs to 0 < [/ < 8. What further restrictions

should be imposed on the input given that the input must be an interval,

and that small inputs are difficult to produce?

In a given volume of fluid an unknown number »n of negatively charged

particles of type A are present. It is proposed to count the particles by

bombarding the fluid with positively charged particles of type B and

type C. It is known that:

a Each particle of type A bonds with 11 particles of other types.

b Each particle of type B bonds with 7 particles of type A.

¢ Each particle of type C bonds with 5 particles of type A.

A mixture is made with 3 particles of type B to every 2 of type C. The

mixture is introduced to the fluid until the overall mixture becomes

stable and electrically neutral. This occurs when 605 particles have been

introduced. Determine #.

Suppose particles of type A can be further classified into either {3 par-
ticles (those which bond with particles of type B only) or y particles
(those which bond with particles of type C only). How many f3 particles
and how many v particles are present?

Solve the equation

{cosh(Inz) ~ 2sinh (ln ;) =93

and hence show that the difference between the roots is 2/3.

Solve the equation
1 1 1

sinh®z  cosh’z 2
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In Chapter 4 we described how to differentiate simple functions.
In this chapter we shall combine this knowledge with some of the
geometrical ideas which we developed in Chapter 3 to obtain
tangents and normals to plane curves.

After completing this chapter you should be able to

O Determine the equations of tangents and normals to plane curves;

O Use intrinsic coordinates and relate them to cartesian coordinates;

O Calculate the radius of curvature at a point on a curve and the
position of the corresponding centre of curvature.

Finally in this chapter we shall solve a practical problem involving a

moored dirigible.

6.1 TANGENTS AND NORMALS

We can apply differentiation directly to obtain the equations of the tangent
and the normal at a general point (a, b) on a curve f(x,y) = 0. The normal
is the straight line perpendicular to the tangent through the point of
contact. Therefore if the slope of the tangent is m, the slope of the normal
m' satisfies mm' = —1.

We know from our previous work (Chapter 4) that dy/dx is the slope
of the curve at a general point. Therefore we have a general method for
obtaining the equations of tangents and normals to plane curves:

1 Differentiate, with respect to x, throughout the equation f(x,y) = 0 to

obtain the slope dy/dx at a general point (x, y).

2 Substitute x = a and y = b to obtain m, the slope of the curve at (a, b).
3 The equation of the tangent at (a, b) is then

y=—b=mx-a)
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4 The equation of the normal at (a, b) is
y—b=m'(x—a)

where mm' = —1.
The only thing you have to be a little careful about is to make sure that the
point (a, b) really is on the curve! You should check therefore that x = a,
y = b satisfy the equation f(x,y) = 0.

O Determine the equations of the tangent and the normal at the point
(a,2a) on the curve

xy2 - = azy + ax’

We follow the four stages of the general method:
1 Differentiating through the equation with respect to x gives

y? + x2y dy/dx — 3x* = a* dy/dx + 2ax
So that
(2xy — a@®) dy/dx = 2ax — y* + 3x?
Consequently
dy/dx = (2ax — y* + 3x?)/(2xy — a%)
2 At the point (a,2a) we therefore have

dy/dx = [2a® — (2a)* + 3a*]/[2a(2a) — a?]
= a*3a* = 1/3

3 We have m = 1/3, and so the equation of the tangent is

y —2a=%x - a)
3(y-—2a)=x—a
3y—6ba=x—a
3y=x+ 5a
4 For the normal we have the slope m' = —3, since mm’ = —1. Therefore
the equation of the normal is
y—2a=-3x~-a)
y—2a=-3x+ 3a
y+3x =5a [ ]

If the curve is defined parametrically then the same principles apply.
Naturally we shall obtain dy/dx by using dy/dx = (dy/dt)(d¢/dx).

It is convenient to use a simplified notation, known as the dot notation.
In this notation a derivative with respect to the parameter is indicated by
the use of a dot over the variable: so x = dx/dt. A second dot indicates a
second-order derivative: so ¥ = d°x/dt®>. So we have shown dy/dx = y/x.
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It is interesting to note that the dot is one of the few symbols to have
survived from Newton’s original work on the calculus. Much of the
notation which we use today was introduced by the co-discoverer of the
calculus, Leibniz.

O Obtain the equations of the tangent and the normal at the general point
p on the curve

x = p? +sin2p
y=2p+2cos2p
We have
X =2p+ 2cos2p
y=2-—4sin2p
So
m = dy/dx = (2 — 4 sin 2p)/(2p + 2 cos 2p)
= (1 — 2sin 2p)/(p + cos 2p)
For the tangent,
1—-2sin2p

— p? —sin?2
p + cos 2p (x = p" = sin 2p)

(y —2p —2cos2p) =

from which
(y — 2p — 2 cos 2p)(p + cos 2p) = (1 — 2 sin 2p)(x — p* — sin 2p)
So

(p + cos 2p)y — (1 — 2 sin 2p)x
= 2(p + cos 2p)* — (1 — 2 sin 2p)(p? + sin 2p)
= 2p® + 2 cos® 2p + 4p cos 2p — p* + 2p? sin 2p — sin 2p + 2 sin® 2p
=p2+ 2 + 4pc052p+2pzsin2p-—sin2p

For the normal,

_ptcos2p

—_ — = — 2 — 1
(y —2p — 2 cos 2p) 1= 2sin2p (x — p° — sin 2p)

from which
(y —2p — 2 cos 2p)(1 — 2sin 2p) = —(p + cos 2p)(x — p* — sin 2p)
So

(1 —2sin2p)y + (p + cos 2p)x
= 2(p + cos 2p)(1 — 2 sin 2p) + (p + cos 2p)(p* + sin 2p)
= (p + cos 2p)(2 — 4 sin 2p + p? + sin 2p)
= (p + cos 2p)(2 — 3 sin 2p + p?) n

Here now are a few steps to make sure we have the ideas straight.
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6.2 Workshop

1
_El Exercise For the curve y> = x> + x + 1, obtain the equations of the
tangent and the normal at the point (0, 1).
As soon as you have done this, take a step and see if you are right.

2L We check that the point (0, 1) does in fact lie on the curve, and then pro-
ceed to differentiate to obtain the slope at a general point.

2y dy/dx = 3x* + 1
so that
dy/dx = (3x* + 1)12y
For the tangent at the point (0, 1) we have
m=dy/dx =0+ 1)/2 =172
The equation is therefore
(v = 1) = 3(x - 0) = x2

y=x2+1
For the normal at the point (0, 1) the slope m’ satisfies mm’ = —1, and so
m' = —2. The equation is therefore
(y-1=-2x-0)
y=-2x+1

If there are any difficulties here it may be necessary for you to revise your
work on the equations of the straight line in Chapter 3.
Another exercise follows. Are you ready?

B>Exercise The parametric equations of a curve are given as
x=t+ 1/, y=t—1/it

Obtain the equations of the tangent and the normal at a general point ¢,
and at the point where ¢t = 1.
When you have done it, step forward.

3 5 We must obtain dy/dx at the point ¢. For this purpose we use the chain rule
dy/dx = (dy/d¢)(de/dx) = y/x
Now

1 -1 = (2 - 1)/
1+ 12 =@+ 1)
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So
m=dydx =+ 1)/ - 1)
at a general point ¢.
The equation of the tangent is therefore
©*+
-

ly =@ - 1] = 1 [x = (t + 1/1)]

So

(= D[y =@ = D) =+ D[x — (2 + /]
=Dy -+ Dx=[-1)7%- @+ 1)
= (=2)(2*)/t = —4t

193

using the algebraic identity a*> — b*> = (a — b)(a + b) for the difference of

two squares. So the equation of the tangent at ¢ is
-y -+ )x+4=0
For the normal we use mm' = —1 and therefore
m=—@ -1/ +1)

at a general point ¢. The equation is therefore

-1 U
So

E+Dy—-@=1UD]+ @ =-Dx—-(@+1)]=0

(+ Dyt + (2 = Dt = [(t* — 1) + (* - 1)]

=2(t* - 1)
The equation of the normal at ¢ is therefore

(P + Dyt + (22 — Dxt = 2(t* - 1)

Now when ¢ = 1 we hit a slight snag: m is not defined. However, we can
argue by continuity that these equations will hold for all ¢. Therefore we

take the limit as ¢t — 1 throughout the equation

E-Dy—-@E+Dx+4=0

which we have shown to be the equation of the tangent at a general point

(£* # 1). We obtain straight away
8
0-2x+4=0

and so the equation of the tangent is x = 2.
Similarly for the normal, from

(2 + Dyt + (22— Dxt =2(* = 1)
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by letting t — 1 we obtain
2y+0=0

and so the equation of the normal is y = 0 — which is, of course, the x-axis.
It is possible to give alternative arguments, but the conclusions should be
the same.
Now try this final problem.

D>Exercise  Show that if a light source is positioned at the focus of a

parabolic mirror it casts a beam parallel to the axis.

Before solving this we remark that the design of a car headlamp utilizes
this property. Further, the reverse action will concentrate light at the
focus. Therefore if the sun’s rays strike a parabolic mirror, parallel to the
axis, they are reflected to the focus. The first engineer to make use of this
fact is reputed to have been Archimedes, when he set fire to the sails of the
Roman fleet.

4

We can use the equation of the parabola in standard form y*> = 4ax
(Chapter 3), which we can regard as a cross-section through the mirror
(Fig. 6.1). In parametric form this can be expressed by x = at?, y = 2at.
Therefore the slope of the tangent at a general point ¢ is given by

m = dy/dx = y/x = 2al2at = 1/t

So the slope of the normal at ¢ is —¢ (recall mm' = —1).
Now the basic property of light when it strikes a mirror is expressed by
the equation

angle of incidence = angle of reflection

(o} (a,0) =x-axis

Fig. 6.1 The graph of y*> = 4ax.
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Let S be the focus (a,0) and let P be a general point on the parabola. We
must show that the angle ¢, between the normal at P and the x-axis, is
equal to the angle 0, between PS and the normal at P. Since both angles
are acute, it suffices to show that tan 6 = tan ¢. Now

tan ¢ = [(—¢t) ~ O)/[1 + (—2)0] = —¢
The slope of PS is given by
(2at — 0)/(at? — a) = 2t/(* — 1)
(recall that m = (y; — y2)/(x; — x3)). So

tan 6 = [tz—z_t—T - (—-t)]/[l + (—1) t_z_zlt_l]

£+t
- -1

6.3 INTRINSIC COORDINATES

We are familiar with the two coordinate systems which are used to describe
plane curves and regions. These are the cartesian coordinate system and
the polar coordinate system (see Chapter 3). In each of these systems we
may represent a point in the plane by an ordered pair of numbers. For the
cartesian system this is (x,y) and for the polar coordinate system (r,8)
(Fig. 6.2).

In these systems a curve is represented by an equation. For example
x*> + y* = 1and r = 1 are, in these two systems respectively, the equations
of a circle of unit radius centred at the origin.

In the cartesian system, points are described relative to two fixed mutually
perpendicular straight lines known as the axes. In the polar coordinate
system, points are described relative to a point called the origin and a
straight line emanating from the origin called the initial line.

y-axis
o x| - (x,y)
(r,0)
Iyl ,/
l / b
—
[o} x-axis 0 Initial line
(a) (b)

Fig. 6.2 (a) Cartesian coordinates (b) Polar coordinates.
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Fixed axis

Fig. 6.3 Intrinsic coordinates.

We now describe another coordinate system, known as the intrinsic
coordinate system (Fig. 6.3). Suppose we have a smooth curve, a fixed
point S on the curve, and a fixed straight line. It will be convenient to
think of the straight line as the x-axis. There are two possible ways in
which we can move along the curve from §; we shall regard one as the
positive direction, and the other as the negative direction. Given any real
number s we therefore obtain a unique point on the curve by measuring a
distance s (positive or negative) from S along the curve. The curve is
smooth and so it has a tangent at all its points, and we shall suppose that
there is an angle 1 at the point where the tangent meets the fixed axis.

A point on a curve in this system is then represented by an ordered pair
(s, ), where s is the distance along the curve measured from S and v is the
angle made by the tangent with the fixed axis.

This system, although useful, is not as versatile as the cartesian and polar
coordinate systems, for it is not possible to represent a general point in the
plane in terms of intrinsic coordinates. It is only possible to represent points
on the curve.

6.4 THE CATENARY

Suppose a uniform chain or a heavy rope is freely suspended between two
points; then the shape of the curve it assumes is known as the catenary (see
section 5.1). Intrinsic coordinates enable us to determine the equation of
the catenary quite easily. To do this we take the fixed line as the x-axis and
S as the lowest point, and measure s positive to the right and negative to
the left (Fig. 6.4). Suppose the mass per unit length is m. If P is a general
point on the curve then P has coordinates (s, ).

We consider the forces on the portion of the rope SP (Fig. 6.5). There is
a horizontal tension T, at S and a tension 7 in the direction of the tangent
at P, and the rope is kept in equilibrium by its weight mgs which acts verti-
cally downwards. We now resolve these forces vertically and horizontally
to obtain
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" x-axis

Fig. 6.5 Forces on the piece of rope.

T sin y
T cos ¢

mgs
Ty

Eliminating T by dividing gives

mgs/Ty = tan ¢
which, on putting a constant ¢ = T,/mg, reduces to
s =ctany

This is the intrinsic equation of the catenary.

The catenary has many uses and needs to be considered whenever cables
are strung between buildings. Although a light cable may not under normal
circumstances be in the shape of a catenary, a severe winter’s night with
snow and ice on the cable can change the picture. When later we convert
the equation of the catenary into cartesian coordinates, we shall find we are
dealing with an old friend.

In order to link together the intrinsic coordinate system and the cartesian
coordinate system, we shall need to locate the x and y axes. As we have
said already, it is convenient to choose the x-axis as the fixed axis of the
intrinsic coordinate system, and we shall choose the y-axis in such a way
that § lies on it (Fig. 6.6).
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S
yd
0

Fig. 6.6 Relating cartesian and intrinsic coordinates.

Then tan v is the slope of the curve at P, and so this is dy/dx. Therefore
the first linking equation is

tan ¢y = dy/dx

Moreover, s is the length of the curve. So if dx and dy are small increases
in x and y respectively, the corresponding increase in s is given by ds
(Fig. 6.7). Therefore

(8x)* + (3y)* = (8s)

It is reasonable to assume that as dx — 0 the approximation will become
good. Therefore dividing through by (8x)? and taking the limit as x — 0
we obtain

1 + (8y/dx)* = (8s/0x)?
So
1 + (dy/dx)* = (ds/dx)?

If we choose s increasing with x we can take the positive square root to
obtain the second linking equation as

ds/dx = [1 + (dy/dx)?])'?
0O Transform the equation of the catenary s = ¢ tan 1, in intrinsic co-

ordinates, to an equation in cartesian coordinates.
It will be necessary to fix the catenary relative to the cartesian coordinate

/

5s Sy
o

P Sx

Fig. 6.7 Relating s, x and y.
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y-axis

A

Qle&——o—»ft

L
X-axis
Fig. 6.8 Catenary relative to cartesian coordinates.

system, and so we shall choose S so that OS = ¢ (Fig. 6.8). The equation is
s = c tan ¢, and we have the linking equations

tan ¢ = dy/dx
ds/dx = [1 + (dy/dx)?]"?
Now
s=ctany = cdy/dx = cu
where u = dy/dx. Therefore differentiating this equation with respect to x
gives
ds/dx = ¢ du/dx

from which
c*(du/dx)® = (ds/dx)? = 1 + (dy/dx)?
=1+ u?
dx/du = c/V(1 + u?)

Now we already know that if x = sinh™' u then dx/du = 1//(1 + u?). So
x =csinh™' u + A, where A is a constant. When x = 0 we have dy/dx = 0,
since this is the lowest point of the curve; consequently A = 0 and x =
¢ sinh™! u.

However, u = dy/dx, and since we now have u = sinh x/c it follows that
dy/dx = sinh x/c. Consequently y = ¢ cosh x/c + B, where B is a constant.
Finally when x = 0 we have y = ¢, and so B = 0. Therefore

y = ¢ cosh x/c

is the equation of the catenary in the cartesian coordinate system. |

6.5 CURVATURE

The amount by which a curve bends determines the curvature of the curve.
If the curve bends sharply then the curvature is large, whereas if the curve
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bends gently the curvature is small. In the intrinsic coordinate system we
define the curvature » by » = dy/ds. This is consistent with our intuitive
idea because, for a small change in s, if ¢ increases greatly then the curva-
ture is high, whereas if ¢y increases only gradually then the curvature is
small.

The reciprocal of the curvature has the unit of length and is called the
radius of curvature 9. So we have ¢ = ds/dy.

We now give a physical interpretation for the radius of curvature. Later
we shall express it in terms of cartesian coordinates, and also determine a
form suitable for calculating the radius of curvature if the curve is given
parametrically.

Suppose that P is the point (s, 1) and that Q is the point (s + ds, P + dy)
(Fig. 6.9). Suppose also that the normals to the curve at P and Q meet at
C. Then since the angle between the tangents at P and Q is dv, the angle
between the normals is also &y. Consequently ZPCQ = &y, and because
the length of the element of curve PQ is 6s we conclude that

CP dy = 0s

The smaller that &y becomes, the closer Q moves to P and the more
CP comes to equalling CQ. Therefore as oy — 0 the approximation
CP = 3s/0y becomes

CP = ds/dy =

that is, the radius of curvature.
The circle centred at C with radius @ is called the circle of curvature

c

Fig. 6.9 Intersecting normals.
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and the point C is called the centre of curvature. It is worth observing that
if o is negative this means that the curve is bending towards the x-axis
(concave to the x-axis) and so in the opposite direction to the way shown in
the diagram (convex to the x-axis).

THE CENTRE OF CURVATURE

To determine the coordinates of the centre of curvature it is best to use
both cartesian coordinates and intrinsic coordinates at one and the same
time.

Suppose that P is the point (x,y) in cartesian coordinates and also the
point (s, ¢) relative to the curve in intrinsic coordinates. In Fig. 6.10 ¢ > 0,
C has coordinates (X, Y) and T is the point (X, y). By similar triangles we
have ZPCT = v, and so

X=x—-psiny
Y=y+opcosy

Remarkably these formulas also work in the case ¢ < 0.

O Show that if ¢ < 0 then the centre of curvature (X, Y) is given by
X=x—-9siny
Y=y+opcosy
You will need a different diagram, but the working is very easy. It may
help to put p = |o|. Try it and see how you get on.

y-axis [
* (Xx.y)
T
X.y)

1
A

— 5
0 Xx-axis

Fig. 6.10 The centre of curvature (¢ > 0).
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y-axis

A

P
(x.y)
Vv \P

\Y

r
(x,Y) (X,y)
('

—
0 x-axis

Fig. 6.11 The centre of curvature (p < 0).

Put p = |o|. Then p > 0 and we have a rather different figure, where now
the curve bends towards the x-axis (Fig. 6.11). Now suppose T is the point
(x,Y); then ZCPT = v. So

X =x+psiny
Y=y —pcosy

and therefore since p = —p we obtain

X =x—psiny
Y=y+pcosy

as before. ]

We have seen how to determine the centre of curvature once the radius of
curvature is known, and we have also seen how the sign of the radius of
curvature can help us to decide which way the curve is bending. We now
need a method of determining the radius of curvature without having to
reduce a cartesian equation into one involving intrinsic coordinates.

THE RADIUS OF CURVATURE

Essentially there are two ways in which, using the cartesian coordinate
system, a curve can be defined. It can be described directly by means of an
equation involving x and y, or it can be described parametrically. In the
parametric form x and y are each defined in terms of a third variable, for
example ¢. Theoretically it could be argued that it is possible to eliminate ¢
and thereby reduce the second case to the first one. However, in practice
this may be very difficult to achieve. Therefore we shall deal with the two
situations separately.
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THE CARTESIAN FORM
We have ¢ = ds/dy = (ds/dx) (dx/dy). Now
ds/dx = [1 + (dy/dx)?*]""2

and so it remains to obtain dx/dy in cartesian form. Now dy/dx = tan v,
and so differentiating with respect to x
d?y/dx? = sec? ¢ (dy/dx)
= (1 + tan® ¥) (dy/dx)
= [1 + (dy/dx)?](dy/dx)
Therefore the radius of curvature in cartesian form is
_[1+ (dy/dx)?]"2 [1 + (dy/dx)?]
e d?y/dx?
_ 1+ (dy/dx)*P?
B d?y/dx?

O For the curve y = ¢ cosh (x/c) obtain (a) the radius of curvature at a
general point (x,y) and (b) the position of the centre of curvature at the
point where x = ¢ In 2.

a We have y = ¢ cosh (x/c), and so

dy/dx = ¢ (1/c) sinh (x/c) = sinh (x/c)
Therefore
d?y/dx? = (1/c) cosh (x/c)
It follows that
1 + (dy/dx)* = 1 + sinh? (x/c) = cosh? (x/c)
and so
[1 + (dy/dx)*]*? = cosh® (x/c)
We now have
_ 1+ (dy/dx)*P?
B d?y/dx?
cosh® (x/c)

== h2 /
(1/c) cosh (x/c) ¢ cosh (x/c)

This is the radius of curvature at a general point. Observe that it is
always positive; this is not surprising since the curve is always convex to
the x-axis.

b When x = ¢ In 2 we have x/c = In 2, and so

CX/C - eln2 =2
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So that, at x = ¢ In 2,
cosh (x/c) = ¥ + e ™) =32 + %) = 5/4
sinh (x/c) = 3(e"“ —e™) =32 - %) =34

The radius of curvature at x = ¢ In 2 is therefore 25¢/16. Also, when
x = ¢ In 2 we have

y = ¢ cosh (x/c) = 5c/4
Furthermore
tan ¢y = dy/dx = sinh (x/c) = 3/4

This gives sin Y = 3/5 and cos y = 4/5.
Now C, the centre of curvature, is the point (X, Y), where

X=x—psiny =cln2 — (25¢/16) (3/5)
= cIn 2 - 15¢/16

Y =y + ocosy = 5c/4 + (25¢/16) (4/5)
= 5c/4 + 5¢/4 = 5¢/2

So when x = ¢ In 2 the centre of curvature is

(cIn 2 — 15¢/16, 5¢/2) u

THE PARAMETRIC FORM

If x and y are each given in terms of a parameter ¢, then a small change 6¢
in ¢ will result in small changes dx and dy in x and y respectively. We have

(3s)* = (dx)” + (8y)’

As & — 0 both dx and 8y tend to zero and this approximate formula
becomes exact. Now

(8s5/0t)2 = (dx/t)* + (8y/dr)?
so that as & — 0 we obtain

(ds/dt)? = (dx/df)® + (dy/dr)?
Therefore
2

§2=x% +y?

Now
o = ds/dy = (ds/dr) (dt/dyp)

We have seen how to find ds/dr; we need therefore to obtain d/dy. The
equation linking intrinsic coordinates with cartesian coordinates and which
involves y is

tan ¢ = dy/dx = (dy/dt)(dt/dx) = y/x

We now differentiate throughout with respect to t and obtain
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sec” ¢ (ji—lf = 2 dad
Now
sec?yp =1+ tan’ ¢ = 1 + (dy/dx)?
=1+ (y/k)?
so that

22secty = x% + y2 = §2

Substituting into the expression for ¢ we now have

_ 5.3 _ (x2 + y2)3/2
iy —yE iy - yi
Therefore the radius of curvature in parametric form is
(x‘2 + y2)3/2

Y

O Obtain the radius of curvature at a general point, determined by the
parameter 0, on the curve

x =sin0O + 2 cos 0
y=cos8 —2sin8

We substitute into the formula
(x'2 + y2)3/2
where the dot here indicates differentiation with respect to 8. We have

Y

X =cos0 —2sin 0
y=—-sin® —2cos @

So that squaring and adding,

%% + 9% = (cos 8 — 2 sin 8)2 + (sin O + 2 cos 0)?
= 0’0 + 4sin> @ — 4sin B cos O + sin 6 + 4 cos? O + 4 sin O cos O
= 5(cos’ @ + sin’0) = 5

Further,

¥= —sin® — 2cos 0
y=—cos0+2sin6

so that
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xy — yxX = (cos 6 — 2 sin 8)(—cos 6 + 2 sin 0)

— (—sin 6 — 2 cos )(—sin 8 — 2 cos 0)
—cos?> @ — 4sin” 0 + 4 sin 0 cos O

— (sin®> @ + 4 cos> © + 4 sin O cos 0)

= —5¢c0s’0 — Ssin’0 = -5

Substituting into the formula for @ gives
o = 5%/(=5) = —V5

Now this means that there is a constant radius of curvature, and the only
curve which has a constant radius of curvature is a circle. Therefore these
parametric equations must define a circle. It is easy to confirm this by
eliminating 6. We have

x=sn6+2cosH
=cos 0 —2sin O

<
|

So

2x +y=5cos 0
x—2y=15sin0

If we square and add we obtain
2x +y)2 + (x —2y)* =25

which is x*> + y* = 5.

The fact that o is negative suggests that the circle is concave to the x-axis,
and indeed since the circle in question is centred at the origin we can
confirm this. |

Right! Are you ready for some steps?

6.6 Workshop

1
:L—’ Exercise Express the equation of curve
s = sec P tan ¢ + In (sec ¢ + tan )

in terms of cartesian coordinates, where the axes are to be chosen so that
1 whenx =0,y =0;
2 whenx =0,5s=0.
As usual we suppose that the x-axis is parallel to the fixed axis of the
intrinsic coordinate system.

Remember the linking equations, and see how you get on.

2 L:| The linking equations are
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tan Y = dy/dx

ds/dx = [1 + (dy/dx)?]"2
So in general we have

ds/dx = [1 + (dy/dx)?]"?
= (1 + tan® Y)'? = sec ¢
since 1 + tan® ¢y = sec? y. Here
s = sec Y tan ¢ + In (sec ¢ + tan )

Therefore

ds/dy = sec y sec® ¢ + tan Y sec P tan

+ (sec ¢ + tan ¢)~! (sec y tan ¢ + sec? )
sec P (sec’ ¢y + tan” ¢) + sec

sec ¢ (sec> ¢y + tan® ¢ + 1)

2 sec

since 1 + tan® ¢ = sec? .
If you were stuck then try to get going from this point. Otherwise read
on and see if you got everything right.

This means that !:] 3

(ds/dx) (dx/dy) = 2 sec® ¢

and we have already shown that
ds/dx = sec ¢

Therefore

dx/dy = 2 sec? ¢
It follows at once that

x=2tany + A
where A is a constant which we need to determine. We now have

dy/dx = tan ¢ = }(x — A)
and so
y=14x* —3Ax + B

where B is another constant which we need to determine.
See if you can determine these constants, and then take another step.

We have the initial conditions, and these will help us to fix A and B: |:“’
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1 Whenx =0,y =0andso B =0,

2 Whenx =0,s5s = 0.

Now we have shown that when x = 0, tan ¢ = —A/2 = C (say), and so
sec Y = +(1 + C?)". From the equation for s,

0=Cl£(1 + CH"] +In[C £ (1 + C})"?]

This has no meaning if the negative sign is chosen because the argument of
the logarithm is then negative. Consequently the positive root for sec ¢
must apply.

We have to solve the equation

In[C+ (1+C)P]=~-C1+ C*)"”?

Now this is a tricky business. You should be able to spot that C = 0 is one
solution, but it is quite a different matter to show that C = 0 is the only
solution. You would not normally be expected to do this, but you might
care to try out your algebraic skills!

There are several possible approaches. You could use the work we have
not yet covered on maxima and minima (Chapter 8) and examine

y=xV(1+x3) +In[x+ V(1 + x?)]

You could then argue that if there are two values of x for which y is zero,
then by continuity there must be a local maximum or a local minimum. It
would then follow that dy/dx would be zero at some point. However, it is
possible to show that dy/dx = 2)/(x* + 1) and so is never zero.

Nevertheless there is a purely algebraic approach. See if you can finish
the problem off. If it’s too much, just read through the solution and try to
appreciate what is involved. Whatever your decision, take another step
when you are ready.

5 l:] We shall show that C = 0 is the only possible solution of
in[C+ (1+C)'"?]=-C(1+C*"

Suppose C > 0. Then the right-hand side of the equation is negative,
whereas the left-hand side is positive:

C+(1+C)>1
Suppose C < 0. Then
exp[-C(1 + CH™]=C+ (1 +CH"”

We can rearrange the left-hand side of this by multiplying throughout by
~C + (1 + C*"2. We then have

[-C+ 1+ CH"lexp[-C(1 + CH?]=-C*+(1+C)=1

However, the left-hand side is greater than 1 because
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-C+(1+C»H"2>1

and the exponential value of any positive number is always greater than 1.
The only possibility which remains is C = 0.
Finally, then, the equation of the curve in cartesian coordinates is
y =ix’

If you managed that all on your own, you have handled an awkward
problem successfully.
Now for something rather different.

> Exercise For the curve
y=3x*—3ln(x+1)+x

obtain, at the origin, the radius of curvature and the centre of curvature.
All you need to do is calculate the ingredients for the formulas and you
are away! Work out the radius of curvature and take another step.

Here we go then. We need dy/dx and later d*y/dx?. So [:16
y=3-iln(x+1) +x
dyldx =x - (x + D71 + 1
A+ 1) -1
T 4x+1)

ds\? dy\?2
(&) -1+ (@)
[4(x + 1)? — 1]
16(x + 1)2
_16(x + 1)% + [4(x + 1) — 1]?
B 16(x + 1)
_[4(x + 1) + 1P
T 16(x + 1)?
Did you spot how to collect that together? If you multiply everything out
you risk not being able to see the wood for the trees. It is always worth

trying to stand back and see if there is a simple approach.
So we have

Then

=1+

ds _4(x+17°+1
dx 4(x + 1)

Now
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d?y 1
—_— + —
dx? ! 4(x + 1)°
A+ 1) +1
d(x + 1)?

Then
o = (ds/dx)*/(d*y/dx?)
(4 + D2+ 1P 4(x + 1)?
[Ax + DP  4(x +1)* +1
[4(x + 1) + 12
T 16(x + 1)

25

=% when x =0

If you made a slip, check to find where you went wrong. Then see how you
get on with the centre of curvature, and take another step.

7L We must obtain cos y and sin ¢y. Now tan ¢y = dy/dx = 3/4 when x = 0 so
cos ¢y = 4/5 and sin ¢ = 3/5. We now have all the information we need to
obtain the position of the centre of curvature:

X =x—opsiny =0 — (25/16)(3/5) = —15/16
Y=y + ocosy =0+ (25/16)(4/5) = 5/4
So the centre of curvature is (—15/16, 5/4).

It is a good idea to practise the parametric formula, and so here is
another exercise for you to try.

D>Exercise Determine the radius of curvature at the point where t = 1 on
the curve defined parametrically by

x=t+¢, y=1++

When you have given this all you can, take the next step.
8 l:} Don’t forget the formula

Nowx=t+t*andy =1+ t* Sox =1+ 2tand y = 4¢*. Therefore when
t =1we have x = 3 and y = 4. Hence

(& +yH)¥ = (9 + 16)** = 125

Further, ¥ = 2 and y = 12t%. So when t = 1 we have ¥ = 2 and j = 12.
Hence
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Ay —yE=3xX12—-4x2=236—8=28

Therefore o = 125/28 when ¢t = 1.
If you managed that then read through the next exercise and step. If
there are still a few problems, then try the exercise yourself first.

>Exercise Obtain the position at the origin of the centre of curvature for
the parametric curve

x = p + sinh p, y = -1+ coshp

As soon as you have done this, move on to step 9.

When p = 0 we have x = 0 and y = 0, and so we begin by obtaining ¢ when !9
p = 0. We have

x =1+ cosh p, y = sinh p

x = sinh p, ¥ = cosh p

so that when p = 0,

The radius of curvature can now be found:

(x-2+y2)3/2=(4+0)3/2=8
A —yi=2x1-0x0=2

Consequently p = 8/2 = 4.

Is all well so far? If there are any problems, look through the work at this
stage and then see if you can complete the problem by finding the position
of the centre of curvature. Remember, you will need sin ¢ and cos .

Here goes then. First, tan ¢y = dy/dx = y/x = 0 at the origin. We deduce I:J10
that ¢ = 0, and so sin ¢y = 0 and cos ¢ = 1. The centre of curvature is now
the point (x — @ siny, y + ¢ cos y), and thisis (0 — 0,0 + 4 x 1) = (0, 4).

If any problems remain at this stage it is best to go back through the
chapter again.

Now for a practical problem.

6.7 Practical

MOORED DIRIGIBLE

A dirigible is moored to a 200 m warp which is secured to a post. The
tension at the post is equal to the weight of 50 m of warp and is inclined at
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tan~' (4/3) to the horizontal. Determine the tension and the direction of
the warp at its upper end, and show that the dirigible is about 192 m above
the post.

Make a real effort to solve this problem entirely on your own. As usual
we shall give the solution stage by stage so that you can join in at whatever
stage you can.

The warp is shown in Fig. 6.12. Let the tension at the top be T, inclined at
an angle ¢ to the horizontal, and let the tension at the lower end be T,
inclined at an angle 0 to the horizontal.

Resolving the forces horizontally gives

T,cos ¢ = T, cos 8 = 50w (3/5) = 30w
where w is the weight per metre. Resolving the forces vertically gives
200w + Ty sin © = T sin ¢
So
T, sin ¢ = 200w + 50w (4/5) = 240w

If you have not studied statics you may not have been able to obtain these
equations. However, all should be well now we have obtained all the
information we need.

Next we require ¢, and we have shown
T, cos ¢ = 30w
T, sin ¢ = 240w

Therefore tan ¢ = 240w/30w = 8, and consequently ¢ = tan~' 8 is the
angle of inclination of the warp to the horizontal at the upper end.
We also require 7;. See if you can obtain this.

» o
T 200w A° ]

3

Fig. 6.12 Forces on the warp.
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We have
T? (sin? ¢ + cos® ) = (30w)? + (240w)?
Therefore

T? = (30w)*(1 + 64)
T, = 30wy 65

Lastly we must obtain the height of the dirigible above the post. For this we
need to use the equation y = ¢ cosh (x/c).

From y = ¢ cosh (x/c) we obtain
dy/dx = tan ¢y = sinh (x/c) = s/c
Now
cosh? (x/c) — sinh? (x/c) = 1
Therefore

(ylc)? = (sle)* =1
V=54
This formula is not in any way dependent on the details of this problem,
and so can always be used when we have a catenary.

The easiest way to proceed now is to consider the missing part of the
catenary, length sy, from the post to the lowest point (Fig. 6.13). Then

200 + s = c tan ¢
So=ctan 0

See if you can complete things.

We have
200 = c(tan ¢ — tan 0) = c[8 — (4/3)] = 20¢/3

Consequently ¢ = 30 and 5o = ¢ tan 6 = 30(4/3) = 40.
Now

Fig. 6.13 Part of the catenary.
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(h + yo)? = (200 + 50)*> + ¢ = (240)% + (30)?
h + yo = 30V65

Also
Y5 = 55 + ¢ = (30) + (40)* = (50)?
Yo =50

Finally, A = 3065 — 50 = 192 m.

Notice how we leave any approximation to the last possible stage. We
should always avoid premature approximation because it usually leads to
greater inaccuracy.

SUMMARY

O We have shown how to find the equations of tangents and normals to
plane curves.

0 We have introduced intrinsic coordinates (s, y) and seen how to link
them to the cartesian coordinate system:

tan ¢ = dy/dx
ds/dx = [1 + (dy/dx)?]"?

[J We have derived the equation of the catenary in intrinsic coordinates
in the standard form s = ¢ tan ¢, and shown that this can be written
in cartesian form as y = ¢ cosh (x/c).

O We have introduced the ideas of
a curvature ® = dy/ds
b radius of curvature o = ds/dy
¢ centre of curvature (x — o sin {, y + @ cos ).

0 We have given cartesian and parametric forms for the radius of

curvature:
[+ (dy/dx)z]y2
B d?y/dx?
(x-2 + y2)3/2
EXERCISES

1 Obtain the equation of the tangent to each of the following curves at the
point where x = 0:
ay=x’+e"
by’ =x*+yx*+1)
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= cos [T
cCy= 2

dy=uxy+x’
2 Obtain the equation of the normal to each of the following curves at the
point where y = 1:
ax’+y’=2
bx*y+yx=6
¢ (x+y) =x(x - y)
d x = sinmy
3 Obtain the radius of curvature of each of the following curves at the
point x = —1:
a(x+y)P=x-y? +1
b y = xel+x
c Xl +xy+yr=1
4 Obtain the radius of curvature at the point ¢t = 0 on the curves

a x = sint, y = cosht
2

bx=t+,y=t—1t

cx=0r+1,y=t-1

d x =sint,y =¢'
ASSIGNMENT

1 Obtain the radius of curvature and the position of the centre of curvature
of the curve y = x* + 1 at (0,1).

2 Show that for the curve described in intrinsic coordinates by s = ay?/2
(where a is constant) the radius of curvature satisfies p? = 2as.

3 Obtain the equations of the tangent and the normal at x = 0 for the curve
y = exp x°.

4 Determine the radius of curvature of the curve y = exp x* at (0,1).

5 Prove that at any point on the rectangular hyperbola xy = ¢? the radius
of curvature @ = r*/2c?, where r is the distance of the point to the origin.

6 Determine the equation of the tangent and the normal at a general point
where y = t on the curve y* + 3xy + y> = 5.

7 Obtain the equations of the tangent and the normal for the parametric
curve x = 4t — t, y = 41> + ¢ at a general point ¢.

FURTHER EXERCISES
1 The parabola y* = 4ax and the ellipse
2 2
X Y
—_— + T =
a2 b2

intersect at right angles. Show that 2a* = b2.
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2

3

4

5

6

7

10

Show that the equation of the tangent at the point (x,, y,) on the curve
ax> + bxy + ¢y’ +dx +ey +f=0
where a, b, ¢, d, e and f are constants, is given by
axx; + 3b(xyr + x1y) + cyyy +3d(x + x) +de(y + y)) +f=0

(This equation is the general second-degree equation in x and y and
includes the circle, parabola, ellipse and hyperbola. The transformations

uv — uv, + uv)
u— 3(u+ uy)

where u, v € {x,y} enable the equation of the tangent at a point on any
one of these curves to be written down straight away.)

Obtain the coordinates of the centre of curvature at the point (1,2) on
the curve (x — y)? = 2xy — x — y.

Show that the perpendicular from the focus (a,0) on the parabola
y® = dax to any tangent intersects it on the y-axis.

P and Q are two points on the rectangular hyperbola xy = 1,
constrained so that the line PQ is tangential to the parabola y* = 8x.
Show that the locus of R, the midpoint of PQ, is also a parabola
Y2+ x=0.

Identify each of the following curves and give a rough sketch:
axy—-2y—x+1=0

b xy + 12 = 3x + 4y

cxXX+2y +4x+ 12y +18=0

d 2x> — y? — dx + 6y = 15

e (x +y)? =20+ 3)(y+4)—33

For the equation defined parametrically by

x =sin*0 + 3sin O
y = cos’ 0 — 6 cos 0

obtain the coordinates (X, Y) of the centre of curvature at a general
point. Eliminate 8 and thereby obtain an equation relating X and Y;
this is the locus of the centre of curvature, known as the evolute of the
curve.

Show that for the parabola y* = 4ax the locus of the centre of curvature
(the evolute) is the curve 4(x — 2a)’ = 27ay*.

Show that if y = ax® + bx’ then at the origin ¢ = 1/2a and do/dx =
—3b/2a’.

Determine the radius of curvature of the parametric curve

x = cos’ psin p
y = sin? p cos p

at a general point with parameter p.
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11 The bending moment M at a point on a uniform strut subjected to
loading is given by M = El/p, where E and I are constants dependent
on the material of the beam and @ is the radius of curvature at the
point. When suitable axes are chosen the profile of such a strut is
defined parametrically by x = a(t — sin ¢), y = a(1 — cos #). Show that
M = (El/4a) cosec (12).

12 A curve is defined by the equations x = 3 tan’ 8, y = 1 + 2 tan> 0.
Prove that the radius of curvature at a general point with parameter
0 is 6 tan 6 sec® 6.

13 A curve is defined parametrically by the equations

x=2cos0 —2cos’0 + 1
y=2sin 0 + 2sin 6 cos 6

Show that the normal at a general point is
x sin (6/2) + y cos (0/2) = 3 sin (36/2)

14 A curve is defined parametrically by x = a sin 268, y = a sin 0. Show
that

d?y/dx? = sin 8 (1 + 2 cos® 0)/4a cos® 20

Obtain also the radius of curvature at the point (0, a).

15 A uniform chain of length 2/ and weight w per unit length is suspended
between two points at the same level and has a maximum depth of
sag d. Prove that the tension at the lowest point is w(/2 — d?)/2d, and
that the distance between the points of suspension is

[(2 - d?)d] In [(I + d)/(I - d)]

16 When a body moves along a curve it experiences at any point an
acceleration u?/g along the normal, where u is its speed and g is the
radius of curvature. Find this normal component of acceleration at
the origin for the curve y = x*(x — 3) if the speed is a constant 12 m/s.

17 Determine dy/dz for each of the following and list any real values
of z for which dy/dz is not defined.

a y = z21n(1 + sinh )
b
1,23
y_I 2 13
c
14z —a?
T 1—z+ 12
18 If, for z > 0,
1- g2
y_1+a:1/2

obtain formulae for dy/dz, d*y/dz? and d®y/dz3.

19 guygose y=1/(1+1/z) and 2 =1/(1+1/y). Obtain dy/dz and
z/dzx.
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Now that we can apply some of the techniques of differentiation to
functions of a single variable we shall see to what extent we can
generalize these ideas to functions of several variables.

After completing this chapter you should be able to

d

g
g
g

Use the language and standard notation for functions of several
variables;

Obtain first-order and second-order partial derivatives;

Use the formulas for a change of variables correctly;

Calculate an estimate of accuracy in using a formula where the
variables have known errors.

At the end of this chapter we tackle practical problems of tank volume
and oil flow.

7.1 FUNCTIONS

We know that, given a real function f, we can draw a graph of it in the
plane by writing y = f(x). The set of arguments for which the function is
defined is called the domain of f, and the set of values is called the range or
image set of f (see Chapter 2).

What happens when we have a function of more than one variable? For
example, suppose we consider the equation z = (x + y) sin x. In this case,
given any pair of real numbers x and y, we obtain a unique real number z.
We have a function of two real variables, and we can write f: R* — R
where

z=f(x,y)=(x + y)sinx

This is just a generalization of the ideas we have already explored for a real
function, which in this chapter we shall call a function of a single variable.
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of |

\J

0 X

Fig. 7.1 A function of two variables.

It was a great asset when considering functions of a single variable to be
able to draw the graph of the function. Here things are not quite so simple
because in order to give a similar geometrical representation we shall need
three axes Ox, Oy and Oz. Luckily we can represent situations like this by
using a plane representation (Fig. 7.1). Instead of the ‘curve’ which we use
to represent a function of a single variable, there corresponds a ‘surface’
for functions of two real variables.

However, once we extend the idea one stage further and consider func-
tions of three real variables, we lose the picture altogether. Luckily we
have the algebraic properties of the functions to enlighten us, and it is sur-
prising how little we feel the loss of an adequate geometrical description.
Nevertheless we can talk of ‘hypersurfaces’ for functions of more than two
variables.

7.2 CONTINUITY

Intuitively a function of two variables is continuous at a point if the surface
at the point has no ‘cuts, holes or tears’ in it. To put this a little more
precisely, suppose (a, b) is a point in the domain of a function f; then f is
continuous at the point (a, b) if f(x,y) can be made arbitrarily close to
f(a, b) just by choosing (x, y) sufficiently close to (a, b) (Fig. 7.2).

Another way of thinking of this is that, whatever path of approach we
use, as the point (x, y) approaches the point (a, b) the corresponding value
f(x,y) approaches the value f(a, b).
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ZA
z=flxy)
fab) - —— —— —
|
|
|
| y
L/
~—¢_la,b)
/™~
0 =x

Fig. 7.2 Continuity at (a, b).

7.3 PARTIAL DERIVATIVES

When we considered functions of a single variable we saw that some func-
tions which were continuous at a point were also differentiable there
(Chapter 4). You probably recall the definition

d . x+ h) - flx

-—f :f’(x) = l]m f(—_)_&

dx h—0 h
We make similar definitions for functions of several variables. For instance,
suppose f is a function of two variables. Then we define

f&x + hy) = flx.y)

o f:(x.y) = lim

ox h—() h
of _ e Sy + k) = flxy)
dy [ix.y) = /ET(I) k

whenever these limits exist, and call these the first-order partial derivatives
of f with respect to x and y respectively.
Notice the special symbol 9 for partial differentiation. It must be carefully
distinguished from the Greek delta § and the d of ordinary differentiation.
At first sight these definitions seem rather formidable. However, when
we examine them carefully we see that they tell us something very simple.
If we look at the first one we notice that only the x part varies and that the
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y part is unchanged. This gives us the clue. We treat y as if it is constant,
and differentiate in the ordinary way with respect to x.

Similarly, inspection of the second expression reveals that to obtain the
first-order partial derivative with respect to y we simply differentiate in the
ordinary way, treating x as if it is constant.

Geometrically we can think of the first-order partial derivative of f with
respect to x as the slope of the curve where the plane parallel to the Oyz
plane through the point (a,b) cuts the surface defined by f (Fig. 7.3).
Similarly the first-order partial derivative of f with respect to y is repre-
sented as the slope of the curve where the Oxz plane through (a, b) cuts
the surface defined by f.

Although we have defined partial derivatives for a function of two vari-
ables only, the definition can be extended in a similar way to functions of
several variables.

To see how very easy it is to perform partial differentiation we shall do
some examples.

O Suppose
z = f(x,y) = sin 2x cos y
Obtain 0z/6x and 9z/dy.

|

|

|

|

|
—

a,b)

Fig. 7.3 Curves where planes cut f.
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Remember that to differentiate partially with respect to a variable, all
we need to do is to treat any other variables present as if they are constant.
To begin with we wish to differentiate partially with respect to x, so we
must treat y as if it is a constant. We obtain therefore

%=2c032xcosy

ox
Likewise
0
22 =~ —sin y sin 2x
dy
It really is as simple as that! |

Now you try one.

o If
u=f(s,t)=s5>+4st>? - ¢

obtain du/ds and Ou/ot.

Notice here we are using different letters for the variables. This should
cause no problems. When you have done this problem, read on and see if it
is correct.

Using our simple procedure we obtain

ou

— =25 + 4¢

os
Remember that we treat ¢ as if it is constant. This does not mean that every
term containing ¢ automatically becomes zero when we differentiate. If you
left out 4¢> you should think carefully about this point. Then check over
your answer for du/dt before proceeding.

Differentiating with respect to ¢t we obtain

ou
— = 8st — 3¢° (]
o

7.4 HIGHER-ORDER DERIVATIVES

Suppose we have a function f = f(x, y) of two real variables x and y for
which the first-order partial derivatives exist. We can consider differentiat-
ing these first-order partial derivatives again with respect to x and y. There
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are four possibilities, and we call these the second-order partial derivatives

of f:
*f 9 [of

‘5;=a<5;)
*f o [(of
6y6x=5(5>
o o5 o)
oxdy Ox\dy

$ 9o (o
ay*> 9y \dy

The definitions 1 and 4 are called the second-order partial derivatives of
f with respect to x and y respectively. Definitions 2 and 3 are known as
mixed second-order partial derivatives. It so happens that if these mixed
derivatives are continuous at all points in a neighbourhood of the point
(a, b). then they are equal at the point (a, b). It is very unusual to come
across a function for which this condition does not hold, and so we shall
assume that all the functions which we shall encounter have equal mixed

second-order

0 Obtain all

partial derivatives.

the first-order and second-order partial derivatives of the Example

function f defined by

We have

So therefore:

z=f(x,y)=x+sinx’y +Iny

0z
— =14+ 2
o 2xy cos x°y
0
55 = x?cos x’y + y~!
9%z 8
gx—i = a(l + 2xy cos x°y)
=0 + 2xy(—2xy sin x’y) + 2y cos x°y
= —4x’y? sin x?%y + 2y cos X’y
9’z 0 5
=21+ 2
3y ox By( 2xy cos x°y)

= 2x cos x’y — 2xy sin x?y (x?)
= 2x cos x%y — 2x% sin x%y
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2
ai;y = %(x2 cos x?y + y7 1)
= 2x cos x’y — x* sin X’y (2xy)
= 2x cos x°y — 2x°y sin x’y
8%z

0 5
— = 5(x2 cos x’y + y~h)

= —x?sin x¥y (x*) — y 2
= —x* sin x?y — y~?

A partial check is provided by the fact that the two mixed derivatives are
indeed equal. [ ]

So that you will acquire plenty of practice, we shall take a few steps before
proceeding any further.

7.5 Workshop

1
i_J Exercise Consider the following function of two real variables:

X
f(x,y) = tan™! (—)
y
Obtain the first-order partial derivatives f, and f, and thereby show that

of = of
_— + —_ =
X Y y 3y 0

Try it first on your own and see how it goes. Then step ahead.

2 lj Differentiating partially with respect to x and with respect to y in turn gives

of __ 1 1
ox [1+ (x/y)’]y
of 1 -X

dy ~[1+ )]y
Consequently
of of 1 X —x
—_ + —_ =
Y ox y(')y [1+ (x/y)?] y

If you managed that all right, you should move ahead to step 4. If some-
thing went wrong, then try this.
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D> Exercise Suppose
flx,y) = cos® (x* = y?)

Derive the first-order partial derivatives and show that

of  of
— 4+ x—= =
yax xay 0

Try it carefully and take the next step.

Given that
fx,y) = cos’ (x* = y?)
we have
a
% = —3 cos? (x* — y?) sin (x> — y?)(2x)
g—;c = =3 cos? (x* — y?) sin (x* — y?)(=2y)
It follows at once that
of _of
— 4 y—= =
yax xay 0

If things are still going wrong there are only two possibilities. Either you
are having difficulty with the ordinary differentiation, or you are forgetting
when partially differentiating to treat the other variable as if it is a con-
stant. Go back and review what you have done to make certain you can
manage this correctly.

Assuming that all is now well, we can move ahead. Now we are going to
test the work on second-order derivatives.

D>Exercise Suppose z = In ¥/(x* + y*). Show that Laplace’s equation in two
dimensions is satisfied, namely

9%z 8%z
) + T3 = 0
ox dy

Laplace’s equation has many applications and you will certainly come
across it again from time to time. It is an example of a partial differential
equation.

As soon as you have made a good attempt at this, move ahead to the
next step.
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S l—’—| It may help to simplify z before differentiating. Here we have
z=31In(x* +y?)
using the laws of logarithms, and so

0z 1

o = 207+
. x
- x2 + y2
So

QZ_Z () = x(2)

x> (x* + y?)?
T

(x> +y?)?

Now we don’t need to do any more partial differentiation for this problem.
Can you see why not? It is because of symmetry. Look back at the original
expression for z; if we were to interchange x and y in it, it would not be
altered. Therefore if we interchange x and y in this partial derivative we
shall obtain a correct statement. So, by symmetry, we obtain

9%z X - y2

ay?_ - (yZ + x2)2

Always keep an eye open for symmetry, it can save you a lot of time and
effort!
Finally, adding these two second-order partial derivatives produces

0% 0% _y-x sy

+ == : =0
x> 9y’ (x* + y')2

If all's well then you can move ahead to step 7. However, if it went wrong
then try this problem first.

>Exercise Given that
w =sin (2x + y) — (x — 3y)*

verify that the mixed partial derivatives are equal.
As soon as you have done it move on to the next step.

6L There is no symmetry here, so we have no alternative but to get our heads
down and do the partial differentiation. Of course we only require the
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mixed second-order derivatives, and so we would be doing needless work
if we obtained all four second-order derivatives. Did you? If you did, con-
sole yourself that you have at least practised some partial differentiation;
your time was not completely wasted.

We have

a—w=2005(2.x+y)—3(x~3y)2
ox

%3 = cos (2x + y) — 3(x — 3y)* (=3)
= cos (2x + y) + 9(x — 3y)?

Differentiating again,

9*w .
= —2sin (2x + y) + 18(x — 3y)
ox 0y
2
OW  3sin (2x + y) — 6(x — 3y) (=3)
Oy dx

= —2sin (2x + y) + 18(x — 3y)

If trouble persists, make sure you can handle the chain rule for ordinary
differentiation (Chapter 4).

7
D>Exercise Show that if f is a differentiable real function and if z = f(x/y) [i
then

x% + 9z _ 0
ox yay a
Try hard with this. Although it seems a little abstract we have already done
all the necessary work before when we differentiated tan™' (x/y) at the

beginning of this workshop. As soon as you have made a good attempt
read on.

We have straight away, using the chain rule for ordinary differentiation, JF‘

o)) o

Remember: first differentiate with respect to the bracketed terms, then
multiply the result by the derivative of the bracketed terms with respect

to x. Similarly,
0z XN [ —x
5
ay y/\y
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g or() (5 -

You may have not managed that, but even if you did it is a good idea to
try another exercise like that. Before tackling it, look very carefully at the
previous exercise to make sure you have a good start.

Consequently,

D>Exercise Suppose f is a twice differentiable real function. Deduce that if
z = f(r), where r = V(x* + y?), then z satisfies the equation

622 6 z

ox? 8y"

f(r) + f(r)

When you have tried it, take the next step.

95 Using exactly the same idea as before, we obtain

—_fV( +Y)—(x +y) "7 2
=Y +
=V + ) s V(x )
Now differentiating again we obtain
V(x +y?) — x (12) (x* + y?)~ "2 2x

=fVEE Y (o +y?)
FPVEE )
- A BTS2 o E
2 , xZ
= fV(x +Y)(—z—'—)m+fV(x2+Y“)p+—y‘z

Similarly
2

a_izf'i/(y2+x)(yz 2)3/2+fV(y +x%) z g

Adding we obtain

5’7 —i =V +y9) (2 z/z+fi/(x +y2) 2ty

=fV(x?+y 1 AT + V(3 + y?)

(2
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Therefore
9%z 0% 1
hilind il 2 + "
axz + ayZ rf (r) f(r)

We shall soon see that there is in fact a much easier way to do this.

A word about the notation for partial differentiation is not out of place at
this point. Much has been written about the problems inherent with the
notation, particularly when (as in the previous workshop) more than two
symbols for independent variables are involved. It is necessary to be clear
which are the independent variables.

For example, suppose that z = x> + y® and that x = rcos® and y = rsin 8.
Here z is expressed in terms of two independent variables x and y. It is also
possible to express z in terms of two other independent variables r and 0.
It would be a mistake to express z in terms of mixtures such as r, x and y,
or x and 0, and to attempt to form partial derivatives, because the vari-
ables would not be independent and so the partial derivatives we attempted
to find would be incorrect. Major errors have followed from misunder-
standings of this nature; many attempts have been made to improve the
notation, but the result is generally unattractive and difficult to follow.

7.6 THE FORMULA FOR A CHANGE OF VARIABLES:
THE CHAIN RULE

In the final exercise in the previous workshop it would have been correct to
use the abbreviated notation r instead of ¥ (x> + y?), provided we obeyed
the chain rule for ordinary differentation diligently. In fact we shall now
state a version of the chain rule for functions of more than one variable.

If we write f = f(x,y) where x = x(u,v) and y = y(u,v) we are using
x and y in two ways: first as a dummy variable, and secondly as a function
symbol. We have done this sort of thing before in the case of real functions,
and shall find it particularly useful to avoid introducing many unwanted
symbols. To express this in words: the function f is expressed in terms of
the independent variables x and y, and the variables x and y are themselves
expressed in terms of independent variables # and v.

Here now is the chain rule. Suppose that f = f(x, y) and that x = x(u, v)
and y = y(u,v). Then, if all the partial derivatives exist,

of _ofox  of oy
ou OxOou 0dyou

of _ofox  of oy
v dx dv oy dv
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Notice how when we choose to differentiate with respect to one of the
subsidiary variables we must be impartial. We differentiate with respect to
each of the main variables in turn, multiplying the result in each case by
the derivative of the main variable with respect to the subsidiary variable.
This chain of products is then added together. The formula is reminiscent
of the formula for differentiating a function of a single variable:

dy _dydu
dx  du dx

Indeed, this is a special case of the more general rule.

However, there is one important point to watch. In the case of a single
variable the formula looks right because we can imagine du as cancelling
out. Indeed, if we extend the definitions to allow dy and dx to be used
separately as differentials the procedure becomes justifiable. However, we
must never cancel out symbols such as dx or dy. You can see why if you
look at the formulas for a change of variables: it would give 1 = 2!

To avoid unnecessary complications we shall justify the formula for a
change of variables in a special case only. Suppose f = f(x,y) and that
x = x(1), y = y(¢). You may like to think of ¢ as time or temperature; then
as t changes so too do x and y and consequently the value of f.

If d¢ is a small non-zero change in r and 6x and Oy are the corresponding
changes in x and y respectively, these in turn produce a change of in f.
Now

Of = flx+dx,y+dy) — f(x.y)
= f(x+0x,y+0y) — f(x,y+dy) + f(x,y+dy) — f(x.y)
_ fx+3x,y+dy) — f(x,y+dy) x4 fOx,y+38y) — f(x.y) s
- dox dy Y
Dividing through by &¢,

f _ flxtdx,y+dy) — flx.y+dy) dx  flx,y+dy) — f(x.y) dy
ot ox ot dy ot

Now we consider what happens as 3¢ tends to zero. we have dx = 0, 8y = 0
and also

o dx by dy o 4
ot  dt’ ot . dr’ ot dr
Moreover,
fe,y+dy) ~ fix,y) | 9Of
dy 8y
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footdx,y+8y) = flx.y+0y) flx+dx.y) = flx.y) of
dx Ox ox

Consequently,

af _ofdx  of dy
dt  dx dr 8y d:

Here we have made a number of assumptions which we have not justified.
Principal among these is that the limits exist and that we can select the
order in which to take these limits. Nevertheless we have given a justifica-
tion for the formula in the case where x and y are both functions of a single
variable ¢, and it is a simple matter to extend this to the more general case.

It is important that we learn how to apply the chain rule correctly. Unfor-
tunately it is sometimes possible to misapply the chain rule and still obtain
a correct result. Diligent examiners are always on the lookout for errors of
this kind, and so marks will be lost if you are sloppy!

O If z = (x + y)* where x = r cos 8 and y = r sin 8, show that
oz, 0%

o Taer

2r?

We begin by finding the first-order partial derivatives:
0z _0z0x 020y
or  dx or dy Or
=2(x+y)cos 0 + 2(x + y)sin 0
= 2(x + y) (cos 6 + sin 0)

Do you follow it so far?
See if you can obtain the other first-order partial derivative.

Here we are:

0: _oz0x  0z0y

00 0Ox00 0oy af
=2(x +y)(—rsin 0) + 2(x + y)rcos 0
= 2r(x + y)(cos 68 — sin 6)

There is not normally too much of a problem at this stage; it is when we
differentiate again that some students, and unfortunately textbooks, over-
look terms. It is important to remember that the chain rule must always be
used when we differentiate with respect to a subsidiary variable.
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So now
8z 8 [0z
arr ~ or\or
= 5 [2(x + y)](cos 6 + sin B) + 2(x + y) % (cos O + sin 0)

The second term is zero. Therefore, applying the chain rule to the first
term,

0%z . ] ox 0 dy
a2 = 2(cos 6 + sin 0) [a(x+y)5+$(x+y)5;]
= 2(cos 0 + sin 0) (cos 6 + sin 0)
= 2(cos* © + 2 sin 8 cos O + sin? 0)
= 2(1 + sin 20)
Also

Qfg o (62
902 96 \490

=2(x + y)—[r(cos 0 — sin 6)] + 2r(cos 6 — sin 6) (x +y)

= 2(x + y) [r(—sin 6 — cos 08)] + 2r(cos 6 — sin 6) (—rsm 0 + rcos )
= 2r’[—(sin 6 + cos 6)* + (cos 6 — sin 0)?]

= 2r?(—4 sin 0 cos 0)

= —4r% sin 260

Therefore

02 62
2r’ — + — = 2r*[2(1 + sin 20)] — 4r* sin 20 = 4r?

or 00
As an exercise you may wish to check this by first eliminating x and y in the
expression for z and then differentiating directly with respect to r and 0; it’s

much quicker!

7.7 THE TOTAL DIFFERENTIAL

In the case of a differentiable function f of a single variable we originally
defined dy/dx as a limit, so that the symbols dy and dx used on their own
were meaningless. However, we found it useful to be able to use these
symbols separately, and accordingly we extended the definition (Chapter
4). We call dx a differential, and we can think of it as a change in the value
of x, not necessarily small. In fact it is any real number. The differential dy
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is then defined by dy = f’(x) dx. Of course if dx happens to be small then
dy is an approximation to the corresponding change in y.

In the case of a function of several variables we adopt a similar approach.
Specifically, suppose that z = f(x, y). Then the differentials dx and dy
are defined to be any real numbers. You may choose to think of them as
changes in x and y respectively which are not necessarily small. The dif-
ferential dz is then defined by

dz is usually called the total differential.

When we derived the special case of the chain rule (section 7.6), we showed
that when dx and dy are small the total differential is approximately the
corresponding change in z. We can therefore use this to obtain a rough
estimate of the error caused by inaccuracies in measurement.

O A surveyor estimates the area of a triangular plot of land using the
formula

A=4%absinC

where a and b are the lengths of two sides and C is the included angle. If
the sides are measured to an accuracy of 2% and the angle C, measured as
45°, is measured to within 1%, calculate approximately the percentage
error in A.

You may have a go at this on your own if you wish.

Using the total differential,

dA=%da+%db+%dC

ob oC
Now da = £0.02a, db = +0.02b and dC = +0.01C. Also
A 1, . 6A 1 04 1
aa—zbsmC 6b—2asmC 6—C——§abcosC
Substituting,

dA = 1/2 b sin C (£0.02a) + 1/2 a sin C (£0.02b)
+ 1/2 ab cos C (£0.010)

= 1/2 ab sin C (£0.02 £ 0.02 % 0.01C cot C)
Now C = 45° = n/4, and so cot C = 1. Therefore
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dA = A [£0.02 £ 0.02 £ 0.01 (7/4)]
The greatest error occurs when all have the same sign, so that
|[dA| < 0.014 [2 + 2 + (7/4)] = 0.0484
So the error is not more than 5% approximately. |
Finally, we mention a few of the notations which are sometimes used for
partial differentiation. Suppose that z = f(x,y). Then
0z of

5; ax fX fl le
are all equivalent and
0%z d°f
v D
ox ay ox 8_)’ f\‘\ f12 12f

are also equivalent to one another. There are many variations of these, and
it is necessary to determine which notation is being used at any time. Our
notation is the one which is most widely used.

So now we are ready to take steps. We are going to tackle a problem which
is sometimes incorrectly solved in textbooks.

7.8 Workshop

1
::' Exercise Transform the partial differential equation

92 9?
92,92 _ )

ox*  ay?

where z is expressed in terms of cartesian coordinates (x,y), into a partial
differential equation in polar coordinates (r,0), where x = r cos 6 and
y = rsin 0.

Let us begin by writing down formulas which express the partial deriva-
tives with respect to x and y in terms of the partial derivatives with respect
to r and 8. When you have done this, take the next step.

We have
0z _ 0z or 0z 00
ox drodx 00 ox

This is a straight application of the chain rule. Similarly,



If all is well, follow through the next step. If you made an error, write down
formulas which express the partial derivatives with respect to r and 0 in
terms of those with respect to x and y. Don’t move on until you have done

this.

0z 08z 0or 0z 00

= + — —
dy Odrdy 00 dy
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Here they are:

We now have a choice as to which pair to use. There are advantages and
disadvantages either way. If we use the first pair we shall have to express r
and O explicitly in terms of x and y so that we can differentiate. If we use
the second pair we can find the partial derivatives easily enough, but we
shall then have to eliminate to obtain the differential equation and it might

0z 0z 0x
dr  ox or
9z 0z dx
80 ox 00

be difficult to find our way.

Let us be definite: we shall use the first pair. So we must obtain r and 6
explicitly in terms of x and y, and then the partial derivatives. Do this and
then take the next step.

0z dy
ay or
0z dy
ay 90

= |

We have r* = x> + y? and so r = J/(x* + y?). Consequently,

Also tan 6 = y/x so that = tan™' (y/x). Therefore

and so

or _x
ox r

Now substitute these expressions into the formulas for a change of vari-

ables, and take the next step.

or X

ax V(2 + )

or _ y

ay YV +y)

0 -y

ax > +y?)

a0 X

dy  (F+y)
ar _y a0 -y
y r ox 7

|
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\?l—‘ We obtain

az 82 8r %6_6

6x 6r ox | 00 ox
_0zx 09z (y)

orr 088 r?

and

82 Gz 6r a_z_ B_Q
ay or 6y 00 9y

_9zy 9z x

orr 0807

Now we are ready for the second-order derivatives with respect to x and y
respectively. You find the second-order partial derivative with respect to
x — but be careful! This is the place at which we pass the bones of reputa-
tions bleached white by the sun.

Here we go! We must use the chain rule again and not overlook any terms:

8’z Bzx+3_z(—y)

ax? Bx arr 90 r?
ko, 0 lon) Loy o (1)
T rorox ox \r Or r? 90 ox yax r? 99

Here we have simply used the product rule but kept the two sets of vari-
ables apart. Since x and y are independent we can deduce that their partial
derivatives with respect to each other are zero, and so the third term is
zero. We must use the chain rule again to expand the remaining terms. So
the second-order partial derivative of z with respect to x is

_loz, [o(ldz 6r+6 162)68]
T ror ar \r or 00 \r or
[ (L), o (Lo a_e]
Y ar 2 99 90 \r2 90 ox
This is where people make the error: they overlook the mixed derivative

terms. As it happens they end up with the correct equation at the final
stage, even though the second-order derivatives themselves are incorrect.

To continue:
18%2 1 0z 1 8%\ (~y)
+ - -5 =+ |-
r * [(r ar? r? 8r) r <r (')Gar) r?

o'
dx?

0’z _
dx?
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(2o, 1 S x, (19 (=
Y r* o0 r? 9ro0) r r? 862) r?
_19z X% x0z xy 8%z 2ydz xy 8’z y' 9%
Trdr ot Por rodor r* o0 rored  r* oe?

237

Well, there it is. Pretty tough going, isn’t it? You have to keep a clear head
and make sure you use the chain rule properly. If you didn’t manage that
then you are undoubtedly part of a huge majority, so you may take con-
solation in that. Also you may be relieved to know that the going seldom
gets harder. Anyway, we still have the other second-order derivative to

obtain: so off you go!

Hold on to your hats.

8%z 0 (dzy 0z x

87“5(57 %,—2)
Sled 0 (Lo doon, 0 (1)
rordy oy \ror r’* 90 ay dy \r* o8
;g%z(zgz 9 1)8_9]
r or or \r or/dy 00 r/ dy
HQO_(ia_z)g 3<1_)_6]

[ or \r* 00/ dy 90 \r* 98/ dy
=1%+y[<16_2£_i%>z (1 822)1]
r or rorrt rtor)r r 000r) r?
+x'(—_2§_z_+_£ 022>z+(ia_22>1]
> 90 r?oree) r r? 902/ r?

_loz 29’z y* oz xy 0%z 2xy 0z xy 8%z  x* 9’z
Tror o’ rPor robor r 98 rorad 1 962

Lastly we must add the two expressions for the second-order derivatives

and equate to zero.

This is what you should get if you remember that x> + y? = r2:

so that

10z
r or

oz
or?

e 10
arr ' 290
18z 1oz,
r2a0%  ror

This is Laplace’s equation in two dimensions expressed in polar coordinates

(see also section 7.5).

|



238  PARTIAL DIFFERENTIATION

If you would like even more practice at this sort of work you can always
try the other approach. The alternative method involves determining ex-
pressions for the second-order derivatives of z with respect to r and 0 in
terms of those with respect to x and y and then using Laplace’s equation in
cartesian coordinates to eliminate x and y. It helps to know the equation
we are aiming to derive.

You probably feel that those steps were quite steep, but if you persisted
and completed the exercise you will have gained some useful experience.
Remember to pay particular attention to brackets. They are not there for
decorative purposes: they play a vital part. Students who pay scant atten-
tion to brackets rarely succeed in mathematics.

7.9 Practical

VOLUME ERROR

The volume of a hydraulic tank, in the shape of a ring, is calculated using
the formula

V = nr’h — ns’h

where h is the height and r and s are the external and internal radii respec-
tively. If r and s were measured 3% too large, estimate the maximum error
in V if h is correct to within 1%.

Try this. We need the formula for the total differential. Begin by writing
this down for these symbols, obtain the partial derivatives and substitute
into your equation.

This is correct:

1'% 1% 1'%
= — —ds + — dh
dv 3 dr + s ds Y
Now
oV 1% av 2 2
o 2nrh s —2msh o nr s

Also dr = 0.03r, ds = 0.03s, dh = 20.01A. This gives
dV = 2nr?h(0.03) — 2ns2h(0.03) = (nr? — ms?) (0.01h)
= V(0.06 % 0.01)

So the calculated value of V is between 5% and 7% too large.
It’s all quite simple really. Remember the chain rule, and remember to
put in brackets whenever necessary, and everything should be fine.
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OIL FLOW

Here is a problem about oil —~ just to make sure everything is running
smoothly!

The motion of a light oil flowing with speed u past a cylindrical bearing
of radius a may be roughly described by the equation

2

a .
¢=ucosa(r+——>cose+zusma
r

where a is a constant and r, 8 and z are independent variables. Show that
¢ satisfies the equation

2
P 100 10% Py,

ar? r or ——2-

Try it yourself first, and then we will look at it stage by stage.

1 To solve this problem we merely need to show that ¢ satisfies the partial
differential equation. Don’t, whatever you do, take your starting-point
as the partial differential equation and then try to deduce the expression
for ¢ from it. We haven’t been given enough information for that
approach, even if we wished to attempt it that way.

We begin by finding the first-order partial derivatives:

e
a—=ucosa(1—;5>cose
%=ucosa<r %)(sme)
—éq—z)—=usina

Check yours and see if they are right. The next step, of course, is to obtain
the second-order derivatives we need.

2 Here we have

62 22
—q)—ucosa(a)cose

ar? r

RS a

302 ——ucosa(r+ r)cose
9°p

_7=0

1]
N
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If you have these correct, it remains to substitute them into the left-hand
side of the partial differential equation and confirm that the result is 0.

3 We obtain
Po 190 1 0% 3%
orr ror r 9e* 9z’
2 2 2
= u cos a —2;) cose+ucosa(l - a,) cos 0
r r
u cos o a’
— 5 (r + —) cos 0
r- r
=0
SUMMARY
We have

O Introduced the notion of partial differentiation and seen how to
obtain partial derivatives of the first and second order.
O Derived the chain rule

than one independent variable.

of _ofox  of oy
du  Ox du Oy du
of _ofox  of oy
v dxdv  dy v
and practised its use.
O Used the total differential
0z 0z

dz=—dx + —d

R R et

to estimate errors in calculations which involve formulas with more

EXERCISES

1 Obtain the first-order partial derivatives of the functions defined by the

following formulas:

a f(x,y) = x* + yx?

b f(x,y) = sinxycos (x + y)
¢ f(x,y) = (x + 2y)°
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d f(x,y) = exp(x + y)cosxy
e f(x,y) = ycosh(x + y)
f f(x,y) = cosh(x/y)
2 Obtain the mixed second-order partial derivatives of each of the
following functions defined by the formulas:
a f(x,y) = y(x* + y°) + sinxy
b f(x,y) = V(x + 2y) + x%
¢ f(x,y) = x%in(3x + 4y)
d f(x,y) = sin(x*/y°)
3 Obtain expressions in terms of u, v and partial derivatives with respect to
u and v for 8z/dx and 9z/dy if
ax=utviy=u+v
bx=u+2v,y=2u+v
cCxX=u+tu,y=v-—u
dx=yw*+vd,y=ul

ASSIGNMENT

1 Obtain the first-order partial derivatives of the functions defined by each
of the following formulas:
a f(x, y) = sin x cos y + xy?
b f(x,y) =e*cosy + e siny
cz=IhyKE +y>
dz=(x+2)(x -2
e z = sin (u> — V%)
2 Verify the equality of the mixed second-order partial derivatives of the
function f defined for all real x and y (x*> + y* # 0) by

f(x, y) =In (x* + y*) + cos (x + 2x%)
3 Obtain an expression in terms of u# and v and partial derivatives with
respect to u and v for
oz 0z
ox Oy
ifx =e“cosvandy = e"sin v.
4 The force on a body is calculated using the formula

mym,
F = k2
r

where k is constant, m, and m, are masses and r is a distance. Calculate
approximately the percentage error in F if the massses are measured to
within 1% and the distance to within 5%.
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FURTHER EXERCISES

1Ifx=rcosBandy =rsin 6, and z = f(x, y) = g(r, 8), prove that
ag, = (xf +yf)r
b ge = xfy — yf:

2 1 2
¢ (&) + = (g = (f* + (£)°
2 Show that if u = In x + In y and v = xy then
oudv _ oy ou
ox dy  dx dy

3 Ifz=f(x +y) + g(x — y), where f and g are both twice differentiable
real functions, prove that
0%z B 0%z
ox? oy’

Hence or otherwise show that z = sin x cos y and z = ¢" sinh y each
satisfy this partial differential equation.
4 If z = xy", where m and n are constants, show that

dz/z = mdx/x + ndyly

51f z = In (x* + y?). prove that z,, + z,. = 0. Show further that if
z = f(x* + y?) then

Zoe + Zye = 4f(0) + 4f(0)

where t = x? + y%.

6 If z = f(y/x) show that xz, + yz, = 0. Hence or otherwise show that this
partial differential equation is satisfied by each of the following:
a z = sin [(x? + y)/xy]

b z = In (y/x)
¢ z=exp [(x — y)x + y)]

7 A beam of very low weight, uniform cross-section and length / simply
supported at both ends carries a concentrated load W at the centre. It is
known that the deflection at the centre is given by y = WI*/48EI, where
E is Young’s modulus and / is a moment of inertia. E is constant but the
following small percentage increases occur: 2¢ in W, € in / and 5S¢ in /.
Show that the error in y is then negligible.

8 The second moment of area of a rectangle of breadth B and depth D
about an axis through one horizontal edge is given by / = BD*3. If a
small increase of 8% in D takes place, estimate the change in B required
if the calculated value of [ is to remain constant.

9 In telecommunications, the transmission line equations may be written
as
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ai ov
Ri+LZL=-_%
! ot ox
v o1

+ =

GH O~ "m

where R, L, G and C are constant. Show that both i and v satisfy the
telegraphists’ equation

8’y 8%y ay

—5 = LC 5 + + RC) = + RG

a2 = L€z + (GL+ RO 5, Y
In the case of a distortionless line, RC = LG. If w? = 1/LC and a* =
RG, show that telegraphists’ equation becomes

%y _108% 2ady

o wrar  wor

10 The ratio r of the magnetic moments of two magnets was evaluated
using the formula r = (¢ + £})/(¢ — t}), where ¢, and ¢, are the times of
oscillation of the magnets when like poles are in the same direction and
when like poles are in the opposite direction respectively. If e, is the
percentage error in £ and e; is the percentage error in t,, show that the
percentage error in r is approximately 4t5t5(e, — e))/(£3 — t}).

11 The natural frequency of oscillation of an LRC series circuit is given by

1 < 1 R )
f 2n LC 4L?
If L is increased by 1% and C is decreased by 1%, show that the per-
centage increase in f is approximately R°C/(4L — R*C).

12 The heat generated in a resistance weld is given by H = Ki’Rt, where
K is a constant, i is the current between the electrodes and ¢ is the time
for which current flows. H must not vary by more than 5% if the weld
is to remain good. It is possible to control ¢ to within 0.5% and R to
within 2.5%. Estimate the maximum possible variation in current if
the weld is to retain its quality.

13 Air is pumped into a rubber tyre which has a volume given by
V = 2x2a%b. The internal radius r and the external radius R are
related to @ and b by r = b—a and R = b+a. If the internal radius
decreases by approximately 1% and the external radius increases
by approximately 2% obtain approximately an expression for the
percentage increase in volume in the tyre.
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In previous chapters we have described the processes of elementary
differentiation for functions of a single variable. In Chapter 7 we
extended some of these ideas to functions of several variables. There
is much more to calculus than this, and our next task is to consider
some other applications. We shall see in particular that series ex-
pansions play a vital role.

After studying this chapter you should be able to

O Obtain Taylor’s expansion of a function about a point;

O Expand f(x) as a power series in x using Maclaurin’s theorem;

O Apply I'Hospital’s rule correctly;

O Classify stationary points;

0 Determine points of inflexion.

At the end of this chapter we shall solve a practical problem con-
cerning a valve.

8.1 THE MEAN VALUE PROPERTY

The graph of a smooth function is shown in Fig. 8.1. By smooth we mean
that the function is differentiable everywhere. Geometrically this implies
that the curve has a tangent at all its points.

A and B are two points where this smooth curve crosses the x-axis. It can
be shown that there is at least one point P on the curve between A and B
with the property that the tangent at P is parallel to the x-axis. In symbols
we can express this by saying that if f(a) = 0 and f(b) = 0 then there exists
some point ¢ € (a,b) such that f'(c) = 0.

Although this property is intuitively obvious, its proof requires quite
advanced mathematical ideas and so we shall omit it. Surprisingly perhaps



THE MEAN VALUE PROPERTY 245

y-axis
A

Fig. 8.1 A smooth function.

this simple theorem, known as Rolle’s theorem, has quite profound con-
sequences. In particular it leads to Taylor’s expansion.

We shall deduce one simple generalization straight away; this is known as
the mean value property.

Suppose we have a smooth curve and two points A and B on it (Fig.
8.2). The mean value property says that there is some point P on the curve

Ll .
X-axis

Fig. 8.2 The mean value property.
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between A and B such that the tangent at P is parallel to the chord AB.
Suppose A is the point (a, f(a)) and B is the point (b, f(b)). Then

f(®) ~ f(a)

| =
slope AB b — g

Consider g = g(x) defined by
g(x) = f) — f(a) - [f"’) —fla )]( - a)

Because g is a sum of differentiable functions, g is also differentiable.
In fact

f(b) f(b) — f(a)

—a

g'x) = fx) -
Now g(a) = 0 and g(b) = 0, and so by Rolle’s theorem there exists
¢ € (a,b) such that g'(c) = 0. That is,

o) = f(bz = fa)
a

for some ¢, a < ¢ < b. This is precisely the mean value property.

8.2 TAYLOR’S THEOREM

If we rearrange the formula which describes the mean value property we
obtain

f) - f(a) = (b — a)f'(c) c € (a,b)
So if we write b = a + h then ¢ = a + 0h for some 6 € (0, 1). Therefore
f(a + h) = f(a) + hf'(a + 6h) 0 e(0,1)

It is possible to generalize this result so that, if we have a function which
can be differentiated twice everywhere in an open interval containing the
point a, then

f(a+ h) = f(a) + hf'(a) + f”(a + 0h) forsome O € (0,1)

Therefore
fla+h) =f(a) + hf'(a) + R,

where

2
R, = %f”(a + Bh) for some 0 € (0,1)
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Generalizing still further, if fis a real function which can be differentiated

n times at all points in an open interval containing the point a, then
hn—l

(n—1)!

fla + h) = f(a) + hf'(a) + —Z—!z-f”(a) + ...+ V@) + R,

where
L
R, = — f(a + 6h) for some 6 € (0,1)

This expansion is known as Taylor’s expansion of f about the point a4, and
R, is called the remainder after n terms.
So we have

n—1 pr

fat W =3 %00 + R,

r=0

where

hn
R, = ~ f"™(a + 6h) for some 6 € (0,1)

TAYLOR’S SERIES

If f is infinitely smooth, which means it can be differentiated an arbitrary
number of times, and if R,, — 0 as n — %, then we obtain Taylor’s series.
This is an infinite series representation for f(a + h):

fla+h) = 3 % 0@

If we use the variable x instead of h this becomes a power series in x:

20

fla+n =3 %00

r=0

The special case where a = 0 is known as Maclaurin’s series:
o xr
fx) = ZO — [P0
= 1!

Although you may not have a clear understanding of what is meant by an
infinite series until you study them in Chapter 9, be content for the time
being to derive Taylor and Maclaurin expansions for known functions.
However, one word of warning is in order.

It is not true that if we obtain a Taylor or Maclaurin series from a
function that the series expansion is always valid. Nor is it true that if the
series converges then the expansion is valid. In fact we are only entitled to
write equality in the case where R,,— 0 as n — . We shall therefore write



248  SERIES EXPANSIONS AND THEIR USES

the equals sign on the understanding that we are restricting the domain of
the function to those points for which R, — 0.

Here are two limits which can be quite useful in deciding whether or not
R, — O:

"

lim — =0 forall x e R

n—x 1!

lim x" =0 ifx e (—=1,1)

n—x

O Obtain the Maclaurin expansion for e*.
Maclaurin's expansion is
=3 X
f) = 3 0 f0)

It is therefore necessary for us to calculate the values of successive
derivatives of f at 0. If we put f(x) = €' we have f(0) = e" = 1. Moreover
f'(x) = €%, so that f'(0) = e" = 1. Clearly f"(x) = e* for all n € N, and so
f"(0) =1 for every n. Therefore

x n
R X
e =2
n=0 1

1+ +x2+x3+ NS
X+ =+ = —
2! 3! n!

Here

1
Rn = o

n:
which tends to zero as n tends to infinity for all ¢ € R. This shows in fact
that this expansion is valid for all x € R. n

THE EXPONENTIAL FUNCTION

We introduced the exponential function by stating that when e* is dit-
ferentiated with respect to x the result is €' (Chapter 4). We have now used
this to derive a representation of " as a power series in x. There are several
ways of introducing the exponential function. Another way is to define
exp x by means of the power series in x. and then to use deep theory of
power series (Chapter 9) to show that exp x obeys the laws of indices and
is unchanged when differentiated with respect to x. Yet another way to
define the exponential function is by means of a limit:
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lim (1 + f‘.)
n—o n

We shall give a very informal justification of this by showing how we can
obtain the infinite series representation from it. First we expand (1 + x/n)"
by means of the binomial theorem:

(ro2) - fs) - S e

1xX2 \n 1x2x3 n
1(1 — 1/n) 2+ 1(1 = 1/n)(1 — 2/n) e
Now as n — o we have for each fixed r e N
(1—1)(1—3)<1—3> (1—1)-”
n n n n

1x2 1x2x3
In this way we see that

1+x+

x\" x2 x3 x"
lim{l+—-) =1+x+_+-+..,+=+ ...
n—»eo( n> 2! 3! ' n!

=eX

as foretold.

We must not disguise the fact that once again we have used properties of
infinite series which, although plausible, require proof. Unfortunately
there are many properties which appear plausible in the context of infinite
series but which are false.

O Use Maclaurin’s expansion to obtain the binomial series for (1 + x)”,
where n is any real number.

Notice how Maclaurin’s expansion and series are different names for the
same thing. Some books distinguish between the expansion, which is the
formula with remainder, and the series, which is an infinite series. How-
ever, there is no consensus on this terminology.

First we should remark that if r is any real number we have defined a”
only for a > 0. Therefore we must presuppose that 1 + x > 0, so that
x> —1. Now

fx) =@ +x) so fO) =(1+0)"=1
f(x)=n1+x)"! so f(0O)=nXxX1=n
f'x)=n(n - 1)1 + x)" % so f"(0)=n(n — 1)
In general,
fOx)=n(n-1)...(n—r+ 1A +x)""
So
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fO0)=nn-1)...(n—r+1)
Therefore in the Maclaurin expansion the coefficient of x” is

nn—-1)...n—-r+1)
1X2X3X ...Xr

But by definition this is the binomial coefficient <:l> Consequently we
obtain

1+ x)" = (g) i+ <;l>x+ <;>x2+ S+ (f)x’+

Again we stress that in order to be justified in using this infinite series as a
representation for (1 + x)” we should need to examine the remainder after
r terms and show that it tends to 0 as r — oo. In fact this binomial expansion
is only valid when x € (-1, 1), thatis -1 < x < 1. |

You may have come across some other power series. There are power
series in x corresponding to the circular functions and the hyperbolic
functions. Here are the main ones:

% (_l)nx2n X2 N X4 x() N
Cos x = — o = - = rrT
2 2n)! 217 4
. £ (_1)11x2n+1 x3 . X5 X7 N
sin x = AT s & X T - T =
“ (2n + 1)! 317 5 7
B 2n 2 4 6
X X X X
cosh x = =1+_-+—=+ =+ ...
,ZO (2n)! 20747 el
© 2n+1 3 5 7
X X X
sinhx =) ————=x+ 7+ 5+5+ ...
,,E:(, 2n + 1) 35T

It can be shown that these are valid for all x € R. You will probably have
observed the close similarity between the series expansions for the circular
functions and their hyperbolic counterparts. We shall investigate this
similarity when we consider complex numbers (Chapter 10).

O Obtain the first four non-zero terms in the expansion of tan x as a power
series in x.
Here we put

f(x) = tan x
so f(0) = tan 0 = 0.
f'(x) = sec® x

so f'(0) = sec* 0 = 1.
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f"(x) = 2 sec x sec x tan x = 2 sec’ x tan x
s0 f'(0) = 0.

f®(x) = 2 sec? x sec® x + 2 tan x 2 sec x sec x tan x
= 2 sec* x + 4 sec? x tan® x
=2 sec’ x + 4 sec? x (sec? x — 1)
= 6 sec* x — 4 sec® x

so fA(0) = 2.

f®(x) = 24 sec® x sec x tan x — 8 sec x sec x tan x
= 24 sec* x tan x — 8 sec’ x tan x

so f(0) = 0.
FO(x) = 24 sec* x sec? x + 24 tan x 4 sec® x sec x tan x

— 8 sec? x sec? x — 8 tan x 2 sec x sec x tan x
24 sec® x + 96 sec* x (sec> x — 1) — 8 sec* x
— 16 sec® x (sec’* x — 1)

= 120 sec® x — 120 sec* x + 16 sec® x

so f(0) = 16.

f©(x) = 720 sec’ x sec x tan x — 480 sec’ x sec x tan x + 32 sec x sec x tan x
= 720 sec® x tan x — 480 sec* x tan x + 32 sec’ x tan x

so f©(0) = 0.

FP(x) = 4320 sec® x sec x tan x tan x + 720 sec® x sec? x

— 1920 sec® x sec x tan x tan x — 480 sec* x sec? x
+ 64 sec x sec x tan x tan x + 32 sec? x sec? x
4320 sec® x tan® x + 720 sec® x — 1920 sec* x tan® x
— 480 sec® x + 64 sec? x tan® x + 32 sec* x

so fP(0) = 0 + 720 — 0 — 480 + 0 + 32 = 272.

This is the fourth non-zero term, and so we can write down the
expansion:

x3 x5 x7
tanx=0+x+0+2§+0+163?+0+272ﬂ+...
=x+x—3+£x5+£x7+...
3 15 315

This example shows that we should not always expect a discernible pattern
to emerge. |

Now for some steps — but make sure you have understood all the examples
first.
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8.3 Workshop

1
L Exercise Differentiate (In x)* (x > 1) with respect to x.

This is just a little differentiation to warm up on. Try it, then step
forward.

2 \:) Here we go then. It’s easiest to put y = (In x)* and take logarithms:

Iny = In [(In x)'] = xIn (In x)

so that
1 dy 11
-—=1In(l +x—-
ydx n (In x) “Inxx
ﬂ—ln(l )(In x)* + (In x)*~!
P nx)(In x (In x)

If you were right then step ahead to step 4. If you were wrong, check
carefully what you have done; then try the next problem.

I>Exercise Obtain dy/dx if v = (cosh x)*.
You know the method so there should be no serious problems.

3L We obtain In y = x In (cosh x). So. differentiating both sides with respect to
x and using the product rule and chain rule, we have

1 dv d
;E; = In (coshx) + x cosh x dx (cosh x)
= In (cosh x) + x sinh x
cosh x
dy 7
3, = [In (cosh x) + x tanh x] (cosh x)*

Now move on to the next step.

4 ‘:‘ Exercise Obtain the first four terms of Taylor’s expansion for y = sin x
about the point x = 7/4 as a power series in x.

The difficulty with a question like this is sorting out what is really
wanted. The trouble is that x has been used in three different ways here:
first, as a dummy variable in the definition of sine: secondly, as a specific
point; and thirdly, as the dummy variable in an algebraic description of the
power series. Let's separate all these things so that we can proceed.
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In general given y = f(x) we obtain, using Taylor’s expansion, f(a + h)
as a power series in . Here y = f(x) = sin x, a = n/4, and we can therefore
obtain a power series in & for sin (/4 + h). To satisty the question we
shall at the final stage replace h by x.

Right! You know what you have to do. so see how it goes.

We have E‘
fla + h) = f(a) + hf'(a) + ...
So we must evaluate successive derivatives at the point n/4:
f(x) =sinx = f(a) =sin n/4 = 1/)2
f'(x) =cosx = f'(a) =cos /4= 1/)2
f'(x) = —sinx = f"(a) = —sin /4 = —1/)2
) = —cos x = f¥Na) = —cos /4 = —1/)2
This will give the first four non-zero terms, and so we have
fla + h) = f(a) + hf'(a) + K%' (@) + ...
sin (/4 + h) = V2 + V2 — h¥2Y2 — KPI6Y2 + ...
Finally, replacing 4 by x we have
sin (/4 + x) = V2 + x/V2 — x*2Y2 — x¥6Y2 + ...

Now try another problem.

I>Exercise Obtain Maclaurin’s expansion for f(x) = sin (x + nt/4) as a power
series in x as far as the term in x>,

This shows how closely Taylor’s expansion and Maclaurin’s expansion
are to one another. Superficially Taylor’s expansion seems more general.
However. not only can we deduce Maclaurin’s expansion from Taylor’s,
but it is also possible to deduce Taylor’s expansion from Maclaurin's. Try
it, then step ahead.

I
—

We have l—;l 6

fx) = f(0) + xf'(0) + 3x°f"(0) + ...

We therefore need to obtain successive derivatives of f evaluated when
x = (. Now

f(x) =sin (x + w4) = f(0) = sin /4 = 1/)2
fl(x) =cos (x + w/4) = f(0) =cos n/4 = 1/)2
f'(x) = —sin (x + W4) = f"(0) = —1/)2
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f®(x) = —cos (x + n/4) = f3(0) = —cos n/4 = —1/)2
Substituting into Maclaurin’s expansion:
sin (W4 + x) = V2 + x/V2 — x*12y2 — x£*/6Y2 + ...

as before.

If you managed that successfully, then on you go to step 8. Otherwise,
try a further exercise.

I>Exercise Obtain an expansion of In (1 + x) as a power series in x.

7L We use Maclaurin’s expansion and so we put f(x) = In (1 + x). We shall

need to obtain successive derivatives of f at 0 to substitute into the
expansion formula

f(x) = f(0) + xf'(0) + 3x*f"(0) + ...

So:
fG) =1n (1 + %) = f0)=In1=0
fO =17 = f0)=1
& = T - [0 =-
row = G = 1O0) =2
o = CAEEE o0 = -
o) = DD . o) = a

We can see a pattern emerging:
f0) = (-1)""'(n—1)!  whenneN

When we substitute into the Maclaurin expansion we obtain

f(0) + xf'(0) + f”(O) + f“’(()) + ...+ );—';f('"(()) + ...

3 4

—0+x(1)+ ( 1)+42v+f‘—( )+ ...

+ fl—'; )" (n -1

3 4 n

X X X
—+ . ()=
4 =1) n

2 2
2 3

=x —
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We have
= n+1 X
In(1+x)=> (-1 —
n=1
By examining the remainder after n terms it is possible to show that this

series represents In (1 + x) whenever -1 < x < 1.
Now we go on to another problem.

>Exercise Given y = sin™! x, show that ﬁa

&y dy _
1 -x% a2 T 0
Differentiate » times using Leibniz’s theorem to deduce
dn+2y dn+ly , dny

2 =
(1 - X ) dxn+2 - (2n+1)x dxn+l - n —&_X—; -
Hence or otherwise obtain a power series expansion for sin™! x.
This problem will help you to revise your work on Leibniz’s theorem.
Let’s do it in three steps. First, obtain the equation for the second
derivative.

If y = sin™! x then sin y = x. So differentiating throughout with respect to x ‘:‘ 9
we have '

d
cosy£=1

dy\?
2 =1
cos y(dx>

and since cos’ y = 1 — sin’ y = 1 — x? we have

dy 2_
(- x2)<a> =1

Now differentiating again throughout with respect to x,
dy d? dy\?
1-2222+ (—2x)<—y> =0
X X

Since dy/dx is not zero we obtain

Squaring we have

2
(l—xz)T—x-—=O
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If you put a foot wrong then locate your error and take the next step, which
is to use Leibniz's theorem.

We must consider the two terms in the last equation separately, since each
is a product and will need to be differentiated n times by Leibniz’s
theorem.

For the first term, put u = 1 — x> and v = y,, where the subscript n
denotes the nth-order derivative with respect to x. We have u; = —2x,
u> = —2 and uz = 0, so that 4, = 0 for n = 3. We also have v| = y;, vo =y,
and in general v, = y,,>. Now Leibniz’s theorem gives

(uv), = uv, + nuw,_; + n(n—1yuw,_, + ...

Now since all the other terms are zero we have

, dn+3 n+ly "(ﬂ _ 1) dny

(1 —x7) P + n(=2x) ! + 5 (=2) ™
, dn+2 du+ly d”y

= (1 —X')W— ZHXW_ n(n—l)@

For the second term, if we put u = x and v = y, thenu, = 1 and u,, = 0 if
n > 1. Also v, = y, and in general v,, = y,,,. Therefore

(uv), = uv,, + nuyv,_; + ...

and so we obtain

du+ ly d”y
X dxn+| n dx”

Finally we combine the two terms. So differentiating throughout the
equation n times we obtain

du+2v dn+ly d”y du+ly d”y

1= %) = = 200~y — n(n—1) =5 — —n=2=0
(1 X )dxu+2 2nx dxn+] n(n )dX” X dxn+l n dx"
Therefore
n+2 n+1 n
2 y y _ odYy
2 _ 1 S e A
(1 X ) dxn+2 (2" + ) X dxn+l n dx”

You did well if you managed to do that. Now you must think how you can
use this to obtain Maclaurin’s expansion.

i

If y = f(x) then the equation is
(1 = x?) fO D) = 2n + 1) xfCD(x) — n?f(x) = 0
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but we require the values of the derivatives when x = 0. So the equation
reduces to

£72(0) = mf7(0) = 0
77 9(0) = n2f(0)

Now the equation was derived using Leibniz’s theorem, and so is valid

when n = 1. However, it also holds when n = 0 since it then reduces to the
second-order equation. This means that the equation

£2(0) = n2f0)

can be used to generate all the coefficients in Maclaurin’s expansion from
£(0) and f'(0). Now f(0) = sin"' 0 = 0 and f'(0) = 1. So we deduce that
f"™(0) = 0 if n is even, whereas

0 = 121

FO(0) = 32£9(0) = 321

fO0) = *f(0) = 53%17
So we obtain the expansion

12, 317 @r—-1y2@2r-3)?%...312
x+3!x+ 5!,\c+...+ 2r + 1)

Well, there it is. A bit of a monster, isn’t it?

2r+1+

8.4 I’'HOSPITAL’S RULE

L’Hospital’s rule is extremely useful in the evaluation of a limit which
might otherwise be difficult to obtain. Suppose we wish to evaluate

lim 1)
x—a g(x)
and either
lim f(x) =0 and lim g(x) =0
or

lim f(x) = *o and lim g(x) = £

Then I’Hospital’s rule says
. fx) _ ()
lim == = lim =
x—a g(x)  x—a g'(x)

provided the limit exists.
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Although we shall not prove it to be true generally, we can give an
informal justification for this remarkable rule in the case where f(a) = g(a)
= 0 and f' and g’ are continuous at the point a:

&) ) — fa)
M@ T g - 8@
_ (&)~ fla) x-—a
‘Eﬂ[x—a ﬁw—aw]
Now putting x — a = h we obtain

i [0 =1 _ i S0 1)~ [0

x—a X —a h—>0

=ﬂm=gyu)

Similarly
X—a X — xX—da
Therefore
. fx) L f(x)
lim —% = lim ——
X—a g(x) x—a g (x)
O Obtain
.osinx —Xx
lim ——=—
x—() X

Here f(x) = sin x — x and g(x) = x*. So
lin}] flx) = lin}] [sinx —x] =0
lin}’ glx) = lin}) x*=0
So we can use I’'Hospital’s rule:
fl(x)=cosx —1 g'(x) =23
but
lin(l)f’(x) =1-1=0
lin}) gx)=3x0=0
So we can use I’Hospital’s rule again:
f"(x) = —sin x g"(x) = 6bx
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As before,
lim f'(x) =0
lim g°(x) = 0
So we use I’Hospital’s rule once more:

fOx) = —cos x g¥) =6

So
I sinx — x i cos x — 1
im —— = lim ————
x—0 x° =0 3x?
I —sin x
= lim
x—0 6x
 lim —SOS X _ 1
x—0 6 6
The use of ’Hospital’s rule at each stage is now justified because this final
limit exists. ]
O Obtain
1 —sinx

lim
x—-n/2 COot X

When you have done this, see if you are correct.

First,1 —sinnw/2 =1 — 1 = 0 and cot /2 = 0. So we may use I’Hospital’s
rule:
1 —sinx . ~COS X
lim ———= lim ————=0
x—>n/2  COt X x—mn/2 —COSEC” X
Alternatively, if we wish we can avoid 'Hospital’s rule and instead use
algebraic simplification:

1 — sin x . (1 — sin x) sin x
lim —— = lim
x—n/2  cot x x—>m/2 Cos x
. (1 — sin x) sin x cos x
= lim 5
x—>m/2 cos” x
. (1 — sin x) sin x cos x
= lim —
x— /2 1 — sin” x
. (1 — sin x) sin x cos x
= lim

x—n2 (1 — sin x) (1 + sin x)
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. sin x cos x
= lim ———
x—n2 1 + sin x

=1.()=0 -

One very important thing to remember about I’'Hospital’s rule is that you
must not use it unless you have an indeterminate form. In other words, one
of the following must hold:

lim f(x) =0 and lim g(x) =0

X—a 3

X—a

or

lim f(x) = £ and lim g(x) = £

X—a X—da

Indeterminate forms can be represented by 0/0 or «/: these expressions
are meaningless and so indeterminate.

Why not check that you understand this by taking a few steps?

8.5 Workshop

1
’—l—l:—’ Exercise Evaluate the following limit:

Y4+l
lim & Dx

Dy
r—0 et —1

Move on only when you have done it — or when you think you can’t do it.

‘?‘—‘ If we put x = O straight away we obtain 0/0, which is indeterminate.
S|
However,
(' + x (e* + x
e -1 (e*+1)(*-1)
X
e’ —1

Again this produces the indeterminate 0/0 if we try to substitute x = 0, but
now we can easily use I'Hospital’s rule:
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Did you get that right? If you did then you may go on to the next section.
Otherwise, try this next exercise.

>Exercise Evaluate the limit

sin Tx

lim —
x—1sin (mx + x — 1)

Try very hard with this one. Then step forward.

If we attempt to put x = 1 we obtain the form 0/0, and so we shall use [:' 3
I’'Hospital’s rule:

. sin mx . sin ;tx
}l—>ml sin (mx +x — 1) N }l—{nl sin [(m + Dx — 1]
. T COs TX
- ,\!E;nl (m+ 1) cos [(m + 1)x = 1]
n(—1) iy

TmED (=) m+1

REPEATED USE OF L'HOSPITAL’S RULE

We can use Taylor’s theorem to justify the repeated use of I'Hospital’s
rule. Suppose that both the real functions f and g have a Taylor expansion
about the point a, and that both

lim f7(x) and lim g(x)
X->a X—a
are zero for all integers r such that 0 < r < n, but that
lim g™(x) # 0
X—>qa

By Taylor’s theorem we have

n—1

(n— 1)

fla+h) =fl@)+hf(a)+...+ ﬂ*ﬂmy+§ﬂwm+em

n—1

h
(n—1)8

gla+h)=gla)+hg'(a)+ ... + ("=D(q) + Z—';g(")(a + ¢h)

where 0, ¢ € (0, 1).
The continuity of the derivatives at the point a gives

f(a) = 0 = g"(a)

for 0 < r < n. Therefore these Taylor series reduce to

fla+ h)= %f(")(a + 6h)
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g(a+ h) = =g + o)
So that

fla+h) _ fa + 6h)
gla+h) g"a+ ¢h)

Writing x = a + h we have

. fx) . fla+ h)

I = A @+ h)
. f"Na + 6h)
= fim, g™ + ¢h)
AR )
~ g"(a)

(1)

- I e

8.6 MAXIMA AND MINIMA

There are many situations in which we have an interest in those points

where a function attains a maximum or a minimum value. For example:

1 A company may wish to maximize its profits, but increasing the price of
its goods may decrease the demand. A reasonable question to ask is:
‘What price will maximize profit?’

y-axis .
A y-axis

y = flx)

fa}-——— I y = fix)
P
[
> L1 >
" x-axis 0 a X-axis
Local maximum Local minimum

(a) (b)

Fig. 8.3 (a) Local maximum (b) Local minimum.
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2 An architect may be asked to design a library extension which, within a
given budget, will maximize the available floor space.

3 An electrical engineer may wish to maximize the power in a circuit.

Suppose f is a real function which is defined at all points in some open

interval containing the point a (Fig. 8.3). We say that f has a local maxi-

mum at the point a if and only if, for all 4 sufficiently small but non-zero,

fla+ h) — f(a) <0

Similarly, f has a local minimum at the point a if and only if, for all 4 suf-
ficiently small but non-zero,

fla+ h) — f(a) >0

We shall confine our attention to functions which are infinitely smooth. As
we have already remarked, this means that the function has derivatives of
all orders.

It is intuitively obvious that if f is differentiable at either a local maxi-
mum or a local minimum then its derivative there is zero. Any point at
which the derivative of f is zero is called a stationary point of f. The value
of f at a stationary point is called a stationary value of f. (Stationary points
are also sometimes known as turning points or critical points.)

A simple picture shows that not all stationary points are points at which
f attains either a local maximum or a local minimum. Any point at which
a curve crosses its tangent is called a point of inflexion. If we obtain the
stationary points we shall obtain not only the points at which the function
attains a local maximum or a local minimum but also some of the points of
inflexion. In Fig. 8.4 A and [ are local minima and E is a local maximum;
A, C, E, G and I are stationary points, whereas B, C, D, F, G and H are
points of inflexion.

y-axis

Fig. 8.4 Stationary points and points of inflexion.
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As this makes clear, not every point of inflexion is a stationary point. We
shall see later how to determine the points of inflexion of a function.

TESTING FOR MAXIMA AND MINIMA

There is an elementary method for determining local maxima and local

minima which relies on the observation that at these points f' changes sign

(Fig. 8.5):

1 As we pass through a local maximum, f’ changes from positive to
negative;

2 As we pass through a local minimum, f’ changes from negative to
positive.

It follows that if we examine the sign of f* on either side of the stationary

point we should be able to classify it correctly. At a point of inflexion the

sign is preserved.

However, it is possible to obtain a test for maxima and minima which does
not involve examining the sign of f’ on either side of the stationary point.
Suppose that the function f has a stationary point at a, so that f'(a) = 0. By
Taylor's theorem we know that

h2 h3
fla + h) = f(a) + hf'(a) + ETf”(a) + ;f(‘”(a + 6h)
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