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Preface 

In this country today there are two conflicting forces acting on the 
mathematical curriculum and these are thrown into sharp contract 
when we consider Engineering Mathematics. Engineering Mathemat­
ics consists of a large body of material and techniques which is tra­
ditionally used by Engineers and Scientists in order to develop their 
theoretical work. As more of this work is developed the pressure is in­
creased for students to acquire the necessary mathematical skills and 
techniques earlier. Set against this, there has been a general reduction 
in the numbers of young people who choose to study A-level math­
ematics at school. The examination boards have responded to this 
unpopularity by reducing the quantity of material which is included 
in the A-level syllabus and the level of skill required. Consequently, 
knowledge and facility, regarded as routine 10 years ago, is now not 
generally acquired until the student becomes an undergraduate. 

The 'one still point in this turning world' is the unfortunate stu­
dent. It can be argued that students are getting brighter but, due to 
the pressures which have already been mentioned, their mathematical 
experience on entering University does not reflect this. This new edi­
tion attempts, in some measure, to resolve these opposing forces by 
adopting on the one hand a very elementary starting point and includ­
ing, on the other, some relatively advanced material. The first two 
chapters have been rewritten to make them more accessible. In this 
way an intelligent student, by sheer dint of determination and effort, 
should be able to raise the level of his or her individual expertise. 

Thirty years ago Fourier series and Laplace transforms were regarded 
as part of the second year_ syllabus for most Engineering courses. N owa­
days Engineers and Scientists require them early on and therefore these 
topics have been included and the text written to make them accessible 
to the well motivated student. 

A number of extra exercises have been also provided and most of 
the chapters have the benefit of these additions. As usual, F. Smiley 
painstakingly worked through all of them. Needless to say any errors 
or omissions are entirely the responsibility of the author. 

The supplementary material needed for this edition was produced in 
LaTeX and the author is greatly indebted to his friend and colleague 
Dr David Divall for using his considerable skill and effort to develop 
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a LaTeX house style which resembles that which had been adopted 
by the publisher in the earlier editions. Any success which has been 
achieved in this regard is due entirely to his efforts. 

Naturally all students wish to pass their mathematics examinations 
and this book aims to help them to achieve this. However this is not its 
sole purpose. Another aim is to give students the competence and the 
confidence to use mathematical ideas and techniques in their chosen 
field. We are trying not to 'cap' the fiow of oil but to harness it and 
to make use of it. Consequently this book is not for the dull witted or 
the pig ignorant. It is not an end but a beginning for it is an invitation 
to acquire skill and power. We are not trying to switch out lights, we 
are trying to turn them on! 

The author hopes that this new edition will prove popular with both 
staff and students. 

C.W.E. 
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T o the student 

There are essentially two different ways in which you can use this book. 
Each of them depends on your past experience of the topic; whether it is a 
new topic or one with which you are familiar. 

NEWTOPICS 

D Work your way through the chapter with the aid of a note pad, making 
sure that you follow the worked examples in the text. 

D When you come to a workshop be resolute and do not read the solutions 
until you have tried to work them out. 

D Attempt the assignment at the end of the chapter. lf there are any diffi­
culties return to the workshop. 

D Spend as much time as possible on the further exercises. 

FAMILIAR TOPICS 

D Start with the assignment, which follows the text, and see how it goes. 
D lf all is weil continue with the further exercises. 
D lf difficulties arise with the assignment backtrack to the workshop. 
D lf difficulties arise in the workshop backtrack to the text. 
D Read through the chapter to ensure you are thoroughly familiar with 

the material. 



Basic ideas 1 

This opening chapter is designed to lay the foundations of the 
work which we have to do later. We will therefore describe some 
notation and examine both arithmetic and algebraic processes. 

After completing this chapter you should be able to 

D Approximate calculations to a given number of decimal places and to 
a given number of significant figures; 

D Apply the rules of elementary algebra correctly; 

D Distinguish between identities and equations; 

D Evaluate binomial coefficients and apply the binomial theorem. 

At the end of this chapter we shall solve a practical problern involving 
the force on a magnetic pole. 

1.1 ARITHMETIC 

We are all familiar with the basic operations of arithmetic. These are 
addition and multiplication. The first numbers which we encounter are 
the 'whole' numbers, which we shall call the natural numbers 

1, 2, 3, 4, ... 

You will notice that we have not included zero as one of the natural 
numbers; some people do and some people don't! 

We can add or multiply any two natural numbers tagether without 
obtaining results which go beyond this set of numbers. 

12 + 13 = 25 
12 X 13 = 156 
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Both 25 and 156 are natural numbers too. 
When we introduce the operation of subtraction it is necessary to 

widen the concept of number to include the negative whole numbers 
and zero. These numbers are known as integers 

... ,-2,-1, 0, 1, 2, 3, ... 

We observe of course that every natural number is an integer. 

Although the integers are sufficient for simple harter of discrete (indi­
vidually distinct) objects, they are unable to cope with division. The 
operation of division forces us to extend the concept one stage further. 

Any number which can be expressed in the form pjq, where p and q 
are integers is known as a rational number. 

D 3 isarational number since 3 = 3/1, 0.25 isarational number since 
0.25 = 1/4, 1/3 is a rational number and is 0.333 .... 

The process of division Ieads to decimal expansions. The digits in the 
decimal expansion fall either to the left or the right of the decimal 
point. 

D In the number 7.2386941, 2 is in the first decimal place, 3 is in the 
second decimal place and 9 is in the fifth decimal place. 

Decimal expansions fall into two classes; finite decimal expansions and 
infinite decimal expansions. When finite decimal expansions are read 
from the left to the right, every digit in a decimal place beyond a 
certain point is zero. When infinite decimal expansions are read from 
the left to the right, however large the decimal place, there is always 
a digit with a larger decimal place which is non-zero. 

Sometimes a set of digits in an infinite decimal expansion repeats 
without end. This set of digits is said to recur and in these circum­
stances the expansion corresponds to a rational number. However some 
infinite decimal expansions never recur and these correspond to ir­
rational numbers. The collection of all the numbers we have been 
describing is usually referred to as the collection of real numbers. 

1.2 REPRESENTATION 

Although theoretically we can add, multiply, subtract and divide dec­
imal fractions in whatever way they are expressed, in practice this 
becomes awkward. 

D Multiply 998954.32 by -0.0001334684 
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To facilitate calculations we introduce the scientific notation. In the 
scientific notation each number is written as a number greater than 
-10 but less than 10 and the decimal point is adjusted by multiplying 
or dividing by an appropriate power of 10. 

Therefore, in the example, 998954.32 and -0.0001334684 become 

9.9895432 X 105 and - 1.334684 X 10-4 

respectively. 
It is easy to convert a number into scientific notation. Remernher 

that each time we multiply a number by 10 we move the decimal point 
one step to the right. Consequently each time we divide by 10 (or 
equivalently multiply by 10-1) we move the decimal point one step to 
the left. 

For the first number we needed to move the decimal point 5 steps 
to the left. This is equivalent to multiplying by 10-5 and so to correct 
this, we multiply the number we have obtained by 105 . 

998954.32 = 9.9895432 X 105 

For the second number we needed to move the decimal point 4 steps 
to the right. This is equivalent to multiplying by 104 and so to correct 
this, we multiply the number we have obtained by 10-4. 

-o.ooo1334684 = -1.334684 x 10-4 

These can now be multiplied together and the result expressed in sci­
entific notation too 

998954.32 X -0.0001334684 

(9.9895432 X 105) X ( -1.334684 X 10-4) 

-(9.9895432 X 1.334684) X 10 
-13.33288348 X 10 
-1.333288348 X 102 

• Hand calculators automatically make use of scientific notation. They 
normally record the power of 10 (but not the number 10 itself) on the 
far right of the display. Some calculators give the option of expressing 
every number in scientific form. 

1.3 DECIMAL PLACES AND SIGNIFICANT FIGURES 

It is not normally possible to perform all calculations exactly. In such 
circumstances it is usual to perform arithmetic using numbers accurate 
to a fixed number of decimal places or a given number of significant 
figures. 
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Significant figures are determined by locating the first non-zero digit 
from the left of the number. From this position we count to the right 
to determine where the number needs to be truncated. When this is 
clone notice is taken of the part which is to be discarded and some 
adjustment to the last digit in the truncated number may be made. It 
may be necessary to include some trailing zeros when giving a number 
correct to a given number of significant figures. 

Decimal places are counted to the right of the decimal point. The 
rule for rounding numbers is complicated to describe but fairly simple 
to apply. 

• If the first digit in the discarded part is 6 or more then the number 
is 'rounded up' and the last digit is increased by 1. 

• If the first digit in the discarded part is 4 or less then the number 
is truncated without change. 

• If the first digit in the discarded part is 5 and it contains other 
non-zero digits then the number is rounded up so the last digit is 
increased by 1. 

There is one case remaining. This is the vexed question of what to do 
when the first digit of the discarded part is 5 and all other digits in it 
are zero. Here there is no general consensus. Those who always round 
up introduce a bias automatically. To compensate for this, numerical 
analysts favour rounding-up the truncated decimal where necessary so 
that the last digit becomes even. This is the approach we shall adopt. 

The following examples illustrate all the situations which arise. 

0 Express each of the following numbers correct to 5 significant figures 

0.0001234, 
0.100005, 

1, 548, 796, 854, 
0.100015, 

1,548,746,854, 
11.11 

When a number is to be expressed correct to 5 significant figures then 
the 5 figures are given, even if some of them are zero. Therefore we 
obtain 

0.00012340 
1,548,800,000 
1,548, 700,000 
0.10000 
0.10002 
11.110 

we need a trailing zero. 
96854 discarded so number rounded up 
46854 discarded so number unchanged 
5 is discarded but 0 is even 
5 is discarded, 1 is odd, round-up 
a trailing zero is needed 

0 Give the following decimal fractions correct to 5 decimal places 

2.3657842, 
3.769835, 

34.57 4836242, 
3. 769845000001' 

3.769845, 
0.000005 

• 
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2.36578 
34.57484 
3.76984 
3.76984 
3.76985 
0.00000 

discarded digits 42, so no round-up 
discarded digits 6242, so round-up 
discarded digit 5, but 4 is even 
discarded digit 5, round-up 3 to 4 
discarded digits 5000001 so round-up 
discarded digit 5 and 0 is even. 

1.4 PRECEDENCE 

• 

When performing numerical calculations it is necessary to establish an 
order of precedence. Without this, an expression such as 2 + 4 x 5 
would be ambiguous, for we could first add 2 to 4 and then multiply 
the result by 5 to obtain 30 or alternatively we could add 2 to the result 
of multiplying 4 and 5 to obtain 22. One way round this problern is to 
use brackets to distinguish the two situations. We can do this provided 
we understand that things in brackets must always be worked out first. 

We then have the two situations 

(2 + 4) X 5 

2+(4x5) 

6x5 
30 
2 + 20 
22 

In fact an order of precedence for these elementary mathematical oper­
ations is weil established. It is simply that multiplication and division 
take precedence over addition and subtraction. However, as we have 
said, anything in brackets must be calculated first. 

Brackets are very important and must never be discarded lightly. 
They should always be introduced whenever any ambiguity could arise. 

0 The expression 144 7 16 7 3 is meaningless because it is ambiguous. 
To see this we merely need to consider its two possible meanings 

(144 716) 7 3 

144 7 (16 7 3) 

973 
3 

144 7 ( 136) 

27 

• Many years ago somebody coined an acronym BODMAS to help stu-
dents to learn the order of precedence. The letters stand for Brackets, 
Of, Division, Multiplication, Addition, Subtraction. 
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The word 'of' occurs in calculations such as '3% of .t35 is .tl.05p' 
but is really only there to make the acronym memorable. 

BODMAS has its uses but implies that division takes precedence 
over multiplication whereas in fact division and multiplication have 
equal status. Similarly addition and subtraction have equal status. 
Fortunately this can cause no error. To illustrate this point note that 
the BODMAS rule gives 

3 X 12 + 9 = 3 X (12 + 9) 
4 

3 X (3) 
4 

Whereas the alternative is 

3 X 12 + 9 (3 X 12) + 9 
= 36+9 

4 

1.5 SET NOTATION 

We sometimes represent the set of all the natural numbers 

1, 2, 3, 4, ... 

by N and then use the notation x E N to indicate that x 'is a member 
of the set' N. Likewise we write y ((j. N to indicate that y 'is not a 
member of the set' N 

So 3 E N but 2.5 ((j. N. 

We denote the set which contains all the natural numbers and also 0 
by N0 . We shall occasionally find this notation quite useful. 
The set of all the integers 

... ,-2,-1, 0, 1, 2, 3, 

is denoted by Z. We know that every natural number is an integer and 
this is expressed by saying that N is a subset of Z. In symbols this is 

NcZ 

In general a set A is a subset of a set B if whenever x is a member of 
the set A then x is also a member of the set B. In symbols: 

A C B if and only if whenever x E A then x E B 
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We can also write B :::) A to denote the same property. lt follows that 
if both A c B and B c A then the two sets A and B have precisely 
the same elements and therefore we can write A = B. 

We have seen that a rational nurober is any nurober which can be 
expressed in the form pj q where p and q are integers. The set of rational 
numbers is represented by Q and the set of all the real numbers is 
represented by R 

We therefore have 
NcZcQc!R 

We shall extend this notation a little further in Chapter 2. 

1.6 DEDUCTIONS 

In some ways mathematics is rather like a very large but incomplete 
jigsaw puzzle. Over the years mathematicians have been able to put 
some of the pieces together but there are an infinity of pieces and an 
infinity of gaps. The key concept which distinguishes mathematics 
from other subjects is the notion of proof. We shall have more to say 
about proof in Chapter 2 but we shall shortly begin to experience the 
idea at first hand. We shall consider, in the first instance, two types 
of proof - direct proof and indirect proof. 

Let us consider for the moment what is meant by a direct proof. 
Suppose it is known that a particular machine, which uses water pres­
sure as its power source, is in perfect working order. Suppose it is also 
known that water at the correct pressure is being supplied. We can 
then deduce that the machine is functioning correctly. This deduction 
is an example of a direct proof. 

For an indirect proof suppose that we know that water at the correct 
pressure is being supplied but that the machine is not functioning 
correctly. We can deduce that the machine is not in perfect working 
order. How? Weil, if it were, then by the direct proof we have already 
given, we should be able to deduce that the machine is functioning 
correctly. However we know that it is not functioning correctly and 
consequently it is not in perfect working order. 

In general if we wish to deduce something using an indirect proof 
we take the opposite statement and see if we can deduce a contradie­
tioll of some kind. This is a rather more belligerent approach to the 
deductive process. In practical terms, if we wished to show that a 
machine was essential to the manufacturing process we could see what 
happened if we shut it down completely. We should either be able to 
continue manufacturing, however inefficiently, or we should not. If the 
manufacturing process comes to a halt then we can deduce that the 
machine was essential to the manufacturing process. 

lt is important also to realize that we must not jump to false con­
clusions. For example, in the case of the water powered machine, if we 
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know that water at the correct pressure is being supplied and that the 
machine is functioning correctly we are not able to deduce that the 
machine is in perfect working order. In fact, we cannot deduce very 
much in these circumstances; the machine might be in perfect work­
ing order or it might not be. To see this you only have to imagine a 
machine which was required to rotate and to irrigate crops. lt may be 
doing this but some of its outlets could be obstructed so that it is not 
in fact in perfect working order. 

In the next section we shall begin to prove things directly and in­
directly but it is not until Chapter 2 that we put things into a more 
formal setting. 

1.7 ALGEBRA 

We use the same conventions as we used in arithmetic when we use 
algebra. In algebra we use symbols to represent various things. To 
start with, we use these symbols to represent numbers, and this is 
called elementary algebra. We can add two numbers a and b and the 
result will be represented by a + b. If we multiply two numbers a and b 
we can represent the result, known as the product of the two numbers, 
in several ways; a x b, a · b or even ab. So if we see the symbol uv and 
if we know that u and v are numbers then we know that 

UV = U X V 

We write a x a as a2 and a x a x a as a3 . In general the positive 
exponent tells us how many times a occurs in the product. 

We now list the algebraic rules which we shall need. Some of these 
will be listed under rules of addition and rules of multiplication since 
these are the two principal Operations which we perform on numbers. 
Then we shall list the rule which interlinks these two operations. 

1.8 RULES OF ELEMENTARY ALGEBRA 

These rules are easily verified for a few numbers but what we are saying 
is that they are true for all numbers. 

ADDITION RULES 

1 Given any two numbers a and b their sum a + b is also a number. 

2 Given any three numbers a, b and c then 

a + ( b + c) = ( a + b) + c. 
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3 There is a nurober 0 such that for every nurober a, 

a+O = O+a= a. 

4 To each nurober a there corresponds another number, designated 
by -a, such that 

a+ (-a) = (-a) +a = 0. 

5 Given any two nurobers a and b then a + b = b + a. 

We can use these rules to carry out our first logical deduction. 

0 The nurober -a is known as the additive inverse of a. Show that 
no nurober can have two additive inverses. 

We do this by means of an indirect proof. That is, we shall suppose 
that there is soroe nurober a which has two additive inverses -a1, and 
-a2 and then deduce that -a1 = -a2. 

Now - a1 = (-ai) + 0 
= (-a1) + (a+ (-a2)) 
= ((-ai) + a) + (-a2) 
= 0 + (-a2) 
= -a2 

using rule 3 
using rule 4 
using rule 2 
using rule 4 
using rule 3 

• The fact that there is only one additive inverse corresponding to 
each nurober justifies our use of the syrobol -a for the additive inverse 
of a. 

0 Show that if a + x = a + y then x = y. 

It is clear how we roust do this. We must 'take away' a froro each side 
of the equation. In other words we must add the additive inverse of a 
to each side. 

Here are the steps. See if you can see which rule is applied in each 
case. 

(-a)+(a+x) = 
((-a) + a) + x 

(-a)+(a+y) 
((-a)+a)+y 

= O+y O+x 
X = y 

First we used rule 2 (the associative rule), then rule 3 (the definition 
of an additive inverse) and finally rule 4 (the property of 0} led to the 
required conclusion. • 

We now know that if we subtract the saroe nurober froro each side 
of an equation then the equation reroains true. 
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D You may care to prove that -( -a) = a; the technique employed is 
very similar. 

Since -a is a number, it has an additive inverse -( -a). Moreover 
( -a) + ( -( -a)) = 0. But ( -a) + a = 0 and therefore 

(-a) + (-(-a)) = (-a) +a 

By the previous example we have -( -a) = a, as required. • 
We write a-b instead of a + ( -b) and thereby extend our algebraic 

Operations to include subtraction. 
We now turn our attention to the multiplication rules and you will 

observe that they follow a similar pattern to those of addition. 

MULTIPLICATION RULES 

1 Given any two numbers a and b, their product abisalso a number. 

2 Given any three numbers a, b and c then 

a · (b · c) = (a · b) · c 

3 There is a number 1 such that for every number a, 

ax1=1xa=a 

4 To each number a ( # 0) there corresponds another number des­
ignated by a-1 such that 

a · a-1 = a- 1 • a = 1 

5 Given any two numbers a and b then ab = ba. 

The number a-1 is known as the multiplicative inverse of a. A similar 
argument that we used before can be used to show that each number 
has a unique multiplicative inverse and that if a · y = a · z and if a # 0 
then y = z. 

This is known as the cancellation law. 
If, when b # 0, we write a-;- b (or afb) for ab-1 we can extend our 

algebraic Operations to include division. We remark that when a # 0 
we write a0 = 1 and a-2 instead of 1/a2 and so forth. 

Lastly we need to state the rule which enables the operations of 
multiplication and division to interact with one another. This rule is 
known as the distributive rule. 

Given any three numbers a, band c then a(b + c) =ab+ ac 

0 Show that a · 0 = 0 for every number a. 

For any number a we have 

a · 0 = a · (0 + 0) = a · 0 + a · 0 

and so a · 0 = 0. • 
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0 Show that a( -b) = -(ab). 

We need to show that a( -b) when added to ab gives 0, for then a( -b) 
will be the additive inverse of ab and this is -(ab). Now 

ab+ a( -b) = a[b + ( -b)] = a · 0 = 0 

as required. • 
0 Show that the distributive rule works with a negative by showing 
a(b- c) =ab- ac. 

a(b- c) a(b + [-c]) 
ab+ a[-c] 
ab+ [-(ac)] 

= ab- ac 

definition of '-' 
distributive rule 
previous example 
definition of '-' 

• We need to become very familiar with these algebraic rules so that we 
can expand out brackets quickly and accurately without batting an 
eyelid. 

0 The English poet W. H. Auden reported that he had learnt in math­
ematics the extraordinary rhyme 

'Minus times minus is equal to plus 
the reason for this we need not discuss!' 

Discuss the reason for this! 

It is not clear exactly what is meant by these words; there are two 
possibilities. However we have already shown that -( -a) = a and so 
we need only to justify the equation 

(-1) X (-1) = 1 

Now 1 + ( -1) = 0 and so multiplying by a 

ax [1+(-1)]=ax0=0 

Therefore 
ax1+ax(-1)=0 

so 
a+ax(-1)=0 

and consequently 
a x ( -1) = -a 

Replacing a by -1 we now have 

(-1) X (-1) = -(-1) = 1 

consequently 
(-1) X (-1) = 1 
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as required. • 
This is a useful rule because it enables us to simplify complicated 

expressions involving minus signs. 
Now it is time for you to try a few exercises. We shall tackle these 

step by step. Only move on to the next step when you have completed 
each one to the best of your ability. 

----------- 1.9 Workshop------­
Here are several problems to try. Weshall solve them one after another. 
However if you find you can do the first one, why not try them all before 
looking ahead to see if you have them right? 

Alternatively if you feel you need to take things rather slower to 
build up your confidence then just go ahead one step at a time. 

t> Exercise Multiply out each of the following 

1 (a + b)(b + c) 
2 (a + 2b)(b- 2a) 
3 a(b- c) + b(c- a) + c(a- b) 
4 (a- b)2 + 2ab 

We can treat a + b as a single number to obtain 

(a + b)(b + c) = (a + b) · b + (a + b) · c 
ab+b2 +ac+bc 

Again a + 2b can be treated as a single number initially. So that 

(a + 2b)(b- 2a) (a + 2b) · b- (a + 2b) · (2a) 
= ab + 2b2 - 2a2 - 4ab 
= 2b2 - 2a2 - 3ab 

We multiply out each term in turn to obtain 

a(b- c) + b(c- a) + c(a- b) 

ab-ac+bc-ba+ca-cb 
ab-ca+bc-ab+ca-bc 

0 
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It helps to write the square as two brackets 

(a- b)2 + 2ab = (a- b)(a- b) + 2ab 
= ( a - b) · a - ( a - b) · b + 2ab 

a · a - b · a - a · b + b · b + 2ab 
= a2 + b2 

• Check the following relationships carefully and then commit them to 
memory; forwards and backwards. They are very useful and often arise 
in algebraic work. 

a2 + b2 - 2ab 
(a+b)(a-b) 
(a- b)(a2 +ab+ b2) 

(a + b)(a2 - ab+ b2) 

Now check that you have understood and learnt them by attempting 
the following example. 

I> Exercise Express each of the following as a product of algebraic factors. 
1 x2 -1 
2 x3 -1 
3 x4 -1 
4 x3 +8 
5 (x + 1)2 - (x- 1)2 

How many factors did you get for each one? There should have been 
2, 2, 3, 2, 1 respectively. 
Here are the results. 

1 x2 - 1 = x2 - 12 = ( x + 1 )( x - 1) 

2 x3 - 1 = (x- 1)(x2 + x + 1) 
3 x4 - 1 = (x2) 2 - (1) 2 = (x2 - 1)(x2 + 1) 

= (x- 1)(x + 1)(x2 + 1) 
4 x3 + 8 = x3 + 23 = (x + 2)(x2 - 2x + 4) 
5 (x + 1)2 - (x- 1)2 = [(x + 1)- (x- 1)][(x + 1) + (x- 1)] 

= 2[2x] = 4x 
You could also obtain this by multiplying out each expression. 

Now for a tricky one. 

Zl 
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I> Exercise Express x4 + 1 as a product of algebraic factors. 
Here is a hint 

Does that help? 

x4 + 1 (x2 + 1)2 - 2x2 

= (x2 + 1)2 - ( J2x)2 

[(x2 + 1)- J2x][(x2 + 1) + J2x] 

[x2 - J2x + 1][x2 + J2x + 1] 

• 
We have already seen that it is possible to use the rules of algebra to 
expand certain expressions. For example we saw that 

Sometimes it is necessary to reverse this process and collect algebraic 
terms together. There is only one way to acquire this skill and that is 
by repeated practice. 

I> Exercise Simplify each of the following expressions. 
1 1 + 4x + 4x2 

2 9- 6x +x2 

3 x + 10x2 + 25x3 

The keys to the problern are pattern and factorization. 

1 1 + 4x + 4x2 = (1 + 2x)(1 + 2x) = (1 + 2x)2 = (2x + 1)2 

2 9 - 6x + x2 = 32 - 2 · 3 · x + x2 

= (3-x)(3-x) = (3-x) 2 = (x-3) 2 

3 x + 10x2 + 25x3 = x(1 + 10x + 25x2) 

= x(1 + 2 · 1 · [5x] + [5x] 2 ) 

= x · (1 + 5x)2 = (5x + 1)2x 

We notice that in this example there are several different but equivalent 
answers. • 
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1.10 IDENTITIES AND EQUATIONS 

Whenever we have a expression which involves the sign '=' we say we 
have an equation. 

For example 

x + 7 = 0, x(x + 2) = 3, x3 + 8 = 0 

are all examples of equations. 
Very often the equation contains an unknown quantity which we are 

required to determine. The process of determining the unknown is 
called solving the equation and the unknown itself is called a solution 
or root of the equation. Some equations have many roots. 

We have already seen how to solve some equations. For example the 
equation 

x+a=O 

where a is a constant (a number which is known) and x is the unknown 
number has the solution x = -a. 

We can generalize this very slightly to solve any linear equation. A 
linear equation is an equation of the form 

ax+b=O 

where a and bare constants (a =I 0) and x is the unknown. Wehave 
ax =-band so x = -b/a. 

Occasionally an equation is true for all the numbers for which it is 
defined. We have already seen examples of this such as 

a 2 - b2 = (a- b)(a + b) 

Such an equation is called an identity and sometimes the equals sign 
is replaced by '=' to emphasize this. So we could write 

a2 - b2 = (a- b)(a + b) 

0 In each of the following equations decide which are equations and 
which are identities. Solve the equations. 

1 4x4 - x2 = x2 · (2x- 1)(2x + 1) 

2 x(x + 1)(x + 2) = (x + 1)(x + 2)(x + 3) 
3 (x + 1)(x- 2) = x2 - x- 2 
4 (x + 3)(x- 2) = x2 - 5x- 6 

1 This is an identity 

4x 4 - x2 = x2 • ( 4x2 - 1) = x2 • ( 2x - 1) ( 2x + 1) 
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2 This is an equation. We can only cancel out 

(x+1)(x+2) 

if it is non-zero. We should then obtain x = x + 3, which has no 
solution. Consequently 

(x + 1)(x + 2) = 0 

and so either x + 1 = 0 or x + 2 = 0. 
Consequently we have the two roots x = -1 and x = -2. 

3 This is an identity. Multiplying out we obtain, 

(x + 1)(x- 2) = x2 - 2x + x- 2 = x2 - x- 2 

4 Be careful! This is an equation. 

(x + 3)(x- 2) = x2 - 5x- 6 

so 

x2 + 3x- 2x- 6 
x 2 + x- 6 

SO X 

and 6x 

therefore x 

1.11 SIMULTANEOUS EQUATIONS 

x2 - 5x- 6 
x2 - 5x- 6 
-5x 
0 

0 

• 

Some of the language which is used to describe algebraic expressions 
can be a little confusing at first. Two words in particular can cause 
confusion, these are 'term' and 'coefficient'. We shall illustrate how 
these words are used by referring to a specific expression. The expres­
sion we shall take is 

x4 - 3x3 + llx2 - 25x + 16 

The 'term in x2 ' refers to all that part of the expression which con­
tributes to x raised to the power of 2. In the example, the term in x2 

is llx2 . Likewise the term in x is - 25x. N otice that the sign must 
also be included. The constant term is 16, the x3 term is -3x3 and 
the term of the fourth degree in x is x 4 . 

The 'coefficient of x2 ' is the number which must be multiplied by x2 

to give the term in x2 . In other words, the coefficient of x2 is the term 
in x2 divided by x2 . 

In the example the coefficient of x4 is 1, the coefficient of x3 is -3, 
the coefficient of x2 is 11 and the coefficient of x is -25. 
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Right! Now that we have gotthat clear weshall proceed to consider 
the solution of simultaneous equations. Naturally weshall use the rules 
of elementary algebra which we have described to solve them. 

For instance, we may be given a pair of linear equations which are 
known to hold simultaneously. Specifically, suppose that 

ax+by = h} 
cx + dy = k 

where a, b, c and d are constants. We are required to obtain x and y. 
We shall have quite a lot to say about such systems of simultaneous 

equations when we discuss matrices in Chapter 13 but for the moment 
we shall simply discuss how to solve these equations. 

The technique which is employed is known as the elimination method. 
We multiply through each equation by suitable numbers so that the co­
efficients of one of the unknowns become the same. We then subtract 
the equations we have obtained to produce a single linear equation 
which is easily solved. · 

D Solve each of the following pairs of simultaneous equations. 

1 X + 2y = 11, X - y = 2 
2 3x - 4y = 10, 5x + 2y = 34 

1 

2 

X+ 2y = 11 } 
x-y = 2 

Subtract the second equation from the first to eliminate x 

2y- ( -y) = 11 - 2 

So that 3y = 9 and so y = 3. Substituting back into the second 
of the equations now gives x = y + 2 and so x = 5. 

3x- 4y = 10 } 
5x + 2y = 34 

Here we can multiply the second equation by 2 so that apart from 
a change of sign the coefficients of y will be the same. We can 
then add the equations together to eliminate y. 

3x- 4y = 10} 
10x + 4y = 68 

Adding these equations we now obtain 13x = 78 from which x = 
6. The first equation then gives 4y = 3x- 10 = 18-10 = 8 from 
which y = 2. · • 
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lt is always worth checking that the values of x and y which have been 
obtained do in fact satisfy the equation. We have only considered 
a pair of simultaneaus algebraic equations in two unknowns but the 
technique clearly extends to a system of n equations in n unknowns. 
Naturally the more equations the more tedious the elimination is likely 
to become. We shall consider systematic methods of solving such sets 
of simultaneaus equations in Chapter 13. 

1.12 RATIONAL EXPRESSIONS 

One of the most useful algebraic processes involves collecting terms to­
gether in a single expression. Here some of the processes of elementary 
arithmetic can be mimicked. For example, to simplify 1/2 + 1/4 + 1/6, 
we take the terms over a 'common denominator'. That is, we Iook for 
a natural number which is exactly divisible by 2, 3 and 6. Preferably 
we Iook for the lowest common multiple of these numbers but if we 
can't spot it we can always multiply all these denominators together 
to obtain one. Herewesee that 12 is the lowest common multiple. This 
means that, if we ensure that each of these numbers is expressed with 
12 as a denominator, we can collect them all together over a common 
denominator. 

1 1 1 6 3 2 6+3+2 11 
2 + 4 + 6 = 12 + 12 + 12 = 12 = 12 

lt is usual to leave out the second step of this process because, once 
the common denominator is known, the corresponding numerators can 
be found by dividing the individual denominators into it. 

We can apply the same principle to algebraic quotients but before 
we do so we shalllook at one more numerical example to establish the 
pattern. 

0 Without using a calculator (or using mental arithmetic) simplify 
2/3 + 1/2 + 5/6. 

Here the lowest common multiple of all these denominators is 6 and so 
we proceed as follows 

• Now let's &pply the same process to algebraic symbols. 

0 Simplify 1/(x + 1) + 1/(x- 1) 
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Wehave (x + 1)(x- 1) as a common denominator so 

1 1 x-1 x+1 
--+-- = 
x+1 x-1 (x+1)(x-1) + (x+1)(x-1) 

(x- 1) + (x + 1) 
(x+1)(x-1) 
2x 

x2 -1 

• It is necessary to be able to simplify expressions of this form con-
fidently. The basic principle underlying what we are doing can be 
expressed by 

a b a+b 
-+-=--
c c c 

In other words expressions can be collected over a common denomina­
tor. 

This is a direct consequence of the distributive rule, from which 

a · c-1 + b · c- 1 = (a + b)c- 1 

You need to be alert to the fact that expressions cannot be collected 
under a common numerator. In other words 

a a a 
b+~~b+c 

This is because 
a · b-1 + a · c-1 ~ a(b + ct1 

This is an error which occurs surprisingly frequently. Do avoid making 
this mistake! 

We shall also need to be able to reverse the process we have de­
scribed. This will be one of our sturlies in Chapter 2 when we describe 
how to put a rational expression into partial fractions. 

D Obtain a and b if 
x a b 

--=--+-­
x2-4-x-2 x+2 

The expression on the right is 

a(x + 2) + b(x- 2) a(x + 2) + b(x- 2) 
(x- 2)(x + 2) x2 - 4 

We shall have an identity only if the corresponding numerators are 
identically equal 

x = a(x + 2) + b(x- 2) 
In order to obtain a and b we are now entitled to put in any values of 
x, including x = 2 and x = -2. If we do this we deduce 2 = 4a and 
-2 = -4b. So a = 1/2 and b = 1/2. • 
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1.13 REARRANGING EQUATIONS 

Sometimes the quantity which we wish to calculate is concealed in an 
equation and we need to rearrange the equation to obtain it. Under 
such circumstances we say that the unknown is given implicitly by the 
equation and we wish to obtain it explicitly. The equations we have 
been solving have expressed the unknown implicitly and the process of 
solving the equation has been to make these unknowns explicit. 

D The equation PV = RT relates pressure P, volume V and tempera­
ture T. R is a known constant. Express P, V and T explicitly in terms 
of the other variables. 

From PV = RT we obtain, by division, 

• 
D The period of a simple pendulum is given by T = a · J(l/g) where 
a and g are constant and l is the length of the pendulum. Obtain l 
explicitly. 

From T = a · J(l/g) we have on squaring 

T 2 = a2 • (l/g) = (a2 ·l)/g 

so T 2 · g = a2 ·l therefore l = (T2 · g)ja2 = g · (T/a) 2 . • 

1.14 QUADRATIC EQUATIONS 

We have already seen how to solve any linear equation in a single 
unknown. This is an equation of the form 

ax+b=O 

where a and bare constants (a -=f. 0). 
We now turn our attention to the quadratic equation 

ax2 + bx + c = 0 

where a, b and c are constants (a -=f. 0). 
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Before we deal with the general case, we shall consider one or two 
simple cases which can be solved easily. 

D Solve x2 - lOx + 25 = 0. 

We may factorize the left side of the equation to obtain 

(x- 5)(x- 5) = (x- 5)2 = 0 

The cancellation law now shows that if x - 5 #- 0 then x - 5 = 0. 
We conclude that in any event x - 5 = 0 and so x = 5. 
This is known as a repeated root since, in a sense, it satisfies the 

equation twice. • 

D Solve x2 - 9x + 14 = 0 

We shall solve this in two ways. The second method will Iead into the 
general method. 
1 Factorizing we obtain 

(x- 2)(x- 7) = 0 

By the cancellation law one of these factors must be zero and so we 
deduce that either x - 2 = 0 or x - 7 = 0. Consequently the solutions 
are x = 2 and x = 7. 
2 We can rearrange the equation in the form 

(x + a) 2 = k 

where a is half the coefficient of x. 
In this case we obtain 

( 9) 2 81 
X- 2 -4 + 14 = 0 

(X - ~) 2 = 841 - 14 = 2: = ( ~) 2 

Now we have an equation of the form X 2 = A2 from which we deduce 

X 2 - A2 = (X - A)(X + A) = 0 

and so X = A or X = - A. 
In this case 

9 5 9 5 
x - - = - or x - - = --

2 2 2 2 
Consequently 

14 4 
x = - = 7 or x = - = 2 2 2 . 

• Of course, in this particular example, it was much easier to factorise the 
quadratic at the outset. However this method provides the springboard 
for a general idea known as completing the square. 
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We now turn our attention to the more general quadratic equation 

ax2 + bx + c = 0 

where a, band c are constants (a =I 0). 
First divide through by a so that the coeflicient of x2 is 1, so that 

2 b c 
x + -x+- = 0 

a a 

Remernher that to 'complete' the square we need to add to x half the 
coeflicient of x and then adjust the algebra to maintain the equation. 
Here we obtain 

So 

( b) 2 (b) 2 c x + 2a - 2a + ~ = 0 

= 

b2 c ----
(2a)2 a 

b2 4ac 
(2a)2 - (2a)2 

b2 - 4ac 
(2a)2 

Taking the square root we now have 

b ±J(b2 - 4ac) 
X + - = __;:..__:_ __ --'-

2a 2a 

From which 
-b± JW- 4ac) X = __ ....:......;. __ ____:_ 

2a 
This is known as the formula for solving a quadratic equation. 

It is important to note that the equation has equal roots when the 
'discriminant', b2 - 4ac, is zero and that, when the discriminant is 
negative, there are no real roots. We shall return to this point in 
Chapter 10 when we consider complex numbers. 

1.15 POLYNOMIALS 

In general a polynomial P is defined by 

P(x) = anXn + an-lXn-l + ... + alx + ao 

where the 'a's, which are known as the coeflicients, are constants and 
n isanatural number. The expression P(x) is known as a polynomial 
in x. 
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D If P is defined by 

P(x) = x3 + 4x2 + x + 1 

then P is a polynomial and x3 + 4x2 + x + 1 is the corresponding 
polynomial in x. 

If the leading coefficient an is non-zero then the polynomial is said 
to have degree n. • 

D x2 + 1 and 2x5 - x3 + 1 are polynomials in x of degree 2 and 5 
respectively. 

• 
If the degree of one polynomial is less than the degree of another it 
is possible to divide one into the other to obtain a quotient and a 
remainder. 

D Divide x2 + 1 into 2x5 - x3 + 1 to obtain a quotient Q(x) and a 
remainder R(x). 

We wish to obtain polynomials in x, Q(x) and R(x), where the degree 
of R(x) is less than that of x2 + 1, such that 

2x5 - x3 + 1 = (x2 + 1) · Q(x) + R(x) 

We begin by observing that to obtain the leading term 2x5 we must 
multiply x2 + 1 by 2x3 . We do this and then add and subtract terms 
as necessary to maintain the equality. This procedure is repeated as 
many times as are necessary in order to achieve the required result. So 

2x5 - x3 + 1 = 2x3 ( x2 + 1) - 3x3 + 1 

Notice that -3x3 has degree greater than x 2 + 1 and so we can repeat 
the process. 

2x5 - x3 + 1 = 2x3 ( x2 + 1) - 3x3 + 1 

= 2x3 (x2 + 1)- 3x(x2 + 1) + 3x + 1 

(x2 + 1) · (2x3 - 3x) + 3x + 1 

Therefore the quotient Q(x) = 2x3 - 3x and the remainder R(x) = 
3x + 1. It follows that 

2x5 - x3 + 1 2 3 3x + 1 ---:--- = x - 3x + --
x2 + 1 x2 + 1 

This process is sometimes known as the method of 'short' division. • 
An expression which is the quotient of two polynomials in x is known 

as a rational expression in x. If the degree of the numerator is n and 
the degree of the denominator is m then the degree of the rational 
expression is defined to be n - m. · 
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THE REMAINDER THEOREM 

We have considered what happens in general when one polynomial 
is divided by another of smaller degree. However we obtain a useful 
result by considering what happens when a polynomial P(x) of degree 
at least 1 is divided by x - a. In general we obtain 

P(x) = (x- a)Q(x) + R 

where Q(x) is the quotient and the constant R is the remainder. 
We observe that putting x = a we obtain 

P(a) = R 

so that the remainder, when the polynomial P(x) is divided by x- a, 
can be obtained by evaluating the polynomial at x = a. 

It follows therefore that if P(a) = 0 then the remainder is zero and so 
the polynomial has x-a as a factor. This result can be extremely useful 
if we are required to factorise a polynomial or to solve a polynomial 
equation. 

1.16 THE BINOMIAL THEOREM 

lt is easy to verify, by direct multiplication, that 

(1 + x)0 = 1 
(1+x) 1 = 1+x 
(1 + x)2 = 1 + 2x + x2 

(1 + x)3 1 + 3x + 3x2 + x3 

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4 

A pattern is ernerging for these coefficients which is often referred to 
as Pascal's triangle. Let's Iook at it. 

1 
1 

(1) 
1 
1 

1 
(2) 
(3) 
4 

1 
3 
6 

1 
4 1 

Each entry consists of the sum of the entry above, and the entry above 
and to the left. The circled numbers illustrate this feature; 3 is the 
sum of 2 and 1. 

Using this idea, see if you can write down the next line. 
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Here it is: 
1 5 10 10 5 1 

So we roay conjecture that 

and indeed direct roultiplication will verify this fact. 

Before we take this story any further we shall introduce soroe notation 
which you roay not have coroe across before. Suppose n is a natural 
nurober then the syrobol n! is known as factorial n and is defined by 

n! = n X (n- 1) X · · · X 3 X 2 X 1 

So that 
5! = 5 X 4 X 3 X 2 X 1 = 120 

One way to think of n! is that it is the nurober of ways in which we 
can arrange n books on a shelf. For exarople, if n = 3 and we have 
three books A, B and C, the six possible arrangeroents are 

ABC, BCA, GAB, ACB, BAC, CBA 

This interpretation is even consistent with 0!, which we define tobe 1, 
for if there are no books, there is only one way to arrange thero and 
that is to leave the shelf eropty! 

Using the factorial syrobol we can now define another syrobol which is 
known as the syrobol for the binoroial coefficients. Suppose that n and 
r are both positive integers and that r is less than or equal to n. We 
define 

( ; ) - (n _n;)! r! 

Using this notation we see that 

3! 3! 3 X 2 X 1 
(3- 2)! 2! = 1! 2! = 1 X 2 X 1 = 3 

5! 5! 5 X 4 X 3 X 2 X 1 
-= =10 
3! 2! 3 X 2 X 1 X 2 X 1 (5-2)! 2! 

lf we calculate ( ; ) for n and r less than 5, we see that Pascal's 

triangle can be written 
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( ~) 
(6) (~) 

(~) (~) (~) 

(~) (~) (~) (~) 

(6) (i) (~) (~) (!) 
This enables us to conjecture the general formula for (1 +x)n. Wehave 

(1 + xt = ( ~) + ( ~) x + ( ~) x2 + ... + ( ~) xn 

This is known as the binomial theorem. We shall extend it later to 
other values of n. 

D Obtain the coefficient of x7 in the binomial expansion of (1 + x) 12 . 

The coefficient of x7 in the expansion of (1 + x)n is ( ~ ) . So the 

coefficient of x7 in the expansion of (1 + x) 12 is 

( 12 ) = 12! = 12 X 11 X 10 X 9 X 8 = 792 
7 5! 7! 5 X 4 X 3 X 2 X 1 

• Ifwe glance back at Pascal's triangle we observe that each row appears 
to be symmetrical about its midpoint. In other words reading from left 
to right or reading from right to left seems to give an identical sequence 
of numbers. We have previously observed that each entry in the table 
appears to be the sum of two entries in the row above. These are 
two significant features of the binomial coefficients which we can now 
prove. 

D Deduce the following identities which are satisfied by the binomial 
coefficients. 
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( n ) n! n! ( n) 
a n-r = [n- (n-r)]! (n-r)! = r! (n-r)! = r 

(n-1)! (n-1)! 
--'----'--+----'--__:__,.,........,..----,-,-
(n- 1- r)! r! [n- 1- (r- 1)]! (r- 1)! 

(n-1)! (n-1)! 
...,..-~-____:_,...- + _ __:_ _ _____:_ __ 
(n-r-1)!r! (n-r)!(r-1)! 

(n- 1)! 
(n-r-1)! (r-1)! 

(n- 1)! 
(n- r- 1)! (r- 1)! 

n! ( n) 
- (n-r)! r!- r 

THE L AND TI NOTATION 

[1 1 ] -+--
r n- r 

[r(n~r)] 

• 

Sooner or later we shall have to introduce the 'sigma' notation and 
there is no time like the present! This symbol, which is also known 
as the summation symbol I:, provides a useful method for writing a 
large sum of terms in a compact form. There is also a corresponding 
symbol, fl, which can be used to represent a product of terms and so 
while we are about it we shall introduce this too. 

Suppose we write 

This means that we allow r to take on all integer values from 0 to n 

(including 0 and n) in the symbol ( ~ ) and add the results. Conse­

quently 

The binomial expansion can therefore be written compactly as 
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In a similar way we define TI tobe a product, rather than a sum. Using 
this symbol the product of the same set of terms could be written as 

So that 

g(;) = (~)X (~)X ( ~) X···X ( ~) 
So, for example, 

n rr r = 1 X 2 X 3 · · · X (n- 1) X n = n! 
r=l 

0 Show that if n is a positive integer then 

Wehave 

This is now in a form in which we can apply the binomial theorem 
with x = bfa. So 

(a+bt ant (;) (~r 
t (;) an-rbr 

Clearly if we interchange a and b the result will be unchanged and so 

Now it's time for you to take a few steps on your own just to make 
sure you can handle problems involving the binomial theorem and the 
binomial coefficients. 
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_______ 1.17 Workshop ---------~-1,---,1 t> Exercise Show that if n is any natural number ~ . 

( ~ ) + ( ~ ) + ( ~ ) + ... + ( ~ ) = 2n 

that is 

Have a go at this and then see if you did the right thing. 

We merely need to use the binomial theorem 

and put x = 1 to obtain the required identity. 
If you were right then move ahead to step 4. If you didn't quite 

manage it then try this. 

t> Exercise If we choose any row in Pascal's triangle and alternate the 
signs, the sum is 0. For example, if n = 5 then 

1 - 5 + 10 - 10 + 5 - 1 = 0 

Prove that this property holds for all natural numbers n. 

As soon as you have dorre this, take the next step. 

Agairr we must use the binomial theorem 

However, this time we put x = -1 to deduce 

which is precisely what we wished to show. 

t> Exercise Obtain a relationship between h and k if the constant terms 

in the binomial expansions of 

are equal. 
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Give this a little thought and as soon as you are ready, step forward! 

We notice that in each case the constant term will be the middle term 

in the binomial expansion of ( a + b) n. It is only in these that all the 
powers of x will cancel out. 

The constant term in the first occurs when r = 4 and the constant 
term in the second occurs when r = 2. 

In the first we have a = hx2 and b = - k f x2 so the constant term is 

Whereas in the second we obtain 

Therefore 

This is the relationship which we were required to obtain. 
If you made a mistake or feel you would like some more practise then 
do the next exercise. Otherwise you may move through to the top of 
the steps. 

I> Exercise Obtain the approximate value of 

if x is so small that terms in x of degree higher than 3 may be neglected. 

We use the notation ~ instead of the equality sign = if two things 
are 'approximately' equal to one another. 

Do your best with this one and then step ahead. 

I !L; Wehave 
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Since terms of degree higher than 3 in x may be neglected, we obtain 

y ~ 1 + ( ~ ) (X + x;) + ( ~ ) (X + ~2 r 
+ ( ~) (x + ~2r 

( x2 ) 5 x 4 ( 2 2x x2 ) 5 x 4 x 3 3 
~ 1+5 x+- +-- X+-- + X 

2 1x2 2 1x2x3 

5x2 
1 + 5x + - + 10x2 + 10x3 + 10x3 

2 
25x2 

1 + 5x + - 2- + 20x3 

1.18 THE GENERAL BINOMIAL THEOREM 

We introduced a special notation for the binomial coefficients and we 
defined 

( n ) = n! = n x (n- 1) x · · · x (n- r + 1) 
r (n-r)!r! 1x2x .. ·xr 

This second form can be used to define ( ~ ) even when n is not a 

natural number. 
This is particularly important because although we have inferred the 
binomial expansion from a pattern which we observed when n is a 
natural number, it is in fact valid for all real numbers n, provided 
-1 < x < 1. The expansion then becomes 

The symbol oo which appears above the summation sign indicates that 
we no Ionger have a finite expansion but instead have an infinite series. 
We shall discuss infinite series in some detail in Chapters 8 and 9 but 
for the moment it will be sufficient to think of them as adding terms 
indefinitely. 

The sum of the first N terms will either approach some fixed number, 
as N increases, in which case the series is said to converge, or it will 
not, in which case the series is said to diverge. 
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The binomial theorem states that provided -1 < x < 1 then the 
series 

converges and moreover that it converges to 

(1 +xt 

The binomial theorem in its general form can prove quite useful if we 
wish to determine an approximate value for an expression involving 
powers of 1 + x where -1 < x < 1. When x is numerically small we 
may be able to neglect all but very small powers of x. lt is easy to 
convince yourself, by using a calculator, that when -1 < x < 1, large 
powers of x are extremely small. 

lt must be stressed that these properties are not self-evident and in 
fact require quite advanced mathematics to put them on a rigorous 
footing. Nevertheless we shall be content, for the moment, to apply 
them and we conclude this chapter by giving a practical application. 

---------- 1.19 Practical _______ _ 

ELECTRICAL FORCE 

A magnetic pole, distance x from the plane of a coil of radius a, and 
on the axis of the coil, is subject to a force 

F = kx ( k constant) 
(a2 + x2)5/2 

when a current flows in the coil. Show that: 
a if x issmall compared with a then 

b if x is large compared with a then 

Try a, then move ahead for the solution. 
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a We have x / a is small, and so we rearrange the expression for F so 
that we can expand it by the binomial theorem 

F 
kx 

a5[1 + (x/a)2]5/2 

~~ [1 + (~rr5/2 

~ ~~ [1-; (~f] 
neglecting terms in x/a of degree higher than 2. So 

Now see if you can do the second part. Remernher that here x is large 
compared with a. 

b We rearrange the expression for F in terms of a/x, which is small, 
with a view to using the binomial expansion in a very similar way to 
that of a. 

F 
kx 

:4 [1 + (~rr5/2 

~ :4 [1-; (~f] 
neglecting terms in a/x of degree higher than 2. So 
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SUMMARY 

0 We have seen how to classify real numbers into natural num­
bers N, integers Z, rational numbers Q and real numbers R 

NcZcQc!R 

0 We have seen how to approximate numbers to a given num­
ber of decimal places or a given number of significant figures. 

D We have examined the rules of elementary algebra, distin­
guished between identities and equations, and seen how to 
solve the quadratic equation 

to obtain 

ax2 + bx + c = 0 

-b ± v'W- 4ac) 
X = --...:......:-----'-

2a 

0 We investigated the general expansion of (1 + x )n, where n 
isanatural number. 

EXERCISES 

1 For each of the following pairs of numbers obtain the sum and the 
product in scientific notation giving the answers correct to (1) 3 
decimal places ( 2) 4 significant figures 
a 6.23509, 11.4731 
b 16.2536, 0.0001124 
c 0.00045792, 0.000059634 
d 1.0000523, 154.000002 

2 Give each of the following numbers (1) correct to 5 significant 
figures ( 2) correct to 5 decimal places 
a 217.385, b 0.0002843, c 11.1 d 432.495, 
e 1.0000472, f 1.00005 g 1.000050001 

3 Multiply out each of the following algebraic expressions 
a (a + 3b)(a- 2b) 
b (u-v)(v-w)(w-u) 



c (x + 2y)(y + 2z)(z + 2x) 
d (a2 + b2 )(a- b)(a + b) 

4 Factorize each of the following expressions 
a a3 + 3a2b + 2ab2 

b x3 + x2y- 4xy2 - 4y3 

c u3 - 7u2v + 7uv2 - v3 

d x4y2 _ x2y4 
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5 Rearrange the following equations to give x explicitly in terms of 
y 

a 1/x + 1/y = 1 
b y = (x + 1)/(x- 1) 
c y = 1/v'(1 + yjx) 
d 1/(1- x)- 1/(1- y) = x- y 

6 Solve the following sets of simultaneaus equations 
a x + 2y = 7, 3x - 4y = 1 
b 2u + 3v = 21, 3u + 2v = 19 
c 3p - 2q = 11' 2p + 3q = 29 
d 5h- 3k = 7, 3h + 5k = 11 

7 Prove the following identities 
a (a + b)(b + c)(c + a) 

= aW + c2 ) + b(c2 + a2 ) + c(a2 + b2 ) + 2abc 
b a2(b- c) + b2(c- a) + c2(a- b) + (a- b)(b- c)(c- a) = 0 

8 Classify the real roots of the following equations into natural num­
bers, integers, rational numbers, real numbers: 
a u2 + u- 2 = 0 
b u 2 + u+ 2 = 0 
c u2 + 2u- 2 = 0 
d u2 - 3u + 2 = 0 
e u2 + 3u + 2 = 0 
f 2u2 - 3u + 1 = 0 

9 Write down the first three terms in the binomial expansion, in 
ascending powers of x, of 
a (1- 2x)5 

b (x + 3)1 
c (2x- 3}8 

d (4- 5x)112 

e (3 + 5x)213 

f (x- 3}-2 
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ASSIGNMENT 

1 Find all real solutions of the following equations and classify them 
into real numbers, rational numbers, integers, natural numbers: 
a x2 - x = 6 
b 3y2 - 7y + 2 = 0 
c u2 + 1 = 2/u2 

d v2 + 15/v2 = 8 
e 4x2 - 4x + 1 = 0 

2 Simplify 

(1 - x)(1 + x2) 

3 A resistance r is given by the formula 1/r = 1/r1 + 1/r2, where r 1 

and r2 are other resistances. Obtain an explicit rational expres­
sion for r in terms of r 1 and r2 . 

4 By first putting x = 1/u and y = 1/v, or otherwise, solve the 
following equations 
a 2/u - 1/v = 4, 1/u + 3/v = 9 
b 4/u + 3/v = 22, 3/u - 2/v = 8 
c 5v - 3u = 7uv, 3v + 4u = 10uv 
du= v- uv, 6uv = 4v- 1 

5 Decide, in each case,which of the following are identities and 
which are equations. If they are equations then solve them. 
a (2x + 3)2 - 2(x + 3)(2x + 3) + (x + 3)2 = x2 

b (x + 3)/(x2 + 3x + 2)- 1/(x + 1) + 1/(x + 2) = x 
c (x- 1)2 + (x- 4) 2 = (x- 2) 2 + (x- 3)2 + 22 

6 Determine the value of k if the coefficient of x12 in the binomial 
expansion of (1 + kx3 ) 15 is known tobe 455/27. 

7 Obtain the constant term in the binomial expansion of[x-(1/x)]8 . 

8 The binomial expansions of (1 + ax3 ) 4 and (1 - bx2 )6 both have 
the same coefficient of x6 . Show that 

FURTHER EXERCISES 

1 For each of the following equations, classify the real solutions into 
natural numbers, integers, rational numbers, real numbers. 
a (2x- 1)(2x- 4) + 2 = 0 
b x- 1/x = 1 - 5/x 
c (x - 3)2 + 6(x - 3) + 6 = 0 
d (/x- 1//x)2 = 1- 1/x 



FURTHER EXERCISES 37 

2 Factorize each of the following algebraic expressions completely 
a a4 - 5a2b2 + 4b4 

b 4u4 - 17u2v2 + 4v4 

c [(u + v) 2 - (u- v) 2][(v + w) 2 - (v- w) 2] 

d x5 - 10x4 + 35x3 - 50x2 + 24x 

3 Show that twice the coefficients of x3 in (3x + 2)5 is equal to three 
tim es the coefficient of x3 in (2x + 3)5 . 

4 Write down the first four terms in the binomial expansion of 
a (1 +x) 10 

b(1+x)-1 

c (1- xtl/2 

d (1- 3x)-513 

e (4- 7x)312 

5 A trapezium has height h and parallel sides of length a and b. If 
the distance d of the centre of mass from the side of length a is 
given by 

d = ~ (2b + a) 
3 (a + b) 

express b explicitly in terms of a, d and h. 
6 The surface area of a rubber tyre is given by S = 4n2ab where 

a is the radius of a circular cross-section of the tyre and b is 
the distance of the centre of this section from the centre of the 
ring. Express the area S in terms of the irrtemal radius r and the 
external radius R of the ring. 

7 When two resistances r 1 and r 2 are arranged in parallel their 
combined resistance r is given by the formula 1/r = 1/r1 + 1/r2 

but when they are arranged in series their combined resistance 
r is given by the formula r = r 1 + r 2 . If an electromotive force 
(EMF) E is applied to a resistance r the current i is given by 
E = ir. 

Two resistances r 1 and r 2 are first arranged in series and then in 
parallel. In each case a constant potential difference E is applied 
and the current to the combined resistance is measured. If these 
measurements are i 1 and i 2 respectively obtain formulae for r 1 

and r2 explicitly in terms of E, i 1 and i2. 

8 Obtain the displacement x in terms of the velocity v if 

v2 = 2k ( ~- ~) 
x a 

where k and a are known constants. 
9 The torque T exerted by an induction motor is given by 

T= ARs 
R2 + X2s2 

Obtain the ratio sj R explicitly in terms of A, X and T only. 
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10 A hemispherical shell has inner and outer radii a and b respec­
tively. It is found that the distance d of the centre of mass from 
the centre of the bounding sphere is given by 

d = 3(a + b)(a2 + b2 ) 

8(a2 +ab+ b2 ) 

If a + b = h, express a/b explicitly in terms of d and h. 

11 By putting y = x - h, or otherwise, show that, if powers of 
(x- y)fx higher than degree 2 may be neglected, then 

x2 - y2 (X - y) 1 (X - y) 2 ---,-____.::- ~ -- + - --
2xy X 2 X 

12 The flow of water through a pipe is given by G = J[(3d)5 Hf L]. 
if d decreases by 1% and H by 2%, use the binomial theorem to 
estimate the decrease in G. 

13 The resonant frequency of a circuit of inductance L and capaci­
tance C with negligible resistance is given by f = 1/[27rJ(LC)]. 
If L and C increase respectively by 1% and 2%, estimate the 
percentage error in f. 

14 The safe Ioad W that can be carried by a beam of breadth b, 
depth d and length l is proportional to bd3 fl. Use the binomial 
theorem to estimate the percentage change in W if for a given 
beam the breadth is increased by 1%, the depth is decreased by 
3% and the length is decreased by 3%. 

15 The field strength of a magnet at a point on the x-axis at distance 
x from the centre is given by 

H-M[ 1 _ 1 ] 
- 2a (x- a)2 (x + a)2 

where M is the moment and 2a is the length of the magnet. Show 
that if x is !arge compared with a then H ~ 2M/ x3 . 

16 A string is stretched between two points A and B distance l apart. 
A point P on the string distance d from A is pulled transversely 
through a small distance x. Show that the increase in the length 
of the string is approximately lx2 /2d{1 - d). 
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ln Chapter 1 we examined the algebraic rules which numbers 
obey. ln this chapter we shall discuss some useful mathematical 
concepts including inequalities and the laws of logarithms. 

After completing this chapter you should be able to 

0 Apply the laws of indices and logarithms; 

0 Solve simple inequalities; 

0 Resolve a rational expression into partial fractions; 

0 Construct examples of direct proofs and indirect proofs; 

0 Use the method of proof known as 'mathematical induction'. 

At the end of this chapter we shall solve a practical problern concerning 
a gas cylinder. 

2.1 INDICES AND LOGARITHMS 

Years ago all calculations of any difficulty had to be performed using 
tables of logarithms. It was therefore essential to become skilled in 
the use of these tables. With modern calculators this is no Ionger 
necessary, but it remains important to have a clear understanding of 
the rules which underpin them. 

INDICES 

We first explain what we mean by ar, where r is any real number and 
a is a strictly positive real number. We shall build up to the general 
idea in stages and so we start with r = n, a natural number. 

In fact an where n is a natural number will be defined when a is any 
real number. This is a luxury which we shall not be able to afford for 
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general r. 
a1 = a, a2 = aa 

and in general 
an= aan-1 where n > 1 

lt follows that an is simply the product of a with itself n times. 
If a -I 0, we define a0 = 1 and, if n is a natural number, 

-n 1 
a =­

an 

This extends the definition to ar, where r is any integer. 
When we consider the definition carefully, we obtain when a -I 0: 

1 aP aq = aP+q 
2 (aPF = aPq 
where p and q are any integers. 

These two rules are often referred to as the laws of indices, and as 
we extend the definition of an we shall require these rules to remain 
true. One of the prices we have to pay for this is that we will have to 
restriet the definition of ar to a > 0. Henceforward we shall suppose 
therefore that a > 0. 

Suppose next that r is a rational number. So r = pjq, where p and 
q are integers. We define aP/q to be the positive real number x which 
satisfies the equation xq = aP. 

There is in fact one and only one such real number but the proof 
of this, which relies on a theorem known as the intermediate value 
theorem, is outside the scope of our work. 

D 2112 is therefore the positive real number x which satisfies the equa­
tion x2 = 2, so that 2112 = J2 ~ 1.414. 

Lastly, for those who are interested, we extend the definition of ar to 
the case where r is any real number. If r is a rational number then we 
have already defined ar, so we may suppose r is an irrational number. 
Consider the non-recurring non-terminating infinite decimal expansion 
which corresponds to r and Iet 

denote successive rational approximations to r, so that rk is obtained 
by truncating the decimal expansion for r after k decimal places. 

We now consider the numbers 

Each one of these has been defined because Tk isarational number. The 
number to which these are successive approximations is the number we 
call ar. 
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It will be appreciated that this idea is quite sophisticated and it 
leaves a number of questions. For instance, how do we know that the 
numbers 

are successive approximations to a number at all? Such questions are 
rather subtle and will not be discussed here. It will be sufficient for 
our purposes to know that ar has been defined when a > 0 and that 
the laws of indices hold. 
1 ar a• = ar+s 
2 (ar)s = ars 
where r and s are any real numbers. 

0 Using a calculator and employing six successive approximations to 
1r, obtain six successive approximations to 21r. 

Wehave 1r = 3.141 59 ... , from which we obtain the successive approx­
imations 

That is, 
8, 8.574, 8.815, 8.821, 8.824, 8.825 

• 
LOGARITHMS 

From the laws of indices we obtain the laws of logarithms. Logarithms 
are important because they provide a transformation which enables the 
arithmetical processes of multiplication and division to be replaced by 
those of addition and subtraction. 

Suppose a = bc. Then c is said tobe the power to which b has been 
raised to produce a. We then write 

c = Iogb a 

which is called the logarithm of a to the base b. 
So the equations 

and c = logba 

are equivalent to one another. 
In words, the logarithm of a number is the power to which the base 

must be raised to obtain the number. 
Any positive number, except 1, is suitable as a base. In practice two 

bases are used: 
1 Base 10: this produces the common logarithms 
2 Base e: this produces the naturallogarithms (also known as Nape­
rian logarithms). 

The number e (~ 2.71828) is an irrational number. The reason why 
it is chosen and called the natural base will become clearer when we 
deal with differentiation (Chapter 4). 
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It is usual to write y = log x instead of y = log10 x, and y = ln x 
instead of y = Ioge x. 

When the laws of indices are transformed into logarithmic notation, 
they result in the laws of logarithms: 
1 loge(ab) = Ioge a + Ioge b 
2 logc{a/b) = Ioge a- Ioge b 
3 loge(ar) = r Ioge a 
4 loga b = Ioge b/ Ioge a (a #- 1) 
The last rule is usually called the formula for a change of base. 

D Use the laws of indices to deduce 

Let logea = x and logeb = y. Then a =CE and b = cY, and so 

Consequently x + y = loge(ab). 
Now one for you to try. 

D Deduce, using the laws of indices, 

Have a go at this; it's very similar to the previous example. 

• 

This is what you should write. Let Ioge a = x and Ioge b = y. Then 
a = C' and b = cY, and so 

a CE _ = _ = Cx (cY)-1 = Cx C-y = Cx-y 
b cY 

Therefore 

Was all well? lf you would like some more practice then try this. 

D Deduce, using the laws of indices, 
a loge(ar) = r loge a 

b loga b = Ioge b/ loge a 

• 

Here is the working: 
a Suppose Ioge a = b. Then a = cb, and therefore ar = ( &y = erb. 
Consequently, logc(ar) = rb = r Ioge a. 
b Suppose logeb = y and logea = x. Then b = cY and a = C', and so 

bx = (cYY = Cxy = (cx)y = aY 
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It follows that 

from which 
lo b = '#._ = logc b 

ga X logc a 

Note that logc a # 0, since if logc a = 0 then a = 1. • 
Logarithms are very important for solving algebraic equations in which 
indices are present. However, it is easy to make mistakes. One of the 
commonest errors is to assume that the logarithm of a sum is the sum 
of the logarithms. This kind of rule is known as a linearity rule; 
unfortunately logarithms do not comply with it. Let us be specific and 
examine how the error is usually made. 

D Solve the equation 
4x + 2x- 2 = 0 

You can try this first and then examine the correct working afterwards. 

The following working is the correct working. First, 

4x + 2x- 2 = 0 

So 

22x + 2x- 2 = 0 
(2x)2 + 2x - 2 0 

Consequently 
(2x + 2)(2x- 1) = 0 

So either 2x + 2 = 0 or 2x = 1. Now 2x > 0 for allreal numbers x. So 
the only possibility is 2x = 1, from which x = 0. • 

Now let's examine some incorrect working of the type which is fre­
quently seen by examiners. In order not to mislead the unwary we 
shall avoid the equality sign - it cuts against the grain to use it - and 
instead use the symbol II· See how many errors you can spot in the 
following incorrect working of the previous example. 

Taking logarithms 

So 

So xll1/3. 

x ln 4 + x ln 2 - ln 2110 

2x ln 2 + x ln 2 - ln 2 II 0 
(3x-1)ln2 II 0 
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The trouble is that on rare occasions nonsense like this can even lead 
to the correct answer! There are two glaring errors: 
1 You cannot 'take logarithms' of both sides in the way that has been 
shown. The temptation to saunter through the equation from left to 
right dispensing logarithmic transformations on every term encoun­
tered seems to be so strong that many people find it irresistible. How­
ever, as we have remarked, logarithmic transformations are not linear 
and so the procedure is not valid. 
2 Without even bothering to mention it, the assumption has been 
made that ln 0 = 0. However, since e0 = 1, e0 ::j; 0. In fact ln 0 has no 
meaning. 

Here is an example for you to try. Do be careful! 

D Obtain all real solutions of the equation 

22x - 2x+5 + 256 = 0 

When you have solved the problem, look to see if you are right. 

The easiest way to solve this is to put u = 2x and obtain a quadratic 
equation in u. For if u = 2x, 

and 

So the equation becomes 

u2 - 32u + 256 
u 2 - 25 u + 28 

(u- 24)(u- 24 ) 

Therefore u = 2x = 24 , and so x = 4. 

2.2 INEQUALITIES 

0 

0 
0 

• 

In Chapter 1 we considered identities and equations and used the al­
gebraic properties of the real numbers to solve some of them. When 
we come to examine inequalities we need some further algebraic rules. 
First, though, we describe the notation. 

We write a > b if and only if the number a is greater than the 
number b. This is known as a strict inequality. The symbol '>' is 
called 'greater than'. 

We write a ~ b if and only if the number a is greater than, or possibly 
equal to, the number b. The symbol '~' is called 'greater than or equal 
to'. 
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D For the numbers -4, 0, x2 write down the 8 correct statements 
which can be written using the symbols ~ and > and just two of the 
numbers. 

We need to choose two numbers (not necessarily distinct) and one of 
the symbols. We have 

-4 ~ -4 
0 ~ -4 

x2 ~ -4 

0 ~ 0 
0 > -4 

x2 > -4 

• You may be a little puzzled by the inclusion of 0 ~ -4 and x2 ~ -4 
since we know that 0 > -4 and x2 > -4. However if you consider 
the meaning of the symbol ~ carefully you should appreciate that 0 is 
indeed 'greater than or equal to' -4. You need to be very strict about 
the precise meanings of words and expressions and in that way avoid 
misunderstandings and errors. 

In like manner we define the symbols < and :::;;; called 'less than' and 
'less than or equal to' respectively. 

We write a < b if and only b > a. Similarly we write a :::;; b if and 
only if b ~ a. 

In general inequalities are difficult to solve. However there are some 
which are quite amenable and these are the ones which we shall con­
sider shortly. 

One of the ideas which we shall employ is that if we take the product 
or quotient of two numbers of the same sign then the result is positive, 
whereas if we take the product or quotient of two numbers of opposite 
sign then the result is negative. This relatively simple idea, that 'two 
negatives cancel one another out', can be used to solve a number of 
inequalities. 

When it comes to the algebraic processes, which we shall explore, it 
is necessary to state three simple rules. These are known as the order 
axioms for the real number system. 

2.3 RULES FOR INEQUALITIES 

1 For any real number a, just one of the following is true: 

a>O a=O a<O 

2 If a > 0 and b > 0 then a + b > 0 and ab > 0 

3 a > b if and only if a - b > 0 

You may feel that the first of these rules is self-evident. However, we 
shall meet many other mathematical objects for which inequalities are 
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meaningless. Relatively simple examples of these are complex numbers 
{Chapter 10), matrices (Chapter 11) and vectors {Chapter 14). There 
is often a human hankering to compare things. People ask who was 
the greatest composer or the greatest film star, for instance, but these 
questions are without answer. Anything with more than one attribute 
is unlikely to satisfy the first rule ( the law of trichotomy). 

The second rule gives us the method for dealing algebraically with 
inequalities. However we need to be rather careful because although 
some of the rules which we apply to equations will also work with 
inequalities they do not all work. Unfortunately this can be a source 
of much error. 

We deduce two properties. The first one is familiar to us because we 
know that it applies to equations. 
Property 1 If a > b and c is any real number then 

a+c>b+c 

Proof By rule 3 we deduce that a + c > b + c if and only if 

(a + c) - (b + c) > 0 

But this is true if and only if a - b > 0. Again by rule 3 this holds if 
and only if a > b. Now we were given that a >band, since every step 
in the argument is an 'if and only if' condition, we deduce that 

a+c>b+c 

This means that we can add or subtract any number from each side 
of an inequality and still preserve the inequality. This is intuitively 
clear. If one body is hotter than another and their temperatures are 
both increased or decreased by the same amount then the hotter body 
remains hotter. 
Property 2 If a > b and c is any real number then 

1 ac>bc ifc>O 

2 ac<bc ifc<O 

lt is the second part of this property which is often overlooked and 
which results in errors. 
Proof 
1 We have a- b > 0 and c > 0 and so by rule 2, (a- b)c > 0 from 
which ac- bc > 0. Therefore by rule 3, ac > bc. 
2 We have a - b > 0 and -c > 0 and so by rule 2, (a- b)( -c) > 0 
from which bc - ac > 0. Therefore by rule 3, bc > ac and so ac < bc. 
In plain language this means that, when we are multiplying an inequal­
ity by a positive number, the direction of the inequality is preserved. 
However, when we are multiplying an inequality by a negative number, 
the direction of the inequality is reversed. 
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There are a number of methods which can be applied to solve inequal­
ities and we shall illustrate them by solving the same problern in a 
variety of ways. 1t is important to study each of these methods care­
fully in order to understand fully how each is applied. 

0 Determine those real numbers x which satisfy 

x > 1/x 

Method 1 (Algebraic) 
We would like to multiply through by x but we need to be aware of 
the possibility that x could be negative. There are therefore two cases 
to consider. 
Case 1 (x > 0) We obtain x2 > 1 and so x2 - 1 > 0. Therefore 

(x- 1)(x + 1) > 0 

We deduce that x - 1 and x + 1 must both have the same sign. So 
either both x > 1 and x > -1 or both x < 1 and x < -1. 

The first condition is satisfied if and only if x > 1, and the second 
if and only if x < -1. However x > 0 and so the second can be 
discounted. Therefore we deduce that x > 1 is a solution. 
Case 2 (x < 0) Herewe obtain, on multiplying through by x, 

and so 

Consequently, 
(x- 1)(x + 1) < 0 

Therefore x - 1 and x + 1 must both have the opposite sign. So either 
x > 1 and x < -1 (impossible) or x < 1 and x > -1. We can express 
this by the compound symbol -1 < x < 1. 
Note We can only sandwich inequalities tagether in this way when 
they all have the same direction. 

However x < 0 and so we deduce -1 < x < 0. Therefore we have 
solved the inequality by obtaining the set of numbers which satisfy it. 

x > 1/x if and only if x > 1 or - 1 < x < 0. 

This algebraic method is of great generality and can be used effectively 
to solve many inequalities. • 
There is a second approach we can use and we illustrate this method 
by solving the same inequality again. 
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D Determine those real numbers x which satisfy 

x > 1/x 

Method 2 ( Analytic) 
We employ rule 3 for inequalities and show how effective it can be. 

Therefore we write E = x- 1/x and determine when E > 0. 
Now 

E = x _ ~ = x 2 - 1 = ( x - 1 )( x + 1) 
X X X 

Each of the terms in this quotient, x -1, x + 1 and x, changes sign just 
once as x increases through negative numbers to positive numbers. 

The critical numbers at which the sign changes occur are x = 1, x = 
-1 and x = 0. We arrange these critical numbers in ascending order 
and investigate the sign of the quotient E by constructing a table in 
which the signs of the constituent terms are shown. 

Term X< -1 -1 <X< 0 0<x<1 x>1 
x+1 - + + + 
X - - + + 
x-1 - - - + 
E - + - + 

In the table, we merely need to count up to see if there is an odd 
number of negative signs or an even number of negative signs. An odd 
number of signs means that E is negative whereas an even number of 
signs means that E is positive. We conclude therefore that the solution 
of the inequality is either -1 < x < 0 or x > 1. • 

There is a third approach we can use and so we illustrate this method 
by solving the same inequality yet again. 

D Determine those real numbers x which satisfy 

x > 1/x 

Method 3 (Graphical) 
If you are unfamiliar with drawing graphs you will have to delay con­
sidering this method until you have read Chapter 3. 

We draw graphs of y = x and y = 1/x on the same diagram. The 
basic idea is to compare the two graphs (Fig. 2.1) and to find those 
values of x for which y = x is 'above' y = 1/x. 

The graph of y = x is a straight line and the graph of y = 1/ x is a 
reetangular hyperbola, but we do not need to know the names; we only 
need to be able to plot them in order to solve the problem. Graphics 
calculators provide a method of doing this automatically. We shall 
consider ideas for obtaining rough sketches of graphs in Chapter 5. 
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y-axi y = 1/x 

Fig. 2.1 Graphical solution of x > 1/x. 

We observe that the graphs intersect when x = 1 and when x = -1 
and from them deduce immediately that the inequality holds when 
x > 1 and -1 < x < 0. • 
In situations where the possibility of equality is included it is necessary 
to examine the sign of the inequality at the critical numbers too. For 
instance the inequality x ~ 1/ x has solutions -1 ~ x < 0 and x ~ 1. 
Note in particular that 1/x is meaningless when x = 0. 

D Show that if a > 0 and b > 0 and a2 > b2 then a > b. In words, the 
inequality is preserved when we take the positive square root. 

We prove this by an indirect method: we show that only a > b is possi­
ble because if any of the alternatives were to hold then a contradiction 
would result. There are just three possibilities: a a = b b a < b c 
a > b. 
a We can reject a = b immediately, since then 

a2 - b2 = (a + b)(a- b) = 0 

which contradicts a2 - b2 > 0. 
b If a < b then b - a > 0 and we know that b + a > 0. Therefore 
(b + a)(b- a) > 0 and so b2 - a2 > 0 which is a contradiction. 
Only case c remains, and we deduce that a > b. • 
A similar method can be used to show that if a ~ 0 and b ~ 0 and 
a2 ~ b2 then a ~ b. 

lt is essential to note that in order to apply this property both a and 
b must be positive. For example ( -3)2 > 22 but -3 < 2. Trouble soon 
occurs if you overlook considerations of this kind. 
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THE TRIANGLE INEQUALITY 

One useful notation which we shall employ from time to time is the 
modulus symbol. We write Iai for the absolute value of a. Thus if a 
is any real number, 

Iai = a 

Iai = -a 

For example, I - 31 = 3 and 151 = 5. 

when a ~ 0 
when a < 0 

An inequality involving the modulus sign which we shall encounter 
occasionally is the triangle inequality. It can be interpreted physi­
cally as saying that the sum of the lengths of two sides of a triangle is 
always greater than or equal to the length of the third side. Geomet­
rically this is obvious, but algebraically it is not quite so clear. Here it 
IS: 

The triangle inequality 

whenever a and b are real numbers. 
If you substitute a few numbers, you will soon convince yourself of 

the truth of this assertion. 
To prove it we proceed as follows: 

(Iai + lbl)2 lal2 + 2lallbl + lW 
a2 + 2lallbl + b2 

~ a2 + 2ab+ b2 

(a + b) 2 

la+W 

So that taking the positive square root, 

or 

2.4 PARTIAL FRACTIONS 

• 

In Chapter 1 we saw how we could collect a sum of rational expressions 
together over a common denominator and thereby simplify it. If we 
reverse this process we say we have put the rational expression into 
partial fractions. We shall now see how this is clone. 
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To resolve a rational expression into partial fractions we first ensure 
that the numerator is of degree less than that of the denominator. lf 
this is not already the case we must divide the denominator into the 
numerator. For example, take the expression 

2x3 - 1 
R = --"----=---­

x3 + x2 - x- 1 

Here the denominator needs tobe divided into the numerator. We can 
use 'short' division by observing that 

so that 

2x3 - 1 = 2 ( x 3 + x2 - x - 1) - 2x2 + 2x + 1 

R 
x 3 + x2 - x -1 

2x2 - 2x -1 
2 - --c:----=---­

x3 + x2 - x -1 

Next we factorize the denominator as far as possible: 

x3 + x2 - x- 1 = (x- 1)(x2 + 2x + 1) = (x- 1)(x + 1)2 

To each factor of the denominator there corresponds a partial fraction. 
There are two cases: 
llf the factor is not repeated then the numerator of the partial fraction 
has degree less than its denominator. 

For example, if the factor is x - 1 (that is, a polynomial of degree 
1) then the corresponding numerator will be a constant, A say (that 
is, a polynomial of degree 0). Again, if the factor is x2 + 1 (that is, 
a polynomial of degree 2) then the corresponding numerator will have 
the form Ax + B ( that is, a polynomial of degree 1). 
2 If the factor is repeated r times then there correspond r partial 
fractions, one to each power of the factor. 

For example, if the denominator was (2x2 + 1 )3 , we should obtain 
three corresponding partial fractions with denominators 2x2 + 1, (2x2 + 
1 )2 , and (2x2 + 1 )3 respectively. The form of each of the numerators is 
then identical and is determined by the factor itself; each numerator 
has degree less than that of the factor. So in this example we should 
obtain 

Ax+B Cx+D Ex+F ..,....--"..--- + + -:---::-----:-::-
2x2 + 1 (2x2 + 1)2 (2x2 + 1)3 

Finally, the unknown constants are obtained by using the fact that 
we require an identity. 
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D Resolve into partial fractions 

2x2 -1 
R=----­

x3 + x2 - x -1 

We have already shown that 

2x2 - 2x -1 
R = 2 - -::----::---­

x3 + x2 - x -1 

2x2 - 2x- 1 = 2 - -;----:--;----;--;:: 
(x- 1)(x + 1)2 

= 2-[~+~+ c ] 
X- 1 X+ 1 (x + 1)2 

We therefore require 

2x2 - 2x -1 
(x-1)(x+1)2 = 

A B C -- + -- + -:------:-
X- 1 X+ 1 (x + 1)2 

= 
A(x + 1)2 + B(x- 1){x + 1) + C(x- 1) 

(x- 1)(x + 1)2 

So we require 

2x2 - 2x- 1 = A(x + 1)2 + B(x- 1)(x + 1) + C(x- 1) 

We may either equate coefficients or put in values of x. In any case our 
aim is to determine A, B and C as easily as possible. Putting x = 1 
gives 2- 2- 1 = 4A, so A = -1/4. Putting x = -1 gives 2 + 2- 1 = 
-2C, so C = -3/2. Finally, putting x = 0 gives -1 =A-B-C, so 
B =A-C+ 1 = -1/4 + 3/2 + 1 = 9/4. 
Consequently 

R = 2 _ [(-1/4) + {9/4) + (-3/2)] 
X- 1 X+ 1 (x + 1)2 

2 1 9 3 
= + 4(x- 1) - 4(x + 1) + 2(x + 1)2 

• It is always possible to check your working by recombining the partial 
fractions. In the previous example we obtain: 

RHS = 2 +(x+1)2-9(x-1)(x+1)+6(x-1) 
4(x- 1)(x + 1)2 

= 2 + (x2 + 2x + 1)- 9(x2 - 1) + 6(x- 1) 
4(x- 1)(x + 1)2 
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8(x- 1)(x + 1)2 - 8x2 + 8x + 4 
4(x- 1)(x + 1)2 

8(x2 - 1)(x + 1)- 8x2 + 8x + 4 
4(x- 1)(x + 1)2 

8 ( x 3 - x + x2 - 1) - 8x2 + 8x + 4 
4(x- 1)(x + 1)2 

8x3 - 4 
4(x- 1)(x + 1)2 

2x3 - 1 
(x- 1)(x + 1)2 

LHS 

THE COVER-UP RULE 

Although the technique always works, as you can see it can be rather 
long. A short cut is available for obtaining the partial fractions corre­
sponding to factors which arelinear (that is, polynomials of degree 1). 
This method is known as the cover-up rule and is simple to apply. 

First we ensure, by dividing out if necessary, that the numerator of 
the rational expression has degree less than that of the denominator. 
Secondly we factorize the denominator and select the required factor. 
We cover up this factor and imagine that it has been put equal to zero. 
This will give a value for (say) x. Then we substitute this value for x 
in that part of the rational expression which remains uncovered. This 
procedure produces the required constant. 

D Take the rational expression 

2x2 - 2x- 1 
R = -,----:-:----:-::-

(x- 1)(x + 1)2 

The denominator is already factorized and is of greater degree than the 
numerator. Suppose we require the constant numerator corresponding 
to the factor x - 1. We cover up x - 1 and imagine it has been put 
equal to 0, and thus obtain x = 1. This is the value of x which we 
must substitute into the remnant to give the required constant: 

2x2 - 2x - 1 2 x 1 - 2 - 1 1 
----:-----:--::- -+ = - -
><(x+1)2 ><(1+1)2 4 

• lt is interesting to notice that, in the case of a repeated linear factor, 
the cover-up technique produces the constant numerator corresponding 
to the denominator of highest degree. In the previous example, 

2x2 - 2x - 1 2( -1 )2 - 2( -1) - 1 3 --,------ -+ = --
(x-1)>< (-1-1)>< 2 
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The cover-up rule can be quite useful for cutting down the amount of 
algebrathat would otherwise be necessary. Let's summarize the rule. 

To obtain the constant numerator corresponding to a distinct linear 
factor ax + b, where a and b are constant: 
1 Cover up the factor ax + b in the denominator and imagine that it 
has been put equal to zero; 
2 Substitute the value of x obtained in this way into the rest of the 
rational expression, and the result is the required constant. 

Most students use a finger to cover up the linear factor but any other 
convenient part of the anatomy will do. 

Now for some more steps. 

r--T---------- 2.5 Workshop _______ _ 

I !S~ Exercise Use the cover-up rule to resolve into partial fractions 

3x + 1 
x(x - 2) 

First find the numerator corresponding to the fraction with denomina­
tor x and then take step 2. 

For the numerator corresponding to x we put x = 0 into 

(3x + 1)/(x- 2), which gives -1/2. 
Did you managethat all right? If you did then complete the resolution 

into partial fractions. If you made a mistake then take great care when 
obtaining the numerator corresponding to x-2, and check algebraically 
by recombining your answer that it is correct. 

As soon as you are ready, take another step. 

For the numerator corresponding to x- 2 we put x = 2 into (3x + 1) / x 

which gives (6+1)/2 = 7/2. Therefore 

3x + 1 1 7 
----,----,- = -- + -,------,-
x(x- 2) 2x 2(x- 2) 

If you are still making mistakes, you should read the section on the 
cover-up method again to make sure you understand how to apply it 
correctly. 
Now go on to this exercise. 

~ Exercise Resolve into partial fractions 

x4 + 2x- 3 
x3 + 2x2 + x 
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First use 'short' division to divide the denominator into the numerator 
and then move to step 4 to see if you have the right answer. 

x4 + 2x- 3 

So we have 

x(x3 + 2x2 + x)- 2(x3 + 2x2 + x) + 3x2 + 4x- 3 

( x - 2 )( x 3 + 2x2 + x) + 3x2 + 4x - 3 

x 4 + 2x- 3 
x3 + 2x2 + x 

and Q 

3x2 + 4x- 3 
X - 2 + ---,-----"-­

x3 + 2x2 + x 

3x2 + 4x- 3 
x 3 + 2x2 + x 

remains to be resolved. 
Now factorize the denominator D of Q as far as possible and write 

down the form of the resolution. Then step ahead. 

x 3 + 2x2 + x = x(x2 + 2x + 1) = x(x + 1? 

Here the factors of the denominator are x and x + 1 ( repeated). There­
fore we shall obtain partial fractions with. denominators x, x + 1 and 
(x + 1)2 , and the numerators will all be constant. So 

Q = 3x2 + 4x - 3 = ~ + _!!___ + C 
x 3 + 2x2 + X X X + 1 (X + 1 )2 

Without using the cover-up method, obtain the constants A, B and 
C. Then go on to step 6. 

If the partial fractions are recombined, the two numerators must be 

identically equal. Now 

A B C A(x+1)2 +Bx(x+1)+Cx - + -- + = --'-----"----;-~-;:--'----
X x+1 (x+1)2 x(x+1)2 

Therefore we require 

3x2 + 4x- 3 = A(x + 1)2 + Bx(x + 1) + Cx 
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The constants A, B and C can be obtained either by substituting 
values of x into the identity, or by comparing the coefficients of powers 
of x on each side of it. In practice a mixture of the methods is usually 
the quiekest. 

Here if we put x = 0 we obtain A = -3. If we put x = -1 we obtain 
3- 4- 3 = -C, so C = 4. If we examine the coefficient of x2 on each 
side of the identity we obtain 3 = A + B, and so B = 6. Therefore 

x 4 + 2x - 3 = x _ 2 _ ~ + _6_ + 4 
x3 +2x2 +x x x+1 {x+1)2 

2.6 SET NOTATION 

We have already described some standard sets of numbers N, Z, Q and 
R In fact sets often arise in one form or another, so before we pro­
ceed any further we shall outline the set notation that is commonly 
employed. 

A set can be described best by using the notation 

{xiP(x)} 

where P(x) is some statement about x, for example x E Q. The 
notation means 'the set of all things x which satisfy the condition 
P(x)' 

D {xlx E Z,x > 0} 

This is the set of all elements x satisfying the two conditions 

1 x is an integer 

2 x is strictly positive 

We already have a name for this set - the natural numbers. So 

N= {xlx E Z,x > 0} 

• If modulus signs are in use, then to avoid confusion the vertical line 
which appears in the notation {xiP(x)} is usually replaced by a colon, 
so that we write 

{x: P(x)} 

Of course small finite sets can usually best be described by displaying 
their elements. For example {1, 2, 3, 4, 5} is the set consisting of the 
first five natural numbers. 
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There are one or two other pieces of general set notation which we shall 
use occasionally. 

The difference A \ B of two sets is defined by 

A \ B = {xlx E A and x rf. B} 

The difference A \ B is the set of all elements which are elements of A 
but not elements of B, 

D ll = lR \ Q is the set of all real numbers which are not rational 
numbers; that is, it is the set of irrational numbers. 

If a and b are real numbers, a < b, we define 

[a,b] = {xlx E IR,a:::;; x:::;; b} 

(a,b) = {xlx E JR,a < x < b} 

• 

These are called real intervals. The first one is called the closed 
interval between a and b, while the second is called the open interval 
between a and b. 

The important theoretical distinction between a closed interval and 
an open interval is that a closed interval includes the two end points a 
and b whereas an open interval does not include either a or b. 

Note that in Chapter 3 we shall introduce the symbol (a, b) as an 
ordered pair of numbers to represent a point, but here we are using it 
to represent an open interval. Surely this is unsatisfactory; what are 
we going to do about it? 

Weil, we shall adopt the view that the context should make clear 
whether (a, b) is an ordered pair of real numbers or an open interval. 
Some books have introduced the symbol Ja, b[ to represent an open 
interval, but in mathematical work it is quite common to use the same 
notation in different contexts for different things, and we should be 
sufficiently broad-minded to be flexible. 

2.7 FUNCTIONS 

Mathematics is concerned with relationships between things, and it 
is through the generality of these relationships that it is possible to 
apply mathematics to a variety of situations. For instance there is a 
relationship between the force applied to the centre of a beam which 
is freely supported at each end and the deflection at that point. The 
force of course could arise from many different sources - a heavy weight 
suspended from it, or a person standing on it. 

Equations often relate two or more variables. For example: 

y = x 2 + 2 
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1 
y=x+­

x 

x2 + y2 = 1 

When the relationship between two variables x and y is such that given 
any x there corresponds at most one y, we say we have a function and 
write y = f(x). The set of numbers x for which f(x) is defined is called 
the domain of the function, and each element in the domain is called 
an argument of the function. 

A function therefore has two essential ingredients: 
1 The domain, the set of arguments of the function, the possible values 
for x; 
2 The rule f which assigns to each element in the domain a unique 
value f(x). 
Strictly there is another essential ingredient: the set consisting of all 
possible values of the function. 

Although when we specify the rule and domain, we may not be able 
to say precisely what the values of the function will be, we are nor­
mally able to state some set which includes all the possible values. For 
example we may know that all the values arereal numbers. Therefore 
when we give a formal definition of a function we shall also specify 
a set which includes all the values of f. This set we shall call the 
codomain. 

We write f : A -+ B to indicate that f is a function with domain A 
and codomain B. Then: 
1 lf f : A -+ B and B C lR. then f is said to be a real-valued 
function. 
2 lf f : A -+ B and both A C lR. and B C lR. then f is said to be a real 
function. 
In this chapter we shall confine our attention to real functions. 

D f: lR.-+ lR. defined by f(x) = x2 + 2 (x E JR.) 

Here the rule is 'square the number and add 2'. This rule can be 
applied to all real numbers and there is no ambiguity about the result, 
so we have a function. • 

D f: N-+ lR. defined by f(x) = x + x- 1 (x E N) 

Here the rule 'add the number to its reciprocal' can certainly be applied 
to every natural number, since 0 is notanatural number. The result in 
each case is a unique real number and consequently we have a function. 

On the other hand if we attempted to extend this rule to Z we should 
no Ionger have a function because the number 0 in the domain has not 
been assigned a value. Indeed the rule could be applied to other sets 
of real numbers (in fact to any number except 0), but we specified the 
domain as N and if we change the domain we change the function. • 
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THE MAXIMAL DOMAIN 

In some cases an equation which defines a function is given but no 
indication is provided of either the domain or the codomain. Strictly 
speaking the definition is then deficient. One way round the difficulty is 
to take the codomain as IR. and the domain to be all those real numbers 
for which the rule is valid. That is, f : A -+ lR and A is the maximal 
subset of lR which satisfies the condition 

if x E Athen f(x) E IR. 

This convention is sometimes called the convention of the maximal 
domain. 

0 Using the convention of the maximal domain, the equation f(x) = 
x + x- 1 defines a function f : A -+IR. where A =IR.\ {0}. • 

In the formal notation for a function 

f:A-+B 

A is the domain, f is the rule, f(A) is the image set and B is the 
codomain. 

In practice it is often useful to write y = f(x) and so to specify 
a variable y in terms of a variable x. The same function would be 
determined by using x and t, say, instead of y and x respectively. For 
this reason y and x are sometimes called dummy variables. 

When the notation y = f(x) is used it is customary to call x the 
independent variable and y the dependent variable. The reason­
ing behind this is that y is determined once x is known. Sometimes 
the fact that y is given in terms of x is indicated by writing y = y(x) 
and saying that 'y is a function of x'. This notation has its uses and 
consequently its adherents. 

2.8 METHODS OF PROOF 

Mathematics is founded on the idea of proof. One method of proof is 
known as the axiomatic method and requires three essential ingredi­
ents - axioms, logic and theorems. Axioms are statements which we 
accept as being true and so do not require proof. Logic is the set of 
rules which enables us to deduce further statements from the axioms 
and theorems are the statements which have been deduced. 

We shall represent simple statements by letters in lower case such 
as p, q, r, s and t. A simple statement is a statement which is either 
true or false but not both. You are probably aware that there are some 
statements which are neither true nor false and other statements which 
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are both true and false. The statements: 'this computer is fast' and 
'this sentence has too many letters' are examples of statements which 
we should exclude from our system. We should include statements such 
as '3 is greater than 2' which we know to be true and 'the product of 
two negative integers is a negative integer' which we know to be false. 

We write p ::::} q if and only if by using the logic the statement q can 
be deduced from the statement p. p is sometimes called a premise 
and q a conclusion. When p ::::} q is expressed in words we say 'p 
implies q'. 

We shall begin by considering two standard methods of proof - di­
rect proof and indirect proof. 

DIRECT PROOF 

A direct proof involves what is known as a 'chain of argument'. In 
complicated proofs it is often necessary to apply several chains of ar­
guments before the required conclusion can be drawn. A chain of 
argument relies on the following logical principle: 

If p ::::} q and q ::::} r then p ::::} r 

You can argue this principle in the following way. We know that if 
p is true then q is true. We also know that if q is true then r is true. 
Consequently if p is true, q is true and r is true. This idea is basic 
to human activity and you will be able to think of many situations 
where this principle applies in life. For example, an employer pays the 
worker and the worker does the job. It is important to realize that no 
conclusion can be drawn if r is true. In the example, if the job is clone 
it may not have been clone by the worker and even if it was, we cannot 
deduce that the employer has paid the worker. 

This is an important point because to some extent this is the place 
where mathematics departs from other subjects. Many subjects use 
'evidence' to support a particular hypothesis, and given enough ev­
idence the theory will be accepted. Even statistics which is closely 
related to mathematics does not claim to prove anything. A statis­
tician will say that some hypothesis or another is true at the 95% 
confidence level but never with certainty. You are probably aware that 
'circumstantial evidence' is used in legal circles too to gain convictions 
and many appeals result from challenging this kind of evidence. 

Mathematics itself uses circumstantial evidence in order to make 
conjectures but distinguishes clearly between a conjecture and a the­
orem. Conjectures are 'guesses' which may be true but which, if they 
are to be accepted, require proof. There have been some notorious con­
jectures; two which were araund for many years and were only proved 
in modern times after considerable effort were Fermat's last theorem 
(1637-1993) and the four-colour theorem (1852-1976). There are many 
other conjectures still to be settled! 

Science and Technology are founded on experimentation and insight. 
Successful participants do not make wild generalizations but instead 
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assemble evidence and then design experiments to test their theories. 
Such activity is good science but it is not mathematics. 

So that we get a clear idea of a direct proof we shall look at two 
examples. These involve the ideas of odd and even numbers. You will 
probably know that an even number is an integer which can be divided 
exactly by 2. In other words if p is an even number then p = 2r where 
r is an integer. Any integer which is not even is called odd. Any odd 
number q can therefore be expressedas q = 2r+ 1 where r is an integer. 
For the record we note that 0 is an even number. 

D Prove that the square of every even number is an even number. 

Proof Suppose that p is an even number then p = 2r where r is an 
integer. We now have 

p2 (2r )2 

4r2 

2(2r2) 

Now 2r2 is also an integer and so, by definition, we can deduce that p2 

is an even number. • 
Now see if you can prove a similar property for odd numbers. 

[> Exercise Prove that the square of every odd number is an odd number. 

Proof Suppose p is an odd number then p = 2r + 1 where r is an 
integer. We now have 

p2 = (2r + 1? 
4r2 + 4r + 1 
2(2r2 + 2r) + 1 

Now 2r2 + 2r is also an integer and so, by definition, we can deduce 
that p2 is an odd number. • 

INDIRECT PROOF 

The negation of a statement is the logical opposite of the statement. 
So that whenever the statement p is true, the negation of p is false and 
whenever the statement p is false, the negation of p is true. We shall 
represent the negation of p by '"'"' p. 

Suppose we wish to prove the statement q, which we believe is a 
consequence of the statement p; which is known to be true. We need 
to prove p =} q. An indirect proof is obtained by taking the two 
statements p and '"'"' q and by means of a chain of argument obtaining 
a contradiction. This contradiction can take many forms but in all 
circumstances there is a statement r, which is the result of the logical 
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argument, and which is both true and false. Given that the logic is 
correct we conclude that "' q is false, and so q is true. 

In England in the seventeenth century there was a series of trials for 
witchcraft. The method of testing a suspect for witchcraft has many 
of the ingredients of an indirect proof. The unfortunate individual 
was thrown into deep water. If the person floated then witchcraft was 
'proved' and the individual was then hanged. If the personsank (and 
thereby drowned) then this was a 'proof' of innocence! 

As a simple algebraic example of an indirect proof weshall prove the 
converse of the property which we have just proved concerning odd and 
even numbers. 

D Prove that p is an even number if and only if p2 is an even number. 

Proof We have already shown that if p is even then p2 is even. It 
remains to show that if p2 is even then p is even. 

Now an integer is either even or odd and so Iet us suppose that p is 
odd. We seek a contradiction. By the previous exercise we can deduce 
that p2 is also odd. This means that p2 is both odd and even which is 
impossible. Consequently p must be even. • 

A rather more interesting example of an indirect proof is provided 
by the next example. 

D Prove that y'2 is an irrational number. 

Proof We suppose that, on the contrary, y'2 is a rational number and 
seek a contradiction. Suppose then 

where p and q are integers. We can suppose further that there is no 
integer greater than 1 which divides both p and q, for if there were we 
could cancel it out and thereby reduce p and q to smaller integers. 

Squaring the equation gives 

so that 
p2 = 2q2 

Now this implies that p2 is even, and so p must be even too. There­
fore if we put p = 2r then r is an integer. We then obtain, substituting 
for p, 
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(2r? 2q2 

4r2 2q2 

2r2 q2 

Now this implies that q2 is even, and so q must be even too. However 
this is the crunch! We have deduced that both p and q are even, and 
yet we know that p and q have no common factor. This contradiction 
shows that our initial assumption that y'2 was a rational number must 
be false. • 

It is interesting to remark that when the irrationality of y'2 was first 
discovered, by the ancient Greeks (circa 420 BC), it caused a major 
philosophical upset. 

MATHEMATICAL INDUCTION 

We must not disguise the fact that the rules we have given for deal­
ing with real numbers do not tell the whole story. For a complete 
description we would need one further axiom known as the axiom of 
completeness. Weshall not describe this axiom because it is requires 
somewhat sophisticated mathematics but instead we remark that one 
of the consequences is a method of proof which is known as induction. 

Suppose we have some statement S(n) which we wish to prove is true 
for all natural numbers n. The principle of mathematical induction 
states that it is only necessary to prove two things: 
1 S(1) is true; 
2 If S(k) is true then S(k + 1) is true. 

We often experience inductive processes in practice. One example is 
that of a petrol engine. In order for the engine to fire it must first be 
'turned over'. This corresponds to condition 1. Each time the engirre 
turns over it generates just enough electricity to fire the engine again. 
This corresponds to condition 2. Provided condition 2 continues to 
hold the engine will run even if the battery is flat. If you have ever had 
the experience of driving a car with a flat battery you will appreciate 
the need for both these conditions! 

Once you get the idea of mathematical induction you will find it 
quite straightforward. We shall look at one or two examples to see 
how it works. 

0 Show that for all natural numbers n 

1 
1+2+3+···+n= -n(n+l) 

2 
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Suppose S(n) is the statement 

1 
1 + 2 + 3 + .. · + n = 2n(n + 1) 

We wish to prove that S(n) is true for every natural number n. 
By the principle of mathematical induction we are required to prove 

just two things: 
1 8(1) is true; 
2 If S(k) is true then S(k + 1) is true. 

We proceed as follows: 
1 To show 8(1) is true we must show that 

1 
1 = 21(1 + 1) 

This is done by simply evaluating the right-hand side. 
2 Suppose S(k) is true for some natural number k. Then 

1 
1 + 2 + 3 + ... + k = 2k(k + 1) 

(This statement, S(k), is often known as the induction hypothesis.) 
We are required to show that S(k + 1) is true. In other words 

1 
1 + 2 + 3 + ... + (k + 1) = 2(k + 1)[(k + 1) + 1] 

Notice that we write down S(k + 1) simply by replacing n by k + 1 in 
S(n). 

Remernher that we are entitled to use the induction hypothesis to 
show that S(k + 1) is true. 

To accomplish this weshall take the left-hand side and demonstrate 
that using the induction hypothesis we can deduce the right-hand side. 

LHS 1 + 2 + 3 + ... k + (k + 1) 

= [1 + 2 + ... + k] + (k + 1) 

1 
2k(k + 1) + (k + 1) 

( using the induction hypothesis) 

1 
= 2(k + 1)(k + 2) 

1 
= 2(k + 1)[(k + 1) + 1] 

= RHS 
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• That's all there is to it! Of course a proof by induction differs from 
a deductive proof because we need to know the formula that we wish 
to prove. However, it is a very useful technique because it is often 
possible to spot a pattern in mathematical work, infer a formula and 
then use induction to settle the matter. 

There will be various occasions when we shall point out where a 
proof by induction would be appropriate. Now here is an example for 
you to try. 

0 Show that if n is any natural nurober then 

In other words, we have a formula for the sum of the squares of the 
first n odd numbers. 

We have the statement S(n), so you can write down the induction 
hypothesis S(k) and also the statement, S(k + 1), which we must de­
duce. Don't forget that we must check that 8(1) is true as well. 

Try it yourself and see how it goes. 

S ( n) is the statement 

2 2 2 n(4n2 - 1) 
1 + 3 + 5 + · · · + (2n- 1)2 = ---'------'-

3 

and so S ( k) is the statement 

1 To show that 8(1) is true we merely need to check that 

12 = (1)(4(1)2 - 1) 
3 

Each side of this equation has the value 1 and so 8(1) is true. 

2 We must prove that 

12 + 32 +52+ ... + [2(k + 1)- 1]2 = (k + 1)[4(k + 1)2 - 1] 
3 

and of course we must expect to use the induction hypothesis to do 
this. 
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We work on the left-hand side 

LHS 12 + 32 +52+· .. + [2(k + 1)- 1]2 

= [12 + 32 + 52 + ... + (2k - 1 )2] + (2k + 1 )2 

(here we have written down the last two terms) 

= k(4k2- 1) + (2k + 1)2 
3 
( using the induction hypothesis) 

To complete this we must use some algebra to reduce this expression 
to the right-hand side of S(k + 1). Continuing we obtain 

k(2k-1)(2k+1) (2k 1)2 
3 + + 

= (2k + 1) [k(2k3- 1) + (2k + 1)] 
= (2k + 1) k(2k- 1); 3(2k + 1) 

(2k + 1) 2k2 
- k: 6k + 3 

(2k + 1) 2k2 + :k + 3 

A glance at the expression we wish to obtain gives us the clue to 
factorizing: 

(2k + 1) (k + 1)~2k + 3) 

= (k + 1) (2k + 1)3(2k + 3) 

= ( k + 1) 4k2 + :k + 3 

= (k + 1) 4(k + ~)2 - 1 

(k + 1)[4(k + 1)2 - 1] 
= 3 

= RHS 



We have shown the two parts 
1 S(1) is true; 
2 If S(k) is true then S(k + 1) is true. 
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Therefore, by induction, we have shown that S(n) holds for every nat­
ural number n. • 
Finally we remark that although we used only S(k), our induction 
hypothesis, we would have been entitled to use S(r), for all r ~ k. 
When this is done it is usually known as using strong induction. 

Lastly in this chapter we consider a problern which shows how the 
theory of partial fractions can be combined with the binomial theorem 
to produce an approximate formula. 

-------- 2.9 Practical ------------
LEAKING FUEL 
The fuel reserve contained in a leaking gas cylinder is known to be 
given by the following formula: 

R = 2P [ (t + 1)2 + tz ] 
(2 + t)(1 + t2) 

where t represents time and P is the initial reserve. Express R in 
partial fractions, and show that it can be approximated by 

provided t is small. 
Try this on your own first. If you are successful then Iook to see if 

you have everything correctly. If you are unsuccessful then read just 
enough to get going again and try once more. The full solution follows. 

Wehave 

R 2p 2t2 + 2t + 1 
(2 + t)(1 + t2) 

2p [~+ Bt+C] 
2 + t 1 + t2 

where A, B and C are constants. So 

R = 2p [A(1 + t2 ) + (2 + t)(Bt + C)] 
(2 + t)(1 + t2) 

We obtain the identity 

2t2 + 2t + 1 = A(1 + tz) + (2 + t)(Bt + C) 
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It follows that 

1 = A + 2C 2 = A + B 2 = 2B + C 

from which A = 1, B = 1 and C = 0. Consequently, 

R = 2P L ~ t + 1 ~ t2] 

= 2P [~(1 + ~t1 + t(1 + t2t1] 

~ 2P [~ (1 - ! + ~) + t] 
2 2 4 

Here we have neglected terms in t of degree higher than 2. So 

R ~ 2P [ ~ - ~ + i + t] 
= 2P [~ + 3t + t2] 

2 4 8 

p 
= 4 [4+6t+t2] 

= : [(t + 3? - 5] 
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SUMMARY 

These are the things you should be able to do after completing 
this chapter: 

0 Apply the laws of indices and logarithms correctly 

0 Solve inequalities using algebraic, analytic and graphical 
techniques 

0 Resolve a rational expression into partial fractions 

0 Distinguish between direct and indirect proofs and supply 
examples of them. 

0 Prove statements for all natural numbers n using the prin­
ciple of mathematical induction. 

EXERCISES 

1 Simplify, using the laws of indices 
a 

b 

c 

d 

(1 + x) 4 (1 - x4 ) 

(1- x2)3 

(a2 _ b2)s(a4 _ b4) 

(a2 + b2 )(a + b) 2 

2 Salve the equations, where x is real, 
a e2x = 4ex + 5 
b 22x - 5 X 2x + 4 = 0 
C ßX - 9 X 2x - 8 X 3x + 72 = 0 
d 15X + 15 = 3x+l + 5x+1 

3 Decide, in each case, which of the following are identities and 
which are equations. lf they are equations then solve them. 
a e2x + 2 = 2(2ex- 1) 

b ln(x- 1) + ln(x + 1) = ln(2x) 
c ln(1- 1/x) + ln(l + 1/x)-1 = ln[l- 2/(x + 1)] 
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4 Express x in terms of a, as simply as possible, in each of the 
following: 
a lnx = 2ln(a -1- 1) -ln(a2 -1) 
b ex = {ea+l 0 e"-lF 

c ln(x2 - 1) -ln(x- 1) = ln(a2 - 1)- ln(a + 1) 
d ex 0 (e-x)2 = (e-a)3 (ea)4 

5 Obtain those real numbers for which the following inequalities 
hold: 
a (x- 2)(x + 2) > 0 
b (x - 3)(2x + 3) < 0 
c1/x+1/(x-1)>0 

6 Resolve the following into partial fractions: 

a 
1 

(x-1)(x-3) 

b 
X 

x2 + 7x + 12 
c 

2x + 1 

x3 + 5x2 + 6x 

d 
x-7 

x3 - 3x2 - 9x - 5 

7 Prove, using a direct proof, that 
a the sum of two even numbers is always even 
b the sum of two odd numbers is always even 
c the sum of an odd number and an even number is always an 
odd numbero 

8 Use mathematical induction to prove that for allnatural numbers 
n, 
a 1 + 3 + 5 + 0 0 0 + (2n- 1) = n2 

b 13 + 33 +53 + 0 0 0 + (2n- 1? = n2(2n2 -1) 

ASSIGNMENT 

1 Use the laws of indices to show that 

2 Simplify 

(16)3/4 (25)1/2 

(81 )114 (125)1/3 
8 
-
3 

(1- x2)3(1- 3x + 2x2)4 (1 + x)3 

(1-x-2x2)6 (1-xF 



FURTHER EXERCISES 71 

3 Solve the equation 

4 If x = loga b, y = 1ogb c and z = logc a, show that xyz = 1. 

5 If x = loga(bc), y = logb(ca) and z = logc(ab), show that 

xyz = x + y + z + 2 

6 If x = loga(b/c), y = logb(c/a) and z = logc(a/b), show that 

xyz + x + y + z = 0 

7 Solve the following inequalities for real x 

a x(x2 - 4) > 0 
b x2 - 5x- 6 ~ 0 
c 1/(x- 1) + 1/(x2 - 1) < 1/(x + 1) 

8 Resolve into partial fractions: 
a 

b 

c 

x2 +2x-1 
x3 -x 

3x3 + 5x2 - x - 1 
x3 +x2 

4x4 + x3 - llx2 + x - 20 
x4 - 3x2 - 4 

9 Show by means of a direct proof that the sum of two rational 
numbers is always a rational number. 

10 Show by means of an indirect proof that the sum of a rational 
number and an irrational number is always an irrational number. 
By considering 3 - J2 and J2 ( or any other suitable example) 
show that the sum of two irrational numbers is not necessarily an 
irrational number. 

11 Use mathematical induction to prove that for every natural num­
ber n, 
a 12 + 22 + 32 + · · · + n2 = n(n + 1)(2n + 1)/6 
b 13 +23 +33 +···n3 = [n(n+1)/2]2 

FURTHER EXERCISES 

1 Use the laws of indices to show that 

(25)112 (8) 113 5 
(27)113 (16)1/4 = 3 
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2 Solve the equation 

3 Decide which of the following are identities and which equations. 
If they are equations then solve them. 
a ln(x4 - 1) = ln{x- 1) + ln{x + 1) + ln(x2 + 1) 
b ln{x + x2) = lnx + lnx2 

c ln(x2 - 1)3 = 3[ln(x- 1) + ln{x + 1)] 
d ex2ex = {ex)3 
e exe2xe3x = ( ex)6 

4 Solve the inequality 

2x > 1 
(x + 2){x- 1) 

5 Express in partial fractions 
a 

b 

(x- 1)2(x2 - 3x + 2) 

(x2 + 1)2 
(x2- 1)3 

6 Use the convention of the maximal domain to write down the 
domain of the real function f defined by 
a f(x) = {x2 - 1)-1 

b f(x) = (x2- 1)-1/2 
c f(x) = (x2 - 1)-1/2 + (1- x2)-l/2 

7 Prove that the product of two rational numbers is always a ratio­
nal number. By means of an example show that the product of 
two irrational numbers is not necessarily an irrational nurober. 

8 Prove that the product of an irrational nurober and a non-zero 
rational nurober is always an irrational number. 

9 Prove that for all natural numbers n 
a 1 · 2 + 2 · 3 + · · · + n(n + 1) = n(n + 1){n + 2)/3 
b 1 · 22 + 2 · 32 + · · · n(n + 1)2 = n(n + 1){n + 2){3n + 5)/12 
c 

1 1 1 n --+--+···+ =--
1 x 2 2 x 3 n(n + 1) n + 1 

10 By first expressing 
1 

(n + 1){n + 2) 
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in partial fractions show that 

N 1 N 

~ (n + 1)(n + 2) = 2(N + 2) 

11 The Heaviside unit function H is defined by 

H(t) = 1 when t > 0 
= 0 when t < 0 

a Write down the domain and image set of H. 
b Show that if a constant voltage Eis applied to a circuit, between 
time t = 0 and t = 1 only, then the voltage at time t is given by 
E(t) = E[H(t) - H(t- 1)]. 
c Express by means of a single equation, using the Heaviside unit 
function, the current i(t) in a circuit satisfying 

i(t) = t 
= 2-t 

= 0 

when 0 < t < 1 
when 1 < t < 2 
otherwise 

12 The number n of terminals on a circuit board is known to satisfy 
the inequality n3 - 7n2 + 5n - 35 < 0. What is the maximum 
number? 

13 The proportion p of purified oil which can be produced by an oil 
filter is known to satisfy 2(p3 + 1) ~ (p- 2)2• Show that it can 
purify at most 50% of the oil. 

14 Verify that 

(x4 + x..j2 + 1)(x2 - x..j2 + 1) = x4 + 1 

and thereby resolve 1/(x4 + 1) into partial fractions. 

15 Use the fact that (a - b)2 ~ 0 for all real numbers a and b to 
deduce 

a2 + b2 
-->ab 2 -

so that if x and y are positive, 

x+y 
-2- ~ ..j(xy) 

(The arithmetic mean of two numbers is greater than or equal to 
the geometric mean.) 
Show that if two resistors are combiried in series the total resis­
tance is always greater than if they are combined in parallel. 
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16 The volume of a spherical raindrop of liquid decreases due to 
evaporation by one-half in 1 hour. The radius of the drop is given 
by r = -kt + r0 , where r0 is the initial radius. If k is a constant 
and t denotes time, show that the time taken for the drop to 
evaporate completely is (1 - 2-113)-1 hours. 

17 The law governing radioactive decay is p = p0e-kt, where p is the 
intensity at time t and p0 is the initial intensity. Show that if p = 
p0/2 when t = h then the time taken for the initial radioactivity 
to decay 99% is 2h log2 10. 

18 The depth x to which a drill applied under constant pressure will 
sink into rock over timet is given by 

1 [pvt ] x=:;;; In -:;-+1 

where w, p and v are constants. Show that the timeT taken to 
drill from a depth x to a depth x + h is 

T = ~ ewx(ewh- 1) 
vp 

19 The charge on a leaking capacitor is given by 

2Qo 
Q = (1 + t)(2 + t) 

where t is time (seconds) and Q0 is the initial charge (farads). 
Express Q in partial fractions, and show that it is approximately 
(1 - 3t/2 + 7t2 / 4)Q0 provided t is small. 

20 The output of a system at time t is given by 

where s is the imposed signal and t is time in seconds. If s = 
t(1 + t) 2 at timet, resolve A into partial fractions and show that 
if terms in t of degree greater than 4 may be neglected then A ~ t4• 



Trigonometry and geometry 3 

ln the last two chapters we described some of the basic terminology 
which we need. We also picked up a few techniques which should 
prove useful later on. Soon we shall begin to develop the differential 
calculus, but before we do that we must make sure that we can 
handle any geometrical or trigonometrical problern that arises. 

After working through this chapter you should be able to 
D Use circular functions, recognize their graphs and be able to deter-

mine their domains; 
D Solve equations involving circular functions; 
D Recognize the equations of standard geometrical curves; 
D Transform equations involving polar Coordinates into those involv­

ing cartesian coordinates. 
At the end of this chapter we shall solve practical problems in survey­
ing and in circuits. 

This chapter contains background work, and so it is possible that much of it 
will be familiar to you. lf this is the case, then it is best to regard it as revi­
sion material. Weshall be reviewing work on elementary trigonometry and 
coordinate geometry. If any section is very weil known to you then simply 
read it through and devote your attention to that which is Jess familiar. 

3.1 COORDINATE SYSTEMS 

You are probably quite familiar with the cartesian coordinate system. In 
this system every point in the plane is determined uniquely by an ordered 
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y-axis 

Second quadrant Firstquadrant 

lxl p 

IYI 

0 x-axis 

Third quadrant Fourth quadrant 

Fig. 3.1 The cartesian system. 

pair of numbers (x, y). To do this, two fixed straight lines are laid at right 
angles to one another; these are called the x-axis and the y-axis. Their 
point of intersection is represented by 0 and is called the origin (Fig. 3.1). 
The quadrants so formed are Iabelied anticlockwise as the first quadrant, 
second quadrant, third quadrant and fourth quadrant respectively. 

Given any point P, the absolute values of x and y are then obtained from 
the shortest distance of P to the y-axis and the x-axis respectively. The 
following conventions then hold: 
First quadrant x ;:,: 0, y ;:,: 0 
Second quadrant x ::::::: 0, y ;:,: 0 
Third quadrant x ::::::: 0, y ::::::: 0 
Fourth quadrant x ~ 0, y ::::::: 0 
In this way, given any point in the plane we obtain a unique ordered pair 
(x, y) of real numbers. Conversely, given any ordered pair (x, y) of real 
numbers we obtain a unique point in the plane. We therefore identify the 
point P with the ordered pair (x, y) and refer to the point (x, y). 

If Pis the point (x, y), x and y are known as the cartesian coordinates of 
the point P; x is called the abscissa and y is called the ordinate. 

This simple idea was initially due to the famous French philosopher 
Descartes and enabled algebra and geometry, two hitherto separate 
branches of mathematics, to be united. lt is difficult to overestimate the 
benefits of this unification for science and technology, but Descartes threw 
it out almost as an afterthought to his philosophical treatise. The name 
'cartesian system' comes from the latinized form of Descartes. 

The cartesian system is not the only system which can be used to represent 
points in the plane. Another is the polar coordinate system. 

In the polar coordinate system there is a fixed point 0, called the origin, 



CIRCULAR FUNCTIONS 77 

p 

r 

0 X 

Fig. 3.2 The polar system. 

and a fixed line emanating from 0 called the initialline OX (Fig. 3.2). lt is 
convenient to identify the initialline with the positive x-axis, although this 
identification is by no means essential. A point Pis then determined by r, 
its distance from 0, and by 8, the angle XOP measured anticlockwise. In 
this way, given any point in the plane we obtain an ordered pair of real 
numbers (r, 8) where r ::=::: 0. Of course if we increase 8 by 2rr, a whole 
revolution, then we shall obtain the same point as before. In order to 
establish a unique representation we restriet 8 so that 0 ~ 8 < 2rr. 

There is a minor problern when r = 0, since we then lose our onc-to-one 
correspondence between points in the plane and ordered pairs of real num­
bers of the form (r, 8). For example (0, rr) and (0, rr/2) both correspond to 
the origin. One way of avoiding this problern is to insist that if r = 0 then 
the origin will be the unique point (0, 0): r = 0, 8 = 0. However, we shall 
not do this as the procedure creates more difficulties than it resolves. 
Instead we shall avoid representing the origin and insist that r > 0. 

In fact the convention 0 ~ 8 < 2rr is only used occasionally in coordinate 
geometry. Unfortunately we shall adopt a different convention, namely 
-rr < 8 ~ rr, when we deal with complex numbers (Chapter 10). The 
causes for this are historical and not mathematical, and this goes some way 
towards explaining why they are illogical. 

3.2 CIRCULAR FUNCTIONS 

It is possible to define the circular functions cos 8 and sin 8 for any angle 8 
by using cartesian coordinate geometry and a circle centred at the origin 
with radius r. In Fig. 3.3, Iet Xbe the point where the circle crosses the posi­
tive x-axis, and Iet the point P on the circle besuchthat LXOP = 8. If Pis 
the point (x, y) then OP = r > 0 and 

X 
cos e =­

r 

It follows immediately that 

sin 8 = ~ 
r 

1 If 0 < e < rr/2 then cos e > 0 and sin e > 0; 
2 If rr/2 < 8 < J[ then cos e < 0 and sin e > 0; 
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y-axis 

Fig. 3.3 The generating circle. 

3 If ]'[ < 8 < 3n/2 then cos 8 < 0 and sin 8 < 0; 
4 If 3n/2 < 8 < 2n then cos 8 > 0 and sin 8 < o_ 

x-axis 

0 Use the definition to evaluate cos 8 and sin 8 when 8 E {0, n/2, ll, 2n}­
When 
a 8 = 0 then X = r and y = 0, SO that 

cos 8 = rlr = 1 and sin 8 = 0/r = 0 

b 8 = n/2 then X = 0 and y = r, SO that 

cos 8 = 0/r = 0 and sin 8 = rlr = 1 

C 8 = ll then X = -r and y = 0, SO that 

cos 8 = -rlr = -1 and sin 8 = 0/r = 0 

d 8 = 2n then p is in the same position as when 8 = 0, so that 

cos 2n = cos 0 = 1 and sin 2n = sin 0 = 0 • 
Now cos (8 + 2n) = cos 8 and sin (8 + 2n) = sin 8, so the circular func­
tions are said to be periodic functions. In fact T = 2n is the smallest positive 
number such that both cos (8 + T) = cos 8 and sin (8 + T) = sin 8. Con­
sequently T = 2n is called the period of the circular functions. In other 
words, if we increase the argument by 2n then the same value is obtained. 
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(a) 

(b) 

y 

y 

1 

Fig. 3.4 (a) The sine function (b) The cosine function. 

y = sin x 

X 

"'<._= cosx 

X 

We can use these general definitions to draw the graphs of the circular 
functions. In fact once their values are known for arguments in the interval 
[0, n/2) the rest can be deduced by symmetry. You have probably seen the 
graphs of the sine and cosine functions before (Fig. 3.4). 

The other circular functions, known as tangent, cotangent, secant and 
cosecant, can be defined in terms of cosine and sine. In fact 

e sin 8 
tan = -­

cos 8 

1 
sec 8 = -­

cos 8 

cos 8 
cot e = -­

sin 8 

1 
cosec e = --:---n 

Sln u 

However, whereas cosine and sine have the real numbers IR as their do­
main, these subsidiary functions are not defined for all real numbers. 

0 Obtain the domain of each of these subsidiary circular functions by 
using the convention of the maximal domain. 
a tan 8 is defined whenever cos 8 =F 0. From Fig. 3.4 we see that this is 

when 8 is not an odd multiple of rrJ2. Any odd number can be written 
in the form 2n + 1 where n E Z. Therefore the domain of the tangent 
function is 

A = {x I x E IR, x =F (2n + 1) n/2, n E Z} 

b cot 8 is defined whenever sin 8 =F 0. So 8 must not be a multiple of n. 
Therefore the domain of the cotangent function is 

A = { x I x E IR, x * nn , n E Z} 
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y-axis 

Fig. 3.5 The tangent function. 

y-axis 

~~ 
I 
I 
I 

13w x-axis 
12 
I 
I 
I 
I 
I 
I 
I 

0 1r 1r : 3w x-axis 
-1 2 I 2 1\----------T/\y•=-ox 

Fig. 3.6 The cosecant function. 

The domains of the secant and cosecant are the same as those of the 
tangent and cotangent respectively. • 

The graph of y = tan x shows that the tangent function has period Jt 

(Fig. 3.5). 
The graph of the sine, cosine and tangent functions can be used to 

draw the graphs of the cosecant (Fig. 3.6), secant (Fig. 3.7) and cotangent 
functions. The graph of y = sec x has the same shape as the graph of 
y = cosec x. To obtain the graph of y = cosec x from the graph of y = sec x 
we merely need to relocate the y-axis through x = n/2 and relabel. 
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y-axis 

:1!: x-axis 
12 

-----;-~ 

1/ \y=secx 

Fig. 3.7 The secant function. 

You will remember that we write cos" e instead of ( cos 0)" when n is a 
natural number. This must not be confused with cos (nO), and you should 
be alert to the fact that this notation does not hold good when n is a nega­
tive integer. In particular, 

cos- 1 0 * (cos o)- 1 

We know that (cos o)- 1 is sec 0, andin fact cos- 1 e has a totally different 
meaning. Do watch out for this; it is a common mistake! 

You may weil have spent a long time in the past establishing identities 
between circular functions. We can deduce one well-known identity 
straight away: 

cos2 0 + sin2 0 = 1 

To show this we evaluate the expression on the left: 

x2 y2 x2 + y2 
cos2 0 + sin2 0 = 2 + 2 = 2 = 1 

r r r 

This is an identity; it holds for all 0. 
All the remaining identities involving circular functions can be deduced 

from the expansion formula 

sin (A + B) = sin A cos B + cos A sin B 

0 Deduce from the expansion formula for sin (A + B) the expansion 
formulas for a sin (A - B) b cos (A + B). 
a Wehave 

sin (A - B) = sin (A + [-B]) 
= sin A cos [-B] + cos A sin [-B] 

Now from the definitions (or from the graphs) we have 
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cos [ -B] = cos B and sin [ -B] = -sin B 

from which we have 

sin ( A - B) = sin A cos B - cos A sin B 

b Putting A = rr./2 enables us to deduce first 

sin (rt/2 - B) = sin rt/2 cos B - cos rt/2 sin B = cos B 

Therefore 

cos (A + B) = sin (rt/2 - [A + B]) 
= sin ([rt/2 - A] - B) 
= sin (rt/2 - A) cos B - cos (rt/2 - A) sin B 
= cos A cos B - sin [rt/2 - (rt/2 - A )] sin B 
= cos A cos B - sin A sin B 

Of course all this is rather algebraic andin some ways rather contrived, but 
the point is that starting with very little we can build up a host of identities . 

• 
3.3 TRIGONOMETRICAL IDENTITIES 

Here is a Iist of most of the trigonometrical identities that you will have 
met: 
1 cos (A + B) = cos A cos B - sin A sin B 
2 cos ( A - B) = cos A cos B + sin A sin B 
3 sin (A + B) = sin A cos B + cos A sin B 
4 sin (A - B) = sin A cos B - cos A sin B 

tan A + tan B 
5 tan (A + B) = l A B - tan tan 

tan A - tan B 
6 tan ( A - B) = 1 + tan A tan B 

7 cos 28 = cos2 8 - sin2 8 = 1 - 2 sin2 8 = 2 cos2 8 - 1 
8 sin 28 = 2 sin 8 cos 8 

2 tan 8 
9 tan 28 = 1 2 8 - tan 

C+D C-D 
10 cos C + cos D = 2 cos 2 cos 2 

. C+D. C-D 
11 cos C - cos D = -2 sm 2 sm 2 

. C+D C-D 
12 sin C + sin D = 2 sm 2 cos 2 

C+D. C-D 
13 sin C - sin D = 2 cos 2 sm 2 
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14 1 + tan2 6 = sec2 6 
15 1 + cot2 6 = cosec2 6 

Y ou might like to have a go at deducing these from the identities we already 
have. If you need any hints then observe that identity 5 can be deduced 
by dividing 3 by 1. Similarly, 6 can be deduced by dividing 4 by 2. The 
identities 7, 8 and 9 are obtained from 1, 3 and 5 respectively by putting 
A = B = 6. It is possible to deduce 10 by the addition of 1 and 2, whereas 
subtracting these identities results in 11. Similarly 12 and 13 can be deduced 
from 3 and 4. Lastly the identities 14 and 15 can be obtained by dividing 
cos2 6 + sin2 6 = 1 by cos2 6 and sin2 6 respectively. 

3.4 THE FORM a cos 6 + b sin 6 

You probably already know that it is possible to express a cos 6 + b sin 6 
in the form R cos (6 - a). This is used quite frequently, and so we shall 
describe brietly how it is done (see Fig. 3.8). 
I We put the point P (a, b) in the plane using cartesian coordinate 

geometry. 
2 The angle a which can be read directly from the diagram is L.XOP. 
3 R is the distance OP. 
It is easy to see why this works because we have 

a cos 6 + b sin 6 = R((a/R) cos 8 + (b/R) sin 8) 
= R(cos a cos 8 + sin a sin 8] 
= R cos (8- a) 

D Express sin 8 - cos 8 in the form R cos (8 - a). 
We begin by expressing sin 6 - cos 8 in the form a cos 8 + b sin 8. 

sin 8 - cos 8 = -cos 8 + sin 8, and so a = -1 and b = I. Putting the 

y-axis 

P(a,b) 

X x-axis 

Fig. 3.8 Triangle relating a, b, R and a. 
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point ( -1, 1) on Fig. 3.8 shows that R = V2 and a = 3n/4. Consequently 

sin 8 - cos 8 = V2 cos (8 - 3n/4) • 

3.5 SOLUTIONS OF EQUA TIONS 

To solve the equation sin 0 = sin a, where a is constant, we need a formula 
which will express 8 in terms of a. Of course 8 = a is one solution but in 
fact there are many others. The graph of y = sin x enables us to determine 
this formula (Fig. 3.9). 

As we observed, 8 = a is one solution of the equation, and since the sine 
function has period 2n we can deduce that 8 = 2n + a is also a solution. 
Generalizing, we deduce that 8 = 2kn + a is a solution, where k is any 
integer. This provides a whole set of solutions. 

However, we have not finished bec:ause the symmetry of the sine 
function gives another solution, 8 = n - a. Moreover we can add any 
integer multiple of 2n to this and always obtain another solution. So 
8 = 3n - a is a solution, andin general 0 = (2k + 1)n - a is a solution, 
where k is any integer. This provides a second set of solutions. If we glance 
at the graph we can see how all these solutions arise and also that there are 
no more. 

We can write the general solution in the form 

8 = nn + (- 1 )11 a 

where n is any integer. We see that when n is even we obtain the first set of 
solutions, whereas if n is odd we obtain the second set. 

Similar arguments can be used to show that: 
l If cos 8 = cos a, where a is a constant, then 8 = 2nn ± a, where n is any 

integer. 
2 If tan 8 = tan a, where a is a constant, then 8 = nn + a, where n is any 

integer. 

v·axis 

t 

Fig. 3.9 Salutions of sin e = sin a. 

x-axis 
y = sin x 
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D Ohtain all the solutions of the equation sin 2x = cos x in the interval 
[0,2rr). 

Wehave 2 sin x cos x = cos x, so cos x = 0 or 2 sin x = 1. Remernher to 
allow for the case cos x = 0. If you don't you willlose some solutions and 
this may he very important. 

Now cos rr/2 = 0 and sin rr/6 = 112, so we have reduced the equation to 
two cases: cos x = cos rr/2, and sin x = sin rr/6. 
1 If cos x = cos rr/2 then x = 2nn ± rr/2. Now we must pick out those 

solutions in the required interval: 

n = 0 => x = ±rr/2, rr/2 is in range 
n = 1 => x = 2rr ± rr/2, 3rr/2 is in range 
n = -1 => x = -2rr ± rr/2, out of range 

Clearly other integer values for n will he out of range. 
2 If sin x = sin rr/6 then x = nn + ( -1)" (rr/6). Again we pick out those 

solutions which are in range: 

n = 0 => x = rr/6, which is in range 
n = 1 => x = rr - rr/6 = 5rr/6, which is in range 
n = 2 => x = 2rr + rr/6, out of range 
n = -1 => x = -rr + rr/6, out of range 

All other integer values for n will he out of range. 
Finally we state the set of solutions in the interval [0, 2rr]: 

{ rr/2, 3rr/2. rr/6, 5rr/6} • 
Have you met the symhol => hefore? lt is the one-way implication symhol; 
it means 'implies'. It is quite useful; you sometimes see it on traffic signs! 

Now it's time for you to solve some prohlems. If you are unsure of the 
material, this is a good time to revise it. When you are ready, step ahead. 

________ 3.6 WorkshoP-------r---. 

Zl [> Exercise Solve the equation 

cos 2x = 3 cos x - 2 

to ohtain all solutions in the interval [ -rr, rr ). 
You need to remernher your trigonometrical identities. There is a Iot to 

he said for knowing them inside out. 

If we use cos 2x = 2 cos2 x - 1 we reduce the equations to a quadratic 
equation in cos x: L_ _ _J 
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2 cos2 x - 1 = 3 cos x - 2 

so that 

2 cos2 x - 3 cos x + 1 = 0 

Now this factorizes to give 

(2 COS X - 1) ( COS X - 1) = 0 

from which either cos x = 112 or cos x = 1. However, cos rt/3 = 112 and 
cos 0 = 1. So we can use the general solution of the equation cos 8 = cos a, 
that is 8 = 2nrt ± a, to obtain the general solution of this equation in the 
two cases: 
l cos x = cos rt/3 => x = 2nrt ± rt/3 where n E Z. Wehave to select those 

values of n which give solutions in the interval [ -rr, rt]. We shall con­
sider the positive and negative signs separately. If x = 2nrt + n/3 then 

n = -1 => x = -Srt/3, out of range 
n = 0 => x = n/3, in range 
n = 1 => x = 7rt/3, out of range 

lf x = 2nrt - rt/3 then 

n = -1 => x = -7n/3, out of range 
n = 0 => x = -n/3, in range 
n = 1 => x = Srt/3, out of range 

2 cos x = cos 0 => x = 2nn, and so x = 0 is the only solution in range. 
Therefore the solution set is { -rr/3, 0, rt/3}. 

lf you managed that, then go on to the next exercise. 

[> Exercise Obtain the general solution of the equation 

sin 28 = 2 cos 8 + sin 8 - 1 

Try this one carefully. Don 't forget those identities. Then step ahead. 

We use sin 28 = 2 sin 8 cos 8 to obtain 

2 sin 8 cos 8 = 2 cos 8 + sin 8 - 1 
2 sin 8 cos 8 - 2 cos 8 - sin 8 + 1 = 0 

and this factorizes to give 

( sin 8 - 1) (2 cos 8 - 1) = 0 

from which sin 8 = 1 or cos 8 = 112. There are therefore two sets of 

solutions: 
l sin 8 = sin rt/2 => 8 = nn + ( -1trr/2, where n E Z ; 
2 cos 8 = cos rt/3 => 8 == 2nrt ± rt/3, where n E Z . 
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3.7 COORDINATE GEOMETRY 

Coordinate geometry is an algebraic description of geometry. lt is essential 
for us to be able to recognize certain geometrical objects when they are 
expressed in algebraic form. Straight lines, circles and other curves can be 
represented by equations and we shall study the simplest of these. 

We begin by obtaining the coordinates of a point midway between two 
others. 

D lf P 1 and P2 are the points (x 1 ,yt) and (x2 ,y2 ) respectively, obtain the 
cartesian Coordinates of the point M, the midpoint of P1P2 (Fig. 3.10). 

Let M be the point (x,y). Then, using parallels, 

So 

X- Xt = X2 - X 

Y- Yt = Yz- Y 

y = Yt + Yz 
2 • 

For example, the midpoints of the sides of the triangle with vertices (2, 6), 
(4, 0) and ( -6, 6) are given by 

LOCUS PROBLEMS 

(![2 + 4], !(6 + 0]) = (3, 3) 
(![2- 6], ![6 + 6]) = (-2,6) 
(![4- 6], ~[0 + 6]) = (-1,3) 

We shall use the methods of coordinate geometry to obtain the equations 
of several curves. To do this we consider a general point P(x,y) on the 

v·axis 

0 x·axis 

Fig. 3.10 The midpoint M of the Jine P 1 P2• 
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curve and obtain an equation relating x and y such that 
I If P is on the curve the equation holds; 
2 If the equation holds then P is on the curve. 
An equation which satisfies this condition is often called the locus of the 
point P; the Latin word locus means 'place'. 

CHANGE OF AXES 

When we identify a point P with an ordered pair of real numbers we must 
appreciate that this is relative to the cartesian coordinate system we have 
chosen. The same curve can have a very different equation if the axes are 
transformed in some way. 

A translation is a change of axes in such a way that the new x-axis and 
the new y-axis are respectively parallel to the old ones. A rotation is a 
change of axes in which the origin remains fixed and axes rotate anti­
clockwise through some angle 8. 

Any movement of axes in the plane can be regarded as a translation 
followed by a rotation. Weshall therefore consider the effects of these two 
transformations. 

TRANSLATION 

Suppose new axes X and Y are chosen which are parallel to the x and y 
axes. Suppose also the new origin 0' is the point (h, k) relative to the 
system Oxy (see Fig. 3.11). 

Then if P is a generat point we may suppose that P is the point (x, y) 
relative to Oxy and (X, Y) relative to O'XY. We obtain 

X =X+ h, y = y + k 

Y-axis 

y-axis 

(x,y) 
_j f.J (X,Y 

h 
0' X-axis 

r 
0 x-axis 

Fig. 3.11 A translation. 
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This is the change of coordinates corresponding to a translation of the 
origin to the point (h, k). 

0 If the origin is translated to the point ( 1, 3), obtain the corresponding 
equation for the curve x 2 + xy = /. 

Denoting the new axes by X and Y we have 

so that 

X= X+ 1, y = y + 3 

(X + 1)2 + (X+ 1) (Y + 3) = (Y + 3)2 

X 2 + 2X + 1 + XY + Y + 3X + 3 = Y 2 + 6Y + 9 
X 2 - Y 2 + XY + 5X- 5Y = 5 

We may now drop the X and Y in favour of the usual x and y since we have 
done with the old coordinate system for good. Therefore the new equation 
is 

x 2 - y 2 + xy + 5x - 5y = 5 • 
ROTATION 

Suppose the axes Oxy are rotated anticlockwise through 8 to produce OXY 
and that Pis a generat point. Let OP = r and suppose that LXOP = a 
(Fig. 3.12). 

Relative to OXY, P is the point (r cos a, r sin a), whereas relative to 
Oxy, Pis the point (r cos [8 + a], r sin [8 + a]). Therefore 

So 

X= r cos a, Y = r sin a 
x = r cos ( 8 + a), y = r sin (8 + a) 

x = r( cos 8 cos a - sin 8 sin a) 
= X cos 8 - Y sin 8 

y-axis 
Y-axis 

p 

X-axis 

Fig. 3.12 A rotation. 



90 TRIGONOMETRY AND GEOMETRY 

y = r(sin 8 cos a + cos 8 sin a) 
= X sin 8 + Y cos 8 

We therefore have the change of coordinates 

x = X cos 8 - Y sin 8 
y = X sin 8 + Y cos 8 

for an anticlockwise rotation of the axes through an angle 8. 

! 0 Obtain the equation of the curve 4x2 + 6y2 = 25 if the axes are rotated 
anticlockwise through n:/4. 

Here 8 = n:/4 and so the change of coordinates is 

X = X(l!V2) - Y(l!V2) = (X - Y)IV2 
y = X(l!V2) + Y(l!V2) = (X + Y)IV2 

Substituting into the equation gives 

2(X - Y)2 + 3(X + Y)2 = 25 
2(X2 - 2XY + Y2) + 3(X2 + 2XY + Y2) = 25 
5X2 + 2XY + 5 Y2 = 25 

So that reverting to x and y we have finally 

5x2 + 2xy + 5l = 25 

3.8 THE STRAIGHT UNE 

• 

A straight line can be fixed in the plane in several ways. First, we can specify 
a point P1 (xt. y 1) on the straight line and also the slope m of the line. If 
P (x, y) is a general point on the line, we have 

PM y- y 1 
m = tan 8 = slope PP1 = -- = -­

P1M X- Xt 

y-axis 

Fig. 3.13 Straight line; fixed slope through fixed point. 
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Therefore 

y-axis p 
(x,y) 

Fig. 3.14 Straight Iine; two fixed points. 

y - Yt = m(x - xJ) 

x-axis 

A second way of fixing a straight line is to specify two points P 1 (x~> y1) and 
P2 (x2, y2) on the line (Fig. 3.14). Then if P (x, y) is a general point on the 
line we have 

or 

slope PP1 = slope P2P1 

Y- Yt Y2- Yt 

X- x 1 X2 - X 1 

y- Yt X- Xt 

Y2- Yt x2- Xt 

lt is interesting to note that there are several other equivalent forms for this 
equation, and these can be obtained by equating the slopes of any two 
distinct pairs of points chosen from Pt. P2 and P. 

D Putting slope PP1 = slope PP2 yields the equation 

y- Yt X- Xt 

Y- Y2 x- x2 

Show that this equation can be rewritten in the form 

y- Yt X- Xt .:.....____::._..:._ = ---=-
Y2- Yt x2- Xt 

Wehave 

(x - x2) (y - Yt) = (x - Xt) (y - Y2) 

So 



92 TRIGONOMETRY AND GEOMETRY 

-xzy - XYt + XzYt = -xyz - XtY + XtYz 
x(Yz - Yt) - XtYz + XtYt = y(xz - Xt) - YtXz + YtXt 

(x - Xt) (yz - Yt) = (y - Yt) (xz - Xt) 

Therefore 

y- Yt X- Xt 

Yz - Yt Xz - Xt 

as required. • 

0 Obtain the equation of the straight line joining the points (-3, 7) to 

(5, 1). 
We may use the formula 

y- YI X- Xt 

Yz- Yt Xz- Xt 

where (Xt.Yt) = ( -3, 7) and (x2 ,y2) = (5, 1). So 

y-7_x-(-3) 
1 - 7- 5 - (-3) 

y-7=x+3 
-6 8 

8(y - 7) = -6(x + 3) 

8y + 6x = 56 - 18 

4y + 3x = 19 

This is the required equation. 

EQUATION OF A STRAIGHT UNE 

• 

Any equation of the form ax + by = c, where a, b and c are real constants, 

represents the equation of a straight line. Conversely, any straight line has 

an equation of the form ax + by = c for some real constants a, b and c. 

There are two other forms of the equation of a straight line which are 

often useful. One is for the straight line with slope m which has an intercept 

c on the y-axis. In other words, this is the line through (0, c) with slope m: 

y- c = m(x- 0) 

Therefore 

y=mx+c 

This is the most commonly used equation of a straight line. 

Another form is for the straight line which has intercepts a and b on the 

x-axis and y-axis respectively. In other words, we are looking for the straight 

line which passes through the points (a, 0) and (0, b) (Fig. 3.15). Therefore 
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So 

y-axis 

Fig. 3.15 Straight line; fixed intercepts. 

y-b x-0 
--=--
0-b a-0 

-~ + 1 = ~ 
b a 

X y 
-+-=1 
a b 

ANGLE BETWEEN TWO STRAIGHT LINES 

x-axis 

Suppose we have two straight lines with slopes m1 and m2 respectively 
(Fig. 3.16). Then if m 1 = tan 81 and m2 = tan 82 the angle 8 between the 
lines is given by 8 = 81 - 82• So 

y-axis 

0 

Fig. 3.16 Angle between two straight lines. 
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tan 0 = tan (01 - 02) 

tan el - tan e2 
1 + tan el tan e2 
ml- mz = ----''-------=-

1 + m 1m2 

This is valid provided 1 + m1m2 * 0. If m 1 = m2 then tan e = 0 as the 
straight lines are parallel. 

Also 

cot e = cot (0 1 - 02 ) 

COt 0 1 COt 82 + 1 

cot el - cot e2 
(llmt)(llmz) + 1 = ~~~--~---
(1/ml) - (llmz) 

1 + mtm2 

mz- ml 

If the lines are mutually perpendicular then e = rt/2, so cot e = 0 and there­

fore m 1m2 = -1. 
One small point needs tobe made. Wehave been considering straight 

lines with slope m. What happens if the line is parallel to the y-axis? We 

know that tan 0 is not defined when 0 = rt/2, so what do we do? We divide 

through by m and note that, as e approaches rt/2, 11m = cot e approaches 
0. 

0 Obtain the equation of the straight line parallel to the y-axis through the 
point (3, 7). 

The equation of a straight line with slope m through the point (3, 7) is 

So 

y-7 = m(x- 3) 

y-7 
---=x-3 

m 

Now as m gets larger and larger, x - 3 gets closer and closer to 0. So the 

required line is x = 3. • 

3.9 THE CIRCLE 

A circle has the property that every point on it is at the same distance from 

a fixed point C, its centre. Webegin by obtaining a formula for the distance 

between two points P and Q (Fig. 3.17). 



y-axis 
Q 

~YrY, 
p R x2-x, 

0 

Fig. 3.17 Two points P and Q. 

y-axis 

0 

Fig. 3.18 Circle; centre (h, k), radius r. 

Suppose Pis (x 1, y 1) and Q is (x2 , y2). Then 

PQ2 = PR2 + RQ2 

= (xz - x1f + (Y:?. - y 1)2 

So 

THE CIRCLE 

x-axis 

x-axis 

PQ = V[(x2 - x1? + (rz - yt)2] 

95 

Although we have shown this only in the case where P and Q are as on the 
diagram, the formula is valid wherever P and Q are positioned. 

Suppose now we have a circle radius r with its centre at the point (h, k) 
(Fig. 3.18). Then if P (x, y) is a general point on the circle, we have PC2 = 
r 2 . So 

(x - h )2 + (y - k? = r2 

Conversely, any point (x, y) which satisfies this equation lies on the circle. 
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If we expand this equation we obtain 

x2 - 2hx + h2 + l - 2ky + ~ = r2 

So 

x2 + l - 2hx - 2ky + h2 + ~ - r2 = 0 

We can use this to obtain criteria for an equation tobe the equation of a 
circle: 
1 The equation must be of degree 2 in the two variables x and y; 
2 The coefficient of x2 must equal the coefficient of yZ; 
3 There must be no xy term. 
Such an equation is traditionally written in the form 

x2 + y2 + 2gx + 2fy + c = 0 

so that completing the square we obtain 

(x + gf + (y + !)2 = i + !2 - c 

Therefore provided i + f 2 - c > 0 we have a circle. The circle has centre 
(-g, -f) and radius V(g2 + f 2 - c). 

D a Obtain the centre and radius of the circle 

x2 + l - 4x + 6y + 8 = 0 

b Obtain the equation of the circle with centre ( -1, 5) and radius 7 in the 
standard form 

x2 + y2 + 2gx + 2fy + c = 0 

The procedures are as follows: 
a lf we compare the given equation with the standard equation of the 

circle 

x2 + y2 + 2gx + 2fy + c = 0 

Wehave g = -2, f = 3 and c = 8. So the centreis the point (2, -3) 
and the radius is 

J!(i + / 2 - c) = J/(4 + 9 - 8) = J/5 

b The equation of the circle is 

(x - h)2 + (y - k)2 = r2 

where (h, k) is the centre and r is the radius. Here h = -1, k = 5 and 
r = 7, so that 

(x + 1 )2 + (y - 5)2 = 49 
x2 + 2x + 1 + y2 - lOy + 25 = 49 

x 2 + y 2 + 2x - lOy - 23 = 0 • 
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PARAMETRIC FORM 

Another way of representing a curve is to express each of the two variables 
x and y in terms of some third variable 8 which is known as a parameter. 
This is done in such a way that 
I Every value of 8 corresponds to a unique point on the curve; and 
2 Every point on the curve corresponds to a unique value of 8. 
We can therefore talk about the point 8. 

If we were to eliminate 8 we should obtain the cartesian equation of the 
curve. 

D For the circle x2 + l = a2 we have a parametric form x = a cos 8, 
y = a sin e. • 

3.10 THE CONIC SECTIONS 

If we take a right circular cone and cut it through in various positions we 
obtain standard curves known as the parabola, the ellipse and the hyper­
bola. Each of these curves can be defined as a locus in much the same way 
as we defined the circle as a locus. 

We consider a fixed straight line called the directrix and a fixed point S 
called the focus (Fig. 3.19). If Pisageneral point, suppose L is a point on 
the directrix such that the line PL and the directrix are perpendicular to 
one another. If the ratio PS!PL is a constant then the locus of Pis one of 
the conic sections. The ratio e = PS/PL is known as the eccentricity. We 
consider the three cases e = 1, e < 1 and e > 1. 

THE PARABOLA (e = 1) 

Suppose we choose the x-axis to be the line through the focus S perpendi­
cular to the directrix, and the origin to be the point on the x-axis midway 
between the focus and the directrix (Fig. 3.20). If S is the point (a, 0) then 

Fig. 3.19 Directrix and focus. 
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y-axis 

x-axis 

Fig. 3.20 The parabola. 

the directrix has the equation x = -a. Now if P is a general point on the 
parabola we have 

PS = V[(x - a)2 + l1 
PL = x + a 

However, PS= PL and so we have 

(x - a)2 + l = (x + a)2 

Therefore we obtain the standard cartesian form for the parabola as 

l = (x + a)2 - (x- ai = 4ax 

D Obtain the equation of the directrix and the position of the focus for the 
parabola y2 = 16x. 

We compare with the standard equation l = 4ax and obtain a = 4. 
Consequently the focus S is the point (4, 0) and the equation of the direct­
rix is x + 4 = 0. • 

The usual parametric form of the parabola l = 4ax is x = at2 and y = 2at. 
Clearly if we eliminate t we obtain 

y2 = 4a2t2 = 4a(at2 ) = 4ax 

So a general point t on the parabola is (at2 , 2at). 

THE ELLIPSE (e < 1) 

It is convenient to choose our focus tobe ( -ae, 0) and the directrix as the 
line x = -ale (Fig. 3.21). Then 

PS2 = (x + ae)2 + l 
PL2 = (x + a!ef 
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y-axis 

x-axis 

Fig. 3.21 The ellipse. 

Now PS/PL = e, so that 

(x + ae)2 + l = e2(x + a/e)2 = (ex + a)2 

Therefore 

(x + ae)2 - (ex + a)2 + l = 0 
xz(l - ez) - az(l - ez) + l = 0 

xz yz 
- + = 1 az az(l - ez) 

Now e < 1, and so we may put b2 = a2(1 - e2) to obtain the standard car­
tesian form for the ellipse as 

The axes of symmetry are known as the major axis and the minor axis. The 
major axis has length 2a and the minor axis has length 2b. 

The symmetry of this curve suggests that it must be possible to define it in 
terms of another focus and another directrix. In fact the point (ae, 0) pro­
vides a second focus, and the line x = a/e the corresponding directrix. From 
Fig. 3.22 

so that 

PS1 PSz 
--=e=--
PL1 PLz 

PS1 + PS2 = ePL 1 + ePL2 

= e(PL 1 + PL2) = eL 1L2 

= e(2a!e) = 2a 

This says that at any point on the ellipse the sum of the distances to the foci 
is constant and equal to the length of the major axis. This property has 
practical uses. For example, gardeners sometimes use it to mark out the 
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y-axis 

x-axis 

Fig. 3.22 The two foci of an ellipse. 

boundary of an elliptical flower-bed. To do this two pegs are secured at the 
foci and a piece of rope equal in length to the major axis joins the two pegs. 
When the rope is held taut along the ground an ellipse can be traced out. 

There are many possible parametric forms for the ellipse. The one which 
is usually employed is x = a cos e and y = b sin e. Eliminating e using 
cos2 e + sin2 e = 1 gives the ellipse in cartesian form. 

THE HYPERBOLA (e > 1) 

We choose the focus to be ( -ae, 0) and the directrix to be the line 
x = -a/e. However, since e > 1 the position of the focus is to the left of 
the directrix (Fig. 3.23). Then 

0 

PS2 = (x + ae)2 + y2 

PL2 = (x + a/e)2 

-a 
X= 7f 

Fig. 3.23 The hyperbola. 



THE CONIC SECTIONS 101 

Now PS/PL = e, so that 

Therefore 

(x + ae)2 + l = e2(x + a/e)2 = (ex + a)2 

(x + ae)2 - (ex + a)2 + l = 0 
x2(1 - e2) + l = a2(1 - e2) 

x 2(e2 - 1) - l = a2(e2 - 1) 

Now e > 1, and so we may put b2 = a2(e2 - 1) to obtain the standard car­
tesian form for the hyperbola as 

x2 l 
a2 - b2 = 1 

There are several parametric forms for the hyperbola. The one which is 
usually chosen is x = a cosh u, y = a sinh u, which involves hyperbolic 
functions. Until we study these functions (Chapter 5) we shall have to be 
content with another parametric form, SUCh as X = a SeC 8, y = b tan 8. 
Note that 

The straight lines y = ±(b/a)x are the asymptotes of the hyperbola. The 
tangents approachthesestraight lines as lxl increases in magnitude. Some 
books refer to them as 'tangents at infinity', but this does not really mean 
very much. If b = a then the asymptotes are the straight lines y = x and 
y = - x, which are mutually perpendicular, and the hyperbola is called a 
reetangular hyperbola. Moreover, if we rotate the curve anticlockwise 
through n/4 we can use the asymptotes as axes. This implies that the axes 
have been rotated clockwise through n/4. 

Suppose b = a. Then we have x 2 - y2 = a2 . Forarotation of -n/4 we 
have 

So 

x = X cos ( -n/4) - Y sin ( -n/4) = (X+ Y)/V2 
y =X sin ( -n/4) + Y cos ( -n/4) = (-X+ Y)!V2 

x2 -l =[(X+ Y)2- (X -Y)2]/2 
= 2XY = a2 

So writing c = a!V2 and changing the notation X and Y to the more usual x 
and y, we have xy = c2 • 
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The usual parametric representation for the reetangular hyperhola xy = Cl 
is x = ct and y = c/t. 

Now it's time to take a few more steps. 

,...--,--------3.11 Workshop _______ _ 

2\l Exercise Identify the polar equation 

r2 = 8 cosec 28 

hy transforming it into cartesian coordinates, or otherwise. 
The phrase 'or otherwise' is used quite often in examination questions. 

Theoretically it means that if you can think of a different method you are at 
liherty to use it. In practice it often means 'or otherwise try another 
question'! 

We use x = r cos 8 and y = r sin 8, from which r = V(x 2 + yZ) and 
.___ _ _. tan 8 = ylx. Given the equation r2 = 8 cosec 28, if we multiply through 

hy sin 28 we ohtain 

r2 sin 28 = 8 

and since sin 28 = 2 sin 8 cos 8 we have 

That is, xy = 4. 

2r2 sin 8 cos 8 = 8 
r2 sin 8 cos 8 = 4 

We should now recognize this as the equation of a reetangular hyperhola 
in which the axes coincide with the asymptotes. 

lf that went weil, then move ahead to step 4. Otherwise, try the next 
exercise. Remernher that to transform from polar coordinates to cartesian 
coordinates we must use x = r cos 8 and y = r sin 8. Once r and 8 have 
heen eliminated it is then just a question of identifying the curve. 

[> Exercise Identify the curve which has the equation in polar coordinates 

r2(cos 28 - 3) + 10 = 0 

When you have done this move forward. 

lf we remernher the identity cos 28 = 2 cos2 8 - 1 it will help. In fact any 
.___ _ _, of the three identities expressing cos 28 in terms of sin 8 and/or cos 8 

will do. We ohtain 
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r2(2 cos2 8 - 1 - 3) + 10 = 0 
r 2(cos2 8 - 2) + 5 = 0 

r2 cos2 e - 2r2 + 5 = 0 
x 2 - 2(x2 + l) + 5 = 0 

x 2 + 2l = 5 

We recognize this as the equation of an ellipse: 

x 2 l 
5 + (5/2) = 1 

The major axis has length 2a = 2V5 and the minor axis has length 2b = 

2V(512) = Vw. 
If there are any problems remaining, then make sure you follow all the 

stages. You will have another chance to tackle one of these when you work 
through the problems at the end of the chapter. Now step ahead. 

[> Exercise ldentify the curve which has the equation 

(x + y)2 = 4(xy + 1) 

Be just a little careful here. Try it, then step forward. 

This is one of those problems where you can be too clever! You may think 
that the equation has the form Y 2 = 4X, where Y = x + y and X = xy + 1, L__ _ _j 

and be led by this to conclude that the equation was that of a parabola. 
However, the change of coordinates does not correspond to a movement of 
axes and so does not preserve geometrical shapes. Instead we do something 
much more mundane. We multiply out and rearrange the equation: 

(x + y)2 = 4(xy + 1) 
x 2 + 2xy + l = 4xy + 4 
x 2 - 2xy + y2 = 4 

(x - y)2 - 4 = 0 
[(x - y) - 2] [(x - y) + 2] = 0 

So x - y - 2 = 0 or x - y + 2 = 0, and we therefore have the equation of a 
pair of parallel straight lines y = x - 2 and y = x + 2. 

If you were right, then on you stride to step 7. Otherwise try this 
exercise. 

[> Exercise Describe the geometrical curve which has the equation 

(x + y )2 = (x + 8) (x + 2y) + 8(x - 2y) 

This should cause you no trouble. 
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l____--' We do the obvious thing and multiply out the equation with a view to 
simplifying it: 

x2 + 2xy + y2 = x2 + 8x + 2xy + l6y + 8x - l6y 

Almost everything cancels OJ.lt, and we are able to reduce the equation to 

y2 = l6x 

We recognize this as the equation of a parabola in the standard form 
y2 = 4ax, where a = 4. So the focus is the point (4, 0) and the directrix 
is the line x = -4. 

Exercise Obtain the condition that the line y = mx + c intersects the 
l____--' parabola y2 = 4ax in two coincident points. Thereby obtain the equation of 

the tangent to the parabola y2 = 4ax with slope m. 

'---~ 

Weshallsee in Chapter 6 how we can obtain the equation of the tangents 
to each of the conics at a general point by using calculus, but for the moment 
we shall restriet ourselves to algebraic methods. 

The two 'curves' l = 4ax and y = mx + c intersect when 

(mx + c)2 = 4ax 
m2x2 + 2mcx + c2 = 4ax 

m2x2 + 2(mc - 2a)x + c2 = 0 

In general, if (mc - 2af > m22, there will be two real solutions for x and 
so two points where the straight line intersects the parabola. However, in 
the special case (mc- 2a)2 = m2c2 the roots coincide and we have a tangent. 
This gives 

that is c = a/m. So the equation of the tangent is 

a 
y=mx+c=mx+­

m 

If that went well, then finish with this exercise. 

C>Exercise Obtain the equation of the tangent with slope m to the circle 
x2 + y2 = ,2. 

L___ _ _J 

This is just like the last one, and so there should be no problems. Try it, 
then take the final step. 

We use the equation of the straight line in the form y = mx + c and we 
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wish to obtain c, given that this straight line is a tangent. Substituting into 
x 2 + i = r2 we have 

x2 + (mx + c)2 = r2 
x 2 + m2x2 + 2mcx + c2 = r2 

(m2 + l)x2 + 2mcx + c2 - r2 = 0 

lf this quadratic equation is to have equal roots then 

4m2c2 = 4(m2 + l)(c2 - r2) 
m2c2 = m2c2 _ m2r2 + c2 _ ,2 

c2 = (m2 + l)r2 

Therefore c = ±rV(m2 + 1), and so there are two tangents: 

y = mx ± rV(m2 + 1) 

You didn't overlook the minus sign, did you? 

Here now are a couple of problems which arise in applications. 

________ 3.12 Practical _______ _ 

TOWER HEIGHT 

A surveyor finds that from the foot of a tower the elevation of a mast is 98 
butthat from the top of the tower the elevation is only 88. The tower and 
the mast are both built on ground at the same horizontal Ievel, and the 
height of the tower is h. 

Show that the horizontal distance from the tower to the mast is 

d = h cosec 8 cos 88 cos 98 

Obtain an expression for /, the height of the mast, in terms of h and 8. 
You should be able to try this on your own. When you have made an 

attempt, read on and examine the solution. 

The arrangement is shown in Fig. 3.24. Wehave 

IId = tan 98 

and 

From these equations, 

(I- h)ld = tan 88 
IId - h/d = tan 88 
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Therefore 

Also 

Fig. 3.24 Representation of tower and mast. 

h/d = tan 98 - tan 88 

sin 98 sin 88 =-----

= 

cos 98 cos 88 

sin 98 cos 88 - cos 98 sin 88 
cos 98 cos 88 

sin (98- 88) 
cos 98 cos 88 

sin 8 
=-----

cos 98 cos 88 

d = h cosec 8 cos 88 cos 98 

I = d tan 98 = h cosec 8 cos 88 sin 98 

CIRCUIT ADMITTANCE 

This problern uses some of the geometry we have developed. 
The admittance of an RC series circuit may be represented by the point 

P(x,y), where 

x = R I ( R2 + c.)cz) 
Y = ( w

1c) I ( R2 + w21c2) 
Eliminate w to determine the admittance locus - the equation relating x 
and y. Show how P moves on this curve as w increases from 0 without 
bound. 
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It is worthwhile seeing if you can sort this out for yourself before you 
moveon. 

Wehave 

So 

R 1 

x wCy 

1 Ry 
or -=­

ooC X 

Substituting back into (1) we have 

Therefore 

R R2y2 - = R2 + --
x x2 

Rx = R 2x2 + R 2y2 

2 2 X 
X +y -R=O 

(X - 2~r + y2 = 4~2 
So Pis on a circle of centre (1!2R, 0) and radius 112R (Fig. 3.25). 

When w * 0 we have 

wC 

Fig. 3.25 The admittance locus. 

(1) 

(2) 
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As w--+ 0 we have (x,y)--+ (0, 0), the origin. For w > 0 we have y > 0 
and, as w increases without bound, (x,y)--+ (1/R,O). The movement of P 
is therefore confined to the upper semicircle (Fig. 3.26). 

y 

k X 

Fig. 3.26 The path of P. 
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SUMMARY 

0 We have defined the circular functions, drawn their graphs and 
deduced some of their properties. Two key identities are 

cos2 e + sin2 e = 1 
sin (A + B) = sin A cos B + cos A sin B 

0 Wehave obtained the general solution of equations involving circular 
functions 

sin e = sin a => e = n:rt + (-1 ta 
cos e = cos a => e = 2mt ± a 
tan e = tan a => e = mt + a 

where n is any integer. 
0 We have obtained the standard equations of the straight line 

a y - Y1 = m(x - x1) 

b y- Yl = X- XI 

Yz- Y1 Xz- x1 
cy=mx+c 

d~+l=t 
a b 

(slope m, through (x~o Y1)) 

(through (x~oyd and (xz,yz)) 

(slope m, y-intercept c) 

(x-intercept a, y-intercept b) 

0 Wehave shown that the angle between two straight lines with slopes 
m1 and m2 respectively is given by 

e -m_..!._l _-_m--=..z tan = 
1 + m 1m 2 

The lines are parallel if and only if m 1 = m2 • 

The lines are mutually perpendicular if and only if m 1m2 = -1. 
0 We have obtained the equations in standard form of the conic 

sections 

x2 + y2 + 2gx + 2fy + c = 0 
/ = 4ax 

x2 / 
az + bz = 1 

xz / 
----1 az bz-

( the circle) 

(the parabola) 

(the ellipse) 

(the hyperbola) 

0 Wehave transformed polar equations into cartesian equations using 
the relationships 

x=rcose y = r sin e 
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EXERCISES 

1 Establish the following identities: 
a cos36 = cos6 (cos26- 2sin26) 
b sin46 = 4(sin6cos3 6- cos6sin3 6) 
c tan6 + cot6 = sec6cosec6 
d cos26 + sin26 = (cos6 + sin6)2 - 2sin26 

36 tan 6 (3 - tan2 6) e tan = -:-------:....-:-"-:-------'-----,-
(1 - tan26)(1 - tan6tan26) 

2 Solve the following equations in the interval (0, 21t): 
a sin36 = 1 
b tan46 = -1 
c cos6+sin6=1 
d cot26 = 1 
e cos6 = 2cos26 - 1 

2tan6 
f tan36 = 1 26 - tan 

3 Express in the form R cos (6 - a) 
a cos6 + 2y2sin6 
b 3sin6- y'7cos6 
c 4cos6- 3sin6 

4 Identify each of the following curves: 
a (x + 4)2 + (y + 3)2 = 8x + 6y + 50 

1 5 10 
b-+-+-=1 

x y xy 
c (y - 1f - (x - 1)2 = 2x - 1 
d x2 + 4y = y2 + 2x + 19 

5 Identify these polar equations by transforming them to cartesian form: 

(r +;) 
a = cos6- sin6 

2 
b r2cos26 + 2r(sin6- 2cos6) = 1 
c r2(1 + cos26) = 4 

d rsin26 + 2sin6- 2cos6 = 10 
r 

6 Determine the equation of each of the following: 
a the straight line through ( -1, 2) with slope 3 
b the straight line through (1, -4) with slope -5 
c the straight line through (2, 5) and ( -4, 6) 
d the straight line through ( -1, 4) and (3, 2) 
e the straight line with x intercept -3 and y intercept 5 
f the straight line with x intercept 2 and y intercept -3 
g · the straight line with slope 3 and y intercept -5 
h the straight line with slope -2 and y intercept 4 
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i the circle centre (1, 2) with radius 4 
j the circle centre (2, - 3) with radius 5 

7 For each of the following straight lines determine the slope, the x 
intercept and the y intercept: 
a x + 4y = 12 
b 2x + 3y + 6 = 0 
c 2(x + 3) + 5(y - 2) = 7 
d 4(x - 2) + 3(y + 1) = 9 

8 For each of the following circles determine the centre and the radius: 
a x2 + y 2 + 4x + 6y + 9 = 0 
b x 2 + y 2 + 6x + Sy + 21 = 0 
c x2 + y 2 - 2x + 4y - 4 = 0 
d (x - y)2 + (x + y)2 = 12x + 4y + 30 

ASSIGNMENT 

l Show that 

cos 8 1 + sin 8 2 
1 + sin 8 + cos 8 = -co_s_8 

2 Use the expansion formula for sin (A + B) to express sin 38 entirely in 
terms of sin 8. Hence, or otherwise, solve the equation 

6 - 8 sin2 8 = cosec 8 

3 Obtain all solutions in the interval [0,2:n] of the equation 

2 cos3 8 + cos 28 = cos 8 

4 Obtain the general solution of the equation 

sin 48 + 2 sin 28 + 2 sin2 8 = 2 

5 Simplify and thereby identify each of the following equations as curves in 
the cartesian coordinate system: 
a (2x + y)2 + (x - 2y)2 = 16 
b (x + y) (x + 5y) - 6x(y - 5) = 0 
c (y + xf = x(2y + 1) + 16 
d (y + x)2 = x(2y + x) + 16 
e (3x- y)(x + y- 1)(x- y + 2) = 0 
In each case give a rough sketch. 

6 Express in the form R cos ( 8 - a) 
a cos 8 + sin 8 
b sin 8 + V3 cos 8 

7 By expressing the polar equation 
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r2(1 - 7 cos 28) = 10 

in cartesian form, or otherwise, identify the curve. 

FURTHER EXERCISES 

1 Establish the following identities: 
a sin 8/(1 + cos 8) = tan (8/2) 
b (1 + cos 28)/(1 - cos 28) = cot2 e 
c cot e - tan e = 2 cot 28 
d cosec 28 - cot 28 = tan e 

2 Solve each of the following equations to obtain e E IR: 
a sec2 e = 1 + tan e 
b tan4 e = 9 
c 1 + sin e + sin2 e = 0 
d 2 - cos e + 2 cos2 e - cos3 e = 0 
e 1 + sin e + cos e = 0 

3 Show that 

cos 2n8 + sin 2(n + 1)8 cos 2(n- 1)8 + sin 2n8 

cos (2n + 1)8 + sin (2n + 1)8 

Hence or otherwise show that 

cos (2n- 1)8 + sin (2n- 1)8 

cos 128 + sin 148 1 + sin 28 
cos 138 + sin 138 cos 8 + sin 8 

4 Show that the equation of the chord joining two points (ai> b1) and 
(a2 , b2 ) on the reetangular hyperbola xy = c2 is 

X + y = 1 
a1 + a2 b1 + bz 

5 Show that 

sin e + sin 38 + sin 58 + sin 78 48 --------------------------= tan 
cos e + cos 3e + cos se + cos 78 

6 A surveyor stands on the same horizontal Ievel as a television mast at 
a distance d from its base. The angle of elevation of a point P on the 
mast is e and the angle of elevation of the top of the mast is <j>. 

Show that the distance from the point P to the top of the mast is 
d sin ( <j> - 8) I cos e cos <j>. 

7 A simple pendulum of length L swings so that it subtends an angle e 
with the vertical. Show that the height of the pendulum bob above its 
lowest position is 2L sin2 (8/2). 

8 Obtain the axis of symmetry and the position of the focus of the conic 
2/ =X+ 4y. 
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9 A symmetrical parabolic arch has a span of 24 metres and a height of 
20 metres. Determine the height of the arch at a distance 3 metres from 
the axis of symmetry. 

10 A symmetrical road bridge has the shape of half an ellipse. lts span is 
30 metres and its height is 20 metres. Determine the height at a distance 
of 12 metres from the axis of symmetry. 

11 A symmetrical parabolic bridge has a height of 4 metres and a span of 
8 metres. A vehicle is 4 metres broad and has a height just over 
3 metres. Can the vehicle pass under the bridge? Determine the 
maximum head height which a vehicle 3 metres wide can have to pass 
under the bridge without contact. 

12 A beam of length /lies in a vertical plane and rests against a cylindrical 
drum of radius a which is lying on its side. The foot of the beam is a 
distance x from the point of contact of the cylinder and the ground. 
Calculate the height of the top of the beam above the ground. 

13 In a plane representing an electric field, 0 and A denote the cross­
sections of charged wires. The distance OA is 8 units. When the point 
P moves in this plane in such a way that 0 P = 3AP then P moves on an 
equipotential surface. Show that the equipotential surface is a circle of 
radius 3 units. 

14 Two rods AB and AC of length p and q (p > q) respectively are jointed 
together at one end A. The other ends, Band C, are secured to a wall 
with B vertically above C so that the distance BC is h. If Cis moved a 
distance x down the wall away from B, show that A drops or rises by an 
amount x/2 - (p2 - q2 )x/2h(h + x). 

15 When a surveyor is at a radial distance r from a church spire, the 
angle of elevation of the base is (} and the angle of elevation of the 
top is e + a. Obtain tan ß where ß is the difference in the angles 
of elevation between the top and the bottom if the surveyor is at 
a distance r + t. 

16 A cliff of height h above sea Ievel is being eroded by wind and 
sea. A surveyor stands on the edge and finds that the angle of 
declination of a rock on the horizon is (}. One year later the height 
of the cliff is unchanged but the angle of declination of the rock 
has been decreased by a. Ignoring the curvature of the earth 
determine the distance d that the cliff has been eroded. 

17 A symmetrical arch of height h is in the shape of a parabola and 
its span at ground level is 2r. A ladder rests tangentially against 
the arch, in its plane, in such a way that the top of the ladder 
just touches the arch. If the foot of the ladder is at a horizontal 
distance d from the centre of the arch, determine the length l of 
the ladder in terms of h, r if d = 5r /4. 



Limits, continuity and 
differentiation 4 

Now that we have acquired the basic algebraic and geometrical tools 
that we need, we can begin to develop the calculus. 

After completing this chapter you should be able to 
0 Evaluate simple Iimits using the laws of Iimits; 
0 Decide, in simple cases, whether a function is continuous or not; 
0 Perform the processes of elementary differentiation; 
0 Obtain higher-order derivatives of a product using Leibniz's 

theorem; 
0 Apply differentiation to calculate rates of change. 
At the end of this chapter we shall solve practical problems concerning 
cylinder pressure and the seepage of water into soil. 

4.1 LIMITS 

One of the most important concepts in mathematics and therefore in its ap­
plications is that of a Iimit. We are often concerned with the long-term 
effects of things, or with what is likely to happen at a point of crisis -
profitability, state of health, buoyancy, or stability of a structure. Such 
considerations often involve a limiting process. 

Weshall meet this idea in several ways. In the first instance we consider 
the Iimit of a function at a point. Suppose y = f(x) has the property that 
f(x) can be arbitrarily close to I just by choosingx (:Fa) sufficiently close to 
a. If so, we say that f(x) tends to a Iimit I as x tends to a, and write 

f(x) - I as x - a 



Alternatively we say that f has a Iimit I at a, and write 

I= lim f(x) 
X->Q 
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We do not insist thatf(a) is defined, or, ifit is defined, that its value shall 
be equal to I. In other words, the point a need not be in the domain of the 
function and, even if it is, the value at the point a need not beI. Indeed we 
are not interested at all in what happens at x = a; we are interested only in 
what happens when x is near a. 

0 Suppose 

y = f(x) = r - 3x + 2 
X - 1 

then the domain of this function consists of all real numbers other than 
x = 1; so f(x) is not defined when x = 1. On the other band, when x =I= 1 we 
may simplify the expression for y to 

y = (x - 2)(x - 1) = x _ 2 
X - 1 

The function is shown in Fig. 4.1: we use a hollow circle to represent a 
missing point. Now f(x) can be made arbitrarily close to -1 just by choos­
ing x sufficiently near to 1. Therefore 

lim f(x) = lim (x- 2) = -1 
X->1 X--->1 

However, we cannot make f(x) equal to -1 because f(x) is not defined 
when x is equal to 1. • 

D Obtain lim f(x) in each of the following cases: 
X->0 

y-axis 

x-axis 

Fig. 4.1 The graph of f-



116 LIMITS, CONTINUITY AND DIFFERENTIATION 

f( ) = x2 - 4x + 3 
a x x2 -2x_ 3 a=3 

e2x- 1 
b f(x) = x -x a = 0 

e - e 

a Wehave 

so that when x =I= 3 

Therefore as x ~ 3, 

b Wehave 

(x - 3)(x - 1) 
f(x) = (x - 3)(x + 1) 

f(x) = x- 1 
X + 1 

3 - 1 2 1 
f(x) ~ -- = - = -

3 + 1 4 2 

e2x- 1 
f(x) = eX - e X 

If we try to put x = 0 straight away we get 

0 
f(x) ~ 0 

which is undefined. Therefore we must be more subtle. If we multiply 
numerator and denominator by ex (which is always non-zero) we obtain 

f(x) = ex(e2x - 1) = ex 
e2x- 1 

provided x =I= 0. So that as x ~ 0, f(x) ~ e0 = 1. 

4.2 THE LAWS OF LIMITS 

The following rules are often known as the laws of Iimits: 

l lim [f(x) + g(x)] = lim f(x) + lim g(x) 
x ........... a x----+a x----+a 

2 lim [kf(x)] = k lim f(x) k E IR 
X----+0 X----+Q 

3 lim [f(x) g(x)] = lim f(x) lim g(x) 
X----+Q X----+Q X---+Q 

4 If !~ g(x) =I= 0, then !~ [f(x)lg(x)] = [!~ f(x) ]/[!~ g(x) J 

• 
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These rules are to be interpreted carefully in the following way. If the 
right-hand side exists then the left-hand side exists and the two are equal. If 
the right-hand side does not exist, then the rule cannot be applied. 

D From the graphs of the circular functions (Figs 3.4, 3.5) it is clear that 

lim sin x = 0 

Obtain 

I. sin x - 1 
a Im 

X--->0 2 cos X 

b I. COS X - 1 
Im 2 . 

x--->O sm x 

a Using the laws of Iimits, 

I. sin x - 1 
Im 

X---+0 2 cos X 

X--->0 

lim cos x = 1 
X--->0 

lim tan x = 0 
x--->0 

lim (sin x - 1) 
X--->0 

lim (2 cos x) 
X--->0 

lim ( sin x - 1) 0 _ 1 
X~--->~0~-------- = ---- = 

2 lim (cos x) 
X--->0 

2 X 1 
1 
2 

Here the procedure is justified by the result; if you like, the end justifies 
the means! However, if the application of the rules produces at any stage 
an expression which is meaningless, we shall need to think again! 

b If we go straight into the laws of Iimits we shall meet a problem: 

lim (cos x - 1) r cos x - 1 x--->o 
x~J 2 sin X = "--li.c...m __ (_2_s_in __ x_)-

X---+0 

lim ( cos x) - 1 1 _ 1 0 
-~<---+~(~)---------= ---- =-

2 lim (sin x) 2 x 0 0 
X---+0 

At each stage we were able to carry out the simplification only on the 
understanding that the expression which resulted would be meaningful. 
However, 0/0 is indeterminate and so the procedure fails. The problern 
must be tackled differently. One way to sort things out is to try to 
express f(x) in an alternative form when x =F 0: 

f( X) = COS X - 1 = ( COS X - 1 )( COS X + J ) 
2 sin x 2 sin x( cos x + 1) 
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cos2 x - 1 -sin2 x 
= 

2 sin x(cos x + 1) 2 sin x(cos x + 1) 

-sin x 
=-----

2(cos x + 1) 
provided x * 0 

Therefore 

I. f( ) 1. -sin x Im X = Im 
X---->0 X->0 2( COS X + 1) 

- lim sin x 0 = x->0 = __ = O 
2limcosx+2 2+2 • 

..--.--------4.3 Workshop _______ _ 

2\l Exercise Here are two Iimits for you to try; they are very similar to the 
ones we have just done. 

I. (sin x - 1) tan x 
a Im 

X->0 2 cos X 

b I. (cos x - 1) cot x 
Im 2 . 

x-o sm x 

When you have completed a, take the next step and see if you are right. 

!\; For a we have 

L---' 

(sin x _ 1) tan lim (sin x - 1) tan x 
I. X -X->.....:..::_0 ______ _ 
Im = -

x->0 2 COS X lim (2 COS X) 
X--->0 

lim (sin x - 1) lim tan x 
= ;:::X->=0 ____ _-:!X=->:.::_0 __ 

2 lim cos x 
X->0 

-1 X 0 
2 X 1 = O 

How did you get on with that? If you made a mistake, Iook carefully at the 
laws of limits and see how they are applied. Problem b, like the example 
we have just done, requires some work before we take Iimits. Try it and 
see how it goes; then step ahead. 

In b we cannot apply the laws of Iimits directly because the result is 
meaningless. However, 
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( COS X - 1) COt X ( COS X - 1) COS X 

2 sin x 2 sin2 x 

( COS X - 1) COS X 

2(1 - cos2 x) 

( COS X - 1) COS X 

2(1 - cos x)(1 + cos x) 

-cos x 
2(1 + cos x) 

. (cos x - 1} cot x 1. - cos x 
hm . = Im -----
x--o 2 sm X X-->0 2(1 + cos x) 

-1 1 

2(1 + 1} 4 

Did you manage that? 

The important fact that we need to remernher about the Iimit of a function 
is that we are not at all concerned with the values of the function at the 
point. We are only interested in the values of the function near the point. 
In Fig. 4.2 

!im f(x) = I * f(a) 
x->a 

Although the 'Iimit I of f(x) as x tends to a' is only meaningful if I isareal 
nurober, we shall allow a slight extension of the notation. It is convenient 
but slightly absurd to write 

lim f(x) = oo 
x->a 

provided f(x) can be made arbitrarily !arge just by choosing x sufficiently 

y-axis 

I 
I 
I 
I _________ , 
I 

y = f(x) 

0 a x-axis 

Fig. 4.2 The Iimit of a function. 
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close to a (x =#= a). That is, f(x) can be made larger than any pre-assigned 
real number merely by choosing x close enough to the point a. Similarly, 

lim f(x) = -oo 
x-+a 

means thatf(x) can be made less than any pre-assigned number merely by 
choosing x sufficiently close to a (x =#= a). 

0 Wehave 

lim cosec2 x = oo 
X-+0 

The notation is slightly misleading because of course there is no Iimit! • 

Likewise we write 

lim f(x) =I 
X---+00 

if f(x) can be made arbitrarily close to I merely by choosing x sufficiently 
large, and 

lim f(x) =I 
X----J>-00 

iff(x) can be made arbitrarily close to I merely by choosing the magnitude 
of x sufficiently large, where x < 0. 

4.4 RIGHT AND LEFT LIMITS 

We can extend the idea of a Iimit in a number of ways. One way, which is 
quite useful for applications, arises whenf(x) can be made arbitrarily close 
to r by choosing x ( >a) sufficiently close to a. Here we are considering 
values of x greater than a, and so the Iimit is obtained as we approach the 
point a from the right-hand side. We call it a right-hand Iimit (Fig. 4.3). We 
write 

y-axis 

~~: _-_-_-~v 

0 

I 
I 
I 
I 

a 

Fig. 4.3 Right-hand and left-hand Iimits. 

x-axis 
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lim f(x) = r 
x~a+ 

Similarly, if f(x) can be made arbitrarily close to I by choosing x ( <a) 
sufficiently close to a, we have a left-hand Iimit (Fig. 4.3). We write 

lim f(x) = I 
x----+a-

lf 

lim f(x) = lim f(x) = k 
x-----)>a+ x----+a-

then 

lim f(x) = k 
x--.a 

INEQUALITIES 

There is one further property of Iimits which we shall find particularly 
useful later and which we now describe briefly. It enables us to compare 
Iimits by comparing the functions which give rise to them. 

Suppose 
1 For all x in some open interval containing the point a, 0 ~ f(x) ~ g(x); 
2 Both lim f(x) and lim g(x) exist. 

X----+ll X----+0 

Then 

0 ~ lim f(x) ~ lim g(x) 
X----+ll X__,.CI 

lt must be stressed that both requirements must be met before we assert 
confidently that one Iimit is bounded above by another. Here are the 
conditions in words: 
1 Each function must be positive, and one must be greater than the other; 
2 Both Iimits must exist. 
An analogaus property holds for right-hand and left-hand Iimits. 

4.5 CONTINUITY 

Most of the functions which we have met in our mathematical work have 
the property 

lim f(x) = f(a) 
\ _,..ll 

This in effect says that the. e are no breaks in the graph of the function. 
Specifically, if for some point a we have 
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lim f(x) = f(a) 
X->Q 

then the function f is said to be continuous at a. Moreover, if the function 
f is continuous at all points of its domain we say it is a continuous function. 

Intuitively, then, a continuous function has its graph all in one piece. 
However, this Statement can be a little misleading. 

0 y = tan x is defined whenever x is not an odd multiple of 'Jt/2. 1t is con­
tinuous at all points where it is defined, and so is a continuous function. 
However, the graph is certainly not in one piece (Fig. 4.4). • 

The function in Fig. 4.5, although satisfying the requirements of a 

v·axis 

x·axis 

Fig. 4.4 The tangent function. 

v·axis 

x-axis 

Fig. 4.5 A continuous function. 
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continuous function, is not the kind of function with which we are familiar. 
1t isn't smooth, and there are several points at which it is impossible to 
draw a tangent. 

4.6 DIFFERENTIABILITY 

Suppose y = f(x) is a smooth curve and that x determines a general point 
P on it (Fig. 4.6). Suppose also that h is small and Q corresponds to 
x = a + h. Using the notation shown in the diagram, the slope of the 
chord PQ is given by 

PQ _ QR _ f(a + h) - f(a) _ f(a + h) - f(a) 
slope -PR- (a+h)-a- h 

Suppose now we consider what happens as h is made small (h =I= 0). Q 
moves closer to P, and intuitively the slope of the chord PQ becomes 
arbitrarily close to the slope of the tangent at P. So 

slope of tangent at P = lim f(x + h) - f(x) 
h-+0 h 

If this Iimit exists then the function f is said to be differentiable at the 
point a. If f is differentiable at all its points then f is said to be a 
differentiable function. We write 

dy = lim f(x + h) - f(x) 
dx h-+O h 

We call this the derivative of f at x, and represent it by f'(x). The process 
by which f'(x) is calculated from f(x) is called differentiation with respect 
to x. 

y-axis 

Q ------

0 B 

1 
J.jR 

I 
I 
I 
I 
B+h 

y=f(xl 

x·axis 

Fig. 4.6 Two neighbouring points on a smooth curve. 
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DIFFERENTIALS 

Although we have used the notation dyldx for the derivative of f at x, we 
have given no meaning to dy and dx which would enable them tobe used 
separately. lt is important to appreciate that the derivative is a Iimit; we 
may write öx = h and öy = f(x + h) - f(x) so that 

dy = lim öy 
dx öx-+OÖX 

but once the Iimit has been taken dy and dx become welded together and 
cannot be separated. 

Nevertheless it is convenient to have an interpretation for dy and dx so 
that they can be used separately and are consistent with this definition of a 
derivative. Accordingly we define dx tobe any change in x (not necessarily 
small) and define dy by the formula dy = f'(x) dx. This is consistent with 
the definition of a derivative because when dx =I= 0 we have dyldx = f'(x) as 
before. When dx and dy are used in this way they are called differentials. 
Note that if dx is a change in x, dy is not the corresponding change in y. 
However, if dx is numerically small then dy does approximate to the 
corresponding change in y. 

RULES 

The laws of limits enable us to deduce rules for differentiation. In what 
follows it will be supposed that u = u(x) and v = v(x) can be differentiated 
with respect to x and that k is a real constant. 

d du dv 
1 - (u + v) = - + -

dx dx dx 
(the sum rule) 

d du 
2- (ku) = k-

dx dx 
( the factor rule) 

d dv du 
3 - (uv) = u- + v-

dx dx dx 
(the product rule) 

4 Suppose y = y(u) and u = u(x) are both differentiable. Then 

dy dy du 
-=--
dx du dx 

( the chain rule) 

These are the basic rules for differentiation and, together with the deriva­
tives of a few functions, they can be used to obtain the derivative of any 
function you are likely to need. Here is a short Iist of derivatives; if you 
were cast away on a desert island these would be sufficient for you to 
deduce all the standard forms: 

d -1 - (xn) = nxn 1 (n E IR) 
dx 
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2 j__ (ex) = ex 
dx 

3 :X ( sin X) = COS X 

lmagine for the moment that we are marooned on a desert island. There 
is a ship ready but the captain has gone mad and will not rescue us unless 
we can supply some simple derivatives. Let's try to build up some of the 
standard forms. See also Table 15.1. 

D Deduce the quotient rule 

j__ (~) = (v du _ u dv)/v2 

dx v dx dx 

We use the product rule and the chain rule to achieve the required form: 

LHS = j__(~) = j__ (uv- 1) 
dx v dx 

d d = u-(v- 1) + v- 1-(u) 
dx dx 

d ( _1) dv _1 du = u- V -+V -
dv dx dx 

dv du = u(-v-2)- + v-1 -
dx dx 

= v- - u- v2 = RHS ( du dv)/ 
dx dx 

D Use the rules and the standard forms to obtain 
d 

a dx (cos x) 

d 
b dx (tan x) 

d 
c dx (sec x) 

d 
d dx (In x) 

d 
e dx (ax) (a > 0) 

a We have cos x = sin (rr/2 - x). So 

(product rule) 

( chain rule) 

(derivative 1) 

( elementary algebra) 

• 
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:x (cos x) = d~ [sin (1rJZ - x)] 

Put u = 1t/Z - x; then 

d~ (cos x) = :x (sin u) 

d ( . ) du =- smu-
du dx 

( chain rule) 

d 
=, cos u dx (1t/2 - x) (derivative 3) 

= cos u [~ i_(x0) - i_(x)] 
2 dx dx 

= cos u (0 - 1) = -cos (1t/2 - x) = -sin x 

b Wehave 

i_(tan x) = i_ (sin x) 
dx dx cos x 

= [ cos x :x (sin x) - sin x d~ (cos x) ]/cos2 x 

cos2 x + sin2 x 1 2 =--=sec x 
cos2 x cos2 x 

c Wehave 

Put u = cos x. Then 

i_(u-1) = ~(u-1) du 
dx du dx 

d 
= -u-2-(cos x) 

dx 

-1 sin x 
= --2 -( -sin x) = --2 - = sec x tan x 

COS X COS X 

d Let y = In x. Then x = eY. So 

Therefore 

d d d dy 
-(x) = -(eY) = -(eY)­
dx dx dy dx 

dy dy 
1=eY-=x-

dx dx 
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dy 1 
dx x 

e Let y = ax. Then In y = In ax = X In a. So 

Therefore 

So 

d d 
dx (In y) = dx (x In a) 

d dy 
d y (In y) dx = In a 

1 dy 
--=In a 
ydx 

dy = (In a) ax 
dx • 

If y = f(x) then dy!dx = f'(x), and we say thatf(x) has been differentiated 
with respect to x. We may consider differentiating again with respect to x, 
and so we define the higher-order derivatives: 

d2y d (dy) 
dx2 = dx dx = f"(x) = J<Z>(x) 

d3y d (d2y) - =- - =J(3l(x) 
dx3 dx dx2 

In generai, 

is the resuit of differentiating n tim es with respect to x, and is known as the 
nth-order derivative of f(x) with respect to x. 

4.7 LEIBNIZ'S THEOREM 

One ruie which generalizes to higher-arder derivatives is the product ruie. 
The first few derivatives will estabiish the pattern. For the purposes of 
this section oniy we shall use a speciai subscript notation y n to represent 
dny/dxn. 

The product ruie is 

d dv du 
-(uv) = u- + -v 
dx dx dx 
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so that 

Now 

d2 d ( dv du ) -(uv) =- u- + -v 
dx2 dx dx dx 

= (u d2v + dudv) + (dudv + d2u v) 
dx2 dx dx dx dx dx2 

(using the product rule again) 

= u d2v + 2 du d v + d2u v 
dx2 dxdx dx2 

So 

(uv)z = uv2 + 2u1v1 + UzV 

0 Show by applying the product rule yet again that 

(uvh = uv3 + 3u1vz + 3u2v1 + u3v 

When you have managed this, read on. • 
Here is the pattern which is ernerging as we apply the product rule 
repeatedly. Look at it and see if it reminds you of anything: 

(uv) 1 = uv1 + u1v 
(uv)z = uv2 + 2u 1v1 + UzV 
(uvh = uv3 + 3u1v2 + 3u2v1 + u3v 

Look at the coefficients. Yes! They are the binomial coefficients. 
Remernher 

C) = (n _n;)! r! 

So if we put them in we obtain 

(uv) 1 = (~) uv1 + G) u1v 

(uv)z = (~) UVz + G) UtVt + G) UzV 

(uvh = (~) uv3 + G) UtVz + G) UzVt + G) u3v 

In general 
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(uv)" = (~) u0v" + (;) u1v"_ 1 + (;) u2v11 _ 2 

+ · · · + (:) UrVn-r + · · · + (:) UnVo (n E N) 

where u0 = u, v0 = v 

Remernher that the summation sign simply teils us to Iet r take on all 
integer values between 0 and n and then add up the results. 

This formula, which enables us to differentiale a product n times, is 
known as Leibniz's theorem. It can be proved by mathematical induction. 

0 If y = f(x) = x3e2x, obtain t<"l(x). 
Here we have a product, and so we use Leibniz's theorem. We must 

decide which factor to designate as u and which as v. The expansion will 
terminate after a few terms if we put u = x3 because after differentiating u 
three times with respect to x the result is zero: 

u = x3, u1 = 3x2, u2 = 6x, u3 = 6 

N ow v = e2x, so v 1 = 2e2x, v2 = 22 e2x, and in general v n = 2" e2x. Therefore 

(uv)n = UoVn + (~) U1 Vn-1 + (;) U2Vn-2 + 

= x3 2" e2x + G) (3x2) (2"-1 e2x) 

+ G) (6x) (2"-2 e2x) + G) (6) (2"-3 e2x) 

= x3 2" e2x + n(3x2) (zn-I ezx) 

+ n(n - 1) 6x 2n-2 e2x + n(n - 1) (n - 2) 6 2"-3 e2x 
2 1x2x3 

= [x32" + 3nx22"- 1 + 3n(n- 1)x2"-2 + n(n- 1) (n- 2)2"-3] e2x 

0 Obtain the nth derivative of x2y with respect to x, where y = y(x). 
Here we take u = x2, so u 1 = 2x, u2 = 2 and v = y. So 

Olf 

(x2y)n = X2Yn + G) 2xYn-l + G) 2Yn-2 

= x2yn + 2nXYn-l + n(n - 1) Yn-2 

dy 
x-+y=x2 

dx 

• 

• 
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show that 

dn+ly dny 
X dxn+1 + (n + 1) dxn = 0 for n ~ 3 

We differentiate each side of the equation with respect to x using Leibniz's 
theorem: 

(x ~~)n = (xyl)n 

= XYn+l + (;) 1yn = XYn+l + nyn 

Now 

(x2) 1 = 2x, (x2)2 = 2, (x2)n = 0 

Consequently for n ~ 3 we have 

XYn+l + nyn + Yn = 0 

So 

4.8 TECHNIQUES OF DIFFERENTIATION 

(n ~ 3) 

for n ~ 3 • 

Do not forget that very often if you pause and think for a few moments you 
can save yourself a Jot of needless work. This is particularly true when it 
comes to differentiation, where a little algebraic simplification at the outset 
can make things very much easier. 

D Differentiate with respect to x 

where x E ( -rrJ2, rrJ2). 

[ 1 - s~n x] 112 

1 + smx 

We could of course hit this head on and give it the full works, differen­
tiating using the chain rule and the quotient rule. lnstead weshall tarne it 
first by multiplying numerator and denominator by 1 - sin x inside the 
root. Algebraically this leaves everything the same, but from our point of 
view it will help greatly. So 

[ 1 - sin x (1 - sin x)]l/2 = [(1 - sin x) (1 - sin x)]v2 

1 + sin x (1 - sin x) (1 + sin x) (1 - sin x) 

= [(1- sinx)2 ] 1' 2 

(1 - sin2 x) 
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= [(1 - sin x)2] 112 

cos2 x 

= [(1 - sin x)] 
COS X 

= secx- tanx 

After all that excitement we mustn't forget to differentiate: 

:~ = secxtanx- sec2 x 

Whenever we have a complicated expression to differentiate, it is worth 
looking to see if it can be simplified algebraically first. • 

Before we consider any further techniques, here are a few steps to get you 
used to using the chain rule without making a formal substitution. 

________ 4.9 WorkshoP------~---r1 --,I 
t> Exercise Differentiale with respect to t: L . 

a In (2t2 + 1) 
b sin3 t 
c sin 3t 
d sin t3 

Try each one of these. Remernher that the idea is to avoid having to write 
out all the details of a substitution. We differentiate with respect to 'the 
thing in brackets', then multiply by the derivative of 'the thing in brackets' 
with respect to t. 

Forawehave 

~[In (2t2 + 1)] =~In (2t2 + 1) d( ) 
dt d( ) dt 

1 d 2 

= 2t2 + 1 d/2t + 1) 

4t 
- 2t2 + 1 

lf you made a mistake, check your working for b, c and d before you step 
ahead for the solutions. 

For b we obtain 

r€1 

;&I 



132 LIMITS, CONTINUITY AND DIFFERENTIATION 

: 1[sin3 t] = :/sin t)3 

d . 3d( ) 
= d( ) (sm t) dt 

= 3 (sin t) 2 :t (sin t) 

= 3 sin2 t cos t 

If you made a mistake here, possibly you confused sin3 t with either sin 3t 
or sin P. It is important to realize that these are three different expressions. 

L4Ll Next, for c we have 

:t [ sin 3t] = d ~ ) sin (3t) :t (3t) 

= (cos 3t) 3 = 3 cos 3t 

LS\l Finally, for d we obtain 

d . 3 d . 3 d( ) 
dt[sm t] = d( )sm (t )dt 

d 
= cos (t3)-(t3) = 3r2 cos t3 

dt 

If you managed all those without difficulty you should be able to skip up 
the steps with ease. For further practice here is another problem. 

l>Exercise Differentiale with respect to u: 
a exp (sin 2u) 
b In [1 + sin2 (2u + 1)] 
c exp 2u cos (3u + 1) 
Try them all and check your answers step by step. 

lS For a we have 

d "2 d ("2)d -[e'm u] = --[e sm u ]-(sin 2u) 
du d( ) du 

. 2 d 
= esm u-(sin 2u) 

du 

= esin 2u_d_[sin (2u)] ~(2u) 
d( ) du 
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= e51" 2" cos 2u 2 
= 2esin 2" COS 2u 

ddu ln [1 + sin2 (2u + 1)] 

= df] ln [1 + sin2 (2u + 1)] ddu [ ] 

= . /(2 1) dd [1 + sin2 (2u + 1)] 
1 + sm u + u 

= . /(2 1) dd [sin (2u + 1)f 
1 + sm u + u 

1 d . ]2 d [ ] 
= 1 + sin2 (2u + 1) df][sm (2u + 1) du 

= . 2
1(2 1) 2 [sin (2u + 1)] dd sin (2u + 1) 

1 + sm u + u 

• 2 
1(2 ) 2 sin (2u + 1) cos (2u + 1) 2 

1 + sm u + 1 

4 sin (2u + 1) cos (2u + 1) 

1 + sin2 (2u + 1) 

Finally, for c we have 

d 
d)e2" cos (3u + 1)] 

d d 
= e2" du [cos (3u + 1)] + cos (3u + 1) du [e2"] 

= e2" [ -sin (3u + 1)] 3 + cos (3u + 1) e2 " 2 

= e2" [-3 sin (3u + 1) + 2 cos (3u + 1)] 

Now we are ready to continue. 

4.1 0 LOGARITHMIC DIFFERENTIATION 

It is not always possible to simplify an expression, but if it is a product or 
a quotient it may help to 'take Iogarithms' before differentiating. By this 

rffl 

2?1 
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means we avoid the use of the product ruie, but more importantly we avoid 
the very awkward quotient ruie. Two exampies will illustrate this technique. 

D Differentiate with respect to x 

(1 + x) sin2 x 
y = (1 + 4x) (1 - x)3 

Before taking Iogarithms we shouid be assured that both sides are positive. 
This is certainiy true if x E ( -1, 1), and so weshall suppose that we are 
within this interval. Using the Iaws of logarithms (see Chapter 1) 

In y = In (1 + x) + In (sin2 x) - In (1 + 4x) - In (1 - x)3 

= In (1 + x) + 2 In (sin x) - In (1 + 4x) - 3 In (1 - x) 

Now differentiating throughout with respect to x gives 

1 dy 1 2 COS X 4 3( -1) 
--=--+--------
y dx 1 + x sin x 1 + 4x 1 - x 

dy ( 1 2 cos x 4 3 ) (1 + x) sin2 x 
dx = 1 + x + sin x - 1 + 4x + 1 - x (1 + 4x) (1 - x)3 • 

D Differentiate xx with respect to x ( >0). 
Let y = xx. Then 

In y = In (xx) = x In x 

So 

d d d 
-(In y) = -d (x In X) = X -d (In X) + (In X) 1 
dx X X 

Therefore 

1 dy 1 -- = x- +In x 
ydx x 

So 

~~ = y(1 + In x) = xx(l + In x) • 

4.11 IMPLICIT DIFFERENTIA Tl ON 

Occasionally when y is given in terms of x this is not expressed explicitly; 
instead, y and x are reiated by an equation. We sometimes say that y is 
given implicitly in terms of x. For example if x and y are related by the 
equation 
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x2 + 3xy + y3 = 5 

then y is given implicitly in terms of x. 
To differentiate y with respect to x it is not necessary first to express y 

explicitly in terms of x. Instead we can differentiate both sides of the equa­
tion with respect to x and use the chain rule. Here 

~ f(y) = f'(y) dy 
dx dx 

D Obtain the first derivative of y with respect to x at the point (1, 1) if 

x 2 + 3xy + l = 5 

We should check that the point (1, 1) lies on the curve. lt does because 
x = 1 and y = 1 satisfy the equation. Now we go through the equation, 
differentiating with respect to x and using the chain rule: 

2x + 3x dy + 3y + 3/ dy = 0 
dx dx 

3(x + /) dy = -2x- 3y 
dx 

dy -2x- 3y 

dx 3(x + /) 
When x = 1 and y = 1 we obtain 

dy -5 
dx 6 

4.12 PARAMETRIC DIFFERENTIATION 

• 

lf a function is defined parametrically then it is better to use the chain rule 
to obtain its derivative in terms of the parameter. Of course theoretically 
we could eliminate the parameter and differentiate in the ordinary way. 
However, in practice this may not be possible. 

Therefore if y = y(t) and x = x(t) we have 

dy dy dt 

dx dt dx 

and because 

1 = dx = dx dt 
dx dt dx 

we obtain 
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dy = dy;dx 
dx dt dt 

There is one very important point to watch out for, and it is a frequent 
cause of error. Although 

dy = dy dt 

dx dt dx 

a similar result does not hold for second-order derivatives. In symbols, 

d2y d2y d2t 

dx2 =I= dt2 dx2 

In fact if you Iook carefully you will see that not even the notation Ieads 
you to believe this will work. Nevertheless many examination scripts con­
tain attempts at solutions to differentiation problems which try to use this. 
It is a very popular mistake! 

In order to obtain the second-order derivative it is necessary to use the 
chain rule again because the first derivative will be in terms of t: 

d2y d (dy) d (dy) dt 
dx2 = dx dx = dt dx dx 

- ~(dy ~) dt 
dt dt dx dx 

D If y = cos t + sin t and x = tan t, obtain the first-order and second-order 
derivatives of y with respect to x. 

As you can see, it would not be easy to eliminate t. So we use the chain 
rule 

dy dy dt 
-=--
dx dt dx 

Now 

dy d . 
- =- (cos t + sm t) 
dt dt 

= - sin r + cos t 

Also 

dx d - = - (tan t) = sec2 t 
dt dt 

Therefore the first-order derivative is 

dy dy dt -sin t + cos t - = -- = -----;~--
sec2 t dx dt dx 

= -sin t cos2 t + cos3 t 
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We use the chain rule again to obtain the second-order derivative: 

d2y d . dt - = - ( cos3 t - sm t cos2 t) -
dx2 dt dx 

= {3 cos2 t ( -sin t) - [sin t 2 cos t ( -sin t) + cos2 t cos t]} cos2 t 

See how we use the chain rule here without the formal substitution. To 
differentiate cos3 t with respect tot, we first differentiate cos3 t with respect 
to cos t to obtain 3 cos2 t and then multiply this by -sin t, the derivative of 
cos t with respect to t. 

Now we simplify: 

~?z = ( -3 cos2 t sin t + 2 sin2 t cos t - cos3 t) cos2 t 

= (-3 cos t sin t + 2 sin2 t - cos2 t) cos3 t 
= [-3 cos t sin t + 2(1- cos2 t)- cos2 t] cos3 t 
= (-3 cos t sin t + 2 - 3 cos2 t) cos3 t 
= 2 cos3 t - 3 cos4 t(cos t + sin t) 

If you use the chain rule correctly and don't invent your own version, 
nothing should go wrang. • 

4.13 RATES OF CHANGE 

We can apply differentiation to obtain the rates at which variables change. 

D A spherical balloon is pumped up at a constant rate of 1 m3/s. Obtain 
the rate of change of the radius at the instant when it is 0.5 m. 

We may denote the volume of the balloon by V and the radius by r. 
As time increases, r and V change. We have the following relationship 
between V and r: 

4 
V=- :n:r3 

3 

We know that d Vldt is constant at 1 m3/s, and we wish to determine dr/dt. 
This is a simple application of the chain rule: 

dV = ~ 3:n:r2 dr 
dt 3 dt 

dr 
= 4:n:r2 -

dt 

Therefore substituting into this equation we obtain 

dr 

dt 

1 1 
4:n:(0.5? = ~ m/s • 
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Are you ready for some steps? If not then read through the chapter again 

to familiarize yourself with it. 

r--r--------4.14 Workshop _______ _ 

S Exercise Evaluate the following Iimit: 

,___ _ __, 

I. ( 2 tan x ) 
lm 2 

x->:rr.l2 1 - tan x 

As soon as you have had a crack at this, move on and see if you are right. 

We cannot put x = rr,/2 since tan rrJ2 is not defined. Therefore some other 

3.pproach must be used. Hereis one: 

2x 2 tan x 
tan = ---"---

1 - tan2 x 

So 

lim ( 1 
2 tan ~ ) = lim (tan 2x) = 0 

x->:rr./2 - tan x x->:rr./2 

lf this has worked out weil you may proceed directly to step 4. If you didn't 
get the Iimit correct then you will need to make sure you follow what has 
been done before you proceed. If you feel you would like some more 
practice then here is another problem. 

t>Exercise Determine the following Iimit: 

. (1 - sin x) hm 2 
X->rtl2 2 cos X 

When you are ready, take the next step. 

If we attempt to put x = n/2 we obtain the undefined expression 0/0. Here ,___ _ __, 
is one way of proceeding: 

1 - sin x 1 - sin x 1 

2 cos2 x = 2(1 - sin2 x) = 2(1 + sin x) 

1 1 
~ 2(1 + 1) =4asx~rc12 

Now step ahead. 



[> Exercise A function f is defined by 

2 sin x 
f(x) = sec x tan x 

f(x) = 2 

WORKSHOP 

(x * 0) 

(x = 0) 
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Use the convention of the maximal domain to describe the domain. Then 
decide whether or not the function is continuous at 0. 

Make a good attempt at this one, then move to step 5 for the answer. 

;;&\ 

By the convention of the maximal domain (Chapter 2) the function is L----' 

defined at all points where sec x tan xisnot zero. Now sec x is never zero, 
and tan x is only zero when x isamultiple of :rt. So the domain consists of 
all the real numbers except for a non-zero multiple of :rt. (f(O) is defined 
separately.) Notationally the domain is 

A = { r I r E IR, r * n :rt, where n E Z, n * 0} 

If 

lim f(x) = f(O) 
x--o 

then the function is continuous at 0. We have 

lim f(x) = lim ( 2 sin x ) 
x--o x--->0 sec x tan x 

= lim (2 sin ~ cos2 x) 
x--->0 Sill X 

= lim (2 cos2 x) = 2 
X--->0 

Also by definition f(O) = 2, and so the function f is continuous at 0. 
If you had trouble with the description of the domain it may repay you 

to concentrate some attention on Chapter 2. 
Before we leave Iimits and continuity here is one more problem. It should 

cause no difficulty now. 

[> Exercise The real function f is defined by 

e2x- 1 
f(x) = ex - 1 (x * 0) 

f(x) = k (x = 0) 

Calculate the value of k if it is known that f is continuous. 
Best foot forward! 
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For continuity we require f(x) ~ f(O) as x ~ 0, so that 

e2x- 1 
k=lim x 1 x-+0 e -

= lim (ex - 1) (ex + 1) 
x-+0 ex- 1 

= lim ( ex + 1) = 1 + 1 = 2 
X-+0 

Now move on to the next exercise. 

I>Exercise Obtain the nth derivative with respect to x of 

3 d3y 
x dx3 

L......---' 

where y = y(x) and n is any natural number. 
Leibniz was one of the great philosophers, but you shouldn't need to 

ponder too deeply about this. 

We must calculate (x3y3)", where we are using the subscript notation to 
denote differentiation with respect to x. Now 

(uv)" = uv" + nu1v"_ 1 + ... + u"v 

Put u = x3 : then u1 = 3x2 , u2 = 6x, u3 = 6. lt follows that u, = 0 for r > 3. 
Put v = y3 : then v1 = y4 , V2 = Ys •... , v, = Yr+3· Substituting into 
Leibniz's formula, we obtain 

3 _ 3 2 n(n- 1) n(n- 1) (n- 2) 
(x Y3)n -X Yn+3 + n 3x Yn+2 + 1 X 2 6xyn+l + 1 X 2 X 3 6y" 

= X3Yn+3 + n3X2Yn+2 + 3n(n- 1)XYn+J + n(n- 1) (n- 2)y" 
dn+3y 2 dll+2y dll+ ly 

= x3 d 11+3 + 3nx d 11+2 + 3n(n- 1)x d n+l X . X X 

dlly 
+ n(n- 1)(n- 2) dx" 

Did that go weil? If it didn't, here is another problem. If it did, you can 
miss this one out and step ahead to step 9. 

I> Exercise Show that if 

x dy + y = e2x 
dx 
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then 

d"+ 1y d"y 
x -- + (n+l)- = 2"e 2x 

dx"+ 1 dx" 

Step ahead for the answer. 

Using the subscript notation, we have 

xyl + y = e2' 

If throughout we differentiale n times with respect to x we obtain 

(xydn + Yn = (e2x)" 

Now ( e2x) 1 = 2e2 ', so ( e2xh = 22 e2x and in general ( e2 ') 11 = 2" e2x. Using 
Leibniz's formula on the first term in the equation, we have 

[XYn+l + n(1)yll] + Yn = 2"e2 ' 

So 

d"+ 1y d"y 
x dx"+ I + (11 + 1) dx" = 2" e2x (n E N0) 

One last exercise will reinforce much that we have covered. 

>Exercise Suppose that y = e2x + e3x and z = x3y. Calculate d 12z/dx 12 

when x = 0. 
Think about this and then try it out for yourself before stepping on. 

We could evaluate x3y and differentiale the result twelve times, but that 
would be tedious. lnstead we apply Leibniz's formula to differentiale 
z 11 times: 

Z 11 = (x\•)n 

11(11 - 1) 6 11(11 - 1) (11 - 2) 
= X3Yn + 11 3X2Yn-l + 1 X 2 XYn-2 + 6 6y" _ _, 

Now y = e2x + e3x, so y 1 = 2e2-' + 3e3x, andin general y r = 2' e2-' + 3' e3-'. 

So putting X = 0 in the expression for z n produces 

Z11 = 0 + 0 + 0 + 11(11- 1) (11- 2) (2"-3 1 + 3"-3 1) 
= 11(11 - 1) (11 - 2) (2"- 3 + 3n-3) 

Finally when 11 = 12 we obtain 

:!?I 
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Now for two applications. 

________ 4.15 Practical _______ _ 

CYUNDER PRESSURE 

The pressure inside a cylinder is given by 

P=_!_ 
1ta2x 

where a and k are constants and x is allowed to change; initially x = a. 
Obtain the pressure gradient dP/dt, in terms of the initial pressure P0 , at 
the instant when x has doubled its initial value if x is moving at a constant 
rate of 1 m/s. 

Try this; it is not at all difficult. 

We require dP/dt, and so we differentiate through the equation using the 
chain rule. We obtain 

dP -k dx 
dt = 1ta2x2 dt 

Now dxldt = 1, and so when x = 2a 

dP -k 
dt = 41ta4 

The initial pressure is given by P0 = k/1ta3 , so k = P01ta3 . Therefore the 
pressure gradient when x = 2a is given by 

WATER SEEPAGE 

dP Po1ta3 Po 
dt = - 41ta4 = - 4a 

Let's apply differentiation to solve another problem. 
A crater, in the shape of part of a sphere of radius r, has been dug in 

porous soil by construction workers. The work has been interrupted by 
heavy rain. Water is falling at a constant rate w m3/s per unit horizontal 
surface area and is seeping into the surrounding soil at a constant rate 
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of p m3/s per unit area of soil-water contact. When the water pool has 
depth h and surface diameter 2a it can be shown that the area of soil­
water contact is n(h2 + a2) and that the volume of water then present 
is nh(h2 + 3a2)!6. 

Obtain the rate at which the depth h is increasing. Deduce that if p = w/2 
then 

dh w(a2 - h2) 

dt 2a2 

Deduce also that, in the steady state (when dhldt = 0), 

p = wa2/(a2 + h2) 

Try this problem, and then follow the solution through stage by stage when 
you are ready. 

The water pool is shown in Fig. 4.7. Wehave 

r2 = (r - h)2 + a2 

= r2 - 2hr + h2 + a2 

So 2hr - h 2 = a2 • 

Now the rate at which the volume is increasing can be obtained by con­
sidering the water which comes in and subtracting the water which seeps 
out. The amount which comes in each second is proportional to the air­
surface area: the amount which seeps out is proportional to the soil-water 
area. Therefore 

/_.----..., 
/ ' 

/ ' 
/ ' I \ 

I \ 
I \ 
I \ 
I ~ I 
\ / I 
\ r I 
\/ -a-1 

~ -a--• 
(a) (b) 

Fig. 4.7 (a) Representation of the crater (b) Triangle relatiqg r, h and a. 
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If you didn't get to this stage, see if you can make the next move on your 

own before you check ahead. 

Wehave 

So 

dV = 2nrh dh - nh2dh 
dt dt dt 

dh 
= n(2rh - h2)-

dt 

dh = rth(2r- h)-
dt 

If you have been unsuccessful to this stage, see if you can take over the 

problern now. lt's simply a question of substitution to find the rate of 
increase of water depth. 

Therefore 

dh 
nh(2r - h)dt = n(wa2 - pa2 - ph2) 

dh 
h(2r- h)dt = (w - p)a2 - ph2 

dh 
a2 - = (w- p)a2 - ph2 

dt 

dh = w - p - p (!!)2 
dt a 

If p = w/2 then we deduce that 

dh = ~ _ ~(!!)2 = w(a2 - h2) 
dt 2 2 a 2a2 

Finally we require the formula for the steady-state seepage rate. Wehave 



dhldt = 0, and so 

SUMMARY 

0 = w _ p _ p(~r 

w = p + p(~r 
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D To evaluate I im f(x) we examine the behaviour of f(x) near the point 
X--+ll 

a but not at the point a. 
D We can use the laws of Iimits freely provided the result is meaningful: 

010, oo/oo, and 0 oo are not meaningful. 
D A function is continuous if lim f(x) = f(a) for all points a in its 

X--+ll 

domain. 
D We define 

dy = lim f(x + h) - f(x) 
dx "_,o h 

and from this definition the rules of elementary differentiation 
follow. We considered some of the techniques of differentiation too. 

D Leibniz's theorem 

(uv)" = uv" + G) ulvn-1 + ... + (:) u"v 

can be used to differentiate a product n times. 

EXERCISES 

I Differentiale each of the following with respect to x: 
a 3x2 + 5x + 1 
b x3- 2x2 
c x112 + x-112 

d (x + 2)6 

e sin(3x + 4) 
f tan2 3x 
g ln(2x2 + 1) 
h x 2 sinx2 
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2 Differentiate each of the following with respect to t: 
(t2 + 1)(t + 2) 

8 (t2 + 2)(t + 1) 
(t + 1)3(t + 2)3 

b -'----'---''---:::---''-
(t + 3f 

sintcos2t 
c 

sect 
e, + 1 

d -,--1 e -
3 If x varies with t, obtain an expression for dyldt in terms of x and the 

variable a = dx/dt in each of the following: 
a y = x3 

b y = sinx2 

c y = In (sinx) 
d y2 = ex 

4 Obtain 

I. {ex + 1} a 1m--
x--+00 ex - 1 

b r { ex- 1 } 
x~ ln(x + 1)2 

I. {tan2x} c 1m --
x--+0 sin 3x 

I. {3lnx + 1} d lffi 
x--+"" 2lnx- 5 

ASSIGNMENT 

1 Obtain 

sin x - cos x 
a lim 

X--+:rt/4 COS 2x 

2cosx-1 
b lim 

sin 3x X--+rt/3 

tan x 
c lim 

X--+rt/2 cos X - 1 

2ex + 1 
dlim 3 ... 1 ... __.oo e -

2 Obtain the value of f(O) if the following functions are known to be 
continuous at 0: 

cosx- 1 
a f(x) =---

2 sin x 
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b f(x) = SID X 
cos3 x-1 

FURTHER EXERCISES 147 

3 Show that if y = sin2 (2x) then 

d2y 
dx2 = 8- 16y 

4 Differentiale each of the following with respect to x: 
a x'n x 

b e3x tan 2x 
5 If r + 2xy - l = 16, show that 

dy y +X 
-=--
dx y-x 

6 If x = t + sin t and y = t + cos t, obtain dyldx and show that 

d2y 
(1 + cos t)3 dx2 = sin t - cos t - 1 

FURTHER EXERCISES 

1 Differentiale each of the following with respect to x: 
a (2x + 1) (4x - 7) 
b (x - 1) (x - 2) (x - 3) 
c (x2 - 1)112 

d (x2 + 3)/(x2 - 3) 
e (a + bxm)n, a, b, m and n constant. 
f tan (ax + b), a and b constant. 
g V(cosec x2) 

2 Obtain the first four derivatives with respect to x of 
a x9 

b V(x + 1) 
c cos2 x 
d x2 ex 

3 If l = sec 2x, show that d2yldx2 = 3y5 - y 
4 If y = sin 2t and x = cos t, obtain d2y/dr 
5 If x = cos3 e and y = sin3 e, obtain dyldx and show that 

d2y 1 
dr = 3 cos4 e sin e 

'' Use the chain rule to show that 

d2y (dx)3 + d2x = 0 
dx2 dy dy2 
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7 If y is real and satisfies the equation l + y = x, show that dyldx = 

y/(3x - 2y). 
8 Show that 

a lim [(x2 - x - 6)/(x2 + x - 12)] = 517 
X--->3 

b lim {[(1 + xf - (1 - x)2]/2x} = 2 
X--->0 

c lim {[(a + x)3 - (a - x)3]/2x} = 3a2 
x---+0 

9 Evaluate 
a lim {[1/(x - 1) - 1/x]/[1/(x - 2) + 1/x]} 

X--->0 

b lim {[1/(x - 1) - 1/x] [ll(x - 2) + 1/x]} 
X-> I 

10 Show that, for x > 0, 

Deduce that 

V(x2 + x + 1) < x + 112 + 3/Bx 
V(x2 - x + 1) < x - 1/2 + 112x 

lim [Y(x2 + x + 1) + V(x2 - x + 1) - 2x] = 0 

11 The rate at which the surface area of a bubble is increasing is kA, where 
A is its surface area and k is a constant. If the bubble is spherical, obtain 
the corresponding rate at which the volume is increasing. 

12 Show that if a probe moves in a straight line in such a way that its speed 
is proportional to the square root of its distance from a fixed point on 
the line, then its acceleration is constant. 

13 The retaining strut on a step ladder breaks, and as the ladder collapses 
the vertical angle increases at a constant rate. Show that the rate of 
increase of the distance between the feet is proportional to the height. 

14 A uniform beam is clamped horizontally at one end and carries a vari­
able Ioad w = w(x), where x is the distance from the fixed end. If the 
transverse deftection of the beam is y(x) = -x2 e-x, obtain an expres­
sion for w, given that w = EI d4yldx4 and EI is the ftexural rigidity of 
the beam. 

15 A mooring buoy in the shape of a right circular cone, with the diameter 
of its base equal to its slant height, is submerged in the sea. Marine mud 
is deposited on it uniformly across the surface at a constant rate g. 

Calculate the rate at which the surface area is increasing in terms of 
the height of the cone. 

16 The content V cm3 and the depth p cm of water in a vessel are con­
nected by the relationship V= 3p2 - p3 (p > 2). Show that if water is 
poured in at a constant rate of Q cm3/s then, at the moment when the 
depth is p, it is increasing at a rate o = Q[3p(2 - p)r 1• 

17 A beam of length l m has one end resting on horizontal ground and 
the other leaning against a vertical wall at right angles to it. lt begins to 
slip downwards. Show that when the foot of the beam is x m from the 
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wall and moving at h m/s away from it, the top is descending at a rate 
xh/(1 2 - x2) 112 m/s. 

18 A rope I m long is attached to a heavy weight and passed over a pulley 
h m above the ground (2h < 1). The other end of the rope is tied to a 
vehicle which moves at a constant rate u in a radial direction away from 
the verticalline of the weight and the pulley. Calculate (a) the rate at 
which the weight is rising when the vehicle is x m from the vertical 
line of the weight and the pulley, and (b) the rate at which the angle 
between the rope and the ground is changing. 

19 Sand falls from a chute and forms a conical pile in such a way that the 
vertical angle remains constant. Suppose r is the base radius and h is the 
height at time t. 
a Show that if r is increasing at a rate a cm/s then the volume is 

increasing at a rate rtrha cm3/s. 
b Show that if the height h is increasing at a rate ß cm/s then the 

exposed surface area is increasing at a rate 2nrßV(h2 + r2)/h cm2/s. 
(The volume of the cone is rtr2h/3 and the surface area is rtr/, where 
I is the slant height.) 

20 A body moves in a straight line in accordance with the equation 
s = t21(1 + t 2), where t is time in seconds and s is the distance travelled 
in metres. Show that 0 ~ s < 1. Show also that the speed u and 
acceleration f are given at time t by 

u = sin 8 (1 + cos 8)/2 
f = (2 cos 8 - 1) (1 + cos 8)2/2 

where t = tan (8/2). 
21 A Iandmark on a distant hill is x metres from a water tower. The angle 

of elevation from the top of the tower is observed to be 8 degrees, 
whereas the angle of elevation from the foot of the tower is observed to 
be 8 + h degrees. 
a How high is the water tower? 
b Show that if h is small then the height of the water tower is 

approximately rtxh/180 cos2 8. 

22 Obtain dy/dx in each of the following 
a y = x3 sin 2x 
b x = tsint, y = cost 
c x2 + y2 = y eY 

23 The volume of a rubber tyre is given by V = 21r2a2b and its 
surface area is given by S = 47r2ab where a and b are related to 
the internal radius r and the external radius R by the equations 
R = b + a, r = b - a. The tyre is inflated in such a way that the 
internal radius r remains constant. Show that the rate of increase 
in volume of the tyre, at the instaut at which the rate of increase 
of the surface area is (a + b)2, is a(a + b)(a + 2b}/2. 



5 Hyperbolic functions 

Although we have now explored some of the basic terminology of 
mathematics and developed the techniques of the differential cal­
culus, we need to pause to extend our algebraic knowledge. ln this 
chapter we shall describe a dass of functions known as the hyper­
bolic functions which are very similar in some ways to the circular 
functions. We shall use the opportunity to consider in detail what is 
meant by an inverse function. 

After studying this chapter you should be able to 
0 Use the hyperbolic functions and their identities; 
0 Solve algebraic equations which involve hyperbolic functions; 
0 Differentiale hyperbolic functions; 
0 Decide when a function has an inverse function; 
0 Express inverse hyperbolic functions in logarithmic form. 
We shall also consider a practical problern concerning the sag of a 
chain. 

5.1 DEFINITIONS AND IDENTITIES 

The hyperbolic functions are in some ways very similar to the circular func­
tions. Indeed when we deal with complex numbers (Chapter 10) weshall 
see that there is an algebraic relationship between the two. Initially we 
shall discuss the hyperbolic functions algebraically, but later we shall see 
that one of them arises in a physical context. 

The functions cosine and sine are called circular functions because 
x = cos e and y = sin e satisfy the equation x2 + l = 1, which is the equa­
tion of a circle. The functions known as the hyperbolic cosine (cosh) and 
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the hyperbolic sine (sinh) are called hyperbolic functions because x = cosh u 
and y = sinh u satisfy the equation x2 - / = 1, which is the equation of a 
reetangular hyperbola. 

Weshall define the hyperbolic functions and use these definitions to sketch 
their graphs. Here then are the definitions: 

e" + e-" 
coshu= 2 

e"- e-" 
sinh u = 2 

Now the exponential function has domain IR and consequently both cosh u 
and sinh u are defined for all real numbers u. 

To obtain a sketch of the graphs of y = cosh x and y = sinh x we can use 
the graphs of y = ex. 

y =coshx 
lf the graphs of y = ex and y = e -x are both drawn on the same diagram 
(Fig. 5.1) then chords can be drawn parallel to the y-axis between these 
two curves. The midpoints of these chords then lie on the curve y = cosh x. 

The hyperbolic cosine curve is one which arises in practice. lt is often called 
the catenary. If a heavy rope or chain is freely suspended between two 
fixed points, the shape it assumes is that of the catenary. This has to be 
taken into account when, for example, suspension bridges are designed. At 
one time surveyors bad to make a 'catenary correction' when using steel 
tape measures, but with modern electronic measuring devices this is not 
necessary. 

y-axis 

y=coshx 

x-axis 

Fig. 5.1 The graph of y = cosh x •. by construction. 
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y-axis 

x-axis 

Fig. 5.2 The graph of y = sinh x, by construction. 

y = sinhx 
We draw the graphs of y = ex and y = -e -x on the samediagram (Fig. 5 .2) 
and draw chords parallel to the y-axis between the two curves. The mid­
points of the chords then lie on the curve y = sinh x. 

We define the hyperbolic tangent, cotangent, secant and cosecant by 
imitating the definitions for circular functions: 

h sinh x 
tan x = -­

cosh x 
1 

sechx = -­
cosh x 

cosh x 
cothx = -­

sinh x 

1 
cosechx = -­

sinh x 

Strictly it is not necessary to know how to pronounce these new functions, 
but for completeness we shall indicate the standard practice. The hyper­
bolic functions cosh and coth are pronounced as they are written; sinh is 
pronounced 'shine'; tanh is pronounced 'than' but with a soft 'th' as in 
'thank'; sech is pronounced 'sheck' and cosech as 'cosheck'. 

From the definitions we obtain 

ex + e-x 
cosh x - sinh x = 2 

ex- e-x 
----= e-x 

2 
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Therefore 

cosh2 x - sinh2 x = (cosh x + sinh x) (cosh x - sinh x) 
= exe-x = 1 

So we have the identity 

cosh2 x - sinh2 x = 1 

(this corresponds to the circular identity cos2 x + sin2 x = 1). 
We can either appeal to the symmetry of the graphs or use the definitions 

to deduce that 

and therefore 

cosh (-x) = cosh x 
sinh (-x) = -sinh x 

tanh (-x) = -tanh x 

We have already come across one identity involving hyperbolic functions: 

cosh2 x - sinh2 x = 1 

In fact corresponding to every identity involving circular functions there is 
an identity involving hyperbolic functions. There is a rule for converting 
identities involving circular functions into those involving hyperbolic func­
tions. The rule is if there is a product of two sines or an implied product of 
two sines, the term changes sign. Although this can be applied in reverse it 
is easy to make mistakes, and so we shall avoid it altogether. 

Here is a Iist of the main identities: 

cosh (x + y) = cosh x cosh y + sinh x sinh y 
cosh (x - y) = cosh x cosh y - sinh x sinh y 
sinh (x + y) = sinh x cosh y + cosh x sinh y 
sinh (x - y) = sinh x cosh y - cosh x sinh y 

0 Use the basic definitions to establish the identity 

cosh (x + y) = cosh x cosh y + sinh x sinh y 

Wehave 
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ex+y + e -(x+y) 
---2--=RHS • 

Now one for you to try! 

D Use the basic definitions to establish the identity 

sinh (x - y) = sinh x cosh y - cosh x sinh y 

Make a good effort. Check carefully before you begin that you follow all 
the stages in the one we have just done- and then best foot forward! 

Wehave 

sinh x cosh y - cosh x sinh y 
ex - e -x eY + e -y ex + e -x eY - e -y 

= 2 2 2 2 

1 = -[exey + exe-y- e-xey- e-xe-y 
4 
- (exey- exe-y + e-xey - e-xe->")] 

1 = -(exey + exe-y- e-xey - e-xe-y 
4 

1 = - (2ex-y - 2e -x+y) 
4 

ex-y - e -(x-y) 
= = sinh (x - y) 

2 • 
Good! lf you need any more practice you can always try the other two 
identities. 

We defined the hyperbolic functions in terms of exponential functions, and 
so it is perhaps not surprising that we need ourwork on logarithms (Chapter 
1) when solving equations involving hyperbolic functions. 

D Obtain all the real solutions of the equation 

cosh x + sinh x = 1 
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There are two approaches, each valid and so we shall solve the equation in 
two different ways. 
1 We know cosh2 x - sinh2 x = 1, and so 

(cosh x - sinh x) (cosh x + sinh x) = 1 

Here cosh x + sinh x = 1, and therefore cosh x - sinh x = 1. So 

(cosh x + sinh x) + (cosh x - sinh x) = 2 

Therefore 2 cosh x = 2, so cosh x = 1 and x = 0 is the only solution. Here 
we have used a hyperbolic identity to sort out the problem. 

2 From the definitions, 

So ex = 1 and therefore X = 0. • 
In this example it was much easier and more direct to use the definitions at 
the outset. However, this is not always the case. 

0 Solve the equation 

8 sinh x = 3 sech x 

We begin by writing the equation in terms of sinh x and cosh x: 

8sinhx = ~h 
COS X 

So sinh x cosh x = 3/8. Therefore 2 sinh x cosh x = 3/4, and sinh 2x = 3/4. 
Now (e2x- e-2x)/2 = 3/4. Therefore 2e2x- 2e-2x = 3. Multiplying by 

e2x gives 

2( e2xf - 2 = 3e2x 
2(e2x)2 - 3e2x - 2 = 0 

(2e2x + 1) (e2x - 2) = 0 

So either 2e2x + 1 = 0 or e2x - 2 = 0. Since e2x > 0, only e2x - 2 = 0 is a 
possibility. So 2x = in 2 and therefore x = (in 2)/2 = in V2. • 

Why not try one yourself? 

0 Solve the equation 

3 sinh 3x = 13 sinh x 

There are many approaches to this problem. If you obtain the correct 
answer it is probable that your working is basically correct. 
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Here is one solution: 

By identity, 

3 sinh 3x = 13 sinh x 
3(sinh 3x - sinh x) = 10 sinh x 

3(2 cosh 2x sinh x) = 10 sinh x 

So either sinh x = 0, from which x = 0; or 6 cosh 2x = 10, from which 
3(e2x + e-2x) = 10. For the latter case, multiply by e2x to obtain 

3( e2x)2 + 3 = 10e2x 
(3e2x - 1) (e2x - 3) = 0 

Therefore e2x = 113 or e2x = 3. So 2x = In (113) = -In 3 or 2x = In 3. 
The three solutions are therefore x = 0 and x = ±In V3. • 

5.2 DIFFERENTIATION OF HYPERBOLIC FUNCTIONS 

We may use the basic rules of differentiation to obtain the derivatives of 
the hyperbolic functions. All we need to do is use the basic definitions, 
remembering that 

ex + e -x ex - e -x 

cosh x = 2 and sinh x = 2 

You might like to try these on your own. Afterwards you can Iook to see if 
you were correct. 

The derivative of cosh x is found as follows: 

d d ex + e -x 
dx (cosh x) = dx 2 

1 d x 1 d -x =--e +--e 
2 dx 2 dx 

1 1 
=- ex + -(-1) e-x 

2 2 
ex - e -x 

2 = sinh x 

The derivative of sinh x is found as follows: 

d d ex- e-x 
dx (sinh x) = dx 2 

1 d x 1 d -x =--e ---e 
2 dx 2 dx 
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ex + e-x 
= =coshx 

2 

Therefore 
1 When we differentiate the hyperbolic cosine we obtain the hyperbolic 

sine; 
2 When we differentiate the hyperbolic sine we obtain the hyperbolic 

cosine. 
Quite remarkable, isn't it? 

The derivatives of the other hyperbolic functions can now be obtained 
from these by applying the rules for differentiation. Try some of these 
yourself. They are good exercise in differentiation and therefore weil 
worth attempting. 

Here is the working for each one. 

d h d (sinh x) -(tan x)-- --
dx - dx cosh x 

cosh x cosh x - sinh x sinh x 
cosh2 x 

cosh2 x - sinh2 x 
cosh2 x 

1 
= = sech2 x 

cosh2 x 

d d (cosh x) 
dx (coth x) = dx sinh x 

sinh x sinh x - cosh x cosh x 
sinh2 x 

cosh2 x - sinh2 x 
sinh2 x 

-1 
= -:----h2 = -cosech2 x 

SIO X 

:x (sech x) = :x (cos~ x) 
d 

= -(cosh x)- 1 
dx 

= -(cosh x)-2 sinh x 

sinh x 
= - h2 = -sech x tanh x 

COS X 
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d d ( 1 ) 
dx ( cosech x) = dx sinh x 

= i_(sinh x)- 1 
dx 

= -(sinh x)-2 cosh x 

cosh x = - -:--h2 = -cosech x coth x 
Slß X 

Did you try those with success? 

5.3 CURVE SKETCHING 

We are about to draw the graph of y = tanh x, and so this is a good oppor­
tunity to refresh our memories about how to sketch curves which have 
equations expressed in cartesian form (Chapter 3). We have already used 
one method when we sketched the graphs of y = sinh x and y = cosh x 
(Figs 5.1, 5.2). There we were able to use a known graph y = ex. 

There are several things we can do to gain pieces of information which 
help us to sketch curves: 
1 Obtain the points where the curve crosses the axes. This will certainly 

help to locate the curve. 
2 Look to see if there are any values of x or y where the curve is not de­

fined. For example, if there are any values of y which make x2 < 0, the 
curve doesn't appear for these values of y. 

3 Look to see if there are any values of x which make y large or any values 
of y which make x large. 

4 Look to see if the graph is symmetrical about either or both of the axes. 
If when we replace x in the equation by - x the same equation results, then 
the curve is symmetrical about the y-axis. Similarly if we replace y by -y 
in the equation and the equation remains the same, then the curve is 
symmetrical about the x-axis. 

0 l = 16x is symmetrical about the x-axis but not about the y-axis. This 
follows because ( -y)2 = 16x but l =I= 16( -x). In the same way the curve 
x4 + 3x2y = 4 is symmetrical about the y-axis. • 

5 Look to see if the graph is skew symmetrical, that is symmetrical with 
respect to the origin. 

In other words, if we join a point on the curve to the origin and produce an 
equallength, do we always obtain another point on the curve? There is a 
simple test for this. If we replace x and y simultaneously in the equation of 
the curve by -x and -y respectively, the equation will remain the same if 
and only if the graph is symmetrical with respect to the origin. 



CURVE SKETCHING 159 

D x2 + xy + y4 = 16 is symmetrical with respect to the origin because 
(-x)2 + ( -x) ( -y) + ( -y)4 = 16. Similarly y = sin x is symmetrical with 
respect to the origin because (-y) = sin (-x). • 

Another way of thinking about symmetry with respect to the origin is that 
if we rotate the curve through Jt the graph will be unchanged. 
6 Examine the behaviour of dyldx, particularly near the origin and as 

lxl ~ oo. 

7 See if there are any points at which the curve attains a local maximum, a 
local minimum or a point of inflexion. Weshallsee in Chapter 8 how to 
obtain and classify these points. 

THE GRAPH OF y = tanh x 

We now turn our attention to the problern of drawing the graph of y = 
tanh x. We begin by finding out more about tanh x: 

1 

2 

3 

4 

sinh X ex - e-x 
tanh x = -- = -_---

cosh x ex + e-x 
1 - e-2x 

1 + e-2x 

(dividing top and bottom by ex). Now as x ~ oo we have e-x ~ 0 and so 
e-zx ~ 0. Consequently 

1 - 0 
tanh x ~ 1 + 0 = 1 as x ~ oo 

ex - e-x 
tanh x = x -x 

e + e 
e2x - 1 

- e2x + 

(multiplying top and bottom by ex) 

(e2x + 1) - 2 2 
-'--~-'--- = 1 - ~--

e2x + 1 e2x + 

Now e2x is always positive, and so tanh x < 1 for all x. 

sinh 0 
tanh 0 = -- = 0 

cosh 0 

d 
dx (tanh x) = sech2 x ~ 1 

The maximum value of the slope is attained at the origin; it then de­
creases as x increases. In fact dy!dx ~ 0 as x ~ oo. 
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y-axis 

y = tanhx 

x-axis 

-1 

Fig. 5.3 The hyperbolic tangent function. 

5 
sinh (-x) e-x- e 

tanh ( -x) = h ( ) = -x x = -tanh x 
cos -x e + e 

Consequently the curve is symmetrical with respect to the origin. 
If we put all this information tagether we obtain a good idea of the shape 
of the curve. This is shown in Fig. 5.3. 

Now it's time for you to solve some problems. If you are unsure of the 
material this is a good time to Iook back once more. If you are ready, then 
here we go . 

.-.--------5.4 Workshop _______ _ 

S Exercise Using the definitions of the hyperbolic functions, show that 

cosh 2x = 1 + 2 sinh2 x 

Don't move on until you have attempted this! 

Notice that we have been asked to use the definitions, so we must do so . 
....__ _ _. We must not assume the expansion formulas, for example. Now 

RHS = 1 + 2 ( ex ~ e -xy 
(e2x - 2 + e-2x) 

=1+2 
4 

2x + -2x 
= e e = LHS 

2 
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Did you get that right? If so, then move on to step 4. If not, possibly the 
trouble arose because you did not apply the definitions correctly. Let's see 
if we can sort things out in the next exercise. 

C>Exercise Use the definitions of the hyperbolic functions to show that 

h 2 2 tanh x 
tan x = -----=--

1 + tanh2 x 

Remember: we must go back to the definitions. 
Try it, then step ahead. 

Wehave 

So 

Therefore 

h sinh x (ex - e-x)/2 
tan x = -- = -'------'---

cosh x (ex + e-x)/2 

ex-e-x e2x-1 

ex+e-x e2x+1 

1 + tanh2 x = 1 + (e: - 1) 2 
e + 1 

(e2x + 1)2 + (e2x - 1)2 

(e2x + 1f 
e4x + 2e2x + 1 + e4x - 2e2x + 1 

(e2x + 1)2 

2(e4x + 1) 
(e2x + 1)2 

2 tanh x e2x - 1 (e2x + 1)2 
----=-- = 2 --;:---- -'-----:----'--
1 + tanh2 X e2x + 1 2(e4x + 1) 

(e2x - 1) (e2x + 1) 
e4x + 1 

e4x- 1 
= e4x + 1 = tanh 2x 

If you were unable to do this then Iook carefully at the working and go 
back to step 1. Otherwise step forward. 

Cl?/ 

C>Exercise Use the expansion formula for sinh (x + y) and cosh (x + y) to r;Ji 
obtain the expansion formula 
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h ( ) tanh x + tanh y tan x + y = _____ ___,:__ 
1 + tanh x tanh y 

Y ou can take this in your stride. 

l5Ll The expansion formulas we need are 

Therefore 

sinh (x + y) = sinh x cosh y + cosh x sinh y 
cosh (x + y) = cosh x cosh y + sinh x sinh y 

h ( ) sinh (x + y) sinh x cosh y + cosh x sinh y 
tan x + y = = ------=--------=-

cosh (x + y) cosh x cosh y + sinh x sinh y 

So that dividing numerator and denominator by cosh x cosh y we obtain 

h ( ) tanh x + tanh y 
tan x + y = --------=-

1 + tanh x tanh y 

If you succeeded in getting this right, then move on to step 7. Otherwise, 
check carefully so that you see what has been done and then tackle the next 
prob lern. 

[>Exercise Using the expansion formulas for sinh (x + y) and cosh (x + y), 
obtain the formula 

h ( ) coth x coth y + 1 
cot x + y = ------=---­

coth x + coth y 

Try it, then move on. 

~ As before we obtain 

h _ cosh x cosh y + sinh x sinh y 
cot (x + y) - . h h h . h sm x cos y + cos x sm y 

So dividing numerator and denominator by sinh x sinh y produces 

h ( ) coth x coth y + 1 
cot x + y = ----=--­

coth x + coth y 

Now foranother step! 

S Exercise Obtain all real solutions of the equation 

13 tanh 3x = 12 
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Try this and move on only when you have made a good attempt. 

Hereis the working: 

So 

e6x - 1 12 
tanh 3x = e6x + 1 = 13 

13(e6x - 1) = 12(e6x + 1) 

Consequently e6x = 25 and therefore 6x = In 25 = 2ln 5. So x = (113) In 5. 
If you didn 't get that right then you should check through each stage to 

make sure there are no misunderstandings. As soon as you are ready, try 
the next problern and take the final step. 

l>Exercise Obtain all the real solutions of the equation 

4 sinh 4x - 17 sinh 3x + 4 sinh 2x = 0 

You may need to think about this a little. 

At first sight this might seem rather tricky - until you realize that it is pos­
sible to combine two of these hyperbolic sines tagether, using an identity as 
follows: 

4 sinh 4x - 17 sinh 3x + 4 sinh 2x = 0 
4(2 sinh 3x cosh x) - 17 sinh 3x = 0 

Therefore either sinh 3x = 0 or 8 cosh x = 17. lf sinh 3x = 0 then x = 0. If 
8 cosh x = 17 then 

4(ex + e-x) = 17 
4(e)2 + 4 - 17ex = 0 

(4ex - 1) (ex - 4) = 0 

Therefore either ex = 1/4 or ex = 4. From this we obtain x = In (1/4) = 
-2 ln 2 or x = 2 In 2. 

So the three solutions are x = 0 and x = ±2 In 2. 

5.5 INJECTIVE FUNCTIONS 

Y ou will remernher from Chapter 2 how we defined a function f: A ~ B 
to be a rule which assigned to each element x in the domain A a unique 
element y in the codomain B. We wrote y = f(x). 

Now there is nothing in the definition to suggest that two different 

r--?1 
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elements of A cannot be assigned to the same element of B. Indeed there 
are many functions which have this property. 

0 Consider y = x2• By the convention of the maximal domain we have 
domain IR: in other words, the domain consists of all the real numbers. 
Each real number x determines a unique value of y, but the same value of 
y is determined by two distinct arguments x. For instance 

( -2)2 = 4 = 22 

so that when x = 2 or x = -2 we obtain the same value for y. • 
On the other band there are some functions which do have the property 
that if x1 =I= x2 then f(x 1) =I= f(x2). 

0 Consider y = llx. By the convention of the maximal domain this func­
tion has domain IR\ {0}: that is, the domain consists of all the real 
numbers except 0. In this instance if x1 =I= x2 then f(x 1) =I= f(x2). 

To show this we simply show that if f(x 1) = f(x2) then it follows that 
x1 = Xz. lf f(x 1) = f(x2) then l/x1 = llx2, and so multiplying by x 1x2 we 
obtainxz = Xt. • 

A function f: A ~ B which has the property that, for all x h x2 E A, if 
x1 =I= x2 then f(x 1) =I= f(x2) is called an injection (or a one-one function). 

In practice injections are easy to recognize from their graphs since any 
line parallel to the x-axis must cut the curve at most once. Algebraically we 
can deduce a function is an injection by considering the implications of the 
equation f(x 1) = f(x2). lf we can deduce that x 1 = x2 then we have an 
injection, whereas if we can find x 1 and x2 which are unequal and have 
f(x 1) = f(x2) then we do not have an injection. 

0 Decide which, if either, of the following functions is an injection: 
y = sinh x; y = cosh x. 

Notice how the language has been misused here. The equation identifies 
an equation with a function, which is rather like identifying a person with 
bis occupation. However, provided we know what is meant there is no 
difficulty. Mathematics is a language, and we must get used to various 
dialects - and even on occasion toterate bad grammar! 

First, suppose sinh x 1 = sinh x2 • Then 

2 2 

So 
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1 1 
=---

eXt eX2 

eX2 _ eXI 

ex'ex' 

Now if ex' - ex' -:/= 0 we have ex' +x, = -1, which is impossible. Therefore 
ex' = ex' and consequently x 1 = x2 • So y = sinh x defines an injection. 

Secondly, suppose cosh x 1 = cosh x2 . Then 

2 2 

So 

1 1 

Now if ex' - ex' -:/= 0 we have ex' +x, = 1 and so x1 + x2 = 0, that is 
x 1 = - x2 • In other words, y = cosh x does not define an injection because 
cosh ( -u) = cosh u for all real numbers u. 

We could if we wished deduce the same results by looking at the graphs . 

• 
D Determine which, if any, of the following equations define functions 
which are injections: (a) y = x3 (b) y = 1/x2 (c) y = tanh x. 

When you have bad a try at these, move on to check if you have them 
correct. 

a Suppose xj = x~. Then xj - x~ = 0, and so 

(x, - Xz) (xt + x1x2 + x~) = 0 

If x 1 -:/= x2 then 

But 

xi + x~ + x,xz = -!(x, + Xz)2 + -!(xt + x~) 
is a sum of squares and is therefore only zero when both x 1 and x2 are 
zero. Therefore we have an injection. 
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y-a.xis 

x-axis 

Fig. 5.4 The graph of y = x3• 

Alternatively a simple sketch of y = x3 will establish the same result 
(Fig. 5.4). 

b The domain of this function (by the convention of the maximal domain) 
is IR \ { 0}. Moreover 

l 1 1 
(-2)2 = 4 = (2)2 

and so there are two points in the domain at which the value of the func­
tion is the same. Therefore the function is not an injection. 

Again the graph y = llx2 shows immediately that the function is not 
injective (Fig. 5.5). 

c Suppose tanh x 1 = tanh x2• Then 

So 

e2x' - 1 e2x' + 1 
e2x, + 1 - ezx, + 1 

(e2x' - 1)(e2x2 + 1) = (e2x 2 - 1)(e2>·, + 1) 
e2x' - e2x' = e2x' - e2x' 

e2x, = e2x' 

Therefore e2<x,-x2J = 1, so x1 - x2 = 0 and x 1 = x2• So we have an 
injection. This property may be inferred directly from the graph of 
y = tanh x (Fig. 5.3). • 

Although a graph enables us to see whether or not a function is an injec­
tion, the algebraic approach is necessary to establish the fact. 

The special feature possessed by an injection can be represented dia­
grammatically as in Fig. 5.6. 



y-axis 

0 

Fig. 5.5 The graph of y = l!x2 _ 

f:A--+8 

Fig. 5.6 

5.6 SURJECTIVE FUNCTIONS 
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1 
y=X"2 

x-axis 

f : A --+ 8 (an injection) 

When we introduced the notion of a function (Chapter 2) we observed that 
if f: A ~ B then it is possible to have members of the codomain B which 
are not in fact values of the function at alL 

0 f: IR ~ IR defined by f(x) = tanh x whenever x e IR. Here we know that 
-1 < tanh x < 1 and so there is no x e IR such that tanh x = 2. • 

In fact we gave a special name to the set of values of a function. Do you 
remernher what it is called? lt is the image set ( or range) of the function 
and is denoted by f(A). 

However, for some functions the image set is indeed the codomain. Such 
functions are somewhat unusual and are given a special name: they are 
called surjections ( or onto functions). The test of whether or not a function 
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f: A ~Bis a surjection is whether or notf(A) = B. That is, whether or not 
for each y E B there exists some x E A such that f(x) = y. 

D Consider the functions with codomain IR defined by each of the follow­
ing equations: (a) y = tan x (b) y = cosh x. 

A graph can often be useful in helping to decide whether or not a func­
tion is a surjection. 
a From the graph of y = tan x (Fig. 5.7) it is clear that every real num­

ber is a value of the function. In fact given any y E IR there exists some 
x E ( -rrJ2, n/2) suchthat y = tan x. We conclude that the tangent func­
tion is a surjection. 

b From the graph of y = cosh x (Fig. 5.8) it is clear that there are some 

y-axis 

x-axis 

Fig. 5.7 The tangent function. 

y-axis 

0 x-axis 

Fig. 5.8 The hyperbolic consine function. 
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real numbers y which are not values of the function. This is because 
cosh x ::?= 1 for all x E IR, and therefore if y < 1 there is no real number 
x such that y = cosh x. Consequently the hyperbolic cosine function is 
not a surjection. • 

0 For each of the following functions the convention of the maximal 
domain is to be used to obtain the domain and codomain. Decide in each 
case whether or not the function is a surjection. 
a y = sinh x 
b y = x2 

c y = x3 . 

Have a go at these. Don't be afraid to use the graphs to make your 
decisions. 

a lf we are given any real number y, it is possible to obtain a real number 
x suchthat y = sinh x. This is clear from the graph (Fig. 5.9) and so we 
have a surjection. 

b lf x is any real number then x2 ::?= 0. Consequently if y is negative there is 
no real number x such thaty = x2 (Fig. 5.10). Therefore we do not have 
a surjection. 

c From the graph (Fig. 5.11) it is clear that if y is any real number then 
there exists some real number x such that y = x3 . Therefore the function 
is indeed a surjection. • 

Once more we can use a diagram to represent the special property a func­
tion has when it is a surjection: see Fig. 5.12. 

y-axis 

y = sinh x 

-----
1 
I 
t 
I 

Fig. 5.9 The hyperbolic sine function. 

x-axis 
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y-axis 

Fig. 5.10 The graph of y = x2• 

y-axis 

Fig. 5.11 The graph of y = x3• 

f:A -+8 f : A -+ 8 (a surjection) 

Fig. 5.12 
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5.7 BIJECTIVE FUNCTIONS 

A function which is both an injection and a surjection is called a bijection. 
Such a function can be represented by Fig. 5.13. 

Now if f: A ~ B is a bijection then to each y E B there corresponds a 
unique x E A suchthat y = f(x). This means that the action of the function 
f can be reversed. Therefore there is a function g : B ~ A such that if x E A 
and y = f(x) then g(y) = x. 

The function g is called the inverse function of f and is usually repre­
sented by f- 1. Although there are good theoretical reasons for this nota­
tion, which we explore further in the context of linear operators (Chapter 
22), it can cause problems to the unwary. You must remernher thatf- 1(x) 
is not the same as (f(x)r 1 and be vigilant about this, or nasty errors will be 
the result. You have been warned! 

So if f: A ~ B is a bijection there exists an inverse function f- 1 : B ~ A 
suchthat 
1 If x E A then f- 1[/(x)] = x; 
2 If y E B thenf(f- 1(y)] = y. 

f: A -+ 8 (a bijection) 

Fig. 5.13 

0 Show that the function defined by y = sinh x is a bijection and give an 
explicit expression for its inverse function using logarithms. 

By the convention of the maximal domain, the domain and codomain 
are both IR and we have already shown that this function is both an injec­
tion and a surjection. Consequently it is a bijection and so has an inverse 
function. 

Suppose y = sinh x. W e must reverse this formula to express x in terms 
of y: 

ex - e-x 
y = sinhx = ---

2 

So ex - e -x = 2y. Therefore 

(ex)2 - 2y(ex) - 1 = 0 
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This is a quadratic equation in ex and so we can solve it: 

ex = y ± V(/ + 1) 

At first sight this might appear to give two solutions. However, V(/ + 1) 
> y for allreal numbers y, and so, since ex is always positive, the negative 
sign must be rejected. Consequently 

ex = y + V(/ + 1) 

and so x = In [y + V(/ + 1)]. 
Interchanging the symbols x and y (since it is usual to use x for points 

in the domain and y for points in the codomain) we deduce the inverse 
function is defined by 

y = ln [x + V(x2 + 1)] 

or 

sinh- 1 x = ln [x + V(x2 + 1)] • 
5.8 PSEUDO-INVERSE FUNCTIONS 

Bijections are comparatively rare, and so usually it is necessary to modify 
either the domain, the codomain or bothin order to obtain a function which 
has an inverse. When this is done the inverse functions are not of course 
the inverses of the original functions, because the original functions are not 
bijections and so have no inverses. This fact is often obscured, but most 
people avoid the difficulty by giving these pseudo-inverse functions the 
name principal inverse functions. 

An example will illustrate how this is done. 

D Obtain the principal inverse hyperbolic cosine function and express it in 
logarithmic form. 

We already know that the function defined by y = cosh x is neither an 
injection nor a surjection (Fig. 5.14). We can obtain an injection by re­
stricting the domain to IR(i, the positive real numbers including 0. The 
codomain must also be modified because, as we have observed, cosh x ~ 1 
for all real x. 

Suppose now that A = IRri, that B = {rl r E IR, r ~ 1} and thatf: A ~ B 
is defined by f(x) = cosh x (x E A). Then f is a bijection and so has an 
inverse functionf- 1 : B ~ A. To obtainf- 1(y) explicitly we need to reverse 
the formula for y = cosh x. 

Suppose y = cosh x. Then 

ex + e-x 
y = cosh x = ----

2 
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y-axis 

y =coshx 

0 x-axis 

Fig. 5.14 The hyperbolic cosine function. 

So ex + e-x = 2y. Therefore 

and so 

Now 

So either 

or 

Therefore 

(ex)2 - 2y(ex) + 1 = 0 

ex = Y ± V(y2 - 1) 

y + V(l- 1) 
y - V(y2 - 1) = [y - V(y2 - 1)] y + V(y2 _ 1) 

[y - V(y2 - 1)] [y + V(y2 - 1)] 
= 

y + V(l- 1) 

l- <l- 1) 1 
= y + V(l - 1) = y + V(l - 1) 

ex = Y + V(y2 - 1) 

ex = [y + V(y2 - 1)]-1 
e-x = Y + V(y2 - 1) 

±x = In [y + V (y2 - 1)] 
x = ± In [y + V(l - 1)) 



(a) 
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But x e A and so x ~ 0; therefore we must reject the negative value. So 

x = In (y + V(l - 1)] 

The function defined in this way is called the principal inverse hyperbolic 
cosine function. Interchanging x and y we have 

cosh- 1 x = In [x + V(x2 - 1)] 

Of course we could have chosen a different restriction such as Ril for the 
domain of the hyperbolic cosine. Wehave restricted the function so that 
continuity is not lost and selected positive numbers in preference to nega­
tive numbers. Until such a time as there is a campaign for equal rights for 
negative numbers, nobody is likely to object overmuch. • 

D Show that y =In x defines a bijection and obtain the inverse explicitly. 
Try this. There is no need to modify the domain or codomain, but 

naturally you will need to use the convention of the maximal domain to 
obtain the domain and codomain. 

The convention of the maximal domain gives the domain as R + = { r I r e R, 
r > 0} and the codomain as R. The graph of y = In x (Fig. 5.15) shows that 
we have a bijection. Now if y = In x then x = eY. Therefore the inverse 
function is the function g: R ~ R+ defined by g(x) = ex (x eR). • 

Observe how we can obtain the graph of an inverse function from the graph 
of the function itself. Imagine that the graph y = f(x) is drawn on a sheet of 
glass. Lift the sheet of glass away from the paper, turn it over and put it 

y-axis 

x-axis 

(b) 

Fig. 5.15 (a) The logarithmic function (b) The exponential function. 
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y-axis 
y-axis 

y = sinhx 

y = sinh-1 x 

x-axis 

(a) (b) 

Fig. 5.16 (a) The hyperbolic sine function (b) Theinverse hyperbolic sine function. 

down with the x-axis where the y-axis was and the y-axis where the x-axis 
was. All that remains to be done is to relabel the x-axis and y-axis in the 
usual way. 

D Fig. 5.16 shows the function y = sinh x and its inverse. • 
5.9 DIFFERENTIATION OF INVERSE FUNCTIONS 

In the case of the inverse hyperbolic functions we can differentiate them if 
we wish by using the logarithmic equivalent. However, this luxury is not 
generally available and when it isn't we must resort to the definition. 

Suppose y = f- 1(x). Then f(y) = x and so, differentiating throughout 
with respect to x, 

f'(y) dy = 1 
dx 

It is now simply a matter of eliminating y to obtain the derivative of the 
inverse function f- 1. 

D The inverse sine function is defined as the inverse of the bijection 
obtained by restricting the domain of the sine function to the interval 
[ -n/2, n/2]. Show that 

x-axis 
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y-axis 

y = sinx -- ... 

x-axis -1 

....... __ 

(a) (b) 

y-axis 

1T 
2 

,, 
\ 
I 
y = sin-1 x 

x-axis 

Fig. 5.17 (a) The graph of y = sin x; x E [ -n/2, n/2] (b) The graph of y = sin- 1 x. 

and justify the choice of sign. 
If y = sin -I x then we know that x = sin y. So differentiating throughout 

with respect to x we get 

1 = cos y ~~ 
Now cos2 y + sin2 y = 1, and so 

cos y = ±V(l - sin2 y) = ±V(l - x 2 ) 

So we have 

dy ± 1 

dx V(l - x2 ) 

Now comes the crunch. If we bad been sloppy about taking the square root 

and bad ignored the negative sign, then we should be unaware that there 

was a crunch at all! A glance at the graph of y = sin- 1 x (Fig. 5.17) tells us 

that the slope is always positive and so the negative can now be rejected 

with confidence. Naturally if we had taken a different restriction of the sine 

function to obtain our bijection, such as [ rt/2, 3rt/2], we could have obtained 

a negative slope instead! • 

5.10 THEINVERSE CIRCULAR FUNCTIONS 

Here is a complete Iist of the principal inverse circular functions. As you 

can see, the domains and codomains of the circular functions have had to 

be modified to produce bijections. 
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1 If A = [ -n/2, n/2] and B = [ -1, 1], 

f:A ~ B defined by f(x) = sin x (x E A) 

is a bijection and its inverse is the principal inverse sine function. Both 
the domain and the codomain needed modification. 

2 If A = [O,n] and B = [-1, 1], 

f:A ~ B defined by f(x) = cos x (x E A) 

is a bijection and its inverse is the principal inverse cosine function. Both 
the domain and the codomain needed modification. 

3 If A = ( -n/2, n/2) and B = IR, 

f:A ~ B defined by f(x) = tan x (x E A) 

is a bijection and its inverse is the principal inverse tangent function. The 
domain needed modification. 

4 If A = [O,n]\ {n/2} and B = {r: r E IR, lrl ;:::= 1}, 

f:A ~ B defined by f(x) =sec x (x E A) 

is a bijection and its inverse is the principal inverse secant function. Both 
the domain and the codomain needed modification. 

5 IfA = [-n/2,n/2]\{0} and B = {r:r E IR, lrl ;:::= 1}, 

f:A ~ B defined by f(x) = cosec x (x E A) 

is a bijection and its inverse is the principal inverse cosecant function. 
Both the domain and the codomain needed modification. 

6 If A = [0, n] and B = IR, 

f:A ~ B defined by f(x) = cot x (x E A) 

is a bijection and its inverse is the principal inverse cotangent function. 
The domain needed modification. 

Now it's time to take a few steps. As soon as you are ready, press ahead. 

________ 5.11 Workshop ______ ____,.__, 

t>Exercise Show that the function defined by y = tanh xisnot a bijection, ~ 
butthat by restricting the codomain to ( -1, 1) a bijection is obtained. The 
principal inverse hyperbolic tangent function tanh - 1 is the inverse of this 
modified function. Deduce that 

tanh- 1 x =~In G ~ ;) 
and give a rough sketch of the graph. 
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Try this carefully before you proceed. 

We saw when we drew the graph of y = tanh x (Fig. 5.3) that, for allreal x, 
-1 < tanh x < 1. Therefore it is necessary to restriet the codomain to 
( -1, 1) to obtain a surjection. The function is an injection, and therefore 
if A = IR and B = ( -1, 1) the function 

f: A ~ B defined by f(x) = tanh x (x E A) 

is a bijection and has an inverse function tanh- 1• 

We obtain the graph of y = tanh- 1 x by interchanging the positions of 
the x-axis and the y-axis. We need a three-dimensional transformation to 
achieve this. Another way of looking at this transformation is as a two­
stage operation. First we twist the graph of y = tanh x anticlockwise by rr/2. 
Then we flip it over. that is we reflect it in the x-axis which is now vertical. 
Finally we relabel the axes (Fig. 5.18). 

If y = tanh x then 

y( e2' + 1) = e2 ' -

+ y = e2'(1 - y) 

y-axis 

x-axis 

-1 

(b) 

y·axis 

I y = tanh-'x 
I 
I 
I 
I 

x-axis 

Fig. 5.18 (a) Thc graph nt r = tanh 1 (h) Thc graph of r = tanh ·I.\. 
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Therefore 

So 

tanh- 1 x =! In(1 + x) 
2 1- X 

If you managed to do all that correctiy then you may move ahead to step 4. 
If there were unresoived probiems then at this stage you shouid go through 
the theory of inverse functions once more. When you have smoothed out 
any difficulties, try the next exercise. 

I>Exercise Expiain why the function defined by y = cosech xisnot a bijec­
tion. Show that by removing a singie point from both the domain and the 
codomain a bijection can be obtained. The principai inverse hyperbolic 
cosecant is the inverse of this modified function. Draw its graph and show 
that 

cosech - 1 x = In G + ~ (:2 + 1)] 

The graph of y = cosech x (Fig. 5.19) can be deduced easily from the graph 
of y = sinh x (Fig. 5.2). '----' 

There is no value of x for which cosech x = 0, and so the function is not a 
surjection. Therefore there is no bijection, and consequently no inverse 
function. However, if we take 

A = B = {rj r E R, r =I= 0} 

then 

f:A ~ B defined by f(x) = cosech x (x E A) 

is a bijection. Its inverse can be drawn in the usual way (Fig. 5.20). 
Now if y = cosech x then y = 1/sinh x. So sinh x = lly, from which 

x = sinh- 1 G) 
= In U + ~ (:2 + 1)] 

so that 

cosech -I y = In [~ + ~ (:2 + 1)] (y =t= 0) 
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y-axis 

x-axis 

Fig. 5.19 The graph of y = cosech x. 

y-axis 

Fig. 5.20 The graph of y = cosech- 1 x. 
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or in terms of x 

cosech - 1 x = In [ ~ + ~ (~ + 1) J 

Now we come to the problern of differentiation of inverse functions. 

I>Exercise Differentiate cosec-1 x with respect to x. 
Try this, then step forward. 

If y = cosec-1 x then x = cosec y, so that differentiating with respect to x 

1 = -cosec y cot y :~ 

Now 1 + coe y = cosec2 y, so 

cot y = ±V(cosec2 y - 1) = ±V(x2 - 1) 

Therefore 

1 = +xV(x2 - 1) :~ 
dy +1 
dx = xV(x2 - 1) 

It remains to decide which sign is the correct one. If we sketch the graph 
of y = cosec-1 x (Fig. 5.21, overleaf) we see that the slope is negative, and 
so the negative sign must be chosen: 

dy -1 
dx = xV(x2 - 1) 

If you discussed the choice of sign and succeeded in obtaining the correct 
derivative, then try one last prob lern. If you omitted to consider the sign or 
if you made an error, take care with this one. 

I>Exercise Differentiate sech x and sech-1 x with respect to x. 
Have a go at both of these, then step ahead. 

r#l 

1....--....J 

First, if y = sech x then y = (cosh x)- 1. Therefore, using the chain rule 
( Chapter 4), ._______, 
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y-axis 

'II' __________ _J 

0 

Fig. 5.21 The graph of y = cosec- 1 x. 

~~ = -(cosh x)-2 sinh x 

sinh x = - h2 = -sech x tanh x 
COS X 

Secondly, if y = sech -l x then x == sech y. So 

1 = -sech y tanh y dy 
dx 

Now 1 - tanh2 y = sech2 y, so 

tanh y = ±V(1 - sech2 y) = ±V(1 - x2) 

Therefore 

1 = +xV(1 - x2) ~~ 
dy +1 
dx = xV(1 - x 2) 

x-axis 

It remains to decide which sign is the correct one. lf we sketch the graph 
of y = sech- 1 x (Fig. 5.22) we see that the slope is negative, and so the 
negative sign must be chosen: 

dy -1 
dx = xV(l - x 2) 
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y-axis 

x-axis 

Fig. 5.22 The graph of y = sech- 1 x. 

5.12 THEINVERSE HYPERBOLIC FUNCTIONS 

For the sake of completeness we state the bijections which have inverses 
known as the principal inverse hyperbolic functions: 
1 If A = B = IR, 

f: A ~ B defined by f(x) = sinh x (x E A) 

is a bijection and its inverse is the inverse hyperbolic sine fun"ction. No 
modification to the domain or the codomain was needed. 

2 If A = IR6 and B = { r I r E IR, r ~ 1}, 

f:A ~ B defined by f(x) = cosh x (x E A) 

is a bijection and its inverse is the principal inverse hyperbolic cosine 
function. Both the domain and the codomain needed tobe modified. 

3 If A = IR and B = ( -1, 1), 

f:A ~ B defined by f(x) = tanh x (x E A) 

is a bijection and its inverse is the principal inverse hyperbolic tangent 
function. The codomain needed modification. 

4 If A = IR6 and B = { r Ir E IR, 0 < r :'5;. 1} = (0, 1], 

f:A ~ B defined by f(x) = sech x (x E A) 

is a bijection and its inverse is the principal inverse hyperbolic secant 
function. Both the domain and the codomain needed modification. 

5 IfA = B = IR\{0}, 

f:A ~ B defined by f(x) = cosech x (x E A) 
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is a bijection and its inverse is the principal inverse hyperbolic cosecant 
function. Both the domain and the codomain needed modification. 

6 If A =IR\ {0} and B = {r:r E IR, iri > 1}, 

f:A ~ B defined by f(x) = coth x (x E A) 

is a bijection and its inverse is the principal inverse hyperbolic cotangent 
function. Both the domain and the codomain needed modification. 

Now it remains only to work through an application. 

________ 5.13 Practical _______ _ 

SAGGING CHAIN 

A chain hangs in the shape of the curve 

y = c cosh (x/c) 

It is suspended from two points at the samehorizontal Ievel and at distance 
2d apart. Obtain an expression for the sag at the midpoint, if the angle of 
slope at the ends is 8° to the horizontal. 

It is worthwhile seeing if you can make progress on your own. We shall 
solve the problern stage by stage, so try it first and then see how it goes. 

The sagging chain is shown in Fig. 5.23. Using the diagram, we have dyldx 
= tan 8 when x = d. So tan 8 = sinh (d/c). Therefore, using the result in 
section 5. 7, 

die= sinh- 1 (tan 8) = In [tan e + V(l + tan2 8)] 
= In (tan 8 + sec 8) 

Consequently 

c = d/ln (tan 8 + sec 8) 

y-axis 

x-axis 

Fig. 5.23 The graph of y = c cosh (x/c). 
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Now that you know c, even if you weren't abie to obtain it, you may be 
abie to continue. Before doing so, make sure you follow all the stages. 

The sag is the difference between the y vaiue at x = d and the y vaiue at 
x = 0, nameiy c. Therefore 

sag= c cosh (d/c) - c = c [cosh (d/c) - 1] 

Now sinh (d/c) = tan 8, and so 

cosh2 (d/c) = 1 + sinh2 (d/c) = 1 + tan2 e = sec2 e 
Therefore 

sag = c (sec e - 1) = d (sec e - 1)/ln (tan e + sec 8) 

Although in some ways this problern has been rather straightforward, it 
is not without practicai significance. For instance, it would enable us to 
calculate the amount of clearance which a vehicle would have. 

SUMMARY 

0 We defined the hyperbolic functions 

ex + e-x 
cosh x = 2 

ex - e-x 
sinh x = 2 

and drew their graphs. 
0 We obtained identities and solved equations involving hyperbolic 

functions. 
D We differentiated the hyperbolic functions 

d~ (cosh x) = sinh x ddx (sinh x) = cosh x 

0 We examined functions to see if they bad inverses. 
0 We defined the principai inverse hyperbolic functions and obtained 

logarithmic equivalents 

EXERCISES 

cosh- 1x =In [x + V(x2 - 1)] 
sinh- 1x = In [x + V(x2 + 1)] 

1 Establish each of the following identities: 
a 2 sinh2 x = cosh 2x - 1 
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b h( ) cothxcothy + 1 
cot x + y = -----'--­

coth y + coth x 

h ( ) tanhx - tanhy 
c tan x - y = -------"--

1 - tanhxtanhy 
d 8sinh4 u + 4cosh2u = 3 + cosh4u 
e cosh4u = 8cosh4 u- 4cosh2u- 3 

2 Solve the following equations, where x is a real number: 
a 1 + sinh 2x = 10 cosh x - cosh 2x 
b xcoshx- sinhx + 1 = coshx - xsinhx + x 
c cosh2x- 7(coshx- 1)- 1 = 7(sinhx- 1)- sinh2x + 1 
d 12(sechx - 1) = 1 - 13 tanh2 x 

3 Differentiate, with respect to t, 
a sech 3t 
b t2 sinh 2t 

sinht 
c--

cosh2t 
d sech t cosech 2t 
e V(secht2) 

f sech2 Vt 
4 Differentiate, with respect to t, 

a cosh- 1 (2t2 + 1) 
b tanh- 1 (t2 + 1) 
c sinh t cosh- 1 t 
d ln[cosh- 1 t] 
e cosh -I [In t] 

1 
f sinh- 1 t 

ASSIGNMENT 

1 Solve for real x the equations 
a 2 sinh 2x = 1 + cosh 2x 
b 2 sinh 6x = 5 sinh 3x 

2 Prove that if a = cosh x + sinh x and b = cosh x - sinh x then 
a ab = 1 
b a2 + b2 = 2 cosh 2x 
c a2 - b2 = 2 sinh 2x 

3 Solve the equation 

1 + sinh 2x sinh 3x = (4/3) sinh 3x + (3/4) sinh 2x 

4 Obtain all the real numbers x which satisfy the equation 

2 sinh 2x - 4 sinh x - 3 cosh x + 3 = 0 
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5 If u = cosh x + sinh x and v = cosh x sinh x, show that u4 = 4u2v + 1. 
6 If y = In x, show that 

x2 +1 x2 -1 cosh y = -- and sinh y = --
2x 2x 

Hence, or otherwise, show that 
a If cosh y = a then x = a ± V(a2 - 1); whereas 
b If sinh y = a then x = a ± V ( a2 + 1). 

71f 

show that 

sin- 1x 
y = V(1 + x 2) 

dy (1 + x2)112 (1 + x 2) - + xy = --
dx 1- x 2 

FURTHER EXERCISES 

1 By first simplifying each expression, or otherwise, differentiate with 
respect to x 
a exp [In (x- 1) + 2 In x] 
b tan- 1 [(1 - cos x)/sin x] 
Simplify your answer as far as possibie. 

2 If y = x tan- 1 x - In (1 + x2) 112 , show that 

d2 
(1 + x2 ) _2'_ = 1 

dx2 

3 Differentiate with respect to x 
a cos- 1 (3 cos x) 
b tan- 1 [(x2 - 1)/2x] 
c tan- 1 [(1 + sin x)/(1 - sin x)] 

4 If a = sinh 2x and b = tanh x, show that 2b + ab2 = a. 
5 Show that 

a sinh (sinh- 1 a - sinh- 1 b) = aV(b2 + 1) - bV(a2 + 1) 
b cosh (sinh- 1 a - sinh- 1 b) = V[(a2 + 1) (b2 + 1)] - ab 

6 Estabiish each of the following from the definitions: 
a cosech2 u = coth2 u - 1 
b cosh2 u - sinh2 u = 1 
c cosh 2u = cosh2 u + sinh2 u 
d cosh (u + v) = cosh u cosh v + sinh u sinh v 
e sinh (u + v) = sinh u cosh v + cosh u sinh v 

7 Soive 
a cosh 2x - 5 cosh x + 3 = 0 
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b 2 cosh x + sinh x + sinh 2x + 1 = 0 
c cosh x + cosh 2x = 2 

8 A Iaser beam cuts a groove in a plate. The distance of the point of 
contact from a pivot is given at time t by r = a (t2 - 2t + 2), where 
0 ~ t ~ 10 and a is positive. 
a What is the shortest distance from the groove to the pivot? 
b If the groove is in the shape of a straight line, determine the interval 

over which the beam etches the groove more than once. 
c Show that the cutting process consists of three phases: clean plate 

is cut; plate is cut a second time; clean plate is cut. Determine the 
lengths of the time intervals for each phase. 

9 An automatic paint spraying machine sprays paint at a height h (metres) 
at time t (seconds) given by h = sin 2t + cos 2t + 2. 
a Determine the maximum and minimum heights at which the machine 

operates. 
b How long should the machine be applied if each point is to be 

painted twice? 
c At what time will the paint head be at its lowest height? 

10 The input 1 and the output E of an experiment are related by E = 
cos 2/ + cos 1 + 2. The experimenter wishes to be able to read the 
output and thereby determine the input uniquely. Practical considera­
tions restriet possible inputs to 0 ~ 1 ~ 8. What further restrictions 
should be imposed on the input given that the input must be an interval, 
and that small inputs are difficult to produce? 

11 In a given volume of fluid an unknown number n of negatively charged 
particles of type A are present. It is proposed to count the particles by 
bombarding the fluid with positively charged particles of type B and 
type C. It is known that: 
a Each particle of type A bonds with 11 particles of other types. 
b Each particle of type B bonds with 7 particles of type A. 
c Each particle of type C bonds with 5 particles of type A. 
A mixture is made with 3 particles of type B to every 2 of type C. The 
mixture is introduced to the fluid until the overall mixture becomes 
stable and electrically neutral. This occurs when 605 particles have been 
introduced. Determine n. 

Suppose particles of type A can be further classified into either ß par­
ticles (those which bond with particles of type B only) or y particles 
(those which bond with particles of type C only). How many ß particles 
and how many y particles are present? 

12 Salve the equat ion 

-lrosh(lnx)- 2sinh (in~)= 5 

and hence show that the difference between the roots is 2/3. 

13 Solw the equation 
1 

sinh2 x - cosh2 x 2 
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ln Chapter 4 we described how to differentiale simple functions. 
ln this chapter we shall combine this knowledge with some of the 
geometrical ideas which we developed in Chapter 3 to obtain 
tangents and normals to plane curves. 

After completing this chapter you should be able to 
D Determine the equations of tangents and normals to plane curves; 
D Use intrinsic coordinates and relate them to cartesian coordinates; 
D Calculate the radius of curvature at a point on a curve and the 

position of the corresponding centre of curvature. 
Finally in this chapter we shall solve a practical problern involving a 
moared dirigible. 

6.1 T AN GENTSAND NORMALS 

We can apply differentiation directly to obtain the equations of the tangent 
and the normal at a general point (a, b) on a curve f(x,y) = 0. The normal 
is the straight line perpendicular to the tangent through the point of 
contact. Therefore if the slope of the tangent is m, the slope of the normal 
m' satisfies mm' = -1. 

We know from our previous work (Chapter 4) that dyldx is the slope 
of the curve at a general point. Therefore we have a general method for 
obtaining the equations of tangents and normals to plane curves: 
1 Differentiate, with respect to x, throughout the equation f(x,y) = 0 to 

obtain the slope dyldx at a general point (x, y). 
2 Substitute x = a and y = b to obtain m, the slope of the curve at (a, b ). 
3 The equation of the tangent at (a, b) is then 

y- b = m(x- a) 
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4 The equation of the normal at (a, b) is 

y- b = m'(x- a) 

where mm' = -1. 
The only thing you have to be a little careful about is to make sure that the 
point ( a, b) really is on the curve! Y ou should check therefore that x = a, 
y = b satisfy the equation f(x,y) = 0. 

D Determine the equations of the tangent and the normal at the point 
(a, 2a) on the curve 

xl - x3 = a2y + ax2 

We follow the four stages of the general method: 
l Differentiating through the equation with respect to x gives 

l + x 2y dyldx - 3x2 = a2 dyldx + 2ax 

So that 

(2xy - a2) dyldx = 2ax - l + 3x2 

Consequently 

dyldx = (2ax -l + 3x2)/(2xy - a2) 

2 At the point (a, 2a) we therefore have 

dy/dx = [2a2 - (2a)2 + 3a2]/[2a(2a) - a2] 

= a2/3a2 = 113 

3 Wehave m = 113, and so the equation of the tangent is 

y - 2a = 1(x - a) 
3(y - 2a) = x - a 

3y- 6a = x- a 
3y = x + 5a 

4 For the normal we have the slope m' = -3, since mm' = -1. Therefore 
the equation of the normal is 

y - 2a = -3(x- a) 
y - 2a = -3x + 3a 
y + 3x = 5a • 

If the curve is defined parametrically then the same principles apply. 
Natorally weshall obtain dy/dx by using dy/dx = (dy/dt)(dt/dx). 

1t is convenient to use a simplified notation, known as the dot notation. 
In this notation a derivative with respect to the parameter is indicated by 
the use of a dot over the variable: so i = dx/dt. A second dot indicates a 
second-order derivative: so i = d2x/dt2 . So we have shown dy/dx = yli. 
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1t is interesting to note that the dot is one of the few symbols to have 
survived from Newton's original work on the calculus. Much of the 
notation which we use today was introduced by the co-discoverer of the 
calculus, Leibniz. 

0 Obtain the equations of the tangent and the normal at the general point 
p on the curve 

x = p2 + sin 2p 
y=2p+2cos2p 

Wehave 

So 

i = 2p + 2cos2p 
y = 2- 4 sin 2p 

m = dyldx = (2 - 4 sin 2p)/(2p + 2 cos 2p) 
= (1 - 2 sin 2p)l(p + cos 2p) 

For the tangent, 

1 - 2 sin 2p 0 

(y - 2p - 2 cos 2p) = 2 (x - p2 - sm 2p) 
p+cos p 

from which 

(y - 2p - 2 cos 2p)(p + cos 2p) = (1 - 2 sin 2p)(x - p2 - sin 2p) 

So 

(p + cos 2p)y - (1 - 2 sin 2p)x 
= 2(p + cos 2p)2 - (1 - 2 sin 2p)(p2 + sin 2p) 
= 2p2 + 2 cos2 2p + 4p cos 2p - p2 + 2p2 sin 2p - sin 2p + 2 sin2 2p 
= p 2 + 2 + 4p cos 2p + 2p2 sin 2p - sin 2p 

For the normal, 

p+cos2p 0 

(y - 2p- 2 cos 2p) = - 1 2 0 2 (x- p2 - sm 2p) 
- sm p 

from which 

(y - 2p - 2 cos 2p)(1 - 2 sin 2p) = -(p + cos 2p)(x - p2 - sin 2p) 

So 

(1 - 2 sin 2p)y + (p + cos 2p)x 
= 2(p + cos 2p)(1 - 2 sin 2p) + (p + cos 2p)(p2 + sin 2p) 
= (p + cos 2p)(2 - 4 sin 2p + p 2 + sin 2p) 
= (p + cos 2p)(2 - 3 sin 2p + p2 ) • 

Here now are a few steps to make sure we have the ideas straight. 
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~-------6.2 Workshop _______ _ 

S Exercise For the curve y2 = x3 + x + 1, obtain the equations of the 
tangent and the normal at the point (0, 1). 

.___ _ _, 

As soon as you have done this, take a step and see if you are right. 

We checkthat the point (0, 1) does in fact lie on the curve, and then pro-
ceed to differentiate to obtain the slope at a general point. 

2y dyldx = 3x2 + 1 

so that 

dy/dx = (3x2 + 1)/2y 

For the tangent at the point (0, 1) we have 

m = dyldx = (0 + 1)/2 = 112 

The equation is therefore 

(y - 1) = ~(x - 0) = x/2 
y = x/2 + 1 

For the normal at the point (0, 1) the slope m' satisfies mm' = -1, and so 
m' = -2. The equation is therefore 

(y - 1) = -2(x - 0) 
y = -2x + 1 

If there are any difficulties here it may be necessary for you to revise your 
work on the equations of the straight line in Chapter 3. 

Another exercise follows. Are you ready? 

t>Exercise The parametric equations of a curve are given as 

....__ _ __. 

X= t + 1/t, y = t- llt 

Obtain the equations of the tangent and the normal at a general point t, 
and at the point where t = 1. 

When you have done it, step forward. 

We must obtain dyldx at the point t. Forthis purpose we use the chain rule 

Now 

dy/dx = (dyldt)(dtldx) = yli 

i = 1 - llt2 = (t2 - 1)/t2 

y = 1 + 1/t2 = (t2 + 1)/t2 
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So 

m = dyldx = (t 2 + 1)/(t2 - 1) 

at a generat point t. 
The equation of the tangent is therefore 

So 

t2 + 1 
[y - (t- 1/t)) = -2 - 1 [x - (t + 1/t)) 

t -

(t2 - 1)[y - (t2 - 1)/t) = (t 2 + 1)[x - (t 2 + 1)/t) 
(t2 - 1)y - (t2 + 1)x = [(t2 - 1)2 - (t2 + 1)2)/t 

= ( -2)(2t2 )/t = -4t 

using the algebraic identity a2 - b2 = ( a - b )( a + b) for the difference of 
two squares. So the equation of the tangent at t is 

( t2 - 1) y - (t 2 + 1 )x + 4t = 0 

For the normal we use mm' = -1 and therefore 

m' = -(t2 - 1)/(t2 + 1) 

at a generat point t. The equation is therefore 

(2- 1 
[y - (t- 1/t)) = - 12 + 1 [x - (t + 1/t)] 

So 

(t 2 + 1)[y - (t- 1/t)) + (t2 - l)[x- (t + 1/t)) = 0 
(t2 + l)yt + (t2 - 1)xt = [(t4 - 1) + (t4 - 1)] 

= 2(t4 - 1) 

The equation of the normal at t is therefore 

(t 2 + 1)yt + (t2 - l)xt = 2(t4 - 1) 

Now when t = 1 we hit a slight snag: m is not defined. However, we can 
argue by continuity that these equations will hold for all t. Therefore we 
take the Iimit as t ~ 1 throughout the equation 

(t2 - 1) y - ( t2 + 1 )x + 4t = 0 

which we have shown to be the equation of the tangent at a generat point 
(t2 * 1). We obtain straight away 

0-2x+4=0 

and so the equation of the tangent is x = 2. 
Similarly for the normal, from 

(t2 + l)yt + (t2 - l)xt = 2(t4 - 1) 
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by letting t --+ 1 we obtain 

2y + 0 = 0 

and so the equation of the normal is y = 0- which is, of course, the x-axis. 
lt is possible to give alternative arguments, but the conclusions should be 

the same. 
Now try this final problem. 

[> Exercise Show that if a light source is positioned at the focus of a 
parabolic mirror it casts a beam parallel to the axis. 

Before solving this we remark that the design of a car headlamp utilizes 
this property. Further, the reverse action will concentrate light at the 
focus. Therefore if the sun's rays strike a parabolic mirror, parallel to the 
axis, they are reflected to the focus. The first engineer to make use of this 
fact is reputed to have been Archimedes, when he set fire to the sails of the 
Roman fleet. 

We can use the equation of the parabola in standard form y2 = 4ax 
'--------' (Chapter 3), which we can regard as a cross-section through the mirror 

(Fig. 6.1). In parametric form this can be expressed by x = at2 , y = 2at. 
Therefore the slope of the tangent at a general point t is given by 

m = dyldx = yli = 2a/2at = llt 
So the slope of the normal at t is -t (recall mm' = -1). 

Now the basic property of light when it strikes a mirror is expressed by 
the equation 

angle of incidence = angle of reflection 

Fig. 6.1 The graph of y2 = 4ax. 
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LetS be the focus (a, 0) and Iet P be a generat point on the parabola. We 
must show that the angle <j>, between the normal at P and the x-axis, is 
equal to the angle e, between PS and the normal at P. Since both angles 
are acute, it suffices to show that tan e = tan <j>. Now 

tan <1> = [( -t) - 0]/[1 + ( -t)O] = -t 

The slope of PS is given by 

(2at - O)!(at2 - a) = 2tl(t2 - 1) 

(recall that m = (Yt - Y2)/(x1 - x2)). So 

tan e = L2 ~ 1 - ( -t)] / [ 1 + ( -t) t2 ~ 1] 

t3 + t 
= -t2- 1 = -t 

6.3 INTRINSIC COORDINATES 

We are familiar with the two coordinate systems which are used to describe 
plane curves and regions. These are the cartesian coordinate system and 
the polar coordinate system (see Chapter 3). In each of these systems we 
may represent a point in the plane by an ordered pair of numbers. For the 
cartesian system this is (x,y) and for the polar coordinate system (r, 8) 
(Fig. 6.2). 

In these systems a curve is represented by an equation. For example 
r + l = 1 and r = 1 are, in these two systems respectively' the equations 
of a circle of unit radius centred at the origin. 

In the cartesian system, points are described relative to two fixed mutually 
perpendicular straight lines known as the axes. In the polar coordinate 
system, points are described relative to a point called the origin and a 
straight line emanating from the origin called the initial line. 

y-axis 

x-axis 

L .. l 
0 Initial line 

Iai (b) 

Fig. 6.2 (a) Cartesian coordinates (b) Polar coordinates. 
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Fixed axis 

Fig. 6.3 Intrinsic coordinates. 

We now describe another coordinate system, known as the intrinsic 
coordinate system (Fig. 6.3). Suppose we have a smooth curve, a fixed 
point S on the curve, and a fixed straight line. It will be convenient to 
think of the straight line as the x-axis. There are two possible ways in 
which we can move along the curve from S; we shall regard one as the 
positive direction, and the other as the negative direction. Given any real 
number s we therefore obtain a unique point on the curve by measuring a 
distance s (positive or negative) from S along the curve. The curve is 
smooth and so it has a tangent at all its points, and we shall suppose that 
there is an angle \jJ at the point where the tangent meets the fixed axis. 

A point on a curve in this system is then represented by an ordered pair 
(s, tjJ), where s is the distance along the curve measured from S and tjJ is the 
angle made by the tangent with the fixed axis. 

This system, although useful, is notasversatile as the cartesian and polar 
coordinate systems, for it is not possible to represent a general point in the 
plane in terms of intrinsic coordinates. It is only possible to represent points 
on the curve. 

6.4 THE CA TENARY 

Suppose a uniform chain or a heavy rope is freely suspended between two 
points; then the shape of the curve it assumes is known as the catenary (see 
section 5.1). Intrinsic coordinates enable us to determine the equation of 
the catenary quite easily. To do this we take the fixed line as the x-axis and 
S as the lowest point, and measure s positive to the right and negative to 
the left (Fig. 6.4). Suppose the mass per unit length is m. If Pisageneral 
point on the curve then P has coordinates (s, \jJ). 

We consider the forces on the portion of the rope SP (Fig. 6.5). There is 
a horizontal tension T0 at S and a tension Tin the direction of the tangent 
at P, and the rope is kept in equilibrium by its weight mgs which acts verti­
cally downwards. We now resolve these forces vertically and horizontally 
to obtain 
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p 

Fig. 6.4 The catenary. 

Fig. 6.5 Forces on the piece of rope. 

mgs = T sin 'ljJ 
T0 = T cos 'ljJ 

Eliminating T by dividing gives 

mgs!To = tan 1j1 

which, on putting a constant c = T(/mg, reduces to 

s = c tan tV 

This is the intrinsic equation of the catenary. 

x-axis 

The catenary has many uses and needs to be considered whenever cables 
are strung between buildings. Although a light cable may not under normal 
circumstances be in the shape of a catenary, a severe winter's night with 
snow and ice on the cable can change the picture. When later we convert 
the equation of the catenary into cartesian coordinates, we shall find we are 
dealing with an old friend. 

In order to link together the intrinsic coordinate system and the cartesian 
coordinate system, we shall need to locate the x and y axes. As we have 
said already, it is convenient to choose the x-axis as the fixed axis of the 
intrinsic coordinate system, and we shall choose the y-axis in such a way 
that S lies on it (Fig. 6.6). 
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Fig. 6.6 Relating cartesian and intrinsic coordinates. 

Then tan 'ljJ is the slope of the curve at P, and so this is dyldx. Therefore 
the first linking equation is 

tan 'ljJ = dyldx 

Moreover, s is the length of the curve. So if öx and öy aresmall increases 
in x and y respectively, the corresponding increase in s is given by ös 
(Fig. 6.7). Therefore 

(öx)2 + (öy)2 = (ös)2 

It is reasonable to assume that as öx ~ 0 the approximationwill become 
good. Therefore dividing through by (öx)2 and taking the Iimit as öx ~ 0 
we obtain 

1 + (öy/öx)2 = (ös/öx)2 

So 

1 + (dyldx)2 = (ds/dx)2 

If we choose s increasing with x we can take the positive square root to 
obtain the second linking equation as 

dsldx = [1 + (dy/dx)2] 112 

0 Transform the equation of the catenary s = c tan 'ljJ, in intrinsic CO­

ordinates, to an equation in cartesian coordinates. 
1t will be necessary to fix the catenary relative to the cartesian coordinate 

Fig. 6.7 Relating s, x and y. 
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y-axis 

f 
c 

! 
0 x-axis 

Fig. 6.8 Catenary relative to cartesian coordinates. 

system, and so weshall choose S so that OS= c (Fig. 6.8). The equation is 
s = c tan 'ljl, and we have the linking equations 

tan 'ljJ = dyldx 
dsldx = [1 + (dyldx)2] 112 

Now 

s = c tan 'ljJ = c dyldx = cu 

where u = dyldx. Therefore differentiating this equation with respect to x 
gives 

dsldx = c duldx 

from which 

c2(duldx) 2 = (dsldx) 2 = 1 + (dyldx)2 

= 1 + u2 

dx/du = c/Y' (1 + u2 ) 

Now we already know that if x = sinh- 1 u then dxldu = 11V(l + u2 ). So 
x = c sinh -I u + A, where A is a constant. When x = 0 we have dy/dx = 0, 
since this is the lowest point of the curve; consequently A = 0 and x = 
c sinh- 1 u. 

However, u = dyldx, and since we now have u = sinh xlc it follows that 
dyldx = sinh xlc. Consequently y = c cosh x/c + B, where Bis a constant. 
Finally when x = 0 we have y = c, and so B = 0. Therefore 

y = c cosh xlc 

is the equation of the catenary in the cartesian coordinate system. • 

6.5 CURVATURE 

The amount by which a curve bends determines the curvature of the curve. 
If the curve bends sharply then the curvature is !arge, whereas if the curve 
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bends gently the curvature is small. In the intrinsic coordinate system we 
define the curvature x by x = d'ljl/ds. This is consistent with our intuitive 
idea because, for a small change ins, if 'ljl increases greatly then the curva­
ture is high, whereas if 'ljl increases only gradually then the curvature is 
small. 

The reciprocal of the curvature has the unit of length and is called the 
radius of curvature Q. So we have Q = ds/d'ljl. 

We now give a physical interpretation for the radius of curvature. Later 
we shall express it in terms of cartesian coordinates, and also determine a 
form suitable for calculating the radius of curvature if the curve is given 
parametrically. 

Suppose that Pis the point (s, 'ljl) and that Q is the point (s + ös, 'ljl + Ö'ljl) 
(Fig. 6.9). Suppose also that the normals to the curve at P and Q meet at 
C. Then since the angle between the tangents at P and Q is Ö'ljl, the angle 
between the normals is also Ö'ljl. Consequently LPCQ = Ö'ljl, and because 
the length of the element of curve PQ is ös we conclude that 

CP ö'ljl = ös 

The smaller that Ö'ljl becomes, the closer Q moves to P and the more 
CP comes to equalling CQ. Therefore as Ö'ljl ~ 0 the approximation 
CP = ös/Ö'ljl becomes 

CP = ds/d'ljl = Q 

that is, the radius of curvature. 
The circle centred at C with radius Q is called the circle of curvature 

Fig. 6.9 Intersecting normals. 
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and the point Cis called the centre of curvature. lt is worth observing that 
if Q is negative this means that the curve is bending towards the x-axis 
(concave to the x-axis) and so in the opposite direction to the way shown in 
the diagram (convex to the x-axis). 

THE CENTRE OF CURVATURE 

To determine the coordinates of the centre of curvature it is best to use 
both cartesian coordinates and intrinsic coordinates at one and the same 
time. 

Suppose that Pis the point (x,y) in cartesian coordinates and also the 
point (s, tjJ) relative to the curve in intrinsic Coordinates. In Fig. 6.10 Q > 0, 
C has coordinates (X, Y) and T is the point (X,y). By similar triangles we 
have LPCT = tj!, and so 

X = x - Q sin tjJ 
Y=y+QCOStj! 

Remarkably these formulas also work in the case Q < 0. 

D Show that if Q < 0 then the centre of curvature (X, Y) is given by 

X = x - Q sin tjJ 
y = y + Q cos tjJ 

You will need a different diagram, but the working is very easy. It may 
help to put p = IQI. Try it and see how you get on. 

x-axis 

Fig. 6.10 The centre of curvature (Q > 0). 
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y-axis 

x-axis 

Fig. 6.11 The centre of curvature (Q < 0). 

Put p = lgl. Then p > 0 and we have a rather different figure, where now 
the curve bends towards the x-axis (Fig. 6.11 ). Now suppose T is the point 
(x, Y); then LCPT = 'ljJ. So 

X= x + p sin 'lj1 
y = y- p cos 'lj1 

and therefore since p = -g we obtain 

as before. 

X= x- Q sin 'lj1 
Y=y+QCOS'\jl 

• 
Wehaveseen how to determine the centre of curvature once the radius of 
curvature is known, and we have also seen how the sign of the radius of 
curvature can help us to decide which way the curve is bending. We now 
need a method of determining the radius of curvature without having to 
reduce a cartesian equation into one involving intrinsic coordinates. 

THE RADIUS OF CURVATURE 

Essentially there are two ways in which, using the cartesian coordinatc 
system, a curve can be defined. lt can be described directly by means of an 
equation involving x and y, or it can be described parametrically. In the 
parametric form x and y are each defined in terms of a third variable, for 
example t. Theoretically it could be argued that it is possible to eliminate t 
and thereby reduce the second case to the first one. However, in practice 
this may be very difficult to achieve. Therefore weshall deal with the two 
situations separately. 
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THE CARTESIAN FORM 

Wehave Q = dsld'ljJ = (ds/dx)(dx/d'ljl). Now 

dsldx = [1 + (dy/dx)2] 112 

and so it remains to obtain dx/d'ljl in cartesian form. Now dyldx = tan 'ljl, 
and so differentiating with respect to x 

d2y/dx 2 = sec2 'ljJ (d'ljl/dx) 
= (1 + tan2 'ljl)(d'ljl/dx) 
= [1 + (dy/dxf](d'ljl/dx) 

Therefore the radius of curvature in cartesian form is 

[1 + (dy/dx)2] 112 [1 + (dy/dx)2] 

Q = d2y/dx2 

[1 + (dyldxfF12 

Q = d2y/dx2 

D For the curve y = c cosh (x!c) obtain (a) the radius of curvature at a 
general point (x, y) and (b) the position of the centre of curvature at the 
point where x = c In 2. 
a We have y = c cosh (xlc), and so 

dy!dx = c (1/c) sinh (x!c) = sinh (xlc) 

Therefore 

d2y/dx 2 = (1/c) cosh (x!c) 

lt follows that 

1 + (dy/dx)2 = 1 + sinh2 (x/c) = cosh2 (xlc) 

and so 

[1 + (dy/dxf]312 = cosh3 (x/c) 

We now have 

[1 + (dyldx?] 312 

Q = d2y/dx2 

cosh3 (xlc) 2 
( ) h ( ) = c cosh (xlc) 
1/c cos xlc 

This is the radius of curvature at a generai point. Observe that it is 
aiways positive; this is not surprising since the curve is aiways convex to 
the x-axis. 

b When x = c In 2 we have xlc = In 2, and so 
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So that, at x = c In 2, 

cosh (xlc) = !(exlc + e-xlc) = !(2 + !) = 5/4 

sinh (x/c) = !(exlc- e-xi<') = !(2- !) = 3/4 

The radius of curvature at x = c In 2 is therefore 25c/16. Also, when 

x = c In 2 we have 

y = c cosh (xlc) = 5c/4 

Furthermore 

tan 'ljJ = dyldx = sinh (x/c) = 3/4 

This gives sin 'ljJ = 3/5 and cos 'ljJ = 4/5. 

Now C, the centre of curvature, is the point (X, Y), where 

X = x - Q sin 'ljJ = c In 2 - (25c/16) (3/5) 
= c In 2 - 15c/16 

Y = y + Q cos 'ljJ = 5c/4 + (25c/16) (4/5) 
= 5c/4 + 5c/4 = 5c/2 

So when x = c In 2 the centre of curvature is 

(c In 2 - 15c/16, 5c/2) 

THE PARAMETRie FORM 

• 

If x and y are each given in terms of a parameter t, then a small change öt 
in t will result insmall changes öx and öy in x and y respectively. Wehave 

(ös)2 = (öx)2 + (öy)2 

As öt ~ 0 both öx and öy tend to zero and this approximate formula 

becomes exact. Now 

( ös/öt)2 = ( öx/öt)2 + ( öy/öt)2 

so that as öt ~ 0 we obtain 

( ds/dt) 2 = ( dxldt) 2 + ( dyldt)2 

Therefore 

Now 

Q = ds/d'lj! = (ds/dt)(dt/d'lj!) 

We have seen how to find ds!dt; we need therefore to obtain dt/d'lj!. The 

equation linking intrinsic coordinates with cartesian coordinates and which 

involves 'ljJ is 

tan 'ljJ = dyldx = (dyldt)(dt/dx) = ylx 

We now differentiate throughout with respect to t and obtain 
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d'ljJ . .. . .. 
sec2 'ljJ dt = xy :Z yx 

sec2 'ljJ = 1 + tan2 'ljJ = 1 + (dyldx)2 

= 1 + (Y/i)2 

i2 sec2 'ljJ = i2 + y2 = s2 

Substituting into the expression for e we now have 

ds/dt s si2 sec2 'ljJ 
e = d'lJ!Idt = ~ = xy- yx 

=---
iji- yi 

(i2 + }'2)3/2 

iji- yi 
Therefore the radius of curvature in parametric form is 

(i2 + }'2)3/2 
e = xy- yx 

0 Obtain the radius of curvature at a generat point, determined by the 
parameter e' on the curve 

X = sin 8 + 2 COS 8 
y = cos e - 2 sin e 

We substitute into the formula 

(i2 + }'2)3/2 
e = xy- yx 

where the dot here indicates differentiation with respect to e. We have 

i=cos8-2sine 
y = -sin e - 2 cos e 

So that squaring and adding, 

i 2 + y2 = (cos e - 2 sin ef + (sin e + 2 cos 8)2 

Further, 

so that 

= cos2 e + 4 sin2 e - 4 sin e cos e + sin2 e + 4 cos2 e + 4 sin e cos e 
= 5(cos2 e + sin2 e) = 5 

i = -sin e - 2 cos e 
ji = -cos e + 2 sin e 
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iy- yi = (cos e- 2 sin e)(-cos e + 2 sin e) 
- ( -sin e - 2 cos 9)( -sin e - 2 cos e) 

= -cos2 e - 4 sin2 e + 4 sin e cos e 
- (sin2 e + 4 cos2 e + 4 sin e cos e) 

= -5 cos2 e - 5 sin2 e = -5 

Substituting into the formula for Q gives 

Q = 53121( -5) = -V5 

Now this means that there is a constant radius of curvature, and the only 

curve which has a constant radius of curvature is a circle. Therefore these 

parametric equations must define a circle. lt is easy to confirm this by 

eliminating e. We have 

So 

X = sin 9 + 2 COS 9 
y = cos e - 2 sin e 

2x+y=5cose 
X- 2y = 5 sin 9 

If we square and add we obtain 

(2x + y)2 + (x - 2yf = 25 

which is x2 + i = 5. 
The fact that Q is negative suggests that the circle is concave to the x-axis, 

and indeed since the circle in question is centred at the origin we can 

confirm this. • 

Right! Are you ready for some steps? 

,--,---------6.6 Workshop _______ _ s Exercise Express the equation of curve 

s = sec 'ljJ tan 'ljJ + In (sec 'ljJ + tan 'ljJ) 

in terms of cartesian coordinates, where the axes are tobe chosen so that 

l when x = 0, y = 0; 
2 when x = 0, s = 0. 
As usual we suppose that the x-axis is parallel to the fixed axis of the 

intrinsic coordinate system. 
Remernher the linking equations, and see how you get on. 

L2\l The linking equations are 
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tan 1p = dyldx 
ds!dx = [1 + (dyldxft2 

So in generat we have 

dsldx = [1 + (dy/dx)2 ] 112 

= (1 + tan2 1p)112 = sec 1p 

since 1 + tan2 1p = sec2 1p. Here 

s = sec 1p tan 1p + In (sec 1p + tan '4') 

Therefore 

ds/d1p = sec 1p sec2 1p + tan 1p sec 1p tan 1p 
+ (sec 1p + tan '4')- 1 (sec 1p tan 1p + sec2 '4') 

= sec 1p (sec2 1p + tan2 '4') + sec 1p 

= sec 1p (sec2 1p + tan2 1p + 1) 

= 2 sec3 1p 

since 1 + tan2 1p = se2 1p. 
If you were stuck then try to get going from this point. Otherwise read 

on and see if you got everything right. 

This means that 

(ds/dx)(dx/d1p) = 2 sec3 1p 

and we have already shown that 

dsldx = sec 1p 

Therefore 

dxld1p = 2 sec2 1p 

lt follows at once that 

x = 2 tan 1p + A 

where A is a constant which we need to determine. We now have 

dyldx = tan 1p = !(x- A) 

and so 

y = h 2 - !Ax + B 

where Bis another constant which we need to determine. 
See if you can determine these constants, and then take another step. 

We have the initial conditions, and these will help us to fix A and B: 

r-&1 
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I When x = 0, y = 0 and so B = 0; 
2 When x = 0, s = 0. 
Now we have shown that when x = 0, tan 'ljJ = -A/2 = C (say), and so 
sec 'ljJ = ±(1 + C2 ) 112 . From the equation for s, 

0 = C[±(I + cz)t/2] +in [C ± (1 + cz)t/2] 

This has no meaning if the negative sign is chosen because the argument of 
the logarithm is then negative. Consequently the positive root for sec 'ljJ 
must apply. 

We have to solve the equation 

in [C +(I + C2)t/2] = -C(l + cz)t;z 

Now this is a tricky business. You should be able to spot that C = 0 is one 
solution, but it is quite a different matter to show that C = 0 is the only 
solution. You would not normally be expected to do this, but you might 
care to try out your algebraic skills! 

There are several possible approaches. You could use the work we have 
not yet covered on maxima and minima (Chapter 8) and examine 

y = xV(I + x2 ) + in [x + }/(1 + x2 )] 

You could then argue that if there are two values of x for which y is zero, 
then by continuity there must be a local maximum or a local minimum. lt 
would then follow that dyldx would be zero at some point. However, it is 
possible to show that dyldx = 2 Y(x1 + I) and so is never zero. 

Nevertheless there is a purely algebraic approach. See if you can finish 
the problern off. lf it's too much, just read through the solution and try to 
appreciate what is involved. Whatever your decision, take another step 
when you are ready. 

We shall show that C = 0 is the only possible solution of 

in [C + (1 + C2)t/2] = -C(l + cz)t;z 

Suppose C > 0. Then the right-hand side of the equation is negative, 
whereas the left-hand side is positive: 

C + (1 + C2 ) 112 > 1 

Suppose C < 0. Then 

exp [ -C(l + C2)112 ] = C + (1 + C2)112 

We can rearrange the left-hand side of this by multiplying throughout by 
-C + (1 + C2 ) 112 • We then have 

[-C + (1 + C2) 112] exp [-C(l + C2) 112] = -C2 + (1 + C2 ) = 1 

However, the left-hand side is greater than I because 
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-c + (1 + C2 ) 112 > 1 

and the exponential value of any positive nurober is always greater than 1. 
The only possibility which remains is C = 0. 
Finally, then, the equation of the curve in cartesian coordinates is 

y = !x2 
If you managed that all on your own, you have handled an awkward 
problern successfully. 

Now for something rather different. 

I>Exercise For the curve 

y = h 2 -! In (x + 1) + x 

obtain, at the origin, the radius of curvature and the centre of curvature. 
All you need to do is calculate the ingredients for the formulas and you 

are away! Work out the radius of curvature and take another step. 

Herewe go then. We need dyldx and later d2yldx2 . So 

y = h 2 - ! In (x + 1) + x 

dyldx = x- !(x + 1)-1 + 1 

Then 

4(x + 1)2 - 1 
4(x + 1) 

(::r = 1 + (~~r 
= 1 + [ 4(x + 1 )2 - 1 f 

16(x + 1)2 

16(x + 1)2 + [4(x + 1f - 1f 
16(x + 1f 

[4(x + 1)2 + !f 
16(x + 1)2 

Did you spot how to collect that together? If you multiply everything out 
you risk not being able to see the wood for the trees. It is always worth 
trying to stand back and see if there is a simple approach. 

So we have 

ds 4(x + 1 )2 + 1 
dx 4(x + 1) 

Now 
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Then 

d2y 1 
- = 1 + ------= 
dx2 4(x + 1)2 

4(x + 1)2 + 1 
4(x + 1)2 

Q = (ds/dx)3/(d2y/dx2) 

[4(x + 1)2 + 1f 4(x + 1)2 

[4(x + 1}F 4(x + 1)2 + 1 

[4(x + 1)2 + 1f 

25 

16 

16(x + 1) 

when x = 0 

If you made a slip, check to find where you went wrang. Then see how you 
get on with the centre of curvature, and take another step. 

We must obtain cos \jJ and sin \jl. Now tan \jJ = dyldx = 3/4 when x = 0 so 
cos \jJ = 4/5 and sin \jJ = 3/5. We now have all the information we need to 
obtain the position of the centre of curvature: 

X= x - Q sin \jJ = 0 - (25/16)(3/5) = -15/16 
y = y + Q cos"' = 0 + (25/16)(4/5) = 5/4 

So the centre of curvature is ( -15/16, 5/4). 
lt is a good idea to practise the parametric formula, and so here is 

another exercise for you to try. 

[> Exercise Deteimine the radius of curvature at the point where t = 1 on 
the curve defined parametrically by 

X = t + t2 , y = 1 + (4 

When you have given this all you can, take the next step. 

l8\l Don't forget the formula 
(.e + _y2)312 

Q = xy- yx 

Now x = t + P and y = 1 + t4 . So x = 1 + 2t and y = 4t3 . Therefore when 
t = 1 we have x = 3 and y = 4. Hence 

(x2 + _yz)3/2 = (9 + 16)3/2 = 125 

Further, x = 2 and y = 12t2 . So when t = 1 we have x = 2 and y = 12. 
Hence 
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.iji- yi = 3 X 12- 4 X 2 = 36- 8 = 28 

Therefore Q = 125/28 when t = 1. 
If you managed that then read through the next exercise and step. If 

there are still a few problems, then try the exercise yourself first. 

I> Exercise Obtain the position at the origin of the centre of curvature for 
the parametric curve 

x = p + sinh p, y=-1+coshp 

As soon as you have done this, move on to step 9. 

When p = 0 we have x = 0 and y = 0, and so we begin by obtaining Q when 
p = 0. We have L._ _ _J 

so that when p = 0, 

.i = 1 + cosh p, 
i = sinh p, 

.i = 2, 
i = 0, 

y = sinh p 
y = coshp 

y = 0 
y = 1 

The radius of curvature can now be found: 

(.i2 + y2)3/2 = (4 + 0)3/2 = 8 
.iy- yi = 2 X 1 - 0 X 0 = 2 

Consequently Q = 8/2 = 4. 
Is allweil so far? If there are any problems, Iook through the work at this 

stage and then see if you can complete the problern by finding the position 
of the centre of curvature. Remember, you will need sin '\jl and cos '\jl. 

Here goes then. First, tan '\jl = dyldx = yl.i = 0 at the origin. We deduce 
that '\jl = 0, and so sin '\jl = 0 and cos '\jl = 1. The centre of curvature is now ...__ _ _J 

the point (x- Q sin '\jl, y + Q cos '\jl), and this is (0- 0, 0 + 4 X 1) = (0, 4). 
If any problems remain at this stage it is best to go back through the 

chapter again. 

Now for a practical problem. 

_________ 6.7 Practical ________ _ 

MOORED DIRIGIBLE 

A dirigible is moared to a 200 m warp which is secured to a post. The 
tension at the post is equal to the weight of 50 m of warp and is inclined at 
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tan -I ( 4/3) to the horizontal. Determine the tension and the direction of 
the warp at its upper end, and show that the dirigible is about 192m above 
the post. 

Make a real effort to solve this problern entirely on your own. As usual 
we shall give the solution stage by stage so that you can join in at whatever 
stage you can. 

The warp is shown in Fig. 6.12. Let the tension at the top be T 1 inclined at 
an angle <j> to the horizontal, and Iet the tension at the lower end be T0 

inclined at an angle 8 to the horizontal. 
Resolving the forces horizontally gives 

T1 cos <j> = T0 cos 8 = 50w (3/5) = 30w 

where w is the weight per metre. Resolving the forces vertically gives 

200w + T11 sin 8 = T1 sin <j> 

So 

T 1 sin <j> = 200w + 50w (4/5) = 240w 

If you have not studied statics you may not have been able to obtain these 
equations. However, all should be weil now we have obtained all the 
information we need. 

Next we require <j>, and we have shown 

T1 cos <j> = 30w 

T 1 sin <j> = 240w 

Therefore tan <j> = 240w/30w = 8, and consequently <j> = tan -I 8 is the 
angle of inclination of the warp to the horizontal at the upper end. 

We also require T1• See if you can obtain this. 

Fig. 6.12 Forces on the warp. 



Wehave 

Therefore 

Tf = (30wf(1 + 64) 
T1 = 30wV65 
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Lastly we must obtain the height of the dirigible above the post. Forthis we 
need to use the equation y = c cosh (x/c). 

From y = c cosh (x/c) we obtain 

Now 

Therefore 

dyldx = tan tjJ = sinh (x/c) = sie 

cosh2 (xlc) - sinh2 (x/c) = 1 

(y/c)2 - (s/c)2 = 1 
yl=sz+cz 

This formula is not in any way dependent on the details of this problem, 
and so can always be used when we have a catenary. 

The easiest way to proceed now is to consider the missing part of the 
catenary, length s0 , from the post to the lowest point (Fig. 6.13). Then 

200 + s0 = c tan <j> 
So= C tan 0 

See if you can complete things. 

Wehave 

200 = c(tan <j>- tan 0) = c[8- (4/3)] = 20c/3 

Consequently c = 30 and So = c tan e = 30(4/3) = 40. 
Now 

Fig. 6.13 Part of the catenary. 
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Also 

(h + Yo)2 = (200 + s0 ) 2 + Cl = (240)2 + (30)2 

h + Yo = 30}"65 

y~ = sö + c2 = (30)2 + (40)2 = (50)2 

Yo =50 

Finally, h = 30}"65 - 50"" 192m. 
Notice how we leave any approximation to the last possible stage. We 

should always avoid premature approximation because it usually Ieads to 
greater inaccuracy. 

SUMMARY 

0 We have shown how to find the equations of tangents and normals to 
plane curves. 

0 Wehave introduced intrinsic coordinates (s, '\jl) and seen how to link 
them to the cartesian coordinate system: 

tan '\jl = dyldx 
dsldx = [1 + (dy/dx)2 ] 112 

0 Wehave derived the equation of the catenary in intrinsic coordinates 
in the standardform s = c tan '\jl, and shown that this can be written 
in cartesian form as y = c cosh (x/c). 

0 We have introduced the ideas of 
a curvature x = d'\jllds 
b radius of curvature Q = ds/d'\jl 
c centre of curvature (x - Q sin '\jl, y + Q cos '\jl). 

0 We have given cartesian and parametric forms for the radius of 
curvature: 

EXERCISES 

[1 + (dyldxfr'2 

Q = d2yldx2 

(i2 + _y2)3/2 
Q = iji- yi 

1 Obtain the equation of the tangent to each of the following curves at the 
point where x = 0: 
a y = x2 + ex 
b y2 = x 2 + y(x 2 + 1) 
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(:rtex) 
c y=cos T 
d y = xy + x 2 

2 Obtain the equation of the normal to each of the following curves at the 
point where y = 1: 
a x3 + y 3 = 2 
b x2y + y2x = 6 
c (x + y)2 = x(x - y) 
d x = sin:ny 

3 Obtain the radius of curvature of each of the following curves at the 
point x = -1: 
a (x + y)2 = (x - y)2 + 1 
b y = xe'+x 
c ~ + xy + y 2 = 1 

4 Obtain the radius of curvature at the point t = 0 on the curves 
a x = sint, y = cosht 
b X= t + P, y = t- t2 

C X = t3 + 1, y = t- 1 
d x = sin t, y = e1 

ASSIGNMENT 

1 Obtain the radius of curvature and the position of the centre of curvature 
of the curve y = x2 + 1 at (0,1). 

2 Show that for the curve described in intrinsic coordinates by s = a'tj12/2 
(where a is constant) the radius of curvature satisfies Q2 = 2as. 

3 Obtain the equations of the tangent and the normal at x = 0 for the curve 
y = exp x2 • 

4 Determine the radius of curvature of the curve y = exp x2 at (0,1). 
5 Prove that at any point on the reetangular hyperbola xy = c? the radius 

of curvature Q = ?/2c2 , where r is the distance of the point to the origin. 
6 Determine the equation of the tangent and the normal at a general point 

where y = t on the curve l + 3xy + l = 5. 
7 Obtain the equations of the tangent and the normal for the parametric 

curve x = ~t2 - t, y = ~t2 + tat a general point t. 

FURTHER EXERCISES 

1 The parabola l = 4ax and the ellipse 

xz i 
az+bz=1 

intersect at right angles. Show that 2a2 = b2 • 



216 FURTHER DIFFERENTIATION 

2 Show that the equation of the tangentat the point (x 1, y 1) on the curve 

ax2 + bxy + c/ + dx + ey + f = 0 

where a, b, c, d, e andfare constants, is given by 

axx 1 + !b(xy 1 + x 1y) + cyy 1 + !d(x + x!) + !e(y + y!) + f = 0 

(This equation is the general second-degree equation in x and y and 
includes the circle, parabola, ellipse and hyperbola. The transformations 

uv ~ !(uv 1 + u 1v) 

u ~ !(u + u!) 

where u, v E { x, y} enable the equation of the tangent at a point on any 
one of these curves to be written down straight away.) 

3 Obtain the coordinates of the centre of curvature at the point (1, 2) on 
the curve (x - y f = 2xy - x - y. 

4 Show that the perpendicular from the focus (a, 0) on the parabola 
/ = 4ax to any tangent intersects it on the y-axis. 

5 P and Q are two points on the reetangular hyperbola xy = 1, 
constrained so that the line PQ is tangential to the parabola / = 8x. 
Show that the locus of R, the midpoint of PQ, is also a parabola 
l +X= Ü. 

6 Identify each of the following curves and give a rough sketch: 
a xy - 2y - x + 1 = 0 
b xy + 12 = 3x + 4y 
c x 2 + 2/ + 4x + 12y + 18 = 0 
d 2x2 - / - 4x + 6y = 15 
e (x + y)2 = 2(x + 3)(y + 4) - 33 

7 For the equation defined parametrically by 

x = sin3 8 + 3 sin 8 
y = cos3 8 - 6 cos 8 

obtain the coordinates (X, Y) of the centre of curvature at a general 
point. Eliminate 8 and thereby obtain an equation relating X and Y; 
this is the Iocus of the centre of curvature, known as the evolute of the 
curve. 

8 Show that for the parabola / = 4ax the locus of the centre of curvature 
( the evolute) is the curve 4(x - 2a )3 = 27 a/. 

9 Show that if y = ax2 + bx3 then at the origin Q = 112a and dg/dx = 
-3b/2~. 

10 Determine the radius of curvature of the parametric curve 

x = cos2 p sin p 
y = sin2 p cos p 

at a general point with parameter p. 
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11 The bending moment M at a point on a uniform strut subjected to 
loading is given by M = EIIQ, where E and I are constants dependent 
on the material of the beam and Q is the radius of curvature at the 
point. When suitable axes are chosen the profile of such a strut is 
defined parametrically by x = a(t - sin t), y = a(1 - cos t). Show that 
M = (EII4a) cosec (t/2). 

12 A curve is defined by the equations X = 3 tan2 8, y = 1 + 2 tan3 8. 
Prove that the radius of curvature at a general point with parameter 
8 is 6 tan 8 sec3 8. 

13 A curve is defined parametrically by the equations 

X = 2 COS 8 - 2 COS2 8 + 1 
y = 2 sin 8 + 2 sin 8 cos 8 

Show that the normal at a general point is 

x sin (8/2) + y cos (8/2) = 3 sin (38/2) 

14 A curve is defined parametrically by x = a sin 28, y = a sin 8. Show 
that 

d2y!dx2 = sin 8 (1 + 2 cos2 8)/4a cos3 28 

Obtain also the radius of curvature at the point (0, a). 
15 A uniform chain of length 2/ and weight w per unit length is suspended 

between two points at the same Ievel and has a maximum depth of 
sag d. Prove that the tension at the lowest point is w(/2 - d2 )/2d, and 
that the distance between the points of suspension is 

[(12 - d2)/d] In [(/ + d)/(1 - d)] 

16 When a body moves along a curve it experiences at any point an 
acceleration u21Q along the normal, where u is its speed and Q is the 
radius of curvature. Find this normal component of acceleration at 
the origin for the curve y = x2(x - 3) if the speed is a constant 12 m/s. 

17 Determinc dy / dx for each of the following and Iist any real values 
of x for which dy/dx is not defined. 
a y=x2 ln(1+sinhx) 

b 

c 

18 If, for x > 0, 

1 2 3 
y=-+-+-

x x 2 x3 

1 +x- x2 
y= 

1-x+x2 

1- xl/2 
y = 1 + xl/2 

obtain formulae for dyjdx, d2yjdx2 and.d3yjdx3. 

19 Suppose y = 1/(1 + 1/x) and z = 1/{1 + 1/y). Obtain dyjdx and 
dzjdx. 
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Now that we can apply some of the techniques of differentiation to 
functions of a single variable we shall see to what extent we can 
generalize these ideas to functions of several variables. 

After completing this chapter you should be able to 
D Use the language and standard notation for functions of several 

variables; 
D Obtain first-order and second-order partial derivatives; 
D Use the formulas for a change of variables correctly; 
D Calculate an estimate of accuracy in using a formula where the 

variables have known errors. 
At the end of this chapter we tackle practical problems of tank volume 
and oil flow. 

7.1 FUNCTIONS 

We know that, given a real function f, we can draw a graph of it in the 
plane by writing y = f(x). The set of arguments for which the function is 
defined is called the domain of f, and the set of values is called the range or 
image set of f (see Chapter 2). 

What happens when we have a function of more than one variable? For 
example, suppose we consider the equation z = (x + y) sin x. In this case, 
given any pair of real numbers x and y, we obtain a unique real number z. 
We have a function of two real variables, and we can write f: IR 2 ~ IR 
where 

z = f(x, y) = (x + y) sin x 

This is just a generalization of the ideas we have already explored forareal 
function, which in this chapter weshall call a function of a single variable. 
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z 

y 

X 

Fig. 7.1 A function of two variables. 

lt was a great asset when considering functions of a single variable to be 
able to draw the graph of the function. Here things are not quite so simple 
because in order to give a similar geometrical representation we shall need 
three axes Ox, Oy and Oz. Luckily we can represent situations like this by 
using a plane representation (Fig. 7.1). Instead ofthe 'curve' which we use 
to represent a function of a single variable, there corresponds a 'surface' 
for functions of two real variables. 

However, once we extend the idea one stage further and consider func­
tions of three real variables, we lose the picture altogether. Luckily we 
have the algebraic properties of the functions to enlighten us, and it is sur­
prising how little we feel the loss of an adequate geometrical description. 
Nevertheless we can talk of 'hypersurfaces' for functions of more than two 
variables. 

7.2 CONTINUITY 

Intuitively a function of two variables is continuous at a point if the surface 
at the point has no 'cuts, holes or tears' in it. To put this a little more 
precisely, suppose (a,b) is a point in the domain of a functionf; thenfis 
continuous at the point (a,b) if f(x,y) can be made arbitrarily close to 
f(a,b) just by choosing (x,y) sufficiently close to (a,b) (Fig. 7.2). 

Another way of thinking of this is that, whatever path of approach we 
use, as the point (x,y) approaches the point (a, b) the corresponding value 
f(x,y) approaches the value f(a, b). 
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z 

f(a,b) 

y 

X 

Fig. 7.2 Continuity at (a, b). 

7.3 PARTIAL DERIVATIVES 

When we considered functions of a single variable we saw that some func­
tions which were continuous at a point were also differentiable there 
(Chapter 4). You probably recall the definition 

df = f'(x) = lim f(x + h) - f(x) 
dx h~o h 

We make similar definitions for functions of several variables. For instance, 
suppose f is a function of two variables. Then we define 

at = f,(x,y) = lim f(x + h, y) - f(x,y) 
ax h--->0 h 

8f _ f( ) _ 1. f(x,y + k)- f(x,y) 
- v x,y - 1m k ay · · k--->0 

whenever these Iimits exist, and call these the first-order partial derivatives 
of f with respect to x and y respectively. 

Notice the special symbol a for partial differentiation. It must be carefully 
distinguished from the Greek delta ö and the d of ordinary differentiation. 

At first sight these definitions seem rather formidable. However, when 
we examine them carefully we see that they teil us something very simple. 
If we Iook at the first one we notice that only the x part varies and that the 
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y part is unchanged. This gives us the clue. We treat y as if it is constant, 
and differentiate in the ordinary way with respect to x. 

Similarly, inspection of the second expression reveals that to obtain the 
first-order partial derivative with respect to y we simply differentiate in the 
ordinary way, treating x as if it is constant. 

Geometrically we can think of the first-order partial derivative of f with 
respect to x as the slope of the curve where the plane parallel to the Oyz 
plane through the point (a,b) cuts the surface defined by f (Fig. 7.3). 
Similarly the first-order partial derivative of f with respect to y is repre­
sented as the slope of the curve where the Oxz plane through (a, b) cuts 
the surface defined by f. 

Although we have defined partial derivatives for a function of two vari­
ables only, the definition can be extended in a similar way to functions of 
several variables. 

To see how very easy it is to perform partial differentiation we shall do 
some examples. 

0 Suppose 

z = f(x,y) = sin 2x cos y 

Obtain az!ax and az!ay. 

z 

Fig. 7.3 Curves where planes cut f. 

y 
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Remember that to differentiate partially with respect to a variable, all 
we need to do is to treat any other variables present as if they are constant. 
To begin with we wish to differentiate partially with respect to x, so we 
must treat y as if it is a constant. We obtain therefore 

{Jz 
ax = 2 cos 2x cos y 

Likewise 

{Jz . . 2x 
{Jy = -Sm y SID 

lt really is as simple as that! 

Now you try one. 

Dlf 

u = f(s, t) = i + 4st2 - t3 

obtain {Ju/{Js and 8u/8t. 

• 

Notice here we are using different letters for the variables. This should 
cause no problems. When you have done this problem, read on and see if it 
is correct. 

Using our simple procedure we obtain 

{Ju 
- = 2s + 4t2 
as 

Remember that we treat t as if it is constant. This does not mean that every 
term containing t automatically becomes zero when we differentiate. If you 
left out 4t2 you should think carefully about this point. Then check over 
your answer for au/{Jt before proceeding. 

Differentiating with respect to t we obtain 

{Ju = 8st- 3t2 
{Jt 

7.4 HIGHER-ORDER DERIVATIVES 

• 

Suppose we have a function f = f(x, y) of two real variables x and y for 
which the first-order partial derivatives exist. We can consider differentiat­
ing these first-order partial derivatives again with respect to x and y. There 



HIGHER-ORDER DERIVATIVES 223 

are four possibilities, and we call these the second-order partial derivatives 
of f: 

iJ2f iJ (iJf) 
1 iJx2 = iJx iJx 

2 iJ2f - ~ (iJ!) 
iJy iJx iJy iJx 

3 azt - ~ (iJ!) 
iJx iJy iJx iJy 

4 iJ2f - ~ (iJf) 
ayZ- ay ay 

The definitions 1 and 4 are called the second-order partial derivatives of 
f with respect to x and y respectively. Definitions 2 and 3 are known as 
mixed second-order partial derivatives. It so happens that if these mixed 
derivatives are continuous at all points in a neighbourhood of the point 
(a,b), then they are equal at the point (a,b). It is very unusual to come 
across a function for which this condition does not hold, and so we shall 
assume that all the functions which we shall encounter have equal mixed 
second-order partial derivatives. 

D Obtain all the first-order and second-order partial derivatives of the Example 
function f defined by 

Wehave 

So therefore: 

z = f(x,y) = x + sin x2y + In y 

öz 
iJx = 1 + 2xy cos x2y 

öz - = x2 cos x2y + y- 1 

iJy 

iJ2z iJ 
iJxz = iJx (1 + 2xy cos xzy) 

= 0 + 2xy( -2xy sin x2y) + 2y cos x2y 

= -4x2/ sin x2y + 2y cos x2y 

iJ2z iJ 
-- = -(1 + 2xy cos x2y) 
iJy iJx iJy 

= 2x cos x2y - 2xy sin x2y (x2) 

= 2x cos x2y - 2x3y sin x2y 
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a2z a -- = -(x2 cos x2y + y- 1) 
axay ax 

= 2x cos x2y - x2 sin x2y (2xy) 

= 2x cos x2y - 2x3y sin x2y 

a2z a 
- = -(x2 cos x2y + y- 1) 
ai ay 

= -x2 sin x2y (x2 ) - y- 2 

= -x4 sin x2y - y- 2 

A partial check is provided by the fact that the two mixed derivatives are 

indeed equal. • 

So that you will acquire plenty of practice, we shall take a few steps before 
proceeding any further. 

r----o---------7 .5 Workshop _______ _ 

~ Exercise Consider the following function of two real variables: 

L___ _ __j 

f(x,y) = tan- 1 (~) 

Obtain the first-order partial derivatives f, and fv and thereby show that 

x at + Y at = o 
ax ay 

Try it first on your own and see how it goes. Then step ahead. 

Differentiating partially with respect to x and with respect to y in turn gives 

at 1 1 
- = ? -
ax [1 + (x!y)-] y 

at 1 -x 
ay = [1 + (x!y) 2 ] 7 

Consequently 

at at 1 x- x 
X 8x + y 8y = ( 1 + (x/y )2] -y- = O 

If you managed that all right, you should move ahead to step 4. If some­
thing went wrang, then try this. 
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C> Exercise Suppose 

f(x,y) = cos3 (x2 - /) 

Derive the first-order partial derivatives and show that 

at at y- + x- = 0 
ax ay 

Try it carefully and take the next step. 

Given that 

we have 

f(x,y) = cos3 (x2 - /) 

at = -3 cos2 (x2 - /) sin (x2 - /) (2x) 
ax 

at = -3 cos2 (x2 -/) sin (x2 - /)( -2y) 
ay 

It follows at once that 

at at y- + x- = 0 
ax ay 

lf things are still going wrang there are only two possibilities. Either you 
are having difficulty with the ordinary differentiation, or you are forgetting 
when partially differentiating to treat the other variable as if it is a con­
stant. Go back and review what you have done to make certain you can 
manage this correctly. 

Assuming that all is now weil, we can move ahead. Now we are going to 
test the work on second-order derivatives. 

C>Exercise Suppose z =in V(x2 + y2 ). Show that Laplace's equation in two ~ 
dimensions is satisfied, namely 

a2z a2z 
-+-=0 
ax2 al 

Laplace's equation has many applications and you will certainly come 
across it again from time to time. It is an example of a partial differential 
equation. 

As soon as you have made a good attempt at this, move ahead to the 
next step. 
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1t may help to simplify z before differentiating. Here we have 

z = ! In (x2 + /) 
using the laws of logarithms, and so 

az 1 
ax = 2(x2 + /) (2x) 

X 

So 

82z (x2 + y1) - x(2x) 
-ax-2 = (x2 + y2)2 

, , 
v-- x-

= (;2 + y1f 

Now we don't need to do any morepartial differentiation for this problem. 
Can you sec why not? It is because of symmetry. Look back at the original 
expression for z; if we were to interchange x and y in it, it would not be 
altered. Therefore if we interchange x and y in this partial derivative we 
shall obtain a correct statement. So, by symmetry, we obtain 

a2z x2- y2 
ay2 = (yl + x2)2 

Always keep an eye open for symmetry, it can save you a Iot of time and 
effort! 

Finally, adding these two second-order partial derivatives produces 

a2z a2z y2 - x2 + x2 - i 
-+-= =0 
8x2 al (x2 + lf 

If all's well then you can move ahead to step 7. However, if it went wrong 
then try this problern first. 

C> Exercise Given that 

w = sin (2x + y) - (x - 3y )'3 

verify that the mixed partial derivatives are equal. 
As soon as you have done it move on to the next step. 

There is no symmetry here, so we have no alternative but to get our heads 
,___ _ _. down and do the partial differentiation. Of course we only require the 
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mixed second-order derivatives, and so we would be doing needless work 
if we obtained all four second-order derivatives. Did you? If you did, con­
sole yourself that you have at least practised some partial differentiation; 
your time was not completely wasted. 

Wehave 

aw ' - = 2 cos (2x + y) - 3(x - 3y)-
äx 

aw - = cos (2x + y)- 3(x- 3y)2 (-3) 
äy 

= cos (2x + y) + 9(x - 3y)2 

Differentiating again, 

ä2w -- = -2 sin (2x + y) + 18(x - 3y) 
äxäy 

ä 2w -- = -2 sin (2x + y)- 6(x- 3y) (-3) ayax 
= -2 sin (2x + y) + 18(x- 3y) 

If trouble persists, make sure you can handle the chain rule for ordinary 
differentiation (Chapter 4). 

[> Exercise Show that if f is a differentiable real function and if z = f(xly) r:s? 
then 

az äz 
x- + y- = 0 

äx äy 

Try hard with this. Although it seems a little abstract we have already done 
all the necessary work before when we differentiated tan- 1 (xly) at the 
beginning of this workshop. As soon as you have made a good attempt 
read on. 

Wehave straight away, using the chain rule for ordinary differentiation, ~ 
:; = f' (~) (~) 

Remember: first differentiate with respect to the bracketed terms, then 
multiply the result by the derivative of the bracketed terms with respect 
to x. Similarly, 

az = r(~) (-:) ay Y y-
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Consequently, 

x:; + y:; =r(~) (x; x) = o 

You may have not managed that, but even if you did it is a good idea to 
try another exercise like that. Before tackling it, Iook very carefully at the 
previous exercise to make sure you have a good start. 

C>Exercise Suppose f is a twice differentiable real function. Deduce that if 
z = f(r), where r = V(x1 + i). then z satisfies the equation 

a2z a1z - l f'( ) f"( ) -~+-~-- r + r 
ax- ay- r 

When you have tried it, take the next step. 

Now differentiating again we obtain 

azz V(x2 + y2) -X (112) (x2 + y2)-112 2x 
ax2 = f' V<x2 + /) (xz + /) 

xz 
+ f"V(x2 + /) ~ xz + y-

f , V( 2 2) (xz + /) - xz f" V( z ~) xz = X + Y ( 2 2)3/2 + X + y- o o X +y- x-+y-
2 ? 

f 'V( 2 2) Y f"V( 2 ~) x-= x + Y (x2 + /)3/2 + x + r x2 + i 
Similarly 

a2 2 2 
z f' V(y2 2) X f" V(y2 2) -----=-y----::;-

-2 = + X (y2 2)3/2 + + X 2 2 ay +X y +X 

Adding we obtain 

lPz a2z , V 2 2 xz + y2 "V( 2 2) x2 + i 
ax2 + ayl = f (x + Y ) (x2 + /)3/2 + f X + Y X2 + y2 

= f' V(x2 + /) ( 2 1 2)1/2 + f"V(x2 + y2) 
X + y 
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Therefore 

a~ a~ If'( ) f"( ) -+-=- r + r ox2 ol r 

We shall soon see that there is in fact a much easier way to do this. 

A word about the notation for partial differentiation is not out of place at 
this point. Much has been written about the problems inherent with the 
notation, particularly when ( as in the previous workshop) more than two 
symbols for independent variables are involved. It is necessary to be clear 
which are the independent variables. 

For example, suppose that z = x2 + land that x = r cos 8 and y = r sin 8. 
Here z is expressed in terms of two independent variables x and y. It is also 
possible to express z in terms of two other independentvariables r and 8. 
It would be a mistake to express z in terms of mixtures such as r, x and y, 
or x and 8, and to attempt to form partial derivatives, because the vari­
ables would not be independent and so the partial derivatives we attempted 
to find would be incorrect. Major errors have followed from misunder­
standings of this nature; many attempts have been made to improve the 
notation, but the result is generally unattractive and difficult to follow. 

7.6 THE FORMULA FORA CHANGE OF VARIABLES: 
THE CHAIN RULE 

In the final exercise in the previous workshop it would have been correct to 
use the abbreviated notation r instead of V(x2 + y2), provided we obeyed 
the chain rule for ordinary differentation diligently. In fact we shall now 
state a version of the chain rule for functions of more than one variable. 

If we write f = f(x,y) where x = x(u, v) and y = y(u, v) we are using 
x and y in two ways: first as a dummy variable, and secondly as a function 
symbol. Wehave done this sort ofthing before in the case of real functions, 
and shall find it particularly useful to avoid introducing many unwanted 
symbols. To express this in words: the function f is expressed in terms of 
the independent variables x and y, and the variables x and y are themselves 
expressed in terms of independent variables u and v. 

Here now is the chain rule. Suppose that f = f(x, y) and that x = x( u, v) 
and y = y(u, v). Then, if all the partial derivatives exist, 

at = at ax + at ay 
au ax au ay au 

at = at ax + at ay 
av ax av ay av 
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Notice how when we choose to differentiate with respect to one of the 
subsidiary variables we must be impartial. We differentiate with respect to 
each of the main variables in turn, multiplying the result in each case by 
the derivative of the main variable with respect to the subsidiary variable. 
This chain of products is then added together. The formula is reminiscent 
of the formula for differentiating a function of a single variable: 

dy dy du 
-=--
dx du dx 

Indeed, this is a special case of the more general rule. 
However, there is one important point to watch. In the case of a single 

variable the formula Iooks right because we can imagine du as cancelling 
out. lndeed, if we extend the definitions to allow dy and dx to be used 
separately as differentials the procedure becomes justifiable. However, we 
must never cancel out symbols such as ox or oy. You can see why if you 
Iook at the formulas for a change of variables: it would give 1 = 2! 

To avoid unnecessary complications we shall justify the formula for a 
change of variables in a special case only. Suppose f = f(x,y) and that 
x = x(t), y = y(t). You may like tothinkoft as time or temperature; then 
as t changes so too do x and y and consequently the value of f. 

If öt is a small non-zero change in t a~d öx and öy are the corresponding 
changes in x and y respectively, these in turn produce a change öf in f. 
Now 

öf = f(x+öx,y+öy) - f(x,y) 

= f(x+öx,y+öy) - f(x,y+öy) + f(x,y+öy) - f(x,y) 

_ f(x+öx,y+öy) - f(x,y+öy) s. f(x,y+öy) - f(x,y) s. 
- Öx uX + Öy uy 

Dividing through by öt, 

öf = f(x+öx,y+öy) - f(x,y+öy) öx + f(x,y+öy) - f(x,y) öy 
Öt öx Öt öy Öt 

Now we consider what happens as 8t tends to zero. we have 8x ~ 0, 8y ~ 0 
and also 

öx dx öy dy öf df ---Öt dt' ---öt dt' ---Öt dt 

Moreover, 

f(x,y + öy) - f(x,y) of --öy ay 



THE FORMULAE FORA CHANGE OF VARIABLES 231 

f(x + öx,y + öy) - f(x,y + öy) f(x + öx,y) - f(x,y) at 
~ ~-

öx öx ax 

Consequently, 

df = 8fdx + 8fdy 
dt ax dt ay dt 

Here we have made a number of assumptions which we have not justified. 
Principal among these is that the Iimits exist and that we can select the 
order in which to take these Iimits. Nevertheless we have given a justifica­
tion for the formula in the case where x and y are both functions of a single 
variable t, and it isasimple matter to extend this to the moregenerat case. 

It is important that we learn how to apply the chain rule correctly. Unfor­
tunately it is sometimes possible to misapply the chain rule and still obtain 
a correct result. Diligent examiners are always on the lookout for errors of 
this kind, and so marks will be lost if you are sloppy! 

D If z = (x + y)2 where x = r cos 8 and y = r sin 8, show that 

2 2 azz az z - 4 2 
r arz + 882- r 

We begin by finding the first-order partial derivatives: 

az az ax az ay 
-=--+--
ar ax ar ay ar 

= 2(x + y) cos 8 + 2(x + y) sin 8 

= 2(x + y) (cos 8 + sin 8) 

Do you follow it so far? 
See if you can obtain the other first-order partial derivative. 

Herewe are: 

az az ax az ay 
-=--+--
88 ax a8 ay a8 

= 2(x + y)(-r sin 8) + 2(x + y)r cos 8 

= 2r(x + y) (cos 8 - sin 8) 

There is not normally too much of a problern at this stage; it is when we 
differentiale again that some students, and unfortunately textbooks, over­
look terms. It is important to remernher that the chain rule must always be 
used when we differentiate with respect to a subsidiary variable. 
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So now 

a2z a (az) 
ar2 = ar ar 

= : [2(x + y)] (cos 8 + sin 8) + 2(x + y) i_ (cos 8 + sin 8) 
ur ar 

The second term is zero. Therefore, applying the chain rule to the first 
term, 

Also 

a~ . [a fu a ~] 
-;--2 = 2(cos 8 + sm 8) - (x + y)- +- (x + y)-
ur ax ar ay ar 

= 2(cos 8 + sin 8) (cos 8 + sin 8) 

= 2(cos2 8 + 2 sin 8 cos 8 + sin2 8) 

= 2(1 + sin 28) 

a2z a (az) 
a82 = a8 a8 

= 2(x + y) :8 [r(cos 8 - sin 8)) + 2r(cos 8 - sin 8) :8 (x + y) 

= 2(x + y) [r( -sin 8- cos 8)) + 2r(cos 8- sin 8) ( -r sin 8 + r cos 8) 

= 2r2 [ -(sin 8 + cos 8f + (cos 8 - sin 8)2) 

= 2r2( -4 sin e cos 8) 

= -4r2 sin 28 

Therefore 

As an exercise you may wish to check this by first eliminating x and y in the 
expression for z and then differentiating directly with respect to r and 8; it's 
much quicker! 

7.7 THE TOTAL DIFFERENTIAL 

In the case of a differentiahte function f of a single variable we originally 
defined dyldx as a Iimit, so that the symbols dy and dx used on their own 
were meaningless. However, we found it useful to be able to use these 
symbols separately, and accordingly we extended the definition (Chapter 
4). We call dx a differential, and we canthink of it as a change in the value 
of x, not necessarily small. In fact it is any real number. The differential dy 
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is then defined by dy = f'(x) dx. Of course if dx happenstobe small then 
dy is an approximation to the corresponding change in y. 

In the case of a function of several variables we adopt a similar approach. 
Specifically, suppose that z = f(x, y). Then the differentials dx and dy 
are defined to be any real numbers. Y ou may choose to think of them as 
changes in x and y respectively which are not necessarily small. The dif­
ferential dz is then defined by 

oz oz 
dz = -dx + -dy 

ox oy 

dz is usually called the total differential. 

When we derived the special case ofthe chain rule (section 7.6), we showed 
that when dx and dy are small the total differential is approximately the 
corresponding change in z. We can therefore use this to obtain a rough 
estimate of the error caused by inaccuracies in measurement. 

0 A surveyor estimates the area of a triangular plot of land using the 
formula 

A =!ab sin C 

where a and b are the lengths of two sides and C is the included angle. If 
the sides are measured to an accuracy of 2% and the angle C, measured as 
45°, is measured to within 1%, calculate approximately the percentage 
error in A. 

You may have a go at this on your own if you wish. 

Using the total differential, 

oA oA oA 
dA = -da + - db + - dC 

oa ob oC 

Now da = ±0.02a, db = ±0.02b and dC = ±0.01C. Also 

oA 1 . c - = -a sm 
ob 2 

Substituting, 

oA 1 
-=-abcosC 
oC 2 

dA = 112 b sin C (±0.02a) + 112 a sin C (±0.02b) 
+ 1/2 ab cos C (±0.01C) 

= 112 ab sin C (±0.02 ± 0.02 ± 0.01C cot C) 

Now C = 45° = :rc/4, and so cot C = 1. Therefore 
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dA = A [±0.02 ± 0.02 ± 0.01 (Jt/4)) 

The greatest error occurs when all have the same sign, so that 

idAI ~ O.OlA [2 + 2 + (Jt/4)) = 0.048A 

So the error is not more than 5% approximately. • 
Finally, we mention a few of the notations which are sometimes used for 
partial differentiation. Suppose that z = f(x,y). Then 

oz of 
fx t. Dtf 

ox ox 

are all equivalent and 

o2z o2f 
fx_v /12 D•2f --

oxoy oxoy 

are also equivalent to one another. There are many variations of these, and 
it is necessary to determine which notation is being used at any time. Our 
notation is the one which is most widely used. 

So now we areready to take steps. We are going to tackle a problern which 
is sometimes incorrectly solved in textbooks. 

,....,....-------7.8 Workshop _______ _ 

lf"Ll Exercise Transform the partial differential equation 

o2z o2z 
-+-=0 
ox2 oy2 

where z is expressed in terms of cartesian coordinates (x, y), into a partial 
differential equation in polar COOrdinates (r, 8), where X = r COS 8 and 
y = r sin e. 

Let us begin by writing down formulas which express the partial deriva­
tives with respect to x and y in terms of the partial derivatives with respect 
to r and 8. When you have done this, take the next step. 

Wehave 

{)z {Jz or {)z ae 
-=--+-­
ox ar ax ae ax 

This isastraight application of the chain rule. Similarly, 
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8z 8z 8r 8z 88 -=--+--
8y 8r 8y 88 8y 

If all is weil, follow through the next step. Ifyou made an error, write down 
formulas which express the partial derivatives with respect to r and 8 in 
terms of those with respect to x and y. Don't move on until you have done 
this. 

Here they are: 

8z = 8z 8x + 8z 8y 
8r 8x 8r 8y 8r 

8z = 8z 8x + 8z 8y 
88 8x 88 8y 88 

We now have a choice as to which pair to use. There are advantages and 
disadvantages either way. If we use the first pair we shall have to express r 
and 8 explicitly in terms of x and y so that we can differentiate. If we use 
the second pair we can find the partial derivatives easily enough, but we 
shall then have to eliminate to obtain the differential equation and it might 
be difficult to find our way. 

Let us be definite: we shall use the first pair. So we must obtain r and 8 
explicitly in terms of x and y, and then the partial derivatives. Do this and 
then take the next step. 

Wehave r2 = x2 + y2 and so r = V(x2 + yZ). Consequently, 

8r X 

8x = V(x2 + yZ) 
8r y 
8y = V(x2 + yZ) 

Also tan 8 = y/x so that 8 = tan- 1 (ylx). Therefore 

and so 

8r X 
-=-
8x r 

88 -y 
8x = (x2 + yZ) 
88 x 
8y = (x2 + yZ) 

8r y 
-=-
8y r 

88 -y 
8x =--;:r-

88 X 

8y = r 2 

Now substitute these expressions into the formulas for a change of vari­
ables, and take the next step. 

r-?1 
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~Weobtain 

.___ _ _) 

and 

()z ()z or ()z ae 
-=--+-­ox or ox ae ox 

oz x oz (-y) 
=--+--­or r ae r 2 

()z ()z or ()z ae 
-=--+--oy ar ay ae ay 

oz y oz x 
= ar ~ + ae yZ 

Now we are ready for the second-order derivatives with respect to x and y 
respectively. Y ou find the second-order partial derivative with respect to 
x- but be careful! This is the place at which we pass the bones of reputa­
tions bleached white by the sun. 

Herewe go! We must use the chain rule again and not overlook any terms: 

Here we have simply used the product rule but kept the two sets of vari­
ables apart. Since x and y are independent we can deduce that their partial 
derivatives with respect to each other are zero, and so the third term is 
zero. We must use the chain rule again to expand the remaining terms. So 
the second-order partial derivative of z with respect to x is 

o2z 1 oz [ a (1 az) or a (1 oz) ae] 
ox2 = ~ or + X or ~ or OX + 88 ~ or OX 

[ a ( 1 oz) or a ( 1 oz) ae] 
- y or r 2 ae ox + ae ? ae ox 

This is where people make the error: they overlook the mixed derivative 
terms. As it happens they end up with the correct equation at the final 
stage, even though the second-order derivatives themselves are incorrect. 
To continue: 
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[( -2 az 1 a2z) x (__!_ a2z) (-y)] 
- y 7 ae + 72 arae ~ + r2 ae2 r2 

1 i)z x2 i) 2z x2 i)z xy i) 2z 2xy i)z xy i) 2z i i)2z - --+---------+------+--- rar r2 iJr2 r3 ar r3 aear r4 ae r3 arae r4 ae2 

Weil, there it is. Pretty tough going, isn't it? You have to keep a clear head 
and make sure you use the chain rule properly. If you didn't manage that 
then you are undoubtedly part of a huge majority, so you may take con­
solation in that. Also you may be relieved to know that the going seldom 
gets harder. Anyway, we still have the other second~order derivative to 
obtain: so off you go! 

Lastly we must add the two expressions for the second-order derivatives 
and equate to zero. 

This is what you should get if you remernher that x2 + / = r2 : 

! i)z + iJ2z + __!_ i)2z = 0 
r ar iJr2 r2 ae2 

so that 

This is Laplace's equation in two dimensions expressed in polar coordinates 
(see also section 7.5). 

fl-?1 
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lf you would like even more practice at this sort of work you can always 
try the other approach. The alternative method involves determining ex­
pressions for the second-order derivatives of z with respect to r and e in 
terms of those with respect to x and y and then using Laplace's equation in 
cartesian coordinates to eliminate x and y. lt helps to know the equation 
we are aiming to derive. 

You probably feel that those steps were quite steep, but if you persisted 
and completed the exercise you will have gained some useful experience. 
Remember to pay particular attention to brackets. They are not there for 
decorative purposes: they play a vital part. Students who pay scant atten­
tion to brackets rarely succeed in mathematics. 

_________ 7.9 Practical ________ _ 

VOLUME ERROR 

The volume of a hydraulic tank, in the shape of a ring, is calculated using 
the formula 

where h is the height and r and s are the external and internal radii respec­
tively. If r and s were measured 3% too !arge, estimate the maximum error 
in V if h is correct to within l%. 

Try this. We need the formula for the total differential. Begin by writing 
this down for these symbols, obtain the partial derivatives and substitute 
into your equation. 

This is correct: 

Now 

av av av 
dV = - dr + - ds + - dh 

ar as ah 

av 
- = 2rtrh 
ar 

av - = -2rcsh 
as 

av 2 , - = rtr - rcs-
oh 

Also dr = 0.03r, ds = 0.03s, dh = ±O.Olh. This gives 

dV = 2rtr2h(0.03) - 2rts2h(0.03) ± (rtr2 - rci) (O.Olh) 

= V(0.06 ± 0.01) 

So the calculated value of V is between 5% and 7% too !arge. 
It's all quite simple really. Remember the chain rule, and remember to 

put in brackets whenever necessary, and everything should be fine. 
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Oll FLOW 

Here is a problern about oil - just to rnake sure everything is running 
srnoothly! 

The rnotion of a light oil flowing with speed u past a cylindrical bearing 
of radius a rnay be roughly described by the equation 

<I> = u cos a (r + : 2
) cos e + zu sin a 

where a is a constant and r, e and z are independent variables. Show that 
<1> satisfies the equation 

Try it yourself first, and then we will Iook at it stage by stage. 

I To solve this problern we rnerely need to show that <1> satisfies the partial 
differential equation. Don't, whatever you do, take your starting-point 
as the partial differential equation and then try to deduce the expression 
for <j> frorn it. We haven't been given enough information for that 
approach, even if we wished to atternpt it that way. 

We begin by finding the first-order partial derivatives: 

~~ = u cos a ( 1 - ~~) cos e 

o<J> ( 02) ae = u cos a r + ,2 ( -sin 8) 

o<J> . oz = u sm a 

Check yours and see if they are right. The next step, of course, is to obtain 
the second-order derivatives we need. 

2 Here we have 
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If you have these correct, it remains to substitute them into tlie left-hand 
side of the partial differential equation and confirm that the result is 0. 

ucosa a-( ~) - ' r+- cose ,- r 

=0 

SUMMARY 

Wehave 
D Introduced the notion of partial differentiation and seen how to 

obtain partial derivatives of the first and second order. 
D Derived the chain rule 

8f 8f ax 8f ay 
-=--+--
au ax au ay au 

at at ax at ay -=--+--
av ax av ay av 

and practised its use. 
D Used the total differential 

az az 
dz = -dx + -dy 

ax ay 

to estimate errors in calculations which involve formulas with more 
than one independent variable. 

EXERCISES 

l Obtain the first-order partial derivatives of the functions defined by the 
following formulas: 
a f(x,y) = x 3 + yx2 

b f(x,y) = sinxycos (x + y) 
c f(x,y) = (x + 2y)3 



d f(x,y) = exp(x + y)cosxy 
e f(x,y) = y'cosh (x + y) 
f f(x,y) = cosh (xly) 
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2 Obtain the mixed second-order partial derivatives of each of the 
following functions defined by the formulas: 
a f(x,y) = y'(x2 + y 2) + sinxy 
b f(x,y) = y'(x + 2y) + x 2y 
c f(x,y) = x2sin (3x + 4y) 
d f(x,y) = sin (x2/y 3) 

3 Obtain expressions in terms of u, v and partial derivatives with respect to 
u and v for {Jz/ox and {Jz/oy if 
a x = u2v2,y = u + v 
b x = u + 2v, y = 2u + v 
c x = u + uv,y = v- uv 
d x = y'(u2 + v2), y = u/v 

ASSIGNMENT 

1 Obtain the first-order partial derivatives of the functions defined by each 
of the following formulas: 
a f(x, y) = sin x cos y + xy2 

b f(x, y) = ex cos y + ex sin y 
c z = In y' (x2 + yZ) 
d z = (x + 2y) (x - 2y )5 

e z = sin ( u2 - v2f 
2 Verify the equality of the mixed second-order partial derivatives of the 

function f defined for all real x and y (x2 + y2 =I= 0) by 

f(x, y) = In (x2 + yZ) + cos (x + 2x2y) 

3 Obtain an expression in terms of u and v and partial derivatives with 
respect to u and v for 

iJz oz 
-+­
ax iJy 

if X = eu COS V and y = eu sin V. 

4 The force on a body is calculated using the formula 

F = km1';'2 
r 

where k is constant, m 1 and m2 are masses and r is a distance. Calculate 
approximately the percentage error in F if the massses are measured to 
within 1% and the distance to within 5%. 
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FURTHER EXERCISES 

1 ·lf X = r COS 8 and y = r sin 8, and Z = f(x, y) = g(r, 8), prove that 
a gr = (xfx + yf,.)lr 
b gfl = xf,. - yfy 

C (gr)2 + ~ (gfl)2 = (fy)2 + (/,.)2 
r . 

2 Show that if u = ln x + ln y and v = xy then 

au av av au 
--=--
ox ay ax ay 

3 If z = f(x + y) + g(x - y), where fandgare both twice differentiable 
real functions, prove that 

o2z o2z -,=-, ax- ay-

Hence or otherwise show that z = sin x cos y and z = e.r sinh y each 
satisfy this partial differential equation. 

4 If z = x"'y", where m and n are constants, show that 

dzlz = m dxlx + n dyly 

5 If z = In (x2 + /), prove that Zyx + z"Y = 0. Show further that if 
z = f(x2 + /) then · 

Zxx + z,.,. = 4tJ"(t) + 4J'(t) 

where t = x2 + /. 
6 If z = f(ylx) show that xzx + yz,. = 0. Hence or otherwise show that this 

partial differential equation is satisfied by each of the following: 
a z = sin [(x2 + /)lxy) 
b z = ln (ylx) 
c z = exp [(x - y)l(x + y)] 

7 A beam of very low weight, uniform cross-section and length I simply 
supported at both ends carries a concentrated Ioad W at the centre. It is 
known that the deftection at the centreis given by y = W('/48EI, where 
Eis Young's modulus and I is a moment of inertia. Eis constant but the 
following small percentage increases occur: 2E in W, E in I and 5E in I. 
Show that the error in y is then negligible. 

8 The second moment of area of a reetangle of breadth B and depth D 
about an axis through one horizontal edge is given by I= BD3/3. If a 
small increase of ö% in D takes place, estimate the change in B required 
if the calculated value of I is to remain constant. 

9 In telecommunications, the transmission line equations may be written 
as 
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. ai av 
Rz + L- = --

at ax 

av ai 
Gv + C- = --

at ax 

where R, L, G and C are constant. Show that both i and v satisfy the 
telegraphists' equation 

a~ a~ ~ 
axz = LC atz + (GL + RC) at + RG y 

In the case of a distortionless line, RC = LG. If wz = 1/LC and az = 
RG, show that telegraphists' equation becomes 

azy 1 azy 2a ay z 
axz = wz atz + -; at + a y 

10 The ratio r of the magnetic moments of two magnets was evaluated 
using the formula r = (t~ + tT}!(t~- tf), where t 1 and tz are the times of 
oscillation of the magnets when like poles are in the same direction and 
when Iike poles are in the opposite direction respectively. If e1 is the 
percentage error in t 1 and ez is the percentage error in tz, show that the 
percentage error in r is approximately 4tfd(e1 - ez)l(t~ - t1). 

11 The natural frequency of oscillation of an LRC series circuit is given by 

f = 2~ ~(L1c- 4~z) 
If L is increased by 1% and C is decreased by 1%, show that the per­
centage increase in f is approximately RzC/(4L - RzC). 

12 The heat generated in a resistance weid is given by H = KPRt, where 
K is a constant, i is the current between the electrodes and t is the time 
for which current ftows. H must not vary by more than 5% if the weid 
is to remain good. lt is possible to control t to within 0.5% and R to 
within 2.5%. Estimate the maximum possible variation in current if 
the weid is to retain its quality. 

13 Air is pumped into a ruhher tyre which has a volume given hy 
V = 21r2a2b. The internal radius r and the external radius R are 
related to a and b hy r = b-a and R = b+a. lfthe internal radius 
decreases hy approximately 1% and the external radius increases 
hy approximately 2% ohtain approximately an expression for the 
percentage increase in volume in the tyre. 



Series expansions and their uses 8 

ln previous chapters we have described the processes of elementary 
differentiation for functions of a single variable. ln Chapter 7 we 
extended some of these ideas to functions of several variables. There 
is much more to calculus than this, and our next task is to consider 
some other applications. We shall see in particular that series ex­
pansions play a vital role. 

After studying this chapter you should be able to 
0 Obtain Taylor's expansion of a function about a point; 
0 Expand f(x) as a power series in x using Maclaurin's theorem; 
0 Apply I'Hospital's rule correctly; 
0 Classify stationary points; 
0 Determine points of inflexion. 
At the end of this chapter we shall solve a practical problern con­
cerning a valve. 

8.1 THE MEAN VALUE PROPERTY 

The graph of a smooth function is shown in Fig. 8.1. By smooth we mean 
that the function is differentiable everywhere. Geometrically this implies 
that the curve has a tangent at all its points. 

A and Bare two points where this smooth curve crosses the x-axis. It can 
be shown that there is at least one point P on the curve between A and B 
with the property that the tangent at Pis parallel to the x-axis. In symbols 
we can express this by saying that if f( a) = 0 and f( b) = 0 then there exists 
some point c E (a,b) suchthat f'(c) = 0. 

Although this property is intuitively obvious, its proof requires quite 
advanced mathematical ideas and so we shall omit it. Surprisingly perhaps 
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y-axis 

p 

x-axis 

Fig. 8.1 A smooth function. 

this simple theorem, known as Rolle's theorem, has quite profound con­
sequences. In particular it Ieads to Taylor's expansion. 

Weshall deduce one simple generalization straight away; this is known as 
the mean value property. 

Suppose we have a smooth curve and two points A and B on it (Fig. 
8.2). The mean value property says that there is some point P on the curve 

y-axis 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

",..",.. ------1 
0 b 

Fig. 8.2 The mean value property. 

x-axis 
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between A and B suchthat the tangent at Pis parallel to the chord AB. 
Suppose A is the point (a, f(a)) and B is the point (b, f(b )). Then 

slope AB = f(b) - f(a) 
b-a 

Consider g = g(x) defined by 

g(x) = f(x) - f(a) - [f(b l = ~(a)] (x - a) 

Because g is a sum of differentiahte functions, g is also differentiable. 
In fact 

g'(x) = f'(x) _ f(b) - f(a) 
b- a 

Now g(a) = 0 and g(b) = 0, and so by Rolle's theorem there exists 
c E (a, b) such that g'(c) = 0. That is, 

f'(c) = f(b) - f(a) 
b- a 

for some c, a < c < b. This is precisely the mean value property. 

8.2 TAYLOR'S THEOREM 

lf we rearrange the formula which describes the mean value property we 
obtain 

f(b) - f(a) = (b - a)f'(c) c E (a, b) 

So if we write b = a + h then c = a + eh for some e E (0, 1). Therefore 

f(a + h) = f(a) + hf'(a + eh) e E (o, 1) 

1t is possible to generalize this result so that, if we have a function which 
can be differentiated twice everywhere in an open interval containing the 
point a, then 

h2 
f(a + h) = f(a) + hf'(a) + 2 f"(a + eh) for some e E (0, 1) 

Therefore 

f(a + h) = f(a) + hf'(a) + Rz 

where 

h2 
Rz = 2 f"(a + eh) for some e E (0, 1) 
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Generalizing still further, if f is a real function which can be differentiated 
n times at all points in an open interval containing the point a, then 

h2 
f(a + h) = f(a) + hf'(a) + 2! f"(a) + 

hn-1 
f (n-1)( ) R + (n-1)! a + n 

where 

hn 
Rn = 't<n>(a + eh) for some e E (0, 1) 

n. 

This expansion is known as Taylor's expansion of f about the point a, and 
Rn is called the remainder after n terms. 

So we have 
n-1 hr 

f(a + h) = L 1 J<r>(a) + Rn 
r=O r. 

where 

TAYLOR'S SERIES 

hn 
Rn = - t<n>(a + 8h) for some e E (0, 1) 

n! 

If f is infinitely smooth, which means it can be differentiated an arbitrary 
number of tim es, and if Rn - 0 as n - oo, then we obtain Taylor's series. 
This is an infinite series representation for f(a + h): 

oo hr 
f(a + h) = 2: - f(rl(a) 

r=O r! 

If we use the variable x instead of h this becomes a power series in x: 
00 xr 

f(a + x) = L - f(rl(a) 
r=O r! 

The special case where a = 0 is known as Maclaurin's series: 
oo r 

f(x) = L XI f(r)(O) 
r=O r. 

Although you may not have a clear understanding of what is meant by an 
infinite series until you study them in Chapter 9, be content for the time 
being to derive Taylor and Maclaurin expansions for known functions. 
However, one word of warning is in order. 

It is not true that if we obtain a Taylor or Maclaurin series from a 
function that the series expansion is always valid. Nor is it true that if the 
series converges then the expansion is valid. In fact we are only entitled to 
write equality in the case where R 11 - 0 as n- oo. Weshall therefore write 
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the equals sign on the understanding that we are restricting the domain of 
the function to those points for which R11 ~ 0. 

Here are two Iimits which can be quite useful in deciding whether or not 
R11 ~ 0: 

xll 
lim - = 0 

11---+x n! 
for all x e IR 

lim X11 = 0 if X E ( -1, 1) 
"~x: 

0 Obtain the Maclaurin expansion for e-'. 
Maclaurin's expansion is 

X II 

f(x) = L ; P,.'(O) 
11=0 n. 

lt is therefore necessary for us to calculate the values of successive 
derivatives of f at 0. If we put f(x) = e-' we have f(O) = e0 = I. Moreover 
f'(x) = e-'. so thatf'(O) = e0 = I. Clearly [< 11 >(x) = e-' for all n e N, and so 
[1 11 '(0) = 1 for every n. Therefore 

Here 

eil 
R" =! n. 

xll 
+-+ 

n! 

which tends to zero as n tends to infinity for all c e IR. This shows in fact 
that this expansion is valid for all x e IR. • 

THE EXPONENTIAL FUNCTION 

We introduced the exponential function by stating that when e·' is dif­
ferentiated with respect to x the result is e·' (Chapter 4 ). Wehave now used 
this to derive a representation of e-' as a power series in x. There are several 
ways of introducing the exponential function. Another way is to define 
exp x by means of the power series in x. and then to use deep theory of 
power series (Chapter 9) to show that exp x obeys the laws of indices and 
is unchanged when differentiated with respect to x. Yet another way to 
define the exponential function is by means of a Iimit: 
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lim (1 + ~)n 
n-+oo n 

We shall give a very informal justification of this by showing how we can 
obtain theinfinite series representation from it. First we expand (1 + xln)" 
by means of the binomial theorem: 

( x)n 1 (x) n(n - 1)(x)2 n(n- 1)(n - 2)(x) 3 
1+- = +n- + - + - + 

n n 1x2 n 1x2x3 n 

_ 1 1(1 - 1/n) 2 1(1 - 1/n)(1 - 2/n) 3 
- +x+ 1x2 x+ 1x2x3 x+ 

Now as n ~ oo we have for each fixed r E N 

In this way we see that 

lim (1 + ~)n = 1 + x + x2 + x3 + 
n---+oo n 2! 3! 

xn 
... ,+-, + 

n. 
= ex 

as foretold. 
We must not disguise the fact that once again we have used properties of 

infinite series which, although plausible, require proof. Unfortunately 
there are many properties which appear plausible in the context of infinite 
series but which are false. 

0 Use Maclaurin's expansion to obtain the binomial series for (1 + x)n, 
where n is any real number. 

Notice how Maclaurin's expansion and series aredifferent names for the 
same thing. Some books distinguish between the expansion, which is the 
formula with remainder, and the series, which is an infinite series. How­
ever, there is no consensus on this terminology. 

First we should remark that if r is any real number we have defined a' 
only for a > 0. Therefore we must presuppose that 1 + x > 0, so that 
x> -1. Now 

f(x) = (1 + xt 

f'(x) = n(1 + xt- 1 

f"(x) = n(n - 1) (1 + xt-2 

In general, 

so f(O) = (1 + Ot = 1 

so f'(O) = n x 1 = n 

so f"(O) = n(n - 1) 

f(r)(x) = n(n - 1) ... (n - r + 1)(1 + xt-r 

So 
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J<'l(O) = n(n - 1) ... (n - r + 1) 

Therefore in the Maclaurio expansion the coefficient of x' is 

n(n - 1) ... (n - r + 1) 

1X2X3X ... Xr 

But ?Y definition this is the binomial coefficient (~). Consequently we 
obtam 

(1 + xt = (~) + (;)x + (;)x2 + ... + (;)x' + ... 

Again we stress that in order to be justified in using this infinite series as a 
representation for (1 + xt we should need to examine the remainder after 
r terms and show that it tends to 0 as r ~ oo. In fact this binomial expansion 
is only valid when x E ( -1, 1), that is -1 < x < 1. • 

You may have come across some other power series. There are power 
series in x corresponding to the circular functions and the hyperbolic 
functions. Here are the main ones: 

= ( _ 1)"x2" 
cos X = n~O (2n)! 

. "' (-l)"x2"+I x3 xs x7 
sm x = 2: (2 1)' = x - -3, + -5, - -7, + 

n=O 11 + · · · · 
= x2" x2 x4 x6 

cosh x = 2: (2 ) 1 = 1 + -21 + -41 + -61 + 
n=O n · · · · 

x2"+ 1 x3 xs x7 
sinh x = 2: 1 = x + - + - + - + 

n=O (2n + 1). 3! 5! 7! 

It can be shown that these are valid for all x E IR. You will probably have 
observed the close similarity between the series expansions for the circular 
functions and their hyperbolic counterparts. We shall investigate this 
similarity when we consider complex numbers (Chapter 10). 

0 Obtain the first four non-zero terms in the expansion of tan x as a power 
series in x. 

Herewe put 

f(x) = tan x 

so f(O) = tan 0 = 0. 

f'(x) = sec2 x 

so f'(O) = sec2 0 = 1. 
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f"(x) = 2 sec x sec x tan x = 2 secl x tan x 

so f"(O) = 0. 

t(3>(x) = 2 secl x sec2 x + 2 tan x 2 sec x sec x tan x 
= 2 sec4 x + 4 sec2 x tan2 x 

so f 3>(o) = 2. 

= 2 sec4 x + 4 sec2 x (secl x - 1) 
= 6 sec4 x - 4 sec2 x 

f 4>(x) = 24 sec3 x sec x tan x - 8 sec x sec x tan x 
= 24 sec4 x tan x - 8 sec2 x tan x 

so f 4>(o) = o. 

f 5>(x) = 24 sec4 x sec2 x + 24 tan x 4 sec3 x sec x tan x 
- 8sec2 xseclx- 8tanx2secxsecxtanx 

= 24 sec6 x + 96 sec4 x (sec2 x - 1) - 8 sec4 x 
- 16 sec2 x (sec2 x - 1) 

= 120 sec6 x - 120 sec4 x + 16 sec2 x 

so t<5>(o) = 16. 

f 6>(x) = 720 sec5 x sec x tan x - 480 sec3 x sec x tan x + 32 sec x sec x tan x 
= 720 sec6 x tan x - 480 sec4 x tan x + 32 secl x tan x 

so t<6>(o) = 0. 

f 7>(x) = 4320 sec5 x sec x tan x tan x + 720 sec6 x sec2 x 
- 1920 sec3 x sec x tan x tan x - 480 sec4 x sec2 x 
+ 64 sec x sec x tan x tan x + 32 sec2 x sec2 x 

= 4320 sec6 x tan2 x + 720 sec8 x - 1920 sec4 x tan2 x 
- 480 sec6 x + 64 sec2 x tan2 x + 32 sec4 x 

so f 7>(o) = o + 120 - o - 480 + o + 32 = 212. 

This is the fourth non-zero term, and so we can write down the 
expansion: 

x3 r x7 

tan X = 0 + X + 0 + 2 3! + 0 + 1.6 S! + 0 + 272 7! + 

x3 2 5 17 7 
= x + 3 + 15x + 315x + · · · 

This example shows that we should not always expect a discernible pattern 
to emerge. • 

Now for some steps- but make sure you have understood all the examples 
first. 
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r-r--------8.3 Workshop _______ _ 

lf\l Exercise Differentiate (ln xY (x > l) with respect to x. 

'-----' 

This is just a Iittle differentiation to warm up on. Try it, then step 
forward. 

Herewe go then. lt's easiest to put y = (ln xY and take Iogarithms: 

so that 

In y = In [(In xY] = x In (In x) 

l dy l l 
-- = In (In x) + x-­
y dx ln x x 

dv 
___.::_=In (in x)(In x)' +(In x)-'- 1 

dx 

If you were right then step ahead to step 4. If you were wrong. check 
carefully what you have done; then try the next probiem. 

!>Exercise Obtain dyldx if y = (cosh x)'. 
You know the method so there should be no serious probiems. 

We obtain In y = x In (cosh x). So. differentiating both sides with respect to 
'-----' x and using the product rule and chain rule. we have 

l dv l d 
---=- = In (cosh x) + x --- (cosh x) 
y dx cosh x dx 

sinh x 
=In (cosh x) + x --h­

cos X 

dy -
-d = [in (cosh x) + x tanh x] (cosh x)' 

X 

Now move on to the next step. 

Exercise Obtain the first four terms of Tayior's expansion for y = sin x 
'------' about the point x = ll/4 as a power series in x. 

The difficulty with a question like this is sorting out what is really 
wanted. The troubie is that x has been used in three different ways here: 
first. as a dummy variable in the definition of sine; secondiy, as a specific 
point; and thirdly. as the dummyvariable in an algebraic description of thc 
power series. Let's separate all these things so that we can procecd. 
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In general given y = f(x) we obtain, using Taylor's expansion, f(a + h) 
as apower series in h. Here y = f(x) = sin x, a = n/4, and we can therefore 
obtain a power series in h for sin (rr/4 + h). To satisfy the question we 
shall at the final stage replace h by x. 

Right! You know what you have to do, so see how it goes. 

Wehave 

f(a + h) = f(a) + hf'(a) + ... 

So we must evaluate successive derivatives at the point rr/4: 

f(x) = sin x => f(a) = sin rr/4 = 11V2 

f' (x) = cos x => f' (a) = cos n/4 = l/V2 

f"(x) = -sin x => f"(a) = -sin rr/4 = -l/V2 

.f<3>(x) = -cos x => jl3 >(a) = -cos n/4 = -11V2 

This will give the first four non-zero terms, and so we have 

f(a + h) = f(a) + hf'(a) + !h2f"(a) + ... 
sin (rr/4 + h) = 11V2 + h/V2 - h212V2 - h316V2 + 

Finally, replacing h by x we have 

sin (rr/4 + x) = 11V2 + x!V2 - x212V2 - x316V2 + 

Now try another problem. 

[> Exercise Obtain Maclaurio 's expansion for f(x) = sin (x + n/4) as a power 
series in x as far as the term in x3. 

This shows how closely Taylor's expansion and Maclaurin's expansion 
are to one another. Superficially Taylor's expansion seems more general. 
However, not only can we deduce Maclaurin's expansion from Taylor's, 
but it is also possible to deduce Taylor's expansion from Maclaurin's. Try 
it, then step ahead. 

Wehave 

f(x) = f(O) + xf'(O) + :h2f"(O) + ... 

We therefore need to obtain successive derivatives of f evaluated whcn 
x = 0. Now 

f(x) = sin (x + n/4) 

f'(x) = cos (x + rr/4) 

.f"(x) = -sin (x + n/4) 

=> f(O) = sin rr/4 = l/V2 

=> f' (0) = cos rr/4 = l!V2 

= .f"(O) = -l!V2 

:-#] 
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J<3>(x) = -cos (x + Jt/4) => J<3>(o) = -cos Jt/4 = -11V2 

Substituting into Maclaurin's expansion: 

sin (Jt/4 + x) = 11V2 + x!V2 - x212V2 - x316V2 + ... 

as before. 
If you managed that successfully, then on you go to step 8. Otherwise, 

try a further exercise. 

I>Exercise Obtain an expansion of ln (1 + x) as apower series in x. 

We use Maclaurin's expansion and so we put f(x) = ln (1 + x). Weshall 
L----' need to obtain successive derivatives of f at 0 to substitute into the 

expansion formula 

f(x) = /(0) + xf'(O) + h 2f"(O) + ... 

So: 

f(x) = In (1 + x) => f(O) = ln 1 = 0 

1 
f'(O) = 1 f'(x) =- => 

1 +X 

f"( ) -1 
x = (1 + x)2 => f"(O) = -1 

/ (3l(x) = ( -1)( -2) => [<3>(0) = 2 
(1 + x)3 

/ (4l(x) = ( -1)( -2)( -3) => [<4>(0) = -3! 
(1 + x)4 

/ <5>( ) = ( -1)( -2)( -3)( -4) => J<5l(O) = 4! 
x (1 + x)s 

We can see a pattern emerging: 

J<">(O) = ( -1)"+ 1(n - 1)! when n E N 

When we substitute into the Maclaurio expansion we obtain 

x2 x3 x" 
f(O) + xf' (0) + 2! f"(O) + 3! /(3>(0) + ... + n! t<">(O) + ... 

x2 x3 x4 
= 0 + x(1) + 2! (-1) + 3! 2! + 4! (-3!) + ... 

+ x: (-1t+1 (n- 1)! ... 
n. 

x2 x3 x4 x" 
=X--+---+ + (-1)"+l- + 2 3 4 · · · n · · · 
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Wehave 

"" x" 
In (1 + x) = 2: (-1)"+ 1 -

n=1 n 

By examining the remainder after n terms it is possible to show that this 
series represents In (1 + x) whenever -1 < x ~ 1. 

Now we go on to another problem. 

r.> Exercise Given y = sin - 1 x, show that 

2 d2y dy 
(1 - x ) dxz - x dx = 0 

Differentiale n times using Leibniz's theorem to deduce 

dn+2y d"+1y d"y 
(1 - xz) dx"+2 - (2n + 1) x dxn+1 - nz dx" = 0 

Hence or otherwise obtain a power series expansion for sin - 1 x. 
This problern will help you to revise your work on Leibniz's theorem. 

Let's do it in three steps. First, obtain the equation for the second 
derivative. 

If y = sin - 1 x then sin y = x. So differentiating throughout with respect to x 

r-#!1 

we have .____ _ _, 

Squaring we have 

dy 
cosy-=1 

dx 

cos2 y (:~r = 1 

and since cos2 y = 1 - sin2 y = 1 - x2 we have 

(1 - x2)(:~r = 1 

Now differentiating again throughout with respect to x, 

dy d2y (dy) 2 
(1 - xz) 2 dx dxz + ( -2x) dx = 0 

Since dyldx is not zero we obtain 

2 d2y dy 
(1 - x ) dx2 - x dx = 0 



256 SERIE$ EXPANSIONSAND THEIR USES 

If you put a foot wrong then locate your error and take the next step, which 
is to use Leibniz's theorem. 

L----' We must consider the two terms in the last equation separately, since each 
is a product and will need to be differentiated n times by Leibniz's 

theorem. 

IS 

For the first term, put u = 1 - x 2 and v = y2 , where the subscript n 

denotes the nth-order derivative with respect to x. We have u 1 = -2x, 
u2 = -2 and u3 = 0, so that U 11 = 0 for 11 ~ 3. We also have v1 = y3 , v2 = y4 

andin general V11 = Y11 +z· Now Leibniz's theorem gives 

(uv) 11 = UV 11 + nu 1v11 _ 1 + ~n(n-l)u2v11 _ 2 + 

Now since all the other terms are zero we have 

7 d11 + 2y d11 + 1y n(n- 1) d11y 
(1- r) dxll+2 + n(-2x) dxll+l + 2 (-2) dxll 

7 d11 + 2y dll+ 1y d11y 
= (1- r) d 11 +7 - 211x-d ll+l- n(n-1) -d 11 

X - X X 

For the second term. if we put u = x and v = y 1 then u 1 = 1 and ll 11 = 0 if 
n > 1. Also v1 = y2 and in general V11 = Y11 + 1• Therefore 

(uv) 11 = UV 11 + nu 1V11 _ 1 + ... 

and so we obtain 

d11 + 1y d11y 
x-dll+l+n-dll 

X X 

Finally we combine the two terms. So differentiating throughout the 
equation n times we obtain 

2 d11 +2y d 11 +1y d 11y dll+ly d11y-
(1 - x ) d II + 7 - 2nx d II +I - n ( n - I) -d II - x d II + I - n -d II - 0 

X - X X X X 

Therefore 

2 dll+2y dll+ \· 2 dlly -
(1 - x ) -, + 7 - (2n + 1) x d II+ I - 11 -d 11 - 0 

dx' - x x 

You did weil if you managed to do that. Now you must think how you can 

use this to obtain Maclaurin's expansion. 

If y = f(x) then the equation is 

(1 - x2) J<"+ 2l(x) - (2n + 1) xf<n+ll(x) - n2 f(n)(x) = 0 
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but we require the values of the derivatives when x = 0. So the equation 
reduces to 

Now the equation was derived using Leibniz's theorem, and so is valid 
when n ~ 1. However, it also holds when n = 0 since it then reduces to the 
second-order equation. This means that the equation 

can be used to generate all the coefficients in Maclaurin's expansion from 
f(O) and f'(O). Now f(O) = sin-1 0 = 0 and f'(O) = 1. So we deduce that 
J<n>(o) = 0 if n is even, whereas 

t<3>(o) = 121 
t<5>(o) = 32 J<3>(o) = 32 12 
/(7)(0) = 52 [<5>(o) = 52 3212 

So we obtain the expansion 

12 3 3212 5 (2r- 1f (2r- 3)2 ... 3212 2r+l 
x + 3!x + T!x + ... + (2r + 1)! x + ... 

Weil, there it is. A bit of a monster, isn't it? 

8.4 L'HOSPITAL'S RULE 

L'Hospital's rule is extremely useful in the evaluation of a Iimit which 
might otherwise be difficult to obtain. Suppose we wish to evaluate 

and either 

or 

lim f(x) = 0 
x--+a 

I. f(x) 
lm -­

X--+a g(x) 

and lim g(x) = 0 
X--+a 

lim f(x) = ±oo and lim g(x) = ±oo 
x~a x~a 

Then I'Hospital's rufe says 

provided the Iimit exists. 

lim f(x) = lim f'(x) 
x--+a g(x) x--+a g'(x) 



258 SERIES EXPANSIONSAND THEIR USES 

Although we shall not prove it to be true generally, we can give an 
informal justification for this remarkable rule in the case where f(a) = g(a) 
= 0 and f' and g' are continuous at the point a: 

lim f(x) = lim f(x) - f(a) 
x---+a g(x) x---+a g(x) - g(a) 

= hm 
0 [f(x) - f(a) x - a ] 

x->a x - a g(x) - g(a) 

Now putting x - a = h we obtain 

Similarly 

Therefore 

0 Obtain 

lim f(x) - f(a) = lim f(a + h) - f(a) 
X---+a X - a h---+0 h 

= f'(a) = lim f'(x) 
x---+a 

10 g(x) - g(a) 10 '( ) 

lffi = lffi g X 
x~a X - a x~a 

lim f(x) = lim f'(x) 
x->a g(x) x->a g'(x) 

sin x - x 
lim -----"-­

x3 

Here f(x) = sin x - x and g(x) = x3
o So 

lim f(x) = lim [sin x - x] = 0 
x---+0 x->0 

lim g(x) = lim x3 = 0 
x->0 x---+0 

So we can use l'Hospital's rule: 

f'(x) = cos x - 1 g'(x) = 3x2 

but 

lim f'(x) = 1 - 1 = 0 
X---+0 

lim g'(x) = 3 X 0 = 0 
X->0 

So we can use l'Hospital's rule again: 

f"(x) = -sin x g"(x) = 6x 
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As before, 

lim f'(x) = 0 
x~o 

lim g"(x) = 0 
x~o 

So we use l'Hospital's rule once more: 

So 

f 3>(x) = -cos x 

I. sin x - x 1. cos x - 1 
Im 3 = Im 2 
x~o X x~o 3x 

I. -sin x = Im--­
x~o 6x 

= lim -cos x = _ ! 
x~o 6 6 

The use of l'Hospital's rule at each stage is now justified because this final 
Iimit exists. • 

D Obtain 

I. 1 - sin x 
Im 

x~n/2 COt X 

When you have done this, see if you are correct. 

First, 1 - sin rr./2 = 1 - 1 = 0 and cot n/2 = 0. So we may use I'Hospital's 
rule: 

I. 1 - sin x 1. -cos x 0 Im = Im 2 = 
x~:rr./2 COt X x~n/2 -cosec X 

Alternatively, if we wish we can avoid I'Hospital's rule and instead use 
algebraic simplification: 

I. 1 - sin x 1. (1 - sin x) sin x 
Im = Im 

x~n/2 COt X x~n/2 COS X 

= lim (1 - sin x) sin x cos x 
x~n/2 COS2 X 

= lim (1 - sin x) sin x cos x 
x~n/2 1 - sin2 X 

I. (1 - sin x) sin x cos x 
= Im 

x~nt2 (1 - sin x) (1 + sin x) 
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. sin x cos x 
= hm . 

x--->1f12 1 + sm x 

= ____!_:Q_ = 0 
1 + 1 • 

One very important thing to remember about I'Hospital's rule is that you 
must not use it unless you have an indeterminate form. In other words, one 
of the following must hold: 

lim f(x) = 0 and lim g(x) = 0 
X-+ll X-+CI 

or 

lim f(x) = ±oo and lim g(x) = ±oo 
.r---+a x-+a 

Indeterminate forms can be represented by 0/0 or oo I oo: these expressions 
are meaningless and so indeterminate. 

Why not check that you understand this by taking a few steps? 

,---,--------8.5 Workshop _______ _ 

2\l Exercise Evaluate the following Iimit: 

. (ex + 1)x 
hm ,, 1 x----o e- -

Move on only when you have done it - or when you think you can 't do it. 

0 straight away we obtain 0/0, which is indeterminate. 

(ex + 1)x 

X ----

Again this produces the indeterminate 0/0 if we try to substitute x = 0, but 
now we can easily use I'Hospital's rule: 

I. X I' 1 Im --- = Im ---
x----o eX - 1 X--->0 eX - (} 

= lim _.!_ = 1 
x--.0 ex 
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Did you get that right? If you did then you may go on to the next section. 
Otherwise, try this next exercise. 

I> Exercise Evaluate the Iimit 

I" sin 3tX 

x~ sin (nx + x - 1) 

Try very hard with this one. Then step forward. 

If we attempt to put x = 1 we obtain the form 0/0, and so we shall use 
l'Hospital's rule: 

I" sin 3tX _ I" sin 3tX 

x~ sin (nx + x - 1) - x~ sin [(n + 1)x - 1] 

I. 3t COS 3tX = lm 
x--->1 (n + 1) cos [(n + 1)x - 1] 

n(-1) 3t 

(n+1)(-1) n+1 

REPEATED USE OF L'HOSPITAL'S RULE 

We can use Taylor's theorem to justify the repeated use of l'Hospital's 
rule. Suppose that both the real functions fand g have a Taylor expansion 
about the point a, and that both 

lim f(rl(x) and lim g<'l(x) 
x~a x~a 

are zero for all integers r such that 0 :::s r < n, but that 

lim g<nl(x) =I= 0 
x--->a 

By Taylor's theorem we have 

hn-1 h" 
f(a + h) = f(a) + hf'(a) + ... + J<n-ll(a) + -J<nl(a + 8h) 

(n-1)! n! 
hn-l h" 

g(a + h) = g(a) + hg'(a) + ... + g<n-ll(a) + -g<nl(a + <j>h) 
(n- 1)! n! 

where 8, <j> E (0, 1). 
The continuity of the derivatives at the point a gives 

J<rl(a) = 0 = g(rl(a) 

for 0 :::::: r < n. Therefore these Taylor series reduce to 

h" 
f(a + h) = -J<"l(a + 8h) 

n! 

'-----' 
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So that 

h" 
g(a + h) = -g<">(a + <j>h) 

n! 

f(a + h) _ J<">(a + Sh) 
g(a + h) - g<">(a + <j>h) 

Writing x = a + h we have 

lim f(x) = lim f(a + h) 
.Ha g(x) h-+0 g(a + h) 

. J<">(a + Sh) = hm =--:-,....:.----'-
1~--+0 g<">(a + <j>h) 

J<">(a) 
= g<">(a) 

. J<">(x) 
= hm ~() 

x-+a g X 

8.6 MAXIMA AND MINIMA 

There are many situations in which we have an interest in those points 
where a function attains a maximum or a minimum value. For example: 
1 A company may wish to maximize its profits, but increasing the price of 

its goods may decrease the demand. A reasonable question to ask is: 
'What price will maximize profit?' 

y-axis 
y-axis 

y = f(x) 

x-axis a 

Local maximum Local minimum 

(b) 

Fig. 8.3 (a) Local maximum (b) Local minimum. 
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2 An architect may be asked to design a library extension which, within a 
given budget, will maximize the available floor space. 

3 An electrical engineer may wish to maximize the power in a circuit. 
Suppose f is a real function which is defined at all points in some open 
interval containing the point a (Fig. 8.3). We say that f has a local maxi­
mum at the point a if and only if, for all h sufficiently small but non-zero, 

f( a + h) - f( a) < 0 

Similarly, f has a local minimum at the point a if and only if, for all h suf­
ficiently small but non-zero, 

f( a + h) - f( a) > 0 

Weshall confine our attention to functions which are infinitely smooth. As 
we have already remarked, this means that the function has derivatives of 
all orders. 

lt is intuitively obvious that if f is differentiable at either a local maxi­
mum or a local minimum then its derivative there is zero. Any point at 
which the derivative of f is zero is called a stationary point of f. The value 
of f at a stationary point is called a stationary value of f. (Stationary points 
are also sometimes known as turning points or critical points.) 

A simple picture shows that not all stationary points are points at which 
f attains either a local maximum or a local minimum. Any point at which 
a curve crosses its tangent is called a point of inflexion. If we obtain the 
stationary points we shall obtain not only the points at which the function 
attains a local maximum or a Iocal minimum but also some of the points of 
inflexion. In Fig. 8.4 A and I are local minima and Eisa local maximum; 
A, C, E, G and I are stationary points, whereas B, C, D, F, G and H are 
points of inflexion. 

y-axis 
E 

0 x-axis 

Fig. 8.4 Stationary points and points of infiexion. 
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Asthis makes clear, not every point of inftexion is a stationary point. We 
shall see later how to determine the points of inftexion_of a function. 

TESTING FOR MAXIMA AND MINIMA 

There is an elementary method for determining local maxima and local 
minima which relies on the observation that at these points f' changes sign 
(Fig. 8.5): 
1 As we pass through a local maximum, f' changes from positive to 

negative; 
2 As we pass through a local minimum, f' changes from negative to 

positive. 
It follows that if we examine the sign of f' on either side of the stationary 
point we should be able to classify it correctly. At a point of inftexion the 
sign is preserved. 

However, it is possible to obtain a test for maxima and minima which does 
not involve examining the sign of f' on either side of the stationary point. 
Suppose that the functionfhas a stationary point at a, so thatf'(a) = 0. By 
Taylor's theorem we know that 

h2 h3 
f(a + h) = f(a) + hf'(a) + 2! f"(a) + 3! [<3 >(a + 8h) 

where 0 < 8 < 1. So in this case we have 

h2 h3 
f(a + h) - f(a) = 2! f"(a) + 3! [<3>(a + 8h) 

y-axis 

0 x-axis 

Fig. 8.5 The sign of f' near stationary points. 
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Now iff"(a) is non-zero and[<3l(a + Sh) is bounded, it is possible to choose 
h so small, h =I= 0, that the sign of the right-hand side of this equation is the 
same as the sign of the first term (h2/2!)f"(a), and the sign of this first 
term is of course the same asthat of f"(a). So if f"(a) > 0 we deduce that 
f(a + h) - f(a) > 0 for all h sufficiently small but non-zero, whereas if 
f"(a) < 0 thenf(a + h) - f(a) < 0 for all h sufficiently small but non-zero. 
That is, 

f"(a) > 0 => local minimum 
f"(a) < 0 => local maximum 

Therefore the following is the rule for obtaining the points at which 
y = f(x) attains a local maximum or a local minimum: 
1 Obtain all the stationary points, that is the points a at which f'(a) = 0. 
2 For each stationary point a examine the sign of f"(a): 

a if f"(a) > 0 then local minimum 
b if f"(a) < 0 then local maximum 
c if f"(a) = 0 then further testing is necessary. 

0 Obtain and classify the stationary points of 

y = x2ex 

We first obtain dy!dx and then equate it to 0 for the stationary points: 

dy = x2ex + 2xex = x(x + 2)ex 
dx 

Now ex =I= 0: so x(x + 2) = 0, from which x = 0 and x = -2 are the 
stationary points. 

Next we differentiale again and evaluate the second derivative at each 
stationary point to determine its sign there: 

d 2~ = x2ex + 2xex + 2xe + 2ex = (x2 + 4x + 2)cx dx 

The sign of this is the same as the sign of 

x2 + 4x + 2 = (x + 2)2 - 2 

So 

x=O 
d2y 

=> dx2 > 0 => local minimum 

d2y 
x = -2 => dx2 < 0 => local maximum 

TESTING FOR INFLEXION 

• 

We now turn our attention to the problern of what to do when f"(a) = 0 at 
the stationary point. As before we can use Taylor's theorem to obtain 
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h2 h3 h4 

f (a + h) = f(a) + hf'(a) + - f"(a) + - [<3 >(a) + - [< 4 >(a + flh) 
2! 3! 4! 

for some 8 E (0, 1). 
Now f'(a) = 0 and f"(a) = 0, so that this reduces to 

h3 h4 

f(a + h) - f(a) = - [ 0 l(a) + - [<4 l(a + 8h) 
3! 4! 

If t<-'l(a) -=1= 0 and [< 4>(a + 8h) is bounded, the same argument as before 
shows that the sign of the right-hand side is the same as the sign of 
(h3/3!)[0l(a), which changes sign with h. So the sign of f(a + h) - f(a) 
changes sign as h changes sign so we have therefore a point of inftexion. 

Consequently if at a stationary point we have f"(a) = 0 and J<3>(a) -=1= 0 
we obtain a point of inftexion. On the other hand if J< 3 l(a) is zero too, then 
we need to continue with our analysis. This Ieads to a complete test for 
maxima and minima. 

MAXIMA AND MINIMA: COMPLETE TEST 

To obtain and classify those points at which y = f(x) attains a local maxi­
mum or a Iocal minimum: 
1 Determine the stationary points of f. That is. obtain those points at 

which dyldx = 0. 
2 Obtain for each stationary point the smallest value of n for which 

d"yldx" -=1= 0. 
3 If n is odd then the function has a point of inflexion at the stationary 

point. 
4 If n is even then the function attains either a local maximum or a local 

minimum at a: 

d"yldx" > 0 implies a local minimum 
d"yldx" < 0 implies a local maximum 

AT POINTS OF INFLEXION 

If we examine the slope of the curve as we pass through a point of inftexion 
we see that two situations can occur (Fig. 8.6): 
l dyldx decreases as we approach the point of inftexion and increases 

thereafter; 
2 d yldx increases as we approach the point of inftexion and decreases 

thereafter. 
If we were driving a car along a road which went up a hill with the shape 
of Fig. 8.6 we should be conscious of this change in slope at the point of 
inftexion. 

When we interpret mathematically what this means we see that f' itself 
has either a local maximum or a Iocal minimum at a point of inftexion. lt 
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Fig. 8.6 The sign of dyldx near points of inflexion. 

f 

x-axis 

follows that, at a point of inftexion, d 2y!dx2 = 0. However, if the second 
order derivative is zero at a stationary point it does not necessarily follow 
that we have a point of inftexion. This is a very common misconception and 
it is possible that you too have fallen victim to it. In short: 

. f . ft . dzy 0 pomt o m exwn => -d 2 = 
2 X 

dy 0 . f" ft . dx2 = =1> pomt o m exwn 

The next problern will help to reinforce this point. 

0 Obtain and classify the stationary points of y = x4ex. 
We begin by determining the stationary points: 

dy = x4e-'" + 4x-'ex 
dx 

Therefore we put x3 (x + 4) = 0 and deduce that the stationary points are 
x = 0 or x = - 4. Now 

d2 
___,t = x4ex + 8x-'ex + 12x2ex 
dx2 

= x 2(x2 + 8x + 12) ex 
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y-axis 

Y .. x•e" 

x-axis 

Fig. 8.7 The graph of y = x 4e'. 

When x = 0 we obtain d2yldx2 = 0, and so further testing is necessary. 
When x = -4 we obtain 

d' 
d-~ = 16( 16 - 32 + l2)e--.~ < 0 

x-

so there is a local maximum at x = -4. Now 

d3y = x--!ex + 12x-~ex + 36x2ex + 24xe-'­
dx-~ 

so that when x = 0, d3y!dx-~ = 0 and still further testing is needed. 

d-.~y = x-.~e + 16x-~ex + 72x2ex + 96xex + 24e·'-
dx-.~ 

so that when x -= 0 we obtain d-.~y/dx-.~ = 24 > 0, which corresponds to a 
local minimum. The stationary points are shown in Fig. 8.7. 

Now you can be absolutely certain that if d2y/dx2 = 0 at a stationary 
point then there is no guarantee that it corresponds to a point of inflexion. 
In the words of the old song: 'lt ain't necessarily so!' • 

Now for some more steps. 

,-------8.7 Workshop _______ _ es Exercise Obtain and classify all the stationary points of 

y = x2(x + 3)2 ex 
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This should cause very little difficulty provided you can determine the 
derivatives. Try it, then step ahead. 

Wehave 

y = (x2 + 3x)2 ex 

dy = (x2 + 3x)2ex + 2(x2 + 3x) (2x + 3)ex 
dx 

= (x2 + 3x)(x2 + 3x + 4x + 6)ex 
= x(x + 3)(x + 6)(x + 1)ex 

Equating to zero we obtain the stationary points 0, -3, -6, -1. 
Now we must differentiale again so that these can be classified as local 

maxima, local minima or points of inflexion. We could use the product rule, 
but there are five factors and algebraic simplification is tedious. We put 

z = x(x + 3)(x + 6)(x + 1)ex 
ln z = ln x + ln (x + 3) + ln (x + 6) + ln (x + 1) + x 

So differentiating with respect to x, 

1 dz 1 1 1 1 
--=-+--+--+--+1 
zdx x x+3 x+6 x+1 

Multiplying through by z, 

d2y 
dx2 = (x + 3)(x + 6)(x + l)ex +x(x + 6)(x + l)ex +x(x + 3)(x + l)ex 

+ x(x + 3)(x + 6)ex + x(x + 3) (x + 6)(x + 1)ex 

Now we examine each stationary point in turn: 
1 x = 0: d2y!dx2 = 18 > 0 => local minimum 
2 x = -3: d2y!dx2 = (-3)3(-2)e-3 > 0 => local minimum 
3 x = -6: d2y!dx2 = ( -6)( -3)( -5) e-6 < 0 => Iocal maximum 
4 x = -1: d2y!dx2 = (-1)2(5)e- 1 < 0 => local maximum 
If that was a personal success for you then skip through to step 4. Other­
wise, try this exercise. 

I>Exercise Obtain and classify the stationary points of the function defined 
by 

Have a go, then step forward. 

Wehave 

r#l 

rdil 
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f'(x) = x33e3x + 3x2e3x 

so that, equating to 0 for stationary points, 

3x2(x + 1) e3x = 0 

from which x = 0 (repeated) and x = -1 are the stationary points. 
To classify these stationary points it is necessary to differentiate again: 

f"(x) = x3 9e3x + 9x2e3x + 9x2e3x + 6xe3x 
= e3 ... (9x3 + 18x2 + 6x) 
= 3xe3x(3x2 + 6x + 2) 

When x = 0 we obtainf"(x) = 0, and so further testing is necessary. When 
x = -1 we obtain 

f"(x) = -3e-3(3 - 6 + 2) > 0 

so there is a local minimum. Differentiating again: 

J(3l(x) = e3x(27x2 + 36x + 6) + 3e3x(9x3 + 18x2 + 6x) 

When x = 0 we obtainj<3>(x) = 6 * 0, and so when x = 0 there is a point of 
inflexion. 

Now step ahead. 

14\l Exercise Obtain all the points of inflexion on the curve 

y = x6 - 5x4 + 15x2 + 1 

Be careful: read the question. Try it, then step forward. 

For a point of inflexion the slope has either a local maximum or a local 
L..._ _ _J minimum. Lets be the slope. Then 

s = dyldx = 6x5 - 20x3 + 30x 

We must therefore examine this to see where s attains a local maximum or 
a local minimum. 

We first obtain the stationary points of s: 

dsldx = 30x4 - 60x2 + 30 

So equating to 0 we have 

30x4 - 60x2 + 30 = 0 
x4- 2x2 + 1 = 0 

(x2 - 1)2 = 0 

So x = 1 or x = -1. These are the stationary points of s, and so are candi­
dates for points of inflexion of y. 



We must continue the test to be certain: 

d 2s!dx2 = 120x3 - l20x 
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When x = 1 we obtain 0, and when x = -1 we obtain 0 too. Therefore we 
differentiate again: 

So s has a point of inflexion at x = 1 and x = -1. This means that s does 
not attain either a local maximum or a local minimum, and so y has no 
points of inflexion. 

Now we shall solve a practical problern in which l'Hospital's rule is used. 

_________ 8.8 Practical ________ _ 

VAL VE RESPONSE 

The response x of a valve when subject to a certain input is given for t > 0 
by 

dx!dt = V3 [1 - (x2/tan2 t)] 112 

where x(t) ~ 0 as t ~ 0+. Show that 

dx!dt ~ V312 as t ~ 0+ 

Try this yourself first, and then move through the solution stage by stage. 

The physical situation enables us to assert that the Iimit exists. Suppose 
dxldt ~ k as t ~ 0+. We can see that the difficulty is centred on the term 
x/tan x, for if we knew the Iimit of this as t ~ 0+ we could calculate the 
Iimit of dx!dt using the laws of Iimits. 

See if you can deal with the problern now. 

We have, using l'Hospital's rule, 

r x r dxldt 
,_2~+ tan t = ,_lW+ sec2 t 

Now sec2 t ~ 1 as t ~ 0+, and dxldt ~ k as t ~ 0+. 
If you have been stuck, take over now. 

Therefore we obtain 
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So 

x dxldt lim (dx/dt) k 
tim = tim -,- = '~o+ , = - = k 

HO+ tan t HO+ sec- t tim (sec- t) 1 
t~O+ 

k = V3(1 - k2)1/2 

e- = 3(t - k2 ) 

4k1 = 3 

It follows that k = ±V3!2. However, k :;:::, 0 because dxldt > 0. Conse­

quently. as t ~ 0+ we have shown that dxldt ~ V3!2. 

We knew that the initial displacement was zero. and I'Hospital's rule 

has enabled us to determine the initial speed. Notice in particular that this 

is not an obvious result. Without I'Hospital's rule you might find it very 

difficult to confirm the Iimit. 

SUMMARY 

D We described the mean value theorem 

f(b) - f(a) = f'(c) 
b - a 

for some c E (a, b). 
D We generalized the mean value theorem to obtain Taylor's expansion 

about the point a 

where 

n-1 h' 
f(a + h) = L 1 f(rl(a) + R" 

r=O r. 

h" 
R" = I t<">(a + 8h) for some e E (0, 1) 

n. 

D We obtained Maclaurin's expansion as the special case a 0 of 

Taylor's expansion. 
D We described I'Hospital's rule for determining a Iimit 

!im f(x) = tim f'(x) 
x~a g(x) x->a g'(x) 

provided f(a)/g(a) is indeterminate. 
D We used Taylor's expansion to deduce a complete test for maxima 

and minima. 
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EXERCISES 

1 Obtain the first three non-zero terms of the Taylor expansion of each of 
the following: 
a exp(sinx) 
b sechx 

In (1 + x) 
c 

1 +X 
2 Obtain the stationary points of each of the following curves and classify 

them: 
a y = x 4 - 10x2 + 1 
b y = x(x- l)expx 
c y = x2 exp(-x2) 

d y = x2 1n (1 + x) 
3 Obtain the Iimit of x as t tends to 0, where 

2sinht- sin2t 
ax= 

cosh 2t - cos 2t 
exp(sint)- cost b X = _....:.......;'------'-----

COSbt- exp(sinht) 
c x = (sin2 t) 1 

In t 3 
dx=---

ln (sin t) 
4 Obtain the Iimit of x as t tends to infinity, where 

In (t + 1) 
ax= 

ln(t2 +1) 
b x = (expt + 1) 111 

t 
C X = -"------

y(t2 + 1) 

d x = sinh t + t 2 

cosht + t 

ASSIGNMENT 

1 Differentiate with respect to x: 
a tanh- 1 [tan (x/2)] 
b (sin xY x E (0, n) 
c tan2 3x 
d x cos- 1 (1 - 2x2 ) 

2 Obtain dyldx if 

exp (xy) + x in y = sin 2x 
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3 Show that the first four terms in the Maclaurio expansion of 
tan(x + n/4) and In (1 + sin x) are respectively 
a 1 + 2x + 2x2 + 8x3/3 
b 0 + x - x212 + x 3!6 

4 Express ex cos x as a power series in x as far as, and including, the term 
in x3 . 

5 Obtain and classify the stationary points, and any points of inftexion, of 
a y = 3x5 - 10x3 + 15x + 1 
b y = x~ - 4x3 + 4x2 + 7 

6 A dangeraus chemical has to be stored in a cylindrical container of 
a given volume. The mass of meta! used in the construction of the 
cylinder and the thickness of the material are constant. The cylinder is 
to stand on one ftat end in an open space. lf the surface area exposed 
to the atmosphere is to be a minimum, calculate the relationship 
between its diameter and its height. 

7 Show that the minimum value of 1 + x In x is ( e - 1 )/e. 
8 If y = exp (sinh- 1 x), deduce 

? d2y dy 
(1 + r) - + X- - y = 0 

dx2 dx 

and 

2 d"+2y d"+ 'y 2 d"y 
(1 + x ) dx"+ 2 + (2n + l)x dx"+' + (n - 1) dx" = 0 

Hence verify Maclaurin's expansion: 

x 2 8x~ 
x + V(l + x 2 ) = 1 + x + 2 ! - 4! + 

9 Obtain each of the following Iimits as x ~ 0: 
a tan nxltan x 
b (ex - 1 - x)/x2 

c (1 - cos nx)lx tan nx 
d [tan- 1 (x - 1) + n/4]/x 

10 Obtain each of the following Iimits as x ~ oo: 
a Vx - V(x - 1) 
b xa 11x - x where a > 0 

FURTHER EXERCISES 

1 Show that 

. sin (a tan- 1bx) ab 
hm =-
x--.0 tan ( c sin -'dx) cd 
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2 Prove that 

3x2 nxn-l 
a (x + 1)ex = 1 + 2x + 2! + ... + (n _ 1)! + ... 

ao (n + 1fx" 
b (1 + 3x + x2 ) exp x = 2: 1 

n=O n. 

3 Prove that 

I. exp ax - 1 
a 1m 

x-.o exp bx - 1 

a 

b 

. exp ( sin x) - 1 1 b hm = 
x->0 X 

C lim ( COS X )coscc'x = _!_ 
x-.o Ve 

4 Prove that 

a lim xx = 
X->0+ 

b I im [In ( 1 + x W = 1 
X->0+ 

c lim ( ex - 1 y = 1 
X->0+ 

5 When a unit cube of rubber is deformed into a cube of length J.. by the 
action of temperature T and external forces, the energy E is given by 

where c is a constant. Prove that if Tis constant the energy is a minimum 
when A. = 1. 

6 A steel girder 7 m long is moved on rollers along a passage 3 m wide 
into another passage at right angles to the first. What is the minimum 
width of the second passage for which this manoeuvre is possible? 

7 A prospector has a fixed length of fencing available and has to enclose a 
reetangular plot on three sides. One side is adjacent to a river. Deter­
mine the ratio of the length to the breadth if the enclosed area is to be a 
maximum. 

8 A dish is made in the shape of a right circular cone. Calculate the ratio 
of the height to the diameter of the surface which will give a maximum 
volume if ( a) the slant height is specified (b) the area of the curved 
surface is specified. 

9 A greenhause is to be made in the shape of a cylinder with a hemi­
spherical roof. The material for the roof is twice as expensive per unit 
area as the material for the sides. Show that if it is to enclose a given 
air space and the total cost of the materials is to be a minimum, then 
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the height of the cylindrical part must equal the diameter of the 
hemisphere. 

10 A resistor is made up of two resistors in parallel. The first branch 
consists of wire of resistance 113 ohms/metre and the second consists 
of wire of resistance 1/4 ohms/metre. If 2 m of wire are available 
altogether, obtain the maximum possible total resistance. 

11 When an EMF of Ee-r is applied to an LR series circuit, the current i 
satisfies the equation 

di R . E -r 
-+-I=-e 
dt L L 

lf E = 1 volt, R = 1 ohm, L = 1 henry and i(O) = 0, calculate the first 
three non-zero terms in the Taylor expansion of i(t) about 0. 

12 The force F exerted by a current moving on a circle of radius r on a unit 
magnetic pole on the polar axis of a circle is 

F = kx!(? + x2)512 

where k is a constant and x is the distance of the magnetic pole from 
the centre of the circle. 
a Show that the maximum force occurs when x = r/2. 
b Show that the maximum force is k( 415)512!2r4. 

13 A compound pendulum of length 2/ metres is pivoted x metres from 
the centre of mass and has a period 

T = 2:n: (_!___ + ~ ) uz 
3gx g 

Show that for minimum period x = 11V3. 
14 A beam of length I and weight w per unit length is clamped horizontally 

at both ends. Its deftection y at a distance x from one end is given by 

wx2 

y = 24El (I - x? 

where E and I are constants. Show that the maximum deftection of the 
beam is wl4/384El. 

The bending moment M at x is given by M = EJ/g, where g is the 
radius of curvature of y at x. For small deftections g is approximately 
111 y"l. Show that under these circumstances the bending moment at 
the point of maximum deftection is approximately wtl/24. 

15 When an alternating EMF E sinnt is applied to a quiescent LC circuit, 
the current i at time t is given by 

i = ( 2 2 ) ( cos wt - cos nt) 
Ln - w 

nE 
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where w2 = 1/LC and w is not equal to n. 
Show that when n is tuned to the natural frequency w of the circuit 

. Et sin wt 
l = 

2L 

16 Show that the first two non-zero terms in the 1VIadaurin expansion 
of exp(cosx- 1) are 

x2 
1--

2 
Hence or otherwise obtain 

I. exp(cosx- 1)- exp(x2 ) 
lm 

r->0 x2 

17 Obtain all the stationary points of y = (x- 1)3 e2"' and calculate 
the minimum value. Determine also the equations of both the 
tangent and the normal at the point (0, - 1). 

18 Evaluate each of the following Iimits 

I. sinpx ( ) a 1m -- p constant 
r->0 sinx 

1- tanhx 
b lim 

r->oo !!: - tan-1 x 
2 

19 A wire is submerged in liquid and subjected to electro-chemical 
corrosion. The time t taken to corrode an amount of mass m is 
given by the equation 

2t M A = (m + 0 _ 1) ln[M + (0- 1)m] + (M- m) Jn(M- m) 

OM 
- (fJ _ l) lnM 

where M is the original mass of the wire and ..\ and 0 are constant. 
Show that 

dt V Om -=..\in 1+--
dm M-m 

Thereby deduce the rate of corrosion when only half of the wire 
remains. 

20 The charge q on a capacitor is given by 

q = Qote-t + Q1 (sin 2t + cos 2t) 

where Q0 and QI are positive constants (Q0 > 8Qtf3). By first 
expressing q = Qo + Q1, where Qo and q1 are to be chosen appropri­
ately, or otherwise, show that the charge on the capacitor never 
exceeds Qo/e+Qp./2. The current in the circuit is obtained from 
the equation i = dqfdt. Show that, if t is sosmallthat powers of 
t higher than those of degree 2 may be neglected, then the cur­
rent drops to a minimum at timet== 2(Qo + 2Qt}/(3Q0 - 8Q1). 

Cornrnent on this procedure. 



9 Infinite series 

ln Chapter 8 we encountered several infinite series. ln this chapter 
we shall clarify what we mean by infinite series and show that some 
of them behave rather unexpectedly. 

After studying this chapter you should be able to 
0 Recognize an infinite series; 
0 Determine the sum to n terms of standard series; 
0 Examine for convergence directly by using the sum to n terms; 
0 Apply basic tests to examine a series for convergence or diver-

gence; 
0 Determine the radius of convergence of a power series. 
At the end of the chapter we shall solve practical problems concerning 
radioactive emission and a leaning tower. 

9.1 SERIES 

You have already come across infinite series. For example, the arithmetic 
series and the geometric series are quite weil known. Here they are in 
standard notation. 

The arithmetic series is of the form 

a + (a + d) + (a + 2d) + (a + 3d) + 

where a and d are real numbers. We can represent this, using the sum­
mation notation, by 

00 

L (a + md) 
m=ll 

Here a is the first term and d, the difference between any two consecutive 
terms, is known as the common ditTerence. 
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The geometric series is of the form 

a + ar + ar + ar' + 
where a and r are real numbers. Again this can be represented in a more 
compact form by 

2: ar'" 
nz=O 

Here r is known as the common ratio, since it is the ratio of any two con­
secutive terms. 

Now we know how to add tagether any finite collection of numbers, but we 
do not as yet have a clear idea as to what can be meant by an infinite sum. 
Of course we could imagine the situation in which we never stop calculat­
ing, but such a dream ( or maybe a nightmare) is not really helpful. To 
begin to make sense of the idea we shall first obtain the sums of some finite 
series. In fact we shall obtain the sum to n terms of the arithmetic series 
and the geometric series. 

For the arithmetic series, suppose 

5 = a + (a + d) + (a + 2d) + + (a + [n - l]d) 

Then if we reverse the order of the terms, 

5 = (a + [n - l]d) + (a + [n - 2]d) + (a + [n - 3]d) ... + a 

The reason for doing this now becomes clear. for if we add tagether the 
two expressions for 5 we obtain 

25 = (2a + [n - l]d) + (2a + [n - l]d) + ... + (2a + [n - l]d) 

which is a sum of n equal terms. Consequently 

25 = n(2a + [n - l]d) 

So the sum to n terms of the arithmetic series is 

5 = ~n(2a + [n - l]d) 

D Determine the sum of the first n natural numbers. 
We require 1 + 2 + 3 + ... + n, which is the sum of the first n terms of 

an arithmetic series where a = 1 and d = 1. Therefore 

5 = ~n(2 + [n - 1]) = ~n(n + 1) 

You may be able to use this to impress younger members of your family by 
declaring, after Christmas lunch, that you can add up the first 100 (say) 
whole numbers in an instant. This formula gives 5050, and by the time they 
have checked it you should have bad a few. moments' peace. • 
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For the geometric series. suppose 

S = a + ar + ar2 + + ar"- 1 

Then multiplying through by r we obtain 

Sr = ar + ar2 + . . . + ar" 

We have done this because, if we subtract Sr from S. terms cancel out in 
pairs and all that remains is the first term in S and the last term in Sr: 

S- Sr= a- ar" 
S ( I - r) = a( 1 - r") 

So the sum to 11 terms of the geometric series is 

1 - r" 
S = a -- provided r * 1 

1 - r 

0 Determine the value of 

1 + ! + 1 + . . . + (! )'' 

• 

Here we require the sum of the first 11 + 1 terms of a geometric series in 
which the first term is 1 and the common ratio is 1/2. Using the formula we 
obtain 

s = 1 - (112)"+1 = 2(1 - [']"+') = 2 - (')" 
1 - (112) "2 2 • 

Each of these series is unusual in the sense that we have been able to 
determine formulas for S. the sum of the first n terms. Of course S depends 
upon n; therefore we shall in future denote the sum of the first 11 terms of 
an infinite series by S 11 • In general we may write an infinite series in the form 

~ a11 = a 1 + a2 + a3 + ... + a,. + ... 
Observe some of the general features. There are two sets of dots indicating 
missing terms. The first set of dots shows that terms occur between a3 and 
the general term a,.. The second set of dots indicates that this is an infinite 
series and does not terminate. 

We shall not normally adorn the summation sign ~ by writing n = I 
below and x on top. However. if we wish to use a different dummy vari­
able, or begin the sum at some other value of n, it is necessary to indicate 
this by an appropriate choice of Iabels. 

9.2 CONVERGENCE AND DIVERGENCE 

The two series which we have been considering display features which help 
us to describe the general situation. 

We have seen that the sum of the first n natural numbers 
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1+2+3+ ... +n 

is given by Sn = !n(n + 1). We observe that in this instance Sn~ oo as 
n ~ oo. This means that the sum to n terms can be made arbitrarily I arge 
just by choosing n sufficiently !arge. 

Again, the sum of the first n terms of the series 

1 + ! + ! + 0 0 0 + (! )n + 0 0 0 

is given by Sn = 2 - (112t and so Sn~ 2 as n ~ oo. This means that the 
sum to n terms can be made arbitrarily close to 2 just by choosing 11 

sufficiently !arge. 
In general, given an infinite series 

suppose that sn denotes the sum to n terms. Then: 
1 If there exists a number s such that sn ~ s as n ~ oo then the series is 

said to converge. Moreover if s is known we can say that the series 
converges to s. 

2 If there is no number s such that sn ~ s as n ~ oo then the series is said 
to diverge. If Sn~ oo as n ~ oo then the series is said to diverge to oo. If 
sn ~ - oo as n ~ oo thcn the series is said to diverge to - oo. A divergent 
series does not necessarily diverge either to oo or to - oo; for example it 
might oscillate. 

If it were always possible to obtain a straighttorward formula for sn it 
would be a relatively simple matter to examine a series to see if it con­
verges or diverges. As it is, we can rarely obtain a simple formula for Sn 

and so tests have been devised to examine the behaviour of series which 
arise in practice. 

In the examples the arithmetic series L 11 diverges and the geometric 
series L (112t converges (to 2). In fact every arithmetic series diverges; 
there really is a last straw which will break the camel's back! 

For geometric series the situation is a little more subtle and we shall need 
to examine it closer. For the geometric series 

we have 

Then 

2.: ar'" = a + ar + ar2 + . . . + ar'' + ... 
11'1=0 

I - rn 
S11 = a -1-- provided r =F 1 

- r 

1 If lrl < 1 we have r" ~ 0 as 11 ~ oo. So Sn~ a/(1 - r) and the series 
converges. 

2 If r > 1 then r" ~ oo as n ~ oo. So Sn does not tend to a Iimit as n tends 
to infinity and the series diverges. 
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3 If r < -1 then r" increases in magnitude but alternates in sign as n tends 
to infinity. So once again s" does not tend to a Iimit as n tends to infinity 
and the series consequently diverges. 

4 It remains only to consider the cases r = 1 and r = -1. When r = 1 we 
obtain s" = na; so the series diverges unless a = 0. When r = -1 we 
obtain s" = a if n is odd and s" = 0 if n is even; again we conclude that 
the series diverges unless a = 0. 

Consequently, if a * 0, the geometric series 

L ar111 = a + ar + ar2 + . . . + ar" + 
m=O 

converges when lrl < 1 and diverges when lrl ~ 1. 

There are two types of series which arise in applications and which you 
are likely to encounter in theoretical work. These are power series and 
trigonometrical series. 

A power series is a series of the form 

ao + a1x + a2x2 + a3x3 + ... + a,x' + 
where the 'a's are constants. 

A trigonometrical series is a series of the form 

(112)a0 + (a 1 cos x + b 1 sin x) + (a2 cos 2x + b2 sin 2x) 
+ ... + (a, cos rx + b, sin rx) + ... 

where the 'a's and 'b's are constants. (The (112) in the (112)a0 term may 
seem strange, and strictly it is superfluous. However there are advantages 
in expressing the first term in this form and it is usual to do so.) 

The discussion of trigonometrical series Ieads to Fourier series which we 
shall investigate in Chapter 21. Power series will be discussed later in this 
chapter. 

Wehave remarked that, although it is sometimes possible to examine the 
Iimit of s" directly, in general this is not possible. To cope with the general 
situation we need some tests for convergence and divergence, and these we 
now describe. 

9.3 TESTS FOR CONVERGENCE AND DIVERGENCE 

There are very many tests which have been devised to examine infinite 
series to determine whether or not they converge or diverge. 1t is reason­
able to ask whether there is one test which will settle the matter once and 
for all. Unfortunately there is no supertest; whatever test we have there is 
always a series which can be produced on which the test will fail. 
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Before we take things any further we should point out that this is a subtle 
area of mathematics where it is easy to make mistakes. Mathematical 
operations which we carry out on finite sums do not necessarily work when 
we attempt them on infinite series. Infinite series should therefore be treated 
with respect and, if in theoretical work you should come across one, it 
may be advisable to consult a competent mathematician rather than try to 
handle it yourself. 

Nevertheless we are going to describe some basic tests which will enable 
us to examine most of the series which we are likely to meet at the moment. 

TEST 1: THE DIVERGENCE TEST 

The infinite series 

~a" = a 1 + a 2 + a 3 + ... + a, + ... 
diverges if 

lim a" =F 0 
fl-+00 

To show this we examine the situation when ~ a" converges and show that 
then lim a" = 0. Suppose that ~a" converges tos. Now 

fl-+00 

Subtracting, 

Therefore 

a1 + a2 + ... + a" = S11 

a1 + a2 + · · · + an-1 = Sn-1 

a" = S11 - Sn-1 

lim a" = lim (s11 - s"_ 1) = s- s = 0 
n-+':10 n--+'JO 

Consequently if ~ a" converges the nth term tends to 0 as n tends to oo. 

However, we are told that the nth term does not tend to 0 as n tends to oo. 

Therefore ~ a" cannot converge and so must diverge. 

D Examine for convergence ~ (1 + 1/n). 
Here a" = 1 + 1/n and so as n- oo we have a"- 1, which is non-zero. 

So by the divergence test the series diverges. • 

lt is important to realize that this test is a divergence test; it can never be 
used to establish the convergence of a series. There are many divergent 
series which have their nth terms tending to zero. 

TEST 2: THE COMPARISON TEST 

Suppose l: a" and l: b" are real series such that 0 < a" ~ b". Then if ~ b" 
converges, so too does ~ a". 
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We shall not justify this, but instead use it to examine the convergence of 
"" -2 .. n . 

D By considering Sm the sum to n terms of the series l: [1/n(n + 1)], 
examine the series for convergence. Hence or otherwise establish the 
convergence of l: n-2 • 

Now 

1 1 1 
---=----
n(n + 1) n n + 1 

So 

Sn = al + a2 + ... + an 

= (1 - !) + (!- !) + ... + (.!. - _1 ) 
2 2 3 n n+1 

These cancel out in pairs, leaving 

1 
s =1---~1 asn~oo 

n n + 1 

Consequently l: [1/n(n + 1)] is convergent. 
Now if n is any natural number, n < n + 1 and so n(n + 1) < (n + 1)2 . 

Therefore 

0 < 1 < 1 
(n + 1)2 n(n + 1) 

Consequently by the comparison test l:(n + 1)-2 is convergent. Now in 
what way does this series differ from l: n-2 ? It has the first term missing, 
and it is surely inconceivable that this single omission can affect the con­
vergence. Therefore we conclude l: n-2 is convergent. 

Although this line of reasoning may seem convincing, the statement 
requires proof. Luckily we can tighten things up without much difficulty. 
Let sn be the sum to n terms of the first series and tn the sum to n terms of 
the second series. Then tn = 1 +Sn - (n + 1)-2• Now Sn is known to con­
verge tos (say), and consequently tn ~ 1 + s- 0 = 1 + s. • 

The comparison test is particularly useful once a collection of series have 
been produced which are known to converge or to diverge. Hereis the test 
again: 

Suppose l: an and l: bn are real series such that 0 < an :::::: bn. Then if l: bn 
converges, so too does ~an. 

lt is worth remarking that if l: an diverges then so too does l: bn. For if l: bn 
were to converge then by the comparison test we could deduce the con­
vergence of l: an. 
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Hereisa series which at first sight looks very innocuous: ~ lln. Clearly the 
terms get smaller and smaller as n gets larger and larger, and it looks as if it 
is going to converge to a fairly small number. We might even be tempted to 
get a computer to estimate its value by, say, summing the first 1000 terms. 

However, all is not as it seems. In fact the series diverges (very slowly), 
as weshall now show. Wehave 

Sn = 1 + 112 + 1/3 + . . . + lln 

Now if n = 2m we have 

1 (1 1) (1 1 1 1) ( 1 ) 
Sn = 1 + 2 + 3 + 4 + S + 6 + 7 + B + . . . + . . . + 2m 

Here we have grouped the terms together so that the last term in each 
bracket is a power of 2. Now in each bracket each term is greater than 
the last term in the bracket, and the number of terms in each bracket is a 
power of 2. Therefore 

s >1+-+ -+- + -+-+-+- + 1 (1 1) (1 1 1 1) 
n 2 4 4 8 8 8 8 ... + (. .. + 2~) 

So 

Sn > 1 + ! + i + ! + . . . + ! = 1 + !m 
lt follows that Sn > 1 + m/2 when n = 2m. Now as m tends to oo, n tends 
to oo, and yet sn is unbounded and so does not tend to a limit. Consequently 
~ lln is divergent. 

This series is a member of the family ~ 1fnP where p is real. It can be 
shown that 
1 When p > 1 the series converges; 
2 When p ::::::; 1 the series diverges. 

TEST 3: THE ALTERNATING TEST 

Suppose ~an is an infinite series in which 
1 The terms alternate in sign; 
2 lanl ;;::::: lan+II for all n E N; 
3 lanl ~ 0 as n ~ oo. 
Then the series converges. 

D Show that ~ ( -1 t In is convergent. 
We observe that each of the conditions of the alternating test is satisfied: 

1 The terms alternate in sign; 
2 lanl = lln > ll(n + 1) = lan+d; 
3 1/n ~ 0 as n ~ oo. 
So the conclusion is that the series is indeed convergent. • 
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TEST 4: THE RATIO TEST 

Suppose I an is an infinite series and that 

I= lim lan+tl 
n----+ 00 an 

exists. Then 
1 If I< 1, I an converges; 
2 If I> 1, I an diverges; 
3 If I = 1, no conclusion can be reached. 

D Discuss the behaviour of the series I 1/n!. 
Here an = 1/n! and so an+l = ll(n + 1)!. Therefore 

an+ 11an = [ll(n + 1)!]/[1/n!] = n!l(n + 1)! = ll(n + 1) 

so that lan+ 11anl = ll(n + 1) ~ 0 as n ~ oo. Of course 0 < 1, and so we 
deduce that the series is convergent. • 

TEST 5: THE ABSOLUTE CONVERGENCE TEST 

Suppose I an is an infinite series such that I lanl converges. Ther I an 
converges. 

Any series I an, real or complex, which has the property that I I an I con­
verges is called an absolutely convergent series. This test teils us that if a 
series is absolutely convergent then it is convergent. There are many series 
which are convergent but which are not absolutely convergent. These series 
are called conditionally convergent. 

D We have seen that I [ (- 1) n In] is convergent but that I ( lln) is divergent. 
Since 

i<-~rl = ~ 
this implies that I [( -1r/n] is conditionally convergent. • 
9.4 POWER SERIES 

Consider the power series Ianxn. Weshallshow that if lanlan+tl ~ R =F 0 
as n ~ oo then the power series 
1 Converges whenever lxl < R; 
2 Diverges whenever lxl > R. 
R is known as the radins of convergence of the power series. Every power 
series in x converges when x = 0, and if this is the only value of x for which 
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it converges we say it has zero radius of convergence and write R = 0. Some 
power series in x converge for all x, and we then say the power series has 
an infinite radius of convergence and write R = oo. 

If we were to extend these ideas to complex power series we should obtain 
a disc of convergence instead of an open interval (Chapter 10). 

We apply the ratio test, but we have tobe a little careful about the notation 
since an appears as the coefficient of xn and not as the term itself. To avoid 
this confusion we shall call the nth term un- Now 

So 

iun+llunl = lxllan+llanl 

Now I an! an+ 11 ~ R as n ~ oo, and since R * 0 we deduce that 

iun+llunl ~ lxi!R as n ~ oo 

Consequently if lxi!R < 1 the series converges, whereas if lxi!R > 1 the 
series diverges. Finally, since R > 0 we have 

lxl < R => convergence 
lxl > R => divergence 

In fact the radius of convergence of a power series is very useful because if 
x E (-R, R) it is possible to differentiate and integrate with respect to x 
term by term and obtain correct results. 

It is important to realize that in general any operation on an infinite 
series may disturb its convergence. Such operations include rearranging 
terms, inserting or removing brackets, differentiating and integrating. 
Convergence of the series is not enough to ensure that we can perform 
these operations and obtain the expected results. We need special forms of 
convergence to ensure that. For algebraic operations we need absolute 
convergence and for calculus operations we need uniform convergence. 
We shall not describe uniform convergence in this book. 

Weil, now it's time to take a few steps. 

________ 9.5 Workshop _______ r-1 

Zl C> Exercise Discuss the behaviour of the series L x" In! for all real x. 
Try this and see how you get on. 

This exercise is an application of the ratio test: 
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an+llan = [xn+ 1/(n + 1)!]/[x11/n!] = xl(n + 1) 

and so lan+ 11anl = lxl/(n + 1) ~ 0 as n ~ oo. Therefore the series is con­
vergent for allreal x. In fact you have seen this series before: it converges, 
if we Start when n = 0, to e. 

Did you manage that? Here is another exercise to try. 

I>Exercise Discuss for all real x, lxl i= 1, the convergence of the binomial 
series 

where 

(n) = n(n - 1) (n - 2) ... (n - r + 1) 

r 1x2x3x4x ... xr 

Here of course the dummyvariable is r; n is constant. Make an effort and 
then take the next step. 

l3\l We obtain 

Now 

ar+l n(n - 1) (n - 2) ... (n- [r + 1] + 1)xr+l 
-= 

ar 1 X 2 X 3 X 4 X ... X [r + 1) 

x--~1~X~2~x~3_x~4_x~·~·~·-x~r __ _ 
n(n - 1) (n - 2) ... (n - r + 1)xr 

(n - r)x 

r + 1 

lar+l/arl = l(n - r)xl(r + 1)1 
= l([n/r] - 1)x/(1 + [1/r])l 
~ 1-x/11 = lxl as r ~ oo 

Consequently if lxl < 1 the series converges, whereas if lxl > 1 the series 
diverges. 

You may have found that one rather too algebraic. If you did then the 
next one may be more to your taste. 

I>Exercise Discuss, for allreal x, the convergence of the series 'i:.x 11 /n. 
As soon as you have tested the series, take the next step. 

4Ll Here a11 = xn In and so 

an+tla11 = [xn+l/(n + 1)][nlxn] = xnl(n + 1) 
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so that 

lan+IIanl = lxl {11(1 + [11n])} ~ lxl as n ~ oo 

So the ratio test shows that if lxl < 1 the series converges, whereas if 
lxl > 1 the series diverges. 

There only remain the cases x = 1 and x = -1. When x = 1 the series 
reduces to L 11n, which we have already shown to be divergent. When 
x = -1 the series reduces to L ( -1tln, which we have already shown tobe 
convergent. 

We conclude therefore that Lxnln is convergent when -1 ~ x < 1 and 
divergent when x ~ 1 or x < -1. In fact this is the series expansion cor­
responding to ln (1 - x). 

Now Iet us Iook at a few series. Although the ratio test is very useful, we 
should not forget the other tests. 

t>Exercise Determine whether L ll(n2 + 1) is convergent or divergent. 
Attempt this carefully and then move on to see if all is well. 

The ratio test is of no use to us here. However, we do know that L lln2 is 
convergent, and this series is only slightly different. 

Can we use the comparison test? Well, n2 < n2 + 1 for any natural 
number n, and so we have 

0 < ll(n2 + 1) < 11n2 

The convergence of L ll(n2 + 1) now follows. 
How about this one? 

t>Exercise Examine for convergence L (1 + 11n)n. 

At first sight this appears to be a pretty fearsome series to test. However, a 

'------' 

bell should sound. 1t may be a rather distant, muffted bell but it should L__ _ _, 

sound nevertheless. Haven't we seen (1 + lln)n somewhere before? We 
have, you know. Wehave found the Iimit of it as n ~ oo (Chapter 8). The 
Iimit is e, the natural base of logarithms. 

This observation is all that we need to dispose of the problern once and 
for all. ( 1 + 11 n) n ~ e as n ~ oo, and since e =F 0 the divergence test shows 
that the series diverges. 

Finally let us look at a Iimit. 

l>Exercise Obtain the Iimit as n ~ oo of (1 + 2 + 3 + ... + n)!n2 . 

Try it, but be careful. 
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Perhaps you proceeded in the following manner: 

(1 + 2 + 3 + ... + n)/n2 = 1/n2 + 2/n2 + 3/n2 + ... + lln 

Then possibly you argued that there are n terms each of which is tending to 
0 as n ~ oo, and concluded that the limit itself is zero. 

Unfortunately this argument is ftawed. Although it is true that the terms 
are getting smaller and smaller, there are more and more of them! If you 
got it wrong then have another try and take another step. 

L9Ll W e know that 

1 + 2 + 3 + ... + n = n(n + 1)/2 

So 

(1 + 2 + 3 + ... + n)ln2 = n(n + 1)/2n2 

= (n + 1)/2n = (1 + lln)/2 

Asn~ oo we obtain the Iimit 112. 

This is as far as we are going to take the topic of infinite series. There is 
much more that can be said, but it is important to realize that this is a 
sensitive area where even otherwise competent mathematicians are prone 
to error. 

It is sometimes quite alarming to see what the uninformed will do with 
infinite series. lt is always possible that the results could be catastrophic: 
bridges could fall down, aircraft disintegrate, dance ftoors cave in, build­
ings collapse, and power plants get out of control. Every infinite series 
should carry a government health warning! 

Now here are some practibl problems for you to try. 

________ 9.6 Practical ________ _ 

RADIOACTIVE EMISSION 

Radioactive material is stored in a thick concrete drum. lt is believed to 
ingress, by the end of each year, into the uncontaminated surrounding 
material a depth d = Q/n, where n is the number of years and the quantity 
Q is a constant. At the end of the first year, d = 0.5 cm. 

First, if the surrounding concrete is 4 m thick, will this contain the 
material for all time? Secondly, if the material remains hazardous for 1000 
years, what would be a safe thickness of concrete? 

See if you can handle this problem. We will go through it stage by stage. 
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1 Wehave d = Q!n. When n = 1, d = 0.5, so that Q = 0.5. Now the depth 
of penetration after n years is given by 

d=Q+Q+Q+Q+ ... +Q=Q±! 
2 3 4 n r= 1 r 

Now you are at this stage, take over the solution. 

2 We know that l: (1/n) isadivergent series, and so as n ~ oo we infer that 
d ~ oo. The conclusion we draw isthat whatever the value of Q (>0), 
penetration will eventually occur; so 4 m is certainly not enough. 

Luckily the second part of the problern accords more with reality. See 
if you can finish it off. 

3 As an exceedingly crude estimate we have 

Q Q Q Q 
Q + 2 + 3 + 4 + ... + 1000 < 1000Q 

Therefore provided lOOOQ is less than the thickness T of the surround­
ing material, everything will certainly remain safe. So T > lOOOQ = 
500 cm = 5 m will do. 

We could get away with considerably less concrete. In fact if you add 
the first 1000 terms you obtain 7.5Q, and so in fact 0.0375 m is good 
enough! 

Here is another problem. 

LEANING TOWER 

A tower is built in such a way that shortly after its construction it begins to 
lean. It is believed that the angle of tilt is increased at the end of each year 
by an amount K/(1 + n2), where K is constant and n is the age in years of 
the tower. At the end of the first year the angle of tilt was 3°. 
a Assuming that the formula is correct, show that the tower will not fall 

ftat. 
b Show that eventually the angle of tilt will satisfy 4° ::::;: e ::::;: 5°. 
c Use a calculator to determine how many years it will take for the angle 

to become 4°. 
Solve part a. It is not unlike the previous problem. 

1 Fora we have, when n = 1, e = 3° = K + K/2 and so K = 2. Aftern 
years the angle of tilt will be 
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K K K 
8=K+-+-+-+ 

2 5 10 
K +--

1 + n2 

We therefore need to examine ~ 11(1 + n2) for convergence. The com­
parison test can be applied, for we know that ~ 11n2 is convergent. We 
have 1 + n2 > n2 , and so 

1 1 
0<--<-

1 + n2 n2 

The convergence of ~ 11n2 now implies the convergence of ~ 11(1 + n2). 

So, provided K~ 11(1 + n2) converges to a number less than 90°, the tower 
will not fall ftat. 

This matter will be settled provided we can sort out part b. Here is a 
hint: 

n(n - 1) < n2 + 1 < n(n + 1) 

2 For b, using this inequality, we have for n > 1 

1 1 1 
---<--<--­
n(n + 1) 1 + n2 n(n - 1) 

Add up the first N terms. Don't forget your work on partial fractions! 

3 So 

N 1 N 1 N 1 
2: <2:--z<L 

n=2 n(n + 1) n=2 1 + n n=2 n(n - 1) 

1 N 1 N 1 3 N 1 
1+-+2: <2:--z<-+2:---

2 n=2 n(n + 1) n=O 1 + n 2 n=2 n(n - 1) 

~ + f ( _!_ - - 1-) < f - 1-z < ~ + f ('-1- - _!_) 
2 n=2 n n + 1 n=O 1 + n 2 n=2 n - 1 n 

1 N 1 5 1 
2 - N + 1 < n~o 1 + n2 < l- N 

Consequently 

and so 4° =::: 8 =::: 5°. 

"" K SK 
2K::::2:--2 ::::­

n=O 1 + n 2 

Lastly, start tapping the buttons on your calculator. 
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4 For c we must calculate 

K 1+-+-+-+ ( 1 1 1 
2 5 10 

until for some n the total exceeds 4°. In fact it takes 13 years for the 
tower to lean 4°. 

SUMMARY 

0 We have seen how to represent an infinite series. 
0 Wehave explained what is meant by convergence and divergence. 
0 Wehave described some tests which can be applied to infinite series 

to see whether they converge or diverge. The tests we described were 
called 
a the divergence test 
b the comparison test 
c the alternating test 
d the ratio test 
e the absolute convergence test. 

0 Wehave defined the radius of convergence of apower series. 

EXERCISES 

1 Obtain the limit of the nth term of each of the following series and so 
show that each is divergent: 

a L V(nzn+ 1) 

b L (coshn + n) 
(sinhn + n) 
ln(n2 + 1) 

c L ln(n3 + 1) 

d L (2n + 1)1/n 

2 Obtain Sn, the sum to n terms of each of the following series, and thereby 
test for convergence: 

1 
a L 4n2 - 1 

b "' 2n + 1 
LJ n2(n + 1)2 
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1 
c 2: nV(n + 1) + (n + 1)Vn 

1 
d 2: sinh n sinh (n - 1) 

3 By using the comparison test show that each of the following series is 
divergent: 

1 
a2:2n-1 

b "' 1 
LJ n- Vn 

c 2: _1_ 
nsmn 

d 2: 1 
n tanhn 

4 By using the comparison test show that each of the following series is 
convergent: 

1 
a 2:-­n2 + 3 

b "' 1 
LJ V(n4 + 1) 

c 2: V(n6n+ 1) 

d2:2n+1 
n3 + 1 

ASSIGNMENT 

Examine each of the following series for convergence or divergence: 
1 ~ (n2 - 1)/(n2 + 1) 
2 ~ ll(n2 + 2n) 
3 ~ ( -l)nn2/2n 
4 ~ ns;z/(nz + 1) 

5 ~ sin nln2 

6 ~n!/3n 
7 ~enx;nz 

8 ~ 11Vn 
9 ~n!/(2n)! 

10 ~ lln(n2 + 1) 
Determine the radius of convergence of each of the following power series: 
11 ~xn12n 
12 ~ (n!)xn/(2n)! 
13 }:. x2n/3n 



14 ":i.x"ln3 

15 '2:. (xlnt 
16 '2:. (2x)"ln 
17 '2:. (nx)" 
18 '2:. (nxtln! 
19 ":E.x"!Vn 
20 ":i.n3x" 

FURTHER EXERCISES 

1 Examine for convergence: 

"" n 
a L --

n=o n + 1 
oo 2n-l 

b 2:-
n= 1 n3 

"" n 
c 2: V 2 

n=O (n + 1) 
"" n 

d 2: V 2 
n=2 (n - 1) 
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2 Classify each of the following series as absolutely convergent (AC) or 
conditionally convergent (CC): 

00 (-1)" 
a L -2-

n=l n 
= (-l)"n 

b L 3n-l 
n=O 

00 ( -1)"n2 
c 2: -'--=-3 --'--­

n=O n + 1 
3 Show that if p and q are positive integers (p < q) then 

1 + (p/q) + (p/q)2 + ... + (p/q)N < qf(q - p) 

Deduce that 

1 + (3/4) + (3/4)2 + ... + (3/4)" + ... :::::; 4 

4 Test for convergence or divergence: 
X 1 

a 2:--
n=o 1 + nx 

00 1 
b:l:-

11=0 n + x 
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5 By first showing that V(n2 - 1) < n < (n + 1) and V(n2 + 1) < n + 1, 
show that 

L [V(n2 + 1) + V(n2 - 1)]- 1 

n=l 

is divergent. 
6 Show that the radius of convergence of each of the following power 

series is 1. lnvestigate the convergence of each when lxl = 1. 

"" ( -1) 11X211 

a L -'----'---
n=l n 

oo II 

b L X 
n=ln(n+1) 

~ n + 2 11 
C L." X 

ll=tn(n+1) 

~ (n + 1) 11 

dL." 2 X 
n=l n 

7 The quantity of liquid Pn which is extracted from pulp in the nth cycle of 
a pressurepump is given approximately by p11 = p/(n2 + 1), where p is 
the initial quantity extracted. Prove that the total quantity Q of liquid 
extracted is bounded and that 2p ~ Q ~ Sp/2. Show that after 13 cycles 
at least 2p (80% of the upper bound) has been extracted. (In fact Q = 
(rr coth 1t + 1)/2, so that after 13 cycles 96% is extracted and after only 5 
cycles 80% is extracted.) 

8 The electromotive force e(t) of period 2rr/3 supplied by a half-wave 
rectifier is believed to be represented by the series 

E E 2E X 1 
e(t) =- +- sin wt-- 2: 2 cos 2nwt 

1t 2 1t n = 1 4n - 1 

By considering the first N terms and using the triangle inequality 
lx + Yl ::::::; lxl + IYI repeatedly, or otherwise, show that for all t 

ie(t)l ::::::; 2E(1 + rr/4)/rr 

9 When the power is shut down from a vertical power pounder the piston 
continues for a time to strike. After the nth stroke the time taken until 
the next stroke is p11ul f and the height of the recoil is (p 11U ) 2/ f. The 
dimensionless quantity p, the speed u and the acceleration f are con­
stant, and 0 < p < 1. If distances and times are measured in metres 
and seconds respectively, and if after the first stroke the time taken 
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for the pounder to come to rest is less than t seconds, show that 
p < (1 + u!ft)- 1• Show also that if u = 1,f = 1 and t = 1 and p = 114 
then the total distance travelled by the piston after the first stroke is 
about 13.3 cm. 

10 Sand is being eroded from a dune due to high winds. It is found 
that, due to conservation measures being enforced, each year the 
loss is only 50% of the loss in the previous year. The present 
volume of sand in the dune is V and the volume lost during the 
present year is v. 

a Obtain an expression for the volume of sand in the dune after 
n further years. 
b Obtain a relationship between v and V if, despite conservation 
measures, the dune will eventually become eroded completely. 
c An expert has predicted that at the present rate of erosion 
the dune will reduce in size by 25% after 10 years. Obtain the 
relationship between v and V if this is so. 

11 An extractor is designed to remove 40% of the humidity in a room 
every hour. The device is subjected to a test and is fitted to a 
sealed room which has air at 20% humidity Ievel initially. Decide 
whether or not, on the basis of the manufacturer's claim, the 
humidity should be able to be reduced to an arbitrary low level. 
The water which is extracted from the room is piped into a tank. 
If after the first hour a volume v cc of water is extracted determine 
the minimum volume of the tank if, on the basis of the design 
specification, it is to cope with all the water extracted from the 
room. 
After 20 hours the humidity in the room is found to be 0.01% 
Estimate the constant K if in fact K% of the humidity has been 
extracted each hour and thereby decide whether or not the ex­
tractor meets the advertised specification. 
Use the revised specification to recalculate the minimum volume 
of the tank which is to hold the water. 

12 An under sea oil extraction process removes a fixed volume of 
liquid frorn the reservoir each year and replaces it with sea water 
to prevent structural collapse. It is assumed that the oil and 
water in the reservoir become uniformly mixed together by this 
process. The volume of the reservoir is V. Once the mixture has 
been obtained an extraction process can separate the oil from the 
water. In the first year a volume v of liquid was extracted and was 
100% pure. Obtain an expression for the amount of oil extracted 
in the nth year and thereby the total amount of oil which has 
been extracted after n years. 
Decide whether or not it would eventually be possible by this 
process to extract an arbitrarily !arge proportion of the oil from 
the reservoir. 



10 Complex numbers 

We have developed one-half of the calculus - differentiation. The 
other half is the reverse process, known as integration. However, 
before we consider that, we need to enlarge our algebraic knowl­
edge. Wehave already mentioned, when we dealt with power series, 
that a familiarity with complex numbers would have enabled us to 
say more. lndeed this has not been the only occasion where the idea 
of a complex number has arisen. ln this chapter weshall begin a short 
study of algebraic concepts that will Iead via complex numbers, 
matrices and determinants to vectors. Only when we have done all 
this will we return to the calculus to gain the full stereophonic effect. 

After working through this chapter you should be able to 
0 Solve equations involving complex numbers; 
0 Express a complex number in polar form; 
0 Represent sets of complex numbers as regions of the complex 

plane; 
0 Solve the equation zn = a where n E N and a E C; 
0 Relate circular and hyperbolic functions using complex numbers. 
At the end of this chapter we shall apply this work to the practical 
problern of an AC bridge. 

10.1 GENESIS 

If we consider the quadratic equation 

ax2 + bx + c = 0 

where a, band c are real numbers, a * 0, we obtain 
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b c 
x2 + -x +- = 0 

a a 

So, completing the square, 

Notice how we add half the coefficient of x to complete the square. Then 

( x + ..!!._)2 = bz7 - :_ = bz - 74ac 
2a 4a- a 4a-

If b2 - 4ac ~ 0 then 

-b ± V(b 2 - 4ac) 
x= 

2a 

You will certainly have met this before (see Chapter 1). It is known as the 
formula for solving a quadratic equation, and we know that for real roots 
we require 

What are we to do if b2 - 4ac < 0? Clearly V(b2 - 4ac) is notareal num­
ber, because whenever we square a real number the result is positive. 

Suppose nevertheless that there is a number, which we shall represent 
by i, which behaves with respect to addition and multiplication exactly as 
if it were a real number but which has the special property that i2 = - 1. If 
such a nurober exists then we can write 

and obtain two roots. 
So if we start with the real numbers, and augment them with this new 

number i, the operations of addition and multiplication will generate such 
numbers as 

(2 + i)(1 - 3i) + (2 + 4i)2 (i - 1)(2i + 1) 

This is rather like adding an extra ingredient to a stew which is being 
cooked; the ftavour permeates through. 

Using the rules of elementary algebra, and the special property of i, 
namely i2 = -1, any number which we generate can be reduced to the form 

a + ib 

where a and b arereal numbers. 
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We define the set of complex numbers C tobe those numbers which can 
be expressed in the form a + ib, where a and bare real numbers: 

C = { a + ib I a e IR, b e R} 

a is called the real part of a + ib, and b is called the imaginary part of 
a + ib. These are rather unsatisfactory names because each of them is in 
fact a real number! 

lf b = 0 then a + ib isareal number, whereas if a = 0 then a + ib = ib. A 
number of the form ib where b is real is often called a pure imaginary 
number. 

The complex numbers, with the usual operations of addition and multi­
plication, form a mathematical structure known as a field. 

In the field of complex numbers, any quadratic equation 

az2 + bz + c = 0 a=FO 

always has two roots. Of course if b2 = 4ac then the two roots are equal. 

NOTATION 

There are unwritten conventions about the use of letters to represent 
mathematical objects. These conventions are often broken, but here are 
some broad guidelines: 
1 a, b, c and d are used for constants. 
2 e is reserved for the natural base of logarithms. 
3 fand g are used for functions. 
4 i and j are reserved for complex numbers. 
5 h, k, l, m, n, p, q, r, s and t are used for constants or variables. 
6 u, v, w, x, y and z are used for functions or variables. 
1t is often convenient to use a single Ietter to represent a complex number, 
and so that no confusion can arise it is customary to reserve z and w for this 
purpose. Other letters such as a and ß can be used provided it is clear that 
the number is not real but complex. 

So if z = a + ib then 
1 a is the real part of z; we write a = Re(z). 
2 b is the imaginary part of z; we write b = Im(z). 
Same books use 91l (z) and J(z) instead of Re(z) and Im(z) respectively. 

EQUATING REAL AND IMAGINARY PARTS 

D Show that if a + ib = c + id, where a, b, c and d are real, then a = c and 
b = d. 

Suppose a + ib = c + id. Then a - c = -i(b - d), so that squaring 

(a - c)2 = i2(b - d)2 = -(b - d)2 
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Therefore 

(a - c)2 + (b - d) 2 = 0 

Now ( a - c )2 is a positive real number and so too is ( b - d) 2 , and the 
sum of these two positive numbers is zero. lt therefore follows that each of 
these real numbers must be zero. Therefore a - c = 0 and b - d = 0, so 
a = c and b = d. 

Of course we know that the converse is always true. That is, if a = c and 
b = d then a + ib = c + id. • 

This example has important consequences. lt means that, given an 
equation involving complex numbers, we can equate the real parts and the 
imaginary parts and thereby obtain two real equations from one complex 
equation. 

D Obtain x and y in terms of a and b if 

1 1 --+--= 1 
x + iy a + ib 

We obtain 

1 1 a + ib - 1 --=1---
x + iy a + ib a + ib 

. a + ib 
X+ IY = .b 1 a + 1 -

a + ib 

(a - 1) + ib 

Now if we multiply numerator and denominator by (a - 1) - ib the 
denominator will become a real number: 

. a + ib ( a - 1) - ib 
X + IY = ----- ..:.... _ ___: __ 

( a - 1) + ib ( a - 1) - ib 

_ ( a + ib) ( a - 1 - ib) 
- (a - 1)2 + b2 

_ a(a - 1) + b2 + i[b(a - 1) - ab] 
- (a - 1)2 + b2 

a ( a - 1) + b2 - ib 

(a - 1)2 + b2 

So that, equating real and imaginary parts, 

a ( a - 1) + b2 - b 
x = and y = ...,..--------",--~ 

( a - 1 f + b2 ( a - 1 f + b2 • 
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This example shows that an equation involving complex numbers produces 
two equations involving real numbers, and that to obtain these equations 
we can equate real and imaginary parts. 

10.2 THE COMPLEX PLANE: ARGAND DIAGRAM 

We can obtain a geometrical representation for complex numbers by using 
the conventions of coordinate geometry (Chapter 3). 

To each complex number a + ib there is a unique point (a, b) in the 
plane Oxy. Conversely, given any point (a, b) in the plane Oxy, there is a 
unique complex number a + ib. There is therefore a one-to-one cor­
respondence between the points in the plane Oxy and the complex 
numbers (Fig. 10.1). 

When the plane is used in this way it is often called an Argand diagram 
or the complex plane. The x-axis is then called the real axis and the y-axis is 
called the imaginary axis. 

POLAR FORM 

Of course we know that a point in the plane can be expressed in polar 
coordinates rather than in cartesian coordinates (Fig. 10.2). We obtain 
from elementary trigonometry 

so that 

a = r cos e, b = r sin e 

a+ib=rcosS+irsine 
= r(cos e + i sin 8) 

y-axis 

Fig. 10.1 Cartesian coordinates. 
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Fig. 10.2 Polar coordinates. 

When a complex number is expressed in this way, we say it is expressed in 
polar form. 

The easiest way to express a complex number in polar form is to put 
the complex number on the Argand diagram using the correspondence 
a + ib ~ (a, b), and then to read off the distance r = V(a2 + b2 ) and the 
angle e. 

MODULUS AND ARGUMENT 

The usual convention for polar coordinates is to take r > 0 and 0 ~ 8 < 2n, 
so that a unique representation is obtained for every point other than the 
origin. 

In the complex plane, the convention is slightly different. Here we take 
r > 0, as before, but -n < 8 ~ n. r is known as the modulus of the 
complex number: r = V(a2 + b2 ). 8 is known as the argument of the 
complex number: 8 = tan- 1 (y!x) when 8 E (-n/2, n/2). 

It follows that any non-zero complex number can be represented uniquely 
by the modulus r and the argument 8. The notation r L8 is often used to 
denote these essential ingredients. When a complex number is expressed 
in polar form where 8 is the argument of the complex number, so that 
-n < 8 ~ n, it is said tobe in modulus-argument form. 

D Express the complex number 1 - 2i in the form rL8. 
Webegin by representing the complex number by a point on the Argand 

diagram (Fig. 10.3): l - 2i ~ (1, -2). We calculate the modulus straight 
away using Pythagoras's theorem: 

r1 = a1 + b1 = 12 + (-2)1 = 5 

and therefore the modulus is V5. The argument can be read from the 
diagram using a little trigonometry. The acute angle a is given by tan- 1 2 = 
63°26' or 63.44°, so that r = V5 and 8 = -tan- 1 2. • 
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Im axit 

I 
I 
12 

:j 
1- 2i 

Re axis 

Fig. 10.3 Cartesian representation of 1 - 2i. 

Note that we can express the argument in degrees if we wish, but we must 
indicate clearly that we have done so. In many ways it is best to get used 
to the natural measure of angle, the so-called radian (n radians = 180 
degrees). For instance, in the series expansion for the circular function 

cos x = 1 - !x2 + ... 

x is the natural measure of angle, and it would be incorrect to attempt to 
use degrees. 

COMPLEX CONJUGATE 

lf z = a + ib, we denote the modulus of z by lzl and the argument of z by 
arg z. 

Another useful concept, which we have already used implicitly, is known 
as the complex conjugate of z and is denoted by z. If z = a + ib then we 
define z = a - ib. lt follows that 

zZ = (a + ib)(a- ib) = a2 - (ib)2 

= az + bz = lzlz 
which is a real number. 

We can use this to reduce any rational expression involving complex 
numbers to the form a + ib, where a and bare real numbers. To achieve 
this we render the denominator real by multiplying numerator and de­
nominator by the complex conjugate of the denominator. This is precisely 
what we did in a previous example. Hereis another example to make the 
idea crystal clear. 
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0 Express the following complex number in the standard cartesian form 
a + ib, where a and bare real numbers: 

(2 + i)3 

(3 + 4i)3 

We can simplify the numerator and denominator separately 

(2 + i) ( 4 + 4i + i2) 

(3 + 4i) (9 + 24i + 16i2) 

(2 + i)(3 + 4i) 
(3 + 4i) (9 + 24i - 16) 

2 + i 
(-7 + 24i) 

We now multiply numerator and denominator by the conjugate of the 
denominator, since we know this will reduce the denominator to a real 
number: 

2 + i 
-7 + 24i 

(2 + i)( -7 - 24i) 

( -7)2 + (24)2 

-14 + 24 - 55i 10 - 55i 
49 + 576 625 

2- lli 2 . -11 
125 = 125 + I 125 

10.3 VECTORIAL REPRESENT A Tl ON 

• 

Another related geometrical method for representing complex numbers 
is to regard them as directed line segments emanating from the origin. 
More precisely, if z = a + ib corresponds to P, the point (a, b) in the 
complex plane, then we represent z by the line segment OP (Fig. 10.4). 
It is easy to show that, with this representation, when two complex num­
bers are added tagether their sum is obtained by adding the corresponding 
line segments according to the parallelogram law. 

To see this, suppose P and Q represent the complex numbers a + ib and 
c + id respectively. Then the sum of the complex numbers is 

(a + ib) + (c + id) = (a + c) + i(b + d) 

We show that this is represented by the point R, where R is obtained from 
P and Q by completing the parallelogram POQR. 

If we complete the parallelogram POQR as shown in Fig. 10.4 we have 

OA = a, AP = b, oc = c, CQ = d 

Moreover OA = CD, AP = DB and CQ = BR using parallels. So 

OD = OC + CD = OC + OA = a + c 
DR = DB + BR = AP + CQ = b + d 
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R 

lt 
ld 

-- r:!~ 
IB 
I 
I 
I 
I 
I 

a D 

Fig. 10.4 Cartesian representation of (a + ib) + (c + id). 

This is the property we wished to show. 
If the points P and Q represent the complex numbers z and a (Fig. 10.5) 

then since 

z = (z- a) + a 

the vector representing z - a is equal in length and parallel to PQ. This 
observation gives us a geometrical interpretation for lz- alandarg (z- a) 
which we shall find useful when describing sets of points. 

We shall refer to the 'point z' or the 'vector z' rather than the more 
correct but awkward 'point representing the complex number z' and 
'vector representing the complex number z' respectively. 

We can carry out operations involving multiplication geometrically in the 
Argand diagram if we observe the following properties: 
1 lzwl = lzllwl 

21;1 = 11:11 provided w =t 0 

3 arg (zw) = arg z + arg w 

4 arg (;) = arg z - arg w provided w =t 0 

To be strict, it may be necessary to add or subtract 2rr to bring the argu­
ment in properties 3 and 4 within the range -rr < 8 ::::: rr, that is the interval 
( -rr, rr]. However, if we add or subtract 2rr from the polar angle of a com­
plex number it has no geometrical effect in the complex plane. Therefore, 
if we are concerned solely with the geometrical effects of these operations, 
these algebraic details are irrelevant. 
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z-a 

Fig. 10.5 Geometrical representation of lz - al. 

To justify these properties, ,suppose z = r(cos 8 + i sin 8) and w = 
s( cos <j> + i sin <j> ). Then 1 

zw = rs(cos 8 + i sin 8) (~os <j> + i sin <j>) 

= rs[cos 8 cos <j> - sin1 8 sin <j> + i(cos 8 sin <j> + cos <j> sin 8)] 
= rs[cos (8 + <j>) + i sin (8 + <j>)] 

so that properties l and 3 follow: 

lzwl = rs = lzllwl 
arg (zw) = 8 + <j> (mod 2:n:) 

= arg z +arg w (mod 2:n:) 

The expression mod 2:n: indicates that it may be necessary to add or subtract 
multiples of 2:n: to bring the argument within range. 

We can readily deduce properties 2 and 4. First, using property l, 

Then dividing through by lwl gives property 2. Next, using property 3, 

arg z = arg ( ;w) 
= arg (;) + arg w (mod 2:n:) 

Then subtracting arg w from each side gives property 4. 
Wehave shown that 

l When two complex numbers are multiplied the moduli are multiplied 
and the arguments are added; 
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2 When two complex numbers are divided the moduli are divided and the 
arguments are subtracted. 

0 What is the effect in the complex plane of multiplying a complex 
number by i? 

When we put i in polar form we obtain 

i = l(cos rr,/2 + i sin rr,/2) 

so that the modulus is 1 and the argument is rr/2. Suppose z is any complex 
number with modulus r and argument e. Then iz is a complex number with 
modulus r and argument e + rr/2. Therefore geometrically the effect is to 
rotate the vector representing z anticlockwise through rr/2. • 

0 A complex number satisfies the equation 

lz - il = lz + il 
Determine the locus of the point which represents z in the Argand dia­
gram. 

Weshall discuss two ways of solving this problem. 

Geometrical method In Fig. 10.6, lz- il is the distance between the point 
representing z and the point representing i. Likewise lz + il is the distance 
between the point representing z and the point representing -i. The 
equation teils us that these two distances are equal, and since this is the 
only constraint on z it follows that z lies on the perpendicular bisector of 
the line joining -i to i. This is the real axis. 

Algebraic method Put z = x + iy and examine what can be deduced from 
the equation lz - il = lz + il. We obtain 

l(x + iy) - il = l(x + iy) + il 
l(x + iy) - W = l(x + iy) + W 

-i 

Fig. 10.6 Locus of z if lz - il = lz + il. 
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lx + i(y - 1)12 = lx + i(y + 1)12 
x2 + (y - 1 )2 = x2 + (y + 1 )2 

-2y = 2y 
y=O 

Therefore z lies on the real axis, as we deduced before. • 
In general there are two methods available for solving locus problems: the 
geometrical method and the algebraic method. 

10.4 FURTHER PROPERliES OF THE CONJUGATE 

Wehave already seen that 

and we have at once 

z + z = ( a + ib) + ( a - ib) = 2a = 2 Re ( z) 
z - z = (a + ib) - (a - ib) = 2ib = 2i Im(z) 

0 Show that the conjugate of a product is the product of the conjugates. 
Wehave shown that if z = r(cos 9 + i sin 9) and w = s(cos <j> + i sin <j>), 

then 

Therefore 

Now 

and 

So 

as required. 

zw = rs[cos (9 + <!>) + i sin (9 + <!>)] 

zw = rs[cos (9 + <j>) - i sin (9 + <!>)] 

z = r(cos 9 - i sin 9) 

= r[cos ( -9) + i sin ( -9)] 

w = s(cos <1> - i sin <j>) 

= s[cos ( -<j>) + i sin ( -<j>)] 

zw = rs [cos ( -9 - <j>) + i sin ( -9 - <j>)] 

= rs[cos (9 + <!>) - i sin (9 + <j>)] = zw 

• 
You will recall that, with one exception, we have defined an where n is any 
integer and a is any real number (Chapter 1). The exception is a = 0, for 
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we do not define 0°. The reason for this omission is that whatever definition 
we were to choose we should violate the laws of indices, and we wish to 
preserve these at all costs. 

With the exception that we do not define 0° we now define, in the 
obvious way, z" where n is any integer and z is any complex number. We 
define 

z0 = 1 provided z * 0 
zn+l = ZZ11 (n E N) 

Therefore z", when n e N, is a product of z with itself n times. Finally, we 
define 

z-n = llz" when n E N, z #= 0 

1 0.5 DE MOIVRE'S THEOREM 

Wehave already seen how to express a complex number z in polar form. 
One of the advantages of doing so is that it is then possible to calculate z" 
very easily. This is a consequence of De Moivre's theorem, which says that 
if n is any integer 

(cos e + i sin 9)" = cos ne + i sinne 

Weshall accept this without proof. The usual method of proof is to prove it 
first for natural numbers and then to extend the proof to all integers. If you 
are familiar with the method of proof known as mathematical induction 
(Chapter 1) you should have no difficulty in supplying the details. 

We should be very wary of trying to use De Moivre's theorem for other 
values of n. For example, we have defined (section 1.5) 1112 to be the 
positive real root of the equation x2 = 1, and so 1112 = 1. However, if 

( cos e + i sin er = cos re + i sin re 
were to hold for all real numbers r then 

1 = 1112 = (cos 2n + i sin 2n) 112 = cos Jt + i sin Jt = -1 

You may find books that claim that for all real numbers r 

( cos e + i sin er = cos re + i sin re 
and some which purport to prove it! The best that can be said of this isthat 
the expression on the right is one of the values of the expression on the left, 
where the expression on the Ieft may have been somewhat loosely defined. 

If z e C, we shall not need to define z" except when n is an integer. 
There are several uses for De Moivre's theorem. 
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0 Obtain (1 + i)28 • 

We could expand by the binomial theorem, but this would be no easy 
task. Instead we begin by putting z = 1 + i into polar form. If we put the 
point ( 1, 1) on the Argand diagram we can read off the modulus and the 
argumentstraight away. We see that r = V2 and 8 = n/4. Therefore 

So 

z = V2(cos n/4 + i sin n/4) 

z28 = (V2)28 (cos n/4 + i sin n/4)28 

= 214(cos 7n + i sin 7n) 

using De Moivre's theorem. Therefore 

z28 = 214(cos n + i sinn) = -214 • 
Herewe can see that De Moivre's theorem has helped us considerably. We 
can also use De Moivre's theorem to deduce trigonometrical identities. 

0 Use De Moivre's theorem to deduce identities for sin 38 and cos 38 in 
terms of sin 8 and cos 8 respectively. 

lt helps to use a shorthand notation. We write c = cos 8 and s = sin 8, so 
that 

c + is = cos 8 + i sin 8 

Now by De Moivre's theorem 

cos 38 + i sin 38 = (c + is)3 

= c3 + 3c2(is) + 3c(is)2 + (is)3 

= c3 + 3ic2s - 3cs2 - is3 

using i2 = -1. So equating real and imaginary parts we have 

cos 38 = c3 - 3cs2 

sin 38 = 3c2s - s3 

Now c2 + s2 = 1, and so 

cos 38 = c' - 3c(l - c2 ) 

= 4c3 - 3c 
= 4 cos3 8 - 3 cos 8 

sin 38 = 3(1 - s2 )s - s3 

= 3s - 4s3 

= 3 sin 8 - 4 sin3 8 

0 Simplify the expression 

(cos 38 + i sin 38)6 (cos 28 - i sin 28f 
(sin 58 + i cos 58)6 (cos 8 - i sin fl)x 

• 
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We begin by remarking that because 

(cos 8 + i sin 8)n = cos n8 + i sin n8 

for any integer n, it follows that 

(cos 8 - i sin 8t = cos n8 - i sin n8 

There are many ways of seeing this. One way is to take the complex con­
jugate of each side of the equation using the property that the conjugate of 
a product is the product of the conjugates. Also 

sin 8 + i cos 8 = -i2 sin 8 + i cos 8 
= i(cos 8 - i sin 8) 

Using Oe Moivre's theorem we now have 

(cos 38 + i sin 38)6 (cos 28 - i sin 28f 
(sin 58 + i cos 58)6 (cos 8 - i sin 8)8 

(cos 8 + i sin 8)18 (cos 8 - i sin 8)14 

= i6(cos 58 - i sin 58)6 (cos 8 - i sin 8)8 

Now i2 = -1 and so i6 = ( -1)3 = -1. Therefore the expression becomes 

- (cos 8 + i sin 8)18 (cos 8 - i sin 8)14 

- -(cos 8 - i sin 8)30 (cos 8 - i sin 8)8 

- -(cos 8 + i sin 8)18 

- (cos 8 - i sin 8)24 

= -(cos 8 + i sin 8)42 

= -(cos 428 + i sin 428) • 

lt is now time for you to take some steps . 

... 

1 

,....}\l---.----10.6 Workshop _______ _ 

L------' Exerc1se Express the complex nurober 

in polar form. 

(y'3 + i)2 

(i- y'3)3 

Try this carefully before you take the next step. 

There are essentially two ways of proceeding. One method is to multiply 
'--------' everything out, simplify it down to obtain the cartesian form, and then 

produce the polar form. This is routine but long. 
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The better alternative is to put the complex numbers which appear in the 
expression into polar form and use De Moivre's theorem to simplify it. 
Thus 

Then 

• 13 13 . 2 ( 57T • • 57T ) t-v =-v +t= cos 6 +tsm 6 

(J3 + i)2 

(i- J3)3 
= 

= 

[2( cos 1r /6 + i sin 1r /6) ]2 

[2(cos 57r /6 + i sin 57r /6)]3 

4( cos 1r /3 + i sin 1r /3) 
8( cos 57r /2 + i sin 57r /2) 

= ~ ( cos [ ~ - ~] 1r + i sin [ ~ - ~] 1r) 

= ~ ( cos [ 2 ~ 15] 1r + i sin [ 2 ~ 15] 1T) 

= ~ ( cos [- 1 ~7r] + i sin [ _ 1~7r]) 

= ~ ( cos [- i] + i sin [-i]) 
So r = 1/2 and (} = -1r /6 and the required polar form is 

~ ( cos [ -i) + isin [ -i]) 
You can if you prefer express the complex number in the modulus­
argument form as (1/2)L( -1r /6). 

If you managed that, except for possibly a numerical slip, then proceed 
at full speed to step 4. Otherwise, try this exercise. 

[> Exercise Express the complex number 

(1 + 4i) (2 - 3i) 
(i + 6)(1 + 3i) 

in the cartesian form a + ib. 
There is no need for polar form here. 

All we need to do is to rationalize the expression by multiplying numera­
tor and denominator by the conjugate of the denominator. You can do L_____ _ _J 
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this before you multiply out or afterwards; it's up to you to choose. So, 
multiplying out first, we have 

(1 + 4i)(2 - 3i) 2 + 8i - 3i - 12i2 

(i + 6) (1 + 3i) i + 6 + 3i2 + 18i 

So the number is 

Now step ahead. 

2 + Si + 12 14 + Si 3 - 19i 
19i + 6 - 3 3 + 19i 3 - 19i 

42 + 1Si - 266i + 9S 137 - 2S1i 
=----

9 + 361 370 

137 .2S1 
370- 1370 

4LJ Exercise Describe the following set of points in the complex plane: 

{z:z E C, arg (z- 1) < n/2} 

It is best to use a geometric method here because the algebraic method will 
involve you in work with inequalities which you may find too difficult. 

Suppose we take a general point P in the set (Fig. 10.7). We know that 
L--~ if we join P to the point A, representing the complex number 1, and 

8 = LXAP, then 8 < n/2. This follows because arg (z - 1) = LXAP. 
Any point in the lower half of the complex plane satisfies this condition, 

Al1 
I 
I 
I 
I 
I 

p 

X 

Fig. 10.7 {z: z E C. arg (z - 1) < n/2} (unshaded region). 
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and so too does any point in the upper plane to the right of the line defined 
by Re (z) = 1. We see therefore that we must exclude all points corre­
sponding to complex numbers which have their real part less than or equal 
to 1 and their imaginary part greater than or equal to 0. This region is 
shown in the diagram. 

If you managed to get that right then move on to the next section. 
Otherwise, try one more exercise. 

[> Exercise Describe the locus of the point z which moves in the complex 
plane in such a way that 

lz - il = 2lz - 11 
Only when you have tried this should you move on. 

We can use either the geometrical method or the algebraic method. For 
the geometrical method you need to know that the locus of a point which 
moves so that the ratio of its distances from two fixed points is a constant is 
a circle. If you are not aware of this fact you might like to prove it. The 
only exception is when the ratio is 1, in which case the locus is a straight 
line. Once you know the locus is a circle, the centre and radius can be 
deduced from a diagram. 

The algebraic method is more Straightforward in this instance. Let 
z = x + iy. Then 

So 

lz - il = 2lz - 11 

l(x + iy) - il = 2l(x + iy) - 11 
lx + i(y - 1)1 = 2l(x - 1) + iyl 

lx + i(y - 1)12 = 4l(x - 1) + iyl 2 

x2 + (y - 1)2 = 4[(x - 1f + /] 
x2 + / - 2y + 1 = 4(x2 - 2x + 1 + /) 

3x2 + 3y2 - 8x + 2y + 3 = 0 
x2 + y2 - 8x/3 + 2y/3 + 1 = 0 

This is the equation of a circle with centre (4/3, -113) and radius 2V213 
(see Chapter 3). 

10.7 THE nTH ROOTS OF A COMPLEX NUMBER 

We are now in a position to solve the equation zn = a where a is any com­
plex number and n E N. The solutioQs of this equation are called the nth 
roots of a. 

Suppose we have a polynomial in x 

..__ _ _, 
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f(x) = CnXn + Cn-!Xn-l + ... + c,x + Co 

If the coefficients 

are real numbers then we know there are at most n real roots of the equa­
tion f(x) = 0. 

Webeganthis chapter by looking at the quadratic equation and noticing 
that on occasion we did not have two real roots. This motivated the exten­
sion of the number system to complex numbers. We did this to erisure that 
every quadratic equation bad two roots. It would not be surprising if when 
we turned our attention to polynomials of higher degree that further exten­
sions of the number system would be required. However, it is a quite 
remarkable fact that when we allow complex numbers into the picture 
then the polynomial equation 

f(z) = CnZn + Cn-!Zn-! + ... + c,z + Co = 0 

always has n roots. Some of the roots may be repeated, but there are 
always n in total. 

Unfortunately in general it is not possible to obtain formulas for solving 
polynomial equations of degree higher than 4. However, we can solve the 
equation zn = a by using De Moivre's theorem, and this we now do. 

Webegin by expressing the number a in polar form: 

a = r(cos 8 + i sin 8) 

We observe first that if 

then 

z0 = r 11"[cos (8/n) + i sin (8/n)] 

z(j = (r11")''[cos (8/n) + i sin (8/n)]" 
= r[cos n(8/n) + i sin n(8/n)] 

by De Moivre's theorem. So 

z(i = r[cos 8 + i sin 8] = a 

Therefore z0 is one of the roots of the equation z" = a. 
However, we can write a in the form 

a = r[cos (8 + 2k3t) + i sin (8 + 2k3t)] 

where k is any integer. Therefore by the same token, if we put 

zk = r 11n[cos (8 + 2k3t)ln + i sin (8 + 2k3t)ln] 

it follows that zk is one of the roots of the equation z" = a. Now this is true 
for every integer k, and so at first sight it might Iook as if we have an infinite 
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number of solutions. However, if we allow k to take on n + 1 successive 
integer values the last one will be a repeat of the first. That is, 

Zn = r11"[cos (8 + 2mt)ln + i sin (8 + 2n:n:)ln] 
= r11"[cos (8/n + 2:n:) + i sin (8/n + 2:n:)) 
= r11n[cos (8/n) + i sin (8/n)] = z0 

Therefore we obtain exactly n roots. 
To sum up, the method for obtaining the nth roots of a complex number 

a is as follows: 
1 Put the complex number a into polar form 

a = r(cos 8 + i sin 8) 

2 Write a in the form 

a = r[cos (8 + 2k:n:) + i sin (8 + 2k:n:)] 

where k is an arbitrary integer. 
3 By De Moivre's theorem one of the roots of the equation z" = a is 

zk = r11"[cos (8 + 2k:n:)/n + i sin (8 + 2k:n:)/n] 

for every integer k. 
4 Allow k to take on n successive integer values to determine the nth 

roots. 

If we think in geometrical terms we see that each of the roots has the same 
modulus r 11" and the arguments increase by 2:n:ln. This means that they 
are equally spaced around a circle centred at the origin (Fig. 10.8). This 
observation gives a geometrical method for obtaining the roots once the 
first one is known. Moreover, De Moivre's theorem, gives z0 straight away: 

z0 = r11"[cos (8/n) + i sin (8/n)) 

D Obtain the fifth roots of i. 
We follow the method described. First, if we imagine i in the Argand 

diagram we see that r = 1 and 8 = :n:/2, so that 

i = 1(cos :n:/2 + i sin :n:/2) 

If k is any integer we can rewrite this as 

i = 1[cos (:n:/2 + 2k:n:) + i sin (:n:/2 + 2k:n:)] 

Using De Moivre's theorem we have that the fifth roots are 

zk = 1115[cos (:n:/10 + 2k:n:/5) + i sin (:n:/10 + 2k:n:/5)] 
= cos ( :n:/10 + 2k:n:/5) + i sin ( :n:/10 + 2k:n:/5) 

Finally, we Iet k take five consecutive integer values, for example -2, -1, 
0, 1, and 2, to obtain the five roots: 
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Fig. 10.8 The roots of zn = a. 

z_2 = cos (3t/10 - 43t/5) + i sin (3t/l0 - 43t/5) 
= cos (73t/10) - i sin (73t/10) 

z_ 1 = cos (3t/10 - 23t/5) + i sin (3t/l0 - 23t/5) 
= cos (33t/10) + i sin (33t/10) 

z0 = cos (3t/10) + i sin (3t/10) 
z1 = cos (3t/10 + 23t/5) + i sin (3t/l0 + 23t/5) 

= cos (3t/2) + i sin (3t/2) = i 
z2 = cos (3t/10 + 43t/5) + i sin (3t/10 + 43t/5) 

= cos (93t/10) + i sin (93t/10) 

We can easily check z1: 

i5 = (i2) 2i = ( -1 )2i = i 

Y ou can if you prefer use the geometric method to write down z0 and obtain 
the other roots using the fact that they are equally spaced around a circle 
centred at the origin. • 

10.8 POWER SE RIES 

You will have met the power series expansions for the exponential function 
and the circular functions (Chapter 8): 
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x3 xs x7 
sin x = x - 3! + 5! - 7! + 

In fact it is possible to take these series representations as the definitions of 
the functions themselves, since the series converge for all x E IR. We should 
then of course have to derive all the usual properties of the functions. 

CONVERGENCE 

Suppose sn is the sum to n terms of a complex series. Then we can extend 
the concept of convergence to infinite complex series. We say sn converges 
to s if and only if lsn - si ~ 0 as n ~ oo. 

Since isn - si is the distance in the complex plane between the point sn 
and the point s we see that, as in the real case, the series is convergent if 
and only if the distance between sn and s can be made arbitrarily small 
merely by choosing n sufficiently large. 

Weshall use the real series for eX, cos x and sin x to extend the definitions 
of these functions to complex arguments by defining 

z2 z3 
ez = 1 + z + 2! + 3! + 

z2 z4 z6 
cos z = 1 - - + - - - + 

2! 4! 6! 
z3 zs z7 

sin z = z - 3! + 5! - 7! + 

lt can be shown that each of these series converges for all complex numbers 
z and in such a way that the algebraic identities which we have stated for 
these functions remain valid. 

Theseries for exp z = ez can be used to extend the definition of ar, where 
a isapositive real number and r E IR, to az where z E IC. We define 

Clearly az is defined uniquely by this formula, and is consistent with our 
previous definition in the special case when z = r, a real number. 

We shall avoid attempting a generat definition of zw where z and w are 
both complex numbers. The reason for this is that we must either make a 
rather arbitrary choice for the definition or extend the definition of a func­
tion to allow more than one value to each argument. Each course of action 
has its own problems, and since the concept of zw is without practical 
applications we shall do weil to avoid it altogether. 
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EULER'S FORMULA 

Wehave then 

oo ( -1)'z2r 
cos z = 2: (2 )1 

r=O r · 
• oo ( _ 1yz2r+l 

sm z = 2: (2 1)1 r=O r + · 

If we replace z by iz in the series for ez we obtain 

00 (" )k 
eiz = 2: E__ 

k=O k! 
oo (iz)2r+l oo (iz)2r 

=2: +2:-r=O (2r + 1)! r=O (2r)! 

Herewe have assumed it is permissible, without affecting the convergence, 
to rearrange the terms in this series to sum the odd terms first and then the 
even terms. In fact the exponential series is a particularly tarne one, and in 
this case the procedure can be justified. In general, however, (1) rearrang­
ing terms (2) removing or inserting brackets and (3) differentiating or 
integrating the terms can disturb the convergence of a series. The message 
as always is clear: infinite series can behave in unexpected ways and so they 
must be handled with care. 

Luckily here we can throw caution to the wind and proceed! 

Now 

So that 

That is 

00 (" )k 
eiz = 2: E__ 

k=O k! 
oo (iz)2r oo (iz)2r+l 

= 2: - + 2: -'--'--
r=O (2r)! r=O (2r + 1)! 

(iz)2r = (i)2rz2r = (i2)'z2r = ( -1)'z2r 
(iz)2r+l = (i)2r+lz2r+l = (-1)'iz2r+l 

oo ( _ 1yz2r . oo ( _ 1yz2r+l 
eiz = 2: I + 1 2: I 

r=O (2r). r=O (2r + 1). 
=cosz+isinz 

eiz = cos z + i sin z 
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where z is any complex number. This is an important relationship known 
as Euler's formula, and it has many consequences. 

For instance if 9 is real we obtain 

eill = cos e + i sin e 
In particular, if 9 = n we have 

ein = cos Jt + i sin Jt = -1 

This quite remarkable formula relates two transeendental numbers e and 
Jt. Transeendental numbers are numbers which do not satisfy any poly­
nomial equation with integer coefficients. 

CIRCULAR AND HYPERBOLle FUNCTIONS 

Replacing z by - z in Euler's formula gives 

So that 

Equivalently 

e-iz = cos ( -z) + i sin ( -z) 
= cos z - i sin z 

eiz + e-iz = 2 cos z 
eiz - e-iz = 2i sin z 

cos z = 
2 

eiz - e-iz 
sin z = ----

2i 

Now if you remernher the definitions of the hyperbolic functions you will 
notice the striking similarity between these relationships and the definitions 

ez + e-z 
coshz= 2 

ez - e-z 
sinh z = 2 

Here of course we have extended the domain and codomain of the hyper­
bolic functions to include all the complex numbers. 

In fact there are some simple algebraic relationships between the hyper­
bolic and the circular functions: 
1 cosh (iz) = cos z 
2 cos (iz) = cosh z 
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3 sinh (iz) = i sin z 
4 sin (iz) = i sinh z 

These relationships are easy to derive. For instance to establish 4: 

. . ei(iz) - e- i(iz) 
sm (tz) = 2i 

2i 
i2(ez - e-z) 

2i 
(using e = -1) 

· ( z -z) 
1 e - e .. h = = 1 sm z 

2 

Why not have a go at the others? They are all very similar. 

Here is the working. You can check and see if you have chosen the best 
way. 

As a result of the relationships between hyperbolic and circular functions 
it is possible to translate identities between them. For example, 

cos 28 = 1 - 2 sin2 8 

is a well-known identity involving circular functions. So 

cos (2iz) = 1 - 2 sin2 (iz) 
cosh 2z = 1 - 2[i sinh zF 

= 1 + 2 sinh2 z 

That is, we have deduced the hyperbolic identity 

cosh 2u = 1 + 2 sinh2 u 

Now for some more steps. 
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________ 10.9 Workshop ______ 3~1 ____,, 

I>Exercise Obtain the sixth roots of 32V2 (1 - i). L . 
Oon't forget the easiest way to put a complex number into polar form is 

to draw a diagram and read off r and 8 directly. 

We put the complex number 32\1'2 (1 - i) into polar form to obtain 

32V2 (1- i) = 64[cos (-n/4) + i sin (-n/4)] 

By Oe Moivre's theorem one of the sixth roots is 

z0 = (64) 116[cos ( -n/24) + i sin ( -n/24)] 
= 2 L(-n/24) 

The equal spacing property now enables us to write down all the roots: 

z0 = 2 L( -n/24) 
z1 = 2 L( -n/24 + 2n/6) = 2 L(7n/24) 
z2 = 2 L(7n/24 + 2n/6) = 2 L(15n/24) 
z3 = 2 L(15n/24 + 2n/6) = 2 L(23n/24) 
z4 = 2 L(23n/24 + 2n/6) = 2 L(313t/24)= 2 L( -17n/24) 
z5 = 2 L(-17n/24 + 2n/6) = 2 L(-9n/24) 

We can check this by 

z6 = 2 L( -9n/24 + 2n/6) 
= 2 L( -n/24) = zo 

If that went weil then leap ahead to step 4. Otherwise, try this exercise. 

I> Exercise Obtain the seventh roots of -1. 
There is nothing new about this problem. You can use the geometrical 

method or the algebraic method. 

Forachange weshall use the algebraic method. Webegin by putting -1 in 
polar form: ...__ _ _, 

-1 = 1(cos 1t + i sinn) 

So that for any integer k 

-1 = cos (n + 2kn) + i sin (n + 2kn) 
= cos (2k + 1)n + i sin (2k + l)n 

Using Oe Moivre's theorem we deduce that for every integer k 

zk = cos (2k + l)n/7 + i sin (2k + l)n/7 
= exp (2k + l)in/7 

is a solution of the equation z 7 = -1. 
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Finally, allowing k to take on seven successive integer values provides us 
with all the roots: 

L3 = exp ( -5in/7) 
L 2 = exp ( -3in/7) 
z_ 1 = exp ( -in/7) 
z0 = exp (in/7) 
z 1 = exp (3in!7) 
z2 = exp (5in17) 
z3 = exp (7in/7) = exp in = -1 

lt's worth looking out for situations in which we can use this theory. For 

example, suppose we were required to solve the equation 

(w - 1)7 + (w + if = 0 

W e can rearrange this to give 

Then if we put 

w-1 
z=--

w + i 

we merely need to solve z 7 = -1 and then express w in terms of z: 

z(w + i) = w- 1 

w(z - 1) = -iz - 1 

-iz- 1 
w= 

z - 1 

Now, if you can manage it, here is a further prob lern. 

l4\l Exercise Obtain the general solution of the equation sinh z = -2. 
We need to remernher that we are in the field of complex numbers. 

~ Putting z = x + iy we have 

sinh z = sinh (x + iy) 
= sinh x cosh iy + cosh x sinh iy 
= sinh x cos y + cosh x (i sin y) 
= sinh x cos y + i cosh x sin y 
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So that we have 
-2 == sinh x cos y + i cosh x sin y 

and equating real and imaginary parts 

-2 == sinh x cos y 
0 == cosh x sin y 

Now cosh x is never zero and so we conclude that sin y == 0. So y == nn, 
where n is any integer. We then have cos y == cos nn == (-1)", and so 

-2 == (-1)" sinh x 

from which 

sinh x == 2( -1)"+ 1 

Now 

x == sinh- 1[2( -1)"+ 1] == In [2( -1)"+ 1 + V(4 + 1)] 

so that 

z == In [2( -1)"+ 1 + }15] + inrr where n E N 

If you succeeded in solving that problern then you can read through the 
next one and gloat over your achievement. For those who fell short of the 
target there is one more hurdle. 

C>Exercise Salve the equation tan z == i. 
Don 't attempt this until you feel confident that you understand the 

previous problem. 

If we putz == x + iy then we have :!? I 

Therefore 

tanz == tan (x + iy) 

tan x + tan i y tan x + i tanh y 
1 - tan x tan iy 1 - i tan x tanh y 

(1 - i tan x tanh y)i == tan x + i tanh y 
i + tan x tanh y == tan x + i tanh y 

Equating real and imaginary parts we obtain 

tan x tanh y == tan x 
1 == tanh y 

We conclude that tanh y == 1, which is impossible for y ER. Consequently 
there is no z E C satisfying the equation tan z == i. 
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lt is now time for us to apply some of this work. Check that you have 
understood all the material in this chapter. If there are any weak points 
then concentrate on them before you begin. 

________ 1 0.10 Practical _______ _ 

BALANCED BRIDGE 

When the AC bridge shown in Fig. 10.9 is balanced, the complex im­
pedances Z~> Z2 , Z3 , Z4 of the arms satisfy 

z,z3 = Z2Z4 

If the bridge is balanced, determine C and L in terms of R 1, R2 , R3 , C1 and 
c2. 

Many electrical and electronic engineers prefer to reserve the symbol i 
to denote current, and consequently another symbol j is then used instead 
of the complex number i. We shall employ this notation in this example. 
We must be flexible about notation so that we can change it whenever the 
need arises. 

If you are familiar with circuit theory you may be able to reach the first 
stage. If you arenot then read it through to obtain the necessary equations. 

1 We have the complex impedances 

1 z, = R, + :--c 
JW I 

1 
Zz = Rz + :--C 

JW 2 

Fig. 10.9 An AC bridge. 



PRACTICAL 327 

1 
23 = (11R3) + jooC 

Z4 = jwL 

Now that you have the necessary ingredients it should be possible for 
you to complete the solution. 

2 Wehave 

( 1) 1 (2 1). 
R1 + jooC1 (l/R3) + jooC = R + jooC2 JWL 

so that 

R1 + j:C1 = ( R2 + joo1CJ (~3 + jooC) jwL 

Rationalizing terms: 

. 1 ( j ) (jooL 2 ) R I - J -- = R2 - -- -- - (JJ LC 
ooC1 ooC2 R3 

R 2LC L . (R2wL wLC) = - 200 + -- + J -- + --
R3C2 R3 C2 

Now, if you were stuck, take over the working at this stage. 

3 Equating real and imaginary parts we obtain two equations: 

From (1) we obtain 

2 L 
R 1 = - R2 oo LC + R C 

3 2 

1 R2wL wLC ---=--+--
ooCI R3 C2 

R1 (ooLC) L 
C2 = - R2w Cz + R3C~ 

So using (2) to eliminate C: 

R1 ( 1 R2wL) L 
C2 = -R2w - ooC1 - R;: + R3C~ 

Rz R~w2L L =-+--+--
Cl R3 R3C~ 

Therefore to obtain L we have 

(1) 

(2) 



328 COMPLEX NUMBERS 

That is, 

L = [(Rt/C2) - (R2/Ct))R3C~ 
1 + R~C~oi 

Now see if you can determine C. 

4 Using (1) we have 

So 
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SUMMARY 

0 We defined the complex numbers and showed how to arrange them 
in the cartesian form a + ib. 

0 We expressed complex numbers in polar form r(cos 8 + i sin 8). 
0 We gave two geometrical interpretations of complex numbers: as 

points in the Argand diagram, and as vectors in the complex plane. 
0 We described and applied De Moivre's theorem 

(cos 8 + i sin 8)n = cos n8 + i sin n8 (n E Z) 

0 We saw how to obtain the nth roots of a complex number. If zn = a 
= r(cos 8 + i sin 8) then 

z = r 11n[cos(8 + 2k3t)ln + i sin (8 + 2k3t)ln] 

for some integer k. 
0 We obtained the relationships between the circular functions and the 

hyperbolic functions 
a cosh (iz) = cos z 
b cos (iz) = cosh z 
c sinh (iz) = i sin z 
d sin (iz) = i sinh z 

EXERCISES 

I Express in cartesian form a + ib, where a and b are real: 
a (2 + 3i)(i - 4)2 

3 + i 
b (2 + i? 

1 i 
c 2 + i + 1 + 3i 
d exp (2 + 4i) + i 

2 Express in polar form r( cos 8 + i sin 8) where r and 8 are real numbers 
(r > 0,- 1T < 9 ::::;; 1r): 
a 2/( cos 3t/4 + i sin 3t/4) 
b i(1 + i)2 

c (cos3t/4 + isin3t/4f + (cos3t/2 + isin3t/2)5 

d expi 
3 Obtain all complex numbers z which satisfy the equation 

a z2 + 4z + 5 = 0 
b z3 + i = (z - i)3 

c z4 + 2z2 + 9 = 0 

d _1_ + _1_ = i 
z+i z-i 
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4 Describe the set of points in the complex plane for which z satisfies 
a lz- 3il = 5 
b lz - il + lz + il = 4 

c lz- 2~~ = 1 
2z- 1 

ASSIGNMENT 

1 Express in the form a + ib 

2 Express in polar form 

3 Solve the equation 

(1 + i)(2 - 3i)(1 + 4i) 
(3 + 2i) (3 + 5i) 

(1 + i) i {l-13 - i) 
(1 + iV3) (2 - 2i) 

(z + i)3 = i(z - i)3 

4 Simplify the expression 

(cos 8 - i sin 8)9 (cos 28 + i sin 28)4 

(cos 38 + i sin 38)6 (cos 48 - i sin 48f 

5 Use De Moivre's theorem to express cos 48 and sin 48 in terms of cos 8 
and sin 8 only. 

6 Express the complex expression tan (x + iy), where x and y are real 
numbers, in the form a + ib. 

7 Solve the equation sin z = i. 
8 Describe the set of points in the complex plane which satisfy 

Re(~)= 0 z- 1 

FURTHER EXERCISES 

1 lf P is a point in the Argand diagram representing the complex number 
z, interpret the following as loci: 
a arg [(z - 4)/(z + 4)] = 1t/2 
b lz - iV71 + lz + iV71 = 8 
Determine z if z satisfies both a and b. 

2 a Show that if l3z - 21 = lz - 61 then lzl = 2. 
b Determine z if arg (z + 2) = 1t/3 and arg (z - 2) = 51t/6. 
c The centre of a square in the Argand diagram is represented by the 
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complex number 1 + 3i. Suppose one of the vertices is represented 
by 3 + 6i: determine the complex numbers which represent the 
remaining vertices. 

3 a Determine all the solutions of the equation z4 + 16 = 0. 
b Obtain the roots of the equation z4 - 9z2 + 400 = 0. 

4 a By expressing 1 + iV3 in polar form, or otherwise, calculate 
(1 + iV3) 12 • 

b Obtain all the solutions of the equation z4 = 1 and hence, or 
otherwise, solve the equation (w + 1)4 = (w - 1)4 . 

5 a Solve the equation z4 - llz2 + 49 = 0. 
b Show that if j2z - Si = lz - 101 then lzl = 5. 

6 Show that if z = a + ib is any complex number, 
a Re (z) ~ lzl 
b lzl = lzl 
c Re (z) =Hz + z} 
Deduce that, whenever z~> z2 E C, 

z1zz + ZzZI = 2 Re (z1zz) ~ 2jz1zzl 

By considering (z 1 + z2) (z1 + z2), or otherwise, deduce the triangle 
inequality 

7 The admittance Y of an RC series circuit is given by 11Y = R + 11jwC. 
Show that as w varies from 0 to oo the admittance locus is a circle of 
radius 112R which passes through the origin. 

8 In a transmission line the valtage reflection equation is 

(Z - Z0)/(Z + Z0) = K exp j8 

where K is real, Z = R + jX and Z0 = R0 + jX0 . Show that if X0 = 0 
then 

tan 8 = 2XR0/(X2 + R 2 - RÖ) 

9 For a certain network the input impedance is w and the output im­
pedance is z, where w = (z + j)/(z + 1). 
a Express z explicitly in terms of w. 
b Put z = x + jy and w = u + j v and thereby express x and y in terms 

of u and v. 
c Show that for z pure imaginary (x = 0) the input impedance w must 

lie on a circle. 
d Show. that for z real (y = 0) the input impedance must lie on a 

straight line. 
10 The impedance Z of an RC parallel circuit is given by 11 Z = 11 R + j w C. 

Show that as w varies from 0 to oo the impedance locus is a semicircle 
below the real axis. 
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ln Chapter 1 0 we extended our algebraic knowledge by examining 
some of the properlies of complex numbers. ln this chapter we con­
tinue our algebraic studies by describing a widely used algebraic 
concept known as a matrix. 

After studying this chapter you should be able to 
0 Use matrix notation; 
0 Perform the basic operations of matrix algebra; 
0 Apply the rules of matrix algebra correctly and use the zero 

matrices 0 and the identity matrices /; 
0 Write equations in matrix form and solve matrix equations. 
At the end of this chapter we shall apply matrix methods to some 
practical problems in electrical theory. 

11.1 NOTATION 

Matrices are very useful, for example they are used extensively in the finite 
element method (structural engineering) andin network analysis (electrical 
engineering). The generat availability of high-speed computers has gener­
ated considerable interest in numerical methods and many of these methods 
use matrices. Wherever large amounts of data need to be handled in a 
logical and easily accessible manner, matrices prove usefu). 

What are matrices and where do they come from? You will remember, 
in elementary algebra, solving sets of simultaneous linear equations. If we 
were to examine the underlying structure of systems of equations of this 
kind, we should discover matrix algebra. 

Luckily for us we do not have to consider the origins of matrices. We 
need only learn what they are and how to handle them. 
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A matrix is a reetangular array of elements arranged in rows and columns. 
For example, 

[! 
3 

-2 ~] 
is an example of a matrix with two rows, three columns and six elements. 

Matrices will be denoted by capital letters, and in general a matrix can 
be written as 

A 

where the dots indicate elements which have not been displayed. 
You will observe that each element in the matrix has been given two 

subscripts. These subscripts indicate the address of the element: the first 
subscript gives the number of the row, and the second subscript gives the 
number of the column. We say that the matrix has order m by n, which we 
write as m x n (in much the same way as carpenters describe the sizes of 
pieces of wood). We do not evaluate the product m X n, for this would 
merely give the total number of elements in the matrix and no indication 
of its shape. For example a carpenter might talk about pieces of 4 by 2, but 
he would not talk about pieces of 8; that's a different story altogether! 

If m = n we say we have a square matrix of ordern. 

The notation 
A = [a- ] 

'· J 

is a useful shorthand notation when the order of the matrix is known. The 
element shown is a typical element, for as i and j take on all possible values, 
each element of the matrix is obtained. 

The type of bracket used for matrices is largely a matter of personal 
choice; some books use parentheses. 

A matrix which has just one row or column is called an algebraic vector; 
so a matrix which has just one row is called a row vector, and a matrix with 
just one column is called a column vector. Vector notation is sometimes 
employed, so that algebraic vectors are denoted by x or y. 

D 

[1,5,7,1) [0, 0, 0) 
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These are respectively a column vector with three elements, a row vector 
with four elements and a row vector with three elements. • 

There is a convention which you may come across, known as the printer's 
convention (because it preserves text line spacing), in which a column 
vector is written horizontally as if it were a row vector! The fact that it is 
really a column vector is indicated by reserving curly brackets for the pur­
pose. Thus {4, 2, 6, 1} may be used to represent the column vector 

This convention should be used with caution, particularly if there is a possi­
bility of confusion with a set of elements. Weshall avoid its use altogether. 

11.2 MATRIX ALGEBRA 

EQUALITY 

Two matrices A and B are equal and we write A = B if and only if 
1 A and B have the same order (i.e. the same size and shape); 
2 Corresponding elements are equal. 
We may write this more formally if we wish in the following way. Suppose 
that A and B are two matrices of order m x n and r x s respectively, and 
that A = [a;,j] and B = [b;.i]. Then A = B if and only if 
1 r = m and s = n; 
2 a;.i = b;.i for all i and j. 
Don't be worried if you find this algebraic definition a little difficult at first. 
Compare it carefully with our informal definition and try to understand it. 

The definition of equality of matrices enables us to write a set of several 
algebraic equations by means of a single matrix equation. 

0 Deduce the values of x, y and z if 

See if you can do this. The working is given below. 

We obtain the three equations 
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x+y=4 
y+z=6 
x+z=8 

If we add all three equations and divide by 2 we obtain 

x+y+z=9 

sothatx = 3,y = 1 andz = 5. • 
Did you manage that? Let's continue! Now that we have decided when two 
matrices are equal, we consider how to add two matrices. 

ADDITION 

Two matrices are compatible for addition if and only if they have the same 
order. Addition is then performed by adding corresponding elements. 

In symbols, suppose A = [a;.i] and B = [b;,i] are of order m x n and 
r x s respectively. Then A + B exists if and only if r = m and s = n, and 

A + B = [c· ·) '·I 

where 

c· · = a· · + b· · l,J l,J l,J 

Once more try to follow this algebraic definition by comparing it with the 
working definition which is given above it. 

Clearly if A + B exists then B + A also exists and the two are equal. We 
emphasize this because later when we introduce the operation of multi­
plication of matrices we shall see that generally AB and BA are not equal. 

D Obtain x, y, z and w if 

[2x -y- 1] + [-4x 2y ] = [ y -z] 
y X X y- 1 -w 0 

Give this example a try. lt gives a test of equality and addition. The correct 
working is given below. 

We obtain 

[ -2x -y- 1 + 2y] = [ y -z] 
y + X X + y - 1 -w 0 

From which -2x = y, y - 1 = -z, y + x = -wand x + y - 1 = 0. 1t 
follows that x = -1, y = 2, z = -1 and w = -1. • 

So far so good! 
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TRANSPOSITION 

The transpose AT ( or A') of a matrix A is obtained from A by interchang­
ing each of its rows with each of its corresponding columns. So if A is of 
order m x n then the transpose of A is of order n x m. 

Dlf 

A ~ [! ! ~] then AT~ [~ :J • 
In generat we have (AT) T = A. Note also that if x is a column vector then 
x T is a row vector. So the use of this concept obviates the need for the 
printer's convention. 

More formally, if A = [a;.j] then AT = [b;,j], where b;,j = aj,i for 
i e { 1, ... , n} and j e { 1, ... , m}. If this algebraic form of the definition 
causes difficulties, try to understand it but don't be over-concerned. 

SCALAR MULTIPLICATION 

Any matrix A can be multiplied by any number. The multiplication is per­
formed by multiplying every element in the matrix by the number. The 
numbers are often called scalars. 

In symbols, if A = [a;,j] is a matrix of ordern X m and k is a scalar then 

kA = k[a· ·] = [ka· ·] l,J l,J 

Dlf 

A = G ~] B = G ~] 
then 

3A = [~ 1~] 4B = [4 20] 
8 12 • 

MATRIX MULTIPLICATION 

The rule for matrix multiplication is more complicated, and so we intro­
duce it in two stages. 

Stage 1 
Suppose x and y are a row vector and a column vector respectively, each 
with the same nurober of elements. Specifically, Iet us suppose 
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Then we define 

xy = [xh · · ·, Xn) ~~; l = X1Y1 + X2Y2 + ... + XnYn 

yll 

0 

(4, 3, 2( [!] ~ 4 X 6 + 3 X 7 + 2 X 5 ~ 24 + 21 + 10 ~55 • 

The order in which we write down these vectors is important. We have 
defined the product xy but we have not yet defined the product yx. When 
we do so, we shall see that the two are not equal. 

Stage2 
We are now in a position to consider the generat rule for multiplying two 
matrices A and B together to form a product AB. As a precondition we 
require that the number of columns of A equals the number of rows of B. 
If this precondition is not satisfied then the product AB will not be defined. 

Suppose then that A has order r x s and that B has order s x t. We 
regard the matrix A as made up of row vectors and the matrix B as made 
up of column vectors. We shall initially use dashed lines to help us to 
visualize this. 

0 Let 

A = [~ ~] B ~ [~ 
-1 

~] 4 

3 
1 

0 

Wehave 

[1 : -1 
AB = [-1---4_--7-] 2 : 1 

2 3 5 : 
3 : 0 ~] 
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Now the product AB has, in its ith row and jth column position, the pro­
duct of the ith row of A with the jth column of B viewed as vectors. 

For example, using the first row of A and the first column of B, 

[1 4 7) [~] ~ 1 X 1 + 4 X 2 + 7 X 3 ~ 1 + 8 + 21 ~ 30 

lt follows that AB has 30 as the element in the first row and first column, 
that is the position (1, 1). 

Consequently, 

[1 I -1 I 2] 1 4 7 : : 
AB = [-2--3---5-] 2 ! 1 ! 0 

3 : 0 : 4 

[ 1 + 8 + 21 

2 + 6 + 15 

= [30 3 30] 
23 1 24 

-1 + 4 + 0 2 + 0 + 28] 
-2 + 3 + 0 4 + 0 + 20 

• 
So that in general, if A has order r x s and B has order s x t, then AB has 
order r x t. 

We shall sometimes write A 2 for AA, and in general An+ 1 = An A when 
n E N, n > 1. 

We can write the matrix multiplication rule in symbols if we wish. Suppose 
A = [a;i] and B = [b;i]. Then 

where 

AB= [cij) 

s 

C;i = L a;kbki 
k=l 

= a; 1b1i + ai2b2i + ... + a;sbsj 

The summation sign ~ should cause no problems. Remember, it means we 
Iet k take on every possible integer value from 1 to s, and then add up all 
the terms. 

As we can see, the rule is more involved and less intuitive than the other 
rules. However, it is quite simple to apply and you will be surprised how 
quickly you can get used to it. 

One small point: you remember that when we multiplied a row vector by 
a column vector we obtained a number. However, if we use this definition 
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we obtain a 1 X 1 matrix. One way round this slight contradiction is to say 
that we shall regard 1 x 1 matrices as numbers. 

lt can be shown that the associative law 

A(BC) = (AB)C 

holds whenever these products are defined. You should not assume that 
this rule is self-evident, however. It is the notation and the use of the word 
'product' which may Iead you to this erroneous conclusion. You have 
already met several examples of non-associative operations. For example, 
ordinary division for real numbers is non-associative: (3/2)/5 is not equal to 
3/(2/5). 

To reinforce the fact that we need to exercise caution when carrying 
out algebraic operations using objects with which we are unfamiliar, we 
remark that for matrices A and B the products AB and BA are not in 
general equal. In fact, we have a precondition that may not be satisfied in 
both cases, so that only one of the products may exist. If, however, Ais of 
order r x s and Bis of order s x r then AB is a square matrix of order r and 
BA is a square matrix of order s. Now matrices cannot be equal unless they 
have the same order, so that before we can even begin to consider equality 
we must have r = s. Even this is not enough to ensure equality! If A and B 
are both square matrices of order r then in generat 

AB =I= BA 

Matrices for which AB= BA are said to commute. This is a comparatively 
rare event! 

Now we shall make sure we have our ideas straight. 

________ 11.3 WorkshOP---------..-_, 

rr?/ We shall use the following matrices to step through some exercises: 

A = [~ ~] B = [1 3 1] 
2 1 5 

D = G ~] E = [~ ~] 
I>Exercise Without evaluating them, write down all possible products of 

pairs of distinct matrices from the Iist which include the matrix A. (For 
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instance, if you think AC exists include AC in your Iist, but if you believe 
that CA does not exist exclude CA from your list.) In each case write the 
order of the product alongside. 

When you have completed this, Iook at the next step to see if you have 
the right answers! 

!\l Here are the correct answers: 

AB (2 X 3) 
AD (2 X 2) 
AE (2 x 2) 
CA (3 X 2) 
DA (2 X 2) 
EA (2 x 2) 

Did you manage to get them all right? If you did then move on to step 5. If 
you made some mistakes, check back carefully to see the precondition for 
matrix multiplication and the rule for calculating the order of a product. 
Then solve this next problem. 

t>Exercise Write down a Iist of all the products of two matrices which have 
B as one of them. As before, write alongside the order of each product. 

As soon as you have finished, take the next step to see if you are right. 

l3\l Here are the answers: 

BC (2 X 2) 
CB (3 x 3) 
DB (2 X 3) 
EB (2 x 3) 

If they are all right then move on to step 5. If there are still a few difficulties 
you should go back carefully over what we have done and then try this 
prob lern. 

t>Exercise If we consider pairs of distinct matrices from our original Iist, 
there are still four which we have not listed. Say which these are and give 
the orders of these products. 

When you have completed this, Iook at the Iist in the next step. 

l4"Ll Here are the answers: 

CD (3 X 2) 
CE (3 X 2) 



DE (2 X 2) 
ED (2 X 2) 

Now let's move on to matrix multiplication. 

t>Exercise Obtain AB, AD, BC, AE, CD and DE. 
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Try these, then look at the next step to see if you have all the answers 
right. 

Here are the correct results: 

[ 1 3] [1 : 3 : 1] [7 6 16] AB = _6 ___ 1_ 2 i 1 i 5 = 8 19 11 

AD = [-1 __ _3_] [2 i 1] = [17 13] 
6 1 5 : 4 17 10 

BC = [-}-{---~-] [- ~ i ~] = [ 1 ~ ~~] 
2 : 4 

AE = [-1 __ _3_] [1 i 1] = [7 4] 
612:1 87 

[ 
1 3j I [ 17 13] 

CD = --=-T-T [2 l 1] = 3 3 
------- 5 4 

2 4 I 24 18 

DE = [-2 ___ 1_] [1 l 1] = [ 4 3] 
54 2:1 139 

If you have these all correct then you can proceed to step 8. If some of the 
products didn't work out, try this next exercise. 

r>Exercise Calculate the products CA, CB, DA, DB, ED. 
When you have finished, check in step 7 to see if you have them right. 

Here are the answers: 

[ 
1 3] [ 1 X 1 + 3 X 6 ------ 1 I 3 

CA = =-~--~ [6 ~ J = -1x1+1x6 
2 4 2X1+4X6 

1x3+3x1] [19 6] 
-1X3+1X1 = 5 -2 

2x3+4x 1 26 10 

d?l 

:#I 

[Jfj 
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[ --~--~] [1 : 3 I 1] [ 7 6 164] CB = -1 1 I = 1 -2 
--2--4 2 : 1 I 5 10 10 22 

DA = [-}-~-] [~ 

DB = t}--}] G 
ED = [-}-+] G 
There we are! Now step ahead. 

l8"Ll Exercise Among the matrices we have been considering, there are two 
that commute. Find out which they are! 

When you have done this, read on and see if you are right. lt shouldn't 
take too long! 

l9Ll Hereis the solution. Wehaveseen that for two matrices to commute, they 
must both be square and have the same order. Therefore the only ones we 
need to consider areA, D and E. The productsAD, AE, DA, ED and DE 
have already been found, and so there remains only EA to find: 

EA = [-i-+J [~ ! ~] = G ;] = AE 

Consequently A and E commute. 

11.4 MATRIX EQUATIONS 

The simplest way to deal with this subject is by example. 
Suppose we want to write the following equations in matrix form and 

thereby obtain u and v in terms of x, y and z: 

u = 3p + 4q p = 2x + 3y - z 
v=p-3q q=x-y+2z 

Wehave 
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and 

These matrix equations may be verified easily by multiplying out and using 
the rule for equality. Observe that in each case the matrix consists of the 
coefficients and that it is multiplied by a column vector of the unknowns. 
So, writing 

u=[~] p=[:J 
with 

we have 

u = Ap and p = Bx 

So substituting for p we have 

u = A(Bx) = (AB)x 

using the associative law. Now 

So that 

Therefore 

u = lOx + 5y + 5z 
v = -x + 6y- 7z 

Of course, we know we could have solved this problern by using elementary 
algebra. The point is that we have now developed matrix algebra to such 
an extent that we have an alternative method. This is just the beginning of 
the story. 
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11.5 ZERO, IDENTITY ANDINVERSE MATRICES 

Any matrix that has all its elements zero is called a zero matrix or a null 
matrix and is denoted by 0. Once we decide on the order of the zero 
matrix, for example 3 x 2, then the zero matrix is uniquely determined. 

0 The 3 x 2 zero matrix is 

[Hl • 
If A is any matrix and 0 is the zero matrix of the same order as A then 
A + 0 = A. 

We do not usually need to emphasize the order of 0 since its context 
clarifies the position. However, when we do need to show the order we 
write it underneath, as in the next example. 

0 

A 0 
3 X 2 2 X 5 

0 
3 X 5 • 

Observe how the rule for matrix multiplication determines the order of the 
zero matrix on the right once the order of the zero matrix on the left is 
given. 

If we have a square matrix, the set of elements on the diagonal from the 
top left-hand corner to the bottarn right-hand corner is known as the Iead­
ing diagonal. Any square matrix which has its only non-zero elements on 
the leading diagonal is known as a diagonal matrix. Such a matrix is uniquely 
determined by the leading diagonal, so that 

A = diag {a, b, c, d} 

is a 4 x 4 matrix in which the elements on the leading diagonal are a, b, c 
and d respectively. That is, 

A ~ [~ ~ ~ ~] 
Any square matrix which has all the elements on the leading diagonal 
equal to 1 and all other elements 0 is known as an identity matrix and is 
represented by /. 
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0 The 3 X 3 identity matrix is 

[1 0 0] 
0 1 0 = diag{1, 1, 1} 

0 0 1 
• 

Suppose that A is an n x m matrix. Then we can easily show that 

A I = I A = A 
n x m mxm n x n n x m n x m 

0 Check this relation with the matrix 

A = [! 5 

3 ~] • 
Another name for the identity matrix is the unit matrix. The equation 
AI = A = JA shows that in matrix algebra I plays much the same role as 
the number 1 does in elementary algebra. 

The consideration of algebraic equations Ieads to a further important type 
of matrix. Take, for example, 

ax + by = h 
cx + dy = k 

Wehaveseen how to write these in matrix form: 

or alternatively by the single matrix equation Ax = h. 
Suppose now that we can find another matrix B such that BA = I. Then 

if we pre-multiply both sides by B we obtain 

That is, 

B(Ax) = Bh 
(BA)x = Bh 

/x = Bh 
X= Bh 

Consequently, this set of simultaneous equations can be solved, using 
matrices, if we can obtain the matrix B. The matrix B, for which BA =I= 
AB, is known as the inverse of the matrix A (see Chapter 13). Although we 
shall see later that not every square matrix has an inverse, the quest for 
inverses Ieads us to the study of determinants in the next chapter. 
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As you know, any point in the plane can be expressed uniquely using ree­
tangular cartesian coordinates as an ordered pair of numbers (x, y). If we 
write this as a column vector and pre-multiply it by a 2 x 2 real matrix we 
obtain another point. So any 2 x 2 real matrix can be regarded as a trans­
formation of the plane to itself. Similarly any 3 x 3 real matrix can be 
regarded as a transformation of three-dimensional space to itself. 

11.6 ALGEBRAIC RULES 

Finally we state without further ado the algebraic rules which matrices 
obey. In each case we shall suppose that the matrices which appear in the 
equations are of the correct order so that the equations are meaningful. 
1 (A + B) + C = A + (B + C): addition is associative. 
2 A + B = B + A: addition is commutative. 
3 A + 0 = 0 + A = A: zero matrices exist. 
4 A(BC) = (AB)C: multiplication is associative. 
5 Al= JA = A: unit matrices exist. (Unless A is square the two matrices 

denoted by I will have different orders.) 
6 A(B + C) = (AB) + (AC): multiplication is distributive over addition. 
7 k(AB) = (kA)B = A(kB) where k is a scalar. 
Perhaps the most important rules to remernher are the following: 
8 In general AB* BA. 
9 If AB = 0 it does not necessarily follow that either A = 0 or B = 0. 

0 

[1 1] [-1 1] = [0 0] 
2 2 1 -1 0 0 • 

This means that we must be extra careful when multiplying by matrices to 
keep the order in which we are to perform the operations clear. We either 
pre-multiply or post-multiply by a matrix. 

We cannot 'cancel out' matrix equations in the same way as we cancel out 
equations involving real or complex numbers. 

0 

[-1 1] [0 2] [ 2 2] 1 -1 2 4 = -2 -2 
Also 



PRACTICAL 347 

[ -1 1] [-2 -1] = [ 2 2] 
1 -1 0 1 -2 -2 

so that 

[-1 1] [0 2] = [-1 1] [-2 -1] 
1 -1 2 4 1 -1 0 1 

but 

[0 2] [-2 -1] 
24=1= 0 1 • 

Now let's apply some of the work we have done to a practical problem. 

________ 11.7 Practical _______ _ 

ELECTRICAL NETWORKS 

Obtain the transmission matrices for the circuits shown in Fig. 11.1(a) 
and (b). Use these to obtain the transmission matrix for the network in 
Fig. 11.1(c). 

We shall solve this problern stage by stage. If you are not an electrical 
engineering student you may not be concemed with the underlying theory. 
If this is the case you may skip over the derivations of the series and shunt 
transmission matrices. 

,1_ I z 
,2_ !!.. JJ.. 

0 0 

~· I f ~· •. f f •. 
0 0 

(•I (b) 

,1_ _,2 

•. f f •. 
(c) 

Fig. 11.1 (a) Series impedance (b) Shunt impedance (c) Cascade of impedances. 
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For the series impedance (Fig. ll.l(a)) we have 

E, = E2 + ZI2 
I, = I2 

When we write these equations in matrix form we obtain the transmission 
matrix: 

[ E 1] [1 ZJ [E2] 
I 1 = 0 1 h 

where 

is the transmission matrix. 
See if you can write down the transmission matrix for the shunt impedance 

before moving on. 

For the shunt impedance (Fig. 11.1 (b)) we have 

E 1 = E2 

I 1 = (1/Z)E2 + h 

So in matrix form we have 

[~,'] = L:z ~] [~:] 
where the transmission matrix is 

[ 1 01] 
1/Z 

The network shown in Fig. 11.1 ( c) can be regarded as a cascade of series 
and shunt impedances as in Fig. 11.2. For each impedance we use the 
matrix equations 

where 

is one of the two types of transmission matrix obtained. 
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Fig. 11.2 Cascade of series and shunt impedances. 

To obtain the transmission matrix of the whole network we put all the 
individual matrices together: 

[~ll] = [~ ~1 ] [11~2 ~] [~ ~1] [11~2 ~] [~:] 
= [1 + Z1/Z2 Z1] [1 + Z1/Z2 Z1] [E2] 

1IZ2 1 11Z2 1 ]z 

[ (1 + Z1/Z2)2 + Z1/Z2 Z1(1 + Z1/Z2) + Z1] [E2] 
= (1IZ2) (1 + Z1/Z2) + 1IZ2 (Z1/Z2) + 1 1z 

Therefore the transmission matrix is 

[ (1 + Z1/Z2)2 + Z1/Z2 Z1(2 + Z1/Z2)] 

(1IZ2) (2 + Z1/Z2) 1 + Z1/Z2 

SUMMARY 

0 Wehave introduced matrices and explained the concepts of 
a equality of matrices 
b matrix addition 
c transposition of matrices 
d scalar multiplication 
e matrix multiplication 
f the matrices 0 and /. 

0 We have seen how to write a set of simultaneaus linear equations 
in matrix form. 

D Wehave listed the rules which matrices obey. 
D We have seen that if a set of algebraic equations is expressed in 

the form Ax = hin which Ais a square matrix, and if we can find a 
matrix B suchthat BA = I, then x = Bh and the equations are solved. 

EXERCISES 

The following exercises use the matrices 
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A=[_~ ~] B = [ -~ !] 
c = [-3 2] 

1 -4 
D = [ 1 -2] 

-1 2 

1 Calculate 
a A + B b (A + B)C c (AT+ BT)T 
d AD + BD e DTD r DDT 

2 If U, V and W are square matrices, obtain the expansion of 
( U + V + W)2 and check your expansion in the case U = A, V = B, 
W=C. 

3 Obtain the matrix X in each of the following: 
aA+X=B-X 
bA+X=l 
c (A + X)T = B 
d (A + X)C =I 
e (A- X)B = CT 
f AX= BX+ C 

4 Obtain the diagonal matrix X which satisfies 

(AX)(BX)T = D 

ASSIGNMENT 

1 Obtain the values of x and y if the matrix 

A = [c~s w x] 
sm w y 

satisfies the equation AAT =I, where AT is the transpose of A. 
2 By considering the matrices 

[1 1 2] 
A = 3 2 -1 

4 1 2 

[2 -1] 
B = 4 2 

3 -1 

verify the identity (AB)T = BTAT. 
3 a ldentify the matrices diag {1, 1} and diag {0, 0, 0}. 

b Show that if A = diag {a,b,c,d} and B = diag {h,k,l,m} then 

AB= BA= diag {ah,bk,cl,dm} 

Obtain also An. 
4 Expand (a) (A + B)2 (b) (A + 2Bf and check the expansions obtained 

with 
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A = [~ !] B = [~ ~] 
5 A square matrix M is symmetric if and only if it is equal to its transpose. 

Obtain a, b and c if 

[3 a -1] 
A = 2 5 c 

b 8 2 

is symmetric. 
6 A square matrix M is skew symmetric if and only if MT= -M. Obtain 

a, b, c, d, e and/if 

A = [ : ! ;] 
-2 6 c 

is skew symmetric. 
7 Given the matrices 

A = [~ ~ ;] B = [-! -~ -~] 
1 y 3 z -3 1 

obtain x, y and z if ABis symmetric. Show that A and B commute. 

FURTHER EXERCISES 

1 If 

[1 2 1] 
A = 2 4 2 

3 6 3 

B = [-~ -~ -~] 
1 -1 0 

verify that AB = 0. 
2 If AB = 0 and BC = I prove that 

3 Show that if 

(A + B)2(A + C)2 = I 

[ 
19 -2 

B = -3 1 

-4 0 

then AB = BA = I. Hence, or otherwise, solve each of the following 
systems of equations: 
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a x + 2y + 3z = 1 
3x + 7y + 9z = 4 
4x + 8y + 13z = 3 

b x + 3y + 4z = 2 
2x + 7y + 8z = 6 
3x + 9y + 13z = 4 

4 In atomic physics the Pauli spin matrices are 

s, = [~ ~] 
where i2 = - 1. V erify 
a S1Sz = iS3 
b SzS, = -iS3 
c ST = s~ = s~ = I 

- [0 -i] Sz-
i 0 

5 Obtain the transmission matrices of the three cascade circuits shown in 
Fig. 11.3. 

6 If there exists a positive integer n such that A" = 0 then the square matrix 
A is said to be nilpotent. Verify that 

[
0 1 al 

A = 0 0 1 

0 0 0 

is nilpotent. 
7 Show that if A is any square matrix then 

a AAT is symmetric; 
b A + Ar is symmetric; 
c A - AT is skew symmetric. 
Verify this general property by considering the matrix 

[1 2 3] 
A = 4 5 6 

7 8 9 

8 Suppose 

[
5 11 4] 

A = 2 9 5 

3 6 2 

[
-12 2 19] 

B = 11 -2 -17 

-15 3 23 

a Verify that AB = I= BA. 
b Use a and the rules of matrices to write down ATBT. 
c Use a and b to write each of the following systems in matrix form and 

thereby solve them: 
-12x + 2y + 19z = 1 

11x- 2y- 17z = 2 
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(I) 

(b) 

(c) 

Fig. 11.3 Cascades of impedances. 

-15x + 3y + 23z = 3 
ii -12u + 11v - 15w = 1 

2u- 2v + 3w = 2 
19u - 17v + 23w = 3 

9 If 1 + a + a 2 = 0, show that a 3 = 1. Hence or otherwise show that if 

A = 1 a2 a [
1 1 1 ] 

[
1 1 1 ] 

B = ~ 1 a a2 

1 a a2 1 a2 a 

then AB= I. 
Three inputs eh e2 and e3 are expressed in terms of three outputs Et. 

E2 and E3 by 

e1 = Et + Ez + E3 
ez = E1 + a2E2 + aE3 

e3 = Et + aEz + a 2 E3 

Express E., E2 and E3 explicitly in terms of eh e2 and e3. 



12 Determinants 

ln Chapter 11 we explained what is meant by a matrix and examined 
the elementary properlies of matrices. T o take the story any further 
we shall need the concept of a determinant; the subject of this next 
chapter. 

After you have completed this chapter you should be able to 
D Distinguish between matrices and determinants; 
D Evaluate determinants; 
D Use Cramer's rule; 
D Calculate minors and cofactors; 
D Simplify determinants. 
At the end of this chapter we shall apply determinants to the practical 
problern of a Wheatstone bridge. 

12.1 NOTATION 

A determinant is a number which is calculated from the elements in a 
square matrix. If we have a square matrix, we may represent its deter­
minant using the row and column notation of matrices. To distinguish the 
two concepts we enclose the elements of a determinant between vertical 
parallellines. We can write the determinant of the square matrix A as either 
/A/ or det A. 

D 

A = G !] det A = ~~ !I • 
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The rule for evaluating a determinant is best introduced by considering the 
simplest cases. If A is a 1 x 1 matrix, then the determinant of A is merely 
the element itself. 

D IfA = [ -3] then detA = -3. • 
In this instance the notation lA I is unfortunate because it could become 
confused with the modulus sign. Luckily 1 x 1 determinants are so trivial 
they seldom arise. 

Things are slightly more straighttorward when we consider determinants of 
order two. We define 

D 

jcosh u sinh u I = cosh2 u - sinh2 u = 1 
sinh u cosh u • 

The rule is: top left times bottom right minus bottom left times top right. 

The rule itself may seem rather strange and arbitrary. To see why it is like 
this, consider the following pair of simultaneous equations: 

ax + by = h 
cx + dy = k 

If we perform elementary algebraic operations on these equations to 
express x and y explicitly in terms of h and k, we obtain 

hd- kb 
x= 

ad- cb 
ak- eh 

y = ad- cb 

We can write these equations in terms of second-order determinants as 
follows: 
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12.2 CRAMER'S RULE 

In fact these equations provide us with an algebraic method for solving 
equations, known as Cramer's rule: 
1 Write down the equations with the constants on the right-hand side: 

attXt + al2xz = ht 

az1X1 + azzXz = hz 

2 Calculate ~, the determinant of t~e coefficients of the unknowns: 

3 To obtain one of the unknowns, cover up its coefficients in the equations 
and imagine them to have been replaced by the corresponding constants 
from the right-hand side. Evaluate the determinant of the fictitious coef­
ficients and equate it to the product of the unknown with ~. 

If you Iook carefully at the rule you will be able to see how to apply it 
easily. Try this example; the working is given below. 

D Obtain x and y explicitly in terms of u and v when 

x cos w + y sin w = u 
- x sin w + y cos w = v 

Using Cramer's rule, we obtain 

Therefore 

So 

!:l. = = cos2 w + sin2 w = 1 I cos w sin wl 
-sin w cos w 

I u sin w I = u cos w - v sin w 
V COS W 

~X= X= 

~y = y = . I 
cos w ~ I = v cos w + u sin w 

-sm w 

x = u cos w - v sin w 
y = v cos w + u sin w • 

Cramer's rule extends to n equations in n unknowns and can be useful for 
dealing with purely algebraic systems. However, there are much more 
efficient ways of solving such systems of equations when the coefficients 
are numerical. 



HIGHER-ORDER DETERMINANTS 357 

12.3 HIGHER-ORDER DETERMINANTS 

We now turn our attention to determinants of order three: 

an a12 a13 

a21 a22 a23 

a31 a32 a33 

Before seeing how to evaluate this determinant, weshall consider an opera­
tion which can be performed either on a square matrix or on a determinant. 

If the row and column in which an element is situated are deleted and the 
resulting determinant is evaluated, the result is known as the minor of the 
element. The minor of a;; is represented by M;;· 

0 

Then 

M2z=l~ ~~=9-2=7 

M31 = 1
2 1

1 = -2-6 = -8 6 -1 

When every element is replaced by its minor we obtain the matrix of miners 
M. In this example, 

[ 19 14 -8] 
M = 5 7 -1 

-8 -7 10 

Check these calculations carefully and see if you agree! • 
An idea closely associated with that of a minor is that of a cofactor. This is 
sometimes known as the signed minor because it has the same absolute 
value as the minor. We define 

A;; = ( -1)i+iM;; 

This rule is by no means as complicated as it Iooks. We see that 
1 If i + j is odd then (-1)i+i = -1; 
2 If i + j is even then (-1)i+i = 1. 
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So that to obtain the cofactor we take the minor, and if i + j is odd we 
change its sign, whereas if i + j is even we leave it as it is. That is, 

A;j = M;j if i + j is even 
A;j = - M;j if i + j is odd 

An easy way to see whether or not to change the sign of a minor when 
calculating the cofactor is to note that the rule provides us with a sign 
convention: 

+ + + 
+ + 

+ 

where + indicates that the sign is unchanged, and - indicates that the sign 
must be changed. 

We now return to the evaluation of the third-order determinant: 

all aiz al3 

a21 a22 an = a11M11- a12M12 + anMI3 = a11A1I + a12A12 + ai013 

a31 a32 a33 

In fact we can evaluate this determinant in terms of the elements in any 
row or any column provided we multiply each element by its appropriate 
cofactor and add the results. So, for instance, 

lAI = a12A12 + a22A22 + a:.2A32 
= a31A:.1 + a32A32 + a3:v433 

Check this carefully from the previous example. 
lt will help to fix the ideas of minor and cofactor in your mind so that you 

can be sure you know the difference. Hereis an example for you to try. 

D Evaluate the determinant given below by using a the elements of the 
second row b the elements of the third column: 

Here is the working: 

8 7 6 
3 9 1 

2 2 4 

a lA I = az1A21 + a22A22 + az0z3 
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= - 3 X I~ :1 + 9 X I~ :1-1~ ~I 
= -3{7 X 4 - 6 X 2) + 9{8 X 4 - 2 X 6) + ( -1) (8 X 2 - 2 X 7) 
= ( -3) X 16 + 9 X 20- 2 = -48 + 180- 2 = 130 

b lA I = a1~13 + a2~23 + a3~33 

= 6 X I~ ~1-1~ ~I + 4 X I~ ~I 
= 6(6 - 18) - {16 - 14) + 4(72 - 21) 
= -72- 2 + 204 = 130 • 

Although we shall have little need to evaluate determinants of order higher 
than three, we remark that the same rule applies: 
l Select any row or any column; 
2 Multiply each element in it by its cofactor; 
3 Obtain the total. 
As we can see, to evaluate a fourth-order determinant we shall have to 
evaluate four determinants of order three. This is equivalent to evaluating 
twelve determinants of order two. Similarly, to evaluate a fifth-order deter­
minant requires the evaluation of sixty determinants of order two. The 
evaluation of determinants of high order is therefore a very inefficient way 
of using a computer, and should be avoided. 

MIXED COFACTORS 

One curious property of determinants is that if we multiply each element 
in a row by the corresponding cofactor in another row, the sum is always 
zero. Weshall need this property a little later, and so it is worth illustrating 
it. 

0 In the previous example the cofactors of the second row were -16, 20 
and -2 respectively. Therefore using these with the elements in the first 
row gives 

8 X ( -16) + 7 X 20 + 6 X ( -2) = 0 

Likewise with the elements in the third row we obtain 

2 X ( -16) + 2 X 20 + 4 X ( -2) = 0 

as claimed. • 
0 Check this property for the columns by using the cofactors of the third 
column with the elements in columns 1 and 2 in turn. • 
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12.4 RULES FOR DETERMINANTS 

From time to time we shall need to evaluate third-order determinants. A 
number of rules have been devised which enable us to simplify determinants 
before we evaluate them. Of course, we know that ifwe change the elements 
in a matrix, we obtain a different matrix. However, we should remernher 
that a determinant can be evaluated; it is a number, and it is possible for 
several ostensibly different determinants to have the same value. It is this 
property which is used to both theoretical and practical advantage when 
determinants are simplified before being evaluated. 

Rule I The value of a determinant is the same as the value of its transpose. 

ln other words if we interchange each of the rows with each of the corre­
sponding columns, the value of the determinant does not changc. 

0 Check that the determinants of these two matrices are the same: 

[~ ~! :J [! 1! -:l • 
Of course, this rule by itself is not going to simplify the numbers inside 
the determinant. However, it does tell us the mathematical equivalent of 
'What's sauce for the goose is sauce for the gander', or in this case 'What's 
true for rows is true for columns'! So for any statement we make about the 
rows of a determinant there is a corresponding statement about the columns 
of a determinant. 

Rule 2 lf two rows of a determinant are interchanged then the determinant 
changes sign. 

For example, if a determinant bad the value 54 then, were we to inter­
change two of its rows, the new determinant would have the value -54. 

For instance, if we evaluate the determinant 

1 3 7 

2 9 6 

5 4 9 

we obtain the number -166. Again, if we interchange the second and third 
rows we obtain 

1 3 7 

5 4 9 
2 9 6 
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which you should be able easily to verify has the value 166. 
One useful consequence of this rule is that if a determinant has two rows 

the same, then it must be zero. This is easy to see if we consider the effect 
of interchanging the equal rows. On the one hand the determinant has not 
been changed at all, and yet on the other hand, by rule 2, the determinant 
has changed signs. Consequently D = - D and so 2D = 0; therefore D = 0. 
This is a very useful rule, so Iet us repeat it: 

lf a determinant has two identical rows or two identical columns, it is 
zero. 

Rule 3 A determinant may be multiplied by a number by selecting any 
single row (or column) and multiplying all its elements by the number. So 

2 
3 X 1 

1 2 
2 3 = 

4 -1 6 

6 1 2 

3 2 3 

12 -1 6 

Here we have multiplied all the elements in the first column by 3. 
There are two important points to note here: 

1 The rule is in marked contrast to the rule for multiplying a matrix by 
a number (where every element in the matrix must be multiplied by the 
number). 

2 The principal application of the rule is its reverse. That is, we simplify 
the arithmetic by taking out a common factor from a row or a column. 

D 

18 9 4 3 9 4 
6 15 12 =6X 1 15 12 

12 3 16 2 3 16 
3 3 4 

=6X3X 1 5 12 
2 1 16 

3 3 1 
=6x3x4x 1 5 3 

2 1 4 

Herewe have taken out factors from the first column, second column and 
third column in turn. • 

Rule 4 The value of a determinant is unchanged if a constant multiple of 
the elements of a chosen row is added to the corresponding elements of 
another row. 



362 DETERMINANTS 

Of course, the constant multiple can be negative, so it is possible to sub­
tract a multiple of one row from another row. This is illustrated by the 
following example: the new notation is explained after the example. 

D 

1 2 3 

2 3 4 

4 5 6 

1 2 3 

0 -1 -2 (r2 = r2 - 2rl) 

4 5 6 

1 2 3 
() -1 -2 (r3 = r3 - 4r1) 

0 -3 -61 

2 3 

= 3 X 0 -1 -2 = 0 

0 -1 -2 

(two equal rows) • 

With practice it is often possible to perform several of these operations at 
the same time. In order to check back it is important to record, alongside 
the determinant, the operations which have been performed. In this way 
we can easily check for errors. Notice also the use of this strange notation. 
For example, r2 = r2 - 2rl means the new row 2 is equal to the old row 2 
minus twice the old row 1. The equality sign is used here in the same way 
as it is used in computer programming. Columns are referred to by the 
Ietter c. 

One word of warning: when using this rule you must keep the row you 
are subtracting fixed. This can easily be overlooked if you attempt several 
operations of this kind together. The best way to check that your opera­
tions are valid is to see if they could all take place in a logical sequence, 
one at a time. 

Hereis an example for you to try. There are many ways of doing the prob­
lern; one way is shown below. 

D Simplify and thereby evaluate the determinant 

13 15 18 

15 17 21 

14 16 27 
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Here is a solution: 

13 15 18 

15 17 21 

14 16 27 

0 Solve the equation 

13 15 18 

= 2 2 3 (r2 = r2- r1) 

1 1 9 (r3 = r3- rl) 

13 15 6 

=3X 2 2 1 (c3 = c3/3) 

1 1 3 

13 15 6 

=3X 0 0 -5 (r2 = r2 - 2r3) 

1 1 3 

1

13 
= 3 X [ -( -5)] X 1 1~1 = -30 

w2 -1 w+1 w-1 

w+1 w-1 w+1 =0 

w- 1 2w 0 

• 

We are looking for all values of w which satisfy this equation. We should be 
very unwise to multiply out the determinant straight away because this 
would result in an equation of the fourth degree and solutions might be 
difficult to spot. lnstead we use the rules for simplifying determinants: 

w2- 1 2w w- 1 

w + 1 2w w + 1 = 0 (c2 = c2 + c3) 
w-1 2w 0 

w2 - 1 1 w-1 

2w w+1 1 w + 1 = 0 (c2 = c2/2w) 
w- 1 1 0 

w2 - w 0 w-1 

2w w + 1 1 w+1 = 0 (r1 = r1 - r3) 
w-1 1 0 

w 0 1 

2w(w -1) w+1 1 w+1 = 0 (c1 = cll(w- 1)) 
w-1 1 0 

w-1 0 1 

2w(w -1) 0 1 w+1 = 0 (c1 = c1 - c3) 
w-1 1 0 
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() 

2w(w - 1)2 0 w + 1 = () 

0 

(c1 = cll(w- 1)) 

Expanding the determinant in terms of the first column gives 

2w(w- 1)2[-(w + 1) + (-1)] = 2w(w- 1)2(-w- 2) = 0 

So that w = 0, w = 1 (repeated root) or w = -2. • 
Before we leave this section we remark that if A and B are square matrices 
of ordern then the product ABis also square of ordern. The following rule 
holds: 

det AB = det A det B 

Therefore the same rule that we used for multiplying matrices together 
can be used for multiplying determinants. 

D Check this property with the matrices 

[ ~ - ~ - ~] [ ~ - ~ :] 
4 2 3 -1 5 7 

• 
Here are some steps for you to take to check that everything is all right. 

r-r--------12.5 Workshop _______ _ s Exercise Using Cramer's rule, express u and v explicitly in terms of 
t( t -:/= -1) from the following: 

tu +(2t+1)v=(t+1)2 

(t-l)u+ 2tv =t(t+1) 

Try it, then move to step 2 for the solution. 

l2Ll We obtain 

Now 

~=I t 2t+1l 
t- 1 2t 

= 2t2 - ( t - 1 ) ( 2t + 1) 

= 2P - (2t2 - t- 1) 

= t + 1 
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( I (t + 1? 2t + 11 l'lu = t + 1 )u = 
t(t + 1) 2t 

= (t + 1)22! - t(t + 1) (2! + 1) 

= (t2 + 2t + 1)2t - t(2t2 + 3t + 1) 
= 2t3 + 4t2 + 2t - 2t3 - 3t2 - t 

= t2 + t = t(t + 1) 

Consequently u = t. To obtain v, either substitute u into one of the 
equations or use Cramer's rule again. You should obtain v = 1. 

If you were successful then move straight on to step 3. Otherwise, here is 
a similar problern to try. 

I>Exercise Solve, using Cramer's rule, 

3x + 2y = 1 
4x- y=5 

You should obtain 1'1 = -11 and thereby the correct result x = 1 and 
y = -1. 

If you came unstuck with the first exercise, go back and give it another 
go before going on to step 3. 

I> Exercise Evaluate the determinant 

2 1 -1 

3 0 1 

1 2 2 

in terms of the second row and the second column. 
Try it, then step ahead. 

First, expanding in terms of the second row the determinant is 

-3 1~ -~I+OI~ -~1- 1 1~ ~I 
= -3[2 - ( -2)) + 0 - (2 X 2 - 1 X 1) 
= -3 X 4 - 4 + 1 = -12 - 4 + 1 = -15 

Next, expanding in terms of the second column the determinant is 

(- 1)1~ ~I+OI~ -~1- 2 1~ -~1 
= ( -1)(3 X 2 - 1 X 1) + 0 - 2[2 X 1 - 3 X ( -1)) 

C#l 
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= (-1)(6- 1) - 2(2 + 3) 
= (-1) X 5-2 X 5 = -5 - 10 = -15 

Don't forget the sign convention. Of course, if there are zero elements in 
the row or column we do not normally bother to write down the minors 
which correspond to them, because their contribution to the value of the 
determinant is zero. 

If you got this one right, move ahead to step 5. If not, try this similar 
problem. 

[> Exercise Evaluate the following determinant in terms of the third row 
and the second column: 

'-----' 

3 5 1 

2 1 0 

1 4 -1 

The answer is 14. 
Now step forward. 

Exercise Simplify, and thereby evaluate, the determinant 

Have a go, then step ahead. 

15 20 28 

28 42 59 
21 32 45 

There are many ways of proceeding. Here is one of them . 
...__ _ _, Fix the first row and subtract multiples of it from the others: 

15 20 28 

-2 2 3 
6 12 17 

(r2 = r2 - 2r1) 

(r3 = r3 - r1) 

Now fix the second column and subtract multiples from the others. We are 
trying to produce zeros and reduce the large numbers: 

35 20 8 
0 2 1 

18 12 5 

(cl = c1 + c2) 
(c3 = c3 - c2) 

We can produce a second zero in the second row: 
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35 4 8 

0 0 1 (c2 = c2 - 2c3) 

18 2 5 

= ( - 1) I~! ~I 
= (-1)(70- 72) = 2 

If all is weil you may move on to step 7. If not, check back carefully. Are 
you remembering to keep a note of the operations you have been using? 

Now try this exercise. 

[> Exercise Simplify the following determinant and then evaluate it: 

18 23 32 

32 41 59 
25 32 47 

The correct answer is 3. 
Now let's check that we can use these operations algebraically. 

C>Exercise Solve the equation 

2x - 3 3x - 5 4x - 8 

3x - 5 Sx - 9 6x - 12 = 0 

4x - 6 6x - 10 9x - 19 

Try it, then step forward for the solution. 

Hereis one way of solving this problem. There arealternative approaches, 
but it would be unwise to evaluate the determinant straight away because 
this would result in a cubic equation which on occasions might be difficult 
to solve. 

There are no obvious factors, and so we Iook to see whether or not 
subtracting rows or columns will produce any. Alternatively we should 
like to produce some zeros. 

We have, using r2 = r2 - r1 and r3 = r3 - 2r1, 

2x - 3 3x - 5 4x - 8 

x-2 2x-4 2x-4 =0 
0 0 X- 3 

This enables us to take out the factor x - 3 from the third row and the 
factor x - 2 from the second row. We obtain 

Zl 

'---~ 
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Therefore 

2x - 3 3x - 5 4x - 8 

(x - 2) (x - 3) 1 2 2 = 0 

0 0 1 

(x- 2)(x- 3)[2(2x- 3)- (3x- 5)) = 0 
(x - 2) (x - 3)(x - 1) = 0 

so that x = 1, x = 2 or x = 3. 
If you got it right, move on to the next section. If not, have a go at 

another one of these exercises. 

C>Exercise Salve the equation 

6u + 1 3u + 1 2u + 1 

9u + 1 5u + 1 3u + 1 =0 

14u + 4 7u + 3 5u + 3 

The correct answer is u = 1, u = 0 or u = -1. 

Here now is a problern which can be solved by using determinants. 

________ 12.6 Practical _______ _ 

ELECTRICAL BRIDGE 

A Wheatstone bridge (Fig. 12.1) has the following set of equations for the 
loop currents i 1 , i2 and i3: 

i1r 1 + (i1 - i2)R4 + (i1 - i3)R3 = E 
(il - i3)R3 - i3R1 - (i_1 - i2)r2 = 0 
Ci1 - i2)R4 + (i3 - i2)r2 - i2R2 = 0 

When the bridge is balanced, no current flows through r2 • Show that R 1R4 

= R2 R3 when the bridge is balanced. 
See if you can sort this out using Cramer's rule. We shall tackle the 

problern stage by stage. 

The first thing to realize is that we are interested in i 1 , i2 and i3 , so that 
these are the 'unknowns' in our equations. Therefore we rewrite the 

equations in this form: 
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Fig. 12.1 A Wheatstone bridge. 

(r1 + R4 + R3)i1 - R4i2 R3i3 = E 
R3i1 + r2i2 - (Rt + R3 + r2)i3 = 0 
R4i1 - (R2 + R4 + r2)i2 + r2i3 = 0 

Now use Cramer's rule delicately. We don't need it with all its weight. 

We can argue in the following way. When the bridge is balanced there is 
no current through r2 and so i2 = i3. Therefore !:ii2 = !:ii3. We do not 
need to calculate !:i itself, only !:ii2 and !:ii3 • Write down the determinants 
!:ii2 and !:ii3 and see if you can complete the solution. 

By Cramer's rule 

'• + R4 + R3 E -R3 

!:ii2 = R3 0 -(Rt + R3 + r2) 

R4 0 r2 

rt + R4 + R3 -R4 E 

!:ii3 = R3 r2 0 

R4 -(R2 + R4 + r2) 0 

When the bridge is balanced we can equate these two determinants. 
Do this and then check the final stage. 
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We expand the determinant lli2 in terms of the second column and the 
determinant lli3 in terms of the third column: 

-E IR3 -(Rt + R2 + r2)1 = E IR3 r2 I 
R4 r2 R4 -(R2 + R4 + r2) 

That is, 

-[R3r2 + R4(Rt + R3 + r2)] = -R:~(R2 + R4 + r2) - R4r2 

From which 

Determinants have their uses, independent of matrix work. Cramer's 
rule is one example of this, and we shall come across another occasion 
where a knowledge of determinants can be valuable. This will be when 
we derive a formula for the vector product of two vectors in terms of 
components (Chapter 14). We shall see then that this can be expressed 
using a determinant. 

There are several other examples too. For instance, suppose we have a 
triangle in the plane with vertices (x 1, y1), (x2 , y2 ) and (x3 , y3). The area of 
this triangle can be expressed neatly in terms of a determinant: 

Xt Yt 1 

±! x2 Y2 1 

X3 Y:~ 1 

Why not check this for yourself? 
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SUMMARY 

In this chapter we have examined 
0 The definition of a minor and a cofactor and the relationship between 

them 
"+" Aii = ( -1)' 1M;i 

0 The procedure for evaluating determinants 
a Select any row or any column; 
b Multiply each element in it by its cofactor; 
c Obtain the total. 

0 Cramer's rule for solving simultaneous equations. 
0 Rules for simplifying determinants 

a The value of a determinant is the same as the value of its 
transpose. 

b If two rows of a determinant are interchanged, then the deter­
minant changes sign. 

c A determinant may be multiplied by a number. Select any row ( or 
column) and multiply all its elements by the number. 

d The value of a determinant is unchanged if a constant multiple of 
the elements of a chosen row are added to the corresponding 
elements of another row. 

EXERCISES 

1 Solve the following equations: 

a lx + 1 2 I = 0 
6 X- 3 

c IX- 2 X I= 0 
X X- 6 

2 Evaluate the following determinants: 
2 0 1 

a -1 1 2 

3 0 4 

2 1 1 
c 1 3 5 

4 1 2 

3 Evaluate, by simplifying first, 
21 15 14 

a 18 45 7 

24 40 21 

b = 0 IX- 1 3 I 
6 X- 4 

d IX+ 1 X+ 21 = 0 
x+2 x+4 

1 2 1 
b -5 1 -1 

4 3 0 

x+1 x+2 
d x+2 x+3 

x+3 x+1 

75 48 90 

b 125 64 75 

50 32 45 

x+3 
X+ 1 

x+2 
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4 Use Cramer's rule ta salve the simultaneaus equatians where a, u, v and 
w are knawn: 
a xV(l + a2) + ya = (1 + a2)- 112 

xa + yV(l + a2) = !Ia 
b x - y exp ( u + v) + z exp ( u - w) = exp u 

x exp ( v - u) + y exp 2v - z exp ( v - w) = exp v 
xexp(w- u)- yexp(w + v)- z = -expw 

ASSIGNMENT 

1 Salve the equatian 

3 I = 0 
X+ 2 

2 Simplify and thereby evaluate 

3 Salve the equatian 

4 Obtain x if 

19 18 25 

22 21 29 

20 28 32 

x+ x x-4 

2 -4 = 0 

3 5 

x-4 x-2 x 

x-3 x-1 x+2 =0 

X- 2 X + 4 3x 

5 Obtain M, the matrix af minors af the matrix 

[7 6 9] 
A = 4 5 6 

7 8 10 

6 Obtain C. the matrix af cafactars of the matrix 

A ~ [~ Hl 
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FURTHER EXERCISES 

1 Obtain w if 

w-6 w-4 w-2 

w-5 w-2 w+2 =0 
w-4 w w+6 

2 Show that 

2x -2 
2x 2 - x2 2x = (x2 + 2)3 

2 -2x -x2 

Hence or otherwise obtain the possible values of x if the determinant is 
known to have the value 27. 

3 Obtain an expression for k in terms of a, b, c and d if 

1 + a 1 1 

1 1 + b 1 

1 1 1 + c 

1 

1 

1 
= abcd(k + 1) 

1 1 1 1 + d 

4 lt is given that the arithmetic mean of the three numbers a, b and c is 
zero and that the root mean square (RMS) value is the square root 
of 8. Solve the equation 

x+a 
c 

b 

c 

x+b 
a 

b 

a =0 
x+c 

Note: the RMS value is the square root of the arithmetic mean of the 
squares of the numbers. 

5 Show that if A is the matrix 

r~~v 
cos u sin u ] 

-sin u sin v cos u sin v 
sm v sin u cos v -cos u cos v 

then det A = 1. 
6 Solve the equation 

X+ 1 2x + 3 3x + 5 

3x + 3 5x + 7 7x + 11 =0 
5x + 6 8x + 12 14x + 24 
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7 Simplify and then evaluate 

27 37 42 

11 15 16 
23 31 34 

8 Without evaluating them, show that the following determinants are 
zero: 

a 1 yz yz(y + z) 

1 zx zx(z + x) 

1 xy xy(x + y) 

b a+x x+y a-y 
x+w x-a a + w 
y+w w-x x+y 

9 Use Cramer's rule to express u and v explicitly in terms of w where 

u+vsin w=secw 
u tan w + v cos w = 2 sin w 

10 The loop currents in a circuit satisfy 

Rtit + Rz(it - i3) = 0 
R3iz + R4(i2 - i3) = 0 

Rtit + R3i2 = 0 

where R1 , R2 , R3 and R4 are resistances. Show that if not all the cur­
rents are zero then 

11 Determine those values of .\ such that 

1-.\ 
-3 
2 

2 1 
,\ -2 
-2 1 + ,\ 

=0 

12 In a Wheatstone Bridge, i denotes the current through the gal­
vanomet('r. Given that 

R2i1 + R4(it - i) = E 
R4(it-i)-R3(i2+i)-Ri = 0 

R2i1 - R1i2 + Ri = 0 

use Cramer's rule to obtain the value of i. Thereby deduce the 
usual condition for the bridge to be balanced. 
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Wehaveseen what determinants are and how to expand and simplify 
them. Our next task is to see what part they play in matrix algebra. 

When you have completed this chapter you should be able to 
D Decide when a matrix is non-singular; 
D Calculate the inverse of a non-singular matrix by the formula; 
D List the elementary row transformations; 
D Calculate the inverse of a non-singular matrix using row transfor­

mations; 
D Apply the method of systematic elimination to solve simultaneaus 

equations. 
At the end of this chapter we shall solve a practical problern involving 
a binary code. 

13.1 THEINVERSE OF A SQUARE MATRIX 

We now turn our attention to the problern of finding the inverse of a 
square matrix A. This is the nearest we get to an operation of division 
for matrices. We are looking for a matrix B such that 

AB= BA= I 

where I is the identity matrix. 
The fact that there is at most one such matrix can be deduced as follows. 

Suppose there is a square matrix A for which there are two matrices B and 
C such that 

AB= BA= I 
AC= CA= I 
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Wehave 

C = CI= C(AB) = (CA)B = IB = B 

So we have deduced C = Bo That is, we have shown that if the square 
matrix A has an inverse then the inverse is uniqueo We denote the inverse 
of A, if it has one, by A- 1 

0 

Suppose A is a square matrixo Then we have seen how to form from A a 
matrix C of cofactors (Chapter 12)0 That is, if 

then 

The transpose of Cis known as the adjoint ( or adjugate) matrix of A and is 
denoted by adj A 0 So 

From what we have done before, we deduce that 

A(adj A) = (adj A)A = (det A)I 

We illustrate this property in the case of a 3 x 3 matrix: 

[
a11 A 11 +a 12A 12 +a 13A 13 a 11 A 21 +a 12A 22+a 13A 23 

a21 A 11 +a22 A 12 +a2_,A 13 a21 A 21 +anA 22 +a23 A 23 

a31 A 11 +a32A 12 +a33A 13 a31A21 +a32A 22 +a,,A23 

[
lAI o 
o lAI 
0 () 

() l 0 

lAI 

a 11 A 31 +a 12A 32 +a~_,A __ ,3] 
a21A31 +anA32+a23A33 

a"A'1 +a32A32+a,3A ,_, 
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Consequently, if lAI is non-zero then the inverse ofA exists and is given by 

A -l 1 d" A 
= IAia 1 

Any square matrix with a zero determinant is called a singular matrix. 
(Singular is used here in the sense of 'unusual', as when Sherlock Holmes 
remarks to Dr Watson on a singular occurrence.) Consequently when 
a square matrix has a non-zero determinant, it is called a non-singular 
matrix. From what we have done we can now assert that every non­
singular square matrix has a unique inverse given by the formula 

A -l 1 d. A 
= IAia 1 

It follows therefore that for such matrices if AB = I then BA = I. How­
ever, this is a consequence of the algebraic structure satisfied by the 
elements of the matrices. Real and complex numbers are examples of what 
mathematicians call fields. If the elements in the matrices did not belong 
to fields then many of the conclusions we have reached would no Ionger 
hold. 

13.2 ROW TRANSFORMATIONS 

Although the formula for the inverse of a square matrix is very useful, 
there is a procedure which can often be used to obtain the inverse more 
quickly. This procedure is known as the method of row operations. 

An operation on a matrix is called an elementary row transformation if 
and only if it is one of the following: 
1 An interchange of two rows; 
2 Multiplication of the elements in a row by a non-zero number; 
3 Subtraction of the elements of one row from the corresponding elements 

of another row. 
A sequence of elementary row transformations results in a row transfor­
mation. Of course the matrix will be changed as a result of a row transfor­
mation, but the matrix which results is said to be row equivalent to the 
original matrix. 

An elementary matrix is a matrix obtained by performing an elementary 
row transformation on the identity matrix I. In fact, it is easy to see that 
an elementary row transformation can be effected by pre-multiplying the 
matrix by an elementary matrix. 
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D 

E,A ~ [~ 
0 

m: 
b 

~] 1 e 
0 h 

~ [~ 
h 

~] e 
b 

E 1 has been obtained from the identity matrix by interchanging row 1 and 
row3. • 

D 

E2A = [~ ~ ~] [= ~ ;] 
0 0 1 g h l 

= [:d :. ~] 
g h l 

E2 has been obtained from the identity matrix by multiplying row 2 by k . 

• 
D 

[~ 
0 

-m: 
b 

~] E3A = 1 e 

0 h 

[d; g 

b 

f ~ il e-h 

h 

E3 has been obtained from the identity matrix by subtracting row 3 from 
row2. • 

Suppose now it is possible, using a sequence of elementary row transfor­
mations, to reduce a matrix A to the identity matrix /. Then 

(E., ... E 2 Et)A = I 

It follows that 

E,. ... E2E 1 = A- 1 

Moreover, 
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A-t = Es ... E2E1 = Es ... E2E1I 

This provides a method for obtaining the inverse of a matrix A. 

13.3 OBTAINING INVERSES 

To obtain the inverse of a non-singular matrix using row transformations: 
1 Write down an array consisting of the matrix A on the left-hand side and 

an identity matrix of the same order on the right-hand side. 
2 Perform a sequence of elementary row transformations on the entire 

array with the object of converting the matrix A into an identity matrix. 
3 As the matrix A on the left is transformed into the identity matrix I, so 

the identity matrix I on the right becomes transformed into the inverse 
of A. 

As we carry out this procedure we shall observe at each stage that the 
matrix on the left gets to Iook more and more like an identity matrix, 
whereas the matrix on the right gets to Iook more and more like the inverse 
of A. It's rather like watehing Dr Jekyll turn into Mr Hyde! 

The best way of carrying out the procedure is to work systematically 
column by column, starting on the left. As a first step, we arrange things so 
that we obtain 1 in the ( 1, 1) position. We then subtract multiples of the 
first row from the other rows so that the first column becomes the first 
column of an identity matrix. When an element is fixed and its row is used 
in this way the element is called a pivot; it may help to encircle the pivot at 
each stage. 

0 Use the method of elementary row operations to obtain the inverse of 
the matrix 

We begin with the array 

[ 6~ 13 9 ! 1 0 0] 
7 5 : 0 1 0 

I 

3 2:o o 1 
Subtract row 3 from row 2 to obtain a leading element 1 in row 2: 

0 0] 
1 -1 

0 1 
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Interchange row 1 and row 2 to obtain 1 in the correct position: 

[CD 4 3 i o 1 -1] 
6139:10 0 

I 

2 32:oo 1 

Subtract multiples of row 1 from row 2 and row 3 to produce the zeros in 
the first column: 

[
1 4 3 : 0 1 -1] 
0 -11 -9 ! 1 -6 6 

0 -5 -4 : 0 -2 3 

Subtract twice row 3 from row 2 to obtain -1 in the (2, 2) position: 

[ ~ - ~ - ~ ~ - ~ -031] 

0 -5 -4 0 -2 

Change the sign of row 2: 

[ ~ ~ ~ 
0 -5 -4 

0 1 

-1 2 
0 -2 

Subtract four times row 2 from row 1 and add five times row 2 to row 3: 

[
1 0 -1 

0 1 1 

0 0 1 

4 -7 -1] 
-1 2 0 
-5 8 3 

Finally, add row 3 to row 1 and subtract row 3 from row 2: 

[' 0 

0 -1 I 2] 
0 1 0 4 -6 -3 

0 0 1 -5 8 3 

Check: 

[~ 
13 

:w~ 
1 

-~] [~ 
0 

~] 7 -6 1 

3 2 -5 8 0 

Notice how we move column by column through the matrix, working 
from the left. Only when the column has been reduced to the appropriate 
column of an identity matrix do we proceed to the next column. • 

Here is an example for you to try. Remernher to make a note of the row 
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operations at each stage so that, if you make a mistake, it can be corrected 
later. By the way, it is always worth checking by multiplication that you 
have the correct result. In practice it is only necessary to check the product 
one way round; so we check either AB = I or BA = I but not both. 

D Obtain the inverse of the matrix 

[ 
6 11 

18 34 

13 25 
1~] 
11 

When you have completed this example, check below to see if you have the 
correct answer. 

There are many ways of proceeding to reduce the array using row trans­
formations. Here is one of the ways: 

[ 
6 11 5 : 1 0 0] 

18 34 15 ! 0 1 0 
132511:oo1 

To obtain 1 in row 3 we transform r3 = r3 - 2r1, and to reduce the 
numbers we pnt r2 = r2 - 3rl: 

[
6 11 5 ! 1 0 0] 
0 1 0 : -3 1 0 

I 

1 3 1 : -2 0 1 

Interchanging row 1 and row 3 produces 1 in the first row: 

[CD~t 3 1 ! -2 o 1] 
1 0 : -3 1 0 

115! 100 

To complete the first column, r3 = r3 - 6rl: 

[~ 
3 1 : -2 0 

-~l CD 
I 

o: -3 1 
I 

-7 -1 : 13 0 

The second column is completed by r1 = r1 - 3r2 and r3 = r3 + 7r2: 

[
1 0 1 ! 7 -3 1] 
0 1 0 : -3 1 0 
0 0 -1 ! -8 7 -6 

Add row 3 to row 1 and then change the sign of row 3 to produce 
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[' 0 0 
-1 4 

-~] 0 1 0 -3 1 
0 0 1 8 -7 

Check: 

r 6 11 5wl 4 -5] [~ 
0 

~] 18 34 15 -3 1 0 = 1 • 
13 25 11 8 -7 6 0 

The rules for simplifying determinants and the use of row operations have 
features in common. However, you must never use column operations 
when obtaining the inverse of a matrix by row operations. (As a matter of 
interest there is a parallel theory using column operations instead of row 
operations, but the two must be kept distinct.) 

13.4 SYSTEMATIC ELIMINATION 

Elementary row transformations can be used to solve a system of 
simultaneous equations directly. To do so we use a matrix known as the 
augmented matrix. This is a matrix consisting of the matrix of coefficients 
with an extra column for the constants on the right-han1 side. Such a 
matrix can be written down once we are given a system of equations; 
conversely, given any matrix we can write down a system of equations for 
which it is the augmented matrix. 

0 

ax + by = h 

cx + dy = k 

equations 

[: : ! ~] 
augmented matrix • 

lf we now perform row transformations on the augmented matrix we shall 
produce an equivalent system of equations. The method of systematic 
elimination, otherwise known as the Gauss elimination method, makes use 
of this fact. 

We perform row operations on the augmented matrix with the object of 
reducing it to a state in which each row has at least as many leading zeros as 
the previous row. In other words, if the first three elements in a row are 
zero then at least the first three elements of each subsequent row will be 
zero. 

When this procedure has been completed the equations can be recon­
stituted. There will then be one of three possibilities: 
1 The equations have a unique solution; 
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2 The equations are inconsistent; 
3 The equations have more than one solution. 
lt will be clear which of these possibilities holds. If it is either 1 or 3 then 
the solution can be determined by back substitution. In case 3, some of 
the unknowns can be chosen arbitrarily. · 

We shall illustrate all three cases. 

0 Decide whether or not the following system of simultaneous equations 
is consistent and, if it is, obtain the solution: 

x + 2y - 3z = 1 
x - y + 4z = 5 

2x + y- 3z = 2 
4x - 2y - 2z = 4 
x + y + 3z = 6 

Here we have five equations in three unknowns. The augmented matrix is 

CD 2 -3 1 

1 -1 4 5 

2 1 -3 2 

4 -2 -2 4 

1 3 6 

To produce zeros in the first column we use r2 = r2 - r1, r3 = r3 - 2r1, 
r4 = r4 - 4r1 and r5 = r5 - r1: 

1 2 -3 I 1 

0 -3 7 4 

0 -3 3 0 

0 -10 10 0 

0 -1 6 5 

Divide row 3 by -3 and interchange with row 2: 

1 2 -3 : 1 

CD 
I 

0 -1 :o 
I 

0 -3 7 :4 
I 

0 -10 10 I 0 I 
I 

0 -1 6 :5 

Now r3 = r3 + 3r2, r4 = r4 + 10r2 and r5 = r5 + r2: 
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1 2 -3 1 

0 :r -1 0 

0 0 4 4 

0 0 0 0 

0 0 5 5 

Lastly, r3 = r3/4 and r5 = r5 - 5r3: 

1 2 -3 1 

0 1 -1 0 

0 0 1 1 

0 0 0 0 

0 0 0 0 

So two of the equations are redundant, and the new equations are 

x + 2y - 3z = 1 
y- z = 0 

z = 1 

From these, by back substitution, z = 1, y = z = 1 and 

x = - 2y + 3z + 1 = 2. • 
You should always check the solution by substituting it directly into the 
original equations. It is only the work of a moment, and if a mistake has 
occurred you then have an opportunity to locate and correct it. It is not 
unknown for examiners to reserve a mark or two for evidence that the 
solution has been checked. It is usually easy to check it mentally, but 
always indicate at the end of your solution that it has been checked; 
'solution checks' is often enough. 

0 Given the equations 

2x-y+z=3 
X+ 2y + Z = 5 

3x - 4y + z = 1 
5x + 5y + 4z = 18 

decide whether o.r not they are consistent. If they are consistent, solve 
them. 

The augmented matrix is 
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[~ ~~ i ![] 
Interchanging rows 1 and 2 gives 

[<p -~ : i ~] 
3 -4 1 : 1 

I 

5 5 4 : 18 

Then r2 = r2 - 2r1, r3 = r3 - 3r1 and r4 = r4 - 5rl give 

I 1 2 1 ! 51 
0 -5 -1 : -7 

0 -10 -2 i -14 

0 -5 -1 : -7 

Since row 3 and row 4 are multiples of row 2, the system reduces to just 
two equations: 

X+ 2y + Z = 5 
-5y- z = -7 

This shows that the equations are consistent, and in fact it is possible to 
choose one of the variables arbitrarily. So if we putz = t, we can express 
the remaining variables in terms oft. Therefore if z = t then y = -(t- 7)/5 
and 

X= -2y- Z + 5 
= [2(t - 7)/5] - t + 5 

= ( -3t + 11)/5 

D Solve, if possible, the system of equations 

w+3x-y+z= 4 
2w- x + y- z = 7 
5w + x + y - z = 20 

The augmented matrix is 

[~ 3 -1 1 : 4] 
-1 1 -1 ! 7 

1 1 -1 : 20 

First, r2 = r2 - 2r1 and r3 = r3 - 5r1 give 

• 
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[
1 3 

0 -7 

0 -14 

Next, r3 = r3 - 2r2 produces 

[
1 3 
0 -7 

0 0 

-1 1 

3 -3 

6 -6 

-1 1 ! 4] 
3 -3 : -1 

I 

0 0: 2 

The system is clearly inconsistent since the final 'equation' has become now 
0=2. • 

Here now are a few steps which will enable you to see how you are 
progressing. 

_______ 13.5 Workshop ______ _ 

I>Exercise Use the formula to obtain the inverse of the matrix 

L___ _ _J 

[3 5 9] 
1 2 3 
4 7 15 

Check your answer by multiplication. 
If everything works out right, proceed to step 4. Otherwise, go on to 

step 2. 

If the product does not produce an identity matrix, check carefully all the 
stages: 
1 the matrix of minors 
2 the matrix of cofactors 
3 the adjoint matrix 
4 the determinant 
5 the final multiplication. 
Now see if you can get it right. lf all is weil move on to step 4. lf not, go to 
step 3. 

So we still have problems. If you have gone through all the stages in step 2 
'------" and checked for errors, there can be only one explanation. You must have 

'simplified' the matrix in some way. Did you use row transformations, or 
the rules for simplifying determinants? If you did then you have made a 
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fatal error. Remernher, whenever we use row transformations we change 
the matrix. So you have found the inverse of a row equivalent matrix and 
not the one in which we are interested. 

Award yourself a wooden spoon, solve the problern correctly and move 
on to step 4. 

I>Exercise Use the method of row transformations to obtain the inverse of 
the matrix .____ _ __. 

You can check your answer by multiplication. If it is right, move on to 
step 7. If not, go to step 5. 

If you have managed to convert the matrix on the left into an identity 
matrix but the matrix on the right didn't turn outtobe the inverse, move .____ _ _, 
on to step 6. 

If you have been unable to convert the matrix on the left into an identity 
matrix you have not been approaching the problern systematically. Re­
member to move across the matrix column by column: 
1 Get the non-zero element into the correct position; then 
2 Convert this element into a 1; then 
3 Subtract multiples of this row from the others to produce the zeros. 
Only when all this has been done do we move to the next column. 

Try again, and if all is weil now move on to step 7. If there are still 
problems, move to step 6. 

There are a number of possible sources of error: 2J 
1 You may have simply made an arithmetical slip. Errors have a habit of 

hiding away in the parts where you least expect to find them. Have a 
good look and see if you can spot one or two. 

2 You may have carried out some illegal operation. For instance it is 
usually advisable to make sure that at each stage the row in which the 
pivot lies remains unaltered. Are you sure that you have performed each 
row operation on the entire row of six elements? 

3 You may have used column transformations as well as row transfor­
mations. You must stick to row transformations; mixing transformations 
is strictly against the law! 

Once you have located your error, make the necessary amendments and 
obtain the correct inverse. 
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Exercise Discuss the solution of the following system of equations: 

X+ 2y- Z = 2 
x- y+ z=5 

3x + 3y + az = b + 8 

in the three cases a a = -1, b = 1 b a = -1, b = 2 c a = 1, b = 7. 
You may consider the cases separately if you wish, or you may choose to 

operate on the augmented matrix algebraically. Whichever method you 
decide on, complete the problern and take the final step to see if all is weil. 

lfLl The augmented matrix is 

[l 
2 -1 

bu -1 1 
3 a 

This reduces to 

[~ 
2 -1 

bu -3 2 
0 a+1 

So 
a a = -1, b = 1 gives a redundant row, and the solution in terms of z is 

y = (2z - 3)/3 and x = 3 - z/3. 
b a = -1, b = 2 produces a final equation 0 = 1, and so the equations are 

inconsistent. 
c a = 1, b = 7 gives a unique solution z = 3, y = 1 and x = 3. 

13.6 PIVOTING 

When we used the method of systematic elimination we avoided arith­
metical complications by choosing the pivot with care. In particular we 
tried to perform our arithmetic with integers. On occasions we interchanged 
rows rather than divide through a row by a number which would have 
resulted in decimal representations. This is one way of keeping the 
arithmetic exact and so avoiding errors. 

If we were programming a computer to perform this elimination method 
we should in each case reduce the non-zero element on the leading diagonal 
to 1 by dividing throughout the row. It would require some sophisticated 
programming to detect the presence of suitable rows which could be 
manipulated by the rules to produce, without division, a pivot 1. 
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The approach which the computer would take is shown in the following 
scheme: 

[: 
* * :] ~ [: * * :] ~ * * * * 
* * * * 

[~ 
* * :] ~ [~ * * :] ~ * * 1 * 
* * * * 

[~ 
* * :] ~ [~ * * 

:] 1 * 1 * 
0 * 0 1 

In the first transformation, row 1 is divided by the element in the (1, 1) 
position. 

In the second transformation, multiples of row 1 are subtracted from 
the other rows to produce the zeros in column 1. Attention then turns to 
column 2. 

In the third transformation, we divide row 2 by the element now in the 
(2, 2) position to produce 1 in the (2, 2) position. Then multiples of row 
2 are subtracted from the other rows to produce the required zeros in 
column 2. 

If a zero were to appear on the leading diagonal, a complication would 
arise. In such circumstances it would be necessary to locate a non-zero 
element in the same column below the leading diagonal and by means of 
a row interchange to bring it to the leading diagonal. 

One of the problems which arises in practice with this method is due to 
round-off error in the numerical approximation. 

One method of minimizing the effects of round-off error is to use partial 
pivoting. Partial pivoting consists of rearranging the equations in such a 
way that the numerically largest non-zero elements occur on the leading 
diagonal. 

0 Here is a set of equations before partial pivoting: 

X+ 5y- z = 8 
4x- y + 2z = 5 
2x + 3y- 6z = 1 

In the first equation the largest coefficient is 5, in the second it is 4 andin 
the third it is -6. Therefore the system of equations after partial pivoting 
becomes 
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4x- y+2z=5 
X+ 5y- Z = 8 

2x + 3y- 6z = 1 • 
Partial pivoting ensures that when the rows are divided by the elements on 
the leading diagonal the numbers are reduced and errors are therefore 
controlled. 

We shall now solve a practical problern involving binary arithmetic. In 
binary arithmetic there are just two numbers, 0 and 1. The following 
algebraic rules are satisfied: 

OxO=O 
Ox1=0 
1X0=0 
1 X 1 = 1 

0+0=0 
1 + 0 = 1 
0 + 1 = 1 
1 + 1 = 0 

Most people have come across binary arithmetic; computers use it. 

________ 13.7 Practical _______ _ 

CODEWORDS 

A seven-bit binary code consists of codewords x 1x2 ••• x7 which satisfy the 
condition HxT = 0, where x = [x1 , x2 , .•. , x7 ], 0 is the 7 x 1 zero vector 
and 

[
0 0 0 1 1 1 1] 

H= 0 1 1 0 0 1 1 
1 0 1 0 1 0 1 

Obtain all the codewords. 
See how this goes. Weshall attack the problern one stage at a time. 

Wehave the set of equations 

x4 + x5 + x6 + x7 = 0 
Xz + X 3 + X6 + X7 = 0 
X1 + X3 + Xs + X7 = 0 

lf we remernher that in binary arithmetic 1 + 1 = 0 we see that these are 
equivalent to 



x2 = x3 + x6 + x1 
Xt = X3 + X5 + X7 
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Can you see how many codewords there will be? When you have decided, 
move to the next stage and see if you are right. 

We have expressed three of the unknowns x4 , x2 and x 1 in terms of the 
other four. Each of these four has two possible values, 0 or 1. Conse­
quently the total number of codewords is 2 x 2 x 2 x 2 = 24 = 16. Once 
we enumerate these 16 possibilities for x3 , x5, x6 and x7 the equations will 
determine the other bits and so the codewords will be obtained. 

Weshall do this in two stages. First determine all the codewords which 
have x3 = 0. 

We enumerate (x3 , x5, x6, x7) and use the equations to obtain x4, x2 and x 1 

and thereby the codeword x 1x2 .•• x7 : 

1 (0, 0, 0, 0) ~ x4 = 0, x2 = 0, x1 = 0 ~ 0000000 
2 (0, 0, 0, 1) ~ x4 = 1, x2 = 1, x 1 = 1 ~ 1101001 
3 (0, 0, 1, 0) ~ x4 = 1, x2 = 1, x 1 = 0 ~ 0101010 
4 (0, 0, 1, 1) ~ x4 = 0, x2 = 0, x 1 = 1 ~ 1000011 
5 (0, 1, 0, 0) ~ x4 = 1, x2 = 0, x 1 = 1 ~ 1001100 
6 (0, 1, 0, 1) ~ x4 = 0, x2 = 1, x1 = 0 ~ 0100101 
7 (0, 1, 1, 0) ~ x4 = 0, x2 = 1, x1 = 1 ~ 1100110 
8 (0, 1, 1, 1) ~ x4 = 1, x2 = 0, x 1 = 0 ~ 0001111 

If something went wrong, check through things carefully and then obtain 
the remaining eight codewords. 

We now put x3 = 1: 
9 (1, 0, 0, 0) ~ x4 = 0, x2 = 1, x 1 = 1 ~ 1110000 

10 (1, 0, 0, 1) ~ x4 = 1, x2 = 0, x1 = 0 ~ 0011001 
11 (1, 0, 1, 0) ~ x4 = 1, x2 = 0, x1 = 1 ~ 1011010 
12 (1, 0, 1, 1) ~ x4 = 0, x2 = 1, x1 = 0 ~ 0110011 
13 (1, 1, 0, 0) ~ x4 = 1, x2 = 1, x 1 = 0 ~ 0111100 
14 (1, 1, 0, 1) ~ x4 = 0, x2 = 0, x1 = 1 ~ 1010101 
15 (1, 1, 1, 0) ~ x4 = 0, x2 = 0, x1 = 0 ~ 0010110 
16 (1, 1, 1, 1) ~ x4 = 1, x2 = 1, x1 = 1 ~ 1111111 

lt is interesting to note that each pair of codewords differs by at least three 
bits. This is an example of an error-correcting linear code. 
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13.8 CONCLUDING REMARKS 

Before we end this chapter there are two points which should be made: 
1 Wehave only touched on the theory of matrices. There is much more to 

them than this. For example we have solved systems of equations by 
using an elimination method, but we have not examined the theory 
behind the technique we have used. The key idea is that of the rank of 
a matrix, which is the number of linearly independent rows. It can be 
shown that 
a The rank of a matrix is unaltered when a row transformation is per­

formed on it; 
b A set of equations is consistent if and only if the rank of the matrix of 

coefficients is the same as the rank of the augmented matrix. 
2 When matrices are used in conjunction with differential equations some 

very powerful techniques become available. One of the most fruitful 
ideas arises from considering the equation 

Ax = Ä.x 

where A is a square matrix and Ä. is a scalar. The non-zero vectors x 
which satisfy this equation are known as eigenvectors and the corre­
sponding values of Ä. are then called the eigenvalues. One of the further 
exercises gives you an opportunity to examine the consequences of this 
equation. lt is possible to express many differential and difference 
equations as eigenvalue problems. 



EXERCISES 393 

SUMMARY 

We now summarize what we have learnt in this chapter: 
0 The formula for calculating the inverse of a matrix: 

A -l 1 d. A 
= IAia J 

0 The meanings of the terms singular matrix and non-singular matrix 

A is singular <=> lA I = 0 

0 The Operations on a matrix known as elementary row transformations 
a an interchange of two rows; 
b multiplication of the elements in a row by a non-zero number; 
c subtraction of the elements of one row from the corresponding 

elements of another row. 
0 The method of obtaining the inverse of a matrix by using row trans­

formations 

All--+ IIA-l 

0 The use of row transformations to solve systems of simultaneous 
algebraic equations 

[
* * * ! *] [1 * * ! *] 
* * *:*--+01 *:* 

I I 

***:* 001:* 

EXERCISES 

1 Us[e ;he ~or~]ula to obtain the inverses of[~ac~ oft~]e following matrices: 

a 4 10 3 b 7 5 11 

2 5 1 3 2 5 

[
11 7 18] [ 8 5 13] 

c 4 3 6 d 10 7 16 

14 9 23 13 9 21 
2 Obtain x for each of the following matrices if each one is singular: 

[
x+1 x+2 x+5] 

a 5 9 4 

x+3 x+7 x+2 
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[X+ 2 x+3 
7 ] b 2 5 -3 

x+4 9 x+3 

['-I X+ 1 X +4] 
c x-4 x+2 -3 

x-2 3x X+ 1 

[ -x 
X + 1 X+ 2] 

d x-3 X- 1 -x + 2 

-x + 2 2x X- 1 
3 Use the method of row transformations to obtain the inverses of the 

matrices in question 1. 
4 Use the method of row transformations to solve the following sets of 

simultaneous equations: 
a 3x + 5y + 8z = 3 

4x + 6y + llz = 5 
2x + 3y + 5z = 7 

b 4x + 2y + 3z = 5 
6x + 3y + 5z = 8 
11x + 5y + 8z = 7 

c 18x + 6y + 5z = -1 
llx + 4y + 3z = 7 
7x + 3y + 2z = 9 

d 7x + 3y + 8z = 4 
5x + 2y + 5z = 5 
11x + 5y + 13z = 6 

ASSIGNMENT 

1 Obtain the inverse of the matrix 

2 An orthogonal matrix is a matrix which has its inverse equal to its 
transpose. Verify that 

A = ~[ ~ =~ -~] 
-2 -2 -1 

is an orthogonal matrix. 
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3If 

A = [~ -~ -:] X= [=~ -~ -~] 
-6 -1 1 -2 -2 

show that XT AX is a diagonal matrix. 
4 Prove that if A and B are non-singular square matrices of the same order 

then ABis also non-singular and (AB)- 1 = B-1A - 1. 

FURTHER EXERCISES 

1 If A is a non-singular matrix, show in generat that adj A is also non­
singular and give an explicit formula for the inverse of adj A. 

2 Obtain the relationship between the determinant of a square matrix A 
and the determinant of adj A, its adjoint matrix. 

3 A company employs 45 people and there are three different grades 
of employee. The pay and profits are as follows: 

Grade 
1 
2 
3 

Pay/hour (!) 
2 
4 
6 

Profitlhour (!) 
4 

-3 
4 

Obtain the numbers of employees in the various grades if the total wage 
bill is !200 per hour and the total profit is !75 per hour. 

4 Show that if AB = 0 and if either A or B is a non-singular square 
matrix then either A = 0 or B = 0. 

5 Prove that, if Ais a non-singular matrix, (AT)-1 = (A -J)T. 
6 Show that if the simultaneous equations 

are consistent, then 

ax + by + h = 0 
cx + dy + k = 0 
ex+fy +l =0 

a b h 

c d k = 0 

e f l 

By means of an example, show that this condition is no guarantee of 
consistency. 

7If 

A = [ ~ : ~] 
-2 -4 -4 
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8 

and the equation AX = kX is satisfied for some non-zero matrix X, 
prove that det (A - kl) = 0. Hence or otherwise obtain the three 
possible values of k. 

show that a A is singular and b A satisfies the equation A 3 - A 2 - 9A = 0. 
9 If the input and output of a system are denoted by y and x respectively 

and are related by an equation of the form y =Mx where M is a matrix, 
then M is called a transmission matrix. If the transmission matrix M for 
a waveguide below cutoff is 

then 

[ cosh a 

(1/Z) sinh a 

Z sinh a] 
cosh a 

a Show that M is non-singular and obtain its inverse; 
b Show that for a cascade of n such waveguides the transmission matrix 

is 
[ cosh na 

(1/Z) sinh na 

10 If I is the 3 x 3 identity matrix and 

Z sinh na] 
cosh na 

s ~ H -~ ~l 
show that the matrix A given by A = (I+ S) (I- S)-1 is orthogonal. 
Hence, or otherwise, solve the matrix equation AX = K where 

11 Show that if x is a column vector of order n x 1 and A is a matrix 
of order 11 x n thcn the equation 

Ax=y 

implies that y is a column vector of order n x 1. 
If y = AX where A is a constant and x i- 0 deduce timt 

lA- All =0 

whcre I is an identity matrix of order n x n. 
Determine the values of A and the corresponding column vectors 
x 1 and x 2 with integer elements if 

A = ( !1 ~) 
Write down the matrix P = (xi> x 2} of order 2 x 2 and verify 
that p-I AP isadiagonal matrix. 
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ln Chapter 13 we used the term vector to mean an algebraic vector. 
The vectors which we describe in this chapter have rather more 
structure and are widely used in applications. 

After completing this chapter you should be able to 
D Apply the rules of vector addition and scalar multiplication; 
D Obtain the scalar product of two vectors; 
D Obtain the vector product of two vectors; 
D Use triple scalar products and triple vector products; 
D Use vector methods to solve simple problems; 
D Differentiate vectors. 
At the end of the chapter we Iook at a simple practical problern in 
particle dynamics. 

14.1 DESCRIPTIONS 

Y ou probably have an intuitive idea of what is meant by magnitude and 
direction. Magnitude gives a measure of how large something is, and 
direction an indication of where it applies. For example, meteorologists 
talk of a north-easterly wind of force 6. There the magnitude is 6 on the 
Beaufort scale and the direction is from the north-east. 

Some concepts which arise in practice are adequately described purely in 
terms of a magnitude. Mass, volume, height, speed and time are all 
examples of quantities of this kind, and we call them scalar quantities. 

Other concepts need not only a magnitude to describe them but also a 
direction. Velocity and displacement are examples in which both a 
magnitude and a direction are involved; we call these vector quantities. 
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B 

AB 

A 

Fig. 14.1 Representation of a vector quantity. 

B D 

A c 

AB=CO AB-+DC 

Fig. 14.2 Equivalent and non-equivalent vector quantities. 

In brief, two scalar quantities of the same type can be compared by their 
magnitudes, whereas two vector quantities of the same type cannot be 
compared adequately in this way. Weshall use real numbers to represent 
scalar quantities and directed line segments to represent vector quantities. 

So to represent a vector quantity we choose an initial point A and 
construct a directed line segment AB with the same direction as the vector 
quantity and with length AB proportional to its magnitude (Fig. 14.1). lt is 
sometimes convenient to represent the vector quantity AB by means of the 
notation a, but then we usually need to refer to a diagram showing AB with 
an arrowhead somewhere on it so that the direction of the vector quantity 
is unambiguous. 

Two parallel directed line segments with the same direction will be 
regarded as equivalent vector quantities (Fig. 14.2). 

Although anything with both magnitude and direction can be thought of 
as a vector quantity, it would be wrong to think that all such things are 
vectors. A set of vectors is a set of vector quantities with operations known 
as vector addition and scalar multiplication. We must describe how each of 
these operations is performed. 

14.2 VECTOR ADDITION 

Vector addition is performed by the parallelogram law. Suppose we take 
two vector quantities OP and OQ and construct the parallelogram OPRQ 
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OP+OO•OA 

Fig. 14.3 The parallelogram law. 

(Fig. 14.3). Then a necessary condition for OP and OQ to be vectors is 

OP + OQ = OR 

Many vector quantities are in fact examples of vectors because they 
combine according to the parallelogram law. However, others do not 
satisfy this condition and so are not vectors. 

D A light aircraft travels the shortest route from London to Oxford and 
then from Oxford to York. The pilot keeps records of fuel consumed, 
travelling time and distance travelled. 

For each leg, represent the journeys as vector quantities; the magnitude 
is the quantity recorded by the pilot, the direction is the direction of travel. 
Decide, in each case, which are vectors. You may neglect the curvature of 
the earth. 

In Fig. 14.4 we may represent the journey from London to Oxford by OP 
and the journey from Oxford to York by PR. For these to constitute a set 
of vectors we require the journey from London to York to be represented 
by OR, where OPRQ is a parallelogram. 

If the magnitudes are proportional to the fuel consumption, then in 
generat 

0 

/ 
/ 

/ 

/ 
/ 

OP +PR* OR 

/ 

/ 
/ 

/ 

9-------- R 

Fig. 14.4 The parallelogram. 
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To see why this is, we merely consider the situation in which there is a 
strong wind blowing in the direction from York to London. This would 
affect fuel consumption disproportionately. Therefore we do not have a set 
of vectors. 

If the magnitudes are proportional to travelling time, then again we do 
not have a set of vectors for reasons similar to those given for fuel 
consumption. 

If the magnitudes are proportional to the distances travelled then 

OP +PR= OR 

These are a set of vectors, for if he bad travelled from London, in the 
direction of OR and with distance OR, he would have arrived at York. • 

When no confusion is likely to occur we shall represent a vector by the 
notation a and its magnitude by JaJ. 

When we employ this notation then it is often necessary to refer to a 
diagram. 

Note that we shall avoid the temptation to write the magnitude of a 
simply as a. This is because when we consider differentiation of vectors a 
conftict of notation can Iead to error. 

0 In Fig. 14.5 the parallelogram law is a + b = c. The word resultant is 
often used for the vector obtained by adding two vectors. The resultant is 
usually shown on the diagram by means of a double arrow. • 

We have said that parallel vectors with the same magnitude and direction 
are equivalent to one another. Therefore every vector has a representative 
in the form of a vector emanating from a single point 0. The terminology 
free vector for a vector which can start anywhere, and localized vector for a 
vector which must start from a fixed point, is in common usage. 

1t is convenient for us to be able to represent vectors in terms of 
coordinates. Suppose Oxyz is a reetangular three-dimensional coordinate 
system (Fig. 14.6). We introduce three unit vectors i, j and k emanating 
from the origin 0 in the direction Ox, Oy and Oz respectively, each having 
a unit magnitude. 

/ 
/ 

/ 
/ 

/ 

r----

Fig. 14.5 The resultant. 
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Zl 
I 
k 

Fig. 14.6 The unit vectors i, j and k. 

0 is a special vector called the zero vector; it has zero magnitude and 
arbitrary direction. Any vector which has magnitude 1 is called a unit 
vector. 

BINARY OPERATIONS 

We know how to add and multiply scalars, since these rules are the usual 
rules for dealing with real numbers. 

Wehave also described the rule for adding two vectors a and b together 
to produce a + b. This is known as a binary operation: 

(a,b)- a + b 

We think of this as the parallelogram law. Later we shall describe two 
further binary operations on vectors which produce a scalar known as the 
scalar product, and a vector known as the vector product. 

Before this we need to describe how to multiply a scalar by a vector. We 
shall call this operation scalar multiplication. However, it must not be 
confused with the scalar product, which is an operation we shall describe 
later. 

14.3 SCALAR MULTIPLICATION 

If a is a vector and p is a real number then we define pa to be a vector with 
the following properties (Fig. 14.7): 
1 If p > 0 then pa has the same direction as a and magnitude p times that 

of a. 
2 If p < 0 then pa has the opposite direction to a and magnitude ( -p) 

times that of a. 
3 If p = 0 then pa has arbitrary direction and magnitude 0. 
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/ /. /. /(p>O) /(p<O) 
Fig. 14.7 Scalar multiplication. 

Having dealt with vector addition and scalar multiplication, we can sum­
marize the position so far in a set of rules. Suppose p and q are any real 
numbers (scalars) and a, band c are arbitrary vectors. Then the following 
rules hold: 

a+b=b+a 
(a + b) + c = a + (b + c) 

a+O=O+a=a 
a + ( -a) = ( -a) + a = 0 

p(a + b) = pa + pb 
p(qa) = (pq)a 

(p + q)a = pa + qa 

D Show that there is only one zero vector 0. 
Suppose that there are two zero vectors 01 and 02. Then with a = 01 

and 0 = 02 we can use 

a+O=O+a=a 

to obtain 

Ot + Oz = Oz + Ot = Ot 

Whereas with a = 02 and 0 = 01 we obtain 

Oz + Ot = Ot + Oz = Oz 

Therefore 01 = Oz. • 
This is quite an interesting result because originally we defined 0 to be a 
vector with zero magnitude and arbitrary direction. lt might be thought 
therefore that there are an infinity of zero vectors. This example has shown 
that this is not the case. If you have nothing, it doesn't matter what you do 
with it! 

14.4 COMPONENTS 

Suppose we have a reetangular cartesian coordinate system Oxyz and that, 
relative to this system, P is the point (at. a2 , a3) (Fig. 14.8). We have 
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z 

y 

X 

Fig. 14.8 Cartesian representation. 

defined i, j and k to be unit vectors in the directions Ox, Oy and Oz 
respectively. Using the diagram, 

Also 

r = OP = OD + DP 
= OA + AD + DP 
= OA +OB+ OC 
= a1i + azj + a3k 

lrl = OP = V(OD 2 + DP2) 

= V(OA2 + AD2 + DP2) 

= V(ai + a~ + a~) 
When a vector is expressed in this way we say it has been expressed in 
terms of components. (These are also known as resolutes or projections.) 

If r is a vector it is customary to represent a unit vector in the same 
direction by r. We then have 

r = lrl r 
or equivalently 

0 If a = 3i - 4j + 5k and b = i - 5j + 7k, obtain (a) a + b (b) a unit 
vector in the direction of a - b ( c) a unit vector in the opposite direction 
to a-b. 
a Wehave 

a + b = (3i - 4j + 5k) + (i - 5j + 7k) 
= 4i- 9j + 12k 



404 VECTORS 

b First, 

Therefore 

a - b = (3i - 4j + 5k) - (i - 5j + 7k) 
= 2i + j - 2k 

So the required vector is 

1 2. 1. 2 
3(a - b) = 3• + 3J - 3k 

c The required vector is 

14.5 THE SCALAR PRODUCT 

• 

Given any two vectors a and b, we define the scalar product a · b by the 
formula 

a . b = lallbl cos e 
where 8 is the angle between the two vectors (Fig. 14.9). 

We observe that a · b is always a scalar, and this is why it is called the 
scalar product. Sometimes it is known as the dot product because of this 
notation, and to avoid confusion with scalar multiplication. 

Note that since cos 8 = cos (2n - 8) it does not matter whether the 
included angle or the excluded angle between the two vectors is chosen. 
Moreover, 

b . a = lbllal cos e = a . b 

That is, a · b = b · a for all vectors a and b. This is known as the 
commutative rule, and we have shown that it holds for the scalar product. 
Later we shall see that for the other type of product, the vector product, 
the commutative law does not hold. 

D Show that if a and b are non-zero vectors then 

• a 

Fig. 14.9 The angle between two vectors. 
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a · b = 0 

if and only if a and b are routually perpendicular. 
Suppose first that a · b = 0. Then 

lallbl cos e = 0 

and since neither a nor b is the zero vector we conclude that Iai :f= 0 and 
lbl :f= 0. Consequently cos e = 0 and so e = rt/2 (or 3rt/2); therefore a and b 
are routually perpendicular. 

Conversely, if a and b are routually perpendicular then e = rr/2 ( or 3rt/2) 
and it follows that a · b = 0. • 

Wehave also 

so that 

a · a = Iaiiai cos e = lal2 

i·i=j·j=k·k=1 
i·j=j·k=k·i=O 

14.6 DIRECTION RATlOS AND DIRECTION COSINES 

If we roultiply a vector by a positive nurober we preserve the direction of 
the vector. Likewise if we roultiply it by a negative nurober the direction is 
reversed. lt follows that if 

r = Ii + mj + nk 

where the coroponents l, m and n are non-zero, then the ratio l: m: n 
deterroines the direction (but not the sense) of the vector. Any three 
nurobers which are in these proportians are known as direction ratios. 

Another way of fixing the direction of a vector is by roeans of a unit vector 
in the saroe direction. Suppose that 

u = u1i + u2 j + u3k 

is a unit vector in the direction of the vector r. Then if a, ß and y are the 
angles between this vector and the axes Ox, Oy and Oz respectively 
(Fig. 14.10) we have 

Therefore 

u1 = u · i = (1)(1) cos a = cos a 
u2 = u · j = (1)(1) cos ß = cos ß 
u3 = u · k = (1)(1) cos y = cos y 

u = cos ai + cos ßJ + cos yk 
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z 

y 
X 

Fig. 14.10 Direction cosines. 

These cosines are called the direction cosines. 
Note that 

lul2 = 1 = cos2 a + cos2 ß + cos2 y 

Therefore the direction cosines are not independent of one another and 
cannot all be chosen arbitrarily. 

14.7 ALGEBRAIC PROPERliES 

There are a number of algebraic properties which follow from the 
definition of the scalar product. 

Suppose a, b and c are vectors and p is a scalar. Then 

p( a · b) = (pa) · b 
(a + b) · c = a · c + b · c 

This is the distributive rule for the dot product. Note that we are using 

the convention of elementary algebra that multiplication takes precedence 

over addition. Without this convention we should need to include more 

brackets: 

(a + b) · c = (a · c) + (b · c) 

0 Prove that if p is any scalar and a and b are arbitrary vectors then 

p(a · b) = (pa) · b 

Wehave 

p(a · b) = pjallbl cos 6 
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First, if p ~ 0 then jpal = pjaj. So 

p(a . b) = plallbl cos e 
= jpallbl cos e 
= (pa) · b 

Next, if p < 0 then jpaj = (-p)jaj. So 

p(a. b) = -[(-p)lallbl cos e] 
= -lpallbl cos e 
= jpallbl cos (1t - e) 
= (pa) · b • 

Here is a very simple formula which enables us to determine the scalar 
product when the vectors are given in terms of coordinates. Suppose 
a = a 1i + a2j + a3k and b = b 1i + b2j + b3k. Then 

a · b = a1 b1 + a2b2 + a3b3 

This is easy to establish, as you will see later in this chapter. 

0 Obtain the acute angle between two diagonals which each pass through 
the centre of a cube. We remark that without the use of vectors this would 
be quite a difficult problem. 

Consider a unit cube and position it in such a way that one corner is at 
the origin 0 and the axes Ox, Oy and Oz lie along the edges incident at 0 
(Fig. 14.12). It does not matter which pair of the four principal diagonals 
we choose, as any pair is equivalent to any othcr. At first sight the 
diagonals EB and AD may appear to give a different angle from the pair 
EB and CF, but a few momcnts' considcration will show that this is not 
really so. 

z 

X 

Fig. 14.12 A cube relative to Oxyz. 
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Using the diagram we require the angle bctwccn OP and AD: 

OP == OA + A.l< + FP == OA + OB + OC == i + j + k 
AD == AF + FP + PD == OB + OC - OA == j + k - i 

Now OP 0 AD == jOPjjADj cos 8, whcre e is the angle between OP and 
ADO Thercfore 

(i + j + k) 0 ( -i + j + k) == Ii + j + kll-i + j + kl cos e 
-1 + 1 + 1 == V3 V3 cos e 

and therefore e = cos-1 (1/3)0 

14.8 APPLICATIONS 

• 

We can use the scalar product to obtain the component of one vector in the 
direction of anothero For example, suppose we have two vectors a and b 
and we require the component of a in the direction of bo We first obtain a 
unit vector u = b, and then a · u = Iai (1) cos e is the required componento 

Extending this idea, suppose we have a particle which is subject to a 
constant force F 0 The work done by the force is defined to be the 
magnitude of the force multiplied by the distance moved in the direction of 
the force. Equivalently the work done by the force is the displacement 
multiplied by the component of the force in the direction of the displace­
mento lt follows that if the particle is displaced by s then the work done by 
Fis simply F o s (Figo 14oll)o 

~ 
lsl cosiJ 

s 

s 

IFI~\\ 
F F 

Fig. 14.11 The work done by a force o 

D A force of 3 newtons is applied from the origin to a particle placed at the 
point P (1, 2, 2) and subject to a system of forceso The particle is displaced 
to Q (3, 4, 5)0 If all distances are in metres, calculate the work W done by 
the forceo 

Wehave 

F=i+2j+2k 

and 

PQ = PO + OQ = OQ - OP 
= (3i + 4j + 5k) - (i + 2j + 2k) = 2i + 2j + 3k 
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So 

W = F · s = (i + 2j + 2k) · (2i + 2j + 3k) 
= 2 + 4 + 6 = 12 Nm 

14.9 THE VECTOR PRODUCT 

• 

We now introduce another binary operation known as the vector product. 
Remember that in general a binary operation takes two things and pro­
duces from it a third. We use binary operations all the time. For example, 
whenever we add two numbers tagether we are performing a binary 
operation. 

Let us review the binary operations involving vectors which we have 
encountered so far: 
1 scalar multiplication (p, a) ~ pa 
2 vector addition (a, b) ~ a + b 
3 scalar product (a, b) ~ a · b 
Wehaveseen that given two vectors a and b the scalar product results in a 
scalar a · b. The new operation which weshall now consider produces from 
two vectors a and b another vector a x b. The vector product is sometimes 
known as the cross product because of this notation. An alternative 
notation is a 1\ b. 

Suppose a and b are any two non-zero vectors. Then we can choose 
representatives emanating from 0 (Fig. 14.13). Moreover, unless they are 
parallel to one another, they determine a plane in which each of them lies. 
There are two unit vectors perpendicular to this plane passing through 0. 
lt will be convenient to use the special symbols 0 and EB; the first indicates 
a vector coming out of the plane towards you, and the second indicates a 
vector going into the plane away from you. The symbols are inspired by an 
arrow. The point shows it coming towards you, the tail feathers show it 
going away. 

Weshall use n for a unit vector normal to the plane. We define the vector 
product as 

a X b = lallbl sin 8 D 

where the direction of n is obtained by the right-hand rule. 

L 
0 a 

Fig. 14.13 Two vectors emanating from 0. 
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The right-hand rule is sometimes known as the corkscrew rule. Ordinary 
wood screws, jar tops etc. have a right-hand thread. lmagine rotating a 
screw which is in a piece of wood from the direction a to the direction b 
(Fig. 14.14). Then the screw would tend to come out of the wood, and so 
the direction of n is out of the plane towards you. Conversely, if a and bare 
reversed then as we rotate the screw from a to b the screw goes into the 
wood (Fig. 14.15), and the direction of n is into the plane away from you. 

For the sake of completeness, if either a or b is 0 then we define 
a x b = 0 too. 

We have in all cases 

Ia x bl = lallbllsin SI 

but of course a x b = - b x a because the unit vectors concerned have 
opposite directions. 

We can show that 

a x b = -b x a 

algebraically by using the definition (see also Fig. 14.16). We have 

a X b = lallbl sin 8 D 

L a 

Fig. 14.14 a x b (out of the plane). 

L b 

Fig. 14.15 a x b (into the plane). 

axb 

.L a 

b 

a 

bxa 

Fig. 14.16 The vector product. 
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So 

b x a = lbllal sin (2n - 8) n 
= -lallbl sin 8 D = -a X b 

0 Show that if a and b are non-zero vectors then a X b = 0 if and only if a 
and b are parallel. 

Suppose a x b = 0. Then Ia x bl = 0. So lallbllsin 81 = 0, and since a 
and b are non-zero it follows that sin 8 = 0. So 8 = 0 or 8 = n and the 
vectors are parallel. 

Conversely, suppose the vectors a and b are parallel. Then either 8 = 0 
or 8 = n, and it follows that 

a X b = iallbl sin 8 n = On = 0 • 
lt follows of course that a x a = 0, and in fact we can easily obtain the 
vector products of the vectors i, j and k (Fig. 14.17): 

i X j = k 
j X k = i 
k X i = j 

j X i = -k 
k X j = -i 
i X k = -j 

Corresponding to the algebraic properties we derived for the scalar product, 
there are similar properties for the vector product. Suppose a and b are 
arbitrary vectors and that p is a scalar. Then 

p(a x b) = (pa) x b 
(a + b) X c = a X c + b X C 

0 Prove that if p is a scalar and a and b are arbitrary vectors then 

p(a x b) = (pa) x b 

Fig. 14.18 illustrates the alternatives. 
If p > 0 then 

(pa) X b = IPallbl sin 8 n 
= plallbl sin 8 n 
= p(a x b) 

k 

Fig. 14.17 The standard unit vectors. 
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(pa) x b 

axb 

b 

a 

p>O 

pa 

b 

pa 

b 

(pa) x b 

p<O 

Fig. 14.18 Verification that (pa) x b = p(a x b). 

If p < 0 then 

(pa) x b = lpallbl sin 8 ( -n) 
= ( -p) lallbl sin 8 ( -n) 
= plallbl sin 8 n 
= p(a x b) 

If p = 0 the conclusion is immediate. • 
Here is a formula which enables us to determine the vector product when 
the vectors are given in terms of coordinates. Suppose a = a 1i + a2 j + a3k 
and b = b1i + b2 j + b3k. Then 

a X b = (a2b3 - a3bz)i - (a1b3 - a3b 1)j + (a1b2 - a2 b1)k 

j k 

a 1 a2 a3 

bl b2 b3 

Notice how useful the determinant notation is here, and how easy it is to 
remernher this formula provided we know how to expand determinants 
(Chapter 12). The first row consists of the unit vectors i, j and k. The next 
two rows consist of the components of the vectors a and b respectively. It 
is interesting also to notice that, by the rules of determinants, if we 
interchange two rows the determinant changes sign. This gives another 
proofthat a x b = -b x a. The formula is quite easy to obtain, as you will 
see later in the chapter. 

Let's summarize what we have learnt so far: 
D We began with scalar quantities and vector quantities. 
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D We added vectors together using the parallelogram law. 
D We multiplied vectors by scalars. 
D We expressed vectors in terms of components. 
D We defined the scalar product of two vectors. 
D We defined the vector product of two vectors. 
Right! Are you ready for some steps? If necessary you can read through all 
we have covered once more. 

_______ 14.1 0 Workshop ______ --r-1 

C>Exercise A man travels over the surface of the earth, first from Moscow Z 
to Paris and then from Paris to Cairo. Representing these journeys as 
vector quantities, where the magnitude of each is the shortest distance over 
the eartli's surface, decide whether or not they are a set of vectors. 

Think carefully about this before you decide. 

They do not constitute a set of vectors because the parallelogram law does 
not in general apply where distances are measured over the curved surface 
of the earth. 

If you were wrong, don't worry: we are only just getting warmed up! Try 
this exercise. 

a · i = a1 a · j = az a · k = a3 

Try this using the rules carefully. Then step ahead. 

First, 

a · i = (a1i + azj + a3k) · i 
= a1 (i · i) + a2 (j · i) + a3 (k · i) 
= a11 + azO + a30 = a1 

If you didn't manage that you should now be able to obtain a · j and a · k. 
Then go on to the next exercise. 

C>Exercise If a = a1i + azj + a3k and b = b1i + bzj + b3k, show that 

a · b = a1b 1 + a2b2 + a3b3 

Try this using the results of the previous exercise. 

The working is 

L_ _ _J 

r&l 
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a · b = a · (b1i + bzj + b3k) 
= (a · i)b1 + (a · j)b2 + (a · k)b3 

= a1b1 + a2b2 + a3b3 

This should have caused no difficulty. If it did then repeat the exercise, 
taking the vector a in components instead of b. 

Then go on to the next exercise. 

I>Exercise Without expressing the vectors in terms of components, show 
that 

a · (b + c) = a · b + a · c 

Don't assume any algebraic properties that wehavenot already discussed. 
Try it, then step forward. 

LS"Ll Wehave 

a · (b + c) = (b + c) · a 

because the scalar product is commutative. Then 

=b·a+c·a 

using the distributive rule. Finally 

=a·b+a·c 

again using the commutative property of the dot product. 
That was a little algebraic perhaps, so let's solve a more practical 

prob lern. 

I> Exercise A reetangular building has a square cross-section and is twice as 
long as it is wide. Two thin wires are to be inserted joining the corners at 
the top of one end of the building to the diagonally opposite corners at the 
botlom of the far end. Calculate the cosine of the angle between these two 
wires (Fig. 14.19). 

This is very similar to the problern in the text involving the cube. If you 
can do that, you can do this. 

We set up the building in a coordinate system (Fig. 14.20) just as we did for 
L.-----' the cube (Fig. 14.12). Then in Fig. 14.20 we have 

IOBI = 2IOAI = 2IOCI 

So, taking IOAI = 1, we have 

OP = OA + AF + FP 
= OA + OB + OC = i + 2j + k 
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Fig. 14.19 Building with diagonals. 

z 

Fig. 14.20 Building relative to Oxyz. 

AD=AF+FP+PD 
= OB + OC - OA = -i + 2j + k 

OP · AD = jOPJjADj cos e 

(i + 2j + k) . ( -i + 2j + k) = Ii + 2j + kJJ-i + 2j + kl cos e 

Therefore 

-1 + 4 + 1 = V(l + 4 + 1) V(l + 4 + 1) cos e 
4=6cose 

so that cos e = 2/3. 
If you didn't get that right, try the cube again without looking at the 

solution. Then repeat the building exercise. 
Now let's see if we can handle the vector product. 
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[> Exercise Expand 
a a x (b + c) 
b (a + b) x (c + d) 
To do this you need to use the same techniques as at step 5 for the scalar 
product, although the formulas differ a little. Try it and see how it goes. 

nla Wehave 

a x (b + c) = - (b + c) x a 
= -(b x a + c x a) 
= -b x a- c x a 
=aXb+axc 

b First write e = c + d. Then 

(a + b) x (c + d) = (a + b) x e 
=axe+bxe 
= a x (c + d) + b x (c + d) 
=axc+axd+bxc+bxd 

Did you manage that all right? If you didn't then you must he extra 
specially careful ahout the next prohlem. 

C>Exercise Simplify (a + b) x (a - b) 
Do he careful! 

L8Ll Wehave 

(a + b) x (a-b) = a x a + b x a- a x b- b x b 
=O+bxa-axb-0 
= 2(b x a) 

Did you fall into the trap of cancelling out a x b and deducing the incorrect 
answer 0? You must remernher that for the vector product the commuta­
tive law does not hold. 

Now try one last exercise. 

[> Exercise Ohtain the formula for the vector product of a = a1 i + a:J + a3k 
and b = b1i + bzj + b3k. 

This is not too hard now that we know how to multiply out. Do this 
carefully, and remernher to write down the vector products in the right 
order. 

l9Ll Wehave 

a x b = (a1i + a2j + a3k) x b 
= a 1(i X b) + a2(j X b) + a3(k X b) 
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= a1i x (b1i + b2j + b3k) 
+ a2j X (b1i + b2j + b3k) 
+ a3k X (b1i + b2j + b3k) 

= a1b2(i X j) + a1b3(i X k) + a2b1(j X i) 
+ a2b3(j x k) + a3b1 (k X i) + a3b2(k x j) 

= a1b2k - a1b3j - a2b1k 
+ a2b3i + a3bd - a3b2i 

Therefore we have 

a X b = (a2b3- a3b2)i- (a1b3- a3b1)j + (a1b2- a2b1)k 

j k 

WeH, now it's time to move on. 

Wehaveseen that if a and bare vectors then a x bis also a vector. We can 
therefore consider the effect of combining this vector with a third vector c. 
There are two operations that we need to examine: the triple scalar 
product and the triple vector product. 

14.11 THE TRIPLE SCALAR PRODUCT 

We now describe what is meant by the symbol 

a · b x c 

What can it mean? There are only two possible ways of inserting brackets 
so that the operations can be performed consecutively, and these are 

a · (b x c) and (a · b) x c 

However, a few moments' thought shows that the expression (a · b) x c has 
no meaning. This is because it purports to calculate the vector product of a 
scalar a · b with a vector c. Now we defined the vector product as a binary 
operation in which two vectors were combined. Consequently the ex­
pression (a · b) x c is meaningless. 

On the other band the expression a · (b x c) does have a meaning, and 
so it is this which we take as the definition of the symbol a · b x c when 
brackets are not inserted. Therefore 

a · b x c = a · (b x c) 

Now a is a vector and b x cisalso a vector; consequently a · (b x c) is a 
scalar. For this reason this product of the. three vectors is called a triple 
scalar product. 
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0 Obtain the triple scalar product a · b x c of three vectors in terms of 
components. 

If you wish you can try this yourself. It is not difficult now that we know 
how to obtain the scalar product and the vector product in terms of 
components. Suppose 

a = a 1i + a2 j + a3k 
b = b 1i + b2 j + b3k 
c = c1 i + c2j + c3k 

Here is a neat way of deducing the result. Remernher that 

a · b = (a1i + a2j + a3k) · (b1i + bzj + b3k) 
= a1b1 + a2b2 + a3b3 

and this can be thought of as having been obtained in the following way. 
The unit vectors i, j and k in the second vector have each been replaced by 
the components a1, a2 and a3 of the first vector. Using this idea we have 

a · b x c = a · (b x c) 
j kl 

= (a 1i + a2j + a3k) · b1 b2 b3 

• 
One immediate consequence of this is that if two of the vectors have the 
same direction then the triple scalar product is zero. This is a consequence 
of the rule for determinants that if two rows are equal then the determinant 
is zero. 

Using the work we did on determinants (Chapter 12) you will now be able 
to write down several equivalent expressions for a · b x c. Remember, if 
we interchange the corresponding elements in two rows of a determinant 
then the determinant changes sign. So 

bl bz b3 
a·bXc=- al az a3 = -b · a x c 

CJ Cz c3 

bl b2 b3 
Cl c2 c3 =b·cxa 
al az a3 
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In fact the rules for determinants enable us to deduce that the important 
ingredient in a triple scalar product is not the relative positions of the signs 
x and ·, or the precise order of the vectors a, b and c, but the cyclic order 
of the vectors a, b and c. 

If we preserve the cyclic order so that b follows a, c follows b, and a 
follows c, it does not matter where we put the dot and cross; we will obtain 
the same result. However, if we reverse the cyclic order so that b follows c, 
c follows a, and a follows b, then wherever we put the dot and cross the 
result will have the opposite sign. So 

a·bXc=cXa·b 
b x c · a = -a · c x b 

Forthis reason a triple scalar product is sometimes written as [a, b, c]; this 
defines the cyclic order, and is all that is needed. So 

[a, b, c] = [b, c, a] = [c, a, b] 
= -[a, c, b] = -[c, b, a] = -[b, a, c] 

PHYSICAL INTERPRETATIONS 

If we consider the magnitude of a x b, the vector product of two vectors a 
and b, we see that 

Ia X bl = lallbllsin SI 

This is equal to the area of the parallelogram formed by the two vectors 
(Fig. 14.21). 

If now we consider a · (b x c) we have 

a · (b x c) = lallb x cl cos cj> 

where cj> is the angle between a and b x c (Fig. 14.22). Now b X c is 
perpendicular to the plane of b and c, and so it follows that Iai cos cp is the 
height of the parallelepiped n formed by the vectors a, b and c. Therefore 

a · (b x c) = height of n x area of base of n 
= volume of n 

b ---------;.-

/ 
L---L-----+::/ 

a 

/ 
/ 

/ 
/ 

/ 

Fig. 14.21 The magnitude of a x b. 
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b 

Fig. 14.22 The triple scalar product. 

Strictly speaking we have relied a little too much on the diagram for, were 
b and c interchanged, cos e would be negative. Nevertheless we have 
shown that the magnitude of a · b x c can be interpreted as the volume of 
the pa'fallelepiped n formed from the three vectors a, b and c. 

Observe that this accords with several of the properties we have already 
discovered. In particular it shows that the triple scalar product depends 
only on the cyclic order of the three vectors concerned. 

14.12 THE TRIPLE VECTOR PRODUCT 

Wehave considered the scalar product of the vector a and the vector b x c. 
We now turn our attention to the vector product of these vectors. The 
result a x (b x c) will be a vector and so we call it a triple vector product. 

At the outset it is important to realize that 

a X (b X c) ;;;f=. (a X b) X c 

Indeed there is no reason at all why these two triple vector products should 
be equal. However, the use of the product notation and the fact that the 
associative law usually holds for products Ieads the unwary to expect that it 
will hold. lt certainly does not hold, and this means of course that we must 
be scrupulously careful to insert brackets correctly in any mathematical 
expression we write down. More marks are lost in examinations as a result 
of missing brackets than are lost through numerical inaccuracy. 

What then is a x (b x c)? We know it is a vector because it is the result of 
taking the vector product of two vectors a and b x c. Moreover it is 
perpendicular to both a and b x c. Now b x c itself is perpendicular to the 
plane containing the vectors b and c, and since we have only three 
dimensions at our disposal we can make a deduction. Can you see what 
it is? 
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The implication isthat a x (b x c) must be in the sameplane as band c. 
Now any vector in the plane of band c can be written in the form pb + qc 
where p and q are scalars. So we have deduced that 

a x (b x c) = pb + qc 

lt remains only to determine the scalars p and q. 

If we take the dot product with a of each side of the last relation we obtain 

0 = p(a · b) + q(a · c) 

So defining a new scalar t by 

p = t(a · c) 

we have 

q = -t(a · b) 

and therefore 

a x (b x c) = t[(a · c)b - (a · b)c] 

It remains only to obtain the scalar t. 
No loss of generality is obtained if we choose our coordinate system so 

that a = /...i, and since the expansion must hold for all b and c we can 
examine the component in the direction of k. The right-hand side gives 

t[/...c1 b3 - /...b1 c3] 

The left-hand side gives, since i x j = k, the product of /... with the 
coefficient of j in b X c. This is 

-A.[btc3- b3c1] = A.[ctb3- b1c3] 

lt follows that t = 1, and therefore the triple vector product is given by 

a x (b x c) = (a · c)b - (a · b)c 

We are now in a position to calculate the other triple vector product 
(a x b) x c. Wehave 

(a X b) X C = - C X (a X b) 
= -[(c · b)a- (c · a)b] 
= (c · a)b - (c · b)a 
= (a · c)b - (b · c)a 

So we have the two triple vector products 

a X (b x c) = (a · c)b - (a · b)c 
(a x b) x c = (a · c)b - (b · c)a 
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These have a similar structure, which makes the expansion easy to 
remernher if you are prepared to learn a little chant. To expand a triple 
vector product write down the middle vector and multiply it by the dot 
product of the others; then subtract the other bracketed vector multiplied 
by the dot product of the remaining two. 

D Write down the triple vector product a x (b x c) of the vectors a = 2i + 
j - k, b = i + j - k and c = i + 2j - k. 

Wehave 

and 

So 

a x (b x c) = (a · c)b - (a · b)c 

a · C = 2 X 1 + 1 X 2 + ( -1) X ( -1) = 5 
a · b = 2 X 1 + 1 X 1 + ( -1) X ( -1) = 4 

a x (b x c) = 5(i + j - k) - 4(i + 2j - k) 
= i- 3j - k 

Alternatively, we could determine b x c first and then a x (b x c). Do this 
and check the answer. • 

14.13 DIFFERENTIATION OF VECTORS 

All the vectors we have considered in the examples have been constant 
vectors. However, there is no reason why this should be so. Suppose 0 is a 
fixed point and Pisageneralpoint on a curve. AsP moves along the curve 
the vector OP changes in both magnitude and direction (Fig. 14.23). 

OP is called the position vector of the point P. We may write OP = r(t) 
to represent this vector, where t is a parameter. 1t may be helpful to think 

0 

fig. 14.23 A variable position vector. 
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oft as time, but this restriction is not essential. The variable t could be any 
scalar, for example temperature or angle. So as t changes, r(t) gives the 
position vector of a point which is moving along the curve. 

Suppose öt is a non-zero change in t. We define 

( ) d ( ) 1. r(t + öt) - r(t) t t = - r t = tm --0...---<----..",_,__ 

dt Öt--+0 öt 

This definition is a direct generalization to vectors of the idea of the 
derivative of a real function ( Chapter 4). 

Using Fig. 14.24 we have 

r(t + öt) - r(t) = OQ - OP = PQ 

so that as öt ~ 0 we obtain the direction of r(t) as the direction of the 
tangent to the curve at P. We call r(t) the velocity vector of P. 

Similarly we define 

r(t) = : 1 t(t) 

tobe the acceleration vector of P. In general, the directions of r(t), t(t) 
and r(t) are all different. 

RULES FOR DIFFERENTIATION 

Suppose u, v and w are position vectors, and p is a scalar, each dependent 
on the variable t. Then provided the derivatives exist, the following rules 
hold: 

d du dv 
- (u + v) =- +-
dt dt dt 

d du dp 
- (pu) = p - + - u 
dt dt dt 

0 

Fig. 14.24 Two neighbouring positiön vectors. 
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d dv du 
dt (u · v) = u · dt + dt · v 

d dv du 
dt (u X v) = U X dt + dt X V 

1t is important to realize, in the last expansion, that the order in which we 
write down the vectors is crucial; in each term the vector u must precede 
the vector v. 

The rules of differentiation enable us to differentiate in terms of 
components. Suppose 

r(t) = x(t)i + y(t)j + z(t)k 

where x(t), y(t) and z(t) are scalars dependent on t. We have 

t(t) = i(t)i + y(t)j + i(t)k 
r(t) = x(t)i + y(t)j + z(t)k 

D A point P moves in space with its position vector given by 

r(t) = (sin t)i + (cos t)j + tk 

lf the timet is given in seconds and the magnitude ofr(t) is given in metres, 
obtain the velocity and speed of the point P. 

We have, differentiating with respect to t, 

t(t) = ( cos t)i - (sin t)j + k 

and this is the velocity. Velocity is a vector quantity; it has a magnitude and 
a direction. The speed is the magnitude of the velocity, and so 

speed = it(t)l = V(cos2 t + sin2 t + 1) = V2 m/s 

Don't make the mistake of obtaining lr(t)l and differentiating this with 
respect to time. lf you do you will not obtain the speed. Here this 
procedure would give 

lr(t)l = Y(sin2 t + cos2 t + t2) 

= V(l + t2) 

which differentiating with respect to time gives 

t 
Y(l + t2) m/s 

which is certainly not the speed of the point. • 
Weshall now take a few more steps just to make sure we have the ideas of 
triple products and differentiation clear. 
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_______ 14.14 WorkshoP--------,--, 

I>Exercise Obtain the equation satisfied by a point (x,y,z) which is in the ;§ 
sameplane as the points (1,-1,2), (3,1,-1) and (1,1,-2). 

Think carefully about this. Remember that the triple scalar product can 
be interpreted as the volume of the parallelepiped formed from the three 
vectors. 

Suppose we Iet the three fixed points be A, Band C. Then the vectors OA, 
OB and OC are the position vectors of the points. If Pis in the same plane 
as A, Band C then the vectors AP, AB and AC are coplanar. lt therefore 
follows that their triple scalar product is zero. 

If you didn't manage to argue this through then don't be concerned. 
Store the idea away in your mind for future use and see if you can complete 
the problem. 

Wehave 

AP = AO + OP = -OA + OP = -(i - j + 2k) + (xi + yj + zk) 
= (x - 1)i + (y + 1)j + (z - 2)k 

AB = AO + OB = -OA + OB = -(i - j + 2k) + (3i + j - k) 
= 2i + 2j - 3k 

AC = AO + OC = -OA + OC = -(i - j + 2k) + (i + j - 2k) 
= 2j- 4k 

The triple scalar product is zero, and so 

x-l y+l z-2 

This gives 

2 2 -3 = 0 

0 2 -4 

(x- 1)(-8 + 6)- 2[-4(y + 1)- 2(z- 2)] = 0 
-2(x - 1) + 8(y + 1) + 4(z - 2) = 0 

x - 1 - 4y - 4 - 2z + 4 = 0 
x- 4y- 2z = 1 

Did you get there? Don't forget to checkthat A, Band C each satisfy this 
equation. 

If allwas weil you can move on to step 5. If there were difficulties then 
try the next problern carefully. lt is always better to spend a few seconds 
planning what you intend to do. 

I> Exercise Obtain the volume of the tetrahedron formed by the points 0, 

~---J 

rr?l 
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A, Band C, where 0 is the origin and A, B, C are the points (1, -1, 2), 
(3, 1, -1) and (1, 1, -2). 

Y ou need to know that a tetrahedron has 

volume = ~ area of base x height 

The area of the triangle formed by two vectors is half the area of the 
parallelogram which they form. Therefore the required volume will be 
one-sixth of the volume of the parallelepiped formed by the three vectors 
OA, OB and OC. 

The triple scalar product gives the volume of the parallelepiped. 

So we obtain 

1 -1 2 

OA = i- j + 2k 
OB= 3i + j- k 
OC=i+j-2k 

3 1 -1 = (-2 + 1) + (-6 + 1) + 2(3- 1) 

1 1 -2 

= -1 - 5 + 4 = -2 

expanding in terms of the first row. The magnitude of this is therefore 2 
and the required volume is ~ = *. 

l5"Ll Exercise Show that if u · v =I= -1 then x = u is the only solution of 
the equation 

'------' 

x + (u A x) A v = u 

Notice that this question uses the wedge notation for the vector product. 
It is clear that x = u is certainly a solution of the equation, but we must 

show it is the only solution. 

Expanding the triple vector product we obtain 

x + (u · v)x - (v · x)u = u 

However, if we take the dot product with v of both sides of the equation 

x + (u A x) A v = u 

we obtain a triple scalar product in which two of the vectors are the same: 



(u 1\ x) 1\ v · v 

Consequently this product is zero and therefore 

x·v=u·v 

So 

v·x=u·v 

We now have 

x + (u · v)x - (u · v)u = u 
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[1 + (u · v)]x = [1 + (u · v)]u 

Since 1 + (u · v) =I= 0 we conclude that x = u. 
If you managed that all right then move on to the practical. Otherwise, 

try a final exercise. 

[> Exercise Obtain the generat solution of the equation 

u/\x+v/\x=u/\v 

where u and v are non-parallel vectors. 
Remernher some of the tricks we have used before and see if you can 

sort this out. The argument is similar, in some ways, to the one we used to 
expand a triple vector product. 

Wehave 

[u + v] 1\ x = u 1\ v 

The right-hand side is a vector perpendicular to the plane of u and v, 
whereas the left-hand side is a vector perpendicular to the plane of u + v 
and x. It follows that x is in the plane of u and v, so x = hu + kv where h 
and k are scalars. Substituting this expression for x into the vector equation 
gives 

[u + v] 1\ [hu + kv] = u 1\ v 
h(u 1\ u) + h(v 1\ u) + k(u 1\ v) + k(v 1\ v) = u 1\ v 

Now u 1\ u = 0 = v 1\ v and v 1\ u = -u 1\ v. Therefore 

( -h + k)u 1\ V = U 1\ V 

Now u 1\ v =I= 0, and so -h + k = 1. Therefore 

x = hu + (h + 1)v = h(u + v) + v 

where h is an arbitrary scalar. 

Zl 
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________ 14.15 Practical _______ _ 

PARTICLE DYNAMICS 

A particle has position P (t,t2,t3) at time t, relative to a reetangular 
cartesian coordinate system Oxyz. Obtain, for the particle at time t, the 
velocity, the speed and the magnitude of the acceleration. Distaoces are 
measured in metres, and time is measured in seconds. 

All you have to do is put this in vector form; the rest is easy. 

Let OP be the position vector of the particle. Then, in the usual notation, 
we have 

OP = r(t) = ti + t2j + t3k 

The velocity is obtained by differentiating: 

t(t) = i + 2tj + 3t2k 

The magnitude of this gives the speed: 

speed = y' (1 + 4t2 + 9t4) m/s 

For the acceleration we must differentiate again: 

r(t) = 2j + 6tk 

and the magnitude of this is y' ( 4 + 36t2) m/s2• 

Vectors are very useful indeed; they enable us to solve problems in three 
dimensions without having to try to visualize them. When they are used 
in conjunction with matrices and operators they become a very powerful 
mathematical instrument. For example Maxwell's equations can be ex­
pressed by this method, and these form the Cornerstone of electromag­
netics. We shall gain some insight into how each of these mathematical 
ingredients functions separately, but the powerful combination is outside 
the scope of our present studies. 
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SUMMARY 

In this chapter we have covered the following topics: 
0 Vector algebra; addition and scalar multiplication of vectors 

(a,b)- a + b 
(p,a)- pa 

0 The scalar product and the vector product 

a · b = jajjbj cos 8 
a X b = jajjbj sin 8 n 

where 8 is the angle between the vectors and n is a unit vector. 
0 The use of position vectors. 
0 Tripie scalar products 

a1 az a3 
[a,b,c]= b1 bz b3 

0 Tripie vector products 
a x (b x c) = (a · c)b- (a · b)c 
(a x b) x c = (a · c)b - (b · c)a 

0 Differentiation of vectors. 

EXERCISES 

1 Determine a + b, a · b, a X b for each of the following: 
a a = 2i + j + 3k, b = i - 3j + k 
b a = i + 4j - 5k, b = 2i + 2j + 3k 
c a = -i + 2j - 3k, b = i + 3j - 2k 
d a = i + j + 2k, b = - 3i + 4j - k 

2 Obtain two unit vectors perpendicular to each of the following: 
a a = i + 3j - 5k, b = i + j 
b a = i + 2j + 3k, b = 3i + 2j - k 
c a = -i + j - k, b = i - j - k 
d a = (i + j) X (j + k), b = (i - j) X (j - k) 

3 Obtain the triple scalar product [a, b, c] for each of the following 
a a = i + j, b = j + k, c = k + i 
b a = 2i + j + k, b = i + 2j + k, c = i + j + 2k 
c a = 3i - 2j - k, b = i + 3j - 2k, c = 2i + j - 3k 
d a = (i + j) X k, b = (j + k) X i, c = (k + i) X j 

4 Obtain the triple vector products a x (b X c) and (a x b) x c for each of 
the sets of vectors given in exercise 3. 
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5 Obtain dr/dt for each of the vectors given below: 
a r = costi- sintj + tk 
b r = cos3ti + sin5tj + t2k 
c r = (1 + t2) 2i + (1 + t3) 3j + (1 + t4) 4k 
d r = (ti - t2j + t3k) A (t3i + t2j + tk) 

ASSIGNMENT 

1 For the vectors a = 2i + j - k and b = i + j + 2k obtain 
( a) the scalar product a · b 
(b) the cosine of the angle between the vectors a and b 
( c) the vector product a x b 
( d) the area of the parallelogram formed by the two vectors a and b. 

2 Obtain a unit vector parallel to the Oyz plane and perpendicular to 
i + 4j - 3k. 

3 By putting d = b x c initially or otherwise show that 

(a x b) x (b x c) = [a,b,c]b 

4 Show that 
(a) [a + b, b + c, c + a] = 2[a, b, c] 
(b) [a x b, b x c, c x a] = [a,b,c]2 

5 Solve the equation a A x + (b · x)a = b, if a · b * 0. 
6 Obtain the constant t if the vectors i - j + 2k, Si + tj + 3k and - 3i + 2j 

+ k are coplanar. 
7 Show that if u, v and w are dependent on the parameter t and 

differentiable with respect to t then 

:t [u, V, w) = [~:,V, W] + [ U, ~:, W] + [ U, V,~~] 

FURTHER EXERCISES 

1 ABC is a triangle; Dis the midpoint of BC, and Eis the midpoint of 
AC. Prove that AB = 2 ED. 

2 For the vector a = (i- 2j + 2k)/3 and b = ( -3i- 5j + 4k)/5 determine 
(a) the angle between a and b 
(b) two unit vectors perpendicular to the plane of a and b. 

3 By eliminating z and using differentiation, or otherwise, determine the 
vector 

a = xi + yj + zk 

which has all of the following properties: 
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(a) a is perpendicular to i + j + k; 
(b) a has twice the magnitude of i + j + k; 
(c) y is a minimum. 

4 Suppose a, b, c and d are position vectors from the origin to the points 
A, B, C and D respectively. 
(a) By expanding (a 1\ b) 1\ (c 1\ d) in two different ways, or 

otherwise, show that 

[a,b,c)d + [a,c,d)b = [b,c,d)a + [a,b,d)c 

(b) Show that 

(b 1\ c) · (a 1\ d) + (c 1\ a) · (b 1\ d) + (a 1\ b) · (c 1\ d) = 0 

5 The path of a point is given vectorially by the equation 

r = (cos2 S)i + (cos e sin S)j + (cos S)k 

Determine expressions for r · r and r 1\ r. Obtain the vector r which has 
(a) minimum magnitude (b) maximum magnitude. 

6 The position vector of a moving point P is given by 

r = (cos wt)i + (sin wt)j + tk 

where t is time. Show that the direction of motion makes a constant 
angle a with the Oz axis, where w = tan a. 

7 Show that a · b :::::; lallbl for any two vectors a and b. By using 

Ia + bl 2 = (a + b) · (a + b) 

or otherwise, deduce the triangle inequality Ia + bl :::::; Iai + lbl. 
8 Show that W, the work done by a constant force F = ai + ßj + yk in 

moving a mass from the point (a" b" c1) to the point (a2 , b2 , c2), is 
given by 

W = a(a2 - a1) + ß(b2 - b1) + y(c2 - c1) 

9 An electron is constrained to move on a curve. Its position vector at 
time t is given by 

r = (2 cos t)i + (2 sin t)j + tk 

Show that its velocity and acceleration each have constant magnitude. 
10 Suppose 

u = (cos t)i + (sin t)j + e-1k 
v = ( -sin t)i + (cos t)j + e 1k 
r = U X V 

Show that r is always in the i, j plane and that r has magnitude 
2V(2) cosh t. 

11 The position vector of a point mass at time t is 

r = (cos2 t)i + (sin t cos t)j + (sin t)k 
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Determine the velocity t and the acceleration r. Show also that Ir I = 1 
and that, at time t, ltl = y' (1 + cos2 t). 
( a) The curvature x is given by the formula 

x = lt x rltiW 
Show that the curvature at timet is (3 cos2 t + 5)112/(1 + cos2 t)312 • 

(b) The torsion 't is given by the formula 

ll't = (t x r · r)tlt x rl2 

Show that the torsion at timet is (3 + 5sec2 t)/6sec t. 
12 An electron moves with constant angular velocity on a circle of radius 

1. Show that when suitable axes are chosen its position vector can be 
expressed in the form 

r = ( cos oot)i + (sin oot)j 

Confirm, using vectors, that 
(a) The velocity of the electron is perpendicular to the vector r; 
(b) The acceleration r is directed towards the centre of the circle. 

13 A particle is constrained to move on the curve defined by x = 2 cos t, 
y = 2 sin t, z = ty' 5 relative to a reetangular cartesian coordinate system 
Oxyz. If distances are measured in metres and timet in seconds, show 
that the magnitude of the velocity is 3 m/s and the magnitude of the 
acceleration is 2 m/s2• 

14 The po~ition vrctor of a hdicopter at timet is given by 

r = t(rosti + sin tj + k) 

(a) obtain f and show that 

i'= -(2sint+tcost)i+(2cost-tsint)j 

(b) Obtain the Yalue oft if r · f = 6. 
(c) Obtain li'l when t = 3. 
(d} Obtain f x i' when t = 0. 

15 Within a construction site for an aviary three points A, B and 
C arr d(•termined relative to a central reference point 0 and ex­
pressed using position vectors by 

respectively. 

a i+j+k 
b = i+2j-2k 
c = i-j+k 

(a) Obtain r = a + b and 5 = a + 2c and show that r and 5 are 
mutually perpendicular. 
(b) Calculate r x 5 and obtain a unit vector which is at right 
angles to both a and also to b. 
(c) Determine the volume of the parallelepiped formed from the 
three vectors a, b and c and verify that 

r x 5 = 2(r x c) - a x b 
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Now that our algebraic knowledge has been increased by studying 
complex numbers, matrices, determinants and vectors we return to 
the calculus to begin our work on integration. 

After studying this chapter you should be able to 
0 Write down indefinite integrals of simple functions; 
0 Apply the four basic rules of integration correctly; 
0 Perform simple substitutions to determine integrals; 
0 Obtain integrals by putting simple rational functions into partial 

fractions. 
At the end of the chapter we Iook at practical problems in gas 
compression and structural stress. 

15.1 THE CONCEPT OF INTEGRATION 

Integration is sometimes thought of as falling into two parts: indefinite 
integration and definite integration. Weshall deal with integration in this 
way, and the link between the two will then become clear. 

It is best to think of indefinite integration as the reverse procedure to 
that of differentiation. We know that given a differentiahte real function F 
there is a unique real function f such that F' = f. We call f the derivative 
of F (Chapter 4). 

Suppose we try to reverse this procedure. For any real function f: 
1 Under what circumstances does there exist a real function F such that 

F' = f? 
2 If there is a function F with this property, is it unique? 
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Weshall not answer question 1 since it is beyond the scope of our work, 
but question 2 can be answered straight away: no! If F exists it is not the 
only function with this property. 

D We know that both fand g defined by 

f(x) = x + 1 and g(x) = x when x E IR 

have a derivative h defined by 

h(x) = 1 when x E IR 

In other symbols, if y = x + 1 and z = x then 

dy dz 
= dx dx • 

Suppose we have two real functions Fand G which have the same deriva­
tive. What can we say about them? Suppose F' = G': then F' - G' = 0 
and therefore (F - G)' = 0. Consequently the function F - G has 
the zero function as its derivative. Now it so happens that the only dif­
ferentiable function, defined for all real x, which has zero derivative is a 
constant function. 

In other symbols, if 

then 

Therefore 

dy dz 
-=-
dx dx 

dy _ dz = 0 
dx dx 

d 
- (y- z) = 0 
dx 

y - z = constant 

Consequently to integrate a real function f we must 
1 Determine any function F with derivative f; 
2 Add an arbitrary constant. 
This will then represent all those functions which have derivative f. 

1t is convenient to use a dummy variable such as x or t when describing 
functions, and the same is true when it comes to representing an indefinite 
integral. 
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Of course it is the presence of an arbitrary constant which gives rise to 
the name 'indefinite' integral. Suppose 

d 
dx F(x) = f(x) 

Then we write 

J f(x) dx = F(x) + C 

where Cis an arbitrary constant. We call this theindefinite integral of f(x) 
with respect to x, and refer to f(x) as the integrand. Weshall also say that 
f(x) is integrable, and we mean by this that the indefinite integral with 
respect to x exists. 

Our work on differentiationwill stand us in good stead, since we can write 
down a nurober of indefinite integrals. For example: 

J ex dx = ex + C 

J cos x dx = sin x + C 

J sec2 x dx = tan x + C 

These are examples of standard forms. When we wish to perform an 
integration we shall attempt to reduce the integrand to a sum of standard 
forms. The techniques of integration may not at first seem quite as straight­
torward as the techniques of differentiation. However, practice will soon 
overcome this problem. 

15.2 RULES FOR INTEGRATION 

The rules for integration follow from the rules for differentiation. Weshall 
suppose that u = u(x) and v = v(x) arereal functions which are integrable 
and that c is a constant. 

Sumrule 

J (u + v) dx = J u dx + J v dx 

This means that if we express the integrand as the sum of two parts we 
can then integrate each separately and add the results. You should not 
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presume that this rule is self-evident, however reasonable it may appear; 
the corresponding property does not hold for products! 

Factorrule 

J cu dx = c J u dx 

This means that we can divide the integrand by a constant and take this 
outside the integral sign. This rule only holds for constants, so that 

J 3tanxdx=3 J tanxdx 

but 

J xtanxdx=Fx J tanxdx 

Product rule 

J u dv dx = uv - J v du dx 
dx dx 

This is usually called the formula for integration by parts and it is useful for 
integrating certain products. lt is an awkward rule to remernher, and some 
students prefer to leam it in words. So here is the chant: 'The integral of a 
product of two functions is the first times the integral of the second, minus 
the integral of, the integral of the second times the derivative of the first.' 
You may well prefer to remernher the formula! 

Substitution rule 

J f(x) dx = J f[g(u)]g'(u) du 

where x = g(u). 
This is easy to apply because we make the substitution x = g( u) and then 

dx - = g'(u) 
du 

which leads quite naturally to the substitution dx = g'(u) du. 
There is one additional requirement. To every x there must correspond a 

value of u suchthat x = g(u) and g'(u) must remain bounded on any finite 
interval. 

The substitution rule is perhaps the most useful rule for integration. 
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One little remark about arbitrary constants is in order. We do not allow 
arbitrary constants to proliferate each time we split an integral into two. 
This is because they can all be collected together in a sum which is itself an 
arbitrary constant. To avoid these constants appearing left, right and 
centre we shall suppose that the last integral to be determined is the 
guardian of the arbitrary constant. It's rather like a waiter watehing 
customers at a table in a cafe. He doesn't mind if some of them leave, 
provided somebody is still sitting there to pay the bill. If the last customer 
gets up and walks out he says 'Oi! What about the bill?' or words to that 
effect. We must do the same; the last integral sign remaining owes a debt of 
the arbitrary constant. 

D Using the rules for differentiation and the definition of the indefinite 
integral deduce a the sum, b the factor, c the product and d the Substitution 
rules. 

We shall suppose that 

I u(x) dx = U(x) + A 

I v(x) dx = V(x) + B 

where A and Bare arbitrary constants. As usual weshall write U = U(x) 
and V= V(x). 
a By definition, U'(x) = u(x) and V'(x) = v(x). Now 

( U + V)' = U' + V' = u + v 

Consequently 

J (u + v) dx = U + V+ C 

=Judx+Jvdx 

b By definition, (cU)' = cU' = cu. Therefore 

I cu dx = cU(x) + K 

where K is an arbitrary constant. So 

I cu dx = c I u dx 

c The product rule for differentiation gives 

d dv du 
- ( UV) = U - + V -
dx dx dx 

Therefore by the sum rule 
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So 

Rearranging, 

d Wehave 

So 

J :x (uv) dx = J u :: dx + J v :; dx 

J du J dv 
UV = V-+ U-

dx dx 

J u dv = uv - J v du 
dx dx 

d~ [J f(x) dx] = f(x) = f[g(u)] 

ddx [J f(x) dx] :~ = f[g(u)] :~ 
Therefore by the chain rule for differentiation 

ddu [J f(x) dx] = f[g(u)]g'(u) 

and so 

J f(x) dx = J f[g(u))g'(u) du 

Table 15.1 Standard derivatives 

f(x) f'(x) 

xn (n constant) nxn-1 

e X ex 
lnx(x>O) x-1 

sinx COSX 

cosx -sinx 
tanx sec2 x 
secx secxtanx 
cotx -cosec2 x 
cosecx -cosec x cot x 
sinhx coshx 
coshx sinhx 
sin- 1 x 11Y(1- x2) 

tan- 1 x 11(1 + x2) 

sinh- 1 x 11Y(1 +x2) 

cosh- 1 x 11Y(x2 - 1) 

• 
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STANDARD FORMS 

We shall now build up a table of standard forms which we shall use to 
integrate more complicated functions. To begin with we Iist 'iome well­
known derivatives in Table 15.1, as these will form the basis of the integrals 
table which we shall devise. 

On the basis of these, and remembering that we can take any constant 
factor outside the integral sign, but not expressions which depend on x, it is 
possible to Iist the standard integrals in Table 15.2. We use the notation 

in the table. 

J f(x) dx = F(x) + C 

Table 15.2 Standardintegrals 

f(x) 

xn (n =F -1, constant) 
ex 
x-1 (x > 0) 
COSX 

sinx 
sinhx 
coshx 
11(1 + x2) 

11V(1- x 2) 

1lV(1 + x2) 

11V(x2 - 1) 
se~x 
secx tanx 
cosec2 x 
cosecxcotx 

F(x) 

xn+ 1/(n + 1) 
ex 
lnx 
sinx 

-cosx 
coshx 
sinhx 
tan-1 x 
sin-1 x 
sinh-1 x 
cosh- 1 x 
tanx 
secx 

-cotx 
-cosecx 

0 We shall extend Table 15.2, using the rules of integration, to obtain 

J x- 1 dx when x < 0 

We use the substitution rule and put x = -t. Then t > 0 since x < 0. Also 
dx/dt = -1, and so we obtain 

= J.! dx dt 
X dt 

= J -1- (-1) dt 
( -t) 

= J ~ dt 
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But since t > 0 we know this integral is In t + C. So substituting back 
we have 

J x - 1 dx = In (-x) + C when x < 0 

Of course we can combine both cases, x > 0 and x < 0, in one formula: 

J x- 1 dx = In lxl + C when x =I= 0 

1t is important to remernher this, as occasionally it is possible to produce 
incorrect working by overlooking the possibility that x < 0. On the other 
band, if x is clearly positive the modulus signs are entirely superfluous and 
should be omitted. • 

A word or two about the arbitrary constant is not out of place here. We 
know that given any real number y there exists a positive number x such 
that y = In x. This number x is equal to eY, in fact. Therefore any arbitrary 
constant C can be written in the form In k where k > 0. 

One advantage of doing this is that we can then use the laws of 
logarithms to put the integral in a tidier form. One disadvantage is that it 
may take some algebraic work on your part to confirm that the answer you 
have obtained to an integration is equivalent to the one which it is stated 
you should obtain! For instance, 

In (x2 - 1) - In (x + 1) + C 

is equivalent to 

In k(x - 1) 

where C and k (>0) are arbitrary constants. 

Now Iet's do some integrations. In these we rearrange the integrand and 
then use standard forms together with the sum and factor rule . 

....---..--------15.3 Workshop _______ _ 

~ Exercise Obtain 

I = J ex cosh x dx 

See if you can rearrange the integrand so that it becomes a sum of standard 
forms. When you have done so, take the next step. 
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If we use the definition of cosh x we see that we can split the integral into 
two. We have L__ _ __. 

J ex + e-x 
I= ex 2 dx 

= i J (e2x + 1)dx 

= i J e2x dx + i J dx 

It is customary to use dx algebraically in this way and not to insist that it 
appears on the far right as in the standard notation 

We obtain 

I = i J e2x dx + i J 1 dx 

1 e2x 1 
I=--+-x+C 

2 2 2 
e2x X 

=-+-+C 
4 2 

Now try this one. You have to think carefully. 

[> Exercise Obtain 

J dx 
1 + sin x 

When you are ready, take the next step. 

If you have split the integral into two by writing 

J dx+J~ sm x 

then you have made an algebraic blunder because 

You can readily confirm this by putting A = 1 and B = 1. Instead, we 
multiply the numerator and denominator by 1 - sin x. On the one hand the 
integrand is unaltered, but on the other hand we can use the rules of 
elementary trigonometry to simplify it. So 
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J 
dx J (1 - sin x) dx 

1 + sinx = (1- sinx) (1 + sinx) 

=J1-sinxdx 
1 - sin2 x 

= J 1 - ~in x dx = J (sec2 x - sec x tan x) dx 
COS X 

= J sec2 xdx- J secxtanxdx 

using the sum and factor rules. 
Now each of these isastandardform which we included in Table 15.2. 

See then if you can write the answer down straight away. lf not, you bad 
better Iook back at the table and then write down the answer. Whichever 
way you proceed, as soon as you have finished move on to the final step. 

This is what you should have written down: 

J1 d~ =fsec2 xdx-Jsecxtanxdx + Slß X 

= tan x - sec x + C 

You may not have managed to tackle these steps, but do not worry at this 
stage. If we Iook at what we have done there are one or two features which 
we can remernher for future use. First, we need to know our trigono­
metrical formulas forwards, backwards and inside out! Also, simple 
algebraic identities will often assist us. 

Wehave said that we are content if we can resolve the integrand into a 
sum of standard forms, but in generat two guidelines can be of help. They 
are 
1 Remove denominators; 
2 Resolve roots. 
In the workshop we bad a denominator which we wished to remove. How 
did we do it? We bad to remember almost simultaneously that 

1 - sin2 x = cos2 x 
(1 - sin x) (1 + sin x) = 1 - sin2 x 

This realization showed us that we needed to multiply numerator and 
denominator by 1 - sin x to proceed effectively. 

So we must train ourselves to inspect the integrand and to plan ahead. 
lt's all a matter of practice. 
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15.4 INTEGRATION BY INSPECTION 

Sometimes when we inspect an integrand it is possible to see straight away 
how to integrate it. One very common situation, where this is the case, is 
when the integral is of the form 

J 
f'(x) dx 
f(x) 

If we use the Substitution rule and put u = f(x) then we obtain, 
differentiating with respect to x, u' = f'(x), and so 

J ;g; dx = J ~du = In lul + C 

= In lf(x)l + C 

D Render the following integrals: 

J 2x 
xz + 4 dx J 

4x + 3 dx 
x2 + 1 

The first integral has the desired form: the numerator is the derivative of 
the denominator. So, without making a formal substitution, we can write 
down straight away 

J x2 
2: 4 dx = In (x2 + 4) + C 

= In k(x2 + 4) 

where k is constant. Note that we do not need to include modulus signs 
here since the argument is clearly positive. 

The second integral needs to be manipulated slightly but is essentially 
the same. See if you can do it. When you have finished, read on and see if 
you are right. 

You're not looking, are you? You really have tried your best? Weil then, 
here it is: 

J 4x+ 3 dx=2J~dx+3J~ 
x2 + 1 x 2 + 1 x2 + 1 

Here we have used the sum rule and the factor rule to split things up. 
Notice particularly that only constants can appear to the left of each 
integral sign. The first integral is the logarithmic type which we have been 
discussing, and the second integral is a standard form. So we can write 
straight away 
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I = 2 ln (r + 1) + 3 tan-1 x + c • 
The logarithmic type is a special case of a more general type, and we 
should be on the lookout for this too. This is an integral of the form 

J g(u) du 

where u = f(x) and g is a function which has a known integral. 

D Obtain each of the following integrals: 

J V(x3x: 1) dx J x V(1 + x2) dx 

Why not see if you can do something with these by yourself? 

For the first integral, if we put u = x3 + 1 then duldx = 3x2 and we can use 
the factor rule to adjust the numerator to include the 3. Moreover, we 
know 

J ~: = J u- 112 du = 2u112 + C 

In words: raise the index by 1 and divide by the number so obtained. 
Therefore we have 

I x2 1 I 3x3 

V(x3 + 1) dx = 3 V(x3 + 1) dx 

2 
= 3 V(x3 + 1) + C 

1t is a common error to get this wrong by half recognizing the general form 
and ignoring the root sign by writing down a logarithm. Don't be one of 
those who makes that particular mistake! Now you have a go at the second 
integral. 

Hereweare then. lt's a simple example of the general type, although an 
adjustment of the constant is necessary: 
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15.5 INTEGRATION BY PARTIAL FRACTIONS 

One type of integrand can be dealt with routinely. This is when the 
integrand is a quotient of two polynomials, for example 

x 4 + 2x - 3 

x3 + 2x2 + x 

It is then possible to split the integrand into a sum of a number of partial 
fractions. 

We shall use the example to illustrate the method. We first divide the 
denominator into the numerator so that, for the quotient which results, the 
degree of the numerator is less than the degree of the denominator. The 
rest of the integrand is then a polynomial, which we can integrate without 
difficulty. 

Wehave 

x 4 + 2x - 3 = x _ 2 + 3x2 + 4x - 3 
x 3 + 2x2 + x x 3 + 2x2 + x 

The rational expression 

Q = 3x2 + 4x- 3 
x3 + 2x2 + x 

remains to be resolved. We factorize the denominator of Q: 

x 3 + 2x2 + x = x(x2 + 2x + 1) = x(x + 1)2 

Here the factors of the denominator are x and x + 1 (repeated). Therefore 
we obtain partial fractions with denominators x, x + 1 and (x + 1)2 and 
constant numerators. So 

Q = 3x2 + 4x- 3 = ~ + _B_ + C 
x 3 + 2x2 + x x x + 1 (x + 1 )2 

If the partial fractions are recombined the two numerators must be 
identically equal. Now 

A B C A(x + 1)2 + Bx(x + 1) + Cx - + -- + = ~----~~--~~~-----
X x + 1 (x + 1)2 x(x + 1? 

Therefore we require 

3x2 + 4x - 3 = A(x + 1)2 + Bx(x + 1) + Cx 

The constants A, B and C can be obtained either by substituting values of x 
into the identity or by comparing the coefficients of powers of x on each 
side of it. In practice a mixture of the methods is usually the quiekest. 

Here if we put x = 0 we obtain A = -3. If we put x = -1 we obtain 
3 - 4 - 3 = - C, so C = 4. If we examine the coefficient of x2 on each side 
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of the identity we obtain 3 = A + B and so B = 6. Therefore 

x4 + 2x - 3 = x _ 2 _ ~ + _6_ + 4 
x3 + :zx2 + X X X + 1 (x + 1f 

Each of these can be integrated without troubie. Try it and see how you 
get on. 

We integrate term by term to obtain 

x2 4 2- 2x- 3 In lxl + 6 In lx + 11 - x + 1 + C 

Did you manage that? All we have done is to appiy the ideas which we 
deveioped earlier and to integrate by sight. If you are having a few dif­
ficulties, then, to begin with you can make the substitutions aigebraically. 
However, as soon as possibie you shouid train yourseif to carry out these 
substitutions mentally. Otherwise you may lose time in examinations going 
through tedious aigebraic routines that can be avoided. 

STANDARD FORMS 

Our tabie of standard integrais (Tabie 15.2} bad two important omissions 
which we can now make good. They are the integrais of the tangent 
function and the secant function. 

For the tangent function we have 

I Jsin x 
tanxdx= --dx 

COS X 

Now if we differentiate cos x with respect to x we obtain -sin x. Therefore 
by the factor and Substitution ruies we have 

f tan x dx = - J -sin x dx = -In icos xl + C 
COS X 

= In isec xl + C 

For the secant function we rearrange the integrand in a cunning way: 

f d f sec x (sec x + tan x) d 
secx x= x 

secx+tanx 

The reason is that if we differentiate sec x + tan x with respect to x 
we obtain 

sec x tan x + sec2 x = sec x (sec x + tan x) 

So in fact the numerator is now the derivative of the denominator. (Of 
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course you wouid not be expected to piuck that technique out of thin air on 
your own, but just savour for a moment the elegance of the move and 
remernher it for future use.) Consequentiy 

J sec x dx = In I sec x + tan x I + C 

Now you try to integrate the cotangent function and the cosecant function. 
When you have done them, check the answers beiow. The methods are 
very simiiar. 

For the cotangent function we have 

J cot x dx = In lsin x I + C 

For the cosecant function we have 

J cosec x dx = In lcosec x - cot xl + C 

Did you manage to sort out the sign in the second one? 
There are some other obvious omissions in our tabie of integrais, for 

instance f In x dx. This can be rectified provided we use the product ruie 
known as the formuia for integration by parts. We now consider this ruie in 
some detail. 

15.6 INTEGRATION BY PARTS 

If we have an integrand which is the product of two different types of 
function, for exampie 
1 exponentiai x circuiar 
2 poiynomiai x exponentiai 
3 poiynomiai X circuiar 
the formuia for integration by parts can often resolve it. Here is the 
formuia again: 

J dv J du u - dx = uv - v - dx 
dx dx 

or equivaientiy 

J u dv = uv - J v du 

Given a product, we shall need to decide which part to call u and which 
part dv. There are four broad principies to adopt: 
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1 We must be able to write down v easily. 
2 If there is a polynomial then the polynomial is usually u. 
3 If having made a choice a more complicated integral results, then start 

again with the opposite choice. 
4 If having decided on the correct choice for u and d v a further integration 

by parts is necessary, maintain the sametype of functions for u and dv. 

0 Obtain 

J xe5x dx 

Here using principle 2 we have u = x and dv = e5x dx, so that v = e5x/5. 
We do not need to include an arbitrary constant; if we include it, it will 
only cancel out later. Also du = 1 dx = dx, so therefore 

J x e5x dx = ~ e5x - ~ J e5x dx 

X 1 
= - e5x - - e5x + c 

5 25 • 
Sometimes it doesn't matter which way we choose u and dv. 

0 Obtain the following integral: 

I = J ex cos X dx 

Here whichever choice we make we are bound to succeed. For instance 
u = cos X, dv = ex dx gives du = -sin X dx and V = ex. So 

I = J ex cos X dx = ex cos X - J ex ( -sin X) dx 

Now the integral on the right is no worse than the one we started with, so 
we continue integrating by parts. Maintaining our choice of types of 
function for u and v gives u = sin x and d v = ex. lf we were to choose them 
the other way round we should get back where we started! 

So we have du = cos x and v = ex, and so 

So 

I = ex cos X + J ex sin X dx 

= ex COS X + [ e sin X - J ex COS X dx] 

= ex cos X + ex sin X - I 

2I = ex COS X + ex sin X 
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'Oi! What about the constant?' Oh yes, we forgot the waiter in the cafe, 
didn't we? Wehave removed the last integral sign, and we overlooked the 
fact that it is the guardian of some arbitrary constants. Therefore 

21 = ex cos x + ex sin x + constant 

That is, 

I = ~ ( ex cos x + ex sin x) + C 

Now you try the sameproblern but with the opposite choice for u and dv. 
That is, you choose u = ex and dv = cos x. lt will still work out; keep calm, 
and keep a clear head! • 

Sometimes an integrand does not Iook like a product at all, but neverthe­
less can be determined using integration by parts. One such integral is 
f In x dx. Suppose we put u =In x and dv = dx; then we obtain v = x and 
du = x- 1 dx. So the integral of the logarithm function is 

I In x dx = x In x - I x ~ dx 

=xlnx-x+C 

Integration by parts is always worth considering. 

________ 15.7 Workshop _______ _ 

lt's time now to Iook at some integrals. We shall do this bearing in mind 
that all of them can be solved by the methods we have used in this chapter. 
It is important that you get used to looking at the integral and deciding 
before you start which approach you are going to adopt. Sometimes an 
integral Iooks quite fierce but on closer inspection we see that in reality it is 
very easy. The opposite is also true, unfortunately. 

The integrals we are going to inspect also form the problems for this 
chapter. If you feel confident you can tackle them on your own and omit 
these steps altogether. However, you may prefer to take things a little 
more slowly andin that way build up confidence. These steps give ideas for 
the methods, but not the full solutions. 

t>Exercise Inspect these integrals: d? I 
1 I x + 1 dx 2 I _x_ dx 3 I tan2 x dx 

X X + 1 

When you have decided which approach to adopt, take the next step. 
Don't be afraid to try a few moves on paper. 
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1 We can split the integral into two, each a standard form. 
2 It's best to put u = x + 1, or equivalently to rewrite the numerator as 

(x + 1) - 1. 
3 We cannot integrate tan2 x as it stands, but we can integrate sec2 x. 

Remember: 1 + tan2 x = sec2 x. 
lf you have all those right, then move on to step 4. Otherwise, consider the 
next three integrals. 

I> Exercise Inspect these integrals: 

4fx+ 1 dx sf~dx 
x- 1 x 2 - 1 

When you have decided what to do, take another step. 

~ 4 This is like problern 2. We can substitute u = x - 1. 
5 There is a common factor which can be cancelled. 
6 This is a case for a Substitution: u = x 2 will get rid of the floating x. 
Now move ahead to step 4. 

l4\l Exercise Inspect these integrals: 

7 J -P-- dx 8 J x cx 1 dx 
X +X e + 9 J sin2 x cos x dx 

Move on when you are ready. 

LS\l7 Cancel out the x. 
8 Put u = ex + 1. 
9 Note that when we differentiate sin x with respect to x we obtain cos x. 

Therefore substitute u = sin x. 
Now take a Iook at the next three. 

I>Exercise lnspect these integrals: 

10 J sin x dx 11 J ex dx 
cos2 x + 1 e2x + 1 

12 J sin-1 x dx 

When you have made your decisions, take the next step. 

Things are not quite so Straightforward now. 
L__ _ __J 10 We can reduce this to a standardform by putting u = cos x. 

11 A standard form is obtained by putting u = ex. 
12 A substitution isn't really going to help much here. This is one of those 
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cases where integration by parts is the best method; we can differen­
tiate sin-1 x. 

If you managed all those then move ahead to step 8. Otherwise, try these 
before you step ahead. 

C>Exercise Inspect these integrals: 

I 2 I sin2x 
13 x V(x + 4) dx 14 V(cos2 x + 9) dx 15 I x In x dx 

Only move on when you have made a clear decision in each case. 

13 At first sight this might seem difficult, but note that if u = x 2 + 4 then 
du = 2x dx and so the ftoating x can be removed. L__ _ __J 

14 If we differentiate cos2 x with respect to x we obtain -2 cos x sin x = 
-sin 2x. This is conveniently present in the numerator to make the 
substitution work smoothly. 

15 This is a product of two different types of function and so is a clear 
candidate for integration by parts. 

Now take the next step. 

C>Exercise Inspect these integrals: 

I I X+ 2 
16 x tan- 1 x dx 17 x 2 _ Sx + 6 dx 18 I tan3 x dx 

As soon as you have decided for all three, take another step. 

rr?l 

16 This is a clear candidate for integration by parts. ~ 
17 The denominator factorizes and so we can use partial fractions. 
18 This is certainly different from problern 3, although we get the hint 

from that one. We take tan2 x and rewrite it as sec2 x - 1, so that 
tan3 x = tan x sec2 x - tan x. We can handle each of these. 

Try the final three. 

I>Exercise Inspect these integrals: 

19 I ~ 20 J x3 dx 
x4 - 1 x 4 - 1 

Then take the final step. 

19 We can factorize x 4 - 1 and this will enable us to use partial fractions. 
20 Substitute u = x4 - 1 rather than use partial fractions. 
21 The square root presents the difficulty. However, if you remernher the 
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guidelines there should be no serious problem. Put u = x4 + 1; then 
du = 4x3 dx and the substitution can be carried through successfully. 

________ 15.8 Practical _______ _ 

GAS COMPRESSION 

The work done in compressing a gas from one volume to another can be 
expressed by 

W = J p dv 

lf the volume v1 is compressed to the volume v2 and if pvn = c, where c is a 
constant and n =I= 1, show that 

c 
W = -- (v~-n - v}-n) 

1 - n 

Obtain W in the case n = 1. 
See how you get on with this. We will offer the solution stage by stage. 

1 There is one small point to note. W has been used in two different ways. 
First, it is the general symbol for the work done. Secondly, it is the 
amount of work done in compressing the gas from v1 to v2 . To avoid 
confusion we shall refer to the second as W*. 

We have, if n =I= 1, 

W = I :n dv = c I v-n dv 

where A is a constant. 

cvt-n 
=--+A 

1-n 

lf you did not get this, try now to calculate A. 

2 When v = v1 no work has been done, and so we have 

cv}-n 
0 = Wt = -- + A 

1-n 

So 

A 
cv}-n 

---
1-n 



Therefore 

cvl-n cvl-n 
W=-----

1-n 1-n 

when v = v2 we have W = W*, which is 
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l-n l-n 
* CVz CVt C ( 1-n 1-n) W = -- - -- = -- Vz - V1 1-n 1-n 1-n 

Now you deal with the case n = 1. 

3 If n = 1 then 

W = J ~ d v = c In v + A 

As before, when v = v~> W = 0. Therefore 

0 = c In v1 + A 

and so, replacing A, 

W = c In v - c In v 1 

So when v = Vz, 

W* = c In v2 - c In v1 = c In (vzlv 1) 

STRESS 

In a thick cylinder, subject to internal pressure, the radial stress P at a 
distance r from the axis of the cylinder is given by 

J ~= 2 Jdr 
a- P r 

where a is a constant. If the stress has magnitude P0 at the inner wall 
(r = r0) and if it may be neglected at the outer wall (r = r1), show that 

p = PorÖ (rf _ 1) 
rT - rÖ r2 

Again we present the solution stage by stage. 

1 Rearranging the integral we have 

-J ( -1) dP = 2 J dr 
a- P r 
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So 

-In Ia - Pi = 2 In lrl + A 

That is, 

-In Ia - Pi = 2 In lrl + In k = In kr2 

1 2 

Ia- Pi = kr 

where k > 0 is the arbitrary constant. 
There are two cases to consider: a > P and a < P. 

2 If a > P then 
1 

-- = kr2 

a-P 
1 

a- P=­
kr2 

When P = P0 , r = r0 and so a - P0 = llkrÖ. When P = 0, r = r1 and 

therefore a = llkri, Now r1 > r0 and P0 > 0, so that 

1 1 1 
Po = a - -k 2 = -k 2 - -k 2 < 0 

r0 r 1 r0 

which is a contradiction. Therefore the case a > P cannot arise and there 
remains oniy a < P. 

3 When a < P we have 

1 
a-P 

1 
a- p = - kr2 

When r = r0 , P = P0 and so a - P0 = -1/krÖ. When r = rt. P = 0 and so 

a = - 11 kd. Consequently 

Po = k:Ö - k:i = i (:5 - r
1i) 

from which 

and 
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Further, 

1 1 1 
p = a + -k 2 = --k 2 + -k 2 r r1 r 

SUMMARY 

To obtain an integral we first inspect the integrand. The following 
checklist can then help us to proceed: 
D ls this an integral which can be done by sight? 
D Is there a simple substitution which will reduce it to a standard form? 

(Don't forget to substitute for dx too!) 
D Is it possible to rearrange the integrand so that it becomes a sum of 

standard forms? 
D Can the integrand be rearranged using the theory of partial fractions? 
D Can the integral be obtained by integration by parts? 
Remember also that if you make a substitution you must always carry 
it through. Never allow two variables to appear tagether under the 
integral sign. 

EXERCISES 

I Obtain each of the following integrals: 

a I (1 + 2x + 3x3) dx 

b I {expx + 2exp ( -x)} dx 

c I { 1 + V(l ~ x2)} dx 

d J secx (secx + tanx) dx 
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2 Use a simple substitution to obtain each of the following integrals: 

a J (1 + 2xfdx 

b J cos3xdx 

c J x2 sinx3 dx 

d J 4 : x 2 dx 

3 Resolve into partial fractions to obtain each of the following: 

a f (2 + x~~ - 3x) 

J dx 
b x 3 + 3x 

f dx 
c x 3 - 4x 

d f (x2 + 1~~x2 + 4) 
4 Use the method of integration by parts to obtain each of the following: 

a J 2xcos3xdx 

b J xexp3xdx 

c J x3 expx2 dx 

d J x2 ln(x2 + 1)dx 

S Obtain the following integrals: 

a J G + ;)dx 

f dx 
b 1 + cosx 

c J x2 expx3 dx 

d J x sec2 x2 dx 
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ASSIGNMENT 

Obtain each of the following integrals. If you arestuck at any stage, hints 
are given in section 15.7. 

Jx+1 J x 1 -x-dx 2 x+ 1 dx 

4 J x + 1 dx 5 J ~ dx x- 1 x2 - 1 

1J~dx 
x 2 + x 

10 J sin x dx 
cos2 x + 1 

13 J x V(x 2 + 4) dx 

16 J x tan- 1 x dx 

19!~ 
x 4 - 1 

FURTHER EXERCISES 

J ex 
8 ex + 1 dx 

J ex 
11 zx dx 

e + 1 

J sin 2x d 14 X 
J!(cos2 x + 9) 

J X+ 2 
17 2 5 6 dx 

X - X+ 

2 J x 3 dx 
0 x4- 1 

1 Obtain each of the following integrals: 

a I x cos x 2 dx b I V(x 1+ 3) dx 

c I :: ~ ~ dt d I 1 :
3 
x 4 dx 

2 Resolve each integral: 

3 J tan2 x dx 

6 J X e-x' dx 

9 J sin2 x cos x dx 

12 J sin- 1 x dx 

15 J x In x dx 

18 J tan3 x dx 

J x 3 dx 
21 

V(x 4 + 1) 

J du 
a --

u In u 
b J (sin3 8 + cos3 8) d8 

J J ln x 
c sec- 1 t dt d ~ dx 

3 Render each of the following: 

a J tan- 1 u du b J dx 
1-cosx 

I dx 
C (X - 1 )2 (X + 1) 

d J cos 28 d8 
(1 - sin 8)(1 - cos 8) 
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4 When a constant EMF E is applied to a coil with inductance L and 
resistance R the current i is given by the equation 

J L di J 
E- Ri = dt 

Determine the current i at time t if i = 0 when t = 0. 
5 By Newton's law of cooling the surface temperature S at time t of a 

sphere in isothermal surroundings of temperature S0 is given by the 
equation 

J dS 
S- So= -kt 

When t = 0, S = S1. Show that at time t 

S = (S1 - So)e-k' + So 

6 When a uniform beam of length L is clamped horizontally at each end 
and carries a Ioad of w per unit length, the deflection y at distance x from 
one end satisfies 

d4y w 
dx4 =EI 

where EI is constant and is the flexural rigidity of the beam. Use the 
information that y = 0 = dyldx at both x = 0 and x = L to obtain an 
expression for the deflection y at a general point. 

7 A spherical drop of liquid evaporates at a rate proportional to its surface 
area. Show that if r is the radius then drldt is constant. Given that the 
volume halves in 30 minutes, determine how long it will take for the drop 
to evaporate completely. 

8 If cp = cos pS and sP = sin pS, verify that if m and n arereal constants 

Hence, or otherwise, obtain 

J cos 3S - 3 sin s dS 
1 + sin 2S 

9 The acceleration of a missile is given by f = a e _, cosh u where a 
is constant, t is time in seconds and u is its speed in kilometres per 
second. Show that this Ieads to the integral equation 

J sech u du = a J e-1 dt 

Obtain the speed at time t if initially it is zero, and show that as t ~ oo, 

u ~ In [tan (3t/4 + a/2)). 
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ln this chapter we shall extend our table of standard forms still 
further and learn how to deal with more difficult integrands. 

After studying this chapter you should be able to 
D Use trigonometrical substitutions to resolve algebraic integrands; 
D Apply the standard algebraic substitutions to resolve trigonometrical 

integrands; 
D Manipulate integrands and use tables of standard forms to resolve 

them; 
D Assess an integrand to plan a suitable method of integration. 
At the end of the chapter we consider practical problems in particle 
dynamics and ballistics. 

16.1 INTEGRATION BY SUBSTITUTION 

Although we have extended our table of standard forms slightly, there are 
still a few gaps. Three of these are the integrals 

J V(x2 - l)dx 

Weshall now consider how to determine these. To do so we dealfurther 
with integration by Substitution. 

Sometimes it is not possible to reduce an integrand to standard forms 
either by inspection or by the use of partial fractions. In such circumstances 
a substitution is worth considering. Remernher the broad guidelines: 
1 Remove denominators; 
2 Resolve roots. 
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A good facility with trigonometry and elementary algebra is essential 
for this. Before going any further it is vital that you are aware of the 
essential difference in kind between the two integrals f y' ( 1 + x) dx and 
f V(1 + x2) dx. The firstintegral can be obtained by inspection. See if you 
can write the answer down. 

If we differentiate (1 + x )312 with respect to x we obtain 

3 3 
2(1 + x)l/2 = 2y'(1 + x) 

so that 

J V(1 + x)dx = j(1 + x)312 + C 

lt is unfortunately a common error for students to write 

J V(1 + x2) dx as 3~ (1 + x2) 312 + C 

using broadly the same style of argument. This is incorrect because 2x is 
not constant, so the factor rule cannot be used in this way. Indeed, were we 
to differentiate this result correctly we should not obtain the integrand. 

So then we have a prob lern. How are we to determine f y' (1 + x2) dx? The 
answer is that we must make a substitution. 

lt is no good putting u2 = 1 + x2 because, although at first this may 
appear to resolve the root, when we substitute for dx in terms of du 
another one appears. We must make a trigonometrical Substitution, and for 
this purpose it helps to recall one of the following two identities: 

1 + tan2 t = sec2 t 
1 + sinh2 t = cosh2 t 

For example, using the first we put x = tan t. Then dx = sec2 t dt and so 

y'(1 + x2) = y'(1 + tan2 t) = y'sec2 t = sec t 

provided we choose t in the interval ( -'!t/2, '!t/2). This is certainly possible 
since for allreal x there exists t in this interval suchthat x = tan t. Now 

J y'(1 + x 2)dx = J sec t sec2 t dt = J sec3 t dt 

How are we to determine f sec3 t dt? If you think the answer is simply (114) 
sec4 t + C you bad better think again! For, if we differentiate (1/4) sec4 t 
with respect tot we obtain sec3 t sec t tan t, which is not the integrand. 
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At first sight, then, this integral may seem difficult. However, suppose 
we rewrite sec3 t as a product sec2 t sec t. We can then integrate by parts. If 
dv = sec2 t dt then v = tan t, whereas if u = sec t then du = sec t tan t dt. 
Consequently 

J sec t sec2 t dt = sec t tan t - J tan t sec t tan t dt 

= sec t tan t - J sec t tan2 t dt 

Now sec2 t = 1 + tan2 t, and so this becomes 

J sec' t dt = sec t tan t - J sec t ( sec2 t - 1) dt 

=sec t tan t- J (sec3 t- sec t)dt 

Consequently 

2 J sec3 t dt = sec t tan t + J sec t dt 

= sec t tan t + ln /sec t + tan t/ + constant 

and so 

J 1 1 
sec3 t dt = 2 sec t tan t + 2 ln /sec t + tan t/ + C 

lt is worth remarking that fort E ( -n/2, n/2), sec t + tan t which equals 
(1 + sin t)/cos t is positive, and so the modulus signs are superftuous. 

It remains only to substitute back in terms of x. We had x = tan t, so 
sec t = V(l + x 2 ). Therefore finally 

IV 2 1 V 7 1 V 7 (1 + x ) dx = 2x (I + x-) + 2 ln [x + (1 + r)] + C 

We will now use some steps to Iook at the other two integra1s in the trio 
introduced at the start of the chapter. 

16.2 Workshop 

I>Exercise Determine the integrals 

J V(l - x 2)dx Jv(x 2 -I)dx 

For f V(l - x 2) dx, decide what you should do and then take the next step. 

Zl 
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Weshall need to make a substitution, and to resolve the square root we 
.____ _ __, shall wish to make 1 - x2 a perfect square. Appropriate identities which 

suggest the substitution to use are 

.____ _ __, 

1 - sin2 t = cos2 t 
1 - tanh2 t = sech2 t 

Accordingly we should choose x = sin t ( or x = cos t) or x = tanh t 
(or x = sech t). Which one we choose depends on mood and temperament! 
Let us be definite and select x = sin t so that we all do the same thing. 

One small observation should be made before proceeding. If x = sin t 
then lxl :s:: 1, but this is no problern since the integrand is not defined when 
x2 > 1. 

If you managed to sort out the integrand along these lines, then make 
the substitution and move ahead to step 4. 

If you couldn't do it then Iook carefully at the identities and try your skill 
with the other integral. In other words, decide which Substitution you 
would choose to obtain f V (x2 - 1) dx. As soon as you are ready take the 
next step. 

The identities which are of use to us for f V (x2 - 1) dx are 

sec2 t - 1 = tan2 t 
cosh2 t - 1 = sinh2 t 

So you should substitute either x = sec t or x = cosh t. The substitution 
x = cosh t presumes that x ;;::: 1. For the integral to exist we require x2 ;;::: 1 
so that either x ;;::: 1 or x :s:: -1. The case x :s:: -1 needs to be considered 
separately. The Substitution u = - x shows that when x :s:: -1 

J V(x2 - 1)dx = - J V(u 2 - 1)du 

where u;;::: 1. 
Weshallreturn to this point once we have determined the integral in the 

case x ;;::: 1. 
Of course it is always possible that you will think of a totally different 

approach which is nevertheless correct. The testwill be whether or not you 
come up with the correct answer eventually. 

Now return to f V(1 - x2) dx, substitute x = sin t, simplify and take 
another step. 

When x = sin t we have dx = cos t dt and V(1- x2) = cos t. Once more we 
.____ _ __. note that if we take t e ( -rr,/2, 1t/Z) then every x e ( -1, 1) is attained. Also 

then cos t is positive, and so no modulus sign is needed when the value of 
the square root is calculated. We obtain 
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J V (1 - x 2) dx = J cos2 t dt 

If you managed that then think how you are going to resolve this integral. 
When you have decided, try it, then move to step 6 and see if all is weil. 

If this did not work out correctly, Iook carefully to see where you made a 
mistake. Then try putting x = cosh t in the integral f V(x 2 - 1) dx. When 
you are satisfied with your answer, take a further step. 

If we put x = cosh t then dx = sinh t dt and V (x 2 - 1) = sinh t. So 

J V(x 2 - 1)dx = J sinh2 t dt 

All's weil now! 
Now return to the determination of f V (1 - x 2) dx, and consider what to 

do about obtaining f cos2 t dt. As soon as you have decided, move to step 6 
to see if you are correct. lt helps to remember a simple trigonometrical 
identity! 

Wehave 

J cos2 t dt = ~ J (1 + cos 2t) dt 

= !_ + sin 2t + C 
2 4 

= 1 t + 1 sin t cos t + C 

Did you get that? lf so, substitute back in terms of x and then move on to 
step 8. 

lf something went wrong, try again this time with f sinh2 t dt in the 
determination of f V(x 2 - 1) dx. When you have sorted things out, move 
to step 7. 

Wehave 

J sinh2 t dt = ~ J ( cosh 2t - 1) dt 

sinh 2t t 
=----+ c 

4 2 
= ! sinh t cosh t - ! t + C 

lt's just a few trigonometrical identities and simple use of the substitution 
rule. 

rdil 

:?I 



L.__ _ __J 

464 INTEGRATION 2 

Now let's go back to the solution of H-'(1 - x2) dx. We bad x = sin t, and 
we found that 

J V(1- x2)dx = J cos2 t dt 

=!t+!sintcost+ C 

Substitute back in terms of x, and when you areready take a step. 

We have x = sin t where t e ( -rrJ2, Jt/2), and so t = sin-1 x and 

cos t = V(1 - sin2 t) = y'(1 - x2) 

Consequently 

J V(1 - x2) dx = ! sin- 1 x + ! x V(1 - x2) + C 

Ifyou managed that, then allweiland good. You may move on to the next 
section. 

If things went wrong, then try the twin brother of the one we have just 
looked at. Given that, when x = cosh t, 

J V(x 2 - 1) dx = J sinh2 t dt 

=!sinhtcosht-!t+ C 

substitute back to express the integral in terms of x. When you have done 
that, take the last step. 

L§Ll If x = cosh t then 

t = cosh-1 x = In [x + y'(x2 - 1)] 

Also sinh t = y'(x2 - 1), so that 

J y'(x2 - 1)dx = ~x V(x2 - 1) - ~ cosh-1 x + C 

Alternatively 

J 1 1 
y'(x2 - 1)dx = 2x y'(x2 - 1) - 2ln [x + V(x2 - 1)] + C 

Remernher that we have considered the case x ~ 1 only. You should use 
'------' the substitution rule to confirm that when x :s:; -1 

y'(x2 - 1)dx = -x y'(x2 - 1) --In [ -x - V(x2 - 1)] + C J 1 1 
2 2 
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So that in general, when x 2 ~ 1 

V(x 2 - 1) dx = -x V(x 2 - 1) - -In lx + V(x 2 - 1)1 + C J 1 1 
2 2 

Let's Iist the three standard forms discussed so far in this chapter: 

J V(l + x 2) dx = ~x V(l + x 2) + ~In [x + V(l + x1 )] + C 

J V(l- x2)dx = ~x V(I - x2) + ~ sin- 1 x + C 

J V(x2 - 1) dx = ~x V(x 2 - 1) -~In lx + V(x 2 - 1)1 + C 

Notice the common pattern. 

16.3 SPECIAL SUBSTITUTIONS 

There are a number of integrals which are best dealt with by the use of 
special substitutions. 

THE t SUBSTITUTION 

Consider the two integrals 

J dx 
4 + 3 COS X 

J sin x dx 
10 + COS X 

These can be resolved by making the Substitution t = tan (x/2), known 
universally as the t substitution. We shall need to remember the special 
formulas which are a consequence of this substitution. Here they are: 

. 2t 1 - t2 
Sill X=-- COSX = --

1 + t 2 1 + t 2 

2t 
tanx = --~ 

1 - t-

We must also remember of course that t = tan (x/2), and to express the 
result of the integration in terms of x. Surprisingly, some students 
remember the substitutions but forget what t is! 

The derivation of these special formulas involves the use of the half­
angle formulas of elementary trigonometry. See if you can derive the one 
for cos x yourself. Afterwards we shall see how to use these formulas to 
obtain integrals. 
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Here we go then! 

cos x = 2 cos2 (x/2) - 1 

= 2 - 1 
sec2 (x/2) 

= 2 - 1 
1 + tan2 (x/2) 

2 
=1+t2-1 

- 2 - (1 + t2) 

- 1 + t2 

1 - 12 

=1+P 

If you didn't manage that, then Iook at the working carefully. Observe the 
chain of thought: we express cos x in terms of cos2 (x/2), which itself can be 
expressed in terms of sec2 (x/2), which itself can be expressed in terms of 
tan2 (x/2). 

Now you try sin x and tan x. 

Now 

Also 

sin x = 2 sin (x/2) cos (x/2) 

= 2 tan (x/2) cos2 (x/2) 

_ 2 tan (x/2) 
- sec2 (x/2) 

_ 2 tan (x/2) 
- 1 + tan2 (x/2) 

21 
= 1 + 12 

2 tan (x/2) 
tan x = 1 - tan2 (x/2) 

21 
= 1- t2 

Alternatively we can obtain tan x by dividing sin x by cos x; at any rate we 
have a useful check that all is weil. 

Lastly obtain the Substitution which enables us to put dx in terms of dl. 
Don't move on until you have made an attempt! 
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Here is the correct working. t = tan (x/2), and so differentiating with 
respect to x using the chain rule: 

dt 1 
- = -sec2 (x/2) 
dx 2 

1 
= 2[1 + tan2(x/2)] 

1 + t 2 
=--

2 

dx 2 
dt = 1 + t2 

That wasn't too bad, was it? Let's hope you didn't forget the 1/2 when you 
applied the chain rule. 

Weshall now concern ourselves with the mechanics of the t substitution. 
When do we use it, and how does it work? 
If the integrand 
l contains circular functions only 
2 is free of powers or roots 
3 is difficult to resolve by other means 
then the t substitution may be of use. 

The t substitution converts a trigonometrical integrand into an algebraic 
integrand consisting of a rational function. Unfortunately the process can 
be tedious because it is often necessary to use partial fractions to complete 
the integration. However, the good thing about integralsoftbis kindisthat 
they are not inherently difficult. One thing, of course: we must remernher 
to substitute back to eliminate t finally. 

Weil now, let's have a go at one. Let us Iook at the first of the two 
integrals introduced at the beginning of this section, namely 

f4+~:osx 
You make the Substitutions and see what you get. 

Wehave 

3(1 - t 2) 
4+3cosx=4+ 1 + 12 

- 4(1 + t2) + 3(1 - t2) 

- 1 + t2 

7 + t2 

= 1 + t2 
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So we have 

So that 

f __ d_x __ = ~ tan_ 1 [tan(x/2)] + C 
4 + 3 cos X V7 V7 

Not very pretty, is it? However, we were lucky! We didn't need to use 
partial fractions. 

Now you try the second integral, namely 

f sin x dx 

10 + COS X 

and don't forget your work on partial fractions. Only when you have 
completed it should you move on and see if you are correct. 

Here we go then: 

So 

Now 

So 

1 - t2 

10 + cosx = 10 + -1--2 + t 

10(1 + t 2) + 1 - t2 

1 + t 2 

11 + 9t2 

- 1 + t 2 

4t = (A + Bt)(1 + t2) + (C + Dt)(ll + 9P) 
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First, t = 0 gives 0 = A + 11C. The coefficient of t 2 gives 0 = A + 9C. 
Therefore A = 0 and C = 0. The coefficient oft gives 4 = B + llD. The 
coefficient of t3 gives 0 = B + 9D. Consequently D = 2 and B = -18. You 
should check that this works by recombining the partial fractions into a 
rational expression. 

So we have 

~ -1& u 
---=-------:=- = + --
(11+9t2)(1+t2) 11+9t2 1+t2 

You could actually have done this by the cover-up method hy replacing t2 

by u and ignoring the numerator initially. So we now have 

J sin x dx J 4t dt 
10+cosx- (11+9t2)(1+t2) 

= J -18t dt + J 2t dt 
11 + 9t2 1 + t2 

= -In (11 + 9t2) + In (1 + t 2) + In k 

=In k [ 1 + t2 ] 

11 + 9t2 

k [ 1 + tan2(x/2) ] -In 
- 11 + 9 tan2(x/2) 

This simplifies even more. Can you sort it out? 

Here is the working: 

f sin x dx _ In k [ sec2(x/2) ] 
10 + cos x - 11 + 9 tan2 (x/2) 

=In k [ 1 ] 
11 cos2 (x/2) + 9 sin2(x/2) 

=In k [ 1 ] 
2 cos2(x/2) + 9 

=In k [ 1 ] 
COS X + 10 

= -In (cos x + 10) + C 

Now this is rather strange, isn't it? All that work: surely we could have 
done this quicker! 

Could we? Yes, of course we could. We should have integrated by sight! 
Apart from a constant factor, the numerator of the integrand is the deriva­
tive of the denominator. The Iesson tobe learnt is quite plain: always Iook 
before you leap! 
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If you managed to spot this on your own, award yourself a special bonus. 
You can feel proud of yourself. If you didn't spot it, don't be alarmed; you 
were led into the Ionger method deliberately in order to make a point. 

THE s SUBSTITUTION 

If the integrand contains squares of circular functions then another sub­
stitution, which weshall call the s substitution, can be of use. As an example 
we shall consider the integral 

I 9 sin2 x ~x 4 cos2 x 

The substitution iss = tan x. Do not confuse this with the t substitution; 
here we do not have the half-angle. 

We obtain at once the corresponding special formulas. First, 

so that 

Also 

ds - = sec2 x = 1 + tan2 x = 1 + s2 
dx 

dx 1 

ds 1 + s2 

1 1 
cos2 x = -- = --

sec2 x 1 + s2 

sin2 x = 1 - cos2 x 

1 1 s2 

= 1 - sec2 x = 1 - 1 + s2 = 1 + s2 

You do not need to remernher these formulas because you can, if you 
wish, obtain them directly using a right-angled triangle (Fig. 16.1). 

Fig. 16.1 
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Now you try the Substitutions on the integral which we have taken as an 
example. 

Here goes then. When s = tan x, 

5 4 + 9s 2 
9 sin2 x + 4 cos2 x = 9 - 5 cos2 x = 9 - -- = --~ 

1 + s2 1 + s2 

So 

J dx J (1 + s2 ) ds 
9 sin2 x + 4 cos2 x - ( 4 + 9s2) ( 1 + s2 ) 

J ds 1 J ds 
= (4 + 9s 2) = 4 1 + (3s/2)2 

= !~tan- 1 ( 3s) + C 
43 2 

1 _1 (3 tan x) = 6 tan 2 + C 

We could have done this more quickly by dividing numerator and denomi­
nator by cos2 x at the outset. 

If you didn't get it right, then here is another integral to determine: 

J tan x dx 
5 sin2 x - 3 cos2 x 

If you ~ere all right, then read through the working just to check there are 
no surprises. 

When s = tan x it follows that 

So 

J tan x dx J (1 + s2) s ds 
5 sin2 x - 3 cos2 x = (5s 2 - 3) (1 + s 2) 

J s ds 1 , 
= (5sz - 3) = 10 In ISs- - 31 + C 

1 
= 10 In 15 tan2 x - 31 + C 

As in the previous example, we can reduce the integral a little more quickly 
if we divide numerator and denominator by cos2 x first. 
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GUIDELINES FOR THE t AND s SUBSTITUTIONS 

Wehave the following guidelines for these special Substitutions. However, 
they should only be used if it is not possible to perform the integration by 
more direct means. 
1 If the integrand contains circular functions without powers, consider 

putting t = tan (x/2). 
2 If the integrand contains squares of circular functions, consider putting 

s = tan x. 

16.4 INTEGRATION USING STANDARD FORMS 

Another technique of indefinite integration which we shall discuss briefty is 
the use of standard forms. We should always bear in mind that we already 
know the following standard forms: 

f dx 
1 --2 = tan - 1 x + C 

1 +X 

f dx 1 11+xl 2 --2 =-ln -- +C 
1-x 2 1-x 

f dx . -1 C 
3 V(1-x2)=sm x+ 

4 J dx 2 = sinh - 1 x + C 
V(1 + x ) = In [x + V(1 + x 2)] + C 

J dx 
5 2 = cosh- 1 lxl + C 

V(x - 1) = In lx + V(x 2 - 1)1 + C 

6 J V(x 2 - 1) dx = {xV(x2 - 1) - In lx + V(x 2 - 1)j}/2 + C 

7 J V(x2 + 1) dx = {xV(x 2 + 1) + In [x + V(x 2 + 1)]}/2 + C 

8 J V(l - x2) dx = [xV(l - x2) + sin- 1 x)/2 + C 

Wehave derived most of these in the course of our work, but there remain 
two which we have not. Before going any further, and by way of revision, 
you should tackle them. Do you know which ones they are? They are 
numbers 2 and 5. 

Consequently if the integrand is of the form 1/Q, 11V Q or V Q, where Q is 
a quadratic, then we can always determine the integral by a routine pro­
cedure. All we need do is remember the procedure for 'completing the 
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square'. That is, given a quadratic of the form x 2 + ax + b we must express 
it in the form (x + h)2 ± k2• 

Do you remember how to do this? lt is simplicity itself! We take h as half 
the coefficient of x, calculate (x + h f and then add or subtract a positive 
number k 2 so that the constant agrees with b. In algebraic terms we obtain 

(x + ~a f + b - !a2 

which Iooks much more complicated than it is. 
Hereisa numerical example. 

D Express x2 - 4x + 9 in the form (x + h)2 ± e. 
The coefficient of x is -4, so h is -2. Now (x - 2)2 = x2 - 4x + 4, so 

that 

x2 - 4x + 9 = (x - 2)2 + 5 

So here k2 = 5. • 
How does this help with integration? Weil, when we see an integrand 
which is of the form 1/Q, l!V Q or V Q, where Q is a quadratic, we complete 
the square and substitute X= x + h. The integral will thereby be reduced 
to one of the standard forms. Be careful, however. Any stray x terms or 
other functions in the integrand change its nature completely and the 
method cannot be used. 

So here is an example: 

J dx 
V(x2 + 6x + 18) 

Completing the square: 

x2 + 6x + 18 = (x + 3)2 + 9 

So the integral becomes 

J V[(x + ~~2 + 32] 

and the substitution X = x + 3 reduces it to a standard form. Now you 
complete this part of the calculation, and you will get the idea. 

Wehave 

J dX 1J dX 
V(X2 + 32) = 3 V[(X/3)2 + 1] 

J d(X/3) 
= V[l + (X/3)2] 

= In { (X/3) + V[l + (X/3)2]} + C 
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= In { (x + 3)/3 + V[l + [(x + 3)/3f]} + C 

= In k [x + 3 + V(x2 + 6x + 18)] 

Here we have absorbed some stray constants. 
Now you try this one completely on your own: 

f V(15 -d~- x2) 

Don't worry if things get in a mess. Help is at band! 

We complete the square but have to change the sign. So 

x2 + 2x - 15 = (x + 1)2 - 16 
15 - 2x - x2 = 16 - (x + 1)2 

The integral is therefore 

Putting X = x + 1 we obtain 

J dX 1 J dX 
V(16 - X 2) = 4 V[1 - (X/4)2] 

J d(X/4) 
= V[l - (X/4)2] 

= sin- 1(X/4) + C = sin- 1[(x + 1)/4] + C 

So there it is. 

16.5 REDUCTION FORMULA 

Sometimes it is possible to avoid unnecessary work when obtaining an 
integral by using a reduction formula. This is best illustrated using an 
example. 

D Obtain 

J tan7 x dx 

The idea is to deal with a whole family of integrals at once. Suppose 

In = J tann X dx 
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so that I1 = f tan7 x dx is the required integral. We try to obtain an equa­
tion which expresses In in terms of the sameintegral for smaller values of n. 
Wehave here 

In = J tann x dx = J tann-2x tan2 x dx 

= J tann-2 x(sec2 x - 1)dx 

= J tann-2 x sec2 x dx - J tann-2 x dx 

= J tann-2 x sec2 x dx - ln-2 

Now we can write down the integral immediately- can 't we? You do it and 
then move on! 

Wehave 

So that 

tann-l X 
In= 1 - ln-2 

n-

6 
1 _tanx I 
7--6--5 

4 
I-tanx I s--4-- 3 

2 
I _tanx 1 3--2-- 1 

Furthermore, we know that 

when n > 1 

putting n = 7 

putting n = 5 

putting n = 3 

/ 1 = J tan x dx = In lsec xl + constant 

So substituting we obtain 

1 1 1 
I, = 6 tan6 x - 4 tan4 x + 2 tan2 x - In !sec x I + C • 

By producing a reduction formula we have avoided repeating the same stage 
three times. Usually integration by parts is used in forming a reduction 
formula. However, do not rush into a reduction formula unnecessarily; it is 
often possible to make a simple substitution to resolve a difficult integral. 
Now here is one for you to try. 
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0 Obtain, by first deducing a reduction formula, 

J x4 ex dx 

As soon as you have obtained the reduction formula, read on and see if 
you have it correct. 

We put 

and integrate by parts: 

So 

n any integer 

Good! Now put in values of n so that we reduce things down to a very 
simple integral, and finish it off. 

Putting n = 4, 3, 2, 1, 0 in turn we obtain: 

14 = x4 ex- 4h 
/3 = x3 ex - 3/z 
lz = x2 ex - 2ft 
lt = x1 ex - llo 

Now 

/ 0 = J ex dx = ex + constant 

Finally we have 

14 = x4 ex - 4x3 ex + 12x2 ex - 24x ex + 24 ex + c 
= (x4 - 4x3 + 12x2 - 24x + 24)ex + C • 

If you have followed everything so far in these integration chapters you 
should be able to make progress with all the usual integrals. However, it is 
important to know that not every integral can be obtained analytically. 
Sometimes two integrals may Iook superficially similar but are in fact 
totally different. To illustrate the point, f y'(tanx)dx and f y'(sinx)dx Iook 
alike, but the second cannot be obtained analytically using elementary 
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functions whereas the first can. However, the integral of Vtan x, with 
respect to x, is a very hard nut to crack, and you would be best advised to 
leave it weil alone! You have been warned. 

________ 16.6 Workshop _______ _ 

Now it's time to take steps. We are going to approach things in the same 
way as we did in the previous chapter. We are going to Iook at some inte­
grals and decide the best approach. The integrals also form the assignment 
for this chapter. We are not at this stage going to obtain the integrals. 
Experience shows that the key to integration is not the ability to deal with 
technical detail but the ability to stand back and plan ahead. So out with 
thc magnifying glass and on with the deerstalker: 

We are going to inspect some more integrals. Examine each carefully and 
decide how you would proceed. You may like to make a few jottings to ex­
plore your ideas, but you should not at this stage complete the integration. 

C> Exercise Inspect these integrals: 

Jcosx+1d 
1 . 1 X 

sm x-
2 J esinx COS X dx 

When you have decided, take the next step. 

~] 

I At first sight you may think of going for the t Substitution, but this may .___ _ ___, 
not be best. The integrand simplifies into a sum of standard forms if we 
multiply numerator and denominator by sin x + 1. 

2 Do not go for integration by parts; thingswill only get worse. In fact the 
integral can be obtained by sight, can it not (u = sin x)? 

3 This is a clear case for using partial fractions. The derivative of the 
denominator is not the numerator, and there is no obvious substitution 
to employ. 

If all your answers agree with these, then move on to step 4. If some of 
your answers Iook as if they will not resolve the integral, then try these next 
three. 

C> Exercise Inspect these integrals: 

4 J COS X dx 5 fesin"x sin 2.x dx 
sin2 x - 1 

When you are ready, read on! 
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4 If we simplify the integrand we obtain a standard form straight away. 
Alternatively we can put u = sin x and use a standard form. We could 
even use partial fractions following this substitution, but this is then 
rather long. 

5 This is the sort of situation where it helps if we know our trigonometrical 
identities and can use them smoothly. When u = sin2 x we obtain du = 
2 sin x cos x dx = sin 2x dx. Therefore this substitution resolves the 
integral. 

6 There is obviously a method using partial fractions available to us. 
However, it is quite unnecessary to go to these lengths since, apart from 
a constant factor, the numerator is the derivative of the denominator. 

Good! Now let's Iook at some more. 

4Ll Exercise Inspect these integrals: 

7 J sin5 x dx 8 J cos4 x dx 9 J cos 2x sin x dx 

As soon as you you have decided on a suitable method, Iook at the next step 
to see if you are right. 

7 Odd powers of sine or cosine should cause us no difficulty. Here we 
keep one sine and convert the even power into cosines using cos2 x + 
sin2 x = 1. Finally we use the Substitution rule, putting u = cos x. 

8 Even powers of sine or cosine must be converted into multiple angles. 
The key formulas to use here are cos2 x = (1 + cos 2x)/2 and sin2 x = 
(1 - cos 2x)/2. In this example we can convert the integrand into one 
containing a quadratic term in cos 2x, which in turn, using the double­
angle formulas again, can be converted into terms of cos 4x. Allterms 
are then integrable by sight. 

9 There are several approaches here which work. For example, we could 
write cos 2x = 2 cos2 x - 1 and then integrate term by term. Alterna­
tively we could use the formula 

2 sin A cos B = sin (A + B) + sin (A - B) 

If you are all right with these, then move ahead to step 8. If not, Iook 
carefully at the integrands we have been considering and by making rough 
notes convince yourself that the approaches which have been suggested do 
in fact work. Then examine the next three integrals. 

lßLl Exercise lnspect these integrals: 
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r 
10 J sec6 x dx 11 J sec5 x dx 12 J sec5 x tan x dx 

When you have decided what to do with these, take another step. 

10 If we were to put u = tan x we should obtain du = sec2 x dx. So if we 
split sec6 x into a product of sec4 x with sec2 x, it remains only to express .__ _ ___. 
sec4 x in terms of tan x. The identity sec2 x = 1 + tan2 x is all we need. 

11 Although superficially this may seem the same as the previous integral, 
in fact the odd power makes all the difference. Herewe need tothink in 
terms of integration by parts, writing the integrand as sec3 x sec2 x. 

12 This may Iook more involved than the others, but in reality it is much 
simpler. If u = sec x then du = sec x tan x dx, and the necessary tan x 
term is obligingly part of the integrand. A simple application of the 
substitution rule enables us to complete it. 

Now try the last two exotic creatures. 

[> Exercise Inspect these integrals: 

14 J (1 + sin x)7 cos x dx 

How will you proceed? Make an attempt at 13 and take another of the 
steps. 

13 You could multiply out and integrate term by term- all24 terms! You 

2J 

may wonder if there is a better method. Yes, there is: the integral can .__ _ ___. 
be found by sight (u = x + x- 1). 

If you are right then move on to the text following. Otherwise, try 14 and 
take the last step. 

14 This is much the same as the previous integral. Of course it is possible 
to expand out the bracket so that the integrand snakes away all over the .___ _ ___. 
page, but we should never overlook a very simple Substitution. Think 
carefully about which Substitution to make! 

That's it then. With judicious use of the rules of integration you should 
now be able to tackle any integral you are given. The key to success is 
experience, and this can only be obtained through practice. Therefore 
tackle as many integrals as possible; then it will have to be a very excep­
tional integral which catches you out! 
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We now consider two practical prohlems. One of the tasks of the next 
chapter will he to show how useful integration is when it comes to solving 
prohlems which arise in engineering and science. 

--------16.7 Practical _______ _ 

PARTICLE ATTRACTION 

A particle is attracted towards a fixed point 0 hy a force inversely pro­
portional to the square of its distance from 0 and directly proportional to 
its mass m. If it starts from rest at a distance a from 0, its distance x from 0 
at time t satisfies the equation 

dx = ±V(2k) (! - !)112 
dt x a 

where k is a positive constant. Show that the time taken to reach 0 is 

a312rt/2 V (2k) 

As a first stage, integrate the differential equation with respect to t hy 
writing it as two integrals. 

1 Wehave 

± V(2k) f dt = f V[(llx)d~ (1/a)] 

Now we have a difficulty. How are we to resolve the integral on the 
right? Remernher the guidelines: remove denominators, resolve roots. 
Remernher also sec2 e - 1 = tan2 e. Try something, then move on. 

2 Weshall put 1/x = (1/a) sec2 e, so that X = a cos2 e. Initially e = 0 and 
X = a, and as e increases, X decreases. Wehave 

so that 

dx/de = - 2a cos e sin e 

±V(Zk) t = f -2a cos e sin e de 
V(lla) tan e 

Now see if you can resolve this integral. 

3 We have, using elementary trigonometry, 



±V(2k)t= -2aVa Icos2 8d8 

= -a va I 2 cos2 8 d8 
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= -a Va I (cos 28 + 1) d8 

= -a va G sin 28 + 8) + c 

where C is the arbitrary constant. 
Now determine C and complete the solution. 

4 When t = 0, X= a and so 8 = 0. Consequently c = 0. 
As x ~ 0, cos 8 ~ 0, and 8 ~ rt/2. Therefore if T is the time required 

to reach 0 we have 

±V(2k) T = -a va(o + %) 
Now T > 0, so 

a Jl(a) Jt na312 

T = V(2k) = 2V(2k) 

BALL BEARING MOTION 

A ball bearing of mass m is projected vertically upwards with speed u in a 
liquid which offers resistance of magnitude mkv, where v is the speed of 
the bearing and k is a constant. Given that 

d2x dx 
-m- = mg + mk-

dt2 dt 

where x is the height, t is the time and g is the acceleration due to gravity, 
show that the greatest height attained is 

~ - .K. in ( 1 + ku) 
k k2 g 

Determine also the maximum speed the ball bearing will attain when 
falling through the liquid. 

The equation may be integrated with respect to t to express dxldt in 
terms of x and t. At the maximum height, dxldt = 0; it will therefore be 
useful if we can obtain the time T to reach the maximum height. If we 
substitute v = dx!dt we can calculate the time t in terms of v. Make this 
substitution, then Iook ahead for confirmation. 
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1 If we put v = dxldt the equation becomes 

-dvldt = g + kv 

Therefore 

J dv Jd 
g+kv=- t 

So 

1 k in (g + kv) = - t + C 

where C is the arbitrary constant. 
Next determine C and the time Ttaken for the ball bearing to reach its 

greatest height. 

2 When t = 0, v = u and so 

1 k in (g + ku) = C 

Therefore 

1 1 k In (g + kv) = -t + k In (g + ku) 

kt = in (g + ku) 
g + kv 

The maximum height is when v = 0, so we have 

kT = in ( g : ku) 

=in ( 1 + ~u) 
So 

Now that we know how lang it takes to reach its maximum height, we 
can return to the differential equation to obtain the greatest height. See 
if you can do it; you must integrate term by term. Do this and then move 
on. 



3 Dividing out m we have 

d2x dx 
--=g+k-

dt2 dt 

So that, integrating with respect to t, 

dx - dt = gt + kx + A 
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where A is the arbitrary constant. Now when t = 0, x = 0 and dxldt = u 
so that A = -u. So 

dx -- = gt + ku- u 
dt 

At the maximum height dxldt = 0 and we know T. Try to finish the 
solution. 

4 We obtain 

gT- u + kX = 0 

where X is the greatest height. Therefore 

1 
X= k(u- gT) 

= ~ [ u - ~ In ( 1 + ~)] 
= !!. - .K. In ( 1 + ku) 

k k 2 g 

Lastly we must obtain the terminal velocity: that is, the maximum speed 
which the ball bearing will attain when falling freely through the liquid. 

The key thing to realize is that at the maximum speed there ts no 
acceleration and so d2xldt2 = 0. Therefore 

So 

dx _ ~ 
dt k 

The negative sign indicates that the ball bearing is falling. 
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SUMMARY 

We have seen how to tackle integrals using a number of techniques. 
0 Trigonometrical and algebraic substitutions. Remember: 

a remove denominators 
b resolve roots. 

0 Reduction of the integral to a sum of standard forms. 
0 Use of the special Substitutions 

t = tan x/2 

and 

s = tan x 

0 Resolution of a quadratic Q where the integral is one of three types: 

liQ, VVQ, VQ 

0 Use of reduction formulas. 

EXERCISES 

1 Simplify, and thereby resolve, each of the following: 

a Jexp2x + 1 dx 
expx + 1 

Jsin2x + 2cosxd 
b . X 

1 + smx 

c J ln(xexpx)dx 

d I V(l + x2) dx 
(1 + x)2 - 2x 

2 Use appropriate substitutions, where necessary, to obtain 

a I xtan(1 + x2)dx 

b Ixsin V(l + x2) dx 
V(l + x2) 

J sin2x d 
c (1+sin2 x) x 

d I sin3xcos4xdx 
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3 Obtain each of the following integrals by reducing it to a sum of standard 
forms: 

f sin2x d 
a 2(1 + sinx) x 

b J V~1 -_ ~2) dx 

c f {V(xz + 1) ~ V(xz - 1)} 

f 2x2 dx 
d V(l + xz) - V(l - xz) 

4 Use the t Substitution to obtain the following integrals: 

a f (4- ~~anx) 
b f dx 

5cosx- 12sinx 
5 Use a reduction formula to obtain each of the following integrals: 

a J cosh7 xdx 

b J x5 cosxdx 

ASSIGNMENT 

Obtain each of the following integrals. If you are stuck at any stage, hints 
are given in section 16.6. 

2 esin X cos X dx 3 ---1 f CO. S X + 1 dx f f X dx 
SIO X - 1 x 3 - 1 

4 f COS X d f · 2 f X dx X 5 esm X sin 2x dx 6 ---
sin2 x - 1 x2 - 1 

7 J sin5 x dx 8 J cos4 x dx 9 J cos 2x sin x dx 

10 J sec6 x dx 11 J sec5 x dx 12 J sec5 x tan x dx 

13 J~(x + ~) 11 
(x- ~)dx 14 J (1 + sin xf cos x dx 
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FURTHER EXERCISES 

1 Obtain each of the following integrals: 

(a) J cosec3 x dx 

(b) J tanh3 x dx 

J cte 
( c) 3 cos e + 4 sin e 

2 Obtain each of the following integrals: 

(a) J :2 ~ ( 1 - D dx 

(b) J tan2 (8/2) tan e de 

(c) J 1 + sin e ex e de 
1+cose P 

3 Determine: 

J 1 - tan2 x d 
(a) 1 + tan x + tan2 x x 

(b) J 5 + 1~8tan e 

J x+2 
(c) (x2 + 2x + 2)2 dx 

4 Obtain each of the following: 

(a) f cos x d~ sin x 

(b) f sin3 x ~\ sin x 

(c) J cos 3x cos 5x dx 

5 If I,. = f sec" x dx, show that for n ~ 2 

(n - 1)I,. = sec"-2 X tan X + (n - 2)In-2 

6 If I,. = f tan" x dx, show that for n ~ 2 

I 1 n-1 I 
n = --1 tan X - n-2 

n-
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7 If 111 = f xm(ln x)" dx, show that if n E N 

(m + 1)/11 = xm+l (in x)" - nln-1 

8 A particle moves on a curve defined parametrically in the polar co­
ordinate system by r = sec u and 8 = tan u - u. Show that if the intrinsic 
coordinates s and 'tjJ are each measured from the line 8 = 0 then 

(a) (~~r = (~~r + r2 

dr 
(b) d8 = r cot ( 'tjJ - e) 

Hence or otherwise show that the particle moves on the spiral s = 'tjJ 2/2. 

9 Obtain each of the following integrals: 

a I t sin 2t dt 

b 

c 

I(2t + 3)/W + 3t + 1) dt 

I tv'2t + 1 dt 

10 Determine each of the following integrals: 

a I0"
12 1/(5 + 4cosx) dx 

b 

c 

Io" 12 sin x / ( 5 + 4 cos x) dx 

Io" 12 cos x / ( 5 + 4 cos x) dx 

11 If In = J0"
12 sinn x dx show that 

n-1 
In=-- ln-2 

n 

Hence or otherwise evaluate 
a I0"

12 sin7 x dx 

b I;12 sin5 x cos2 x dx 

(n ~ 2) 
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ln Chapters 15 and 16, we were learning the techniques of integra­
tion. This chapter will be concerned with applications. 

After studying this chapter you should be able to 
D Evaluate definite integrals; 
D Examine simple improper integrals for convergence; 
D Apply methods of integration to determine volumes of revolution, 

centres of mass, moments of inertia and other quantities. 
At the end of this chapter we Iook at a practical problern concerning 
the radius of gyration of a body. 

17.1 DEFINITE INTEGRA Tl ON 

Suppose that f(x) is integrable with respect to x for all x E [a, b] where a 
and bare real numbers, a < b. In other words this means that we can find 

J f(x) dx = F(x) + C 

whenever a ~ x ~ b. In such circumstances we define the definite integral 
of f (x) with respect to x, with upper Iimit of integration b and lower Iimit of 
integration a, by 

J: f(x) dx = [F(x)]~ = F(b) - F(a) 

So the procedure for finding a definite integral is to first find the indefinite 
integral, ignoring the arbitrary constant, and then subtract its value at the 
lower Iimit of integration from its value at the upper Iimit of integration. 

The only point to watch is that if we use a substitution when we are 
performing the indefinite integral we must take care either to change the 
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Iimits of integration or to substitute back in terms of the original variable 
before evaluating the definite integral. 

0 Evaluate 

J: (1 + xi dx 

Wehave 

(' (1 + x)2 dx = [j{1 + x)3JA 
Jo 

= j[(l + 1)3 - (1 + 0)3] = j(8 - 1) = 7/3 

Alternatively, if we make a Substitution u = 1 + x then we have u = 2 when 
x = 1 and u = 1 when x = 0. So 

(' (1 + xf dx = Jz u2 dt = [ju3]i = 7/3 
Jo 1 • 

Weshallsee later that a physical interpretation can be given forthedefinite 
integral. 

17.2 IMPROPER INTEGRALS 

Suppose that f (x) is integrable with respect to x for all x e ( a, b), where a 
and bare real numbers, a < b. In other words, this means that we can find 

J f(x) dx = F(x) + C 

whenever a < x < b. 
It may be that f(x) is not defined when x = a or x = b. We extend the 

definition of the definite integral under such circumstances by 

J~ f(x) dx = x~T- F(x) - x~~+ F(x) 

provided the Iimits exist. 
Remember that x ~ b- means that x approaches b through numbers 

less than b, whereas x ~ a+ means that x approaches a through numbers 
greater than a. Y ou might like to imagine yourself imprisoned by the interval 
(a, b); then the left boundary is a and the right boundary is b, and all values 
in the interval are between these two extremes. 

Of course if the integral exists throughout a closed interval [a, b] it is not 
neccssary to take Iimits. Equally if the integral of f(x) with respect to x 
exists for a::::.:: x < b then there is no need to take Iimits at a. We should then 
have 
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J: f(x) dx = x~T- F(x) - F(a) 

lt is possible to use these ideas to extend the definition further so that 
infinite integrals may be considered. An infinite integral occurs when 
either the upper Iimit of integration is oo or the lower Iimit of integration is 
-oo, or both. For example, if the integral of f(x) with respect to x exists 
throughout the interval [0, oo) then 

{"" f(x) dx = lim F(x) - F(O) J 0 x--.oo 

provided the Iimit exists. If the Iimit exists the integral is said to converge; if 
it does not then it is said to diverge. 

D Evaluate each of the following integrals, if the integrals exist: 

(1 x- 1 dx 
Jo 

For the first integral we have 

J e-r dt = -e-r + C 

So that 

L"" e-t dt = [ -e-1]0' 

= lim ( -e-1) - ( -e0 ) 
(-->00 

=0-(-1)=1 

In the second integral the integrand is not defined when x = 0, and since 
x > 0 throughout the interval we have 

J x -i dx = In x + C 

So that 

(1 x -I dx = In 1 - lim (In x) J () X-->IJ+ 

However, a graph of the logarithmic function shows that In x - - oo as 
x - 0+, so that the Iimit does not exist. Consequently the im proper 
integral does not exist. • 
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17.3 AREA UNDER THE CURVE 

At this stage an important question has to be considered. How can we teil 
when f(x) is integrable with respect to x? We used the phrase 'f(x) is 
integrable with respect to x' in connection with the indefinite integral to 
mean that we could obtain a function Fsuch that F'(x) = f(x). However, 
this idea is too narrow when we come to the definite integral and we shall 
need to modify it. In particular weshall show that if a functionf:[a, b]- IR 
is continuous then it has a definite integral over the interval. 

To do this we show that we can physically identify the definite integral of 
a positive continuous function between the Iimits a and b with the area A of 
the region enclosed by the x-axis, the curve y = f(x) and the linesx = a and 
X= b. 

Suppose that the functionf:[a, b]- IRis continuous, and suppose A (t) is 
the area enclosed by the x-axis, the curve y = f(x) and the lines x = a and 
x = t, so that A(a) = 0 and A(b) = A (Fig. 17.1). If t changes by a small 
amount öt then the corresponding change in the area of the shaded region 
is A(t + öt)- A(t). Furthermore, suppose thatf*(t) is the maximum value 
of f(x) when x E [t, t + öt], and that f*(t) is the minimum value of f(x) 
when x E [t, t + öt]. Then 

f*(t) öt :s;; A(t + öt) - A(t) :s;; f*(t) öt 

sincef*(t) öt underestimates the value of A(t + öt)- A(t) whereasf"'(t) öt 
overestimates the value of A(t + öt) - A(t). Now if öt =I= 0 we have 

f ( ) A (t + öt) - A (t) f*( ) 
* t :s;; :s;; t 
. öt 

As öt- 0 we notice that both f*(t)- f(t) and f*(t)- f(t). Also 

y-axis 

y .. f(x) 

0 x-axis 

Fig. 17.1 The area und er a curve. 
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A(t + öt) - A(t) dA 
~-

öt dt 

Therefore 

dA 
f(t) ~ dt ~ f(t) 

so that dA!dt = f(t). Consequently 

J f(t) dt = A(t) + C 

Now A(a) = 0 and A(b) = A, so that 

A = A(b) - A(a) = J: f(x) dx 

This was what we wanted to show. 
lt should be stressed that in this argument we have tacitly used a number 

of properties of continuous functions without justification. 

We can use the idea of adefinite integral of a continuous function having a 
physical representation as the area 'under a curve' as a springboard to 
apply the calculus to a wide variety of different situations. 

Suppose we Iook again at the area under the curve. We can imagine the 
interval [a, b] divided up into n subintervals each of equal length öx. A 
typical subinterval can be represented as [x,x + öx] (Fig. 17.2). Each sub­
interval corresponds to a strip of area öA which we can approximate by 
f(x) öx. This is the area of a reetangular region, and may be either an 
overestimate or an underestimate for the true area. However, f(x) öx will 

y-axis 

0 • x x+6x b x-axis 

Fig. 17.2 Subdivision into strips. 
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approximate the true area when öx is very small. We may represent the 
total area in an informal way by 

x=b 

A = L öA = L f(x) Öx 
x=a 

where the summation sign L indicates that we are adding up the corre­
sponding elements. In the second sum, a and b show that we are summing 
these elements from x = a until x = b; in other words, over the interval 
(a, b]. 

Now we already know what happens as öx ~ 0 because we have already 
shown that 

A = J~ f(x) dx 

So a remarkable transformation occurs. As öx ~ 0, the approximation 
becomes equality, the ö becomes d and the ugly duckling of a sigma sign 
becomes a beautiful swan of an integral sign! 

We use this single example to infer a generat method which weshall use 
to apply the calculus to a variety of problems. To fix the language for 
future use weshall refer to the idea of partitioning the interval (a, b] into 
subintervals, and the corresponding portion of area öA which results will 
be termed an element of area. There are two conditions which are satisfied 
in this example and which must be satisfied in general: 
1 The element which we choose and on which we base our approximation 

must be typical. That is, each element must be of this form and the 
approximation must be valid for each one. 

2 By decreasing öx and so increasing the number of elements we must be 
certain that we could make the approximation arbitrarily close to the 
true result. 

If and only if these two conditions are satisfied can we pronounce the magic 
words 'as öx tends to zero the approximation becomes good' and then carry 
out the following replacements: 

ö~d =~ = 

Let's try to visualize this in a more practical way. 

17.4 VOLUME OF REVOLUTION 

There are many ways of obtaining the volume of an egg, but one of them is 
closely related to the idea of integration and so we shall discuss it briefly. 
We can boil it, shell it and slice it up with an egg slicer. The egg will then 
have been converted into several small disc-Iike portions (Fig. 17 .3). Then 
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0 
A slice of egg Egg slicer with sliced egg 

Fig. 17.3 

we can measure the radius and thickness of each portion and calculate 
approximately its volume. We can then add up all the volumes correspond­
ing to each of the slices and in that way obtain an approximation to the 
volume of the egg. 

Sameobservationsare worth making: 
1 The smaller the gaps between the wires of the egg slicer, the closer the 

sliceswill be to discs and so the better the approximation. 
2 If we choose a slice at random it is typical of the others; they can each be 

approximated by a disc. 
3 We could obtain an approximation as close as we desired to the true 

volume of the egg just by making the Subdivisions smaller and smaller. 
Let us now Iook at this problern more systematically. The egg can be 
regarded as a solid of revolution. That is, we may suppose the region 
surrounded by the curve y = f(x) ~ 0, the x-axis and the lines x = a and 
x = b has been rotated through 2:n: degrees about the x-axis. In this way the 
egg is obtained (Fig. 17.4). 

Now suppose we partition the interval [a, b] into equal parts each of 
width öx. A typical element of volume will be a disc-like shape with its 

y-axia 

0 x-axis 

Fig. 17.4 Generating a solid of revolution. 
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6X 

Fig. 17.5 A typical element. 

centre a distance x from the origin. The radiuswill be the height y = f(x) of 
the curve at x. So the volume of a typical element is approximately Jty 2 öx 
(Fig. 17.5). We may represent the sum of all the elements by writing 

x=b 

V = L ö V = L Jty2 öx 
x=a 

Now the two basic requirements are certainly satisfied and so we can 
pronounce the magic spell: 'as öx tends to zero the approximation becomes 
good'. Hey presto! We obtain 

V = J::: Jty2 dx 

V= J: Jty2 dx 

We should realize just how powerful this method is. Unfortunately it is 
easy to misuse it and thereby to obtain an incorrect result. For example, 
if we were to attempt to obtain the surface area of an egg by the same 
procedure we should still obtain discs as elements. lt might be tempting to 
approximate the curved surface area of each disc by 2Jty öx, since 2Jty is 
the perimeter and öx is the width of a typical disc. However, 

A * J::: 2Jty dx 

What has gone wrong? Can you see? 

The error here is that the element we have chosen does not typify the 
extreme case. For example, if y = f(x) is particularly steep then the width 
of each element does not relate to the surface area (Fig. 17 .6). Instead it is 
the length ös of the corresponding element of curve which is important. So, 
for a typical element, the curved surface area is approximately 2Jty ös. 
Hence the surface area required is 
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Fig. 17.6 An element. 

x=b 

A = L öA = L 23ty ös 
x=a 

A = J:~: 23ty ds 

We have a powerful method which can be used not only to calculate 
quantities which we already know about, but also to calculate quantities 
which may become of importance in the future and which have not even 
been considered at present. 

__________________ VVorkshop ________________ __ 

This chapter differs from the others in the book because there is no formal 
workshop; the workshop is dispersed among the text which follows. The 
reason for this is that we are about to derive a wide variety of formulas 
using, over and over again, the same basic principles of integral calculus. 
Therefore you can select for detailed study those which are particularly 
relevant to your branch of engineering. You will of course 'wish to use the 
others for practice and examples. In some ways it is like going on a 'field 
trip'! 

17.5 LENGTH OF A CURVE 

Webegin by developing the formula for the length s of a curve y = f(x) 
between the points where x = a and x = b (Fig. 17.7): 

S= 1+- dx fb [ (dy)2] 112 
a dx 
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y-axis 

y'"' f(x) 

0 , b x-axis 

Fig. 17.7 Subdivision of a curve. 

Suppose y = f(x) is defined for x E [a, b]. We wish to obtain the length of 
the curve over this interval. Dividing [a, b] into subintervals each of length 
öx corresponds to a subdivision of the curve into portions of length bs. 
However, not all the subdivisions of the curve will necessarily have the 
same length even if öx becomes small (Fig. 17 .8). We shall suppose that the 
curve is sufficiently smooth that when öx is small ös is given by the formula 

(ös)2 = (öx)2 + (öy)2 

and that this approximation becomes good as öx ~ 0. So 

and as öx ~ 0 

so that 

ds 
dx 

Fig. 17.8 Relating x, y and s. 
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assuming that s increases with x, so that dsldx ~ 0. Now we have 
x=b 

s =Lös 
x=a 

As öx- 0 the approximation becomes good, and so 

fx=b 

s = ds 
x=a 

fx=b ds 
= -dx 

x=a dx 

Consequently we achieve the required formula for the length of a curve: 

s= 1+- dx fb [ (dy)2] 112 
a dx 

We remark that we are now in a position to give a formula for the surface 
area A produced by revolution of the curve around the x-axis: 

A = 2n J: y [1 + (:~rr'2 
dx 

Now for an example. 

0 Obtain the length of the curve 

between x = 1 and x = 2. 
Try it yourself first. 

Wehave 

Therefore 

Consequently 

x2 1 
y =---In x 

2 4 

dy 1 
-=x--
dx 4x 

ds 1 
-=x+­
dx 4x 
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s = f (x + 4~) dx 

= [xz + ! In x]z 
2 4 1 

3 1 
=-+-ln2 

2 4 • 
Sometimes a curve is described parametrically in the form x = x(t), 
y = y(t). We shall show that the length of the curve between the points 
t = t 1 and t = t2 is given by 

where .i = x'(t) and y = y'(t). 
Why not try this? lt is not difficult. 

If we partition the interval [t 1 , t2 ] into equal parts each of length öt, this will 
produce corresponding elements öx and öy. Wehave 

(ös)2 = (öxf + (öy)2 

and as öt ~ 0 the approximation becomes good. Now 

So as öt~ 0 

Now assuming that s increases with t we have 

s = J1
=

11 ds 
t=t, 

= -dt J1= 1'ds 

/=/, dt 

= r, [ (~~r + (drrr12
dt 

Therefore the parametric formula for the length of a curve is 

s = f/2 V(.x2 + y2) dt 
I, 

Here now is a problern using this formula. 
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0 Obtain the length of the curve X = 8 + sin 8, y = 1 + cos 8 between 
8 = 0 and 8 = Jt. 

When you have done this, move forward for the solution. 

We need to convince ourselves that the curve doesn't do anything totally 
unexpected such as producing a figure of eight! One of the assumptions 
which wemadewas that, as the parameter increased, so too did the length 
of the curve. When 8 = 0 we have X = 0 and y = 2. Then as 8 increases 
from 0 to n we see that x increases from 0 to n and y decreases from 2 to 
0 (Fig. 17.9). As a matter of fact this is an interesting curve known as a 
cycloid. lt is the curve described by a point on the rim of a car tyre as it 
moves along the road. 

Now 

so that 

x'(8) = 1 + cos 8 
y'(8) = -sin 8 

x2 + y2 = (1 + cos 8)2 + (-sin 8)2 

= 1 + 2 cos 8 + cos2 8 + sin2 8 
= 1 + 2 cos 8 + 1 = 2(1 + cos 8) 

Now 1 + cos 8 = 2 cos2 (8/2), so that 

Finally 

y 

2 

0 

x2 + y 2 = 4 cos2 (8/2) 

s = J: V(x 2 + y 2)d8 

= Ln 2 cos (8/2) d8 

Fig. 17.9 A cycloid. 

X 
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Note that cos (8/2) is positive over the interval: 

s = [4 sin (8/2)]0 = 4 - 0 = 4 • 
17.6 CENTRES OF MASS 

Suppose we have n particles of mass m 1 , m 2 , ... , mn positioned at points 
(x 1,y"zt), ... , (x11 ,y11 ,Z11 ) respectively relative to a reetangular cartesian 
coordinate system Oxyz. The centre of mass is the point (:X,y, z) where 

II 

Mx= L m,x, 
r=l 

11 

My= L m,y, 
r=l 

11 

Mz = L m,z, 
r=l 

and 
II 

M = Lmr 
r=l 

In many situations the system of particles behaves as if the mass M is con­
centrated at the centre of mass. If all the particles have equal mass then we 
have 

1 11 

X=- LX, 
n r=l 

1 II 

y =- LY, 
n,=, 

1 II 

z =- L z, 
n r=l 

which is a purely geometrical property and is often called the centroid of 
the n points. We shall now use these concepts to obtain the position of 
centre of mass of a solid body and the position of a centroid of a uniform 
Iamina. 

D Determine the position of the centre of mass of a uniform solid hemi­
sphere of radius a. 

Try this if you like. 
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" ... ,. 

X .. Xil 

Fig. 17.10 Generating a hemisphere. 

We first need to know the positions of the centroids of some simple objects. 
By symmetry, the centre of mass of a uniform rod is at the centre and the 
centre of mass of a uniform discisalso at the centre. 

The hemisphere may be regarded as a solid of revolution obtained by 
rotating the portion of the circle x 2 + y2 = a2 , x ;;::: 0 about the x-axis (Fig. 
17.10). If we divide the interval [0, a) into elements of length öx we divide 
up the hemisphere into discs each of radius y and width öx (Fig. 17.11). 

Suppose the density of the hemisphere is Q· Then the mass of the 
eiemental disc is Q 3t y2 öx approximately. So 

and 

x=a 

Mx = 2: Q3ty 2 öx x 
x=O 

x=a 

M = L Q3ty2 öx 
x=O 

As öx ---+ 0 these approximations become good and so consequently 

Mx = J: Q3tXY2 dx 

-6x 

Fig. 17.11 A typical element. 



CENTRES OF MASS 503 

Therefore 

Hence 

M = (a Qnyz dx 
Jo 

= QJt [azx - x3]a 
3 () 

= 2Qna3!3 

Mx = (a Qn (a2x - x3 ) dx 
Jo 

_ a4 3 3a 
X = QJt - --- = -

4 2 Qna3 8 

By symmetry, y = 0 and z = 0. • 
0 Obtain the position of the centroid of an arc of a circle, radius r, sub­
tending an angle 2a at the centre. 

Why not see if you can manage this on your own? 

Using polar coordinates we can partition the arc into equal lengths each 
subtending an angle b8 at the centre (Fig. 17.12). So for each element of 
arc ös = r ö8. Furthermore, referring to the diagram we can use symmetry 
to deduce that y = 0, and it remains only to calculate x. In order to deter­
mine the position of the centroid it may help to consider the circle as having 
a unit linear density. You may if you wish introduce a constant linear 
density Q, but this is unnecessary. 

Wehave r ö8 is the mass of a typical element and r cos 8 is the distance 
of the element from the y-axis. So 

fl=u 

Mx = 2: r ö8 r cos 8 
fl=-u 

As ö8 tends to zero the approximation becomes good and so 
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y-axis 

r x-axis 

Fig. 17.12 Are partitioned into equal lengths. 

Mx = f~o. r dS r cos e 

Moreover, M = length of arc x density = 2ar. So 

1 Jo. x = -2 r 2 cos e de 
ar -o. 

r [ . e]o. r sin a 
= 2a sm -o. = --a-

Of course a is expressed in terms of radians and not degrees. • 

D Obtain the position of the centroid of a sector of a circle, radius a, 
subtending an angle 2a at the centre. 

We divide the sector into elements each consisting of an arc subtending 
an angle 2a at the centre 0 (Fig. 17.13). The width of a typical arc with all 
its points distance r from 0 is ör. Now here we take the density per unit 
area as 1. We may consider each arc as having its mass concentrated at its 
centroid. In each case the centroid is at 

(' s~ a ,O) 
and the mass of an element is 2ar ör. Consequently 

r=a r sin a 
Mx= 2: 2ar ör--

r=o a 

As ör tends to zero the approximation becomes good and therefore 
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y-axis 

a x-axis 

Fig. 17.13 Sector partitioned into concentric arcs. 

. Ja r sin a Mx= 2ardr--
o a 

= 2 sin a ra r2 dr 
Jo 

Now M is the area of the sector, so M = aa2. So 

_ 2 sin a Ja 2 d 
x = r r 

aa2 o 

= 2 sin~ a [r3 ]a 
aa- 3 0 

2a sin a 
3a 

Once again we can appeal to symmetry to deduce that y = 0. • 

17.7 THE THEOREMS OF PAPPUS 

In the days before calculus, many techniques were employed to calculate 
volumes and surface areas. Two such techniques are attributed to Pappus, 
but their rediscovery 1300 years later by Guldin led to bis name being 
linked with them also. These are the theorems. 

Theorem 1 Suppose an arc rotates about an axis in its plane, which it does 
not cross. Then the curved surface area of the region which it describes is 
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equal to the product of the length of arc and the distance travelled by the 
centroid of the arc. 

To justify this we shall take the x-axis as the axis about which the curve is 
rotated and take y = f(x}, positive, as the curve itself (Fig. 17.14). If the 
arc is rotated through an angle e then the surface area S swept out is easily 
obtained using calculus as 

s = J::: ay ds 

and of course the length of arc is given by 

f x=b ds 

x=a 

Now we need to obtain the position of the centroid. lt will be sufficient for 
our purposes to obtain y. As usual we partition the interval [ a, b] so that we 
obtain subintervals each of width öx. We have 

f x=b fx=b 
Y x=a ds = x=a Y ds 

and the distance travelled by the centroid of the arc is e:y. Then 

s = fx=b ay ds 
x=a 

= e J:~: y ds 

= e:y J:~: ds 

that is, the distance travelled by the centroid times the length of the arc. 

y .. xis 

y 

• X b x .. xil 

Fig. 17.14 Rotation of a curve. 
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Fig. 17.15 Rotation of a circle. 

D Obtain the surface area of a torus with inner radius b - a and outer 
radius b + a. 

A torus is sometimes known as an anchor ring, a tyre shape or a quoit. 
Try this example first, then Iook ahead. Calculus is not needed! 

We can consider the torus as a circle of radius a rotated through 2n about 
an axis distance b (>a) from its centre (Fig. 17.15). The length of arc is the 
circumference of the circle = 2na. The distance travelled by the centroid 
is 2nb, since the centroid of a circle is at its centre. Therefore the surface 
area is 

• 

y-axis 

y. f(x) 

0 x .. xis 

Fig. 17.16 Rotation of a region. 
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The second theorem of Pappus is very similar to the first. However, instead 
of rotating an arc we rotate a plane region. 

Theorem 2 Suppose a region rotates about an axis in its plane, which it 
does not cross. Then the volume of the shape which it describes is equal 
to the product of the area of the region and the distance travelled by the 
centroid of the region. 

See if you can justify this in the special case of the area enclosed by the 
curve y = f(x), positive, the x-axis and the lines x = a and x = b rotating 
about the x-axis. The argument is very similar to the one we used for the 
first theorem. 

lf the region is rotated through an angle e (Fig. 17 .16) then the volume V 
swept out is given by 

and the area of the region is given by 

J:~: y dx 

Now we need to obtain y, the distance of the centroid of the region from 
the x-axis. We partition the interval [a, b] so that we obtain subintervals 
each of width öx. Then, using the fact that the centroid of each strip is at its 
midpoint, we have 

f x=b fx=b 1 
Y x=a Y dx = x=a 2Y2 dx 

and the distance travelled by the centroid of the region is ey. Then 

that is, the distance travelled by the centroid times the area of the region. 
1t is easy to adapt this argument to the more general case. 

Pappus's theorems can be used the other way round to obtain the 
positions of centroids. See if you can do that with this example. 
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y-axis 

x-axis 

Fig. 17.17 Rotation of a semicircular region. 

D Determine the position of the centroid of a semicircular region. 
Move on when you have tried this. You do not need calculus. 

We can arrange the semicircle in a symmetric way as shown in Fig. 17.17. 
Then :X = 0 since the centroid must lie on the axis of symmetry. lt remains 
only to determine y. 

Now if we rotate this region through 2n about the diameter, which is on 
the x-axis, we ubtain a sphere as the solid of revolution. Using Pappus's 
second theorem we now have 

So 

17.8 MOMENTS OF INERTIA 

_ 4a 
y = 3Jt • 

The product of the mass of a particle and its distance from some fixed axis 
is called the first moment of the particle about the axis. The product of the 
mass of a particle with the square of its distance from some fixed axis is 
called the second moment of the particle about the axis. 

We have already used first moments implicitly when calculating the 
positions of centres of mass. Another name for the second moment is the 
moment of inertia of the particle about the axis. Moments of inertia are 
important in dynamics and so we shall consider the concept briefty. 
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Suppose we have a system of particles with masses m1 , m2 , m3 , ... , mn 
situated at the points (Xt>Yt>Zt), (x2,y2,z2), ... , (xn,Yn,Zn) respectively 
relative to a reetangular cartesian coordinate system Oxyz (Fig. 17.18). We 
denote by 10 x, 10 y and loz the moments of inertia of the system about the 
axes Ox, Oy and Oz respectively. So 

n 

lox = L m;(YT + Zf) 
i=l 

n 

loy = L m;( Zf + Xf) 
i=l 

n 

loz = L m;(Xf + YT) 
i=l 

If we sum these moments of inertia we obtain 

lox + loy + loz = 2 I m;,:f 

where r; is the distance of the particle (x;,y;, z;) from 0. Note that the 
summation I is taken over all possible values of i e {1, 2, ... , n} and so 
we can simplify the notation by leaving out the Iimits. 

0 Obtain the moment of inertia of a hollow spherical shell about a 
diameter. 

We can partition the surface of the spherical shell into elements of area 
öA. So if the shell has uniform density Q each element has a mass Q öA. 
Then taking the origin at the centre of the shell we deduce by symmetry 
lox = loy = loz· We also have 

lox + loy + loz = 3 I Q ÖA r2 = 2Mr2 

where r is the radius of the shell and M is its mass. Therefore 

z-axis 

m; (x;, Y;, z;) 

y-axis 

• 

• x-axis 
• 

Fig. 17.18 System of particles. 
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3lax = 2Mr2 

2 2 
lax= 3 Mr 

17.9 THE PERPENDICULAR AXIS THEOREM 

• 

An interesting relationship holds when all the particles in a system are in 
the same plane: 

If a system of particles is coplanar then the moment of inertia of the 
system, about an axis perpendicular to its plane, is equal to the sum of the 
moments of inertia of the system about two mutually perpendicular axes, 
in the plane of the system, provided that all three axes are concurrent. 

We may take the axis as Oz and the particles in the plane Oxy (Fig. 17.19). 
Then 

So 

lax= l: miYT 
lay = l: mixT 

lax + lay = l: mi(xt + YT) = l: mirt = laz 

This is a useful theorem, but it can only be used when the particles are 
coplanar. Natorally this extends to a plane Iamina when we apply calculus, 
but it must never be misapplied to a solid body. 

D Obtain the moments of inertia of a uniform solid disc of mass m and 
radius a about an axis through the centre perpendicular to its plane, and 
about a diameter. 

Try this and see how it goes. 

We begin by considering a uniform ring of radius r and uniform linear 
density Q (Fig. 17.20). Using polar coordinates, the perimeter can be split 
into elements each of length r öe. We therefore obtain an approximation 
for the moment of inertia about an axis Oz through the centre perpendi­
cular to its plane: 

211 

loz = L Qr öe r2 

9=0 

The approximation becomes good as öe tends to 0. Therefore 
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z-axis 

y-axis 

• 
• 

x-axis 

Fig. 17.19 System of coplanar particles. 

But M = 2:rtrQ, so loz = Mr2 • 

Turning now to the disc, we split it into concentric rings as elements. A 
typical element has radius r and width ör. Using Q now for the area density, 
we have that the mass of an element is approximately Q2:rtr ör; so it will 
contribute Q2:rtr ör r2 to the moment of inertia of the disc about Oz. 
Consequently 

a 

loz ::::::: L: Q2:rtr3 ör 
r=O 

and the approximation becomes good as ör tends to 0. Therefore 

Ioz = J: 2:rtQr3 dr 

= 2:rtQ [ ~J: 
= :rtQa4/2 

66 

(a) (b) 

Fig. 17.20 (a) A uniform ring (b) Disc partitioned into concentric rings. 
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Now m = gna2 , and so the moment of inertia about an axis through the 
centre is loz = ~ma2 0 

Lastly by symmetry lox = loy and by the perpendicular axis theorem 
lox + lov = Iozo So the moment of inertia about a diameter is lax= lov = 
!ma2

0 • • • 

Remernher these results, because we often need them when calculating 
moments of inertia of other solidso 

17.10 THE PARALLEL AXIS THEOREM 

Another useful theorem which can be applied to solid bodies is known as 
the parallel axis theorem: 

The moment of inertia of a system of particles about an axis is equal to the 
sum of the moment of inertia of the system about a parallel axis through 
the centre of mass and the product of the mass of the system with the 
square of the distance between the two axeso 

Before we justify this we should note the reason for its importanceo When 
calculating moments of inertia it is an error to assume that the mass of an 
element can be regarded as concentrated at the centre of masso The parallel 
axis theorem must be used to obtain moments of inertia of elements about 
a given axiso 

Suppose we are given a system of particles and a fixed axis (Figo 17 021) 0 
We choose reetangular cartesian axes in such a way that 
I 0 is the centre of mass; 
2 The fixed axis AB is parallel to the axis Oz; 
3 The negative x-axis meets the fixed axis at A 0 

z 
8 

m, y 
• • ms 

• 
• • 

A 

• 
ma 

• m7 

mn 
• 

r:i 

• 

Fig. 17.21 System of particles and parallel axeso 

X 
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We shall denote the fixed axis by AB and suppose that the distance be­
tween the two axes AB and Oz is h. Now 

lAB = l: m;[(x; + h)2 + yf] 
= l: m;(xf + yf + 2hx; + h2) 

But l: m;x; = 0 because 0 is the centre of mass of the system. Consequently 

lAB = l: m;(xt + yt) + h2 l: m; 
= loz + Mh2 

where M is the mass of the system. 

0 Obtain the moment of inertia of a solid right circular cone about an axis 
through its vertex parallel to its base. 

If you wish you can try this first on your own. 

We take the height as h, the base radius as a and the mass as M. lt will be 
convenient to take the axes as shown in Fig. 17.22 and the density as Q. So 
M = 1ta2hQI3. Webegin by slicing the cone into elements; a typical element 
is a disc with its centre at distance x from 0, and with radius y and thick­
ness öx. Regarding the cone as a solid of revolution we have 

a 
y = -x 

h 

Now the mass of an eiemental disc is Q:rty2 öx, and so the moment of 
inertia of the element about its diameter is (114) (Q1ty 2 öx)y2• By the 
parallel axis theorem this element contributes 

a(Q1tY2 öx)y2 + (Q1ty 2 öx)x2 

y-axis 

h x-axis 

Fig. 17.22 Cross-section of solid right circular cone. 
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towards loy· Therefore summing for all elements we have 

loy = ± (!y2 + x2 ) Q:rty 2 öx 
x=O 4 

The approximation becomes good as öx tends to 0, and so 

loy= J:QnGy 2 +x2)y2 dx 

Now 

where 

So 

y-axis 

• 
• • 

• m; 

• (x;, Y;l 

• 

• 
0 

• • 
Fig. 17.23 System of particles with axes. 

x-axis 
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Now 

so that 

• 
lt is possible to define the product of inertia of a particle relative to two 
axes. For example, given the axes Ox and Oy and a system of particles 
(Fig. 17.23) then, in our usual notation, the product ofinertia Hxy relative 
to these axes is given by 

Hxy = ~ m;X;Y; 

In order to generalize this to laminae and solid bodies we should need to 
extend the ideas of integration further to define double integrals and triple 
integrals. This is a simple matter but is beyond the scope of our present 
studies. 

17.11 AVERAGE VALUES 

We now Iook at two other quantities which are often calculated using 
integration. They are the mean value of a function over an interval, and the 
root mean square value of a function over an interval. 

The mean value (MV) of f over the interval [a, b] is given by 

MV = b ~ a J: f(x) dx 

Wehave already shown, iff(x):::: 0 when x E [a, b], that the integral is the 
area enclosed by the curve, the x-axis and the lines x = a and x = b (Fig. 
17.24). Therefore dividing by b - a gives the average height of the curve. 

If f(x) ~ 0, when x E [a, b], then a negative integral will be calculated. 
Consequently the mean value of the sine function, for instance, over the 
interval [ -Jt, Jt] is zero because sin (-x) = sin x for all x E [ -n, Jt ]. 

Therefore in this example as much of the area lies below the x-axis as lies 
above it. 

In many applications this is an inadequate representation of the effect 
of the function over the interval. For instance, the effects of receiving 
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y-axis 

y = f(x) 

0 a b x-axis 

Fig. 17.24 The mean value of a function. 

alternating current are certainly not zero! To obtain a more meaningful 
statistic, the RMS value is introduced. 

The root mean square value, known as the RMS value, of a functionfover 
the interval [a, b] is the square root of the mean of the squares of the 
function: 

RMS = ~ {b ~ a J: [f(x}fdx} 

0 Obtain the mean value and the RMS value of y = x3 + 1 over the 
interval [ -1, 1]. 

You can try this yourself if you wish. lt is just a matter of substituting 
into the integrals and evaluating them. Why not have a go? We shall see 
who gets there first! 

For the mean value we begin with 

J~ 1 (x3 + 1)dx = [~x4 + x I 1 

= (~ + 1) - G- 1) = 2 
The length of the interval is 1 - (- 1) = 2 and so MV = 2/2 = 1. 

For the RMS value we must first obtain 
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= -x7 +- x4 + x [ 1 2 ] 1 

7 4 -1 

= G+~+ 1)- (-~+~-1) 
2 16 

=-+2=-
7 7 

We divide by the length of the interval and take the positive square root 
to obtain RMS = y'[(16/7)/2) = y'(S/7). • 

17.12 RADIUS OF GYRATION 

The moment of inertia I of a body of mass m about a given axis has dimen­
sions ML2; that is, it is the product of a mass with the square of a length. 
You possibly know that mass M, length Land timeT are the basic building 
blocks in terms of which we can express many physical concepts. For 
example, acceleration has the dimensions LT-2• 

Indeed it is possible, by considering algebraic relationships between the 
ingredients in a physical problem, to derive the actual relationship by using 
dimensional analysis. In the case of a moment of inertia we see that y' (!Im) 
has the dimension of length (y'(ML2M-1) = L) and is called the radins of 
gyration. 

The following practical problern involves the radius of gyration and uses 
polar coordinates. 

________ 17.13 Practical _______ _ 

METAL SPRING 

0 A plane wire has the shape of the cnrve r = /(6) where e e [61 , 62) in 
the polar coordinate system. Show that the radins of gyration k about an 
axis through the origin perpendicular to the plane of the curve satisfies 

Hence or otherwise show that if r = a exp e and e e [0, ln 10) then 
k = ay'37. 
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Fig. 17.25 Neighbouring points on r = f(S). 

It's a good idea to try this on your own first without looking at the 
solution. This is a problern in which you have to produce your own 
formula. Weshall solve it stage by stage. Join in the solution when you feel 
you can. 

1 We partition the spring into elements each of length ös (Fig. 17.25). 
Then if Q is linear density, we have that the mass of a typical element is 
Q ös. So the moment of inertia of this element about the required axis 
is given by 

lös = r2Q Ös 

The approximation becomes good as ös ~ 0. 
Use this to write down the mass m of the spring and the moment of 

inertia about the given axis. 

2 We obtain immediately 

Now use the definition of the radius of gyration to obtain an expression 
for k. 

3 Wehave k2m = I, and so 

kz f8=fh Q ds = fe=82 rzQ ds 
6=81 8=81 

Since Q is constant this becomes 
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Fig. 17.26 Relating r, e and s. 

The next thing to do is to express ds/d8 in terms of dr/d8. See if you can 
do it. 

4 We have, using Pythagoras's theorem (Fig. 17.26), 

(ör)2 + (r ö8)2 = (ös)2 

So 

( ör) 2 2 = (ös) 2 
ö8 +r ö8 

where the approximation becomes good as ö8 - 0. Therefore 

Consequently 

Right! Now see if you can determine k for the portion of the spiral 
r = a exp 8 which has been specified. 

5 We have r = a exp 8, 81 = 0 and 82 = In 10. So therefore dr/d8 = 
a exp 8, and consequently 

Now from the previous relation we have 
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So 

k2[ee)~nl0 = a2 [~e3e J:10 

2 

k2(10 - 1) = ~ (1000 - 1) 

from which k 2 = 37a2 , that is k = aj/37. 
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SUMMARY 

Wehaveseen how to 
0 Evaluate definite integrals. 

J: f(x)dx = F(b) - F(a) 

if F(x) = f f(x) dx exists for x E (a, b]. 
0 Examine improper integrals for convergence. 

J: f(x) dx = x~T- F(x) - x~T+ F(x) 

if F(x) = ff(x)dx exists for x E (a,b). 
0 Apply integral calculus to obtain formulas. 

(a) Area under a curve = J: y dx 

(b) Volume of revolution = J: ny 2 dx 

(c) Curved surface area of revolution = J:~: 2ny ds 

( d) Length of a curve = J:~: ds 

(e) Mean value = (b ~ a) J: y dx 

(f) Root mean square value = ~ {(b ~ a) J: y 2 dx} 

if y = f(x) is continuous for x E [a,b]. 
0 Apply integral calculus to obtain centres of mass and moments of 

inertia of solid bodies. 
0 Use the theorems of Pappus to determine positions of centroids, 

lengths of curves, volumes and surface areas of revolution. 

EXERCISES 

l Obtain the area enclosed by the curve y = f(x), the x-axis and the 
ordinates at x = a and x = b for 

1 
a y = -1--2 , a = 0, b = 1 

+x 



b y = x2 + x, a = 0, b = 1 
X 

c y=-- a=O b=1 
1 + x 2 ' ' 

d y = sin x + sin 2x, a = 0, b = :rr 
2 Obtain the area enclosed by the curves 

a y = X 4 , y =X 

b y = 2x2 + x, y = x 3 + 2x 
(x 3 + x 2 - 1) (x 2 + x- 1) 

c y = (x + 1) 'y = (x + 1) 

d y = xexpx2 , y = xexpx 
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3 Find the volume of revolution when y = f(x) > 0 is rotated through 2:rr 
about the x-axis 
a y = 1 - x 2 

b y = x( 1 - x) exp x 
c y = 2- coshx 
d y = (2 - x) Inx 

4 Obtain the mean value of each of the following over the interval [a, b]: 
a y = sin2 x, a = 0, b = :rr 
b y = cosh x, a = 0, b = 1 
c y = In x, a = 1, b = 2 
d y = tanx, a = 0, b = :rr/4 

5 Obtain the RMS values of each of the following over the interval [a, b): 
a y = cosh x, a = 0, b = 1 
b y = tanx, a = 0, b = :rr/4 
c y = sinx, a = 0, b = :rr 

x 2 + 1 
d y = --2 -, a = l, b = 2 

X 

ASSIGNMENT 

1 Obtain the length of the curve eY = sec x between the points where 
X = 0 and X = :rr/4. 

2 Determine the length of the curve y = c cosh(x/c) from x = 0 to 
x = c In 2. 

3 Obtain the area enclosed by the curve x = cos3 8, y = sin3 8 where 
8 E [0,2:rr). 

4 Sketch the polar curve r = 2 sin 8 and obtain the area of the region it 
encloses. 

5 The portion of the curve 

y = -h2 - i ln(1 + x) + x 

between x = 0 and x = 1 is rotated about the x-axis through 2:rr radians. 
Obtain the area of the curved surface generated. 

6 Obtain the position of the centre of mass of a uniform solid right circular 
cone of mass M, height h and base radius a. 
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7 Determine the moment of inertia of a uniform semicircular lamina of 
mass m and radius a about (a) its axis of symmetry (b) the bounding 
diameter. (Watch out for bounding diameters!) 

8 Obtain the moment of inertia of a solid hemisphere of mass M and radius 
a about a tangent parallel to its plane face. 

FURTHER EXERCISES 

1 By putting x = tan 8 and then 8 = n/4 - <j>, or otherwise, show that 

f1 ln(1 + x) d = ~ l 2 
1 2 x 8 n 

0 + X 

2 Obtain the area of the region enclosed by the curves y2 = ax and 
y3 = ax2 and the position of its centroid. 

3 Determine the length of the curve 4y = x 2 - ln(x2) between x = 1 and 
X= 4. 

4If 

y = h 2 + !x - ~ ln(2x + 1) 

obtain the radius of curvature at the origin and the length of the curve 
between x = -114 and x = 114. 

5If 

y = ! ln ( 1 - x) - ! ln ( 1 + x) + tan - 1 x 

where - 1 < x < 1, show that if the length of arc s is measured from the 
point where the curve crosses the x-axis then 

s = -x - ! ln(1 - x) + ! ln(1 + x) + tan- 1 x 

Hence, or otherwise, deduce that 

y - s - x = ln(1 - x) - ln(1 + x) 
y + s + x = 2 tan- 1 x 

6 Determine the moment of inertia of a solid right circular cone mass M, 
height h and base radius a about its axis of symmetry. 

7 Evaluate where possible each of the following integrals: 

(a) L"" x ln x dx 

(b) L"" x e-x dx 

(c) J: (1 - x 2)- 112 dx 
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8 Prove that the area of the cardioid r = a(l + cos 8) is 3rw2/2 and that 
its perimeter is 8a. 

9 Show that the area of the ellipse 

x2 yz 
a2 + bz = 

is nab. 
A solid circular ring of overall diameter 1.2 m is made from meta! 

of elliptical cross-section. Each such ellipse has a major axis of length 
0.4 m and a minor axis of length 0.2 m, and is such that its major axis 
is parallel to the axis of symmetry of the ring. Show that the volume of 
meta! is 0.02rt2 m3 . 

10 A flat uniform meta! plate PQR is in the shape of a triangle. Show that 
the moment of inertia of the plate about an axis through P parallel to 
QR is Mh 2/2, where M is the mass and h is the length of the perpendi­
cular from P to QR. Without further integration prove that the moment 
of inertia about QR is Mh 2/6. 

11 Show that when 3ay2 = x(a - x)2 between x = 0 and x = a is rotated 
about the x-axis through a complete revolution, the volume of the solid 
swept out is na3/36 and the surface area is rta2/3. 

12 If 

In = r· X 11 cos nx dx 
Jo 

and if n is a natural number, show that 

rt2/ 11 + n + n(n - 1) ln-2 = 0 

Hence, or otherwise, evaluate 

r· x4 cos nx dx 
Jo 

13 Detennine area bounded by the curve 

x(x- 1) 
y= 

x-2 

(n > 1) 

and the x-axis between x = 0 and x = 1. This area is rotated 
through an angle of 21r about the x-axis. Calculate the volume of 
this solid of revolution. 



18 Numerical techniques 

ln Chapters 14, 15 and 16 we investigated the technique of integra­
tion and saw how to apply it to a variety of situations. We noted that 
some integrals cannot be determined analytically using elementary 
functions. ln the case of definite integrals a numerical method can 
often be employed. ln this chapter we discuss some numerical tech­
niques and indude in this some methods for determining definite 
integrals. 

After working through this chapter you should be able to 
0 Solve an equation of the form f(x) = 0 using one offour numerical 

techniques; 
D Approximate derivatives of the first and second order and estimate 

the error involved; 
0 Apply the trapezoidal rule and Simpson's rule to evaluate definite 

integrals. 
We shall then solve a practical problern concerning the approximation 
of the temperature in a heat-conducting fin. 

18.1 THE SOLUTION OF THE EQUATION f(x) = 0 

We know how to solve quadratic equations; there isasimple formula for 
doing this. It is even possible to write a complicated set of procedures and 
formulas which will enable us to solve cubic equations and quartic 
equations explicitly. However, in generat it is impossible to do this for 
polynomial equations of degree greater than four, and it is impossible to 
solve many other types of algebraic equation explicitly. 

In order to obtain solutions of algebraic equations of the form f(x) = 0 a 
number of numerical techniques have been developed, and we shalllook at 
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some of them. Weshall not, however, submerge ourselves in a quagmire 
of detail but shall be content to see the overall method. With digital 
computers and programmable calculators readily available, much of the 
laborious and painful process of dealing with numerical techniques has 
been removed. 

18.2 GRAPHICAL METHODS 

If we cannot solve an equation of the form f(x) = 0 analytically, we can 
often obtain a solution by giving a rough sketch of the graph y = f(x) and 
locating approximately those values of x at which the curve crosses the 
x-axis. Sometimes it is easier to rewrite the equation f(x) = 0 in the form 
g(x) = h(x) and to determine the points at which the curves y = g(x) and 
y = h(x) intersect. In order to increase the accuracy of the approximation 
it may be necessary to draw the graphs in greater detail over a smaller 
interval, but provided we can calculate the values and have enough 
patience we should be able to obtain any degree of accuracy required. 

However, there are obvious drawbacks with using a graphical method. 
Sketching graphs can be time consuming and liable to error even with a 
computer program, but perhaps more seriously it is difficult to estimate the 
accuracy of the solution which is obtained. A much more satisfactory 
method from many points of view is a numerical method, and we shall 
consider several of these in this chapter. 

18.3 ITERATIVE METHODS 

Many numerical methods use a recurrence relation of the form 

Xn+l = F(xn) 

and we require Xn ~ a as n ~ oo, where a satisfies the equation f(x) = 0. 
We call Xn the nth iterate and x0 the initial approximation or starting value. 
Therefore if hn is the error in the nth iterate we have 

Xn = a + hn 

Moreover, if the process is to converge then as n ~ oo we have Xn ~ a, 
so that 

a = F(a) and f(a) = 0 

Now Xn+l = F(xn), so 

a + hn+l = F(a + hn) 
= F(a) + hnF'(a) + !h~F'(a + Shn) 

where 8 E (0, 1). Here we are assuming that F has a Taylor expansion 
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about the point a, and we are using the form of Taylor's theorem with the 
remainder after two terms (see Chapter 8). 

For convergence we require a = F(a), and so we obtain 

Moreover, if the process is to converge we require for large n 

That is, the error in the (n + 1)th iterate must eventually become less than 
the error in the nth iterate. 

lt can be shown that if the process is to converge and if F' is bounded 
then 

IF'(a)l < 1 

D Consider the equation 

x2 - 5x + 6 = 0 

which we know to have roots at x = 2 and x = 3. 
First, suppose we rewrite the equation as 

Then 

6 
x = 5 -- = F(x) 

X 

6 
F(x) =-xz 

So when x = 2, F'(x) = 3/2 > 1, and when x = 3, F(x) = 6/9 = 2/3 < 1. 
This means that we expect the iteration 

6 
Xn+l = 5-­

Xn 

to converge near x = 3 but diverge near x = 2. 
Secondly, suppose we rewrite the equation as 

Then 

6 
x = -- = G(x) 

5- X 

G'(x) = - (5 ~ xf 

So when x = 2, G'(x) = -619 and therefore IG'(x)l < 1; and when x = 3, 
G'(x) = -6/4 and therefore IG'(x)l > 1. This means that we expect the 
iteration 
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6 
Xn+l = -5-­

- Xn 

to conyerge near x = 2 but diverge near x = 3. • 
The principal iterative method weshall consider is Newton's method. We 
begin, however, by considering some other numerical methods. 

18.4 THE BlSECTION METHOD 

Suppose f is continuous and that we wish to solve the equation f(x) = 0. 
We first obtain two numbers a and b suchthat f(a) < 0 and f(b) > 0. We 
can then argue that somewhere in between a and b there is a solution of the 
equation (Fig. 18.1 ). This is a consequence of the intermediate value 
theorem, which is outside the scope of our work but is intuitively 'obvious'. 

Let c = (a + b)/2. We then have one of three possibilities: 
1 If f(c) = 0 we have found the required root. 
2 If f(c) < 0 we can repeat the procedure with c replacing a. 
3 If f(c) > 0 we can repeat the procedure with c replacing b. 
After a bisection of the interval we either obtain the solution or we halve 
the length of the interval. So, if we repeat the process indefinitely, we must 
eventually arrive at the solution. The procedure stops when a and b agree 
to the required number of decimal places. In practice we rarely find that 
f(c) is exactly 0 at any stage. However, we should always checkthat the 
root does satisfy the equation f(x) = 0 approximately. 

We can make this more systematic by writing down the nth step: 
1 Let an and bn 'bracket' the root so that f(a 11 ) < 0 and f(b 11 ) > 0. 
2 Put C11 = (a11 + bn)/2. 
3 If f(c 11 ) = 0 then the root is cn-

y-axis y = f(x) 

0 x-axis 

Fig. 18.1 The bisection method. 
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x-axis 

Fig. 18.2 The graphs of y = ex and y = x + 2. 

4 lf f(cn) < 0 then an+J = Cn, bn+J = bn. 
5 lf f(cn) > 0 then an+J = an, bn+J = Cn. 
We know that starting with n = 0 and a0 = a, b0 = b weshall eventually 
obtain the root. 

We now solve an equation using this method. 

D Obtain correct to three decimal places the positive root of ex = x + 2. 
A rough sketch of the equations y = ex and y = x + 2 reveals that there 

is indeed a positive root (Fig. 18.2). 

Table 18.1 

n an bn Cn f(cn) 

0 1.00000 2.00000 1.50000 0.98169 
1 1.00000 1.50000 1.25000 0.24034 
2 1.00000 1.25000 1.12500 -0.044 78 
3 1.12500 1.25000 1.18750 0.09137 
4 1.12500 1.187 50 1.15625 0.02174 
5 1.12500 1.15625 1.14062 -0.01191 
6 1.14063 1.15625 1.14844 0.00483 
7 1.14063 1.14844 1.14454 -0.00354 
8 1.14454 1.14844 1.14649 0.00064 
9 1.14454 1.14649 1.14552 -0.00144 

10 1.14552 1.14649 1.14601 -0.00039 

Put f(x) = ex - x - 2. We begin by looking for two numbers which 
bracket the root: f(1) = e- 3 < 0 and f(2) = e2 - 5 > 0. A table ofvalues 
is the usual way to present the working (Table 18.1). As a generat rule we 



THE REGULA FALS/ METHOD 531 

must always work to two more places of decimals than that of the required 
accuracy, and so in this case we work to five. We can stop at n = 10 since 
no change to the third decimal place can now occur. So the required root 
is 1.146. • 

The main problern with the bisection method is that if the root is close to a 
or b the process will still take a long time to converge. 

18.5 THE REGULA FALSI METHOD 

One way of trying to compensate a little for the shortcomings of the 
bisection method is to attempt to use the curve itself in helping to locate 
the root. 

In the regulafalsi method we join the points (a,f(a)) and (b,f(b)) by a 
straight line and determine the point where it crosses the axis (Fig. 18.3). 
We know from our work on coordinate geometry (Chapter 3) that the 
equation of the straight line joining (a,f(a)) to (b,f(b)) is 

Y- f(a) x- a 
f(b) - f(a) b - a 

So when y = 0 we obtain 

(b - a)f(a) 
x = a - f(b) - f(a) 

a[f(b) - f(a)J - (b - a)f(a) 
f(b) - f(a) 

af(b) - bf(a) 

f(b) - f(a) 

This formula gives an improved approximation: 

y-axis 
y = f(x) 

0 x-axis 

Fig. 18.3 The regula falsi method. 
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anf(bn) - bnf(an) c = --"-"-'---'-'-'-------'!.::.-'--'.:..<.. 
n f(bn) - f(an) 

D For the equation 

f(x) = x 3 + 2x - 1 

use the regula falsi method with a = 0 and b = 1 to obtain the first 
approximation c to the root. 

Wehave f(O) = -1 and /(1) = 1 + 2 - 1 = 2, and so the interval [0, 1] 
brackets the root. All we need to do now is to substitute a = 0 and b = 1 in 

We obtain 

0 X 2- 1 X (-1) 1 
c= =-

2-(-1) 3 

The bisection method would have given c = 112. Furthermore f(113) < 0, 
and so if we were required to continue we should take a1 113 and 
b! = 1. • 

18.6 THE SECANT METHOD 

In the bisection method and the regula falsi method, both ends of the 
interval are liable to become modified as the method progresses. A 
technique similar in some ways to the regula falsi method, but which does 
not have this feature, is the secant method. 

Unlike the bisection and regula falsi methods we do not require two 
initial approximations which bracket the root; nor is it necessary to check 
the sign of the value of the function at each stage. However, we do require 
two starting values x0 and x1. Suppose Xn is the nth approximation. Then 
we can join the points (xn_ 1,f(xn_1)), (xn,f(xn)) by a straight line and 
determine the point where this cuts the x-axis (Fig. 18.4). 

In fact we have already determined this point for this line! We had 

and so putting an = Xn-1> bn = Xn we obtain 

Xn-tf(xn) - Xnf(xn-I) 
Xn+I = 

f(xn) - f(xn-1) 

D If f(x) = x 2 - 5, obtain the formula corresponding to the secant method 
which gives Xn+ 1 in terms of Xn and Xn_ 1. 



THE SECANT METHOD 533 

y-axis y = f(x) 

0 

Fig. 18.4 The secant method. 

Wehave 

x"_ d(x") - x,J(xn-1) == Xn-1 (x~ - 5) - x" (x~-1 - 5) 

and 

So 

== x"Xn-1 (x" - Xn-1) + 5(x" - Xn-1) 
== (X"Xn-1 + 5)(Xn - Xn-1) 

f(x") - f(xn-1) == X~ - 5 - (x~-1 - 5) 
==X~ - X~-1 

Xn+1 

== (x" - Xn-1)(X11 + Xn-1) 

(X11 Xn-1 + 5)(xn - Xn-1) 

(x" - Xn-1)(x" + Xn-1) 

X11 Xn-1 + 5 
X" + Xn-1 • 

Two advantages of the secant method are that it is not necessary to choose 

starting values which bracket the root, and that we do not have to stop at 

each stage and check whether the function is positive or negative at the 

point. 
The main disadvantage of this method is that convergence is no Ionger 

guaranteed. Although we shall not discuss the detailed circumstances in 

which convergence occurs, if 
1 The starting values are chosen sensibly 
2 The value of f' is non-zero at the root 
3 The second-order derivative f" is bounded then the method will work. 
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18.7 NEWTON'S METHOD 

Yet another method, due originally to Newton, involves using the tangent 
to the curve (Fig. 18.5). Suppose Xn is an approximate root; then for many 
curves the tangent will cut the x-axis at a point which is closer to the true 
root. From the diagram 

Therefore 

so that 

PR 
slope of curve at P = QR 

f(xn) 
Xn+l = Xn - f'(xn) 

This is Newton's formula. lt is an iterative formula because we obtain 
a new approximation each time n increases. We need just one starting 
value x0 • 

D Given the equation f(x) = x 2 - 5, obtain the iterative formula 
corresponding to Newton's method. Perform three iterations starting with 
x = 2 and x = 3. In each case work to three decimal places. 

We have f'(x) = 2x, and so the formula gives 

f(xn) 
Xn+l = Xn - f'(xn) 

X~- 5 
Xn+l = Xn - 2 

Xn 

2x~ - (x~ - 5) = __;.:.____,_...:.:.__~ 

2xn 

X~+ 5 = 

First we have x0 = 2, and so 

X! = X~ + 5 = 4 + 5 = 2.25 
2x0 4 

= X~ + 5 = (2.25)2 + 5 = 2 236 
x2 2x1 2(2.25) · 

= X~ + 5 = (2.236f + 5 = 2 236 
x3 2x2 2(2.236) · 
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y-axis y = f(x) 

0 x-axis 

Fig. 18.5 Newton's methodo 

Secondly we have x0 = 3, so 

x, = xö + 5 = 9 + 5 = 20333 
2x0 6 

= XT + 5 = (2o333f + 5 = 2 238 
Xz 2x1 4o666 ° 

= X~ + 5 = (2o238f + 5 = 2 236 
x3 2x2 2(20238) 0 • 

Newton's method is usually very good and can be applied to many 
problemso The number of correct decimal places is approximately doubled 
with each iterationo 

The disadvantages with Newton's method are similar to those of the 
secant methodo Principally we are not assured of convergence (Figo 1806), 
and certainly if f' is zero at a root then problems will occur 0 lf f' is 
numerically small at any of the iterates then arithmetical difficulties such as 
rounding errors and arithmetic overftow will resulto 

There are two ways round this problemo One is to try it and seeo That is, 
assume everything will be all right until shown otherwiseo lf a computer has 
been given the burden of calculation then either it will return an error 
message or it will calculate and calculate ad nauseamo A better method, but 

Convergence Divergence 

Fig. 18.6 Convergence and divergence of Newton's methodo 
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one which requires some effort, is to try to anticipate any problems by 
making a rough sketch of y = f(x). 

Now we shall take a few steps. 

r-r--------18.8 Workshop _______ _ s Exercise The bisection metbad is used to solve an equation f(x) = 0 and 
it is found that f(O) = -1 and f(1) = 2. lf arithmetic is performed to seven 
decimal places, how many times will the method have to be applied to 
obtain a solution correct to five decimal places? 

L__ _ _j 

Give this some careful thought: it's not too difficult. Then step forward. 

We need an and bn to agree to five decimal places, and this will only 
be guaranteed if the difference between the two numbers is less than 
0.0000001. For example, consider the numbers 0.435 6749 and 0.435 675 0. 
The first rounds to 0.435 67 and the second to 0.435 68. 

So we have in general 

Now 

lao- bol = 1 
la1 - b1l = 112 
laz - bzl = 114 
la3 - b3l = 118 

In general, ian - bnl = rn. Therefore we must have rn < 0.0000001, 
which means we require 2n > 10000000. lt follows at once that 24 applica­
tions are necessary to be certain. 

lf you got that right, move ahead to step 4. 
lf you went wrang then try this one. 

t>Exercise Arithmetic is performed to five decimal places, and after 12 
applications of the bisection metbad a solution is stable to three decimal 
places. What was the maximum length of the interval initially? 

L__ _ _J 

Try this and then take a step. lt may help to write down some numbers. 

We need to ask the question: how different can the two numbers be if they 
agree to three decimal places? For example, 1.462 50 and 1.463 49 both 
agree to three decimal places. So we see that the difference between the 
two numbers is no more than 0.00099. 
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Suppose lao- hol= r. Then ian- bnl = 2-"r, and so we require 2-n, < 
0.000 99 when n = 12. Consequently r < (0.000 99) ( 4096) = 4.055 04, and 
this is the maximum Iength of the interval between a0 and b0 . 

Now for a rather different type of question. 

l>Exercise A computer programmer wishes to apply Newton's method to r:!? 
solve an equation of the form f(x) = 0. He intends the computer to handle 
the derivative, and uses the approximation 

f'(xn) = f(x") - f(xn-t) 
X" - Xn-1 

where X 11 is the nth iterate. What is the iterative formula corresponding to 
this adaptation? How many starting values are needed? 

Work your way through this and on to the next step. 

We begin with the formula which Newton's method provides: 

f(xn) 
Xn+l = Xn- f'(xn) 

So approximating the derivative in the prescribed fashion gives 

f(xn)(x" - Xn-t) 
Xn+ 1 = X" - f( ) _ f( ) Xn Xn-1 

Xn [f(xn) - f(xn-1)] - f(xn)[xn - Xn- t] 
f(xn) - f(xn-1) 

f(x")Xn-1- f(Xn-t)X 11 

f(xn) - f(Xn-t) 

Clearly we shall need two starting values to set things going. 
The computer programmer may think he is using Newton's method, but 

in fact he is using the secant method, isn't he? 
If you made a mistake or would like some more practice, try the exercise 

below and take the following step; otherwise simply read it through. 

[> Exercise Work out the iterative formula corresponding to Newton 's 
method if it is intended to solve the equation sin x - x = 0 by this method. 

The key formula involves calculating 

f(x) 
x- f'(x). 
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Now f(x) = sin x - x and so f'(x) = cos x - 1. Therefore 

So 

f(x) sin x- x 
x---=x-

f'(x) cos x - 1 

X ( COS X - 1) - ( sin X - X) 

COS X- 1 

X COS X- sin X 
=------

COSX- 1 

Xn COS Xn - sin Xn 
Xn+l = 

COS Xn - 1 

is the iterative formula which we require. 

18.9 APPROXIMATIONS TO DERIVATIVES 

We have seen that Newton's method uses the derivative of the function to 
produce an iterative formula. Unless we are going to tel! the computer the 
derivative of the function when we supply it with the data (the function and 
the starting value ), it will be necessary to produce some approximate 
formulas for derivatives. In fact you will need these formulas if ever you 
consider the numerical solutions of ordinary or partial differential 
equations. 

Let us begin by recalling Taylor's expansion 

h2 
f(x + h) = f(x) + hf'(x) + 2! f"(c) 

for some c E (x, x + h) ( Chapter 8). This is the form of Taylor's expansion 
where the remainder is given after two terms. So therefore 

f(x + h)- f(x) = f'(x) + ~hf"(c) 
h 

This gives at once an approximate formula for the derivative tagether with 
an estimate of the error involved: 

f'(x) = f(x + h) - f(x) 
h 

If M is an upper bound for the modulus of f" on the interval (x, x + h) we 
can assert confidently that the error is at most hM/2. The fact that the error 
is no more than a constant multiple of h is expressed by saying that the 
error is of order h, which is written as O(h). Of course as h ___,. 0 we have 
the error tends to 0 and the approximation becomes good. 
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A similar argument can be used to show that 

f'(x) = f(x) - f(x - h) 
h 

again with an error of 0 ( h). 

We can obtain a better approximation if we take another term in Taylor's 
expansion: 

h2 h3 
f(x + h) = f(x) + hf'(x) + 2! f"(x) + 3! t(3>(ct) 

for some c1 E (x, x + h). Replacing h by -hin this expansion gives 

h2 h3 
f(x - h) = f(x) - hf'(x) + 2! f"(x) + 3! J<3>(cz) 

for some c2 E (x- h, x). We shall use these to obtain an approximate 
formula of order h2 • 

Subtracting the two expansions gives 

so that we obtain 

f(x + h) 2~ f(x- h) = f'(x) + ~~ [J<3>(ct) + t<3>(c2)] 

Therefore if K is an upper bound for the modulus of t<3> on the interval 
(x-h, x+h), we have 

f'(x) = f(x + h); f(x- h) 

with an error no more than h2 K/6. So the error is of order h2 • 

Y et one more term in the Taylor expansion provides an approximation 
for a second-order derivative which is also of order h2 . You might like to 
see if you can work it out for yourself. 

Wehave 

h2 h3 h4 
f(x + h) = f(x) + hf'(x) + 2! f"(x) + 3! t(3>(x) + 4! t<4>(c1) 

for some c1 E (x, x + h). Replacing h by -hin this expansion gives 

h2 h3 h4 
f(x - h) = f(x) - hf'(x) + - f"(x) - - t<3>(x) + - t<4>(c2) 

2! 3! 4! 
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for some c2 e (x- h, x). (The c1 and c2 arenot necessarily the same as the 
c1 and c2 when we considered the remainder after three terms.) 

Adding the two expansions gives 

h4 
f(x + h) + f(x- h) = 2f(x) + h2f"(x) + 4! [J<4>(c1) + t<4>(c2)] 

Therefore if K is an upper bound for the modulus of J<4> on the interval 
(x- h, x + h) we obtain 

f"(x) = f(x + h) - 2f~) + f(x - h) 
h 

with an error of no more than h2 K/12. So the error is of order h2 . 

0 The deftection of a beam is believed to satisfy the equation 

d2y x2 

-=e 
dx2 

The deftection is 0 at both x = 0 and x = 1. Estimate, using a second-order 
approximation for the derivative, the approximate deftections at 0.2, 0.4, 
0.6 and 0.8. 

Wehave approximately 

f(x + h) - 2f(x) + f(x- h) x2 

hz = e 

Therefore taking h = 0.2 we have 

f(x + 0.2) - 2f(x) + f(x - 0.2) x2 

0.04 = e 

Consequently, 

f(x + 0.2) - 2f(x) + f(x - 0.2) = 0.04 ex2 

Putting x = 0.2, 0.4, 0.6 and 0.8 in turn gives 

f(0.4) - 2/(0.2) + f(O) = 0.04163 
/(0.6) - 2/(0.4) + /(0.2) = 0.04694 
/(0.8) - 2/(0.6) + /(0.4) = 0.057 33 
f(l) - 2/(0.8) + /(0.6) = 0.075 86 

Therefore writing f(0.2r) = fr and using the information that fo = f(O) = 0 
and f 5 = f(l) = 0, these equations become 

fz - 2ft + 0 = 0.04163 (1) 
h- 2fz + ft = 0.04694 (2) 
!4 - 2[3 + fz = 0.057 33 (3) 
0 - 2!4 + /3 = 0.07586 (4) 
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Eliminating !I between (1) and (2) produces 

2[1- 4!2 + / 2 = 0.13551 
2{1- 3!2 = 0.13551 

Eliminating f4 between (3) and ( 4) produces 

h - 4[1 + 2/2 = 0.19052 
-3[1 + 2/2 = 0.19052 

Using (5) and (6) we can eliminate h: 
4[1- 9[1 = 0.84258 

Therefore -5[1 = 0.84258 and so h = -0.16852. From (6), 

2/z = 0.19052 + 3[, = -0.315 04 

Therefore fz = -0.157 52. Equation (1) gives 

2/I = 12 - 0.04163 = -0.19915 

So !I = -0.09958. Equation (4) gives 

2f4 = h - 0.075 86 = -0.24438 

So f 4 = -0.12219. 

(5) 

(6) 

We conclude that the deftections at 0.2, 0.4, 0.6 and 0.8 are approxi­
mately -0.09958, -0.15752, -0.16852 and -0.12219 respectively. Ifwe 
were to analyse the approximation we should see that each of these could 
have an error not exceeding 0.0022. • 

Now for a few more steps. 

_______ 18.1 0 WorkshOP-------,----, 

[> Exercise Obtain a finite difference approximation of order h 2 for the Z 
differential equation 

d2y dy - +- + y = tanx 
dx 2 dx 

When you have tried this, step ahead. 

We must use two approximations of order h 2 , and we have just the right 
ones at our disposal. If we put y = f(x) the equation becomes .__ _ _J 

f"(x) + f'(x) + f(x) = tan x 

If you got stuck then perhaps you would like to take over here. When you 
are ready, move on. 
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l"L1 Wehave 
f'(x) == f(x + h); f(x- h) 

f"(x) == f(x + h) - 2f\x) + f(x- h) 
h 

So substituting into the equation: 

f(x + h) - 2f(x) + f(x - h) f(x + h) - f(x - h) f( ) 
h2 + 2h + x == tan x 

If we multiply up by 2h2 we obtain 

2[f(x + h) - 2f(x) + f(x - h)] 
+ h[f(x + h) - f(x - h)] + 2h2f(x) == 2h2 tan x 

(2 + h)f(x + h) - 2(2 - h2)f(x) + (2 - h)f(x - h) == 2h2 tan x 

If you managed that all right, then step out of the workshop and on to the 
next section. If there was a problem, then try this for size. 

!>Exercise Derive the approximate formula for f'(x) of order h 

f'(x) == f(x) - f(x - h) 
h 

L-------' 

and use it to obtain an approximate formula for 

x2 :~ + xy = sin x 

We use Taylor's expansion with the remainder after two terms: 

h2 
f(x + h) = f(x) + hf'(x) + 2 f"(c) 

where c e (x, x + h). Replacing h by -h gives 

h2 
f(x - h) = f(x) - hf'(x) + 2 f"(c) 

where c e (x- h, x). Rearranging we obtain 

So 

f'(x) = f(x) - f(x - h) + ~ f"(c) 
h 2 

f'(x) == f(x) - f(x - h) 
h 

where the approximation is of order h. 
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If you couldn't manage that, see now if you can do the last part and 
substitute into the differential equation. 

Wehave 

x2 d y + xy = sin x 
dx 

which becomes, on putting y = f(x), 

Now 

and therefore 

So 

that is, 

x 2f'(x) + xf(x) = sin x 

f'(x) = f(x) - f(x - h) 
h 

x 2 f(x) - f(x - h) + xf(x) = sin x 
h 

x2 [f(x) - f(x - h)] + hxf(x) = h sin x 

x(x + h)f(x) - x 2 f(x- h) = h sin x 

lt is worth remarking that the effect of multiplying through by h, as we 
have, is to change the order of the error; so now the error is of order h2 . 

18.11 NUMERICAL INTEGRATION 

Although we can differentiate almost any function that is likely to arise, 
the situation is very different when it comes to integration. Unfortunately 
not only is a certain amount of skill needed to perform integration, but also 
there are some functions for which no indefinite integral exists using 
elementary functions. For example, 

J ex' dx 

cannot be determined. 
Consequently the problern we solved numerically, giving the deflection 

of a beam, cannot be solved analytically. Of course it is very unusual to 
have an indefinite integrallike this. In practical situations we usually need 
to determine adefinite integral, and so a numerical method is appropriate. 

d?l 
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You will remernher that we were able to show that any definite integral 
could be given a physical interpretation in terms of an area (Chapter 17). 
In the next two sections we use this fact to derive some formulas which can 
be used to determine integrals approximately. 

18.12 THE TRAPEZOIDAL RULE 

Consider the curve y = f(x) ~ 0 on the interval [a,b] where a < b 
(Fig. 18.7). Suppose we wish to determine the definite integral 

J: f(x)dx 

W e know that this is the area of the region enclosed by the curve, the 
x-axis and the lines x = a and x = b. 

In order to approximate this area we divide it up into n strips each 
parallel to the y-axis and each of equal width h. By doing this we partition 
the interval [a,b] into n equal subintervals each of length h = (b- a)ln 
formed by the points xk = a + kh, where k increases from its initial value 0 
by unit steps until the value k = n is attained. There is a useful notation to 
represent this: k = O(l)n. 

Suppose that Yk = f(xd for k = 0(1)n. Then (xb yd are the points 
where the edges of the strips cut the curve y = f(x). If we join these points 
up we obtain a polygonal curve, and if h issmall the area under the polygon 
will approximate the area under the curve. 

The trapezoidal rule uses this approximation, and so each strip is approx­
imated by a trapezium. You will recall that a trapezium is a quadrilateral 
with just one pair of parallel sides. If we Iook at a typical trapezium 
(Fig. 18.8) we have an area 

y-axis 

0 a b x-axis 

Fig. 18.7 The trapezoidal rule. 
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-h-
Fig. 18.8 A typical trapezium. 

Ak = ~h(Yk-t + Yk) 

To obtain the total area A under the polygon we must add the values of 
Ak for k = l(l)n: 

n 

A = L Ak 
I 

= ~h[(yo + Yt) + (yt + Yz) + · · · + (Yn-1 + Yn)] 

= ~h[yo + 2yt + 2yz + · · · + 2Yn-1 + Yn] 

Now Yk = f(xk) = f(a + kh) for k = O(l)n and a + nh = b, so 

A = ~h[f(a) + 2f(a + h) + 2f(a + 2h) + 
+ 2f(a + {n- l}h) + f(b)] 

h [ n-1 ] = 2 f(a) + f(b) + 2 k~t f(a + kh) 

where h = (b - a)/n. 
The formula written in this way Iooks rather complicated, but it is in fact 

very easy to apply. The trapezoidal metbad is as follows: 
l Partition the interval [a, b) so that the area is divided up into equal strips 

of width h. 
2 Calculate the corresponding y values. 
3 Add the first value to the last value: call this P. 
4 Add up all the other values: call this Q. 
5 Calculate P + 2Q. 
6 Multiply by h and divide by 2. 

We have derived the trapezoidal rule: 

fb h [ n-1 ] 
a f(x) dx = 2 f(a) + f(b) + 2 k~t f(a + kh) 
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lf the maximum value of the modulus of f" on the interval (a, b) is M then 
it can be shown that the error is no more than 

h2 
- M(b- a) 
12 

For functions which have graphs of high curvature this error can be quite 
sizeable, and so the trapezoidal rule is quite limited. Theoretically one 
could argue that it is always possible to increase accuracy by taking more 
and more strips. Unfortunately this often results in error due to rounding 
off, andin problems arising from dealing with !arge numbers of very small 
numbers. 

18.13 SIMPSON'S RULE 

A better rule is known as Simpson's rule. This is named after the colourful 
seventeenth-century charlatan, rogue, plagiarist, astrologer and writer of 
mathematical textbooks, Thomas Simpson. How much he bad to do with 
this rule will probably never be known, but he certainly published it. 

In the trapezoidal rule we approximate the curve by a polygonal curve. 
Simpson's rule uses, instead of segments of straight lines y = mx + c, 
segments of parabolas y = ax2 + bx + c. In order to do this it is necessary 
to divide up the area under the curve into an even number of strips. This 
means that there will be an odd number of points in the partition of the 
interval [ a, b]. 

To simplify matters we shall consider the area under two strips which we 
place symmetrically about the origin (Fig. 18.9). The x values are there-

y-axis 
y = f(x) 

-h 0 h x-axis 

Fig. 18.9 A pair of strips. 
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fore x = -h, x = 0 and x = h, and the corresponding y values are 
y = f( -h), y = f(O) and y = f(h) respectively. We are going to 
approximate the curve y = f(x) by a parabola y = ax2 + bx + c passing 
through these three points. 

The corresponding area is 

Jh (ax2 + bx + c) dx = ßax3 + !bx2 + cx]~h 
-h = (~ah 3 + !bh 2 + eh) 

- [~a( -h)3 + !b( -h)2 + c( -h)] 

= 'jah3 + 2ch 

We must determine a and c. 
The three points are to be on the parabola, and so they must satisfy its 

equation. Consequently 

f(-h) = a(-h)2 + b(-h) + c 
f(O) = aO + bO + c 
f(h) = ah 2 + bh + c 

From the second c = f(O), and then from the first and the third f( -h) + 
f(h) = 2ah 2 + 2f(O). Using these, we have that the area under the 
parabola is 

'jah 3 + 2ch = :\h [f( -h) + f(h) - 2/(0)] + 2hf(O) 
= ~h[f( -h) + 4f(O) + f(h)] 

We can now return to the general situation. You will remernher that we 
divided the area under the curve into an even number of strips. To 
emphasize this we shall Iet 2n be the number of strips, so that 2nh = 

(b - a) (Fig. 18.10). The x values corresponding to this partition are 
therefore xk = a + kh, where k = 0(1)2n. To apply what we have just 
discovered we shall need to take the strips in pairs. A typical pair of strips 
is defined by the partition {xk- h xb xk+ t}. 

We have seen that the corresponding area under a parabola is 

1h[f(xk_t) + 4f(xk) + f(xk+I)] 

If we approximate the area under the whole curve by parabolic segments in 
this way we must total them all to obtain the corresponding area A: 

A = ~h {[f(xo) + 4f(xJ) + f(xz)] + [f(xz) + 4f(x3) + j(x4)] + 
+ [f(xzn-z) + 4f(xzn-I) + f(xzn)]} 

= 1h {f(xo) + f(xzn) + 2[f(xz) + f(x4) + ... + f(xzn-z)] 

+ 4[/(xi) + f(x3) + ... + f(xzn-1)]} 

= ~ [t(a) + f(b) + 2 ~: f(a + 2rh) + 4 ~1 f(a + {2r- 1}h)] 
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y-axis 
y = f(x) 

0 x-axis 

Fig. 18.10 Simpson's rule. 

where h = (b - a)/2n. 
Again we have quite a complicated formula, but it Iooks worse than it is. 

Here is Simpson's method: 
1 Partition the interval [a, b] into an even number of subintervals of equal 

length using points x0 ,x1, ... ,Xzn· 
2 Calculate the corresponding values of y. 
3 Add the first value to the last value: call this P. 
4 Add up all the values at the other even points: call this Q. 
5 Add up all the values at the odd points: call this R. 
6 Calculate P + 2Q + 4R. 
7 Multiply by h and divide by 3. 
We have derived Simpson's rule: 

fb h[ n-1 
a f(x) dx = 3 f(a) + f(b) + 2 ~1 f(a + 2rh) 

+ 4 ~1 f(a + {2r- l}h)J 

If the maximum value of the modulus of J<4> on the interval (a, b) is M, 
then it can be shown that the error is no more than 

h4 
180 M(b - a) 

Of course if the curve happens to be a parabola then Simpson's rule will 
give an exact result. lt may surprise you to learn that there are other 
integrals for which an exact result is obtained using Simpson's rule. For 
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example, the integral of a polynomial of degree three is exactly determined 
using Simpson's rule. 

Now it's time for some more steps. 

_______ 18.14 WorkshoP------~--,1 -----,\ 

I>Exercise Use Simpson's rule to obtain L . 

fn/2 
Vsin x dx 

() 

using six strips and performing arithmetic to five decimal places. 
You will need to tabulate your work. Make sure you get the coefficients 

right. A table with the form shown below is probably the best way of 
proceeding. The totals can then be found and the appropriate factors 
used: 

f(xo) 
f(xl) 

f(x2) 
f(x") f(x4) 
f(x~) 

f(xo) 

f(Xzn-d 
f(x2n-2) 

f(xz") 

We have six strips, so 2nh = 6h = (b - a) = n/2. Therefore h = n/12. 
There are seven points in the partition, and these are xk = kn/12 where 
k = 0(1)6. The corresponding values of Yk are now calculated and arranged 
in the array: 

0.00000 0.50874 
0.84090 0.70711 

0.982 82 0.93060 
1.00000 
1.00000 2.33246 1.63771 

The totals are given at the foot of each column. 
Using 'four times the odd plus twice the even' we obtain 

1.00000 
9.32984 
3.275 42 

13.60526 

from which 

L__ _ _j 
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I= j(rc/12) (13.60526) = 1.18728 

So the estirnated value is 1.187. 
This is an exarnple where the estirnate of error is very difficult to apply. 

To differentiate Jlsin x four tirnes is bad enough, butthat is not the least of 
our worries. lt is not just that it is difficult to handle the trigonornetry to 
exarnine the upper bound (which it is); rnore alarrning, as x ~ 0+ the 
fourth derivative increases without bound! 

A good rule of thurnb when dealing with nurnerical processes of this kind 
is to double the nurnber of strips and recalculate the approxirnation. This 
should give an indication of how accurate the answer is. 

lf you rnade a rnistake in the exercise, try the next one. lf allwas well, 
except possibly for a rninor nurnerical slip, rnove on to the text following. 

[> Exercise Use Sirnpson's rule to obtain 

rn/2 

Jo Jlsin x dx 

using twelve strips and perforrning arithrnetic to five decirnal places. 
This would be no problern to a cornputer with a suitable prograrn, but 

without one you will have to press a few buttons. After all, you have to pay 
a penalty for getting the last problern wrang, and you rnay as well rnake 
sure your calculator earns its keep. Don't duck out of this. 

Wehave twelve strips, so 2nh = 12h = (b - a) = rrJ2. Therefore h = rc/24. 
'-----------' There are thirteen points in the partition, and these are xk = krc/24 where 

k = 0(1)12. The corresponding values of Yk are now calculated and 
arranged in the array: 

0.00000 
0.36128 

0.50874 
0.61861 

0.70711 
0.78023 

0.84090 
0.89070 

0.93060 
0.96119 

0.982 82 
1.00000 0.99571 

1.00000 4.60772 3.97017 
Using 'four tirnes the odd plus twice the even' we obtain 

1.00000 
18.430 88 
7.94034 

27.37122 

frorn which 
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I= j(n/24) (27.37122) = 1.19429 

So we estimate the value as 1.194. 
Comparing this result with the one obtained previously, we see that they 

agree to two decimal places that the integral is 1.19. We might feel there is 
a possibility that still more strips could change the last decimal place, and 
so we will opt for 1.2 as an approximate value. 

Weil, that's almost all there is for this chapter. We have examined a 
number of numerical techniques, and some of these you may be able to 
employ when solving equations which cannot be handled analytically. 
Numerical analysis is a vast subject, and there are many different 
techniques which have been developed to deal with almost any problern 
which can arise. High-speed computers have revolutionized the approach 
to many of them, but you must remernher that a computer does not always 
give the whole picture. The program has been written by a human being 
and things might have been overlooked. An answer given by a computer is 
not always right, any more than something printed in a book is always 
right. Forewarned is forearmed. 

Now it's time to take your forearms off the desk and tackle a practical 
prob lern. 

--------18.15 Practical _______ _ 

CONDUCTION 

If 8 = 8(x) is the temperature at any point distance x from one end of a 
heat-conducting fin (Fig. 18.11 ), then 8 satisfies the equation 

d28 1 d8 r2 
-+----8=0 
dx 2 x dx x 

where 

r 
h 

! 
-------L----
Fig. 18.11 Section of fin. 
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r2 = 2:: [ 1 + c:rr/2 
Here h is the width of the fin, L is the length, a is the coefficient of 
heat transfer and k is the thermal conductivity. It is given that 8(L) = 81 

and 8(0) = 80 , and the units are standardized so that L = 1, 80 = 20, 
81 = 100 and r = 2. Approximate the equation by means of approxima­
tions of order h2 where h = 0.25, and thereby estimate 8 at x = 0.25, 0.5 
and 0.75. 

It is a good idea to see if you can do this by yourself. We have already 
solved a very similar problem, and so you have a blueprint with which to 
work. As usual weshall solve it stage by stage so that you can join in with 
the solution as soon as possible. 

The first thing to do is to use the approximations in the equation. 

1 Wehave 

So 

8(x + h)- 28(x) + 8(x- h) 
X h2 

+ 8(x + h)- 8(x- h) _ r28(x) = 0 
2h 

2x[8(x + h)- 28(x) + 8(x- h)] 

+ h[8(x + h)- 8(x- h)]- 2h 2 r 2 8(x) = 0 

2x[8(x + 0.25)- 28(x) + 8(x- 0.25)] 

+ 0.25 [8(x + 0.25)- 8(x- 0.25))- 0.58(x) = 0 

[2x + 0.25)8(x + 0.25)- [4x + 0.5)8(x) + [2x- 0.25)8(x- 0.25) = 0 

Now we have the' basic equation we need to estimate the required 
temperatures. To ease the notationweshall put a = 8(0.25), b = 8(0.5) 
and c = 8(0.75). Try it and see how it goes. 

2 We use the boundary conditions and put x = 0.25, x = 0.5 and x = 0.75 
in turn to obtain 

0.75b - 1.5a + 0.25(20) = 0 
1.25c - 2.5b + 0.75a = 0 

1.75(100) - 3.5c + 1.25b = 0 

Finally, solve these to obtain estimates of the temperatures that we 
require. 
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3 The equations become 

3b- 6a + 20 = 0 
Sc - lOb + 3a = 0 

700 - 14c + Sb = 0 

(1) 
(2) 
(3) 

Equation (1) gives a = (3b + 20)/6, and equation (3) gives c = 
(700 + Sb)/14. Substituting these into (2) gives 

3SOO + 2Sb - 140b + 21b + 140 = 0 

Therefore 94b = 3640 and so b = 38.723. Lastly, substituting back we 
obtain 

a = (3 x 38.72 + 20)/6 = 22.69S 
c = (700 + S X 38.72)/14 = 63.830 

Therefore the temperatures where x = 0.2S, x = O.S and x = 0.7S are 
22.7, 38.7 and 63.8 approximately. 

SUMMARY 

Here is a Iist of the topics we have studied in this chapter: 
0 Solutions of the equation f(x) = 0 by 

a bisection method 
b regula falsi 
c secant method 
d Newton's method. 

0 Approximations for derivatives 
a approximations of order h 

f'(x) = f(x + h) - f(x) 
h 

f'(x) = f(x) - f(x - h) 
h 

b approximations of order h2 

f'(x) = f(x + h) ~ f(x - h) 

f"(x) = f(x + h) - 2f~) + f(x - h) 
h 

0 Numerical integration 
a trapezoidal rule 
b Simpson's rule. 
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EXERCISES 

1 Solve the following equations by the bisection method giving your 
answers correct to four significant figures: 
a x = 2sin2 x 
b expx = 1 + cosx2 

2 Using the regula falsi method and the equation 

f(x) = x3 expx- 1 = 0 

obtain a formula to give a better approximation c in terms of a and b 
where f(a) < 0 and f(b) > 0. Obtain integer values of a and b. 

3 Using the secant method and the equation 

f(x) = x3 + x- 5 = 0 

obtain an iterative formula which gives Xn+ 1 in terms of Xn and Xn-l· 

Calculate suitable integer starting values x0 and x 1• 

4 Use Newton's method to solve each of the following equations correct to 
five decimal places: 
a x 3 + x 2 = 4x - 1 
b x- 2 = lnx 

5 Use the trapezoidal method with six strips and working to five decimal 
places to estimate 

a J:12 
sin V(x 2 + 1) dx 

b J:12
ln (1 + sinx) dx 

6 Use Simpson's rule, with six strips, working to five decimal places, to 
estimate 

a J~ exp(1- x2)dx 

b J:12 
cos Vx dx 

ASSIGNMENT 

1 The bisection method is used to solve the equation ex = 3x using [0, 1] as 
the initial interval and working to five decimal places. How many steps 
are needed to guarantee accuracy to three decimal places? Solve the 
equation using this method to achieve this accuracy. 

2 Calculate the iterative formula corresponding to Newton's method for 
solving the equation f(x) = ex - 3x = 0. Solve this equation using 0 as a 
starting value to obtain a solution accurate to three decimal places. 



FURTHER EXERCISES 555 

3 Determine the iterative formula corresponding to the secant method for 
soiving f(x) = ex - 3x = 0. Work through three iterations with starting 
values x0 = 0 and x1 = 1. 

4 By writing y = f(x), and using approximations of order h2 for the 
derivatives, obtain a finite difference approximation for the differential 
equation 

d2y dy 
dx2 + 2 dx + y = sec x 

5 Using six strips and working to seven decimal places, estimate the value 
of 

J: xex'dx 

by Simpson's rule. Check the accuracy of your solution by (a) doubling 
the number of strips (b) obtaining the exact integral. 

FURTHER EXERCISES 

1 Use Simpson's rule to evaluate 

J: cos ~1+ 2 

using five ordinates. Determine the integral directly and thereby show 
that Simpson's rule underestimates the integral by less than 0.28%. 

2 Show graphically that the curves y = ex - 1 and y = In (x + 2) intersect 
at two points. Use Newton's method to obtain the )arger of the roots of 
the equation ex = 1 + In (x + 2). Give your answer correct to two 
decimai piaces. 

3 Use a graph to show that the equation x2 - 4 = In x has just two real 
roots. Obtain, using Newton's method, the Iarger of the roots correct to 
three decimal places. 

4 Use any numericai method to obtain the roots of the equation 
x = 2 - ex correct to three decimai places. 

5 Starting with the approximation x = 0.6, obtain the real root of the 
equation x = e -x correct to four decimal places. 

6 Show that if a is an approximate root of the equation x In x - x = a 
(where a is real) and if p = In a - a, then a better approximation 
is given by ß where ß = (a + a)/(p + a). 

7 Evaluate approximately 
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using eight strips (seven ordinates) by (a) the trapezoidal rule (b) 
Simpson's rule. Work to five decimal places and show that the error in 
the result obtained by the trapezoidal rule is less than 0.0026. 
Determine the integral exactly and thereby show that Simpson's rule is 
accurate in this instance. 

8 Simpson's rule gives the exact result if the function tobe integrated is a 
polynomial of degree three or less. Use this fact and two strips to derive 
the formula V= rr,h(3a2 + 3b2 + h2)/6 for the volume of a segment of a 
sphere of height h and base radii a and b. 

9 The response u of a system is given at timet by the equation duldt = -u 
where the units have been standardized. Put u = u(t) and approximate 
the derivative with an approximation of order h. 
a Use the initial value u(O) = 1 with the step length h = 0.2 and five 

iterations to estimate u(1). 
b Use integration to obtain the exact solution and thereby calculate the 

percentage error in a. 
(The numerical method outlined in this problern is usually known as 
Euler's method for solving a first-order differential equation.) 

10 Write down Maclaurin's expansion (Taylor's expansion about the 
point 0) for the function y = y(x) which has derivatives of all orders, 
and show that if y' = 1 - xy and y(O) = 0 then 

y(h) = h - h3/3 + h5115 - h 71105 + ... 

Estimate the value of y(0.5) to four decimal places. 

11 Show that the equation 2x2 - 4e-x - 7 = 0 

has a root near 1.4 and use Newton's method to obtain an ap­
proximation which is correct to 3 significant figures. 

12 Show that when Newton's method is applied to the equation 
e-x-sinx=O 

the iterative formula for Xn+I becomes 

e-Xn- SißXn 
Xn+l = Xn + ____ __;":;_ 

e-Xn + COSXn 

Hence, or otherwise, obtain the smallest positive root correct to 
3 decimal places. 

13 A semi-circular plot of land is to be divided into two equal areas 
by means of a fence which extends on a chord from one end of the 
diameter to the perimeter. The angle between the chord and the 
diameter is 0 (radians). Show that 

• 1r 
20 + Slß 20 = 2 

Solve this equation, by means of any suitable numerical method, 
to determine (} to three decimal places. To enable the construction 
to be completed, convert this angle into degrees. 
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First-order differential 

equations 

Although we have studied integration as the reverse process of dif­
ferentiation, integrals do not always present themselves explicitly in 
applications. lnstead an equation involving derivatives is obtained 
and some method of eliminating thesederivatives is needed. This is 
the subject of our next section of work, differential equations. 

After studying this chapter you should be able 
D ldentify a differential equation and be able to state its order and 

degree; 
D Recognize the standard form of three basic types of first-order 

differential equation; 
D Solve variables separable, linear and homogeneaus equations; 
D Apply simple Substitutions to convert equations into one of these 

three types. 
At the end of this chapter we shall solve practical problems in circuits 
and vehicle braking. 

19.1 TERMINOLOGY 

You have already solved some first-order differential equations, although 
you may not be aware of the fact! The process of integration is equivalent 
to the solution of a very simple first-order differential equation. If you 
don't forget to put in the arbitrary constant you will obtain the generat 
solution. 

What then isadifferential equation, and what do we mean by saying that 
we have solved it? An ordinary differential equation is an equation 
involving two variables ( say x and y) and ordinary derivatives. The highest-
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order derivative which is present determines the order of the differential 
equation. So for instance 

( d2y)3 (dy)4 - +- +y=O 
dx2 dx 

is a differential equation of the second order. Notice here that the second­
order derivative occurs raised to the power of 3, and so this isadifferential 
equation of the third degree. The first-order derivative occurs raised to the 
power of 4 but, since this is not the derivative which determines the order 
of the differential equation, this does not affect the degree of the equation. 
To avoid complications, and because differential equations of high degree 
do not arise often in applications, we shall confine our attention to 
equations of the first degree. 

0 Identify the degrees and orders of the following differential equations: 

( d3y)2 (d2y)4 
a dx3 - x dxz + y = 0 

( d2y ) (dy)3 b y dxz + x + dx + x = 0 

( d2y)3 (dy )2 c - + -+y =0 
dx2 dx 

when you have made your decision, read on and check you are right. 

Here are the results: 
a This is a third-order equation of degree 2. 
b This is a second-order equation of degree 1. 
c This is a second-order equation of degree 3. • 
Now that we have described what a differential equation is, we need to say 
what we mean by saying we have solved the equation. Usually we are given 
not only the differential equation itself but also some initial or boundary 
conditions which have to be satisfied too. For the moment, though, Iet us 
confine our attention to the differential equation itself. 

A solution of the differential equation is an equation between the two 
variables concerned, x and y, which is 
1 Free of derivatives; 
2 Consistent with the differential equation. 
Differential equations have many solutions, but we shall be interested in 
the generat solution. Consider for example the equation 

dy = 1 
dx 
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By inspection we see that y = x is a solution of this equation, and that so 
too is y = x - 5 or indeed y = x + C where C is any constant. Moreover, 
any solution of this differential equation can be expressed in the form 
y = x + C where C is some arbitrary constant. 

This should come as no surprise to us, of course. We began with a first­
order differential equation and have obtained a solution which is neces­
sarily free of the derivative. Therefore a process equivalent to a single 
integration must have occurred, and this is bound to result in the presence 
of an arbitrary constant. 

Continuing this line of thought, we shall expect the generat solution of a 
differential equation of order n and degree 1 to contain n independent 
arbitrary constants. 

So we already know how to solve one very important type of first-order 
differential equation: 

dy 
- = f(x) 
dx 

To solve this equation we merely integrate both sides with respect to x; 
remembering not to omit the arbitrary constant. 

In fact we can generalize this very slightly to deal with a whole class of 
differential equations. These are equations which can be expressed in the 
form 

dy f(x) 
-=--
dx g(y) 

where f and g are real functions. 

19.2 VARIABLES SEPARABLE EQUATIONS 

Any differential equation which can be expressed in the form 

dy f(x) 
-=--
dx g(y) 

where f and g are real functions, is known as a variables separable 
differential equation. lt can be solved easily by writing it in the form 

g(y) ~~ = f(x) 

and integrating both sides with respect to x. We obtain then 

J g(y) dy = J f(x) dx 
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Naturally we do not obtain two independent arbitrary constants because 
the equation 

G(y) + A = F(x) + B 

where A and B are arbitrary constants can be replaced by 

G(y) = F(x) + C 

where C = B - A. 

The problern of solving variables separable differential equations therefore 
is twofold: 
1 ldentifying which equations are variables separable; 
2 Performing the necessary integrations. 

0 Solve, for y > 0, the equation 

dy 
--xy=y 
dx 

We may rewrite this equation in the form 

So that, since y =I= 0, 

Consequently 

And so 

dy = y + xy = y(1 + x) 
dx 

1 dy 
--=1+x 
y dx 

I~ dy = I (1 + x) dx 

In y = x + !x2 + C 

Note that, strictly speaking, without the information that y > 0 we should 
have to represent the solution as 

In IYI = x + ;x2 + C (y =I= 0) 

and also include the solution y = 0. In fact we shalllimit discussions of this 
kind in this chapter because to do so could obscure the methods. • 

0 Solve the differential equation 

dy = ex-y 

dx 
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At first sight this may not Iook like a variables separable equation, but we 
need to remernher from the laws of indices that 

Now it is clear that we can put all the terms in x on the right and all the 
terms in y on the left and proceed to integrate throughout with respect to x. 
This produces 

From which 

where C as usual is the arbitrary constant. If we wish, we can make y the 
subject of the equation. Then 

y = In (ex + C) 

By the way, don't make the mistake of delaying to put in the arbitrary 
constant. It must go in at the moment of integration; it cannot be added 
on as an afterthought. For instance, here we would obtain (ignoring the 
arbitrary constant) 

From which 

y=x 

Whoops, forgot the arbitrary constant. So 

y =X+ C 

No! This will not do. Watch out for this and similar errors. • 
Now let's take some steps to make sure we know how to separate the 
variables. 

________ 19.3 Workshop ______ d?J_
1

, 

[> Exercise Obtain the generat solution of the following differential equation: 

~~ = sin (x + y) + sin (x - y) 

If after you have given the matter some thought you can't see how the 
variables separate, then take another step for a clue. Otherwise try to solve 
the equation and move ahead to step 3. 
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The expansion formuias for sin (x + y) and sin (x - y) when added 
tagether reduce the Ieft to the product of a sine and a cosine. Alternativeiy 
you can combine them using the addition formuias. The result is the same 
either way: 

dy 2 . 
dx = sm x cos y 

Now soive the equation, and when you have finished take the next step. 

l3\l We have 

dy 2 . 
dx = sm x cos y 

from which, since y =I= 0, 

I sec y d y = I 2 sin x dx 

so that 

In I sec y + tan y I = -2 cos x + C 

Here you wouid not be expected to rearrange the equation in order to 
make y the subject, as this is not particuiarly easy to do. Nevertheiess, as 
a slight diversion and to help brush up our algebraic and trigonometrical 
skill, weshall have a go. Why not have a go at it yourself first? If you don't 
feel you could manage it, at least follow through the working carefully. 
You shouid be able to pick up a few usefui tips. 

We must take great care when dealing with exponentiais and logarithms. It 
'------' may be very tempting to expand out a Iogarithm, but if we repiace the Ieft­

hand side by 

In lsec Yl + In ltan Yl 

we shall have made a bad mistake. Instead we remove the Iogarithm by 
using the definition to obtain 

lsecy + tanyl = e-2cosx+C 

From which 

lsec y + tan Yl = A e-2cosx 

where A is another arbitrary constant (in fact positive since C = In A). 
Let us write 
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k = A e-2cosx 

so that we now have 

secy + tany = ±k 

Multiplying through by cos y gives 

1 + sin y = ±k cos y 

Squaring produces 

(1 + siny)2 = k 2 cos2 y = e (1- sin2 y) 
sin2 y + 2 sin y + 1 = k 2 - k 2 sin2 y 

(1 + k 2) sin2 y + 2 sin y + (1 - k 2) = 0 

This factorizes to give 

(sin y + 1)[(1 + k 2) sin y + (1 - k2)] = 0 

(1) 

Now sin y =I= -1, as can be seen by considering the original equation (1), 
and consequently 

Now 

1 - k2 

sin y = - 1 + k2 

Therefore finally we obtain 

A2 e-4cosx _ 1 
sin y = A2 e-4cosx + 1 

Here now isanother equation which, although not variables separable as 
it stands, can be transformed into a variables separable equation easily by 
means of a substitution. 

I> Exercise Solve 

~~ = sin (x + y) 

Have a Iook at this and see if you can choose the substitution. Then step 
ahead. 

Suppose we put z = x + y. Then we obtain, differentiating with respect 
to x, L__ _ __J 

dz = 1 + dy 
dx dx 
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So the equation becomes, on substituting, 

dz = 1 + sin z 
dx 

When we separate the variables we are left with two integrals to find- one 
easy, the other not so easy: 

J 1 +d~n z = J dx 

We shall concentrate on the integral on the left for the moment: 

J dz = J 1 - sin z dz 
1 + sin z cos2 z 

The solution is therefore 

= J (sec2 z - sec z tan z) dz 

= tan z - sec z + C 

x = tan z - sec z + C 

So that substituting back we obtain 

x = tan (x + y) - sec (x + y) + C 

19.4 LINEAR EQUATIONS 

We are now ready to Iook at the next type of first-order differential 
equation. Any equation which can be written in the form 

:~+Py=Q 
where P and Q depend on x only, is known as a linear first-order 
differential equation. 

Hereis an example: 

In order to arrange this in standard form we must divide by x and take the 
term in y to the left. When this is done we have 

dy 2 1 3 --xy=-+x 
dx x 
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1 
Q =- + x3 

X 

Sometimes an equation is both variables separable and linear! See if you 
can construct an example which is both. It's not too difficult if you bear in 
mind the special features which each one has to have. Hereis one example: 

dy 
dx = xy + x 

Now Jet us see how to go about solving a linear differential equation. We 
shall first describe the process by which we obtain the solution and pick out 
the crucial steps Jater to obtain a direct method. Don't be too concerned if 
things seem a little complicated at first; we won't have to go through all this 
work whenever we want to solve an equation! To have a good under­
standing, however, it is best to have a peep behind the scenes. 

The linear equation is an example of a general dass of differential 
equations which can be solved by means of a device known as an 
integrating factor. An integrating factor is an expression which when 
multiplied through the equation makes it easy to integrate. Suppose in the 
case which we are considering ((dyldx) + Py = Q) it is possible to multiply 
throughout by some expression I and thereby express the equation in the 
form 

d 
dx (ly) = IQ 

Of course you may object to this on the grounds that I may not exist. 
However, suspend disbelief for a little Ionger to discover the properties 
which I would have to possess. 

Using the product rule we obtain 

dy dl 
I-+ y- = IQ 

dx dx 

So that comparing with 

dy 
I dx + IPy = IQ 

we deduce that 

dl 
y dx = IPy 
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dl = IP 
dx 

So there it is: we are looking for I satisfying the equation 

dl = IP 
dx 

Any I which satisfies this will do, so that here (unusually) we can forget 
about an arbitrary constant! 

Now this is a variables separable differential equation for I, since P 
depends solely on x. So separating the variables we obtain 

J ~I= J P dx 

from which 

lnl= J Pdx 

The expression on the right can be obtained easily by direct integration, 
and so we have 

I= ef Pdx 

Remarkably, then, it is possible to solve the linear type of differential 
equation by means of an integrating factor, and the equation then becomes 

d 
dx (Iy) = IQ 

From this it follows immediately that 

Iy = J IQ dx 

Before we do an example we shall summarize this method for solving a 
linear differential equation: 
1 Express the equation in the form 

dy + Py = Q 
dx 

where P and Q depend solely on x. 
2 Identify P and Q and calculate the integrating factor 

I= ef Pdx 

(1) 
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3 Multiply equation (1) by I to reduce it to the form 

d 
- (Iy) = IQ 
dx 

4 Integrate throughout to obtain the solution 

Iy = J IQ dx 

There are just three other points to remember. First, we can ignore any 
arbitrary constant when calculating I. Secondly, we do not need to worry 
about how the integrating factor works. When we multiply through by I the 
left-hand side of the equation automatically becomes 

d~ (integrating factor x y) 

Thirdly, in the final integration we must include an arbitrary constant 
as usual. 

Weil now! It's time to work through an example. 

0 Solve the differential equation 

dy . . 2 
COS X dx + y Sill X = Sill X 

We arrange it in standardform by dividing throughout by cos x. lt helps if 
we remember the trigonometrical identity sin 2x = 2 sin x cos x. So we 
now have 

:~ + y tan x = 2 sin x 

Of course we have now also assumed that cos x is non-zero, and we should 
ensure that we represent that fact in the solution. 

The equation is now in standard form, and so we can identify P and Q: 

P = tan x Q = 2 sin x 

Now we calculate the integrating factor I. We have 

J P dx = J tan x dx = -ln ( cos x) = In (sec x) 

So 

I = eln(sccx) = sec X 

Strictly speaking we have assumed cos x > 0, but this is also an integrating 
factor if cos x < 0. 
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Multiplying through the equation by I produces 

d~ [(sec x)y] = 2 sin x sec x = 2 tan x 

Integrating throughout with respect to x gives 

(sec x)y = J 2 tan x dx = -2 In (cos x) + C 

= In (sec2 x) + C = In (A sec2 x) 

where C and A are arbitrary constants. Finally, 

y = cos x In (A sec2 x) 

where A is a positive arbitrary constant. Note that the solution is not 
defined when cos x = 0, and this is consistent with the remark we made 
earlier. • 

Now it is time for you to try to solve one of these equations. Remernher the 
four stages in the solution and you should have no difficulty. 

r-r--------19.5 Workshop ______ _ 

LfLl Exercise Solve the differential equation 

x dy = y + x3 
dx 

First put the equation into standard form and identify P and Q. As soon as 
you have done this, check ahead that you have got things right. 

You must divide through by x to put the equation into the standard form . 
.____ _ _. Observe that if x = 0 then y = 0; therefore our solution must include this 

possibility. If you did the rearrangement correctly you should obtain 

dy y 2 ---=x 
dx x 

from which P = -x-1 and Q = x 2• 

Did you include the minus sign? It is a common error to overlook it! If 
you made a slip then notice where things went wrong to avoid the mistake 
next time. 

Now calculate the integrating factor. Only when you have done this 
should you read on! 

[5 You should have written down 
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J P dx = J -x - 1 dx = -In x 

If the integral caused problems, perhaps you differentiated instead of 
integrated. Remember: differentiation is not integration, and integration is 
not differentiation! 

Next the integrating factor I is obtained from 

I= exp (-In x) = exp (In x- 1) = x- 1 

Maybe a slip or two has occurred here. If you wrote down -x then you 
have misused the laws of logarithms. You should not include the arbitrary 
constant as it is superftuous at this stage. 

Once you have corrected any errors, use the integrating factor to solve 
the equation. As soon as you have done this, take the next step to see 
the result. 

Multiplying the equation by I produces straight away 

d~ (~) = :2 =X 

There is no need to go back and wrestle with the equation. The chances are 
that if you have done so you will have made some sort of mistake. 

Lastly, integrating with respect to x gives the solution 

y xz 
-= -+ c 
X 2 

so that on multiplying up by x we obtain 

x3 
y=z-+Cx 

Note that in this form we include the solution at x = 0. 
That was quite straightforward, wasn't it? Notice the four stages to the 

solution, and how we followed each one through to the end. 
Of course not all problems are quite as easy as this one. Often a rather 

unpleasant integral is produced and has to be sorted out. In the worst 
situations it is not possible to complete the second stage. In such 
circumstances we must either find another method or resort to some 
numerical technique to obtain the solution. However, the numerical option 
is only available if we have a boundary condition and therefore do not 
require the generat solution. 

Here is an exercise which is not quite as Straightforward as the previous 
one but nevertheless can be solved by proceeding through all the stages. 

[> Exercise Solve the equation 
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exp x ~~ + y exp 2x = exp 3x 

If you managed the previous one without mistakes you might like to have a 
go at this completely on your own. Make a real effort and see if you can 
manage it. When you have finished, Iook ahead at the answer and see if 
you are right. Even if your answer Iooks wrong it may nevertheless be 
correct because it is often possible to write solutions to differential 
equations in different forms. Therefore, if you are in doubt, differentiate 
your answer and see if it satisfies the differential equation; remember the 
chain rule! 

If you made mistakes with the previous example then a few more steps 
are necessary. First, put the equation into standard form so that it is 
recognizable as a linear type and identify P and Q. Then step ahead. 

To put it into standard form so that it is recognizable as a linear type it is 
'------' necessary to divide throughout by exp x. This gives 

dy 
dx + y exp x = exp 2x 

from which it follows that 

P = exp x Q = exp 2x 

If you didn't manage that then you have forgotten the laws of indices and 
you would be weil advised to brush up on them ( Chapter 1). 

Now obtain the integrating factor. When you have done so, take the next 
step. 

~ Now f exp x dx = exp x, so that 

'------' 

I= exp ex 

You didn't make an incorrect simplification, did you? The answer is 
certainly not x. 

Lastly, complete the solution and take the final steps. 

Multiplying through the equation by I gives 

d 
dx [(exp ex)y] = exp ex exp 2x 

so that 

(exp ex)y = J exp ex exp 2x dx 
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If you've made it to here, all that remains is to determine the rather nasty 
looking integral on the right. A substitution is called for; can you see what 
it is? 

lt's best to put u 
reduces to 

exp x. Then duldx = exp x = u, so the integral 

J u exp u du 

and this can be obtained by integration by parts: 

J u exp u du = u exp u - J exp u du = u exp u - exp u + C 

So we have 

(exp ex)y = exp x exp ex- exp ex + C 

and therefore 

y = exp x - 1 + C exp -ex 

where C is an arbitrary constant. 

19.6 BERNOULLI'S EQUATION 

You will remernher that when we were considering variables separable 
equations there were some equations which, although not variables sepa­
rable as they stood, could be made so by means of a Substitution. In a 
similar way it is sometimes possible to reduce an equation to a linear type 
by making a substitution. Although there are many different situations 
where this is true, one type of equation- known as Bernoulli's equation­
is worthy of special note. 

Bernoulli's equation is any equation which can be expressed in the form 

dy + Py = Qyn 
dx 

where P and Q depend solely on x, and n is constant (n =F 1). 
You will notice how similar this equation is to the standard form of the 

linear equation. In fact the only difference is the term in y on the right. To 
reduce the equation to a linear equation we make the substitution 

1 
z = n-1 y 

....____ _ __, 
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lt then follows that 

dz = -(n - 1) dy 
dx dx 

Now dividing through Bernoulli's equation by yn gives 

_!_ dy + _!__ = Q 
Yn dx yn-1 

so that when the substitutions are made, 

1 dz 
- ( n - 1) dx + Pz = Q 

This is now a linear type where the variables are z and x, so it can be solved 
by the standard technique. Finally, the solution of the original equation 
can be obtained by substituting back for z. 

Let us do an example. 

D Obtain the generat solution to the equation 

dy y 2 
-+-=xy 
dx x 

This is Bernoulli's equation in the case n = 2, so we make the substitution 
z = y- 1• Then 

dz -1 dy 
dx=7dx 

so that dividing the equation through by y2 yields 

from which 

1 dy 1 
--+-=x 
y2 dx xy 

dz z 
--+-=X 

dx x 

dz z --- = -x 
dx x 

This is a linear type in standard form and so we solve it in the usual way. 
Why not have a go on your own? 

P = -x-1 and Q = -x, so that 

J Pdx = J -x- 1 dx = -lnx 
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Consequently 

Therefore 

From which 

d 
- (x- 1z) = -xx-1 = -1 
dx 

z - = -x + C 
X 

so that z = -x2 + Cx. Now z = y- 1; therefore substituting gives 

y = (-x 2 + Cx)- 1 

where Cis an arbitrary constant. 

19.7 HOMOGENEOUS EQUATIONS 

• 

Finally we shall consider a type of differential equation known as 
homogeneous. Before describing how to recognize an equation of this kind 
we need to say what is meant by a homogeneous function. 

Consider the two expressions 

f(x,y) = x 2 + 2xy - y2 

g(x,y) = x3 + 3xy - y 3 

Suppose we replace x and y by tx and ty respectively. Then we obtain 

f(tx, ty) = (tx)2 + 2(tx)(ty) - (ty)2 

= t 2 (x 2 + 2xy - y 2) = t 2f(x,y) 

We say that f is homogeneous of degree 2. 
On the other band, 

g(tx, ty) = (tx)3 + 3(tx)(ty) - (ty)3 

and it is not possible to extract all the 't's as factors. 
In general, if fis a function of two variables x and y, we say that fis a 

homogeneaus function of degree n if and only if 

f(tx, ty) = tnf(x,y) 

Let us see how this applies to differential equations. 

A first-order differential equation is said to be a homogeneaus equation if 
and only if it can be expressed in the form 
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dy f(x,y) 
dx = g(x,y) 

where fandgare both homogeneaus functions of the same degree. 
If the expression on the right is a quotient of two homogeneaus functions 

of the same degree, then if we substitute y = vx into it, all the 'x's cancel 
out and it reduces to terms in v. lt follows that the substitution y = vx 
reduces any homogeneaus equation to a variables separable type. 

Let us illustrate the method by means of an example. 

D Solve the equation 

dy xy - y2 

dx x 2 + xy 

We apply our simple test. We put y = vx into the right of the equation and 
see what results. This gives 

xvx - ( vx )2 _ v - v2 

x2 + xvx - 1 + v 

which is an expression depending solely on v. 
Now we use the same substitution y = vx to reduce the equation to a 

variables separable type. Let us see how this works. If y = vx then, 
differentiating with respect to x, 

so the equation becomes 

Therefore 

dy dv 
-=v+x­
dx dx 

dv v - v2 
v+x-=---

dx 1 + v 

dv v - v2 
x-=----v 

dx 1 + v 

v - v2 - v(1 + v) 
= 

1 + V 

-2v2 
=--

1 + V 

This is now variables separable, and consequently 

-- dv = - dx J1+v J1 
-2v2 x 

Thus 
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1 1 
2v - 2 In lvl = In lxl + C 

where C is an arbitrary constant. 
Finally, we substitute back to remove v from the equation since v was a 

term which we introduced ourselves: 

;y - ~ In I~ I = In lxl + C 

which is 

~ = ~In I~~ + In lxl + C 

1 
= 2In JxyJ + C • 

Ready to take a few steps? 

19.8 Workshop _______ r{l 

I> Exercise Consider the differential equation ~ 
dy y2 - xy 
dx = xy + x2 

Make a substitution to reduce the right-hand side to terms in v. When you 
have done so, take the next step. 

Putting y = vx into the right-hand side of the equation gives 

(vx)2 - x(vx) 
x(vx) + 7 

Cancelling x 2 top and bottom results in 

v2 - v 

V+ 1 

which depends solely on v. 
All right so far? If not then make sure you know where you went wrong. 

Now complete the reduction to variables separable type and take another 
step. 

Substituting into the equation produces 
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dv v2 - v 
x-+v=--

dx v + 1 
from which 

dv -2v 
x-=--

dx v + 1 

That should have caused no problems. Now solve the equation in terms of 
v and x and take another step. 

B Separating the variables and integrating gives 

So 

J! dx = J v + 1 dv 
x -2v 

V 1 
In lxl = -- - -In lvl + In k 

2 2 

where k is an arbitrary constant. 
Check carefully if you have a different answer. Of course the constant 

may be expressed differently. Lastly, substitute back to eliminate v and 
take the final step. 

~ You should obtain 

In lxl = - L - ! In ll: I + In k 
2x 2 x 

Multiplying through by 2 and rearranging gives 

2 In lxl + In I ~I -2 In k + ~ = 0 

Using the laws of logarithms, in particular 2 In a = In a2 and In (ab) = 
In a + In b, produces the solution 

x In (A ixyi) + y = 0 

where A is an arbitrary constant (A = k-2). 

19.9 REDUCIBLE EQUATIONS 

As with the other types of first-order equation we have discussed, there 
are some equations which although not homogeneous can be made so by 
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means of a change of variable. For instance, consider an equation of 
the form 

dy a1x + b 1y + c1 

dx a2x + b2y + c2 

We wish to transform the variables x and y to obtain new variables X and 
Y. We take X= x - A and Y = y - B. So the equation becomes 

dY a1X + b1Y 

dX a2X + b2Y 

In order to achieve this objective we require 

a1A + b1B + c1 = 0 
a2A + b2 B + Cz = 0 

This means that we can think of (A, B) as the point at which the pair of 
straight lines 

a1x + b 1y + c1 = 0 
a2x + b2y + c2 = 0 

intersects. (We shall consider later the case of parallellines, where there is 
no point of intersection.) 

So now we have a simple method. Let us state precisely what we have to 
do. To solve the reducible equation 

d y a 1 X + b 1Y + C 1 

dx a2x + bzy + Cz 

I Obtain the point (A, B) where the straight lines 

a1x + b 1y + c1 = 0 
a2x + b2y + c2 = 0 

intersect. 
2 Change variables by writing X = x - A and Y = y - B so that 

dy = dY = dY dX = dY l dY 
dx dx dX dx dX dX 

3 The equation then becomes 

dY a1X + b 1Y 

dX a2X + bzY 

which is homogeneaus and can be solved in the usual way. 
4 Replace X and Y by x - A and y - B respectively to obtain the solution 

to the original equation. 
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Time now for an example. We shall see that sometimes a nasty integral 
results. However, if we remernher our work on integration (Chapters 
15-17) and a few basic standard forms this task should present no great 
difficulty. 

0 Solve the equation 

dy X+ y- 3 - = _ __:. __ 
dx 2x - y - 3 

First solve the pair of simultaneaus equations 

x+y-3=0 
2x-y-3=0 

Subtracting gives at once 

-x + 2y = 0 

So x = 2y. Substituting for x in the first equation we obtain 3y- 3 = 0, and 
therefore y = 1 and x = 2. 

Now make the Substitutions X= x - A and Y = y - B; in this case, 
X = x - 2 and Y = y - 1. This produces 

dY X+ Y 
-= 
dX 2X- Y 

Notice that we do not have to think very hard at this stage. First, the 
coefficients of X and Y are the same as the coefficients of x and y 
respectively in the original equation. Secondly. we can replace the deriva­
tive dyldx by d YldX since we have already considered the change of 
variable in detail. 

Now solve the homogeneaus equation 

dY X+ Y 
-= 
dX 2X- Y 

As usual we make the substitution Y = VX (it is neater to use capitalletters 
throughout). This gives 

dV X+ VX 1 +V 
X dX + V = 2X - VX = 2 - V 

Consequently 

X dV = 1 + V _ V = 1 - V + V2 

dX 2- V 2- V 

As a result we obtain 

J dX = J 2- V dV 
X 1- V+ V2 
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I 2-V 
= (V - 112)2 + 3/4 dV 

1 I (2V- 1) - 3 
= -2 (V - 112)2 + 3/4 dV 

The numerator has been split up so that one part is the derivative of the 
denominator and the other is constant. In this way the integral can be seen 
to be the sum of two, one a logarithm and the other an inverse tangent: 

-!In ((V- l/2f + 3/4] + (3/2)(2/V3) tan- 1 ((V- 112)/(V3/2)] + constant 

So the solution is 

In X= -!In (V2 - V+ 1) + (V3) tan- 1 ((2V- l)/V3] + constant 

Now Y = VX, where X= x- 2 and Y = y - 1. So multiplying by 2 we 
obtain 

2 ln X+ Jn(V2 - V+ 1) = 2(V3) tan- 1 [(2V- 1)/V3] + constant 

Eliminating V, 

In (Y2 - YX + X 2 ) = 2(V3) tan- 1 ((2Y- X)I(V3)X] + constant 

Lastly, substituting in terms of x and y, 

ln [(y - 1)2 - (y - 1)(x - 2) + (x - 2)2] 

= 2(V3) tan- 1 {[2(y - 1) - (x - 2)]/(V3)(x - 2)} + C 

Therefore 

Finally, 

ln[y 2 - 2y + 1 - (xy - x - 2y + 2) + x2 - 4x + 4] 
= 2(V3) tan- 1 [(2y -- x)I(V3)(x - 2)] + C 

ln(x2 + y2 - xy - 3x + 3) = 2(V3) tan- 1 [(2y - x)!(V3)(x - 2)] + C 

where C is an arbitrary constant. • 
Whew! 

We now dispose of the problern of parallel lines which we mentioned 
earlier. lf the simultaneous equations 

01X + b1y + C1 = 0 
a2x + bzy + Cz = 0 

have no point of intersection, then the differential equation can be 
converted into a variables separable equation quite easily by substituting 

z = a2x + b2y + Cz 
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In fact there are many substitutions which will have the same effect. For 
instance, 

z = a2x + b2y 
z = a1x + b 1y 
z = a1x + b 1y + c1 

Here is an example of this kind. 

D Solve the differential equation 

dy 2x - 4y - 3 -=--.....::.._ __ 
dx x- 2y + 1 

We observe that the equations 

2x - 4y - 3 = 0 
X - 2y + 1 = 0 

have no common solution, and so we put 

Z = X - 2y + 1 

Then 

dz 1 - 2 dy = 1 - 2 2z - 5 
dx z 

-= 
dx 

Therefore 

dz z - 4z + 10 -3z + 10 
-= =----
dx z z 

Consequently, 

x = J -3z z+ 10 dz 

= _! J (- 3z + 10) - 10 dz 
3 -3z + 10 

Observe how we can rearrange the numerator so that the denominator 
divides into it, leaving a simple integral. So 

1 J 10 J -3 
x = - 3 dz - 9 - 3z + 10 dz 

Here we have arranged things so that the numerator in the second integral 
is the derivative of the denominator. Then 

z 10 
x = -- - - In (-3z + 10) + C 

3 9 

To be strict we should take the modulus of - 3z + 10 when finding the 
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logarithm. One way to avoid any problems (which are unlikely to occur) is 
to use the laws of logarithms and rewrite the solution as 

z 5 2 
x = - 3 - 9 In ( -3z + 10) + C 

Eliminating z produces 

X- 2y + 1 5 2 
x = - 3 - 9In ( -3x + 6y + 7) + C • 

That wasn't too bad, was it? Now you do one- and be careful with the 
integral. 

D Obtain the general solution to the differential equation 

dy = X- 2y + 3 
dx -2x + 4y + 7 

When you have completed your working, follow through the solution and 
see how things differ. 

First we examine the two equations 

X- 2y + 3 = 0 
-2x + 4y + 7 = 0 

and see at once that they have no common solution. 
Next make a substitution. z = -2x + 4y + 7 is suitable, but you may 

prefer z = x- 2y. Even if you have solved this problern successfully it is a 
good idea to follow through the Substitution z = x - 2y to see how it all 
comes eventually to the same thing. When z = -2x + 4y + 7 we have 

So 

Therefore 

dz 
dx 

dz 

dx 

It follows that 

-2 + 4 d y = -2 + 4 - ( z - 7)/2 + 3 
dx z 

= 
-2z - 2(z - 7) + 12 

z 

f z dz _ J dx 
-4z + 26 

-4z + 26 
z 

- -~ J z - (13/2) + (13/2) 
x - 4 z - (13/2) dz 
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z 13 J dz 
4 8 z - (13/2) 

z 13 
= -4 - 8 In lz - (13/2)1 + C 

So that, substituting back, the solution is 

-2x+4y+7 13 
x = - 4 -Bin l-2x + 4y + (112)1 + C 

So 

13 
2x + 4y - 7 = -2 In l-2x + 4y + (112)1 + 4C 

4x + 8y - 14 + 13 In l-2x + 4y + (112)1 = A 

where A is the arbitrary constant. 
Although your answer may not Iook like this, it may be equivalent. 

Check to see if it is. For example, using the laws of logarithms, it is possible 
to express this answer in the form 

4x + 8y - 14 + 13 In l-4x + 8y + 11 = B 

where B is an arbitrary constant. One way to check if two answers are 
equivalent is in each case to put the constant on the right and the rest of the 
solution on the left. Then subtract the two left-hand sides; if they differ by 
a constant, all is weil. • 

19.10 BOUNDARY CONDITIONS 

We have not mentioned the situation where we are given some boundary 
condition which the differential equation and therefore its solution must 
satisfy. In these circumstances we are not greatly interested in the general 
solution. 

There are many methods for solving differential equations, and some of 
these make use of the boundary condition at the outset. However, for first­
order differential equations we shall continue to solve them analytically by 
first obtaining the general solution and then determining the arbitrary 
constant. A single example will suffice to show how this is done; it really is 
very easy indeed! 

0 Solve the equation 

~~ = tan (2x + y) - 2 

given that y = 3rrJ2 when x = 0. This initial condition is sometimes written 
as y(O) = 3rt/2, a useful shorthand notation. 
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Before reading any further, see if you can solve the equation on your 
own. You never know your own strength until you test it! 

If we attempt to expand out the tangent we shall soon find things difficult. 
lt is clear also that the equation does not obviously fall into any one of the 
categories which we have discussed. So weshall need to adapt it. We note 
that if z = 2x + y then 

dz = 2 + dy = 2 + tanz - 2 = tanz 
dx dx 

so that the equation becomes variables separable. We have therefore 

so that 

J J Jcosz 
dx = cot z dz = -.- dz 

sm z 

x = In lsin zl + C = In lsin (2x + y)l + C 

Now we use the initial condition and substitute into the equation the pair of 
values for x and y to determine C. We obtain 

0 = In lsin [0 + (3:rc/2)JI + C 
= In 1-11 + C = In 1 + C = 0 + C 

So C = 0, and consequently 

x = ln lsin (2x + y)l 

or 

sin2 (2x + y) = e2x • 
Now it's time to consider some applications. Weshall solve two problems, 
one electrical and one mechanical. Y ou can either take your pick or solve 
them both. Weshall tackle them stage by stage so that you can participate 
in the solution whenever you wish. 

________ 19.11 Practical _______ _ 

CIRCUIT CURRENT 

An RL series circuit has an EMF E sin wt where E is constant. The 
current i satisfies, at time t, 

L di R . 
dt + i = E sm wt 
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Obtain the current at time t if initially it is zero. 
Try it and see how it goes. 

This is clearly a first-order linear equation: 

di R. E . - + - l = - sm wt 
dt L L 

Wehave P = RIL, so 

J J R Rt 
P dt = z dt = T 

Therefore the integrating factor is eRtJL. 
Now solve the equation. 

Wehave 

~ (eRtJL i) = !i sin wt eRtiL 
dt L 

Consequently 

eRtJL i = f J eRrJL sin wt dt 

Now 

J e"x sin bx dx = a2 ~ b2 (a sin bx - b cos bx) + C 

Write down the solution and move on to the next stage. 

Wehave 

Rt!L . (E/L)eRt!L (R . ) 
e t = (R2/L2) + w2 L sm wt- w cos wt + C 

where Cis the arbitrary constant. Determine C and complete the solution. 

Wehave 

i = 2 E 2 2 (R sin wt - wL cos wt) + C e-RrJL 
R + w L 

When t = 0, i = 0, and therefore 
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Consequently 

i = 2 E 2 2 (R sin wt - wL cos wt + wL e-RrtL) 
R + oo L 

VEHICLE BRAKING 

The brakes of a vehicle are applied when the speed is u. Subsequently its 
speed v satisfies the equation 

v dv = (-2 - ~) a 
dx 3u 

where a is a constant and x is the distance travelled after braking. Obtain 
the distance the vehicle travels after the brakes are applied before it comes 
to rest. 

Move on when you have sorted out the equation. 

The equation is variables separable: 

So 

dv -6u - v 
v dx = 3u a 

J 3uv dv = a J dx 
-6u- v 

Obtain these integrals and thereby the generat solution. 

Wehave 

ax = -3u J v dv 
v + 6u 

= _3u J v + 6u - 6u dv 
v + 6u 

= -3u J dv + 18u2 J dv 
v + 6u 

= -3uv + 18u2 In (v + 6u) + C 

where C is an arbitrary constant. 
Determine C and complete the solution. 
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When x = 0, v = u, and so 

0 = -3u2 + 18u2 In 7u + C 

Therefore 

C = 3u2 - 18u2 In 7u 

Consequently 

ax = -3uv + 18u2 In (v + 6u) + 3u2 - 18u2 In 7u 

When v = 0, x = d the stopping distance, so 

ad = 0 + 18u2 In 6u + 3u2 - 18u2 In 7u 
= 18u2 In (617) + 3u2 

Therefore 

d = (lla)[I8u 2 In (617) + 3u 2] 

SUMMARY 

We have solved first-order ordinary differential equations which are of 
the following types: 
0 Variables separable 

0 Linear 

0 Homogeneaus 

dy f(x) 
-=--
dx g(y) 

dy 
-+Py=Q 
dx 

dy f(x,y) 

dx g(x,y) 

We have seen that other equations can be reduced to these by means of 
substitutions. In particular we considered: 
0 Bernoulli's equation 

0 Reducible 

dy - + Py = Qyn 
dx 

dx a2x + bzy + Cz 



EXERCISES 

1 Solve, by separating the variables, 

a x~~ = xy + y 

b x2(y + 1) ~~ = y(x + 1) 

dy X 
c exp(x + y)--d =­

X y 
2 Solve the linear equations 

y dy 
a- +-- = expx 

x dx 

b ~- dy + x2 expx = 0 
x dx 

c ~~ + ycotx = cosx 

3 Solve the homogeneous equations 
dy 2x + y 

a --=--
dx x- y 

b (x + 4y) ~~ = x - 2y 

c (x2 + xy) dy = l- xy 
dx 

4 Solve each of the following equations: 

a dy + 2xy = y2expx2 

dx 

b x dy - y = x2y2 
dx 

dy 
c (x + y - 3) dx = 2x - y 

ASSIGNMENT 

ASSIGNMENT 587 

Solve each of the following differential equations: 

1 eYdy = ~ 
dx x2 + 1 

dx 
2--=xsec2 t 

dt 

3 2 sec 2u ~: = (y + ~) 



588 FIRST-ORDER DIFFERENTIAL EQUATIONS 

4 dy = y 2 - x + xy 2 - 1 
dx 2xy 

5 :~ + y cot e + 1 = 0 

dy x2 

6 x ln x dx + y = V(xz + 1) 

dx 
7 x +- = 2e1 

dt 

dy 
8x-+y=2x 

dx 

9 dy =X+ y 
dx x 

ds 2s2 + t 2 
10 -= ---

dt 2st 

11 dy = 2y2 - xy + x2 

dx 2xy - x2 

12 dy = ~ + cos (~) 
dx X X 

FURTHER EXERCISES 

Solve each of the differential equations 1 to 10: 

1 dy- x2 + ~ 
dx - y2 - x2 x 

2 _x_ dy = ~ 
X+ y dx X 

3 sin 2t ~~ = 2(sin t - x) 

4 x + y :~ = (x 2 + y2) cot x 

5 du= 2u- 5 
dv v- 3 

6 (6x + y) :~ = x - 6y 

7 dp = q + 3p- 9 
dq 3q- p- 7 

8 x dy = y + x tan (~) 
dx x 
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9 x 2 ~~ = (x - y)2 + xy where y(1) = 0 

dr 
10 cos2 8 d8 + r cos 8 = 1 + sin 8 given r = 1 when 8 = 0 

ll A circuit consists of two branches in parallel. One branch consists of a 
resistance R ohms and a capacitance C farads. The other branch 
consists of another resistance R ohms and an inductance L henries. 
When an EMF E sin wt is applied, the branch currents i1 and i2 satisfy 
the two relations 

L di1 + R" = E sin wt dt lj 

di2 1 
R dt + C i2 = wE cos wt 

Show that if the circuit is initially quiescent and is tuned so that 
CR 2 = L then the total current i1 + i2 will be (EIR) sin wt. 

12 An EMF E sin wt is applied to an RC series circuit. Show that the 
current i is given by 

di 0 

RC dt + z = wEC cos wt 

Initially the circuit was quiescent. Obtain an expression for the charge 
on the capacitor at time t. 

13 The rate of decay of a radioactive substance is proportional to the 
quantity Q which remains. Initially Q = Q0 . Show that if it takes T hours 
for the quantity to reduce by 50% it will take T(log2 Q0 - log2 Q I) 
hours for the quantity to reduce from Q0 to Q 1. 

14 Newton's law of cooling states that the rate of fall of temperature of a 
body is approximately proportional to the excess temperature over that 
of its surroundings. If 8 1 is the temperature initially and 80 is the 
surrounding temperature (8 1 > 80 ) and if it takes T minutes to cool to 
(8 1 + 80 )/2, show that the time taken to cool to (8 1 + n80)/(n + 1), 
where n isapositive integer, is T log2 (n + 1). 

15 The equation of motion of a particle, which is attracted to the 
origin 0 is dv 

v- +v2 + 2x = 0 
dx 

where v is the speed of the particle. 

By putting y = v2, or otherwise, solve the equation for v given 
that v = 0 when x = a. 
Show that when x = 0 v2 = 1- e2a + 2a e2a 

16 A small missile of mass m is projected vertically with initial speed 
u into the air. Air resistance at speed v may be presumed to be 
mkv2 , where k is constant. Show that when the missile returns it 
will have a speed of u[l + ku2 fgt 112 , where g is the ·acceleration 
due to gravity. 



20 
Second-order differential 

equations 

ln Chapter 19 we solved some of the first-order differential equations 
which tend to arise in applications. We now turn our attention to 
second-order differential equations. 

After studying this chapter you should be able to 
D Recognize a second-order linear differential equation; 
D Write down the general solution in the homogeneaus case; 
D Use the method of trial solutions to obtain a particular solution in 

the non-homogeneaus case; 
D Anticipate the breakdown case and remedy the situation; 
D Solve a general linear second-order differential equation with 

constant coefficients. 
At the end of the chapter we solve practical problems in filtering, 
circuits and mechanical oscillations. 

20.1 LINEAR DIFFERENTIAL EQUATIONS 

There are many types of second-order differential equation, but one in 
particular arises frequently in applications. This is known as a linear 
differential equation with constant coefficients. It can be expressed in the 
form 

d2y dy 
a - + b - + cy = f(x) 

dx2 dx 

where a, b and c are real constants (a =I= 0) and f(x) depends solely on x. 
The special case where f(x) is identically zero is known as the homo­

geneous case. Since this equation is not only easy to solve but also of 
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relevance in the solution of the general equation, the non-homogeneaus 
case, we shall consider it first. 

20.2 THE HOMOGENEOUS CASE 

We are concerned with the differential equation 

d2y dy 
a- + b- + cy = 0 

dx2 dx 

where a, b and c are real constants and a is non-zero. 
This is a second-order differential equation and so its general solution 

will contain two independent arbitrary constants. Later we shall be able 
to reduce the solution of this equation to a simple routine, but first we see 
how the routine arises. 

We show firstly that if y = u and y = v are solutions of the equation then 
so also is y = Au + Bv, where A and B are arbitrary constants. This is 
important because it implies that in order to obtain the generat solution it 
is sufficient to obtain any two linearly independent solutions. 

Note that if the identity Au + Bv = 0, where A and B are constants, is 
satisfied only when both A = 0 and B = 0, then u and v are said to be 
linearly independent. 

Suppose then 

d2u du 
a- + b- +CU= 0 

dx2 dx 

and 

d2v dv 
a- + b- + cv = 0 

dx2 dx 

To show that y = Au + Bv is also a solution we shall substitute this value 
for y into the left-hand side of the differential equation and deduce the 
result is zero. Now from y =Au + Bv we deduce, by differentiating, that 

So 

dy = A du+ 8 dv 
dx dx dx 

d2y d2u d2v 
-=A-+B­
dx2 dx2 dx2 

( d2u d2v ) ( du dv) = a A dx2 + B dx2 + b A dx + B dx + c(Au + Bv) 
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( d2u du ) ( d2v dv ) 
= A a dx2 + b dx + cu + B a dx2 + b dx + cv 

=0+0=0 

So we have shown that if y = u and y = v are any two solutions of the 
differential equation 

d2y dy 
a dxz + b dx + cy = 0 

then y = Au + Bv is also a solution, where A and B are constants which 
may be arbitrarily chosen. 

The outcome of all this is that if we can find two linearly independent 
solutions of this differential equation we can find the general solution. 
How are we to find these solutions? Well it so happens that it is fairly easy 
to spot one. Remember that when we differentiate ex with respect to x the 
answer remains ex. We adapt this observation very slightly and look for a 
solution of the form emx, where m is a constant; weshall wish to determine 
m. 

Now if y = emx is a Solution it follows that 

d2 
__l:'_ = m2 emx 
dx2 

Consequently, substituting these expressions into the differential equation, 

am2 emx + bm emx + c emx = 0 

and since emx is never zero we can divide through by it to obtain 

am2 + bm + c = 0 

This is a very familiar equation, which you probably recognize straight 
away: it is a quadratic equation. Because of its importance in the solution of 
this differential equation it is given a special name: the auxiliary equation. 

Notice the pattern, and see how easy it is to write down the auxiliary 
equation straight away from the differential equation. The second-order 
derivative is replaced by m2 , the first-order derivative is replaced by m, and 
y is replaced by 1. There is no need to think! 

Given the auxiliary equation 

am2 + bm + c = 0 

there are three situations which can occur: 
1 The equation has two distinct real roots m1 and m2 ; 

2 The equation has two equal roots m; 
3 The equation has complex roots m = a ± iß. 
We shall deal with each of these cases in turn. 
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Case 1 
The auxiliary equation am2 + bm + c = 0 has distinct real roots m 1 and m2 • 

Here we have now two distinct linearly independent solutions of the dif­
ferential equation, namely u = em'x and v = e'mx. So the general solution is 

y = A em'x + B effl2X 

where A and B are arbitrary constants. 

Case 2 
The auxiliary equation am2 + bm + c = 0 has two equal roots m, neces­
sarily real since b2 = 4ac. 

At first sight we may seem to be in difficulties since we have only one 
solution. However, in these circumstances it is easy to verify that y = x e'nx 
is another solution. To see this we simply differentiate, substitute the 
results into the left-hand side of the differential equation and check that 
the outcome is zero. You may like to try this for yourself, but in either 
event here is the working in full. 

lf y = X emx then 

dy = e'nx + mx emx 
dx 

d2y 
- = m emx + m emx + m2x emx = 2m e"'x + m2x emx 
dx2 

So substituting into the left-hand side of the auxiliary equation gives 

a(2m emx + m2x emx) + b(emx + mx emx) + cx emx 

= (am2 + bm + c) X emx + (2am + b) emx 

Now am2 + bm + c = 0 because the auxiliary equation is satisfied by 
m, and 2am + b = 0 because the auxiliary equation has equal roots 
m = -b/(2a). So we now have two linearly independent solutions of the 
differential equation, u = emx and V = X e'=. The general solution is 
consequently 

y = A emx + Bx emx = ( A + Bx) emx 

where A and B are arbitrary constants. 

Case 3 
The auxiliary equation am2 + bm + c = 0 has complex roots m = a ± iß. 

This is similar to case 1. In fact if we were content to have a solution 
containing complex numbers we need go no further. However, the dif­
ferential equation itself did not have any complex numbers in it and there 
is no reason why the solution should contain any; such equations often 
arise from practical situations where complex numbers would seem very 
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out of place. Luckily we can express the solution in a form which is entirely 
free of complex numbers, and this we now do. 

Following case 1 we have the general solution 

y = p e<a+iß)x + Q e<a-iß)x 

where P and Q are arbitrary constants. So 

y = e=(P eißx + Q e-ißx) 

= e=[P(cos ßx + i sin ßx) + Q(cos ßx- i sin ßx)] 

= e=[(P + Q) cos ßx + (Pi - Qi) sin ßx] 
y = e=(A cos ßx + B sin ßx) 

where A and B are arbitrary constants. 
The solution is now free of complex numbers. However, there are 

several different ways of expressing this. For example, another is 

y = e=R cos (ßx- 8) 

where R and 8 are arbitrary constants. This follows immediately from 
elementary trigonometry, since we can always express a cos e + b sin 8 as 
r cos (8 - a). 

In summary, to obtain the general solution of the equation 

d2y dy 
a- + b- + cy = 0 

dx2 dx 

where a, b and c are real constants (a =I= 0): 
1 Write down the auxiliary equation am2 + bm + c = 0. 
2 Solve this quadratic equation to obtain the roots m1 and m2• 

3 Select from three cases: 
a If the roots m 1 and m2 are both real and distinct, 

b If the roots m1 and m2 are equal, so m1 = m2·= m, 

y = ( A + Bx) emx 

c lf the roots m1 and m2 are complex, so m = a ± iß, 

y = e=(A cos ßx + B sin ßx) 

where A and B are arbitrary constants. 
It really is very easy. Weshallsee how simple it all is by taking some steps. 

r-r--------20.3 Workshop _______ _ 

n; Exercise Obtain the general solutions of the following differential 
equations: 
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d2y dy 
a-- 6- + 5y = 0 

dx2 dx 

d2y dy 
b 4 dx2 + 25y = 20 dx 

d2y 
c dx2 + 25y = 0 

d2y dy 
d dxz+25dx=O 

Four examples and only three cases; at least one case must occur more than 
once! 

First write down the auxiliary equations for a and b. Remernher that 
there is no need to do any mathematics at this stage: no differentiating, and 
no substituting into the differential equation. We have dealt with all that 
once and for all. We simply write down the auxiliary equation. 

Done it? Step ahead. 

Weil then, here are the results you should obtain: 
a m2 - 6m + 5 = 0 
b 4m2 - 20m + 25 = 0 
If all is weil, write down the auxiliary equations for c and d and move ahead 
to step 3. 

If you have made an error, Iook back carefully through what we have 
done and see where you went wrang. When you are satisfied that you can 
write down an auxiliary equation correctly, taking care about signs, try 
doing so for c and d. If you are confident that you have done it correctly, 
then read on to check that all is weiL If there are still problems you had 
better go back to the main text and read things through slowly and care­
fully so that you understand it properly. 

Here then are the other two auxiliary equations: 
c m2 + 25 = 0 
d m2 +25m= 0 

Now the time has come to solve each of the four quadratic equations. Of 
course this is very elementary work, but it is surprising how many mistakes 
creep in at this stage. See if you can solve them correctly. 

Here are the roots: 
a m = 1 or m = 5 
b m = 5/2 (repeated) 
c m =±Si 
d m = 0 or m = -25 

r#l 
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Is all weil? We must decide for each one which case it is, and then write 
down the corresponding solution. To begin with, try a and b. When you 
have finished, move to the next step to check they are correct. 

LS\l Here are the answers: 
a y = A ex + B e5x 
b y = ( A + Bx) e5x 12 

where A and B are arbitrary constants. Of course it does not matter if you 
have A and B the other way round or have used some other letters. 

If all is weil you can now see if you can deal properly with c and d, and 
then move ahead to step 7. 

If not, check carefully to see what went wrong. Look back at the summary 
of the method; possibly you identified the cases incorrectly. When you are 
confident that you know what went wrong, try these equations and see how 
it goes. 

[> Exercise Obtain the general solutions of the following differential 
equations: 

d2y dy 
e dx2 - 14 dx + 49 y = 0 

d2y dy 
f dxz + 6y = 5 dx 

First obtain the auxiliary equation, then the values for m and finally the 
correct form of the solution. Then step ahead. 

~- l6\l The auxiliary equations are: 
e m2 - 14m + 49 = 0 
f m2 - 5m + 6 = 0 
The roots are: 
e m = 7 (repeated) 
f m = 2 and m = 3 
The solutions are: 
e y = (A + Bx) e7x 

f y = A e2x + B e3x 

where A and B are arbitrary constants. 
lf things are still going wrong it is best to read through the chapter again 

and see if you can get things straight. Otherwise, see if you can now deal 
properly with c and d and then take a further step to see how things worked 
out. 

These are the solutions. For c, m = ±Si so that a = 0 and ß = 5. Con­
.__ _ _, sequently, 
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c y = e0 (A cos 5x + B sin 5x) 
= A cos 5x + B sin 5x 

d y = A e0 + B e-zsx = A + B e-zsx 

where A and B are arbitrary constants. 
Herethenare the general solutions a-d again: 

a y = A ex + B e5x 
b y = (A + Bx) e5x12 
c y = A cos 5x + B sin 5x 
d y = A + B e-zsx 
where A and B are arbitrary constants. 

All should be weil with d, but c may have caused some difficulty. If you 
have a clean bill of health, you may move on to the next section of work. 

Otherwise, here are two more equations where the roots of the auxiliary 
equation turn out to be complex numbers. Try these so that you can 
become confident that you can solve such equations. 

I> Exercise Obtain the general solutions of the following differential 
equations: 

d2y dy 
g dxz - 2 dx + 2y = 0 

d2y 
h dx2 + 36y = 0 

When you have finished, move ahead to step 8 to see the results. 

The auxiliary equations are: 
g m2 - 2m+ 2 = 0 
h m2 + 36 = 0 
The roots are: 
g m = 1 ± i, so a = 1 and ß = 1 
h m = ±6i, so a = 0 and ß = 6 
The solutions are: 
g y = ex(A cosx + Bsinx) 
h y = e0 (A cos 6x + B sin 6x) 

= A cos 6x + B sin 6x 
where A and B are arbitrary constants. 

If there are still problems then it is best to Iook back through the material 
of this chapter to sort things out. 

20.4 THE NON-HOMOGENEOUS CASE 

We now turn our attention once more to the solution of second-order 
linear differential equations with constant coefficients. As we said before, 
such an equation can be expressed in the form 

2€1 
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d2y dy 
a- + b- + cy = f(x) 

dx2 dx 
(1) 

where a, b and c are real constants (a * 0) and f(x) depends solely on x. 
Wehave disposed completely of the homogeneaus case f(x) = 0. How­

ever it turns out, as we shall see in a moment, that the solution of the 
homogeneaus case is part and parcel of the solution of the non­
homogeneaus case. 

Suppose for the moment that we know how to obtain a solution y = v to 
the differential equation. This solution is a particular solution and is not 
likely to contain any arbitrary constants. Then substituting into (1) gives 

d2v dv 
a- + b- + cv = f(x) 

dx2 dx 
(2) 

Subtracting (2) from (1) and simplifying gives 

d2 d 
a dx2 (y - v) + b dx (y - v) + c(y - v) = f(x) - f(x) = 0 

so that putting u = y - v we have 

d2u du 
a dx2 + b dx + cu = 0 (3) 

Now this is very significant, although its importance may not occur to you 
straight away. Just think. We know how to solve (3), so we can obtain u 
containing two arbitrary constants. Moreover, y = u + v and so we can 
obtain the general solution to (1) provided we can obtain any solution at all 
to it. 

We call u the complementary function (or complementary part) and v a 
particular integral (or particular solution). The problern of solving the non­
homogeneous case has therefore essentially become reduced to that of 
obtaining a particular solution of the differential equation: 

general solution (y) = complementary part (u) + particular solution (v) 

20.5 THE PARTICULAR SOLUTION 

We have already seen how to find the complementary part, so we now 
concentrate our attention on finding a particular solution. There are two 
principal methods which can be used to do this, and each has something to 
be said for it. The methods are known as 
1 the method of the operator D 
2 the method of trial solution. 
The method of the operator D is a formal method using the linear operator 
D (differentiation) in an algebraic way to derive a particular solution. 
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We shall be discussing this method in the more general context of linear 
operators (Chapter 22) and so we shall not consider it here. 

Instead we shall consider the method of trial solution. Basically what we 
do is we examine f(x) and attempt to find a solution of the same form. 

0 Consider the equation 

Here f(x) = 24, and so we might wonder if there is a solution of the form 
y = k where k is a constant. 

To see if this is possible, we tentatively suppose that y = k is a particular 
solution and substitute into the equation to see ifwe can find k. We have, if 
y = k, 

So substituting, 

dy = 0 
dx 

0 + 0 + 6k = 24 

So k = 4 and consequently y = 4 is a particular solution. 
You can easily check that the complementary part is 

u = A e-2x + B e-3x 

So substituting, 

y = A e-2x + B e-3x + 4 

There are two points to be careful about here: 

• 
1 Do not call the complementary part y. lt is only part of the solution; by 

itself it does not even satisfy the equation. lt is better to call it u or CP. 
2 If there are initial conditions such as y(O) = 1 and y' (0) = 2 then we must 

obtain the general solution to the equation before we make any attempt 
to use them. We must never substitute these values into the comple­
mentary part in an attempt to determine the constants A and B. 

How, then, are we to decide which trial solutions to use? Weil, it is im­
portant to realize that it is not always possible to obtain an analytic solution 
to the differential equation by this method. In fact there are relatively few 
functions f for which particular solutions exist. However, we can construct 
a table and the recommended trial solution in some simple cases. There is 
a set of circumstances in which the trial solution will not work; we shall 
consider this later. 

Suitable trial solutions for selected functions are shown in Table 20.1. 
In this table k is supposed constant, and the constants a, b, c and d are to 
be determined by trial solution. 
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Table 20.1 

f(x) 

Constant 
Polynomial, 
e.g. x2 + 1 
ekx 

sin kx or cos kx 
sinh kx or cosh kx 

Trial solution 

Constant y = k 
Polynomial of same degree 
y = ax2 + bx + c 
y = a ekx 

y = a cos kx + b sin kx 
y = a ekx + b e-kx or 
y = c cosh kx + d sinh kx 

Note that iff(x) is a sum of several functions then the corresponding trial 
solution can be obtained by using an appropriate sum of trial solutions. A 
similar rule holds for products, provided we interpret the product of trial 
solutions in the widest sense. We shall later consider an example which 

illustrates this point. 

D Consider the equation 

d2y dy 
-- 7- + 10y = 2 e-x 
dx2 dx 

From Table 20.1 we see that a suitable trial solution is y = a e -x, where a is 

a constant which weshall need to obtain. (The presence of the factor 2 has 
no inftuence on the choice of trial solution.) Now differentiating we obtain 

dy d2y 
-a e-x -~ = a e-x 

dx dx-

Therefore substituting, 

a e-x - 7( -a e-x) + lüa e-x = 2e-x 

Since e-x is never zero we can divide out to obtain 

a + 7a + lOa = 2 

from which a = 119. So a particular solution (PS) is y = e-x/9. 
By way of revision, write down the complementary part (CP) and there­

by the general solution (GS). lt shouldn't take more than three minutes. 
When you have done it, move ahead to check the result. 

Here it is then: 

CP = A e2x + B e5x 

PS = e-x;9 
GS = CP +PS 
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so that 

is the general solution. • 
Now it's time for you to take a few steps on your own. 

________ 20.6 WorkshoP------~-1....,.-----,J 
I>Exercise Solve the differential equations L . 

d2y dy 
a dx2 - 6 dx + Sy = 2x2 

d2y dy 
b dx2 + 2 dx + 5y = cos 2x 

Write down in each case a suitable trial solution. Only when you have done 
this should you read on. 

The trial solution for equation a is 

y = ax2 + bx + c 

Don't forget to include bx + c. We must allow for the possibility of a 
general polynomial of degree 2, and this would include a term in x and 
a constant. 

If you didn't get that right then check your trial solution for equation b 
before taking the next step. 

The trial solution for equation b is 

y = a cos 2x + b sin 2x 

It is worth remarking that we should use the same trial solution in the case 
f(x) = cos 2x + sin 2x. 

Good, now we can proceed to obtain particular solutions. Let's con­
centrate on equation a for the moment. Have a go! 

From y = ax2 + bx + c it follows that 

dy = 2ax + b 
dx 

So on substituting into equation a we require the following equation to 
hold for all x: 

r-&1 

2?1 

rdil 
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2a- 6(2ax + b) + 8(ax2 + bx + e) = 2x2 

Therefore 

(Ba - 2)x2 + (Sb - 12a)x + (Be - 6b + 2a) = 0 

Consequently Ba = 2, from which a = 114. Next Sb - 12a = 0, from which 
b = 3/8. Finally Be- 6b + 2a = 0, from which 4e = 3b- a = 9/8- 114 = 
7/8 and e = 7/32. 

Therefore a particular solution for a is 

x2 3x 7 
y = 4 + 8 + 32 

If that didn't quite work out in the way it should, see where you went 
wrong and try extra carefully to find a particular solution for equation b. 
When it has been done, move to the next step. 

LS\l Using y = a cos 2x + b sin 2x, we have 

......_ _ _, 

~~ = -2a sin 2x + 2b cos 2x 

d2y 
dx2 = -4a cos 2x - 4b sin 2x 

So substituting these into the differential equation, we are seeking to 
satisfy the identity 

( -4a cos 2x - 4b sin 2x) + 2( -2a sin 2x + 2b cos 2x) 
+ 5(a cos 2x + b sin 2x) = cos 2x 

So we require 

(-4a + 4b + 5a)cos 2x + (-4b- 4a + 5b)sin 2x = cos 2x 

It follows that a + 4b = 1 and b - 4a = 0·. So 17a = 1, and consequently 
a = 1117 and b = 4/17. 

A particular solution for b is therefore 

cos 2x + 4 sin 2x 
y= 

17 

Lastly, write down the general solutions and take the final step. 

Here are the answers. You should not have bad any difficulty here . 

x2 3x 7 
a y = A e2x + B e4x + - + - + -

4 8 32 
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. cos 2x + 4 sin 2x 
b y = e-x(A cos 2x + B sm 2x) + 17 

where A and B are arbitrary constants. 

20.7 THE BREAKDOWN CASE 

As we mentioned earlier, there is one situation in which it is possible to 
anticipate that the trial solution will not work. This is known as the 
breakdown case - not because of its effect on a hard-working student, but 
because the standard trial solution does not produce a particular solution. 
To anticipate when this is going to arise it is essential that we find the com­
plementary part of the solution first. There is much to be said in favour of 
doing this anyhow, since it is a routine procedure and in an examination 
represents easy marks. 

Suppose the trial solution y which is suggested by Table 20.1 is already 
present, with some suitable choice of A and B, in the complementary 
part. This means that y satisfies the homogeneous equation; that is, the 
equation when f(x) = 0. Consequently it cannot possibly satisfy the non­
homogeneous equation: that is, the equation when f(x) =I= 0. So then it's a 
dead duck! 

What are we to do about it? Luckily there is a simple remedy: 
1 Locate the part of the trial solution which corresponds to the com-

plementary part; 
2 Multiply it by x and construct a new trial solution; 
3 Check again with the complementary part; 
4 Repeat this procedure, if necessary, to ensure that the trial solution 

contains no terms in the complementary part. 
An example will illustrate the procedure adequately. 

D Solve the equation 

First we find the complementary part. The auxiliary equation is 

m2 -6m+9=0 

from which (m - 3)2 = 0 and so m = 3 (repeated). Consequently 

CP = (A + Bx)e3x 

Now we seek a particular solution. Here f(x) = e3x, and so the standard 
trial solution is y = a e3x. However, this is already part of the comple­
mentary part (A = a and B = 0). So we try instead y = ax e3x and check if 
this is all right. Is it? 



604 SECOND-ORDER DIFFERENTIAL EQUATIONS 

No it isn't, is it? If we choose A = 0 and B = a then we see it is still part 
of the complementary part. We therefore repeat the prescription, and this 
time all is weil: y = ax2 e3x is suitable. 

The main advantage in anticipating the breakdown case is that we avoid 
waste of time and effort, for the standard trial solution will fail anyway and 
we will find ourselves back at square one. • 

A few steps will convince you how easy it is to anticipate the breakdown 
case and take appropriate action. 

______ 20.8 Workshop _______ _ 

ß Exercise Suppose 

and 

f(x) = e-2x 

What would be an appropriate trial solution? 
When you have completed your answer, take the next step and see if you 

were correct. 

n; Our initial trial solution would be 

y = a e-2x 

However, this is already present in the complementary part when A = 0 
and B = a, and so we have the breakdown case. Consequently we select 

y = ax e-2x 

and this is fine. 
Did you manage that? If you did, then rnove to step 4. If you made an 

error, follow through the argument carefully and then do this one. 

[> Exercise Find an appropriate trial solution for 

CP = (A + Bx) e-2x 
f(x) = e-2x 

Try it, then step ahead. 

l3\l Our initial trial solution would be 

y = a e-2x 
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However, this is already present in the complementary part when A = a 
and B = 0 and so we have the breakdown case. Consequently 

y = ax e-2x 

but this too is the breakdown case. We see this by putting A = 0 and B = a. 
Therefore 

and this will certainly do. 
Got it now? Step forward. 

!> Exercise Find an appropriate trial solution for 

CP = (A e4x + B e-2x) 
f(x) = cosh 2x + 1 

Try it, then step ahead. 

We can easily make a mistake here. If we use the standard trial solution in 
the form 

y = a cosh 2x + b sinh 2x + c 

we shall have failed to appreciate the difficulty. However, if we first express 
f(x) in exponential form then the light will begin to dawn: 

f(x) = 1(e2x + e-2x) + 1 

The e2x term and the constant term are no problem, but the term in e-2x is 
another matter altogether. If it bad appeared on its own we should have 
the standard trial solution 

y = a e-2x 

which is the breakdown case (A = 0 and B = a). So we should modify our 
trial solution and try instead 

y = axe-2x 

Consequently our trial solution should be, in the problern we are 
considering, 

y = ax e-2x + b e2x + c 

If you couldn't get that, try the next exercise. If you were successful, move 
to step 7. 

l>Exercise Find an appropriate trial solution for 

'---------' 
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CP = (A + Bx) e-2x 
f(x) = cosb 2x + 1 

Tben take anotber step. 

Tbis is a very similar problern to tbe one we were considering in steps 4 
.__ _ _, and 5. However, bereit is necessary to modify tbe trial solution twice. Tbat 

is, y = a e -2x appears in tbe complementary part (A = a and B = 0) and so 
too does y = ax e-zx (A = 0 and B = a), so tbat tbe component of tbe trial 
solution corresponding to e-2x must be ax2 e-2x. 

Tberefore our trial solution is 

y = ax2 e-2x + b e2x + c 

If tbere are still problems, read tbrougb the text carefully and try the 
exercises again. Tben move on. 

S Exercise Find an appropriate trial solution for 

CP = e-2x(A cos x + B sin x) 
f(x) = e-2x cos x 

Tben take tbe final step. 

LS\l If we bad f(x) = cos x we sbould try 

y = a cos x + b sin x 

On tbe otber band, if we bad f(x) = e-zx we sbould try 

y = c e-2x 

For tbe product we can generalize and try 

y = e-2x(a cos x + b sin x) 

wbere tbe constant c bas been absorbed by a and b. However, tbis appears 
: · tbe complementary part (A = a and B = b), and so finally we try instead 

y = x e-2x(a cos x + b sin x) 

There is a subtle point wbicb is worth a remark. Suppose f(x) = x cos x. 
Then corresponding to x we sbould normally try ax + b, and corresponding 
to cos x we sbould normally try c cos x + d sin x. We migbt tberefore tbink 
tbat we sbould try 

y = ( ax + b )( c cos x + d sin x) 
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or, absorbing one of the constants, 

y = (x + c) (a cos x + b sin x) 

(a, b and c are different here, of course.) However, this presumes rela­
tionships between the coefficients which may not hold. Instead we must 
consider the generalized product and try 

y = ax cos x + bx sin x + c cos x + d sin x 

In summary, to obtain the general solution of a non-homogeneaus second­
order linear differential equation: 

d2y dy 
a dxz + b dx + cy = f(x) 

where a, b and c are real constants (a =f=. 0): 
1 Obtain u, the complementary part. This is the general solution to the 

equation 

d2y dy 
a dxz + b dx + cy = 0 

2 Obtain v, a particular solution of the equation 

d2y dy 
a dxz + b dx + cy = f(x) 

3 Then the general solution is given by y = u + v. That is, general solution 
= complementary part + particular solution. 

4 If initial conditions are given then A and B, the two arbitrary constants 
generated by the complementary part, can now be determined. 

20.9 HIGHER-ORDER EQUATIONS 

The methods which we have developed can be generalized to higher-order 
linear differential equations with real constant coefficients. The generaliza­
tion holds no surprises. 

We begin by writing down the auxiliary equation and obtaining its roots. 
For example, 

am3 + bm2 + cm + d = 0 

where a, b, c and d are real constants. 
The complementary part is constituted in the following way: 

1 A distinct root m contributes 

tu the cumplementary part. 
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2 Equal roots m1 = m2 = m3 ( =m) contribute 

(A + Bx + Cx2) emx 

to the complementary part. 
3 Complex roots always occur in conjugate pairs a ± iß, and so these 

contribute 

exp (ax) {A cos ßx + B sin ßx} 

to the complementary part. 
In this description A, B and C are of course arbitrary constants. 

20.10 DAMPING 

Suppose we consider the equation 

d2x dx 
a dtz + b dt + CX = f(t) 

Then 
1 If b2 - 4ac < 0 and if the roots of the auxiliary equation are a ± iß we 

have 

b 
a=--

2a 

The complementary part is then 

exp ( at)(A cos ßt + B sin ßt) 

a is called the damping factor. If a < 0 then as t~ oo the complementary 
partwill decay. This means that the complementary partwill tend to 0 as 
t tends to oo. The angular frequency ß is known as the natural frequency 
of the equation. 

2 If b2 - 4ac = 0 the system (the physical system which gives rise to the 
equation) is said tobe critically damped, for then a = -b/(2a) and ß = 0. 

3 If b2 - 4ac > 0 the system is said to be overdamped. 

D The equation of simple harmonic motion is 

d2x 
- + oix = 0 
dt2 

Here a = 0 and ß = w, so that x = A cos wt + B sin wt. The natural fre­
quency is wand there is no damping. • 

20.11 RESONANCE 

As an example, consider an LC series circuit to which an EMF E sin pt is 
applied; L, C, E and p are positive real constants. The charge q on the 



capacitor is given by 

The auxiliary equation is 
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1 
m2 +- = 0 

LC 

and so m = ±iw where w = 11V(LC) is the natural frequency. 
If pisset equal to w then we have the breakdown case and consequently 

. Et 
q = A cos wt + B Sill wt - 2wL cos wt 

The significance of this isthat q is unbounded, so in practice the chargewill 
increase until the capacitor fails. This contrasts sharply with the case where 
p =!= (J): 

B . E . 
q = A cos wt + Sill wt + L( w2 _ p 2 ) Sill pt 

Here q remains bounded. 
The frequency w is called the resonant frequency. Resonance occurs 

when the frequency off, the forcing function, is tuned tothat of the natural 
frequency. Resonance occurs in a wide variety of situations. For instance, 
platoons of soldiers break step when marehing over a bridge so that there is 
no danger of resonance undermining the structure. 

20.12 TRANSIENT AND STEADY STATE 

Any part of the solution x of a differential equation which tends to zero as 
the independent variable t tends to infinity is known as a transient. When t 
is large enough for the transients to be neglected, that which remains is 
known as the steady state. In this way we obtain the equation 

general solution = transient + steady state 

It is a mistake, however, to assume that the complementary part is neces­
sarily the transient and that the particular solution is the steady state, 
although in some cases this is true. 

D Solve the differential equation 

d2x dx 1 - +-- 6x = e-
dt2 dt 

Identify the transient and steady state. 
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The auxiliary equation is m2 + m - 6 = 0, from which m = -3 or m = 2. 
The complementary part is therefore A e-3' + B e2'. 

For a particular solution we try x = a e-', from which x' = -a e_, and 
x" = a e _,. Therefore a e _, - a e _, - 6a e - 1 = e _,. Consequently a = -116 
and a particular solution is x = - e-1/6. 

The general solution is now 

x = A e-3' + B e21 - e-'16 

Here the transient is A e-31 - e-1/6 and the steady state is B e21• • 

D Obtain the transient and steady state for the equation 

d2x 
4- + 9x = e-21 

dt2 

Do this before you read any more. 

You will have obtained the complementary part A cos (3t/2) + B sin (3t/2) 
and a particular solution e-21/25. So the generat solution is 

x = A cos (3t/2) + B sin (3t/2) + e-21/25 

Here the transient is the particular solution e-21/25, and the steady state is 
the complementary part A cos (3t/2) + B sin (3t/2). • 

We now work through examples which include some initial conditions. 

________ 20.13 Practical _______ _ 

PRESSURE FILTER 

The transpose displacement x of a circular pressure filter at time t is known 
to ~atisfy the equation 

d2x dx 2 
dt2 + 2P dt + p = 0 

where p is a constant. If initially there was no displacement and the speed 
of displacement x' was a constant q, obtain the displacement x at timet. 

There is one nasty trap into which the unwary are likely to step. The 
equation is not a homogeneous linear equation, for there is no term in x. 
Let's rearrange it in standard form 

d2x dx 2 
dt2 + 2P dt = -p 

Now we can proceed. 
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First we seek the complementary part. The auxiliary equation is 

m2 + 2mp = 0 

from which m(m + 2p) = 0, so m = 0 or m = -2p. Therefore 

CP = A e0 + B e-Zpt = A + B e-zpr 

Note that the variables are x and t and not y and x respectively. 

Now we want a particular solution. Here f(t) = -p2, a constant, so we try 
x = a, a constant. This is the breakdown case; A = a and B = 0. 

Therefore we modify the trial solution and try x = at. With this choice of 
x we have x' = a and x" = 0, so that substituting we require 0 + 2ap = -p2 

from which a = -p/2. So 

PS= -!pt 

Therefore the generat solution is given by 

x = A + B e-zpr - !pt (1) 

Now we use the initial conditions to determine A and B. Differentiating 
throughout with respect to t we obtain 

x' = -2Bp e-zpr- !p 

When t = 0 we obtain from (1) and (2) 

0 = A + B 
q = -2Bp- !_p 

So B = -(p + 2q)/4p, and A = (p + 2q)/4p. 

Finally the solution is 

x = p + 2q (t - e-Zpr) - pt 
4p 2 

(2) 

Here are two problems for you to try. The first is an electrical problem, 
the second a mechanical problem. You may choose which you wish to do. 

LCCIRCUIT 

An alternating EMF E sin nt is applied to a quiescent circuit consisting of 
an inductance L and a capacitance C in series. Obtain the current at time 
t > 0, if oi = li(LC) * n2. 
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c 

~----------~~~--------~ 

Esin nt 

Fig. 20.1 An LC series circuit. 

If you cannot cope with the electrical side of this problem, read through 
the first stage and take over the solution then. 

The circuit is illustrated in Fig. 20.1. We have 

L di q E . - +- = sm nt 
dt c 

where i is the current and q is the charge on the capacitor. Now i = dqldt, 
and so 

Therefore 

so that oo is the natural frequency of the circuit. Next we must solve this 
differential equation. 

We begin with the complementary part- a standard routine procedure. 
The auxiliary equation is 

m2 + oo2 = 0 

so that m = ±joo. (Notice that here because i denotes current we are 
adopting the usual practice of writing j instead of the complex number i.) 

With m in the form a ± jß we see that a = 0 and ß = oo. Consequently 

CP = e0(A cos rot + B sin rot) 
= A cos rot + B sin rot 
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where A and B are arbitrary constants. 
The next step is to find a particular solution. 

A glance at the right-hand side of the equation enables us to inter the form 
of a particttlar solution. We try q = a sin nt + b cos nt and differentiate 
twice with respect to t to obtain 

q = an cos nt - bn sin nt 
ij = -an2 sin nt - bn2 cos nt - n2(a sin nt + b cos nt) 

So substituting, 

-n2(a sin nt + b cos nt) + ül(a sin nt + b cos nt) = (EIL) sin nt 

from which a(w2 - n2) = EIL and b(w2 - n2) = 0. Since w * n we can 
deduce 

E 
a = -----;;----::;:-

L(w2 - n2) 
b=O 

Therefore a particular solution is 

E sinnt 
q = L(w2 - n2) 

The general solution is then 

. E sinnt 
q = A cos wt + B sm wt + L( w2 _ n2) 

lnitially the circuit is quiescent. This means there is no charge on the 
capacitor and there is no current. Use this information to obtain the arbi­
trary constants A and B. 

When t = 0, q = 0 and so A = 0. Therefore 

. E sinnt 
q = B sm wt + L(w2 - n2) 

So 

. dq En cos nt 
1 = - = B w cos wt + --;:;------::;;:-

dt L( w2 - n2) 

When t = 0, i = 0 and so 

Bw + ( 2 2) = 0 Lw -n 

En 
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Finally 

. En cos wt En cos nt 
l = - + ---;;-----:::--

L( oo2 - n2) L( oi - n2) 

En 
= L(oo2 _ n2) (cos nt- cos wt) 

You may remember in the further exercises of Chapter 8 using l'Hospital's 
rule to obtain i when oo = n. This of course corresponds to the breakdown 
case. 

OSCILLATING BODY 

A small body of mass m performs oscillations controlled by a spring of 
stiffness Ä. and subject to a frictional force of constant magnitude F (Fig. 
20.2). The equation which describes the motion is 

mi = -Ä.x + F 

where x is the displacement from the position in which the spring has zero 
tension. The body is released from rest with a displacement a. Obtain the 
displacement when it next comes to rest. 

Try this and see how it goes. We have one slight difficulty: some of the 
notation which we usually employ has been used here in a different way. 
We must be nimble in mind and prepared to use other symbols. 

Webegin as usual by obtaining the complementary part. Let us use u for 
the variable in the auxiliary equation. We then have 

mu2 + Ä. = 0 

so that putting oo2 = A.lm (positive) we obtain 

u2 + wz = 0 

from which u = ±ioo. Consequently 

). m 

~ -
Fig. 20.2 Spring and mass. 



CP = A cos wt + B sin wt 

where A and B are arbitrary constants. 
Now find a particular solution. 
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Here the forcing function is F, a constant. Therefore we Iook for a constant 
solution. Suppose x = c, a constant (we cannot use a). Then substituting, 
Ac = F and so c = FIA. A particular solution is therefore obtained: 

PS= FIA 

The general solution is then 

x = A cos wt + B sin wt + FIA 

Now complete the solution by first determining A and B. 

When t = 0, x = a, so 

a = A + F/"A 
A = a- FI"A 

Also when t = 0, x = 0. Now 

x = - Aw sin wt + Bw cos wt 

so that 0 = B. 
Wehave 

x = (a - F/"A) cos wt + FI"A 

and also 

x = -(a - FI"A) w sin wt 

When the body is next at rest, x = 0 and so we have sin wt = 0. This first 
occurs when wt = n, and at this time cos wt = -1. At this moment the 
displacement is 

d = ( a - FI"A) (-1) + FI"A = 2FI"A - a 
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SUMMARY 

To obtain the general solution of a non-homogeneous second-order 
linear differential equation: 

d2y dy 
a- + b- + cy = f(x) 

dx2 dx 

where a, b and c are real constants (a =I= 0): 
D The complementary part u is the general solution of the equation 

d2y dy 
a- + b- + cy = 0 

dx2 dx 

To obtain this, write down and solve the auxiliary equation 

am2 + bm + c = 0 

and obtain the roots m1 and m2• There are three cases: 
a If the roots m1 and m2 are both real and distinct, 

b If the roots m1 and m2 are equal, so m 1 = m2 = m, 

u = (A + Bx) e'nx 

c If the roots m1 and m2 are complex, so m = a ± iß, 

u = eax(A cos ßx + B sin ßx) 

A and B are arbitrary constants. 
D Examine u carefully to see whether f(x) corresponds to the break­

down case. Then obtain v, a particular solution of the equation 

d2y dy 
a- + b- + cy =f(x) 

dx2 dx 

using a trial solution. 
D Then 

y = U +V 

general solution = complementary part + particular solution 

D If boundary conditions are given then the constants A and B can be 
determined. 
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EXERCISES 

l Obtain the general solution of 
d2x dx 

a 2 - ·- 7 - + 3x = 0 
dP dt 

d2x dx 
b dP - 2 dt + lOx = 0 

d2y dy 
c 9 dx2 - 24 dx + l6y = 0 

2 Obtain the general solution of 
d2x dx 

a 2 - - 9 - - 5x = t 
dt2 dt 
d2y dy 

b 3 - - 8 - + 4y = e2x 
dx 2 dx 
d2u du x 

c 9 - - 9 - + 2u = e 
dx2 dx 
d2y dy 

d 5 dx2 - 4 dx + y = cosx 

3 Obtain the solution which satisfies the conditions that when t = 0, x = 0 
and dx!dt = 0 for 

d2x dx . 
a dt2 - 6 dt + lOx = sm t 

d2x1 dx 
b 3 - - 16 - + Sx = e51 

dt2 dt 

d2x dx 
c 25 ----;- - 30 - + 9x = t e3115 

dt2 dt 

ASSIGNMENT 

Obtain th1e general solutions of each of the following differential equations: 

d2y dy X 

14dx2--4dx+y=e 

d2y dy 
2 - + 4- + 8y = cos 2t 

dt2 dt 

3 d2x + 2 dx - 3x = e2r 
dt2 dt 

d2u du 
4 -- 8- + l6u = v2 

dv2 dv 
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d2s ds 
5 - + 6- + lOs = cos t 

dt2 dt 

d2u du 
6 dt2 - 7 dt + lOu = 1 + e51 

d2y dy 
7- + 6- + 9y = e-Jx + ex 

dx2 dx 

d2y dy 
8 du2 - 3 du - lOy = cosh 2u 

9 d2y + 2dy + 
dx2 dx lOy = e-x cos 3x 

d2y dy 
10 - + - - 2y = w cos w 

dw2 dw 

FURTHER EXERCISES 

1 A constant EMF E is applied to a series circuit with resistance R, 
capacitance C and inductance L. Given that 

d' 
L __!_ + Ri + .!f_ = E 

dt c 
where, at time t, q is the charge on the capacitor and i is the current. 
Show that the system will oscillate if 4L > CR2 . 

2 The differential equation representing the simple harmonic motion 
(SHM) of a particle of unit mass is 

.X= -J.,"2x 

where A is a constant and the dots denote differentiation with respect to 
time. Solve this equation and express x in terms oft, given that x is zero 
when t = 0 and that the speed is u at x = a. 

3 A capacitor of capacitance C discharges through a circuit of resistance 
R and inductance L, Show that if CR2 = 4L the discharge is just non­
oscillatory. The initial voltage is E and CR2 = 4L. Show that the 
charge q on the capacitor and the current i are given by 

2E(2L ) q = R R + t exp (-Rt/2L) 

Et 
i = -L exp (-Rti2L) 

4 The differential equation for the deftection y of a light cantilever of 
length c clamped horizontally at one end and with a concentrated Ioad 
W at the other satisfies the equation 
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d2y 
EI dx2 = W(c - x) 

where EI is the ftexural rigidity and is constant. Show that the deftec­
tion at the free end is Wc313EI. 

5 The displacement x in metres at timet in seconds of a vibrating governor 
is given by the differential equation 

x + x = sin 2t 

where dots denote differentiation. Initially the displacement and the 
speed are zero. Show that the next time the speed is instantaneously 
zero is when t = 2n/3 seconds. 

6 An EMF E sin wt (where E and w are constant) is applied to an RLC 
series circuit. The charge q on the capacitor and the current i are both 
initially zero. Show that if CR2 = 4L and w2 = 11 LC then at time t 

i = (EI R) [ sin wt - wt exp (- wt)] 

7 The components of acceleration for a model which simulates the move­
ment of a particle in a plane are 

x = wy 
ji = aw2 - wi 

where a and w are constant. When t = 0 the particle is stationary at 
the origin. Show that subsequently it describes the curve defined para­
metrically by 

where e = wt. 

X = a( 8 - sin 8) 
y = a(l - cos 8) 

8 A light horizontal strut of length L and ftexural rigidity EI carries a 
concentrated Ioad W at its midpoint. lt is supported at each end and 
subjected to a compressive force P. The deftection y at a point distance 
x from one end is given by 

d2y Wn 2x ( L) dx2 + nzy = -2?" 0 :!S x :!S 2 

where n2 = P/El. Solve this equation to show that the greatest deftec­
tion of the strut which occurs at its midpoint is 

WL [tan (nL/2) _ J 
4P nL/2 1 

9 The current i in an LRC series circuit satisfies 

d2i di 1 
L - + R - + - i = E cos nt 

dt2 dt c 
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where L, R, C, E and n are constant and t denotes time. Given that R 
is positive, show that the exponential terms in the solution of this equa­
tion are transient. Show further that when the transient terms are 
ignored, 

i = E nR sinnt+ (1/C- Ln2 ) cos nt 
R2n2 + (1/C- Ln2) 2 

10 A beam of length L and of weight w per unit length is clamped horizon­
tally at both ends. The beam is subject to an axial compressive Ioad 
P. The deflection y is related to the distance x from one end by the 
equation 

Ely" + Py = G - ~wLx + ~wx2 (o~x~ ~) 
where G is the clamping couple, E is Young's modulus and I is the 
moment of inertia, and the dashes indicate differentiation with respect 
to x. Show that 

y = l_ [(~- c) cos nx + wL sin nx + G- ~ 
P n2 2n n2 

1 1 2] - 2wLx + 2wx 

where n2 = PI EI. 

11 The displacement x metres at timet seconds of a vibrating mem­
brane is given by the differential equation 

d2x 
dt2 + x = sin 2t 

Initially, when t = 0 both x and dxfdt are zero. Show that the 
next timethat dxfdt = 0 is when t = 27r /3. 

12 The equation of motion of a bead executing damped oscillations 
on a straight line is given by 

d2x dx . 
dt2 + 4 dt + 5x = 2a sm t 

Initially the distance x = a and the speed dx/dt = 0. Show that 

x = ~e-2t[9 sin t + 5 cos t] + ~[sin t- cos t] 

Show further that under these circumstances the bead eventually 
executes simple harmonic motion of amplitude a.j2/4. 



Fourier series 21 

We have already seen how certain functions can be expressed by 
means of Taylor series. Although this is a powerful technique, 
and is one of the cornerstones of numerical methods, there is one 
major disadvantage; relatively few functions can be represented 
by power series. ln this chapter we shall see that Fourier series 
can be used for a much wider dass of functions. 

After completing this chapter you should be able to 

0 Obtain the Fourier series of functions defined on the interval ( -1r, 1r); 

0 Distinguish between an odd function and an even function; 

0 Obtain Fourier sine series and Fourier cosine series; 

0 Apply Dirichlet's conditions to determine the convergence of a general 
Fourier series; 

0 Represent a wide dass of functions by means of Fourier series. 

At the end of this chapter weshall consider a practical problern involving 
a full-wave rectifier. 

21.1 FOURIER SERIES 

In the early nineteenth century it was a Frenchman Joseph Fourier who 
first had the idea of using a trigonometrical series rather than a power 
series to represent more general functions. Fourier was an applied 
mathematician working on the theory of heat and it was some time 
before his ideas caught the imagination of those studying the theory 
of functions. Power series are relatively easy to use and a consider­
able amount was known about their convergence. By contrast almost 
nothing was known about the convergence of trigonometrical series. 
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Fourier's belief was that virtually any function could be represented 
as a trigonometrical series using sines and cosines. This idea met con­
siderable scepticism at first but broadly speaking Fourier was shown 
tobe right. Where did he get the idea from? The answer may lie in 
the fact that he could sense it in the work he was doing on heat. In 
a similar manner, any sound consists of an accumulation of vibrations 
at different pitches, and yet we know that when these are all put to­
gether, a whole kaleidoscope of different sounds can result. Fourier's 
instinctive idea was a triumph of 'lateral thinking' and we shall now 
explore the basic concepts. 

Tostart with Iet us suppose that f(x) is defined on the interval -7r ~ 
x ~ 1r and that on this interval f(x) can be represented by a series of 
cosine and sine functions. Specifically we shall suppose that 

!(X) -- ao + 2 3 a1 cos x + a2 cos x + a3 cos x + · .. 
2 

+ b1 sin x + b2 sin 2x + b3 sin 3x + · · · 

A coefficient a0/2 (rather than the more obvious constant a0 ) has 
been introduced so that later we can include it in a general formula for 
the coefficients an. If we didn't include the '2' here we would have to 
include it later in a special formula for a0 . The notation which we are 
using is the one which is employed almost universally. Note also that 
we need to include a constant term for the cosines because cos rx = 1 
when r = 0 whereas sin rx = 0 when r = 0. 

To derive a formula for an we shall multiply through the equation 
by cos nx and integrate over the interval ( -1r, 1r). Similarly, to derive 
a formula for bn we shall multiply through the equation by sin nx and 
integrate over the interval ( -1r, 1r). We shall need one or two results 
which you may care to derive as a revision exercise on integration. 
Here they are: 

I: cos mx cos nx dx = 0 if m =f n 

I: cos mx cos nx dx 1r if m = n 

I: sin mx sin nx dx 0 if m =f n 

I: sin mx sin nx dx 1r if m = n 

I: sin mx cos nx dx 0 
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Let us assume therefore that f ( x) can be represented by the trigono­
metrical series 

00 

f(x) = ~ + 'L)arcosrx+brsinrx} 
r=l 

We shall obtain an and bn separately. 
1 We multiply through by cos nx and integrate over the interval ( -1r, 7r), 
observing that every term on the right-hand side will produce zero ex­
cept the nth term. Consequently we obtain 

I: f(x) cos nx dx = an7r 

Therefore 
l11T an=- f(x) cos nx dx 
7r -1T 

The question of the constant a0 /2 needs to be considered. If we inte­
grate J(x) over the interval ( -1r, 1r) we obtain 

I: f(x) dx = ~0 I: dx 

ao 
- 27r 
2 

ao 1r 

l11T so ao = 7f -1r f(x) dx 

which is consistent with the formula for an which we derived for n =/:- 0. 
2 We multiply through by sin nx and integrate over the interval ( -7r, 1r), 
again observing that every term on the right-hand side will produce 
zero except the nth term. Therefore 

I: f(x) sin nx dx = bn7r 

So 
l11T bn = - f(x) sin nx dx 
7r -1T 

Naturally we have presumed quite a lot in all this. For instance, we 
have presumed that the series does in fact converge to f ( x), that we are 
justified in multiplying through by cos nx and sin nx, integrating term 
by term, and that the result which we have obtained is meaningful. 
We shall consider questions of this kind a little later but presuming 



624 FOURIER SERIE$ 

this, we have now obtained formulae which enable us to calculate the 
coefficients an and bn· Here they are again: 

11rr an=- f(x) cosnx dx 
1r -rr 

11rr bn = - f(x) sin nx dx 
1r -rr 

It will perhaps come as no surprise to learn that the coefficients in the 
trigonometrical series are known as Fourier coefficients. 

D Suppose f(x) = x throughout the interval (-1r, 1r) and that 

00 

f(x) = ~0 + L{arcosrx+brsinrx} 
r=l 

Obtain the trigonometrical series explicitly. 

We have straight away 

11rr an=- f(x) cosnx dx 
1r -rr 

Here 11rr an=- xcosnx dx 
1r -rr 

Irrtegrate by parts, when n -1- 0 

= -- sinnx dx 1 lrr 
n1r -rr 

1 [ 1 ] 'Ir -- --cosnx 
n1r n -rr 
1 

- 2-[cosn7r- cos(-n1r)] 
n7r 

0 
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Whereas for ao 

1 j" ao - xdx 
7r -'Ir 

= ~ [x2]" 
7r 2 -'Ir 

~[0] 
7r 

= 0 

We now turn our attention to bn: 

1 j" bn = - x sin nx dx 
7r -'Ir 

Again, integrate by parts, 

Now cos(-n1r) = cosn1r = (-1)n and so 

-2cosn1r 1 [. ]" bn = + - 2- sm nx _" n n1r 

_-_2 ('-------'1 )'-n + 0 
n 

We have therefore obtained the trigonometrical series 

{ . sin 2x sin 3x } =2 smx--2-+-3--··· 

to represent f(x) = x in the assumption that equality holds on the 
interval ( -1r, 1r) and that we can multiply the series term by term and 
then integrate without disturbing or distorting the convergence. • 
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Of course f(x) = x is a rather strange example to use to obtain a 
trigonometrical series because we have no difficulty whatever in dealing 
with polynomial functions. It is the more obscure functions that occur 
in practical applications which concern us. However there are two 
principal reasons why we have worked through this example. First 
it provides a relatively simple exercise for us to use to illustrate how 
to calculate the Fourier coefficients, and secondly it Ieads us into a 
discussion of a special feature which some functions possess and which 
enables us to reduce the work in finding their Fourier coefficients. 

21.2 000 ANO EVEN FUNCTIONS 

Suppose f(x) is defined on the interval -1r ~ x ~ 1r, then f is said to 
be an odd function if 

J( -x) = - f(x) whenever - 1r ~ x ~ 1r 

You already know of many functions which are odd functions. Here 
are a few examples: x, x3 , sin x, sinh x. Odd functions are easily recog-

f(x) 

.-'Ir 0 " 2 
'Ir X 

-'Ir 

Fig. 21.1: An odd function. 

nized by their graphs; they are symmetrical with respect to the origin 
(Fig. 21.1). 
Suppose f(x) is defined on the interval -7r ~ x ~ 1r, then f is said to 
be an even function if 

f( -x) = f(x) whenever - 1r ~ x ~ 1r 

Here are a few examples of even functions: 1,x2,cosx,coshx. Even 
functions are easily recognized by their graphs; they are symmetrical 
about the y-axis (Fig. 21.2). 
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f(x) 

" 

-71" 0 .. 
2 

71" X 

-71" 

Fig. 21.2: An even function. 

In fact the identity 

shows that every function f defined on the interval ( -1!', 1l') can be 
regarded as the sum of an even function and an odd function. 

In the previous example we found a trigonometrical series correspond­
ing to an odd function and it had one curious feature. Did you notice 
what it was? There were no cosine terms whatever. We went through 
the motions of calculating the Fourier coefficients an only to find they 
were all zero. Was this a coincidence or is there something deeper 
here? 
Let us suppose that 

00 

f(x) = ~0 + ~)arcosrx+brsinrx} 
r=l 

and that f is an odd function on the interval ( -1!', 7r). 
We have already derived formulae for the Fourier coefficients and we 
have 

11" ; _". f(x) cosnx dx 

11" bn = - f(x) sin nx dx 
1l' -71" 

Therefore 

11" an - f(x) cosnx dx 
1l' -71" 
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= ~ {1: f(x) cos nx dx + 1" f(x) cos nx dx} 

Putting t = -x in the firstintegral and using f(-t) =- f(t) we obtain 

an ~ {1° f(-t)cos(-nt) (-dt) + 1" f(x)cosnx dx} 

~ {1° f(t) cosnt dt + 1" f(x) cosnx dx} 

= ~{-1" f(t)cosntdt+ 1" f(x)cosnxdx} 

Observe that t is a dummy variable in the first integral just as x is a 
dummy variable in the second. Consequently these two integrals are 
equal and so cancel one another out. 

Therefore we have shown that for an odd function an = 0. Moreover 
we can use the same idea to simplify slightly the formula for bn in the 
case of an odd function. We obtain 

11" bn = - f(x) sin nx dx 
7r -1[ 

; {1: f(x) sin nx dx + 1" f(x) sin nx dx} 

Put t = -x in the first integral: 

~ {1° f( -t) sin( -nt) ( -dt) + 1" f(x) sin nx dx} 

~ { -1° f(t) sinnt dt + 1" f(x) sin nx dx} 

~ {1" f(t) sinnt dt + 1" f(x) sin nx dx} 

21" - f(x) sin nx dx 
7r 0 

We are able to conclude therefore that if f is an odd function defined 
on the interval ( -n, 1r) and if 

00 

f(x) = ~0 + L{arcosrx+brsinrx} 
r=l 
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then 

2111" bn = - f(x) sin nx dx 
7r 0 

and an 0 for any integer n ;;:;: 0 

In a similar way it is easy to deduce that if f is an even function 
defined on the interval ( -7r, 1r) and if 

00 

f(x) = ~0 + L{arcosrx+brsinrx} 
r=l 

then 

2111" an = - f(x) cosnx dx 
7r 0 

and bn = 0 for any integer n ;;:;: 0 

lt is a good idea to see if you can deduce this on your own. If you get 
into difficulties then you can always use the derivation we obtained for 
an odd function as a model. The algebra is very similar indeed. 

21.3 SINE SERIES AND COSINE SERIES 

Before we move ahead it will pay us just to stand back a moment and 
think a little about the two results we have obtained in the case of odd 
functions and even functions. Notice that the values of an and bn can 
be obtained once f is known on the interval (0, 1r). Of course this is 
because f was either an odd function or an even function and so the 
values of f on the interval ( -1r, 0) are determined. 

However, suppose we have a function defined on the interval (0, 1r), 
we could use these formulae to obtain an and bn. Now this would 
imply that we had an understanding that the function f was either an 
odd function or an even function. With this understanding we should 
obtain a series containing sines only or a series containing cosines only, 
accordingly. 

Therefore given a function defined on the interval (0, 1r) we can ob­
tain either a cosine series or a sine series to represent it on this interval. 
lmplicitly we have extended the definition of our function to the inter­
val ( -7r, 1r). For a sine series the extended function is an odd function. 
For a cosine series the extended function is an even function. Of course 
these extended functions differ outside the interval. 
For the sine series 

f(x) = - f( -x) whenever - 1r:::;; x < 0 
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For the cosine series 

f(x) = f( -x) whenever - 1r ~ x < 0 

However we do not need to bother ourselves too much with extend­
ing the definitions formally because the extensions are implicit in the 
formulae for an and bn. 

D Obtain a cosine series for the function defined by f(x) = x on the 
interval {0, 1r). 

Our first example concerned the function defined by f(x) = x on the 
interval ( -1r, 1r). We now know the function to be an odd function 
and so it can be represented by a sine series which we determined. In 
this example we are concerned with an even function defined on the 
interval { -1r, 1r). We could if we wish make the definition of such a 
function explicit. lt can be defined by f(x) = lxl when -1r ~ x ~ 1r. 

As we know it is symmetrical about the y-axis. 
For this example we do not need to concern ourselves with these 

details but can instead proceed to obtain the cosine series by evaluating 
the formula for an. 

Wehave 
00 

ao ~ 
f(x) = 2 + L.Jancosnx 

n=l 

where 
21'/r an=- f(x) cosnx dx 
1C' 0 

We shall need to obtain a0 separately but for the moment we shall 
calculate an when n # 0. Integrating by parts we have 

21'/r an = - xcosnx dx 
1C' 0 

= ~ [X einnnx) - I sinnnx dx [ 

-- sinnx dx 2 11r 
n7r o 

2 [ cosnx]1r = -- ---
n7r n o 

2 = -2-[cos n1r - cos 0] 
n7r 
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Now we must obtain a0 . We have 

21" ao=- xdx 
7r 0 

3_ [x2]" 
7r 2 0 

= 7r 

We observe that an= 0 when n is even but non-zero and an= -4/n27r 
when n is odd. So that writing n = 2r + 1 we have 

f(x) = ~ _ ~ :f: cos(2r + 1)7r 
2 7r r=O (2r+1)2 

21.4 DIRICHLET'S CONDITIONS 

The time has now come for us to discuss briefly the question of con­
vergence of the trigonometrical series we have been discussing. We 
shall state some conditions due to Dirichlet which enable us to pro­
ceed meaningfully. 

We first introduce a useful notation. Suppose we have a function f 
defined on the interval ( -1r, 1r). We shall write 

00 

f(x)'"" ~0 + 1)arcosrx+brsinrx} 
r=l 

if and only if 

1 j" an ; -1r f(x) cosnx dx and 

1 j" bn = - f(x) sin nx dx 
7r -tr 

Notice that we arenot saying that the series converges or that, if it 
does, it converges to f(x). All we are saying isthat the coefficients an 
and bn are determined by the integrals. The trigonometrical series on 
the right-hand side obtained by this procedure is called a Fourier series 
and it should be stressed that no claims whatever are made about its 
convergence at this stage. 
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So given a function f defined on the interval ( -1r, 1r) we can write 

00 

f(x)"' ~0 + L)arcosrx+brsinrx} 
r=l 

The series on the right, periodic with period 21r, is called a Fourier 
series for f. The Fourier coefficients are determined by 

111r an=- f(x) cosnx dx 
1T -'Ir 

111r bn = - f(x) sin nx dx 
1T -'Ir 

Dirichlet's conditions Suppose the function f is defined on the in­
terval ( -1r, 1r) in such a way that 

1 f has only a finite number of maxima and minima on the interval. 

2 f has only a finite number of discontinuities on the interval. 

3 f has only finite discontinuities on the interval. 

Then when -?r < x < 1r the Fourier series converges to 

-2
1 [ lim f(x + t) + lim f(x- t)] 

t-+0+ t-+0+ 

Note that at points where f is continuous 

lim f(x + t) = f(x) = lim f(x- t) 
t-+0+ t-+0+ 

and so the series does indeed converge to f(x) at points where f is 
continuous. 

At any point x of discontinuity we have 

So that 

lim f(x + t) is the right-hand limit of f at x 
t-+0+ 

lim f(x- t) is the left-hand limit of f at x 
t-+0+ 

-2
1 [ lim f(x + t) + lim f(x- t)] 

t-+0+ t-+0+ 

is the mean value of the right-hand and left-hand limit of f at x. 
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21.5 HARMONICS 

In the Fourier series 

00 

~ + L {an cos nx + bn sin nx} 
n=l 

The term an cos nx + bn sin nx is known as the nth harmonic, so that 
a Fourier series consists of a constant term and a sum of harmonics. 
When we obtained a Fourier cosine series for f(x) = x on the interval 
0 ~ x ~ 1r we observed that there were no even harmonics although 
the constant term was non-zero. We can save ourselves effort if we can 
foresee when odd harmonics or even harmonics will be absent. 

0 Show that if f satisfies 

f(x) = f(x + 1r) whenever - 1r ~ x ~ 0 

then there are no odd harmonics present in the corresponding Fourier 
series of period 21r. 

Notice that by specifying the period we in fact fix the series. We wish 
to show that an = 0 and bn = 0 when n is odd. We use the definitions 
of an and bn to obtain this result directly from the Fourier integrals 
themselves. 

1111" an ;: _,.. f(x) cos nx dx 

1111" bn = ;: _,.. f(x) sin nx dx 

We shall deal with an and leave the case of bn as an exercise. 
Our task is to show that when n is odd, an = 0. Now 

1111" ;: _,.. f(x) cosnx dx 

= ~ {1: f(x)cosnx dx + 1,.. f(x)cosnx dx} 

Put t = x + 1r in the first integral and observe that since -1r ~ x ~ 0, 
0 ~ t ~ 1r. Also 

f(x) f(x + 1r) = f(t) 

cosn(t- 1r) cos nt cos n1r + sinnt sin n1r 



634 FOURIER SERIES 

( -l}n cosnt 

Likewise sin n(t- 1r) sinnt cos n1r - cos nt sin n1r 

( -lt sinnt 

Therefore 

an = ~ {1"' f(t) cosn(t- 1r) dt + 1"' J(x) cosnx dx} 

= ~ {1"' j(t)cosntcosn1r dt+ 1"' J(x)cosnx dx} 

~{(-lt 1"' f(t)cosntdt+ 1"' f(x)cosnxdx} 

~ { ( -l)n 1"' f(x) cos nx dx + 1"' f(x) cosnx dx} 

= ~ {[1 + (-lt]1"' f(x)cosnx dx} 

As anticipated, we observe that an = 0 when n is odd. 

!> Exercise Show that if f satisfies 

f(x) = - f(x + 1r) whenever - 1r ~ x ~ 0 

• 

then there are no even harmonics present in the corresponding Fourier 
series of period 21r. 

21.6 FOURIER SERIES OVER ANY FINITE INTERVAL 

We have only considered functions which are defined on the interval 
( -1r, 1r) but it isasimple matter to extend what we have been doing 
to the more general interval ( -l, l). We could even extend one step 
further to an arbitrary interval (a, b) but in doing so we would lose 
the poetry of the formulae. There is in fact little to be said for too 
much generality since we can always perform a transformation to deal 
with an arbitrary interval. Nevertheless weshall deal with the interval 
( -l, l) since this will show us how to handle transformations and as 
it happens the symmetry of the formulae is preserved. 

Suppose that f is defined on the interval ( -l, l) and satisfies Dirich­
let's conditions on the interval. We have f(x) is defined whenever 
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-l ~ x ~ l so if we substitute t = 1rxjl and write f(x) = g(t) we see 
that g(t) is defined for -7r ~ t ~ 1r and so 

00 

g ( t) ,...., ~0 + ~)an cos nt + bn sinnt} 
n=l 

where 

11'/r an :;;: -tr g(t)cosnt dt 

11'/r bn = :;;: -1r g(t) sinnt dt 

All we now need to do is to substitute back in terms of x to obtain 
the required formulaeo In fact the algebra for an and bn is so similar 
that we shall work through only one, bno The other one, an, is left as 
an exerciseo 

Here we go theno 
1fX 

t 

dt 7f 

dx 

sinnt 0 (n1rx) sm-
l 

So 111 
0 (n1rx) 1r :;;: _/(x) sm -l- l dx 

We therefore have 

ao ~ { (n1rx) 0 (n1rx)} f(x) rv 2 + L...J an cos -l- + bn sm -l-
n=l 

where 

an t I>(x) cos (n~x) dx 

bn = t [ 1

1 
f(x) sin (n~x) dx 

Note that we can test if this looks right by putting l = 1r to see 
whether or not these formulae reduce to the ones we had beforeo They 
do, so all seems wello 
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lt is now time for you to test your skill at working with Fourier 
series. We shall tackle several fairly easy problems so that we get the 
ideas fixed . 

....--.---------- 21.7 Workshop-------
1 !Ll The function f is defined on the interval (0, 1r) by 

f(x) = 1r 

= 0 

7r 
0 ~X~ 2 
7r 
2<X~7r 

Obtain a Fourier cosine series for f with period 271" on the interval 
(0, 7r). 

Try this carefully and then move ahead to check things are all right. 

I S Wehave 
00 

ao "' f(x) "" 2 + L.." an cos nx 
n=l 

Where, for all integers n ~ 0 

21" an=- f(x) cosnx dx 
7r 0 

Notice that f is defined by a different formula on each of the two 
subintervals (0,71"/2) and (7r/2,7r) so it is necessary for us to split the 
integral in each case. 

To calculate an we consider a0 separately: 

ao = 21" - f(x) dx 
7r 0 

= ~ {1" 12 
1r dx + 1" 0 dx} 

7r 0 71"/2 

171"/2 

2 dx 
0 

2[x]~12 = 1r 

Now for an when n =/: 0 

21" an = - J(x) cosnx dx 
7r 0 



WORKSHOP 637 

= ~ { f1r/2 1rcosnx dx + 11r Ocosnx dx} 
7r Jo 1r/2 

r/2 
2 Ja cosnx dx 

2 [ sinnnx [ 12 

2sin(!!f) 

n 

Now sin(n1r /2) is zero whenever n is even. Suppose n is odd, so n = 
2r + 1, then sin(n1r /2) = ( -1)'. We therefore have 

( ) 7r Loo ( )rcos(2r + l)x f X '""- + 2 -1 
2 2r + 1 

r=O 

You may have decided not to simplify your answer as far as this and 
instead have left it in the form 

7r Loo sin(n7r) 
f(x),.....,- + 2 2 cosnx 

2 n 
n=l 

This is a perfectly valid alternative form. 
Now Iet us Iook at a follow-up question. 

[> Exercise Use Dirichlet's conditions to discuss the convergence of the 
series ohtained in the previous exercise at the specific points x = 0, 
x = 1r /2 and x = 1r. 

We see that f is continuous at all points except possihly 0, 1r /2 and 

1r. In fact we certainly have a finite discontinuity at 1r /2. Dirichlet's 
conditions show that the Fourier series will converge to the average of 
the left-hand Iimit and the right-hand Iimit there. Now the right-hand 
Iimit is 0 and the left-hand Iimit is 1r so we deduce that the series 
converges to 1r /2 at x = 1r /2. 

Now Iet us turn our attention to what happens at x = 0. Remernher 
we were asked to ohtain a cosine series so we have in effect extended f 
to the interval ( -1r, 1r) in such a way that it hecomes an even function. 
Consequently at 0 hoth the right-hand Iimits and the left-hand Iimits 
are 1r and indeed the extended function is continuous at 0. We conclude 
that when x = 0, the series converges to 1r. 

Lastly we consider x = 1r. Remernher that the series is periodic with 
period 21r. It follows that the right-hand and left-hand Iimits are both 
in effect zero at x = 1r and that therefore we can conclude that the 
series converges to 0 at x = 1r. 
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I> Exercise Substitute x = 0, x = 1r /2 and x = 1r into the Fourier cosine 
series to obtain a series expansion for 1r /4 in two different ways. 

I !Ll Wehave 

f(x),..., ~ + 2 ~( _ 1Ycos(2r + 1)x 
2 L- 2r + 1 

r=O 

Now when x = 0 we have deduced that the series converges to 1r and 
so we obtain 

7r = ~ + 2 ~(-1Ycos(2r + 1)0 
2 L- 2r + 1 

7r 
4 

r=O 

oo (-1Y 

L2r+1 
r=O 

1 1 1 
1--+---+··· 

3 5 7 

When x = 1r /2, the series converges to 1r /2 and therefore 

oo {2r+l)7r 
7r 7r L( )rcos 2 -=-+2 -1 
2 2 2r + 1 

r=O 

Now cos(2r + 1)7r /2 = 0 for every integer r and so we obtain no new 
information from this series. We do however notice that we have con­
sistency, which might reassure us if we feared we had made an error 
somewhere. 

When x = 1r, the series converges to 0 and so we obtain 

0 = ~ + 2 ~(-1Ycos(2r + 1)7r 
2 L- 2r + 1 

r=O 

Now cos(2r + 1 )1r = ( -1 )2r+l = -1 and so we obtain 

7r 00 (-1r 
= -2~ 2r+ 1 2 

7r 00 (-1r 

4 L2r+1 
r=O 

1 1 1 
as before. = 1--+---+··· 

3 5 7 
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t> Exercise Suppose that instead of choosing a Fourier cosine series for f 
on the interval ( 0, 1r) defined by 

f(x) 

0 

7r 
0 ~X~ 2 
7r 
2<X~7r 

we had chosen a Fourier sine series. Without obtaining the series state 
how it would have converged at x = 0, x = 1r /2 and x = 1r. 

We need to remernher that a Fourier sine series for a function defined 

on an interval (0, 1r) is the same as that of an odd function defined 
on the interval ( -1r, 1r). We can therefore apply Dirichlet's conditions 
to such a function which we can extend with period 27r outside the 
interval ( -1r, 1r). 

We note that at x = 0 the right-hand limit is 1r and the left-hand 
limit is -1r so that the series will converge to 0 at x = 0. 

The point at which x = 1r /2 is within the interval (0, 1r) and so the 
convergence behaviour of the series will be the same as it was for the 
Fourier cosine series. We found at step 3 that the series converges 
to 1r /2 when x = 1r /2. However although the Fourier sine series and 
the Fourier cosine series each converge to the same values within the 
interval (0, 1r) the two series are very different. 

When x = 1r we observe that both the right-hand limit and the left­
hand limit of f are zero. Consequently the Fourier sine series converges 
to zero too. 

For the sake of completeness we shall conclude the workshop by 
determining the Fourier sirre series we have beerr discussirrg. 

t> Exercise Obtain the Fourier sirre series of period 27r which represents 
f on the interval (0, 1r) where 

f(x) 

0 

7r 
O~x~ 2 
7r 
2<X~7r 

As we know, f is defined differently on each of the two subintervals 

(0,7r/2) and (7r/2,7r) and so 

21" bn = - f(x) sin nx dx 
7r 0 

2 {1"/2 1" } - 1r sin nx dx + 0 sin nx dx 
7r 0 "/2 
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Now cos( mr /2) is zero whenever n is odd. Therefore putting n = 2r + 1 
we obtain b2r+l = 2/(2r + 1). On the other hand when n is even, we 
may write n = 2r, then cos( mr /2) = cos r1r = ( -1 Y. We therefore 
have 

f(x) 2 f= { sin(2r + 1)x + [1 _ ( _ 1rJsin 2rx} 
r=O 2r + 1 2r 

00 
{ 1 [1-(-1YJ } 2L --sin(2r+1)x+ sin2rx 

r=O 2r + 1 2r 

Finally putting x = 1r /2 we have sin 2rx = sin 1r = 0 and sin(2r + 1 )x = 
sin(2r+ 1)7r = (-1Y. 

1l' 

2 

1l' 

4 

oo { ( -1Y o } 22::: -- + [1- (-1rJ-
2r + 1 2r 

r=O 

oo (-1Y 
2~­
~2r+1 
r=O 

00 
( 1y L ---- as before. 
2r + 1 

r=O 

21.8 FURTHER DEVELOPMENTS 

It is possible to obtain a general Fourier series of period 2l for a function 
f defined on any finite interval (h, h+2l) and which satisfies Dirichlet's 
conditions on the interval. The formulae involved are very similar to 
the ones which we have investigated and it is a simple matter to derive 
them: 
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a0 ~{ (n1rx) (n1rx)} f(x)"' 2 + ~ an cos -l- + bn sin -l-
n=l 

where 

11h+2l (n7rx) - f(x) cos -l- dx 
l h 

1 rh+2l (n1fX) l }h f(x) sin -l- dx 

One point is well worth bearing in mind. Given a function f defined 
on an interval (0, k) and which satisfies Dirichlet's conditions on the 
interval, we have three obvious choices. 

1 We could obtain a general Fourier series, of period k, to represent 
f on the interval (0, k). 

2 We could obtain a Fourier cosine series, of period 2k, to represent 
f on the interval (0, k). 

3 We could obtain a Fourier sirre series, of period 2k, to represent 
f on the interval (0, k). 

It is important to appreciate that each of these series will converge to 
f in the interval (0, k) but that outside the interval they will differ 
considerably. 

The advent of modern computers has increased the demand for 
Fourier analysis. Harmonie analysis involves using approximate for­
mulae, sums instead of integrals, for the Fourier coefficients an and bn. 
This is of practical advantage because it is quite common for a function 
to be defined only in terms of a finite collection of data values. The 
underlying assumption, of course, is that all but a finite number of 
the intermediate values could be inferred by continuity considerations. 
One of the most well-known methods for dealing with harmonic anal­
ysis is an algorithm known as the method of 'fast Fourier transforms'. 

In general, Fourier series tend to converge quickly, in the sense that 
with only a few harmonics the 'shape' of the function becomes evi­
dent and the approximate values are good. However there are many 
examples where the convergence behaviour is not quite as expected. 
One of the most celebrated examples of these is known as 'Gibb's phe­
nomenon' where it was found that the numerical error near a point of 
discontinuity can be significantly greater than at points of continuity. 

________ 21.9 Practical ---------

We now consider a practical application of Fourier series which involves 
a rectifier in an electrical circuit. 
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0 When an electromotive force E acts on a full-wave rectifer the out­
put voltage is lEI. Show that if an EMF, E0 sin wt acts on such a 
rectifier, where E 0 > 0, then it may be represented on the half-range 
by a Fourier cosine series 

Eo {~ _ _± ~ cos2nwt} 
1r 1r L..... 4n2 - 1 

n=l 

Since E0 > 0 we deduce that the output voltage corresponding to 
E0 sin wt is Eol sin wtl. The imposed EMF E0 sin wt is clearly periodic 
and the half period T is obtained from the equation wT = 1r, since this 
is the smallest value of T > 0 at which sin wT = 0. 

We therefore require a Fourier cosine series on the interval (0, T) 
where T = 1rjw to represent the output voltage e(t). 

We notealso that on the interval (0, 1r jw), sin wt > 0. We now have 

00 

ao "" '2 + L.....ancosnwt 
n=l 

where, for all integers n, 

an ~ 1T e(t) cos ( n;t) dt 

2wE 11rjw 
--0 sin wt cos nwt dt 

1f 0 

Now 
sin(A + B) + sin(A- B) = 2sinAcosB 

so with A = wt and B = nwt we have 

wE 17r:/w 
an = - 0 [sin(n + l)wt + sin(l- n)wt] dt 

1f 0 

wE 17r:/w 
- 0 [sin(n + l)wt- sin(n- l)wt] dt 

1f 0 

wEo [- cos(n + l)wt + cos(n- l)wt] 1rjw 
1r (n+l)w (n-l)w 0 

except when n = 1. 
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We can easily obtain a1 separately for we have 

wEo 11rjw . d wEo [ cos 2wt] 1rjw a1 = -- sm2wt t = -- ----
7r o 7r 2w o 

Eo 
= --[cos21r- cosO] = 0 

27r 
So that for n # 1 we have 

= 

E0 [- cos(n + 1)1r + _1_ 
1r n+1 n+1 

+ cos(n- 1)7r __ 1_] 
n-1 n-1 

Eo [ (-1)n+1 + _1_ + (-1)n-1- _1_] 
1r n+1 n+1 n-1 n-1 

(-1)n-1E 0 [ 1 1 ] 2Eo 
1r - n+1 + n-1 - 1r(n2 -1) 

2( -1)n-1 Eo 2Eo 

1r(n2 - 1) 1r(n2 - 1) 

We now note that ( -1 )n-1 = 1 when n is odd and that consequently, 
when n is odd, an = 0. Therefore the only non-zero terms which occur 
are when n is even and so we may replace n by 2m to simplify an: 

4Eo 4Eo 
7r(4m2 - 1) 

Note also that 
4E0 ao 2E0 ao = - so that - = -

7r 2 7r 
Substituting for an in the Fourier series we obtain 

00 

ao "" 2 + L..J an cosnwt 
n=1 

00 

ao "" 2 + L..J a2m cos 2mwt 
m=1 
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2Eo ~ [ 4Eo ] - + L...J - ( 2 ) cos 2mwt 
1r 1r 4m - 1 

m=l 

2E0 _ 4E0 ~ [cos 2mwt] 
1r 1r L...J 4m2 - 1 

m=l 

Eo [~ _ ~ f: cos 2nwtl 
1r 1r 4n2 - 1 

n=l 

Note that at the final stage we have replaced the dummy variable m 
by the dummy variable n in order to obtain the required form. • 

lt is worth remarking that the Fourier series we have obtained corre­
sponds to that of an even function over the interval ( -7r I w, 1r I w) and 
that sin wt, 0 ~ t ~ 1r Iw, is symmetrical about the line t = 1r l2w. 
Moreover, the Fourier series we have obtained is periodic outside the 
interval (0, 1rlw) with period 1rlw. 

Observe too that Dirichlet's conditions are satisfied and that at the 
end-points of the interval ( 0, 1r I w) the Fourier series converges to zero. 

Now this is precisely the response Eol sin wtl from this full-wave rec­
tifier and so, in this particular case, the Fourier series does indeed 
provide a faithful representation of the response for all t. 
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SUMMARY 

0 Given a function f defined on the interval ( -l, l) we can 
obtain a Fourier series for f of period 2l: 

ao ~ { (n1rx) . (n1rx)} f(x) rv 2 + L...t an cos -l- + bn sm - 1-
n=l 

where, for integers n ~ 0, 

an=~ 11 f(x) cos (n;x) dx 
2 -1 

1 11 
. (n1rx) bn = 2l _/(x) sm -l- dx 

0 Given a function f defined on the interval (0, l) we can 
obtain a Fourier cosine series for f of period 2l: 

00 

f(x) rv ~0 + L an cos (n;x) 
n=l 

where, for integers n ~ 0, 

0 Given a function f defined on the interval (0, l) we can 
obtain a Fourier sine series for f of period 2l: 

00 

f(x) rv L bn sin (n;x) 
n=l 

where, for integers n ~ 1, 

EXERCISES 

1 Obtain a Fourier cosine series ofperiod 21r for each ofthe following 
functions: 
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a f(x) = 0, 0 :s;; X< 1rj2 
f(x) = X-7rj2, 1rj2 <X :s;; 7r 

b f(x) 7r /2, 0 :s;; X< 7r/2 
f(x) 7r- x, 1rj2 <X :s;; 7r 

2 Obtaill a Fourier sille series of period 27r for each of the followillg 
fullctiolls: 
a 

b 

f(x) 0, 
f(x) 1r - x, 

f(x) = x, 
f(x) 1r- x, 

0 :s;; X< 1rj2 
1rj2 <X :s;; 7r 

0 :s;; X< 7r/2 
7r/2 <X :s;; 7r 

3 Obtaill a Fourier cosille series, of period 21r, which collverges to 
sill x Oll the illterval 0 < x < 1r. 

4 A fullctioll f is defilled by the equatiolls: 

f(x) 7r/3 
X 

= 0 

0 :s;; X :s;; 7r /3 
7r/3 :s;; X :s;; 27r/3 
27r /3 < X :s;; 7r 

Obtaill a Fourier cosille series for f which has period 27r alld which 
COllverges to f Oll the illterval (0, 1r). State the llumbers to which 
the series collverges whell x = 0, 1r /3, 27r /3, 1r, 27r. 

ASSIGNMENT 

1 Obtaill a Fourier cosille series of period 2l for each of the followillg 
fullctiolls: 
a f(x) = 0, 0 :s;; X< l/2 

f(x) l, l/2 < X :s;; [ 

b f(x) = 0, 0 :s;; X< l/3 
f(x) = l, l/3 <X :s;; 2l/3 
f(x) = 0, 2lj3 <X :s;; l 

2 Obtaill a geperal Fourier series of period 2l for each of the follow­
illg fullctiolls: 

a f(x) = l, 
f(x) = 0, 

b f(x) = l, 
f(x) = 0, 
f(x) l, 

0 :s;; X< l 
l <X :s;; 2[ 

0 :s;; X< 2lj3 
2lj3 <X :s;; 4lj3 
4lj3 <X :s;; 2[ 

3 Obtaill a Fourier sille series, of period 2l, which collverges to 
cos(1rxjl) Oll the illterval 0 < x < l. 

4 The fullctioll f defilled by f(t) = 1r - t whell 0 :s;; t :s;; 1r is to 
be represellted by mealls of a Fourier cosille series alld also by a 
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Fourier sine series on the interval (0, 1r) each of period 21f. Show 
that these are 

and 

~ + ~ f cos(2n- l)t 
2 1f n=l (2n- 1)2 

00 • 

"""sm nt 
2L....t--

n 
n=l 

respectively. Explain how the convergences of these series differ 
on the interval (0, 21r). 

FURTHER EXERCISES 

1 Obtain a Fourier series of period 1r for each of the following func­
tions: 
a 

b 

c 

d 

f(x) 
f(x) 

f(x) 
f(x) 

f(x) 
f(x) 

f(x) 
f(x) 

0, 
X- 1fj2, 

1f /2, 
1f- x, 

0, 
1f- x, 

x, 
1f- x, 

0 ~X< 1rj2 
1f /2 <X~ 1f 

0 ~X< 1rj2 
1f /2 <X~ 1f 

0 ~X< 1rj2 
1f /2 <X~ 1f 

0 ~X< 1rj2 
1f /2 <X ~ 1f 

2 Show that the Fourier series of period 27r corresponding to f ( x) = 
x2 where -1r ~ x ~ 1f is 

2 00 

~ + 4 """( _ 1rcosrx 
3 L....t r2 

r=l 

Use the series to show that 

3 A function f of period 10 is defined by 
f(x) 0 for -5 < x < 0 

4 for 0 < x < 5 
Show that the Fourier series, of period 10 corresponding to this 
function is 

2 8~ 1 . ((2r+1)7rx) +- L....t--sm 
1r 2r + 1 5 

r=O 
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f(x) f(x) 

0 w 
2 

1f X -1f 0 w 
2 

1f X 

-1f -1f 

a b 

4 Obtain Fourier series corresponding to the each of the functions 
f illustrated in diagrams a and band which converge to J(x), at 
each point x where f is continuous, on the interval -1r < x < 1r. 
At the end points, and at any points of discontinuity, state the 
numbers to which the series converge. 

5 Explain how x can be represented on the interval (0, 1r) by either 
a Fourier sine series or a Fourier cosine series. Hence or otherwise 
show 

7r 4 00 1 
x"' -- - L cos(2r + 1)x 

2 7r r=O (2r + 1)2 

Hence or otherwise deduce that 

7r2 1 1 1 
-=1+-+-+···+ +··· 
8 32 52 (2r + 1)2 

6 Show that a general Fourier series of period 21r for the function 
defined by J(x) = sinx when 0 :::::; x :::::; 1r and f(x) = 0 when 
1r :::::; x :::::; 21r is 

1 1 . 2 Loo cos 2nx 
-+-smx--
7r 2 1r 4n2 - 1 

n=l 

Hence or otherwise deduce the sum of the series 

1 1 1 
--+--+--+··· 
1x3 3x5 5x7 

7 The rectified half-wave sine current is defined by 

f(t) = sin w1rt 0 :::::; t :::::; 1/w 
= 0 1/w < t :::::; 2/w 

Obtain a Fourier series for f of period 2/w and use Dirichlet's 
conditions to deduce the numbers to which it converges when 
t = kjw, where k is any natural number. 
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8 Obtain a a cosine series and b a sine series of period 4 for the 
function defined by 

f(x) = 2(1- x) 
= 0 

9 An even function f is defined by the following equations 

Show that 

f(x) f(x- 4) 
1 
2(1- x) 

= -1 

allreal x 
0 ~X< 1/2 
1/2 ~X< 3/2 
3/2 ~ X < 2 

16 Loo 1 . mr . n1r n1rx f(x) rv- -sm-sm-cos-
7r2 n 2 2 4 2 

n=l 

10 The function f is defined by 

f(t) = t 
= 7r/2 

0 ~ t < 7r/2 
7r/2 ~ t < 7r 

Obtain the following representation for f as a Fourier cosine series 

37r 2 ~ ( n1r ) cosnt 
-+-~ cos--1 --
8 1r 2 n2 

n=l 

Sketch the graph of the series on the interval (-21r, 27r) and show 
further that 

37r2 2 1 1 2 1 1 2 1 
16 = 1 + 22 + 32 + 52 + 62 + 72 + 92 + 1Q2 + 112 + ... 



22 Laplace transforms 

ln Chapters 19 and 20 we solved differential equations by first 
obtaining the general solution and then using initial conditions 
to obtain the solution which was relevant. ln this chapter we 
shall introduce a different approach in which we make use of the 
initial conditions at the outset and so do not obtain the general 
solution at all. 

After completing this chapter you should be able to 

D Recognize and distinguish between Fourier transforms and Laplace 
transforms; 

D Obtain the Laplace transform and inverse Laplace transform of simple 
functions; 

D Solve linear ordinary differential equations using Laplace transform 
methods; 

D Use the Dirac 'delta function' to represent impulses and solve equa­
tions in which these arise. 

At the end of this chapter weshall consider a practical problern involving 
a 'spike function' and an electrical circuit. 

22.1 INTEGRAL TRANSFORMS 

The underlying idea behind the use of integral transforms is that they 
give a method of replacing a differential equation by an algebraic equa­
tion. Intuitively algebraic equations are easier to solve than differential 
equations. What happens is that we normally have a differential equa­
tion tagether with a set of initial conditions and we wish to obtain 
the solution. To solve it we transform the differential equation into 
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an algebraic one, solve that, and then reverse the transformation pro­
cess to obtain the solution which we require. The only difficulty with 
this simple idea therefore rests in the transformations themselves. We 
shall devise a set of rules to help us with this but we must be prepared 
to face some difficulties somewhere along the line. These are usually 
to be found in obtaining the inverse transform. However these days 
things are much better than they used to be because computer algebra 
packages can take the drudgery out of solving routine calculations. 

One word of warning. The sight of an integral transform might be 
rather daunting. Don't be put off, try to get the overview as to what 
is going on and don't be alarmed by the detail. 

Suppose that f(t) is defined whenever a < t < b and that K(s, t) is 
some expression in both s and t. We define the integral transform 
T[f(t)], with kernel K(s, t), on the interval (a, b), by: 

T[f(t)] = 1b K(t, s) f(t) dt 

whenever the integral exists. 
Observe that we started with f(t), which depended on an unknown 

t, and have produced something which depends on another unknown 
s; s is, of course, a parameter. 

Now all this is very general but as soon as we specify the kernel 
K(s, t) and the interval (a, b) we obtain a specific transform. The 
choice of the kernel and the interval is determined by what we wish 
the transform to achieve. 

0 K(s, t) = e-st and (a, b) = (0, oo) produces the Laplace transform. 
K(s,t) = cosst or K(s,t) = sinst and (a,b) = (O,oo) produces 
Fourier transforms. 
K(s,t) = cosnt or K(s,t) =sinnt and (a,b) = (0,1r), where n ~ 0 is 
an integer, produces finite Fourier transforms. 

• In this chapter we shall concentrate our attention on Laplace trans-
forms because it is these that are used to solve ordinary differential 
equations. Were we to be solving partial differential equations then 
we could apply Fourier transforms of one type or another. You will 
probably find it necessary to use these transforms in due course but, 
once you have understood and become familiar with the techniques 
required to use Laplace transforms effectively, this should present you 
with no great difficulty. 

We shall use the notation 

F(s) = .C[f(t)] = 100 e-st f(t) dt 
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to represent the Laplace transform of f(t). We shall hope to reverse 
the process to recover the expression in t, f(t) which has some given 
expression ins, F(s), as its Laplace transform. 

In fact we are being just a little too optimistic but it turns out that 
for all practical purposes we can reverse the process of finding the 
Laplace transform. 

D T is an integral transform. Show that if f(t) and g(t) are expressions 
in t, and h and k are constants, then: 

T[hf(t) + kg(t)] = hT[f(t)] + kT[g(t)] 

This rule is a linearity rule. We shall show it is true in general so that 
we then have the property established for any integral transform. It is 
in fact a simple exercise on integration. 

T[hf(t) + kg(t)] = 1b[hf(t) + kg(t)]K(s, t) dt 

1b [hf(t)K(s, t) + kg(t)K(s, t)] dt 

= 1b hf(t)K(s, t) dt + 1b kg(t)K(s, t) dt 

= h 1b j(t)K(s, t) dt + k 1b g(t)K(s, t) dt 

hT[f(t)] + kT[g(t)] 

• 
There is one question which needs to be considered before long and 
that is the question of existence. When is it possible to obtain the 
integral transform of a function? Clearly this will depend not only on 
the function itselfbut also on the kerneland the interval (a, b). Ifwe are 
more specific and ask when the Laplace transform of a function exists 
then we need only concern ourselves with f(t) because the interval 
(0, oo) and the kernel e-st are already fixed. This allcomesdown to 
whether or not the integral 

1oo f(t)e-st dt 

exists. Considerations of this kind are rather advanced but suffice it 
to say that if f(t) is piecewise continuous on the closed interval [0, oo] 
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then weshall have a fighting chance of settling the matter. A function 
is piecewise continuous on an interval if it is possible to partition the 
interval into a finite number of subintervals in such a way that (1) the 
function is continuous on each subinterval and (2) the function has 
a finite right-hand and left-hand limit at each point of discontinuity. 
However we shall not always restriet our attention to these functions 
but, occasionally in a somewhat cavalier fashion, we shall allow our­
selves more freedom; the only proviso being that the Laplace transform 
will be presumed to exist. 

One other point needs to be made. The parameter s is undefined 
and so we can take it to be almost anything we like. For instance we 
can assume it is a very large, but unspecified, positive number; or even 
a complex number, the real part of which is very large. 

There is a whole host of rules for obtaining Laplace transforms and we 
shall consider these shortly but first we shall find our feet by obtaining 
a few of the easier transforms by direct integration. 

0 Obtain the Laplace transform of each of the following functions: a 
1 b eat c t d 1 + 2t + 3et. 

a Wehave 

[ e~:t] ~ 
1 
s 

Here we are supposing that s > 0, so that limt-.oo e-st = 0. 
b The integral gives 

1"" eat e -st dt 

1"" e-(s-a) dt 

1 

s-a 

Here we are supposing that s > a, so that limHoo e-(s-a) = 0. 
c Here 

.C[t] = 1"" t e-st dt integrate by parts 
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--- --dt [
t e-st J e-st ] 00 

(-s) (-s) 0 

1 100 - e-st dt 
s 0 

1 

There are two points worth noting here. The first is that we have 
made use of example a. We could have emphasized this by the inclusion 
of an extra step: 

- e dt = -C 1 =-1 1oo -st 1 [ ] 1 
s 0 s s2 

The second is that we have made use of a property of limits 

lim (te-•1) = 0 
t--+oo 

This is a property which we shall require for every f(t) that we wish 
to transform. lt is sometimes expressed by saying the f(t) is of expo­
nential order. Weshall presume that for all the functions which we 
use 

lim (f(t)e-st) = 0 
t--+oo 

d We use the linearity property which we derived for any integral 
transform 

1 1 1 
- +2-+3-­
s s2 s- 1 

s + 2 3 --+--
s2 s -1 

(s + 2)(s- 1) + 3s2 

s2(s- 1) 

4s2 + s- 2 

s2(s- 1) 

• 
The first two of these examples illustrate a more general property which 
we shall find useful a little later. In fact the result which we shall now 
obtain is often known as a shifting theorem. 
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The first shifting theorem Suppose that F(8) = .C[f(t)], then 

F(8 + a) = .C[e-at j(t)] 

Proof Given that F(8) = .C[f(t)] we have 

F(8) 100 e-st j(t) dt 

So F(8 + a) 100 e-(s+a)t j(t) dt 

1oo e-st [e-at j(t)] dt 

.C[e-at j(t)] 

• The time has come to develop some more general formulae which will 
enable us to determine other Laplace transforms. We should not lose 
sight of the fact that ultimately we shall wish to reverse the process 
and the work we did on partial fractions will be needed. 

Property 1 Suppose f'(t) exists, then under the usual conditions 

.C[j'(t)] = 8 .C[f(t)]- lim [f(t)] 
t---tO+ 

Proof We shall perform the integration, commenting later on some of 
the difficulties which arise . 

.C[j'(t)] = 100 J'(t)e-st dt 

100 e-st j'(t) dt integrate by parts 

[e-st j(t)]g" -100 
( -8)e-st j(t) dt 

[e-st j(t)]g" + 8100 e-st j(t) dt 

lim [e-st f(t)] - lim [e-st j(t)] + 8.C[f(t)] t---too t---tO+ 

- lim [e-stj(t)] + 8.C[f(t)] 
t---tO+ 

= 8.C[f(t)]- lim [f(t)] 
t---tO+ 

We have certainly applied the product rule for limits to deduce that 

lim [e-st f(t)] = lim [e-st] X lim [j(t)] 
t---tO+ t---tO+ t-+0+ 
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and the fact that 

to obtain this result. We have already mentioned that we shall be sup­
posing that all the functions under consideration possess the property 
that 

lim[e-•tj(t)] = 0 
t--too 

The significance of this result is easy to miss but we will do well to 
look at it carefully because it is of great importance. To see it we shall 
change the notation to write 

dx 
x = f(t) so that dt = f'(t) 

We then have 

C [ddx] = sC[x] - lim x 
t t--tO+ 

The key thing to note is that the derivative dx/dt has been trans­
formed in terms of the transform of x itself and also the 'initial' value 
of x. The effect of taking the Iimit of x as t tends to 0+ is to track 
back to the value of x when t is 0. You will observe that we do not 
need to know the value of x when t is 0, we are more interested in 
its value immediately afterwards. This is a very common requirement 
in Science and Engineering and this initial value can often be inferred 
even if it is not known beforehand. 

Repeated application of this property will enable us to take any 
linear differential equation with constant coefficients and transform it 
into an algebraic equation containing X = C[x] and the initial values 
of x and its derivatives. We therefore are able to take a differential 
equation of this form and transform it into an algebraic equation for 
X. Our ability to extract X explicitly from the equation is not in 
doubt and it only remains to reverse the Laplace transform to obtain 
the solution x. 

Note that for instance: 

C [d2x] = 
dt2 

sC - - hm-[dx] . dx 
dt t--tO+ dt 

= s {sc[x] - lim x} - lim ddx 
t--tO+ t--tO+ t 

= s2C[x]- s lim x - lim ddx 
t--tO+ t--tO+ t 

0 Obtain the Laplace transforms of sin at and cos at. 
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We can use the property which we have just been discussing to obtain 
each of these transforms. We observe that 

i[sinat] 
dt 

d 
dt [cos at] 

so [, [ :t sin at] = 

and C [ :t cos at] 

but [, [! sinat] 

likewise [, [ :t cos at] 

a cos at 

-asinat 

aC[cos at] 

-aC[sin at] 

sC[sin at] - lim [sin at] 
t-+0+ 

sC[sin at] - sin[O] = sC[sin at] 

sC[cos at] - lim [cos at] 
t-+0+ 

sC[cos at] - cos[O] = sC[cos at] - 1 

Writing X = C[sin at] and Y = C[cos at] we have 

sX aY 

sY -1 -aX 

Therefore s2 X s(aY) 

a(sY) 

a(-aX + 1) 

from which (s2 + a2)X = a 

X 
a 

s2 + a2 

y s 
s2 +a2 

C[sin at] 
a 

s2 + a2 
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.C[cosat] = 

• 
H(t) 

0 

Fig. 22.1: The Heaviside unit function. 

22.2 THE HEAVISIDE UNIT FUNCTION 

In many physical situations things change suddenly; a switch is thrown, 
brakes are applied, collisions occur. The Heaviside unit function, H, 
is a very useful function for representing sudden change (Fig. 22.1). 

We define H(t) at all numbers t except t = 0 by 

H(t) = c t>O 

t<O 

Consequently H(t- a) = 1 when t > a and H(t- a) = 0 when t < 
a. This simple observation enables us to represent quite complicated 
events by means of a single equation. 

D When a machine is switched on at time t = 0 the response R is 
given for timet ~ t1 by R(t) = Ptjt1, where P is a constant. From 
time t 1 the response remains constant until time t2 when the machine is 
switched off. Thereafter the response is given by R(t) = P exp -(t-t2). 
Use the Heaviside unit function to represent the response by a single 
equation. 
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0 a b t 

Fig. 22.2: The graph of H(t- a) - H(t- b). 

Before solving this problern we shall make a simple observation. Sup­
pose 0 ~ a ~ b then 

H(t- a) - H(t- b) 

has the value 0 before t = a, the value 0 after t = b but the value 
1 between t = a and t = b (Fig. 22.2). We can use expressions such 
as these as units to build up quite complicated formulae. For if we 
multiply a term by H(t- a) - H(t- b) then it will only be effective 
between the times t = a and t = b. 

In this case, we have the response Ptjt1 between time t = 0 and 
t = t 1 so we represent this by 

Pt 
-[H(t) - H(t- ti)] 
tl 

Subsequently, the response is P exp- ( t- t 2) and there is no prescribed 
time at which this response ceases; the response attenuates naturally. 
We may therefore represent this by 

Finally we put these together into one equation and obtain 

Pt 
R(t) = -[H(t) - H(t- t1)] + Pe-(t-t2 ) H(t- t2) 

tl 

= P { tt
1 
[H(t) - H(t- ti)] + e-(t-t2) H(t- t2)} 

0 Obtain the Laplace transform of H(t- a) where a > 0. 

• 
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We apply the definition and calculate the integral. 

.C[H(t- a)] = 100 H(t- a)e-st dt 

{1a H(t- a)e-st dt + 100 H(t- a)e-st dt} 

{1a 0 e-st dt + 1oo 1 e-st dt} 

100 e-st dt Put x = t- a 

100 e-s(x+a) dx 

e -as 100 e -sx dx 

• When we generalize this we obtain a very useful property of the Laplace 
transform known as the second shifting theorem. 

The second shifting theorem If F(s) = .C[f(t)] then 

.C[H(t- a)f(t- a)] = e-as F(s) 

See if you can derive it yourself; it is quite straightforward. 

Proof .C[H(t- a)f(t- a)] 

1 00 H(t- a)f(t- a)e-st dt 

= {1a H(t- a)f(t- a)e-st dt + 100 H(t- a)f(t- a)e-st dt} 

{1a 0 e-st dt + 100 f(t- a)e-st dt} 

100 f(t- a)e-st dt Put x = t- a 

1oo f(x)e-s(x+a) dx 

e-as 1oo f(x)e-sx dx 
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= e-as 100 j(t)e-st dt 

= e-as.c(f(t)] = e-as F(s) 

• 
j(t) 

~~------· 

0 a 

Fig. 22.3: As a--+ 0+, f(t) --+ 8(t). 

22.3 THE DIRAC DELTA FUNCTION 

The Heaviside unit function provides a mechanism by which to dis­
cuss a very interesting concept which is known as the Dirac delta 
function. We lead into this by considering the following function 
(Fig. 22.3): 

t<O 

O<t<a 

t>a 

We can represent this as a single equation by writing 

1 
j(t) = -[H(t)- H(t- a)] 

a 

For each number a > 0 we obtain a function of this kind but for each 
of them the area under the curve is always 1. In terms of an integral 
we can express this by writing 

1: j(t) dt = 1· 
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Moreover we can determine the Laplace transform of f easily, since 

.C[f(t)] = .C [~[H(t) - H(t- a)J] 

= ~ .C[H(t) - H(t- a)] 
a 

= ~ [.C[H(t)]- [H(t- a)]] 
a 

= 

~ [! _ e-as] 
a s s 

1- e-as 

as 

We now consider what happens as a -t 0+. We define 

8(t) = lim f(t) 
a--+0+ 

The area under the curve is 1 whatever the value of a and so the limit 
too will be 1. So we define 

100 8(t) dt = lim [1 00 f(t) dt] = 1 
-oo a--+0+ -oo 

Also, in a similar way, we can determine what happens to the Laplace 
transform 

.C[c5(t)] = lim .C[f(t)] 
a--+0+ 

1 -as 
= r [ -e ] 

a!.W+ as 

= 1 using l'Hospital's rule 

Wehave one other property of 8(t) which can be expressed by writing 

8(t) = 0 t ~ 0 

One thing is certain, 8(t), the Dirac delta function, is not a function in 
the technical sense in which we have used the word but nevertheless is 
very useful for representing impulsive motion. 8(t) is sometimes called 
a generalized function; electrical engineers like to call it a 'spike' 
function. Something measurable occurs instantaneously at time t = 0 
but at no other time. 
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The basic features of the Dirac delta function are contained in the 
following three properties which can be derived: 

1: 6(t) dt 1 

.C[6(t- a)] e-as 

6(t) 0 

These, tagether with the other general properties of Laplace transforms 
which we shall develop, will be sufficient for our purposes. 

0 An impulsive blow of 5 newtons is applied to a structure ten seconds 
after an experiment begins. Thirty seconds later a further impulsive 
blow of 10 newtons is applied. Represent the applied force, f(t) after t 
seconds, in newtons using the Dirac delta function and thereby obtain 
its Laplace transform. 

We have impulsive blows applied at time t = 10 and time t = 40. 
We can represent unit blows at these times by 6(t- 10) and 6(t- 40) 
respectively. Therefore 

f(t) = 58(t- 10) + 106(t- 40) N 

Now 

.C[f(t)] = .C[M(t- 10) + 106(t- 40)] 

= 5 .C[6(t- 10)] + 10.C[6(t- 40)] 

5e-108 .C[6(t)J + lOe-408 .C[6(t)J 

5e-10s + lOe-40s 

• 
22.4 THE INVERSE LAPLACE TRANSFORM 

We have described how to obtain the Laplace transform of a function 
either by first principles, that is by evaluating an improper integral, 
or by using some of the rules which have been determined. The time 
has now come to settle the important question of whether or not two 
different functions can have the same Laplace transform. 
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Lerch's theorem If two functions f and g, defined for positive real 
numbers, have the same Laplace transform then they differ by a Null 
function. 

A null function N is a function such that 

1TN(t)dt=0 for all T > 0 

In other words there is no area whatever under the curve x = N(t). 
In one sense this is very reassuring because we now know that for all 
practical purposes we can regard the inverse of a Laplace transform as 
unique. lt must be remernbered however that this also means we could 
change the value of a function f at an arbitrary number of points 
without affecting the value of its Laplace transform F. Nonetheless 
for all practical purposes once F(s) is known we can obtain f(t) and 
for this reason we write f(t) = .c-1[F(s)] and call f(t) the inverse 
Laplace transform of F(s). 

The process by which we determine an inverse Laplace transform 
requires us to express F(s) in a form from which it is possible to 
recognize standard Laplace transforms. Before we can do so, therefore, 
we need to have a small table (Table 22.1) of Laplace transforms 
available as a reference guide. You will observe that in this table 
not only have we included the Laplace transforms of a few standard 
functions but also the two shifting theorems. We shall find that these 
are very useful indeed. 

The convolution theorem We know from bitter experience that 'the 
integral of a product is not the product of the respective integrals'. 
A similar difficulty occurs with inverse Laplace transforms. In other 
words 'the inverse Laplace transform of a product is not the product of 
the respective inverse Laplace transforms'. However, there is a useful 
rule for inverse Laplace transforms and it is known as the convolution 
theorem. 

Suppose that F(s) = .C[f(t)] and G(s) = .C[g(t)], then 

F(s)G(s) = .C [1t f(t- u)g(u) d~J = .C [1t f(u)g(t- u) du] 

We shall occasionally use this property to determine inverse Laplace 
transforms and indeed in the workshop we shall apply this rule. 

lt would be wrong to give the impression that we can choose a 
Laplace transform F(s) arbitrarily and then obtain .c-1[F(s)]. There 
are restrictions on the choice of F(s); for example lims--;00 F(s) = 0. 
We shall explore some of these restrictions on F(s) in the 'Further 
exercises' at the end of this chapter. 

For the moment, though, we have essentially two skills to acquire. 
First the skill of abtairring a Laplace transform and secondly the skill 
of abtairring the inverse Laplace transform. We have already observed 
that taking the Laplace transform results in rational expressions in s 
sometimes multiplied by an exponential function involving s. lt may 
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therefore be necessary for us to resolve the rational factor into partial 
fractions in order to recognize it as a sum of standard forms. We should 
ignore the presence of the exponential factor until the last stage since 
its presence merely indicates that we need to use the second shifting 
theorem. 

Table 22.1: A short table of Laplace transforms 

f t Fs 

1 2as 
1 tsin at 

(s2 + a2)2 s 

e-at 1 s2- a2 

(s + a) 
t cosat 

(s2 + a2)2 

sin at 
a 

e-at f(t) F(s + a) 
(s2 + a2) 

cosat 
s 

(s2 + a2) 
f(t- a)H(t- a) e-as F(s) 

1 
H(t) 

1 t 
s2 s 

tn,n E N 
n! 

r5(t- a) 
8 n+l 

e-as 

sinh at 
a 

t f(t) -F'(s) (s2-a2) 

cosh at 
s J; f(x) dx 

F(s) 
(s2- a2) s 

By the same token, if we can express F(s) in the form F(S), where 
S = s + a and a is constant, we can apply the first shifting theorem in 
order to obtain the inverse transform. 

Practise makes perfect and so with no more ado we shall roll up our 
sleeves and concentrate our efforts on the workshop. 

_______ 22.5 Workshop ---------..,---, 
Here is a Straightforward problern just to get things started. Don't ~ I 
forget to use Table 22.1, when necessary. 
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I> Exercise Obtain the Laplace transforms of the following: 

1 4t- 7 

2 4 sin 3t - 5 cos 2t 
3 (t- 2) 2 

Have a good go at these before you move on. 

1 We use the linearity of the Laplace transform 

.C[4t- 7] = 4.C[t]- 7.C[l] 

4 7 

4- 7s 
s2 

2 In this exercise we again use linearity and properties of the Laplace 
transform of the circular functions, which we derived earlier . 

.C[4 sin 3t - 5 cos 2t] = 4.C[sin 3t] - 5.C[cos 2t] 

4 [ 82 ! 32] - 5 [ 8 2 : 22] 
12 5s 

s2 + 9 s2 + 4 

Note that we do not need to express the Laplace transform as a 
single rational expression. It doesn't simplify it in any way. 

3 Again we multiply out the brackets and use the linearity rule . 

. .c[t2] - 4 [.C[t]] + 4 [.C[l]] 

_3_ - 4 [2_] + 4 [~] 
s3 s2 s 

Did you manage those? Here is a problern involving inverse Laplace 
transforms. 
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I> Exercise 0 btain the inverse Laplace transforms of each of the following: 
1 s/(s2 + 9) 
2 s/(s2 + 2s + 2) 
3 s/(s2 + 1)2 

1 If we Iook carefully at Table 22.1 we shall notice that this trans­

form is a standard form. 

s 

s2 + 9 
Awitha=3 
s +a 

.C[cos at] 

.C[cos 3t] 

So .c-1 [ 82 : 9] = cos 3t 

2 Although sf(s2 + 2s + 2) is not one of our standard forms it is a 
simple matter to express it in terms of them: 

Now 

s 
= 

s2 + 2s + 2 

= 

s 

(s+1)2+1 

s+1 
(s+1)2+1 

1 

(s + 1)2 + 1 

s 1 
.C[cos t] = 82 + 1 and .C[sin t] = 82 + 1 

and so using the first shifting theorem 

s + 1 [ -t l 1 [ -t 0 

( 1)2 1 = .Ce cos t and ( )2 = .C e sm t] s+ + s+1 +1 

Consequently 

.cl[ s ] 
s2 + 2s + 2 

e-t cos t - e-t sin t 

e-t [cos t - sin t] 

3 Wehave sf(s2 + 1)2 and if we Iook at Table 22.1 we see that 

.c-1[s/(s2 + 1)] = cost and .c-1[1/(s2 + 1)] = sint 
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Herewe have the product of these transforms and so we can apply 
the convolution theorem. 

,e-l[ s ] - {01sin(t-u)cosudu 
(s2 +1)2 - Jo 

~ 1t {sin[(t- u) + u] + sin[(t- u)- u]} du 

~ t {sint+sin(t-2u)} du 
2 Jo 

~ sin t rt du+~ t sin(t- 2u) du 
2 Jo 2 lo 

(~ sin t) [u]~ + ( -~) [- cos(t- 2u)]~ 
1 . 1 2 [t sm t] + 4 [cos( -t) - cos t] 

~ [tsint] 

Lastly we shall solve a differential equation of the sort that often arises 
in practice. It will involve us with the entire process: taking the 
Laplace transform, solving the algebraic equation and finally obtaining 
the inverse Laplace transform to solve the equation. 
Exercise Solve the equation 

d2x dx 
--4-+x=2t 
dt2 dt 

given that initially x = 0 and i: = dxjdt = 1. 
See how you get on first of all and only check your working afterwards 
or if you come to a grinding halt. 

We shall use the notation X = .C[x] and begirr by taking the Laplace 

transform of the equation. Remernher that the Laplace transform is 
a linear transformation and therefore we can transform the equation 
term by term. The algebraic equation which results is often called the 
subsidiary equation. 

[d2x] [dx] ,C dt2 - 4 ,C dt + .C[x] = 2.C[t] 

Now we know that 

,C [ dd2 x2 ] = s2 X - s lim x - lim i: 
t t--->0+ t--->0+ 
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and also that 

12 [dx] = sX- lim x 
dt HO+ 

But we know 
lim x = 0 and lim x = 1 

t--+0+ t--+0+ 

Therefore the subsidiary equation becomes 

2 l 2 [s X- 1]- 4 [sX- 0 +X=-
s2 

This is a good moment to pause. If you didn't manage to get to this 
step correctly then see if you can take it over from here. Remernher 
we need to solve for X and then find the inverse Laplace transform to 
obtain x in terms oft. 

Collecting the terms in X on one side of the equation together we have 

Therefore 

2 
(s2 - 4s + 1)X = 1 + 2 s 

1 2 
X = + -::-:--:c-----:-

s2 - 4s + 1 s2 ( s2 - 4s + 1) 

Now it is a simple, but tedious, exercise on partial fractions to obtain 

1 4s + 1 -4s + 15 ---,----- = -- + --;o---,---
s2 ( s2 - 4s + 1) s2 s2 - 4s + 1 

So we have 

X = 1 + 2 [4s + 1 + -4s + 15 ] 
s2 - 4s + 1 s2 s2 - 4s + 1 

We have carefully arranged things here so that we can recognize stan­
dard forms. We can see cosh and sinh here, together with an applica­
tion of the first shifting theorem. 
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For example 
. J3 

.C[smh tJ3] = 82 _ ( J 3)2 

and therefore 

Similarly 
8 

.C[cosh tJ3] = 82 _ ( J3)2 

and therefore 

[ 2t .IJ s-2 
.Ce cosh ty3 = (s _ 2)2 _ (J3)2 

Consequently we can now obtain x, the inverse Laplace transform of 
X 

x 5J3[e2t sinh tJ3] + 8 H(t) + 2t- 8 [e2t cosh tJ3] 

= e2t[5j3 sinh tJ3- 8 cosh tj3] + 8H(t) + 2t 

Unfortunately, it is quite usual for unattractive numerical expressions 
to arise when solving equations involving Laplace transforms. 

------------ 22.6 Practical --------
We now solve an example which arises in a practical setting and 

which cannot easily be solved without the techniques which we have 
developed in this chapter. 

D An initially quiescent (L, R) circuit consists of an inductance L hen­
ries and a resistance R ohrris in series. An electromotive force E volts 
is·applied between timet= 1 and timet= 2. Apower surge of lOE 
volts occurs instantaneously at time t = 3. Determine the current in 
the circuit at time t. Obtain further the change in power in the resistor 
at time t = 3. Time is measured in hours. 

Electrical Engineers will be able to write down the equation for the 
potential drop across the circuit straight away. Others may have to 
accept it on trust. The potential difference across the (L, R) series 
circuit is 

di . 
L dt + zR 
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where i is the current in amps. 
We now turn our attention to the EMF. This we do by using both 

the Heaviside unit function and the Dirac delta function. 

E [H(t- 1)- H(t- 2)] + 10E c5(t- 3) 

This shows we have a step of magnitude E between time t = 1 and 
t = 2 and an impulse of magnitude 10E at t = 3. 

We therefore obtain the equation 

di 
L dt + iR = E [H(t- 1)- H(t- 2)] + 10E c5(t- 3) 

We know that initially the circuit is quiescent and this means that 
i = 0 when t = 0. 

Now we take the Laplace transform, term by term, and write I = 
.C[i]. We therefore obtain the subsidiary equation 

L { si- 0} + RI = E { e:s - e~2s} + 10E e-3s 

Our next task is to solve this equation for I. Bearing in mind that we 
shall wish to obtain the inverse Laplace transform we rearrange each 
of the terms in such a way that it becomes recognizable as a standard 
form. 

[Ls + R]I = ( ~) e-s - ( ~) e-2s + 10E e-3s 

Now using the cover-up rule for partial fractions we have 

1 (~) - (~) 
s(Ls + R) s Ls + R 

Using this we obtain 

I = [s(LsE+ R)] e-s- [s(LsE+ R)] e-2s + 10 [ E ] e-3s 
Ls+R 

[ (~)- (~) l e-s- [(~)- (~) l e-2s + 10 ( E ) e-3s 
s Ls + R s Ls + R Ls + R 

= [(~) - (~) ] e-s- [(~) - (~) ] e-2s + 10 [ ~ ] e-3s 
s (s+~) s (s+~) (s+~) 
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We can now obtain i, the inverse Laplace transform of I. Here are the 
key properties which we shall use: 

.c-1 [-1 ] 
s+b 

[e-as] .c-1 -
s 

H(t- a) 

.c-1 --[ e-as] 
s+b 

e-b[t-alH(t- a) 

Therefore we obtain 

(E) (E) R(t-1l (E) i = R H(t- 1)- R e--L- H(t- 1)- R H(t- 2) 

(E) ~ (E) ~ + R e- L H(t- 2) + 10 L e- L H(t- 3) 

To complete the problern we need to see how the current changes at 
the critical timest= 1, t = 2 and t = 3. Wehave 

2<t<3 

t<1 i=O 

1<t<2 i = (~)- (~) _R(t-1) 
e L 

i= (!)- (!) e-~- (!) + (!) 
= (!) e-~- (!) e-~ 

E [ - R(t-2) - R(t-1)] =- e L -e L 

R 

E [ ß l _R(t-1) =- eL- 1 e L 

R 

R(t-2) 
e--L-
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t>3 
R(t-2) e--L-

-- - e L + -_ (E) _R(t-1J (E) 
R R 

e_R(t;:2) + 10 (~) e_R(tL-3) 

= 10 (~) e_R(tL-3) + (!) e_R(tL-2) _ (!) e_R(t;:1) 

[ (E) 2R (E) R (E)] ~ = 10 L eT + R er- R e- L 

E [ (R) 2R R ] R(t-1) = R 10 L eT + er- 1 e--L-

From this we see that just before time t = 3 the current is approaching 

E R 2R 
R [er -1Je-T 

whereas just afterwards the current is decreasing from 

E [ (R) 2R R ] R 10 L eT + er- 1 

Consequently the current surge is 

U sing the formula P = i 2 R for the power in the resistor we see that 
the power surge is given by 

• 
The bending of beams 
We can consider a light uniform beam, fixed at one end, as being 
represented by a line. The deflection y of the beam, at a distance x 
from the fixed end, is given by 

Eld2y = M 
dx2 
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where E is Young's modulus, I is the moment of inertia of a cross­
section of the beam about the neutral axis and M is the bending 
moment. 

Moreover if w is the loading per unit length on the beam then, given 
that E and I are constant and that there is no transverse loading, 

d4y 
EI dx4 = w 

These formulae can be applied to beam problems and it is then possible 
to solve them, using Laplace transforms, to obtain the deflection. This 
will form part of the Further exercises at the end of this chapter. 

After the summary you will be able to put your skills to the test. Sev­
eral of the further exercises give an indication of further developments 
which can be undertaken. 

We shall conclude our discussion of Laplace transforms by listing, 
without proof, some other properties. As usual we have F(s) = .C[f(t)] 
and weshall pre-suppose that the appropriate limits and integrals exist. 

1 The Laplace transform of an integral 

.C [1t f(u) du] = ~ F(s) 

2 The initial value theorem 

lim f(t) = lim sF(s) 
t-tO+ s-too 

3 The final value theorem 

lim f(t) = lim sF(s) 
t-too s-tO 

4 The Laplace transform of a periodic function 
Suppose f is a periodic function with period T 

.C[/(t)] = 1-~-sT 1T e-stf(t) dt 

5 Division and multiplication by t 

.C [f~t)] = joo F(u) du 

.C[t f(t)] = -F'(s) 

The initial and final value theorems can be useful if we are not particu­
larly interested in the general response of a system but more specifically 
we wish to know what happened initially or what will happen eventu­
ally. These theorems enable us to determine the information without 
having to obtain the inverse Laplace transform first. 
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SUMMARY 

0 The Laplace transform of f(t) is defined by 

F(s) = .C[f(t)] = 100 e-stf(t) dt 

0 We investigated the basic properties of the Heaviside unit 
function H(t) and saw how to apply the shifting theorems 

F(s + a) .C[e-at f(t)] 

e-as F(s) .C[f(t- a) H(t- a)] 

0 We investigated the Dirac delta function J(t) and discovered 
its three main properties 

J~oo J(t) dt 1 

.C[J(t- a)] e-as 

J(t) = 0 t =I 0 

0 We showed how to solve ordinary differential equations using 
Laplace transforms. 

EXERCISES 

1 Obtain the Laplace transforms of each of the following 
a 3t+ 1 
b 2 sin t + cos t 
c (t+2)3 

d sinh 3t - cosh 3t 
e e-3t cos4t 

2 Show that the Laplace transform of (t + 2)2et is 

4s2 - 4s + 2 
(s- 1)3 

3 Obtain the inverse Laplace transforms of each of the following: 
a 1/ ( s2 - 4s + 5) 
b s / ( s2 - 4s + 5) 
c 1/(s + 3)2 

d e-8 /(s+3)2 
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4 Solve the following differential equations where x = x(t), x = 
dx/dt, x = d2x/dt2 and x(O) = limt--+o+ x(t). 
a x + 3x- x = 0 where x(O) = l,x(O) = 0 
b x- 2x- 3x = 1 where x(O) = l,x(O) = 0 
c x + 2x = H(t- 1)- H(t- 2) where x(O) = 1, x(O) = 1 
d x + 2x = 8(t) where x(O) = 1, x(O) = 0 

ASSIGNMENT 

1 Obtain the Laplace transforms of each of the following: 
a te-at 
b tne-at 
c 3t2 - e2t 

d (2e3t- 1)2 

2 Obtain the inverse Laplace tranforms of each of the following: 
a 1/(s + 5)2 

b s/[(s- 1)2 + 1] 
c 1/[(s- l)~s- 2)] 
d (s- 5)/(s -lOs+ 29) 

3 Obtain the inverse Laplace transform of each of the following: 
a (2s + 3)/(s2 + 2s + 5) 
b s2 /[(s- 2)(s + l)(s- 3)] 
c 16/(s2 + 6s + 13)2 

d 16e-s /(s2 + 6s + 13)2 

4 Solve the following differential equations where x = x(t), x = 
dx/dt, x = d2x/dt2 and x(O) = limt--+o+ x(t). 
a x- 3x + 2x = 0 where x(O) = 1, x(O) = 2 
b x- x- 6x = 1 where x(O) = 1, x(O) = 0 
c x + 2x - 3x = e-t where x(O) = 0, x(O) = 1 

FURTHER EXERCISES 

1 Determine the inverse Laplace transforms of each of the following: 
a (3s- 1)/(s2 + 2s + 10) 
b (s2 + 1)/[(s- 2)(s + l)(s + 3)] 
c s/(s2 + 6s + 13? 
d 16e-s /(s2 - 6s + 13)2 

2 The function f has period 21l' and is defined for one period by 

Show that 

f(t) = { 
sin t 

0 
0 ~ t ~ 1l' 

1l' < t < 21l' 

1 
F(s) = .C[f(t)] = (1- e-11's)(s2 + 1) 
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3 Initially, at time t = 0, a constant electromotive force E was 
applied to a quiescent circuit consisting of an inductance L henries 
and a resistance R ohms in series. Show that subsequently the 
current is given by 

. - E (1 -RtfL) z-- -e 
R 

4 A square wave is defined by the equations 

{ 
E O<t<T 

f ( t) = - E T < t < 2T 
f ( t - 2T) t > 2T 

Show that if F(s) = .C[f(t)] then 

F(s) = ~ [I+ 2 ~(-1)' e-""] 
5 The charge q(t) on a capacitor, where i(t) is the current at time 

t, is given by 

q(t) = 1t i(u) du 

Show that, if I= .C[i(t)J, 

I 
Q(s) = .C[q(t)] =-

s 

During the time interval from t = a to t = b a constant electromo­
tive force E is applied to a quiescent (R, C) series circuit. Show 
that the current at time t is given by 

i = E { e-(t-a)/RC H(t- a)- e-(t-b)/RC H(t- b)} 
R 

6 An electromotive force E is applied instantaneously to an (L, C) 
series circuit. If there is no initial charge on the capacitor, show 
that subsequently the current i is given by 

7 An electrical device consists of an (L, R) series component and 
an (R, C) series component arranged in parallel. The inductor is 
tuned so that the effect of this device is that of a pure resistor. 
By considering an applied electromotive force E, with currents i 1 
and i 2 in each component, and taking the Laplace transform of a 
pair of simultaneaus equations, or otherwise, show that L = C R2• 
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8 A sequence of impulsive electromotive forces is applied at intervals 
of 1 second, beginning at time t = 1, to an initially quiescent 
(L, R, C) series circuit. The strength of the rth impulse is Efr. 
By using the final value theorem, or otherwise, determine the 
behaviour of the current in the circuit as t -+ oo. 

9 A circuit results in the following simultaneaus differential equa­
tions: 

L di1 R . R(. . ) E dt + z1 + z1 - z2 

d" 
L ;: + R i2 + R(i2- i1) 0 

where L, R and E are constant and initially (when t = 0) the 
currents i 1 and i 2 are both zero. Obtain h and I 2 , the Laplace 
transforms of i 1 and i 2 , and thereby determine the steady state 
values of these currents after a sufficiently long time. 

10 The current i in a circuit at time t can be obtained from the 
equation 

d2 " d" 
dt~ + 2 d; + ki = E cos t 

where k is a positive constant. The circuit is initially quiescent. 
Obtain the Laplace transform of i and thereby show that as t -+ 
00 

E 
i -+ cos(t - 0) 

../k2 - 2k + 5 
where tanO = 2/(k -1). 

11 When a light wooden beam of length l is clamped horizontally at 
each end the deftection y at a point distance x from one end is 
given by 

d4y 
EI dx4 = L(x) 

where E and I are constants and L(x) is the load on the beam at 
the point x. The boundary conditions can be expressed by 

y=O dy = 0 
dx 

at x = 0 and x = l. 
Show that if L(x) consists of a concentrated load W at a distance 
a then 

W x2 x 3 

y = 6EI (x- a? H(x- a) + A 2" + B "6 

Show further that 

B = _ W (l- a) 2 (l + 2a) 
EI [3 

and 
A = W (l- a) 2 

EI [3 
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12 A light horizontal beam of length l is clamped at each end and 
carries a load w per unit length from x = a to x = b where x is 
the distance measured from one end. Show that the deflection y 
of the beam at x is given by 

x2 x3 w 
Y = A 2 + B 6 + 24E/ [(x- a)4H(x- a)- (x- b) 4H(x- b)] 

Show further that 

w (l- a)3(l + 3a) - (l- b) 3(l + 3b) 
12E/ L2 

A = 
B = _ _!!!__ (l- a)2(l2- a2)- (l- b)2(l2- b2) 

2El P 



23 Descriptive statistics 

This chapter represents a complete change of mood. We leave the 
crystal world of mathematics, where there is order and darity, to visit 
the opaque world of statistics, where there is randomness and 
uncertainty. 

After working through this chapter you should be able to 
D Use the basic terminology of statistics; 
D Distinguish between population statistics and sample statistics; 
D Present data in a pictorial form to highlight its features; 
D Calculate the basic measures of location - mean, mode and 

median; 
D Calculate the basic measures of spread - range, mean absolute 

deviation and variance. 
At the end of the chapter we Iook at a practical problern in production 
testing. 

23.1 TERMINOLOGY 

The subject of statistics arises in everyday conversation, in newspapers and 
on television. Whenever statistics are mentioned they are usually accom­
panied by the word 'data'. Strictly speaking 'data' is a plural word, the 
singular being 'datum', but nowadays it is common practice to use it as if it 
is singular. 

Data is the information with which we start, the outcome of the activity 
or experiment. For example, data could consist of heights, weights, colours, 
temperature, lifetimes or examination scores. Very often data is in a num­
erical form; you will be able tothink of many other examples. Data, when 
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it has been obtained and not modified in any way, is usually called raw 
data. 

The moment we calculate something from the data we have produced a 
statistic. 

Once more, just to get the terminology clear: 
1 The information which has been collected is called data; 
2 Anything which we calculate from the data is known as a statistic. 

The measurement in which we are interested - height, temperature or 
whatever - is often called the variate. The set of all the values which the 
variate takes is known as the population. For example, the population 
could consist of 
1 The tensile strengths of hawsers produced by a certain process; 
2 The times taken for gauges on fuel tanks to register correctly after they 

are first switched on; 
3 The numbers of faulty bricks in each production batch from a 

brickworks. 
In industrial applications it is not usually feasible to collect data from the 
whole population. For instance, to obtain the data an item may have tobe 
tested to destruction. No manufacturer would allow his entire output to be 
destroyed! Even if destruction is not involved it may be too expensive to 
collect the data corresponding to the population. 

23.2 RANDOM SAMPLES 

Of course, to say anything with certainty we should need the data from the 
entire population. However, the theory of statistics enables us to say 
something with a specified probability by analysing samples selected at 
random from the population. 

The procedure by which a random sample is selected is fraught with 
danger, and so a few words are required to clarify things. To choose a 
random sample from the population we have to select a sample of, say, 100 
items at random. How ~o we select at random? We must ensure that 
1 The entire population is available to us; 
2 The selection process is in no way likely to bias the results. 
For example, suppose a newspaper wishes to predict the result of an elec­
tion the next day. The editor may ask bis reporters to dial numbers at 
random and ask the people who reply how they intend to vote. 

This would not be a random sample of the electoraie. First, he will have 
restricted the population to those people who are telephone subscribers. 
Secondly, by telephoning at a set time he has restricted that population to 
those who may be at home then: self-employed, mothers with children, 
retired people, unemployed etc. The editor will therefore have made a 
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number of fundamental statistical errors. However, this will not deter him 
from publishing bis results and maybe getting a correct prediction! 

So then in engineering and science we shall be concerned with sample 
statistics. The data which we have will usually be a random sample taken 
from the population, and we shall wish to calculate statistics from this data 
which will enable us to make statements about the underlying population. 
Our interest is not in the sample but in the population. 

23.3 POPULATION STATISTICS 

There are fundamental differences between the theory of population 
statistics and the theory of sample statistics, and to reinforce this difference 
we shall consider an example. Remernher that the purpose for which we 
are examining the data is the thing of overriding importance. We must ask 
ourselves at each stage: 'What are we trying to find out, and why?' 

In the simplest of all situations we have all the data available and we wish 
merely to obtain information concerning it. For example, suppose a class 
of students sits an examination. Then there are several statistics which may 
be of interest: the class average, the range of marks or the top mark. As far 
as the examiner is concerned bis interest in the marks may begin and end 
with the class of students. The population is in this instance the marks 
obtained by these students in the examination, and the statistics obtained 
are population statistics. 

Suppose now we consider a public examination, such as 'A' Ievel, where 
candidates sit the examination at a number of examination centres. In this 
situation if an examiner were given random samples of scripts it may be 
possible, using the data obtained, to estimate various statistics for the 
population. The resulting statistics are sample statistics. The population 
here, of course, consists of the complete set of marks from all the candidates. 

23.4 DATA 

Numerical data falls broadly into two categories: discrete data and 
continuous data. 

Discrete data is data which can only take isolated values. Usually, but not 
always, discrete data consists of natural numbers. Examples include 
1 The number of cars parked on consecutive days at a certain time in a car 

park; 
2 The number of defective microchips produced by a machine process 

each week. 
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Continuous data is data which could take any value in some specified 
interval or set of intervals. Examples are: 
1 The weight of ball bearings produced by a machine under normal 

working conditions; 
2 The heights of a group of students in a class. 
In the second of these examples of continuous data, if the shortest student 
has height 1.43 m and the tallest has height 2.04 m then there is no reason 
in theory why a student in the class could not have height 1.76 m. Of course 
practical considerations Iimit the accuracy to which we can measure any 
height, and so in practice there is often little distinction between discrete 
and continuous data. However, there are some important theoretical dis­
tinctions to be made and so we should decide at the outset whether the data 
is discrete or continuous. 

Weshall not consider situations in which the data is a mixture of discrete 
and continuous because to do so would involve very advanced mathe­
matical ideas. 

23.5 PICTORIAL REPRESENT ATIONS 

Faced with a collection of data, the statistician usually wishes to display the 
information in a clear easily understood and unbiased way. A table of data 
is often very difficult to assess and so pictorial methods have been devised. 
By carefully selecting the pictorial representation it is often possible to pre­
sent data in a way which highlights certain characteristics and suppresses 
others. 

To begin with we confine our attention to discrete data; it is a simple 
matter to modify things for continuous data. A single item of data is called 
a data point; the frequency of a data point is the number of times it occurs 
in the data. 

23.6 PIE CHARTS 

A pie chart represents the data as a 'pie'. To each distinct data point is 
assigned a slice of pie with an area proportional to the point's frequency. 
Although a pie chart is a satisfactory representation if there are only a few 
distinct data points, it loses much of its visual impact when there are many. 

D A selection of motorists were asked the question: 'Should traffk lights, 
wherever possible, be replaced by roundabouts?' The results were 63% 
'yes', 21% 'no' and 16% 'don't know'. Theseare displayed in the pie chart 
to good visual effect (Fig. 23.1). • 
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Fig. 23.1 A good pie chart. 

0 Twelve television programmes were each assigned a nurober, and 
members of the public were asked to select the one they liked most. Those 
who could not decide were excluded from the sample. The results are 
shown in the pie chart (Fig. 23.2), but this does not give a very good visual 
effect because there are too many slices. • 

23.7 BAR CHARTS 

A better way of presenting discrete data visually, when there are many 
distinct data points, is to construct a bar chart. 

To do this we use reetangular cartesian axes and assign an x value to each 
distinct data point. Vertical bars are constructed joining each point (x,f) to 
the x-axis, where f is the frequency of the data point corresponding to x. 

Fig. 23.2 A poor pie chart. 



686 DESCRIPTIVE STATISTICS 

20 

I I 
0 Black Blue Green Yellow Red White 

Fig. 23.3 A bar chart. 

0 Fifty potential customers were asked to say which colour car they 
preferred from those in current production. The results were as follows: 

Colour black white red blue green yellow 
Frequency 4 19 9 8 7 3 

In this case there are many ways we can order the colours. For instance we 
could arrange them according to popularity, in the order of the spectrum, 
or alphabetically. The choice of orderwill depend very much on what we 
want to show. 

With a suitable choice of scales we can produce a bar chart for each of 
these orders, for example Fig. 23.3. • 

23.8 HISTOGRAMS 

If we have continuous data then a bar chart may no Iongerbe appropriate, 
as most of the data pointswill be distinct. We therefore need to group the 
data. 

To do this we begin by examining the range of the data - the difference 
between the highest value which appears and the lowest. Depending on 
the quantity which we have, we partition the data into a number of dass 
intervals, not necessarily of equal length. In practice the number chosen 
should be not less than four and not more than twenty. The square root of 
the number of data points gives a good guide to the maximum number of 
dass intervals we should use. 
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0 Suppose continuous data consists of 100 points, the smallest of which is 
2.13 m and the largest 9.87 m. The range ofthe data is then 9.87-2.13 = 
7. 74. So, if the data is fairly evenly distributed, it seems sensible to choose 
eight intervals: 2.00-2.99, 3.00-3.99, ... , 7.00-7.99. Each of these is 
called a dass interval. 

The midpoint of each interval is called its dass mark. So the dass marks 
in this case are 2.495, 3.495, ... , 7.495. The end points of each interval 
are called dass Iimits. Notice that the interval 3.00-3.99 will contain any 
data point x suchthat 2.995 ~ x < 3.995, so the length of the dass interval 
is 1. These critical numbers 2.995, 3.995, ... , 6.995 are usually called dass 
boundaries. In this way we group the data into dass intervals and calculate 
the frequency- the number of data points in each one. 

If we wish to calculate statistics from this grouped data we must regard 
all the data points in the dass interval as concentrated at the dass mark. 
Although it could be misleading to do so, it would be possible to construct 
a bar chart corresponding to this data. 

To construct a histogram we use the reetangular cartesian coordinate 
system and draw rectangles with intervals between the dass boundaries as 
their bases and each having an area proportional to the frequency. If the 
dass intervals are all of equal length then the heights of these rectangles 
will also be proportional to the frequencies (Fig. 23.4). • 

A smooth curve drawn through the midpoints of the tops of the rectangles 
is known as a frequency curve. If the midpoints are joined instead by 
straight lines we obtain a frequency polygon. One advantage of having 
equal dass intervals is that the area under a frequency polygon is then the 
area of the histogram. 

Fig. 23.4 A histogram and frequency polygon. 
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Table 23.1 Number of cars at 10000 aomo on 120 days 

51, 53, 55, 56, 57, 58, 61, 62, 62, 65, 67, 69, 70, 70, 72, 
73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 77, 78, 78, 78, 
79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 83, 
83, 83, 83, 84, 84, 85, 85, 85, 85, 85, 85, 86, 86, 87, 87, 
87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 90, 90, 91, 91, 91, 
92, 92, 92, 93, 93, 93, 93, 93, 94, 95, 95, 95, 95, 95, 96, 
96, 97, 97, 98, 98, 98, 99, 99, 100, 101, 104, 105, 106, 107, 107, 

107, 108, 108, 109, 110, 110, 111, 111, 112, 114, 116, 117, 119, 119, 120 

Grouped data for bar chart production 

Interval Class mark Frequency 

51-60 5505 6 
61-70 6505 8 
71-80 7505 23 
81-90 8505 35 
91-100 9505 27 

101-110 105o5 12 
111-120 11505 9 

23.9 GROUPED DATA 

Sometimes in the case of discrete data there are too many Observations for 
a useful bar chart to be constructed without first grouping the datao 

0 The number of cars parked in a factory car park at 10000 aomo was 
counted on 120 consecutive working dayso The results are shown in Table 
2301. 

Some graphical indication of how much the car park is used is requiredo 
In order to obtain a bar chart we can consider the intervals 51-60, 61-70, 
0 0 0, 111-1200 The dass marks are 5505, 6505, 0 0 0, 11505. The groups are 
shown in Table 23.1, and the resulting bar chart in Fig. 23.5. 

Unfortunately with this choice of interval each of the dass marks cannot 
possibly be a data point. For instance, the car park never has 65.5 cars 
in ito Although from one point of view this is a disadvantage, it has one 
advantage: it emphasizes that the data has been groupedo 

23.10 CUMULATIVE FREQUENCY DIAGRAMS 

If the data is numerical, it is possible to arrange it in ascending order of 
magnitudeo We can then calculate the cumulative frequency at each data 
point. The cumulative frequency is the total number of data points which 
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Fig. 23.5 Bar chart. 

are less than, or equal to, the chosen point. If we divide the cumulative 
frequency by the total number of data points we obtain the relative cumu­
lative frequency. The relative cumulative frequency will therefore increase 
from 0 to 1 as we go through the data. An example will show how this 
works. 

D Consider again the data of the cars in the car park (Table 23.1 ). The 
data increases from 50 to 120, and so we have the cumulative and relative 
frequencies shown in Table 23.2. From this table it is an easy matter to 
construct a relative cumulative frequency diagram (Fig. 23.6). 

Cumulative frequencies are particularly important if we are setting a 
standard or a quota. In the previous example the company may decide to 
build on the car park and may wish to leave enough space so that 85% 
utilization of the present car park will be preserved. Table 23.2 could 
suggest that 105 car-parking spaces will have to be provided. • 

Wehaveseen how data may be presented in a pictorial way, but we have 
not yet calculated any statistics. This we now do. Let's just go through 
some of the terminology again to make sure we have it clear in our minds: 
1 The variate is the name given to the quantity in which we are interested; 
2 Data consists of the results which are available to us; 
3 An individual value of the data is called a data point; 
4 Numerical data consists of data in numerical form; 
5 The frequency of a data point is the number of times the data point 

appears in the data; 
6 Anything which is calculated from the data is called a statistic. 
Right! Now that wc have that straight we can move ahead. 
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Table 23.2 Cumulative frequency for cars in car park 

Numbers of cars 

50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 

Cumulative frequency 

0 
3 
6 

10 
14 
21 
37 
56 
72 
89 
99 

102 
111 
115 
120 

Relative frequency 

0.000 
0.025 
0.050 
0.083 
0.117 
0.175 
0.308 
0.467 
0.600 
0.742 
0.825 
0.850 
0.925 
0.958 
1.000 

0+--------L-L~~L-L-L-~~~-L~~~~~~ 
55 60 65 70 75 80 85 90 95 100 105110115120 Number of cars 

Fig. 23.6 A cumulative frequency diagram. 
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23.11 MEASURES OF LOCATION AND MEASURES OF SPREAD 

Most useful statistics can be classified into either measures of location or 
measures of spread. Weshall now explain what these terms mean. 

A measure of location, also known as a measure of central tendency, 
attempts to indicate roughly the position around which the data is clus­
tered. The usefulness of this statistic in any instance must be judged by the 
extent to which it typifies the data. There are three principal measures of 
location in common use: these are the mean, the mode and the median. 
Each has the same units as the data points themselves. 

A measure of spread, also known as a measure of dispersion, gives an 
indication of how widely the data is distributed. Broadly speaking, if the 
measure of spread is large then the data is widely dispersed, whereas if it is 
small then it is closely bunched together. There are three principal mea­
sures of spread: the range, the mean absolute deviation and the standard 
deviation. 

W e shall consider each of these types of statistic in some detail. 

23.12 THE MEAN 

Suppose we have n distinct data points x 1 , x2 , ••• , Xn and that these appear 
with frequencies / 1 , fz, ... , fn respectively in the data. Then the 
(arithmetic) mean x is obtained by totalling the data and dividing by the 
total number N of data points: 

1 
X = N (f!xl + fzxz + · · . + fnXn) 

1 n 

= N ~1 /rXr 
where 

n 

N= 2 fr 
r=l 

Although the mean is not the only measure of location, it is by far the most 
widely used. 

D Ten students took an examination, and the results were 

72, 81, 43, 39, 47, 21, 35, 51, 63, 52 

We can easily calculate the mean mark :X: 

- 1 
X = lO (72 + 81 + 43 + ... + 52) = 50.4 • 

Two disadvantages of the mean are immediately apparent: 
1 The mean may not be a possible value of the data. This is certainly the 
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case in this example where examination scripts are assigned integer 
values. 

2 If the data is non-numerical, for example colours, then the mean does 
not exist. 

Another disadvantage of relying on the mean as the only st~tistic is 
provided by the following cautionary tale. 

0 An entertainer is engaged to provide recreation for a mixed party of 
people and, discovering that the mean age is 14, arranges a disco. 
However, the party consists of a playgroup and some adult helpers and the 
ages are 

5, 3, 4, 4, 3, 5, 2, 38, 25, 51 

This example illustrates how a measure of location as the sole statistic can 
sometimes give a misleading impression. • 

23.13 THE MODE 

Suppose we have n distinct data points x1 , x2 , x3 , .•. , Xn and that these 
occur with frequencies / 1 , h, h, ... , fn respectively. 

The point x, corresponding to the largest frequency f, is called the mode. 
If there is only one mode then the distribution of data is called unimodal, 
whereas if there are two modes it is called bimodal. The terminology may 

be extended as appropriate. This statistic is particularly valuable if one 
of the data points occurs with a frequency much greater than any of the 
others. 

0 A total of 100 welders were asked to try four different types of eye 
shield to say which one they preferred. The results were as follows: 

Type 
Number 

The mode here is type 4. 

1 
19 

2 
14 

3 
13 

4 
54 

• 
Although the mode has its uses as a measure of location, it can give a mis­
leading impression. For example if there are several data points each with 

almost the same frequency, an undue emphasis could be placed on one of 

them. 

23.14 THE MEDIAN 

If we have numerical data, it is possible to arrange it in ascending order of 
magnitude. The data point which appears in the middle is then known as 
the median. 
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One immediate problern arises: what are we to do if there is an even 
nurober of data points? Let's consider some of the options: 
1 We could take the mean of the two centrat points. This compromise, 

although attractive in some ways, destroys one of the advantages of the 
median: that it is a data point itself. 

2 We could allow two medians, as we do with the mode. This non-unique­
ness is the principal disadvantage because, unlike the situation with the 
mode, the only information it gives is that there is an even nurober of 
data points. 

3 We could choose a data point at random and discard it. In this way an 
odd nurober of data points is obtained together with a unique statistic. 
The disadvantage is that the original data could produce two different 
values of this statistic. 

4 We could adopt the view that the median is an inappropriate statistic if 
there is an even nurober of data points. Which option do you think we 
choose? 

In fact we choose option 1 for the following reason. If there is a significant 
difference between the two centrat points then the median is an inappro­
priate statistic to use as a measure of location. Nevertheless, since the 
median should represent the middle of the distribution the mean of the two 
may be taken. If there is no significant difference then it doesn't matter 
which one is selected. Unless it is important that the median be a typical 
data point we can take the mean of the two. 

Remernher when we are calculating statistics we are not simply per­
forming a numerical exercise. We are attempting to represent significant 
features of the data. 

If we draw a frequency curve (Fig. 23.7) we can see that foraunimodal 
symmetrical distribution the mean, mode and median all coincide, whereas 
for a skewed distribution they are often quite distinct. 

D Obtain measures of location for the following sample data: 
a Nurobers of rivets which fail under test conditions: 

2, 5, 5, 12, 14, 16 

b Nurober of errors received in a set of test codewords: 

2, 2, 2, 2, 3, 3, 3, 3, 3 

c Voltage measurements: 

1.1' 1.2, 1.3, 1.3, 1.4, 1. 7' 1.8, 1.8 

We calculate each of the three principal measures of location: 
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(a) 

(b) 

Mean 
Median 
Mode 

Median Mean Mode 

Fig. 23.7 (a) A symmetrical distribution (b) A skewed distribution. 

a mean = (2 + 5 + 5 + 12 + 14 + 16)/6 = 9 rivets 
mode = 5 rivets 
median = !(5 + 12) = 8.5 rivets 

b mean = (4 x 2 + 5 x 3)/9 = 23/9 = 2.556 errors 
mode = 3 errors 
median = 3 errors 

c mean = (118) (~) = 11.6/8 = 1.45 volts 
modes = 1.3 and 1.8 volts 
median = !(1.3 + 1.4) = 1.35 volts 

Note that very few data points are involved, so if the data bad been the 
entire population it is doubtful if the statistics would have been worth 
calculating at all. • 

Now let's consider some measures of spread. 

23.15 THE RANGE 

One of the simplest measures of spread is known as the range. This is simply 
the difference between the largest data point and the smallest. Although 
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in many circumstances this is a perfectly adequate measure of spread, it has 
one serious drawback. lt is unduly affected by freak values of the data. 

For example, suppose a manufacturing process resulted in components 
which usually had a lifetime between 36 and 50 hours, satisfying the re­
tailer's specification. A single faulty component (lifetime 0 hours) would 
change the range from 14 hours to 50 hours. This could be a very mislead­
ing statistic because it might Iead to the beliefthat the process was generally 
unsatisfactory. 

23.16 THE MEAN ABSOLUTE DEVIATION 

At first sight it seems a good idea to calculate the average deviation from 
the mean. 

Suppose we have n distinct data points x~> x2, x3, ... , X11 and these 
appear with frequencies / 1 , h, h, ... , fn respectively. The nurober of data 
points is N and the mean is .f: 

II 

N= L fr 
r=l 

1 II 

.X= N L f,x, 
r=l 

We should then obtain, for the average deviation, 

1 
N [ft (xt - .X) + f2(x2 - x) + ... + fn(Xn - :X)] 

1 .X 
= N UtXt + hx2 + ... + J,,x")- NUt + h + ... + fn) 

- .X =x--N=O 
N 

So the mean deviation is zero whatever the data! Back to the drawing 
board! 

One way round this problern is to consider the absolute value of the devia­
tions and take the mean of these. This is then known as the mean absolute 
deviation (MAD): 

I 
MAD = N Ut lxt - xl + h lxz - xl + ... + J,, lx" - xl) 

Although it is easy enough to calculate this statistic, the problems with the 
modulus signs inhibit theoretical work and so this measure of spread does 
not play a I arge part in statistical theory. 
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23.17 THE STANDARD DEVIATION 

Without doubt the most important measure of spread is the standard 
deviation. 

Suppose we have n distinct data points x1 , x2 , x3 , ... , Xn and these 
appear with frequencies !I, fz, h, ... , fn respectively. As before, the total 
number N of data points is therefore given by 

n 

N = L fr 
r=l 

We can calculate the mean x of the data, and we wish to obtain a measure 
of how widely the data is dispersed about the mean. The standard deviation 
s of the data is defined by 

S = ~ [ N ~ 1 rtl fr(Xr - X)2] 
This is (almost) the root mean square: the only change is that we are 
dividing by N - 1 instead of N. Since this strange definition can cause some 
confusion, we shall explain why it is the way it is. 

You will remernher that we stressed that there was a fundamental dif­
ference between population statistics and sample statistics. The statistics 
we calculate from samples chosen at random from some population are 
intended to estimate as closely as possible the corresponding statistics for 
the population. To reinforce this we use different symbols for the statistics 
corresponding to the population from those corresponding to the sample. 

The population mean is denoted by 1-.1. and the population standard 
deviation is denoted by o. If we are given a random sample, the mean x of 
the sample is an unbiased estimate for I-!· If the data consists of the entire 
population we have 

Indeed in general, if the data consists of a random sample from the 
population and if the population mean 1-.1. is known, then the formula 

S = ~[~ rtl fr(Xr- 1-.1.)
2] 

would give an unbiased estimate for o. 
However, it is relatively rare that 1-.1. is known, and so we have to estimate 

1-.1. by calculating the mean x of the sample. When we do this, it can be shown 
that an unbiased estimate for the population standard deviation is given by 
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Observe that, unless N is small, the difference between the results obtained 
by dividing by N and those obtained by dividing by N - 1 are negligible. 

Most calculators now enable calculations to be made routinely for both 
the standard deviation of a population and the standard deviation of a 
sample. 

The square of the standard deviation is called the variance and is 
somewhat easier to work with algebraically than the standard deviation. 
However, the standard deviation has the advantage that it has the same 
dimension as the data. If we divide the standard deviation by the mean we 
obtain a dimensionless quantity known as the coefficient of variation. 

________ 23.18 WorkshoP-------,---, 

C> Exercise The number of working days lost by each of twenty employees in ;)? 
a small firm during the past twelve months was 

5, 6, 8, 12, 4, 5, 15, 7, 12, 11, 
6, 0, 2, 4, 5, 5, 8, 10, 12, 11 

Represent the data using a pie chart and a bar chart. 
Have a go at this. 1t may be necessary to group the data in order to 

sharpen its impact. 

We begin by constructing a frequency table so that we can assess the 
situation: L__ _ _j 

Days lost 
0 
2 
4 
5 
6 
7 
8 

10 
11 
12 
15 

Frequency 
1 
1 
2 
4 
2 
1 
2 
1 
2 
3 
1 

There are not many data points, and if this had been continuous data we 
should have had to draw a histogram with not more than four or five dass 
intervals. 1t therefore seems sensible to group the data into four ( or five) 
intervals here: 
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Class interval 
0-3 
4-7 
8-11 

12-15 

Frequency 
2 
9 
5 
4 

Using these we obtain diagrams which reftect the main features of the 
information (Fig. 23.8). 

If allwas weil, move ahead to step 4. If not, here is a little more practice. 

I:>Exercise Repeat the previous exercise using six dass intervals 0-2, 3-5, 
... ' 15-17. 

10 

9 
8 

> 7 u c: 
6 II 

:1 

i 5 ... 
LL 4 

3 
2 

I 1 
0 

1•5 5•5 9•5 13•5 Days lost 

Fig. 23.8 (a) Pie chart (b) Bar chart. 
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We obtain the following frequency table: 

Class interval 
0-2 

Frequency 
2 

3-5 
6-8 
9-11 

12-14 
15-17 

Diagrams can then be produced as before. 
Now for a histogram. 

6 
5 
3 
3 
1 

l> Exercise The following gives the time taken in hours for 30 samples of soil ;Ji 
to dry out at room temperature: 

5.43, 4.98, 5.24, 5.59, 4.89, 5.01, 4.97, 4.99, 5.11, 5.23, 
5.52, 5.61, 5.31, 5.67, 5.51, 5.23, 5.47, 5.55, 4.87, 4.91, 
4.84, 5.34, 5.16, 4.86, 5.12, 5.45, 5.48, 5.15, 5.23, 5.42 

Group the data into dass intervals 4.8-4.9, 5.0-5.1, ... , 5.6-5.7. Then 
draw a histogram, construct a frequency polygon, and produce a cumula­
tive frequency diagram. 

lt's very simple to do all this. Keep an eye on the dass boundaries. 

9 

8 

7 

3 

2 
I 
I 

,. 
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I 
I 

I 
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I 
I 
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~ 
I 1'. 
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\ 
\ 

\ 
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I 
\ 
\ 
\ 

I I 
I I 
I I 
I I 

0+-~1_._,~"~--~--~~~----------
4•85 5·05 5•25 5•45 5•65 Drying time (hours) 

Fig. 23.9 Histogram. 
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We put the data points into the appropriate class intervals in preparation 
for drawing the histogram: 

Class interval 
4.8-4.9 
5.0-5.1 
5.2-5.3 
5.4-5.5 
5.6-5.7 

Class mark 
4.85 
5.05 
5.25 
5.45 
5.65 

Frequency 
5 
6 
8 
7 
4 

lt's best to make a tally to avoid overlooking data points. 
The histogram and frequency polygon are then shown in Fig. 23.9. 

Notice particularly how by extending the class intervals on either side and 
giving them frequencies of zero we obtain an area under the frequency 
polygon which is equal to the area of the histogram. Indeed, bad we drawn 
a histogram using relative frequencies the area enclosed would have been 
unity. Weshallsee later that this would imply that the frequency polygon 
would then be the graph of a probability density function. 

We need to note that when we come to the cumulative frequencies we 
must use the class boundaries 4.95, 5.15, 5.35, 5.55, 5.75. The cumulative 
frequencies are as follows: 

~ c: 
CU 
::I 

30 

~ 20 -~ ... 
"' ~ 10 
::I 

(.) 

Class boundary 
4.95 

Cumulative frequency 

5.15 
5.35 
5.55 
5.75 

I 
____.J 

I I 
I I 
I 

r------1 
I 

I 
I ,--., 

I 
r------1 
I I 

4•95 5•15 5•35 5•55 5·75 

5 
11 
19 
26 
30 

Drying times (hours) 

Fig. 23.10 Cumulative frequency diagram. 
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The cumulative frequency diagram is shown in Fig. 23.10. 
Make sure that you bad 

1 no gaps between your rectangles in your histogram 
2 each class mark in the centre of the class interval 
3 class boundaries as the boundary markers. 
If everything was correct then proceed at full speed to the next section. If 
not, here is more practice. 

I> Exercise Draw another histogram using the same data and the following 
class intervals: 4.80-5.04, 5.05-5.14, 5.15-5.24, 5.25-5.34, 5.35-5.44, 
5.45-5.96. Draw a frequency polygon. Is the area under the frequency 
polygon the sameasthat of the histogram? 

Class interval 
4.80-5.04 
5.05-5.14 
5.15-5.24 
5.25-5.34 
5.35-5.44 
5.45-5.96 

Class mark 
4.920 
5.095 
5.195 
5.295 
5.395 
5.705 

Frequency 
9 
2 
6 
2 
2 
9 

The histogram required is shown in Fig. 23.11, together with the frequency 
polygon. In this case the area under the frequency polygon is not the same 
as that of the histogram. 

" I \ 
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I \1 \ 
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I ........ -I ---
4"920 5·095 I 5·295 I 5·705 Drying time (hours 

5•195 5·395 

Fig. 23.11 Histogram and frequency polygon. 
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________ 23.19 Practical _______ _ 

LOAD BEARING 

Ten 4-metre girders were taken from a production line and each one was 
tested for central Ioad bearing when freely supported at each end. The 
results in kilonewtons were as follows: 

4.562, 4.673, 4.985, 4.657, 4.642, 
4.784, 4.782, 4.832, 4.637, 4.596 

Calculate the mean, mode, median, range, mean absolute deviation and 
standard deviation for this data. 

lt's just a question of pressing the buttons really! Work them out and 
take the next step to see if they are all right. 

There are ten observations and the total is 47.150. So the mean is 4. 715 
kilonewtons. 

It is necessary to put the data into dass intervals to obtain a meaningful 
mode. The obvious intervals to choose are 4.55-4.64, 4.65-4.74, 4.75-
4.84, 4.85-4.94, 4.95-5.04. Taking the dass marks as the representatives, 
we then have: 

Class mark 
4.595 
4.695 
4.795 
4.895 
4.995 

Number 

4 
2 
3 
0 
1 

In this way we obtain a mode of 4.595. However, we should indicate the 
fact that this has been obtained from continuous data by giving fewer 
decimal places than in the data: so the mode is 4.60. We remark further 
that this is a poor statistic to use here in view of the almost bimodal nature 
of the sample. 

When we arrange the data in ascending order we obtain 

4.562, 4.596, 4.637' 4.642, 4.657' 
4.673, 4.782, 4.784, 4.832, 4.985 

There are an even number of data points, so we average the middle two: 
the median is ( 4.657 + 4.673)/2 = 4.665 kilonewtons. 
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To find the range we must subtract the smallest value which appears in the 
data from the largest. The range is 4.985 - 4.562 = 0.423 kilonewtons. 

To find the mean absolute deviation we begin by subtracting the mean, 
4.715, from each of the data points to give the deviations from the mean 
and the absolute deviations. These are shown in columns 2 and 3 of Table 
23.3. The total absolute deviation is 1.046, and so dividing by the total 
number we obtain MAD = 0.1046 kilonewtons. 

Finally we require standard deviation. The squared deviations from the 
mean are shown in column 4 of Table 23.3. The sum of these is 0.149950 
and the total number is 10. lt remains to divide by 9 and take the square 
root: the standard deviation s is then 0.129 08 kilonewtons. 

Did you manage all those? 
In the old days we used to insist that students present the numerical work 

clearly in a tabulated form as shown here. Although there is a Iot tobe said 
in favour of this practice, now that calculators and computers are generally 
available it is usually quicker to tap in the numbers. lt's a good idea to do 
the calculation twice, though, just to check you haven't pressed the wrong 
buttons! 

Table 23.3 

Data Deviations Absolute Squared 
from mean deviations deviations 

1 2 3 4 

4.562 -0.153 0.153 0.023409 
4.596 -0.119 0.119 0.014161 
4.637 -0.078 0.078 0.006084 
4.642 -0.073 0.073 0.005329 
4.657 -0.058 0.058 0.003364 
4.673 -0.042 0.042 0.001764 
4.782 0.067 0.067 0.004489 
4.784 0.069 0.069 0.004 761 
4.832 0.117 0.117 0.013 689 
4.985 0.270 0.270 0.072900 

47.149 1.046 0.149950 
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SUMMARY 

Wehaveseen how to display data pictorially using 
D pie charts 
D barcharts 
D histograms. 
Wehave examined the principal examples of statistics: 
D Measures of location 

a mean 
b mode 
c median. 

D Measures of spread 
a range 
b mean absolute deviation 
c standard deviation. 

EXERCISES 

1 Decide whether the following data is discrete or continuous: 
a Defective batteries in batches 
b Quantity of impurities in water supply 
c Faulty tyres in spot testing 
d Over-stressed components after wind tunnel exposure 
e Anti-cyclones each day in the Northern hemisphere 
f Percentage of pollutants in engine exhaust 
g Percentage of faulty components in production 

2 The amount of time devoted to a new piece of research was initially one 
sixth of the time available. Two other pieces of development were under 
way, production and testing, and these took equal tim es. It was decided 
to increase the amount of time devoted to the new work to 25% and to 
devote twice as much of the remaining time to production as to testing. 
Represent this change by means of pie charts. 

3 Calculate for each of the following lists of data (i) the mean, (ii) the 
mode, (iii) the median, (iv) the range: 
a Resistances ( ohms) 

3, 2, 1.5, 1.5, 2, 1.5, 3, 2, 2, 1.5, 2, 2 

b Percentage of water in soil samples 

30.0, 29.6, 21.5, 22.0, 23.5, 18.1, 19.5, 23.0, 24.2, 21.9, 18.7, 
14.1, 17.9, 18.3, 19.7 

c Deflections of a beam ( metres) 
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0.113, 0.121, 0.119, 0.110, 0.118, 0.123, 0.121, 0.171, 0.153, 
0.161, 0.169, 0.173 

In each case give a suitable visual display of the data and comment on 
the suitability of the statistics you have calculated in reflecting its true 
nature. 

4 Data consists of the digits 0, 1, 2, 3, ... , 9 used in the decimal repre­
sentation of the first 100 natural numbers. Obtain the mean, mode, 
median and range. 

5 Data consists of the number of days in each month over a four year 
period. Obtain the mean, mode, median and range. 

ASSIGNMENT 

A machine collects measured quantities of soil and deposits them in boxes 
for analysis in the Iabaratory. Fifty box es were taken at random and in­
spected. It was found that the following numbers of stones were in the 
boxes: 

45, 47, 43, 46, 42, 47, 44, 48, 41, 47, 
~.M.~.~.~.~.~.M.~.~. 
~.~.~.~.M.~.M.~.~.~. 
42, 44, 45, 44, 44, 42, 42, 41, 44, 43, 
45, 43, 44, 41, 43, 48, 47, 40, 46, 46 

1 State whether the data is discrete or continuous. 
2 Without grouping the data, display it as a bar chart. 
3 Grouping the data as 40-41, 42-43, 44-45, 46-47, 48-49, present it as 

a pie chart. Then present it as a histogram, and draw a corresponding 
frequency polygon. 

4 Calculate the mean, mode and median from the raw data. 
5 Calculate the range and variance. 

FURTHER EXERCISES 

1 Two consignments of carbon brushes were examined for defects. Each 
consignment consisted of 100 boxes each containing 50 brushes. Five 
boxes from each assignment were selected at random and the number of 
defective brushes in each one was counted. The results were 
a 8, 3, 5, 2, 3 
b 20, 5, 2, 3, 5 
Calculate for each sample (i) the mean (ii) the mode (iii) the median 
(iv) the range (v) the standard deviation. 

2 Sampies of lubricant were chosen and the specific gravity (SG) was 
measured. The frequencies of samples in SG classes were as follows: 
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SG 1.11-1.12 1.12-1.13 1.13-1.14 1.14-1.15 1.15-1.16 1.16-1.17 1.17-1.18 
Frequency 1 3 8 16 20 11 5 

Draw a histogram showing percentage frequency against specific gravity 
interval. 

3 A construction site uses five different grades of sand. On a typical day 
the number of bags of each type drawn from the store is as follows: 

Grade 1 2 3 4 5 
Number 12 28 10 16 8 

Represent this information using (a) a pie chart (b) a bar chart. 
4 The lengths of a sample of 30 steel drive belts produced by a machine 

were measured in metres to the nearest millimetre. The results were as 
follows: 

2.975, 3.245, 3.254, 3.156, 2.997, 2.995, 3.005, 3.057, 3.046, 3.142, 
3.116, 3.052, 3.017, 3.084, 3.119, 3.143, 3.063, 3.158, 3.196, 3.203, 
3.225, 3.183, 3.193, 3.174, 3.148, 3.053, 3.202, 3.153, 3.037, 3.048 

a Display the data on a histogram by grouping the data into dass 
intervals 2.95-3.00, 3.05-3.10, ... , 3.25-3.30. 

b Write down the dass boundaries. 
c Using the same dass intervals, draw a relative frequency diagram. 
d Calculate the mean and standard deviation of (i) the raw data (ii) the 

grouped data. 
S Suppose data consists of n distinct data points Xt. x2 , ••• , Xn with 

frequencies f 1 , h, ... , fn respectively. Suppose also that N is the total 
number of data points. Show that, if s is the standard deviation, 

n 

(N - 1)s2 = 2: f,x; - Nx2 

r=l 

(In the days before electronic calculators this formula could be used to 
ease the arithmetical burden.) 

6 The following data shows the number of unsatisfactory mother­
boards produced by a company in a given month: 

Number defective 0 1 2 3 4 5 6 
Frequency 28 25 24 12 9 1 1 

Display this data on a suitable diagram and calculate its mean 
and variance. 
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T o take our story any further requires some probability theory, and 
that is the subject of this chapter. 

After completing this chapter you should be able to 
D Use the terminology of statistics correctly - experiment, sample 

space, event, random variable etc.; 
D Use the rules of probability correctly; 
D Obtain the mean and variance of a probability distribution; 
D Use the binomial, Poisson and normal distributions; 
D Approximate the binomial and Poisson distributions by the normal 

distribution; 
D Use normal probability paper to estimate the mean and variance of 

a distribution. 
At the end of this chapter we Iook at a practical problern of statistics in 
engineering. 

24.1 CONCEPTS 

In order to use sample statistics effectively we need to employ some of the 
theory of probability. 1t is necessary first to fix some of the terminology: 
l The word experiment is used to denote any activity which has an 

outcome. 
2 The set of all possible outcomes of an experiment is called the sample 

space S. 
3 Each of the possible outcomes is called a sample point. 
4 An event E is any collection of sample points. 

0 The outcomes of the activity of throwing two dice can be represented as 
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ordered pairs of numbers. So the sample space may be represented as 
follows: 

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) 
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) 
(3, 1), (3,2), (3,3), (3,4), (3,5), (3,6) 
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6) 
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) 
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) 

There are 36 sample points in the sample space. 
If E is the event 'the total sum is greater than 7', then 

E = {(x,y) I x + y > 7} 
= {(2,6), (3,5), (3,6), (4,4), (4,5), (4,6), (5,3), 

(5, 4), (5, 5), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} 

So E consists of 15 sample points. • 
If there are no sample pointsinan event Ethen E = 0, the empty set. If 
every sample point is in the event Ethen E = S, the sample space. 

We shall define probability in such a way that every event will have a 
probability in the interval (0, 1]. If an event is certain to occur we say it has 
probability 1, whereas if an event cannot occur we say it has probability 0. 
So: 
1 The event S has probability 1 because one of the points in the sample 

space must be the result of the experiment. 
2 The event 0 has probability 0 since by definition the experiment must 

have an outcome. 
It often helps to picture things by using a Venn diagram. 
In this it is usual to represent the sample space S by means of a large 
rectangle. The sample points are then shown inside the rectangle, and an 
event is represented by means of a loop; the interior of the loop represents 
the points in the event (Fig. 24.1). 

If x is a sample point in S, the sample space, we denote by P(x) the 
probability that x will occur. If E is an event we then define P(E) by 

0 
s 

Fig. 24.1 A Venn diagram. 
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P(E) = L P(x) 
XEE 

The probability of an event E is the sum of the probabilities of the sample 
points in E. 

In the Venn diagram the probability of an event Eis the proportion of 
the sample space covered by E. We see at once that P(S) = 1 and P(0) = 
0, which is consistent with the definition. Now we have already seen that 

P(S) = L P(x) = 1 
xES 

and so we may write 

2: P(x) 
P(E) = "-'XE:..::E;__ 

2: P(x) 
xES 

Although Venn diagrams are very useful there is one snag: they may Iead 
us to draw conclusions which are false. For example, not every sample 
space is bounded. 

24.2 THE RULES OF PROBABILITY 

We can use Venn diagrams, together with the interpretation we have put 
on probability, to deduce the basic rules of probability. In the sections that 
follow we shall suppose that E and F are any two events in the sample 
space S (see Fig. 24.2). 

To begin with we must employ the basic terminology of set theory 
1 Union: E U F = {x I x E E or x E F, or both} 
2 Intersection: E n F = {x I x E E and x E F} 
3 Complement: E' = {x I x E S but x q E} 
There are rules of set theory which can be deduced formally from these 
definitions. However, for our purposes they can be inferred easily from 
Venn diagrams. Here are the rules: 

s 

Fig. 24.2 Two events E and F. 
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EUF=FUE 
EnF=FnE 

(E U F)' = E' n F' 
(E n F)' = E' U F' 

E n (F U G) = (E n F) U (E n G) 
E U (F n G) = (E U F) n (E U G) 

You might like to draw a few Venn diagrams to convince yourself of the 
truth of these. 

Now for the first rule of probability. 

24.3 THE SUM RULE 

The probability that either the event E or the event F ( or both) will occur is 
the sum of the probability that E will occur with the probability that F will 
occur less the probability that both E and F will occur: 

P(E U F) = P(E) + P(F) - P(E n F) 

To see this we merely need to note that the area enclosed by both E and F 
is the area enclosed by E, together with the area enclosed by F, but less the 
area of the overlap E n F, which we would otherwise have counted twice. 

D The probability that a drilling machine will break down is 0.35. The 
probability that the lights will fail is 0.28. lt is known that the probability 
that one or the other (or possibly both) will occur is 0.42. Obtain the prob­
ability that both the machine will break down and the lights will fail. 

Let E be 'the drilling machine will break down' and F be 'the lights will 
fail'. Then P(E) = 0.35, P(F) = 0.28 and P(E U F) = 0.42. Now 

Therefore 

P(E U F) = P(E) + P(F) - P(E n F) 

P(E n F) = P(E) + P(F) - P(E U F) 
= 0.35 + 0.28 - 0.42 = 0.21 

24.4 MUTUALL Y EXCLUSIVE EVENTS 

• 

Sometimes two events E and F in a sample space S have no sample points 
in common, so that E n F = 0. In such circumstances the events E and F 
are said to be mutually exclusive events. For mutually exclusive events the 
addition law of probability becomes simplified: 

P(E U F) = P(E) + P(F) 
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24.5 CONDITIONAL PROBABILITY 

We write P(E I F) for the probability that the event E will occur, given that 
the event F does occur. 

If we think about this for a few seconds, we see that the precondition 
that the event F does occur effectively reduces the sample space that we are 
considering to the points in the event F. We require the proportion of those 
which are in the event E. Consequently 

L P(x) 
P(E I F) = xEEnF 

L P(x) 
XEF 

P(E n F) 
P(F) 

0 A car mechanic knows that the probability of a vehicle having a ftat 
battery is 0.24. He also knows that if the vehicle has a flat battery then the 
probability that the starter motor needs replacing is 0.47. A vehicle is 
brought in for his attention. What is the probability that it both has a flat 
battery and needs a new starter motor? 

Suppose E is 'the starter motor needs replacing' and F is 'the vehicle 
has a flat battery'. We know P(E I F) = 0.47 and P(F) = 0.24 and require 
P(E n F). Using 

P(EIF) = P(E n F) 
P(F) 

we deduce that P(E n F) = 0.47 x 0.24 = 0.1128. 

24.6 THE PRODUCT RULE 

From the equation 

P(E I F) = P(E n F) 
P(F) 

we obtain, on multiplying through by P(F), 

P(E n F) = P(E I F)P(F) 

By symmetry therefore we also have 

P(E n F) = P(E)P(F I E) 

• 

The probability that both the event E and the event F will occur is the 
product of the probability that E will occur with the probability that F will 
occur, given that E does occur. 
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24.7 INDEPENDENT EVENTS 

Two events E and F are said tobe independent if P(E) = P(E I F), because 
the event F has no effect whatever on E as far as probability is concerned. 
Whenever two events E and F are independent the product rule becomes 
simplified to 

P(E n F) = P(E)P(F) 

At first sight the condition that two events E and F are independent Iooks 
asymmetrical. However, it is a simple algebraic matter to deduce that this 
is equivalent to 

P(F) = P(F I E) 

Can you see why? Give it a whirl and then see if you are right. 

Suppose that E and F are independent, so that P(E) = P(E I F). Wehave 
P(E n F) = P(E)P(F) but P(E n F) = P(E)P(F I E). Equating these two 
expressions and dividing by P(E) gives 

P(F) = P(F I E) 

The argument fails if P(E) = 0, but this would imply E = 0. So P(F) = 

P(F I E) since there is no condition to satisfy. 

24.8 COMPLEMENTATION RULE 

The events E and E' satisfy E U E' = Sand E n E' = 0. Therefore 
P(E) + P(E') = P(S) = 1, from which 

P(E') = 1 - P(E) 

0 The probability that a telephone switchboard is jammed is 0.25. The 
probability that a customer will attempt to telephone is 0.15. These events 
are known tobe independent. However, if a customer telephones but fails 
to get connected the probability that an orderwill be lost is 0.75. Calculate 
a The probability that a customer will telephone while the switchboard is 

jammed, resulting in a lost order; 
b The probability that the orderwill not be lost even though the telephone 

switchboard is jammed and the customer tried to telephone. 
You might like to try this on your own. 

Webegin by identifying the events. Let E be 'the telephone switchboard is 
jammed', F be 'a customer will attempt to telephone' and G be 'an order 
will be lost'. 
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We know P(E) = 0.25, P(F) = 0.15. Now E n Fis the event 'a customer 
will attempt to telephone and the switchboard is jammed'. Since E and F 
are independent, 

P(E n F) = P(E) P(F) = 0.25 x 0.15 = 0.0375 

Fora we require P[(E n F) n G]. We know that P[G I (E n F)] = 0.75, 
so 

Now 

P[G n (E n F)] = O 75 
P(E n F) . 

P[(E n F) n G] = P[G n (E n F)] 
= P(E n F) x 0.75 
= 0.0375 X 0. 75 = 0.028125 

For b, G' is the event 'the orderwill not be lost'. We require P[ G' I (E n F) ]. 
Wehave 

P[G' I (E n F)] = 1 - P[G I (E n F)] 
= 1 - 0. 75 = 0.25 • 

Although we have seen how to use the rules of probability, we have yet to 
define fully what is meant by probability. 

24.9 A RANDOM VARIABLE 

A random variable X is a numerically valued function defined on the 
sample space S; so X: S ~ IR. For example, if we consider the experiment 
of tossing a coin then we could define X by 

heads ~ 1 
tails ~ 0 

However, there is no restriction on the way we define X. We could, if we 
wished to be perverse, define X instead by 

heads ~ 3t 

tails ~ e 

The important thing is that X assigns numerical values to the outcome of an 
experiment. In this way outcomes which we regard as equivalent to one 
another can be assigned the same numerical value, whereas those which 
are regarded as distinct can be assigned different values. 

In a slight misuse of the function notation, we write X= r if the random 
variable X has value rat the sample point. We also write P(X = r) for the 
probability that X has the value r at the sample point. 



714 PROBABILITY 

There are three basic approaches to probability; these are described in 
the next three sections. 

24.10 THE ANAL YTICAL METHOD 

Webegin by looking at an exarople. 

D Suppose that a box contains 100 roicrocoroputer discs and that 15 of 
thero are defective in soroe way. If one of the discs is selected at randoro 
froro the box, what is the probability that it is defective? 

Of course we know that it will be either good or defective, so the ques­
tion we are realiy asking is: what proportion of the discs is defective? The 
answer to this is clear; there are 15 defectives and 100 discs altogether, and 
so the proportion of defectives is 15/100 = 3/20 = 0.15. 

This then is what we define as the probability p of selecting a defective: 

nurober of defectives 
p= 

total nurober 

We observe that if every disc in the box is defective we shali obtain p = 1, 
whereas if none of the discs is defective we shali obtain p = 0; this is con­
sistent with our earlier definition. 

Looked at in this way, we see we can define a randoro variable X on the 
sarople space S consisting of each of the discs: 

bad disc ~ 0 
good disc ~ 1 

Then P(X = 0) = 0.15 and P(X = 1) = 0.85, so that P(X = 0) + P(X = 1) 
= 1; a disc is either defective or satisfactory. • 

Now let's analyse what we have done. Suppose the discs were nurobered 
1, 2, 3, ... , 100. Then we can represent the discs as D1 , D2 , D3 , ... , D100 

of which we know there are 15 defective. 
Now if we consider these Iabelied discs, there are 100 sarople points in S 

because each of the Iabelied discs is a possible outcoroe of the experiroent. 
Moreover, the selection procedure is randoro so each disc has the saroe 
probability of being chosen. 

If E is the event that 'the disc is defective' then there are 15 sarople 
points in this event because there are 15 defective discs. So we obtain 

(d. d 4' • ) I EI 15 P tsc eteCttve = IST = 100 

where lA I denotes the nurober of eleroents in the finite set A. 
In general, if each point in a finite sarople space is equaliy likely the 

probability of an event E is 
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P(E) = number of points in E = @:1 
number of pointsinS !SI 

There are two problems which arise with this approach: 
I We may not know the number of sample points in the event E. 
2 The number of sample pointsinS may not be finite. 

24.11 THE RELATIVE FREQUENCY METHOD 

We may not know how many defective discs are in the box. For example, a 
machine could be making and packaging the discs and it may not be known 
how many are defective. 

One way of proceeding is to select each disc in turn and test it. We then 
obtain 

( ) number of defective discs 
Pn=--------­

number of discs tested 

where n is the number of discs tested. This would give an estimate of the 
probability p, and we could argue that as n ~ N (the total number) we 
should have p(n) ~ p, the probability of a defective. Indeed, we could 
extend this idea to an infinite population and then obtain p(n) ~ p as 
ll ~ oo. 

D A coin is thrown to test the probability that it will show heads. Given 
the following results, taken in order, show how an estimate of the prob­
ability varies: 

H H T H T H H H T H T T T H H T 

where H denotes heads and T denotes tails. 
We can construct a table of the relative frequency p(n), that is the 

number of heads which have shown in n throws: 

ll p(n) ll p(n) 
I 1/1 9 619 
2 2/2 10 7110 
3 2/3 11 7/11 
4 3/4 12 7/12 
5 3/5 13 7/13 
6 4/6 14 8/14 
7 5/7 15 9/15 
8 6/8 16 9/16 

What are we to make of this? We can argue that if the coin is fair then, if 
we throw it 2m times, we should expect for !arge m that there would be m 
heads. However, we don't know anything about the coin in question here. 
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We could perhaps turn the argument round and use this as a method of 
testing whether or not the coin is fair. However, this leaves a nurober of 
open questions, such as 'How many times do we need to throw the coin to 
establish the probability?' • 

The major problern with the relative frequency method is that p(n) 
changes as n changes, and consequently a ftuke situation could give mis­
leading results. 

24.12 THE MATHEMATICAL METHOD 

We must remernher that a sample space S consists of all possible outcomes 
of an experiment and that a random variable assigns a nurober to each 
sample point. Therefore if we assign probabilities to the set of values X(S) 
of the random variable, we automatically assign probabilities to the sample 
points: 

S--+ X(S)--+ IR 

lt is convenient on some occasions to think of probabilities as assigned to 
the sample space, and on others tothink of them as assigned to the values 
of the random variable. 

Suppose S is a sample space and X is a random variable. A probability 
density function (PDF) is a real-valued function with domain X(S) such 
that 
1 If r e X(S) then P(r) :;:?; 0; 
2 ~P(r) = 1. 
where the sum is taken over every element of X(S). So a probability den­
sity function is a function which assigns weights to the values of the random 
variable in such a way that they are all non-negative and total to 1. 

Whenever we have a probability density function we say that P defines a 
probability distribution. 

0 Obtain h if P defines a probability distribution on { 1 ,2,3} as follows: 

r 
P(X = r) 

Obtain also 

1 
114 

a the probability that X is greater than 1 
b the probability that X is not equal to 2. 

2 
h 

Wehave ~P(X = r) = 1 for all values of the random variable X, and so 

* + h + h2 = 1 
(h + !)2 = 1 

h +! = ±1 
h = -! ± 1 
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However, we can reject the negative sign because all probabilities must 
be positive. We conclude therefore that h = 112. 
a P(X > 1) = P(X = 2) + P(X = 3) = 112 + (112)2 = 112 + 114 = 3/4 
b P(X =t= 2) = 1 - P(X = 2) = 1 - 112 = 112 • 

In the case of a discrete random variable X which can take values x 1 , x2 , 

... , Xn, ... with probabilities, p 1, p 2 , ... , Pn• ... respectively we obtain 

Pr ;:::: 0 for all r e N 
~Pr= 1 

where the sum is taken over all r e N. 
There are many discrete probability distributions. However there are 

two, the binomial distribution and the Poisson distribution, which have 
many applications. We shall discuss them briefty. 

We need one extra piece of terminology first. A single occurrence of an 
experiment is called a trial. 

24.13 THE BINOMIAL DISTRIBUTION 

Before describing the binomial distribution we shall state the circum­
stances in which it can be used. lt is most important to be sure that these 
conditions hold before attempting to apply the binomial distribution. 

The binomial distribution may be applied whenever an experiment occurs 
with the following characteristics: 
I There are only two possible outcomes of each trial. For reference pur­

poses weshall call these 'success' and 'failure'. 
2 The probability p of success in a single trial is constant. Note that this 

implies that the probability q of failure is constant too, because p + q 
=1. 

3 The outcomes of successive trials are independent of one another. 
We can think of many examples where these conditions hold, such as 
tossing a coin with outcome heads or tails, or rolling dice to obtain a six. 
A third example is selecting, one by one at random, electrical components 
from a box and then testing and replacing them. In this case, if we do not 
replace a component then the probability of choosing a defective next time 
will change. However, for a large quantity of components in the box the 
binomial conditions will be satisfied approximately. 

In general, suppose there are n trials and that we define the random 
variable X as the number of successes. Weshall examine the possibilities. 

If there is just one trial, we then have only two possibilities: F (failure) or 
S (success). We know that P(F) = q and P(S) = p where p + q = 1, so 

P(X = 0) = q P(X = 1) = p 

If there are two trials then the possibilities are FF, SF, FS, SS. So 
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P(X = 0) = q2 

P(X = 1) = pq + qp = 2pq 
P(X = 2) = p2 

Now you Iist the possible outcomes for three trials and thereby calculate 
P(X = 0), P(X = 1), P(X = 2) and P(X = 3). 

Here are the possible outcomes: 

From these, 

FFF, FFS,FSF, SFF,FSS,SFS, SSF, SSS 

P(X = 0) = q3 

P(X = 1) = 3pq2 

P(X = 2) = 3p2q 
P(X = 3) = p3 

In the generat situation where there are n trials we have 

You will observe that this is the generat term in the expansion of (p + qt 
using the binomial theorem (see Chapter 1). Indeed this observation con­
firms straight away that we have a probability distribution. Each term is 
positive and the sum of them all is (p + q )", which is 1 since p + q = 1. 

0 A company has eight faulty machines. lt is stated by the servicing 
engineer that if a machine is serviced there is a 75% probability that it will 
last a further three years. The company has all eight machines serviced. If 
the servicing engineer is correct, estimate 
a The probability that none of the machines willlast a further three years; 
b The probability that at least six of the machines willlast a further three 

years; 
c The probability that at least one of the machines willlast a further three 

years. 
The probability that if a machine is serviced it willlast a further three years 
is p = 0.75, and we may suppose that the lifetimes of the machines are 
independent of one another. 

The conditions for a binomial distribution are satisfied with n = 8. So if 
the random variable Xis defined as the number of machines which willlast 
a further three years, we have 

P(X = r) = G) (0. 75Y(0.25)8-r 

a We must calculate 
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P(X = 0) = (0. 75Y'(0.25)8 

= (0.25)8 = 0.000 015 26 

This is negligible. 
b We must obtain 

P(X ~ 6) = P(X = 6) + P(X = 7) + P(X = 8) 

c We require 

= (~) (0. 75)6 (0.25)2 + G) (0. 75f (0.25) + (0. 75)8 

= 0.3114624 + 0.2669678 + 0.1001129 = 0.6785431 
= 0.6785 to four decimal places 

P(X > 0) = 1 - P(X = 0) = 1 - 0.000015 26 = 0.999984 74 

So it is almost certain that at least one of the machines willlast a further 
three years. • 

24.14 THE MEAN OF A PROBABILITY DISTRIBUTION 

In much the same way as we defined the mean of a population, we define 
the mean of a discrete probability distribution by 

11 = 'LP(X = r)r 

where the sum is taken over all possible values of the random variable X. 
Here we can think of P(X = r) as the relative frequency with which the 
random variable X attains the value r in a long sequence of trials. 

The mean 11 of the probability distribution is also known as the expecta­
tion of random variable. 

D A businessman knows that if he sends a Ietter to a hauseholder there is 
a 0.5% probability that he will receive an order for new windows which 
will give him a profit of f600. If he doesn't receive an order the cost to him 
in postage and administration is 30p. What is his expected gain? 

Writing S for success and F for failure we have S- 600, F- -0.3. So 
defining the random variable X as his expected win, we have P(X = 600) = 
0.005 and P(X = -0.3) = 0.995. Therefore 

!! = 600 X 0.005 + ( -0.3) X 0.995 = 2.7015 

So if he scnds out a Iot of letters, on averagehe will expect to gain f2. 70 for 
each one. • 

0 Obtain the mean 11 corresponding to the binomial distribution. 
Wehave 
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P(X = r) = (;)p'qn-r 

for r e {0,1,2, ... ,n}. Then 

~ = ± (n)p'qn-rr 
r=O r 
~ n(n - 1) ... (n - r + 1) , n-r 

=~ pq r 
r=l 1 X 2 X 3 X ... X r 

~ (n - 1) ... (n - r + 1) r-1 n-r = np ~ p q r 
r= 1 1 X 2 X 3 X . . . X r 

If we put s = r - 1 we obtain 

n~l (n - 1) ... ([n - 1] - s + 1) s n-s-l( ) 
~ = np ~ p q s + 1 

s=O 1 X 2 X 3 X . . . X (s + 1) 

n~l (n - 1) ... ([n - 1] - s + 1) s n-s-1 = np ~ p q 
s=O 1 X 2 X 3 X . . . X S 

Now s is a dummy variable, and so we can call it what we like. Therefore 
we shall revert to using r; the old r is dead and gone! If you object to this 
practice, give it some thought and you will realize you are simply being 
sentimental about good old r. Then 

n~l (n - 1) ... ([n - 1] - r + 1) , n- -1 
1-l = np ~ p q , 

r=O 1 X 2 X 3 X . . . X r 

= np 2: n - p'qn-1-r n-1 ( 1) 
r=O r 

= np(p + qt-' = np 

We knew this anyway, didn't we? We knew that if a single trial has con­
stant probability p of success, then if we perform n trials the mean will 
benp. • 

24.15 THE VARIANCE OF A PROBABILITY DISTRIBUTION 

The variance of a probability distribution is defined as the expected value 
of (X- ~)2 • As with the mean, this is consistent with the definition of a 
population variance. 

Recall that 

2 "2:./,(x,- ~i 
0 = "2:./, 

where there are n distinct data points, the sums are taken for r e { 1, 2, 



THE POISSON DISTRIBUTION 721 

... , n} and l: f, = N, the total number of data points. If we divide through 
each term in the numerator by l:f, we obtain instead of each frequency f, a 
relative frequency p" so that 

<J2 = l:p,(x,- llf 
So for the variance we have 

V(X) = o2 = E(X - !!)2 = l: P(X = r)(r - !!)2 

= l:P(X = r)(r2 - 2w + !!2) 

= l:P(X = r)r2 - 2Jll:P(X = r)r + !!2 l: P(X = r) 

where, of course, the sums are taken over all possible values of the random 
variable. 

Now we have a probability distribution, and consequently 

l:P(X = r) = 1 
l:P(X = r)r = !l 

So that substituting these into the expression for V we obtain 

V(X) = a2 = l: P(X = r)r2 - 2!l!l + !l2 

= l: P(X = r)r2 - !!2 

Therefore we have shown that 

V(X) = a 2 = E(X- !!)2 = E(X2) - [E(X)f 

This formula can be useful when calculating the variance of a probability 
distribution. lt can be shown using elementary algebra that for the bi­
nomial distribution the variance is npq. The standard deviation is therefore 
Jl(npq). 

In summary, for the binomial distribution, mean = np and variance = 
npq, where n is the number of experiments and p is the probability of 
success in a single trial. 

24.16 THE POISSON DISTRIBUTION 

Suppose we have a situation in which incidents occur randomly. Then we 
have a Poisson distribution if the following conditions are satisfied: 
1 On average there are A. incidents in a unit time interval, where A. is a 

constant. 
2 In a small time interval ö T, the probability of two or more incidents 

occurring is zero. 
3 If two time intervals have no points in common, the number of incidents 

occurring in each one is independent of the other. 
If the random variable Xis defined as the number of incidents which occur 
in a time interval of length T, then we obtain the following probability 
distribution: 
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P(X = r) = e-~' !lr for r E N0 
r! 

where !l = A. T. (You will recall that N0 = { 0, 1, 2, 3, ... } is the set of non­
negative integers.) To see that this is a probability density function, we 
note first that all its values are positive and secondly that their sum is 

oo r 

2: e -~' ~ = e -~'e~' = 1 
r=O r! 

D A company has three telephone lines and receives on average six calls 
every five minutes. Assuming a Poisson distribution, what is the 
probability that more than three calls will be received during a given two­
minute period? 

We have six calls every five minutes on average, and so A. = 1.2 per 
minute. The time interval Tin which we are interested is of length 2, and so 
!l = A. T = 2.4. If X is the number of calls which are being received in the 
two-minute interval, we have 

P(X = r) = e-1.2 (1.2Y for r E N0 
r! 

So we require 

P(X > 3) = 1 - P(X ~ 3) 

= 1 - { P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)} 

= 1 - e-t.z [ 1 + 1.2 + (1~)2 + (1~)3] 

= 1 - 0.966 = 0.034 • 

It is a simple algebraic exercise to show that the expectation of the Poisson 
random variable is !l· We do not therefore have a conflict of notation, as 
would otherwise be the case. Why not try and deduce this for yourself? 

Wehave 

So 

!lr 
P(X = r) = e -~' - for r E N0 

r! 

E(X) = f P(X = r) r = f e-~' !l; r 
r=O r=O r. 

Putting s = r - 1, 
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=[! 

Note that the sum of all the probabilities of the random variable is 1. A 
similar but more involved algebraic exercise can be used to show that the 
variance is also !!· 

In summary, for the Poisson distribution, mean = [!, variance = !! and 
!! = AT, where A is the number of incidents per unit time interval and T is 
the length of the time interval. 

24.17 APPROXIMATION FOR THE BINOMIAL DISTRIBUTION 

If n is !arge there is a problern in calculating the coefficients of the binomial 
expansion. However, if p is also small then for the binomial distribution 

a 2 = npq = np(l - p) = np = !! 

so that the mean and variance are approximately equal. 
It is not difficult to show that if n ~ oo and p ~ 0 in such a way that np 

remains constant, then the Poisson distribution is a good approximation for 
the binomial distribution. Clearly we shall require np2 = 0, and this will 
hold provided [!2 is much smaller than n. If n > 20 and !! = np < 5 then 
the approximation will be good enough for most purposes. 

0 It is known that 5% of all bricks manufactured at a brick works are sub­
standard. A customer buys 30 which are selected randomly. What is the 
probability that at least four are substandard? 

Here n = 30 and p = 0.05, so that np = 0.6 and the Poisson distribution 
is certainly appropriate. Let the random variable X denote the number of 
defective bricks in the sample. Then 

P(X = r) = e-0.6 (0.6)' 
r! 

We are dealing with an approximation, and so we must ignore the fact that 
these probabilities are defined for r greater than 30. Then 

P(X ~ 4) = 1 - P(X ~ 3) 

= 1 - e-o.o [ 1 + 0.6 + (0~~)2 + (0~~)3] = 0.00336 • 

24.18 CONTINUOUS DISTRIBUTIONS 

Given a discrete probability distribution, we can represent it pictorially by 
means of a histogram with unit area. The probability of each value of the 
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Random variable x 

Fig. 24.3 Histogram and frequency polygon. 

randoro variable is then shown as the corresponding area of the histograro. 
If the randoro variable has a !arge nurober of values within each closed 
interval, the frequency polygon will approach that of a sroooth curve 
(Fig. 24.3). We can use this to picture probability density functions cor­
responding to continuous randoro variables. 

In order to extend the idea of a probability density function to continuous 
randoro variables, we shall need to eroploy calculus. Suppose f: IR - IR is 
a probability density function corresponding to a continuous randoro vari­
able X. Then f satisfies the condition 

f(x) ~ 0 for all x e IR 

Given any a, b e IR, a < b, we require P(a <X< b). Suppose we partition 
the interval [a, b] into an equal nurober of subintervals each of length öx 
(Fig. 24.4). Then, selecting an arbitrary point x, 

Fig. 24.4 Graph of a probability density function. 
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P(x < X < x + öx) = f(x) öx 

using a discrete approximation. So 
x=b 

P(a <X< b) = 2: f(x)öx 
x=a 

Moreover, the approximation becomes good as öx ~ 0, so that 

P(a <X< b) = J: f(x)dx 

We know also that, taken over all possible values of the random variable 
X, the total probability must be 1. Consequently 

P(-oo <X< oo) = J~oo f(x)dx = 1 

It's best to think of the probability that X takes on a value between X = a 
and X= b as the area under the probability curve y = f(x) between x = a 
and x = b. Notice in particular that the area under a point is zero, and so 
for a continuous distribution P(X = a) = 0 for every a E IR. Consequently 

P(a < X< b) = P(a ";::;X";::; b) 

You should note that this is certainly not so for discrete distributions. Later 
we shall be using a continuous distribution as an approximation to a discrete 
distribution, and we shall have to take account of this difference then. 

Remernher the two conditions which need to be satisfied if f: IR ~ IR is 
to be a probability density function: 
1 f(x) ~ 0 for all x E IR 

2 J~oo f(x) dx = 1 

D The functionf: [0, 1] ~IR defined by f(x) = 3kx2 is known tobe a prob­
ability density function. Obtain the value of k. Obtain also the probability 
that if an observation were chosen at random it would be (a) less than 112 
(b) between 114 and 112. 

We note that because the domain of f is an interval [0, 1], we have a 
continuous random variable. We require 

f(x) ~ 0 for all x E [0, 1] 

and this implies that 3kx2 ~ 0 and so k ~ 0. Next we have 

J f(x)dx = 1 

where the integral must be taken over the domain of f. In this case this is 
the interval [0, 1]. So 
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Therefore k = 1. 
Consequently 

a P(x < ~) = 1112 
3x2 dx = [x3M12 = ~ 

2 0 8 

( 1 1) I 112 1 1 7 b p 4 < X < 2 = Il-l 3x2 dx = [x:>]l;~ = S - 64 = 64 • 
24.19 MEAN AND VA~IANCE 

The formula for the mean of a continuous distribution involves an integral 
instead of a sum. The form of this can be deduced, using the calculus, from 
the formula for a discrete distribution. We obtain 

f! = E(X) 

= J:x f(x)xdx 

We defined the variance of a discrete distribution in terms of expectation, 
and this formula will hold good for continuous distributions too: 

V(X) = o2 = E(X- f!) 2 

= J:x (x - f!)2 f(x) dx 

= J:"" x 2 f(x) dx - 2!! J:x xf(x) dx + !!2 J:" f(x) dx 

= E(X2 ) - 2f!f! + f! 2 

= E(X2) - !!2 

= E(X2 ) - [E(X)f 

D Obtain the mean and variance of the probability density function 
f: [0, 1] ~ IR defined by f(x) = 3x2. 

Wehave already shown that we have a PDF. and so we need only cal­
culate what is required: 

f! = E(X) = 11 
3x2x dx 

0 

= 311 
x3 dx 

() 

3 4 I 3 
= 4 [x ]o = 4 
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Also 

E(X2) = r 3x2x 2 dx 
0 

= 3 r x4 dx 
0 

3 ~ I 3 
=- [x-]o =-

5 5 

So 

V(X) = E(X2) - f,l 2 

3 9 3 
5 16 80 • 

Although there are many continuous distributions, one in particular- the 
normal distribution - is of great importance and application. We shall 
discuss this distribution now. 

24.20 THE NORMAL DISTRIBUTION 

The probability density function for the normal distribution is an ugly­
looking beast. Luckily we shall not need to handle it at all because the 
indefinite integral cannot be obtained explicitly in terms of elementary 
functions. Therefore tables have had to be constructed so that the prob­
abilities can be calculated. Part of our task will be acquiring the skill neces­
sary to use the tables. For the sake of completeness, and for your generat 
edification, here is the probability density function itself: 

1 [ (x - ft) 2
] 

f(x) = oV(2n) exp - 2o2 X E IR 

where o > 0 is the standard deviation and ft is the mean. 
Although the graph is symmetrical about x = ft and its height is 

11oV(2n), its shape depends on o. For instance, if we take ft = 0 then for 
o = 3 we have a low-humped curve, whereas for o = 1 we obtain the more 
familiar bell-shaped curve (Fig. 24.5). 

The standard normal distribution has ft = 0 and o = 1, and it is areas under 
the standard normal curve which are tabulated. If the continuous random 
variable X is normally distributed with mean ft and variance o2 , and if 

X-ft 
Z=-­

o 
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o•1 

Fig. 24.5 Normal distributions with mean 0. 

then Z is normally distributed with mean 0 and variance 1. 
There are several ways in which the area under the standard normal 

curve can be tabulated. However, we confine our attention to just one of 
them. The curve is symmetrical and so the area under the upper half of the 
curve will be sufficient. In Table 24.1 we give the area under the upper tail; 
this is the shaded area shown in Fig. 24.6. When Z = 0 the area under the 
upper tail is 0.5, because the total area is 1 and the curve is symmetrical. 
Also as Z tends to oo the area under the upper tail tends to 0. 

Suppose now a ~band that we require P(a < Z < b). We observe from 
Fig. 24.6 that 

P(a < Z < b) = P(Z > a)- P(Z > b) 

So if a ~ 0 we can use the table straight away to obtain the required prob­
ability. If a < 0 then we must use the symmetry of the standard normal 
curve. 

D A random variable X is normally distributed with mean 0 and variance 
1. Obtain the probability that a sample chosen at random will be a greater 

Fig. 24.6 Standard normal distribution. 
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than 2.12 b between 0.55 and 2.15 c greater than -1.34 but less than 
2.43. 

In each case we reduce the probabilities to those corresponding to areas 
under the upper tail: 
a We require P(X > 2.12) = 0.0170, directly from the table. Notice how 

we use the left-hand column to obtain the row corresponding to 2.1 and 
then move across the columns to find the area corresponding to 2.12. 

b To obtain P(0.55 <X< 2.15), we use 

P(0.55 < X < 2.15) = P(X > 0.55) - P(X > 2.15) 
= 0.2912 - 0.0158 = 0.2754 

c For P( -1.34 < X < 2.43) we must use the symmetry and the fact that 
the total area under the curve is 1: 

P( -1.34 < X< 2.43) = 1 - P(X > 1.34) - P(X > 2.43) 
= 1 - 0.0901 - 0.0075 = 0.9024 • 

The normal distribution applies in many situations, and this can be shown 
whenever large quantities of data are collected. It is comparatively rare for 
a non-normal distribution to arise in practice. Here isanother example to 
show how we use standard normal tables when we are solving a problern 
where the mean and variance are not 0 and 1 respectively. 

0 A manufacturing process produces dry cell batteries which have a mean 
shelf life of 2.25 years and a standard deviation of 3.5 months. Assuming 
the distribution is normal: 
a Obtain the probability that an item selected at random will have a shelf 

life of at least 2.5 years. 
b If three items are selected at random, obtain the probability that at least 

two will have a shelf life of more than 2.5 years. 
We have !.! = 2.25 and a = 0.2917, so that using the standard normal 
distribution we put 

Z = X - !.! = X - 2.25 
a 0.2917 

a When X = 2.5 we have Z = 0.857, so that 

P(X;:?; 2.5) = P(Z ;:?; 0.857) = 0.1957 

Notice that we have interpolated the value corresponding to 0.857 from 
those given in Table 24.1: 

0.85 ~ 0.1977 0.86 ~ 0.1949 

so the difference is 0.0028. Multiplying by 0.7 gives approximately 
0.0020 as the corresponding difference between 0.85 and 0.857. 

b If we select three items at random we have a binomial distribution where 
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p = 0.1957. Using Y as the random variable, suppose Y is the number 
selected with a shelf life of at least 2.5 years. Then 

P(Y = r) = G) (0.1957Y(0.8043)3-r 

We require 

P(Y ~ 2) = P(Y = 2) + P(Y = 3) 
= 3 X (0.1957)2 X (0.8043) + (0.1957)3 

= 0.0924 + 0.0075 = 0.0999 • 

24.21 DISCRETE APPROXIMATIONS 

We have seen that when p issmalland n is !arge the binomial distribution 
can be approximated by the Poisson distribution. Of course if p is close to 1 
then the approximation can still be used since then q = 1 - p is small. 

Problems arise when n is !arge and neither p nor q is small. In such cir­
cumstances the normal distribution becomes a good approximation to the 
binomial distribution where 

!l (normal) = !l (binomial) = np 
a 2 (normal) = a 2 (binomial) = npq 

In a similar way, when fl > 10, the Poisson distribution can be approxi­
mated by the normal distribution. Once again it is the mean and variance 
of the distributions which enable the approximation to be effected: 

!l (normal) = !l (Poisson) = fl 
a2 (normal) = a2 (Poisson) = !l 

24.22 CONTINUITY CORRECTION 

We noticed earlier that one of the differences between discrete and con­
tinuous distributions is that, if Xis a random variable, the probability that 
X takes a particular value is always zero for a continuous distribution. For 
example, if X is a Poisson random variable we have 

P(X < 9) = P(X :::; 8) 

whereas if X is a normal random variable we have 

P(X < 8) = P(X :::; 8) 

To compensate for this difference when we use these approximations, we 
apply a continuity correction and find P(X < 8.5) instead of P(X :::; 8) or 
P(X < 9). 
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D Of the fire extinguishers produced by a factory, 25% are known tobe 
faulty. If 30 extinguishers are selected at random, what is the probability 
that at least 17 will be satisfactory? 

Wehave a binomial distribution with n = 30 and p = 0.25, so that q = 
0. 75. Let the random variable X be the number of faulty fire extinguishers 
selected. Then we require P(X < 14). There are too many terms to handle, 
and so we approximate using the normal distribution. Xis approximately 
normally distributed with mean 1-t = 30 x 0.25 = 7.5 and a = V(7.5 x 0.75) 
= 2.372. 

We require P(X < 13.5), using the continuity correction, and when X= 
13.5 we have 

z =X- 1-t = 13.5- 7.5 = 2_53 
(J 2.372 

P(X < 13.5) = P(Z < 2.53) = 1 - P(Z > 2.53) 
= 1 - 0.0057 = 0.9943 • 

24.23 NORMAL PROBABILITY PAPER 

One way of checking whether or not data is normally distributed is to use 
special graph paper known as normal probability paper. If we draw the 
cumulative frequency curve for the normal distribution we shall obtain an 
S-shaped curve (Fig. 24.7). You can do this yourself if you like because the 
values which you require are simply the areas under the probability curve, 
which we already know from our table of the standard normal distribution 
(Table 24.1). 

Normal probability paper distorts the y-axis in such a way that the 

1----------

0 z 

Fig. 24.7 Cumulative frequency curve for the normal distribution. 
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cumulative frequency curve becomes a straight line. Therefore by calculat­
ing the relative cumulative frequencies we can see if our data is approxi­
mately normally distributed. Weshall illustrate this using some data which 
we displayed in Chapter 23. 

D The number of cars parked in a factory car park at 10.00 a.m. was 
counted on 120 consecutive working days. The results were given in Table 
23.1. 

We constructed Table 23.2 to give the relative cumulative frequencies. lf 
we multiply these by 100 they become percentages. From this data we can 
draw Fig. 24.8. 

If the data is normally distributed, the mean can be obtained from this 
graph. It is the median of the distribution - the value of the random vari­
able X corresponding to a relative cumulative frequency on the axis of 
symmetry. This is marked as 50% on the graph paper. Here 1-l = 87. 

The table of the standard normal distribution (Table 24.1) shows that 
when Z = 1 the area under the upper tail is 0.1587, and so the cumulative 
frequency is about 0.84. We can therefore estimate the standard deviation 
by obtaining the differences between the two values of the random variable 
X with relative cumulative frequencies of 50% and 84% respectively: 

a = 102 - 87 = 15 • 
r-r-------24.24 Workshop ______ _ s Exercise Two brothers work for a !arge multinational company. It is an­

nounced that 25% of the workforce aretobe made redundanLA message 
is received to say that one of the brothers (it is not known which one) will 
not be losing his job. Assuming that each employee has an equal prob­
ability of being made redundant and that these events are independent 
of one another, what is the probability that both brothers will remain in 
employment? 

Watch out! In this problern you have tobe extra careful. When you have 
decided on your answer, move on to step 2. 

At fitst sight you might think this is ridiculously easy and argue as follows: 
'-----___) each employee has 0.75 probability of remaining in employment; one 

brother is already secure; so for both to be safe the probability must be 
0.75. 

However, this argument is faulty; the error is quite subtle. The point is 
that we do not know which brother rang home. If the problern had named 
the brothers as Jim and Tom and had said that Jim rang home then indeed 
the probability of both holding their jobs would have been 0.75. 

If you made that error try again. 
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Let's call the brothers Jim and Tom. Let E be 'Jim retains his job' and Fbe 
.____ _ _,'Tom retains his job'. We want P(E n F I E U F). Now 

P(E U F) = P(E) + P(F) - P(E n F) 

and since E and F are independent events, 

P(E n F) = P(E) P(F) 

However, P(E) = P(F) = 0.75, so that 

P(E U F) = 0.75 + 0.75 - 0.75 x 0.75 

Now 

P(E F I E F) = P[(E n F) n (E u F)] 
n U P(E U F) 

P(E n F) (0. 75)2 

P(E U F) 0.75 + 0.75 - (0.75)2 = 0·6 

Here is another problem. 

I>Exercise In a builders' yard there are two boxes: one contains rods and 
the other contains clamps. The rods should fit into the clamps. However, 
10% of the rods are slightly bent and unusable, and 25% of the clamps are 
twisted and also unusable. A workman rushes into the yard and selects a 
rod and a clamp at random from the boxes. Obtain the probability that 
a they are both usable b at least one is usable. 

Try this and then move on. 

Let E be 'the rod is usable' and Fbe 'the clamp is usable'. Then P(E) = 0.9 
...._________, and P(F) = 0.75. 

a We require P(E n F), and since by the nature of the problernE and F 
are independent we have 

P(E n F) = P(E) P(F) = 0.9 x 0.75 = 0.675 

b We require P(E U F), and so we use 

P(E U F) = P(E) + P(F) - P(E n F) 
= 0.9 + 0.75- 0.675 = 0.975 

If you managed that then move ahead to step 6. If you didn't make it, then 
try this. 

I>Exercise In the previous exercise, obtain the probability that neither rod 
nor clamp is usable. 
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We require P(E' n F'). As before, E' and F' are independent events, and 
'--------' 

so 

P(E' n F') = P(E') P(F') = 0.1 x 0.25 = 0.025 

Now we move on to probability density functions. 

I>Exerdse Thc follow;ng g;ves the probab;J;ty d;stdbuHon for thc random ~ 
variable X. Obtain h and k if the mean is known to be 3.4. 

X 
P(X) 

1 
h + k 

3 
h 

When you have done this, step forward. 

5 
2h - k 

7 
k 

For a probability distribution we have that total probability must be 1. ZJ 
Therefore 

So 

P(l) + P(3) + P(5) + P(7) = 1 

(h + k) + h + (2h - k) + k = 1 
4h + k = 1 

We are also told that the mean is 3.4. Now !l = E(X), so 

1P(1) + 3P(3) + 5P(5) + 7 P(7) = 3.4 
(h + k) + 3h + 5(2h - k) + 7k = 3.4 

14h + 3k = 3.4 

From this pair of simultaneaus equations we have h = 0.2 and k = 0.2. 
Finally, we need to check that all the probabilities are positive; they are. 

If you could not do that exercise, don 't worry. The next one is similar for 
continuous distributions. 

C>Exercise The function f: [0, 2]----'> IR defined by 

f(x) = k(x + a) O:::=:::x:::=:::2 

is known to be a probability density function. The mean of the distribution 
is 7/6. Obtain the constants a and k. 

When you have made an attempt, move on to the next step. 

We must obtain the definite integral of f over the interval [0, 2] and equate 
it to 1 if we are to have a PDF: '------_j 
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(2 k Jo k(x + a) dx = 2 [(x + a)2]~ 

Equating to 1 we obtain 

2 = k[(2 + a)2 - a2] 

= k(4a + 4) 
1 = 2k(a + 1) 

The expectation determines the mean, and so we have 

7 [2 [2 
!l = 6 = Jo xf(x) dx = Jo k(x2 + ax) dx 

2 = k [x3 + ax2]2 
6 3 2 () 

from which 

7 = k(16 + 12a) 

Wehave the two equations 

Eliminating k we have 

1 = 2k(a + 1) 
7 = 4k(3a + 4) 

4(3a + 4) = 14(a + 1) 

It follows that a = 1. Substituting back into either of the equations for k 
gives k = 1/4. 

[> Exercise There is a fixed probability that every time a record-making 
machine operates it will produce a record which is warped. The records are 
packaged in box es of five, and 1000 box es were chosen at random and 
tested. The numbers warperl (0, 1, 2, 3, 4 or 5) were obtained, and the 
results are as follows: 

Number faulty 
Number of boxes 

0 
41 

1 
143 

2 
284 

3 
343 

4 
169 

5 
20 

Fit a binomial distribution to this data and calculate the corresponding 
theoretical frequencies. 

When you have done this problem, take another step. 

Let the random variable X be the number of warped discs in a package of 
'------' five. We know that the total number of Observations N is 1000, and we can 

determine x from the data which estimates J.l, the mean of the binomial 
distribution. So 
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1 
1000 (41 X 0 + 143 X 1 + 284 X 2 + 343 X 3 + 169 X 4 + 20 X 5) = 2.516 

Now ~ = np and n = 5, so we can obtain an estimate for p = 0.5032, 
the probability that the machine will produce a warped disc each time it 
operates. Therefore 

P(X = r) = C) (0.5032Y(0.4968)5-r 

forrE {0,1,2,3,4,5}. 
If we calculate these and multiply them by 1000 we shall obtain the 

theoretical frequencies: 

X 
P(X) 

0 
0.030 

1 
0.153 

2 
0.311 

3 
0.315 

4 
0.159 

5 
0.032 

You will notice that we have had to 'fiddle' the arithmetic so that the prob­
abilities add up to 1 as they must. This is because we have chosen to display 
the probabilities to only three decimal places. Strictly speaking we should 
leave the probabilities exact, working out the arithmetic to as many places 
as necessary, and adjust the theoretical frequencies tobring them into line 
with reality. 

If something went wrong with this, press ahead nevertheless- provided 
you are sure that you understand it. 

C>Exercise A company finds that on average there is a claim for damages 
which it must pay seven times in every ten years. It has expensive insurance 
to cover this situation. The premium has just been increased, and the firm 
is considering letting the insurance lapse for 12 months as it can afford to 
meet a single claim. Assuming a Poisson distribution, what is the prob­
ability that there will be at least two claims during the year? 

See how you get on with this. 

Assuming a Poisson distribution, we use a time interval of one year to 
obtain A = 0.7, T = 1 and so ~ = 'AT= 0.7. We have .__ _ __, 

P(X = r) = e-o 7 (0.7)' 
r! 

for r E No. 
Writing P(r) for P(X = r) we require 

P(X ~ 2) = 1 - P(O) - P(l) 
= 1 - e-0 ·7(1 + 0.7) = 0.1558 

C>Exercise A company manufactures carpet tacks which it sells in boxes. 
The number of tacks in each box is a random variable which is normally 
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distributed with mean 35.5 and standard deviation 2.35. The company 
prints on each box a figure indicating the average minimum contents, and 
wants this figure to be such that 95% of the boxes have at least this number 
of tacks in them. What figure should be printed on the boxes? 

Try this one before you take the next step. 

Suppose the random variable Xis the number of tacks in each box. Then X 
._____ _ _, is normally distributed with mean 35.5 and standard deviation 2.35. We use 

the standard transformation 

z =X- 35.5 
2.35 

so that then Z is normally distributed with mean 0 and standard deviation 
1. 

We are looking for a number A suchthat P(Z > A) = 0.95. To find this 
number we must Iook at the areas under the normal curve. We observe 
that 

P(Z > 1.645) = 0.05 

and so by symmetry 

P(Z > -1.645) = 0.95 

Now if 

Z =X- 35·5 -1 645 
2.35 > . 

we have 

X - 35.5 > -1.645 X 2.35 
X> 35.5 - 1.645 X 2.35 = 31.63 

Consequently if the company prints the figure of 31 on the packetat least 
95% of the packets will have at least the contents stated. 

Did you manage that? If you did you can do a hop, skip and a jump to 
step 13. Forthose who made an error, here is a supplementary question. 

I>Exercise The company goes ahead and prints the figure 31 on the box. 
What percentage contains fewer than 31 matches? 

Tally ho! 

~ We are looking for P(X > 31), and we already have the transformation we 
require to the standard normal distribution: 

z =X- 35.5 
2.35 



When X= 31 this gives 

z = 31 ;3~5.5 = -1.915 

P(Z > -1.915) = P(Z < 1.915) 
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= 1 - P(Z > 1.915) = 1 - 0.0278 = 0.9722 

So that less than 3% contain fewer than 31 matches. 

f> Exercise A company finds that occasionally an export order has been lost fJ13 I 
through poor communications. lt keeps a record of events of this kind and 
discovers that on average 15 orders each year are lost in this way. 
Assuming a Poisson distribution, what is the probability that at least 20 
orders will be lost during the current year due to poor communications? 

Y ou will need to use the normal approximation here unless you have 
itchy fingers. Don't forget the continuity correction. 

Suppose the random variable X is the number of orders lost due to poor 
communications. Then with /... = 15 and T = 1 we have 1.1. = 15lost per year. c__ _ _, 

Since 1.1. > 10 we can use the normal approximation and assert that X is 
approximately normally distributed with mean 15 and variance 15. We 
require P(X ~ 20) = P(X > 19), and so using the continuity correction 
we shall determine P(X > 19.5). Transforming to the standard normal 
distribution: 

z = _x_-_1_5 
3.873 

So when X = 19.5 we have Z = 1.162, and consequently 

P(X > 19.5) = P(Z > 1.162) = 0.1226 

We conclude that there is about a 121/4% probability that at least 20 orders 
will be lost in the current year. 

If you managed that then you can leap ahead to step 16. Those who are 
left can try this. 

[> Exercise A company repairs second-hand television sets which it then 
guarantees. The probability that any one set will have to be returned to it 
within twelve months for repair is 0.35. A retailer orders 40 sets which he 
then sells. Determine the probability that at least half of these sets will 
have to be returned for repair within twelve months. 

You may assume we have a binomial distribution. Try hard before 
looking at the solution. 
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~ Wehave p = 0.35 and n = 40, so we use the normal approximation: !J. = 
np = 14 and o2 = npq = 9.1. The random variable Xis the number of 

faulty sets in the sample, and we require p(X;:::,: 20) = P(X > 19). So we 
determine using the continuity correction P(X > 19.5). Transforming to 
standard normal, 

L_ _ _j 

X- 14 
z = -3-.-0-17-

we see that when X = 19.5, Z = 1.823. So 

P(X > 19.5) = P(Z > 1.823) = 0.0342 

So the probability that at least half will have to be returned is rather less 
than 3.5%. 

There it is then. 

Now for some practice at drawing. You will need a sheet of normal prob-
ability paper. Make sure you know what it Iooks like. It is not unknown for 
students in the panic of examinations to use a sheet of logarithmic graph 
paper by mistake! 

C> Exercise The following data represents the lifetimes in hours of 60 dry cell 
batteries which were tested to destruction: 

28.2, 23.4, 21.1, 26.3, 22.7, 25.2, 25.3, 22.7, 24.3, 25.3, 
26.3, 24.5, 24.3, 24.8, 26.7, 27.4, 25.6, 22.6, 21.3, 22.6, 
20.6, 25.1, 27.4, 25.9, 27.9, 22.1, 25.0, 24.3, 23.6, 24.8, 
23.5, 21.8, 27.7, 24.3, 26.4, 20.6, 24.8, 25.1, 23.5, 24.6, 
23.7, 25.4, 25.3, 24.7, 23.5, 26.5, 24.6, 24.9, 24.3, 25.4, 
25.1, 22.5, 23.6, 25.1, 24.7, 24.9, 25.1, 23.2, 24.7, 23.1 

Using dass boundaries of 

20, 21, 22, 23, 24, 25, 26,27, 28,29 

show, using normal probability paper, that the data is approximately 
normally distributed. From your graph estimate the mean and standard 

deviation. 

We must begin by calculating the relative cumulative frequencies: 



Class boundary 

21 
22 
23 
24 
25 
26 
27 
28 
29 

Cumulative frequency 

2 
5 

11 
20 
36 
50 
55 
59 
60 
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Relative frequency 

0.033 
0.083 
0.183 
0.333 
0.600 
0.833 
0.917 
0.983 
1.000 

Using this we are able to plot the necessary points on a sheet of normal 
probability paper (Fig. 24.9). The line of central symmetry marked 50% 
gives the estimate for the mean as 24.5. The difference between the 84% 
percentile and the 50% percentile gives an estimate for the standard devia­
tion as 26.2- 24.5 = 1.7. 

It is interesting to compare these with the values which we obtain from 
the raw data using a calculator; :X = 24.498 and s = 1. 7198. 

________ 24.25 Practical _______ _ 

FAUL TY SCAFFOLDING 

A box contains a !arge number of clamps, 40% of which are defective. It is 
impossible for a construction worker to distinguish visually between the 
good ones and the bad ones. He selects ten clamps at random and 
constructs a piece of scaffolding using two clamps for each section. The 
scaffolding will be dangeraus if 
1 Either both the clamps on any one section are defective; 
2 Or four or more clamps are defective. 
Otherwise the scaffolding will be safe. Obtain the probability that the 
scaffolding will be dangerous. 

We shall solve this problern stage by stage so that you may join in the 
solution at whichever stage you can. First try to analyse the problern to see 
what is needed. 

Weshall define events E as 'both the clamps on a section are defective' and 
F as 'at least four clamps are defective'. We require P(E U F). Now 

P(E U F) = 1 - P[(E U F)'] 
= 1 - P[ E' n F'] 
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where E' is 'at least one clamp on each section is good' and F' is 'at most 
three clamps are defective'. 

Now let X be 'the number of defective clamps'. Can you carry on? 

We require 

P(E' n F'), = P(E' n [X= 0]) + P(E' n [X= 1]) 
+ P(E' n [X= 2]) + P(E' n [X= 3]) 

To continue with the solution you will need to remernher that if A and B 
are any two events, 

P(A n B) = P(A)P(B I A) 

Given that there is at most one defective clamp chosen, at least one clamp 
on every section will be good. Therefore only the binomial probabilities 
come into the first two terms: 

P(E' n [X= O]) = P(X = O)P(E' 1 x = O) 
= (0.6) 10 X 1 = (0.6) 10 = 0.006047 

P(E' n [X= 1]) = P(X = 1)P(E' 1 x = 1) 
= [10 X (0.4) X (0.6)9] X 1 = 0.040311 

Things get a little more complicated when two or more clamps are 
defective. 

We consider first P(E' I X= 2). There are five sections and two defective 
clamps. There are ten ways of placing the first clamp, which leaves nine 
ways of placing the second. Therefore the probability that a given section 
contains two defective clamps is 

2 1 
-X-
10 9 

Now there are five sections, and so the total probability that any one of 
the sections has two defective clamps (given that there are exactly two 
defective clamps in the pile) is 

Therefore 

2 1 1 
sx-x-=-

10 9 9 

P( E' I X = 2) = 1 - ! = ~ 
9 9 

Try now to complete the calculation of P(E' n [X = 2]). 
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Wehave 

P(E' n [X= 2]) = P(X = 2)P(E' 1 x = 2) 

= C~)co.4)2(0.6)8 (~) = o.1o1 495 

In order to calculate P(E' I X= 3) you need to use an argument similar to 
that just used. See if you can do it yourself. 

Wehave 

P(E' I X= 3) = 1 - 5 X 2_ X~=~ 
10 9 3 

P(E' n [X= 3]) = P(X = 3)P(E' 1 x = 3) 

= C~) (0.4)3(0.6fG) = 0.143327 

You can certainly finish it off now. 

If we add up the probabilities which we have calculated we obtain 

P(E' n F') = 0.29718 

Therefore the required probability is 

P(E U F) = 0.70282 

This is the last of our chapters and if you have completed your studies of 
the material contained in this book you may soon face your sessional 
examination. You should be able to do this confidently and calmly certain 
in the knowledge that you have at your fingertips a variety of experience 
and technique. In the second and subsequent years of your course you will 
be able to build on this and develop into an engineer who is able to use 
mathematics to his or h~r advantage and does not need to fight shy of 
mathematical methods. 
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SUMMARY 

There has been quite a Iot to learn in this chapter, and so we will just 
summarize the main points. 

PROBABILITY RULES 

E and F are events in the sample space S: 

P(E U F) = P(E) + P(F) - P(E n F) 
P(E n F) = P(E)P(Fi E) 

If E n F = 0 then E and F are mutually exclusive events. For mutually 
exclusive events, 

P(E U F) = P(E) + P(F) 

If P(E I F) = P(E) then E and F are independent events. For indepen­
dent events, 

P(E n F) = P(E)P(F) 

BINOMIAL DISTRIBUTION 

P(X = r) = C) Pr q"~r 

where there are n trials and p is the constant probability of success in 
each one; p + q = 1. 

POISSON DISTRIBUTION 

f!r 
P(X = r) = e~f'­

r! 

where 1.. is the average number of incidents in unit time, T is the length 
of the time interval and 11 = 1.. T. 

NORMAL DISTRIBUTION 

lf the random variable X is normally distributed with mean 11 and 
variance o2 and if 

X-~-t 
Z=-­

a 

then Z is normally distributed with mean 0 and variance 1. 

continued overleaf 
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continued from previous page 

APPROXIMATIONS 

If n > 20 and p < 0.3, 

binomial ~ Poisson (!l = np) 

If n > 20 and 0.3 ~ p ~ 0.7, 

binomial ~ normal (!l = np, o2 = npq) 

If !l > 10, 

Poisson ~ normal ( o2 = !l) 

EXERCISES 

1 The probability that an electrical component will function properly after 
n hours of operation is 10/(10 + n). Obtain the probability that the 
component will still function properly after 200 hours given that it was 
functioning properly after 150 hours. 

2 A Iifting apparatus has five cables which can be put under strain. In a 
single Iift at least one cable is under strain. Suppose that the probability 
that n cables are put under strain is a/n 2 , where a is a constant. 
Determine (a) the value of a (b) the probability that there are at least 
three cables under strain ( c) the probability that there are four cables 
under strain, given that there are three cables under strain. 

3 A machine produces square sheets of chipboard with mean side length 4 
metres and standard deviation 0.05 m. Obtain the mean area of each 
sheet. 

4 A probability density function is f(x) = logk x(1 ~ x ~ 2). Obtain (a) the 
value of k (b) the mean of the distribution. 

5 The probability that a glass fibre will shatter during an experiment is 
believed to follow a Poisson distribution. In an apparatus containing 100 
glass fibres it was found that on average seven shattered. Obtain the 
probability that during·a single demonstration of the experiment (a) two 
glass fibres will shatter (b) at least one glass fibre w!ll shatter. How would 
your answers differ if the distribution was thought to be binomial? 

6 The probability that the nth stage of a production process will be 
completed on time is p(n) = ll(n + 1). A certain production process has 
five stages. Obtain the probability that (a) it will be completed on time 
(b) it will be completed on time given that the first three stages were 
completed on time (c) none of the stages will be completed on time. 
Obtain the corresponding results if p(n) = n!(n + 1). 
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ASSIGNMENT 

1 The nurober of collisions requiring garage services on site on a busy 
stretch of motorway in any one week is known to be a Poisson random 
variable with mean 9.43. If there are more than two eollisions in a day an 
auxiliary truck needs to be hired. Determine the probability that an 
extra truek will need to be hired. 

2 A faetory assembly is responsible for putting together three indepen­
dent parts of a mieroeomputer: the case, the keyboard and the circuit 
board. The probabilities that these eomponents are substandard are 0.1, 
0.15 and 0.07 respeetively. Determine the probability that, if a computer 
is examined, two or more of these eomponents will be substandard. 

3 The probability that a faetory medieal offleer will be away is 0.4. The 
probability that medieal assistance will be required is 0.2. The prob­
ability that both the medieal offleer will be away and medical assistanee 
will be required is 0.1. 
a If medical assistance is required, what is the probability that the 

medieal offleer is away? 
b If the medieal offleer is away, what is the probability that medieal 

assistanee will be required? 
4 There is a probability 0.005 that a welding maehine will produce a faulty 

joint when it is operated. The maehine welds 1000 rivets. Determine 
the probability that at least three of these are faulty. 

5 The funetion deflned by p(x) = kx when x E [0, 2] is known to be a 
probability density function. Determine (a) k (b) the mean of the 
distribution ( e) the varianee of the distribution. 

FURTHER EXERCISES 

l Illustrate by means of diagrams the following laws of probability: 

P(E U F) = P(E) + P(F) - P(E n F) 
P(-E) = 1 - P(E) 

P[-(E U F)] = P[(-E) n (-F)] 

where E and F are two events. 
2 a Calculate the mean and variance of the flrst n natural numbers. 

b A fair die is thrown twice and the seores shown are r and s. 
Represent the sample space of this experiment and show the 
subspaees eorresponding to the following events: 

E = {(r,s): Ir-si = 1} 
F = {(r,s): r + s > 6} 
G = {(r,s):rs ~ 6} 
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Calculate P(E n F), P(F I E), P(E u F u G), and P[(E u F) n G]. 
3 The probability that a cement mixer will break down during a shift is 

0.04. If there are six cement mixers working on site at the start of the 
shift, obtain the probability that by the end of the shift 
a none will have broken down 
b at least two will have broken down. 

4 Consignments of bricks are subjected to the following inspection 
procedure. N bricks are selected at random from the consignment and 
tested. If the number of defective bricks is less than four the consign­
ment is accepted. Otherwise it is rejected. Determine the smallest 
value of N if the probability of acceptance of a !arge consignment in 
which 50% are defective is tobe no more than 0.1. 

5 The average number of lorries per hour delivering cement to a building 
site during an 8-hour shift is 0.5. The workforce can handle up to 
three Ioads per shift. Further Ioads must be redirected to another site. 
Obtain, assuming a Poisson distribution, 
a the probability that a lorry arriving during the shift will be redirected 

to another site 
b the tonnage of cement which the workers on the site expect to handle 

during the shift if each lorry carries 6 tonnes of cement. 
6 The numbers of people telephoning a certain number for advice on 40 

consecutive working days was recorded as follows: 

3 0 0 1 0 2 1 0 1 1 
0 3 4 1 2 0 2 1 3 1 
1 0 1 2 0 2 1 0 1 2 
3 1 1 0 2 1 0 3 1 2 

Calculate the median and mode for this data and represent it by a bar 
chart. Fit a Poisson distribution to this data and compare the theoretical 
frequencies with those actually obtained. 

7 The weights of ball bearings are normally distributed with a mean of 
0.845 newtons and a standard deviation of 0.025 newtons. Determine 
the percentage of ball bearings with weights 
a between 0.800 N and 0.900 N 
b greater than 0.810 N. 

8 The probability that a Ioom will break down and require attention 
during a shift is 0.04. If ten looms are in working order at the start of 
the shift, determine the probability that during the shift 
a none will break down 
b not more than two will break down. 

9 The number of employees in a firm required to appear before 
magistrates on driving summonses is a Poisson random variable with 
mean 4.5 per month. Determine the probability that in any one week at 
least one employee will receive a summons. 

10 The number of telephone calls received by a receptionist between 



FURTHER EXERCISES 751 

9.00 a.m. and 9.30 a.m. follows a Poisson distribution with mean 12. 
Determine the probability 
a that on any given day at that time there will be fewer than 8 calls 
b that the total number of calls on three consecutive days at that time 
will be less than 30. 

11 Over a ten-week period the number of weeks f(r) in which r employees 
forgot to clock offwas recorded. Fit a Poisson distribution to the data 
and compare the observed frequencies with the actual ones. The data is 
as follows: 

r 
f(r) 

0 
4 

1 
4 

2 
1 

3 
0 

4 
1 

5 
0 

12 A Iabaratory has a large m1mber of electrical heaters each one of 
which heats a tank. The probability that a number n of these 
heaters will malfunction in any day is given by 

Jln -p. 
-e 
n! 

where J-t = 2. The technicians can replace three of these heaters 
in any one day but if more than this number fail to function it 
is necessary to move the tank concerned to another laboratory. 
Determine the percentage of the heaters which malfunction which 
result in tanks being moved to the other laboratory. 

13 A large batch of video display units produced in a workshop is 
examined by taking samples of five of them. It is found that the 
number of samples containing 0, 1, 2, 3, 4, 5 defective units are 
found tobe 

Number of defectives 
Frequency 

0 1 2 3 4 5 
58 32 7 2 1 0 

Determine the mean and variance of this data. Assuming that 
these defectives conform to a Poisson distribution of mean 0.56 
calculate the theoretical frequencies and compare them with the 
true ones. 

14 The average number of faxes which are received by a large engi­
neering company between 9.00a.m. and 9.10a.m. is found to be 
4. Which probability distribution is likely to provide a suitable 
model for the distribution of these messages in this period? 
On the basis of this model determine the probability of each of 
the following: 
a Not more than one fax is received in this period. 
b At least five faxes are received in this period. 

15 An electrician has a box coutaining 5 different resistances. If 
any two resistors are taken from the box it is found that the 
ratio of the larger resistance to that of the smaller is at least 
10. Determine the number of different total resistances which the 
electrician could make by connecting one or more of these resistors 
in series. 

16 A machine makes rubber belts with a mean breaking strength of 
50 newtons and a variance of 4 N2 . If the distribution is normal, 
determine an appropriate tolerance level if not more than 0.1% 
are to fail to meet specification. 



Hints and solutions 

CHAPTER 1 

EXERCISES 
1 Products: (1) (3 decimal places) a 7.1536 xl01 

b 2 x10-3 

cO 
d 1.540081 X 102 

(2) (4 significant figures) a 7.154 xl01 

b 1.827 x w-3 

c2.731 x1o-s 
dl.540 x102 

Sums: (1) (3 decimal places) a 1.7708 x101 

b 1.6254 X 1Ql 
c 1 x1o-3 

d 1.55 X 102 

(2) (4 significant figures) a 1.771 x101 

b 1.625 xl01 

c 5.176 xlo-4 

d 1.550 x102 

2 (1) (5 significant figures) a 217.38 
b 0.00028430 
c 11.100 
d 432.49 
e 1.0000 
f 1.0000 
g 1.0001 
(2) (5 decimal places) a 217.38500 
b 0.00028 
c 11.10000 
d 432.49500 
e 1.00005 
f 1.00005 
g 1.00005 

3 a a2 + ab - 6b2 

b u2w + v2u + w2v - u2v - v2w - w2u 
c 9xyz + 2xz2 + 2yx2 + 2zy2 + 4x2z + 4y2x + 4z2y 
d a4 - b4 

4 a a(a + b)(a + 2b} b (:r- 2y)(x + 2y)(x + y) 
c (u- v)(u2 - 6uv + 1?) d x2 y2(x- y)(x + y) 

5 a X= yj(y -1) b X= (y + 1)/(y -1) C X= y3/(1- y2) d X= yj(y -1) Or X= y 

6 a X= 3, y = 2 b "ll = 3, V= 5 C p = 7, q = 5 d h = 2, k = 1 
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8 a Integers { 1, -2} b no real roots c real roots -1 ± J3 
d naturalnurnbers {1, 2} e integers { -1, -2} f rationalnumbers {1/2, 1} 

9 a 1 - 10x + 40x2 b 37 + 7 x 36x + 21 x 35x2 
c 38 -16 x 37x + 112 x 36x2 d 2- 5x/4- 25x2/64 
e 3213 + 10 x 3-413 - 25 x 3- 1013x2 f 1/9 + 2x/27 + x2 /27 

ASSIGNMENT 

1 a x E { -2, 3}; integers b y E {1/3, 2}; rational numbers c u E { -1, 1}; integers 
d v E {±y'3, ±y'5}; real numbers e x = 1/2 repeated; rational 

21+x 

3 r = r1r2/(r1 + r2) 

4 a U = 1/3, V= 1/2 b U = 1/4, V= 1/2 CU= 1/2, V= 1 dU= 1/3, V= 1/2 or U = 1/2, V= 1 
5 a identity b x = ( -1 ± y'5)/2 c identity 

6 k = ±1/3 

7 70 

FURTHER EXERCISES 

1 a {1, 3/2}, rational numbers b complex numbers c ±y'3, real numbers 
d {1, 2}, natural numbers 

2 a (a- 2b)(a + 2b)(a- b)(a + b) b (2u- v){2u + v)(u- 2v)(u + 2v) c 24uv2w 
d x(x- 1)(x- 2){x- 3)(x- 4) 

4 a 1 + 10x + 45x2 + 120x3 

b 1- x + x2 - x3 

c 1 +x/2 + 3x2/8 + 5x3/16 
d 1 + 5x + 20x2 + 220x3 /3 
e 8- 21x + 147x2 /16 + 343x3 /128 

5 b = a(h- 3d)/(3d- 2h) 

6 S = (R2 - r 2 )1r 

7 EI{l ± y'{1- 4(E2ii)/(Eii2)}]/(2ii) 

8 x = (2ka)/(v2a + 2k) 

9 A[1 ± y'{1- {4X2T2)/A2}]/{2x2T) 
10 Hint: Show ab= (3h- 8d)h2 /(6h- 8d) and by obtaining a2 + b2 

that (a/b) + (b/a) = 8d/(3h- 8d) 
Hence deduce a/b = 4d[1 ± y'{1- (3h- 8d)2 /(4d)2}]/(3h- 8d) 
12 3.5% 

13 1.5% decrease 

14 5% decrease 

CHAPTER 2 

EXERCISES 

1 a 8 b 2912 x 31114 c (1 + x)2(1 + x2)/(1- x)2 d (a- b)6 (a + W 
2 a x = ln5 b x = 0 or x = 2 c x = 2 or x =3d x = ln5/ln3 or x = ln3/ln5 
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3 a x = In 2,, equation b x = I ± ../2, equation c identity 

4 a x = (a + I)/(a- I) b x = 4a c x = a- 2 d x = -a 

5 a x < -2 or x > 2 b -3/2 < x < 3 c x > I or 0 < x < I/2 

6 a -I/[2(x -I)]+ I/[2(x- 3)] b -3/(x + 3) + 4/(x + 4) 
c I/(6x) + 3/[2(x + 2)]- 5/[3(x + 3)] 
d -I/[I8(x- 5)] + 4/[3(x + I)2] + I/[I8(x +I)] 

7 Hints: a 2n +2m= 2(n + m), b (2n +I)+ (2m+ I)= 2(n + m +I) 
c (2n+I)+2m=2(n+m)+I 

ASSIGNMENT 
2 (I- 2x)-2 

3x=1orx=2 

7 a -2 <X< 0 Of X> 2 b -2 ~X~ 3 C-I <X< I 
8 a I/x + 1/(x- I) - I/(x + 1) b 3- 1/x2 + 2/(x +I) 
c 4 + I/(x2 + 1) + 1/[2(x- 2)] + 1/[2(x + 2)] 

9 Hint: pfq + rfs = (ps + qr)fqs 

10 Hint: If pfq + x = rfs then x = rfs- pfq 

FURTHER EXERCISES 

2 x = ln2 

3 a identity b x = (1 + ../5)/2 c identity d x = 0 or x = 2 e identity 

4 -2 < x <-I or I< x < 2 

5 a 3/(x- 2) - 2/(x- I)+ If(x- I)2 + 4f,(x- I)3 

b I/[4(x- 1)]- 1/[4(x + 1)] + 1/[4(x- 1) J + 1/[4(x + 1)2] + 1/[2(x- 1}3]- 1/[2(x + 1)3] 

6 a R \ {1, - 1} b lxl > 1 c Not defined anywhere 

7 Hint: (pfq) x (r/s) = (prfqs) 

8 Hint: If (pfq)x = rfs then x = (qr)f(ps) 

11 a R \ {0}; {0, 1} 
c i(t) = tH(t) + 2(1 - t)H(t- 1)- (2- t)H(t- 2) 

12 n=6 

14 (x + ..j2)/[2..j2(x2 + x..j2 + 1)]- (x- ..j2)/[2..j2(x2 - x..j2 +I)] 

CHAPTER3 

EXERCISES 

2 a { n/6, 5n/6, 3n/2} 
b {3n/16, 7n/16, lln/16, 15n/16, 19n/16, 23n/16, 27n/16, 3ln/16} 
c {0, Jt/2} 
d { n/4, 3n/4, 5nl4, 7n/4} 
e {0, 2n/3, 4n/3} 
f {O,n} 



3 a 3 eos (8 - a) where a = eos- 1 (1/3) 
b 4eos(8- a) where a = n- sin- 1 (3/4) 
c 5eos(8-a)wherea=-eos- 1 (4/5) 

4 a Circle, eentre (0, 0), radius 5 
b reetangular hyperbola, eentre (1, 5) 
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c pair of straight lines; y = x + I, y = - x + I 
d reetangular hyperbola, eentre (I, 2) 

5 a Circle, eentre (I, -I), radius 1 
b reetangular hyperbola, eentre (2, I) 
c ellipse, eentre (0, 0), lengths of axes 2V2 and 4 (minor axis on x-axis) 
d reetangular hyperbola, eentre (-I, 1) 

6 a y- 3x = 5 
b y + 5x = 1 
C 6y +X= 32 
d 2y +X= 7 
e 3y- 5x = 15 
f 2y = 3x- 6 
g y = 3x- 5 
h 2x+y=4 
i x 2 + y 2 - 2x - 4y - 11 = 0 
j x 2 + y 2 - 4x + 6y - 12 = 0 

7 a Slope = - 1/4, x intereept = 12, y intereept = 3 
b slope = -2/3, x intereept = -3, y intereept = -2 
c slope = -2/5, x intereept = 11/2, y intereept = 11/5 
d slope = -4/3,xintereept = 7/2,yintereept = 14/3 

8 a Centre = ( -2, -3), radius = 2 
b eentre = (-3, -4), radius = 2 
c eentre = (1, - 2), radius = 3 
d eentre = (3, 1), radius = 5 

ASSIGNMENT 

2 {11n/3 + (-1)"n/18:11 E Z} 
3 { n/4, 3n/4, n, Sn/4, 7n/4} 
4 Hint: put in terms of 28. Answers: 

{ n Jt ± n/2 : 11 E Z} U { ( nn/2) + (- I)" ( n! 12) : 11 E Z } 
5 a Circle eentre 0, radius 4!V5 b ellipse (x + 15)2 + 5y 1 = 225 

c eircle eentre ( 1/2, 0), radius ( 112) V 65 
d pair of straight lines y = ±4 
e three straight lines y = 3x, x + y = 1, y = x + 2 

6 a V(2) eos (8- n/4) b 2 eos (8- n/6) 
7 Hyperbola 4y1 - 3x1 = 5 
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FURTHER EXERCISES 

2 a 8=nnor8=nn+n/4 b 8=nn±nl3 c noroots 
d no roots e nn- n/4- ( -l)"n/4 

8 y = I; ( -15/X, I) 
9 18.75 metres 

10 12 metres 
II No: 55116 metres 
12 2axll(x2 + a2 ) 

15 tan.J = T(r + t)[tan(9 + a) - tan 9]/ { (r + t)2 + r2 tan 9 tan(9 + a)} 
16 d = h sin o/[sin(9- a) sin9] 

171 = (3(1)v'h2 + r2 

CHAPTER 4 

EXERCISES 

la6x+5 
b 3x2 - 4x 
c x-1/2/2 - x-31212 
d 6(x + 2)5 

e 3cos(3x + 4) 
f 6 tan 3x sec2 3x 
g 4x/(2x2 + 1) 
h 2x3 cosx2 + 2xsinx2 

2 a (t2 + l)(t + 2) {2tl(t2 + 1) + ll(t + 2) - 2t/(t2 + 2)- ll(t + 1)}/ 
(t2 + 2)(t + 1) 

b (t + 1)3(t + 2)3 {3/(t + 1) + 3/(t + 2) - 2/(t + 3)}/(t + 3)2 

c cos4t 
d -2e'/(e'- 1)2 

3 a 3x2a 
b 2axcosx2 

c acotx 
d ±aex1212 

4 a 1 
b 112 
c 2/3 
d 3/2 

ASSIGNMENT 

1 a -11V2 b hint: sin 3x = sin x (4 cos2 x- 1); answer 11V3 
c -00 d 2/3 

2 a Hint: use half-angle formula; answer 0 
b hint: cos3 x- 1 = (cosx- l)(cos2 x + cosx + 1); answer -2/3 



4 a 2lnx x1nx-l b (2sec2 2x+3tan2x)e3x 

6 dyldx = (1 - sin t)/(1 + cos t) 

FURTHER EXERCISES 
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1 a 16x- 10 b 3x2 - l2x + 11 c x(x2 - 1)- 112 

d -12x(x2 -3)-2 e bmnxm- 1 (a+bxm)n-l Casec2 (ax+b) 
g -x cotx2 Vcosecx2 

2 a 9x8 , 72x7 ,504x6 ,3024x5 

b (x + 1)- 112/2, -(x + 1)-312/4, 3(x + 1)512/8, -15(x + 1)-712/16 
c -2 sin x cos x = -sin 2x, -2 cos 2x, 4 sin 2x, -8 cos 2x 
d x 2ex + 2xe, x 2ex + 4xex + 2ex, x 2ex + 6xex + 6ex, 

x 2ex + 8xex + 12ex 
4 -6 cott- 2 cot3 t 
6 Hint: (dyldx)(dxldy) = .1, differentiale this 
9 a -1 b -2 

11 kA 31214Vn 
14 w= -Eie-x(x-6)(x-2) 
15 6Qih 
18 a xu(x2 + h2)- 112 b decreasing at hul(x2 + h2) 

21 a x[tan (6 + h)- tan 6] 

22 a x2 (2:rcos2x + 3sin2x) b -(1 + tcost) 
c 2:r/[eY(y +·1}- 2y] = 2xy/[x2(y + 1) + y2(y- 1}] 

CHAPTER 5 

EXERCISES 

2 a x =InS 
b x = Oor x = 1 
c x = ln 3 or x = ln 4 
d x = ±In (2/3) 

3 a - 3 sech 3t tanh 3t 
b 2t2 cosh 2t + 2t sinh 2t 
c sech 2tcosh t(1 - 2 tanh ttanh 2t) 
d -sechtcosech2t(2coth2t + tanht) 
e -ttanht2 Vsecht2 

f -(sech2 Vttanh Vt)!Vt 
4 a 2fV{t2 + 1) 

b -2/t(t2 + 2) 
c (sinht)/V{t2 -1) + coshtcosh- 1 t 
d {t2 -1)- 112/cosh- 1 t 
e 11tV[(lnt)2 - 1] 
f -{(sinh- 1 t)2 V(t2 + 1)} - 1 
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ASSIGNMENT 

1 a x=(li2)In3 b x=Oorx=±(li3)In2 
3 x = 1In 3, x =~In 2 
4 x = In 2 or x = 0 

FURTHER EXERCISES 

1a1 bl/2 
3 a 3sinx(1-9cos2 x)- 112 b 2(x2 +1)- 1 c cosx(1+sin2 x)- 1 

7 a x = In (2 ± j/3) b x = In (j/2- 1) c x = 0 
8 Hint:r=a[(t-1)2 +1) a min.r=a b [1,2) c 1,1,8 
9 Hint: h = j/(2) cos (2t- n/4) + 2 a 2 ± j/2 b n seconds 

c Sn/8 
10 I E [n + cos- 1 (114), 2n) 
11 n = 341, 'ß' = 231, 'y' = 110 

12 x = 2 or I = 4/3 

13 I = ln(3 ± 2J2) 

CHAPTER6 

EXERCISES 

lay=x+l 
b y + 1 = 0, y - 1 = 0 
c y = -nx/2 
dy=O 

2ay=x 
b 5y - 8x + 11 = 0, 5y + 3x + 4 = 0 
c 9y- 3x = 10 
dy-l=nx 

3 a -17312/32 
b 1 
c Sj/5/6, - j/2/3 

4 a 1 
b -1/j/2 
c infinite 
d 2JI2 

ASSIGNMENT 

1 Q = 112, centre (0, 3/2) 
3 Tangenty = 1; normaix = 0 
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4 Q = 112 
6 Tangent y( t 2 + 2t3 + 5) + 3t2x = t 4 + lOt; normal 

9t 3(y- t)- 3t(2t3 + t 2 + 5)x = (t 3 + t2 - 5)(2t3 + t2 + 5) 
7 Tangenty(t- 1)- x(t + 1) = t2 ; normaly(t + 1) + x(t- 1) = t(t 2 + 2) 

FURTHER EXERCISES 

3 (7116, -1/6) 
6 a Reetangular hyperbola centre (2, 1) 

b pair of straight lines x = 4, y = 3 
c ellipse centre ( -2, -3), major axis 4, minor axis 2V(2) 
d hyperbola centre (1, 3) e circle centre ( 4, 3) radius 4 

7 X= -2 sin3 8, Y = -2 cos3 8; X 213 + Y 213 = 2213 

10 ( cos6 p + sin6 p )312/( cos6 p + sin6 p + 1) 
14 4a 
16 864 m/s2 

17 a x2 cosh x/(1 + sinhx) + 2x ln(1 + sinhx) except for x ~In~ -1 + J2) 
b -1/x2 - 4/x3 - 9/x4 except for x = 0 c 2(1- 2x)/(1- x + x )2 

18 dy/dx = 1/(1 + x 112 ) 2 , d2y/dx2 = 2/[(1- x)(1 + x1f2)2J, 

d3y/dx3 = 6/[(1 - x)2 (1 + x112) 2J 

19 dy/dx = (x + 1t2 ; dz/dx = (2x + 1t2 

CHAPTER 7 

EXERCISES 

1 a fx=3x 2 +2xy,fy=x2 

b fx = -sinxysin(x + y) + ycos(x + y)cosxy 
/y = -sinxy sin (x + y) + x cos (x + y) cosxy 

c fx = 3(x + 2y)2,/y = 6(x + 2y)2 

d fx = (-y sin xy + cos xy) exp (x + y) 
fv = ( -xsinxy + cosxy) exp (x + y) 

e fx = sinh (x + y)12Vcosh (x + y) = fv 
f fx = (1/y) sinh (x/y),fy = -(x!l) sinh (xly) 

2 a fxv = -xy/(x2 + y2) 312 + cosxy- xy sinxy 
b fx~ = 2x- (x + 2y)-31212 
c [,y = -12x2 sin (3x + 4y) + 8x cos (3x + 4y) 
d fxy = (6x 31/) sin (x 21/) - (6xl/) cos (x21/) 

3 a Zx =(zu- Zv)l2uv(v- u), Zv = (uzu- vz,,)l(u- v) 
b Zx = -zj3 + 2z.J3, Zy = 2zj3- z"/3 
c Zx = [(u -1)z11 - vzv]l[u- V -1], Zy = [uz 11 - (1 + v)z,,]l[u- V -1] 
d Zr= (uz 11 + vz,,)/(u 2 + v2) 112 , Zy = (v 3 z11 - uv2 z,,)l(u 2 + v2) 
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ASSIGNMENT 

1 a fx=cosxcosy+y 2 ;fr=-sinxsiny+2xy 
b fx = ex cos y + ex sin y; /y = -ex sin y + ex cos y 
c ()z/ax = xl(x 2 + y 2); ()z/()y = y!(x2 + y 2 ) 

d ()z/äx = 2(x- 2y)4(3x + 4y); ()z/()y = -8(x- 2y)4(x + 3y) 
e ()z/()u = 4u(u 2 - v2 ) cos (u 2 - v2 f; 

()z/()v = -4v(u2 - v2 ) cos (u 2 - v2 ) 2 

3 e-u cos v (az!au + az!av) + e-u sin v (oz/au- az/av) 
4 Approximately 12% 

FURTHER EXERCISES 

8 Decrease of 3ö% 
12 1% 
13 (3/4)[2(a/b} + 3(b/a) + 3] ~ 3..f372 + 9/4 > 5% 

CHAPTER 8 

EXERCISES 

I a 1 + x + x 212 
b 1 - x 2/2 + 5x 4!24 
c x- 3x2/2 + llx-'16 

2 a x = 0, max;x = ±V5, min 
b x = ( -1 + VS)/2, min; x = ( -1 - VS)/2, max 
c x = 0, min;x = 1, max;x = -1, max 
d x = 0, point of inflexion 

3 a 0 
b -1 
c 1 (take logarithms) 
d 3 

4 a 112 
b e ( take logarithms) 
c 1 
d 1 

ASSIGNMENT 

1 a (112)secx b (sinxY[xcotx+ln(sinx)] c 6tan3xse~3x 
d Hint: putx = sin t, then dyldx = 2 [sin- 1 x + x(1- x 2)- 112] 

2 dyldx = [2y cos 2x- y !ny- y 2 exp (xy)]![xy exp (xy) + x] 
4 1 + x- jx3 
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5 a Stationary points at ± 1, points of inftexion at 0, ± 1 
b stationary points at 0, 1, 2; 0 (min.), 1 (max.), 2 (min.) 

6 Diameter = twice height 
9an bl/2 crt/2 dl/2 

10 a 0 b Hint: put u = llx; In a 

FURTHER EXERCISES 

6 3((7/3)213 - 1)312 metres; approximately 2 metres. 
7 Length = 2 x breadth 
s a Y214 b Y212 

10 14- 8}"3 ohms 
11 i(t) = t- t2/2 + t313 + ... 
15 Hint: use l'Hospital's rule 

161/2 

17 x = 1 (repeated}, x = -1/2; -27 /(8e); y + 1 = x; y + 1 = -x 

18p, 0 

19 [.A In v'l + o]-1 

20 Procedure invalid! t > 2/3 which is not sufficiently small for the approximations to hold 

CHAPTER9 

EXERCISES 

1 a 1 
b 1 
c 2/3 
d 2 (take logarithms) 

l a n/(2n + 1) 
b 1 - ll(n + 1)2 

c 1- lly(n + 1) 
d -cosech 1 (cothn- coth 1) 

ASSIGNMENT 

1 Divergent: divergence test 
l Convergent: comparison test 
3 Convergent: ratio test 

4 Divergent: divergence test 
5 Convergent: comparison test 
6 Divergent: ratio test 
7 x :::::; 0 convergent, x > 0 divergent: ratio and comparison tests 
8 Divergent: comparison test 
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9 Convergent: ratio test 
10 Convergent: s" explicitly 
11 R = 2 
12 R = oo 

13 R = V3 
14 R = 1 
15 R = oo 

16 R = 1/2 
17 R = 0 
18 R = 1/e 
19 R = 1 
20 R = 1 

FURTHER EXERCISES 

1 a Divergent b divergent c divergent d divergent 
2 a Absolutely convergent b absolutely convergent 

c conditionally convergent 
4 a Hint: n + nx > 1 + nx; divergent b divergent 

c divergent (if lxl > 1 then lxl" ~ oo, if lxl < 1 then lxl-" ~ oo) 

6 a Convergent b convergent 
c convergent when x = -1, divergent when x = 1 
d convergent when x = -1, divergent when x = 1 

10 a V- v + vf2n b V= v c v/V = 0.25024; just over 25% 

11 Yes; 5v/3; 100[1- 51120 /10115] = 31.62%; below specification; 
v(l0115 /51120 ) ~ 1.4624v 

12 v(l- v/V)n; V[1- (1- v/V)n]; yes 

CHAPTER 10 

EXERCISES 

1 a 54+ 29i 
b (13 - 9i)/25 
c (7- i)/10 
d e2 cos4 + i[e2 sin4 + 1] 

2 a 2 [ cos ( -41T) + i sin ( -t)J 
b 2[ cos n + i sin Jt] 
c 2[ cos n/2 + i sin n/2] 
d 1 [ cos 1 + i sin 1] 

3 a -2 ± i 
b 0, i 
c ±1 +i\12, ±1-i\12 



d i( -1 ± J"2) 
4 a Circle, centre (0, 3), radius 5 

b ellipse, foci (0, ±1), semi-axes 2, Jf3 
c circle, centre (0, 0), radius 1 

ASSIGNMENT 

l (195 - 104i)/221 
2 (1/2)(cos rrJ2 + i sin :n/2) 
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3 z = i( w + 1)/( w- 1) where w = exp i (:n/6 + 2k:n/3), k e { -1, 0, 1} 
4 cos 118 - i sin 118 
s cos 48 = cos4 8- 6 cos2 8 sin2 8 + sin4 8, 

sin 48 = 4 cos3 8 sin 8 - 4 cos 8 sin3 8 
6 (tan x sech2 y + i tanh y sec2 x)/(1 + tan2 x tanh2 y) 
7 z = n:n +In [(-1)" + V2] 
8 z = x + iy lies on the circle x2 + y2 = 1 

FURTHER EXERCISES 

l a Semicircle x2 + y2 = 16 (y ~ 0) 
b x2/9 + y 2116 = 1 (ellipse); z = 4i 

2a -1+iV3 c -2+5i,-1,4+i 
3 a 2 exp (:ni/4), 2 exp (3:ni/4), 2 exp ( -:ni/4), 2 exp ( -3:ni/4) 

b (±7 ± iV31)12 
4 a 212 b z = ±1, ±i; 0, ±i 
S a (±5 ± iV3)/2 b Hint: square and use lzl2 = zz 

CHAPTER 11 

EXERCISES 

[ 2 5] b [ -1 -16] 
1 8 -3 7 16 -34 

d [ -~~ 2~] e [ _! -:J r [ -~ -~] 
2 ( u + v + W)2 = u2 + V2 + W2 + uv + uw + vu + vw + wu + wv 

3 a [ -~/2 ~~~] b [~ =~J c [~ -;] 

d [-1.4 -2.2] e [ 2 1] r [4 -6] 
0.9 -3.3 -1 4 3 -2 

4 diag {±1, 0} 
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ASSIGNMENT 

1 x = sin w, y = - cos w or x = - sin w, y = cos w 
3 a 1(2x2)0(3x3) b An=diag{an,bn,cn,dn} 

4 a (A + B)2 = A 2 +AB+ BA+ B 2 

b (A + 2B)2 = A 2 + 2AB + 2BA + 4B2 

5 a = 2, b = -1, c = 8 
6 a=O b=O c=O d=-3 e=2 f=-6 ' ' , ' ' 
7 x = 3 y = 3 z = -1 or x = + 4V213 y = 2/3 z = +2V2 ' , ' ' -

FURTHER EXERCISES 

2 Hint: useA(BC) = (AB)CtodeduceA = 0 
3 a x=2,y= 1,z= -1 b x=4,y=2,z= -2 

5 a [I+ z,1z2 z,J 
I/Z2 1 

b [I + Z,IZ2 Z 1 + Z3 + Z 1Z3/Z2] 

I/Z2 Z1/Z2 + 1 

[ I + Zo/Z1 Zo ] 
c 1/Z1 + l/Z3 ~ Z2/Z 1Z1 Z2/Z; + 1 

6n=3 
8 cix=39,y=35,z=21 ii u=18,v=47,w=20 

9 E 1 = (1/3) (e 1 + e2 + e3), E2 = (1/3)(e 1 + ae2 + a2e~). 
E~ = ( 1!3)(e 1 + a2e1 + ae3) 

CHAPTER 12 

EXERCISES 

1 a x = -3 or x = 5 
b x = -2 or x = 7 
C X= 3/2 
dx=O 

2 a 5 b -24 c 9 d -9x- 18 
3 a 5775 b 18,000 
4 a x=O,y=llaV(l+a2) 

b x = exp u, y = exp (- v), z = exp w 

ASSIGNMENT 

1 X= ±4 
2 8 
3 X= 1/2 



4x=5 

[ 2 -2 -3] 
S M = -12 7 14 

-9 6 11 

[-1 -2 2] 
6 C= 2 7 -6 

-2 -9 7 

FURTHER EXERCISES 

1 An identity; true for all w 
2 x= ±1 
3 k = lla + llb + llc + lld 
4 x = Oorx = ±6 
6 x = -1,x = -2,x = -2 
7 -12 
8 a Hint: 

X 1 y + Z 
1 

D=- y 1 z+x 
xyz 

Z 1 X+ y 

b Hint: C1 - C2 

9 u = cos w, v = tan w 
10 Hint: A = 0 
11 .A = -3, 0, 3 

12 

CHAPTER 13 

EXERCISES 

r5 2 _;] 
1 a ~ -1 

1 -2 

[ 15 1 -1:] c -8 1 
-6 -1 
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b [ -~ 
1 

-~] 1 
-1 -1 

[ 3 
12 -1~] d -2 -1 

-1 -7 
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2 a x = 2 b x = 1 c x = 3 or x = -3 ± V13 
d x = 113 or x = 5 

4 a x = 35, y = -6, z = -9 
b X= -6, y = 13, Z = 1 
c x=4,y=17,z=-35 
d X = 3, y = 5, Z = -4 

ASSIGNMENT 

1 [-~ -~ ~~] 
1 0 -2 

3 diag {27, 54, -81} 
4 Hint: pre-multiply and post-multiply AB by the expression suggested 

FURTHER EXERCISES 

1 (adj A)- 1 =(lilA I)A 
2 ladj Al= IAI"- 1 where n is the order 
3 Grade, number: 1, 10; 2, 15; 3, 20 
4 Hint: if a matrix is non-singular it has an inverse 
5 Hint: verify that AT (A-I )T = (A-I )''AT = I 

6 Example: x + y + 1 = 0, 2x + 2y + 2 = 0, 2x + 2y + 3 = 0 
7 k=l,k=2,k=3 

1 [ cosh a 
9 a M- = 

-(1/Z) sinh a 

b Use induction 
10 X = 3, y = -2, Z = 1 

-z sinh a] 
cosh a 

11 Ä = 3, 5; ( i ) , ( ~ ) ; p-l AP = ( ~ ~ ) 

CHAPTER 14 

EXERCISES 

1 a a + b = 3i - 2j + 4k, a · b = 2, a X b = 10i + j - 7k 
b a + b = 3i + 6j- 2k, a · b = -5, a x b = 22i- 13j- 6k 
c a + b = 5j - 5k, a · b = 11, a x b = Si - 5j - 5k 
d a + b = - 2i + 5j + k, a · b = -1, a x b = -9i - 5j + 7k 

2 a ±(113V6){5i- 5j- 2k} 
b ±(1/3V5){4i-5j+2k} 



c ±(11V2){i + j} 
d ±(11V2){i- k} 

3 a 2 b 4 c -14 d 0 
4 a ax(bxc)=j-i,(axb)xc=k-i 
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b a X {b X c) = 5j- 5k, {a X b) X c = -Si+ 5j 
c a X (b X c) = 9i + 22j- 17k, (a X b) X c = -26i + 43j- 3k 
d a X (b X c) = -i- j + 2k, (a X b) XC= i- 2j + k 

5 a t = - sin t i - cos t j + k 
b t = -3sin3ti + 5cos5tj + 2tk 
c t = 4t(1 + t2)i + 9t2(1 + t3) 2j + 16t3(1 + t4) 3k 
d t = -t2(3 + 5t2)i- 2t(1 - 3t4)j + t2(3 + sP)k 

ASSIGNMENT 

1 (a) 1 (b) 116 (c) 3i- 5j + k (d) V35 
2 ±(115)(3j + 4k) 
5 x = (lllal2)[a- a 1\ b] 
6 t= -4 

FURTHER EXERCISES 

2 (a) :n:/4 (b) ±(2i- lüj- llk)/15 
3 V2(i- 2j + k) 
4 (a) Hint: put e = c 1\ d 

(b) Hint: (x 1\ y) · (z 1\ w) = (x · z)(y · w)- (y · z)(x · w) 
5 r. r = 2 cos2 e; r 1\ r = 0 

(a) cos e = o => e = :n:/2 => r = o 
(b) cos2 e = 1 => r = i ± k (no calculus needed) 

9 V5and2 

14 a i: = (cost- tsint)i + (sint +tcost)j + k b t = 3 
c lrl = 03, 2(k - i) 

15 a r = 2i + 3j - k, 
s = 3i- j + 3k 
b r x s = 8i , 9j - 11k, 
u = ±(l/v'26){ -4i + 3j + k} 
c Volume is 6 units 

CHAPTER 15 

EXERCISES 

1 a x + x 2 + 3x4/4 + C 
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b ex- 2e-x + c 
C X + sinh- 1 X + C 
d tan x + sec x + C 

2 a (1 + 2x)x/16 + C 
b (1/3) sin 3x + C 
C -(1/3) COSX 3 + C 
d (1/2) tan- 1 (x/2) + C 

3 a (1/7)Inlx+2I-(1!7)Inl3x-1I+C 
b (1/3) In lxl - (116) In (x 2 + 3) + C 
c -(114) In lxl + (1/8) In lx 2 - 41 + C 
d (1/3)tan- 1 x- (1/6)tan- 1 (x/2) + C 

4 a (2x/3) sin 3x + (2/9) cos 3x + C 
b (x/3)exp3x- (1/9)exp3x + C 
c {(x2 - 1)/2} expx2 + C 
d (x 3/3) In (x 2 + 1) - 2x 3/9 + 2x/3 - (2/3) tan -I x + C 

5 a x2/4 + Inx 2 + C 
b -cotx + cosecx + C 
c (113)expx3 + C 
d (112) tanx2 + C 

ASSIGNMENT 

1 x + ln lxl + C 
2 x - ln lx + 11 + C 
3 tanx- x + C 
4 x + ln (x - 1 )2 + C 
5 ln lx- 11 + C 
6 -(1/2) exp ( -x2 ) + C 
7 In (x + lf + C 
8 In (e-' + 1) + C 
9 (1/3) sin3 x + C 

10 -tan- 1 (cosx) + C 
11 tan- I ( ex) + C 
12 x sin- 1 x + V ( 1 - x 2 ) + C 
13 (113)(x2 + 4)312 + C 
14 -2V(cos2 x + 9) + C 
15 (x 2/2) In x - x 214 + C 
16 [(x2 + I)/2]tan- 1x-x/2+C 
17 5Inlx-3I-4Inlx-2I+C 
18 (112) tan2 x + ln (cosx) + C 
19 (114) In j(x- 1)/(x + 1)1- (1/2) tan- 1 x + C 
20 (114) ln lx 4 - 11 + C 
21 (112)(x 4 + 1) 112 + C 
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FURTHER EXERCISES 

l a (l/2)sinx2 +C b 2V(x+3)+C c 2In(1+e')-t+C 
d (1/4) In (1 +x4 ) + C 

2 a In (In u) + C b -(cos 8- sin 8) + (l/3)(cos3 8- sin3 8) + C 
c tsec- 1 t-cosh- 1 t+C d (1/2)(lnx)2 +C 

3 a u tan- 1 u- (112) In (1 + u2) + C b sinx/(cosx- 1) + C 
c (114) In [(x + I)l(x- I))- 112(x- I)+ C 
d In {(I- sin 8)(1- cos 8)} + 2/(1- sin 8- cos 8) + C 

4 i = (EIR)[l- exp ( -Rt/L)] 
6 wx2 (x- L)2124El 
7 30/( 1 - r 113) minutes; 2 hours 25 minutes (approx.) 
8 (cos 28 + sin 28)/(cos 8 + sin 8) + c 
9 u =In {tan [n/4 + (a/2)(1- e')]} 

CHAPTER 16 

EXERCISES 

l a ex + x - 2In ( ex + 1) + C 
b 2sinx + C 

c xinx- x + x 212 + C 
d sinh- 1 x + C 

2 a In Vsec (1 + x 2) + C 
b -cosV(l +x2) + C 
c In (1 + sin2 x) + C 
d -(1114) cos 7x + (112) cosx + C 

3 a sinx -In(1 + sinx) + C 
b (3/2) sin - 1 x + (x/2) V(l - x 2) + C 
c (x/4){V(x 2 + 1) - V(x 2 - 1)} 

+ (114) In l[x + V(x 2 + 1)] · [x + V(x 2 - l)JI + C 
d (x/2){V(l + x 2) + V(l- x2)} +In V[x + V(l + x2)) 

+ (112) sin- 1 x + C 
4 a (1125){3In [(1 + t 2)/(2t2 + 3t- 2)] + 8 tan- 1 t} + C 

where t = tan (x/2) 
b (1113) In 1[5 + tan (x/2)]/[1- 5 tan (x/2)]1 + C 

5 a (117)cosh6xsinhx + (6/35)cosh4 xsinhx + (8/35)cosh2xsinhx 
+ (16/35) sinhx + C 

b x 5 sinx + 5x4 cosx- 20x3 sinx- 60x2 cosx + 120xsinx 
+ 120cosx + C 

ASSIGNMENT 

l In (1- sinx)- cosx/(1- sinx) + C 
2 expsinx + C 
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3 (113) In (x- 1)- (1/6) In (x 2 + x + 1) + (11V3) tan- 1 [(2x + 1)/V3J + C 
4 -In (secx + tanx) + C 
5 exp sin2 x + C 
6 (112)1n(x2 -1)+C 
7 -cos x + (2/3) cos3 x - (115) cos5 x + C 
8 3x/8 + (114) sin 2x + (1132) sin 4x + C 
9 -(2/3) cos3 x + cosx + C 

10 tanx + (2/3) tan3 x + (115) tan5 x + C 
11 Hint: obtain the integral of sec3 x first. Answer: 

(114) sec3 x tan x + (3/8) sec x tan x + (3/8) In (sec x + tan x) + C 
12 (115) sec5 x + C 
13 (1112)(x + 11x) 12 + C 
14 (118)(1 + sin x)x + C 

FURTHER EXERCISES 

1 (a) Hint: put cosec2 x = 1 + cot2 x; answer 
-(112) cosec x cot x + (1/2) In I cosec x - ootx I + C 

(b) hint: put tanh2 x = 1- sech2 x; answer In (coshx) + (112) sech2 x + C 
(c) hint: standard t substitution; answer 

(115) In {[1 + 3 tan (8/2))/[3- tan (8/2)]} + C 

2 (a) Hint: put u = 1- 11x; answer (2/3)(1- 11x)312 + C 
(b) hint: put u = cos 8; answer In [(1 + cos 8)2/cos 8) + C 
(c) hint: express (1 + sin 8)/(1 + cos 8) in terms of 8/2; answer 

exp e tan 8/2 + c 
3 (a) In (1 + sinx cosx) + C (b) hint: put u = tan 8; answer 

(12/169) In (5 cos 8 + 12 sin 8) + (58/169) + C 
(c) x/2(x2 + 2x + 2) + (112) tan- 1 (x + 1) + C 

4 (a) (11V2) In {[(V2 + 1) + tanx/2)/[(V2- 1)- tanx/2]} + C 
(b) Hint: put u = cosx; answer (1112) In [(1- cosx)2(2 + cosx)]­

(1112) In (1 + cos x?(2 - cos x) + C 
(c) (1116)(sin 8x + 4 sin 2x) + C 

5 Hint: sec" x = sec"-2 x sec2 x 
6 Hint: tan" x = tan"-2 x tan2 x 
7 Hint: integrate by parts 
8 Hint: show that d2s/d'\jJ 2 = 1 
9 a -(tcos 2t)/2 + {sin 2t)/4 + C 
b ln(t2 + 3t + 1) + C 
c (t/3)(2t + 1)312 - {1/15)(2t + 1)512 + c 
10 a {2/3) tan-1{1/3) 
b (1/2) ln3- (1/4) ln5 
c rr/8- (5/6) tan- 1{1/3) 

11 a 16/35 b 8/105 



CHAPTER 17 

EXERCISES 

1 a n/4 b 5/6 c In V2 d 2 
2 a 3/10 b 1/12 c 116 d (3- e)/2 
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3 a 16n/15 b ne2/4- 7n/4 c n[9In (2 + V3) - 6V3] 
d [72(1n 2)2 - 264In 2 + 149]n/27 

4 a 112 b (e2 - 1)/(2e) c 2In2- 1 d (2/n)In2 
5 a (2 + sinh2) 112/2 b (4/n- 1) 112 c 11V2 d (1019/120) 112 

ASSIGNMENT 

1 In (V2 + 1) 
2 3c/4 
3 3n/8 
4 Jt 

5 n[3 - (5/4) In 2 - (1!16)(In 2?] 
6 On the axis of symmetry, h/4 from the centre of the base 
7 ( a) ma 2!4 (b) ma2/4 
8 13Ma2120 

FURTHER EXERCISES 

2 a2!15; (x,y) = (3a/8, 15a/28) 
3 15/4 + In 2 
4 25/32; l = A + ! In 3 
6 3Ma 2/10 
7 (a) Does not exist: x 2 (lnx2 - 1) ~ oo asx~ oo 

(b) 1 :xe-x + e-x~ 0 asx~ oo,xe-x + e-x ~ 1 asx~ 0 
(c) n/2 

9 Hint: use Pappus's theorem 
12 -4/n2 + 24/n4 

13 (3/2)- 2ln 2; 257r /3- l27r In 2 

CHAPTER 18 

EXERCISES 

1 a X = 1.849 b X = 0.6486 
2 c = {ab(b2eb- a2ea) + b- a}l{b3eb- a3ea}, a = 0, b = 1 
3 Xn+1 = {X"Xn-t(Xn + Xn-1) + 5}/{x" 2 + XnXn-1 + Xn-1 2 + 1} 

Xo = 1, X 1 = 2 
4 a x=0.27389 b x=3.14619 
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5 a 1.46814 b 0. 737 43 
6 a 2.030 10 b 1.005 71 

ASSIGNMENT 

l At most 17 steps (in fact 11 will do ); 0.619 
2 Xn+I = (x11 - 1)/(1- 3 exp [- Xn]); 0.619 (4 steps) 
3 X11 +I = (X 11 -I expxn- X11 expx11 _ 1)/[expx"- expx11 _ 1 - 3(xn- X11 _t)J: 

x2 = 0. 780 202 717, x3 = 0.496 678 604, x4 = 0.635 952 246 
4 (1 + h)f(x + h)- (2- h2 )f(x) + (1 - h)f(x- h) = h2 sec x 
5 0.8595338 (a) 0.8591666 (b) 0.8591409 

FURTHER EXERCISES 

2 0.69 
3 2.187 
4 0.443 
5 0.5671 
7 (a) T=0.78475 (b) S=0.78540 
8 Hint: consider voiume of rotation using x 2 + y 2 = r2 between ordinates 

aandb 
9 u(t + h) = (1 - h)u(t); u(0.2r) = (0.8)', so 

a u(l) = 0.32768 b 10.93% underestimate 
10 0.4603 
11 1.95 

12 0.589 (radians!) 

13 0.416, 23°501, 23.835° 

CHAPTER 19 

EXERCISES 

l a y = Axex 
b y + In (y!x) + llx = C 
C (y - 1 )ex+y +X + 1 = Cex 

2 a xy = (x - 1 )ex + C 
b y = x(x - 1 )ex + Cx 
c y = (1/2)sinx + Ccosecx 

3 a In V(2x 2 + y 2 ) = (11V2) tan -t (y!xV2) + C 
b (x+y)3(x-4yf=A 
c In (xy) + ylx = A 

4 a y = (exp -x2)/(C- x) 
b xly = C - x 3 13 
c i + 2xy - 2x2 - 6y = C 



ASSIGNMENT 

1 e" =In (x 2 + 1) + C 
2 In x = tan t + C 
3 In (y 2 + 1) = ! sin 2u + C 
4 y2 - 1 = Axe' 
5 y = cot 8 + C cosec 8 
6 y In x = (x 2 + 1) 112 + C 
7 X= e' + Ce- 1 

8 xy = x 2 + C 
9 Ax = exp (ylx) 

10 s2 = t 2(1n t + C) 
11 x 2 In x = y 2 - xy + Cx 2 

12 sec (ylx) + tan (ylx) = Ax 

FURTHER EXERCISES 

1 lnx = y'!3x 3 - ylx + C 
2 In x = - xly + C 
3 x sin t = C cos t + 1 
4 x 2 + y 2 = A sin2 x 
5 u = 5/2 + A (V - 3 f 
6 x 2 - 12xy - y 2 = C 
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7 In [(q- 3)2 + (p- 2)2] = 6 tan- 1 [(p- 2)/(q- 3)] + C 
8 x = k sin (ylx) 
9 y = x lnx/(1 + lnx) 

10 r =sec 8 
12 Hint: obtain a differential equation for q first; answer 

EC [sin wt + wRC {exp ( -t/RC)- cos wt) ]/[I+ (RCwf] 

CHAPTER 20 

EXERCISES 

1 a x = A e'12 + B e3' 

b x=e1{Acos3t+Bsin3t} 

c y = (A + Bx)e4x!J 
2 a x=Ae-112 +Be51 -t/5+9125 

b y = A e2x13 + Be2x + xe2x/4 
c u = A e2x13 + B ex13 + ex/2 
d y = e2x15[Acos(x/5) + Bsin(x/5)]- [cosx + sinx]/8 

3 a x = (2/39)[1 - e31] cos t + (1113)[1 + e31] sin t 
b x = (3/196)[e113 - e51] + (t/14)e51 

c x = (t31150)e3115 
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ASSIGNMENT 

1 y = (A + Bx)ex12 + ex 
2 y = e - 21 (A cos 2t + B sin 2t) + (1120) cos 2t + (1110) sin 2t 
3 x = Ae1 + Be- 31 + (115)e21 

4 u = (A + Bv)e4" + v2116 + v/16 + 3/128 
5 s = e-31 (A cos t + B sin t) + (1113) cos t + (2/39) sin t 
6 u = Ae21 + Be51 + (1110) + (1!3)te51 

7 y = (A + Bx)e-Jx + (112)x 2e-Jx + (l/16)ex 
8 y = Ae5u +Be-Zu- (1124)e2u- (l/14)ue-2u 

9 y = e-x (A cos 3x + B sin 3x) + (x/6)e -x sin 3x 
10 y = Aew + Be-2"'- (3w/10) cos w + ( w/10) sin w + (1125) cos w + 

( 11150) sin w 

FURTHER EXERCISES 

1 Hint: complex roots of auxiliary equation => oscillations 
2 Hint: obtain x = x(t), differentiale and eliminate t to obtain the second 

constant; answer x = V[(ult..? + a 2) sin /..t 
7 Hint: express as a differential equation involving x and 8 only and solve 

CHAPTER 21 

EXERCISES 

1 a rr /8 + (2/rr) I:::"= I (1/n2 )[( -1 )n - cos(mr /2)] cos n.r 
b 3rr /8 + (2/rr) L:::"=l (1/n2)[cos(nrr /2) - cos mr] cos nx 

2 a I:::"= I (1/n2)[2 sin{nrr /2) + nrr cos(nrr /2)] sin nx 

b (4/rr) I:;;"= I [sin(nrr /2)/n2] sin nx 

3 2/rr - (2/rr) I:::"= I [(1 + cos nrr)/(n2 - 1 )] cos m: 

4 5rr /18 + (2./rr) L:::"=1[{1r /3n) sin{nrr /3) + (1/n2) cos(2nrr /3) + 
(2rr /[3n]) sin(2nrr /3) - (1 /n2 ) cos( nrr /3) - ( rr /[3n]) sin{ n1r /3)] cos nx 

S(O) = rr /3, S( rr /3) = 1r /3, 5{211" /3) = rr /3, S( rr) = 0, S(21T) = 1r /3 

ASSIGNMENT 

1 a l/2- (21/11") I:::"= I (1/n) sin(n1r /2) cos(n1rxjl) 

b 1/3 + (21/11") I:::"= I {1/n)[sin(2n7T /3)- sin(n1r /3)] cos(n1TX/l) 

2 a l/2 + (2l/rr) l:::"= 1(1/n)(1- cosn1r]sin(nrrxjl) 

b 2l/3 + (l/rr) I:;= I (cos(n1Txjl)/n)[sin(2nrr /3) - sin( 4nrr /3)) 
+ (lj1r) I:::"= I (sin\n7Tx/l)/n)[cos(4n7r /3)- cos(2mr /3)] 

3 (2/11") I::,[n(cos mr + 1)/(n2 - 1)] sin(n7rX/1) 
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4 Cosine series converges to t - 1r when 7r < t < 27r, sine series converges to 1r - t when 
7r < t < 27r 

FURTHER EXERCISES 

1 a 1r /8 + ( 1/27r) 1::::'=1 [(1 - cos n1r) /n2] cos 2nx - {1/2) 1::::'=1 {1/n) sin 2nx 

b 37r/8- {1/27r) 1::::'=1[(1- cosn7r)/n2]cos2nx + {1/2) L:::'=1{1/n)sin2nx 

c 1rj8- {1/27!") 1::::'=1[(1- cosn7r)/n2]cos2nx + (1/2) L:::'=1[(cosn7r)/n]sin2nx 

d 1r /4- (l/7r) L:;:;"= 1 [(1 - cos n1r)jn2] cos 2nx 

4 a 37r /4 + ( 4/7r) 2::::;"=1 [(cos(n7r /2) - 1)/n2] cos nx 

S(rr) = rr, S(-rr) = 1r 

b 3rr /8 + (1/27!") I;:;"=1[(cos nrr- 1}/n2] cos 2nx 

S(O}=rr/2, S(1r}=1r/2, S(-1r}=1r/2 

6 1/2 

71/rr+ (l/2}sin(wrrt)- (1/7r)I;:;"=2 [(1 +cosnrr)/(n2 -1)]cosnrrwt 

S(1/w) = 0, S(2/w) = 0, S(k/w) = 0 

8 a 1 + (4/7r) I;:;"=1[sin(n7r/2)/n] cos(n7rx/2) 

b (4/rr) 2::::;"= 1[(1- cos(n7r/2})/n] sin(n7rX/2} 

CHAPTER 22 

EXERCISES 

1 a 3/s2 + 1/s b (s + 2)/(s2 + 1) c 6fs4 + 12fs3 + 12/s2 + 8/s 
d -(s- 3)/(s2 - 9} e (s + 3)/[(s + 3)2 + 16] 

3 a e21 sin t b e21 (cos t + 2 sin t) 
c te- 31 d H(t- 1}{t- 1)e-3(t- 1) 

4 a x = e-3'12 [cosh(tv'13/2} + 3/ v'l3 sinh(tv'13/2}] 
b x = e--t + P 31 /3- 1/3 
c x = 3/2- e-2' /2 + H(t- 1}(1- e-2(t-Il)j2 + H(t- 2}(1- e-2(t-2l)j2 
d x = cos(tJ2) + J2sin(tv'2} 

ASSIGNMENT 

1 a 1/(s + a) 2 b n!/(s + a)n+l 
c 6/s2 - 1/(s- 2) d 4/(s- 6)- 4/(s- 3) + 1/s 

2 a te-51 b e1(cost + sint) 
c e-t + e21 d e51 cos 2t 

3 a e-1( 4 cos 2t + sin 2t)/2 
b -4e21 /3 + e-1 /12 + 9e31 /4 
c e-31 (sin 2t- 2t cos 2t) 
d H(t- 1}e-3('- 1l[2 cos 2(t- 1} - 2t cos 2(t- 1} + sin 2(t- 1)] 

4 a x = e2' b x = -1/6 + 7e-21 /10 + 7e31/15 
c x = 3e1/8- e-1/4- e-31/8 
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FURTHER EXERCISES 
1 a e-1[3cos3t- 4sin3t] 
b e2~3 - e-1 /3 + e-31 

c e- 1[6t cos 2t + 4t sin 2t - 3 sin 2t]/16 
d H(t- 1)e3<t-ll[2 cos 2(t- 1) - 2t cos 2(t- 1) + sin 2(t- 1)] 

8 I= [ECs/(LCs2 + RCs + 1)] L:~1 e-••jr i-+ 0 

9 i1 -+ EL/(3R2 ), i2 -+ 0 

10 I= Es/[(s2 + 1){(s + 1)2 + (k -1)}] 

CHAPTER 23 

EXERCISES 

1 a Discrete b continuous c discrete d discrete e discrete 
f continuous g discrete 

3 a Mean = 2 ohms, mode = 2 ohms, median = 2 ohms, range = 1.5 ohms 
b mean = 21.47%, equimodal but for grouped data approximately 19%, 

median= 19.7%, range = 15.9% 
c mean = 0.1377 m, mode (ungrouped) = 0.121 m but grouped data is 

bimodal, median = 0.122 m, range = 0.063 m 
4 Mean = 4.69, mode = 1, median= 5, range = 9 
5 Mean = 30.4375, mode = 31, median= 31, range = 3 

ASSIGNMENT 

1 Discrete 4 44.1, 44,44 5 9, 4.8265 

FURTHER EXERCISES 

1 a(i) 4.2 (ii) 8 (iii) 3 (iv) 6 (v) 2.39 
b(i) 7 (ii) 20 (iii) 5 (iv) 18 (v) 7.38 

4 b 2.925, 3.025, 3.125, 3.225, 3.325 d{i) x = 3.115, 
s = 0.0813 (raw data) (ii) x = 3.118, s = 0.0898 (grouped data) 

5 Hint: expand l: f,(x,- x)2 

6 Mean 1.56, variance 1.806 

CHAPTER 24 

EXERCISES 

1 16/21 



2 a a = 3600/5269 
b 769/5269 
c 9/16 

3 16.0025 m2 E(x 2) = V(x) + [E(x)f 
4 a 4/e b 1 + 1/[41n4-4] 

HINTS AND SOLUTIONS 777 

5 a 2.28 X 10-J b 0.0676 (answers respectively 2.26 X 10-3 and 0.0676) 
6 a 116! b 1/30 c 1/6(a= 1/6,b=2/3,c= 116!) 

ASSIGNMENT 

1 0.154 (note !l = 1.347) 
2 0.0304 
3 a 0.5 b 0.25 
4 0.875 
5 ( a) k = 112 (b) !l = 4/3 ( c) o2 = 2/9 

FURTHER EXERCISES 

2 a !l = (n + 1)/2, o2 = (n 2 - 1)/12 (population statistics) 
b P(E n F) = 1/6, P(Fi E) = 3/5, P(E U F U G) = 11/12, 
P[(E u F) n G] = 1/6 

3 a 0.7828 b 0.0216 
4 Hint:werequire(0.1)2N> 1 +N+N(N-1)12+N(N-1)(N-2)!6, 

andsoN= 12 
5 a 0.001 75 b 2. 96 tonnes 
6 Median= mode = 1; actual frequencies (10, 15, 9,5, 1); theoretical 

frequencies (I 1, 14, 9, 4, 1) 
7 a 95% b 92% 
8 a 0.6648 b 0. 9938 
9 0.6753 

10 a 0.0968 b 0.14 
11 !l = 1; {4,4,2, 1,0,0} 

12 Hint: P(X ;;::: 4)/ P(X > 0), 16.52% 

13 0.56, 0.626 (57, 32, 9, 2, 0, 0) 

14 Poisson a 0.0916 b 0.3712 

15 25 - 1 = 31 

16 43.46 < X < 56.54 newtons 
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