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Preface

Numerical analysis is a science
—computation is an art.

The present text in numerical analysis was writtcn primarily to meet the demand
of elementary education in this field at universities and technical institutes. But
it is also believed that the book will be useful as a handbook in connection with
numerical work within natural and technical sciences. Compared with the first
edition a thorough revision and modernization has been performed, and quite
a few new topics have been introduced. Two completely new chapters, integral
equations and special functions, have been appended. Major changes and addi-
tions have been made, especially in Chapters 6, 14, and 15, while minor changes
appear in practically all the remaining chapters. In this way the volume of the
book has increased by about 309,.

An introductory text must have a two-fold purpose: to describe different
numerical methods technically, as a rule in connection with the derivation of the
methods, but also to analyze the properties of the methods, particularly with
respect to convergence and error propagation. It is certainly not an easy task to
achieve a reasonable balance on this point. On one hand, the book must not
degenerate into a collection of recipes; on the other, the description should not
be flooded by complete mathematical analyses of every trivial method. Actually,
the text is not written in a hard-boiled mathematical style; however, this does
not necessarily imply a lack of stringency. For really important and typical
methods a careful analysis of errors and of error propagation has been performed.
This is true especially for the chapters on linear systems of equations, eigenvalue
problems, and ordinary and partial differential equations. Any person who has
worked on numerical problems within these sectors is familiar with the feeling
of uncertainty as to the correctness of the result which often prevails in such
cases, and realistic and reliable error estimations are naturally highly desirable.
In many situations, however, there might also be other facts available indicating
how trustworthy the results are.

Much effort has been spent in order to present methods which are efficient
for use on a computer, and several older methods not meeting this requirement
have been left out. As to the mathematical background only knowledge of ele-
mentary linear algebra, differential and integral calculus, and differential equations
is presupposed. Exercises are provided at the end of each chapter. For those
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involving numerical computation access to a desk calculator and a suitable table
(e.g. Chambers’ shorter six-figure mathematical tables) is assumed.

Many suggestions for improvements have been presented, both in reviews
and otherwise, and they have also been taken into account as far as possible.
This helpful interest is hereby gratefully acknowledged.

Lund, December 1968 C-E. F.
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Chapter 1

Numerical computations

A mathematician knows how to solve a
problem—but he can’t do it.
W. E. MILNE.

1.0. Representation of numbers

As is well known, our usual number system is the decimal or decadic system.
The number 10, which plays a fundamental role, is called the base of the sys-
tem. The choice of 10 as the base of the system has evidently been made for
historic reasons, and as a matter of fact any positive integer N > 1 could have
been chosen instead. Those numbers N which have been discussed more seri-
ously are displayed in the following table:

Base N Number system

2 Binary
3 Ternary
8 Octal

10 Decimal
12 Duodecimal
16 Sedecimal*

When the base is given, N different symbols 0, 1, 2, ..., (N — 1) are necessary
to represent an arbitrary number. A nonnegative number a can now be written
in the form

a=a,-N*+a, ,-N~'+...4aN+a,+a_ N'+.-..4+a_ N,

Here 0 < a, < N and, further, we have assumed that a can be represented by
a finite number of digits. In the general case, an arbitrary real number can
always be approximated in this manner. The representation is unigue, for sup-
pose that we have

a=aN* +a, N** +...=bN* + b, Nt=' +... (a,#0;b,+#0).
Then we find
g N** ...+ a N*<(N—-1)(N*'+...4 N
<(N—1y. N _ Nm.
1 - 1/N

* Previously, the word hexadecimal was used in this case. However, since hex is Greek and
decimal is Latin, the word sedecimal, with a pure Latin origin, is more satisfactory.

1



2 NUMERICAL COMPUTATIONS sec. 1.1.

Puttinga — @, N™ = R, we get R, < N™. First we show thatm = p. For sup-
pose, for example, that p < m, then we would geta = b,N* + ... < N**' < N™,
or a < N™, which is absurd.

Now we can write (a, — b, )N™ + (a,_, — by_)N™' +...= 0 or, using
suitable notations, @, N™ = B,,_,N™' +...=S,_,. Thesignsshould bechosen
insucha waythat0 < a,, < Nand —N < B, < N. From the preceding proof,
we have directly |S,._,| < N* and «,, = 0, that isa, = b,,, and so on.

The construction of high-speed electronic computers has greatly promoted
the use of the binary number system. The octal and sedecimal systems are al-
most trivial variants, since 8 and 16 are powers of 2. Both systems have been
widely used; in the latter case the numbers 10,11, 12, 13, 14, and 15 are usually
represented by A, B, C, D, E, and F, respectively.

Very large or very small numbers are often expressed in a so-called floating
representation using mantissa and exponent packed together. A certain number
a can then be written

a=p-N? (¢ positive or negative integer or zero) .
This representation, of course, is not unique; we have, for example,
p-N¢ = (pN?) - Ne==.

In the binary case (N = 2), p is often chosen insucha way that -1 < p < —}
or 3 < p < 1; the corresponding number is then said to be normalized.

1.1. Conversion

We will briefly treat the problem of translating a number from one represen-
tation to another. Suppose that the number a is given in the M-representation
and that we want to find it in the N-representation. Thus we have the equation:

a—= a-Mm + a‘_lMﬂ——l 4= x'N' + x'_lNr-—l oo,

where the coefficients a,,, a,,_,; . . . are known and the coefficients x,, x,_,, . . .
should be determined. Note that x,, x,_,, . .. must be expressed as 1-digit sym-
bols in the N-representation, 0 < x, < N.

We split a into an integer part b and a fractional part c, treating b first. Then
we have b = x,N" + x,_,N"' + ...+ x,N + x,, and dividing b by N, we geta
quotient Q,and a remainder R, = x,. Next,dividingQ, by N, we get the quotient
0, and the remainder R, = x,, and it is obvious that in general x,, x,, x,, . . . are
the consecutive remainders when b is repeatedly divided by N. In an analogous
way, we find the digits of the fractional part as the consecutive integer parts
when c is repeatedly multiplied by N and the integer parts removed. The com-
putations must be performed in the M-representation and N itself must also be
given in this representation (in the N-representation N = 10).
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EXAMPLE

Convert the decimal number 176.524 to ternary form. We find: 176 = 3 = 58,
remainder 2; 58 — 3 = 19, remainder 1; 19 = 3 = 6, remainder 1; 6 - 3 = 2,
remainder 0; last quotient — 2. Thus

176 = 20112 =2 -3¢+ 1.3+ 1.3+ 2.3,
Analogously,

0.524 = 0.112010222... =1-3* + 1.3 4+ 2.3 4+ 1.37% ...,

1.2. On errors

In this section we shall discuss different kinds of errors, their sources, and the
nature of their growth. Independently of the nature of the error, one can define
an absolute and a relative error. Let x, be the exact number and x an approxi-
mation. Then the absolute error is defined by ¢ = x — x,, while |g/x,| = |x/x, — 1]
is the relative error.

A number is rounded to position n by making all digits to the right of this
position zero; the digit in position n is left unchanged or increased by one unit
according as the truncated part is less or greater than half a unit in position n.
If it is exactly equal to half a unit, the digit in position » is increased by one
unit if it is odd; otherwise, it is left unchanged. Very often round-off to n deci-
mals is made; in this case the digits beyond position » (which are made equal
to zero) are simply left out.

Here we will briefly comment upon the concept of significant digits. We can
say very roughly that the significant figures in a number are those which carry
real information as to the size of the number apart from the exponential portion.
It is obvious that a digit in a place farther to the left carries a larger amount of
information than a digit to the right. When a number has been rounded to include
only significant digits, these form a group which starts with the first nonzero
digit and, as a rule, ends with the last nonzero digit. If the fractional part ends
with one or several zeros, they are significant by definition. If the number is an
integer ending with one or several zeros, it has to be decided from the context
whether they are significant or not.

EXAMPLES

8632574 rounded to 4 significant figures (4s) is 8633000.
3.1415926 rounded to 5 decimals (5d) is 3.14159.
8.5250 rounded to 24 is 8.52.

1.6750 rounded to 2d is 1.68.

If a number is formed as a result of a physical measurement or of a numerical
computation, it ought to be given with somany significant figures that the maximal
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error does not exceed a few units in the last significant digit. For example, it is
rather meaningless to give the distance between two cities as 82.763 miles; this
figure should be rounded to 83 miles.

We will now give an account of the round-off error bounds for the elementary
operations, following von Neumann and Goldstine [2]. Let us suppose that we
are working in a number system with base N, using n digits, and further that
only such numbers x are allowed for which —1 < x < 1. The last condition
is satisfied in many high-speed electronic computers. Then addition and sub-
traction will give no round-off errors (we suppose that the results do not grow
out of range). Since the product of two n-digit numbers in general contains 2n
digits and the quotient an infinite number, both results have to be rounded. We
take this fact into account by introducing pseudo operations denoted by x for
multiplication and = for division. Our basic inequalities then take the follow-
ing form:

|ax b — ab| < 3N~™; l@a~b—a/b <3N,
Itis evident thata x b = b x a. Hence the commutative law for multiplication
is satisfied. The distributive law is no longer satisfied exactly:

lax b +c)—axb—axc|
=lax®b+c)-a-(b+c)—(axb—ab)— (axc— ac)
<lax®+c)y—a-b+c)+tlaxb—a-bl+jaxc—a.c
<3 N
However, the initial expression contains only quantities rounded to n digits, and

so we can strengthen the inequality replacing 3N~* by N-*. The associative law
for multiplication is also modified:

lax (b x c) — (axb)xc
=lfax(bxc)—a-(bxe)}+{a-(bxe)—a-(b-c)}
—{(axb)yxc—(axb)-c} —{(axb)y-c—~ (a-b)-c}
S ANTH2 + la] + fe]) -

The expression in the last parentheses becomes 4 only when [a| = |¢[ = 1, but in
this special case the associative law is fulfilled. On the other hand, the difference
must be a multiple of N=*, and so we get:

lax (bxc)—(axb)yxc < N™.
Finally we consider
(@+=b)xb—al=|@a+-byxb—(a+-b)-b+ (a=b)-b— (a/b)-b]
< NN+ [B)).

The difference must be a multiple of N=* and is thus zero except when |b| = 1.
In this case, however, the difference is zero trivially. Thus we have proved that

@=-byxb=a.
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On the other hand, we have
(@< b) ~b—al <IN +|b|™),

which is a bad result when |b| is small.

EXAMPLES
For n = 2 and N = 10, we have:

1. 0.56 x 0.65 = 0.36, (0.56 x 0.65) x 0.54 = 0.19,
0.65 x 0.54 = 0.35, 0.56 x (0.65 x 0.54) = 0.20.

2. (0.76 x 0.06) — 0.06 = 0.05 = 0.06 — 0.83.

When a floating representation is used instead, we obtain other results. In
this case not even the associative law for addition is valid, as is shown in the
following example.

(0.243875 - 10® + 0.412648 - 10') — 0.243826 - 10®

= 0.243879 . 10° — 0.243826 - 10° = 0.000053 - 10°
= 0.530000 - 10¢,
(0.243875 - 10° — 0.243826 - 10°%) + 0.412648 - 10!
= 0.000049 - 10® 4 0.412648 - 10* = 0.490000 - 10® + 0.412648 - 10’
= 0.531265-10%.

A detailed examination of the errors involved in floating-point operations has

been performed by Wilkinson [3]. With the notations fi(x + y), fi(x x y), and

fi(x = y) for the results of the corresponding floating-point operations on x and
y, we have the basic inequalities:

fiix +y) = (x + )1 + ¢),
fiix —y)=(x -y +¢)),
fi(x x y) = xyp(1 + ¢),

fi(x +y) = (x/y)(1 + ¢),

with || < 27¢, tdenoting the number of binary places in the mantissa. Thus for
example, the computed sum of x and y is the exact sum of two modified numbers
x" and y’ which differ from x and y, respectively, by at most one part in 2.
Further details in this matter can be obtained from Wilkinson’s book.

In many cases one wants to estimate the error in a function f(x,, x,, . . ., x,)
when the individual errors 4x,, 4x,, ..., 4x, of the variables are known. We
find directly that

AfZiAxl—*-a—f-sz-F'--—{—afo.,
0x, 0x, 0

”
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where terms of second and higher orders have been neglected. The maximum
error is given by

of |.
(Af>m,,s|axl| %] 4o+

- |dx,] .

In the special case f = x, + x, + - -+ + x,, we have
(4f )max < 143y + [4%y| + - -+ + |dx,]

while for f = xPixPa. .. x7s, we have instead

() <o

It is only fair to point out that in general the maximal error bounds are rather
pessimistic, and in practical computations, the errors have a tendency to cancel.
If, for example, 20,000 numbers, all of them rounded to four decimal places,
are added together, the maximum error is 4 - 107*. 20,000 = 1. However, it
is obvious that this case is extremely improbable. From a statistical point of
view one would expect that in about 999; of all cases the total error will not
exceed 0.005.

When one tries to classify the errors in numerical computations it might be
fruitful to study the sources of the errors and the growth of the individual errors.
The sources of the errors are essentially static, while the growth takes place
dynamically. We shall here refrain from treating the “gross” errors in spite of
the fact that they often play an important role in numerical computations and
certainly do not lack interesting features. Then essentially three error sources
remain:

ot Py [

n

1. Initial errors,
2. Local truncation errors,
3. Local round-off errors.

The initial errors are errors in initial data. A simple example is rendered when
data are obtained from a physical or chemical apparatus. Truncation errors arise
when an infinite process (in some sense) is replaced by a finite one. Well-known
examples are computation of a definite integral through approximation with a
sum, or integration of an ordinary or partial differential equation by some
difference method. Round-off errors finally depend on the fact that practically
each number in a numerical computation must be rounded to a certain number
of digits.

Normally, a numerical computation proceeds in many steps. One such step
means that from two approximations x’ and y’ of the exact numbers x and y
we form the approximation 2’ of z by use of one of the four simple rules of
arithmetic. Let us suppose thatx’ = x + 8;y = y + 5, and z = x/y. Instead
we compute z' = (X'} )ountea = (X + 0)/(¥ + 1) + &, and hence we have 2’ ~
z + (1/y)0 — (x/y*)n + e. Theerror in 2’ is thus built up of propagated errors
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from x and y and further a new round-off error. This “compound-interest-
effect” is very typical and plays a fundamental role in every error analysis.

In order to get a more detailed knowledge of error propagation we must iso-
late the different types of errors. Starting with the initial errors it might well
be the case that they have a fatal effect on the solution. This means that small
changes in initial data may produce large changes in the final results. A prob-
lem with this property is said to be ill-conditioned. Examples will be given in
Chapters 2 and 4.

The truncation errors usually depend on a certain parameter, N say, such that
N — oo implies that the “approximate” solution approaches the “right” one. For
example, in differential equations N often has the form (b —a)/h where A is the
interval length. Asa rule, the local truncation error is O(h") and the total trun-
cation error is O(h*), where s < r. The truncation errors can be made arbitrarily
small by choosing N sufficiently large or 4 sufficiently small.

In normal cases the round-off errors are accumulated completely at random,
and this has the effect that the errors compensate each other to a large extent.
For this reason, error estimates based on maximum errors in many cases are
far too pessimistic. However, under special circumstances the round-off errors
can grow like a rolling snowball. In particular this may happen when such an
error can be understood as a small component of a parasitic solution which one
really wants to suppress. This phenomenon is known as instability and will be
treated in considerable detail in Chapters 14 and 15.

It can be of some interest to illustrate the different types of error a little more
explicitly. Suppose that we want to compute f(x) where x is a real number and
[ is a real function which we so far do not specify any closer. In practical com-
putations the number x must be approximated by a rational number x’ since
no computer can store numbers with an infinite number of decimals. The dif-
ference x’ — x constitutes the initial error while the difference ¢, = f(x') — f(x)
is the corresponding propagated error. In many cases f is such a function that
it must be replaced by a simpler function f, (often a truncated power series
expansion of f). The difference ¢, = f,(x’) — f(x’) is then the truncation error.
The calculations performed by the computer, however, are not exact but pseudo-
operations of a type that has just been discussed. The result is that instead of
fi(x') we get another value f, (x') which is then a wrongly computed value of a
wrong function of a wrong argument. The difference ¢, = f,(x’) — f,(x’) could
be termed the propagated error from the roundings. The total error is

e:fg(x’)—f(x)=6,+e,+e,.

We now choose the following specific example. Suppose that we want to deter-
mine e'® and that all calculations are performed with 4 decimals. To start with,
we try to compute e**** instead of e'/*, and the propagated error becomes

g, = ¥ _ o8 = eOUI(] — o005y

= —0.00004 65196 .
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Next, we do not compute e but instead

2
%+x+£+r

SR TR TR I}

for x — 0.3333. Hence, the truncation error is

] (]
6 = -(0'3;33 + 0'363'33 +) = —0.00003 62750 .
Finally, the summation of the truncated series is done with rounded values
giving the result

1 4+ 0.3333 + 0.0555 + 0.0062 + 0.0005 = 1.3955,

instead of 1.39552 96304 obtained with 10 decimals. Thuse, = —0.00002 96304
and the total error is

e =1.3955 —e®=¢, + & + & = —0.00011 24250 .

Investigations of error propagation are, of course, particularly important in con-
nection with iterative processes and computations where each value depends on
its predecessors. Examples of such problems are in first-hand linear systems of
equations, eigenvalue computations, and ordinary and partial differential equa-
tions. In the corresponding chapters we shall return to these problems in more
explicit formulations.

In error estimations one can speak about a-priori estimations and a-posteriori
estimations. As can be understood from the name, the first case is concerned
with estimations performed without knowledge of the results to be computed.
In the latter case the obtained results are used in the error analysis. Further the
notions forward and backward analysis should be mentioned. With forward
analysis one follows the development of the errors from the initial values to
the final result. In backward analysis one starts from a supposed error in the
results tracing it backward to see between which limits the initial values must
lie to produce such an error. This technique was introduced by Wilkinson, who
used it with great success for error analysis of linear systems of equations.

When different numerical methods are compared one usually considers the
truncation errors first. Then one investigates how the errors depend on some
suitable parameter which in the ideal case tends toward 0 or co. Suppose that
we consider the error ¢ as a function of 4 where it is assumed that 4 — 0. The
error analysis can now be performed on several different ambition levels. One
might be content with showing that the method is convergent, i.e., (h)—0 when
h—0. One mightalsoderive results with respect to the convergence speed, e.g.,
le(h)| < Cep(h), where C is a constant whose value, however, is not known. It
might also happen that one can prove g(h)/p(h) — 1 when h — 0, i.e., an asymp-
totic formula for the error. Finally, one may also derive actual error estimates
of the type |e(h)| < @(h) for all A < h,. In this case @(h) is an upper limit for the
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error giving us a possibility to guarantee a certain accuracy. A more detailed
discussion of these problems can be found, for example, in [1].

Round numbers are always false.
SAMUEL JOHNSON.

1.3. Numerical cancellation

In the previous section it has been shown how several fundamental arithmetical
laws must be modified in numerical applications. Against this background it is
not surprising that expressions which are completely equivalent from a mathe-
matical point of view may turn out to be quite different numerically. We will
restrict ourselves to a few examples on this matter.

The sécond-degrec equation x* — 2ax + ¢ = 0 has the two solutions

xy,=a+1vVa—¢e¢ and x,=a—1Va—c.

Ifa > 0 and ¢ is small compared with a, the root x, is expressed as the difference
between two almost equal numbers, and a considerable amount of significance
is lost. Instead, if we write

€

X, = ,
a+1Va —¢

we obtain the root as approximately ¢/2a without loss of significance.
Next, suppose that for a fairly large value x, we know that cosh x = q;
sinh x = b; and that we want to compute e~=. Obviously,

e*=coshx —sinhx=a -5,
leading to a dangerous cancellation. On the other hand,

1 1

e = =
cosh x + sinh x a+ b

gives a very accurate result.
Finally, we present an example to show that one has to be careful when
using mathematical formulas numerically.
The Bessel functions J, (x) are solutions of the differential equation (see Sec-
tion 18.5)
d*y 1 dy ( n‘)
- — l — — = 0 )
dx* * x dx * )7
with
o 1)"(x/2)"“"
%) = 5 EDER R
) = L R

k=0
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It is easy to show that the recursion formula
2
Juri®) = 22+ Jux) = Jo)

is valid.
We start with the following values, correctly rounded to six decimal places:

Jy(1) =0.765198 ,
Jy(1) = 0.440051 .
Using the recursion formula, we try to compute J (1) for higher values of n and
obtain the following results (the correct figures are given in parentheses):
Jy(1) = 0.114904 (0.114903),
Jy(1) = 0.019565 (0.019563),
J(1) = 0.002486 (0.002477),
Jy(1) = 0.000323 (0.000250),
Ji(1) = 0.000744 (0.000021),
J,(1) = 0.008605 (0.000002) .
It is obvious that this formula cannot be used here in this way.
On the other hand, putting J(1) = 0, J,(1) = k, and applying the same for-
mula in the other direction, we get:
Jy(1) = 14k; Jy(1) = 167k ; J(1) — 1656k ; Jy(1) = 13081k ;
Jy(1) = 76830k ; Jy(1) = 294239 ; J(1) = 511648k .
The constant k can be obtained from the identity
Jo(x) + 2Jy(X) + 2J(x) + 2Jg(x) +---= 1.

We find that k = 1/668648, from which we obtain the correct values with an
error of at most one digit in the sixth place. The explanation is that the former
procedure is unstable but the latter is not. A detailed discussion of this pheno-
menon will be given in Chapter 14.

1.4. Computation of functions

We are not going to treat this extensive chapter systematically, but rather will
point to some general methods which have proved efficient. We will restrict
ourselves to real functions of one variable, even if a generalization to complex
functions is straightforward in many cases.

First, we point out the importance of making use of computational schemes
whenever possible. The arrangement becomes clear, the computational work
is facilitated, and finally the computations are easy to check. Suppose that the
function y = exp (—x + arctan V'x* + 1) has to be tabulated from x = 0 to
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x = 1 in steps of 0.2 [this is conveniently written x = 0(0.2)1]. The following
outline is then suitable.

x z=Vx+1 u = arctanz v=u-—Xx y=e¢e
0 1 0.7854 0.7854 2.1933
0.2 1.0198 0.7952 0.5952 1.8134
0.4 1.0770 0.8225 0.4225 1.5258
0.6 1.1662 0.8620 0.2620 1.2995
0.8 1.2806 0.9078 0.1078 1.1138
1.0 1.4142 0.9553 —0.0447 0.9563

Note that it is advisable to perform the operations vertically, so far as this is pos-
sible, i.e., all square roots are computed at the same time, next all arctangents
are looked up in the table, and so on.

The function in this example was defined by an explicit formula. It has be-
come more and more common to give a function by a recursive process. In the
usual mathematical language, such formulas would often be clumsy. The advent
of ALGOL, which at the same time is a language for describing computational
procedures and an autocode system, has introduced considerable advantages.

We will give a few examples of this recursion technique and start with the
polynomial

Px)=x*+ax*'+...+a,
and its derivative,

Pxx)y=nx'+n—-Nax*?*+...+a,_,.
We put

:l =
Po and {P'“ PTG ot (= ).

P = Prn=piXx + p,
It is then easy to prove that p, = P(x) and p, = P’(x). These formulas can easily
be generalized to the mth derivative:
P = px 4 mpinh

Many functions are easily obtained from their power series expansions. In
the domain of convergence, the function can be computed with arbitrary accu-
racy, at least in principle. Also for such expansions a recursive technique is
often suitable. As an example, we take the Bessel function of zero order:

(=1
Jo(x) = E 2%(k!)e *
Putting u, = s, = 1; u, = —u,_,x*/4k* s, = s,_, + u,, we see that the partial

sums s, tend toward J,(x) when &k — co. The expansion is conveniently trun-
cated when |u,| is less than some given tolerance; the remainder is then less than
the absolute value of the first neglected term.
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1.5. Computation of functions using binary representation

In some cases it is possible to use the special properties of a function to compute
one binary digit at a time. We will demonstrate some of these procedures and
start with the function y = x*, where 0 < a < 1. Suppose that o is written in
binary form. If, for example, a = 0.101100111.. ., then

x°=1/§.1°/§.i°/§.%...,

and the problem has been reduced to computing a series of square roots. In
order to formulate the general method, we first define the integral part entier (z)
of a number z as the largest integer < z.

Now put 8, = &, X, = x, and y, = 1, and form a, = entier (28,_,), 8, =
284y ~ @ X, = (x,y)"* and y, — y, (1 + (x, — 1)a,). Itisnot hard to infer
that lim,_.. y, = x*. The method is not too fast but can easily be programmed
for a computer.

As our second example, we choose y = log, x and suppose that 1 < x < 2.
Putting y = y,- 271 4+ y,- 272 + ..., we have x = 2 %2+ and, after
squaring, x* = 21+%?"" -, Consequently, we get y, = 1 if x* > 2, while y, = 0
if x* < 2. From this we obtain the following recursion: Starting with x, = x,
we set

Y. =0 and X, = x1_, if X}, <2;

Ve = 1 and X, = %x’_l if x:—l > 2.
In this way y,, y,, . .. are defined, and finally we obtain
log,x=y=p,27"+ 277+ - 270 4.

An analogous technique can be defined also for bases other than 2, but the
computations will not be so simple any longer.

Last, we also consider the function y = (2/z)arccos x (cf. Fig. 1.5.). We
use the notations

Y=Y+ N2+ 27 4.
and

%= 0s[Z (3, + yun 27 )]

with x, = x. Two different cases can be distinguished: x, > 0 and x, < 0. In
the first case, we have 0 < (2/r) arccos x, < 1 and, consequently, y, = 0, which
leads to

X, = cos [% Dear" 270+ Yran - 270 + ):|

Using the formula, cos 2z = 2 cos*z — 1, we obtain

Xepp = 2xp — 1.
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pY

-1 o 1 TJ( Figure 1.5

In the second case we have y, = 1 and, consequently,
Ver1 27 Yige 270 00 = 2 (arccos X, — %) .
T

Hence

It

X4y = COS [% Pesr + Vig2 s 270 + - -)] = Cos (2arccos x, — 7)

= —cos(2arccosx,) = 1 — 2x2.

Starting with x, = x, we have the recursion:

{x,‘“ =2x; — 1 and y, =0 if x>0,

Xeyy = 1 — 2x3 and ye=1 if x<0.

The function arcsin x can then be obtained from

2 . 2
—arcsinx =1 — Zarccosx.

T T
EXAMPLE
x =3
x, =3 Yo=0
X = —3 Nn=1
x,=§ y,=0

13
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1.6. Asymptotic series

Important tools for computation of functions are the asymptotic series. They
aredefined in the following way. Suppose that 5,(z) = Z;o a,z* and further that

lim (@ = 52| _ o

20 IZI"

for an arbitrary fixed value of n; then the following notation is used: f(z) ~
X..,a.z" when z— 0. Ina certain sense, the series expansion represents the
function f(z) in such a way that the nth partial sum approximates f(z) better
than |z|* approximates 0. The remarkable fact is that we do not claim that the
series is convergent, and as a matter of fact it is in general divergent. In this
case we say that the series is a semiconvergent expansion of the function f(z).

An asymptotic series expansion around the point z, is written in the form
J(2) ~ 2, a.(z — z,)*, with the meaning

lim /(2 =53 _ o

12y IZ _ Zol"

for a fixed value of n when s5,(z) = X}_ a(z — z,)*.
Asymptotic expansions at infinity are of special interest. The following no-
tation is used: f(z) ~ 7 a,z”" when z — oo if

lim |2 /(2) — 5,(z)| = O
for a fixed value of n when s,(z) = 337 _ a,27*. In many cases f(z) has no asymp-
totic series expansion, but it might be. possible to obtain such an expansion ifa

suitable function is subtracted or if we divide by an appropriate function. The
following notation should present no difficulties:

1@) ~8() + hz) - L a,

It is obvious that g(z) and A(z) must be independent of n.

EXAMPLE

oo e—t e—z o e—t e—z e—:
x) = ——dt = —S - dt == — = _ 2'5 ——dl
S(x) S - x = )L

+"'+(—l)"“ (" l):l
with

R, = (~1)y-n!. S__'d:.

tul
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Thus we have |R,| < e~*n!/x**', and by definition,

e 1,2 i :'
f(x)~_x—[l —t 5 F(=r
In general, this expression first decreases but diverges when n — oo, since x has
a fixed value.

Thus f(x) isexpressed asa series expansion with a remainder term, theabsolute
value of which first decreases but later on increasesto infinity froma certain value
of n. Hence the series is divergent, but if it is truncated after n terms where n
is chosen so that |R,| < &, the truncated series can nevertheless be used, giving
a maximum error less than e.

In our special example we denote the partial sums with S,, and for x = 10,
we obtain the following table:

n 107.¢e*. S, 107.¢*- R, n 107 .¢*. S, 107-.e*- R,
1 1000000 — 84367 11 915891 — 186
2 900000 + 15633 12 915420 + 213
3 920000 — 4367 13 915899 — 266
4 914000 + 1633 14 915276 + 357
5 916400 — 767 15 916148 — SIS
6 915200 + 433 16 914840 + 793
7 915920 — 287 17 916933 —1300
8 915416 + 217 18 913376 +2257
9 915819 — 186 19 919778 —4145
10 915456 + 177 20 907614 + 8019

The correct value is

p S”_e"_' dt = 0.0915633 .
10

In general, the error is of the same order of magnitude as the first neglected term.
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EXERCISES
1. Convert the sedecimal number ABCDEF to decimal form.
2. Convert the decimal fraction 0.31416 to octal form.
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3. Determine the maximum relative error when p, is calculated from the relation
pvi = p.vi (x« = 1.4). The maximum relative errors of v,, v,, and p, are 0.7, 0.75, and
1%, respectively.

4. One wants to determine 1/(2 + +/3)* having access to an approximate value of v/3.

Compare the relative errors on direct computation and on using the equivalent expression
97 — 56/3.

5. Obtain an asymptotic series expansion for the function y = e™**. §; e’ dt by first
proving that y satisfies the differential equation y’ = 1 — 2xy.

6. Find the coefficients in the asymptotic formula

S-<m)d[=cosx(ﬂ+£:_+...>+sinx(ﬁ.+£§+...>'
t X X X



Chapter 2

Equations

When it is known that x is the same as 6
(which by the way is understood from the
pronunciation) all algebraic equations with
1 or 19 unknowns are easily solved by in-
serting, x, substituting 6, elimination of 6
by x, and so on.

FALSTAFF, FAKIR.*

2.0. Introduction

Solutions of equations and systems of equations represent important tasks in
numerical analysis. For this reason it seems appropriate to point out some
difficulties arising in connection with this problem. If no special assumptions
are given for the function f(x), we shall in this chapter suppose that f(x) is
continuously differentiable of sufficiently high order to make the operations
performed legitimate.

We will first consider the conception of a root of an equation f(x) = 0. By
definition, a is a root if f(a) = 0. However, in numerical applications it must
be understood that the equation usually cannot be satisfied exactly, due to round-
off errors and limited capacity. Therefore, we want to modify the mathematical
definition of a root, and to start with, we could think of the condition |f(a)| < ¢,
where ¢ is a given tolerance. The inequality defines an interval instead of a
point, but this can hardly be avoided. Another consequence is that the equa-
tions f(x) = 0 and M . f(x) = 0, where M is a constant, do not any longer
have the same roots.

In the case of simple roots, the following procedure might be conceivable.
In some suitable way, we construct two sequences of numbers s,, s,, 5;, . . . and
Loty ty, ..., Wheres, < s, <s,<---and t; > t, > t, >.... The numbers in
both sequences are supposed to be successive approximations to an exact root
of the equation. Further, we assume that s; < #,, f(s,)f(s:) > 0, f(2,)f(t,) > O,
SE)ft) <Ofori,k=1,2,3,... Ifnowt,/s, — 1 < ¢, where ¢ is a given
tolerance, then 4(s, + t,) is defined as a root. Only the case of f(0) = 0 has
to be treated separately.

* Famous Swedish humorist-author (1865-1896), influenced, for one, by Mark Twain. His
real name was Axel Wallengren, and the quotation above comes from the book, Everyone His

Own Professor.

17
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Another difficulty occurs when one or several roots of an algebraic equation
are extremely sensitive to changes in the coefficients. Consider the polynomial

f@)=z+az 4+ a2+ .- +a,,

and let r be a root of the equation f(z) = 0. Differentiating we get:

) Sy rr=o0. 2.0.1
( T) =rokZ 2.0.1)
Hence or/da, = —r~~*/f’(r), and this relation is written in the following form:
o _ _a&r? e (2.0.2)
r S a,

Now put 4, = |a, - r*~*7!/f'(r)|, and we can summarize as follows. Large values
of 4, have the effect that small changes in the coefficient a, cause large changes
in the root r. Large values of 4, occur when r is large and f’(r) is small; the
latter is the case, for example, when some of the roots lie close together.

A well-known example has been given by Wilkinson [1]:

F+Dx+2)--(x+20)=0 or x®4+210x°+...420'=0.

We choose k = 1and da, = 2-*, which means that the coefficient 210 is changed
t0210.0000001192. Then the roots —1, —2, ..., —8 are shifted only slightly;
among the remaining roots we find, for example, — 14 + 2.5i, —16.73 + 2.81i,
and —20.85. For r = —16 we obtain

210. 16*

A, =290
15! 4!

=3.2.10v,

This result indicates that we must have 10 guard digits, apart from those
corresponding to the wanted accuracy. It should also be noted that the value
of 4, cannot be used for computation of the exact root, since in (2.0.2) we have
given only the first order terms; here higher terms are of decisive importance.

Equations where small changes in the coefficients cause large changes in the
roots are said to be ill-conditioned. If one wants to determine the roots of such
an equation, one has to work with a suitable number of guard digits. It may
be difficult to tell offhand whether a given equation is ill-conditioned or not.
If the computations are performed on an automatic computer, the following
process could be used.

A number is replaced by an interval in such a way that the limits of the interval
represent the upper and lower limits of the number in question. The limits are
always rational numbers chosen to fit the computer used. Now we get more
complicated calculation rules which will always give new intervals as results,
For example, if a, < x, < b,, and @, < x, < b,, then a, + a, < x, + x, < b, + b,.
By using such ‘“‘range operations,” we can keep numerical errors under control
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all the time. If the final result is represented by a large interval, the problem
is ill-conditioned. As mentioned before, however, estimates of maximal errors
are often far too pessimistic.

2.1. Cubic and quartic equations. Horner’s scheme

As early as in the sixteenth century, it was known that algebraic equations of
first, second, third, and fourth degree could be solved by square and cube roots.
In 1824 Abel proved that the roots of algebraic equations of fifth and higher
degrees could not in general be represented as algebraic expressions containing
the coefficients of the equation, where only addition, subtraction, multiplica-
tion, division, and root extraction were allowed. We will now examine cubic
and quartic equations a little more closely.

Equations of third and fourth degree can, of course, be solved numerically
by some of the methods which will be explained later. However, it is not too
easy to design a general technique in such a way that no root possibly can
escape detection, but the following procedures seem to be satisfactory from
this point of view.

First, consider the equation x* + ax® + bx + ¢ = 0. If ¢ > 0, there is a root
between — oo and 0, and if ¢ < 0, there is one between 0 and co. There exist
general theorems regarding the localization of the roots of a given equation.
Suppose that f(z) = z* + a,2*~! + @,2*~ 4 ... + aq,. Putting 2 — max g, it
can be proved that for any root z of the equation f(z) = 0, we have [z| < | + 2.
In most cases this is a very crude estimate, but here we have at least one real
root localized in a finite interval. By repeated interval halvings, the lower
limit is moved upward or the upper limit downward. The upper and lower
limits can be identified with our previous sequences s, and 7,. When the root
has been obtained with sufficient accuracy, it is removed, and we are left with
a second-degree equation.

Next we consider an equation of the fourth degree, x* -+ ax® + bx* + cx +
d = 0. The cubic term is removed through the transformation x = y — a/4,
which gives the equation y* + gy* + ry + s = 0, where ¢ = b — 3a%/8, r =
¢ —abj2 + a8, s =d — ac/4 + a*b/16 — 3a*/256. Since the coefficients are
real, the equation may have 4, 2, or no real roots. In any case there exists a
partition into two quadratic factors:

P +2ky+ Dy -2ky + m)y=y' +qy* +ry +s
with real k, I, and m. Comparing the coefficients we get:
l+m—4k*=gqg,
2k(m — 1)
Im=s.

r,

Eliminating / and m and putting k* = z, we obtain z* + @z* + Bz + y = 0,
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with @ = ¢/2, B = (¢* — 4s5)/16, and y = —r*/64. Sincey < 0, there is always
at least one positive root z, and hence k, /, and m can be determined one after
another. In this way the problem is reduced to the solution of two second-
degree equations. The method just described is originally due to Descartes.

We touched upon the problem of determining upper and lower bounds for
the roots of an algebraic equation. It is interesting to note that this problem
is best treated with matrix-theoretical methods, and we will return to it in
Section 3.3.

We will now give a brief account of how roots can be removed from algebraic
equations by means of so-called synthetic division (Horner’s scheme). Suppose
that the equation f(z) = z* + a,z2** + ... + a, = 0 has a root z = a. Then
there exists a polynomial z*~! + b,z*"* + ...+ b,_, = 0 such that

—a)(* '+ bzt b2+ bz o+ b, )
=z"4+at'+...4+az*"+...+a,.

Comparing the coefficients of the z*-"-term, we find that b, — ab,_, = a,, and
the coefficients b, can be computed recursively from b, = a, + ab,_,, with
b, = 1. Without difficulty we obtainb, = a, + a; b, = a, + a@ + a* ... b, =
a,+a, ,a+---+ a" = f(a) = 0. Conveniently, the following scheme is used:

1 a, a, ceea,|la

a aa + at
1 @, +a ag,+aa+a’---b,

Every term in the second row is obtained by multiplication with a of the
preceding term in the third row, and every term in the third row is obtained
by addition of the terms above. If & is not a root, we get b, = f(a), and hence
the scheme can also be used for computation of the numerical value of a poly-
nomial for a given value of the variable.

EXAMPLE
The equation x* — 3x* + 4x* + 2x* — 10x — 4 = 0 has one root x = 2 and
another x = — 1, and both should be removed. We obtain the following
scheme.

1 -3 4 2 —10 —4| 2

2 -2 4 12 4
1 -1 2 6 2 0] -1
-1 2 —4 -2

1 -2 4 2 0

After the first division, we are left with x* — x* + 2x® + 6x + 2, and after the
second, with x* — 2x* + 4x + 2.
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Obviously, there are no difficulties in generalizing this technique to division
with polynomials of higher degree. Division by z* + az + 8 leads to the fol-
lowing scheme.

1 a, a, a, a,
—a - —C .- -a
-8 —aB- |-8
1 [ C, Cy

2.2. Newton-Raphson’s method

We are now going to establish general methods for computing a root of the
equation f(x) = 0, where f(x) can be an algebraic or transcendental function.
We intend to start with a trial value and then construct better and better
approximations.

AY

ﬂ.o) -
/ Figul‘e 22

If we represent the function y = f(x) graphically, the problem can be so
formulated that we are looking for the intersection between the curve and the
x-axis. The basic idea is now to replace the curve by a suitable straight line
whose intersection with the x-axis can easily be computed. The line passes
through the last approximation point (x,, y,), but its direction can be chosen
in many different ways. One can prescribe either a fixed direction, e.g., parallel
to the secant through the first points, (x,, y,) and (x,, y,), or to the tangent
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through the first point, or such a variable direction that the line simply coincides
with the secant through (x,_,, y,_,) and (x,, y,), or with the tangent through
(x., y,)- If the slope of the line is denoted by k, we have the following four
possibilities:

1. k= — y)/(x, — xp) (fixed secant).

2. k = fi(x,) (fixed tangent).

3. k= (Yo — Yu))/ (X, — X,_)) (variable secant).
4. k = f(x,) (variable tangent).

In all cases we obtain an iteration formula of the following form:

xnil = xn —f(xn)/k *

We shall now examine the convergence of the different methods. Let ¢ be the
exact value of the simple root we are looking for: f(§) = 0, f"(§) # 0. Further
we set x, = £ + ¢,, and for the first two cases we get

Y=y =klx—-x,),
and, putting y = 0,
X = xuil = xn -_.yn/k‘
Hence
§tenm=¢tre.—fE+e)k=§5+e —[f6) +efE)+- -1k
and
€1 = [1 — [ E)kle, +--- .

We see that ¢, ., will be considerably less than ¢, if k does not deviate too much
from f’(£). In this case the convergence is said to be geometric.
In case 3 we find

Xy — Xpy — Xa—1Vn = XaVa-1

Ya — Va1 Yan = Vaar

Xas1 = Xy — Y *

and

_& St ) — e fE ) el (S N
S + &) — f(§ + &) 2'($)
If the remaining terms are neglected, we get ¢,,, = 4¢,¢e,_,. We will now try

to determine a number m such that ¢,,, — K. er. Then also ¢, = Ke™_,, that
is, €,_, = K~Ym¢}'™ and hence

6n+l

Ear=A g KMWm.glm = K.ep.

From this we get

I+l:m and m=_—=2°
m 2
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where the plus sign should be chosen. Thus we have found
€1 = K- 3. (2.2.1)

The method with variable secant which has just been examined is known as
Regula falsi.
In case 4 we find:

5+5n+1:$+5n—'—“—f($+6”)

fE+e)’

or

eSS+ &) — [+ &)

n+1l _f'(f + 6.)

_ &S @) F aS1E) +- = fC) — &S €) — (/@) —- -
(€ +e)
Hence the leading term is
= SO o 2.2.2)

Eut1 = 27(8) »

and the convergence is said to be quadratic. This fact also means that the num-
ber of correct decimals is approximately doubled at every iteration, at least
if the factor f"'(£)/2f"(¢) is not too large.* The process which has just been
described is known as the Newton-Raphson method. The iteration formula
has the form

X1 = Xy — f(xn)/f,(xn) . (22'3)

As has already been mentioned, the geometrical interpretation defines x
the intersection between the tangent in (x,, y,) and the x-axis.

Newton-Raphson’s formula can also be obtained analytically from the con-
dition

n+1 as

S+ ) = f0) + B S B fx) = 0,

where x, is an approximation of the root. If all terms of second and higher
degree in hare neglected, we get h = — f(x,)/f"(x,) and x, ,, = x, — f(x,)/f'(x.)
exactly as in (2.2.3).

The method can be used for both algebraic and transcendental equations,
and it also works when coefficients or roots are complex. It should be noted,
however, that in the case of an algebraic equation with real coefficients, a com-
plex root cannot be reached with a real starting value.

The derivation presented here assumes that the desired root is simple. If the
root is of multiplicity p > 1 the convergence speed is given by ¢, , = [(p -- 1)/p]e,

* See also Exercisc 19.
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(linear convergence, cf. Section 2.5). The modified formula

’ Xag1 = Xy — Pf(x»)/.f'(xs)
restores quadratic convergence. If the multiplicity is not known we can instead
search for a zero of the function f(x)/f’(x). Assuming that f*(x) is finite every-
where this function has the same zeros as f(x) with the only difference that
all zeros are simple. This leads to the formula

Xup1 = Xy _fuf:/(.f!:z —fnf’:') ’
where again we have quadratic convergence.

If f(x) is twice continuously differentiable and f(a)f(b) < 0, a < b, it is easy
to show that Newton-Raphson’s method converges from an arbitrary starting
value in the interval |a, b] provided that f'(x) = 0 and f”'(x) has the same sign
everywhere in the interval, and further

max {|f(a)/[f @], |fO)f )} <b —a

(global convergence). The geometrical interpretation of the conditions are left
to the reader.

Finally, we give an error estimate which can be used for any method. We
suppose that x, = § + ¢, is an approximation to the root ¢ of the equation
f(x) = 0, where f(x) is analytic. We also suppose that x, is so close to £ that
@(x) = f(x)/f(x) varies monotonically in the interval between ¢ and x,, and
further that f’(x) = 0 in this same interval. Since ¢(§) = 0, by using the mean
value theorem we get

¢(xu) = q’(xu) - ¢(xu - su) = 8u¢’(x» - 05,.) ’
where 0 < ¢ < 1. Hence ¢, = ¢(x,)/p'(x, — 6¢,) and

. S _

L= U1 - et

Putting K = sup |f”’/f’| and h = f(x,)/f(x,), we find
leal < Tilfﬁ ; (2.2.9)

where, of course, we have supposed that |h| < 1/K.

For the error estimate (2.2.4), we must know x,, f(x,), and f(x,). Hence,
if we use Newton-Raphson’s method, we could as well compute x,,,, and we
would then be interested in an estimate of the error ¢,,, expressed in known
quantities. Let & be the exact root, as before. Expanding in Taylor series and
using Lagrange’s remainder term, we get

f(e) =f(xn - 5,.) ‘:f(xu) - snf(x») + %s:f”(x,‘ - 080;) =0
with 0 < # < 1. Putting
h =f(x»)/.f'(xu) and Q _.f"(xs - oen)/f(xn) ’
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_ 2h

1+ 1 —20h
(The other root is discarded since we are looking for a value of ¢, close to 4.)
We put K = sup |Q| and suppose that we are close enough to the root § to be
sure that K|h| < s < 4. Bute,,, = ¢, — h and hence

2 1 aKht
wadl = |H] - —1<h(——~—)=———-
Busal = 14 1+ V1= 20h A 1 — aKjh| 1 — aKlh|

where a > (1 — V1 — 25)/2s. Naturally, we must assume that }h| < (2K)~.
For s = 3 we get

wefind oy _ 2,4+ 0e2=0 or e,

Kht
1 — KA’
however, in normal cases s is much smaller, and when s — 0 we have @ — 3.

If we neglect the term aK]h| in the denominator, we are essentially back at
(2.2.2).

[€asa] < (2.2.5)

EXAMPLES

1. x* — x == 10.
By Newton-Raphson’s formula, setting f(x) = x* — x — 10, we get

X —x,—10 _ 3x + 10

T =T TS T a1
Xy = 2,
x = 1871,
x, = 1.85578 ,
x, = 1.855585 ,

x, = 1.85558452522,

2. f(2)=2+ (7= 20)z* + (20 — 120)2 + (20 — 28i)2* + (19 — 12i)z + (13 —26i)

Choosing z, = 3i, we find
2, = —0.293133 + 2.505945i,

z, = —0.548506 + 2.131282i,
z; = —0.819358 4 1.902395i,
z, = —1.038654 + 1.965626i ,

zs = —0.997344 + 1.999548i,
—1.000002 + 1.999993i,
= —1.000000 + 2.000000; .

NN
I
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3. e =sinx.

e *» — sin x,,
€™ + COSX,
Xo = 0.6 N

x, = 0.5885,

x, = 0.58853274 ,

xu“ = xn +

This converges toward the smallest root; the equation has an infinite number
of roots lying close to =z, 27, 3x, ...

Newton-Raphson’s formula is the first approximation of a more general ex-
pression, which will now be derived. Let ¢ be the exact root and x, the starting
value with x, = ¢ + h. Further we suppose that f'(x,) + 0 and put f/f' = a,
LI = a, LI = a,, fYIf = a,, ... Hence

., h L,
SO = —h =f—hf + B =0
or after division by f'(x,),
h? I h
a—h+a,?—03?+a‘ﬁ_...=0,

Now we write & as a power-series expansion in a,
h=a+ ca*+ca® +ca*+---,
and inserting this value in the preceding equation, we have
¢, = a,f2; ¢, = 3(3a} — a)); ¢ = M(15a5 — 10aa; + a,); - - -
Thus we find
§=x— [a+ 10, + 336 — a)a + 1 (156 — 10a,a, + a)at +---].

This formula is particularly useful if one is looking for zeros of a function
defined by a differential equation (usually of second order).

EXAMPLES

Find the least positive zero of the Bessel function J,(x) satisfying the differential
equation xy’* + y' + xy = 0. The zero is close to x = 2.4, where we have

y(2.4) = 0.00250 76833,  y'(2.4) = —0.52018 52682 .
From the differential equation, we easily get

Y'(2.4) = 0.21423 61785 ;  y'(2.4) = 0.34061 02514 ;
VIy(2.4) = —0.20651 12692
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and further

a, = —0.4118459, a, = —0.6547864 , a, = 0.3969956 ;

a = —0.00482 07503, a® = 0.00002 32396 , o = —0.00000 01120,
a* = 0.00000 00005 .

Hence
h = —0.00482 07503

-~ 47856
— 217
— 1

—0.00482 55577

and ¢ = x, — h = 2.40482 55577.

The Newton-Raphson technique is widely used on automatic computers for
calculation of various simple functions (inverse, square root, cube root). Older
computers sometimes did not have built-in division, and this operation had to
be programmed. The quantity @~ can be interpreted as a root of the equation
1/x — a = 0. From this we obtain the simple recursion formula

I/x, —a
Xuy1 = Xy + ——I/T
or
Xy = X,(2 — ax,) . (2.2.6)

This relation can also be written 1 — ax, ,, = (1 — ax,)? showing the quadratic
convergence clearly. It is easy to construct formulas which converge still faster,
for example, 1 — ax,,, = (1 — ax,)’, or x,,, = x,(3 — ax, + a*x%), but the
improved convergence has to be bought at the price of a more complicated
formula, and there is no real advantage.

If one wants to compute Vv a, one starts from the equation x? — a = 0 to
obtain

Xop1 = %(x,, + : ) (2.2.7)

”

This formula is used almost universally for automatic computation of square

roots. A corresponding formula can easily be deduced for Nth roots. From
y = x¥ — a, we find

Xaor = Xp = (X — @)/Nx™ = [(N — )x) + a]/Nx}7'. (2.2.8)
Especially for V''a we have

1
xu-)-l = ’?(zxn + ::) (2‘2'9)

and for 1)v'a
Xopn = 3x,(3 — ax?). (2.2.10)
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The last formula is remarkable because it does not make use of division (apart
from the factor }); 1/ a can then be obtained through multiplication by a.
An alternative method used to compute square roots is the following: Putting
r=1— x}aand s = a/x} — 1 when x, is an approximation of 1"a, we get
— 3rt 5r 35r 63r
= 1 — )"V = (1 .!— _ —_— —_— —_—t .)
va=xl-n"=x{l+3+5+ %+ 15 ¥ 5
and

‘[/; = x,,(l + S)'/’ — x,,(l + i —_

s
2 8

s° 5s* 7s°
t 6Tt we )
Analogously for the cube root with r = 1 — xj/a and s = a/x; — 1, where x,

is an approximation of v a:

s r 2r? 14r® 35r¢ 91r°
vVa =x(1++2-+ )
°(+3 9 81 " 243 "t

s s s 58 lost  22¢
Va =x,(1 _——— —_——— —_ = ).
°<+3 s T 31 243 T 729 )

2.3. Bairstow’s method

As mentioned before, Newton-Raphson’s method can also be used for com-
plex roots. However, if we are working with algebraic equations with real
coefficients, all complex roots appear in pairs a +ib. Eachsuch pair corresponds
to a quadratic factor x* + px + g with real coefficients. Let the given poly-
nomial be f(x) = x* + ax*' + ...+ a,. If we divide by x* + px + ¢, we
obtain a quotient x*~* + bx*~* 4+ ...+ b,_, and a remainder Rx + S. Our
problem is then to find p and g, so that

R(p,q)=0; S(p.q)=0.

For arbitrary values p and g, these relations are not satisfied in general, and
we try to find corrections 4p and 4q, so that

R(p+ 4p,q+ 49)=0;  S(p+ 4p,q + 49) = 0.

Expanding in Taylor series and truncating after the first-order terms, we get:

R R
R(p, 9) +%}—Ap+g—dq=0,
ot af]s‘ @.3.1)

We regard this as a linear system of equations for 4p and 4q, and when the
system has been solved, the procedure is repeated with the corrected values
for p and gq.
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In order to compute the coefficients b,, b,, . . ., b,_,, R, and S, we use the identity
raxt4---+a, =X +px+qxt+bx 4.4+ b, ) +Rx+ S,
from which we obtain:
a=>b+p,
a,=b,+ pb, + ¢,
ay = by + pb, + gby,

a, = b, + pbi_, + gbis, 2.3.2)

éu—! = bu—-! + Pbu—s + qbu—t ’
a,,=R+pb,_, +gb,_,,
an = S + qbu—! .

The quantities b,, b,, ..., b,,, R, and S can be found recursively. Conve-
niently, we introduce two other quantities b,_, and b,, and define:
b,=a, — pb,_, — gb,_, k=12,...,n), (2.3.3)

with b, = 1 and b_, = 0. Then we get b,_, =a,_, — pb,_, — ¢b,_y = R and
b,=a,—pb,_,— gb,_, =S — pb,_,. Hence
R = b,‘__, .
{S =b, + pb,_,.
These values are inserted into (2.3.1) to give

ob,_, ob, _
—=2d4p+ 2249 +b,,=0,
. ap P oq 9 '
ob ob,_, ob -
- +6,.)4 +(~ Pazs) dg + by + pbos =0,
ap Pap 1) 4P + P aq q + + POy,
If the first of these equations is multiplied by p and subtracted from the second,
we obtain

(2.3.4)

ob, _, ob, _
2=l 4 2=1 4 b,_, =0,
ap p + 3q q + Onns
* + b, ,)dp + =24 b,=0.
(ap ') P oq 7+
Differentiating (2.3.3), we find
ob, ob,_, ob,_, b, _ ob
R R p op
2.3.6
L Oy g0 OBy _ 3By (2.3.6)
q oq oq oq aq
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Putting 9b,/op = —c,, (k = 1,2, ..., n), we obtain by induction
% = ab"_l
dg o
Equations (2.3.6) then pass into the following equations from which the quan-
tities ¢ can be determined:

= —Crs-

Ceoy = by — pi_y — g4y, Cop = biy — peuy —gey .
These can be comprised in one single equation:
¢ =b, —pc_y — qci_s; ¢ =1; c,=0;
k=1,2,...,n—1). (2.3.7)

Hence c, is computed from b, in exactly the same way as b, is from a,. Equa-

tions (2.3.5) for determination of 4p and 4q can now be written
Cuz * 4 + Cp_s* 4q = b”_ N

P 2ot : (2.3.8)

(cﬁ—l - bn—l) * Ap + cn—! . Aq = b” .

Fromequation (2.3.1), it is easily understood that the convergence of Bairstow’s
method is quadratic, and, further, that convergence always occurs if the starting
value is not too bad.

EXAMPLES
The equation x* + 5x* + 3x* — 5x — 9 = 0 is to be solved, and we shall try
to find two quadratic factors. Starting with p, - 3, g, = — 5, we obtain the
following scheme:
(a) 1 5 3 -5 -9
-3 -6 —6 3 |-3
5 10 10 5
b)) 1 2 2 — | — 4
-3 3 —30
S -5
() 1 —1 10 =35 |
l ! l l

Cu—s Cacz Cuy — bn—l bn—l bu

Note that in the last addition of the computation of c,, the term b,_, (in this
example, — 1) is omitted. This gives directly ¢, , — b,_,. Introducing u and
v instead of 4p and 4q, we obtain the system:
0u -~ v= -1,
— 354 + 10v == 4,
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which gives u= —0.09, and p= 291,
v= 0.08, q = —4.92.
Next, the computation is repeated with the new values for p and ¢:
1 5 3 -5 -9
—-291 —-6.08 —5.35 0.20] —2.91
4.92 10.28 9.05 4.92
1 2.09 1.84 —-0.07 0.25
-2.91 2.37 —-26.57
492 —-4.03
1 —0.82 9.13 —30.60
9.13u — 0.82v = —0.07, u = —0.00745, (pe = 2.90255,
—30.60u +9.13v = 025, lv= 000241, |g = —4.91759;
1 S 3 -5 -9
—2.90255 —6.08795 —5.31062 —0.01097| —2.90255
4.91759 10.31440 8.99742| 4.91759
1 2.09745 1.82964 0.00378 —0.01355
—2.90255 2.33684 —26.36697
4.91759  —3.95915
1 —0.80510 9.08407 —30.32612
9.08407u — 0.80510v = 0.00378, u = 0.000403,
—30.32612u + 9.08407v = —0.01355, v = —0.000146,
p, = 2.902953,
1 S 3 -5 -9
—2.902953 —6.087629 —5.312715 —0.000026 | —2.902953
4.917736 10.312724 8.999983| 4.917736
1 2.097047 1.830107 0.000009 —0.000043
—2.902953 2.339507 -—-26.380150
4917736  —3.963233
1 —0.805906 9.087350 —30.343383
{ 9.087350u — 0.805906v =  0.000009 , {u=0.00000081,
—30.343383u + 9.087350v = —0.000043 , lv = —0.00000202 ,

P 2.902954 ,
g, - —4.917738 .
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The errors in p, and g, are probably less than one unit in the last place. One
more synthetic division finally gives the approximate factorization:

Xt 4+ 5x* 4+ 3x*—~5x—-9
~ (x* + 2.902954x — 4.917738)(x* + 2.097046x + 1.830110).

2.4. Graeffe’s root-squaring method

Consider the equation x* + a,x*' + ... + a, = 0. For the sake of simplicity,
we suppose all roots to be real and different from each other. Collecting all
even terms on one side and all odd terms on the other, we get

(xn + azxu—! + a‘xn—l + .. ')2 — (alxu—l + aaxﬂ—x -}- abx!l—b [ .)! .
Putting x* = y, we obtain the new equation

}’"+b|}"_l+bz}’“_z+"‘+b,‘=o

with
b, = —al + 2a,,
b, = a} — 2a,a, + 2a,,
by = —a} + 2a,a, — 2a,a; + 2a,,
by = (=1yrai,
or
(=D, = a} — 2a,_ja,,, + 2a,_a,,, —--- . (2.4.1)

The procedure can then be repeated and is finally interrupted when the double
products can be neglected, compared with the quadratic terms on formation of
new coefficients. Suppose that, after m squarings, we have obtained the equa-
tion x* + A,x*~' 4 ...+ A, = 0 with the roots ¢,, ¢,, . . ., ¢,, While the original
equation has theroots p,, p,, ..., p,. Theng, = pi”, i = 1,2, ..., n. Further,
suppose that [p,| > |py| >+ > [p,land |/ > |g:| >---> |q.].* Hence

4=-Xq=—q,
A, = 32294 = 9. (2.4.2)
A= — Y9499 = —4:9:9:
and consequently,
q, = —A4,,
7= — A/, (2.4.3)

q.a = _As/Az ’

* The sign » means ‘‘much larger than.”



SEC. 2.5. ITERATIVE METHODS 33

Finally, we get p; by m successive square-root extractions of g,; the sign has
to be determined by insertion of the root into the equation.

EXAMPLE
xX*—8x*+17x —10=0,
(x* + 17x)* = (8x* + 10)*,
or, putting x* = y,
'~ 30 + 129y — 100 = 0.
Squaring twice again, we find
2 — 6422* + 10641z — 10* =0,
and

1w — 390882u® + 100390881y — 102 = 0.
Hence

|| = 1390882 = 5.00041,
|p,] = V/100390881/390882 = 2.00081 ,

|p,] = V' T0°;/T00390881 = 0.999512 .

The exact roots are 5, 2, and 1.

A more detailed description of the method can be found in [2]; the case of
complex roots has been treated particularly by Brodetsky and Smeal [3]. As
has been shown by Wilkinson [9] a well-conditioned polynomial may become
ill-conditioned after a root-squaring procedure; in particular this seems to affect
the complex roots.

2.5. Iterative methods

Strictly speaking, Newton-Raphson’s and Bairstow’s methods, which have been
treated above, could be considered as iterative methods. The latter can only
be used in a special case, while the former is general. It is also characteristic
for Newton-Raphson’s method that the derivative must be computed at each
step. We will now consider some methods which do not make use of the
derivative.

The first of these methods is due to Muller {4], and it is primarily
supposed to be useful for solution of algebraic equations of high degree with
complex coefficients. The general principle can be described as follows: Let

fx)=ax* +ax'+...+a,=0,

be the equation to be solved. Suppose that (x;_,, f;_,), (x;_,, fi_)), and (x;, f;)
are three points on the curve. We can then find a parabola y = ax* + bx + ¢
passing through these three points. The equation of the parabola can be written



34 EQUATIONS SEC. 2.5.

down directly:

_ (= x)(x = x) (x = X )(x — %)
= oz T Si-
R e L R T
(x — X ) (x = X;y)
+ fi-
(% — x;) (% — X;y)
This equation is obviously of the second degree and, as is easily found, it is

satisfied by the coordinates of the three points (cf. also Section 8.1). Putting
h=x—x,h =x; — %, hy_y = x;_; — x;_,, we obtain

(2.5.1)

(h + hoh . (h + h; + b )h
_hi—l(—hi—l - hi) f.-z * h\'—l ° (_hi) f‘_l

(h+h +h_)h+h) o 2.5.2

+ b T by, fi- (2.5.2)

Further, introducing 2 = h/h;, 2, = h;/h,_,, and §; = 1 + 2,, we get:

y:

y =5 @+ 1) - s = 2+ 1+ 3930

+ A+ DA+ 1 4+ 2721]
= 2 07V ficadl — fimiAi0: + [fik]
+ 207 ficadd — fimi0F + fi(A + 0D + f: - (2.5.3)

This expression is equated to zero and divided by f;4?, and we next solve for
1/2. With g, = fi,2 — fiuad) + A + 0,), we get

—2fd.
A=A, = o8 . 2.5.4
SV Ry ey ey 3 R
Since 2 = h/h; = (x — x;)/(x; — x;_,), a small value for 2 will give a value
of x close to x;. For this reason we should try to make the denominator of
(2.5.4) as large as possible by choosing the sign accordingly. Hence the result
of the extrapolation is

X1 = X; + Ay = X, + by, (2.5.5)

The process is conveniently started by making x, = —1, x, = 1, and x, == 0,
and further by using a, — a,_, + a,_, for f,,a, + a,_, + a, ,for f,, and a,
for f,, that is, 2, = —3 and A, = —1. This corresponds to the approximation
f=a, + a,_,x + a,_,x* close to the origin.

Muller’s method can be applied in principle to arbitrary equations, but so
far it seems to have been tried only on algebraic equations of high degree. The
experiences must be considered as quite good. The speed of convergence is
givenbye,,, =~ Ae, .6, ,¢,, orapproximately ¢, ,, ~ K- ¢,* (where 1.84 is the
largest root of the equation m* = m* + m + 1).
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We now take up a method designed for equations of the type
x = g(x). (2.5.6)

Starting with a suitable value x,, we form x,,, = g(x;) for i = 0,1,2,... If
the sequence x; has a limit &, it is obvious that ¢ is a root of (2.5.6). Any

y-9<x)i

[

AY ' AY

y=g(x)

(x1.x‘)

Y

- (Xo.X| )

A

(Xo,x1) (x1'X1)

¥x

s

Xo / Xo

(a) (b)

\

y=g(x)

=

¥x

Xo X0

© Figure 2.5 )
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equation f(x) = 0 can always be brought to this form, in fact, in an infinite
number of ways. In order to show that this choice is not insignificant, we con-
sider the equation x* — 2 = 0. Itisrewritten on one hand as (a) x = x* + x — 2
and on the other as (b) x = (2 + 5x — x*)/5. Starting with x, = 1.2, we get

the results:
(a) (b)
x, = 0.928 1.2544
x, = —0.273 1.2596
x, = —2.293 1.2599

x, = —16.349 1.25992

The correct value V2 =~ 1.259921 was completely lost in (a) but rapidly at-
tained in (b).

We will now examine the convergence analytically. Starting with x, = g(x,),
we find that x — x, = g(x) — g(x,) = (x — x,)g’(&,), with x, < & < x. Analo-
gously x — x, = (x — x,))g’(&)s .- -5 |x — x| = (x — x,_,)g'(6.—,)- Here x is
the wanted root of the equation x = g(x). Multiplying, we obtain: x — x, =
(x = x)8' (68’ (§1) « - - 8'(§umn)-

Now suppose that |g’(£,)] < m. Then we get |x — x,| < m" . |x — x|, and
hence we have convergence if m < 1, that is, if |g’(x)| < 1 in the interval of
interest. We attain the same result by simple geometric considerations (see
Fig. 2.5).

%t is also easy to give an error estimate in a more useful form. From
X — X,y =X— X, + X, — X,_,, We get, using x — x, = g(x) — g(x,_,)

|x = X0l S IX = x| + X, — Xl S |x = x| - 18760
+ |x~ - xu-ll <m- lx - xa-—l‘ + |xa - xu—ll .
Hence
|x - xu—ll S |xu _ xu—ll R
1 —m
and

m
1—m

lx - xu' S Ixu - xu—ll . (2‘5'7)
If in practical computation it is difficult to estimate m from the derivative, we
can use

PXass = x|

m = .
|xu - xu-ll

In particular, choosing g(x) = x — f(x)/f'(x) (Newton-Raphson’s method) we

find:
—h and g(x) = [x) | [x)

x,”_,zx—.i(x_')_:x = e e

Ty T S &) )
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Using the same arguments as before we get [x — x,| < |A|/(1 — M) where
M = [g’(¢.)| and ¢, lies between x and x,. But [x — x,,,| = M|x — x,| and
hence

Mih|

1-M

lx - xu+ll <

If we now assume that f(x)/f’(x) is monotonic we have

S JAEN)
LEI 1S (x)
Further, | f7(£,)/f"(§,)] < K, where K = sup| f”'(x)/f'(x)| taken over the interval

in question. Hence we have M/(1 — M) < Klh|/(1 — K|h]) and we finally
obtain

< = |h|.

Kht
x — —_
' xs+1| < = th,

in accordance with previous results.

EXAMPLE

x = % + sinx.
The iteration x,,, = % + sin x,, with x, = 1, gives the following values:

x, = 1.34, x, = 1.47,  x, = 1.495,
x, = 1.4971,  x, = 1.49729 .

For m we can choose the value m = cos 1.4971 = 0.074, and hence |x — x;| <
(0.074/0.926) - 0.00019 = 0.000015. In this case it is obvious that x > x,, and
this leads to the estimate

1.497290 < x < 1.497305 .
The correct value to six decimal places is x = 1.497300.

Previously we have worked under the tacit assumption that a solution exists
and that it is unique. We shall now discuss these questions to some extent
and also treat the problems of convergence speed and computation volume.
An equation f(x) = 0 can be brought to the form x = @(x), for example, by
defining p(x) = x — f(x)g(x). For solving the equation x = @(x) we consider
the iteration

Xop = P(X,) . (2.5.8)

If the relation & = @(§) is satisfied, ¢ is said to be a fix-point of @. If @ is
regarded as a mapping, it is possible to prove the existence and uniqueness of
a fix-point under various assumptions.

We now assume that the function ¢ is defined on a closed interval [a, b} and
that the function values belong to the same interval. We also suppose the
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function @ to be continuous in the Lipschitz sense. i.e., satisfying the condition
lp(s) — ()] < Lis — 1], 0<L<«<1, (2.5.9)

for arbitrary sand ¢. Obviously, this implies usual continuity, while the reverse
is not true (consider, for example, p(x) = 1/ x in [0, 1]). First we show the
existence of a fix-point. From the conditions above we have ¢(a) > a, p(b) < b.
The continuous function (x) — x is then >0 for x = a, <0 for x = b, and
consequently it must vanish in some point in the interval. To show the unique-
ness we suppose that there are two solutions £, and £,. Then we would have

160 — &l = @(&) — @(&)| < LI, — &) < |6, — &l

leading to a contradiction.
It is now easy to show that the sequence {x,}, defined by (2.5.8), converges
to &. For

Xusr — &l = lp(xa) — @O < Lix, — &[, ie., |x, — ¢ < Lvx, — €],

and lim,__ x, = £ since L* — 0. We now turn to the problem of convergence

speed and related to this the question of effectivity for different methods. If
we can find constants p > 1 and C > 0 such that

lim o = €l _ ¢ (2.5.10)
hintad |xn - el’
the convergence is said to be of order p while C is called the asymptotic error
constant. In particular, the convergence is linear if p = 1 (in this case C must
be <1) and quadratic if p = 2. The effectivity of a method naturally depends
on not only how fast the convergence is but also how many new evaluations s
of the function f and its derivatives are needed for each step (the unit of s is
often called Horner). Usually one neglects the fact that sometimes several extra
evaluations are needed to start the process. The effectivity index E is defined
through
E=p', (2.5.11)

and the method is better the larger E is (cf. [8]). We present a survey in the
following table.

Method s(Horners) P E
Fixed secant 1 1 1
Regula falsi 1 1.62 1.62
Muller 1 1.84 1.84
Newton-Raphson 2 2 1.41
Chebyshev 3 3 1.44
Multiplicity-indep. N.-R. 3 2 1.26
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Chebyshev’s formula has the form

Xopr = X, = f(X)[f(%2) = [Sx)IS" (N2 (%))

while the multiplicity-independent formula is

xn+l = xn - _f(xu)f(xn)/[f(xn)z - f(xu)f,(xn)] *

It seems fair to emphasize methods that do not require the derivatives, and
among these Regula falsi and Muller’s methods should be mentioned first. In
order to attain reasonably fast convergence, it is important that the starting
values are not too far out.

2.6. The Q-D method

This is a very general method, constructed by Stiefel, Rutishauser, and Henrici.
Its full name is the Quotient-Difference Algorithm, and it can be used for de-
termination of eigenvalues of matrices and for finding roots of polynomials.
In this last case the method works as follows. One constructs a rhombic pattern
of numbers e{¥’ and ¢{*':

()
4
e
() (0)
N el 9a el
: 2

q(z)/ \qu) q(o) +
P Ne 12 e 1 o0

- 6 3N 3
(3) (2 ~,m7

9 93 9 q"
e e eV

e;‘o )
Rules

In a rhomb with an e-element on top, the product of two elements is equal
to the product of the others, as indicated in the scheme.

In a rhomb with a g-element on top, the sum of two elements is equal to
the sum of the others, as indicated in the scheme.

Formulas

(M) plm) _ mtD) |, pin1)
9i+1 " € = g certl,

() (8) _ p(ntD) (nt1
> + e =gt + erih.

(2.6.1)

We will give at least some background to the Q-D method when used for alge-
braic equations. We take a polynomial P(x) of degree n with the simple roots

Xy X - 00y X, and 0 < |x,| < [x,| <--- < |x,|. Then 1/P(x) can be expressed
as a sum of partial fractions:

1 A, A A
= + 2 n . .6.
P(x) x-x x—x,+ +x—x (2:6.2)
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The terms on the right-hand side can be expanded in a geometric series:

A A 1 1 x xt
__'_:___'__—__A' __+__+_+...>,
x — x, x, 1 — x/x, x, x3 x3
Now put a; = — }7_ A,/xi*! to obtain:

P(x) =2 ax (2.6.3)

We compute the quotient between two consecutive coefficients:
a; _ (A7) + (A" + - - + (A3
&y (Af3) + (Aof%3) + -+ - + (4u/X3)
=1 1+ (AfA)O/x)™ + - - - + (Au/A)(x/%)
) 1+ (A A)(x)/%,)} + -+ + (Au/Al)(xl/xn)i
But since [x,/x,| < 1, k = 2,3, ...,n, we have for i — co:
lim g% = 1, (2.6.4)

oo x,

g =

In the same way it is easily shown that
tim Q20 —g" = L 4 () X)), (2.6.5)
i (X)/X,) X,
Replacing i by i + 1, we find:
tim (/%) — ¢ _ 1 L{L( ~ ﬁ);
goe (2/%,)* x, 4, X3
and subtracting:
im 470 — 4% _ (= - 1)L (1-2)
ime (Xy/X,) x, X,/ A
Introducing e’ = ¢“+V — ¢', we obtain:

. ety x
lim < =%, (2.6.6)
Lt -4 X,

Equation (2.6.4) gives the first root x,, while the second root x, is obtained by
eliminating x, from (2.6.6):
ety 1

lim G+ — | 2.6.7
lim g = (2.6.7)

It is now convenient to change notations so that the quantities g and e get a
lower index 1: ¢{*, €}, and so forth. Further, we introduce:
eit'i-l)
e(li)

i+1) (1)
@ty =g

Hence lim,__ ¢ = 1/x; lim;__ ¢{" = 1/x,.
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Further, a new e-quantity is introduced
e;i) - q;i+l) —_ q;i) + e;i-H) ,
and as before, it is shown that
($41)
lim & __ — %
xS

ime @V

Next ¢*’ is calculated, and it is now clear that the so-called rhomb rules have
been attained.

The initial values for solution of an algebraic equation by the Q-D method are
established by using a fairly complicated argument which cannot be reproduced
here. When we are looking for the roots of the equation

ax* +ax*'4...+a, =0,

the scheme ought to start in the following way:

€ 9 e, qs €+ Gur €4y 44 €,
_a 0 ..o 0 0
a,
0 4 il G 0
a, a, a,
0 0

All coefficients a, are supposed to be nonzero. If all roots are real and
simple, then with |x,| > |x,| >---> |x,|, we have

x, = limg{®.

N—s00

EXAMPLE
2x — 13x* —22x 4+ 3=0.
€, 9, e, 9, €, qs €y
6.5 0 0
0 g.192308 1.692308 | grgg7p —0.136364 130004 O
0 —0.377754 0.010169 0
7.814554 —1.440749 0.126195
0 0.069646 —0.000891 0
7.884200 —1.511286 0.127086
0 —0.013350 0.000075 0
o 7870850 0050 1497861  0-0000 0.127011
7.873391 ' —1.500408 —0:000006 557017 O
0 —0.000484 0
7.872907 — 1.499924
0 0.000092
7.872999 — 1.500016
0 —0.000018
7.872981 — 1.499998
0 73872084 0000003 55000
0 —0.000001 .

7.872983 — 1.500000
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The method can be made to work also for complex and multiple roots.
Details can be found, for example, in [5].

It may be observed that multiple roots of algebraic equations will give rise
to difficulties with any of the methods we have discussed here. Asa matter of
fact, all classical methods require a large amount of skill and good judgment
for isolation and separation of the roots. It has turned out to be unexpectedly
difficult to anticipate all more or less peculiar phenomena which can appear
in such special cases. Against this background, Lehmer [6] has constructed a
method which seems to be highly insensitive to clustering among the roots.
The method is founded on the well-known fact that the integral

_L_S @ g4,
2wi Je P(2)

where P(z) is a polynomial and C a closed curve (e.g., the unit circle), gives
the number of roots within C. Since we know that the value of the integral
isan integer, we can use fairly coarse methods for this evaluation. The method
converges geometrically with a quotient %, and rather long computing times
are necessary. On the other hand, this is the price one has to pay to get rid
of all complications.

2.7. Equations with several unknowns

We distinguish between linear systems of equations, which will be treated sepa-
rately in Chapter 4, and nonlinear systems, which may even be transcendental.
This latter case can sometimes be treated by a series-expansion technique. We
will here limit ourselves to two unknowns. Let the equations be

Fix,y)=0,
{G(x,y) =0.

Suppose that (x,, y,) is an approximate solution and let 4 and k be corrections
which we shall determine:

{F(xo‘*‘h’yo'*'k):o’
G(xo+ h,y, + k) =0.

Expanding in Taylor series and truncating after the first-order terms, we get:

F(xy, y,) + h (.ai)o + k (E)o =0,

ox dy
G(%sy0) + h (g_f)o + k(%)o —0.

This linear system in 4 and k gives the next approximation. In practical work,
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the derivatives can be replaced with the corresponding difference quotients,
and only the values of the functions have to be computed.

Another way which is sometimes practicable is the following. Let the system
be Fy(x,, X, ..., %) = 0; Fy(x}, X, ..., %) =0;...; Fy(x;, %, ...,x,) =0.
Form the function f(x,, x,, . . ., x,) = F} + F} 4 - - - + F} (where F, is supposed
to be real). Then we have f(x,, x,, ..., x,) > 0. A solution of the system
obviously corresponds to a minimum of f with the function value = 0. Starting
from some initial point (x5, x3, . . ., x3), we compute a number of function values
along the straight line x, = x3; x, = 3; ...; x, = x3, that is, only the first
variable x, is changed. On this line we search for a minimum (at least one
minimum is known to exist, since fis bounded downwards). The correspond-
ing value x, = xj is fixed, and then we repeat the whole procedure, varying
x, alone. After a sufficient number of steps, we reach a minimum point, and
if the function value is 0, it represents a solution. Alternatively, one can also
consider

Sy Xy oo x,) = |F| + |F| + -+ |F].

In both cases f = c represents a family of “equipotential” surfaces, and the
convergence will be particularly fast if the movements can be performed or-
thogonally to the surfaces. If this is the case, the procedure is called “method
of steepest descent.”
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EXERCISES

1. The equation x* = x* + x* + 1 has one root between 1 and 2. Find this root to
six decimals.

2. The equation x* — 5x* — 12x* 4 76x — 79 = 0 has two roots close to x = 2. Find
these roots to four decimals.
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3. Solve the equation log x = c0s x to five correct decimals.

4. Find the smallest positive root of the equation tan x + tanh x = 0 to five correct
decimals.

s. Find the abscissa of the inflection point of the curve y = ™ log x to five correct
decimals.

6. What positive value of x makes the function y = tan x/x* a minimum?
7. The mean-value theorem states that for a differentiable function,

fix) — fla)=(x —a) - f'la + p(x — a)].
Find a positive value x such that p = } when f{x) = arctan x and @ = O (five decimals).

8. Whena > 1 and 0 < b < 4, the equation 1/(e*/* — 1) —a/(e* ~ 1) —(@a— 1)b=0
has one positive root. Calculate this root to four decimals when a = §, b = }.

9. The function

1.00158 — 0.40222x _ _,
1 + 0.636257x ’

y=

is examined for 0 < x < 1. Find the maxima and minima (also including the end points)
and sketch the corresponding curve (five decimals).

10. Find the smallest value of @ such that a+/x > sin x for all positive values of x
(five decimals).

11. Determine to five decimals the constant K such that the x-axis is a tangent of the
curve y = Ke*/** — log x (x > 0).

12. Find the smallest value a such that e™** < 1/(1 4+ x*) for all x > 0 (six decimals).

13. Calculate the area between the two curves y =cosx and y = ¢™* (0 < x < n/2;
five decimals).

14. One wants to compute the positive root of the equation x = a — bx* (a and b
positive) by using the iterative method x;,; =a — bxi. What is the condition for
convergence?

15. The iterative method x,,, = f(x,) for solution of the equation x = f(x) when con-
verging has an error which decreases approximately geometrically. Make use of this
fact for constructing a much better approximation from three consecutive values x,_,,
Xn, and Xy 4g.

16. Find the smallest positive root of the equation

x! 3 4

X X
L=x+y ~ Gy T ey

e =

correct to four decimals.
17. Find the intersection between the curves

{y:e’—z,
y=log(x+2),

to four decimals (x > 0).
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18. For values of & slightly less than 1, the equation sin x = kx has two roots x = + x,
close to 0. These roots can be computed by expanding sin x in a power series and puttipg
6(1 — k) = 5; x* = y. Then s is obtained as a power series in y. Next, a new series
expansion is attempted: y = 5 + a,5* + a,5° + a,s* + - - -, with unknown coefficients a;,
@y, ay, ... Find the first three coefficients, and use the result for solving the equation
sin x = 0.95x (six decimals).

19. The k-fold zero £ of the equation f{x) = 0 shall be determined. If k = 1, Newton-
Raphson’s method gives a quadratic convergence, while k > 1 makes the convergence
rate geometrical. Show that the modified formula

I (C.))
Xpsy = Xu — k -fL"(x_,.)

will always make the convergence quadratic in the neighborhood of ¢. Use the formula
for finding a double root close to zero of the equation x* — 7x* -+ 10x* + 10x* — 7x 4+ 1 =0.

20. Solve the equation x* — 5x* — 17x + 20 = 0 by using Graeffe’s method (squaring
three times).

21. Find a constant c such that the curves y = 2sin x and y = log x — ¢ touch each
other in the neighborhood of x = 8. Also calculate the coordinates of the contact point
to five places.

22. Determine the largest value a, of « so that x'/* > log x for all positive values of
x. If a > ay, the inequality is not satisfied in a certain interval of x. Find the value
of a for which the length of the interval is 100 (two places).

23. If one attempts to solve the equation x = 1.4 cos x by using the formula x,,, =
1.4 cos x,, then in the limit, x, will oscillate between two well-defined values @ and b.
Find these and the correct solution to four decimal places.

24. The equation 1 — x + x*/2! — x*/3! +... — x"/n! = 0 (n an odd integer) has one
real solution ¢ which is positive and, of course, depends upon n. Evaluate lim,_..£/n
by using Stirling’s asymptotic formula (n — 1)! ~ +/2ze "n* V2,

25. The curves 3x* — 2xy + 5y* — Tx + 6y — 10 =0 and 2x* + 3xy — y* —4 =0
have one intersection point in the first quadrant. Find its coordinates to four places.

26. The equation tan x = x has an infinite number of solutions drawing closer and
closertoa=(n+ y)r,n=1,2,3, ... Putx = a — z, where zis supposed to be a small
number, expand tan z in powers of z, and put z = Aja + Bja* + C/a® + ... Determine
the constants 4, B, and C, and with this approximation compute the root corresponding
to n = 6 to six decimals.

27. The equation sin x = 1/x has infinitely many solutions in the neighborhood of the
points x = nx. For sufficiently large even values of n, the roots &, can be written as
nt +a+ Aa’ + Ba® + Ca’ + ..., where A, B, C, ... are constants and o — 1/nz. Find
A and B.

28. Solve the equation x* — 8x° + 39x* — 62x + 50 = 0, using Bairstow’s method.
Start with p = ¢ = 0.

29. The equation sin (xy) = y — x defines y as a function of x. When x is close to
1, the function has a maximum. Find its coordinates to three places.
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30. The equation f{x) = 0 is given. One starts from x, = & + ¢, where £ is the un-
known root. Further, y, = fix,), X, = X, — fix,)!f'(x,), and y, = f{x,) are computed.
Last a straight line is drawn through the points

Xo+ X1 Yo
(*,,y)) and ( ! ,2).

If ¢ is sufficiently small, the intersection between the line and the x-axis gives a good
approximation of ¢. To what power of ¢ is the error term proportional?

31. Let {x;} be a sequence defined through z; = x; — (dx;)*/4*x;, where 4x; = x;,, — X;,
Boxi=X00— 2% 01 + X;0 Compute lim;_..(z; —a)/(x; —a) When x;,, —a=(K+a;)(x;—a)
with |K] < 1 and ¢; 0.



Chapter 3

Matrices

A good notation has a subtlety and
suggestiveness which at times make it seem
almost like a live teacher.

BERTRAND RUSSELL.

3.0. Definitions

Matrix calculus is a most important tool in pure mathematics as well as in a
series of applications representing fields as far apart from one another as
theoretical physics, elasticity, and economics. Matrices are usually intro-
duced in connection with the theory of coordinate transformations, but here
we will, in essence, treat them independently. The determinant conception is
supposed to be known although the fundamental rules will be discussed briefly.

Unless specified otherwise, the numbers involved are supposcd to be complex.
A matrix is now defined as an ordered rectangular array of numbers. We denote
the number of rows by m and the number of columns by n. A matrix of this
kind will be characterized by the type symbol (m, n). The element in the ith
row and the kth column of the matrix 4 is denoted by (4),, = a,,. The whole
matrix is usually written

a,, ay a,,

a a a

a1 33 3
A=1. "1,

a a a

=1 m3

or sometimes in the more compact form
4= (a,).

In the latter case, however, it must be agreed upon what type of matrix it is.
If m = n, the matrix is quadratic; when m = 1, we have a row vector, and for
n =1, a column vector. 1If m = n = 1, the matrix is usually identified with
the number represented by this single element. In this and following chapters
small letters printed in boldface indicate vectors, while capital letters in bold-
face indicate matrices.

3.1. Matrix operations

Addition and subtraction are defined only for matrices of the same type, that is,
for matrices with the same number of rows and the same number of columns.

47
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If A and B are matrices of type (m, n), then C = 4 + B is defined by ¢, =
a, + b,,. Further, if 1 is an ordinary number, 14 is the matrix with the
general element equal to Aa,,. If all a;, = 0, the matrix is said to be a null
matrix.

The definition of matrix multiplication is closely connected with the theory
of coordinate transformations. We start with the linear transformation

z‘=i:a‘,y, i=12,...,m).
r=1

If the quantities y,, y,, ..., y, can be expressed by means of the quantities
Xy, X5, - - ., X, through a linear transformation

y,:ib,,x, r=12,...,n),
k=1

we find by substitution

P
kE (E a,b,)x, .
=1

r =1

b,.x,
1

Z‘. = a.

ir
r=1 k

Il

» bd

In this way we obtain z;, expressed directly by means of x, through a composed
transformation, and we can write

P . »
Zg = ) CuXy with Cu =Y, a,b,.
k=1 r=1

In view of this, the matrix multiplication should be defined as follows. Let 4
be of type (m, n) and B of type (n, p). Then C — AB if

u =3 a,b,, (3.1.1)
r=1
where C will be of type (m, p).
It should be observed that the commutative law of multiplication is not
satisfied. Even if BA is defined (which is the case if m = p), and even if BA
is of the same type as 4B (which is the case if m = n = p), we have in general

BA + AB.

Only for some rather special matrices is the relation 4B = BA valid.

Transposition means exchange of rows and columns. We will denote the
transposed matrix of 4 by A7. Thus (47),, = (A),;. Conjugation of a matrix
means that all elements are conjugated; the usual notation is 4*. If a matrix A
is transposed and conjugated at the same time, the following symbol is often
used:

(A#)T = (AT)# — AH.

Here we will treat only quadratic matrices (n, n), row vectors (1, n), and

column vectors (n, 1). First of all, we define the unit matrix or the identity

matrix I
(l)ik = 3;& ’
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where §,, is the Kronecker symbol

0 if i#k,
3.‘! - . .
1 if i=k
Thus we have
1 0 0

0 0 0-.--1

In a quadratic matrix, the elements a,; form a diagonal, the so-called main
diagonal. Hence the unit matrix is characterized by ones in the main diago-
nal, zeros otherwise. Now form Al = B:

»
b, = Easran = Qi
=

since §,, = | only when r = k.
Analogously, we form I4 = C with

Co = gaivark = Qg -
Hence
Al = IA = A.

The sum of the diagonal elements is called the trace of the matrix:
Trd = Z': a;.
=1

A real matrix A is said to be positive definite if x¥Ax > 0 for all vectors x = 0.
If, instead, x”4x > 0, A is said to be positive semidefinite.

The determinant of a matrix 4 is a pure number, denoted by det A4, which
can be computed from A by use of certain rules. Generally, it is the sum of
all possible products of elements where exactly one element has been taken from
every row and every column, with a plus or a minus sign appended according
as the permutation of indices is even or odd.

detd =) + @iy, -Gy .

The formula can be rewritten in a more convenient way if we introduce the
concept of algebraic complement. 1t is defined in the following way. The alge-
braic complement A,, of an element a,, is

Ay = (—1)y*deta,,

where a;, is the matrix which is obtained when the ith row and the kth column
are deleted from the original matrix. Thus we have

det 4 = Zﬂ: aud, = "Z;a‘,tfl“t .
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Further,
ga‘,‘A“ =0 if i#j,

and

a,d, =0 if j£k.

=1

The general rule is impossible to use in practical work because of the large
number of terms (n!); already for n = 10, we get more than 3 million terms.
Instead, the following rules, which are completely sufficient, are used:

1. A determinant remains unchanged if one row (column) multiplied by a
number 2 is added to another row (column).

2. If in the ith row or kth column only the element a,, = 0, then

det 4 = (- 1)it*q, det a;, = a,A,, .
A= (a b)
c d/’

a bl:ad—bc.
c d

3. If

then

det 4 =

From these rules it follows, for example, that det4 = 0 if two rows or
two columns are proportional or, more generally, if one row (column) can
be written as a linear combination of some of the other rows (columns).

If det 4 = 0, A is said to be singular; if det A = 0, A is regular. Further, if
AB = C, we have det A det B = det C.

Now let 4 be given with det4 = 0. We will try to find a matrix X such
that 4X = I. When formulated algebraically, the problem leads to n systems
of linear equations, all with the same coefficient matrix but with different
right-hand sides. Since A is regular, every system has exactly one solution
(a column vector), and these n column vectors together form a uniquely de-
termined matrix X. In a similar way, we see that the system Y4 = I also
has a unique solution ¥. Premultiplication of 4X = I with ¥ and postmulti-
plication of ¥4 = I with X give the result

YAX=YI=Y; YAX=IX=X,

and hence X = Y. In this way we have proved that if A is regular, a right
inverse and a left inverse exist and are equal. The inverse is denoted by 47"

AA7' = A4 =1.

Last, we form a new matrix C with the elements ¢;, = 4,;. The matrix C is
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called the adjoint matrix of A and is sometimes denoted by A. From the ex-
pansion theorem for determinants, we get
AA = A4 = (det A)I,
or _
A~ = (et 4)'A4 . (3.1.2)

3.2. Fundamental computing laws for matrices

As is understood directly, the associative and commutative laws are valid for
addition:
(A+B)+C=4+ B+ C),

A+ B=B+ A.
Further, the associative and distributive laws for multiplication are fulfilled:
(AB)C = A(BC),
A(B + C) = AB + AC,
(4 + B)C = AC + BC.
For transposing, we have the laws
(A + B)f = A7 + BT,
(AB)T = BTAT,
and for inversion,
' (AB)™ = B4,
First, we prove (4AB)" = BTA". Put A" = C, B" = D, and AB = G. Then
¢ = a;, d;, = b,;, and further
(C")ix = s = 2o @b, = 3 cdi, = Y di ¢, = (DC),, .
Hence G = DC or (AB)" = B"A". It follows directly from the definition that
(AB)™ = B4, since
(AB)(B~'A™") = (B'A™")(AB) = I.

From the definition of the inverse, we have 44-! = I and (A7)7'4" = L.
Transposing the first of these equations, we get (47)7A” = I, and comparing,
we find (47)7! = (47)7.

If in a determinant, n — p rows and n — p columns are removed, we obtain
a minor or subdeterminant of order p. If the matrix A has the property that
all minors of order r + 1 are zero, while there is at least one minor of order
r which is not zero, the matrix A is said to be of rank r.

Suppose that we have n vectors u,,u,, . . ., u, (row vectors or column vectors),
each with n components. If the relation

cu, + cy +---+cu, =0



52 MATRICES SEC. 3.3.

has the only solution¢, = ¢, =---= ¢, = 0, the vectors are said to be linearly
independent. In this case they form a basis, and every n-dimensional vector can
be written as a linear combination of the base vectors.

If a matrix is of rank r, an arbitrary row vector or column vector can be
written as a linear combination of at most r vectors of the remaining ones,
since otherwise we would have r + 1 linearly independent vectors and the
rank would be at least r + 1. Hence we can also define the rank as the num-
ber of linearly independent row vectors or column vectors.

A system of n vectors u; in n dimensions such that ufu, = §,, is said to be
orthonormal. An orthonormal system can always be constructed from n linearly
independent vectors through suitable linear combinations.

3.3. Eigenvalues and eigenvectors

If for a given matrix 4 one can find a number 2 and a vector u such that the
equation 4u = JAu is satisfied, 2 is said to be an eigenvalue or characteristic value
and u an eigenvector or characteristic vector of the matrix 4. The equation can
also be written

A—-Hu=0.

This is a linear homogeneous system of equations. As is well known, non-
trivial solutions exist only if det(4 — iI) = 0. Thus we obtain an algebraic
equation of degree n in 2. Explicitly, it has the following form:

a, -1 a, Ay - a,.
a, ay — 2 Ay -~ Qs -0 (3 3 l)
a.nl Ay Quy **+ Quyy — A

We notice at once that one term in this equation is

(@ — )@y — 2) -+ (a0 — )

and that all other terms contain 2 to at most the (n — 2)-power. Hence the
equation can be written:

—(@y+ay+---+a,)A" '+ 4+ (=1)*detd =0.
Thus

L3

A, =Trd; J[4=detd. (3.3.2)
i=1 i=1

Equation (3.3.1) is called the characteristic equation; the roots are the n
eigenvalues of the matrix 4. Thus a square matrix of order n has always
n eigenvalues; in special cases some or all of them may coincide.
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If the equation Au = iu is premultiplied by A, we get A'u = 24u = Ay
and, analogously, 4™« = 2=u. From this we see that if 4 has the c?ngenvalues
A A3 -+ -» A, then A= has the eigenvalues 27, 27, .. ., 47, and the eigenvectors
are the same. Putting S, = 37_, 27, we have directly Tr 4” = §,.

Now we suppose that the characteristic equation of 4 has the form

fF)=x+ex ' +..-4¢,=0.

Then we also have

fx) = (x — )X — 2) -+ (x — 2,)
f'(x): ﬂX) + f(X) ++—M—.

x — 2 x — 2, X - A,

and

The quotient f{x)/(x — 2) is easily obtained:
l(__")l =x"T+@+) P+ B+ d+ )Xt e,
X —
and summing these equations for 2 = 2,, 4,, ..., 4,, We find
S(x) = nx*= 4+ (S, + ne)x** + (S, + 6,8, + ne;)x* 4 ...
Identifying with f'(x) = nx*~' + (n — l)c,x*~* + ..., we get
S, +¢=0,
S,+C,S1+2L‘,:0,

St + Sp g+ + CucaSy + (” - l)c-—l =0.
Last, we form f(2,) + f{4,) +-- - + f(2,) = 0, and obtain
S, +¢ S, +--+¢c,_Si+n, =0,

These are the well-known Newton identities. The coefficients of the charac-
teristic equation can be computed by solving recursively a linear system of
equations containing Tr4, Tr 4%, ..., Tr4*. This method has been given by
Leverrier, who, in about 1840 (together with Adams), computed the position
of Neptune from observed irregularities in the orbit of Uranus.

If a matrix B is formed from a given matrix 4 by B = S~'4S, where S is
a regular matrix, A4 is said to undergo a similarity transformation. 1t is easy
to prove that the characteristic equation is invariant during such a transfor-
mation, since

det (B — AI) = det [S~Y(4 — AI)S])
= det S-'det (4 — al)det S = det (4 — 2I).
(We have, of course, det S—*det S = det (S-'S) = 1.)
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Hence 4 and B have the same eigenvalues. If u is an eigenvector of 4, and
v is an eigenvector of B, both with the same eigenvalue 2, we have

Au = u; Bv = iv.

But B = S'4S, and consequently, $~'4Sv = iv or A(Sv) = A(Sv). Hence
Swv is an eigenvector of 4 corresponding to the eigenvalue 2, and we have

u=3S5v.

Because the determinant remains constant when rows and columns are inter-
changed, the eigenvalues of 4 and 47 are the same, while the eigenvectors, as
a rule, are different.

We will now suppose that all eigenvalues of the matrix A are different, and
further, that the eigenvectors of 4 and A7 are u, u,, ..., u4,,and v, v,, ..., D,
respectively. Thus we have

Au; = u; ,
A", = 2,0, .
The first equation is transposed and multiplied from the right by o,.
Ul A", = Julv, .
The second equation is multiplied from the left by u?.
ulA™v, = Julv, .

Subtracting, we find (2; — A, )ulv, = 0 or a7, = 0, since 2, = 1,. The two
groups of vectors u; and v, are said to be biorthogonal. Using the fact that an
arbitrary vector w can be repesented as w = 3 ¢;; we see that uTv; = 0, be-
cause u]v, = 0 would imply a7w = 0 and u, — 0. Since the eigenvectors are

determined, except for a constant factor, it is obvious that they can be chosen

to satisfy the condition &{v; = 1. From the column vectors u,, u,, . . ., u, and
v, 0,...,0,, we form two matrices, Uand ¥, and further from the eigenvalues
A5 4y - .., A,, @ diagonal matrix D. Then we have directly

uv=vio=1,
that is
Ut -- V_’; VT =U".
Further, we have AU = UD and A"V = VD and, consequently,
UAU = V'A™V =D.

This is an example of the transformation of a matrix to diagonal form.

In the special case when 4 is symmetric, we get U = V and UT = U-'.
A matrix with this property is said to be orthogonal. Usually this concept is
obtained by defining a vector transformation

x=0u; y = Ov
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and requiring that the scalar product be invariant. Thus
xTy = (Ou)TOv = uTOT0v = u'™D,

which gives 070 = I. Later on we will treat special matrices and their
properties in more detail.

We will now take up the problem of giving estimates for the eigenvalues
of a matrix 4. Suppose that 2 is a characteristic value of A with the corre-
sponding eigenvector x. The components of x are denoted by x;, Xy, . . ., X,.
Choose M in such a way that |x,| = max, |x,|. Then we have directly

AXy = Z”:a,,x,
r=1
and
|2| |xM| = |E alrxrl S E |aMrI |xr| S lxM| E laMr' ’

from which we obtain the estimate
2l < 37 lay,l -
r=1

However, in general, M is not known and instead we have to accept the some-
what weaker estimate

2] < max 3 |a . (3.3.3)

The transposed matrix has the same set of eigenvalues and hence we also
have the estimate

4] < max 3 gl (3.3.4)

=1

and the better of these estimates is, of course, preferred. Writing
(A — Gyu)Xy = 3 Ay X,
reM
we find in an analogous way

12 — @y < 3 lau.l

reM

2 — ayyl < E |@,xl -

reM

Introducing the notations P; = 33, _.|a,land Q; = 3, .. |a,]|, we can formulate
the inequalities as follows. Any characteristic value 2 must lie inside at least
one of the circles

A — ayl < P, (3.3.5)

and also inside at least one of the circles

2 —ayl < Q. (3.3.6)



56 MATRICES SEC. 3.3.

Suppose that we have a matrix 4 which can be transformed into diagonal
form: $7'48 = D. Using the previous inequalities on the matrix D, we find
trivially |2 — 2,| < 0, which means that the circles have degenerated to points.
Now assume that § = S.S, - - - S,, where every S, induces a “small” change
of A. Then we can gradually transform D back to 4. The points will then
become circles which grow more and more. From the beginning the circles are
disjoint and every circle contains exactly one eigenvalue. If two circles overlap
partially, then exactly two eigenvalues are included, and so on. In this way
one can often get more precise information on the distribution of the eigen-
values, at least so far as the domains are disjoint.

Combining the obtained inequalities, one can easily understand that all
eigenvalues must lie inside the intersection of the union of the first group of
circles and the union of the second group of circles.

The estimates discussed above are usually attributed to Gershgorin, but
they have been improved by Ostrowski, who found that P; and Q, could be
replaced by R, = P{QI" (0 < a < 1). When a = 0 or a = 1, the inequali-
ties of Gershgorin appear again.

Finally, Brauer has shown that the two unions of n circles each can be
replaced by two unions each consisting of n(n — 1)/2 Cassini ovals

|z — a;4| |2 — a,,| < P,;P, (k>j; j:l(l)n—~l)

and |z — a4 |z — a,,| < Q,;0,, respectively, and all eigenvalues lie within the
intersection of these two unions.

Here we will also show how an approximate eigenvalue can be improved if
we also know an approximate eigenvector. Let 4 be a given matrix, 1, and x
be an approximate eigenvalue and eigenvector, 2 = 1, + d4 and y be the exact
eigenvalue and eigenvector. Then

Ax — lx = ¢,
iAy—(Zo+5z)y=0.

Hence x™4 = 2,x™ + €7 and x"dy = 2,x"y + €”y. On the other hand, x"4y =
(4, + 62)x"y, and comparing we get:

EXAMPLES
1.

[ 3 2 T
A=|-1 0 5.
4 -3 6

We find that 2 must lie inside the union of the circles

|2 —-3]<9; [ < 65 |2 —6]<7
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and also inside the union of the circles
=35 1Al <55 2 -6 <12.

In the first group, 2| < 6 is a subset of |2 — 3] < 9. In the second group, the
first two circles are subsets of the third. Hence the final domain is the union
ofl—3<9and |2 -6[ < 7.

Since max, 3}%_, |a,| = 13and max, 37 _ |a.] = 18, wealso have || < 13,
but this condition gives no improvement. The eigenvalues are approximately
9.56 and —0.28 + 3.50i and clearly lie inside the domain which has just been
defined.

2.
0 7 8 7 0.53
7 5 6 S 0.38
A4=1g 6 10 of A=305 x=l4
7 5 9 10 0.52
We find that
0.10
_fo.11
¢=10.20
0.16

and 621 = 0.288. Hence 2 ~ 30.288 (the exact eigenvalue is 2 = 30.288685).

The treated case concerning localization of characteristic values of a matrix

can easily be generalized to arbitrary algebraic equations. Consider the equation
fRy)=+az'+...4+a,=0.

This equation can be understood as the characteristic equation of a certain
matrix A4:

0 0...0 —a,
1 0..-0 —a,_,
A=10 1...0 —a,_,].

6 0.1 —a

This is the so-called companion matrix, with the characteristic equation
det (4 — aI) = O or

- 0 0 —a,
I -2 0 —a,,
=0.
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We multiply the last line by 2and add to the preceding one, multiply this line
by 2, and add to the preceding one, and so on, and in this way we find f{2) = 0.

Now we use the estimates with P; and Q, and obtain the result: Every root
of the equation f{z) lies inside one of the two circles

Zl=1, |z+al=Xlal.
r—=2
Every root also lies inside one of the two circles
|z} = max (max 1 + |a,), |a,.|) and |z +a| =1.
1<r<n

The estimate |2] < max, }J7_ |a,,| gives the sufficient condition 37 _ |a,| < 1
that all roots of the equation f(z) = 0 lie inside the unit circle. Naturally, this
is easy to prove directly. Supposing that f{z) = 0 has a root z, whose absolute
value is r > 1, we find that

2= —(az3' +---+ a,)
and
= a4+ ay)
Slafrr= g ro=2 e e, < rTi(lay] + ] 40 - 4 e, ]) < et
which is absurd.

3.4. Special matrices

In many applications real symmetric matrices play an important role. How-
ever, they are a special case of the so-called Hermitian matrices, characterized
through the property H” = H. Such matrices are extremely important in
modern physics, and, to a large extent, this is due to the fact that all the
eigenvalues of any Hermitian matrix are real. Let 2 be an eigenvalue and u
the corresponding eigenvector:

Hu = Ju. (3.4.1)
We get by transposing and conjugating:
u'H" = u"H = 1*u” . (3.4.2)

Premultiplication of (3.4.1) by u* and postmultiplication of (3.4.2) by u gives
u’Hu = 2*u'u = u"u,

and since u¥u = 0, we get 1* = 1, that is, 1 real. Again we return to (3.4.1).
The condition H* = H can also be written H” = H*. Conjugating (3.4.1),
we get

H*u* = H™u* = Ju*,
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which means that u* is an eigenvector of HT if u is an eigenvector of H, while
the eigenvalue is the same. We then repeat the argument of Section 3.3, where
the eigenvectors were composed of matrices U and V with UTV = I. As has
just been proved, we have for Hermitian matrices ¥ = U* and Uru* = I, or
after conjugation,

Ut = U, (3.4.3)

Matrices with this property are said to be unitary, and hence we have proved
that a Hermitian matrix can be transformed to a diagonal matrix by use of a
suitable unitary matrix. Previously we have shown that a real symmetric
matrix can be diagonalized by a suitable orthogonal matrix, which is obvi-
ously a special case of this more general property. The special case is well
known from analytic geometry (transformation of conic sections to normal
form).

We have seen that Hermitian matrices can be diagonalized by unitary
matrices. It might be of interest to investigate if such transformations are
always possible also for larger groups of matrices than Hermitian. We shall
then prove that a necessary and sufficient condition that 4 can be diagonalized
with a unitary matrix is that 4 is normal, that is, A4 = AA". This condition
is trivially satisfied if 4 is Hermitian.

(1) The condition is necessary, for if U4U" = D, we get A = U"DU and

AA" = U"DUU"D"U
= U'DD"U = U"D"DU = U"D"UU"DU = A%A.

1l

(2) The condition is sufficient, because according to Schur’s lemma (which
is proved in Section 3.7) an arbitrary matrix 4 can be factorized in U’TU
where T is, for example, upper triangular. The condition 44% = A4 im-
plies U"TUU"T"U = U"T"UU"TU, that is, TT* = T"T. We now compare
the (1, I)-element on both sides and find:

Eltulz:"qu that is, e =0, k£k=2,3,...,n.

k=1

Next we compare the (2, 2)-element:

g l’zklz = |’zz|z

(since #,, = 0)and hence f,, = 0,k = 3,4, ..., n. Consequently T is not only
triangular but also diagonal.

~ Consider Ux = 2x, where U is a unitary matrix. Transposing and conjugat-
ing, we find that x#U¥ = x¥U~! = 2*x". Postmultiplication with Ur = ix
gives us x*U~'Ux = 2*ix"x, and since x“x > 0, we get |2| = 1.
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Analogous calculations can be performed also for other types of matrices,
and the result is presented in the table below.

Type of matrix  Definition Eigenvalues Eigenvectors
Hermitian A" =4 A real u complex
Real, symmetric AT = A4* =4 A real u real
Anti-Hermitian A% = - 4 A purely imaginary u complex
Antisymmetric AT = — 4 If 2+ 0, then
Wwu=0
Real, AT = —A; A* = A 2 purely imaginary s complex
antisymmetric (or 0) (except when 2 = 0)
Orthogonal AT = 47! If 2 +1, then
uu=0
Real, orthogonal AT = A~ 4* =4 || =1 u complex
Unitary A¥ =A™ 2] =1 u complex

Finally, we point out that if U, and U, are unitary, then also U = U0, is

unitary:

U¥ = URUF = U0 = (QU)™ = UL,
Similarly, we can show that if O, and O, are orthogonal, then the same is true
for O = 0,0,. For a real orthogonal matrix, the characteristic equation is real,
and hence complex roots are conjugate imaginaries. Since the absolute value
is 1, they must be of the form e*, e~*; further, a real orthogonal matrix of odd
order must have at least one eigenvalue +1 or —1.

Wilkinson [10] has obtained rigorous error bounds for computed eigensys-
tems,and we shall here give a brief account of his result for Hermitian matrices
defined through the property H” = H. Letu,, u,, ..., u, be an orthonormal
set of eigenvectors of the Hermitian matrix H corresponding to the real eigen-
values 1,, 4,, . .., 4,. Further, let 2 be an approximate eigenvalue and x the
corresponding approximate eigenvector assumed to be normalized. Then

»
x = E au; ,
=1

and further
xix = 3 laft = 1.

s=1

Let the residual vector be r = Hx — ix, with the Euclidean norm ¢ (cf. 3.6)
such that r¥r = ¢*. Then we shall prove that for at least one eigenvalue we
have {2, — 2| < e. Rewriting r we find

r= E (2, - l)a,-'l; ’
1
and therefore

e =3 04— A lalf.
1
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Now, if |3, — 4| > ¢ for all i, then we would get

30k = At > @3 el = et

1 1

and hence we conclude that |2, — 2| < ¢ for at least one value of i. So far,
we have not used the fact that H is Hermitian.
Now we seek a real value g which minimizes the Euclidean norm of Hx — px.

|Hx — px|* = (Hx — px)¥(Hx — px) = x"H'x — 2ux"Hx + p*.

Hence we get ¢ = x*Hx, which is the so-called Rayleigh quotient. [If x is not
normalized, we get instead x”Hx/x"x; cf. (6.1.5)]. Using the notation 2, for
o, we obtain the residual vector r = Hx — 1,x with the norm ¢, where rir = ¢,
We suppose that 2, is close to 4, and that |2, — ;| >afori=2,3,...,n.
We know, of course, that |1, — 2,| < ¢, but it is possible to find a much better
result. For, by definition,

A = x"Hx = (E a.-‘".")(E aizc".‘) =30 A |ay?

and
Hx — 2;x = 3o a(X — Ap)u; .
1
Thus we get
|Hx — 2% = }; lasl* 12 — g < €,
and hence a fortiori
&> ailt|A — 2, > a 2l
2 2
Thus
: _ _ » 62
lay|* =1 ;lael’z I-—.
From 2, = 27 2; |a;|*, we further obtain
Ap Zl: la|* = 1E A lag?

or

el (2 = 2) = 33 (& ~ Aa) el

Hence

la* 12, — 4] < ’E 4 — A |ex|*

» ln 2
i =2 zaiz 2 A, — 2, el £
= Do el < L - e < £

-5 (- £)

and
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In this derivation a few additional computations gave an improved eigenvalue
together with an error bound for this new value.

EXAMPLE
10 7 8 7 0.53
7 5 6 5 0.38
H=13% 6 10 9|° *=lo.ss
7 5 9 10 0.52

We then find x”Hx = 30.2340, x"x = 0.9982, and s« = 30.2885 (the correct
eigenvalue is 2 = 30.288685).

3.5. Matrix functions

Let us start with a polynomial f(z) = z* + a;z*' + ...+ a,, where z is a
variable and a,, a,, ..., a, are real or complex constants. Replacing z by 4
where A is a square matrix, we get a matrix polynomial

Ay =4"+aA* "' +...+a, A+ a,l.

Here f(A) is a square matrix of the same order as 4. We will now investigate
eigenvalues and eigenvectors of f(4). Suppose that 2 is a characteristic value
and u the corresponding characteristic vector of A: Au = u. Premultiplication
with 4 gives the result 4*u = 24u = 2%, that is 2* is an eigenvalue of 4% the
eigenvector is unchanged. In the same way we find that f(2) is an eigenvalue
of the matrix f(4).

It is natural to generalize to an infinite power series:

f2) =a, + az + a2* + -+

We suppose that the series is convergent in the domain |z| < R. Then it can
be shown (see Section 3.8) that if 4 is a square matrix with all eigenvalues less
than R in absolute value, then the series a, + a,4 + a,4* + - - - is convergent.
The sum of the series will be denoted by f(4). Some series of this kind con-
verge for all finite matrices, for example,
A2 Az
A — - — -

e —I+A+2!+3!+ ,
while, for example, the series (I — 4)™ = I + A + A* + - .- converges only
if all eigenvalues of A4 are less than | in absolute value.

If a matrix 4 undergoes a similarity transformation with a matrix S,

S'AS = B, (3.5.1)

then the same is true for 4% $7'4%S = (S74S5)(S4S) = B*. Obviously, this
can be directly generalized to polynomials: S~'f(4)S = f(B). Generalization
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to the case when f also contains negative powers is immediate, since
S48 = (§7148)7' = B!,
We also conclude directly that

s (L) s - LB,
8(4) 8(B)
where fand g are polynomials. The division has a good meaning, since we
have full commutativity. Under certain conditions the results obtained can
be further generalized, but we do not want to go into more detail right now.
Cayley-Hamilton’s theorem: Any square matrix A4 satisfies its own charac-
teristic equation. Let f{2) be the characteristic polynomial. Thus

(=DfQ) =detMU —A) =2+ c 2" +...+¢c,.

First, we give a proof in the special case when all eigenvalues are different
and hence the eigenvectors form a regular matrix S. Let D be a diagonal
matrix with d;; = 4,. Then $—'4S = D, and further

f2) 0 ... 0
S=f(4)S = f(D) = S 00
0 0 - fR)
Premultiplication with S and postmultiplication with $-! gives
fi4)=0. (3.5.2)

A general proof can be obtained from this by observing that the coef-
ficients of the characteristic polynomial are continuous functions of the
matrix elements. Hence the case when some eigenvalues are equal can be
considered as a limiting case, and in fact, with small modifications the given
proof is still valid.

However, we will also give another proof due to Perron. For this, we need
the concept of polynomial matrix, by which we mean a matrix whose elements
are polynomials in a variable. Such a matrix can be written as a sum of
matrices, each one containing just one power of the variable, or as a poly-
nomial with constant matrices as coefficients.

Now we consider the adjoint matrix C of the matrix 2I — 4. All elements
of C are polynomials of 2 of degree not more than n — 1. Hence C can be
written

C=C1'+Ca*t+...4+C,,

where C,, C,, .. ., C, are certain constant matrices. Thus
AU —A)(CA '+ Ca 2+ ...+ C)=det (U — A4) -1
=+ 4+ e ).
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Identifying on both sides, we get:

Cl = I:
C, — AC, = c,I,
C, — AC, = C,I,

" _AC, =cl,

Premultiplication of the first equation by 4*, the second by 4*~*, and so on,
followed by addition, gives 4* + ¢,4*~* + ...+ ¢, I = 0, and hence f(4) = 0.

EXAMPLE
T ]
c=('7’ zi4)=”+(—? )
@—ac=(CEIN=2 iy 2) = (VR

G-r G- )

QI — A)QAI + C) = f)I = (A* — 12 + 10)];
[2* + (C, — A)2 — AGI = (&* — 72 + 10)];
A|C,—A=-TI

| —AC, = 101;
—A'= —744+101 or A — T4+ 10I=0.

A shorter and more direct proof is the following. Denote by e, a column
vector with 1 as the kth element and 0 elsewhere. Then we have

ATe; =Y a,e, or Y (a; — 0,47, =0.
k k
Let c;(2) be the algebraic complement of a;, — 29;, in the matrix 4 — al.
Hence
’E (D@ — 20;) = fAN)d,s 5
and this equation is valid identically in 2. Replacing 2 by the matrix 47, we find
fidn)e, = o fAT)Sur, = ;05,(4’) 20 (@ — AT3,)e, = 0.

This relation is valid for all », and hence we have f{47) = 0 or f(4) = 0.
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Cayley-Hamilton’s theorem plays an important role in the theory of ma-
trices as well as in many different applications. It should be mentioned here
that for every square matrix A, there exists a unique polynomial m(1) of
lowest degree with the leading coefficient 1 such that m(4) = 0. It is easy to
prove that m(2) is a factor of f{2), since we can write f(2) = m(2)q(2) + r(3),
where r(2) is of lower degree than m(). Replacing 2 by 4, we get

flA) = m(A)g(A) + r(d) or  r(A)=0,

since f{4) = 0 and m(4) = 0. However, this is in contradiction to our supposi-
tion that m(2) is the minimum polynomial. In most cases we have m(2) = f(2).
Now consider a matrix polynomial in A4:

FA)y=A" + aA" + ...+ a)d (N>n).
Dividing F(x) by f{x), we get
F(x) = f(x)Q(x) + R(x),
where R(x) is of degree < n — 1. Replacing x by 4, we find
F(A) = f(A)Q(A) + R(4) = R(A) . (3.5.3)

Without proof we mention that this formula is also valid for functions other
than polynomials.

ExXAMPLE

Consider e4 where 4 is a two-by-two-matrix. From the preceding discussion,
we have
ed = ad + bl.

Suppose that the eigenvalues of 4 are 2, and 2, (1, 4;). Then e4 and a4 4+ bl
have the eigenvalues eh, e%s, and ai, + b, ai, + b, respectively. Hence

e =al, + b,
er=al, + b.
From this system we solve for a and b:
a= el — eh 5 b= ——_I’elIl = ke >
A — 4, 4 — 4

or written by use of determinants:

1 1 el1 et
a:ul_’[' szzl‘lt

’ 1 1
zl 22

.
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In the general case we try to determine the coefficients 4, in

FA)y=a,_ A" +...+ad + al, 3.5.4)
and in this case we find
1 1 ...
1 A - A,
a, = .’I;_' with D=1 " ; (3.5.5)

Z‘s—l 1;_1 “ o 2:—1

D, is obtained by replacing the elements 4}, ..., 2; in D by F(4,), ..., F(2,).

An alternative expression for F(A) is due to Sylvester. We will first treat
a three-by-three-matrix 4 with the eigenvalues 2,, 2,, and ; (supposed to be
different). Then F(A4) should be a polynomial of second degree, and we will
show that it can be written

Fay = A= 4DMA = 4) g,
(2. - 23)(21 - 13)
+ (2 — 23)(2 — 4y) F(2,) + (23 — 2)(2; — 2,) F(2,). (3.5.6)

Let S be the matrix formed by the eigenvectors of A. Then

L 0 0
S"AS:D:(O 2, o)

0 0 2

and
F(4,) 0 0
S'F(A)S = F(D) = ( 0 F(a) 0 )
0 0 F(a)

/

Premultiplying the right-hand side of (3.5.6) by S~'and postmultiplying by
S, we get

(D — LI)D — A1)
G- =) Wt
A—% 0 0 \ /-2 0 0
=l 0o o0 o 0 -1 0 Fay) e
0 0 2,-— 12, 0 0 0 (4 — )2, — ;)

Fa) 0 0, /0 0 O /0 0 0
= ( 0 0 o) + (o F(2,) o) + (o 0 0 |=FD).
0 0o o o o o o o Fa

Multiplying by § from the left and by S—* from the right, we regain (3.5.6).
Generalization to matrices of arbitrary order is trivial.
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EXAMPLES
1. Compute 4~* when
A = (4 2)
=, 3)"
We find 2, = 5 and 2, = 2. Hence

_(f :12) 1 (—: —i) 1 _( 0.047 —0.078>.

A3 = - _ > - & _ =
3 58 3 28 —0.039 0.086
2. Given
_ (5 —3),
2 -2/
find 4v2,

Since the new characteristic values can be combined with different signs
( +V72, +V 1_,, ...) we generally obtain 2* solutions of the matrix equation
X2 = A. If Ais real, then X becomes real only if all eigenvalues of A are real
and positive. In this example with 2, = 4, 2, = —1 we will restrict ourselves
to the special matrix A4'* corresponding to the values 2 and i. Hence

Al,z=<6 —3)1+(1 —3)_i_:i(12— i —6+3i).
2 —-1/5 2 -6/ -5 S\4-2i -2+ 6i
3. Given
A—(4 2);
1 3

find log 4, that is, the matrix X for which eX = 4.
We obtain directly:

log A — l(log 50 log 6.25) _ (1.30401 0.61086) )
3 \log 2.5 log20 0.30543 0.99858

3.6. Norms of vectors and matrices

The norm of a vector x is defined as a pure number |x| fulfilling the following
conditions:

1. |*| > 0 for x = 0and |0/ = 0.
2. |ex| = |c| [x| for an arbitrary complex number c .
3. [ +y < |x + |y].

The most common norms are:
(a) The maximum norm |x| = max, |x,,
(b) The absolute norm |x| = 3} |x,].
(c) The Euclidean norm |x| = (Z, %M.
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All these norms are special cases of the more general /,-norm, defined by
Up
el = {S i}
for p = oo, p = 1,and p = 2, respectively. We will mostly use the Euclidean
norm. In this case the inequality by Cauchy-Schwarz is fulfilled:

x| < |x| |yl -
Analogously, a matrix norm is a pure number ||4|| such that:
1. [|[A]] > 0if A = 0 and ||0]| = 0;
2. |lcA4}| = |c| ||4]] for arbitrary complex c ; (.6.2)
3. 4+ Bl < [l411 + IBI} 5
4. [|4B|| < |4 ||B]| .

The most common matrix norms are:
(a) The maximum norms

41| = 14|l = max T fau|

and
141 = [|A]], = max T laa|,

respectively.
(b) The Euclidean norm
N(A) = [Tr (A¥A)]"* = [Tr (A4*)]2 = [}: |a‘,|2]"’.
sk
(c) The Hilbert or spectral norm ||4||, = V/Z,, where 2, is the largest eigen-
value of H = A¥%A.

Here we point out that from an arbitrary matrix norm [[4]|, we can con-
struct another norm || 4|| defined by ||4|| = ||S~'4S]||, where S is a regular
matrix. As is easily verified, the relations (3.6.2) are valid for ||4||s if they
are satisfied for ||4]|.

In most applications matrices appear together with vectors. For this reason
the relations (3.6.2) should be augmented with a supplementary condition con-
necting vector and matrix norms. To a given vector norm, we define a com-
patible matrix norm by
|Ax|

4] = sup 1421
:;tg |x|

Hence the condition of compatibility can be written |4x| < ||4|| |x|. A matrix
norm defined in this way is said to be subordinate to the vector norm under
discussion. We note that with this definition we always have ||I|| = 1. In
particular, denoting the Euclidean matrix norm by N(A4), we observe that
N(I) = n'*. Hence this norm is not subordinate to any vector norm. Never-
theless, we will use it for certain estimates, since it is so easily computed.
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We will now show that for a given vector norm, the compatible matrix norm
satisfies (3.6.2). The first two conditions are practically trivial. The third con-
dition follows if we take a vector x with norm 1 for which |(4 + B)x| takes its
maximum value. Then

ll4 + Bl = |(4 + B)x|
= |dx + Bx| < {Ax| + |Bx| < [|4|| |*] + [|BI| || = [|4]| + [[B]| .

Last, the fourth condition follows in a similar way. Again let x be a vector
with norm 1 but now such that |4Bx| takes its maximum value. Hence

||4B|| = |ABx| < |||||Bx| < [|4]|||Bl| |x| = [|4]| [|B]| -

Put ||4|| = max, J;, |a,| and choose a vector x such that |x|, = m, that is,
max;, |x;| = m. Then we have for the vector y = Ax:

il = |§ a,.,,x,,l <m kZ::l |a|
and further
¥l = max Iyl <m max ; gl -
We shall then prove that equality can occur. Let p be an index such that
T [au] = max 3 |ay|

and further suppose |x,| = m with sign (x,) = sign (a,,) for k =1,2,...,n.
This implies y, = m 3}, |a,,|, that is, |y|, = mmax, 3}, |a,|. Hence we have

sup 4%l _ max 3 ja, .
z#0 le 3 k

The proof that the second maximum norm is compatible with the absolute
norm is similar. Choose a vector x such that x|, = 3] {x;/ = m and form
y = Ax. Then we have

ol = el = T| T aun| < T 5 fau
< Tl I laal < {max 35 jal} - Tl

.
= m-max ) |ayl.
k =1

Hence we have |4x|/|x| < max, 3] [a,|. We shall now prove that equality
can occur and suppose that 3;7_ |a,| takes its greatest value for k = ¢q. We
then choose the vector x in such a way that x, = m while all other com-
ponents are equal to zero. Then follows:

|Ax| = ; ;aikxk

” "
=m El [@;] = m m"ax El (@] -
= i=
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Thus we have

supl_“’i|l = max Y |a;] .
20 | X[, k3
However, in the following we will concentrate on the Euclidean vector
norm and the Hilbert matrix norm, and show first that they are compatible.
Starting from a vector x with norm 1, we have |Ax[* = (4x)"4x = x"A4"Ax.
The matrix H# = A#A is Hermitian, and we assume that it has the eigenvalues
A > 2, >---> 4, > 0. The vector x is now written as a linear combination
of the eigenvectors u, u,, ..., u,: X = au, + au, + ---+ a.u,. Since |x| = 1,
we have xx = |a,|* + |a,)* + - - - + |a,|* = 1 and further,
XHx = 4|6 + Llaf + -+ 4, |4,
< A(laf + @l + -0+ a,]’) = 4.
But ||4|| = max,,., |4x|, and choosing x = u,, we find directly {|4|| — V',
In the following discussion we will use the notation |{4jj for the Hilbert norm
of a matrix.
For the Euclidean matrix norm, we have N(4 + B) < N(A4) + N(B) obtained
simply as the usual triangle inequality in #* dimensions. Further, let C = 4B

and denote the column vectors of Band C by b,,b,,...,b,and ¢,,¢,, ..., ¢
respectively. Then

2 /
Ab,=c,; N(B) = (E b,ﬁ’b,‘)” and  N(AB) = (E c,’,’ck)l "
k k
But

"o

Al| = sup XL > led
il = sup 21 = 2L

since |c,|/|b,| corresponds to a special choice of x. Hence |c,|* < ||4]|[* |b,[*.
Summing over k and taking the square root we find

N(4B) < ||4|| N(B) . (3.6.3)

If B = I, we get N(4) < n'*||A4||. Further, let a7 be the ith row vector of 4.
Then the vector 4Ax has the components a7x, and hence

jx) = (X jarar)” < (T la be) " = M) Jal

From this we see that |4x|/|x| < N(4) and also that |{4|| < N(A4). Using (3.6.3),
we then obtain

N(AB) < N(A) N(B) . (3.6.4)
Summing up, we have the estimates
[HAII < N() < n'l4]],

n*N(4) < ||4]| < N(4). (36:3)
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If the elements of a matrix A are bounded through |a,,| < ¢, then we also have
Tr (d)| < ne;  N(d) <nc; ||| <ne.
Now we choose two vectors, x and y, both nonzero. Observing that
yHiAx = (xHAHy)*

is a purc number, we have, using Cauchy-Schwarz’ inequality,

yidx| _ x| |y| _ |Ax|
Iyl = vl
and putting y = Ax, we obtain further

|y#dx| _ |Ax||4x| _ |Ax| .
x| |yl |Ax]| |x| x|

that is, the equality sign can be valid in the inequality. Hence we also have

)| = sup Ly Ax] (3.6.6)
S AFIF
On the other hand, we have
IIAI l y Axl
l47)) = sup L — sup Wl — 1.
St T AT

For a moment we consider the matrix 474 and obtain

n 41 n4n
|x" A" Ax| < su |y"A"Ax|
z#0 |x|’ z,¥y#0 |x| Iy'

since the left-hand side is a special case of the right-hand side. However, the
left-hand side is sup,,, |[4x|*/|x|* = ||4]|?, while the right-hand side is =||474]|).
Hence {|4”A4|| > ||4|[*. On the other hand, the inequality ||BC|| < ||B]| ||C||
gives ||474|| < ||4"|| ||4]| = {|4]]*. Hence we finally get

l474|| = {|4]]* = [|4%]]* . (3.6.7)

From this relation we can compute ||4|| in an alternative way. If Uis unitary,
we have

|Ux| = (x"UHUx)"* = (x¥x)'* = |x|.

Putting H = A% A, we see that H is Hermitian and can be diagonalized with
the aid of a unitary matrix U: U"HU = C, where C is diagonal. Then we have
[ICl} = sup |U*HUx|
Iz]=

= sup (x"U"H"UU"HUx)"* = sup (y"H"Hy)" = ||H|,
lzl=

where y = Ux. Thus the norm remains invariant under a unitary transfor-
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mation. But the norm of C is trivial: |[C|| = ,, where 2, is the largest eigen-
value of H == A”A. This matrix is positive semidefinite, since for arbitrary x
we have

xH#Hx = x"A"Ax = (Ax)"4Ax > 0.

Then all the characteristic roots A; of Hare >0. Let 2 and u satisfy A7 Au = Zu.
Then u?A%Au = Ju”u, that is, 2 = {(Au)”Au}/uu > 0. Hence
Al = {14¥]| = V4. (3.6.8)

If H = (h,) is a Hermitian matrix, then we have

N(H) = [Tr (HYH)]'® = [Tr (HY)]'? = (‘E H)m ’

if 2, are the eigenvalues of H. For a moment introduce v = (3] |h,|*)"*. Then
we get from (3.6.5)
v
— <A L,
1/" - l 1' =
where 2, is the numerically largest eigenvalue of H. It should be observed that
all eigenvalues of the special Hermitian matrix 4¥4 are positive, while an
arbitrary Hermitian matrix may also have negative eigenvalues.
Next we are going to deduce some estimates of norms in connection with
inverses of matrices.
If ||[4]| < 1, the inverse of I — A exists, since

(I — A)x| = [x — Ax| > [x] — [4x| > [x] — [|4]| x| = (1 — [|4]])[x],

and hence (I — A)x = 0 for an arbitrary x = 0, which means that I — 4 is
regular.
FromI = (I — A)I — A)™ = (I — A)™? — A(I — A)™!, we have

(I — A7 = (AT — 4)7]
=l -4 =1 2 [ - A7 -1,

and consequently ||(I — A)7Y| < 1/(1 — ||4])).
Analogously, by treating I = (I + A)(I + A)~' in a similar way, we find
that ||(I + 4)7'|| > 1/(1 + ||4]]). Since ||—4|| = ||4}|, we can write

1 1
— g S+ AT < ——,
1+ (4] 1 — (4]

1 1
I — -1 -,
Ty = =7 = g

(3.6.9)

Both inequalities are valid under the assumption that ||4]| < 1.
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Last, we will show one more inequality which is of interest in connection
with the inversion of matrices. We have

(4 + B)™ — A7Y| = [|47" — (4 + B)7']|
= [|47 — (I + A7'B)7'A7Y| < || A7 [ — (I + 47'B)7Y|
= |47 |I( + A7'B)(I + A7'B — I)||
< |47 [ 47BI| I + A7'B)7Y| < ||47Y| %

where a = ||4'B|| is assumed to be <1. Hence

(4 + By — A7 < 147 25— (3.6.10)

We have previously defined the spectral norm and shown that ||4|| = V3,
where 2, is the largest eigenvalue of 4”74. We now define also the spectral
radius p(4) = max,, . |2,| where 2, are the eigenvalues of 4. For each matrix
norm corresponding to a vector norm p(A4) < ||4||, because there exist a num-
ber 2 and a vector x such that Ax = ix and |1] = p(4). Hence

|[4x| = p(4) |*],

that is, p(4) = |4x|/|x| < sup |Ay|/ly| = ||4||. If specially 4 is Hermitian, then
we have p(4) = ||4]].

In the theory of differential equations, a measure y(A4) is sometimes used.
This quantity can also take negative values, and hence it is no matrix norm.
It is defined in the following way:

pA) = lim M+ edll — 1 (3.6.11)
b0 €
Neglecting quadratic and higher order terms in ¢, we have from (3.6.7):
M + edi| = |[I + e(4 + A")||?
and further from (3.6.8):
wd) =2, (3.6.12)

where 2, is the largest eigenvalue of the matrix H = 3(4 + A¥). For further
details see, for example, Dahlquist |5).

3.7. Transformation of vectors and matrices

An arbitrary real nonsingular square matrix can be interpreted as a system of
n linearly independent row- or column-vectors. We are now going to show
how a system of orthogonal vectors can be constructed from them. Denoting
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the initial vectors by a,, a,, . . ., a,, we form

W, =a,

w, = a — (azw,/wiw)w, ,

=a; — {‘il; [a_-’w,‘/w[w,‘]} W, ,

k=1

—
.'§ “ e
|

vivn =a, — {:Z;i [a,’,w,‘/wIw,‘]} w, .

It is obvious that wTw, — 0 if i = k. These equations can be written in matrix
form

3n

WB=4A4,
where W = (w,, w,, ..., w,), 4 = (a, @, ..., a,), and
1 bu bla"'bn
0 1 by --- by,
B _ |0 0 1 .--b

0 0 0 ..-1

with b,, = wla,/wiw,. This technique is known as Gram-Schmidt’s orthogo-
nalization process.

Previously we showed that an arbitrary Hermitian matrix can be brought
to diagonal form by a-unitary transformation

U'HU =D .

We also noticed that if the n eigenvectors of an arbitrary matrix 4 are linearly
independent, they form a regular matrix § such that

S-'AS =D.

It is easy to show that if all eigenvalues are different, then the eigenvectors
are linearly independent. First, it is trivial that the eigenvector u = 0 cannot
belong to two different values 2, and 2, Now suppose that the eigenvector u
belonging to 2 is a linear combination of the eigenvectors u; belonging to 2;:

u=73, cu;.

Operating with 4 on both sides, we get

Au = u = ZEC.-",- = EC.'Z.'".' ’

that is, we obtain a linear relation between the u; contrary to the supposition.
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If we also have multiple eigenvalues, the situation is considerably more
complicated. Here we will restrict ourselves to stating an important theorem
by Jordan without proof:

Every matrix A can be transformed with a regular matrix S as follows:

S48 =1J,
where
J, 0...0
0 g 0
= . . 3.7.1)
0 0...J,
The J; are so-called Jordan boxes, that is, submatrices of the form
A 1 0 0
i 1 Ao 10 0 4 1 o
z.-,(‘ )lo a1,
0 g o 2/ \0 O A
. 0 0 0 A;

1

In one box we have the same eigenvalue 2, in the main diagonal, but it can ap-
pear also in other boxes. The representation (3.7.1) is called Jordan’s normal
Sorm. 1f, in particular, all 2; are different, J becomes a diagonal matrix.
For proof and closer details, see, for example, Gantmacher [1] or Schreier-
Sperner, 11 [3].

The occurrence of multiple eigenvalues causes degeneration of different
kinds. If an eigenvalue is represented in a Jordan-box with at least 2 rows,
we obtain a lower number of linearly independent eigenvectors than the order
of the matrix. A matrix with this property is said to be defective. If one or more
eigenvalues are multiple but in sucha way that the corresponding Jordan-boxes
contain just one element (that is, no ones are present above the main diagonal),
we have another degenerate case characterized by the fact that the minimum
polynomial is of lower degree than the characteristic polynomial. A matrix
with this property is said to be derogatory. Both these degenerate cases can
appear separately or combined.

For later use we will now prove a lemma due to Schur. Given an arbitrary
matrix 4, one can find a unitary matrix U such that T = U-'4U is triangular.

Let the eigenvalues of 4 be 4,, 2,, .. ., 4, and determine U, so that
UrAU, = 4, ,
where A, has the following form:
A ay ay--a,
0 Ay Ay - Oy,
4, =10 Ay Qg3 - - A,
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As is easily found, the first column of U, must be a multiple of x,, where
Ax, = 2,x,. Otherwise, the elements of U, can be chosen arbitrarily. The
choice can be made in such a way that U, becomes unitary; essentially this
corresponds to the well-known fact that in an n-dimensional space, it is always
possible to choose » mutually orthogonal unit vectors. Analogously, we deter-
mine a unitary matrix U, which transforms the elements a,,, @y, .. ., @3 tO
zero. This matrix U, has all elements in the first row and the first column
equal to zero except the corner element, which is 1. The (n — 1)-dimensional
matrix obtained when the first row and the first column of 4, are removed
has, of course, the eigenvalues 2,, 2, ..., 2,, and the corresponding eigen-
vectors xj, xj, .. ., X,, where x/ is obtained from x; by removing the first com-
ponent. It is obvious that after n — 1 rotations of this kind, a triangular matrix
is formed and further that the total transformation matrix U = U\U, - - - U, _, is
unitary, since the product of two unitary matrices is also unitary.

Last, we will show that, by use of a similarity transformation, any matrix
A can be transformed to a triangular matrix with the off-diagonal elements
arbitrarily small. We start by transforming 4 to triangular form:

T'=U"'4U.

Then we form B = D~'TD, where D is a diagonal matrix with the nonzero
elements ¢, ¢, ..., e*. Hence b,, = t,e*~* (k > i); that is, the diagonal ele-
ments are unchanged, and the other elements can be made arbitrarily small
by choosing ¢ sufficiently small. The matrix B has been obtained from 4
through B = S—'4S, with § = UD. Here B is triangular with off-diagonal
elements arbitrarily small and the eigenvalues in the main diagonal.

We mention here that in many applications almost diagonal matrices (band
matrices) as well as almost triangular matrices (Hessenberg matrices) are quite
frequent. In the first case elements not equal to zero are present only in the
main diagonal and the p closest diagonals on both sides (p < n — 1). The most
interesting case corresponds to p = 1 (tridiagonal matrtices). In the second
case all elements are zero below (over) the main diagonal except in the diago-
nal closest to the main diagonal (upper and lower Hessenberg matrix).

3.8. Limits of matrices

A matrix 4 is said to approach the limit 0 if all elements converge to zero.
From (3.6.5) we get directly that if ||4|| — 0, then 4 — 0, and vice versa. A
simple generalization is the following. A sequence of matrices 4,, 4,, ... con-
verges toward the matrix 4 if every element of 4, converges to the corre-
sponding element of 4. A necessary and sufficient condition for convergence
is that ||[4 — 4,||— 0.

The consecutive powers 4" of a matrix 4 converge to zero if and only if
all eigenvalues of A lie inside the unit circle. This follows directly if 4 can
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be transformed to diagonal form:
S-'AS =D.

Then we have 4¥ = SD¥S-!, where D is diagonal with the diagonal elements
A Ay, « « -5 A, Hence we get the condition 2 — Ofori=1,2,...,n.

If A cannot be transformed to diagonal form, we can use Jordan’s normal
form. We demonstrate the technique on the series

fidy=al +aAd +ad® +---,
and consider a Jordan box J:
P 1 0...0

J=1. R (p rows and columns).
0 0 0---2
By induction it is easy to show that

o (e

J¥ =10 AN ( Nz)pl—mz

0 0 av

p

and more generally

2 L@ foR@)(p — 1)
0 Pl ... (g —_ 2\
qy=|® D S =D

0 0o ... )

Hence, for convergence it is necessary and sufficient that the series

LA

p—1

converges for every eigenvalue; p is the largest order for those Jordan boxes
which belong to this eigenvalue 2. Thus it is obvious that the matrix series
converges if |2,| < R, where 1, is the absolutely largest eigenvalue and R is
the convergence radius for the series 3}  a,z".

Alternatively, we can perform the transformation to almost triangular form
just described in Section 3.7:

B = S'AS.

If the series a,/ + a,4 + a,A* + - .. + a,A" is transformed in the same way, we
get, in the main diagonal, elements of the form a, + @,2 + @,2* + - - - + a, A",
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From this we see directly that the matrix series converges for such matrices 4
that |1,; < R for all i. .

Derivatives and integrals of matrices whose elements are functlons'of }'qal or
complex variables are defined by performing the operations on the individual
elements. Care must be exercised, however, because the matrices need not
commutate. We give the following examples:

d dB dA
ZAB) =A== + —B.
a AP =4t

In particular, if 4 = B, we have
d dA dA
T A=A+ 4
dt () dt + dt

Differentiating the identity 44! = I, we get

a4 A o and Mo 402 4
dt dt dt dt
Problems of this kind appear, above all, in the theory of ordinary differential

equations (see Chapter 14).
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EXERCISES

1. Show that an antisymmetric matrix of odd order is singular.

2. visacolumn vector with nelements. From this vector we form a matrix 4 = oo”.
Show (a) that 4 is symmetric; (b) that 42 -- c4, where ¢ is a constant (depending
upon v); (c) that if u is a vector such that «”p = 0, then u is an eigenvector of 4 corre-

sponding to the eigenvalue 0; (d) that o is an eigenvector of A4 (the eigenvalue to be
computed).
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3. Find a (3, 3)-matrix which has the eigenvalues 2, = 6, 2; = 2, and 2, = —1, given
that the corresponding eigenvectors are

()l ()

4. A is a matrix of order (n, n), where all a;, = 0 for i < k. Show that (I — A)™' =
I+ A+ A* +...+ A", where I is the unit matrix.

A= (6 2) .
1 5
is given. Then cos A4 can be written in the form a4 + bI. Find the constants a and b.
6. Show that B = e* is an orthogonal matrix if A is antisymmetric. Find B if

=(e O

A= (0.9 0.2)
03 04
is given. Find lim,_. 4", for example, by proving that the elements of successive
matrices 4" form partial sums in convergent geometric series.

8. A and Bare n X n-matrices. Prove that the relation AB — BA = I cannot be valid.
9. Both x and y are vectors with n rows. Show that det(I — xy™) = 1 — x7y.

lo. A (2, 2)~matl‘ix
(C d)

with complex elements is given. A is transformed with a unitary matrix U:

5. The matrix

7. The matrix

_ a b
U''AU - 4’ = (c, d,),
where we choose
o-(L %)
pPx P

with p real. Then p and « are determined from the conditions that U is unitary and that
A’ is an upper triangular matrix (that is, ¢’ = 0). Find p and a expressed in a, b, ¢, and
d, and use the result for computing @’ and d’ if

A= ( ? '0) :
-2 5
11. Two quadratic matrices of the same order, 4 and B, are symmetric with respect
to both diagonals. Show that the matrix C = AB + BA has the same property.



80 MATRICES

12. A quadratic matrix which has exactly one element equal to 1 in every row and
every column and all other elements equal to zero is called a permutation matrix. Show
that a permutation matrix is orthogonal and that all eigenvalues are 1 in absolute value.

13. A matrix A is said to be normal if 4“4 = 44". If A is normal it can be trans-
formed by a unitary matrix U to a diagonal matrix B: B= U™'4U. Find U and B

when
a b
4= (—b a)'

14. One wants to construct an (n, n)-matrix P, such that P.a, = P,a,=...=P,a, =0,
where a,, 4, ..., a, are given vectors with n components (r < n) which are linearly
independent. A matrix A4, of type (r,n) is formed by combining the row vectors
al,al,..., a7 in this order. Show that P, = I — AT(A,AT)' A, has the desired property
(P, is called a projection matrix) and that P, is singular when r > 1. Finally, compute
P, for r = 2 when a] =(1,3,0, —2) and @} = (0,4, —1, 3).

15. A is a nonquadratic matrix such that one of the matrices A4” and 4”4 is regular.
Use this fact for determining one matrix X such that 4X4 = 4. Then find at least one

matrix X if
2 1 0 —I
A=( 0 3 1 l).
-1 =3 -1 0

(A matrix X with this property is called a pseudo-inverse of the matrix A4.)

a and b real.



Chapter 4

Linear systems of equations

““Mine is a long and sad tale" said the
Mouse, turning to Alice and sighing.
“It is a long tail, certainly”’ said Alice,
looking down with wonder at the Mouse’s tail,
““but why do you call it sad?’’

LeEwis CARROLL.

4.0. Introduction

We shall now examine a linear system of m equations with n unknowns. If
m > n, as a rule the equations cannot be satisfied. In a’subsequent chapter we
will discuss how “solutions” are explored which agree with the given equations
as well as possible. If m < n, the system usually has an infinite number of solu-
tions. In this chapter we will treat only the case m = n.

Let A4 be the coefficient matrix, x the solution vector, and y the known right-
hand-side vector. Inthe normal case, we have y = 0 and det 4 = 0. As is well
known, we have then exactly one solution x. Ify = 0, and det4 = 0, we have
only the trivial solution x = 0. Ifdet4 = O but y = 0, then there exists a finite
solution only in exceptional cases. Last, ifdet4 = 0and y = 0, apart from the
trivial solution x = 0, we also have an infinity of nontrivial solutions.

Now suppose that det 4. = D = 0 and y = 0. According to Cramer’s rule,
the system Ax = y has the solution

x, = D,D, (4.0.1)

where D, is the determinant, which is obtained when the rth column in D is re-
placed by y. Cramer’s rule, of course, is identical with the formula x = 4%,
where 4! is taken from Formula (3.1.2).

After the solution (4.0.1) had been obtained, the whole problem was con-
sidered to be solved once and forever. This is true from a purely theoretical
but certainly not from a numerical point of view. Of course, Cramer’s rule is
satisfactory when n = 3 or n = 4, but what happens if n = 50, 100, or more?
How does one evaluate a determinant of this magnitude? Using the definition
directly, one will find the number of necessary operations to be of the order n!,
and, as is well known, this expression increases very rapidly with n. Already
n = 50 would give rise to more than 10% operations, and this enormous numeri-
cal task is, of course, beyond reach even of the fastest computers. Even if the

81
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determinants are evaluated in the best possible way, the number of operations
is proportional to ', while the methods we are going to discuss need only com-
putational work of the order r'.

We will distinguish mainly between direct and iterative methods. Among the
direct methods, we will first mention the elimination method by Gauss, with
modifications by Crout and Jordan, and then the triangularization method.
Among the iterative methods, we will give greatest emphasis to the Gauss-
Seidel method and the successive over-relaxation method by Young.

4.1. The elimination method by Gauss

We are now going to examine the system Ax = y, assuming det A4 + 0 and
y # 0. Explicitly the system has the following form:

a,Xx, + @QpX, + -+ X, = V1>

anxl + a“xz +---+ a!nxn :y29 (4.1.[)

an‘lxl + a, X, +---+ Ao Xy = Yo+

We start by dividing the first equation by a,, (if a,, = 0, the equations are permu-
tated in a suitable way), and then we subtract this equation multiplied by a,,,
a,,. . .,a, fromthe second, third, . .., nth equation. Next we divide the second
equation by the coefficient a;, of the variable x, (this element is called the pivot
element), and then x, is eliminated ina similar way fromthe third, fourth, . . ., nth
equation. This procedure iscontinued as far as possible, and finally x,, x,_,,. ..,
x, are obtained by back-substitution.

In normal cases the method is satisfactory, but some difficulties may arise.
As a matter of fact, it may occur that the pivot element, even if it is different
from zero, is very small and gives rise to large errors. The reason is that the
small coefficient usually has been formed as the difference between two almost
equal numbers. One tries to get around this difficulty by suitable permutations,
but so far no completely satisfactory strategy seems to have been invented.

When the elimination is completed, the system has assumed the following
form:

Xy + CpXp 00+ + 00X, = 2y,

Gr¥y Fooc t ks = 5. (4.1.2)

X, =2

C

The new coefficient matrix is an upper triangular matrix; the diagonal elements
c;; are usually equal to 1.

In practical work it is recommended that an extra column be carried, with
the sum of all the coefficients in one row. They are treated exactly like the
other coefficients, and in this way we get an easy check throughout the compu-
tation by comparing the row sums with the numbers in this extra column.
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EXAMPLE 10x — 7y + 32+ Su=6,
—6x 48 — z— 4u=35, 4.1.3)
3x+ y+4z+ 1Mlu =2,
S5x -9y —2z+ 4u=17.
First, we eliminate x, using the first equation:
x — 0.7y + 0.3z + 0.54 — 0.6,
. 0.8z — = 8.6,
8y +0.82 ) (4.1.4)

l 3.1y + 3.1z + 9.5u = 0.2,
— 55y — 352+ 1.5u=4.

Since the numerically largest y-coefficient belongs to the fourth equation, we
permutate the second and fourth equations. After that, y is eliminated:

x— 0.7y + 0.3z + 0.5« = 0.6,
y + 0.63636z — 0.27273u = —0.72727,

4.1.5)
— 1.61818z + 0.03636u = 11.36364,
1.12727z + 10.345454 =  2.45455.
Now z is also eliminated, which gives
x — 0.7y + 0.3z + 0.5u = 0.6,
y + 0.63636z — 0.27273u = —0.72727, 4.1.6)
z — 0.02247u == —7.02247,
10.37079u = 10.37079 .
The final solution is now easily obtained: u = 1,z = ~7,y = 4,and x = §.

Jordan’s modification means that the elimination is performed not only in
the equations below but also in the equations above. In this way, we finally
obtain a diagonal (even unit) coefficient matrix, and we have the solution with-
out further computation. In the example just treated, the system (4.1.4) is ob-
tained unchanged. In the next two steps, we get

(x + 0.74545z + 0.30909 = 0.09091,
y + 0.63636z — 0.27273u = —0.72727,

] — 1.61818z + 0.03636u =~ 11.36364 @.1.7)
112727z + 10.34545u =  2.45455 .
x + 0.32584u —  5.32582,
y _ 0.25843u =  3.74156
(4.1.8)
( z — 0.02447u — —7.02248 ,
10.370784 = 10.37078 .

The last step in the elimination is trivial and gives the same result as before.



84 LINEAR SYSTEMS OF EQUATIONS SEC. 4.2.

We will now compare the methods of Gauss and Jordan with respect to the
number of operations. An elementary calculation gives the following results
(note that in Gauss’ method the operations during the back-substitution must
be included):

Addition and

Method subtraction Multiplication Division

Gauss n(n — 1)(2n + 5) n(n — 1)(2n + 35) n(n + 1)
6 6 2

Jordan nn — )(n + 1) n(n — 1)(n + 1) n(n + 1)
2 2 2

Thus the number of operations is essentially n*/3 for Gauss’ method and n*/2
for Jordan’s method, and hence the former method should usually be preferred.

4.2. Triangularization

As we have already noted, the Gaussian elimination leads to an upper triangu-
lar matrix where all diagonal elements are 1. We shall now show that the
elimination can be interpreted as a multiplication of the original matrix 4
(augmented by the vector y) by a suitable lower triangular matrix. Hence, in
three dimensions, we put

L, O 0\ /a,, a, a, 1 ry Iy
L, I, O]la, a, ay|=1|0 1 Py | -
L Iy Iy \a, a, ag 0 0 1

In this way we get 9 equations with 9 unknowns (6 l-elements and 3 r-elements).
A computational scheme is given in Section (4.3). Finally, an upper triangular
matrix remains to be inverted, giving a similar matrix as the result.

EXAMPLE
2x+ y+4z=12,
8x — 3y+22=20,
4x + 11y — z =33,

We now perform the following operation:

% 0 0\ /2 1 4 12 1 3 2 6
4 T 0)(8 -3 2 20):(0 1 2 4],
& o~ —4/ 4 11 —1 33 0 0 1 1

which means that the system has been reduced to:
x+4y+22=6,
y+2z2=4,

z=1.
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The inverse of this coefficient matrix is

1 —3 -1
(o 1 -2>,
o o 1

which multiplied with the vector
6
4
1

B

If the lower and upper triangular matrices are denoted by L and R, respec-
tively, we have L4 = R or A = L™'R. Since L™ is also a lower triangular
matrix, we can find a factorization of 4 as the product of one L-matrix and
one R-matrix. Replacing L~ by L, we have LR = 4 and obtain n* equations
in n(n + 1) unknowns. Conveniently, we can choose /; = lorr;=1.In
this way the system 4x = y is resolved into two simpler systems:

gives the solution

Lz = Y, Rx = 2.
Both these systems can easily be solved by back-substitution.

EXAMPLE x, + 2x, + 3x, = 14,
2x, + 5x, + 2x, = 18,
3x, + X, + Sx; = 20.

1 0 0\ /z, 14 z, 14
(2 1 0) (z,) = (lS) and (z,) = (— 10,

3 -5 1/ \z, 20 z —-72

1 2 3\ /x, 14 x, 1
( 1 —4) (x,) = < — 10) and (x,) = <2) .

0 -—24/ \x, -72 X, 3

The former system is solved in the order z,, z, z;, and the latter in the order
Xgy X9y X;.

If A is symmetric and positive definite, we can produce a particulary simple
triangularization in the form 4 = LL7, where, as before,

Hence

o o

I, 0...0
L = 121 In‘ 0
Ly L,---1
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The elements [, are determined from B, = a,; b, = a,; ..., L, = a,,
B, + B, = ay; L, + Ly, = ay; ... Obviously, it may occur that some terms
become purely imaginary, but this does not imply any special complications.
We can easily obtain the condition that all elements are real. For if L is real,
then A4 == LLT is positive definite, since

xTAx = xTLL™x = 7"z with z=L"x.

But z is real, and hence z7z > 0. On the other hand, if 4 is positive definite,
then L must also be real.
The system Ax == y can now be solved in two steps:

Lz=y; L™ = z.
This method is known as the square-root method (Banachiewicz and Dwyer)
and, as has already been pointed out, it assumes that 4 is symmetric.
4.3. Crout’s method

In practical work the Gaussian elimination is often performed according to a
modification suggested by Crout. Starting from the system (4.1.1), we elimi-
nate in the usual way and obtain the following system (it is assumed that no
permutations have been necessary):

X, + apX, + aX, -0+ aLx, =z,

X, + agX, + -+ ag,x,

I
N
-

(4.3.1)

X, = 2

n n

A certain equation (/) in this system is the result of the subtraction from the
corresponding equation in (4.1.1) of multiples of the (i — 1) first equations in
the latter system. Hence the equation (i) in (4.1.1) can be written as a linear
combination of the first / equations in (4.3.1). The first equation of (4.1.1) is
obtained by multiplication of the corresponding equation in (4.3.1) by a certain
constant aj;:

’ ’ ’
a,x, + ajapx, +-- -+ analx, = a,z, . (4.3.2a)

The second equation of (4.1.1) is obtained through multiplication of the first
and second equation in (4.3.1) by a;, and a;, respectively, and addition of the
results:

’ ’ ’ ’
ayx, + (anay;, + ap)x, + (a3,a), + ana;)x; 4 - - -
+ (agla;n + a;za;n)xn = a;lzl + a;zzz * (4‘3‘2b)

The remaining equations are formed in a similar way, and then the coefficients
are identified, and all constants a}, can be determined.
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Especially, we get the following equations for the right-hand sides:
a2, =M1

a.;lzl + a;zzz =MW (433)

. ’ ’ _
a;lzl + 2 + e+ A2, = Y,

For convenience, we introduce the more compact notations P and Q for the
coefficient matrices of (4.3.3) and (4.3.1), respectively, not including the di-
agonal elements in Q. Hence

a, for i>k, _ 0 for i>k,
0 for i<k, e = al, for i<k,
or P+ Q = A’. The systems (4.1.1), (4.3.1), and (4.3.3) now take the form:

Pix =

Ax =Y,
@+ Dnx=1z, (4.3.4)
Pz=y.

The second equation is premultiplied with P and gives
PO + I)x = Pz =y = Ax .

With different right members we get other solutions x, and from » linearly inde-
pendent x-vectors we can form a nonsingular matrix X. In this way we get

P(Q + I)X = AX

and hence P(Q + I) = A. This corresponds to a triangularization of A with all
diagonal elements in the upper triangular matrix equal to 1. Augmenting the
matrix Q + I with the new column z, and the matrix 4 with the new column
»y, wWe can write

P(Q +1I|z)(A]y). (4.3.5)

Now we have to perform only the matrix multiplication on the left-hand side
and observe that the formation of products is usually interrupted before we
reach the end: either we meet a zero in the ith row of P (this happens if i < k),
or we find a zero in the kth column (this happens if i > k). If i = k, the row
and the column are of equal length; this case is conveniently brought together
with the case i > k. If i < k, the summation will run from 1 to i ifi >k, it
will run from 1 to k. In both cases we take the last term in the sum separately,
and hence

f4—1

El a,a,, + aja;, = a,, i<k,
k—1
’ .
Lda,+ dy=ay, >k, (4.3.6)
=

i—1

’ ’
2od.z, +dz =y,.

r=1
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These equations are conveniently rewritten in the following way:

k=1
a$k=aek—Ela$,a£“ i>k,
-~
1 i-1
, ,
a;, = — (ack - E aira:b) P i<k, (4.3.7)
as; r=1
1 i—1
2, = — (}’& - 2 02,2,) .
as r=1

The computation is performed in the following order: The first column (un-
changed), the rest of the first row (including z,), the rest of the second column,
the rest of the second row (including z,),and soon. Last,the vector x is computed
from the equation
Q@+ Dx =z

The ith row in this system has the form

X+ 2 alx, =z, (4.3.8)

r=i+1

and the components of x are computed from the bottom upward through back-

substitution,
In the special case when A is symmetric, we have with Q + I = R:

PR =4, R™PT = AT = A.
Now we put P = LD, where L is a lower triangular matrix with all diagonal
elements equal to 1, and D is a diagonal matrix with d;; = a};. Hence PT =

DL", and from this we get LDR = R™DL". Since the partition is unique, we
have R = L™ = D'P7, and finally P" = DR or

a,; =a,-a,, i<k. (4.3.9)
EXAMPLE

2x, — 6x, + 8x, = 24,

5x, + 4x, — 3x,

3Ix, + X, + 2x, = 16.

2 -6 8 24
(4, y) =[5 4 -3 2) ;
2

3 1 16

I
(M)

2 -3 4 12
3 10 4§ s

Hence x, =5, x,~33-5= -3 %=3;x,—-3.34+4.5=12;x, = 1. The
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relation P(Q + I) = A in this case has the following form:

2 0 0 /1 -3 4 2 —6 8
(5 19 o)o 1_%):(5 4 3.

3 10 #/\0 o 1) \3 1 2

4.4. Error estimates

We start from a linear system of equations Ax = y and suppose that the elements
in A and y are less than 1 in absolute value; if this is not the case, the equations
are scaled in a suitable way. Further, we assume that all computations are done
with s digits and that a;, and y; are given with this precision; these initial values
will be considered to be exact. When a result is obtained with more than sdigits,
round-off must be introduced. The corresponding maximal error is ¢ = 3N,
where N is the base of the number system; usually N = 2 or N = 10.

The subsequent analysis is due to Wilkinson [1], [2]. The general idea is to
search for a perturbed system (4 + d4)x = y + dy whose exact solution coin-
cides with the approximate solution we obtain when we solve Ax = y by use of
Gaussian elimination. The perturbations are selected to reproduce exactly the
recorded multipliers m,,.

In order to simplify the discussion, we will first consider the case n = 4. Dur-
ing the elimination we have four different systems of equations 4"’ x = y*’, where
r = 1 corresponds to the initial system Ax = y. The last system has its first equa-
tion unchanged from the first system, its second equation unchanged from the
second system, and its third equation from the third system:

ai’x, + apx, + a’x, -+ ailx, = yiv,
ax, + ax, + afx, =y, @4
a@x;, + a¥x, =y,
ax, =y .
The sign = means that the equation is satisfied exactly. The first three of these
equations are found also in the third system, where the last two equations read

ax, + adx, =y, (4.4.2)
adx, + alx, =y .

Now we assume that the absolute values of all a};’ and y;" are less than I;
otherwise, this can be achieved by suitable scaling. Then x, is eliminated by
muliplying the first equation in (4.4.2) by a constant m,, and adding to the
second equation. We find directly:

_ 31 /43
my = —agla? ,
3
al + myagd , (4.4.3)

4 _ 1,3 (3)
o = YO Mgy .

)
a{{

I
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These values are, of course, rounded. The exact values are:
—my = (a3'(a) + s Ml < 3N =€
~mgag =af + e |ef| = |a@ns| < [nel S €
Analogously,
al = a + mgall + e ; ed < e
YO =y +meyd + €75 el < e

Here ¢, €, and ¢ are the perturbations which have to be added to a?, a2,
and y{ in order that the third system, partly reproduced by (4.4.2), should
become equivalent to the fourth system (4.4.1). Hence

0 0 0 010
0 0o o o]o
(3) (3)
@A%™ <elg o o o] o]
0 0o 1 1]1

Now we consider the transition between the second and the third system. We
have, for example, a3 = af¥ + m,a2 + &'; [ < e. Similar estimates are
valid for &7, &{l’, and ;. On the other hand, the fourth equation in the second
system must be constructed in such a way that the perturbed fourth equation in
the third system is reproduced exactly. We certainly have, for example,

Y=y + may? + 5 e <e,

but what has to be reproduced is the quantity y + ¢®. This means that in
the previous perturbation matrix, 1 must be added to all numbers that are not
zero, and further that the rectangle of nonzero numbers should be bordered
with ones. Thus we get

0 0 0 0] 0
0 0 0 00
(2) (2)

@AM <ely 1 1 1|1

0 1 2 212
In a similar way, we find

0 0 0 00

@iy <el, o . L)) (4.4.9)
1 2 2 2 ]2 o
1 2 3 313

We have now reached the following stage. The system

(Au) + 8A“’)x — yu) + sym (4‘4_5)
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on repeated elimination gives the following systems:
(A(Z) + 8A(2))x — y(i) + sy(2);
(A(S) + 8A(3))x — y(S) + sy(s) ;
A®Vx = y(l) .
Further, the factors used during the elimination are exactly identical with those
computed during the approximate reduction.

We shall now discuss the solution of the final (triangular) set 4x = y*
written in full in (4.4.1), and suppose that we get a computed solution vector
£. For example, from the second equation in the system, we get

5, = W= adx, — aiix,
a3

(If the division were exact!) .

However, we actually compute

e o Wt —aRe,

(2)
as

l’]nl Le¢,

where 7, is the round-off error from the division. The numerator is assumed
to be computed with a negligible rounding error (for example, in a double-
length accumulator). Hence

3 (B - 42
a¢, + aé;, + alé, = yi¥ + 0z,,

where |0z, = |7, - &i| < |7,| < e.

It should be observed that the absolute value of x, need not be less than 1, and
for this reason we must compute x, to s fractional places, which might mean
more than ssignificant digits. However, we shall ignore this complication here.
Hence it is clear that ¢ is the exact solution of the modified system

AWx =y 4 &z with [0z;] < €.

It is now easy to see how the system (4.4.5) should be modified to give the
system A“x = y* 4 4z on elimination, and replacing (4.4.5) by

(A(l) + EA(I)).‘ — y(l) + By(l) + ay(O) s

we obtain
0z,
Sy = —m, 0z, + 0z,
—my, 0z, — my,02, + 0z,
H —m,02z, — Mu02z, — M0z, + 02,
ence

1
2

(0)
Y <e 3
4



92 LINEAR SYSTEMS OF EQUATIONS SEC. 4.4.

Generalizing to n equations, we get the following result: The solution obtained
by Gaussian elimination of the system Ax = y with round-off to s fractional
places is an exact solution to another system (4 + d4)x = y + Jy, where

0o 0 o0 O0.-.- O 0 1
S TS D R | 1 3
2 2 2. 2 2 5
(34|8y) < ¢ l (4.4.6)

1 2 3 4...(n—2) (n—2) 2n—3
1 2 3 4.c(n—1) (n—1) 2n—1

with ¢ = #N—. If the computations are performed with s significant digits
instead of s fractional places, one naturally obtains slightly worse estimates.
It should be observed, however, that we have worked throughout with max-
imal errors. In practical computations, the errors are usually much smaller,
as has also been observed in numerical examples. More detailed accounts of
these and related questions can be found in the papers by Wilkinson (also
consult [3]).

Last, we will also discuss briefly what can be said with regard to the errors
in the solution itself. Suppose that x is the exact solution and x’ the approxi-
mate solution. Hence x and x’ are exact solutions of the systems

Ax =y, 4.4.7
(A+ 84 =y + 8. (4.4.7)

From this we get
X —x=(4+34)7y + &) — A7y
={(A+84) — Ay + (A + 84)' ¥y.
Using the triangular inequality and equation (3.6.10), we find, with @ =
(147 34(],
1 — x| < [{(4 + 34)7 — A7y| + |(4 + 84)7' 8y

< {475 z 7 P11+ 34)7] - fay]

But
(4 + 84)7"| = [[(4 + 84)™ — A~ + A7Y|
S|4 + 34)7 — A7Y| + ||47Y]

< 47 2 + (47

_ a7
|l -«
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Hence we finally have

e — 2l < L oy + oy (4.4.8)

First we note that the norm of the inverse of 4 plays a decisive role for the
magnitude of the errors in the solution. Also the constant a strongly depends
on this norm, since @ = [[4716A4|| < ||47"|| - ||d4]|. But we can say practically
nothing of ||4~|| without computing the inverse, which, of course, is closely
connected with the solution of the system.

Systems of equations with the property that small changes in the coefficients
give rise to large changes in the solution are said to be ill-conditioned. A meas-
ure of the numerical difficulties associated with a certain matrix is given by
the so-called condition numbers

M = nM(A)M(A™),
N = n'N(A)N(AY), (4.4.10)
P =,

where M(A4) = max_, |a;|, and further 2 is the largest and y the smallest abso-
lute value of the characteristic roots of 4 (cf. Section 3.6). In particular, if
A is Hermitian, we have P = ||4]| - ||47]l.

In general, the numbers M, N, and P become large at the same time. Taking
Wilson’s matrix (see below) as an example, we obtain M = 2720, N = 752,
and P = 2984. Large condition numbers, as a rule, indicate numerical diffi-
culties, especially in the solution of linear systems of equations and in the
inversion of matrices.

A well-known cxample has been presented by T. S. Wilson:

10x + 7y + 8z 4+ 7w =232,

7x + Sy + 6z + 5w =23,

8x + 6y + 10z + 9w = 33,

7x + Sy + 9z + 10w = 31.
Putting x = 6, y = —7.2,z = 2.9, and w = —0.1, we obtain the left-hand
sides equal to 32.1, 22.9, 32.9, and 31.1, respectively, and we are inclined to
believe that we are near the exact solution. However, setting instead x = 1.50,

y =0.18,z = 1.19, and w = 0.89, we obtain 32.01, 22.99, 32.99, and 31.01,
but in fact we are still far from the correct solution x = y=z=w=1.

4.5. Iterative methods

We again start from the system Ax = y and assume that we have obtained an
approximate solution x,. Putting x = x, + ¢, we get Ax = Ax, + Ae, = y,
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and Adg, = y — Ax,. The vector r, = y — Ax, is called the residual vector; it
is, of course, 0 for the exact soultion. If the computations are done with s
decimals, it is in general suitable to scale r, with the factor 10* before we solve
the system Ag, = r,, as before.

Now we shall assume that we know an approximate inverse B = A~'. The
procedure just described can be considered as the first step in an iteration chain.
Obviously, we haver, , =y — Ax, ,andx, = x,_, + Br,_,forn = 1, and now
we take these relations as definitions of r, and x,. First we shall prove that

r. = (I — ABy**y .

To begin with, the relation is correct for n = 0. Next we suppose that it is
correct forn — 1: r,_, — (I — AB)"y. The relation x, = x,_, + Br,_, is pre-
multiplied with 4 and subtracted from y:

n—1

y—Ax, =y — Ax,_, — ABr__,
or
r,=r, ,— ABr,_, = (I — AB)r,_, = (I — AB)**'y .
Hence we also have
x, = By,
x, =x, + Br,,
x, =x, + Br,

= xa—l + Bra—l ’
and after addition,
x,=By+r+rn+---+r_)=BI+E+E+...+ Ey,

where E = I — AB. Now assume that ||E|| = ¢ < 1; then ||E¥| < ||E||-||E|| = &*
and analogously, ||E*|| < e*. This suffices to secure the convergence of the
seriesI + E + E* +... to (I — E)™, and hence

limx, = B(I — E)'y = B(AB)'y = A7y

In particular we have forn = 1: x, = B(2I — AB)y = (2B — BAB)y (compare
with the iteration formula x,_,, = 2x, — ax2 for 1/a).

First we shall discuss an iterative method constructed by Jacobi. We write
the coefficient matrix A in the form D + C where D contains all diagonal ele-
ments of 4 and zeros elsewhere. Starting with x, = 0, for example, we form
successively x,, x,, ... by use of the formula

X,u=—D"'Cx, + D' =Bx, +c.
Thus we get
x,=¢; =+ B)c; x;=({I+ B+ B)c; ...
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Assuming ||B|| < 1, we obtain
limx, =( B)'¢e= (- B)"'D'y = {D(I — B)}"Yy

=D+ Oy =dy.

In general, without giving precise conditions, we conclude that convergence
is obtained if the matrix A has a pronounced diagonal dominance.

We shall now discuss the method of Gauss-Seidel. Starting from the system
(4.1.1), we construct a series of approximate solutions in the following way

The first vector x'” is chosen to be 0. We put x, = x, =... = x, = 0 in the
first equation, and solve for x, = x{". In the second equation, we put x, =
x,=-.--=x, = 0 and further x, = x;", and then we solve for x, = x{", and

so on. In this way we obtain a vector

(1)
xl
=,
(1
\xﬂ)

which ought to be a better approximation than x, and the whole procedure
can be repeated. Introducing the matrices

a, 0 o -.-0 0 Ay Q.- a4y
A, = a, a 0 ...0 : 4, = 0 0 s - - - Gy, :

a.ul A,y Qg --- 4., 0 0 0 ...0
A1+A1=A,

we can formulate the Gauss-Seidel iteration method: 4, x>V =y — A x»,
Choosing x* = 0, we get for p = 0, x¥ = 4;'y. Further, for p = I, we
have x® = A7y — A,A7'y) = (I — A7'A,)A7'y and analogously for p = 2,
we have x = (I — A4, + AT'A,AT'A,)ATYy. Putting 4’4, = E, we find by
induction that x* = (I — E + E* —... + (—1)>"E*") 4. When p— oo
the series within parentheses converges if ||E|| < 1, and the final value is

x=(I+ Ey'Ay = (A + E)}Yy = (4, + 4)y = A7y .

The condition for convergence of Gauss-Seidel’s method is that the absolute-
ly largest eigenvalue of 47’4, must be absolutely less than 1. For practical
purposes the following criterion can be used: We have convergence if for
i=1,2,...,n,la;|> S, where S; = 3, |a,|. Wealso form p, = S,/(|a;;| — S,)
and put p = max, p;. Then the method converges ifall p, > 0, and it converges
more rapidly the smaller p is. An empirical rule is that o should be < 2 in
order to produce a sufficiently fast convergence. Essentially, it is important
that the matrix has a clear diagonal dominance.

On the whole we can say that Gauss-Seidel’s method converges twice as fast
as Jacobi’s; a proof for this is given at the end of this section.
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EXAMPLE
8x — 3y+ 22:20,

4x + 1ly — z=33,
6x + 3y + 12z = 36.

i X Yi Z;

1 2.5 2.1 1.2

2 2.988 2.023 1.000

3 3.0086 1.9969 0.9965

4 2.99971 1.99979 1.00020
5 2.999871 2.000065 1.000048

Systems of equations with a large number of unknowns appear essentially
when one wants to solve ordinary or partial differential equations by differ-
ence technique. The coefficient matrices are often sparse and moreover they
usually possess a special characteristic which we shall call property A. This
property is defined in the following way. Let n be the order of the matrix
and W the set {1,2,3,...,n}. Then there must exist two disjoint subsets S
and T such that S U T = W and further g, = 0 impliesi = korie S, ke T,
orie T,k e S. This meansthat the matrix after suitable row-permutations,
each followed by the corresponding column permutation, can be written in

the form
D, E
F D,/’

where D, and D, are diagonal matrices. For example, the matrix

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

has property A, and we can choose § = {1, 3}, T = {2, 4}.

For systems of equations with coefficient matrices of this kind, D. M. Young
has developed a special technique, Successive Over-Relaxation, SOR. We shall
further assume 4 symmetricand a;; > 0;a;;, > ¥ o»; |G| for all values of i. As
before we split 4 into two parts 4 = D + C, D containing the diagonal ele-
ments. The equation (D 4+ C)x = y is now rewritten in the form (I + D~'C)x =
D7'yorx = Bx + c, where B= —D~'Cand ¢ = D™'y. Thus all diagonal ele-
ments of B are equal to zero, and we can split B into one upper and one lower
triangular matrix: B = R + L. Then the SOR-method is defined through

x(n+l) — (1 — w)x(n) + w{Lx(!H-l) + Rx(n) + C} ,

where @ is the so-called relaxation factor. When 0 < @ < 1 we have under-
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relaxation; when @ > 1 we have over-relaxation. If w = 1, we are back with
Gauss-Seidel’s method. Solving for x!**!, we get

x*+0 = (I — wL)y™{(1 — o)l + oR}x™ + (I — wl)'wc .

It is then clear that Jacobi’s, Gauss-Seidel’s, and Young’s methods can be re-
presented in the form x»+1 = Mx™ 4 d according to the following:

Jacobi M= —-D'C=8B d=D%=c
Gauss-Seidel M= ({I-L)'R d=({- L)
SOR M = (I — wL)™{(1 — w)] + wR} d= (I - wL)'wc .

The convergence speed will essentially depend upon the propertics of the
matrix M, convergence being obtained only if p(M) <1, where p(M) is the
spectral radius of M. For the SOR-method we encounter the important ques-
tion of how @ should be chosen to make p(M) as small as possible.

It is easy to see that the eigenvalues of 4 do not change during the permu-
tations which are performed for creating B. We notice, for example, that
pl — B is of the following type:

J7; 0 0 0 0 * * *

0 ] 0 0 0 * * *

0 0 u 0 0 * * *

0 0 0 v 0 * * * pl, E

0 0 0 0 ‘u * * « | = (F ﬂ’z) *
* * * * * u 0 0

* * * * * 0 ] 0

\v * * * * 0 0 7

From well-known determinantal rules it is clear that the same number of ele-
ments from E and from F must enter an arbitrary term in the determinant.
Two conclusions can be drawn from this. First: the characteristic equation
in the example above must be p* + a,i° + a,u* + ayp* = 0 and in general
L P,(1) = 0, where s = (n — r)/2. Now B need not be symmetrical, but

BI — Dl/zBD—l/2 —_ _Dl/S(D—lC)D-lIZ = _D—lI2CD—lI2
is symmetric. In fact, putting for a moment § = D-'2, we have
(SCS)" = STCTST = SCS,

since § is diagonal and Csymmetric (because 4 was supposed to be symmetric).
Hence, B and B’ have the same eigenvalues which must be real: 0,0, ...,
+p,, 4, ... The second conclusion which can be made is the following.
If all elements of E are multiplied by a factor k = 0 and all elements of F are
divided by the same factor, the value of the determinant is unchanged.
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We now derive an important relationship between an eigenvalue 2 of the
matrix M = (I — wL)™{(1 — w)I + wR}and an eigenvalue ¢ of B. The equa-
tion det (M — 2I) = 0 can be written

det {(I — wL}'[wR — (w — )] — (I — wL)2]} =0,
that is,
det([R + L) — Li‘a'j_"‘l) -0,

As has just been discussed we move a factor 2'* from L to R which does not
change the value of the determinant, and then we divide all elements by 2'*:

det([R+L] 2+‘;’m 1 )_0

But R + L = Band if g is an eigenvalue of B, we must have

it+w-—1

Y
Since b,; = 0 and T, . |b.,| < 1 (note that a; > ¥, .|a,]), we have according
to Gershgorin g* < 1. 'We can now express 1 in terms of y; conveniently we
put z = 2"% and obtain

z=3op+ Vit —ow+ 1.

For certain values of @ we get real solutions; for other values, complex solu-
tions. The limit between these two possibilities is determined by the equation
1ptw* — @ + 1 = 0 with the two roots:

o, =201 - VT =pr;  w,=201+ VT .

Real solutions z are obtained if @ < w, or ® > ®,, and complex solutions z
if W, < @ < w,. In the real case only the greater solution

2, = dop + Vit - w + 1

is of interest. A simple calculation shows that dz,/dw < 0 for @ < w,, while
dz,/dw > 0 for @ > w,. When @ — w, from the left, the derivative goes toward
— o0, and when @ — w, from the right, the derivative will approach +oo.
When w, < w < w,, we have

z = jop + Ve =T —Jo,

that is, |z]* = @ — 1. If |2] = |z|* is represented as a function of w, we get the
result as shown in Fig. 4.5. Using this figure, we can draw all the conclusions
we need. First it is obvious that the optimal value of the relaxation-factor is

w, = w,, that is,
2(1 — VT — 1)
¢ ’

p:

W, =
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where g is the spectral radius of B. It is also easy to understand that a value
w which is a little too big is far less disastrous than a value which is a little too
small since the left derivative is infinite. For convergence we must have (2| = 1,
and hence 0 < @ < 2, but we have SOR only when 1 < w < 2.

Ml

3 ~

]
2 3

]
a

w

e+
L J

Figure 4.5

In more complicated cases when y is not known one must resort to guesses
or experiments. A correct choice of @ may imply considerable savings in com-
putation effort, and there are realistic examples which indicate that the work
may be reduced by a factor of 10-100 compared to Gauss-Seidel’s method.

We shall now illustrate the method on a simple example.

1 Exact solution: §, = —41/209 = —0.196172

4x, + x,=2 &, = 53/209 = 0.253589

X, + 4x, =3 & = 167/209 = 0.799043
4

&, = 206/209 = 0.985646 .

4x, + x5+ x, =

X + Xy +4x.=

The coefficient matrix obviously fulfills all conditions posed before. Now y is
determined from the equation

g0 -3 —i
0 ] 0 -3 -0
-3 0 g o
—: -1 0

that is, 164 — 3p* + 5 = 0. The largest positive root is g = (V'3 + 1)/8
givingw = 2(1 — V1 — pf)/p* = 1.04464and 2 = @ — | = 0.04464. In the
table below we compare the fifth approximation in different methods. It turns
out that lower approximations become best for larger values of w, and the
error, defined as e = 3 |x; — & in the fifth approximation, is actually smallest
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for w = 1.050 when we get an accuracy of exactly 6 decimals.

X, X, X, x, e
Jacobi —0.184570 0.260742 0.798828 0.985352 0.019265
Gauss-Seidel —0.195862 0.253780 0.798965 0.985520 0.000705
SOR (w = 1.04464) —0.196163 0.253594 0.799042 0.985644 0.000018
Exact —0.196172 0.253589 0.799043 0.985646 —

The convergence speed for the iteration method x**t? = Mx'* 4 ¢ is defined
through R = —log p(M), where p(M) is the spectral radius for M. In the
example above we find:

R, = ——logl/-%*"—l = 0.9 for Jacobi’s method,

el
I

—2log 1/58+ 1 = 1.8 for Gauss-Seidel’s method,

R, = —log0.04464 = 3.1 for SOR.

The relationship ¢ = (2 + w — 1)/(2"*w) used for w = 1 gives 2 = y*, where
A is the spectral radius for Gauss-Seidel’s matrix, and g the spectral radius for
B, that is, the matrix of Jacobi’s method. Hence we have the general result
that the convergence for Gauss-Seidel’s method is twice as fast as for Jacobi’s
method.

4.6. Complex systems of equations

Suppose that 4 and B are real, nonsingular matrices of type (n, n) and that
X, y, u, and v are real column vectors with n rows. Then the system

(A+iB)y(x +iy) =u + iv 4.6.1)
is equivalent to
Ax — By = u,
{Ay +Bx=wv.

Eliminating, we find
{(B“A + A7'B)x = B~'u + A,

4.6.2
(B4 + A"'B)y = B-'v — A~ 46.2)

Both these systems can be solved simultaneously as one system with two different
right-hand sides, since the coefficient matrix isthe same. If 4 and Bare inverted
by Jordan’s method, and the system is solved by using Gaussian elimination,
the total number of multiplications will be approximately 7n%/3. Alternatively,
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we can also write

(640 - )

which can be solved by (2n)*/3 = 8n*/3 multiplications.

R
{1

2

(3
(4

(s
(6
4

(8

E
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XERCISES
1. Using Crout’s method, solve the system

x4+ 2y— 12z 480 =27,
Sx+ 4+ Tz—2v= 4,
=3x+ Ty+ 92+ 50=11,
6x — 12y — 82+ 3v=49.

2. Using Crout’s method, solve the system

xX+2y+3z+4+40=20,
Ix—2y+8z2+40=26,
X+ y—4z+Tv=10,
4x +2y —8z—-4p= 2.

3. Using Crout’s method, solve the system

2x+ 10y — 6z+ 4u+ 8= 8,
—-3x—12y— 924 6u+ 3v= 3,
—x+ y—34z+4 154+ 18v = 29,
4x + 18y + 4u+14p= -2,
5x + 26y — 192 + 25u + 36p = 23 .
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4. Using an iterative method, solve the following system (three correct decimals):

x, + 10x, + x5 =10,
2x, + 20x; + X, =10,
3x, +30x; + 3x,= O,

10x, + x, — Xg= 5,
2x, — 2x5 + 20x, = S,

xs + 10x, — x5 = 0.

5. Certain linear systems of equations can be treated conveniently by Gauss-Seidel’s
iterative technique. After a simple generalization, the method can be used also on some
nonlinear systems. Find in this way a solution of the system

x —0.1y* +0.052 =0.7,
Y +03x* —0.1xz = 0.5,
z +04y" +0.lxy =1.2.

(Accuracy desired: three decimals.)
6. The system
{ax +by+c=0,
dx +ey +f=0,
can be solved by minimizing the function z = (ax + by + ¢)* + (dx + ey + f)* Westart
from an approximate solution (x,, ;) and construct a better one by first keeping y = y,
constant and varying x; the minimum point is called x,.,,. Next we keep x = x,,, con-

stant and vary y: the minimum point is called y,,,. The procedure is then repeated.
Use this method to solve the system

{5x+2y-ll:0,
x—3y— 9=0,

with x, = y, = 0 (six iterations; six decimals).

7. Show that the method in the previous example, when applied on the system Ax = y,
is equivalent to forming the symmetric system A" 4x = A"y.

8. Find the optimal relaxation factor for the system

2x — y =17,
—-x+2y— z=1,
—y+2z=1.

Then perform 4 iterations with w rounded to 1 decimal.



Chapter 5

Matrix inversion

Great fleas have little fleas upon their back
to bite ’em,

and little fleas have lesser fleas, and so ad
infinitum.

The great fleas themselves in turn have
greater fleas to go on,

while these again have greater still, and
greater still, and so on.

5.0. Introduction

We suppose that 4 is a square nonsingular matrix of type (n, n). Our problem
is to determine the matrix X which satisfies the relation 4X = I. We denote by
x,, X,, . . ., X, the vectors formed by the first, second, ..., nth column of X, and
analogously we define the unit vectors I, I,, . . ., I,. Hence the equation A X =1
can be replaced by n linear systems of equations, all with the same coefficient
matrix: Ax, = I, (r = 1,2, ..., n). All these systems have unique solutions,
since det 4 = 0. The solution can be performed by Gauss’ elimination method,
but, as a rule, Jordan’s modification is preferred. This is due to the fact that
although Gauss’ method is faster, Jordan’s modification demands less memory
space for storing intermediate results.

5.1. Jordan’s method

Since the coefficient matrix is the same for all systems, we start by writing 4
and I side by side. Then x, is eliminated from all equations but the first one,
x, from all equations but the second one, and so on. As is easily understood,
only n* nontrivial elements need to be stored during the whole process. Every
step in the elimination gives one column in the unit matrix to the left, and at
the end we have I to the left and 4! to the right. After p steps we have the
scheme shown at the top of p. 104. The following formula is used for the pth
reduction of the pth row:

as, = %o (5.1.1)

For the other rows we have

p—1
1 %k

p—1
aPP

P — Pl __ qgP—
a5 = 4% aj,

(5.1.2)
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M @)---(p) (p+1) - ) (1) (2) --- (p) (p+1)---(n)
n 1 0.-.0}a,, -a, a, a - aj, 0o ...0
2 0 1...0|a,, -a;, ah ah - a, o ..-0
(P) 0 0---1|a,, -—-a, a, a&, ---a, 0 ...0
(p+1) 0 0 ... 0 |@,, 41 " Boprn Foprn B " Topap 1 ...0
m 0 0-..0(a,, ---a, ay ay ---a, | 0 -1

After n steps we are through and have obtained the inverse 4~'; only the n*
elements within the frame need to be stored during the computation. The
element a2, .., printed in boldface type, is the pivot element for the next
step.

EXAMPLE

50 107 36

A=1[25 54 20).

31 66 21
50 107 361 0 0 1 2.14 0.72 0020 0
25 54 2010 1 0—0 0.5 2 -0.5 1 0
31 66 2110 0 1 0] —-0.34 —-132 —-062]0 1
1 0| —7.84 2,16 —4.280
-0 1 4 —1 2 0
0 0 0.04 —-0.96 0.68 |1
1 0] —186 129 196
—0 1 0 95 —66 —100
0 1 —24 17 25

5.2. Triangularization

As in Section 4.2, the matrix A is written as the product of two triangular
matrices denoted by L and R. Hence 4 = LR, and after inversion we get
A™' = R7'L'. Inversion of a triangular matrix can be performed directly by
use of the definition; the inverse is of the same form as the original matrix.

Put, for example,
L, 0 O\/x, O O 1 0o 0
L L, O]|lx, x, O 0 1 O) .
by Ly L) \xy  xy,  xy 0 0 1
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Then the unknownscan bedeterminedsuccessively from the following equations:

1,x,, =1, { L,y =1, Igx = 1.
Lyxy, + lyxy, =0, g%y + Xy = 0,
Iyx,, + lgxy + lyXy = 0,
Analogously,
ry Na NS\ [Yu Y Vi 1 Y Y
(0 £ ’zs) (0 Y }'23) = (0 1 0) ’
0 0 ry/ \O 0 Yss/ 0 0 1
gives the following system:
reys = 1, Fayn =1, rayn = 1.
Ty + TuYs =0, {’n.)’n'*"n}’n:(),

FaYis + MaYu + NsYs = 0,

The method described here is sometimes called the unsymmetrical Choleski
method.

EXAMPLE

50 107 36 5 0 0
A=1|25 54 20), L=125 1 o |,

31 66 21 3.1 -—0.68 0.2
10 21.4 7.2

R = ( 0 05 2 > .
0o o0 0.2

As mentioned before, the partition is not unique; the diagonal elements in
one of the matrices are at our disposal. We easily find

0.1 —-4.28 39.2 02 0 0
R = (0 2 -20 ) L = (—0.5 1 0),
0 0 5 —48 34 S
and

— 186 129 196}
R\L = 95 —66 —100],
, —24 17 25

inaccordance with earlier results. If, instead, we choose the diagonal elements
of L equal to 1, we obtain

1 0 0
L=1(0.S5 1 0f}.
0.62 —0.68 1
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The remaining matrix can be split into a product of a diagonal matrix D and
an upper triangular matrix R, with all diagonal elements equal to 1. Hence

50 O 0
D=|0 05 0
0 0 0.04
and

1 214 0.72
R = (0 1 4 .
\0 0 1

As is easily understood, the partition 4 = LDR is now unique; the inverse
becomes 4—! = R-'D~’L-'. In our special example we get

1 -2.14 -7.84\ /0.02 0 0 1 0 0
A1 =0 1 —4 0 2 0]|-05 1 0
0 0 1 0 0 25/\-096 068 1
— 186 129 196
= 95 —66 —100).
-24 17 25
Since det L =det R = 1, we alsogetdet 4 =det D =d,d,--- d,.

5.3. Choleski’s method

Now we assume that the matrix 4 is real symmetric and positive definite.
Then we can write 4 = LLT, where L is a lower triangular matrix.* As pointed
out before, some elements of L might become imaginary, but this will cause
no extra trouble. The inverse is obtained from

A~ = (LT)" L~ = (L)L, (5.3.1)

and we have to perform only one inversion of a triangular matrix and one
matrix multiplication.

ExAMPLE

1 2 6 1 0 0
A:(Z 5 15), L=12 1 0];
6 15 46 6 3 1

1 0 o0 5 -2 0
L'=(-2 1 o), (LYyL'=(-2 10 —3].
0 -3 1 0 -3 1

* In some special cases such a partition does not exist.
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When the computations are done by hand, Choleski’s method, which is also
called the square-root method, seems to be quite advantageous.

5.4, The escalator method

This method makes use of the fact that if the inverse of a matrix 4, of type
(n, n) is known, then the inverse of the matrix 4, ,,, where one extra row has
been added at the bottom and one extra column to the right, can easily be
obtained. We put

A= (AlA) ang g (1K),
AT a X7 | x

where 4, and X, are column vectors, A7 and X7 row vectors, and a and x
ordinary numbers. Further, 47 is assumed to be known. The following equa-
tions are obtained:

AX, + AXT =1, (5.4.1.a)
AX, + A4x =0, (5.4.1.b)
ATX, + aXT =0, (5.4.1.c)
AIX, +ax =1. (5.4.1.d)

From (b) we get X,= — A;'4,x, which, inserted in (d), gives (a — ATA;7'A;)x=1.
Hence x and then also X, can be determined. Next we get from (a):

X, = A7 - 4,X]),
which, inserted in (c), gives
(@ — A7AT'A)X] = —ATAT,

and hence X; is known. Finally, we obtain X, from (a), and the inverse
A~ has been computed. In this way we can increase the dimension number
successively.

ExaMmpPLE
13 14 6| 4 \
=le 7 3| 2) 4, = 2 —]’ 1: ;
9 5 16 |11 ‘
94 0 —188 4
A7 =g (54 -3 121, A,=(9 ;
-62 7 125 \2
AT = (9,5,16); a=11.
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Using the scheme just described, we find

0
x=-94; X, = (_1>, X7 = (—416,97,913);
65

1 0 -2

x,=<_5 1 11)

287 —67 —630

and finally
1 0 -2 0
-5 1 11 —1
287 —67 —630 65
—416 97 913 —94

At =

The escalator method can be interpreted as a special case of a more general
partition method which can be used, for example, for inverting matrices of
such a large order that all elements cannot be accommodated in the memory
of a computer at one time. Put

©ONG -6 )

where 4 and D are quadratic matrices, not necessarily of the same order, and
we obtain

AX + BZ =1, X = (4 — BD'C),
AY + BV =0, Y= —A-B(D — CA~*B)',
CX+DZ=0, Z= —D"'C(4 — BD'C)™,
cY+DV=1, V= (D — CA'B).

5.5. Complex matrices

It is easy to compute the inverse of the matrix 4 + iB if at least one of the
matrices A and B is nonsingular. We put

A+ iB)(X+ iY)=1
and obtain, if 4~! exists:
X=(4+ BA'B)*; Y= —A"'B(4 + BA'B)™;
and if B! exists:
X = B'A(AB'A + B)~'; Y= —(4B~'4 + B).

If A and B are both regular, the two expressions for X and Y are, of course,
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identical; we have, for example,

B'A(AB-'A + B)™ = (A—'B)™ . (AB~'A + B)™
— {((AB'A + B)(A'B)}~* = (A + BA—'B)™.

Somewhat more complicated is the case when 4 and B are both singular
but A4 + iBisregular. We can then proceed as follows. Consider the matrices
F=A 4+ rBand G = B — rd, where r is a real number. Then there must
exist a number r such that, for example, F becomes regular. In order to prove
this, put det F = det (4 + rB) = f(r). Obviously, f(r) is a polynomial of degree
n, and if f(r) = O for all r, we would also get f(i) = 0 against our assumption
that 4 + iB is regular.

From F + iG = (1 — ir)(A + iB), we get (4 + iB)™ = (1 — ir)(F + iG)™".
Here (F + iG)~! can be computed as before, since F is regular.

5.6. Iterative methuds

A matrix 4 with |[4|| < 1 is given, and we want to compute (I — 4)~'. Put
C,=Iand C,,, =1+ AC,itisclearthat C, = I + A + A* + ... + A*. As
we have shown previously, C, converges to (I — A)~* when n — oo.

Now suppose instead that we want to compute 4~ and that we know an
approximate inverse B. Forming AB — I = E, we get A™' = B(I + E)™' =
B(I — E + E* —...) ifthe series converges. The condition for convergence is
||E[} < 1. In practical computation a strong improvement is usually obtained
already for n = 1. 1In this case, we can write A= = B(I — E) = B(2I — AB),
or putting B, = B, we obtain B,,, = B,(2I — AB,) in complete analogy to
Formula (2.2.6). With 4B, = I + E,, we find AB,, , = I — E2, and hence
convergence is quadratic. Moreover, by use of induction, we can easily prove

that B, = B(I — E + E* — ... + (—1)*'E*!), where E = E, = AB — I, as
before.
ExAMPLE
52 0.1 0.2
A:(3 _1)’ Bz(o.s _0.4)’
0.1 0.2 ., _ (0.01 0.02\
SR )
0.1 0.2\ /091 —0.18) (0.091  0.182
- 2 = =
BI - E+ EY) (0.3 _0.4) (o 1 ) (0.273 —0.454>

while

A = (T‘T TQT) .
T 1Y
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EXERCISES

1. Find the inverse of the matrix

by using Jordan’s method.
2. Find the inverse of the matrix

3 7 8 15
_{2 5 6 11
4= 2 6 10 19
v 11 19 38
3. Find the inverse of the matrix
1 10 3
{2 19 27 8
A= 0 2 17 4
5 2 6 3
4. Find the inverse of Pascal’s matrix
1 1 1 1 1
1 2 3 4 5
A=|1 3 6 10 15}.
1 4 10 20 35
1 5 15 35 70

5. Using Choleski’s method, find the inverse of the matrix

1 2 0.5 1

A= 2 S 0 -2
0.5 0 2.25 7.5
1 -2 7.5 27

6. Factorize the matrix

-2 4 8
A =<—4 18 —16)
—6 2 -20

in the form LDR, and use the result for computation of A™' = R™'D"'L™".
7. A is an (n, n)-matrix with all elements equal to 1. Find a number « such that
I + aA becomes the inverse of I — A.

8. Compute the condition numbers M and N for the matrix

1 2 3 4
2 6 12 20
6 24 60 120
24 120 360 840

A=
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9. Compute the inverse of

g S+ P 4+2
“(10+3i 8+6i>‘

10. Find the inverse of

3 -1 10 2
S 1 20 3
A= 9 7 39 4
1 =2 2 1

by repeated use of the escalator method.

11. The inverse of a matrix A4 is known: A~} = B. E,, is a matrix with all elements
zero except the element in the ith row and kth column which is 1. Find the inverse of
A + 3E;, where § is a small number (5° and higher terms can be neglected). Then use
the result on the matrices

1 0 -2 0 13 14 6 4

=5 1 o - 8 -1 13 9

A=\ 27 _e1 —630 5] ™ B=le¢ 7 3 2]
—416 97 913 - 94 9 s 16 11

where the element 913 is changed to 913.01.

12. A matrix with the property a;, = 0 for |i — k| > a, where a is an integer >1, is
called a band matrix. Consider a band matrix 4 with diagonal elements a,, a,, . . ., a,
and the elements next to the main diagonal equal to I(a = 1). Show that we can write
A = LDL", where

1 0 0.. d, 0 0...0
¢ 1 0...0 0 d 0...0
L=|0 Cy 1...0 and D=0 0 d,--- 0
0 0 0-..c.l 0 0 O0..-d,
and d, = a;; ¢, = 1/d;; di., = ax., — ¢+, (We suppose that d, + 0). Use this method

on the matrix

OO ™= =
CO =N -
(=
—_Hh -0 O
w—- O O

13. A and Bare given matrices of type (n, n). We have the estimates 'a;,| <¢,; 1bu| <é,.
Form C = 4 + B and D = AB and show that |c;| < ¢, + &, |dii| < neye,.

14. 4 is a given matrix and B an approximate inverse (Oth approximation). Using
E = AB — I, we construct a series of improved approximations. Find an error estimate
for the pth approximation when |e;;| < ¢ and |b;| < a.
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15. Let
18 —12 23 —42
PN Y, 8 —72 —-22
| -31 42 54 45
77 -33 —16 —63
and
—-19 -2 12 23

12 -8 2 -4’
—-25 —11 -3 2

where B is an approximate inverse of 4. Compute the second approximation of A7
and estimate the error according to Exercise 14.

16. A is an n X n matrix with elements a;;, = 25, — 8;-,.& — 0;+1.4» Where

.

5. = 1 if r=s,
"_{0 if res.

Show that 4™ = B, where

min (i, k)[rn + 1 — max (i, k)]

b =
n+1

17. The n X n nonsingular matrix A4 is given. The rows are denoted by AT A7, ...,
AT, while the columns of A" are denoted by C,, C,, ..., C,. The matrix B is obtained
from A by replacing A7 by a”. Show that B is nonsingular if 2 = a"C, is not equal to
zero and compute the columns D,, D, ..., D, in the inverse B™' by trying D; = C; + a,C,
(i # r)and D, = a,C,.



Chapter 6

Algebraic eigenvalue problems

Das also war des Pudels Kern! = GOETHE.

6.0. Introduction

Determination of eigenvalues and eigenvectors of matrices is one of the most
important problems of numerical analysis. Theoretically, the problem has been
reduced to finding the roots of an algebraic equation and to solving » linear
homogeneous systems of equations. In practical computation, as a rule, this
method is unsuitable, and better methods must be applied.

When there is a choice between different methods, the following questions
should be answered:

(a) Are both eigenvalues and eigenvectors asked for, or are eigenvalues alone
sufficient?

(b) Are only the absolutely largest eigenvalue(s) of interest?

(c) Does the matrix have special properties (real symmetric, Hermitian, and
so on)?

If the eigenvectors are not needed less memory space is necessary, and further,
if only the largest eigenvalue is wanted, a particularly simple technique can be
used. Except for a few special cases a direct method for computation of the
eigenvalues from the equation det (f — A) = 0 is never used. Further it turns
out that practically all methods depend on transforming the initial matrix one
way or other without affecting the eigenvalues. The table on p. 114 presents a
survey of the most important methods giving initial matrix, type of transfor-
mation, and transformation matrix. As a rule, the transformation matrix is
built up successively, but the resulting matrix need not have any simple proper-
ties, and if so, this is indicated by a horizontal line. It is obvious that such a
compact table can give only a superficial picture; moreover, in some cases the
computation is performed in two steps. Thus a complex matrix can be trans-
formed to a normal matrix following Eberlein, while a normal matrix can be
diagonalized following Goldstine-Horwitz. Incidentally, both these procedures
can be performed simultaneously giving a unified method as a result. Further,
in some cases we have recursive techniques which differ somewhat in principle
from the other methods.

It is not possible to give here a complete description of all these methods
because of the great number of special cases which often give rise to difficulties.
However, methods which are important in principle will be treated carefully

113
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and in other cases at least the main features will be discussed. On the whole
we can distinguish four principal groups with respect to the kind of transfor-
mation used initially:

1. Diagonalization,

2. Almost diagonalization (tridiagonalization),

3. Triangularization,

4. Almost triangularization (reduction to Hessenberg form).

The determination of the eigenvectors is trivial in the first case and almost trivial
in the third case. In the other two cases a recursive technique is easily estab-
lished which will work without difficulties in nondegenerate cases. To a certain
amount we shall discuss the determination of eigenvectors, for example,
Wilkinson’s technique which tries to avoid a dangerous error accumulation.
Also Wielandt's method, aiming at an improved determination of approximate
eigenvectors, will be treated.

6.1. The power method

We assume that the eigenvalues of 4 are 2,, 4,, . . ., 4,, where [,| > (2, >+ >
|2.]. Now we let A operate repeatedly on a vector », which we express as a
linear combination of the cigenvectors

V=c0 + 0, .-+ C,D, . (6.1.1)

"

Then we have

Av = ¢, A, + c,Av, + - + c AD, = 21<C1vn + Cﬁ'j’"”z +--+ c-%lvw)

1 1

and through iteration we obtain
Ao = 27 {clv, + ¢ <%>, v, +---+c, (1—">p 1’.} . (6.1.2)
For large values of p, the vector
o, + ¢, (_;:.)’v, +---4c, (%)’ v,

will converge toward ¢,v,, that is, the eigenvector of 2,. The eigenvalue is ob-
tained as
. Ap+l,v)
=tim 70
= lim @), ,n, (6.1.3)
where the index r signifies the rth component in the corresponding vector. The
rate of convergence is determined by the quotient 2,/3,; convergence is faster the
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smaller |1,/4, is. For numerical purposes the algorithm just described can be
formulated in the following way. Given a vector y,, we form two other vectors,

Vi and g,
Zis = AVi s
Yitr = Lqa/Wisr s
Qyyy = Max, [(Ze4),l -

(6.1.4)

The initial vector y, should be chosen in a convenient way, often one tries a
vector with all components equal to 1.

EXAMPLE
Starting from

we find that

0.3276 0.3007
y, = (o.os97) , Y= (0.0661) )

1 1

0.3000¢ 2.0999
Y = (0.0667) , and 2, = | 0.4668 | .

1 7.0001

After round-off, we get

9
A=1 and v, = 2).

30,

If the matrix A is Hermitian and all eigenvalues are different, the eigenvectors,
as shown before, are orthogonal. Let x be the vector obtained after p iterations:

x = A\* A\?
=0 + €, T 0’+...+C.(.2_“.) v'=clvl+e’vz+...+e‘v..
1

1

We suppose that all v; are normalized:

/v, = 0, .
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Then we have
Ax = A0, + 4,0, + -+ £,2,0,
and
XPAx = Qe + Al + -+ Adle,lt

Further, x#x = |¢,|* + |&,]* + .- - + |&,|*» When pincreases, all ¢, tend to zero,
and with x = const 4?(3] ¢;v,), we get Rayleigh’s quotient

xHAx

A, = lim (6.1.5)
p— XX

EXAMPLE
With

10 7 8 7 1

7 5 6 5 1

A4=l3g 6 10 of 2 %=}
7 5 9 10 1

we obtain for p = 1, 2, and 3, 2, = 29.75, 30.287, and 30.288662, respectively,
compared with the correct value 30.28868. The corresponding eigenvector is

0.95761
0.68892
1 .
0.94379

The quotients of the individual vector components give much slower conver-
gence; for example, (x,),/(x,), = 30.25987.

The power method can easily be modified in such a way that certain other
eigenvalues can also be computed. If, for example, 4 has an eigenvalue 2,
then 4 — gl has an eigenvalue 2 — ¢. Using this principle, we can produce
the two outermost eigenvalues. Further, we know that 2=is an eigenvalue of
A~'and analogously that (2 — g)~'is an eigenvalue of (4 — gI)~'. If we know
that an eigenvalue is close to ¢, we can concentrate on that, since (2 — ¢)*
becomes large as soon as 1 is close to g.

We will now discuss how the absolutely next largest eigenvalue can be calcu-
lated if we know the largest eigenvalue 2, and the corresponding eigenvector
x,. Let a” be the first row vector of 4 and form

A=A —xa". (6.1.6)

Here x, is supposed to be normalized in such a way that the first component
is 1. Hence the first row of 4, is zero. Now let 2, and x, be an eigenvalue and
the corresponding eigenvector with the first component of x, equal to 1. Then
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we have
A(x, — x;) = A(x, — x;) — x,a"(x, — x;) = 4% — A.x, — (4, — A)x,
= (x, — X)),

since a’x, = 2, and a’x, = 1, (note that the first component of x, as well as of
x, is 1).

Thus 2, is an eigenvalue and x, — x, is an eigenvector of 4,. Since x, — x,
has the first component equal to 0, the first column of 4, is irrelevant, and in
fact we need consider only the (n — 1, n — 1)-matrix, which is obtained when
the first row and first column of A4 are removed. We determine an eigenvector
of this matrix, and by adding a zero as first component, we get a vector z. Then
we obtain x, from the relation

X, = X, + €Z.

Multiplying with a” we find a"x, = a”x, + ca”z, and hence ¢ = (2, — 2,)/a"z.
When 1, and x, have been determined, the process, which is called deflation,
can be repeated.

EXAMPLE
The matrix —306 —198 426
A _ 104 67 147,
—176 —114 244

has an eigenvalue 2, = 6 and the corresponding eigenvector

)

1
X, = -—%) .
3
Without difficulty we find

0 0 o
A, =|—49 _32 66).

—-23 —15 31

or normalized,

Now we need consider only
-32 66)
B =
! (— 15 31/°

and we find the eigenvalues 2, = —2and 2, = 1, which are also eigenvalues of
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the original matrix 4. The two-dimensional eigenvector belongingto 4, =

('s):

1 0
X, =X, + €T = (—;) + c(ll).
3 5

Since a”z = —48, we get ¢ = } and

- - 8
w44

and a”z = 30. Hence ¢ = —} and

[ -

and all eigenvalues and eigenvectors are known.

and hence

With 2, = 1, we find

119

—2is

If Ais Hermitian, we have xfx, = 0 when 2, # 1,. Now suppose that x{x, =1,

and form

A = A — 2xxl. (6.1.7)

It is easily understood that the matrix 4, has the same eigenvalues and eigen-

vectors as A except 2,, which has been replaced by zero. In fact, we

have

Ax, = Ax, — Axxfx, = ,x, — 4x, = 0 and A,x, = Ax, — A, x,xl'x, = 2x,,

and so on. Then we can again use the power method on the matrix 4,.

EXAMPLE
0 7 8 7 0.528561
7 S 6 S 0.380255
A4=13g 6 10 o] A=3028686; x=|,c505]5
7 S 9 10 0.520933

1.53804 0.91234 —-0.83654 —1.33984
0.91234 0.62044 —0.35714 —0.99979
—~0.83654 —0.35714 0.77228 0.29097 | *

—1.33984 —0.99979 0.29097 1.78053

4, =
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With the starting vector
1

1
Yo = 1l
—1

we find the following values for Rayleigh’s quotient: 2, = 3.546, 3.8516, and
3.85774 compared with the correct value 3.858057.

If the numerically largest eigenvalue of a real matrix 4 is complex, 1. ',
then 2 - e~*» must also be an eigenvalue. It is also clear that if x, is the eigen-
vector belonging to 2e'¢, then x is the eigenvector belonging to 2e~*¢.

Now suppose that we use the power method with a rcal starting vector x:
x =c¢.x, + ¢¢xF + - - - Then we form A™x, with m so large that the contributions
from all the other eigenvectors can be neglected. Further, a certain component
of A=x is denoted by p,. Then p, =~ cim§(emiv+i0+¥ 4 e=(mip+if+ip)) where
¢, = ce'? and the initial component of x, corresponding to p is £e'/. Hence

Pm = 22" cOs (mp + a) ,
where we have put § + ¢ = a. Now we form

PuPuis = Pann = 4c?3 2+ cos (mgp + a) cos ((m + 2)p + a)
—cos*((m + l)p + a)] = —4c* 2= t*sin* @ .

Hence
lim £aPass — Pats = 3. (6.1.8)
"= Pu1Pmi1 — Pm

Then we easily find

im AP+ P
lim Zf2 T Fmt3 — cosgp ., (6.1.9
moe 22pn+l ? )
In particular, if ¢ = &, that is, if the numerically largest eigenvalues are of
the form +2 with real 2, then we have the simpler formula

lim Pmss _ 2 (6.1.10)

== Pa

6.2. Jacobi’s method

In many applications we meet the problem of diagonalizing real, symmetric
matrices. This problem is particularly important in quantum mechanics.

In Chapter 3 we proved that for a real symmetric matrix 4, all eigenvalues
are real, and that there exists a real orthogonal matrix O such that 040 is
diagonal. We shall now try to produce the desired orthogonal matrix as a
product of very special orthogonal matrices. Among the off-diagonal elements
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we choose the numerically largest element: |a;,| = max. The elements a;;, a;,,
a,(=ay), and a,, form a (2, 2)-submatrix which can easily be transformed to
diagonal form. We put
o — (€59 —sin @
in @ cos g/’

and get
D = 0-'40 — ( cosp sing (a‘.‘. a‘.,,> (cOSep —sin <p) (6.2.1)
- —sing cosgp/\a, a,/ \sing cos @/’

d

it

a,; cos* @ + 2a,sinpcos @ + a,,sin*p,
d, = d,, = —(a; — a,,)sin pcos @ + a,(cos* @ — sin* ),
d,, = a,sin*p — 2a;,sin pCos @ + a,, Cos’p .
Now choose the angle p such that d;, = d,; = 0, that is, tan2p = 2a,,/(a;; — ay,).

This equation gives 4 different values of , and in order to get as small rotations
as possible we claim —7/4 < @ < m/4. Putting

l if aﬁ 2 akk ’
— — 31 4] nd =
R ‘/(au alk) + ik a g —1 lf a; < akk ’

we obtain:
{sin 2p = 20a,/R,
cos 2p = a(a; — a,,)/R,

since the angle 2 must belong to the first quadrant if tan 2¢p > 0 and to the
fourth quadrant if tan 2 < 0. Hence we have for the angle ¢:

@ = }arctan (2a,/(a;; — a.,)) if a;=+a,,
/4 when a, >0

if a,, = a,,
—r/4 when a,<0

¢=

where the value of the arctan-function is chosen between — /2 and /2. After
a few simple calculations we get finally:

d; = ¥(a; + a, + oR),
du = ¥(a; + a,, — oR), (6.2.2)
d.'t = dh‘ =0.

(Note that d; + d,, = a,; + a,, and d,d,, = a,a,, — a},.)

We perform a series of such two-dimensional rotations; the transformation
matrices have the form given above in the elements (i, i), (i, k), (k, i), and (k, k)
and are identical with the unit matrix elsewhere. Each time we choose such
values i and k that |a,,| = max. We shall show that with the notation P, =
0,0, - .- 0, the matrix B, = P;'AP, for increasing r will approach a diagonal
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matrix D with the eigenvalues of 4 along the main diagonal. Then it is obvious
that we get the eigenvectors as the corresponding columns of O = lim,_, P,
since we have O—'40 = D, thatis, 40 = OD. Let x, be the kth column vector
of O and 1, the kth diagonal element of D. Then we have

Ax, = 1.x, .

If 33,..la,| is denoted by ¢, we know from Gershgorin’s theorem that
la; — 4] < ¢, for some value of /, and if the process has been brought sufficiently
far, every circle defined in this way contains exactly one eigenvalue. Thus it is
easy to see when sufficient accuracy has been attained and the procedure can
be discontinued.

The convergence of the method has been examined by von Neumann and
Goldstine in the following way. We put7%(4) = 3. 33, .. @}, = N¥4) — 3. a};
and, as before, B = O~'40. The orthogonal transformation affects only the
ith row and column and the kth row and column. Taking only off-diagonal
elements into account, we find for r i and r % k relations of the form

al

(£4

= a,CcosQ + a,.sing,
a, = —a,singp + a,,cosp,

and hence ai} + a}} = a}, + a},. Thus 7’(4) will be changed only through the
cancellation of the elements aq,, and q,;, that is,

H(d') = T(4) — 24, .

Since a;, was the absolutely largest of all n(n — 1) off-diagonal elements, we have

1 ((C))
Y 2 n(" — 1) ’
and
2 ’ 2 . _ 2 2 . _ 2
H4') < 7%(4) (1 "(n—__l)) < 7%(4) exp( ;(n———ﬁ)
Hence we get the final estimate,
T(4') < 7(d) - exp (-Wl:—ﬂ) . (6.2.3)

After N iterations, 7(A4) has decreased with at least the factor exp(—N/n(n — 1),
and for a sufficiently large N we come arbitrarily close to the diagonal matrix
containing the eigenvalues.

In a slightly different modification, we go through the matrix row by row,
performing a rotation as soon as |a,| > ¢. Here ¢ is a prescribed tolerance
which, of course, has to be changed each time the whole matrix has been passed.
This modification seems to be more powerful than the preceding one.

The method was first suggested by Jacobi. It has proved very efficient for
diagonalization of real symmetric matrices on automatic computers.
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EXAMPLE 10 7 8 7
7 5 6 5

4=1s 6 10 9

7 5 9 10

Choosing i = 3, k = 4, we obtain, tan 2¢p = 18/(10 — 10) = oo and ¢ = 45°.
After the first rotation, we have

10 7 152 —1)vV2
4 - 7 5 ny/2 —1jvV2
Tl s 12 19 0 ’
-1IV2 12 0 1
Here we take i=1, k=3, and obtain tan2p = 15V/2/(10 — 19) and
@ = —33°. 5051. After the second rotation we have
2.978281 1.543214 0 —0.589611
4 — 1.543214 5 10.349806 —0.707107
71 o 10.349806 26.021719 —0.390331

—0.589611 —0.707107 —0.390331 1
and after 10 rotations we have

3.858056 O —0.000656 —0.001723

0 0.010150 0.000396 0.000026
—0.000656 0.000396 30.288685 0.001570] °
—0.001723 0.000026 0.001570 0.843108

After 17 rotations the diagonal elements are 3.85805745, 0.01015005,
30.28868533, and 0.84310715, while the remaining elements are equal to 0 to
8 decimals accuracy. The sum of the diagonal elements is 35.99999999 and the
product 1.00000015 in good agreement with the exact characteristic equation:

A — 352° + 1462* — 1002 + 1 = 0.

A, =

Generalization to Hermitian matrices, which are very important in modern
physics, is quite natural. As has been proved before, to a given Hermitian
matrix H we can find a unitary matrix U such that U-*HU becomes a diagonal
matrix. Apart from trivial factors, a two-dimensional unitary matrix has the
form

U - ( cosp —sing - e“’) )
sin @ - e*¢ cos

A two-dimensional Hermitian matrix

H:( a b—ic)
b + ic d
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is transformed to diagonal form by U"'HU = D, where

d, = acostp + dsin*p + 2(bcosf + csinf)sinpcosp,

d,, = asin*p + dcostp — 2(bcos§ + csinf)sinpcos g,

d,, = d = (d — a)sin p cos pe~** — (b + ic)sin* e *’ + (b — ic)cos’p .
Putting d,, = 0, we separate the real and imaginary parts and then multiply the
resulting equations, first by cos § and sin 6, then by —sing and cos 6, and
finally add them together. Using well-known trigonometric formulas, we get

bsin@ — ccosfd =0, . (6.2.4)
(@ — d)sin2p — 2(bcos§ + csinf)cos2p = 0.

In principle we obtain 4 from the first equation and then g can be solved from
the second. Rather arbitrarily we demand —7/2 < 6 < m/2 and hence
{sin 6 = cajr,

cos § = bar,
where

and r=1vhb+ ct.

{ 1 when b>0,
g =

-1 when b<oO,

Since b cos § + csin § = gr the remaining equation has the solution

sin 2p = 207r/R,
cos 2p = 7(a — d)/R,
withz = +1and R = V/(a — d)* + 4 = V/(a — d)* + 4(b* + ct). Now we
want to choose ¢ according to —x/4 < @ < m/4 in order to get as small a
rotation as possible which implies
1 for a>d,
T =
-1 for a<d.

The following explicit solution is now obtained (note that b and ¢ cannot both
be equal to 0 because then H would already be diagonal):

b+0: 6 = arctan (c/b) ,

x/2  if ¢>0,
—x/2 if ¢<O0,
a—d=+0: @ =jarctan(20r/(a — d)),

(w4 if b0,
"’“{—m if b<0.

As usual the value of the arctan-function must be chosen between — /2 and

b=0: 0:{

{ (6.2.5)

a—d=20:



SEC. 6.3. GIVENS’ METHOD 125

7/2. The element d;, can now be written
dy, = 3(a + d) + }(a — d)cos 2 + orsin2p

and consequently:
dll = %(a+d+ TR)’
dy, = }(a + d — 7R).

If ¢ = 0 we get & = 0 and recover the result in Jacobi’s method.

This procedure can be used repeatedly on larger Hermitian matrices, where
the unitary matrices differ from the unit matrix only in four places. In the
places (i, i), (i, k), (k, i), and (k, k), we introduce the elements of our two-
dimensional matrix. The product of the special matrices U,, U,, ..., U, is a
new unitary matrix approaching U when k is increased.

Finally we mention that a normal matrix (defined through A¥4 = A4A4%) can
always be diagonalized with a unitary matrix. The process can be performed
following a technique suggested by Goldstine and Horwitz [8] which is similar
to the method just described for Hermitian matrices. The reduction of an arbi-
trary complex matrix to normal form can be accomplished through a method
given by Patricia Eberlein [10]. In practice, both these processes are performed
simultaneously.

(6.2.6)

6.3. Givens’ method

Again we assume that the matrix A is real and symmetric. In Givens’ method we
can distinguish among three different phases. The first phase is concerned with
3(n — 1)(n — 2) orthogonal transformations, giving as result a band matrix
with unchanged characteristic equation. In the second phase a sequence of
functions f,(x) is generated, and it is shown that it forms a Sturm sequence, the
last member of which is the characteristic polynomial. With the aid of the sign
changes in this sequence, we can directly state how many roots /arger than the
inserted value x the characteristic equation has. By testing for a number of
suitable values x, we can obtain all the roots. During the third phase, the eigen-
vectors are computed. The orthogonal transformations are performed in the
following order. The elements a,, a,,, a,, and a,, define a two-dimensional
subspace, and we start by performing a rotation in this subspace. This rotation
affects all elements in the second and third rows and in the second and third
columns. However, the quantity ¢ defining the orthogonal matrix

o — (cos @ —sin cp)
singp  cos

is now determined from the condition aj, = @}, = 0 and not, as in Jacobi’s
method, by a;, = aj, = 0. We have aj, = —a,,sin @ + a,,cosp = 0 and
tan ¢ = a,/a,,. The next rotation is performed in the (2, 4)-plane with the new
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@ determined from a;, = a;, = 0, that is, tan @ = a,,/a,. [Note that the (1, 2)-
element was changed during the preceding rotation.] Now all elements in the
second and fourth rows and in the second and fourth columns are changed, and
it should be particularly observed that the element aj, = 0 is not affected. In

the same way, we make the elements a,, . . ., a,, equal to zero by rotations in
the (2, 5)-, ..., (2, n)-planes.

Now we pass to the elements a,,, ay, . . ., a,,, and they are all set to zero by
rotations in the planes (3, 4), (3, 5), ..., (3, n). During the first of these rota-

tions, the elements in the third and fourth rows and in the third and fourth
columns are changed, and we must examine what happens to the elements aj;
and a], which were made equal to zero earlier. We find

aj = ajcosp + aj,sing =0,
a), = —ajsing + aj,cosp = 0.
Further, we get aj = —aj;sing + aj,cosp = 0 and tan @ = a/a;,. By

now the procedure should be clear, and it is easily understood that we finally
obtain a band matrix, that is, such a matrix that a;, = 0 if |i — k| > p. In
this special case we have p = 1. Now we put

a, Bl 0 e 0
B, a, B, 0 0
B=|0 B, a; K . > (6.3.1)
S B
0 0 e Bn—l «a,

B has been obtained from A by a series of orthogonal transformations,
4, = 07’40, ,
4, = 0;'4,0, = (0,0,)7'4(0,0,) ,

B=A, = 04,0, = (0,0,---0,)"'4(0,0, ---0,) = 0~'40,

with s = 3(n — 1)(n —2). In Chapter 3 it was proved that 4 and B have the
same eigenvalues and further that, if u is an eigenvector of 4 and v an eigen-
vector of B (both with the same eigenvalue), then we have 4 = Ov. Thus the
problem has been reduced to the computation of eigenvalues and eigenvectors
of the band matrix B.

We can suppose that all 8; s 0 [otherwise det (B — 2I) could be split into
two determinants of lower order]. Now we form the following sequence of
functions:

[ = A — a)fins(R) — Bl fia(R) (6.3.2)

witp f(3) = 1 and B, = 0. We find at once that f,(1) = 2 — a,, which can
be interpreted as the determinant of the (1, I)-element in the matrix 2 — B.
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Analogously, we have f,(2) = (2 — a,)(2 — a;) — B}, which is thq (1, 2)-minor
of 2 — B. By induction, it is an easy matter to prove that f,(2) is the charac-
teristic polynomial.

Next we shall examine the roots of the equation f;(1) =0, i =1,2,...,n.
For i == 1 we have the only root 2 = a,. Fori = 2 we observe that f;(—co) > 0;
fi(a)) < 0; fi(+o0) > 0. Hence we have two real roots g, and o, with, for
example, —o0 < 0, < a; < 0,< + oo. For i =3 we will use a method
which can easily be generalized to an induction proof. Then we write f,(1) =
(2 — 0,)(2 — g,) and obtain from (6.3.2):

(D) =Q—-a)2—0)2—0,) - B2 - a).
Now it suffices to examine the sign of f,(2) in a few suitable points:

A —o0 0, 0O, +oo
sign[f(D] - + - +
We see at once that the equation f,(2) = 0 has three real roots p,, o,, and p,

such that —oc0 < 0, < 0, < P, < 0, < p; < +oo. In general, if f;_,(2) has
the roots g,, 0,, . .., 0;_, and f;_,(2) = 0 the roots p,, p,, ..., p;_,, then

S = Q- a)2— )2~ p,) -+ (2= p;y)
- B —-0)A -0 - (A—0,2),
where

—0o << 0,<0,<P:<0, < <P, <0, <P, < o0

By successively putting 2 = — o0, 0,, 0,, .. ., 0;_,, and + oo, we find that £,(2)
has different signs in two arbitrary consecutive points. Hence f;(2) = 0 has i
real roots, separated by the roots of f;_ (1) = 0.

We are now going to study the number of sign changes ¥(p) in the sequence
JA0)s [(0)s - - -, fu(p). Itisevident that ¥(—o0) = nand ¥(co0) = 0. Suppose
that @ and b are two such real numbers that f;(1) # 0 in the closed interval
a < 2 < b. Then obviously ¥(a) = V(b). First we examine what happens if
the equation f;(2) = 0, 1 < i < n, hasa root p in the interval. From f;, (1) =
(2 — @) fi(3) — Bifii(3) it follows for 2 = p that f;,,(0) = —Bifi.(p).
Hence f;_,(0) and f;,,(0) have different signs, and clearly this is also true in an
interval p — € < 2 < p + €. Suppose, for example, that f;_,(p) < 0; then we
may have the following combination of signs:

2 fia fi fin
p—¢ — — +
P+e — + +.

Hence, the number of sign changes does not change when we pass through a
root of f,(2) = 0 if i < n. When i == n, however, the situation is different.



128 ALGEBRAIC EIGENVALUE PROBLEMS SEC. 6.3.

Suppose, for example, that n is odd. Denoting the roots of f,(2) = 0 by p,,

Qs - - -» P, and the roots of f,_(3) = 0 by 6y, 0, ..., 0,_,, We have
A f;) .fl ”'fn—! fo—l f.
0h—€ + — -0 = + —
o+e + — -0 =+ 4.

Then we see that V(p, — €) — V(0, + €) = 1. Now we let 1 increase until it
reaches the neighborhood of a,, where we find the following scheme:

2 "'f»—! fo—l fn
Oy, — €00 — -+
oiHE — o+ 4.

Hence V(o, — €) — V(0, + €) = 0. Then we let 2 increase again (now a sign
change of f,_, may appear, but, as shown before, this does not affect V) until
we reach the neighborhood of p,, where we have

A "'/n—l fn
Py —€-r — +
Oy +€-e — —

and hence V(p, — €) — V(p, + €) = 1. Proceeding in the same way through
all the roots p,, we infer that the number of sign changes decreases by one unit
each time a root p, is passed. Hence we have proved that if ¢(2) is the number
of eigenvalues of the matrix B which are larger than 1, then

VQ) = @(3) . (6.3.3)

The sequence f;(2) is called a Sturm sequence. The described technique makes
it possible to compute all eigenvalues in a given interval (‘“‘telescope method”).

For the third phase, computation of the eigenvectors, we shall follow J. H.
Wilkinson in [2]. Let 4, be an exact eigenvalue of B. Thus we search for a
vector x such that Bx = 2,x. Since this is a homogeneous system in n variables,
and since det (B — 2,/) = 0, we can obtain a nontrivial solution by choosing
n — 1 equations and determine the components of x (apart from a constant
factor); the remaining equation must then be automatically satisfied. In practi-
cal work it turns out, even for quite well-behaved matrices, that the result to
a large extent depends on which equation was excluded from the beginning.
Essentially, we can say that the serious errors which appear on an unsuitable
choice of equation to be excluded depend on numerical compensations; thus
round-off errors achieve a dominant influence.

Let us assume that the ith equation is excluded, while the others are solved
by elimination. The solution (supposed to be exact) satisfies the n — 1 equations
used for elimination but gives an error § when inserted into the ith equation.
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Actually, we have solved the system

BiaXj— + (a; — )x; + Bx;1, = 0, J# i, (6.3.4)
BiciXicy + (@ — )X, + BiXiyn =08, 3+#0.

(We had to use an approximation 2 instead of the exact eigenvalue 2,.) Since
constant factors may be omitted, this system can be written in a simpler way:

(B— ix =e,, (6.3.5)

where e, is a column vector with the ith component equal to ! and the others
equal to 0. If the eigenvectors of B are v, v,, ..., D,, this vector e; can be
expressed as a linear combination, that is,

e, =2 c,v;, (6.3.6)
=1
and from (6.3.5) we get
x =3 cy(B— ), = 3 —— ;. (6.3.7)
i=1 =1 A; — A

J

Now let 2 = 2, + ¢, and we obtain

- _%a 3 1
x = _e_vl + ;c‘,mv, . (6.3.8)
Under the assumption that c;, 5= 0, our solution x approaches v, as ¢ — 0 (apart
from trivial factors). However, it may well happen that c;, is of the same order
of magnitude as ¢ (that is, the vector e; is almost orthogonal to v,), and under
such circumstances it is clear that the vector x in (6.3.8) cannot be a good
approximation of v,. Wilkinson suggests that (6.3.5) be replaced by

(B—x=b, (6.3.9)

where we have the vector b at our disposal. This system is solved by Gaussian
elimination, where it should be observed that the equations are permutated
properly to make the pivot element as large as possible. The resulting system
is written:

PuXy + PrXy + PiXs =6,
PnXa + PyXs + PaX, = c:’ ’ (6.310)
pn.lxl = L:” .

As a rule, most of the coefficients pq, p,,, . . . are zero. Since the c; have been
obtained from the b, which we had at our disposal, we could as well choose
the constants ¢; deliberately. It seems to be a reasonable choice to take all c;
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equal to 1; no eigenvector should then be disregarded. Thus we choose

c=Xe,. (6.3.11)

r=1

The system is solved, as usual, by back-substitution, and last, the vector x is
normalized. Even on rather pathological matrices, good results have been ob-
tained by Givens’ method.

6.4. Householder’s method

This method, also, has been designed for real, symmetric matrices. We shall
essentially follow the presentation given by Wilkinson [4]. The first step consists
of reducing the given matrix 4 to a band matrix. This is done by orthogonal
transformations representing reflections. The orthogonal matrices, will be de-
noted by P, with the general structure

P=1—-2ww". (6.4.1)
Here w is a column vector such that
wiw =1. (6.4.2)
It is evident that P is symmetric. Further, we have
PP = (I — 2ww™)(I — 2ww™) = I — 4ww™ + 4ww™ww™ = I ;

that is, P is also orthogonal.
The matrix P acting as an operator can be given a simple geometric inter-
pretation. Let P operate on a vector x from the left:

Px = (I — 2wwT)x = x — 2(WwTx)w .

In Fig. 6.4 the line L is perpendicular to the unit vector w in a plane defined
by w and x. The distance from the endpoint of x to L is |x| cos (x, w) = w'x,
and the mapping P means a reflection in a plane perpendicular to w.

A

Figure 6.4
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Those vectors w which will be used are constructed with the first (r — I)
components zero, or
wl = (0,0,...,0,x, X 1,005 %)+
With this choice we form P, = I — 2w w”. Further, by (6.4.2) we have
X4 x, e+, =1.

Now put 4 = 4, and form successively

A, =PA4._P,, (6.4.3)
r=2,3,...,n — 1. At the first transformation, we get zeros in the positions
(1,3),(1,4),...,(1,n) and in the corresponding places in the first column.

The final result will become a band matrix as in Givens’ method. The matrix
A,_ contains n — relements in the row (r — 1), which must be reduced to zero
by transformation with P,; this gives n - requations for then — r + 1 elements
X,, X,.1, + - -» X, and further we have the condition that the sum of the squares
must be 1.

We carry through one step in the computation in an example:

a, b, 151 d,
PR R
R - - A I
dl d2 d3 dl
w] = (0, x,, x5, X,) 3 X +xi4+xi=1.

The transformation P,4P, must now produce zeros instead of ¢, and d,. Ob-
viously, the matrix P, has the following form:

1 0 0 0

0 I —2x3 —2xx, —2x,x,
0 —2xx, 1 —2x7 —2xx,
0 —2x.x, -2x,x, 1 2x}

P, =

Since in the first row of P, only the first element is not zero, for example, the
(1, 3)-element of P,4P, can become zero only if the corresponding element is
zero already in AP,. Putting p, = b,x, + ¢,x, + d,X,, we find that the first row
of AP, has the following elements:

a,, b, — 2px,, ¢, — 2px,, d, - Zp)X, .
Now we claim that

¢ —2px, =0,
6.4.4
d —2px,=0. ( )

Since we are performing an orthogonal transformation, the sum of the squares
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of the elements in a row is invariant, and hence
al+ (b, — 2px,)* = ai + bi + i + df .
Putting S = (b? + ¢} + df)"*, we obtain
b, — 2px, = £S. (6.4.5)
Multiplying (6.4.5) by x, and (6.4.4) by x, and x,, we get
bx, + ¢, x; + dix, — 2p,(x; + x3 + x}) = +Sx,.
The sum of the first three terms is p, and further x} + x} + x; = 1. Hence
P = FSx,. (6.4.6)

Inserting this into (6.4.5), we find that x; = (1 & b,/S), and from (6.4.4),
X, = F¢,/28x, and x, = Fd,/25x,.

In the general case, two square roots have to be evaluated, one for S and
one for x,. Since we have x, in the denominator, we obtain the best accuracy
if x, is large. This is accomplished by choosing a suitable sign for the square-
root extraction for S. Thus the quantities ought to be defined as follows:

. 1 (1 bl-signbl> 6.4.7
x,_2 + 3 . (6.4.7)

The sign for this square root is irrelevant and we choose plus. Hence we obtain
for x, and x,:
_ ¢ signb, | x = d, sign b, ) (6.4.8)

s ’ ‘ 25%,

2Sx,

The end result is a band matrix whose eigenvalues and eigenvectors are com-
puted exactly as in Givens’ method. In order to get an eigenvector v of 4, an
eigenvector x of the band matrix has to be multiplied by the matrix P,, P, . . .,
P,_,; this should be done by iteration:

Xuo1 = £y )X
.?f,_, =P,_x,,, (6.4.9)
v E x, = Px,.

6.5. Lanczos’ method

The reduction of real symmetric matrices to tridiagonal form can be accom-
plished through methods devised by Givens and Householder. For arbitrary
matrices a similar reduction can be performed by a technique suggested by
Lanczos. In this method two systems of vectors are constructed, x,, x,, .. ., x,
and y,, y,, . . ., y,, which are biorthogonal; that is, for j = k, we have xfy, = 0.
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The initial vectors x, and y, can be chosen arbitrarily though in such a way
that xy, % 0. The new vectors are formed according to the rules

k
X, = Ax, — Ela,-,‘x, ,
=

k
Vi = A%y, — 4‘:11’,1.",' .
=

The coefficients are determined from the biorthogonality condition, and for
j=12,...,k, we form:

k
0 = yfxe, = yiAx, — Y a,yix, = yiAx, — a,p]x; .
If ylix; + 0, we get
"
a;, = y’_’:‘ﬂ .
Yi%;
Analogously
b, = S AV

H
XiY;

Let us now consider the numerator in the expression for a;, when j < k — 2:

J *
ys, = <4,y = {5t (v, + Loy )} =0,

because of the biorthogonality. Hence we have a;, = 0 for j < k — 2, and
similarly we also have 4;, = 0 under the same condition. In this way the fol-
lowing simpler formulas are obtained:

kan = Ax, — (@, Xy + AuXy)
Vi = A%y — (b ¥im + buyi) -

If the vectors x,, x,, ..., x, are considered as columns in a matrix X and if
further a tridiagonal matrix J is formed from the coefficients a,_, , and a,, with
one’s in the remaining diagonal:

a, a,, 0 0 - 0 0
1 Ay, Ay 0. 0 0
J = 0 1 ass ay - 0 0 5
6 0 0 cre ] an—l,u—l an—l.n
0 0 0..-0 1 a

nn

then we can simply write 4X = XJ, and provided the vectors x,, x,, ..., x
are linearly independent

J=X4X.
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If similar matrices are formed from the vectors y,,y,, ..., ¥, and from the
coefficients b,_, ,, b,,, we get

K = Y '4"Y .

Certain complications may arise, for example, that some x- or y-vector may
become zero, but it can also happen that x¥y, = O even if x; = Oand y; = 0.
The simplest way out is to choose other initial vectors even if it is sometimes
possible to get around the difficulties by modifying the formulas themselves.

Obviously, Lanczos’ method can be used also with real symmetric or Hermi-
tian matrices. Then one chooses just one sequence of vectors which must form
an orthogonal system. For closer details, particularly concerning the deter-
mination of the eigenvectors, Lanczos’ paper [1] should be consulted; a detailed
discussion of the degenerate cases is given by Causey and Gregory [9].

Here we also mention still one method for tridiagonalization of arbitrary
real matrices, first given by La Budde. Space limitations prevent us from a
closer discussion, and instead we refer to the original paper [11].

6.6. Other methods

Among other interesting methods we mention the LR-method. Starting from
amatrix A = A,, wesplit it into two triangular matrices 4, == LR, with /;, = 1,
and then we form 4, = R,L,. Since A, = R A,R;!, the new matrix A4, has the
same eigenvalues as 4,. Then we treat 4, in the same way as 4,, and so on,
obtaining a sequence of matrices 4,, 4,, 4,, ..., which in general converges
toward an upper triangular matrix. Ifthe eigenvalues are real, they will appear
in the main diagonal. Even the case in which complex eigenvalues are present
can be treated without serious complications. Closer details are given in [5],
where the method is described by its inventor, H. Rutishauser.
Here we shall also examine the more general eigenvalue problem,

det(4 — 2B) = 0,

where 4 and B are symmetric and, further, B is positive definite. Then we
can split Baccording to B == LL", where L is a lower triangular matrix. Hence

A—2B=A— ILL" = L(L7'A(L")™ — AL,
and det (4 — iB) = (det L)*- det (C — aI), where C == L'A(L")". Since
C" = C, the problem has been reduced to the usual type treated before.

6.7. Complex matrices

For computing eigenvalues and eigenvectors of arbitrary complex matrices
(also, real nonsymmetric matrices fall naturally into this group), we shall first
discuss a triangularization method suggested by Lotkin [6] and Greenstadt [7).
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The method depends on the lemma by Schur stating that for each square matrix
A there exists a unitary matrix U such that U'AU = T, where T is a_ (lower
or upper) triangular matrix (see Section 3.7). In practical cornputatlon.one
tries to find U as a product of essentially two-dimensional unitary matrices,
using a procedure similar to that described for Hermitian matrices in Section
6.2. It is possible to give examples for which the method does not converge
(the sum of the squares of the absolute values of the subdiagonal elements is
not monotonically decreasing, cf. [13]), but in practice convergence is obtained
in many cases.
We start by examining the two-dimensional case and put

A= (a b) ; U= (P _q*> (preal) . 6.7.1)
c d q p
From U"U = I, we get p* + |q* = 1. Further, we suppose that 4’ = U™'4U,
where ) 5
a=(° ) ,
(c' d
and obtain
@ =d+ (a— d)p*+ plbg + cq*),

b =bp* — cq** + (d — a)pq*,
" =cp' + (d — a)pg — bg*,
d'=a+ (d— ap*— plbg + cq*) .
Clearly we have @’ + d — a + d. Claiming ¢’ = 0, we find with ¢ = ap,

(6.7.2)

a
!

PO Sl P
b b’
and
a= % (d—a=+v@—ay T ab). (6.7.3)

Here we conveniently choose the sign that makes || as small as possible;
with p = cos § and ¢ = sin § - €', we get [a| = tan§. Hence « is obtained
directly from the elements a, b, ¢, and d. Normally, we must take the square
root of a complex number, and this can be done by the formula

VA+iB=+(I/VZ)VC + 4 + isign BY'C — 4),
where C = 1/4® + B®. When «a has been determined, we get p and ¢ from
p =1+ laly™", (6.7.9)

Now we pass to the main problem and assume that 4 is an arbitrary complex
matrix (n, n). We choose that element below the main diagonal which is largest
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in absolute value, and perform an essentially two-dimensional unitary trans-
formation which makes this element zero. This procedure is repeated until
T ou laal® is less than a given tolerance. Denoting the triangular matrix by.T s
we have U-'AU = T with U = UU, . - - Uy, where U, U,, ..., Uy are the in-
dividual essentially two-dimensional unitary matrices. Clearly, the eigenvalues
aret,,,r=12,...,n

In order to compute the eigenvectors, we start with the triangular matrix,
and we shall restrict ourselves to the case when all eigenvalues are different.
We see directly that the vector whose first component is 1 and whose other
components are 0 is an eigenvector belonging to the first eigenvalue #,,. Next
we see that we can determine such a value y,, that the vector with first com-
ponent y,, and second component 1 becomes an eigenvector. The condition is
1y Y + ha = tuyh,, from which we can determine y,, (We suppose that 1,, + 1,,).
We proceed in the same way and collect all eigenvectors to a triangular matrix
Y, and further we form a diagonal matrix A with the diagonal elements ¢,
r=1,2,...,n. Then we have

h 4, by o0 ha 1 Ye Y Dia
0 ty; by -+ - 1y 0 1 Yoz © 0 Van
T=1|0 0 by -ty |5 Y=10 0 ) SIS A I
0 0 0-..1, 0 0 0..-1/ (6.7.5
t, 0...0
A= 0 by - 0 ,
6 0...1¢

and obviously TY = YA. The quantities y,,, k > i, are computed recursively
from the relation
— . Il'ryrk
Yo = 3, —irZrk (6.7.6)
r=itl b, — Uy

valid fori = 1,2, ..., (k — 1). First we put y,, = 1 and then we use (6.7.6)
fori=k—1,k—2,...,1, and in this way the eigenvector y, belonging to
the eigenvalue r,, can be determined. Last, we obtain the eigenvectors x, of
the original matrix 4 from

x, = Uy,. (6.7.7)

When the method is used on a computer, we must reserve two memory places
for each element (even if 4 is real). Only in special cases are all results real.
The method described here depends on annihilation of a subdiagonal element,
which, however, does not guarantee that 7* = 3., |a,|* decreases. An alter-
native technique can be constructed aiming at minimization of z* by choosing
6 and @ conveniently. The equations become fairly complicated but can be
solved numerically and, as a rule, the minimum point need not be established
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to a very high degree of accuracy. The value of the method is still difficult to
estimate as it has not yet been tried sufficiently in practice.

6.8. Hyman’s method

A matrix is said to be of upper Hessenberg form if a;, = 0 for i — k > 1 and
of lower Hessenberg form if a,, == 0 for k — i > 1. In the following we shall
choose to work with the upper Hessenberg form. An arbitrary complex
matrix can quite easily be reduced to Hessenberg form which will now be
demonstrated. Essentially the reduction goes as in Givens’ method demanding
(n — 1)(n — 2)/2 steps. In the general case the transformations are unitary,
but for real matrices we can use real (orthogonal) transformations which is a
great advantage.

Starting from an arbitrary complex matrix C = (c;,) we perform a two-dimen-
sional rotation in the (i, k)-plane under the condition ¢, ; , =0( = 2,3,...,
n—1;k=i+1,i+2,...,n). The first rotation occurs in the (2, 3)-plane
with the condition ¢j, = 0, next in the (2, 4)-plane with ¢;, = 0, andsoon. In
this way all elements in the first column except ¢, and c;, are annihilated. After
that we rotate in the (3, 4)-plane with c;, = 0, and so on. Introduce the
notations

A bi , —
ey (2T,
Crimy = C + di, q )4

with p = cos §, ¢ = sin @e*# making U unitary. Then we get
Chisn = —4C + Pl = 0
and splitting into real and imaginary parts:

ccosf =asinfcosp — bsinfsingp,

dcosf = asinfsingp — bsinfcosgp .

Squaring and adding we get (c® + d?)cos?d = (a® + b*)sin*@, and a trivial
elimination also gives the angle p:

tan§ = V/(¢* + dY)/(a® + b)),

tan @ = (ad — bc)/(ac + bd) .

In the real case we have b = d = 0 giving = 0 and tan § = c/a.

We shall also briefly show how the reduction can be made by use of reflec-
tions following Householder (also cf. [13]). Putting 4 = A,, we shall describe
one step in the reduction leading from 4, _, to 4, where

A — (}I""l | C\br
r—-1 —
0 Ib,_llB,_ n—r

r—1 n—r
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and

-1 =

r

is of upper Hessenberg form. The matrix 4, will then be produced through
A,=P.A_ P leaving H,_,aswellasthe null-matrix of dimension (n—r) X (r—1)
unchanged while the vector ,_, must be annihilated except for the first com-
ponent. In this way a new Hessenberg matrix H, of dimension (r 4- 1) X (r + 1)
is formed by moving one new row and one new column to H,_,. Now we

choose
1|0
P, = —
( 0 Q,)}n - r

N
n-—r

with Q, = I — 2w w¥ and w¥w, = 1, w, being a column vector with (n — r)
elements. A simple computation gives

Qa,
0
H, _ C,_0, .

PA,_P, — ( = | 0 ) with  a,_, =[]0

0 |a_|0QB._Q, :

0
Hence Q. b, , =a, ,anda? a, = b Q¥Q.b _, =b" b, _,,thatis, |a,| =|b,_,|
(we suppose Euclidean vector norm). Further b, , = Q7a, , and e[}, , =
e/Q%,_, = (1 — |w|)a,,and since 1 — |w,|*isreal, argax, = arg(e]d,_,). Here

e, is a vector with the first component = 1 and all other components = 0.
Thus the argument of «, is equal to the argument of the top element of the
vector b Finally, since

r—1°

ber—l = (I - 2wrw£{)br—l = br—l - (wabr—l)wr =4a

re1 9
we get
w = b —a
, =
[bry — @,

r—1
’

and 4, is completely determined. If this procedure is repeated we finally reach
the matrix 4,_, which is of upper Hessenberg form.

After having produced a Hessenberg matrix A = U~'CU with the same eigen-
values as C we now turn to the computation of these. Let x be a vector with
unknown components and 2 an arbitrary (complex) number. Then form the
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following linear system of equations:

a,x, + apXx; +---+ a,X, = A%,

ayX, + X, + - - + @,X, = AX,,

: (6.8.2)
an—l.u—zxn—z + au—lm—lxn—l + au—l.nxu = zxn—l ’
an.n—lxu—l + Ay Xy = Zx” .
We suppose that all elementsa;; , = 0,i = 2, 3, ..., n, and as the system is

homogeneous we can choose, for example, x, = 1. Then we can solve x, _, as
a first-degree polynomial from the last equation. From the next to last equation,
X,_, is obtained as a second-degree polynomial in 2, and so on; and finally x,
is determined from the second equation as a polynomial of degree n — 1 in 2.
If all these values of x,, x,, . . ., x, are inserted into the expression (1 — a,,)x, —
a,x, —---— a,x,, we get as result the characteristic polynomial f(1) =
det (A7 — A) apart from a constant factor. It is now possible to compute the
eigenvalues from these results by interpolation, first linear and then quadratic.

The method described here is such that the values obtained are exacr eigen-
values of another matrix differing only slightly from 4 (“reverse error com-
putation,” cf. Section 4.4. and Wilkinson, [18], p. 147). It is quite possible
that the errors in the eigenvalues may become large; this means that the eigen-
value problem per se is ill-conditioned and we can expect numerical difficulties
irrespective of the method chosen.

The interpolation can be improved by computing the first and possibly also
the second derivative of the characteristic polynomial by iteration. The follow-
ing formulas are used:

_ (A — a;)x; — Z:=.~+| auXy

X1 = %o ’ X, = 1, a,, = 1;
Vir = (A —ay)y; + %, — X0 o) Gl : y.=0;

a;i
2, = (2 —ay)z; + 2y, — 20 .., Guzi : 2, =0.

a

1,4—1

Denoting the characteristic polynomial by f(2) (=2* + - - ) and putting

" -1
Poo = {IJ; ac’,i—l} P

we have

S - S @) o /()

00 00

Then Newton-Raphson’s method can be used (possibly a variant independent
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of multiplicity):
= _ % =1, — —Xobo
Aui1 = 44 Ve or i1 » T = %7
Example
6 3 -4 2
2 1 5 -3
4=1o 3 7 1
0 0 2 S
Starting with 2, = 5, we compute x; and y;:
i X Yi
4 1 0
3 0 3
2 -y =
1 8 8
o -¥ 0§

Hence 1, = 5 + 22 ~ 5.3 (correct value 5.374). Let us now once again write
down expressions as polynomials in 1 for the set x,, x,, ..., x, which is also
extended by an extra variable associated with the first equation of the system:

X, = Pl + Pud” 4+ Pons
Jfl = pn]"-l + Puxn-z oot Pias

4";.‘ S 2 S 2 e e

xn—l = pn—l.n—ll + pn—l.n ’
xn = pnn (: l) *
Using Ax = 2x, we get

x,_, = (A= a)x — a0 Xy — -+ - — A%,
i
;i1
L3 ~k n —k
- (R —ay) o Pl — a; ;0 Dicin Pivrpd” ™ — o —a, p,.
a

$,8—1

Comparing powers 2*~* on both sides, we find

k
Qi Picre = Piksr — Eairprk
r-i

(6.8.4)
G=012...,n; k=i-1i...,n; a,=1, p,.,, =0).
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This relation can be written in matrix form; for n = 4 we get

a, a, a; ) [Po Pn P Pa P
a, 4Gp Q3 G Pu Pa Pa Pu

0 a;; Gy as 0 P P Pu
0 0 a,; ay

0 0 0 1

©C OO O -

0 0 p,

0
0
0 ps pu Of. (6.8.5)
0
0 0 0 1

Taking determinants on both sides we find in particular p,, = (a,,a,,a,;,)*, which
can easily be generalized to arbitrary #n. The characteristic equation is now

Pk + Pt 4t P, = 0.

This method of generating the characteristic equation and then the eigenvalues
by some standard technique, as a rule is unsuitable for stability reasons except
possibly if the computation of coefficients can be performed within the rational
field.

Computation of the eigenvectors from (6.8.2) cannot be recommended since
instability will occur. However, it is possible to use an idea by Wielandt, in
principle inverse interpolation. Let 2, be an approximate eigenvalue (1, ~ 2,,
where 2, is an exact eigenvalue) and u, an approximate eigenvector. Further
we suppose that the exact eigenvectors are v,, v,, ..., D,. Successive iterations
are now computed from

(4 — A0, = su,,

+

where s; is a suitable scale factor compensating for the fact that 4 — 2.1 is
almost singular which will cause no trouble otherwise. Now suppose, for
example, 4, = 3 a,v, which leads to

(A — 20y, = 5, ) a,v,,

that is’ u, = S Z' a,(A - 101)*‘0, = S Z ar(lr - Zo)_lvr = soax('zx - Zo)_lvx
and we have the same effect as when the power method is applied. The solution
ofthe system (4 — 2,0)u;,, = su, is performed by standard means, for example,
following Gauss or Crout.

If the eigenvector problem is ill-conditioned in itself, this technique, of course,
will not help. Consider, for example,

a=(. 9
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with the well-conditioned eigenvalues 1 + 1/¢,6,. The eigenvectors

(v#) and (_1/1%>

on the other hand are ill-conditioned since small errors in ¢, and ¢, can give
rise to very large errors in the eigenvectors.

Thus, Hyman’s method will produce eigenvalues and eigenvectors to general
complex matrices provided they are first transformed to Hessenberg form. The
method has the advantage that the computations can be performed in the real
or complex domain depending on the special circumstances.

6.9. The QR-method by Francis

The main principle of the QR-method is to produce a (for example upper) tri-
angular matrix by the aid of unitary transformations. The technique is com-
pletely general but becomes too complicated for arbitrary matrices. For this
reason the matrix is usually first transformed to Hessenberg form as described
in the preceding section.

The following theorem is essential in this connection: Every regular square
matrix 4 can be written as 4 = QR where Q is unitary and R upper triangular,
and both are uniquely determined. The existence of such a partition can be
proved by a method resembling Gram-Schmidt’s orthogonalization. Suppose
that A is regular and put

OR=A.

The column vectors of @ and A4 are denoted by ¢, and a;. If we now multiply
all the rows in @ by the first column of R we get (since only the first element
in the R-column is not equal to 0) r,,¢, = a,. But since Q is unitary, we also
have gfq, = 5,,; hence r,, = |a,| (apart from a trivial factor ¢*1); then also g, is
uniquely determined. Now we assume that the vectors g,, ¢,, . .., g,_, are
known. Multiplying all rows of Q by the kth column of R, we find

k
E’.'ﬂ.' = a.
=1

Next, for j = 1,2, ...,k — 1, we multiply from the left with ¢/ and obtain
r;, = q¥a,. Further we also have

k=1
T = @ — 2’.‘:&.’ .
=

The right-hand side is certainly not equal to 0, because otherwise we would
have linear dependence between the vectors a;. Hence we find

k=1
Ty = |G — E T
=1
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and the vector g, is also determined. Obviously, uniqueness is secured apart
from factors '’ in the diagonal elements of R, and hence the condition r,, > 0
will determine @ and R completely.

Now we start from 4 = A4, and form sequences of matrices 4,, @,, and R,
by use of the following algorithm:

A: = QIRI; A: S Ql”AJQc = Ql”QlRlQl = RJQJ *

This means that first 4, is partitioned in a product of a unitary and an upper
triangular matrix, and then 4,,, is computed as R,Q,. It also means that 4,
is formed from 4, through a similarity transformation with a unitary matrix.
Next, we put

) :QxQz“'Qc and R.R.—l"'RIZU.»

and so we obtain
A:+l = Ql_lAlQl = Q:—l(Q:—llAc—lQn—l)Ql == Pl—lAlP: *
Then we form

P.U. = QlQa vt Q,R,R,_l Tt Rx =00, Q.—xA.Rn—x Tt Rx
=P, AU

8—1%8 g1 "

But 4, = P}, A,P,_, and consequently P, A4, = A4,P, , which gives

s—1

PU =4P_U, =---=47PU = AT'QR, = 4}

s—1

Here P, is unitary and U, upper triangular, and in principle they could be
computed from A} by partition in a product of a unitary and an upper triangular
matrix. In this way we would also obtain 4,,, through a similarity transfor-
mation:

Ac+1 = Pl_lAlPl *

We now assert that the matrix 4, ,, for increasing s more and more will approach
an upper triangular matrix. We do not give a complete proof but restrict our-
selves to the main points; further details can be found in [12]. The following
steps are needed for the proof:

1. A = A, is written 4, = XDX~! = XDY which is always possible if all
eigenvalues are different (this restriction can be removed afterward). Further
we assume d;; = 2, with |2,| > |2| > --

2. Then we also have P,U, = A} = XD'Y.

3. Xis partitioned as X = Q,R, and Yas Y = L,R, where Q, is unitary,
R, and R, upper triangular, and L, lower triangular with ones in the main
diagonal (both partitions are unique). For the latter partition a permutation
might be necessary.

4. Then we get P,U, = Q,R,D’'L,D~*D'R,. The decisive point is that
D'L,D~*, as is easily shown, in subdiagonal elements will contain quotients
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(4;/4,)" so that this matrix actually will approach the identity matrix. If so,
we are left with P,U, ~ Q,R,D'R, .

5. But P, and Q, are unitary while U, and R,D*R, are upper triangular.
Since the partition is unique, we can draw the conclusion that
limP, = Q, and U, ~ R,D'R, .
6. A,,, = P?AP,= P'XDX'P,— Q%XDX'Q, — R,DR}’ (since X =QR,
and R, = Q%X). The matrix R,DRy' is an upper triangular matrix with the
same eigenvalues as 4.

As already mentioned, the QR-method will become too laborious for arbi-
trary matrices, and instead it is used on special matrices, preferably Hessenberg
or symmetric band-matrices. The method has good stability properties and
seems to be one of the most promising at present. Several algorithms in
ALGOL treating this method have already been published [15, 16].
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EXERCISES
1. Find the largest eigenvalue of the matrix

25 —41 10 —6
—41 68 —17 10

10 —17 5 =3y
-6 10 -3 2

A=

correct to three places.

2. Find the absolutely smallest eigenvalue and the corresponding eigenvector of the
matrix

1 2 -2 4

2 12 3 5
4= 3 13 0 74

2 11 2 2

using the fact that 27! is an eigenvalue of A™! if 2 is an eigenvalue of A.
3. Find the largest eigenvalue and the corresponding eigenvector of the Hermitian

matrix
8 -5 3-2
H= ( 5i 3 0) .
342 0 2

4. Using the fact that 1 — g is an eigenvalue of 4 — al, if 1 is an eigenvalue of A,
find the highest and the lowest eigenvalue of the matrix

9 10 8
A= (10 5 —l) .
.8 —1 3
Choose g = 12 and the starting vectors
1 —1
(l) and ( l) s
1 1

respectively. (Desired accuracy: two decimal places.)
5. The matrix

[ N V-3
N0 A
PN v
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has an eigenvalue close to 4. Compute this eigenvalue to six places, using the matrix
B=(4-—4I".

6. A is a matrix with one eigenvalue 2, and another — 4, (4, real, > 0); all remaining
eigenvalues are such that [2| < 2,. Generalize the power method so that it can be used
in this case. Use the result for computing 2, for the matrix

224 —-2.15 -17.37
A= (—2.15 0.75 —0.87) (two decimals).
—-7.37 —0.87 —1.99

7. Find the largest eigenvalue of the modified eigenvalue problem 4x = iBx when

1 6 6 4 1 2 -1 4
6 31 43 16 2 s 1 6
A=l6 43 86 -27] 2 B=|_1 | 1 _u
4 16 —27 106 4 6 —11 2

8. Show that
a, a a, a
4=[% @ a a
a a a a
a a, a, a,

can be written a,f + a,C + a,C* + a,C®, where C is a constant matrix. Also find the
eigenvalues and the eigenvectors of A. (A is called circulant.)

9. In the matrix 4 of type (n, n) all diagonal elements are a, while all the others are
6. Find such numbers p and ¢ that 4> — pd + gl = 0. Use this relation for finding
eigenvalues [one is simple, and one is (7 — 1)-fold] and the eigenvectors of A4.

10. Using the LR-method, find 4,, 4,, and 4, when

7 6
A= .
(3 4)
11. A is a matrix with eigenvalues 2,, 1,, .. ., 2, (all different). Put

B — A= AIA = 2D (A — A IXA = D) (A — 20) )
(A — 2) (A — A2) (A — Ze—1)Ae — Zery)e (A — An)

Show that B} = B,.

12. A real, symmetric matrix A has the largest eigenvalue equal to 2, and the next
largest equal to 2,, and both are greater than zero. All the other eigenvalues are con-
siderably less in absolute value than these two. By use of the power method one has
obtained a vector of the form & 4 ¢v, where « and o are eigenvectors corresponding to
the eigenvalues 2, and 2,. From these values a series of consecutive Rayleigh quotients
is constructed. Show how i, can be accurately determined from three such quotients
R, R,, and R,.




Chapter 7

Linear operators

““I could have done it in a much more
complicated way’’ said the red Queen,
immensely proud. Lewis CARROLL.

7.0. General properties

When one wishes to construct formulas for interpolation, numerical differen-
tiation, quadrature, and summation, the operator technique proves to be a most
useful tool. One of the greatest advantages is that one can sketch the type of
formula desired in advance and then proceed directly toward the goal. Usually
the deduction is also considerably simplified. It must be understood, however,
that complete formulas, including remainder terms, are in general not obtained
in this way.

The operators are supposed to operate on functions belonging to a linear
function space. Such a space is defined as a set F of functions, f, g, . . ., having
the properties that f € F, g € F implies af + Bf € F, where a and B are arbi-
trary constants. A linear operator is then a mapping of F on a linear function
space F*; usually one chooses F* = F. An operator P being linear means that
P(af + Bg) = aPf + BPg for all fand g € F with o and 8 arbitrary constants.
The operators which we are going to discuss fulfill the associative and distribu-
tive laws, but in general they do not commutate. If we let P, P,, P,, . .. denote
operators, then the following laws are supposed to be valid:

P, + (P, + P) = (P, + P,) + Py,
P\(P,P;) = (P,P,)P, (7.0.1)
PI(P2+P8):PIP2+P1P3’

Here we define the sum P of two operators P, and P, as the operator which
transforms the function finto P, f + P, f; the product P,P, is defined as the
operator which transforms f into P(P, f).

Two operators P, and P, are said to be equal if P, f = P, f for all functions
f € F. Wealso define the inverse P~ of an operator P. If Q is such an operator
that for all f* we have Qg = f if Pf = g, then Q is said to be an inverse of P.
Here we must be careful, however, since it can occur that P-! is not uniquely
determined. In order to demonstrate this we suppose that w(x) is a function
which is annihilated by P, that is, Pw(x) = 0, and further that f{x) represents
a possible result of P='g(x). Then f(x) + w(x) is another possible result. In fact,
we have P( f(x) + w(x)) = Pf(x) = g(x). Hence we can write P-'Pf = f + w,
where w is an arbitrary function annihilated by P.

147



148 LINEAR OPERATORS sec. 7.1.

Thus P~' is a right inverse but not a left inverse. If the equation ngx) =0
has only the trivial solution w(x) = 0, then P! also becomes a left inverse:
PP = PP =1.

Then we say briefly that P~ is the inverse of P.

7.1. Special operators

Now we introduce the following 13 operators, including their defining
equations:

Ef(x) = fix + h) The shifting operator
Af(x) = flx + h) — flx) The forward-difference operator
Pfix) = fix) — fix — h) The backward-difference operator
ofix) = f(x + -’%) - f ( — %) The central-difference operator
yf(x) = % [ f(x + _;.> + f (x - -g-ﬂ The mean-value operator
Sfix + h) = Sfix) + f(x)
) Tfx) = Tfix = ) + fix) Summation operators
h h 7.1.1
o §) =erle- £) 10 =
Df(x) = f(x) The differentiation operator
_ [ The indefinite integration operator
Ifix) = Saﬂt) dt (a arbitrary constant)
z+h
nfew =" a ?
J_ f(x) = S: A de r Definite integration operators
z—h
x+(A/2)
Jf(x) = S f(t) dt
z—(h/2)

We observe that in all cases, except for D and J, the interval length 4 enters
the formula in an important way. Actually, this ought to have been marked in
some way, for example, by using the notation E, instead of E. However, no
misunderstandings need to be feared, and if one wants to use other intervals,
this can easily be denoted, for example,

Ouf(¥) = f(x + h) — f(x — h).
Further, we note that the summation operators are distinguished from the

others by the fact that they are defined recursively, and in general this will
give rise to an indeterminacy. This will be discussed in some detail later.



sec. 7.1. SPECIAL OPERATORS 149

In the following we will need relations between different operators. The first
eight depend on the interval length A and have a discrete character, while the
last five, whether they contain 4 or not, are connected with operations associated
with a passage to the limit. The first group is easily attainable in numerical
computation, the last group in analytical. In the rest of this chapter, our main
task will be to express the operators of one group in terms of the operators of
the other.

First, we take some simple relations and formulas. To begin with we observe
that the operator E-! ought to be interpreted by E~'f(x) = f(x — h). Hence
EE-' = E-'E = 1. The difference operator 4 has the same relation to the sum-
mation operator S as the differentiation operator D to the integration operator
J. We have clearly

DJfix) = D S fiydt = fix),
but ‘

Dfe) = [ 7yt = 0 - fi@).

In the same way as the integration introduces an indefinite constant, this must
also be the case for the summation operator since the summation has to start
at some initial value. We can build up a difference scheme and continue to
the right in a unique way but not to the left. It is easy to see that if one first
forms the sums starting from a certain initial value and then computes the
differences, we regain the old values. However, if the differences are formed
first and the summation is performed afterward, an indeterminacy must appear.

Hence we have:

48fix) = fix)

SAfix) = fix) + ¢
Similar relations hold for the operators T and ¢ in relation to the difference
operators / and §. Summing up, we can say that the operators J, S, T, and
o are right inverses but not left inverses to the operators D, 4,7, and §. This
fact is closely related to a property of these latter operators. If one of them,
for example D, operates on a polynomial, we get as result a polynomial of
lower degree. This can be expressed by saying that the operators are degrading,
and in such cases the reverse operation must give an indeterminacy. This is
also reflected by the fact that the equations Df(x) = 0 and 4f(x) = O possess
nontrivial solutions (0).

In order to link the discrete operators to the others, we make use of Taylor’s
formula,

h® ,
S(x + h) = fix) + hf'(x) + 5]’(1) +-e
By means of operator notations, we can write

Ef(x) = (l + hD + i;l'_)z. + .- )f(X) = e f(x) .
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This formula can be used only for analytical functions. Further, it sh9uld be
observed that e*? is defined by its power series expansion; in the following this
technique will be used frequently. Then it is clear that Taylor’s formula can
be written in the compact form

E=e?. (7.1.2)

In the table on p. 150 we present the relations between shift and difference opera-
tors and the differentiation operator, for which we now prefer the form U = hD.
In particular we observe that § = 2 sinh U/2 and pz = V1 + 6°/4; both of these
formulas will be used frequently.

For the integration operators, we find the following formulas:

DJ,=JD=4, aJ = J,,
= = r=J_,
DI, =J.D=7, - (7.1.3)
DJ,=JD =29, oJ =J,,
DJ=1.
Further, we also have
h4a hd4
J, = =2
log (1 4- 4) U
= Ll = 7.1.4
T log(l-v) U’ (7.1.9)
ho hd

2sinh='(6/2) U

7.2. Power series expansions with respect to 3

The quantities which are available in numerical work are, apart from the func-
tions themselves, differences of all orders. To obtain the most symmetrical
formulas, one ought to use the central difference operator §. For this reason
it is natural that we investigate power series expansions in terms of § a little
more in detail. It should be observed that these expansions, as a rule, ought
to contain only even powers of §, since odd powers refer to points between the
mesh points, and such function values are usually not known. If, in spite of all
precautions, odd powers are obtained, we can multiply with

If

62 ~1/2

p(l ¥ _) =1. (7.2.1)
4

The resulting expression can then be written s - P(5), where P is an even

power series. As to the first factor, we have 6 = J(E — E~'), and hence odd

powers have been eliminated.
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Our main problem is now expressing F(U) as a power series in § by use of
the relation § = 2sinh (U/2). Denoting the inverse function of sinh by sinh~,
we have U = 2sinh=*(3/2), and in principle we merely have to insert this into
F(U). We shall now discuss how this is done in practice.

The quantities 8, F, and U will be denoted by x, y, and z, respectively, and
we have the relations

{y =0). (7.2.2)

x = 2sinh (2/2) .

Differentiating, we get
xz\ V2 dz xz\~Vz
dx = cosh (i) dz = (1 + _) dz or - = (l _) .
2 4 dx * 4
The general idea is to differentiate y with respect to x and then compute

(d"y/dx"),_,; from this we easily get the coefficients of the expansion. We
consider the following ten functions:

l.y=z: 6. y = cosh pz/cosh (z/2)
2. y = z/cosh (z/2) 7. y = 1l/cosh (z/2)
J.y=2 8. y =sinh z/z
4. y = cosh pz 9. y = 2tanh (2/2)/z
5. y = sinh pz/sinh z 10. y = 2(cosh z — 1)/z2.
Then we find the following expansions:

1.

Q:d_zz;z(l—*-ﬁ)_l/z

dx dx cosh(z/2) 4

5] () i & S RIS W

P = n! . 2

=E(_1)n,1.3.5...(2n—l)xz.=E(_—Mx’“.

P ~ 2. (nly

Integrating this relation, we get:
-, (=D*-2n)! 25 +1
=z = »
Y LTy
i " 3_x" _ 5 35x® _
24 640 7168 ' 294912

= X —

“cee,

— Z .
7= Cosh (z/2)°
dy _ cosh(z/2) — (z/2)sinh (z/2) dz 1 — xy/4
dx cosh? (z/2) dx 1+ x4
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Hence (x* + 4)y' + xy = 4 (' meansdy/dx). For x = 0 we get y = 0, and
from the equation we get y' = 1.
Next we differentiate m times and obtain

x* + 4y  + xy + y =0,
x*+ 4y + S5xy” + 4y =0,

o+ 4y 4 Xy + 9" =0,

(xz + 4)y(u+l) + (2m + ])xy(m) + mZy(u—l) — o .

Putting x = 0 and m = 2n, we obtain y***“(0) = —n?y**-1(0), and hence
yeru0) = (—1)*(n!):. Thus we get

y — i: (_ l)ﬂ (n!)2 xintl

n=0 (2’1 + 1)'
I T A if x Xt xs
- ¢t Tt T 12012
3.

y = 22;
dy dz z = (n!)?
L =2zl =2__° _2. —1r )" e
R @2) L mr

and after integration,
=2. - — 1)1 [(n_ 1)!]2 2n
’ LT
X _ ﬁ x8 x8 xto X2

1275 560 " 3150 Tee:z T

y =cosh pz;

Y = dy _ psinh pz |
dx  cosh (z/2)’

Y= p'coshpz  psinhpz (1/2)sinh (z/2) _ Py — xy'[4
cosh®(z/2)  cosh(z/2) cosh®*(z2) 1 + x4

Hence (x* + 4)y” + xy’ — 4p?y = 0 with the initial conditions x — 0,y=1,
and y’ = 0. Using the same technique as above, we obtain without difficulty

YETR0) = (p* — m)y(0),

and hence

_ xt — D)xt P — 1)(pF — 4)x®
y_1+p29;+17’(p’4!) + PP )6(!1)’ )X L
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5. In the preceding formula, we have computed y = cosh pz. Differenti-
ating with respect to x, we find

_ 2 2 __ 2
= px p’(p‘3! D= . pp 15)!(1’ hx L

inhpz__ L
psinh pz cosh (z/2)

that is,

sinhpz _ l:l (pF=Hxt (= Dt —4hxt ]
sinhz  * * 3! i 5! " .

6. y = cosh pzj/cosh (z/2). The following equation is easily obtained:
(7 + 4" + 3y + (1 — 4py = 0.
For x = 0 we have y = | and y’ = 0; further, we find

(3 + Ay 4 (20 + Dxy™ 4 (n* — 4pt)ysn = 0.

Hence

y'0)=p -1,

o) =g -0 -9,

yHO) = (FF = D~ D - %)
and .

1 3
GG RGO
y +(75 %)+ (0, +(Tg7)+
7. As was shown in (1), we have
(=@ .

1 1 x? -1/2
cosh (z/2) ( + T) S 2y
x? 3xt 5x° 35x¢8

= —_— —_— —_— e,

8 ' 128 1024 ' 32768

s

il
=3

8. We start from

_sinhz _ 2sinh (z/2) cosh (z/2) _ 2sinh (2/2) x
z z ~ zjcosh (z/2) ~ zjcosh (z/2)

Since y is an even function, we try with y — a, + a,x* + a,x* + - . - and obtain,
using the expansion of (2),

(ao+a,x2+a,x‘+--~)(x—§+£— o +--->z

Identifying the coefficients, we get

x? x! x° 23x® 263x"

o XX
Yt Tt

1512 226800 ' 14968800
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9. Putting v = z . cosh (z/2), we easily find the equation
(x*+ 4V —xv=x*+ 4,
and
vE0) = —n(n — *10) (n>2); v@0)=1, 2"0)=14%.
Hence
x° x° x7 x° x"

YE*t 157120 T80 0w T 27720

oo

Putting

tanh (z/2) 1 2
= —_—r0 2 = + x* . e
) + ax® + ax' +

and using vy = 2sinh (z/2) = x, we find:

SN SR L E o ) E L 2497 14797x® e
- 12 ° 720 60480 3628800 95800320 ’

10. We obtain directly
— 2(coshz — 1) _ 4sinh*(z/2)

y 2 2
Z Z
_ (2sinh (2/2) - cosh (z/2))(2 sinh (z/2)/cosh (z/2))
z.z2
_sinh z 2tanh (z/2)
Tz z ’

and hence get y = x?/2 as the product of the expansions (8) and (9):

X¥o_ox o 3 2890 317x0
12 240 ' 60480 3628800 ' 22809600 '

Summing up, we have the following results:

63 365 557 3559 636”
v=s_9 3 _ _ o aa
24 540 7168 T 204912 2883584 T (7.2.3)
52 64 60 58 5]0 5)2
U= 5(1__+__~_ o o ___“)
# 6 "3 140 T630 2772 T 12013
(7.2.4)
5‘ 53 33 5]0 512
U2:82___+_____ —_— e 2.
12790 560 T 3150 1663z © (7.2.5)
252 2( 2 __ 4 2( n2 __ 2 __ 8
cosh pU = 1 +p2_?+£_(’i4_’lﬁ+1’(l’ ]6)$p 4)o Heeey (1.2.6)
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sinh pU _ (p+ l) 2 (P+2>34 (P+3>3e+_”’ 7.2.7
sinhU_p+ 3 *+ 5 AN ( )
cosh pU -1 (P+%82+(P+§>34+(P+'3)5e+,,,’ 7.2.8
cosh(U2) + 2 ) 4 6 ( )
82 384
g & 38
#e= g T 128
5 356° 638 2316 (7.2.9)
1024 ~ 32768 262144 = 4194304 ’
poo_ gy 008 & 23 26300 (7.2.10)
U 6 180 1512 226800 14968800
8 g8 11t 19150 | 24975° 147978
uU "~ 12 720 60480 = 3628800 95800320 ’
(7.2.11)
ot —1+§__5‘_+ 31°  289%° 31750
Ur 12 240 60480 3628800 = 22809600
(7.2.12)

Here we obtained formula (7.2.4) by multiplying the expansions for
Ujcosh (U/2) and p = cosh (U/2) .

The formulas (7.2.3) through (7.2.12) may essentially be regarded as relations
between U, on one hand, and §, on the other, and all of them ultimately depend
upon Taylor’s formula E = eV. From this point of view, it seems appropriate
to discuss the meaning and the validity of this formula a little more in detail.
We assume that f{(x) is an analytic function, and write the formula as follows:

Ef(x) = eUf(x) or  flx+ h) = ef(x).
We observe that the formula is correct if f{x) = x". The right-hand side

reduces to
(1 + hD + i'”j+...+h"0‘)x»,
2! n!

since the function is annihilated by higher powers of D. But for r < n, we
have
h™Drx*
r!

=hnn—-1)y...(n—r+ 1) x:'—' _ (:l) hrxnr

and hence the whole expression is

i: hDr X" = z”: (:1) hrx*=" = (x + h)*.

r=0 r! r=0
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Clearly, the formula is also valid for polynomials, and a reasonable inter-
pretation of the formula E = e is the following: The operators E and
1 + hD + h*D*2! + ...+ h*D*/n! are equivalent when used on a polynomial
P _(x) of degree n, where n is an arbitrary positive integer. As second example
we take the formula E» = (1 + 4)». If pis an integer, (1 + 4)” is a polynomial,
and we get an identity. But if the formula is used on polynomials, it is also
valid for all real p. For f{x) = x* we have

4% = (x + h)® — x* = 3xth + 3xh* + K°,
45 = 3h[(x + h)* — x*] + 3KY{(x + h) — x] = 6k*(x + h),
£x = 6k,

3
(1 + dyx = Eo(f) 4 = X + p(3xth + 3xh* + k)

+ P(PZ— 1) 6h*(x + h) + PP — I(Z(P -2 6h°

= X* + 3x'ph + 3xp*h* + ph* = (x + ph)*.
Taking instead f(x) = e*, we get
Aes — ez+l| — e* = qe* ,

where @ = e* — 1. Hence

(1 + dye = ):(P) fres

r
= E(f) are* = (1 + a)e*,

provided that the series

=)«
r
converges. As is well known, this series is absolutely convergent if |a} < 1,

that is, if A < log 2. In this case we get
(1 + d)rer = (1 + a)re* = erres = e=+oh

and hence the formula E? = (1 4 4)* is valid.

Summing up, we note that the operator formulas need not be universally
valid, but we see that they can be used on special functions, in particular on
polynomials. In practice they are often used on considerably more general
functions, and then, as a rule, the series expansions have to be truncated after a
few terms. A rigorous treatment, however, falls outside the scope of this book.
Infinite power series in degrading operators in general should be understood as
asymptotic series. If such a series is truncated after a certain term, the remainder
term will behave asymptotically as the first neglected term as 4 — 0.
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7.3. Factorials

The factorial concept actually falls outside the frame of this chapter, but with
regard to later applications we will nevertheless treat it here. The factorial
polynomial of degree n (n positive integer) is defined by the formula

PU=pp - -2 (pont )= L (13
(p—n)!
Among the important properties of such expressions, we note the following:
(p+ D) —pm=(+Dplp-1) - (p-n+2)
—pp—1)--(p—n+1)
=pp-Dp—=2)---(p-n+2p+1-(p—n+1)]
=np(p—1)---(p—-n+2)

or
Ap"" — np"“” . (7’3.2)

Here the 4-symbol operates on the variable p with A = 1.
We generalize directly to

Azp(n) — n(n - l)p(n—Z) — n(z)p(u—z)
and
4p™ =nn — 1)(n — 2) --. (n — k + l)pt*=% = poptr=i (7.3.3)

If k = n, we get 4"p™ = n!

Until now we have defined factorials only for positive values of n. When
n > 1, we have p™* = (p — n 4 1)p"*~", and requiring that this formula also
hold forn = 1 and n = 0, we get p = 1; p*= = 1/(p + 1). Using the formula
repeatedly forn = —1, —2, ..., we obtain:

(—n) 1 — 1
R VT R s R v L

With this definition, the formula p™ = (p — n + 1)p"*~, as well as (7.3.2),
holds also for negative values of n.

We shall now derive formulas for expressing a factorial as a sum of powers,
and a power as a sum of factorials. Putting

»

2™ = 3z, (7.3.5)

k-1

and using the identity z**" = (z — n)z'™, we obtain, on comparing the coef-
ficients of z*,

art = al®, — nal (7.3.6)

with af" = 1 and @™ = 0. These numbers are usually called Stirling’s numbers
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of the first kind; they are presented in the table below.

X 1 2 3 4 5 6 7 8 910
1 1

2 ~1 1

3 2 -3 1

4 —6 1 —6 1

5 24 —50 5 —10 1

6  —120 274 —225 8  —15 1

7 720 —1764 1624 —735 175 —21 1

8  —S040 13068 —13132 6769 —1960 322 —28 |

9 40320 —109584 118124 —67284 22449 —4536 546 —36 |
10 —362880 1026576 —1172700 723680 —269325 63273 —9450 870 —45 |

For example, z® = 24z - 502* + 352° — 102* + z°.
To obtain a power in terms of factorials, we observe that

z.2® = (z — k + k)z®

=z o fegtl) |
Putting

™ = gﬁ;‘n)z(k) , (7.3.7)
we obtain

n—1
Zt =z .2% — ZEB(kn—l)z(k)
k=1

— ,‘E—IB;‘”—”(Z(’H’” + kz(k)) .
k=1

Since no constant term is present on the right-hand side of (7.3.7), we have
B = 0, and we can let the summation run from k£ = 0 instead of k = 1:

=1

™ = Eﬁzn—l)(z(lz+l) + kz(k))

k=0

” n--1

— {(n— -

- Eﬁkn_ll)z(k) + Ek Lﬂ l)z(k)
k=1 k=1

— - (n) k)
2 B
Identifying both sides, we get

(B = B3 + kB k=1,2,...,n—1
low = gon = 1. 09

The numbers 3 are called Stirling’s numbers of the second kind; they aredisplayed
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in the table below:

NEp o2 4 5 6 7 8 9 10
m\

1o

2 1 1

301 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 35 140 21 1

§ 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 |
10 1 511 9330 34105 42525 22827 5880 750 45 |

For example, we have
zﬂ = z(l) + 152(!) + 252(3) + loz(l) + Z(B) .

Both these tables, counted with n rows and n columns, form triangular
matrices which we denote by 4 and B, respectively. Further, let 4 and » be
the following column vectors:

z z(l)
z! 2(2)
u=\.1; and v=|.
i -
Then we have
v = Au; u=Bv; AB = BA =1. (7.3.9)

The Stirling numbers a}> and B{ are special cases of the so-called Bernoulli
numbers B® of order n; they are defined by the expansion

" L~ (7.3.10)

Later we shall deal with the case n = 1, but otherwise these numbers are
beyond the scope of this book. Closer details are given in [1], p. 127. We
only mention the following relations:

-1

n
= (7)Ben.

From Formulas (7.3.2) and (7.3.3), we see that the factorials have very attractive
properties with respect to the operator 4. This ensures that sums of factorials

(7.3.11)
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are easily computed. In order to demonstrate this, we regard

S+ iy = Sfe

i=m

where f is a function such that 4F = f, and obtain

_i.fi:(FuH-l——FI)+(F-+2_Fn+l)+"'+(‘pl+l—Fn)

=F,,,—-F,..
Since 4(p*+V/(n + 1)) = p™, we get
)E:Pm _ @+ ll"‘:’l— poh (7.3.12)
p~P

Here P and Q need not be integers; on the other hand, the interval is supposed
tobel.
If, instead, the factorial is defined by
pY=p(p—h)y---(p—nhih,
the formula is slightly modified:

Q (Q + h)(l-H) — Pis+D
() — . 7.3.13
pz;p CEmY ( )
We shall return to these formulas in Chapter 11.
In passing, we also mention that one can define central factorials:
p™ = (p + " ; l)(‘) (7.3.14)
and central mean factorials:
P = ppt = 1 [(p + l)lul N (P B i)(-]}
K 2 2 2
n (n—1)
=p(p+—2-— 1) . (1.3.15)

In both cases we have analogous difference formulas:
op'* = np~—1 opt*l = mpt*-11, (7.3.16)

Naturally, one can construct expansions of factorials in powers, and conversely,
also in these cases. However, we refrain from doing this, and instead we refer
to [2], pp. 54 and 568.
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EXERCISES
1. Showthat ¥ — 4 = 4V and that 4 + 7V = 4/ —V/4.
2. Prove the relations.
(b) (fk) _ tfirg — 10fi08:
Sk-1/28k+1/2
ﬂ) _ 1&lfe — pfidg
() 6( - Sk-1/28k+1/2 ’

@) (1 fige) = pfiepge + 101108k -

(©) 8 fege) = pfidge + 18Ofr -
3. Prove that:

@ X 2% = of, — ofs. () S 5fues = tanh (U2)fun — f) -
k=0 k=0
4. Prove that:

@) A\/T- + ﬁ:u

(b) p'*™ =2 (T)m( .2— 1)(-) (n integer, >0).

5. A Fibonacci series is characterized by a, = a,_, + a,_;, where a, and a, are
given numbers. Show that if y, are terms in a Fibonacci series, the same holds for
AN unAN ! u.AN_}'m e

6. Find 8°(x*), 5°(x"), and §%x*) when & = 1. Use the result for determining a par-
ticular solution of the equation xf(x) = 2x* + 4x* + 3x* + 3x + .

7. A function f(x) is given in equidistant points x,, x,, .. ., X., where x, = x, + kh,
and the corresponding differences of different orders are denoted by 4f, 4°f, 4°f, ...
By also taking the point midway between the first points, we obtain x,, x,/5, X,, X3/, -
and the corresponding differences are denoted by 4, f, 4 £ 4 f,... Show that

d;'=2~r[4r_adr+l+b4r+2_“.]’

and compute the constants a and 5.
8. The sequence y, is formed according to the rule

=)+ G
Prove that 4™y, = 0.

9. Find cos pz as a power series of x when x = 2 sin (2/2).

10. The expression 3y, cannot usually be computed directly from a difference scheme.
Find its value expressed in known central differences.

11. (a) Show that
A(i : 1) - (7)

where 4 operates on n, and hence that

20)-=0)-G4):
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(b) Find the coefficients c; in the expansion

*=£(0)

and compute the smallest value N such that ¥ n* > 10",
12. Express
zot

Al2
y)dt

zg—h/3

Joyo = S

in central differences of y.
13. We define
&f = fix — b) — 2f(x) + fix + k)
and
8"f = f(x — nh) — 2f(x) + fix + nh).
Obtain 4’ as a power series in §° (the three first terms).
14. A Fibonacci series a,, n =0, 1,2, ..., is given. Show that

Grin +(—1)'a, = koay s,

where k, are integers forming a new Fibonacci series, and state the first terms in this
series.



Chapter 8

Interpolation

Interpolation—that is the art of reading
between the lines in a table.

8.0. Introduction

The kind of problem we are going to treat in this chapter can be briefly de-
scribed in the following way. For a function f(x, y, z, ...), certain points
Py(x; iy 24, ...), i =1,2,...,nare known. Find the value of the function at
the point P(¢, 9, {,...). Itis obvious that this problem is strongly underdeter-
mined, since one can prescribe an arbitrary value to this point. In practical
cases, however, f is usually a “smooth” function, that is, it varies in a rather
regular manner. This is, of course, a somewhat vague condition which ought
to be put in a more precise form. First, we shall restrict ourselves to functions
of one variable. In the following we shall almost exclusively treat this case.

From now on we consider a function y = f(x) with known values y, — f(x,),
i=1,2,...,n. Wesuppose that the function can be approximated by a certain
type of function, and usually we shall be concerned with polynomial approxi-
mation. In special cases, other kinds of functions (trigonometric, exponential)
may occur.

When we have to choose a suitable interpolation method, we should first an-
swer the following questions. Are the given pointsequidistant? Hasa difference
scheme been constructed? Is a table of interpolation coefficients available?
Should interpolation be performed at the beginning or at the end of a table?
Is extremely high accuracy desired? We are now going to describe a number
of methods; in each case some kind of advice is given as to the circumstances
under which the method should be applied.

8.1. Lagrange’s interpolation formula

We assume that for a function f(x) which is continuously differentiable » times,
n points (x,, y,), (X, ;) - - -» (X,, y,) are known. Our problem is then to find
the function value y corresponding to a given value x. Clearly, this problem
has an infinite number of solutions. Usually f(x) is replaced by a polynomial
P(x) of degree n — 1, taking the values y,, y,, ..., y, for x = x,, x,, ..., x,.
Putting

y=a+ax +---+a,_x*7*,

164
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we get a linear system of equations in the coefficients a,, a,, ..., a,_,. The
determinant (Vandermonde’s determinant) is [] ., (x; — x,) and hence is not
equal to 0. Thus there is a unique solution and it is obvious that the desired
polynomial can be written

Px)=y = ; Ly(x)y: » where

L(x) = (x = x)(x = X)) - (X = X)X = X)) - (X — X,)
* (Fe — X)X — %) - (Xp — X)Xy — Xyp)) -+ (X — X,)

For x = x, (1 < r < n), all terms in the sum vanish except the rth, which takes
the value y = y,.

We shall now examine the difference between the given function f(x) and the
polynomial P(x) for an arbitrary value x, of x. Then it is convenient to use the
following functions:

(8.1.1)

F(x) = E (-x):i FRE=Ix-x). (8.1.2)

Obviously, we have F(x) = (x — x,)F,(x) and F(x) = (x — x,)Fi(x) + F,(x),
and hence F'(x,) = F,(x,). Thus we can also write

_yFAx _¥ F(x)

P(x) =3 FAEA L )» TR T (8.1.3)
We suppose that the point x; lies in the closed interval / bounded by the extreme
points of (x,, x,, . . ., X,) and further that x, = x,, k = 1,2, ..., n. We define
the function G(x) = f(x) — P(x) — RF(x), where R is a constant which is deter-
mined so that G(x,) = 0. Obviously, we have G(x) = 0for x = x,, x,, X,,. .., X,,
and by using Rolle’s theorem repeatedly, we conclude that G*'(¢) = 0, where
§el But GV = f™(§) — R-n!, since P(x) is of degree n — 1, and
R = f™(§)/n!. Hence, replacing x, by x, we obtain (note that ¢ is a function
of x)

£y = Py + L2 Ry
n.
or written explicitly,
) — ) e (x = x) (X — X)X — %) -+ (x — %)
SO = e TR — ) )  — ) — ) (6 = %)

(x“xl)(x_xz)"'(x—xn—x)
Y Ty Sy R

4]

Ya
+I%(£—)(x—xl)(x—x,)-~~(x—x,). (8.1.4)

This is Lagrange’s interpolation formula. It can, of course, be differentiated if
one wants to compute the derivative in an arbitrary point; it must be remem-
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bered, however, that the factor f*(§) is also a function of x. For the derivative
in one of the given points (x,, y,), it is possible to obtain a comparatively simple
expression. We have
S C)
= B
P _ s~ (x = %)F() = Fx)
dx (x — x)*F(x,)

Y »

and for x = x,, we find

T~ BT

V. + lim (x — x,)F(x) — F(x)

S P e G xFx)

The last term can be computed, for example, by I’'Hospital’s rule and becomes
(F'(x,)/2F(x,))y,. From F(x) = [,  (x — X.), we get, by logarithmical dif-
ferentiation

1

F(x) = Fx) 5

X — X,
and
F'(x) = F(x) ,_‘:; ~ _1 - - F(x) ,_‘:;(x__lx_)z
- LY _ | _
= Fx) [(E x — x,‘> >» (x — x,,)z:l = 2F() g (x — x)(x — x,)

If we put x = x,, we get F(x) = 0, and we can obtain nonzero contributions
only when we have the factor (x — x,) in the denominator. Hence

1

, . 2F(x) 1
F = lim = 2F
x,) X x, .,..E, X, - X, (x) kz-; X, - x
and
dP) 1 [ F(x,) ]
£ = , r . 8.1.5
(dx z=z, I:;' X, — X Y + F'(x,‘) Ve ( )

We now pass to the case when the x-coordinates are equidistant, that is,
X=X, + h, k=1,2,...,n— 1, and distinguish between two cases, namely
nevenand nodd. First we treat the case when n is even, and start by renum-
bering the points. This is done because we try to arrange them in such a way

that the point x lies in the middle of the interval. The index k now takes the
values

n n n
SR, =P, S 0,1,2,.., 0
2 2 T 2

We put x, = x, -+ kh and x = x, + ph, where p is a fraction which preferably
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should lie between 0 and 1. Our original x, now becomes x, + (—n/2 + 1)h, our
original x, becomes x, + (—n/2 + 2)h, and our original x, becomes x, + (n/2)h.
Hence

s =D A T

Xk-“xz—x/zz(k—l-—;-*z)h x—x,_,.,,:(pJ,-_%_.z)h
?'x.k—xk'—l =h X — Xy =<P—_n_>h
Xy — Xy = —h 2

e = (2 K

Let 4;(p) be the coefficient of y, in Lagrange’s interpolation formula:

- _ (_1)»/2-—1: » n _
D = T T e = R ,I_I,(P rgoi) 619
In a similar way, we get for odd values of n:
A: _ (__ l)(n—l)/z—k
R (T | V- [ (e e ey
A n+1
xg<p+ . —z). (8.1.7)

Interpolating the function f(x) = 1, we see that J; A,*p = 1. Further, we have
the remainder term

g e g o) (L
= (P + "'/12 - I)h"f""(é) .

The coefficients 43(p) have been tabulated forn = 3,4, ..., 11 and for dif-
ferent values of p [1].

EXAMPLE

For a function y = y(x), 5 points are given according to the table below. Find y
for x = 1.0242, using Lagrangian five-point interpolation. We have p = 0.420,
and from the table we obtain the coefficients 4_,, ..., 4,. (Note that 4_, and
A, are negative; the sign is indicated in the heading of the table [1]. The reader
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should check that 4_, + 4_, + 4, + 4, + 4, = 1.)

x y 4
1.00 4.6415888 0.02277254
1.01 4.6570095 —0.15523816
1.02 4.6723287 0.78727924 3 A,y; = 4.6787329.
1.03 4.6875481 0.38006584
1.04 4.7026694 —0.03487946

Hartrec and others have emphasized that the Lagrangian technique must be
used with discrimination. Suppose, for example, that we start from the points
0, 0), (1, 1), (2, 8), (3, 27), and (4, 64) on the curve y = x* and that we want
to compute 120 by inverse Lagrange interpolation. We find directly that

x=y[()’— By -2y —-64 | @ -Hy -2y =69 ,

I (=7)(—26)(—63) 8.7 (—19)(—56)
LO_NO=B0 =6 5, =D -8 -2 ]
27-26.19.(-37) 64 .63 .56 .37

With y — 20, we get x — —1.3139 instcad of the correct value 2.7144. Linear
interpolation gives 2.63, that is, a deviation of only 3¢95. This example shows
clearly that a higher-order formula does not necessarily give a better result than
a lower-order formula.

In its general form Lagrange’s formula is used only on rare occasions in prac-
tical computation. On the other hand, it is extremely valuable in theoretical
work within different branches of numerical analysis.

8.2. Hermite’s interpolation formula

The Hermitian interpolation is rather similar to the Lagrangian. The difference
is that we now seek a polynomial P(x) of degree 2n — 1 such that in the points

Xyy X5+« -, X, P(x) and f(x), as well as P’(x) and f*(x), coincide. Thus we form
Pe) = 33 U f(x) + 1 Va0 £ - 8.2.1

Here U,(x) and V,(x) are supposed to be polynomials of degree 2n — 1. Our
requirements are fulfilled if we claim that

101:(";) = du» Vl:(x-') =0, (8.2.2)
Uix) =0, Vi(x) = 0u -
As is easily inferred, we may choose
{Uk(x) = Wi0L(x)*, 5.2
Vi(x) = Zy(x)Lu(x)",
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where L,(x) is defined in (8.1.1); clearly, we have L,(x;) = ... Now L,(x) is
of degree n — 1, and hence W, and Z, must be linear functions. By using the
conditions (8.2.2), we get

Wex) =1, Z(x) =0,

, (8.2.9)
Wix) = —2L/(x.), Zix) =1.
Thus Hermite’s interpolation formula takes the form
P(x) = :L;;{l — 2Li(x)(x — x)Mu(x) f(%,)
+ :L:', (x — X)L(X)* f7(x) (8.2.5)

Interpolation of this kind is sometimes called osculating interpolation.
We shall now estimate the magnitude of the error and construct the following
function:
G(x) = f(x) — P(x) — S - F(x)*. (8.2.6)

Hence G(x,) = G'(x,) = 0, k = 1,2, ...,n. We determine a constant S such
that G(x) vanishes in an additional point x,, that is,

S= f___("o)F - ){' ) (8.2.7)

As in the Lagrangian case, let I be the closed interval bounded by the extreme
points in (x,, x,, X,, ..., X,). Since G(x) vanishes in n 4 1 different points,
Xgs Xy - - 5 X,, We know that G’(x) vanishes in n intermediate points in the in-
terval I. Also, G’(x) vanishes in the points x,, x,, .. ., x,, that is, in 2»n points
in all. Hence G”(x) vanishes 2n — 1 times in I, G’”’(x) vanishes 2n — 2 times
in I, and so on, and finally G***(x) vanishes in at least one point ¢ € I, where
we must assume that f(x) is continuously differentiable at least 2n times. Thus
we have

G™(E) =f () —S-(2m)! =0. (8.2.8)

From (8.2.7) and (8.2.8) it follows that

)
fix) = Pex) + L O iy
(2n)!
This relation is trivially correct alsé if x, = x,, k = 1,2, ..., n. Hence x, can
be replaced by x, and we find the following expression for the complete inter-
polation formula:
f0) = Py + L2 (R (8.2.9)
(2n)!
Here we also mention a technique to determine a curve through given points in
such a way that the resulting curve becomes as “‘smooth” as possible. In prac-
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tical applications (shipbuilding, aircraft industry) this is done by a flexible ruler,
spline. Numerically spline interpolation is usually performed by computing a
series of third-degree polynomials, one for each interval, and then one demands
continuity for the function and its first and second derivatives in all the given
points (nodes).

8.3. Divided differences

If one wants to interpolate by use of function values which are given for non-
equidistant points, the Lagrangian scheme is impractical and requires much
labor. In this respect the divided differences offer better possibilities.

Let x,, x,, ..., x, ben + 1 given points. Then we define the first divided dif-
ference of f(x) between x, and x,:

for x) = LEV =S _ pie ey (8.3.1)

1
x, — X,

Analogously, the second divided difference is defined by

S(x0 X, x,) = S0 %) — f(x,, X,) , (8.3.2)

X3 — X,

and in a similar way the nth divided difference:

S Xy oy %) = Sx Xy ., x,’z = S Xy -y X, ) ) (8.3.3)
n — Xo

By induction it is easy to prove that

S(Xo X0y ooy X))

-3 S(x,) (8.3.4)

=0 (X, — X)(x, — X)) - - (x, — X, )X, — Xpn) e (X, — X)) .

For equidistant arguments we have

1
S(x5 %, ceX,) = md’ﬁﬂ

where & = x,,, — x,. From this we see that S(x0 Xy, - .., x,) is a symmetric
function of the arguments x,, x,, ..., x,. If two arguments are equal, we can
still attribute a meaning to the difference; 'we have, for example,

— 1im &) = f(x) _
S(x5, x5) = 11_2: ﬁ = f1(x,)
and analogously

Sy Xg0 oy X)) = Zf"('xo) .

r:
r+1 arguments
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Finally, we also get
d
S(x, Xy Xgy Xy5 <005 X,) = a;f(x, Xgs Xps o5 Xy) +

From the defining equations we have

f(x) :f(xo) + (x — %) 'f(x’ X5 »

S(x, X)) = f(%e %) + (x — Xx,) - f(X, X0 X)) »

f(xv Xos xl) :f(xo, X1 xz) + (x - xz) 'f(x’ Xos X1» xz) ’

/;(x, Xoy v ooy X)) = f(Xps Xpy o o0y X,) + (X — X,) - f(X) Xgy Xy - 005 X,)

Multiplying the second equation by (x — x,), the third by (x — x)(x — x,),
and so on, and finally the last equation by (x — x))(x — x,) - - - (x — x,_,), and
adding we find

S(x) = flxg) + (x = x5) - f(%6, X;) + (X — X)(x — x,) - f( Xy Xp5 X5) + -0
+ (X = X)X — %) (X — X0) - f(Xs Xy . .-y X,) + R, (8.3.5)
where R — f(x, X, X,, ..., X,) H:,‘=° (x — x;). This is Newton’s interpolation
formula with divided differences.
For a moment we put f(x) = P(x) + R. Since P(x) is a polynomial of de-
gree n and, further, R vanishes for x = x,, x,,..., x,, we have f(x,) = P(x,) for

k=0,1,2,...,n, and clearly P(x) must be identical with the Lagrangian
interpolation polynomial. Hence

_ f(nn(e) L _
R = mg(x x;) . (8.3.6)

We also find that

_ f(n+l)($)
Slx, xp, x5 000y x,) = m .

EXAMPLE

Find a polynomial satisfied by (—4, 1245), (— 1, 33), (0, 5), (2, 9), and (5, 1335).

x y
—4 1245

— 404
—1 33 94

—28 —14
0 5 10 3

2 13

2 9 88

442

S 1335
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(Note that this scheme contains divided differences.)
f(x) = 1245 — 404(x + 4) + 94(x + 4)(x + 1)
— 14(x + 4)(x + Dx + 3(x + 4)(x + D)x(x — 2)
= 3x* — 5x* 4 6x* — 14x + 5.
The practical computation is best done by a technique developed by Aitken.

The different interpolation polynomials are denoted by /(x), and first we form
the linear expression

I,(%) = Yo%y — X) — (%o — X) _ 1 Yo Xo— X|
' X, — X X=X | X — X
Obviously, I, ,(x,) = y, and I, ,(x,) = y,. Next we form
I, (%) = L ()% — x) — L ,(X)(%, — X) — 1 Ly(x) x —x
” Xy — X Xy = Xy |Loa(X) X, — x

and observe that

Iy, 5(x) = Yo(Xs — X)) — Yo(X: — Xo) = Jos
Xy — X

I,,4(x) = y1, and I, ,(x,) = y,. In general, it is easy to prove that if

lo,:,:,...,.(x) — 10,1,:...,,.—:,._;(-7‘” — x) — I°'l-’-~-~.n-2,n(xu-g — X) ’

Xy — Xuy

we have [, ,  .(x,) =y k=0,1,2,...,n. Hence nthdegree interpolation
can be performed by n(n + 1)/2 linear interpolations. Conveniently, this is
done by aid of the scheme below.

Xo Yo X, — x
x, o I,(%) X, =X
X3 V2 lo,z(x) Io,x,z(x) Xy — X

Xs ¥y Ls(x) Ly s(x) Las(%) X3 — X

EXAMPLE
! dt
K = <
) Su/(l — x)(1 — ¢
is to be computed for x=0.4142. Froma table the following values are obtained:
x y=K(x)
0.30 1.608049 —1142
0.35 1.622528 1.641119 —642
0.40 1.640000 1.644537 1.645508 —142
0.45 1.660886 1.648276 1.645714 1.645567 358

0.50 1.685750 1.652416 1.645954 1.645571 1.645563 858
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This interpolation is identical with the Lagrangian, but it has two essential ad-
vantages. On one hand, it is much simpler computationally, on the other, it
gives a good idea of the accuracy obtained.

8.4. Difference schemes

A difference scheme is constructed as shown in the following example.

y 4 £ &£ 4

0
1
14
15 36
16 50 24
65 60
81 110 24
175 84
256 194 24
369 108
625 302
671
1296

In general, we have the following picture:

Yo
dy, _
341 Ly,
ay, Ly,
¥y 42 =
2 1 -
Ayﬂ A’ 1 Ab (]
Ys y 4y, o /A‘}’!/
Y, Y
Ve 4 ’ /Az s '
Ve
Yo~

We see directly that the quantities 4*y, lie on a straight line sloping down to
the right. On the other hand, since 4 = EV, we have, for example, 4y, = Fy,;
Ay, = Vlyg A&, = Py, and so on; and we infer that the quantities /%y, lie on
a straight line sloping upward to the right. Finally, we also have 4 = E"*§ and
hence, for example, 4%, = Ed%, = é8%,; 4'y, = &y, and so on. In this way
we find that the quantities 9**y, lie on a horizontal line. Note that the difference
scheme is exactly the same and that it is only a question of notations what the
differences are called. For example, we have

Ly, =V, = %y, -

When working with difference schemes, we observe a very characteristic kind
of error propagation which we shall now illustrate. Consider a function which
is zero in all grid points except one, where it is . We obtain the following dif-
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ference scheme.

0 0 0
0 0 0 €
0 0 € —
— _
0 0 € 6¢e
— _
0 /e ¢
0 € —4¢ 15¢
/
€ -3¢ 10e
e —2¢ 6¢ —20¢
~ _
€ 3¢ 10¢
\ .
0 € 4e 15¢
0 \—e Se
0 0 ™~ —6e

The error propagates in a triangular pattern and grows quickly; apart from
thesign we recognize the binomial coefficients in the different columns. In higher-
order differences the usual round-off errors appear as tangible irregular fluctu-
ations. Gross errors are easily revealed by use of a difference scheme, and in
such cases the picture above should be kept in mind.

The propagation of round-off errors is clearly demonstrated in the scheme
below, where we have assumed as large variations as possible between two
consecutive values.

€ —4e 16¢
—2¢ 8¢

—€ 4e — 16¢
2¢ — 8¢

€ —4¢ 16¢
—2¢ 8¢

—¢ 4e — 16¢
2¢e — 8¢

€ —4¢ 16¢
—2¢ 8¢

—€ 4e — 16¢

Hence, in the worst possible case, we can obtain a doubling of the error for
every new difference introduced.

8.5. Interpolation formulas by use of differences

We suppose that we know the values ..., y_,, y_,, ¥o, J1» Js» - - - Of a function
forx = ..., x, — 2h, x, — h, x5, X, + h, X, + 2h,. .. and want to compute the
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function value y, for x = x, + ph, where in general — 1 < p < 1. In the sequel
we shall often use the notation ¢ = 1 — p. Symbolically, we have

Yo=E?y=(1 4+ 4Py =y, + (’;) 4y, + (12’) Ly + - (8.5.1)

This is Newton’s forward-difference formula; its validity has, to some extent, been
discussed in Section 7.2.
An alternative derivation can be made by use of factorials. Putting

y =6+ ap® + ap® +...,
and operating with 4* on both sides, we get for p = 0:
(449,)y00 = 40 = @, - k!

and hence we again attain formula (8.5.1).
For a moment we put

— 1
¢(P):yo+pAyo+#.2_)4zyo+...+(ﬁ)my“

and we see directly that

?0) =y, ,
‘/:—"(l) =r (since p(k) = (1 + A)*y, = E*y, = y,).
¢(n) =Dus

Consequently, ¢(p) is identical with the Lagrangian interpolation polynomial
and the remainder term is the same as in this case:

et () @) e () 2 m

— Y8 panr 1D — n) — P nH1y(n H1
R, = (_n_-i-T)!h plp—1) (p—n (n + l)h yrrE) .

An analogous formula in 7 can easily be obtained:
Yo = (E7) 72y = (1 = 7)7y,
1
=yt ply+ PO Dy o @5
This is Newton’s backward-difference formula.
The two formulas by Newton are used only occasionally and almost exclu-
sively at the beginning or at the end of a table. More important are formulas

which make use of central differences, and a whole series of such formulas with
slightly different properties can be constructed.
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> >

L L4 ©® Everett

‘\ . ° Steffensen

Figure 8.5

Let @ and ¢ (with or without indices) denote even and odd functions of 4,
respectively. The best-known formulas have the following structure:

Ly, = @) + $(0)y_yps (Gauss)

2. y, = @(0)ys + (0 (Gauss)
13 7 =20 + 1)y, (Stirling)

4. y, = ppOWs + (O (Bessel)

5. 7, = @0y + P(O), (Everett)

6. ¥, =y + G(O)W_rys + G(O)yys (Steffensen)



SEC. 8.5. INTERPOLATION FORMULAS BY USE OF DIFFERENCES 177

Naturally, ¢ and ¢ stand for different functions in different cases. All func-
tions can be obtained by essentially the same technique. We shall use

v, = E?y, = e®Uy, and 0 = 2sinh %1- .

If, in order to use the parity properties of @ and ¢, we formally change the sign
of 8, then we also have to change the sign of U. Hence in case 1 we get

el =g+ ‘/,,e-vlz,
{fw=¢—¢4”,
whence
cosh (p + 12)U
cosh (U/2)

=1+G;U$+G:ﬁ&+m

[cf. (7.2.8)), and

o= sinhpU  _ 5 inn U siflhpU
cosh (U/2) 2 sinhU

Sl ) 5]

[cf. (7.2.7)]. Ananalogous formula is obtained in the second case. Hence, the
Gaussian interpolation formulas can be written in the following form:

Yo =)o + (11’) 0y + (p ; 1) 0%y,

+ (P ';' 1) y_up + (P 1‘ 2) o ++++,  (8.5.3)

Yo =Yo + (’l’) 3y + (’2’) 3%,
+ (p '; 1) &yin + (PI 1) M + - (8.5.4)

In the third case we get
el = + ¢cosh¥,
eV = p — ¢cosh¥ ,

whence @ = cosh pU and ¢ = sinh pU/cosh (U/2). Thus we obtain Stirling’s
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interpolation formula;

i1
Yy = Yo + PdYs + %8’ o+ (”;' I)pﬁ’yo + i”(”T—)é‘yo

) ‘-1 = 4) o
+(p_;_2)#8yo+p(p’ 63(p’ ) 5y, 4 - - - (8.5.5)

Here we have used (7.2.6) and (7.2.7) multiplied by § = 2 sinh (U/2). More-
over, Stirling’s formula can also be obtained by adding (8.5.3) and (8.5.4). In
the fourth case we obtain the following system:

er-uNY — o coshg + ¢,

e—(p—1nU ¢:cosh% - ¢,

whence @ = cosh (p — %)U/cosh (U/2) and ¢ = sinh (p — 3)U.

Here we can use formula (7.2.8), with p replaced by p — 4, in order to find .
On the other hand, we cannot use (7.2.7) multiplied by sinh U= pd = §(E — E)
to obtain ¢, since we would get an even series in 0 operating on y,, and y_,,.
Instead, we multiply (7.2.8) by p and integrate in g:

PP dp = | pcosh pU 2 dp = sinh
Scosh(U/Z) 0 pcoshp % 6 = sinh pU .

Also integrating the right-hand side of (7.2.8), we finally get

sinhpU=p6+(p;é>p7y+<p:%>£§_b+...,

If we change p to p — 4, we obtain Bessel’s formula:
1 —
Yo = Whp + (P - ?) s + (g) o'y + @)E:’—% V1

+ (P ': l)ﬂﬁ‘}’,,, + (P 1‘ 1)1_’_;_2 Vg e (8.5.6)

In the fifth case we find
{ erl = P + pe?,
€7 = @, + pe?,

whence @, = sinh qU/sinh U and @, = sinh pUsinh U, where ¢ = 1 — p. This
is the important Everett formula:

r=an+ (T3 Do (17 ) on +o

+ Py +(”“3“ 1)8’y1+ (”;fz)a* e, (8.5.7)
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Finally we have the sixth case:

e’V =1 + eV + e,
eV =1 — gellt — eV,

whence
&, = cosh (U/2) — cosh (p — 3)U
° sinh U
and
g = cosh (p + 3)U — cosh (U/2) i

sinh U

Observing thatsinh U = 2 sinh (U/2) cosh (U/2) =4 - cosh (U/2) and using (7.2.8),
we obtain Steffensen’s formula:

}’p=}’o+<l ;p)ﬁy,,,+<2j;p)53 1,,+(3*6'P)a°ym+...

S DR G P P, B

The structure of all these formulas can easily be demonstrated by sketching a
difference scheme, where the different quantities are represented by points. The
column to the left stands for the function values, then we have the first differ-
ences, and so on. The two Newton formulas are also included (Fig. 8.5, p. 176).

The two Gaussian interpolation formulas are of interest almost exclusively
from a theoretical standpoint. Stirling’s formula is suitable for small values of
p, for example, —} < p < 1, and Bessel’s formula is suitable for values of p not
too far from 3, for example, 3 < p < 3. Everett’s formula is perhaps the one
which is most generally useful, not the least because the coefficients have been
tabulated (this is true also for Bessel’s formula), and further because even dif-
ferences often are tabulated together with the function values. Steffensen’s
formula might compete if the corresponding conditions were fulfilled.

In many cases one wants just a simple and fast formula, taking into account
only first- and second-order differences. Such a formula is easily obtained, for
example, from Everett’s formula, by putting 8%, =~ %, = 6% and neglecting
higher-order terms. Hence

vo=aqyt - By, (8.5.9)

Last, we shall also consider the remainder term. When doing this, we shall

restrict ourselves to Everett’s formula; analogous conditions prevail in the other
cases. Putting

Pui(p) = ’}:‘:’{(p + i)a“y, + (q + ")a“ o},

+=0 2i + 1 2i + 1
we have for n = 1, @(p) = py, + gy, and hence @y(0) = y,, p,(1) = y,. Asa
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basis for induction, we suppose that ¢, _,(i) = y;, i = —n + 1,...,0,1,...,m
as has just been shown, this is fulfilled for n = 1. We shall now prove that
@) =y i=—n,...,0,1,....,n+ 1. First we observe that

Pu(P) = Pucs(P) + (2’; ’;”l) 3y, + (zqn :”1) 3y, .

Further, @,_,(p) is a polynomial in p of degree 2n — 1 which takes the values
Ynsrs -3 Yo Y1s ++ o2 Yo in the 2n points —n + 1,...,0,1,...,n. Hence it
must be equal to the Lagrangian interpolation polynomial

P, (p) = i: P+n—-—H(p+n—-2).---(p—n) (=1)*

e &+ n—1)i@n R -k
By use of direct insertion, we find without difficulty that ¢, (i) = y; for i =
—n+1,...,0,1, ..., n and hence we need consider only the values i = —n

and i = n 4+ 1. For symmetry reasons it is sufficient to examine, for example,
the case i = n 4+ 1. Then we have
}:': 2n(2n —1)...1
SSatk+n—Dn—-Kk(=1)*n—-k+1)
- ! (= 1)*~*(2n)!

X mik—)@n-k+10

_ X (=)
= rl(2n —r)! Vronti:

¢u—l(” + l) =

Yk

Of the two remaining terms in @,(p), the second one is zero, and the first one
has the value

(2n+1

n + 1)3“}'1 = 0™y, = E™(E — 1)™Ey,

=0 = r!(2n —r)! Y

The two sums are of different signs and cancel except for the term r = 2n from
the latter sum. Hence we get

— (—1y= (2! -
Pa(n + 1) = (=1) W}’zn—.ﬂ = Vas1
which concludes the proof.
Thus the truncated series is identical with the Lagrangian interpolation poly-

nomial, and the remainder term is also the same. Hence we obtain the complete
Everett formula:

(=BG ) em B )om s (7 e,

lxo —(n—-—1h<LEL x, +nh. (8.5.10)
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8.6. Throwback

By throwback we mean a general technique of comprising higher-order differ-
ences into lower-order differences, thereby reducing the computational work on
interpolation. Differences modified in this way are frequently used in modern
tables. Here we shall consider only Everett’s formula, and we also restrict our-
selves to throwing back the fourth difference on the second. The relevant terms
in the formula are of the type

R P LT (R LI
=py + P(Pz6— 1) (3’_}' - 4_2—0_}72_34};) 4o,

When p varies from 0 to 1, the factor (4 — p*)/20 varies only slightly, namely,
between 0.15 and 0.20, and we will replace this factor by a constant, which
still remains to be chosen.

We now introduce so-called modified differences 63 y:

0% Yo = 0%, — Cd%,; 0y, = 0%, — CéYy, .

The modified interpolation formula then takes the form
1
Yo =PNh + 90 + (P -; )3:-)'1 + (q -; l>3:-yo'

If the error is denoted by ¢, we find

= [(15%)+ (" )]o
R G LY

Here terms of sixth and higher order have been neglected. Supposing that 5'y
varies so slowly that 4%y, and 'y, do not differ appreciably, we find, taking into
account that ¢ = 1 — p:

(p) = {HL=PCE=P[a= (= py ]

VLRl

or after simplification:
1 —
e(p) = .P(ZTP)(z —12C + p — po%y.
Putting @ = 12C — 2, we examine the function

#p) =p(1 — p)p — p* — @) = (p* — p)* + a(p* — p).
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A¥(p)

- 0.01

Qs 1

Yo

Figure 8.6

For sufficiently small values of a, this function has one maximum and two
minima in the interval 0 < p < 1. We now want to choose « in such a way that
the maximum deviation is minimized, and, as is easily inferred, this occurs when
all maximum deviations are equal apart from the sign. A simple calculation
gives the result &« = (12 — 1)/2 and C = (3 + /2)/24 = 0.1839. The error
curve then gets the shape shown in Fig. 8.6, and the modified second differences
are defined by the formula

3%y = &% — 0.1839 5% . (8.6.2)

The error due to this approximation is obtained by use of (8.6.1), and a straight-
forward calculation shows that it is less in absolute value than 0.00122 M, where
M = max (|6'y,|, [0*y,]). If the fourth difference is absolutely less than 400, the
error will be less than half a unit in the last place. If, as was done when C was
determined, we can suppose that the fourth differences are equal, larger values
can be accepted, since
— (3 — 21/7) 18V

!s|mnx - (3 21/2)%4_

and

€] max <% if 6% < 1119.

The throwback technique was introduced by Comrie. At first he worked
with Bessel’s formula, which, incidentally, gives the same value for C. He also
examined how the method works for higher differences. More details on this
matter can be found, for example, in [2].
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8.7. Subtabulation

In many cases a function is tabulated with intervals 4, although we need values
at closer intervals ah, that is, we want to subtabulate the function. Let E, be
the shift operator associated with the interval ah, and 4, the corresponding dif-
ference operator. Then we have E, = E* and

b=ty —1=ag+ Q=D py 2o Da—2) oy

In order to perform the interpolation, we need different powers of 4,:

s=arsfly MO D4+ o~ D 4a - 2) + 3¢ — Ya - ] £

+ 1@ = 1) 12(a - 2)@ — 3) + 4(r — 1)@ — I)(a — 2)

48
+o_ngﬁnm_1mm+n}. (8.7.1)
Usually we have a = 4, 4, or {i; in the last case, that is, for @« = 0.1, we find
47 = 107 4"
% I:l _ ;_8 4+ 3r(278r0£)}- 49) 4 — 3r(81r2 _iig:;):; + 580) e ] )
It is now easy to calculate 4,, 4}, 4, ..., and with these values we construct a

new difference scheme from which the desired function values can be obtained
without difficulty.

In the past, subtabulation was mostly used for computation of tables by use
of a desk calculator. Then, a very accurate formula was often employed for
obtaining a small number of key values, which formed the basis for subtabu-
lation in one or several stages. These computations were easy to check, since
the key values necessarily had to be reproduced. Nowadays the method is
mainly of theoretical interest.

8.8. Special and inverse interpolation

Certain functions vary too rapidly for interpolation along the usual lines to be
possible. Consider, for example, the function y = (e* — e~*)/sin® x. It is quite
clear that y is not interpolable for small values of x. On the other hand, the
function z = xy is very well behaved and offers no difficulties for interpolation;
afterward one has only to divide by x. Another example is presented by the
function
oo e—(
y= S dr,

e
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which becomesinfinite for x = 0. Asiseasily inferred, the functionz = y + logx
can be interpolated without any complications for positive values of x. Even if
one has a function whose analytical character is unknown, a similar technique
can often be used. In such cases the regularity of the differences of different
orders is used as a test that the method is fairly realistic.

Sometimes the special properties of a function can be used for simplifying the
interpolation. A few examples will be presented.

(a) y = e*. Hence

h!
e-+l=ea_eb=e-(l+h+5+ ..-),

In larger tables the interval is usually 10-¢, and if the series is truncated after
the ht-term, we will obtain about 13 correct figures. Asa matter of fact, we can
choose h such that —5.10~* < h < 5.10-%, and hence [P/3! < 2.1.10,

(b) y = sinx and y = cos x are usually tabulated together. We have, for
example,

sin (x + h) = sin xcos h + cos x sin A
. ht r
_smx-(l -5!.+--.) + cos x -(h—i-i----).
If the interval is 10~¢, the formula sin (x + k) = sin x + hcos x will give a
maximum error of one unit in the ninth place.

(c) y = log x. Hence

log(x+h)=log[x(l +%]='°gx+log(l +%)
h!

h
=1 - -
ogx+x 2xt

The procedure for inverse interpolation is best demonstrated by an example.
Let a function y = f(x) be tabulated together with §% and §'y.” We are now
trying to find such a value x between x, and x, = x, + h that f(x) = y, where
 is a given value. As before, we denote (x — x,)/h by p, and using Everett’s
formula, we obtain the equation

y=pm+ (”’; l)ﬁ’yl + (’:2)6‘)’1 + (1~ py,

+ (30 (57

This is a fifth-degree equation in p, and we will solve it by an iteration technique.
First we determine a value p, from the equation p,y, + (1 — Py, = y. This
value is inserted into the §%y-terms, while the §*y-terms are neglected, and in
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this way we obtain a value p, from the equation
+ 1 2 —
p,y1+(l—p,)yo=y—(P‘3 )6’)&*( 3‘”‘)3’«-

Next we obtain p, from

1
sy + (1 —ps)yo=y—(P’;L )3’1

(3P (o= P

If necessary, the procedure is repeated until the values do not change any more.
The procedure described here can obviously be carried over to other interpo-
lation formulas.

8.9. Extrapolation

In general it is obvious that extrapolation is a far more delicate process than
interpolation. For example, one could point to the simple fact that a func-
tion might possess a very weak singularity which is hardly apparent in the given
values but nevertheless might have a fatal effect in the extrapolation point. There
are, however, a few cases when a fairly safe extrapolation can be performed
implying considerable gains in computing time and accuracy.

First we shall discuss Aitken-extrapolation. Suppose that we have a sequence
Yos Y1s Ya» - - - cOnverging toward a value y. We assume the convergence to be
geometric, that is,

Y — Y. = ah* + e h"

where ¢, — 0 when 4 — 0. This is often expressed through

Y — Y. =ah* + o(h").
From this we obtain
Y " Vnst = p oy o(h)
Y = JDa
and
Y=V ks oh.
Y = JVaar
Subtracting we get

Y = Van Y =V — o(h)

Y = Vs Y = Vau

and hence

Ya-1Vus1 — }’: - y(yu—l - 2}’.. + }’.+1) = O(h’”) .
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Since Fucs = 290 + Yurs = —ab=(1 — kY = O(™Y),
wC gct

y = Yu-1Vai1 = Va + o(h*)
Va1 — 2}’. 1 Va1

or

2
Y=V =Var1 — (‘:A + o (h**). (8.9.1)
4V
The procedure can then be repeated with the new series y}.
We shall also very briefly discuss Richardson extrapolation. Usually one wants
to compute in a finite process a certain quantity, for example, an integral, by
the aid of approximations obtained with different interval lengths. Assume that

we have
F(h) = FO) + ah* + ai* + ah® +--- . (8.9.2)
Using the expression for F(ph) we can eliminate the quadratic term; as a rule
we then take p = 2. Thus we form
G(h) = F(h) - F_(zw = F0) dap  20ah —.... (8.9.3)

The procedure can then be repeated:

G(2h) — G(h)

L = FO) + 64ajt +--. (8.9.4)

H(h) = G(h) —

Richardson’s technique is used, for example, in connection with numerical
quadrature (Romberg-integration) and for solving differential equations.
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EXERCISES

1. The table below contains an error which should be located and corrected.

x fix) X fix)
3.60 0.112046 3.65 0.152702
3.61 0.120204 3.66 0.160788
3.62 0.128350 3.67 0.168857
3.63 0.136462 3.68 0.176908

3.64 0.144600
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2. The function y = f{x) is given in the points (7, 3), (8, 1), (9, 1), and (10, 9). Find
the value of y for x = 9.5, using Lagrange’s interpolation formula.
3. From the beginning of a table, the following values are reproduced:

x fx)
0.001 0.54483 33726
0.002 0.55438 29800
0.003 0.56394 21418
0.004 0.57351 08675
0.005 0.58308 91667

Find the function value for x = 0.00180 as accurately as possible.

4. A function f{x) is known in three points, X,, x,, and x;, in the vicinity of an ex-
treme point x,. Show that

~ X + 2x, + Xy _ f(xl- X3) +ﬂxz’ X3) .

X,
° 4 4ﬂxlv X2y xs)

Use this formula to find x, when the following values are known:

x || - 3.0 | 3.6 | 3.8
s | ossis | 0.83059 | 0.26253

5. The function y = x! has a minimum between 0 and 1. Find the abscissa from the
data below.

d
— I 1 2 ¢
x o og (x!) b 0
0.46 —0.00158 05620 — 888096 —396
0.47 +0.00806 64890 —872716 —383

6. The function y = exp x is tabulated for x = 0(0.01)l. Find the maximal error on
linear interpolation.

7. The equation x* — 15x + 4 = 0 has a root close to 0.3. Obtain this root with 6

decimal places, using inverse interpolation (for example, with Bessel’s interpolation
formula).

8. f(x, + ph) is denoted by y,.,. Show that
1
Ynip =JYn +pdy.-x + (P;— )Az w2 + (p -; Z)Aay,‘_a +een,

assuming that the series converges.
9. Find the constants 4, B, C, and D in the interpolation formula
f(xo + ph) = Af_, + Bf, + Chf’, + Dhﬁl + R,

as well as the order of the error term R. Use the formula to obtain f(2.74) when
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£(2.6) = 0.0218502 and f(2.8) = 0.0168553. The function f is defined by
fx) = S-(e"/t) dr .

10. Find an interpolation formula which makes useof yo, ', 5", - - . and y1, yi’, yi',. - .
(up to sixth-order terms).

11. Determine the constants a, b, ¢, and d in such a way that the formula
Vs = a0 + by, + K(cys’ + dyt'),

becomes correct to the highest possible order. Use the formula to compute Ai(1.1) when
Ai(1.0) = 0.135292 and Ai(1.2) = 0.106126. It is known that the function y = Ai(x)
satisfies the differential equation y'’ = xy.

12. The following data are given for a certain function:

’

X Y Y
0.4 1.554284 0.243031
0.5 1.561136 —0.089618

In the interval 0.4 < x < 0.5, y has a maximum. Find its coordinates as accurately as
possible.

13. For a function y = f(x) the following data are known: f(0) = 1.1378; f7(0.1) =
—3.1950; f7(0.2) = —3.1706; f(0.3) = 0.1785. The function has an inflection point in
the interval 0 < x < 0.3. Find its coordinates to three places.

14. A function f(x, y) takes the following values in nine adjacent mesh points:
(6,4) 8.82948  (7,4) 11.33222  (8,4) 14.17946
(6,5) 9.31982  (7,5) 11.97257  (8,5) 14.98981
(6,6) 9.81019 (7,6) 12.61294  (8,6) 15.80018
Find the function value for x = 7.2, y = 5.6.
15. The function y is given in the table below.

x Yy
0.01 98.4342
0.02 48.4392
0.03 31.7775
0.04 23.4492
0.05 18.4542
Find y for x = 0.0341.
. -t
16. The function y= S ert

is given in the table below. Find y for x = 0.0378.

x | o000 | oo1 | 002 | o003 | 004 | o005 | 006
y “ oo [ 4.0379 | 3.3547 | 2.9591 | 2.6813 | 2.4679 ‘ 2.2953
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17. The function y = f{x) is supposed to be differentiable three times. Prove the
relation

f(x) —_ (x —_ xl)(x _ 2xo + xl) f(xo) + (X _ 0)(xx— xl) f,(xo)
0T 1

(X, — xo)* X,
PCEE D iy Py R
(%, — xo)"
where R(x) = }(x — X)'(x — x))f""'(§); xo < x, § < x,.
18. A function ¢(x) is defined by f(x) - g(x). According to Steffensen, the following
formula is valid:

@(Xoy X1y« vy Xp) = ’Z=;°f(x.,, Xpy ooy X)) - E(Xpy ooy Xn)

Prove this formula in the case n = 2.

19. In a table the function values have been rounded to a certain number of decimals.
In order to facilitate linear interpolation one also wants to give the first differences.
Determine which is best: to use the differences of the rounded values, or to give rounded
values of the exact first differences.

20. One wants to compute an approximate value of = by considering regular n-sided
polygons with corners on the unit circle, for such values of n that the perimeter P, can
easily be computed. Determine P, for n = 3, 4, and 6 and extrapolate to o taking into
account that the error is proportional to 1/n*.

21. The function f(x) = x + x* + x* + x* + x* + ... is defined for —1 < x < 1.

Determine
T log (1 — x)
e=—lm [_Eg_z_ +].

by explicit computations for x = 0.95, 0.98, and 0.99 and extrapolation to x = 1.



Chapter 9

Numerical differentiation

If even the devil states that 2-2 = 4,
I am going to believe him.
P. P. WALDENSTROM.*

The function f{x) is supposed to be analytic and tabulated in equidistant points.
Our problem is then to compute the derivative, either in a grid point or in an
interior point. The first case can be considered as a pure differentiation problem,
the second as a combined interpolation and differentiation problem.

From the relation 4 = ¢** — 1, we obtain formally

hD=lOg(l+A)=d—%A’+-§A’—

or
169 = (40 = 2 27 + - 2fG0) = -+, ©.1)

In general we have D* = h~"[log(l + 4)]", where the following expansion can
be used:
llog (1 + 0)]* _ ¢~ i ,a
i = ..E=k —r x*. 9.2)

The coefficients ar{* again are Stirling’s numbers of the first kind. The relation
follows from
[log (1 + x)J* = _d_(l + x)]

~ dk oo t(ﬂ) ]
= | — x*

| dr* g n! t=0
". oo

= (n) gp
_,.Eo n! dt" Ea :l

— E am k!

nkn

=0

* Famous Swedish religious leader of the nineteenth century.
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(since we get no contribution if n < k). Hence we obtain

D h ( . + r+l) A n a{’+2) A’ + )A
r— h-r ar r oo T,
r+1 r+ H(r+2)

or
j‘(r)(x) . h—r( (r)Af‘(x) + A'+lj(.X)

°
a('r+-)

+ mm“ﬂx) $o ) (9.3)

Analogously, we find

f(r)(x) — h—r (a’r)V ﬂx) Vr#lf‘(x)
a£r+2)
+ r+ Hr+2)

As before, we prefer expressions containing central differences. Then we can
apply (7.2.3) or (7.2.4); the first formula gives

Prefix) =) (9.4)

— 1)*(2n)!

._l — 2n -1

y=0b=3x 2"‘(n')2(2n T
__l_ _ 1 oss Sy — —— & 9.5
_h<8y 7R 40’3 7I688y+ ) ©-3)

This formula, however, contains only odd powers of § and is useless except
for the computation of the derivative in the middle between two grid points.
Formula (7.2.4) gives instead

' = D - ¢ nﬂ__ 2n+1
y' =Dy ;,;( (2+1)-3 y

2 3__ 3 R 5_______ 7 oy, _ .
[”y #y + 3 ”3}' ek 630’““3 ]

1

h
! 5y, — & 5y, — o 9.6
"‘ﬁ[l_y—l_?( N — -l)+ﬁ( - }’-x)—~":|- ()

The second derivative can be obtained by squaring (9.5) or directly from
(7.2.5):

n_ 1« 2 — 1) (nt)* 20 +2
V= whA )(2n+2)'3 7
1 1
= 1ls __34 L gey - L L go _] 9.7
h’[ Y rts By 560°7 * 31503 -1
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Combining (9.6) and (9.7), we can obtain desired expressions for higher deriva-
tives. For example, we find

_= (n!)* 2041 — 1) (k') pretipk+n gy -
hy = Q( 1) an s po™ty + (=1) @k + D1 yH(€) 5
x—kh<é&<x+kh.

We shall now also seek the derivative in an interior point. We start from
Everett’s formula, which is differentiated with respect to p(dx = hdp; g =1 — p):

vo= -+ L(EE D)y, - £(2L D)oy,

dp 3! dgq 3
d (p(P* = D)@ = D\ 50, _ 4 (9~ D@ = D)5y ,...].
t % 5! )a ' @( 5! )ay,,+ %]98)

For higher derivatives we can continue differentiating with respect to p or gq.
In particular we have

1(1’(10’ - (P - n’)) =y

h ’

dp 2n + 1! 2n + 1)!
dag=D @) _20-90-9..0_m
dg 2n + 1)! e=1 2n + 1)!
(=1t n— ) (n+ 1)
- (2n + 1)t ’

From this we get still another formula for the first derivative:

e [ B o 25 )]

1 1 1
T[yx—}’o—?y  — ?5’0

1, Lo, =1 oge, 1 s ] 9.9

+303 1+2030 14031 105 o + . (%9
It is easy to understand that, as a rule, significant figures are lost in numerical

differentiation. The main term in the computation of f7(x) is, of course,

£OO = S fix + B = fix = B,

and the two numbers within brackets must be of the same order of magnitude.
Hence, numerical differentiation, contrary to analytic differentiation, should
be considered as a “difficult” operation. Later we shall see that the reverse is
true for integration.



EXERCISES

EXAMPLE

193

The function y = sin x is tabulated in the scheme below. Find the derivative
in the point x = 1.

x

0.7
0.8
0.9
1.0
1.1
1.2
1.3

y(ly = 615 [0.891207 — 0.783327 + % (0.008904 — 0.007827)

+ 516(0.000087 — 0.000079) + - - }

Y
0.644218

0.717356
0.783327
0.841471
0.891207
0.932039
0.963558

= 0.54030 .

0

73138
65971
58144
49736
40832
31519

Tabulated value: cos 1 = 0.540302.

REFERENCES

(11 Milne-Thomson: The Calculus of Finite Differences (MacMillan, London, 1933).

EXERCISES

52

—7167
— 7827
— 8408
— 8904
—9313

63

— 660
— 581
— 496
—409

54

79
85
87

1. A function is given according to the table below. Find the derivative for x = 0.5.

2. The function y = f{x) has a minimum in the interval 0.2 < x < 1.4. Find the
x-coordinate of the minimum point.

Table for Ex. 1

X

0.35
0.40
0.45
0.50
0.55
0.60
0.65

y
1.521525
1.505942
1.487968
1.467462
1.444243
1.418083
1.388686

Table for Ex. 2

X

0.2
0.4
0.6
0.8
1.0
1.2
14

Y
2.10022
1.98730
1.90940
1.86672
1.85937
1.88737
1.95063
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3. A function y = y(x) is given according to the table below.

x y
0.00 —1.000000
0.05 —0.973836
0.10 —0.896384
0.15 —0.770736
0.20 —0.601987
0.25 —0.397132
0.30 —0.164936
0.35 +0.084255
0.40 +0.338744
0.45 +0.585777
0.50 +0.811898

The function satisfies the differential equation

(1 =Xy —2xp" ~ ﬁ)"*by:o-
Find the parameters @ and b which are both known to be integers.
4. A function y = y(x) is given in the table below. Find the second derivative for
x=13.
5. y is a function of x satisfying the differential equation xy’’ + ay’ + (x — b)y =0,
where g and b are known to be integers. Find the constants a and b from the table below.

Table for Ex. 4 Table for Ex. 5
X y x y

2.94 0.18256 20761 0.8 1.73036
2.96 0.18110 60149 1.0 1.95532
2.98 0.17967 59168 1.2 2.19756
3.00 0.17827 10306 14 2.45693
3.02 0.17689 06327 1.6 2.73309
3.04 0.17553 40257 1.8 3.02549
3.06 0.17420 05379 2.0 3.33334

2.2 3.65563

6. A function y = y(x) is given in the table below. The function is a solution of the
equation x%y'’ + xy’ + (x* — n®)y = 0, where n is a positive integer. Find n.

x y
85.00 0.03538 78892
85.01 0.03461 98696

85.02 0.03384 90002
85.03 0.03307 53467
85.04 0.03229 89750



Chapter 10

Numerical quadrature

There was an old fellow of Trinity
who solved the square root of infinity
but it gave him such fidgets
to count up the digits
that he chucked math and took up divinity.

10.0. Introduction

When a definite integral has to be computed by numerical methods, it is essential
that the integrand have no singularities in the domain of interest. The only ex-
ception is when the integrand contains a so-called weight function as factor; in
this case a reasonable singularity can be allowed for the weight function. We
shall here give a few examples of the treatment of such “improper” integrals,
also taking into account the case when the integration interval is infinite.
First we consider / = §} (cos x/v/"x) dx. The integrand is singular in the
origin, but the singularity is of the form x=* with p < 1, and hence the inte-
gral has a finite value. There are several possible ways to compute this value.

(a) Direct series expansion gives

1 1 XM yz e
I — —_— —_— — EIRIRY
So dx {1/— 2 T w e }
/
_ [le“ _ xﬂ 2 + x’/! _ xISIS + . .]1
2152 ' 4192 61132 o
_,_ 1.1 1 L = 1.8090484759 .

5 T 108 4680 ' 342720

(b) The singularity is subtracted and the remaining regular part is computed
by aid of a suitable numerical method. In this case we can write

I — ! dx __S‘l—-cosxdx:z_ 11 —cosx
0

e Vel Ve

In the last integral the integrand is regular in the whole interval [for x = 0
we get lim,_, (1 — cos x)/v"x) = 0], and at first glance we would not expect
any numerical difficulties. However, it turns out that we obtain a very poor
accuracy unless we take very small intervals close to the origin. The reason
is that higher derivatives are still singular in the origin, and hence we ought

195
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to employ a more refined subtraction procedure. For example, we can write
instead

I=S‘l—x’/2dx+S‘cosx—l+x’/2dx

0 ]/_; 0 vV X
=1.8+Sl°°sx_1+x’/2dx.
0 X

We gain two advantages in this way: (1) the integrand becomes much smaller;
(2) the numerical accuracy is improved considerably.

(c) The substitution x = #* gives I = 2§} cos r* dt. The resulting integral has
no singularity left in the integrand, and even all derivatives are regular. Hence,
direct computation by use of a suitable numerical method will give no difficulties.
We can also employ series expansion:

1 tl tc I"
I=2 1 — — + ... |dt
Ko[ 2! + 4! 6! + ]
1 1 1
=2l - — 4 —— - —— 4.,
[ 0 " 216 9360 ]
which is exactly the same series as before.
(d) Partial integration gives

I =[2v"x cosx], + Sl 21/ x sin xdx .
[}

The last integral can be computed numerically or by series expansion; in the
latter case we obtain

1 1 1 1
I =2cos1 4( — — )
LA S TH- S TR v wr T T T

1.809048476 .

As our second example we take / = §) e~*log x dx. The integrand has a loga-
rithmic singularity at the origin which can easily be neutralized. Expanding e~*
in a power series, we find

1 1 x!
I:S e‘*logxdng (1 —x+——_+--->logxdx.
[} 0 .

From
jlx"logxdx = [k_ﬁl_(logx — 1_)]1 = _;,
0 + 1 k+ 1/1o (k + 1)
we easily obtain

L _l)H-l 1 1 1
r=y 0 (1, 11 )
g(k+ %! ( 4718 96T
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The sum of this infinite series can be found by aid of a purely numerical
technique (see Chapter 11). Alternatively, using partial integration, we get
I=—y — E(l1) = —0.7965996 ,

where 7 is Euler’s constant (see p. 233) and
E(x) = S” .e;_' dt .

As our third example we choose

IZS‘ dx

V(I — X

The integrand is singular as 1//'x at the origin and as 1/1/2(1 — x) when x
is close to 1. We divide the interval into two equal parts, and make the sub-
stitution x = ¢ in the left and 1 — x = ¢* in the right subinterval. After some
simple calculations, we get

I 2 1/V2Z dt 1 + 1 )
o So 1/1—12(1/1+t* V2 - ¢

=02 S: 1/2dz— z? (]/21+ z? + 1/41— z’) )

Now the integrand is regular in the whole interval. In this case, however, it
is possible to get rid of both singularities in one step. Putting
2u
1 4+

we obtain

! du
I=2V72 S __a .
o V14w

Finally, we will briefly touch upon the case where the integration interval
is infinite. In Chapter 1 we encountered an important method, namely, ex-
pansion in an asymptotic series. Another obvious method consists in making
the integration interval finite by a suitable transformation. Take, for example,

I = S"‘ e*dz
T Jozer 4+ 1°

Through the substitution e=* = ¢, the integral is transformed into

I= SIL,
ol — t‘logt

where the integrand is regular and the interval is finite.
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Here we have indicated a series of methods for transforming integrals with sin-
gular integrand or with an infinite integration interval to integrals with regular
integrand or finite interval. For completeness we mention that perhaps the most
effective method for computation of complicated definite integrals is the residue
method. However, it rests upon the theory of analytic functions and must be
ignored here. Likewise, we shall not discuss the technique of differentiating
or integrating with respect to a parameter. Throughout the remainder of this
chapter, we shall generally treat integrals with regular integrand and mostly
with finite integration interval.

10.1. Cote’s formulas

We shall now treat the problem of computing §° f(x) dx numerically, where
f(x) is a function whose numerical value is known in certain points. In prin-
ciple we meet the same problem as in interpolation, and clearly we must replace
f(x) by a suitable function P(x), which is usually a polynomial. If the given
x-values are not equidistant, the reader should compute the interpolation poly-
nomial explicitly and then perform the integration directly. In general, the
function values are available in equidistant points, and from now on we shall
preferably consider this case.
Thus we assume a constant interval length 4 and put

P() = 33 Loy
where

L(x) = (X = x)(x = %) -+ (x — X, _)(X — X)) -+ (x — Xx,) .
(e = X)X — X)) + -+ (X — X)) (X — X)) - (X — X,)

Here x, = x, 4 kh, and further we put x = x, + sh, obtaining dx = hds.
Hence

Lkzs(s—l)'u(s—k+l)(s—k—l)n-(s—n)
k(k — 1) - ()(=1) -+ (k — ) ’
and we get

S uP(x)dx = nh-l_iy,, S'L,‘ds.
EN n =o 0
Finally, putting (1/n) §y L, ds = C;, we can write the integration formula
s P()dx = nh 3 Ciy, = (5, — x) 3 Coy, (10.1.1)
zy = k=0
The n}xmbers C: (0 < k < n) are called Cote’s numbers. As is easily proved,
they satisfy C; = Cz_, and 3]7_ C; = 1. Later on we shall examine what

can be said about the difference between the desired value, §* f(x) dx, and
the numerically computed value, §.» P(x) dx. ®
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EXAMPLE n = 2

TR N R
a-zliceY 5
SR

K::f(X) dx = (x, — xo)(; o + ‘6‘ + %y,) : (10.1.2)

This is the well-known Simpson formula.
For n = 1 we find Cj = C} = }, that is, the trapezoidal rule. It should be
used only in some special cases.

Error estimates

We shall now compute the error in the Simpson formula. We suppose that
S"(x) exists and is continuous in the whole integration interval. Then we
construct

Fh) = 2 [f=h) + 40 + fim) = [ fioydx.
Differentiating with respect to k several times, we get
Fi(h) = - LA=H) + 40) + /0]
+2LLW) = L=0] = LA + f=h)]
= = 2 L) + =P + 51O
+ 210t - r(-h).
We note that F’(0) = 0. Further,
Frt) = 210 + PU-B) = 3 LF0) — f(=B); 0 =0.
P = 21" = (=B F7(0) =0.

Since f*¥ is continuous, we can use the mean-value theorem of differential cal-
culus on F"'(h):

"’ _2h2 v .
Fh) = =20k —1<6<1,
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and then we can define a continuous function g(h) such that
Fi(hy = 2_;”_ g(h) - (10.1.3)

Obviously, g(h) = f(6h), —1 < 6 < 1, where, of course, § = 0(h) is a function
of h. Integrating (10.1.3) directly, we get

F(h) = S"(”_—_’)i 2 pg(ryar. (10.1.4)
o 2 3
Formula (10.1.4) implies F(0) = F’(0) = F”(0) = 0 and further the validity
of (10.1.3). Now we use the first mean-value theorem of integral calculus,

[0 a=go e  @<e<n,

provided that f and g are continuous and that f is of the same sign in the
interval. These conditions are fulfilled in (10.1.4) with

_ oy
===

and hence
Mh—1)p 2 m
= 'h (___ ~ovtdt = — 'h
F(h) = g(6'h) So 5 3 36 g(0'h)
with0 < §’ < 1. Thus

F(h) =§'%f"(é); —h<&<h. (10.1.5)
Putting h = 3(b — a), we get

F= _——(bzs—s:)b FE) = 3.5 10~(b — a)f(£) .

Using (10.1.5) over n intervals, we obtain

Fx+F,+-.-+F :ih:fw(fl)+flv($1)+"'+fw(£n)
" 90 n )

Putting for a moment (1/n) 337_ f*¥(§;) = S, we have with m < f(§,) < M
trivially m < § < M, and since f'¥ is continuous, we also have S = f1(§) with
a < ¢ < b. But2nmh = b — a, and we obtain finally

F=(b—a)f{§6f"(e), a<é<b. (10.1.6)

Similar error estimates can be made for the other Cote formulas. The coef-
ficients and the error terms appear in the table below.
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Table of Cote’s numbers

n N NC™ NC®» NC NC® NC® NC» NC™ Remainder term

1 2 1 1 8.3.1072(b — a)’f"” (&)
2 6 1 4 1 3.5.1074(b — a)*f" (§).
3 8 1 3 3 1 1.6 - 10=4(b — a)*f™ (&)
4 90 7 32 12 32 7 52.1077(b — a)'f" (&)
5 288 19 75 50 50 75 19 3.0.1077(b — a)'f™ (&)
6 840 41 216 27 272 27 216 41 6.4.107%b — a)°’f""1(§)

For example, we have
S ydx ~ —[4ly° + 216y, + 2Ty, + 272y, + 27y, + 216y, + 4ly,] .

Choosing y = e* and h = 0.2, we get from this formula 2.32011 6928, com-
pared with the exact value

er — 1 =2.3201169227...

The error must be less than 6.4 - 107 . 1,2° . ¢* = 11 . 10~°* compared with
the actual error 5. 10-°.

We observe that a Cote formula of order 2r + 1 has an error term which
is only slightly less than the error term of the formula of order 2n. For this
reason the even formulas predominate. In practice, the error is estimated
directly only on rare occasions. Instead, we use the fact that if the interval
length is doubled in a formula of order 2n, then the error will become about
2+t times larger. Hence, by doubling the interval in Simpson’s formula, one
will obtain an error which is about 16 times larger. Using two intervals to
compute §} dx/x, we get the result 0.69325; with one interval we get 0.69444.
Denoting the exact value by I, we have approximately

I + 16 = 0.69444 |
I + ¢ =0.69325,

and hence I ~ 0.69317 (compared with log2 = 0.69315). The method de-
scribed here is usually called Richardson extrapolation (or deferred approach to
the limit); obviously, it must be used with caution and discrimination.

If we take Cote’s sixth-order formula and add ((b — a)/840)d°,, we obtain:

z+6A 6h
[y de = 25000+ 20 + 500 + 20 + 0+ 7) + 2] + R
*o

The remainder term R’ is fairly complicated, but on the other hand, the coef-
ficients are very simple. The relation is known under the name Weddle’s rule
and has been widely used, especially for hand computation.
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Simpson’s formula with end correction

We shall now try to improve the usual Simpson formula by also allowing
derivatives in the end points. Putting

h
Siydx =~ h(ay_, + by, + ay,) + K(cy_, — ¢y,

and expanding in series we find

2a+ b=2,
a—2c=1%,
a—4c=14,
whence
16 1
a=-17—5; b=B; c:l—s.

If this formula is used for several adjacent intervals, the y’-terms cancel in all
interior points, and we are left with the final formula

b
S ydx = ll'§(7y0 + 16y, + 14y, 4 16y, | -~ | Ty,

hz 4 4
+ It (s — y1) + O,

where b — a = 2nh and y, y,, ..., J,, denote the ordinates in the points
a,a+ h,...,a+ 2nh = b.

EXAMPLE

S' e dx ~ % (1 + de' 4 e-1) = 0.63233368
L]

(Simpson); error: 2.13 . 10~*,
1 1 1
~zdx ~ — (T + 16e='* 4+ Te™! — (-1 -1) = 0.63211955
Soe x= g+ 167+ T + G (=1 e)

(Simpson with end correction); error: —1.01.107°. In the latter case the
error is 211 times less than in the former. A similar correction can be per-
formed for the trapezoidal formula. The result is the same as though Euler-
Maclaurin’s summation formula were truncated (see Section 11.2).

If we want to compute an integral, using three ordinates in nonequidistant
points, the following modification of Simpson’s formula, suggested by V. Brun,
may be used:

zgtatb a + b
dx ~
szo y 6

b —
(Do + 49 + 32 + ’Ta(}’z -
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The Cote formulas just described are of closed type, since the end-point
ordinates also enter the formulas. If this is not the case, we get open-type

formulas; the coefficients can be computed as above.

Table of coefficients of open-type quadrature formulas

n N NC® NC» NC™ NC®™ NC™ NC™ Remainder term

1 2 1 1 2.8.107%2(b — a)*f"(§)
2 3 2 -1 2 3.1.107 (b — ay [ (§)
3 24 11 1 1 11 2.2 1074 (b — a)’ f¥(¢)
4 20 11 —14 26 —14 11 1.1.107%(b — a) f*'(&)
5 1440 611 —453 562 562 —453 611 7.4.1077(b — a) f*(§)

For example, we have approximately:

+3h 6h
S ydx = — (1ly_, — 14y_, + 26y, — 14y, + llp,).
—3h 20

If s;" e~= dx is computed in this way, we obtain 0.6988037, compared with the
exact value 1 — =12 = 0.6988058. The remainder term is 3.9 . 10~%, compared
with the actual error 2.1 . 10,

Romberg’s method

In this method we shall make use of Richardson extrapolation in a systematic
way. Suppose that we start with the trapezoidal rule for evaluating {2 f(x) dx.
Using the interval h,, = (b — a) - 27, we denote the result with 4,,. Since the
error is proportional to A%, we obtain an improved value if we form

B, =A4, + _—._A"‘ —3A”‘"

As a matter of fact, B, is the same result as obtained from Simpson’s formula.
Now we make use of the fact that the error in B, is proportional to A; and
form

, m>1.

C, =B, + By — Bas , m>2.
15
This formula, incidentally, is identical with the Cote formula for n = 4. Since
the error is proportional to A%, we form
Cc,—-C
D,=¢C, + =» =1, m>3.
+ 63 2

The error is now proportional to 4%, but the formula is not of the Cote type
any longer. The same process can be repeated again; we stop when two suc-
cessive values are sufficiently close to each other. Further details of the method
can be found in [5] and [6].
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ExaMPLE. f(x) = 1/x;a=1,b =2. We find the following values:

A, B, C. D.. E.
0.75
0.70833 33333 0.69444 44444
0.69702 38095 0.69325 39682 0.69317 46031
0.69412 18504 0.69315 45307 0.69314 79015 0.69314 74777
0.69339 12022 0.69314 76528 0.69314 71943 0.69314 71831 0.69314 71819

h~Pwuv—=0 3§

The value of the integral is log 2 = 0.69314 71805.

Filon’s formula

As mentioned above, numerical quadrature is “easy” compared with numerical
differentiation. However, there are exceptional cases, and one such case is ob-
tained if the integrand is an oscillating function. A special quadrature formula
of the Cote type for this case has been obtained by Filon:

S”"f(x) cos txdx = h [a(th){ fon SiD 1X,, — f, Sin tx,)
: 2 .
+ BIRCyy + 7(H)Cony + o tHSiu, | = R,

gm f(x)sintxdx = h [a(th){ fycos tx, — f,, cos tx,,}
20
+ BUR)S,, + 1(th)S,._, + 42_5 wc;,_,] —R,.
Here
G, = i Jai cos tx,; — % [ fua cOS x5, + f, COS tx)] ,
$=0

" -
Coues = E.fﬁ-x COs Ixy;_, , Ciaar = E 221 COS IXy;_, ;

=1 =1

g
I

. = t Saisin 1x,; — % [fia sin tx,, + f,sin tx,],
+=0

Sy = i./.ﬁ—-l sin 1xy;_, , St = E 2is1 SINEXy; 5
=1 .
2nh = x,, — x, .
The functions a, 8, and 7 are defined through

in
a(0)_i+sm20 2sin® 4

6 26 ¢’
_fl +cos’@  sin26
0 <2 (LG _sn20)

sin@ cosé
r(6) = 4( - T)
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The remainder term, finally, has the form

R, = gl_onhyW(e) FO(tH); X < &< Xy

10.2. Gauss’ quadrature formulas

In deducing the Cote formulas, we made use of the ordinates in equidistant
points, and the weights were determined in such a way that the formula ob-
tained as high an accuracy as possible. We shall now choose abscissas with-
out any special conditions and make the following attempt:

§° WE)f(X) dx = A fix) + Af5) +- -+ A f(x) + R, (10.2.1)

Here the weights 4,, as well as the abscissas x;, are at our disposal. Further,
w(x) is a weight function, which will be specialized later on; so far, we only
suppose that w(x) > 0. We shall use the same notations as in Lagrange’s and
Hermite’s interpolation formulas, namely,

F(x) = ,,II (x=x): F(x) = Lfﬂx_; Lx) = Fx)

x k F,(x,)
Now we form the Lagrangian interpolation polynomial P(x):
P(x) = 35 L(x)ftx) » (10.2.2)

and find f(x) — P(x) = 0 forx = x,, x,, . . ., x,.
Hence we can write

f(x) = P(x) + F(x)(a, + a,x + ax* +---),
which inserted into (10.2.1), gives
Y w(x)f(x) dx
-3 (Y WELL(x) dx) fix) + S° WOVt + apx + agt + - - -} dx

= gA,,f(xk) + R' .
Identifying, we obtain

A, = Sb w(x)Ly(x) dx ,
X . (10.2.3)
R, = S w(x)F(x) Z a,x" dx .

Here the abscissas x,, x,, . .., x, are still at our disposal, but as soon as they
are given, the weight constants 4, are also determined.
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For determination of the abscissas we can formulate n more conditions to
be fulfilled, and we choose the following:

S" W Fx)xrdx =0;  r=0,1,2,...,n—1. (10.2.4)

Since F(x) = J] (x — x,), we get n equations which can be solved without any
special difficulties, at least for small values of n. We take as example w(x) =1,
a=0,b=1,and n = 3, putting

(x — x)(x — x)(x — X)) = x* — ;X2 + 8§ — ;.

The equations are:

1 KA KA

_—— =2 -5 =0,
s 313 s
l_sl S3 Sy _
s a2 t3 32 ’
l_s, S S _
6§ s t2 3 ’

with the solution s, = 3, 5, = £, and s, = ,%. The abscissas are obtained from
the equation
3 3 1

x’—?x’+-3-x—i)=0,
and we find

x,=0.5-1015 =0.1127;

X, = 0.5;

x; = 0.5 + 0.15 = 0.8873 .

In order to get a theoretically more complete and more general discussion we
are now going to treat the problem from another point of view. Integrating
Hermite’s interpolation formula (8.2.5) and (8.2.9) we get

Sb w(x)f(x) dx = ?:; B, fix,) + ?;{ Cof'(x) + E, (10.2.5)
where

B, = [ w1 — 2Li0x)x — xI(LGOP .

€. = [ v - mLopax, (10.2.6)
_ b 2n) e 2
E-= E w(x) _f('zn_;') [F0)) dx .

First we will consider the error term, and since w(x) > 0, we can use the first
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mean-value theorem of integral calculus:

E =120 S“ Ww(O)[FE)T: dx . (10.2.7)
(2’1)! a
Here a < &, 7 < b and further ¢ is a function of x.

So far, the abscissas x,, x,, . . ., X, are not restricted, but now we shall ex-
amine whether they can be chosen in such a way that the n constants C, vanish.
First we transform C, [see (8.1.3)]:

b 1 b
G = | Wl — LM dx = s [ weFeLx) dx = 0.
a k a
We can say that the n polynomials L,(x) of degree n — 1 must be orthogonal
to F(x) with the weight function w(x). It is also easily understood that the n
powers 1, x, %%, ..., x* must also be orthogonal to F(x) in the same way.
Then (10.2.5) transforms to

b » f‘(2n)(7]) b .
S w)f(x) dx = 32 B, fix,) + WS w(X)[F0)J* dx .
a k=1 . a
The abscissas x,, x,, . . ., x, are now determined in principle through the
conditions C, = 0 which are equivalent to (10.2.4). Further we see that 4,
in (10.2.3) can be identified with B, in (10.2.6). Rewriting B, we get directly

b b
B, = | WL dx — 2Lx)C, = | weLi) a -
Thus we have the following double formula for 4,:
4, = Sb w(x) Ly(x) dx = Y w(x)[Ly(x)] dx . (10.2.8)

An important conclusion can be drawn at once from this relation: all weights
A, are >0. Again, the condition for the validity of (10.2.7) is that the relation
(10.2.4) is satisfied. Thus R, vanishes if f{x) is a polynomial of degree <2n-—1.

So far we have not specialized the weight function w(x), but this is necessary
if we want explicit formulas. We start with the simple case w(x) = I, treated
already by Gauss. The natural interval turns out to be —1 < x < 1. For
determination of the abscissas, we have the equation

+1
S Foyxrdx=0; r=0,1,2,...,n—1. (10.2.9)

-1
If n is not too large, this equation allows the direct determination of F(x) =
(x — x)(x — x;) -+ (x — x,), but the calculation is done more conveniently

by use of the Legendre polynomials. These are defined by

I d
Py(x) =1; P,(x)::ﬂ.&(x’—l)".



208 NUMERICAL QUADRATURE sec. 10.2.
Then §*! x"P,(x) dx = 0 if r is such an integer that 0 < r < n, because

S“ x'ﬁ“_ (x’ — l)"dx
-1

dx*
. dn—l " +1 +1 — du-l .
= [x o= x*=1) ]-1 — S_lrx ‘F(xz — Drdx
=0
= (1) S“ d"" (xt — 1y dx=0.
-1 dx*"

If r = n, we obtain:

=ty m " = pax =20 S:(l ~ Xty dx

Lz
= 2n! S zcos"‘+l @ dp

! 2n(2n — 2) --- 2
"@n+ DH2n - 1)...3

_ 22u+l(n!)3

T @nt )

Now we can compute

51 [P.()F dx = Si(z»ln! (211':)! e ) 2"]n! :1‘%(;& - 1ydx

_ (@n)! 2=ty 2
T2y 2n+ 1) 2n 4 1]

since powers below x* give no contributions to the integral. Hence we have
the following relations:

S“xfp,(x)dx—_-o; r=0,1,2,...,n—1;  (10.2.10)
-1

S“ P (x)P (x)dx = 0; m+#n. (10.2.11)
+1 . _ 2
L (P ds = =2 . (10.2.12)

The relation (10.2.11) follows from (10.2.10), since if, for example, m < n,
P_(x) is a polynomial of degree m, where every power separately is annihilated
by integration with P (x).

Further, we see that (x* — 1) is a polynomial of degree 2n, which vanishes
ntimes in x = —1 and n times in x = +1. Differentiating once, we obtain
a polynomial of degree 2n — 1, which vanishes (n — 1) times in x = —1 and
(n — 1) times in x = + 1, and according to Rolle’s theorem, once in a point
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in the interval between —1 and +1. A similar argument can be repeated,
and for each differentiation, the number of “interior” zeros increases by 1.
Hence it is inferred that the polynomial P (x) of degree n has exactly n zeros
in the interval (—1, +1). Thus it is clear that we can satisfy equation (10.2.9)
by putting F(x) = CP,(x), where C is a constant. Hence we obtain x,, x,, ..., x,

from the equation
P(x)=0. (10.2.13)

The constant C is determined in such a way that the coefficient of the x*-term
is 1, that is C = 2*(n!)*/(2n)!. The first Legendre polynomials are

Px) = 1; Px) = x;
P(x) = 2 (3% = 1); Px) = 2 (5 = 3%);

P(x) = %(35# —30x* + 3);  Pyx) = _;-(63::" — 0% + 15%); ... .

Higher polynomials can be obtained form the recursion formula

2k + 1 k
k+1 k+1

From (10.2.8) we obtain for the weights,

Pra(x) = xPy(x) — Pp_y(%) -

A, = y: Ly(x)dx = KI (L)) dx .

Hence

1+ P (x)
4, = 2 dx. 10.2.14

* P)(x,) S—n x — X, ( )
Using the properties of the Legendre polynomials, we can, after somewhat
complicated calculations, transform A, to the form

1 2

kzm szo (10.2.15)

Finer details are given, for example, in [4], p. 321.
Using (10.2.7) and (10.2.12), and changing 7 to &, we obtain the error term

22n+l(n!)4
@n + D[2n)F

In this form, however, the error term is of limited use. Since R, = a, (&),
halving the interval with n unchanged will give rise to a factor 2*, if we can
assume that f©*~)(¢) varies slowly. As before, we can apply Richardson’s ex-
trapolation to increase the accuracy.

R, = L€ ¢ 5: [P.(x)] dx = o). (10.2.16)

(2n)!
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Abscissas and weights in the Gauss-Legendre quadrature formula

NUMERICAL QUADRATURE

n X, A,
2 +0.57735 02691 89626 1.00000 00000 00000
3 +0.77459 66692 41483 0.55555 55555 55556
0.00000 00000 00000 0.88888 88888 88889
4 +0.86113 63115 94053 0.34785 48451 37454
+0.33998 10435 84856 0.65214 51548 62546
5  +£0.90617 98459 38664 0.23692 68850 56189
+0.53846 93101 05683 0.47862 86704 99366
0.00000 00000 00000 0.56888 88888 88889
6  +0.93246 95142 03152 0.17132 44923 79170

+0.66120 93864 66265

0.36076 15730 48139
0.46791 39345 72691

sec. 10.2

+0.23861 91860 83197

The table reproduced above has been taken from a paper by Lowan, Davids,
and Levenson [1] in which values are given up to n = 16.

If an integral has to be computed between other limits, a suitable linear
transformation must be performed:

[ e ax =

kf( xk+b;a>+Rn'

Hence f**~(¢) will obtain a factor [(b — a)/2]**, and in the special case when
the interval is halved, the error term will decrease by a factor 2**. For prac-
tical use this rule seems to be the most realistic one, while the error term
(10.2.16) is mainly of theoretical interest. We also note that Richardson ex-
trapolation can be performed as usual.

Next we consider the case where the weight function w(x) is =e==. Using
the same technique as before, we obtain the equations
S"p(x)e-=x'dx =0 for r=0,1,2,...,(n—1)
’ (10.2.17)

k

_ 1 S"F(x)e“dx

F'(x) Jo x — x,

Hence the formula

S: e~ *f(x)dx = iAkﬂx,)

becomes exact for polynomials of degree up to 2z — 1. The first equation in
(10.2.17) fits the Laguerre polynomials

d'
n -— z Tyn , 2.
L(x) = e* —— (e7*x") (10.2.18)
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which satisfy the equation

r e*x"L,(x)dx =0 for
o

The abscissas x,, x,, . . .,

and further it can be shown that the weightsand the remainder term canbe written

A, — ()
x[Lo(x,)]

r=0,1,2

GAUSS’ QUADRATURE FORMULAS

L,(x) =0 )

)

A table of x, and 4, is given below.

Abscissas and weights in the Gauss-Laguerre quadrature formula

n X A,

2 0.58578 64376 27 0.85355 33905 93
3.41421 35623 73 0.14644 66094 07

3 0.41577 45567 83 0.71109 30099 29
2.29428 03602 79 0.27851 77335 69
6.28994 50829 37 0.01038 92565 016

4 0.32254 76896 19 0.60315 41043 42
1.74576 11011 58 0.35741 86924 38
4.53662 02969 21 0.03888 79085 150
9.39507 09123 01 0.00053 92947 05561

5 0.26356 03197 18 0.52175 56105 83

R, = (”') Fom(E) .

(2n)!

wn—1).

x, are obtained from the equation

1.41340 30591 07
3.59642 57710 41
7.08581 00058 59
12.64080 08442 76

0.39866 68110 83
0.07594 24496 817
0.00361 17586 7992
0.00002 33699 723858

The table above has been taken from Salzer-Zucker [2], where values are
given up ton = 15.

Last we consider the case w = e~*%. Then we obtain the abscissas as roots.
of the Hermitian polynomials, defined by

dn
H (x) = (~-1)res* Z_ (e-7%). 10.2.21
() = (-1ye 22 (e (10.2.21)
The weights and the remainder term are
, = 2. nl V'

J72 2
[H2(x0)] (10.2.22)

o= BT ).

2"(2n)'
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The values listed at the top of p. 213 have been taken from Salzer, Zucker,

and Capuano [3].
Finally, we shall discuss the case w(x) = 1/v/1 — x* in the interval (—1,1).
The condition

+1 1
— —  Fx)x"dx =0, r=0,1,2,...,(n -1
| =P (n—1)
fits the Chebyshev polynomials T,(x) = cos (n arccos x), which will be treated
in some detail in Chapter 16. Here we can compute the abscissas explicitly,
since from T,(x) = 0 we get x, = cos ((2k — 1)z/2n), k = 1,2, ...,n. The
weights take the amazingly simple form

4 =T, (10.2.23)
n

that is, all weights are equal. Hence the final formula reads

o flx) T 2k — 1 2z )
S_lmdx_7§f<cos . n')+ s /@ (10224

where —1 < £ < 1.
Summing up, we have the following Gauss formulas:

+1 _ u ﬂxk) 2 (nt)" =
S—l'RX) =2 = (1 — xP[PIx)] " 2n + l)[(zn)!]Sf( ©

Xyy Xgy ooy Xy roots of P(x)=0.

»e— f(x)dx = (n!)*"z:; xk[jI(JZ‘(kx)k)]z + ((;"";:f(zu)(e)

Xy Xgy oo vy X roots of L(x)=0.

ey
o

Si: e #fix)dx = 2**' . n! 1/?; [Hj,(::;Z)]’ + 'Z’i'(lz/;;?!f(zu)(e)

Xyy Xgy o0 0y Xy roots of H(x)=0.

o flx) T 2k — 1 2r (on
S—n V1 — xt dx = _n-,,ﬂf(cos 2n ﬁ) + 2:%(2n)! SEE) -

We will devote a few words to the usefulness of the Gaussian formulas. It
is true that for hand computation formulas of the Cote type are preferred in
spite of the larger error terms. The reasons are essentially twofold: first, the
abscissas in the Gaussian formulas are not equidistant, which, as a rule, neces-
sitates interpolation. Second, the weights are not integers, and hence a time-
consuming multiplication has to be performed. If an automatic computer is
available, these reasons are no longer decisive, at least if the integrand has to be
computed at each step. As a matter of fact, the interest in Gaussian methods
has grown considerably in later years.
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Abscissas and weights in the Gauss-Hermite quadrature formula

n Xy Als
+0.70710 67811 87 0.88622 69254 53
3 0 1.18163 59006 04

+1.22474 48713 92 0.29540 89751 51

4  +0.52464 76232 75 0.80491 40900 06
+1.65068 01238 86 0.08131 28354 473

5 0 0.94530 87204 83
+0.95857 24646 14 0.39361 93231 52
+2.02018 28704 56 0.01995 32420 591

6  +0.43607 74119 28 0.72462 95952 24
+1.33584 90740 14 0.15706 73203 23
+2.35060 49736 74 0.00453 00099 0551

10.3. Chebyshev’s formulas

As is easily understood, the Cote formulas constitute a special case of the
Gaussian formulas: namely, equidistant abscissas are given in advance. Now
we can also explain a peculiarity in the Cote formula’s error terms. Forn =2
(Simpson’s formula) and n = 3, we have essentially the same error term. The
reason is that in the first case, when we have three abscissas, one of them
(in the middle of the interval) happens to coincide with the Gaussian value,
and this is reflected as an improvement in the error term. The corresponding
phenomenon is repeated for all even values of n which involve an odd number
of abscissas.

We will now specialize in such a way that all weights are equal. The corre-
sponding formulas were obtained by Chebyshev. Let w(x) be a weight function
and put

S: WOS(x) dx = K fx) + fx) + -+ + fix)] + R, -

We suppose that f{x) can be expanded in a Maclaurin series:

S1x) = f10) + xf(0) + ;z!fﬂ(O) 4ot %f(s)(O) + " l)'f(u+l)($)

Inserting, we obtain
+1
S w(x)f(x) dx
-1
E f(r)(o) S w(x)x" dx + ;S W(x)f*+(&)x+ dx
r=0 -1 ( + 1)‘
(note that ¢ is a function of x). On the other hand, we expand f{x,),
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Ax), - .., f(x,) in the Maclaurin series:
1 o
KUfx) + -+ fix)] = K [nfw) FLOTX + 2 O T R+
(%) x* 1 (% +1) n+1
IO L% + s T
Identifying, we obtain the following system:
kn = X“ w(x) dx ,
-1
k3 x = S:W(x)dx, (10.3.1)

kY xr = SH x*w(x) dx .
-1
Putting S, = X x*, we get
1 ¢+ +1
S, = - E x*w(x)dx = n S x™w(x) dx/ S w(x) dx .
-1 ~1
As in (8.1.2) we introduce the function F(z) and obtain:

F(z) = I_Il(z - x,) =z ':l (l - _-) = z“exp(E log(l - _)>

- cor(B(-EE) o5
= z"exp(—-“‘\;tl7 Si xtw(x) dx/s (x)dx)
= z"exp (n Y: w(x)[ z:l:-x_‘:l dx/g w(x) dx

If in particular w(x) = I, we get

+1 +1 r
lo (l—i)dxz—g X g
S-l & z —1; rzr *

xr+l +1 l l
- _ - _2 L oo |
:[r(r + l)z'J-x [2 .32 + 4.5z + ]

Our final result then takes the form

1 1 1
F = 2zt —
2) =2 exP( ”[2.3z= Tase Tea ]) (10.3.2)
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The left-hand side is a polynomial of degree n in z, and hence, on the right-hand
side, we may include only nonnegative powers. The reason for this apparent
contradiction is that we have substituted (1/k) {”] x‘'w(x)dx for S, even for
t > n; that is, we have assumed our integration formula to be exact, which is
the case only exceptionally. Expanding in power series we obtain

F(z) = z» — P + l(S_n - 6) znt

3! 51\3
n (35n —s .
_%(_9 — 42 + 120)2 T

Explicitly, we find for different values of n:
n=1 FHFz)=:z
1
= 2 Fz) = 22 — —
n (2) =z 3

n= 3 F(z):z(z'-%)

2 1
= 4 F(z) =20 — = z¢ —
§ () T
5 7
= 5 F =z(z‘—_ : _)
i ) 6§ " ;m
n=6 Fo=z2_r4+Llz2_1L
5 105
n= 1 F(z):z(z‘-lz‘+£z’—ﬁ)
6 360 6480
n=8 Fz=z2_2p,22,_ 148, 43
3 45" T 2835 22525
3 27 57 53
= 9 R :(z’—_z‘ 274 _ 37 & _)
" (&) =2 2" T207 " 560° T 12400
n=10 Fz=z0-3p 8, 100, 17 ., 43
3 9 567 1701 56133
For n=1,2,...,7, all roots are real, but for n = 8, we meet the peculiar

phenomenon that only two roots are real. For n = 9, all roots are real, but
for n = 10, complex roots appear again. Do any values n > 9 exist for which
the corresponding Chebyshev quadrature polynomial has only real roots? This
question was left open by Chebyshev, but another Russian mathematician,
Bernstein, has proved that this is not the case so long as we use the weight
function w(x) = 1.
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Another important weight function is w(x) = 1/v/1 — x*. In this case we
have, as has been pointed out before, the weight k = 7/, while F(z) has the
form F(z) = 2~**'T,(z) = 27**! cos (n arccos z), with the roots
2r — 1
2n

Hence all roots are real, and, as a matter of fact, the formula

+1 j‘(x) dx Sx T » ( 2'. _ 1 )

= cos f)df = — cos 74
| S = | eos oy do = 25 f (cos =

is also of Gaussian type. This means that the special nth-order Chebyshev

formula above has the Gaussian precision 2n — 1. The polynomials 7,(z) =

cos (n arccos z) are called Chebyshev polynomials and will be treated at some

length in Chapter 16. Summing up, we have for w(x) = 1:

[ odr = 2570 + R,

x, = COs .

= T - 2 S |;

—l<ée<cl; -1 <E <x,.

The real roots are collected in the table below:

n X, n X

2 +0.57735 02691 6  +0.26663 54015
+0.42251 86538

+0.86624 68181
3 0
+0.70710 67812 7 0
+0.32391 18105
+0.52965 67753
4 +0.18759 24741 +0.88386 17008
+0.79465 44723
9 0

+0.16790 61842

0
+0.37454 14096
+0.83249 74870

+0.52876 17831
+0.60101 86554
+0.91158 93077

EXAMPLE

The mean temperature shall be determined for a 24-hour period running from

midnight to midnight, by aid of four readings. What times should be chosen?
Since we do not want to give one reading more weight than another, we

choose a Chebyshev formula with n = 4 and find the times 12 + 12 . 0.1876

a;n;lou + 12.0.7947 or, approximately, 2.30 a.m., 9.45 a.m., 2.15 p.m., and
.30 p.m.
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10.4. Numerical quadrature by aid of differences

The problem of determining {7} y dx by use of usual forward differences can
be solved by operator technique. We have

ﬁy“=‘%=[ﬁa?rﬁb“

where h = x, — x, [cf. (7.1.4)]. Here we need the power-series expansion of
the function z/log (1 + z). Putting

z 1
log(1 +2) 1—z2+ 223284 +...
=1 +blz+b’z’+..., (10.41)
we obtain the system of equations
b-3%4=0,

b,—3b,+4 =0,

by — b, +3b,— 3 =0, (10.4.2)

The coefficients are easily obtained recursively.
Alternatively, we can also get the desired result by integrating Newton’s
interpolation formula. Hence we find with x = x, + ph:

£(0) o

0 k=0

%o

EN zo+h
[Cyae ="+ dypax =n|
h

Thus we get

b= Ly a? 10.4.3
AT (10.4.3)

where we have used (8.5.1) and (7.3.5). Using the table of Stirling’s numbers
of the first kind in Section 7.3, we obtain

b, = 1, b, = —F% > b, — 3333880
b, = 3 b, = 17 > by = 1038500 °
b, = “Tg o by = —s6ido b, = — 178381880 >
by = ¢, b= #§z, bu= 188140
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Written explicitly, the integration formula has the form

Szxydx:h[yo+_;.dyo__l_dz .
%0

12
1 19 3
+ﬂdao—md‘o+l—6—(‘)dbo_"']’ (10’4‘4)

An analogous formula can be deduced for backward differences. A better
result, however, is obtained in the following way.

2ot mh "
S ydx = h So Ery,dp

o
=hE”“‘lyo=h[ A Yo ]

log E T log(1—F) log(l + 4)
But
1 1( 1 1 1 19
SR S B § RINL SR N SPIE  RLA )
I I A R VRl S T R
__ l(l—iV__l_V’_iys_lg_w_...),
log(1 —7) 7 2 120 T2 720

The first term in each of these expansions must be treated separately; con-
veniently we bring them together and obtain

I _Yo_ EY P
4 4 1 -E* E_-1
Eu-{-l_l
=_E~_—l'y°:yo+yl+yz+---+y..

Hence we find

1

In l l
§ ydx=h[—yo+y1+y,+~~+y._x+—y.— = (Pyn — 40)
% 2 2 12

1
— 53 n + 470

19 3
— o5 P9 = 89 — 135 (P9 + 49 =+ |

1 1 1
=h[—2‘yo Fh+Vtot Y+ ‘i‘yn - ﬁ(dyu—l — 4y,)

1
- EZ(A: n—3 + 42}’0)

19 3
— g (8¥as = B9 = (A + 29) =]

This is Gregory’s formula.
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If this formula is used, for example, for y = 7~"/%¢~* between — oo and + oo,
all differences will vanish in the limits, and we would obtain

+o0 1
S ydx‘_‘hl:-;'yo+y1+yz+"'+y.-l+7}’,]

exactly, independently of h. Of course, this cannot be true, and the reason is
that the remainder term does not tend to zero. Denoting the sum by S, we find

h S h S
0.5 1.00000 00000 00000 0.9 1.00001 02160
0.6 1.00000 00000 02481 1 1.00010 34464
0.7 1.00000 00035 1.5 1.02489
0.8 1.00000 04014 2 1.16971

Wealso consider §*~exp(—x*)dx=41"(}). Forh-=0.2, weget 1.81280 49540,
and for A = 0.5, 1.81362, while 3/°(3) = 1.81280 49541 10954. Gregory,s
formula, as a rule, is not used for numerical quadrature but sometimes for
summation.

We shall now consider quadrature formulas containing central differences:

sllydx = Iy = ;‘g’(a)(yo + ») = hp(0)tyys -
)

From (7.1.4) we have J, = hd/2sinh=*(§/2) = h§/U, and hence, using (7.2.11),
we have

0 ot 11464 1914
8 = e—= 1 —_—— —_— )
?0) = o5 127 720 60480
Thus we get the following formula:
S'ly dx = -hz-(co + 60+ 0 + - )V + M) - (10.4.5)
®o
The constants c,, are displayed in the table below.
Cy = 1 = 1
G = —v% = —0.08333 33333
= = 0.01527 77778
¢ = —5i%s = —0.00315 80688
€ = 3% = 0.00068 81063
€ = —yxE%os20 = —0.00015 44567
€y = 3¢7¥s'%e7S500s = 0.00003 53403

An alternative method is the following. We start from Everett’s formula
and integrate in p from 0 to 1, term by term (since ¢ = 1 — p, the integration



220 NUMERICAL QUADRATURE sec. 10.4.

in ¢ gives the same result):
e p+k>m (q+k) i
R AR LETE D o CAR Lat
Treating the first term only, we get
oo P + k) 2% (p + k)(zk-H) 625
E( 8%y, f‘;————m“), 32
ad 32& L
=Rk + 1) T
Now the integration can be performed:
(k + l)r+l — k!

1
k)" = .
So(p+ )" dp pa

’E a(!lHI)(P + k)r

and we obtain finally

9 Bl (k4 1) Qe | (10.4.6)
2k + 1) &~ r+1

where a factor 2 has been added to compensate for the factor #/2 in (10.4.5);
here we have further assumed that # = 1.

However, it is possible to obtain a formula in which the coefficients decrease
much faster. Starting from Jf(x) = (% f(t)dt [cf. (7.1.1)] and operating on both
sides with

Cy =

E— E!

o _
h 2h

we get on the left-hand side

I I 1 ho
— i =—ul, = — g —— "
BT T sinn 02

operating on y = f{x), and on the right-hand side (44) {>* y dt. Using (7.2.10),
we can write the result:

2
U ’

zo+h 1
dx = 2y, + a= ~ 15Ot e 0% — o). (1047
o = 15500+ (1047
This formula can be extended to larger intervals in a simple way. Especially
if we truncate the expansion after the second term, we get

S’°+hydx~2h[y +..|_6* ]—2[1[ +l -2 + 1 ]
- = () 3 Yo | = Yo 6}’1 —6')’0 z‘}'—x
2h

:?[}'—1‘*'4)’0'4‘)'1]’

that is, Simpson’s formula. If we truncate after the third, fourth, ... term,
we do not obtain formulas of the Cote type any longer.



EXERCISES 221

REFERENCES

[1] Lowan, Davids, Levenson: Bull. Am. Math. Soc., 48, 739 (1942).

[2] Salzer, Zucker: Bull. Am. Math. Soc., 55, 1004 (1949).

[3] Salzer, Zucker: Capuano: Jour. Res., 48, 11 (1952).

[4] Hildebrand: Introduction to Numerical Analysis (McGraw-Hill, New York, 1956).

[5] W. Romberg, **Vereinfachte numerische Integration,” Det Kgl. Norske Vid. Selsk. Forh.,
28, 30-36 (1955).

[6] Stiefel-Ruthishauser: *Remarques concernant I’integration numerique,”’ CR (Paris), 252,
1899-1900 (1961).

[7] V. I. Krylov: Approximate Calculation of Integrals (Macmillan, New York and London,
1962).

[8] L. N. G. Filon, Proc. Roy. Soc. Edinburgh 49, 38-47 (1928)

[9] NBS Handbook of Math. Functions (1964) p. 890.

EXERCISES

1. The prime number theorem states that the number of primes in the interval
a < x < b is approximately § dx/log x. Use this for @ = 100, b = 200, and compare
with the exact value.

2. Calculate §; x* dx correct to four places.
3. Find §;"(cos x/(1 + x)) dx correct to four places.
4. Calculate §5/*+/T —0.25sin? x dx correct to five places.

5. A rocket is launched from the ground. Its acceleration is registered during the
first 80 seconds and is given in the table below:

t(sec)"0|10|20|30|40|50|60|70|80
a(m/sec’)ll 3o.oo| 31.63| 33.44| 35.47| 37.7s| 40.33| 43.29[ 46.69| 50.67

Find the velocity and the height of the rocket at the time ¢t = 80.
6. Find §, exp (—exp (—x)) dx correct to five places.
7. Calculate §7/* exp (sin x) dx correct to four places.
8. Calculate §; ((sin x)**/x*) dx correct to four places.

9. Two prime numbers p and ¢ such that |p — ¢| = 2 are said to form a twin prime.
For large values of n it is known that the number of twin primes less than n is asymp-
totically equal to 2C, §7 dx/(log x)*, where C, is a certain constant. Compute C, to 3
decimals using the fact that the number of twin primes less than 2%° is 8535.

10. Find
1 — e T\1/2
S d—=e9" 4
['] x
correct to four places.

11. Find §;log x cos x dx correct to five places.

12. Find
1 dx
So ver+ x — 1

correct to four places.
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13. Calculate the total arc length of the ellipse x* + y*/4 = 1. The result should be
accurate to six places.

14. A function y = y(x) is known in equidistant points 0, +4, +24, ... Find an
approximate value of {72 y dx which contains only y_,, y,, and y,.

15. Find an integration formula of the type
+hA
S ydx = h{dy, + B(y, + y-,) + C(yz + y-2)l,
~A
where y, = y(h), y, = y(2h), and so on.

16. Find x, and x, such that the following approximate formula becomes exact to the
highest possible order:

+1 1
[ feode = TUR=D + 20 + 3ftx0
-1
17. One wants to construct a quadrature formula of the type
A
E ydx = —2"-(yo +0) +ak'(yo —y) + R.
[

Calculate the constant a and find the order of the remainder term R.
18. In the interval 0 < x < r, y is defined as a function of x by the relation

y= —-S‘log (2 sin-L) dt.
° 2

Find the maximum value to five places.
19. Calculate §7 (e-=*/(1 + x?)) dx correct to four places.
20. Find §;° (dx/+/e* + x) correct to three places.
21. Find {7 e™* log x dx correct to five places.
22. Calculate numerically {° (x dx/(e* — 1)) and §7 (x dx/(e* + 1)).
23. Find {7 e”**'/*' dx correct to four places.
24. Determine abscissas and weights in the Gauss formula

S: VX fix)dx = a,f(x)) + @ flxs) .

25. Determine abscissas and weights in the Gauss formula
S: f(x)log i—- dx = A f(x,) + A, f(x,).

26. Calculate the coefficients k,, &, and k; in the approximate integration formula
[ fode = ki fi=1) 4 uft)) + o fla)

where « is a given number such that —1 < a < 1. Then test the formula on the func-
tion f(x) = [(5x + 13)/2)'/% with a = —0.1.
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27. One wants to construct a quadrature formula of so-called Lobatto type:
[ e = alfi=1) + 01+ BA—a) + S + €f10) + R.
-1

Find a, b, ¢, and « such that R becomes of the highest possible order.
28. Determine the constants 4, B, C, and D, and the remainder term R, in the follow-
ing integration formula:

S" (x — x)f(x) dx = K(Afy + Bf,) + K(Cf; + Df) +R,
]

where b = x;, — x,.
29. Find a Chebyshev quadrature formula with three abscissas for the interval
0 < x < 1, and the weight function w(x) = 1/+/x.

30. The function Si(x) is defined through Si(x) = {; sin t/rdt. Calculate

0 x*

Sl Si(x) — sinxdx

correct to four places.

31. The integral equation y(x) = 1 + §; f()y(¢) dt, where f is a given function, can
be solved by forming a sequence of functions y,, 1, y., . .. according to

Vart0) =1 + So faya(nydr.

Find the first five functions for x = 0(0.25)1, when f(x) is as given in the table below.
Start with y, = 1 and use Simpson’s formula and Bessel’s interpolation formula.

x [0 Joas |oso |ors |1
s | 0-5000] 0.4794] 0.4594| 0.4398 0.4207




Chapter 11

Summation

At 6 p.m. the well marked |2 inch of water,
at nightfall /4 and at daybreak (s of an
inch. By noon of the next day there was
18/1¢ and on the next night %/s: of an inch
of water in the hold. The situation was
desperate. At this rate of increase few, if
any, could tell where it would rise to in a
fewdays. STEPHEN LEACOCK.

11.0. Bernoulli numbers and Bernoulli polynomials

In Chapter 7 we mentioned the Bernoulli numbers in connection with the fac-
torials. The reason was that the Stirling numbers could be considered as special
cases of the Bernoulli numbers. For the general definition it is convenient to
make use of a so-called generating function. In (7.3.10) the Bernoulli numbers
of order n were defined by the expansion
L — — 1 (%)
m_mﬁm . (11.0.1)

The Bernoulli polynomials of order n and degree k are defined by
et " 3 F gy, (11.0.2)

If in (11.0.2) we put x = 0, we obtain directly B{*(0) = B{». Subsequently
we shall exclusively treat the case n = 1, that is, Bernoulli numbers and poly-
nomials of the first order. For brevity, we shall call them Bernoulli numbers
and Bernoulli polynomials:

' Y
T T e (11.0-3)

£ ! —_ 3 ’k
e = k§=o:—!B,‘(x). (11.0.4)

Here we have 4, = B,(0); we use the notation 4,, since we want to reserve
the notation B, for other numbers closely associated with the numbers 4,. First
we shall compute these latter numbers. From (11.0.3) we get
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where

Hence we have

s—1 s—1

!
S!a,= E—s._—- A‘ =E(‘:)A'.

= il(s — i) =0

But since the left-hand side was ¢, we have @, = 1 and @, = 0, s > 1. Hence
we obtain the following equation for determining A,:

s—1
A, =1; Z;(‘)A,.zo, $=2,3,4,... (11.0.5)
$=0

Written out explicitly, this is a linear system of equations which can be solved
recursively without difficulty:

A, =1,
A +24,=0,
Ay + 34, + 34,=0, (11.0.6)

A, + 44, + 64, + 44, =0,

whence 4, = —3; 4, =} A, =0; A4, = —5; 4, = 0; 4, = J5; ... Usinga
symbolic notation, we can write the system (11.0.5) in a very elegant way,
namely,

(A+1p A =0, 5=23,4,...

with the convention that all powers 4* should be replaced by A4,.
Now we treat (11.0.4) in a similar way and obtain

Identifying we get

Symbolically, we can write B,(x) = (4 + x)*, with the same convention 4° — 4,
as before. Summing up, we have the following simple rules for the formation
of Bernoulli numbers and polynomials:

A, =1,

A+1)—4~=0 with  A4*— 4, (11.0.7)

B (x) = (4 + x)* with AF— 4, .
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The first Bernoulli polynomials are
B(x)=1,
B(x) =x - 1/2,
B,(x) = x*— x + 1/6,
By(x) = x* — 3x%2 + x/2,
B(x) = x* — 2x* + x* — 1/30,
By(x) = x* — 5x*/2 + 5x*/3 — x[6,
By(x) = x* — 3x® + 5x'/2 — x¥2 + 1/42.
Equation (11.0.4) can be written

xt t =1 ”B _t:
¢ 1 + 2 B o

et —
and differentiating with respect to x, we obtain

w L SBx) S -
e e D TR R Ay e

Comparing the coefficients, we get
B (x) = nB,_,(x) . (11.0.8)
The same relation is obtained by differentiating the symbolic equation
' By(x) = (4 + %) .

Now let x be an arbitrary complex number. From (4 + 1) = 4* we also
have

(7)1 = 3 (T) i,
=3 \} i=3 \}]
or
(A+ 1+ %"~ nd+ 1)x=1 = (4 x)* - ndx*1.

Hence we find the following formula, which we shall use later:

A+ 14+ %)~ 4+ x)"=nx"", (11.0.9)
It can also be written 4(4 + x)* = Dx", or, since (4 + x)* = B,(x),
4B,(x) = Dx~ . (11,0.10)

Conversely, if we want to find a polynomial B,(x) fulfilling (11.0.10), we have
forh = 1:

D
eb —

k=0

in agreement with (11.0.7).
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Writing (11.0.8) in the form B, (1) = B,,,(1)/(n + 1) and integrating, we obtain

#H Byy(x + 1) — Byy(x) _ 4B,.,(x) _ Dx**t .
't — »+1 n+ —_ — = X N
Sa B.na n+1 n+ 1 n+ 1

where we have also used (11.0.10). Putting x = 0, we find forn = 1,2,3,...,

YB.(t) dt=0.
The relations ’
B(t) =1,
B(1) = nB, (1),

YB,(:)dt:O, (n=1,273..),
]

give a simple and direct method for recursive determination of B,(r), and hence
also of 4, = B,(0).

From (11.0.6) we obtained A4, = 4, = 0, and we shall now prove that 4,, ., =0
fork=1,2,3,... Forming

f@) =

t t _t e+1 _ 1t t
et — 1 2 2 et —1 2 2

we see at once that f(—¢) = f{(), which concludes the proof. Hence, there are
only even powers of ¢ left, and we introduce the common notation

B, = (—1)*4,,; k=1,2,3,.... (11.0.11)

The first Bernoulli numbers B, are

B, =1/6 B, =1/6 B, = 8553103/6

B, = 1/30 B, = 3617/510 B,, = 23749461029/870

B, = 1/42 B, = 43867/798 B,, = 8615841276005/14322

B, =1/30 B,, = 174611/330 B,, = 7709321041217/510

B, = 5/66 B,, = 854513/138 B,, = 2577687858367/6

B, = 691/2730 B,, = 236364091/2730 .

The expansion (11.0.3) now takes the form

t t r© s *
—e*~l_1—7+B‘2_!_B’H+B°§!_—“" (11.0.12)

Above we discussed the even function

t t t
e 12~ 7

t

coth —.
2
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Putting #/2 = x, we obtain the expansion

2 2 4 2 (]
xcothx = 1 + B, (i’!‘) - B,(4’!‘) - B,(GJ;) —ee. (11.0.13)

Replacing x by ix, we get

xcotx =1— B, (ij!‘)’ - B,(i’!c)‘ - B,(i’!‘)e —_,
or
1 —xcotx:iﬂ XP . (11.0.14)
»=1 (2p)!
Using the identity tan x = cot x — 2 cot 2x, we find
= 207(2% — 1 _
tanx:pz‘;l_WB,xv ' (11.0.15)

Written out explicitly, formula (11.0.12) and the last two formulas take the
following form:

x x? x* x* x8 xw°

=1-X24X _ X - —,
e — 1 7 T 12~ 720 * 30240 1209600 | 47900160
X2 17 62 1382
ta — -~ __xb o x 9 11 ey,
X=X+ TP I Tt Tisseas s T

1 x x? 2x® x7 2x°
cotx = — — — — — — = = == ...,
X 3 45 945 4725 93555

(11.0.16)

The first series converges for |x| < 27, the second for |x| < 7/2, and the last
for |x| < m. A brief convergence discussion will be given later.

11.1. Sums of factorials and powers

In Chapter 7 we mentioned the fundamental properties of the factorials in the
formation of differences, and according to (7.3.2) we have 4p**' = np"*~». From
this we obtained an analogous summation formula (7.3.12),

$hpw = (@ + DY — Py (11.1.1)
p=P n + 1
valid for all integers of n except n = — 1. As an example we first calculate

2P0 = ;:;p(p —1)p-2)

=8
:7(4)_3«)_7,6.5.4_3.2.1.0

=210,
4 4
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which is easily verified by direct computation. We can also compute, for
example,

4 4 l
(~3) —
?;P :L:?(p+ p +2)p +3)
LI E N | 1 1 )_ 1
- -2 "7(2.3 6-7/ 14’
which is also easily verified. The case n = — 1 can be treated as a limit case;

then we have to write p*» = p!/(p — n)! = I'(p + 1)/I"(p — n + 1), giving a
definition of the factorial also for values of n other than integers.

In Chapter 7 we showed how a power could be expressed as a linear com-
bination of factorials by use of Stirling’s numbers of the second kind. Thus
we have directly a method for computing sums of powers, and we demonstrate
the technique on an example.

N
4 — W 4 7p® 4 6p® (4)
2Pt =Ll + 7P + 6 + ]
1)@ l ) (4) (8)
(Ng ) +7(N;— ) + 6(N:1) +(N-+-51)

N

— NN+ 1) _
= oL (15 + v - 1)

+ 45(N — 1)(N — 2) + 6(N — 1)(N — 2)(N — 3)]
_ NNV + DN + )(3N* + 3N - 1)
30 '
For brevity we put S (p) = 1* + 2* + ... + p*. The expressions S,(p) have

been tabulated as functions of p for n = 0(1)15in [4], pp. 188-189. By repeated
use of the relation 4B, ,(x)/(n + 1) = x*, we obtain

S.(p) = Banlp +n ll; B,.(0) (11.1.2)

which is an alternative formula for computation of power sums.

Here we shall also indicate how power sums with even negative exponents
can be expressed by use of Bernoulli numbers. We need the following theorem
from the theory of analytic functions:

7rcot7rx=.l.+z:( 1 + 1 );

X—n X+n

it is given here without proof (see, for example, [1], p. 32, or [2], p. 122).
We consider the series expansion for small values of x on both sides of the
equation:

mxcotwx =14 x.3, + i)
=1 —~n X n
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For the left-hand side, we use equation (11.0.14) and find that the coefficient
of x*» is —(2n)**B,/(2p)! For the right-hand side we have, apart from the
constant term,

x.E(—_l_ __l_+_1- ! )
n=1 n

n 1 —x/n 1 + x/n
R g (- 2R o)
Hence the coefficient of x** is —2.3;7_ n~**, and we get
§%=2(.28;! B,. (11.1.3)

For p =1, 2, 3, 4, and 5, we obtain
nt =1 _ =, =1 _z°.
=% hwTw Hw o

B . el 1_ o
n® 9450’ gnw'%sss'

VYIEY,

1
n
1

il
-

On the other hand, we have no simple expressions for the sums 3,  n=*;
the formulas turn out to be fairly complicated. The sums };7_ n~* have been
tabulated in [3], p. 224, for p = 2(1)100.

From equation (11.1.3) several interesting conclusions can be drawn. First
of all, we see that B, > 0 for p = 1,2, 3, ... Further, we can easily obtain
estimates of B, for large values of p, since the left-hand side approaches 1 very
rapidly, and we have asymptotically

2(2p)!
B, ~ 227 11.1.4
P @m)yr ( )
This can be transformed by use of Stirling’s formula:
B, ~ 4/7p (L)" . (11.1.5)
we

Using (11.1.4) we can investigate the convergence of the series (11.0.12), where
the general term for large values of p can be written 2(— 1)*+(¢/2zr)?. Hence
we have convergence for [f| < 27.

In an analogous way, we can examine the convergence for the expansions
(11.0.14) and (11.0.15). The general term behaves like 2(x/x)* and 2(2x/7)®,
and we have convergence for |x| < 7 and |x| < /2, respectively. On the other
hand, this is quite natural, since x cot x and tan x are regular in exactly these
domains.
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11.2. Series with positive terms

Suppose that f{(x) is an analytic function and consider
S = f(x)) + f(%X, + h) + f(x, + 2h) + - + f{x, + (n — 1)h)

n—1

= (S E) 0 = 2 =11t -

The main idea is to consider the sum as a trapezoidal approximation of a definite
integral; hence we are actually looking for the correction terms. As usual, they
can be expressed in forward or central differences, or in derivatives. In the first
two cases, we get the formulas by Laplace and Gauss, and in the last case we
obtain the summation formula by Euler-Maclaurin.

In the Laplace case, we have

% S:ﬂf(x)dx = l (1 + E+ E* +...+ E~Y), f(x,)

e COR

and

1 == _E 1 J,
- o rw s = (1- T)f(xo)
E* — 1
4 (l log (1 + A))f( %)
“(E“ - l)(bl + bzA + baA: + - ')f(xo) .
Here we have used (7.1.4) and (10.4.1). Hence we obtain
Sxo) + f(x) + -+ + (%)

= = "reax - So(amr) - aopw) + R 12

We give the remainder term without proof:

R- — nh"‘“b_,,_,f(”“'(f); x, < < Xoim
In the Gaussian case we form

= Ao E= (- £

z9—h/2 1

The expression §/U is easily obtained by multiplication of (7.2.9) by (7.2.10):

@ _ 173 3678 278598
24~ 5760 ' 967680 464486400

9 _
U
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and hence we have the formula

SO+ S+ S = 5 [ o ax

- (% 5155 * srewo — )= - 5) ~1(= - 3))-
(11.2.2)

Alternatively we consider

21+ ] = 5 (e ax
(o= )= 2o 21
e - £

o2 1144 1914°
= prp(2 - 2% ____...>o
#\12 ~ 720 " 60480 S5

1115 1915
= —_—— — - ... )(E =1 .
¢ (12 720 60480 )( o

By summing such relations to 3[ f(x,_,) + f(x,)] and further adding the term
3[ f(x,) + f(x,)], we obtain

F(%) + f(%) + -+ f(x,) = % S"f(x)dx + ‘1— [f(x) + f(x,)]

+ 73 fx,) — pof(e)] — s [0 (x,) — (3f(x)]

191 ¢ oor v o
+ coage LAY (Xa) — 13 (%] . (11.2.3)

Both (11.2.2) and (11.2.3) are due to Gauss.
Finally, we again form

S5+ £+ S = 3 |7 o dx

-2 0= g

e - e

1 3 s
=(—x+ g - L BT ) () - f).
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Adding f(x,) to both sides, we obtain the following equality:
S(xo) + (%) -+ + f(x,)
= & 7 s+ S0 + 0] + 1) = 6]

) _ x)] —---. (11.2.4
— L) = L] + s (S5 = [ (11.2.4)
This is Euler-Maclaurin’s well-known summation formula. If the series is trun-
cated after the term B, _ U*™%/(2m — 2)!, the remainder term is

_ hB A"
2m)!
(See, for example, [4], p. 190.) If n tends to infinity, however, this remainder
term is of little use. Instead it can be proved that the absolute value of the
error is strictly less than twice the absolute value of the first neglected term,
provided that f*~)(x) has the same sign throughout the interval (x,, x,). Further,
the error has the same sign as the first neglected term.

=) X% <E<x,.

ExAMPLE
Euler’s constant is defined by

. 1 1 1
=llm(1 —_ —_— e — -1 ),
7 Jm +2+3+ +n ogn

which can also be written

r=1+X3(s +1g221).

We have

S'(l — log.x + log (x — 1))dx = —1 + 9log 10 — 9log9
10\ X

—0.05175 53591 .
The sum up to n = 9 is computed directly, and we get

S,= 0.63174 36767

§ = —0.05175 53591

1 f(10) = —0.00268 02578

— 7 /(10) = —0.00009 25926
«357(10) =  0.00000 01993

— sob25./7(10) = —0.00000 00015

S = 0.57721 56650
The exact value of Euler’s constant is y = 0.57721 56649 015. ..
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It may well be the case that even when the integration can be performed explicit-
ly, it is easier to use series expansion. In the example just discussed we have

S;(x"+ log (1 — x™))dx = —S;(?;—’ + 31; + Il;+”'>dx

_ 1 1 1 )
N (1.2.10+2.3.1oz+3.4.1o=+ ’

Already from 8 terms we get the value correctly to 10 decimals.

A natural generalization arises in the case where one wishes to perform the
summation at closer intervals than those used at the tabulation. Let us suppose
that y,, y,, ..., y, are known function values belonging to the x-values x; =
x, + ih. Now we want to sum the y-values with intervals 4/N in the independent
variable, where N is an integer > 1. Suppose that the operators E, 4, and
refer to the interval h; denote the desired sum by S, and put 1/N = p. Then
we get

s=( +E'+-~~+E"‘”‘”’)yo+y-:%5:—}’”}'“
Ya Yo + Y-

T T -1 (It 4p—1

We easily find the following series expansion:

m—;)»___l:%(‘ +-p5 -0 —p’)l—x;+(l -p’)ix;;
! - * x‘ - - * f - s e
= (=19 = p)p + (L= PO = P) 15 )

Replacing x by 7 and 4, respectively, we find

1 1 1
S = _(_)_': _Zo.> Ty —yy_ 1
> \7 7 + 3 (Yo = J4) 2p(yo + Va) + Va

l—p’ l_pl
Py, — 4y,) — * ) —ee .
25 y. — 4y,) 2% Py, + 4%,)

As was shown in Section 10.4, we have y,/V — y/d =y, + y, +--- + p,.
Further, we make use of the relation = E~'4, from which we getrTy, =4
Hence we finally obtain the formula

ne—r*

1

1 1 — —pt
S=oOetntty) =Ly - 2 (Decs = A7)

1

— l"pz 2 2 _(1_p2)(19_1;!) 3 A8
2% (8Y0s + 4y0) 720p (LYnes — L)
=P =P g0

4 —- e
7807 -+ d'y) . (11.2.5)
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This is Lubbock’s formula. For analytic functions we could equally well use
Euler-Maclaurin’s formula directly, but Lubbock’s is quite useful for empirical

functions.
We observe that

lim pS = _l_Sz”ydx.
p—0 h zZo

and hence for p — 0, the formula passes into Gregory’s formula.
We can, of course, work with central differences or with derivatives; in the
latter case the derivation is performed in the following way. We have

1
S—;(yo+yl+-~-+y.)

B -1 1 E*— 1 1
= —E—p“j}’o + YV — —E—__—I'.Vo —;}’u
1 1 1 —
= (C’U — 1 p(e” )(yn }’o) - 'p_py-
LU U g U Ut pU , p PU
“p—u{i Byt hag Byt T RS
U °Ue 1 —
-8+ B A ---}(y.—yo)— Yus
and hence
1
S:——(Yo+Y1+"'+)’-)" (yo+y..)— - )
P P
+ 1 — s(ym _ m) (y” ys’) 4. (1126)

720 30240

This is Woolhouse’s formula. If we now form pS and let p — 0, the formula
passes into Euler-Maclaurin’s formula.

11.3. Slowly converging series. Euler’s transformation

Summation of slowly converging series is a nasty problem, and it is difficult to
devise any general methods. In some cases the following method, suggested by
Salzer, can be used. Forminga suitable number of partial sums S, and regarding
them as functions of 1/n, one performs Lagrangian extrapolation to 1/n = 0.

EXAMPLE
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Putting S, = S(1/n), we obtain
S$(0.2) — 1.46361111,
S(0.1) 1.54976773 ,
S(0.05) = 1.59616325,
S(0.04) = 1.60572341 .

Then we obtain from Lagrange’s formula
S(0) = 5[125 - 5(0.04) — 128 . S(0.05) + 16 - S(0.1) — S(0.2)]
= 1.64493357 .

|

The exact value is
5(0) = _’;_' = 1.644934066. . . .

With S = S, + R,, we find in the special case when R, = 4/n* + B/n* + ...
that S, = 1(4S,, — S,) is a2 good approximation of S.

Another method, analogous to the technique for computing certain integrals
described in Section 10.0, consists of subtracting a known series whose con-
vergence properties are similar to those of the given series. Lubbock’s and
Woolhouse’s methods may also be useful in such cases. However, we shall
now consider a more systematic transformation technique, originally due to
Euler.

We start from the power series S = 4, + u,x + u,x* | - - -, and we consider
only such values of x for which the series converges. Symbolically we have

1 u,

S = Ex + E*x* + -.. = =
T gy~
__1 u,
T—x1—(x/(1-x)4’
and hence
1 - x \
S = . ( ) ‘u, . 3.
1_x..z=o:1_x d'u, (11.3.1)
A corresponding derivation can be made by use of central differences:
S = Yy = Y
1 — Ex 1 —x(1 +8%2 + pd)
1 u

1 —x 1 — (x/(1 — x))(6%2) — (x/(1 — x))ud
_ 1 - (x/(1 = 0))@/2) + (x/(1 = x)pd
I —x [T — (x/(1 = 0))&/2)F — (x/(1 — x))ped®
=1 1-—z62) + zp5 ,
1—x 1 —z1 425 °°
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where we have denoted x/(1 — x) by z. Hence,

S = {(1 - %3’)(1 4 2(l + 2)8t + 21 + 20 +--+)

I —x
+ zpd(1 + 2(1 + 2)8* +...)},,°,

Simplifying, we finally obtain

oy 1 1+x x X X Sou 4.
S=rxta i ((l—x)’ "°+( Tyt g et )
+L x )1((1_ w) g )’(3‘14—614_,)
t )‘ (O, — 3u_,) + - ) (11.3.2)

Naturally, we can use derivatives instead of differences. Then we obtain with
the same z as before:

§=3 i = [ + Qs + Q2w + -], (11.3.3)

where we have
Q,(z) =z,
0(2) = 2 + .,

Q.(z)=zs+z’+—2—,

3 7 z

z PR —, 11.3.
@ =2+=2+ 52 +24 (11.3.4)
5 z
z 2+ 224 2
We)=2+22+ 22+ 3 +120
13 3 31 z
Z) =2 —z" 2 2y 2.
Qf’“ + Tttt T 30 T 720

The general form of these polynomials is
» i .
0.(2) = _IT Yo Y (— 1)+ (;() k.
n: i=1 k=1

EXAMPLE

Consider

S-——”(_l)':_l.u —1)* l
-Z;=02n+l 2.E=n( l)n+;'
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We use (11.3.1) for x = —1 and u, = 1/(n + 3) = (n — 3)™V [cf. (7.3.2

through 7.3.4)]. Hence

du, = —(n — 3); du, =2(n — 3, du, = —2-3(n— 4", etc,

and from this we get

1)222e+1
sy — (—1) (S) ,
a0 = (=D )
and the final result
= 27(s!)®
S = —_—
g (2s + 1)!

The quotient between the (s + 1)- and the sth term is (s + 1)/(2s + 3), that
is, the convergence is now slightly better than in a geometric series with quo-
tient 4. The remainder term is practically equal to the last term included.
Already 10 terms, corrected with a corresponding remainder term, give the
result 07855, deviating from the correct value /4 with only one unit in the last
place. In order to obtain this accuracy by use of the original series, we would
have to compute about 5000 terms.

Here we also mention a technique which is often quite useful. Consider

f(n)=%+i:§+%+m,

where the constants a, are assumed to have such properties as to make the
series convergent. For s > 1, Riemann’s {-function can be defined through

() = Sk

and this function has been tabulated accurately. If one now wants to compute
S = 237_,f(n), we immediately find the result
S =al(2) + al(3) + al4) +---.

The convergence is often very slow but can be improved considerably if we
write instead § = f(1) + a,[§(2) - 1] + a[{(3) — 1] +--- For facilitating
such computations we give a brief table of the {-function when s = 2(1)22.

s ) s C(s) s ()

2 1.6449 3407 9 1.0020 0839 16 1.0000 1528
3 1.2020 5690 10 1.0009 9458 17 1.0000 0764
4 1.0823 2323 11 1.0004 9419 18 1.0000 0382
5 1.0369 2776 12 1.0002 4609 19 1.0000 0191
6 1.0173 4306 13 1.0001 2271 20 1.0000 0095
7 1.0083 4928 14 1.0000 6125 21 1.0000 0048
8 1.0040 7736 15 1.0000 3059 22 1.0000 0024
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EXAMPLES
1. = 1 1 °"(l 1 1 )
= e _.—_+__.--...
gn’—kl 2+§ n n n’
1

> [£(3) — 1] = [€(6) — 1] + [€(®) — 1] —---
~ 0.686503 (7 terms).

2. isin’L = sin*l 4 4 i(l - cosi)

n=1 n 2 »=3 n

. = /1 1 2 1
=sintt+ 2 (gt e~ 3w )

sint 1+ [€2) — 1] = 5 [€@) — 1] + Z[E6) — 1] —---

1.326324 (5 terms).

i

11.4. Alternating series

This special case, as a matter of fact, can be treated by putting x = —1 in
the formulas (11.3.1), (11.3.2), and (11.3.3). Nevertheless, we prefer to treat
the case separately. Using ordinary differences, we find the formula

S=u0—u1+u’_...=E(“l)'A.uo

s=o 2°%1

1 1 1
:7[u°—7Au°+TA’u°---]. (11.4.1)

If we use central differences, we get instead

1 1 1 1
S = oo — o (i — ) + o (B — Fuy) — o (Bl — Bl e

(11.4.2)

If we prefer to use derivatives, it is more convenient to make a special calcu-
lation as follows:

S—_t u, i[ v U ]“o
ev 1

1+E e+1 Ul -1 a0
1 U v U
=gli-grag Byt
2U 4U? 16 U*
Sl - B BT |u

T 2 _ 1 201
‘[7_3’ 7 Ut Eg Us_"']“"
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Hence we find the formula

l h ’ hs ne hb
= g% - % 5
17/ o 3Ry 691A" uxl .. :| ) 11.4.3
* 20320 T 725760 ° T 159667200 ° (1143
ExAMPLE
_ 1 1 _1) (1_1 ...)~s s
S‘(I—T+? /AT =St
By direct evaluation we get S, = 0.76045 990472... Here
1 2. o 2.4.6
U= ——, = —— u = —_—— . .
2x — 1 2x — 1) 2x — 1)
with 2x — 1 = 21. Thus
1 2 2:-4.6
—_ U= —_=_; mo_ _ :
“=ar 2 21
W _2°4-6-8-10 .
21°
and
11 1 2 16 272 7936 ]
S, = —| — —_—— —_— — — ... |
: 2 [21 + 21¢ 21¢ + 21¢ 218 210

that is, S, = 0.02493 82586 8... Hence S, + S, = 0.78539 81634, compared
with the exact value

/4 = 0.78539 81633 974. ..

An interesting technique has been suggested by van Wijngaarden, who trans-
forms a series with positive terms to an alternating series. Let

S=u +u +u +-.-,

and put
V, = U, + 2uy + 4u, + 8uy +.--,
Vy = Uy + 2u, + 4uy + 8Buy + .-,
Vg = Uy + 2u, + 4uyy + 8uy + - - -,
V= Uy + Uy, + Uy + Bug + -,
Then it is easily shown that S = v, — v, + v, — v, + --. The conditions for

the validity of this transformation are quite mild; for example, it suffices that
the terms u, decrease as k—'—, where ¢ > 0.
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EXAMPLE = 1
S = —,
L
1 2 4 8 )_i_l_
=gtz +tstst )37
Hence we have
4 a0
S=_". —1"1
T =2 e
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EXERCISES
1. Calculate

1.3 5.7 " 9.11 13-15

correct to five places.
2. Calculate

S=1-
correct to four places.

3. Find to five places:

11 + 1
log 2 log 3 log4

4. Calculate Catalan’s constant 35, (—1)%/(2k + 1)* to ten places.
5. Find the sum § = sin 1 —sin} + sin} — sin4 +. .- to five places.
6. Compute to five places

S=Q-D-WVW3I-D+FT-1H—(¥S -1+ (¥E6€-1)—...

7. Find e’ — e 7% 4+ ¢7¥3 — 7Y% 4... to four places.

8. One wants to compute S = ¥7_ (I/n°). Putting Sy = ,(1/n*) and S =
Sy + Ry, and assuming that Ry = 1/2N* 4 i + a/N?®, one computes Sy explncntly forN=10
and N = 20 (six places). Aided by these values, find S.
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9. Compute ¥ 7_, (n°/n!) by use of factorials.
10. Calculate explicitly 4,/B, for n = 0(1)12, when

{Aa = Ay + (n— DAsy,
B.=B, ,+nm—1)B.,,

A, = 0, A, = B, = B, = 1, and use the values for computing lim,_... 4./B, (four decimal
places).

11. Find § = £_, (1/n) arctan (1/n) to five decimal places.

12. Compute X5, k™% correct to six places.

13. Compute
1 1 1 1
- ——
R sl I Fid
to four places.
14. Compute
1 1 1 1
l_pz +4_p2 +9—p2 +-.'+n2_P2 4+

for p = } (four places).
15. Find TIZ, (1 + k™) to five places.
16. Show that the series

can be transformed to

2 o
B2 yerea <2n )
Then compute S correct to four decimals.
17. fix)is a function which can be differentiated an infinite number of times. Further,
fix) = ug; fix + 1) = wy; fix +2) = uy; ... The series S = uy + uy — uy — u, + u, +

us —- - is supposed to be convergent. Find S expressed in f(x), f'(x), f'(x), ... upto
terms of the fifth order. Y f s P

18. Integrals of oscillating functions can be computed in such a way that each domain
above and below the x-axis is taken separately, and the total integral appears as an
alternating series. Using this method, calculate

5“’ sin rx
o log(l + x)

to three decimal places.
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19. Putting z, = Ny, k™", #=2,3,4,..., prove that 2z/2 4 z/3 + z/4 +..-=
1 — 7, where 7 is Euler’s constant.

20. Find 1=, 1/a where ay, a;, ay, - . - are the positive roots of the equation tan x=x

6=l

taken in increasing order.
21. Using series expansion compute §:°(x/sinh x) dx and §(x/sinh x)* dx.
22. Using series expansion compute §°x dx/(¢* — 1) and §°x dx/(e® + 1).
23. Compute TI:_, (10r ~ 1)(10r — 9)/(10r — 5).
24. Compute TI7_, (1 — ¢™)™* for g = 0.9.



Chapter 12

Multiple integrals

The Good Lord said to the animals:
Go out and multiply!

But the snake answered:
How could 1? I am an adder!

Working with functions of several variables, one encounters essentially greater
difficulties than in the case of just one variable. Already interpolation in two
variables is a troublesome and laborious procedure. As in the case of one vari-
able, one can use the operator technique and deduce interpolation coefficients
for the points in a square grid. Usually one prefers to perform first a series of
simple interpolations in one variable and then to interpolate the other variable
by means of the new values. If, for example, fix, + nh, y, + vk) has to be
computed, one can keep y, + vk constant and compute f(x, + nh, y, + vk) for
n =0, +1, +2,... (interpolation in the y-direction with different “integer”
x-values). Then the desired value is obtained by one more interpolation in x.

10
6 2 5
T
h
1 3 ] 1 9
7 4 8
12
Figure 12.1

For performing differentiation and integration (which, in two dimensions, is
sometimes called cubature), we conveniently use an operator technique. From

244
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now on we restrict ourselves to two independent variables and put

0 0
=h=; =h_—. 12.1)
¢ ax 7 oy (
Thus we are working with a square grid, where we number a few points near
the origin (see Fig. 12.1) With these notations we have, for example, f, = e‘fy;
fi = efu fi = e fo = ey f, = €€*7f,, and so on. We shall here use the
symbols 7 and D in the following sense:

e+p=m(Z + L) =nr,
7 (‘::’ » ) (12.2)
&p=~H :9}—37 = h*D*.
Further, we shall consider the following three sums:
Si=fi+thi +fi +10s
Ss=fitfo +fi /1o
Si=Sfo+fot+Sfutfa:
S, = 2(cosh & + cosh 7)f,
=4+ @+ P+ BE+7V o+
S, = 4cosh £ coshp . f;
=4+ 28+ ML+ IE+ P+ EY A+
S, = 2(cosh 2¢ + cosh 27)f,
=4+ 4+ M+ 3E+ Vo
The most important differential expression is /*f, and we find
P, ~ % (S, — 4f)). (12.3)

Further, we obtain
4S, + S, — 20f, = (6K'7* + 3W7* +--.)f,, (12.4)

with the main disturbing term invariant under rotation, and

1
7Y, = o (168, = S, - 60f), (12.5)

with the error proportional to A‘.
Analogously, we find without difficulty:

1
P = - (20f, — 8, + 25, + 5)

with the error proportional to A*.
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We now pass to the integration (cubature), and try to compute

+A(+A
V= S_.. Lf(x,y) dxdy .
Then

dx = hdr,

— ’h — eTé+s ;
ﬂx’y) ﬂhr s) € m {dy — hds,

and hence

+1 04

V= h’S S le""'ﬂj:,dr ds
-1

-1
_ h,[e"]"‘—l [ﬁ]“ fi= 4kt . sinh ¢ . sinh 77‘,;

E r= 77 s=—1 0 E}?

—am[te g @+ + (e + Rer v )+

Setting for a moment £* + 7* = P, §* + ' = 0, and £°7* = R, and adding the
condition that the error term shall be proportional to /¢, that is, to (¢* + 7*)* =
Q + 2R (thus invariant under rotation), we obtain

V = 4k'af, + BS, + 1S, + (@ + 2R)] +---.
Identifying, we get

22
a+483+4 =1, a=—,
<] T 3
1 4
+2 = — = =
B+ 2r 3 B G
4/9 1 whence J 7
_— _r_ C = ——, - PR
276 T 10 T
1 1
2 = — = ——_—
A T3 ‘T 180

Thus we find the formula
vl 8s8f, 4165, +75) - Epgon...
45 45
On the other hand, Simpson’s formula in two directions gives
hl
V:-9-(16f.,+4S,+ Sy) +---,

but the error term is more complicated.
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All these formulas can conveniently be illustrated by so-called computation
molecules. The examples in Fig. 12.2 should need no extra explanation.

B P,

126 P,

+A (+A
%g g fdxdy _ Jfaxdy

Figure 12.2

The two integration formulas are valid for integration over a square with
the side = 2h. Integrating over a larger domain, we see that the coefficients
at the corners receive contributions from four squares, while the coefficients in
the midpoints of the sides get contributions from two squares. Taking out the
factor 4, we obtain the open-type formulas shown in Fig. 12.3.

This standard configuration is then repeated in both directions.
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Figure 12.3

The integration in higher dimensions will give rise to great difficulties. One
possible way will be sketched in a later chapter, but this Monte Carlo method
has serious disadvantages due to its small accuracy. Of course, it is possible,
in principle at least, to construct formulas corresponding to the Cote and Gauss
formulas, but they are extremely clumsy and awkward. Although some pro-
gress has been made in recent years, no completely satisfactory method has
appeared so far.

On practical work with multiple integrals the most common way is perhaps
first to perform as many exact integrations as possible and then to integrate each
variable by itself. This may create a need for huge amounts of computing time,
and the demand for accuracy has to be weighed against available computational
resources.
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EXERCISES

1. Compute numerically §§ , (dx dy/(x* + y*)), where D is a square with corners (1, 1),
2, 1), (2,2), and (1, 2).

2. Compute numerically §~§~ e~*******dx dy (h = 0.5), and compare with the exact
value.

3. For computation of §§  f(x, y)dxdy, where D is a square with the sides parallel
to the axes, one wants to use the approximation k’*(af, + bS). Here k is the side of the
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square, f, is the function value at the midpoint, and S is the sum of the function values
at the corners. Find a and b, and compute approximately

gﬂ gﬂ et gy d

~1J-1

by using 13 points in all.

4. One wants to compute §{ f(x, y) dx dy, where C is a circle with radius a, by using
the approximating expression (za*/4) f + f: + fs + f.). Here f,, f, f;, and f, are the
function values at the corners of a square with the same center as the circle has. Find
the side of the square when the formula is correct to the highest possible order.

5. A function u = u(x, y) sufficiently differentiable is given, together with a regular
hexagon with corners Py, P,, ..., P,, center P, and side . The function value in the
point P, is denoted by u,. Putting§ = u, + u, + - - - + us — 6usand 4 = 3*/6x* + 3*ay?,
show that

S =3k du + &k £u + O,

where du and 4*u are taken in P,.



Chapter 13

Difference equations

My goodness, I'm feeling fine
said Granny, waving with her hand.
Next birthday I'll be ninety-nine
with just one year left to thousand.
ELIAS SEHLSTEDT*

13.0. Notations and definitions

We will now work with a function y = y(x), which can be defined for all real
values of x, or only in certain points. In the latter case we will assume that
the points are equidistant (grid points), and further we suppose that the vari-
able x has been transformed in such a way that the interval length is 1, and
the grid points correspond to integer values of x. Then we shall also use the
notation y, for y(n).

We define an ordinary difference equation as an equation which contains an
independent variable x, a dependent variable y, and one or several differences
4y, &%, ..., 4*y. Of course, it is not an essential specialization to assume for-
ward differences.

If we use the formula 4 = E — 1, we infer that the difference equation can
be trivially transformed to a relation of the type

F(x, y(x), y(x + 1), ..., p(x + m)) =0, (13.0.1)

where n is called the order of the equation. As a matter of fact, an equation
of this kind should be called a recurrence equation, but we shall continue with
the name difference equation.

The treatment of general difference equations is extremely complicated, and
here we can discuss only some simple special cases. First of all we assume that
the equation is linear, that is, that F has the form

PP (x + n) + p(xy(x + 1 — 1) +-- -+ p(xp(x) = g(x) . (13.0.2)
If g(x) = 0, the equation is said to be homogeneous, and further we can spe-
cialize to the case when all p,(x) are constant. We will restrict ourselves mainly
to this latter case. After a suitable translation, which moves the origin to the
point x, such an equation can always be written
Yot CYuar + ot Y = (E* + E* oo+ ),
= @p(E)y, =0. (13.0.3)

* This is a free, though not very poetic, translation of a humorous Swedish verse.

250
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13.1. The solution concept of a difference equation

At first glance one might expect that several details from the theory of differen-
tial equations could be transferred directly to the theory of difference equations.
However, in the latter case we meet difficulties of quite unexpected character
and without correspondence in the former case. A fundamental question is,
what is meant by a “solution of a difference equation”? In order to indicate
that the question is legitimate, we consider the following example.

The equation y,,, = 3y, + 2n — lisafirst-order inhomogeneous difference
equation. Assuming that y, = 1, we see that y, is uniquely determined for all
integer values n. We find

n 01 2 3 4 5 6... -1 -2 -3...
y., 1 2 7 24 77 238 723... § ¥ 8§%3...

Since the solution appears only in certain points, it is called discrete; further,
it is a particular solution, since it depends on a special value of y,. Now we easily
find that y(x) = ¢ - 3* — x, where ¢ is a constant, satisfies the equation. The
discrete solution, just discussed, is obtained if we take ¢ = 1. The solution
y = 3¢ — xisdefined for all values of x and is called a continuous particular solution.

One might believe y = ¢ - 3* — x to be the general solution, but it is easy to
show that this is not the case. Consider, for example,

y(x) = 3*(c + }cos2wx + %cos 6rx — }sin?37x) — x,

and we see at once that the difference equation is satisfied again. In order to
clarify this point, we put y(x) = w(x)3* — xand find w(x + 1) = w(x). Thisis
a new difference equation which, however, can be interpreted directly by saying
that w must be a periodic function with period 1. We can choose w = w(x)com-
pletely arbitrarily for 0 < x < 1, but the corresponding solution y does not, in
general, obtain any of the properties of continuity, differentiability, and so on.
If we claim such properties, suitable conditions must be imposed on w(x). For
continuity, w(x) must be continuous, and further, lim,_,_,w(x) = w(0).

In the remainder of this chapter, w(x), w,(x), wy(x), . .. will stand for peri-
odic functions of x with period 1. Hence the general solution of the equation
which we have discussed can be written

p(x) = w(x)-3* —x.

On the other hand, consider a relation containing the independent variable x,
the dependent variable y, and a periodic function w(x):

F(x, y(x), w(x)) = 0. (13.1.1)
Operating with E, we get
F(x + 1, p(x + 1), w(x + 1)) = F(x, y(x + 1), w(x)) = 0.
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Eliminating w(x) from these two equations, we obtain
G(x, y(x), y(x + 1)) = 0, (13.1.2)

which is a first-order difference equation.

13.2. Linear, homogeneous difference equations

We shall now discuss equation (13.0.3) in somewhat greater detail. We assume
¢, = 0; otherwise, the equation would be of lower order. First we consider
only the discrete particular solutions appearing when the function values
Yos Y1s « « +» Yy are given. Thus y, can be determined from the difference
equation, and then the whole procedure can be repeated with n replaced by
n + 1. Clearly, all discrete solutions are uniquely determined from the n given
parameter values.
On the other hand, putting y = 2°, we get E'y = 2" - 2* and

(A +ed 7+t ) =9R) - 2 =0.

Hence y = 2% is a solution of the difference equation if 2 satisfies the algebraic
equation
r+air - +c, =) =0. (13.2.1)

This equation is called the characteristic equation of the difference equation
(13.0.3).

Since our equation is linear and homogeneous, we infer that, provided 4 and
v are solutions and @ and b constants, then au + bv also is a solution. Hence

y=Ax + A+ o+ A3

is a solution of (13.0.3) if 2,, 4,, ..., 4, (all assumed to be different from one
another), are the roots of (13.2.1). The n parameters 4,, 4,, ..., A, can be
determined in such a way that for x = 0,1, 2, ...,n — 1, the variable y takes
" the assigned values y,, y,, ¥»,. .-, V,—,- Thus we have constructed a continuous
particular solution which coincides with the discrete solution in the grid points.
As in a previous special example, we conclude that the general solution can be
written

Yo = Wi(X) + A7 + Wy(X) - 22 + -+ -+ Wy(x) - 22 . (13.2.2)

If the characteristic equation has complex roots, this does not give rise to any
special difficulties. For example, the equation y(x + 2) + y(x) = O has the
solution

y=a-i¥ +b(—i)f =a.e* 4+ b.e 2 = Acosiz’_‘. + Bsinﬂz_x.

So far, we have considered only the case when the characteristic equation has
simple roots. For multiple roots we can use a limit procedure, analogous to
the well-known process for differential equations. Thus we suppose that r and
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r 4+ ¢ are roots of the characteristic equation, that is, that r* and (r + ¢)* are
solutions of the difference equation. Due to the linearity,

lim L+ €)° =
—0 &

= xr=!

is also a solution. Since multiplication with r is trivially allowed, we conclude
that we have the two solutions r= and xr=. If the characteristic equation has a
triple root r, then also x*= is a solution. Hence, the general solution of the
equation (E — r)*y(x) = 0, that is,

y(x + n) — (';)ry(x +n—-1)+ (;)r’y(x +n—-2)—...
+(=1)yryx) =0,
isy = [wo(x) + xwy(x) +--- + x*lw,_(x)]r.
EXAMPLES
1. The Fibonacci numbers are defined by y(0) = 0; y(1) = 1; y(x + 2) =
Y(x + 1) + y(x) (hence 0,1, 1,2, 3, 5, 8,13, 21, 34, ...). The characteristic
equation is 2* — 2 — 1 = 0 with the roots (I & 1/5). The “general” solution is

) = a(l +21/3)z + b(l _21/3)2‘

The initial conditions give
a+b=0 1
_ and = —b=—>"
{(a — b3 =2 ¢

Wi

Hence

y(x)zil'-T[(T)Jr(;)s+(;)52+()7c)5’+"' +(2mx+ 1)5"+"']'

2. y(x) =py(x + 1)+ qp(x — 1) withp + g = 1,and y(0) = 1, y, = 0. The
characteristic equation is 2 = pa* + g, with the roots 1 and g/p. If p = ¢, we
find the solution

_ PN—zqz — N .
yx) = T_—qﬂg— ’
ifp=¢g=14% wegety=1— x/N.

We shall also indicate briefly how inhomogeneous linear difference equations
can be handled. The technique is best demonstrated in a few examples.
EXAMPLES

1. 4y = (4x — 2). 3=,
Putting y = (ax + b) - 3%, we get 4y = (2ax + 3a + 2b) - 3%, and identifying,
we find the solution y = (2x — 4) - 3= + w(x).
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2. y(x + 2) — 3p(x + 1) + 2p(x) = 6- 2% .
The solution of the homogeneous equation is y = w,(x)-2% + wy(x). Putting
y = a-x- 2%, we easily find @ = 3. Hence the general solution is

¥y = (Wi(x) + 3x) - 27 + wy(x).

13.3. Differences of elementary functions

The equation 4f(x) = g(x), where g(x) is a given function, was discussed in
Chapter 11 in the special case when g(x) is a factorial. A formal solution
can be obtained in the following way. Setting D~'g(x) = {: g(t)dt = G(x), we
find (h = 1):

SIx) = eDg(i)] = eoD

7 ),

and hence, adding a periodic function w(x), we get

f1x) = w(x) + G(x) — _;_ g(x) + % 8'2(;‘) _ 313 g':(!x)

1 g'(x) _ 1 g™(x)
+42 6! 30 8! o

The coefficient of g'**~!(x) for large p behaves like (—1)>!.2/(2x)%
[cf. (11.1.4)], and this fact gives some information concerning the convergence
of the series. However, we shall now look at the problem from a point of view
which corresponds to the well-known technique for performing integration by
recognizing differentiation formulas. First, we indicate a few general rules for
calculating differences, and then we shall give explicit formulas for the differ-
ences of some elementary functions.

A(u; £ v;) = du; + 4o,
A(u;) = Ugyy 4o, + V; dup = ug Av; + vy, dug, (13.3.1)

A(&) _ by du; — u; 4,
v; ViV

*

Ax™ = px'*-V |

da* = (a — 1)a*,
dlogx =log(l + 1/x),
< 4sin px = 2sin (p/2) cos (px + p[2), (13.3.2)

4cos px = —2sin (pf2)sin (px + p/2),
A(un+un+l +"'+“u)=ua+1—un’

A(unun-ﬂ e uu) = Upprlmys o uu(uu'{-l - un) .
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Returning to the equation 4f{x) = g(x), we will now show how a solution
can be obtained when g(x) is a rational function. We restrict ourselves to the
case when the linear factors of the denominator are different; then g(x) can be
written as a sum of terms of the form a/(x — a). Hence the problem has been
reduced to solving the equation

4fix) =

a
X —a

Now there exists a function I"(x) which is continuous for x > 0, and takes
the value (x — 1)! for integer, positive x (see further Chapter 18). The fol-
lowing fundamental functional relation is fulfilled:

'(x + 1) =x[(x).
Differentiating, we get I™(x + 1) = xI'"’(x) + I"(x) and hence

Fx+)  I'x) 1
'x+1) T x°

The function I™(x)/I"(x) is called the digamma-function and is denoted by ¢(x).
Thus we have the following difference formulas:

dr'(x) = (x — HI'(x),

1 13.3.3
dp(x) = — . ( )
x

Differentiating the second formula, we get
, 1
4 = -,
2
40" (x) = = ,
{49 ) x (13.3.4)

A¢Ill(x) — _% s

ExAMPLE

Compute § = ¥- 1/((k + a)k + B)), where 0 < ¢ < 8. Without difficulty,
we find:

1 o= 1 1
s = nm}:( - )
B —anrs=izo \k + a k+B

LT. {¢(N + @) — ¢(N + B) — d(a) + ¢(B)} = ¢(I3p) : z(a) )

1
B—a
As a matter of fact, for large x we have ¢(x) ~ logx — 1/2x — 1/12x* + ...,
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and from this we get limy_.{¢(N + a) — (N + B)} = 0. Ifa = B, we find
simply that 3.7 1/(k + @)* = ¢'(a) and, i_n particular, 337 1/k* = ¢'(1) =
/6. The I'-function, as well as the functions ¢, ¢'s¢"”, ..., has been tabu.
lated by Davis (see 3] in Chapter 11). ' '

In some cases a solution f{x) of 4f{x) = g(¥) can be obtained by trying a series
expansion in factorials, possibly multiplied by some other suitable functions.
Although for differential equations, power-series expansions are most conven-
ient, we find expansions in factorials more suitable for difference equations.
Further details can be found in [1].

13.4. Bernoulli’s method for algebraic equations

As was pointed out in Section 13.2, the solution of a linear, homogeneous dif-
ference equation with constant coefficients is closely related toa purely algebraic
equation. On the other hand, we can start with the algebraic equation written
in the form (13.2.1). This equation can be interpreted as the characteristic
equation of the matrix C, where

—C, —Cyrer —C,
1 0... 0
c=| . -

0 0..1 0

and at the same time as the characteristic equation of the difference equation
(13.0.3). Putting

}’-—x yu
0, = |0 and o =",
Yo »”
we have v, = Co,, since y, = —€,y,_;, — ¥y — -+ —C,), [see (13.0.3)].

Hence we have reduced the point by point formation of the solution of (13.0.3)
to the usual power method for determining eigenvalues of matrices, and we
have shown before that lim, ... (y./y._,) = 4,, where 2, is the numerically largest
eigenvalue of C (2, assumed to be real). But at the same time 2, is the numeri-
cally largest root of the equation (13.2.1). The discussion of the case when the
equation has several roots with the same absolute value was given in Section 6.1.

EXAMPLE

The equation 2* — 82* — 152 + 10 = O can be interpreted as the characteristic
equation of the difference equation y,,; — 8y,,, + 15y,,, — 10y,. We arbitra-
rily set y, = y, = 0; y, = 1, and obtain successively y, = 8; y, = 79; y, = 742;
Yo = 70415 y, = 66668; y, = 631539; y, = 5981922; y,, = 56661781; y,, =
536707688; y,, = 5083768999;. .. Further we have y,/y, = 9.49; y,/y, = 9.473;
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Yol = 9.47217; y,/y,, = 9.472137, compared with the exact roots -2,
5 — 1/20 = 0.527864 and 5 + 1720 = 9.472136. Obviously, it is essential
that one of the roots be numerically much larger than any of the others. We
can also find the next largest root with this method. Let 2, and 2, be the roots
in question, with |2,| > |4,|. Then

lim Zetr — A lim XeYe+s — Yinn _ A2, .
ke Yy k== Yo Yisr — Vi
In our example we obtain
JuYu —Vh _ _18.9441554 and 2, = —1.999987 .
Yo¥u — Yio

As a rule, Bernoulli’s method converges slowly, so instead, one ought to use,
for example, the Newton-Raphson method.

13.5. Partial difference equations

A partial difference equation contains several independent variables, and is
usually written as a recurrence equation. We shall here restrict ourselves to
two independent variables, which will be denoted by x and y; the dependent
variable is denoted by u.

We shall discuss only linear equations with constant coefficients, and first we
shall demonstrate a direct technique. Consider the equation

ux +1,y) —u(x,y +1)=0.
Introducing shift operators in both directions, we get

Eu(x,y) =u(x + 1,y),
Eu(x,y) = u(x,y + 1),
and hence we can write
Eu = Eu.

Previously we have found that a formal solution of Eu = au is u = ca*; here
¢ should be a function of y only. Hence we getu = E; f(y) = fix + y)[a was
replaced by E, and ¢ by f{y)].

The general solution is u = w(x, y) fix + y), where w(x, y) is periodic in x
and y with period 1.

Another method is due to Laplace. Here we try to obtain a generating func-
tion whose coefficients should be the values of the desired function at the grid
points-on a straight line parallel to one of the axes. We demonstrate the tech-
nique by an example.

We take the equation u(x, y) = pu(x — 1, y) + qu(x, y — 1) with the boundary
conditions u(x, 0) = 0 for x > 0; (0, y) = ¢”[hence (0, 0) = 1]. Introducing
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the generating function @,(¢) = (0, y) + u(1, y)§ + u(2, y)&* + ---, we find

9Py-i(§) = qu0,y — 1) + 5 quix, y — 1)§* -
Further, }
PEP,(E) = 1 pul(x — 1, )&
Adding together, we get

49(8) + PERE) = qu0.y — 1) + Lo u(x, )é*
=qu0,y — 1) —u(0,y) + () -

Here we have used the initial equation; if we make use of the boundary values
as well, we get
v
£) = __‘I_) .
P8 =7 FE

This completes the computation of the generating function. The desired func-
tion u(x, y) is now obtained as the coefficient of the £=-term in the power-series
expansion of ¢ (§). We obtain directly:

¢,(5)—q’(l—p$)"—q(l+y p&+y({+2 D e+ - )

and hence

u(x,y)-_— Y(y+1)"'(Y+X-1) p:qv:(x-*_i— I)P'q'-

1.2...x

Still another elegant method is due to Lagrange. Here we shall only sketch
the method very briefly, and for this purpose, we use the same example. We
try to find a solution in the form ¥ = a*3* and get the condition afB = pB + qa.
Hence u(x, y) = a*q*(1 — pa~*)~* with arbitrary a is a solution. Obviously, we
can multiply with an arbitrary function ¢(a) and integrate between arbitrary
limits, and again we obtain new solutions of the equation. Now we have ¢(a),
as well as the integration limits, at our disposal for satisfying also the boundary
condition. The computation is performed with complex integration in a way
similar to that used for solving ordinary differential equations by means of
Laplace transformations. For details, see [1] and [2].

Ordinary difference equations are of great importance for the numerical
solution of ordinary differential equations, and analogously, partial difference
equations play an important role in connection with the numerical treatment
of partial differential equations. These matters will be discussed more thor-
oughly in Chapters 14 and 15.
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[1] Milne-Thomson: The Calculus of Finite Differences (Macmillan, London, 1933).
(21 Uspensky: Introduction to Mathematical Probability (McGraw-Hill, New York, 1937).



EXERCISES 259
EXERCISES
1. Solve the difference equation §° f{x) = a f(x). Consider particularly the cases
a = —4sin® } and « = 4sinh® 4.
2. Solve the equation x* — 17x* — 59x* + 17x + 61 = 0, using Bernoulli’s method.
3. The integral §} x"e™*dx, where n is an integer > 0, can be written in the form
a, — b, .e”!, wherea, and b, are integers. Prove that forn > 1, a, and b, satisfy the dif-
ference equations a, = na, .,; b, = nb,_, + 1, with a, = b, = 1, and find lim,_,. (b,/a,).
4. a,, a;, and a, are given real numbers. We form a, = (a,_, + @,_, + a,_,) for
n=3,4,5,... and write a, = A4,a, + B,a, + C,.a,. Further, we put 4 = lim,_. 4,;
B = lim,_..B,; C = lim,_.C,. Find A4, B, and C.

5. Solve the difference equation u,,, — 2cos x - u, + u,_, = 0, when

(a) {“°=" (®) {"°:°'

U, =cosx, u=1.

6. a, B, 4y, and u, aregiven numbers. Fork =0,1,2,...,wehaveu,,,= aly.y + Pu,.
Putting U, = w,u,,, — u;,, show that U U,,, — U:., = 0.

1 X
y"—sox2+x+l

7. The integral

"

is given. Show that y,., + y..; + ¥, = 1/(n + 1), and use this relation for computing
Yn (n < 12); y, and y, are computed directly. Also find a value N such that yn = 0.04.

8. Show that S = %, (1/a,) is convergent, where the numbers a, form a Fibonacci
series (@, = @, = 1). Alsoshow that with R, = Ziv-nii(l/ay), wehavelim,_.a,_ R, =1.
Find{+}++3+4+4+48+ % + 545 +--- correct to six places.

9. Given a quadratic band-matrix 4 of order n with the elements

{—l for i—kl=1,
Qi = .
0 otherwise.

Show that the characteristic equation f,(2) = 0 can be obtained from f, = Af,_, — Sr-2s
fo =1, fi = 4. Find an explicit expression for /+(2) and the eigenvalues of A.

10. Find all values of k for which the difference equation y,—2y,,,+y,., 2+(k2/N"’)y,,=
0 has nontrivial solutions such that y, = yy = 0. Also give the form of the solutions.

11. A, and B, are defined through

A = A, +xB,_,
=1,2,3,..., 4 =0, =1.
{B.=B,-1+x4,-l, " 0 =0, B=1

Determine A,/B, as a function of n and x.
12. Solve the system of difference equations

{xnﬂ =Tx, + 10}’» )
Yne1 = Xo + 4}’:‘ ,

with x, = 3, y, = 2.



Chapter 14

Ordinary differential equations

Eppur si muove. GALILEL

14.0. Existence of solutions

An ordinary differential equation is an equation containing one independent and
one dependent variable and at least one of its derivatives with respect to the
independent variable; no one of the two variables need enter the equation ex-
plicitly. If the equation is of such a form that the highest (nth) derivative can
be expressed as a function of lower derivatives and the two variables, then it
is possible to replace the equation by a system of » first-order equations by use
of a simple substitution technique. The definition of linear and homogeneous
equations, as well as linear equations with constant coefficients, is trivial and
should need no comment.

The discussion of a system of first-order differential equations can, in essence,
be reduced to an examination of the equation

Yy =f(x,y). (14.0.1)

For this reason we shall pay a great deal of attention to this equation. It is
obvious that the properties of the function f(x, y) are of decisive importance
for the character of the solution.

We will first point out a simple geometrical fact. By equation (14.0.1) every
point in the domain of definition for f is assigned one or several directions ac-
cording as f is one-valued or not; only the first of these cases will be treated
here. In this way it is possible to give a picture of the directions associated
with the equation, and we can obtain a qualitative idea of the nature of the
solutions.

We are now going to consider two important cases for f(x, y): first that the
function is analytic, second that it fulfills the Lipschitz condition.

If f(x, y) is analytic (note that x and y may be two different complex variables),
then it is an easy matter to obtain a solution of (14.0.1) by aid of Taylor’s
formula. The differential equation can be differentiated an arbitrary number

260
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of times, and hence we can obtain as many derivatives as we want. With the
initial value y = y, for x = x,, we get

’ l n
y=yo+(x—xo)yo+2—,(x—xo)*yo +---,

and provided that |[x — x,| is sufficiently small, the series converges and gives
a unique solution of (14.0.1), with the initial condition y = y, for x — x,.

Often one does not want to demand so much as analyticity from the function
f(x,y). If we require that f(x, y) be bounded and continuous, this turns out
not to be enough to guarantee a unique solution. A widely used extra condition
is the so-called Lipschitz condition

Lf(x,y) = f(x 2)| <Ly — 2], (14.0.2)

where L is a constant.

Now we suppose.that this condition is fulfilled, and further that f(x, y) is
bounded and continuous within the domain under consideration: | f(x, y)| < M.
Further we assume the initial condition y = y, for x = x,. We integrate (14.0.1)
between x, and x and obtain

y=yo+ | f&y)de. (14.0.3)

Thus the differential equation has been transformed to an integral equation.
Now we choose an initial approximation y = y,(x) which satisfies the conditions
[¥i(x)] < M and y,(x,) = y,. For example, we could choose y,(x) = y,, but in
general it should be possible to find a better starting solution. Then we form
a sequence of functions y,(x), i = 2, 3,4, ...

Yin(X) =y, + S;f(e,y.-(é)) ¢ . (14.0.4)

This equation defines Picard’s method which on rare occasions is used also in
practical work. We now obtain

[Yiwa(x) = yui(x)] < S f(fr}’.‘(E)) _f(e,}’e~1(5))l dé

|
o
SANCESNGES
%0
We suppose x, < x < X, and putting X — x, = h, we obtain

(7:(*) = n(x)| =

o =2 + | 1le i)

< In(x) =yl + S Mdt <2Mh =N.
%o
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Further, we find successively:

yi(x) — yu(x) < L S Nds = NL(x — %) < NLh,
%0

’

240 = | < L 7 VL — ) e = N EE ) < v 2T

aa®) = ()| < L S N L‘((nf__—zs;)_ de

Ln—l(x _ xo)n—l < NL»——lhu—l

=N < )
(n — 1)! (n — 1)

But
Yaur(¥) = pi(x) + (yz(x) - )’x(x)) +0t (yu+1(x) - yu(‘x)) ,  (14.0.5)

and apart from y,(x), every term in this series is less in absolute value than
the corresponding term in the series
Lh? Lr»—1p1 )

’

ZTE — yY

N(1+Lh+

which converges toward Ne**. Thus the series (14.0.5) is absolutely and uni-
formly convergent toward a continuous limit function y(x). The continuity
follows from the fact that every partial sum has been obtained by integration
of a bounded function.

Now we form

) — o = Ao, yeen) |
= ) = yaai) = 7 {116, 70) - ft6. yu@)}

<1900 = yun)l + L 1€) — .01 de 0,

since y (x) and y,,,(x) converge toward y(x) when n — co. Hence we find

Yx) =y + S;f(e,y(é)) dz . (14.0.6)

Again we point out that y(x) = lim,__, y,(x), where the formation law is given
by (14.0.4). Differentiating (14.0.6), we get back (14.0.1).

It is easy to show that the solution is unique. Assuming that z = z(x) is
another solution, we obtain

p=yot A6 20N, yea =t | S @) e,

z
%o
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and hence
2= yual < | 162 = fEpI < L 12—yl

But |z — y,| < Mh = N/2, and hence |z — y,| < (N/2)L(x — x,) < (N/2)Lh;

N Lx —x) _ N L#
2! =72 2

|z — y S

’

and finally

N Ln+lhn+l

[2 - Yuul < 5 m

when n — co. Hence we have z(x) = y(x).

We can easily give examples of equations where the Lipschitz condition is
not fulfilled and where more than one solution exists. The equation y = vy
with y(0) = 0 has the two solutions y = 0 and y = x*/4 for x > 0.

14.1. Classification of solution methods

In the literature one can find many examples of equations which can be solved
explicitly. In spite of this fact good arguments can be given that these equa-
tions constitute a negligible minority. We shall restrict ourselves to such
methods as are of interest for equations which cannot be solved explicitly in
closed form. However, the methods will often be illustrated on simple equa-
tions whose exact solution is known.

If an explicit solution cannot be constructed one is usually satisfied by com-
puting a solution in certain discrete points, as a rule equidistant in order to
facilitate interpolation. On first hand, we shall consider the differential equa-
tion y’ = f(x, y), and we are going to use the notations x, = x, + kh,and y, =
the value of y obtained from the method {to be distinguished from the cxact
value y(x,)]. The value y,,, may then appear either as a function of just one
y-value y,, or as a function of several values y,, y,_,, ..., ¥,_, further, as a
rule, the values x_ and h will also be present. In the first case we have a single-
step method, in the second case a multi-step method.

The computation of y,,, is sometimes performed through an explicit, some-
times an implicit, formula. For example,

yn+l = yu—l + 2hf(xn’ yu)

is an explicit multi-step formula, while

Yorr = Vo + % [fns P2) + fFarns Pusd)]

is an implicit single-step formula. In the latter case an iterative technique is
often used to determine the value of y,,,.
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14.2. Different types of errors

For obvious reasons error estimations play an essential role in connection with
numerical methods for solution of differential equations, The errors have two
different sources. First, even the simplest numerical method implies introduc-
tion of a truncation or discretization error since the exact solutions as a rule are
transcendental and need an infinite number of operations, while the numerical
method only resorts to a finite number of steps. Second, all operations are
performed in finite precision, and hence rounding errors can never be avoided.
Let y(x,) be the exact solution in the point x,, and y, the exact value which
would result from the numerical algorithm. Then the total truncation error ¢,

is defined through
En = Ju _y(xn)' (14‘2‘1)

Due to the finite precision computation we actually calculate another value y,.
The rounding error ¢, is defined through the relation

€ =Ju— Y- (14.2.2)
For the total error r, we then obtain

|’n| = IYQ —y(xu),
= |(Pa = o) + (e — ¥(x))| < leal + 164 -

There are two main problems associated with these error estimations, viz. the
form of the truncation error, and the nature of the error propagation, that is,
how an error introduced by, for example, round-off is propagated during later
stages of the process. In the first case the situation can be improved by making
h smaller; in the second case this will have no effect except in some very special
cases. When one wants to investigate the truncation errors one should first
study the local truncation error, that is, the error resulting on use of the method
in just one step.

14.3. Single-step methods; Euler’s method

In this section we shall to some extent discuss a method, suggested already by
Euler, but almost never used in practical work. However, the method is of
great interest because of its simplicity. Applied on the differential equation
Y = f(x, ) it is defined through

Yari = Va + Bf(X0 005 p=a. (14.3.1)

Geometrically the method has a very simple meaning: the wanted function
curve is approximated by a polygon train where the direction of each part is
determined as the function value f(x, y) in its starting point. First we shall
derive the local truncation error ¢, assuming that the solution is twice con-
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tinuously differentiable. Since ¢, is the error after one step, we have

— (%) = Yo + byt — y(x, + h) = —3hY'(§),

where x, < & < x, and y, = y(x,). Hence the local truncation error is O(h*).
Further, we shall also estimate the total truncation error ¢, = g(x) with

X =X, =X, + nh,
assuming the Lipschitz condition | f(x, ;) — f(x, y,)| < L|y,—y,|and |y"(§)|<N:
Vit = Vm + Bf(Xps Ya) 5 m=20,1,2,...,n -1,
Y(Xupr) = P(*n) + Bf(Xas Y(%2)) + 30Y"(E0) s Xa < € < X
Subtracting and putting ¢,, = y,. — y(x,,), we obtain
Euir = En + B[ f(Xa, pu) — flXms y(x2))] — 2HY"(EL) -

Hence
[€msal < (1 + AL)|ea| + 3A'N .

We prefer to write this equation in the form [e,,| < Ale.| + B (m =0, 1,
2,...,n — 1) and by induction we easily prove for 4 = 1:

A — 1
A-1

But ¢, = 0 and 4* = (1 + AL)* < e"*t = et'*—=), which gives

jeal < A*eg| + B.

el.(l—lo) — 1

1
€ — hN
e < 5 i’

It is possible to prove the asymptotic formula: ¢, ~ ¢h + ch* + ¢ * + .-,
where the coefficients ¢, ¢,, ¢;, ..., depend upon x and the function f(x, y).
Starting from Euler’s method, existence and uniqueness proofs can be con-
structed by showing that the sequence of functions which is obtained when
h — 0 converges toward a function y(x) satisfying the differential equation.

14.4. Taylor series expansion

Assuming sufficient differentiability properties of the function f(x, y) we can
compute higher-order derivatives directly from the differential equation:

Y =1y,
XLy LY
y'_ax+ayy o

By oA (Y
Vet ey ax'a7+f(_y
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After this we can compute y(x + h) = y(x) + hy'(x) + 3" (x) + - - -, the series
being truncated in a convenient way depending on the value of h. We demon-
strate the method in an example, y’ =1 — 2xy. Differentiating repeatedly, we get

y' = =2xy -2y,
)"" — __2xyu _ 4yr ,

y(n-n) — _zxy(u+l) — 2(?1 + l)}’(') .

Putting a, = y; @, = hy's ay = h*y”[2; ..., we obtain
QApys = — %:'2(xan+l+hau) and yYx+h) =a+a+a,+---.
n

It is possible to compute
y' = =2x(1 — 2xy) — 2y = (4x* — 2)y — 2x,
Y = (—8x" + 4x)y + 4x* — 4 + 8xy = (—8x + 12x)y + 4(x* — 1), etc.,

but it should be observed that it is better not to construct these explicit expres-
sions.

NUMERICAL EXAMPLE

x=1 N
= @, = 0.53807 95069 (taken from a table),
h=0.1.
a, = 0.53807 95069
a, = —0.00761 59014
a, = —0.00461 92049
a, = 0.00035 87197
a, = 51600
a; = — 16413
a, = 375
a, = 36
a; = 0

y(1.1) = 0.52620 66801
Tabulated value: 0.52620 66800

A great advantage of this method is that it can be checked in a simple and effec-
tive manner. We have

y(x—h):ao-ax+a3_ag+"‘,

and this value can be compared with a previous value. In this example we find
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$(0.9) = 0.54072 43189 compared with the tabulated value 0.54072 43187. The
differences, of course, depend on round-off errors.

The error estimates in this method must, as a rule, be made empirically.
Very often the values a, vary in a highly regular way, and moreover, larger
errors would be disclosed in the back-integration checking.

The Taylor series method has a reputation of being unsuitable for numerical
work, one reason being storage problems for the higher derivatives, another
difficulties in computing them. The first reason hardly has any significance at
all with modern computers while the difficulties in computing higher derivatives
seem to have been overestimated. It should be mentioned that there are nowa-
days formula-manipulating programming languages in existence and thus also
this part of the work can be taken over by the computer.

14.5. Runge-Kutta’s method

This is one of the most widely used methods, and it is particularly suitable in
cases when the computation of higher derivatives is complicated. It can be
used for equations of arbitrary order by means of a transformation to a system
of first-order equations. The greatest disadvantage seems to be that it is rather
difficult to estimate the error, and further, the method does not offer any easy
checking possibilities.

First of all we shall discuss the solution of a first-order equation; generali-
zation to equations of arbitrary order is almost trivial. Let the equation be
y' = f(x, y), with starting point (x,, y,) and interval length 4. Then we put

ky = hf(x,, yo) »
ky = hf(x, + mh, y, + mk)),
ky = hf(x, + nh, y, + rky + (n — )k), (14.5.1)
k, = hf(x, + ph, y, + sk, + thky + (p — s — )k,),
k = ak, + bk, + ck, + dk,.
The constants should be determined in such a way that y, + k becomes as good

an approximation of y(x, + h) as possible. By use of series expansion, one ob-
tains, after rather complicated calculations, the following system:

a+b+c+d =
bm +cn +dp =
bm* + cn* + dp* =
bm® + cn® + dp® =

, cmr + d(nt + ms) = },
, cmnr + dp(nt + ms) =},

. . . \ (14.5.2)
, cm’r + d(n*t + m*s) = {5,

|
Sl Gk R

, dmrt = 2 -

We have eight equations in ten unknowns, and hence we can choose two quan-
tities arbitrarily. If we assume that m = n, which seems rather natural, we find

m=n=3%,; p—1; a=d=4%; b+c=%;
S+t=1; cr=13%; rt=4%.
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If we further choose b = ¢, we get b = ¢ = } and hence
m=n-=%, s=0, a=d=14%,
p=1, t=1, b=c=1%,

r=4%.

Thus we have the final formula system:

ky = hf(x0 yo) »

k, = hf(x, + %h, y, + 3k)),
ky = hf(x, + 3h, y, + k),
k, = hf(xy + h, y, + ks) -

If £ is independent of y, the formula passes into Simpson’s rule, and it can also
be shown that the local truncation error is O(#*). The total error has the
asymptotic form e(x) ~ c/h* + ch* + ch® + - - -. The explicit formula for the
error term, however, is rather complicated, and in practice one keeps track of
the errors by repeating the computation with 2h instead of 4 and comparing
the results; we can also obtain an improvement by aid of the usual Richardson
extrapolation.

Runge-Kutta’s method can be applied directly to differential equations of
higher order. Taking, for example, the equation y” = f(x, y,y’), we put y/ = z
and obtain the following system of first-order equations:

k = 3k, + 2k, + 2k, + k). (14.5.3)

-
7 = f(x,,7).
This is a special case of
Yy =Fx,y,2),
2’ =G(x,y,2),

which is integrated through:

k, = hF(x, y, 2) , l, = hG(x, y, 2),

ky = hF(x + éh’y + 3k, z + yl) ’ L, = hG(x + h, y + 3k, z + 3l),
k= hF(x + 3h,y + 3k 2 + 3), b= hG(x + 3h,y + 3ky 2 + B1),
ko= hF(x + hy + kyz + 1), I, =hG(x + hy + ky, z + 1),

k = ¥k, + 2k, + 2k, + k,), I =3+ 2L+ 2+ 1).

The new values are (x + h, y + k, z + I).

NUMERICAL EXAMPLE AND COMPUTATION SCHEME

y =z, (=F(x, y, 2))

Y=yt -y, ?=xt -y, (=G(x,,2)
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Initial conditions:

x=0,
y=1,
y=0.
x y z(=F) xzt — Y¥(=0) k !
0 1 0 -1 0 -0.2
0.1 1 —-0.1 —0.999 —0.02 —0.1998
0.1 0.99 —0.0999 —0.979102 —0.01998  —0.1958204

0.2 0.98002  —0.1958204 —0.9527709 —0.039164 —0.1905542
0.2 0.980146 —0.196966

The values below the line are used to initiate the next step in the integration.
Note that the interval length can be changed without restrictions. On the other
hand, it is somewhat more difficult to get an idea of the accuracy, as pointed
out above.

It should be mentioned here that there is a whole family of Runge-Kutta
methods of varying orders. For practical use, however, the classical formula
has reached a dominating position by its great simplicity.

A special phenomenon, which can appear when Runge-Kutta’s method is
applied, deserves to be mentioned. First we take an example. The equations

y=—-12y+ 9z,
= 1ly - 10z,
have the particular solution

y — ge—z + se—zxz ,
z = lle=* — Se~u+,
For x > 1, we have e~** < 10~*, and one would hardly expect any difficulties.

However, starting with x = 1, y = 3.3111(=~9%¢™), z = 4.0469(~=11e™"), and
h = 0.2, we obtain

x y z 11y/9z
1.0 3.3111 4.0469 1.0000
1.2 2.7109 3.3133 1.0000
1.4 2.2195 2.7127 1.0000
1.6 1.8174 2.2207 1.0003
1.8 1.4892 1.8169 1.0018
2.0 1.2270 1.4798 1.0134

2.2 1.0530 1.1632 1.1064
2.4 1.1640 0.6505 2.1870
2.6 2.8360 —1.3504 —2.5668
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Round-off has been performed strictly according to the principles given in
Chapter 1. A slight change in these principles is sufficient to produce a com-
pletely different table.

The explanation is quite simple. When we use Runge-Kutta’s method, we
approximate e=**by | — ah + 3a’h* — }a’h* + ;a'h*, which is acceptable when
a = 1and h = 0.2 (the error is <3 - 107%; however, it is a bad approximation
if a = 21 (6.2374 compared with e~*2 ~ 0.014996). In spite of the fact that
proper instabilities appear only in connection with multi-step methods, the
phenomenon observed here is usually called partial instability. A reduction of
the interval length (in this case to about 0.1) would give satisfactory results.
If the system of differential equations is written in the form

YV =SidX Y Vs o3 Va) s i=12,...,n,

the stability properties are associated with a certain matrix 4 having the ele-
ments a;, = df;/dy,- As a matter of fact, there are several matrices A4 since the
derivatives are considered in different points, but if we assume sufficiently small
intervals we can neglect this. Denoting the characteristic values of 4 by 1,,
we have stability for —2.785 < h2, < 0 if the eigenvalues are real and for
0 < |ha| < 2V/2 if the eigenvalues are purely imaginary. In the case of com-
plex eigenvalues A2, must belong to a closed domain in the complex plane,
mainly situated in the left half-plane (also cf. [10]). The value —2.785 is the
real root not equal to 0 of the equation 1 + x + x%/2! + x%/3! | x4/4! = 1.
In the example above, we had

4 — (— 12 9) ’
11 —10
that is, 2, = —1 and 2, = —21. Consequently » must be chosen so that

21h < 2.785, or h < 0.1326. Explicit calculations show, for example, that
h = 0.1 gives perfect results.

14.6. Muiti-step methods

As has been mentioned previously, a multi-step method defines the wanted value
Ya+x as @ function of several preceding values y, .\, ¥Yuis_s» -« > V.. In this
case we have a k-step method, and if in particular k = 1, we are back with the
single-step methods which have just been discussed. The method is explicit if
the value can be found directly, and implicit if the formula contains the wanted
value also on the right-hand side. We shall assume equidistant abscissas through-
out, and we observe immediately that a change of the interval length 4 will be
difficult to achieve. Further it is also obvious that a special technique is neces-
sary for calculation of a sufficient number of initial values. Primarily we shall
treat the equation y’ = f(x, y), later on also y” = f(x,y). For brevity the
notation f, = f(x,, y,) will be used.
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The general linear k-step method is then defined through the formula

[2 5% 299" + Qi1 Vmtk—1 + -+ Y.
= HBifurs + Bicifaska +-+ Bufa], n=0,1,2,.... (14.6.1)

Two polynomials will be introduced, namely,
o2 = a2t + a2+ +
oz =B+ By P+ + By

The polynomial p(z) at the same time is the characteristic polynomial associated
with the difference equation (14.6.1) when & = 0. The method is now said to
be convergent if lim,_, y, = y(x,), and this must be valid even for initial values
which are close to the right ones and converge to these when 4 — 0. Note that
n — oo in such a way that nk becomes finite. Then a necessary condition for
convergence is that the zeros z; of p(z) are such that |z,| < 1, and further that
all zeros on the unit circle are simple. This condition is known as the stability
condition. Methods for which this condition is not fulfilled are said to be
strongly unstable.

It is easy to show that we do not get convergence if |z;| > 1. To prove this
we consider the equation y’ = 0 with the initial value y(0) = 0 and exact solu-
tion y(x) = 0. Assume one root z; such that |z| = 2 > I; then the solution
of (14.6.1) contains a term Az} (the right-hand side of the difference equation
is equal to Osince f(x, y) = 0). Further assume an initial value suchthat 4 = A
and consider y, in the point x = nh. Then y, will contain a term with the
absolute value (x/n)2* which tends to infinity when 4 — 0 (n — o0). For com-
plete proof, see Henrici [7].

By discussing other simple equations we can obtain further conditions which
must be satisfied in order to secure convergence of the method. Let us first
consider the differential equation y’ = 0 with the initial value y(0) = 1 and
exact solution y(x) = 1. Since f(x, y) = 0 and all y, = 1, we have

ay + ey + -+ a, = 0. (14.6.3)

Next we also consider the differential equation y’ = 1 with the initial value
¥(0) = 0 and exact solution y(x) = x. Inserting this into (14.6.1) we find

UYure T Oy Yusscr + o+ QY =B+ By + -+ Bo) -
Since y, = rh, we obtain
(n + k)ha,‘ +(n+ k- Dha,_, + nha, = h(By + Biey ++ -+ + Bo) -
Taking (14.6.3) into account, we get
ka, + (k=D +-- -+ s =B+ B+ + B, - (14.6.9)
The conditions (14.6.3) and (14.6.4) can be written in a more compact form:
(1) =0,

(1) = o(ly. (14.6.5)
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These relations are usually called the consistency conditions, and it is obvious
from the derivation that they are necessary for convergence. Somewhat vaguely
we can express this by saying that a method which does not satisfy the con-
sistency conditions is mathematically wrong. On the other hand, it might well
be the case that a “correct” method is strongly unstable (cf. Todd’s example
in a subsequent section of this chapter).

If the local truncation error is O(h**?), the order of the method is said to be
P- Oneisclearly interested in methods which, for a given step-number k, are
of highest possible order, but at the same time stability must be maintained.
Dahlquist [4] has proved that the highest possible order which can be attained
is 2k, but if we also claim stability we cannot get more than k + 1 if k is odd,
and k + 2 if k is even.

We shall now discuss a simple example in order to illustrate the effect of a
multi-step method on the error propagation. We start from the equation

Y=a, y0)=1,
and shall apply a method suggested by Milne:

h ., ’
Yuss = Yu + 3 [a + e + Yisal s

that is, Simpson’s formula. Also using the differential equation we obtain the
following difference equation:

ah 4ah ah
(l - ‘5‘))’.“ - _3—‘)'.4»1 - (1 + ‘?)y,‘ =0.

The characteristic equation is
ah 4ah ah
1__)22—_1_(1 _)=0
(*-3 3 T3

with the roots (2ah/3 + VT + a®h¥3)/(1 — ah/3) or after series expansion,
aht o’k | a‘'ht | ook

A =1 ah + —— 4 27 4 2°C . 27
A T R a7

h | ath* | o'k
—(1-4,an  ak ...):_ ~ah/3
( 3+18+54+ (e + ¢,

+-ooze* ok,
1’:

where ¢, = 4*/180 and ¢, = 24%/81. The general solution of the difference equa-
tion is y, = A2 + B2?, and since we are looking for the solution y = e of
the differential equation we ought to choose 4 = 1, B = 0. We now compute
approximate values of 2t and 27 choosing n and 4 in such a way that nh = x
where x is a given value. Then we find

A= (et + off) = eM(1 + chfeh) = (1 4 nche=r ...
= e*(1 + cxh') = e*¥(1 + ax),
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where a = ¢,i* = a®#*/180. In a similar way we also find
F = (=Dre==(1 + Bx),

where 8 = c,h* = 2a°h*/81. We are now interested in the solution 2}, but in
a numerical calculation we can never avoid errors which will then be understood
as an admixture of the other solution. However, the effect of this will be quite
different in the two cases @ > 0 and a < 0. For simplicity, we first assume
a = 1. Further we assume that the parasitic solution from the beginning is
represented with the fraction ¢ and the “correct” solution with the fraction
1 — e. Thus, the generated solution is

Vo= (1 = e)ex(l + ax) + e(—1)e~="(1 + Bx)
and the error is essentially
E, = axe® — ge* + g(~1)"e™*.

Since x is kept at a fixed value the first term depends only on the interval length
(a = h'/180) and can be made arbitrarily small. The second term depends on
€, that is, the admixture of the parasitic solution. Even if this fraction is small
from the beginning, it can grow up successively because of accumulation of
rounding errors. The last term finally represents an alternating and at the same
time decreasing error which cannot cause any trouble.

We shall now give a numerical illustration and choose # = 0.3. Further we
shall treat two alternatives for the initial value y, which we choose first accord-
ing to the difference equation (y, = 2,), second according to the differential equa-
tion (y, = exp (0.3)). We find

2= 429 =11/9

and 2, = 1.349877; 1, = —0.905432. The difference equation is 9y,,, =
4y.., + 11y, and the results are given in the table below.

x A Error . 10° EM . 10° Ju Error . 10° E{™ . 10°

0 1 1 —

0.3 1.349877 18 18 1.349859 — 0
0.6 1.822167 48 49 1.822159 40 41
0.9 2.459702 99 100 2.459676 73 74
1.2 3.320294 177 179 3.320273 156 158
1.5 4.481988 299 303 4.481948 259 262
1.8 6.050132 485 490 6.050088 441 446
2.1 8.166934 764 772 8.166864 694 703
2.4 11.024354 1178 1191 11.024270 1094 1106
2.7 14.881521 1789 1808 14.881398 1666 1686

3.0 20.088220 2683 2712 20.088062 2525 2554
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For y, we have with good approximation ¢ = 0 and hence E{" ~ axe* with
a = h*/180 = 0.000045. For y,, we easily find ¢ = 0.000008, and from this,

1t is computed. The difference between actual and theoretical values is due
to the fact that the term ax is only an approximation of a whole series and
also to some extent to rounding errors.

We now pass to the second case a = —1, that is, the differential equation
v = —y, (0) = 1. In the same way as before we get

Yo = (1 — e (1 + ax) + e(—1)"e"*(1 + Bx),
where the signs of a and 8 have now been changed. Hence the error is
E, = (ax — €)e~* + g(—1)"e**(1 + Bx).

Again we illustrate by a numerical example. With the same choice of interval
(h = 0.3), the characteristic equation is 2* + 42/11 — 9/11 = 0 with the roots
A, = 0.74080832 and 2, = —1.10444469. Also in this case the solution is di-
rected first according to the difference equation, that is, y, = 2,, and second
according to the differential equation, that is, y, = exp (—0.3). The difference
equation has the form 11y,,, = —4y,,, + 9y,, and the results are presented
in the table on p. 276.

As can be seen in the table there is good agreement between the actual and
the theoretical error for the solution y, up to about x = 8. Here the discrepancy
between y, and A} begins to be perceptible which indicates that ¢ is now not
equal to 0. We also notice the characteristic alternating error which is fully
developed and completely dominating for x = 12. Still the computed values
», are fairly meaningful. If an error of this type appears, the method is said
to be weakly stable. In particular it should be observed that for a given value
x we can obtain any accuracy by making ¢ sufficiently small, and in this case,
¢ being equal to 0 initially, we have only to perform the calculations with suf-
ficient accuracy. The other solution shows strong oscillations already from the
beginning due to the fact that the initial value exp (—0.3) is interpreted as an
admixture of the unwanted solution A7 to the desired solution 7. We find

_ (A4 —e?)(1 — ah/3),
T 2T +aw3

fora=1andh = 0.3, weget e = —536.107%. Since e = O(#*) the error can
be brought down to a safe level by decreasing 4; already a factor 4 gives ¢ ~
5 . 10~° which brings us back to the first case y,. Again we stress the importance
of steering after the difference equation in cases when weak stability can occur.
This case has been discussed in considerable detail because it illustrates prac-
tically all phenomena which are of interest in this connection, and the discussion
of more general cases will be correspondingly facilitated. Again we choose the
equation y' = ay, y(0) = | but now a more general method will be applied:

O Ynik + Qs Yark T+ QYo = BBifork + BicrSasimr + 2+ Bofs) -

[
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x y.-10®  Error-10°  EP.10° yu- 108 Error.10°  E{M.108

0 1 0000 0000 — 1 0000 0000 —

0.3 7408 0832 —990 — 1000 7408 1822 —

0.6 5487 9697 — 1467 — 1482 5487 9337 — 1826 — 1842
0.9 4065 5336 —1630 — 1647 4065 6277 — 689 —707
1.2 3011 7812 —1609 — 1626 3011 7175 —2246 —2263
1.5 2231 1525 —1491 — 1506 2231 2527 —489 —505
1.8 1652 8564 —1325 —1339 1652 7679  —2210 —2223
2.1 1224 4497 —1146 —1157 1224 5638 —4 —16
2.4 907 0826  —969 —980 906 9687 —2108 —2118
2.7 671 9743 —808 —816 672 1091 +539 + 531
3.0 497 8042 —665 —672 497 6620 —2087 —2093
54 45 1551 —107 —110 44 8346  —3313 —3314
5.7 334510 —87 —86 33 8055 43458 + 3456
6.0 24 7811 —64 —67 24 3899 —13976 —3976
6.3 18 3577 —53 —52 18 7900 +4269 44267
6.6 13 5999 —-38 —40 131227 —4810 —4808
8.1 30340 —14 —11 38183 +7829 + 7826
8.4 2 2482 -5 -9 13820 —8667 — 8664
8.7 1 6648 —11 -7 26215 +9557 +9552
9.0 12341 0 -5 1774 —10567 — 10562
9.3 9133 -9 —4 20804 411661 + 11655
9.6 6776 +3 -3 —6114 —12886 — 12879

12.0 628 +14

12.3 439 —16

12.6 354 +17

12.9 230 —20

13.2 206 +21

13.5 113 —24

13.8 127 +26

14.1 46 —29

14.4 83 +27

14.7 7 -34

15.0 65 +35

Putting f — ay we get a difference equation with the characteristic equation
0(z) — aho(z) = 0.
If h is sufficiently small the roots of this equation will be close to the roots z;

of the equation p(z) = 0. We assume the stability and consistency conditions
to be fulfilled, and hence it is known that |z;| < 1, p(1) = 0, and p'(1) = o(1).
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Roots whose absolute values are <1 can never cause any difficulties, and we
restrict ourselves to roots on the unit circle, all of which are known to be
simple; among them is also z, = 1. Applying Newton-Raphson’s method to
the equation p(z) — aho(z) = 0 we find the root

2 =z, + %) 4 o .
0'(z,)
We now introduce the notation 2, = 0(z,)/(2,0'(2,)); for reasons which will
soon become clear these quantities are called growth parameters. We find
(Z)* = (1 + arh + OB = zX(exp (a,h + c bt + O(F))*
z2 exp (a2, nh)(1 + chtexp (—alh) + O(F))
~ zr exp (4,ax)(1 + c,nh*) = z2 exp (2,ax)(1 + a,x),

il

where a, = ¢,k and x is supposed to be a fixed value. In particular we have

=20 _
o'(1)
and the desired solution is obtained in the form e**(1 + a,x). Concerning the
parasitic solutions we see at once that such roots z;, for which |z,| < I, will
normally not cause any trouble (however, see the discussion below). If on the
other hand |z,| = 1 and Re (a2,) > 0, we are confronted with exactly the same
difficulties as have just been described (weak stability). A method which cannot
give rise to weak stability is said to be strongly stable.

Here it should also be mentioned that the same complication as was dis-
cussed in connection with Runge-Kutta’s method may appear with the present
methods. For suppose that a < 0 and that A is chosen large enough to make
|z.] > 1 in spite of the fact that |z,| < I; then the term z/* will initiate a fast-
growing error which can be interpreted as an unwanted parasitic solution. As
has been mentioned earlier this phenomenon is called partial instability since it
can be eliminated by choosing a smaller value of A.

At last, we shall briefly mention one more difficulty. Suppose that we are
looking for a decreasing solution of a differential equation which has also an
increasing solution that should consequently be suppressed. Every error intro-
duced will be interpreted as an admixture of the unwanted solution, and it will
grow quickly and independently of the difference method we are using. This
phenomenon is called mathematical or inherent instability.

Finally we quote an example of strong instability which has been given by

Todd. He considers the equation y”” = — y, and attempts a solution by Aty” =
0%y — {%0'y + §%50% — - --. Truncating the series after two terms, he obtains
with h = 0.1:

0.0lyy = y,uy — 2y,  Yuuy — 12(Vats = Wars + 6y, — 4y, + Yas)
= —0.0ly,,
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Vasa = 16yn+l - 29-88}',. + l6yl—l — Va3

As initial values, he takes 0, sin 0.1, sin 0.2, and sin 0.3, rounded to 10and 5§
decimals, respectively.

SEC. 14.6.

X sin x (10 dec}:’imals) Error (5 dec{’mals) Error
0 0 0 0
0.1 0.09983 34166 0.09983 34166 0.09983
0.2 0.19866 93308 0.19866 93308 0.19867
0.3 0.29552 02067 0.29552 02067 0.29552
0.4 0.38941 83423 0.38941 83685 262 0.38934 —8
0.5 0.47942 55386 0.47942 59960 4574 0.47819 —124
0.6 0.56464 24734 0.56464 90616 65882 0.54721 —1743
0.7 0.64421 76872 0.64430 99144 9 22272 0.40096 —24326
0.8 0.71735 60909 0.71864 22373 128 61464 —2.67357 —3.39093
0.9 0.78332 69096 0.80125 45441 1792 76345
1.0 0.84147 09848 1.09135 22239 24988 12391
1.1 0.89120 73601 4.37411 56871 3.48290 83270

The explanation is quite simple. The characteristic equation of the difference
equation is

r‘* — 16r* + 29.88r* — 16r + 1 =0,

with two real roots r, = 13.938247 and r, = 1/r, = 0.07174504. The complex
roots can be written r, = ¢’ and r, = e7*%, where sin § = 0.09983347. Thus
the difference equation has the solution

y(n) = Ar} + Bri* + Ccosnf + Dsinng ,

and for large values of n the term Arp predominates. The desired solution in
our case is obtained if we put 4 = B =C = 0, D = I; it becomes y(n) =
sin (n - 0.1000000556) instead of sin (n - 0.1). In practical computation round-
off errors can never be avoided, and such errors will be interpreted as ad-
mixtures of the three suppressed solutions; of these Ar represents a rapidly
increasing error. The quotient between the errors in y(1.1) and y(1.0) is
13.93825, which is very close to r,.

Hence the method used is very unstable, and the reason is that the differential
equation has been approximated by a difference equation in an unsuitable way.

Here it should be observed that a strong instability cannot be defeated by

making the interval length shorter, and as a rule such a step only makes the
situation still worse.
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14.7. Milne-Simpson’s method

The general idea behind this method for solving the equation y =f(*) is
first to perform an extrapolation by a coarse method, “predictor,” to obtain an
approximate value of y, ,,, and then to improve this value by a better formula,
“corrector.” The predictor can be obtained from an open formula of Cotes type
(cf. 10.1) and we find

, , 14
Yuss = Fos = By = Yo+ W)+ gY@ (4T

Neglecting the error term we get an approximate value of y,,, with which we
can compute y,,; = f(X,41> Yass)- Then an improved value of y,,, is determined
from the corrector formula

h ., ,
Vat1 = Vaur t+ T [}',,_x + 4}':. + y“-n] s (14.7.2)

with the local truncation error — ;4% (&,). If necessary, one can iterate several
times with the corrector formula.
As before we put y, = y(x,) + ¢, from which we get

’ a !
Ve = 5y = Sl Axe + €)= flxoyw) + 6. L =y + 0. L
Assuming-that the derivative gf/dy varies slowly we can approximately replace
it by a constant K. The corrector formula then gives the difference equation

€u+l = en—l + % (Gn—l + 45, + e,..n) ’ (14.7.3)

which describes the error propagation of the method. As has been shown
previously, we have weak stability if gf/dy < 0. If instead we use the predic-
tor formula

Yarr = =40 + Spus + 2h(yas + 2p5)
and then the corrector formula just once, it is easy to prove that we have strong
stability.

14.8. Methods based on numerical integration

By formally integrating the differential equation y’ = f(x, y), we can transform
it to an integral equation (cf. Chapter 16)

¥(x) — pa) = g £t y() dt .

The integrand contains the unknown function y(r), and, as a rule, the integration
cannot be performed. However, f{t, (1)) can be replaced by an interpolation
polynomial P(r) taking the values f, = f(x,, y,) for t = x, (we suppose that



280 ORDINARY DIFFERENTIAL EQUATIONS SEC. 14.8.

these values have already been computed). By choosing the limits in suitable
lattice points and prescribing that the graph of P(f) must pass through certain
points one can derive a whole series of interpolation formulas. It is then con-
venient to represent the interpolation polynomial by use of backward differences
(cf. Newton’s backward formula), and we consider the polynomial of degree
qins:

o) = f,+ 57, + L EDpry o WD 4G = Dpey,

1.2 q!
Evidently p(0) = fs (= 1) = f, 5 - - -; 9(—q) = f,—,- Buts = 0 corresponds
tot=x,s=—1tot=x, ,andsoon, and hence we must have s = (t — x,)/h.

As an example we derive Adams-Bashforth’s method, suggested as early as
1883. Then we must put

Vour — yp = S”*'p(z) dt = hS:¢(s) ds — h}f%c,wf,,
zp e

where ¢, = (—1)"§ (7!)ds. The first coefficients become

1
¢ =1; CIZ%; cz_—.sos(s_;ids—_—.l%.;
CSZSIW(is:i' C:g'
0 6 8’ ‘T 7200
95, c — 19087 | c. — 36799

’ ° 7 60480° 7 120960’
It is obvious that a special starting procedure is needed in this case.

If the integration is performed between x,_, and x,, we get Adams-Moulton’s
method; the limits x,_, and x,,, gives Nystrom’s method, while x,_, and x, give
Milne-Simpson’s method which has already been treated in considerable detail.
It is easy to see that Nystrom’s method also may give rise to weak stability.

288

Cowell-Numeroy’s method. Equations of the form y” = f(x, y), that is, not
containing the first derivative, are accessible for a special technique. It has
been devised independently by several authors: Cowell, Crommelin, Numerov,
S;bzmlxgr, Milne, Manning, and Millman. We start from the operator formula
(7.2.12);

ks 0? 0
't Gt
Hence we have

2 '3 2 4
v (1 2= 3 Y w10 8 B
12 240 " . l+ 2t )

or

hz L]
Yat1 — 2yn + Yy = ﬁ(fu+l + lofn _fn—l) - ;T()yxl + o(hs)’
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since §* =~ U* = h*D*and y” = f,. Neglecting terms of order 4® and higher,
we get the formula

}'.n 2ys + yu—l - _(fs+l + lofn +fn—1) (1481)

with a local truncation error O(#°%. In general, the formula is implicit, but in
the special case when f(x, y) = y - g(x) we get the following explicit formula:

Bnyn — Qg1 Vs R (14.8.2)
al+l

where a = 1 — (h*/12)gand 8 = 2 + (5h*/6)g.
In a special example we shall investigate the total error of the method. Let
us discuss the equation y” = a’y leading to the following difference equation

for y:
*h 10a*h? ah
1= 2y - (2 Vet (1= %)y =0,
(1= ) 7w = (245 ) e + (1 = 5 )9
with the characteristic equation

2_2 Mﬂ)prl:o.
)

Yar1 =

The roots are {1 + Sa*h*/12 + ah(1 + a*h*/6)'?}/(1 — a*h*/12), and after series
expansion we find

ahr
A, = exp(ah cee,
p (ah) + 380 + 22 480 +
S (14.8.3)
AL=e¢e h an _ ...,
*P(=) ~ 750 * 480
Hence we have
ah -
3= nh) (1 + — —
T =exp(a )( +4 exp (— ah)+4806xp( ah) + .. )
= exp (ax) (l + "°8h(; + O(hv))' = exp (ax)[1 + ah* + O(hY],

where a, = ¢°x/480 and nh = x. In a similar way we find

A7 = exp (—ax) (l — % + 0(h7)) = exp(—ax)[l — ap* + O(h%].

This means that the total truncation error can be written
&(x) ~ c it + ch® +

An error analysis in the general case gives the same result.



282 ORDINARY DIFFERENTIAL EQUATIONS SEC. 14.8.

For initial value problems a summed form of the method should be preferred.
First, the formula is rewritten as follows:

Yar1 — l%fm = Yo — li;-f.. + {(y - %f) = (y,._l - ;'—;f.-x) + h’f.}-

With the notation z, = y, — (h*/12)f, and s, for the expression within brackets
we obtain:

h!
Zn = Va— l_ifn ’ @)
zn+l = zn + sn ’ (b)
Z, = Zya t Sans (©)
Sa =2, =24, + hz.fn . (d)

Then (b) and (c) express the method while (d) is the definition of s,. Adding
(c) and (d) we find s, = s,_, + #*f,. We start the computation with a special
technique (for example, series expansion) for obtaining y,, and then we get

h A2
zo=}’o_-%; zlzyx_‘l"fzi; So = 2y — 255

sn = sn~l + hffn ’

Zyoy = Z, + Su s n=12,3,... (14.8.4)

—_— hz.fn+l —
yu+l 12 =z

ntl*

From the last relation y, ., is solved, usually by iteration.
In the special case f(x, y) = y - g(x), the following scheme can be applied as
before:

h? Sh?
=12, =242 4.
a 8 B + 8

When we start, all values of x, g, a, and B are known, as well as the first
two values of y and ay. One step in the computation comprises the following
calculations:

PQ -R=S,
S

—=V.
T
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As is easily inferred, the method is extremely fast. The following disadvantages
must, however, be taken into account: (1) The first step needs special attention,
for example, series expansion. (2) Interval changes are somewhat difficult.
(3) The derivative is not obtained during the calculation. Just as was the case
with Milne-Simpson’s method for the equation y’ = f(x, y), Cowell-Numerov’s
method can be interpreted as one of a whole family of methods designed for
the equation y” = f(x, y). We start from the following Taylor expansion:

L kvl — gyt

P y™(x + kt)dt .

Yox 4 Ky =y + 5y o |

The first mean value theorem of integral calculus transforms the integral to

1 n—1 "
n1y(n) (1 _ t) dt = k (n) k
k*y (x+0k)§o-————(n_l)! C (e + oK)

that is, Lagrange’s remainder term. Using the formula for n = 2 and perform-
ing the transformation x + kt = z, we get
z+k
yox ) =y = k() + [k~ 2z

The same relation with k replaced by —k becomes

yx =) =@ = k) + | (x k= 2y ds.

Replacing z by 2x — z, putting f(x, y(x)) = f(x), and adding the relations for
k and —k we obtain
ztk
Yox ) = )+ yx = k) = [T (e k= DS(@) + f2x - D]
(14.8.5)

Instead of f(z) we then introduce a suitable interpolation polynomial of degree
q through the points x,, x,_,, ..., x,_,, and by different choices of x, k, and ¢
we are now able to derive a whole family of methods. If we choose x = x,
and x + k = x,,,, we get Stormer’s method:

(]
Yos1 — zyp +yv—l = hzgoamanv’

e L0 () ()

One finds a, = 1, a, = 0, a, = T’Z’ a, = TI’Z’ a, = 21196’ a, = 436’ .

If instead we choose x = x,_, and x + k = x, with ¢ > 2 we again find
Cowell-Numerov's method:

q
Yo — zyp—l + Vor = hzz_ob»V"‘f,,

oo+ Cr

where

where
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The following values are obtained: b, = 1, b, = —1,b, = 14,0, =0, b, = —}5>
by = —5lgyeenn

' Finallgyiﬁwe shall also briefly discuss the stability problems for equations of
the form y” = f(x, y). First, we define the order of the method: if the local
truncation error is O(h?*?), then the order of the method is said to be p. This
means, for example, that Cowell-Numerov’s method as just discussed is of
order 4. Again, we use the same notations p(z) and ¢g(z) as for the equation

¥y’ = f(%, ). Our method can now be written
P(E)y, = Fa(E)f, . (14.8.6)

The stability condition can then be formulated as follows. A necessary condition
for the convergence of the multistep method defined by (14.8.6) is that all zeros
z; of p(z) are such that |z;| < 1, and further for the roots on the unit circle the
multiplicity is not greater than 2.

The proof is conducted by discussing the problem y” = 0, y(0) = y'(0) = 0,
with the exact solution y(x) = O (for closer details, see, for example, Henrici

7D)-

In a similar way we derive the consistency conditions
o(l)=0; e'(1)y=0; o"(l) =20(1), (14.8.7)

with the simple meaning that if the integration formula is developed in powers
of h we must have identity in terms of the orders A°, ', and A*. For Cowell-
Numerov’s method we have

oz)y=22-2z+1,

0(2) = {5(2* + 10z + 1),
and hence both the stability and the consistency conditions are satisfied. In
Todd’s example we have p(z) = z* — 162° + 30z — 16z + 1 and o(z) = —12.
Therootsof p(z) = Oare1,1,7 + 41/ 3 ,and 7 — 4,73 ,andsince 7+4173 >1

the stability condition is not fulfilled. On the other hand, the consistency con-
ditions are satisfied since

e(l)y =p(1)=0 and o'(l)y = —24 = 2¢(1).

14.9. Systems of first-order linear differential equations

We denote the independent variable with ¢, and the n dependent variables with
Xy, X,, . . ., X,. They will be considered as components of a vector x, and hence
the whole system can be written in the compact form

dx
T = A(t . 14. .
7 (1)x (14.9.1)

Here A(?) is a square matrix whose elements are functions of . Now we assume
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that A(f) is continuous for 0 < ¢ < T. Then we shall prove that the system
(14.9.1) with the initial condition x(0) = ¢ has a unique solution in the interval
0 <t < T; cis, of course, a constant vector.

The proof is essentially the same as that given in Section 14.0. Forming

X, = C,

: (14.9.2)
n“=c+&ﬂﬂnk; k=0,1,2,...

we get directly
t
Xy — X = So A(T)(x, — x,_,)) dT; k>1.

Since x, are vectors, we have to work with norms instead of absolute values:

t
e — 5l < [ 1@ 1 — 2l
Now let M = sup,..<r ||4(7)||, and we get
t
X — x| < MSQ X, — Xyl do .

But |x, — x,| < §:||4(7)|| - |x,| dr < M|c|t, and hence

MO 0,1,2
(k—+—l)” = U 4 ...

Thus the series 35 , |x,,, — X,| converges uniformly, since its terms are less
than the corresponding terms in the exponential series. Then it is also clear
that the series Y,;_ (x,,, — ;) converges uniformly, that is, x, — x when
k — oo. For the limit vector x, we have

[Xesy — Xl < el

xX=c+ S‘A(r)xdz',
0

which on differentiation gives dx/dt = A(t)x.
The uniqueness is proved in complete analogy to the one-dimensional case.
In the remainder of this section we shall concentrate on a very important
special case, namely, the case when 4 is constant. Then the system has the

simple form

%:Am x(0) = x, . (14.9.3)

We can write down the solution directly:
x = e'dx, . (14.9.4)

Surprisingly enough, this form is well suited for numerical work. First we
choose a value of ¢, which is so small that e!4 can easily be computed. Then
we use the properties of the exponential function to compute e™*4 = 74, where
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T = mt is the desired interval length. After this has been done, one step in
the computation consists of multiplying the solution vector by the matrix e™4.

It is of special interest to examine under what conditions the solution is
bounded also for # — co. We then restrict ourselves to the case when all eigen-
values are different. In this case there exists a regular matrix S such that
S-'4S = D, where D is a diagonal matrix. Hence e‘4 = SetPS§-1 and we have
directly one sufficient condition: for all eigenvalues we must have

Re(2,) < 0.

Problems of this kind are common in biology, where x,, x,, ..., x, (the
components of the vector x) represent, for example, the amounts of a certain
substance at different places in the body. This implies that 337 x, = constant
(for example 1), and hence 337_ (dx,/dt) = 0, which means that the sum of the
elements in each column of A4 is zero. Thus the matrix A is singular, and at
least one eigenvalue is zero. Often the matrix has the following form:

—ay, ay -+ Gy,
A — ‘fn —Qy - Gy,
a. Ay -+ —a,,

with a;; > 0 and

From the estimate (3.3.6), we have

”
2+ ay <Ya,,
i
or

2 + a;| < a;;. (14.9.5)
Hence for every eigenvalue, either 2 = 0 or Re (1) < 0.

When ¢ — oo, the contribution from those eigenvalues which have a negative
real part will vanish, and the limiting value will be the eigenvector belonging
to the eigenvalue 2 = 0. This can also be inferred from the fact that the final
state must be stationary, that is, dx/dt = 0 or Ax = 0.

If the problem is changed in such a way that 4 is singular, as before, but at
least some eigenvalue has a positive real part, we have still a stationary solution
which is not 0, but it is unstable. Every disturbance can be understood as an
admixture of the components which correspond to eigenvalues with positive
real parts, and very soon they will predominate completely.

14.10. Boundary value problems

A first-order differential equation y’ = f(x, y) has, in general, a function of the
form F(x, y, C) = 0, where C is an arbitrary constant, as solution. The integral
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curves form a one-parameter family, where a special curve corresponds toa
special choice of the constant C. Usually we specialize by assigning a funguon
value y = y, which should correspond to the abscissa x = x,. Then the inte-
gration can begin at this point, and we are solving what is called an initial-value
problem. For equations of second and higher order, we can specialize by con-
ditions at several points, and in this way we obtain a boundary value problem.
Later we shall consider only equations of the second order; the methods can
be generalized directly to equations of higher order.

For linear equations a direct technique is often successful, as will be demon-
strated with an example. Find a solution of the equation y”” = xy + x* passing
through the points (0, 0) and (1, 1). We see that y = —x is a particular solu-
tion, and accordingly we put y = Cz — x, where z = 0 at the origin. Using
Picard’s method, we obtain

x‘ x1 x!o xl!
"Btnat iz aw T 124290 1%

2x* | 2.5x" | 2.5.8x¢ | 2.5.8.11x"

=ttt 131

2 =X + .-

The boundary condition in the origin is satisfied, and we have only to choose
C in such a way that the boundary condition in point (1, 1) is also fulfilled.
From

x! X’
= - c( LI .“>
yemrrtttntn et

and x = y = 1, we get

2

C = = 1.84274 .
1+ 1/12 + 1/504 + ...

Often the boundary conditions have the form

ay, + by! = ¢ ,
{ Yot o (14.10.1)
ay, + 5’}’1 =7-
In nth-order equations such conditions can be imposed in » points:
a—-1
loawy®P=b; i=01,...,n-1. (14.10.2)
k=0

Even under these circumstances the described technique, which is nothing
but linear interpolation, can be used so long as the equation is linear. If this
is not the case, we can use a trial-and-error technique. Inourcase n = 2, we
guess a value of the derivative at the left boundary point, perform the integra-
tion, and observe the error at the other boundary point. The procedure is
repeated, and in this way we can improve the initial value; conveniently, we
use Regula falsi on the error at the right boundary point.
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We can also approximate the derivatives of the equation by suitable difference
expressions, and hence we obtain a linear system of equations. As an example,
we consider the equation

Y - (1 +2xy+x+2=0,
with the boundary conditions y = 0 for x = 0 and y = 2 for x = 1. Approxi-
mating y”” by &% /h* and choosing # = 0.2, we obtain
Yas1 — (2.04 + 0.08/x)y, + y,_, + 0.04(x +2) =0.

This results in a linear system of equations with four unknowns which are de-

noted as follows: y(0.2) = y;, (0.4) = y,, ¥(0.6) = y,, and y(0.8) = y,. The
system becomes

2.44.}" — Vs = 0.088 ,
-0 + 2.24y, — Ps = 0.096,
-y + 2.1733y, — y,=0.104,

~y 4 2.14y, = 2.112.,

We find

» = 0.2902 (exact 0.2899),

y,=0.6202  ( ,, 0.6195),

ys=10030 (,, 1.0022),

yo=1455  (,, 1.4550),
in good agreement with the exact solution y = x(e*~! + 1). The method describ-
ed here can be improved by use of better approximations for the derivatives. It
is characteristic that the resulting matrix is a band matrix. The complete system

now has the form
Ay =b - Cy,

where C contains higher differences. In the beginning we neglect Cy and com-
pute a first approximation, also including a few points outside the interval,
since we have to compute higher differences. Finally, the obtained values can
be refined by the usual iteration technique.

14.11. Eigenvalue problems

Consider the following boundary value problem:

Y'+ady=0, y0)=x1)=0.
The differential equation has the solution y = Acosax -+ Bsinax. From y(0)=0
we get A = 0, while y(1) = 0 gives Bsina = 0. If sina = 0 we have B = 0,
that is, the only possible solution is the trivial one y(x) = 0. If, on the other
hand, sin a = 0, that is, if @ = nxr where n is an integer, then B can be chosen
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arbitrarily. These special values a* = n*z* are called eigenvalues and the corre-
sponding solutions eigenfunctions. '

A differential equation with boundary values corresponds exactly to a linear
system of equations, and the situation discussed here corresponds to the case
in which the right-hand side is equal to 0. If the coefficient matrix is regular,
we have only the trivial solution zero, but if the matrix is singular, that is, if
the determinant is equal to 0, we have an infinity of nontrivial solutions.

The eigenvalue problems play an important role in modern physics, and as
a rule, the eigenvalues represent quantities which can be measured experimen-
tally, (for example, energies). Usually the differential equation in question is
written

d dy
(pY) _ =0, 14.11.1
e (p dx) qy + Apy ( )

where p, ¢, and p are real functions of x.
The problem of solving this equation with regard to the boundary conditions

{aoy(a) + ay'(a) = 0,
Boy(b) + Bly'(b) =0,

or y(a) = y(b); p(a)y’(a) = p(b)y’(d) is called Sturm-Liouville’s problem.
If the interval between a and b is divided into equal parts, and the derivatives
are approximated by difference expressions, we obtain

%(yr—l - zyr +yr+l) + ‘g—;z(yﬂH _yr—l) -9y, + lpryr =0.

This can obviously be written in the form
(A=2ny=0,

where 4 is a band matrix and y is a column vector. Nontrivial solutions exist
if det (4 — aI) = 0, and hence our eigenvalue problem has been transformed
into an algebraic eigenvalue problem. However, only the lowest eigenvalues
can be obtained in this way.

By the trial-and-error technique discussed above, we approach the solution
via functions fulfilling the differential equation and one of the boundary con-
ditions. But there is an interesting method by which we can advance via
functions fulfilling both boundary conditions and simultaneously try to improve
the fit of the differential equation.

In the Sturm-Liouville case we compute y, iteratively from

d d
dx (”(") ;—x) = 4xWar ~ ,0(X)ay - (14.11.2)
When integrating, we obtain two integration constants which can be deter-

mined from the boundary conditions; further, 2, is obtained from the condition
S: y?dx = 1, or from some similar condition.
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EXAMPLE
V'+ay=0; 0<x<2; p0)=y2)=0.

Find the lowest value of @? and the corresponding solution. We choose y, =
2x — x* fulfilling y4(0) = y,(2) = 0, yo(1) = 1. Then we form y,, y, ... ac-
cording to

VA= =&Y

The integration constants are obtained from the boundary conditions and a;
from the condition y,(1) = 1. Hence we obtain

Y= —a2x — x7),
yi=a(c— 2+ 3,

e ]

»(0) = 0 gives d = 0, y(2) = 0 gives ¢ = £, and y,(1) = | gives a? = 2.4,
and we therefore get y, = 4(8x — 4x° + x*). The procedure is then repeated.
The analytic solution is, of course, y = sin ax, and the condition y,(2) = 0
gives the eigenvalues @ = mzr/2, m = 1,2,3,... In our case we have, evi-
dently, m = 1. For the exact solution corresponding to m = 1, the following
relations are valid:

(l)—os~ [(i)T—os- 2)(0) = 7
y\3)=05: y(5)| =05 =7;
nz
and at = 7 = 2.4674011... .

The result is given in the following table.

n Yn

0 2x — x*

1 (8x — 4x* 4+ x*)/5

2 (96x — 40x* + 6x° — x°)/61

3 (2176x — 896x* + 112x* — 8x" + x%)/1385

4 (79360x — 32640x° + 4032x° — 240x" + 10x* — x*)/50521
n Ya(3) [y.3)F 2y,(0) ai
0 0.55556 0.5625 4 —
1 0.506173 0.507656 3.20 2.40
2 0.500686 0.5008895 3.1475 2.459
3 0.5000762 0.50010058 3.1422 2.4664
4 0.50000847 0.500011248 3.14166 2.46729
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EXERCISES

1. Solve the differential equation y' = x — y* by series expansion for x = 0.2(0.2)1.
Sketch the function graphically and read off the minimum point. Initial value: x = 0,
y=1

2. Solve the differential equation y = 1/(x + y) for x = 0.5(0.5)2 by using Runge-
Kutta’s method. Initial value: x =0, y = 1.

3. Solve the differential equation y’’ — xy for x = 0.5 and x = 1 by use of series
expansion and Runge-Kutta’s method. Initial values: x =0,y =0, y’ = 1.

4. If Runge-Kutta’s method is applied to the differential equation y’ = —y, with
Y(0) = 1 and the interval 4, we obtain after n steps the value y, = y(nh) = [A(h)]" as an
approximation of the exact solution e™™*. Find an algebraic expression for A(k), and
compute A(k) and A(k) — e™* with less than 14 relative error for & = 0.1, 0.2, 0.5, 1, 2,
and 5. Further, compute y, — e ™ to four significant figures for n = 100 and 4 = 0.1.

5. Solve the differential equation y’’ = (x — y)/(1 + y*) for x = 2.4(0.2)3 by use of
Cowell-Numerov’s method. Initial values: (2, 1)and (2.2, 0.8). Alsofind the coordinates
of the minimum point graphically.

6. Solve the differential equation xy’’ — yy’ = 0 by Runge-Kutta’s method for x = 0.5

and x = 1 (h = 0.5) when y(0) = 1 and y"’(0) = 2 (4 decimals). Then compare with the
exact solution which is of the form

_ax*+4 b
V= yd "
7. The differential equation y"’ = —y with initial conditions y(0) = 0 and y(k) = k is
solved by Numerov’s method. Find the explicit solution in the simplest possible form.
Then compute y, when & = /6 and k = }.

8. The differential equation y’ = 1 + x*y* with y = 0 for x = 0 is given. When x
increases from 0 to ¢, y increases from 0 to co. The quantity ¢ is to be determined to
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three places in the following way. First we compute y(0.8), using Picard’s method. Then
we introduce z = 1/y, and the differential equation for z is integrated with A = 0.3 by
use of, for example, Runge-Kutta’s method. When zis sufficiently small, we extrapolate
to z = 0, using a series expansion.

9. The differential equation y’' =axy+b is given. Then we can write y'*' =P,y +Q,,
where P, and Q, are polynomials in x. Show that z, = P,Q,,, — P,,,Q, is a constant
which depends on 7, and compute z,.

10. Thedifferential equationy’’ + x’y = 0 is given. For large values of x the solution
y behaves like a damped oscillation with decreasing wavelength. The distance between
the Nth and the (N + 1)-zero is denoted by zy. Show that limy_.. 2} - N® = 8z%/125.

11. Find the solution of the differential equation y'’ + x? = 0 with the boundary
conditions y(0) = 0, y(1) = 1 at the points 0.25, 0.50, and 0.75:
(a) by approximating the differential equation with a second-order difference
equation;
(b) by performing two steps in the iteration yy,, = —x%,, y, = x.

12. Given the system of differential equations

{xy'+z’+iy=0,
xz' —y' +34z=0,

with the initial conditions x =0, y =0, z = 1. Show that y* + z* = 1/+/T ¥ ** and
find y(3) and z(}) to five decimals.
13. The following system is given

{y"—?.xy'+z=0,
Z"+th'+y=0,

with boundary values y(0) = 0, y'(0) = 1, z(4) = 0, and Z(3) = —1. Find 2(0) and y(})
to 3 decimals. Also show that y* + 2 + 2y’Z’ is independent of x.

14. The differential equation y’ = (x* — y*)/(x* + y*)is given. It has solutions which
asymptotically approach a certain line y = px which is also a solution of the equation.
Another line y = ¢x is perpendicular to all integral curves. Show that pg = 1 and find
p and g to five decimals.

15. What is the largest value of the interval length % leaving all solutions of the
Cowell-Numerov difference equation corresponding to y’’ + y = 0 finite when x — co?

16. The differential equation y'’ + ay’ + by = 0 is given with 0 < @ < 2+/%. Find
the largest possible interval length / such that no instability will occur when the equation
is solved by use of the formulas

Yar=yathyns  yau=ya+ by
17. Investigate the stability properties of the method

34, ,
Va+a =Jn + ?(yu + 3}’.’.“ + 3}"/"%3 +)’4+:),

when applied to the equation y’ = —y.
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18. Thedifferential equation y”’ + x*(y + 1) = 0 s given together with the bc?undary
values y(1) = y(—1) = 0. Find approximate values of (0) and y(}) by assuming y =
(1 — x*Xa + bx* 4 cx*) which satisfies the boundary conditions. Use the points x = 0,
x = }, and x = 1 (3 significant figures).

19. Determine y0) of Exercise 18 approximating by a difference equation of second
order. Use h = } and solve the linear system 4z = @ + Dz iteratively by the formula

Tnsy = A_la + A_lDZg .

The inverse of an n x n-matrix 4 with elements @), = 1, @; = 2054 — 0i-1.6 — Oi+1,k
otherwise, is a matrix B with elements b;; = n + 1 — max (i, k).

20. A certain eigenvalue 2 of the differential equation
y'—2y +22y=0, p0)=x1)=0,

is associated with the eigenfunction y(x) = T n_,@x(4)x". Determine a,(4) and also give
the lowest eigenvalue with two correct decimals.

21. The differential equation y'’ + Axy = 0 is given, together with the boundary con-
ditions y(0) = 0, y(1) = 0. Find the smallest eigenvalue 2 by approximating the second
derivative with the second difference for x = }, 4, and §.

22. Find the smallest eigenvalue of the differential equation xy’’ + y' + Axy = 0, with
the boundary conditions y(0) = y(1) = 0. The equation is approximated by a system of
difference equations, first with 4 = }, then with 4 = , and finally Richardson extrap-
olation is performed to 4 = 0 (the error is proportional to 4%).

23. Find the smallest positive eigenvalue of the differential equation y'"(x) = Ay(x)
with the boundary conditions y(0) = y'(0) = y''(1) = y""'(1) = 0.

24. The differential equation y’’ + (1/x)y’ + 2’y = 0 is given together with the bound-
ary conditions y'(0) = 0, y(1) = 0. Determine the lowest eigenvalue by assuming

y=ax*— 1)+ bx*— 1)+ cx* — 1)

which satisfies the boundary conditions. Use the points x = 0, x = }, and x = 1.

25. The smallest eigenvalue 2 of the differential equation y’’ + ix’y = 0 with bound-
ary conditions y(0) = y(1) = 0 can be determined as follows. The independent variable
is transformed by x = af and the equation takes the form y’’ + £’y = 0. This equation
can be solved, for example, by Cowell-Numerov’s method and, say, & = } (since only
the zeros are of interest we can choose y(4) arbitrary, for instance equal to 1). Compute
2 rounded to the nearest integer by determining the first zero.

26. The differential equation (1 + x)y’’ + y’ + A(1 4 x)y = 0 is given together with
the boundary conditions y’(0) = 0, y(1) = 0. Show that by a suitable transformation
x = at + pof the independent variable, the equation can be brought to a Bessel equation
of order O (cf. Chapter 18). Then show that the eigenvalues 2 can be obtained from
A = & where ¢ is a root of the equation

J(E)Y(28) — Y (EWo(26) = 0.
It is known that J(§) = —J,(€) and Y¢(€) = —Y,(&).



Chapter 15

Partial differential equations

Le secret d’ennuyer est celui de tout dire.
VOLTAIRE.

15.0. Classification

Partial differential equations and systems of such equations appear in the de-
scription of physical processes, for example, in hydrodynamics, the theory o
elasticity, the theory of electromagnetism (Maxwell’s equations), and quantum
mechanics. The solutions of the equations describe possible physical reactions
that have to be fixed through boundary conditions, which may be of quite a
different character. Here we will restrict ourselves to second-order partial
differential equations, which dominate in the applications. Such equations
are often obtained when systems of the kind described above are specialized
and simplified in different ways.

We shall assume that the equations are linear in the second derivatives, that
is, of the form

o'u 0’u 0'u
aax2 +2baxay +cay2 e, (15.0.1)

where a, b, ¢, and e are functions of x, y, u, u/dx, and gu/dy. We introduce
the conventional notations:

Then we have the relations:
du:%dx+%dy=pdx+qdy,
dp=a%c(g_:)dx+%(g_;)dy=rdx+sdy,
d =§; %)dx+%(%)dy=sdx+tdy.

With the notations introduced, the differential equation itself can be written
ar 4+ 2bs +ct = e.

When treating ordinary differential equations numerically it is customary to
start in a certain point where also a number of derivatives are known. For a

294
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second-order equation it is usually sufficient to know y, = y(x,) and y;; high'er
derivatives are then obtained from the differential equation by successive dif-
ferentiation. For a second-order partial differential equation it would be
natural to conceive a similar procedure, at least for “open” problems for
which the boundary conditions do not prevent this. Then it would be reason-
able to replace the starting point by an initial curve along which we assume
the values of u, p, and q given. With this background we first encounter the
problem of determining r, s, and ¢ in an arbitrary point of the curve. We sup-
pose that the equation of the curve is given in parameter form:

x=xt), y=xy7)-

Since u, p, and ¢ are known along the curve, we can simply write u = u(z),
p = p(r), and ¢ = q(z), and introducing the notations x’ = dx/dr and so on,
we find
(x’r + y's =p.
x's +y't=4q", (15.0.2)
lar+2bs+ct =e.

From this system we can determine r,s, and ¢ as functions of 7, provided that
the coefficient determinant D = 0. We find directly

D = ay™ — 2bx’y’ + cx'. (15.0.3)

It is rather surprising that the most interesting situation appears in the excep-
tional case D = 0. This equation has a solution consisting of two directions
y'[x' = dy/dx or rather a field of directions assigning two directions to every
point in the plane. These directions then define two families of curves which
are called characteristics. They are real if b — ac > 0 (hyperbolic equation)
or if b* — ac = 0 (parabolic equation) but imaginary if b* — ac < 0 (elliptic
equation).

If D = O there is no solution of (15.0.2) unless one of the following three
relations is fulfilled:

Pl xl y' Pl xl 0 P’ y’ 0
ql 0 xl — 0 ; ql 0 y’ o 0 ; q’ xl yl — 0
e a 2b e a c e 2b c

(Incidentally, they are equivalent if D = 0.) This means that one cannot pre-
scribe arbitrary initial values (x, y, u, p, and ¢) on a characteristic.

As is easily understood, an equation can be elliptic in one domain, hyperbolic
in another. A well-known example is gas flow at high velocities; the flow can
be subsonic at some places, supersonic at others.

The following description gives the typical features of equations belonging to
these three kinds, as well as additional conditions. In the hyperbolic case we
have an open domain bounded by the x-axis between x = 0 and x = 4, and
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the lines x = 0 and x = a for y > 0. On the portion of the x-axis between 0
and a, the functions u(x, 0) and gu/dy are given as initial conditions. On each
of the vertical lines a boundary condition of the form au + B(du/dx) = r is
given. In the parabolic case we have the same open domain, but on the por-
tion of the x-axis only u(x, 0) is given as an initial condition. Normally, »(0, y)
and u(a, y) are also given as boundary conditions. Finally, in the elliptic case
we have a closed curve on which u or the normal derivative gu/on (or a linear
combination of both) is given; together with the equation, these conditions
determine u in all interior points.

Hyperbolic equations, as a rule, are connected with oscillating systems
(example: the wave equation), and parabolic equations are connected with
some kind of diffusion. An interesting special case is the Schrodinger equa-
tion, which appears in quantum mechanics. Elliptic equations usually are
associated with equilibrium states and especially with potential problems of
all kinds.

15.1. Hyperbolic equations

We shall first give an explicit example, and we choose the wave equation in
one dimension, setting the propagation velocity equal to c:

Ou _ 1 o (15.1.1)

In this case we can easily write down the general solution:
u=f(x+ct)+ gx—cr). (15.1.2)

The solution contains two arbitrary functions f'and g. Its physical meaning is

quite simple: u can be interpreted as the superposition of two waves traveling

in opposite directions. If, in particular, we choose f(z) = —3}cosrzz and

8(z) = 4 cos z, we get u = sin zrx sin zrct, which describes a standing wave

with w(0,¢) = u(1,¢) = 0 and u(x,0) = 0. Physically, the phenomenon can be

realized by a vibrating string stretched between the points x = 0 and x = 1.
Often the initial conditions have the form

{ u(x, 0) = f(x),
ou

-~ ’ 0 Il ’
=0 (%, 0) — g(x)
and then we easily find the general solution

u(x’ I) — ﬂx + ct) ;‘f(x —ct) + 2—1‘:52“: g(E) de . (l5.13)

z—

Also for the two- and three-dimensional wave equation, explicit solutions
can be given (see, for example, [3]).
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Setting y = ct in (15.1.1), we get the equation 9*u/9x* — §*u/3y* = O with the
explicit solution u = f{x + y) + g(x — y). It is interesting to observe that
the partial difference equation

ux + Ly +ux -1, y)=uxy + 1) +ux,y—1) (15.1.4)

has exactly the same solution. This equation is obtained if we approximate
the differential equation by second-order differences. However, if the cocf-
ficients of the equation do not have this simple form, it is, in general, impos-
sible to give explicit solutions, and instead we must turn to numerical methods.
A very general method is to replace the differential equation with a difference
equation. This procedure will be exemplified later, and then we shall also treat
the corresponding stability problems. At present we shall consider a method
which is special for hyperbolic equations and which makes use of the properties
of the characteristics.

First, we take a simple example. The equation §°u/9x3y = O gives the equa-
tion for the characteristics dxdy = 0, that is, x = constant, y = constant. The
characteristics have the property that if we know
u along two intersecting characteristics, then we
also know u in the whole domain, where the
equation is hyperbolic. In this special case we
have the general solution u = ¢(x) + ¢(y). Now
suppose that u is known on the line x = x,, as
well as on the line y = y,. Then we have

P(x) + ¢(y) = F(x),
P(x) + ¢(y) = G(y),

where both F(x) and G(y) are known functions.
Adding and putting x = x,and y = y,, we obtain Figure 15.1

P(%) + ¢(y) = 3[F(x,) + G(y))],
where F(x,) = G(y,), and
u = %) + $(y) = F(x) + G(y) — 3[F(x) + G(yo)] -
In general, the characteristics are obtained from the equation

ay’* — 2bx’y’ + cx* =0

or
dy _ b Vb —ac.
dx a ’

these two values will be denoted by f and g (they are functions of x, y, u, p,

and ¢). Further, consider an arc 4B which is not characteristic and on which
u, p,and g are given. Let PR be a characteristic of f-type, @R one of g-type.
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Further, let P = (x,,,); @ = (%3, )2); R = (%;,,). In first approximation we
have

Vs =y =filxs — X,) »

Vs = Y2 = &% — X5) -
From this system x, and y, can easily be computed. The second of the three
equivalent determinantal equations can be written

ex'y’ —ap'y’ — cg'x’ =0
or

dy dy
YWix — a¥dp—cdg=0.
i i S |

Along PR this relation is approximated by

e(x, — x)fi —a(ps — p)i —lgs — q) =0,
and along OR by

ey(xs — X;)8 — a(Ps — P))8 — €x(9s — 9a) = 0.

Since x, and y, are now approximately known, p; and ¢, can be solved from
this system. Then it is possible to compute u, from
ou ou
= —d —dy,
“ "”Lax x+ay 4
where we approximate gu/ox by 3(p, + p;) and ou/dy by (¢, + ¢,); further, dx
is replaced by x, — x, and dy by y; — y,. Hence we get

Uy = U + 3(x; — x)(py + ps) + 3(ys — y)(q + gs) -

From the known approximations of u, p,, and ¢,, we can compute f; and g,.
Then improved values for x,, y;, ps, ¢;, and u; can be obtained in the same way
as before, but with f; replaced by 3(; + £3), g by (& + &), @, by (@, + ay),
and so on. When the value in R has been obtained, we can proceed to S, and
from R and S we can reach T. It is characteristic that we can only obtain
values within a domain ABC of triangular shape and with 4B as “base.”

We shall now in an example demonstrate how it is possible to apply an
ordinary series expansion technique. Again we start from the wave equation

u_u
ox* oy

with the initial conditions

u(x, 0) = x*; %mm:ra

(Note that the straight line y = 0, where the initial conditions are given, is
not a characteristic.) We are then going to compute %(0.2, 0.1) starting from
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the origin. Differentiating the initial conditions, we obtain

ou o‘u -
— (x, 0) = 2x ’ —(x,0) = —e ,
o (x,0) axay( )
o'u o’u _
-— % 0)=2 ’ - (% 0) = e,
o (%, 0) %3y (%, 0)
o’u
¥ (x,0) =
e &0
From the differential equation we get
o'u
—(x,0) =2
e (%, 0)
and then successively:
—‘231-— d'u =0 _a"‘u —ﬂ:
ox*  oxay* ' axay oy

and hence

o°u . o’u R
—axay’ (x,0)=0; 5);’_()" 0) =e=,

and so on. We then finally obtain the desired value through
u(x, y) = exp (xD, + yD,)u(0, 0)
0.1 + %(2 -0.04 — 0.04 + 0.02)

i

+ %(3 .0.004 + 0.001) + 512(_4 -0.0008 — 4 . 0.0002) + - . -

= 0.13200 .

The exact solution is

u— (x + y)* — (x — y)y N _1-Sz+ve_.d’ =x 4y 4 e~*sinh y
2 2 Joy
which for x = 0.2, y = 0.1 gives the value u = 0.13201.

As mentioned before, it is of course also possible to approximate a hyperbolic
differential equation with a difference equation. From the wave equation

Fu_ du _
oxt 9y ’
we get the difference equation
ur.:+1 — 2"'.. + U, 1 — ur+1.u — zur,n + ur—),n . (15.1.5)

kt ht



300 PARTIAL DIFFERENTIAL EQUATIONS SEC. 15.2.

As before, the indices r and s are completely equivalent, but a difference is
introduced through the initial conditions which define an integration direction,
viz., toward increasing values of s. In 1928, Courant, Friedrichs, and Lewy
in a famous paper [5] proved that the difference equation is stable only if k¥ < 4.
In following sections we shall give much attention to stability problems.

15.2. Parabolic equations

The simplest nontrivial parabolic equation has the form

o'u _ Ju

==, 15.2.1

ox* ot (13.2.1)
with the initial values u(x,0) = f{x), 0 < x < 1, and the boundary conditions
u(0, t) = @(t); u(1,t) = ¢(t). This is the heat equation in one dimension.

We shall first solve the problem by approximating §°u/dx?, but not gu/ot, by
a difference expression. The portion between x = 0 and x = 1 is divided into n
equal parts in such a way that x, = rhand nh = 1. Then we have approximately
ou, _ du, 1

at = d_t = ﬁ (uf-l - 2ur + ur+l) *

Writing out the equations for r = 1,2, ..., n — 1, we obtain

h’fg:l:uo—Zul-}-u,,

du
=2 = u — 2u, + u,,

{ d (15.2.2)
d
h % =Uy_,— 2, +u,.
Hence we get a system of n — 1 ordinary differential equations in u,,u,, . . . ,u,_;
the quantities », and u, are, of course, known functions of ¢:
U = p(t),
u, = ‘/1(1) ¢
The values of u,, u,, . .., u,_, fort = Oare f{h), f2h), ..., fi(n — 1)h). Putting
u, ‘(‘; -2 1 0...0 O
u, . I -2 I...0 0
U = . . V= : N A= .
. 0
u 0 0 0...1 =2
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we can write

wdU _4qu v,

dt
As an example, we solve the heat equation for a thin, homogeneous rod of
uniform thickness, which at time ¢ = 0 has temperature u = 0. Further we
assume u(0, t) = 0 and u(1, f) = . We will then consider the temperature u,
for x = &, u, for x = %, and u, for x = }, and we find with h — }:

d,

- 16(—2u;, + u,),
du

_dT’ = 16(u, — 2u, + u;),
du

7’. = 16(u, — 2uy + t).

Using the indefinite-coefficient method, we obtain the particular solution

(u,) , (-5+321
| = | —8464r].
w128\ 7496

The solution of the homogeneous system is best obtained by putting u, =
elt = e, This gives a homogeneous system of equations whose coefficient
determinant must be zero:

-2 —p 1 0
1 —-2—p 1
0 1 -2-—p

The roots are
pl=—2; p,:—2+|/2; [1,:—2—|/2,

and the corresponding eigenvectors are

4 M)

Hence the solution is
U — A .e " + B . e~ 1t3—-v2t + C . e 103+ V2t + _1_ -5 32¢ s
: g (77 3%

u, = M . e103—vIt Cl/_ﬁ_ . em103+ V2t + -l—(—l + 81)
16 ’

u, = —A . e + B . e~1803—V2)t + C . e 183+ VEN + _1;_8(_7 + 96t);
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A, B, and C can be obtained from u,(0) = u,(0) = u,(0) = 0.

1 . 322, 3 _2v2
TE  ——y B = ———— C i — o
128 128 128
For large values of t we have
t t 3t
u(t) ~ vy > u, (1) ~ 7; u(t) ~ i

However, we can also approximate gu/dt by a difference expression. Then it
often turns out to be necessary to use smaller intervals in the t-direction. As
before, we take x, = rh, but now we also choose ¢, = sk. Then we obtain the
following partial difference equation:

Up_y — 2u,, + U, — U1 — U, (15.2.3)
h? k
With a = k/h*, we get
ur,n+l = aur—l.i + (l - za)ur.i + aur+l,i * (15'2'4)

Later on we shall examine for what values of & the method is stable; here we
restrict ourselves to computing the truncation error. We get

ux,t + k) — u(x,t) _ ou " k d'u k* o%u

k at 20 an 3 o
ux —ht) —2u(x,t) + u(x - h,t) _ Fu K 5 ia_”u__f_
B T ox* 12 ax* | 360 ox°

Since u must satisfy ou/dt = 9’u/ox*, we also have, under the assumption of
sufficient differentiability,

o*u o'u . o’u _ o' .
ot oxt’ ot oaxt’

Hence we obtain the truncation error

h’( o’u 1 8‘u> ht (a’ o°u 1 6°u)

= —_— —_—— +__ —

2\ 6 ax*) 6\ ar 60 ox°
_E( _L)& E(az_i Pu
2\*" " %) "6 %) 5
Obviously, we get a truncation error of highest possible order when we choose
=}, that is, k = h?/6. Then we find

_ ou
540 o1

Now we solve the heat equation again with the initial condition u(x, 0) = 0
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and the boundary conditions u(0, ) = 0, u(1,¢) = t, choosing h=1% gnd k.= o5
corresponding to a = §. The recursion formula takes the following simple
form:

u(x,t)=%_(u(x—h,t—k)+4u(x,t—k)+u(x+h,t—k)).

After 12 steps we have reached ¢ = 0.125 and the u-values, 4, = 0.00540,
u, = 0.01877, u, = 0.05240, and, of course, ¥, = 0.125. From our previous
solution, we obtain instead

u, = 0.00615, u, = 0.019%4, and u, = 0.05331 .

The exact solution of the problem is given by

oo — n—1 .
u(x,t) = _é. (x* — x + 6x1) + % El L_:lz_e"‘"‘" sin nzx ,

which gives u, = 0.00541, u, = 0.01878, and u, = 0.05240. Hence the method
with @ = } gives an error which is essentially less than what is obtained if we
use ordinary derivatives in the t-direction, corresponding to a = 0.
The method defined by 15.2.3 or 15.2.4 gives the function values at time

t + k as a linear combination of three function values at time ¢; these are then
supposed to be known. For this reason the method is said to be explicit. Since
the time step k has the form a/*, it is interesting to know how large values of
a we can choose and still have convergence. Let us again consider the same
equation

ou _ ou

ax ot
but now with the boundary values 4(0,¢) = u(1,¢) = 0 when ¢ > 0, and with

the initial condition u(x, 0) = f(x), 0 < x < 1. If f{x) is continuous we can
write down an analytic solution

u=), a,sinmrxe """, (15.2.5)
m=1
where the coefficients are determined from the initial condition which demands

f(x) = u(x, 0) = i a, sin mzex .
m=1
Thus we obtain (cf. Section 17.3):

a, =2 Slf(x) sin mex dx .
0

We shall now try to produce an analytic solution also for the difference equation
which we now write in the form

ur,-+l - ur,l = a(u"—l.l - zur.n + ur+l.n) .
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In order to separate the variables we try with the expression u, , = X(rh)T(sk)
and obtain

T((s + k) — T(sk) _ | X((r + Dh) — 2X(rh) + X((r — Dk) _ _p.
T(sk) N X(rh)

(Since the left-hand side is a function of s and the right-hand side a function
of r, both must be constant; —p? is called the separation constant.) We notice
that the function X(rh) = sin mzxrh satisfies the equation

X((r + 1)) — 2X(rh) + X((r — 1)h) = — ﬁf X(rh) ,

if we choose p* = 4asin? (mrh/2). Further we assume T(sk) = e~** and obtain
e~ = 1 — 4asin® (mzh/2). In this way we finally get

u,, = 2":";: basin mrrh (1 — dersint TR’ (15.2.6)

Here Mh = 1 and further the coefficients b, should be determined in such a
way that u,, = f{rh), which gives

b = 2 5= finhy sin mank
= — 1 .
- M&ﬂn)snmn

(Cf. section 17.3.)
The time dependence of the solution is expressed through the factor
{1 — dasin® (mzh/2)}*, and for small values of @ we have

1 — 4asin? mrh _ emtam .

If this is raised to the power s we get

—am3z343, ~m3x3 —m3r3
eantﬁa=enxk:=enx¢’

that is, the same factor as in the solution of the differential equation. If a
increases, the factor will deviate more and more from the right value, and we
observe that the situation becomes dangerous if a > 4 since the factor then
may become absolutely > 1. Therefore, it is clear that # and k must be chosen
such that k < h*/2. Even if h — 0 one cannot guarantee that the solution of
the difference equation is close to the solution of the differential equation
unless k is chosen such that o < }.

A numerical method is usually said to be stable if an error which has been
introduced in one way or other keeps finite all the time. Now it is obvious
that the errors satisfy the same difference equation, and hence we have proved
that the stability condition is exactly @ < 3. It should be pointed out, how-
ever, that the dividing line between convergence on one side and stability on
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the other is rather vague. In general, convergence means that the solution
of the difference equation when 4 — 0 and k — 0 approaches the solution of
the differential equation, while stability implies that an introduced error does
not grow up during the procedure. Normally these two properties go together,
but examples have been given of convergence with an unstable method.

Before we enter upon a more systematic error investigation we shall demon-
strate a technique which has been used before to illustrate the error propaga-
tion in a difference scheme. We choose the heat conduction equation which
we approximate according to (15.2.4) with o = 3:

ur.n+l = %u'—l,l + éur+l,n .

The following scheme is obtained:

s=0 s=1 s§=2 s§=3 s=4
r=-4 0 0 0 0 s
r=-3 0 0 0 3 0
r——-2 0 0 3 0 e
r=—-1 0 3 0 3 0
r = 0 1 0 g 0 Toa'
r= 1 0 3 0 3 0
r —= 2 0 0 i 0 T46'
r= 3 0 0 0 3 0
r= 4 0 0 0 0 2

The numerators contain the binomial coefficients (%) and the denominators
2*; the method is obviously stable. If the same equation is approximated with
the difference equation

Uy 1, — 2ur.n + Upir,e _ Upgrr — Upyn
= ’

n 2k

which has considerably smaller truncation error than (15.2.3), we get with
a = k/hz = %I

ur,c+l = ur.n—l + ur—l,c + ur+l,o - 2ur,'

s=—-—18s=0 s=1 s§=2 s=3 s=4
r= -4 0 0 0 0 0 1
r=-3 0 0 0 0 1 —8
r= -2 0 0 0 1 —6 31
r=—1 0 0 1 -4 17 —68
= 0 0 1 -2 7 —24 89
= 1 0 0 1 —4 17 —68
= 2 0 0 0 1 —6 31
= 3 0 0 0 0 1 —8
r= 4 0 0 0 0 0 1
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Evidently, the method is very unstable and useless in practical computation.
It is easy to give a sufficient condition for stability. Suppose that the term to
be computed is given as a linear combination of known terms with coefficients
¢y, €3 Gy, - -, C,. Then the method is stable if

e

el

=1
We see, for example, that (15.2.4) is stable if @ < 3.

We shall now treat the problem in a way which shows more clearly how
the error propagation occurs, and we start again from the same system of
equations:

Upopg = QU _, , + (1 - 2a)ur,c + au,,,, .

Introducing the notation u, for a vector with the components u, ,,u, ,, . . .,uy_, ,,
we find u,,, = Au,; where

1 - 2 a 0 0-.. 0

a 1 - 2« a 0... 0

A = 0 a 1 - 2« a--- 0
0 0 0 .. a 1-2a

If we also introduce an error vector e, we get trivially
e, = A, ,

and we have stability if e, stays finite when n — co. We split the matrix 4
into two parts: 4 = I — aT, where

2 -1 0o ... 0

-1 2 -1 ... 0
T = . .

0 0 ... -1 2

all matrices having the dimension (M — 1) x (M — 1). Supposing that T has
an eigenvector x we obtain the following system of equations:

xn + (2 - 2)xu+l + xn+2 = 0 ’
withn =0,1,2,..., M — 2, and x, = x, = 0. This can be interpreted as a
difference equation with the characteristic equation
g+ @A-2p+1=0.

Since T is symmetric, 2 is real, and Gershgorin’s theorem gives |1 — 2| <2,
that is, 0 < 2 < 4. Hence we have the following roots of u:

22

2 .
:]—_+ -,
o 5t 2 Y



sec. 15.2. PARABOLIC EQUATIONS 307

But0 < 2 <4implies -1 <1 —-22<1land0<2— 2*/4 < 1, and further
we have (1 — 2/2)* + (2 — #%/4) = 1. This shows that we can put

cos<p=1—i
2!

. A2
sin = ,JX —_—,
? )
and g == e**. Hence x, = Ae'*¢ + Be™**¢, and x, = x,, = 0 gives:

A+ B=0,
[Asin Mp = 0.

But 4 =+ 0 and consequently we have

Mo - mm, m=1,2,3,... M -1,

=2(1 — = 4sim? I'T
2, ( cos @) sin M

This shows that the eigenvalues of 4 are 1 — 4asin? (mz/2M), and we find
the stability condition:

—1<1 —4qgsint ™% <1,
< asin’ = <

that is, a < [2sin® (mm/2M)]~'. The worst case corresponds to m = M — 1
when the expression within brackets is very close to 2, and we conclude that
the method is stable if we choose

a<i}.

The necessity to work with such small time-steps has caused people to try to
develop other methods which allow greater steps without giving rise to in-
stability. The best known of these methods is that of Crank-Nicolson. It
coincides with the forward-difference method, however with the distinction
that ¢u/ox* is approximated with the mean value of the second difference quo-
tients taken at times ¢ and ¢ + k. Thus the method can be described through

ur,l+l —u,,

1
k = = Eh—,(ur+l,n - zut.n + U e + Upjree1 — 2"f,,+1 + ur—l,r“) .

(15.2.7)

We have now three unknowns, viz., u,_, ,,,, 4, ,,,, and u,,, ,.,, and hence the
method is implicit. In practical computation the difficulties are not very large
since the coefficient matrix is tridiagonal.
We are now going to investigate the convergence properties of the method.
As before we put
u,, = X(rh)T(sk)
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and obtain
T[(s + 1)k] — T(sk) _ a X[(r + D)h] — 2X(rh) + X[(r — 1)h] _ _p
T[(s + D)k] + T(sk) 2 X(rh) )

Trying with X(rh) = sinmnrh we get
P* = 2asin? (m—”h) ,
2
and putting T(sk) = e~#* we find
1 —e® 2 sin? (mn'h)
1 + e 2
or finally

o _ 1 — 2asin’ (mrh/2)
1 + 2asin® (mzhj2)

We can now write down the solution of the Crank-Nicolson difference equation:

= . 1 — 2assin? (mzrh/Z))'

u,, = ..E=1 b, sin mrrh (l gy y— , (15.2.8)
where b, has the same form as before. The shape of the solution immediately
tells us that it can never grow with time irrespective of what positive values
we assign to a. It is also easy to see that when A, k — 0, then (15.2.8) con-
verges toward (15.2.5).

In order to examine the stability properties we again turn to matrix technique.
We note that the system can be written

@I + aTu,,, = (21 — al), ,
that is,

u= (1 %T>_l(l—%1')u, = Cu, .

A similar relation holds for the error vector: e, =C’e,. It is now obvious that
the eigenvalues of C are of decisive importance for the stability properties of the
method. We have already computed the eigenvalues of T:

1,,,:4sin’;n—.;;, m=1,2,3,...,M—1,

and from this we get the eigenvalues of C (note that Mh = 1):

1 — 2asin? (mm/2M)
1 + 2asin? (mz/2M) )

Hence Crank-Nicolson’s method is stable for all positive values of a.
We shall now also compute the truncation error of the method which is
done most easily by operator technique. Let L’ be the difference operator, and
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L = D, — D: (observe that Dju = o’u/ox*, not (0u/ox)’). We get

L'_L=?_'""T—_l 2h, L (er0: — 2 4 e*2s)(1 4 e2) — D, + D}
=D, + XD+ Epr+oo
2
—<_D’+_D‘ -)(2+kD,+-l;—Df+---)—D,+D;
K K B
=k —py+Xp_ Kpip: 2 p
2D¢(Dt :)+ 6 t 4 =™t 12 +

= O() + O(K?) .

since D,u = Du if u is a solution of the differential equation. This result snows

that without any risk we can choose k of the same order of magnitude as h,

that is, k = ch, which is a substantial improvement compared with k = ah®.
Crank-Nicolson’s method can be generalized to equations of the form

u _ o, ou
ot oxt | oy
but usually one prefers another still more economic method, originally sug-

gested by Peaceman and Rachford. The same technique can be used in the
elliptic case, and it will be briefly described in the next section.

15.3. Elliptic equations

When onc is working with ordinary differential equations, the main problem
is to find a solution depending on the same number of parameters as the order
of the equation. If such a solution has been found, it is usually a simple matter
to adapt the parameter values to the given boundary conditions. For partial
differential equations, the situation is completely different. In many cases it
is relatively simple to find the general solution, but usually it is a difficult
problem to adapt it to the boundary conditions. As examples we shall take
the Laplace equation

ou | u

== + 2=

ox* oy

o'u

5;; + — e = F(x, ). (15.3.2)

In the remainder of this section, we will give much attention to these two most
important equations.

The Laplace equation has the general solution

u=flx + i) + gx — iy).

=0, (15.3.1)

and the Poisson equation
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The problem of specializing f and g to the boundary conditions (Dirichlet’s
problem) is extremely complicated and has been the subject of extensive
investigations.

We shall now consider the numerical treatment of the Poisson equation;
the Laplace equation is obtained as a special case if we put F(x, y) == 0. Ac-
cording to (12.3) we have approximately.

Prux, y) = 2o [uGx + h,y) + u(x,y + h)

+ u(x — h,y) -+ u(x,y — h) — 4u(x, y)] . (15.3.3)

The equation /*u = F is then combined with boundary conditions in such
a way that u is given, for example, on the sides of a rectangle or a triangle.
If the boundary is of a more complex shape, we can take this into account by
modifying (15.3.3). Now we get a partial difference equation which can be
solved approximately by Liebmann’s iteration method (15.3.4). Here index n
indicates a certain iteration:

1
Unii(%:9) = - [Upis(5: Y = h) + Uy i(x — b, y)
2
b uy(%, y + K) + uy(x + hy y)] — %F(x, y).  (15.3.9)

We start with guessed values and iterate row by row, moving upward, and
repeat the process until no further changes occur. As an example we treat the
equation

Fu | Fu _ 1 1

x " p By
in the interior of a triangle with vertices at the points (1, 1), (1, 2), and (2, 2),
and with the boundary values ¥ = x* — log x — 1 on the horizontal side, u =
4 —log 2y — y* on the vertical side, and u = —2log x on the oblique side. With
h = 0.2, we obtain six interior grid points: 4(1.4, 1.2); B(1.6, 1.2), C(1.8, 1.2),
D(1.6, 1.4); E(1.8, 1.4); and F(1.8, 1.6). Choosing the starting value 0 at all
these points, we obtain

A B C D E F
--0.1155 0.2327 0.8824 —0.3541 0.3765 —0.3726
—0.0573 0.3793 1.0131 —0.2233 0.3487 —0.3795
—0.0207 0.4539 1.0248 —0.2116 0.3528 —0.3785
—0.0020 0.4644 1.0285 —0.2079 0.3549 —0.3779
+0.0006 0.4669 1.0296 —0.2068 0.3556 —0.3778
+0.0012 0.4676 1.0300 --0.2064 0.3558 -0.3777
+0.0014 0.4679 1.0301 —0.2063 0.3559 —-0.3777
+0.0015 0.4679 1.0301 -0.2063 0.3559 —-0.3777

+-0.0012 0.4677 1.0299 —0.2065 0.3557 —0.3778
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The exact solution is u = x* — y* — log xy, from which the values in the last
line have been computed.

The variant of Liebmann’s method which has been discussed here is closely
related to Gauss-Seidel’s method. In general, when a discretization of the
differential equation has been performed, we have an ordinary linear system
of equations of high but finite order. For this reason we can follow up on the
discussion of methods for such systems given in Chapter 4; in particular, this
is the case for the overrelaxation method.

All these methods (Jacobi, Gauss-Seidel, SOR) are point-iterative, that is, of
the form

a™tt = Mu™ + ¢, (15.3.5)
Obviously, this equation describes an explicit method. A natural generalization
is obtained if a whole group of interrelated values (for example, in the same
row) are computed simultaneously. This is called block iteration and evidently
defines an implicit method. We give an example with the Laplace equation in
a rectangular domain 4 x 3:

12

The coefficient matrix becomes

4 -1 —1
~1 4 _1 —1
-1 4 _1 ~1
-1 4 —1
—1 4 —1 ~1
—1 -1 4 _1 —1
—1 -1 4 _1 —1
~1 -1 4 —1
-1 4
-1 -1 4 —1
—1 -1 4 _1
-1 -1 4

where all empty spaces should be filled with zeros. Using block-matrices we

get the system:

D 1
o

F,
D,
E

o
F,
D,

|

U,
U,
U,

A

)=

K,\
K,
KS

).
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Here, for example, U, is a vector with components u,, u,, 4;, and u,. This equa-
tion can now be solved following Jacobi, Gauss-Seidel, or SOR. It must then
be observed, however, that we get a series of systems of equations for each
iteration and not the unknown quantities directly.

Finally, we shall also treat alternating direction implicit (= ADI) methods,
and we then restrict ourselves to the Peaceman-Rachford method. First we
discuss application of the method on an equation of the form

0 [ au] 9 [ au]
— | A(x, hibed — | C(x, — | — Fi G:O, 15.3.6
x| A = |+ o (> y)ay U+ ( )
where A4, C, and F are >0.
The derivatives are approximated as follows:

0 [ au:l ( h u(x + h,y) — u(x, y)
—|A(x,y)—| = A4 —,
ox *.7) ox x 2 y) h?

_ A(x - %y) ux, y) —;(x —hy)

and analogously for the y-derivative. Further, we introduce the notations
a=A<x+%,y), c:A(x—%,y), 2b=a+c,

a:C(x,y+§>, r=¢C x,y—_;-), 28=a+7p,
and define
Hu(x, y) = a(x, yyu(x + h, y)
= 2b(x, yyu(x, y) + c(x, yyu(x — h, y),
Va(x, y) = a(x, yyu(x, y + h)
= 2B(x, y)u(x, y) + r(x, y)u(x, y — h).

The differential equation will then be approximated by the following difference
equation

(15.3.7)

(H, + Vo — Fi®yu + G = 0.

Supposing boundary conditions according to Dirichlet we construct a vector k
from the term Gh* and the boundary values, and further we put Fi* = S. The
equation is then identically rewritten in the following two forms by use of
matrix notations:

(pl——Ho+%)u=(pI+ V.,_%)u+k,

(ot - V.,+§)u=(p1+ﬂ.,—_2s.)u+k,
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where p is an arbitrary parameter. Putting H = —H, + S/2,V=—-V,+ 8/2,
we now define Peaceman-Rachford’s ADI-method through

(o + Hu+' = (o1 — Vyu™ + k,
(P..I + V),,(H»n — (P..I _ H)"(u+lI2) + k,

(15.3.8)

where p, are so-called iteration parameters, so far at our disposal.

We now assume that H and ¥ are symmetric and positive definite. First we
restrict ourselves to the case when all p, are equal (=p). The intermediate
result *+% can then be eliminated and we find:

u*t = Tu™ + g,
where
T = (oI + V) (oI — H)pI + H)(oI — V),
g = (oI + V)(oI — H)(oI + HY™k + (ol + V) 7k .
The convergence speed depends on the spectral radius A(7), but when we try

to estimate this it is suitable to construct another matrix W by a similarity
transformation:

W = (oI + V)I(oI + V)™,
that is,
W = {(of — H)(oI + H)™'} - {(o — V(oI + V)'} .
If the eigenvalues of H and ¥ are 2; and p, we find
AT) = aW) < |l(oI — H) (oI + H)™'|| - ||(eI — V)(oI + V)|
= (oI — H)(oI + H)™'} - 2{(ol — V)(oI + ¥)7'}
e — 4 o — .u.'l .
O+

P+ 4
As H is positive definite, all 2, > 0 and we can assume 0 < a < 4; < b. Let us
first try to make

max
1Si<H

max
1SigN

Il

max
1<i<H

0
O+ 4

as small as possible. It is easily understood that large values of |(0 — 4;)/(0 + 1,)]
are obtained if p is far away from 2;, and hence our critical choice of p should
be such that (0 — a)/(0 + a) = (b — p)/(b + p), that is, p = p, = Vab. In
the same way, for the other factor we ought to choose p = p, = V'aB where
0 < a < p; < B. If these two values are not too far apart we can expect that
the “best” of them will give a fair solution to the whole problem. From the
beginning we want to choose o such that 2(T) is minimized. Instead we have
split a majorant for 2(T) into two factors which have been minimized separately
since the general problem is considerably more difficult.
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In the special case when we are treating the usual Laplace-equation inside a
rectangular domain 4 x B, where 4 = Mh and B = Nh, H is operating only
horizontally and ¥ only vertically. The M — 1 points along a given horizontal
line form a closed system with the same matrix R as was denoted by T in the
section on parabolic equations. Hence the eigenvalues of R have the form

2,=4sin’;n—:{, m=12....M—1.

With, for example, M = 6, N = 4, we get the following shape for H and V-

S
R Y
Hz( % ) - s |
R Y
S
where
2 —1
—1 2 -1
R = -1 2 -1
—1 2 —1
-1
and

2 —1
s-_-(_ 2 _,).
—1 2

In a similar way we obtain the eigenvalues of S:
. = 4sin? Iz
¢ 2N
Hence we get
a=4sim T p=asiwTM 1 _ 4o T,
2M 2M YoM’
a = 4sin? T ; = 4 cos?
2N R cos 2N
and consequently
pl=25inﬁ_7;, ‘o,:ZSin%.
Now we can compute

o-—ap—-a__ 1 oM+ N
ot+ap+a N  MN
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and analogously
pr-ap—a_y_ 1 xM N
o, +a p,+a M MN

Finally we choose the value of o which gives the smallest limit, that is,

o = 2sin % ,
where P = max (M, N). Note that P = M produces the result containing 1/N.
For the general case when different parameters are used in cyclical order,
there is no complete theory, but nevertheless there are a few results which are
useful in practical computation. We put ¢ = min (@, @) and d = max (b, B).
In the case when one wants to use n parameters, Peaceman-Rachford suggest
the following choice:

c (35—1)/3n .
p,.:d(j) . j=1,2.,n. (15.3.9)
Wachspress suggests instead

¢ \U-vitn-n ,
pjzd(j) ., n>2, i=1,2,...,n. (153.10)

More careful investigations have shown that convergence with Wachspress
parameters is about twice as fast as with Peaceman-Rachford parameters.

When the iterations are performed in practical work, this means that one
solves a system of equations with tridiagonal coefficient matrices which can be
done by usual Gaussian elimination. Since all methods for numerical solution
of elliptic equations are based upon the solution of finite (but large) linear
systems of equations, one need not, as a rule, be worried about stability.
Almost exclusively an iterative technique is used, and then it is about enough
that the method converges. Since the domain is closed the boundary values,
so to speak, by force will keep the inner function values under control, while
a similar situation is not present for hyperbolic or parabolic equations.

15.4. Eigenvalue problems

Problems which contain a parameter but which can be solved only for certain
values of this parameter are called eigenvalue problems, and they play a most
important role in many applications. We here restrict ourselves to demonstrat-
ing in an explicit example how such problems can be attacked with numerical
methods.
We consider the equation
32, 2.
du L ou

il =0, 4.
m T T (15.4.1)
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inside a square with corners (0, 0), (3, 0), (3, 3), and (0, 3). On the sides of the
square we shall have u = 0; then the equation describes a vibrating membrane.

We will work with two mesh sizes, # = 1 and & = 3. For reasons of sym-
metry all values are equal in the first case, while in the second case only three

U v V]
U U . . .
L] L]
v w v
[ ) [ ] [ ]
V] [V}
. . V] v V]
L J L] [
Figure 15.4 (a) (b)

different values need be considered. Starting from equation (15.3.3), we have
in the first case
U+U+0+0-4U+2U=0

and 2 — 2. In the second case we get with ¢ = 9 21:
2V —4U + pU =0,
2U+W -4V + pV =0, (15.4.2)
The condition for a nontrivial solution is
4—p =2 0

-2 4-p -—1 |=0. (15.4.3)
0 -4 4-—p

The result is g* — 124 + 404 — 32 = 0, with the smallest root
p=4—-1V18 =1.1716,

and hence 2 = 2.083. Now we know that the error is proportional to A*, and
hence we have for 4* and 2 the two pairs of values (1, 2) and (0.5625, 2.083).
Richardson extrapolation to #* = 0 gives 2 = 2.190. The exact solution & —
sin (mrx/3) sin (nzy/3) gives

7[’
A= (m+ n) 3 (15.4.4)
The lowest eigenvalue is obtained for m = n = 1:

gy = 2T 2193,
9
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The error is only 0.1595. Higher eigenvalues can be determined numerically,
too, but then a finer mesh is necessary. We will also obtain considerably lower
accuracy.
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EXERCISES
1. The function f(x, y) satisfies the Laplace equation

2 ~2
g

ox* y
This function f(x, y) is given in the following points:
x 0 025 | 05 | 0.75 1 0 1 0
y 0 0 0 0 0 025 | 025 | 0.5
ol -t - o | ok | -8
x 1 0 1 0 025 ( 0.5 0.75 1
y 05 | 075 | 0.75 1 1 1 1 1
/ 7 —25 | T 0 dr T4 & }
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Using Liebmann’s method, find the value of the function in the nine mesh points:
x = 0.25, 0.5, 0.75 and y = 0.25, 0.5, 0.75, to three places.

2. Using Liebmann’s method, solve the differential equation

du  du_y
oxt 3y 10

in a square with corners (1, 0), (3,0), (3, 2),and (1,2)(h = }). The boundary values are:

x 1.5 2 2.5 3 3 3

y 0 0 0 0.5 1 1.5

—0.3292 0.3000 1.1625 2.3757 1.9500 1.0833

x 2.5 2 1.5 1 1 1
y 2 2 2 1.5 1 <+ 0.5
u —1.0564 | —1.4500 | —1.4775 | —0.8077 | —0.6500 { —0.7500

3. Find an approximate value of  in the origin when u satisfies the equation

du ou
ou g4
ox* + ay*

and further u = 0 on the sides of a square with corners (-1, +1).
4. The function u(x, y) satisfies the differential equation

u 2 d’u ou
— + — +2y—==0.
 t U e S
On the sides of a square in the xy-plane with corners (0, 0), (0, 1), (1, 0), and (1, 1) we
have u(x, y) = x + y. The square is split into smaller parts with side equal to . Find
the value of u(x, y) in the four inner lattice points by approximating the differential
equation with a difference equation so that the error becomes O(A%).
5. The equation
Pu 1w _
ox* ' x ox ot
is given. Using separation determine a solution satisfying #(0, f) = 1, u(1, ) = 0, and
explain how a more general solution fulfilling the same conditions can be constructed.
6. Let u(x,t) denote a sufficiently differentiable function of x and ¢ and put

u(mh, nk) = u,, , where h and k are the mesh sizes of a rectangular grid. Show that
the equation

(2k>-l(“u.nvl - ”m,n--l) - h-z(unﬂ»l.n — Up pry — U, n T+ “m—x,n) =0
gives a difference approximation of the heat equation

ou o‘u

u _ o _o
ot ox*
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if K = h* and h — 0, but a difference approximation of the equation

du  du d’u

— ——-———0

ot + ar ax*
ifk=hand h - 0.

7. Compute the smallest eigenvalue of the equation

a“ + gy,; +Au=0

by replacing it with a difference equation. Boundary values are # = 0 on two horizontal
and one vertical side of a square with side 1, and with two sides along the positive x-
and y-axes, and du/dx = 0 on the remaining side along the y-axis. This latter condition
is conveniently replaced by u(—h, y) = u(h, y). Choose h— } and h = §, extrapolating
to h* = 0. Then find an analytic solution trying 4 = cos ax sin 5y and compute an exact
value of 2.

8. The equation

u  du
T TM=0
is considered in a triangular domain bounded by the lines x =0,y =0,and x + y = 1.
It is known that ¥ = 0 on the boundary. The differential equation is replaced by a
second-order difference equation, which is considered in a square grid with mesh size
h. Two cases are treated, namely & = } and & = |. Owing to the symmetry, in the first
case only two function values, U and V, and in the second case, three function values,
U, V, and W, have to be considered. Find the smallest eigenvalue in these two cases,
and extrapolate to A = 0.

9. Find the smallest eigenvalue of the equation

2 2

for a triangular domain with corners (—1,0), (0, 1), and (1, 0), where we have u = 0 on
the boundary. Use & = 4 and & = }, and extrapolate to A* = 0.

10. Compute the two smallest eigenvalues of the differential equation

ox* ox*oy

Boundary values are # = 0 and 6u/3n = O (the derivative along the normal) for a square
with side 4, valid on all 4 sides. Choose 4 = 1.

11. In the wave equation

o’u o*u
7~ 57 =0
ox ot

the left-hand side is approximated by the expression A™*[5! — (1 + as%)0?]u. Compute
the truncation error!



Chapter 16

Integral Equations

In England the drain pipes are placed outside
the houses in order to simplify repair service.
Repairs are necessary because the pipes have
been placed outside the houses.

16.0. Definition and classification

Anequation containing an integral where an unknown function to be determined
enters under the integral sign is called an integral equation. 1f the desired func-
tion is present only in the integral, the equation is said to be of the first kind;
if the function is also present outside the integral, the equation is said to be of
the second kind. 1f the function to be determined only occurs linearly, the equa-
tion is said to be linear, and we shall restrict ourselves to such equations. If
the limits in the integral are constant, the equation is said to be of Fredholm’s
type; if the upper limit is variable we have an equation of Volterra’s type.

In the following the unknown function will be denoted by y(x). We then
suppose that y(r) is integrated with another function K(x, #) (with ¢ as integration
variable); the function K(x, #) is called the kernel of the equation. While the
function y(x) as a rule has good regularity properties (continuity or differenti-
ability), it is rather common that the kernel K(x, f) has some discontinuity or
at least discontinuous derivatives. The equation is still said to be of Fredholm’s
type if the limits are constant and the kernel quadratically integrable over the
domain. If K(x, ¢) is singular in the considered domain, or if one or both of
the limits is infinite, the integral equation is said to be singular. If the equation
has a term which does not contain the wanted function y(x), the equation is
said to be inhomogeneous, otherwise homogeneous. Often a parameter 2 is placed
as a factor in front of the integral, and it may then happen that the equation
can be solved only for certain values of 2 (eigenvalues), or that there is nosolution
at all. In the examples below, the terminology just described is illustrated.

f(x) = S: K(x, tyy(t) dt , Fredholm, 1. kind, inhomogeneous,
y(x) = f(x) + 2 S: K(x, tyy(t) dt , Fredholm, 2. kind, inhomogeneous,
y(x) =2 S: K(x, H)y(t) dt , Fredholm, 2. kind, homogeneous,
y(x) = f(x) + 2 S: K(x, t)y(t) dt , Volterra, 2. kind, inhomogeneous,

flx) = Szk(x, ny(r)dt, Volterra, 1. kind, inhomogeneous.

320
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Again it is pointed out that the types referred to here do not in any way cover
all possibilities. The reason that just these have been chosen is their strong
dominance in the applications.

The fundamental description of the integral equations was performed by
Fredholm and Volterra, but important contributions to the theory have been
made by Hilbert and Schmidt. An extensive literature exists within this field,
but a rather small amount has been published on numerical methods. For
obvious reasons, it is only possible to give a very rhapsodic presentation. Pri-
marily we shall discuss direct methods based on linear systems of equations,
but also iterative methods will be treated. Further, special kernels (symmetric,
degenerate) and methods related to them, will be mentioned briefly. In order
not to make the description unnecessarily heavy we shall assume that all func-
tions used have such properties as to make the performed operations legitimate.

16.1. Fredholm’s inhomogeneous equation of the second kind

Here we shall primarily study Fredholm’s inhomogeneous equation of the second
kind:
]
P(x) = f(x) + zg K(x, Oy(r) dt , (16.1.1)
since the treatment of other types in many respects can be related and traced

back to this one. The section between a and b is divided into n equal parts,
each of length h. We introduce the notations

xr=a+rh’ y(xr):yr’ f(xr):fr' K(x'_,t.):K".

The integral is then replaced by a finite sum essentially according to the trape-
zoidal rule, and then the following system of equations appears:

Ay :fv
where

[l — 2hK,  — 2K, --- — MK,

A = - .XhKn 1 - ”’Kn o T ”’Kzn
| - MK, - 3Ky -1 2K, |

. - (16.1.2)

» [ /i

y=|2 1= [f
LV» /s

Fredholm himself gave this system careful study. Of special interest is the
limiting value of 4 = det 4 when h— 0 (and n — o). This limiting value
is called Fredholm’s determinant and is usually denoted by D(2). Applying
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Cramer’s rule we can write down the solution in explicit form according to

lﬁ
= 4.,
Vs A;f, v

where, as usual, 4,, is the algebraic complement of the (r, s)-element in the mat-
rix A. Expanding 4 in powers of 2 we find
Y~ K, K
d=1—-nY K.+ 27" i 71
2 Kt 5 }; K;, ijl

and after passage to the limit &/ — 0:

dt, dt,

dp

a

dadt, — ...,

b 2 ((P|K(t, 1) K1, 1)
DZ:I-ZSK!,tdt _SS . v
@) e (#, 0y dt + 2! ) |K(t, 1) K(t, 1)
2 e |Kn ) Kot K,o)
=37 SSS K(t,, 1) K(t,, t,) K(t,, ty)|dt dt,dt, + - - - .
' ‘ K(’S’ tl) K(’S’ t2) K(tll’ t3)
A similar expansion can be made for 4,, and after division by 4 and passage to
the limit we get
*IK(x,t) K(x,p)
D(x, t; 2) — AK(x, 1) — X’S l
K(p.t) K(p,p)
2 oKD K, t) K(x, 1)
||k Kean) K,
K(t,, 1) K1, 1) K1, 1)
where x = a + sh, t = a + rh; however, D(x, x; 2) = D(3). Introducing the
notation H(x, t; 2) = D(x, t; 2)/D(2) we can write the solution in the form
b
Y(x) = f(x) + S H(x, t; 2)f(t) dr . (16.1.3)
The function H(x, t; 2) is usually called the resolvent of the integral equation.
Obviously, asa rule A must have such a value that D(2) = 0. Onthe other hand,
if we are considcring the homogeneous Fredholm equation of second kind, ob-
tained by making f(x) = 0 in (16.1.1), then 2 must be a root of the equation
D(2) = 0 in order to secure a nontrivial solution. Hence, in this case we have
an eigenvalue problem. The technique which led to the solution (16.1.3) in
some simple cases can be used also in practice, and we give an example of this.
Consider the equation
1
Y2 = S0 + 2| (x + opieyar
We compute D(2) and D(x, t; 1) noticing that all determinants of higher order
than the second vanish:
DR -1-2-%, D2~ 2[(1 - i)(x Lry 4 1<xt +l)].
12 2 ' 3
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Thus we find the solution:

y(x) = f%) + TZ_MES: l:(l - —;—) (x 1 1)+ 2<xt + %)Jf(r) dt,

which can obviously be written y(x) = f(x) + Ax + B, where 4 and B are
constants depending on 2 and the function f(f). The solution exists unless
22+ 122 = 12, thatis, 2 = —6 + 4,/3.

We shall now study an iterative technique and again start from (16.1.1) con-
structing a series of functions y,, y,, y,, . . ., according to

Yorl®) = fG) + 2| Ko, oy des - yix) = 0

(cf. Picard’s method for ordinary differential equations). If this sequence of
functions converges toward a limiting function, this is also a solution of the
integral equation. As is easily understood, the method is equivalent to a series
expansion in 2 (Neumann series):

Y =J() + 19 (x) + Xpy(x) 4+

Inserting this and identifying coefficients for different powers of 2 we get:

Pix) = | Kex, @),
pix) = | Ko gy ae = | K o ar,
oux) = | Ko ngutry de = " Kx, 0fe) ae,
Here
Ky(x, 1) = S” K(x, 2)K(z, 1) dz
and more generally
Kot = [ KoK @nd, Ky =K.

Tht_: functions K, K;, ... are called iterated kernels. It can be shown that the
series converges for 2 < ||K||™!, where

1Kl = ([ Kex ) dx ay.

Thus we obtain the final result:

Y0) = ) + | 1K 1) + 2K 0 + PR 0+ 10 de
or

) = 16 + | Hex 1 a0
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where
H(x,t; 2) = AK\(x, 1) + 2K(x,t) + 2PK(x, 1) - --

as before stands for the resolvent.

The described method is well suited for numerical treatment on a computer.
We shall work an example analytically with this technique. Consider the
equation

$x) + fx) -+ 2 [ exp (x = oy dr.
Thus we have K(x, f) = exp (x — t) and consequently
Kx, 1) = S:e"‘e"‘dz = et = K(x, 1)
and all iterated kernels are equal to K(x, f). Hence we obtain
y = f(x) + S:e*-‘j(t)(l + A2+ 2B +..)dt

or, if 2] < 1,

A
1 -2

y =flx) + e’ S:e“j’(t) de .

In this special case we can attain a solution in a still simpler way. From the
equation follows

Y(x) = f(x) + 2e° S:e“ Wty dt = f(x) + Cie .

Inserting this solution again for determining C, we find
f(x) + Cie* = f(x) + 2 Sle“‘[ ft) + Caet]dr
0

giving
C= Sle" fitydt + Ca
0

and we get back the same solution as before. However, it is now sufficient that
A% 1. If 2 = 1 no solution exists unless s",e"j(t) dt = 0, if so, there are an
infinity of solutions y = f(x) + Ce* with arbitrary C.

This last method obviously depends on the fact that the kernel e*~ could be
written e*e~* making it possible to move the factor e* outside the integral sign.
If the kernel decomposes in this way so that K(x, t) = F(x)G(t) or, more gene-
rally, so that

K1) = 5 F(xG(0),
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the kernel is said to be degenerate. In this case, as a rule the equation can be
treated in an elementary way. Let us start from

b ” n
¥ = f0) + 2. [ 35 @G0 |y de = fix) + 35 Fix) | Guoptey e
These last integrals are all constants:
|Gy a =,
and so we get:

Y%) = f5) + A T3 eFix)

The constants ¢, are determined by insertion into the equation:

¢ = S:G..(:) [f(:) + 2 gckf‘,‘(t):l d .
With the notations
S:G‘.(t)F,‘(t) dt = a, and S° G()ft)dt = b, ,
we get a linear system of equations for the ¢;:
(I— 24 =b,

where 4 = (a;,) and b and ¢ are column vectors. This system has a unique solu-
tion if D(2) = det (I — 24) = 0. Further, we define D(x, t; 2) as a determinant
of the (n + 1)th order:

0 —F(x) —F(x)--- —F,(x)
Gl(’) 1 — Zau -xan e _Zam

D(x,t; 2) = G,.(t) —2a, 1 —2a,--- —12a,].
G.(t) —ia, —ia,---1-a,

Then we can also write

PE) = fix) + 2 S"D(x, ¢; DALY dt = fix) + zS"H(x, t; )M dt

D(2) Je
with the resolvent as before represented in the form
H(x, 0,2 = 2654
D(2)

We now treat a previous example by this technique:

¥x) = fx) + 2 [ e+ oy ar
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Putting

S:y(t)dt=A, S:ty(t)dtzB, S:j(t)dtzc, S:tﬂt)dt;D,

the constants C and D are known in principle, while 4 and B have to be com-
puted. Now, y(x) = fix) + 42x 4 B2 and y(t) = fit) + A2t + B2 which
inserted into the equation gives

A=C+ _;_ A2 + B2,

1 1
B=D+ —-A2+ —B2.
+3 +2

Solving for 4 and B we get

A=C(l—§;)+DZ’ B=c1/3+3(1-§z)’

where we have supposed 4 = 1 — 2 — {42* # 0. Hence we get as before

0109+ (0 ) 4 (- 2) o

16.2. Fredholm’s homogeneous equation of the second kind

As mentioned earlier the case f{x) = 0, that is, when we havc a homogeneous
equation, gives rise to an eigenvalue problem. The eigenvalues are determined,
for example, from the equation D(2) = 0, or, if we are approximating by a finite
linear system of equations, in the usual way from a determinantal condition.
There exists an extensive theory for these eigenvalue problems, but here we
shall only touch upon a few details which have exact counterparts in the theory
of Hermitian or real symmetric matrices. First we prove that if the kernel is
real and symmetric, that is, K(x, t) = K{(t, x), then the eigenvalues are real.
For we have y(x) = 2§’ K(x, t)y(t) dt. Multiplying by y*(x) and integrating
from a to b we get

g" YY) dx = 2 W YK (x, Op(t) dx dt .

The left-hand integral is obviously real and so is the right-hand integral since
its conjugate value is

gg:}’(x)K(x, t)y*(t) dx dt = H:y(x)K(t’ X)y*(e) dx dt ,

which goes over into the original integral if the integration variables change
places. This implies that 2 also must be real.



SEC. 16.2. FREDHOLM’S HOMOGENEOUS EQUATION 327

Next we shall prove that two eigenfunctions y,(x) and y,(x) corresponding to
two different eigenvalues 2; and 2, are orthogonal. For

yi{x) = 4 S:K(x, Nyt at,

Yu(x) = A S:K(x, Hy(t) dt .

Now multiply the first equation by 2, y,(x) and the second by 2, y,(x), subtract
and integrate:

(= 20 | o dx = 2 || e, ooy dea

~ ([ 7K opury dxa] .

Since K(x, t) = K{(t, x) and the variables x and ¢ can change places, the two
double integrals are equal, and as 2; = 1, we get

Sby.-(x)yk(x) dx=0. (16.2.1)
We shall also try to construct a solution of the homogeneous equation
yx) =12 SbK(x, ty(t) de .

To do this we start from the matrix 4 in (16.1.2). If we choose the elements
of column j and multiply by the algebraic complements of column k, the sum
of these products, as is well known, equals zero. Hence we have

(- ZhKi:i)Ajk — AhK;d.. — E AhK 4, = 0,

s#5.k

where the products (j) and (k) have been written out separately. Dividing by
h (note that 4;, and 4, as distinguished from 4,, contain an extra factor k)
we get after passage to the limit A — O:
b
D(x,, x;; ) — AK(x,, x;)D(2) — 2 S K(t, x,)D(x,, t; 2)dt = 0.
Replacing x, by x and x; by z, we get finally
D(x, z; 2) — AK(x, 2)D(3) = 2 S"K(:, D(x, 13 )dr. (16.2.2)
Expanding by rows instead of columns we find in a similar way
b
D(x, z; 2) — AK(x, z)D(2) = 2 S K(x, t)D(t, z; 2) dt . (16.2.3)

These two relations are known as Fredhoin?’s first and second relation.
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Now suppose that 2 = 1, is an eigenvalue, that is, D(2,) = 0. Fredholm’s
second relation then takes the form:

D(x, 23 2) = A g" K(x, )D(t, z; ) dr ,

independently of z. Hence we can choose z = z, arbitrarily, and under the as-
sumption that D(x, z; 1,) is not identically zero, we have the desired solution
apart from a trivial constant factor:

y(x) = D(x, z,; ) - (16.2.4)
EXAMPLE
yx) = 2 (x iy ar
The eigenvalues are obtained from D(1) = O, that is,

2+ 122 =12, A= —-6+43.

As before we have D(x, t; 2) = 2[(1 — 3A)(x + t) + A(xt + })], and we can
choose for example, ¢ = 0. One solution is consequently

o<l 4+ 4]

Taking 1 = 413 — 6 we have apart from irrelevant constant factors
y=xV3+1.

If we choose other values for ¢ we get, as is easily understood, the same result.

Another method can also be used. The equation shows that the solution must
have the form y(x) = Ax + B, and this implies

Ax + B =2 Sl(x + 1\ At + Bydr
]

which gives the same result.
16.3. Fredholm’s equation of the first kind
The equation which we shall study very superficially in this section has the form

fix) = g" K(x, (1) dt . (16.3.1)

A parameter 2 can of course be brought together with the kernel. In general,
this equation has no solution as can be realized from the following example:

sinx = S'e"‘y(t) dr, (= ce?).
0
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However, let us suppose that f{x), K(x, 7), and y() can be expanded in a series
of orthonormalized functions u;:

jﬂn=§wv»

K(x, 1) = 35 auu(0u(t) , (16.3.2)

) = ;C.’“i(t) .
The functions u,(x) being orthonormalized over the interval (a, b) means that
Sbu.-(x)uk(X) dx = i - (16.3.3)

After insertion into (16.3.1) we obtain:

.}ib.‘“.‘(x) = Sb }:‘_4 a;u(x)u (1) i:cr“r(’) dt = }5 a0 U (X) .

Identifying we get an infinite linear system of equations

-
E auc, = b;,
k=

where the coefficients ¢, should be determined from the known quantities a;,
and b,. If the summation is truncated at the value n we have the system

Ac = b (16.3.4)

with well-known properties regarding existence of solutions.
Another possibility is to approximate (16.3.1) directly by a suitable quadra-
ture formula giving rise to a linear system of equations:

:‘;0 a,K;y;, =f;. (16.3.5)

However, there is an apparent risk that one might not observe that no solution
exists because of the approximations which have been made.

16.4. Volterra’s equations
First we are going to discuss Volterra’s equation of the second kind

y(x) = f(x) + 2 S:K(x, £(t) dt . (16.4.1)
Obviously, it can be considered as a special case of Fredholm’s equation if we

define the kernel so that K(x, ) = O when x < ¢t < b. However, there are some
advantages in discussing the case separately, in about the same way as for
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triangular systems of equations compared with the general case. For simplicity
we assume a = 0, further the interval length A, and decide to use the trapezoidal
rule (more sophisticated methods can also easily be applied). Then we obtain

Yo = fo ’
N =5+ 23Ky, + 1Kl (16.4.2)
Y2 :'fz + zh[%Kzoyo + szyl + %Kzzyzl ’

and we can determine the desired values y,, y,, 5, . . . successively. This mcthod
is very well adapted for use on automatic computers.

As is the case for Fredholm’s equation we can also constructa Neumann series
with iterated kernels. The technique is exactly the same, and there is no reason
to discuss it again. However, there is one important difference: if K(x, t) and
fix) are real and continuous, then the series converges for all values of 2.

EXAMPLE
y(x)=x+ S:(t — x)y(t)dt .

1. The trapezoidal rule with interval length = h gives

Yo=0

= h y, — sin h:%_i....
Vi=2h— K y,_sin2h=Z6’_".+.
y, = 3h — 4k + I ys—sin3h=3Ths+...

Already Simpson’s formula supplemented by the 3-rule gives a substantial
improvement.

2. Using successive approximations we get
Yo =%,
yl=x+sz(t—x)tdt=x—%3-,

0

® £ ) x3 x°
y =x+S t—x(t—_.>dz=x__ X
? ! ) 6 s 120

and it is easy to show that we obtain the whole series expansion for sin x.
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3. Differentiating the equation, we find

y@=1- {0  yo=1.
Y'(x) = —y(x) with the solution y = Acosx + Bsinx.
But since y(0) = 0 and »’(0) = 1 the result is y = sin x.

Very briefly we shall also comment upon Volterra’s equation of the first kind

fix) = g:l{(x, () dt . (16.4.3)

Differentiation with respect to x gives

16 = Ky + |22 Dy ar,

a

and assuming K{(x, x) # 0 in the considered interval we can divide by K(x, x)
obtaining a Volterra equation of the second kind. If necessary, the procedure
can be repeated. Itis also possible to use the same difference method as before,
the first function value being determined from the relation above:

f(a)

ya) = K@ @)

A special equation of Volterra type is the Abelian integral equation
fix) = S’(x —nyydt 0 <a<l). (16.4.4)
0

Writing instead f{(z) = §;(z — #)~"y(¢) dt, dividing by (x — z)'~, and integrating
in z between the limits 0 and x, we obtain

S‘ fl2) dz — S‘ dz S‘ y(1) dt

o(x — 2= Jo(x =z Jo(z — 1)

If z is a vertical and ¢ a horizontal axis, the integration is performed over a tri-
angle with corners in the origin, in (0, x), and in (x, x), and reversing the order
of integration we find

S’__ﬂz) dz = So 0 sz

o(x — z)t="

® dz
t(z =ty (x — z)'™" ’

The last integral is transformed through z — r = (x — )& and goes over into

1
S §(l = &rrde = Ma)(1 — @) = ",
o sin T
that is,

[0 = sinma [*_f2)

T 0 (x — z)="
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Differentiating this relation we obtain the desired solution

_sinar d{* flz)
yx) = S ‘EL L (16.4.5)

Abel’s initial problem was concerned with the case &« = 4 and arose when he tried
to determine tautochronous curves, that is, curves having the property that the
time which a particle needed to slide along the curve to a given end point is a
given function of the position of the starting point.

16.5. Connections between differential and integral equations

There exists a fundamental relationship between linear differential equationsand
integral equations of Volterra’s type. Let us start from the equation

d*u d*'u
—_— a —
dx" @) dx!

+ oo+ a (x)u = F(x), (16.5.1)
where the coefficients are continuous and obey the initial conditions
u0)=c¢c,, wO0)=c¢,..., u*P0)=c,_,.

Putting d"u/dx" — y we find
D'y = S’ y(t)dr (defining the operator D7),
0

D%y = D™Y(D7'y) = Sz(x — ty(t)dr (by partial integration),
0

. . ]
D"y = D™(D**'y) = —S —O)~y(t) dr .
y (D7) TR L =07y
By integrating the equation d"u/dx" = y successively and taking the initial con-
ditions into account, we get

dn-—l
T = G T D7,
n—2
% =cC, X+ c¢,_,+ D%,
u =c X +c X + +cx + ¢, + D™
n—1 (n — l)! n—2 (n — 2)! 1 0 y *

These values are now inserted into (16.5.1) and the following equation results:

=) = fix) + | Kx, ey de, (16.5.2)



EXERCISES 333

where
%) = F&) — @x)ess = axNCacsX + €0) =+
x! 7 16.5.3
— a,(x) <c»—1 (n'—_l-)', + c'-z(n_—Z_)! + + e x + co) ( )
and

(x =1
Kex, 1) = —[ a0 + a(ox - 0 + a@ S+
L"—_')"] 16.5.4
+a@ T (16.5.4)
Thus we can say that the integral equation describes the differential equation
together with its initial conditions.
ExAMPLES

1. u" + u = 0; u0) = 0, «'(0) = 1. One finds

¥ = —x + | (0 = xpiyar,

with the solution y(x) = —sin x (note that y = u'’).
2. W' — 2xu' + u=0;u0) =1, 4(0) =0. Hence

yx) = —1 + S:(x + () dt .
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EXERCISES

1. Compute D(2) and D(x, t; i) when K(x,t) = xt,a =0, b= 1.
2. Using the result in Exercise 1 solve the integral equation

l 1
xX) = —— xty(t)dt .
Y ==+ S 20
3. Find the solution of the Fredholm integral equation

y(x)=x*+ 2 Sl(x2 + () dr .
0
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4. Determine the eigenvalues of the homogeneous integral equation

yx)=2 Sl(x + t + xt)y(t)de .
0

S. Find an approximate solution of the integral equation

y(x)=x+ S:sin (xt)y(t)dt ,

by replacing sin (xt) by a degenerate kernel consisting of the first three terms in the

Maclaurin expansion.
6. Show that the integral equation y(x) = 1 — x + §; K(x, 1)y(t)dt where

_ (1l —x) for r<x
K(x't)_{x(l—-t) for t>x

is equivalent to the boundary value problem d®y/dx* + y = 0; y(0) = 1; y(1) = 0.
7. Find the eigenvalues of the integral equation y(x) = 2 §/*cos (x + f)y(¢)dt.
8. Solve the integral equation y(x) = x + §; xr’y(¢)dt.
9. Solve the integral equation y(x) = x + {7 1y(¢r)dt.
10. Determine eigenvalues and eigenfunctions to the problem y(x) = 2 Sc" K(x, tyy(t)dt

where K(x, t) = min (x, ?).
11. Find the solution of the integral equation 3x* + 5x° = §%(x + fy(r)dr.

12. Using a numerical technique solve the integral equation

. (F_xwnadr
¥ +So——x+l+l

for x = 0(0.2)1. Apply the trapezoidal rule.
13. Find an integral equation corresponding to wy — u = 0; u(0) = u'(0) = 1.
14. Find an integral equation corresponding to «'"' — 3u’' — 6u’ + 8u = 0; u(0) ==

W'(0)=u"(0)=1.



Chapter 17

Approximation

Sir, In your otherwise beautiful poem (The
Vision of Sin) there is a verse which reads
““Every moment dies a man,
every moment one is born.”’
Obviously, this cannot be true and I suggest
that in the next edition you have it read
“*Every moment dies a man
every moment 11/ is born.”’
Even this value is slightly in error but
should be sufficiently accurate for poetry.
CHARLES BABBAGE
(in a letter to Lord TENNYSON)

17.0. Different types of approximation

In the following discussion we shall consider the case where we want to represent
empirical data with a certain type of function and the case where an exact func-
tion whose values are uniquely determined in all points is to be represented by
a finite or an infinite number of functions. The former case occurs frequently
in several applied sciences, for example, biology, physics, chemistry, medicine,
and social sciences; the representation obtained is used to get a deeper insight
into the interrelations, to follow changes which might occur, and sometimes
also for prognostic purposes. The latter case is of great theoretical interest, but
it has also a practical aspect in connection with the computation of functions,
especially on automatic computers.

In both cases we must define in some way how the deviations between actual
and approximate values should be measured. Let u,, 4, ..., u, be the given
values, and v,, v,, ..., v, the values obtained from the approximation. Putting
v; — u; = w;, we can regard the errors w; as components of a vector W. Gen-
erally, we want to find an approximation that makes the components of W
small. The most natural measure is some of the vector norms (see Section 3.6),
and in this way we obtain the principle that the approximation should be chosen
in such a way that the norm of the error vector (taken in some of the vector
norms) is minimized. Which norm we should choose must be decided indi-
vidually by aid of qualitative arguments. If we choose the Euclidean norm,
we obtain the least-square method, which is very popular with many people.
If, instead, we choose the maximum norm, we get the Chebyshev approxi-
mation technique, which has aroused a great deal of interest in recent years.

335
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If we are dealing with the approximation of functions which are defined in
all points, we can measure the deviation in the whole interval, and the Euclidean
norm should be interpreted as the square root of the integral of the square of
the deviations. For the maximum norm we measure the deviations in all local
extrema, including the end points.

It is hardly surprising that polynomial approximation plays a very essential
role when one wants to approximate a given function f{x). One might expect
that the usual Lagrangian interpolation polynomials with suitably chosen inter-
polation points (nodes) would be satisfactory, but this turns out to be a dangerous
way. As a matter of fact, Runge has shown that the Lagrangian interpolation
polynomials constructed for the function 1/(x* + 1) in the interval [ —5, 5] with
uniformly distributed nodes give rise to arbitrary large deviations for increasing
degree n.

With this background Weierstrass’ theorem is indeed remarkable. This famous
theorem states the following. If f{x) is a continuous function in the interval [a,b],
then to each ¢ > 0 there exists a polynomial P(x) such that | fix) — P(x)| < &
for all x € [a, b]. For proof see, for example, [11] or [12].

17.1. Least-square polynomial approximation

We suppose that we have an empirical material in the form of (n + 1) pairs of
values (X,, ¥), (X35 31)» - - -» (X,, ¥,), Where the experimental errors are associated
with the y-values only. Then we seek a polynomial

Y =yal¥) =a +ax +--- + a,xm,

fitting the given points as well as possible. If m = n, the polynomial is identical
with the Lagrangian interpolation polynomial; if m < n, we shall determine the
coefficients by minimizing

§ = (a+ax; + -+ axy -y, (17.1.1)
=

2 2@ e e =0, k=0,1,2..m,
aa,, =0
or
GX + @ 4t e, Xt = Toxty,

With the notations s, = 2,;xsand v, = 22, X5y;, we get the system

5@ + 80, +---+S.a, =1,,
58, + 88, +---+ 5,4, =7,
. o o ' (17.1.2)
Sm@y + Sm1@ + -+ Sam8m = Vpn -

These equations are usually called normal equations.



sec. 17.1. LEAST-SQUARE POLYNOMIAL APPROXIMATION 337

The coefficient matrix P is symmetric, and we shall show that the system
has a solution which makes S a minimum.
The problem is conveniently solved by use of matrices. We put

1 Xo  Xgoree X a Vo Yo
1 x, x} ... xp a v b4
1 1 1
A = . N a— . ’ = . ’ Yy = .
1 Xa x:"'x: ay Um Y

Here A is of type (n + 1, m + 1), where n > m and further P = ATA. We
shall minimize

S = JAa — yP = (Aa — y)T(Aa — y)
= a’ATAa — a"ATy — yTAa + yTy = a"ATAa — 2a"A"y + y"y;
here we observe that y’A4a is a pure number, and hence
yTda = (y"Aa)" = a"ATy .

Putting P = A" A4 we shall first prove that P is nonsingular. This is equivalent
to stating that the homogeneous system of equations Pa = 0 has the only solu-
tion @ = 0. On the other hand, this is obvious since Pa = 0 implies

a"Pa = a"A"Aa = (Aa)"4a = 0,

and hence we would have da = 0. This last system written out in full has the
following form:

a+ax, +---+axyr =0,

8+ ax, +-++ axn =0,

which means that the polynomial y,(x) = a, + a,x + - - - + a,x™ vanishes for
n + l.(n > m) different x-values x,, x,, ..., x,. This is possible only if all
coefficients a,, a,, ..., a,, vanish, that is, a = 0. We have then proved that
Pq = 0 implies a = 0, that is, P cannot be singular, which means that P!
exists. Putting v = A7y, we can write

S = (a — P'v)"P(a — P7'v) + yTy — v"P'p
= [A(a — P'D)]"[A(a — P~'v)] + y"y — TP 'p.
Now we have to choose a so that S is minimized which is achieved if
A(@a — P'v) = 0.
This equation is multiplied from the left, first by 47, then by P! which gives
a=P'.
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As is easily seen (17.1.2) can be written Pea = v, and if we know that P is
nonsingular we find the same solution. For large values of m, the system
is highly ill-conditioned and gives rise to considerable difficulties. Later we

will show how these difficulties can be overcome to some extent.

EXAMPLE

A quadratic function y = a, + a,x + a,x* should be fitted with the following

data:

x||8|10|12|l6

20|30|40|60|100

y |o88|1.22]1.64]272]3.96] 7.66 | 11.96 | 21.56 | 43.16

J X; x; 2 x; Vi XiY; x3¥;
0 8 64 512 4096  0.88 7.04 56.32
1 10 100 1000 10000 1.22 12.20 122.00
2 12 144 1728 20736 1.64 19.68 236.16
3 16 256 4096 65536  2.72 43.52 696.32
4 20 400 8000 160000  3.96 79.20 1584.00
5 30 900 27000 810000 7.66 229.80 6894.00
6 40 1600 64000 2560000 11.96  478.40 19136.00
7 60 3600 216000 12960000 21.56 1293.60  77616.00
8 100 10000 1000000 100000000 43.16 4316.00 431600.00
296 17064 1322336 116590368 94.76  6479.44  537940.80
Hence we get
S = 9 >
=296, v, = 94.76 ,
= 17064 , v, = 6479.44
= 1322336, v, = 537940.80,
= 116590368 ,
and the system of equations becomes
9a, + 296a, + 17064a, = 94.76 ,
296a, + 17064a, + 13223360, = 6479.44
170644, + 13223364, + 116590368a, = 537940.80 .

After some computations we find that

a, = —1.919,
0.2782,
0.001739 .

a =

a, —
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With these coefficients we get the following function values:
x| 8|10l12|16|2o|3o‘40|6o|100
y |o4z2] 104 167 | 2.98 | 4.24 | 7.99 |11.99|21.o4|43.30

A quite common special case arises when data have to be represented by
straight lines, and we shall consider two such cases separately.

1. In the first case we suppose that the errors in the x-values can be neglected
compared with the errors in the y-values, and then it is natural to minimize the
sum of the squares of the vertical deviations. We number the points from 1
to n:

S=§(kx‘-+1—-y'.)’,

QLS‘:Z-E(kx;—I—[—y;):O,
ol 3

oS

2=2. kx, +1 —y)x,=0.
5 3o (kx; + 1= y)

With the notations
‘Exi:"xo:sn Eyi:"yoztlv
.
‘Eﬂ:szv Exiyi:vl’ E}’?:’z;

2
A =35, — nxj,

B = v, — nx,y,,
C =t, — ny;,

we obtain / = y, — kx,, which means that the center of gravity lies on the
desired line. Further,
s,k + nix, — v, = 0;
that is,
k== B

B
and =y, — =x,.
s —nme A Yoo g™

2. Here we suppose that the x-values as well as the y-values are subject to
errors of about the same order of magnitude, and then it is more natural to
minimize the sum of the squares of the perpendicular distances to the line. Thus

1 n
S=—— kx, + 1 — )
l_*_kg;( ‘+ yl)
%’—f =0 gives, as before [ =y, — kx,;

g‘_::o gives (1 +4- H).E(kx‘+I—y‘)x‘—_k.E(kx‘,+1__ A
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After simplification, we get

kv, — nx,po) + k(s — nx§ — ; + nyj) — (v, — nxop,) = 0
or

A—Ck

k’+ —1=0.

From this equation we obtain two directions at right angles, and in practice
there is no difficulty deciding which one gives a minimum.

Here we also mention that overdetermined systems, that is, systems where the
number of equations is larger than the number of unknowns, can be “solved”
by aid of the least-squares method. Let the system be 4x = b, where A4 is of
type (m, n) with m > n; then we minimize

S = (Ax — b)'(Ax — b).

In this way we are back at the problem just treated.

17.2. Polynomial approximation by use of orthogonal polynomials

As has been mentioned, solving the normal equations gives rise to considerable
numerical difficulties, even for moderate values of the degree m of the approxi-
mation polynomial. Forsythe [1] expresses this fact in the following striking
way: “When m > 7 or 8, however, one begins to hear strange grumblings of
discontent in the computing laboratory.” Approximation with orthogonal
polynomials might improve the situation although there is evidence of numeri-
cal difficulties even in this case. The method is not limited to this case but can
be used for many other purposes, for example, for numerical quadrature and
for solving ordinary, as well as partial, differential equations [3].

Suppose that the n + 1 points (x,, y,), (X, ), - - .» (X,,7,) are given. We seek
a polynomial y = Q(x) of degree m (m < n) such that

S = }f:[y‘ — Q(x,)]} = min . (17.2.1)
The polynomial Q(x) shall be expressed in the form
O(x) = ,io a,P,(x), (17.2.2)
where Pj(x) is a polynomial of degree j fulfilling the relations
: Py(x)Py(x:) = 0 - (17.2.3)

The problem is now to determine the polynomials P;(x) as well as the unknown
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coefficients a;. We differentiate S with respect to a; and get
oS

= AL - e

= -2 Zo PiPi(x) + 235 Pi(x) - 3o aPi(x)

-2 g,y;P,(x.-) +2 ?:; a, zo; P(x;)Py(x;)
—2a; -2 g)’f;(’ﬁ) .
The condition §S/da; = 0 gives the desired coefficients:
a; = gy.-l’j(x.-)- (17.2.4)

Then we have to determine the polynomials P;(x), which we express in the
following way:

Pyx) = 3 a;xt. (17.2.5)
k=0

Conversely, the powers x/ can be written as linear combinations of the
polynomials:

J i1
= kzo a; Py(x) = a;;Pi(x) + kEo ;. P(x) . (17.2.6)

Squaring, putting x = x;, and summing over i, we obtain

j—1
L=+ L,

or

n =1

=)o x¥ al, (17.2.7)
+=0 k=0
Multiplying (17.2.6) by P (x), putting x = x;, and summing over i, we get
n . LI )
§ xP(x;) = § g a; Py(x;)P(x;) = a;,
or
a;, = Zo XiPy(x;) . (17.2.8)

From (17.2.6) we further obtain

Py(x) = {x" — lz;: aj,‘Pk(x)}/a,-,.. (17.2.9)
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For j = 0 we get P(x) = l/ay and aj, = n + 1. The next steps come in the
following order:
Qs Qyys Prs Qs Qyys Qagy Py oo Qlgy Qys oo o5 Qs P, .

We obtain a;,, j > k, from (17.2.8), a;; from (17.2.7), and P; from (17.2.9).
Then we determine a,, a,, ..., a, from (17.2.4), and by now we also know
QO(x). Obviously, we do not have to fix the degree m of the polynomial Q(x)
from the beginning; instead m can be increased successively, which is a great
advantage. Then we can follow how S decreases; as is easily found, we have

S = i}’f - zi}’i iajpj(xi) + i i a;a,P(x;)Py(x;) ,

-0 $=0 7,k—=0

and by use of (17.2.3) and (17.2.4),

S=yp-ra. (17.2.10)
=0 7=0
EXAMPLE

Find a straight line passing as close as possible to the points (x,, ¥,), (X, }1)s - - -

(xu’ yn)’ A
Putting s, = 3. x7 and v, = 3. xTy,, we obtain

Ay = V'S, P, = 1

VR
K 52
Ay = x..Px‘: '__, a’:s—_l;
O T LR
P _ X —aP, _  x —s)/s,
1= = s
ay, VS,—SE/SO
v V, — 8,0,/
a. — Py(x)) = °_; a. — Py(x,) = 22 1%0/% .
0 ‘Ey 0( ) I/To 1 :y l( ) S,—Sf/so

O(x) = aP(x) + a,P(x) = Lo 4 Y1 SV/% (x - ﬁ);
So 5, — S3/8, So

or
o(x) = 5% — 5V + (Sp¥ — $0,)X .
2
SeS; — K1

Naturally, this is exactly what is obtained if we solve the system

Sy + 5,8, =
$a, + 5,0, = v, .
in the usual way.
An obvious generalization is the case when the points should be counted
with certain preassigned weights. The derivations are completely analogous
and will not be carried through here. Closer details are given in [2].



sEC. 17.2. POLYNOMIAL APPROXIMATION 343

Another natural generalization is the approximation of a function y = y(x)
with ¥, a,9,(x), where the functions @, form an orthonormal system over the
interval a < x < &:

gb P.(X)pu(x) dx == 5, . (17.2.11)

The best-known example is the trigonometrical functions in the interval
(0, 2r); this case will be treated separately. Adding a weight function w(x)
is an almost trivial complication.

We now want to determine the coefficients a, from the condition

b b 2
s = S [y - Ea,g;,(x)] dx = min . (17.2.12)
a r=0
Differentiating with respect to a, we get
oS

- =2 Sb [y ~ ;o a,qP,(X)] [—@(x)]dx.

Putting §S/da, = 0, we obtain, by use of (17.2.11),

b
a, = S y - @yx)dx . (17.2.13)
Analogous to (17.2.10), we also find that
S, = S“ydx_z:az. (17.2.14)
a r=0
Since S > 0 we have
e x| ya,
r=0 a

known as Bessel’s inequality. If
00 b
Sa = [ yax,
r=0 a
the function system is said to be complete (Parseval’s relation).

ExAMPLE

We consider the interval (—1, 1), and according to (10.2.11) and (10.2.12), we
can use the Legendre polynomials P,(x) multiplied by the normalization factor
vn + 3.

T 1 a
P ="t 3 e

Thus py(x) = 1)V 25 py(x) = xV'3; @y(x) == (3x* — 1)1} ; ... Now suppose
that we want to approximate y == x* with a,py(x) + a,p,(x) + a@,(x)- Using

[ = 1)].
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(17.2.13), we get

1 g4 1/7
= edx = L,
=TT S
+1 T
= —x*dx =0,
a, LJZ x
+ s 8 [5
= x‘ —-l ——-d = e— —_—
@ S-- (3% )\/8 *=35V2
6x? 3
a@o(X) + aP((X) + api(X) = Tx T35

If we put conventionally
S = gﬂ(x‘ —a — bx*) dx,
-1

and seek the minimum of S, we get the system

b1
R S
a b 1
3t5=7

Hence a = — 3 and b = §.

17.3. Approximation with trigonometric functions

We shall now study the case when a function is to be approximated by trigo-
nometric functions relating to (17.2.1) or (17.2.12). Defining

1 if m is divisible by n ,
o(m,n) = .
0 otherwise ,
we found our discussion on the formulas
§R erioi . emriai — n3(j — ko m), (17.3.1)
r=0
2=
S et . e=ikx dx = 275, . (17.3.2)
0

Here we have put 27/n = «; the proof of the relations is trivial. Now we can
deduce corresponding relations in trigonometric form:

a ”E_l €os rja cos rka = % "E_l {cosr(j + kK)a + cosr(j — k)a}
r=0 r=0

- ﬁRe {"Z_:l [er(iek)ai + er(i—k)ai]}
2

r-0

= 7[8(j + k, n) + 8(j — k, n)] . (17.3.3)
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Other relations are proved in a similar way. Thus we have

Esin rja sin rkac = #[8(j — k. n) — 6(J + k,n)],
r=0

. (17.3.4)

E sinrjacosrka = 0 .

r=0

If in these relations we let @ — 0, we obtain (j, k # 0):

Sh cos jx cos kx dx = Sn sin jxsin kxdx = 7o, » (17.3.5)
0 0

S" sin jxcos kxdx = 0 . (17.3.6)
0

The orthogonality at summation is the basis for the harmonic analysis, while the
orthogonality at integration plays a decisive role in the theory of Fourier series.

First we shall try to generate a series in cos rjo and sin rjer, which in the
points x; = ja takes the values y;, and we find

l (n—1)/2

Yy = ?ao + Y, (a,cosrja + b, sinrja); nodd,
r=1
1 .
Y = _2.(a,, + (—1Ya,,) (17.3.7)
—1
+ ‘t (a, cos rja + b, sinrja) ; neven.
r=1

The coefficients are obtained from

n—1 n—1
a, = 2 Y y;cosrja; b, = 2 y;sinrja . (17.3.8)
n i=o n i=o

Similarly we can represent all periodic, absolutely integrable functions by a
Fourier series:

fix) = %“o + i(a, cosrx + b, sinrx) . (17.3.9)
r=1

In this case we get the coefficients from

a, = 1 S"f(x) cos rx dx ;

T Jo

| o . (17.3.10)
b, = _.S S{x)sinrx dx .

T Jo

Here we cannot treat questions relating to the convergence of the series, if the
series converges to the initial function, or special phenomena which may appear
(Gibbs’ phenomenon); instead we refer to [4], [S], or [6].
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EXAMPLES

1. Expand the function y = f{x) in a Fourier series, where

j+1, 0O<x<m,
fx) =
-1, T<x<2mw.
We find
a,:lSXCOSnxdx——I—S“cosnxdx:o,
T 0 T x
1 ¢~ | 1 ¢ . 2 .
b”:_‘S smnxdx—__S sinnxdx = = [1 — (-1)*],
T Jo T J= n
and hence
0 neven,
b =
- [_4_ nodd .
n
Thus we obtain
T . sin 3x  sin 5x
— =sinx 4o, 0O<x<m.
2 S1 + 3 + 5 <x<L
2.
l—i, 0<x<m,
%) 4 2
X)) =
—3—;t-+—;—, T<x<2r
We have
a,‘:LSR(E—i>cosnxdx+lr(~-3£+i)cosnxdx
T Jo\4 2 T J= 4 2
0 neven,
=42
-~ nodd.
nn’
Further, we easily find b, = 0, and hence
L_:\_,’_zi(co + cos3x+cos5x+”_), 0< x
s 2T\ T 5 P OsxsrT
For x = 0 we obtain
i 1 1
—::l —_ e cee
8 + 3’+ 5’+

When a function is represented as a trigonometric series, this means that
only certain discrete frequencies have been used. By passing to the integral
form, we actually use all frequencies. The principal point is Fourier’s inte-
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gral theorem, which states a complete reciprocity between the amplitude and
frequency functions:

F) = S“’ fx)eive dx
= (17.3.11)

fix) = S+-F(y)e’“"‘ dv .

In practical work these integrals are evaluated numerically, and hence we
must require that f{x) and F(y) vanish with a suitable strength at infinity. If
fix) is known at a sufficient number of equidistant points, then F(y) can be
computed by numerical quadrature:

Fy) = r g(x)cos 2ryxdx — i - Smh(x) sin 2zyx dx ,
[ 0

with g(x) = fix) + f{—x); k(x) = fix) — {—x). In general, F(v) will be com-
plex: F(v) = G(v) — iH(v), and conveniently we compute the absolute value

Pv) = (G) + HEy)" .

If the computation is performed for a sufficient number of y-values, one can
quite easily get a general idea of which frequencies y are dominating in the
material f{x). Another method is autoanalysis. In this case one forms con-
volution integrals of the form { fix)AAx — r) dx; if there is a pronounced peri-
odicity in the material, then for certain values of ¢ the factors f{x) and f(x — ?)
will both be large, and hence the integral will also become large. It can easily
be shown that if f{x) contains oscillations with amplitude a,, the convolution
integral will contain the same oscillations but with amplitude g}, instead.

17.4. Approximation with exponential functions

The problem of analyzing a sum of exponential functions apparently is very
close to the problem just treated. Suppose that we have a function f{x) which
we try to approximate by

fix)=a, - e +a,-e4* ...+ a, . e, (17.4.1)
We assume that n is known and shall try to compute a,, a,, ..., aq,, and
A5 4y -+ +» A,. We observe that f{x) satisfies a certain differential equation:
y(ﬂ) + Aly(n—l) 4+ 4 A”y — 0

with presently unknown coefficients 4,, 4,,. .., 4,. We compute y, y”,...,p™
numerically in n different points and obtain a linear system of equations from
which the coefficients can be obtained. Last, 2,, 4,,.. ., 2, are obtained as roots

of the algebraic equation 2* + 4, 2*' ... 4 A4, = 0, and we get the coefficients
a,, a,, ..., a, by use of the least-squares method.
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At first glance this method seems to be clear and without complications,
but in practical work we meet tremendous difficulties. The main reason is
the numerical differentiation which deteriorates the accuracy and thus leads to
uncertain results. Since the data, which very often come from biological,
physical, or chemical experiments, are usually given to, at most, four significant
digits, it is easily seen that an approximation with three exponential functions
must already become rather questionable. For example, Lanczos has shown
that the three functions

fi(x) = 0.0951 - e== + 0.8607 - = + 1.5576 - e~*=,

Si(x) = 0.305 - g1 4 2,202 . g4,

fi(x) = 0.041 . 7% 4 0.79 . e72™= 1 ].68 . e—*%=,
approximate the same data for 0 < x < 1.2 to two places.

A better method, which has also been discussed by Lanczos [4], is the follow-
ing, originating with Prony. We assume that the function y = f{x) is given in
equidistant points with the coordinates (x,, y,), (X, ), - - -5 (X, ¥.), Where x, =
X, + rh. We will approximate f{x) by a,es* + a,e’s* + ... + a_e'=*. Putting
¢, = a,e’r*and v, = eMr, we obtain for r = 0, 1,2, ..., m the equations:

G +¢ -t C =Y,
€U, + 6V, 4o+ CQV = Wy,
-l 1 3% yl (17.4.2)

clvl- + c:v: +"'+ C.‘v: =yu’
Forming
=)V —2) - (V—0,)=0" + 50" ... 45, (17.4.3)
= @(v),
multiplying in turn by s, s._,, ..., 5,5 = 1, and adding, we obtain
‘P(vl)cl + ‘P('v:)c: +-ee+ ¢(vu)c-
=SVt Smar ot SV + Y =0,

since p(v,) =0, r = 1,2,...,m. Normally, mis, of course, substantially smaller
than n, and further it is clear that we get a new equation if we shift the origin
a distance A to the right. If this is repeated, we get the following system:

YmatS1 + VmsSs + -0+ VoS = =P

w5 + u—s:+"‘+ S = =V ,
A ” P (17.4.4)
YucaSi F VasSy +---+ VYamSm = —Yu -

Thus we haven—m + 1 equations in m unknowns, and normallyn—m+1>m;
hence s,, s,, . . ., s, can be determined by means of the least-squares method.
Then we get v,, v,, ..., v, from (17.4.3) and 4, = log v /h. Finally, we get
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Cp» Cyy -« «5 €, from (17.4.2) (since there are m + 1 equations but only m un-
knowns, for example, the last equation can be left out), and a, = c, - v;%/*. .

17.5. Approximation with Chebyshev Qolynomials

The Chebyshev polynomials are defined by the relation
T,(x) = cos (narccos Xx), (17.5.1)

where it is natural to put T_,(x) = T,(x). Well-known trigonometric formulas
giveatonce T, (x) + T,_.(x) = 2T,(x)T,(x). For m = 1 we get in particular

T, (%) = 2xTy(x) — T,_(%). (17.5.2)

Since T(x) = 1and Ty(x) = x, we can successively compute all T,(x). Putting,
for a moment, x = cos §, we get y = T,(x) = cos nf and, further,

dy _ , _ nsinng
dx sin 4
and
Y= —n*cosnf + nsinnfcotd _ny N xy'
sin? 4 I U] - e
Thus the polynomials T, (x) satisfy the differential equation
(1 — x’)y" — xy' + nly = 0 . (17.5.3)

As is inferred directly, the other fundamental solution of (17.5.3) is the function
S,(x) = sin (narccos x). In particular we have Sy(x) = 0 and S(x) = VT — x°.
With U,(x) = S.(x)/V'T — x*, we have in the same way as for (17.5.2):

U, (x) = 2xU(x) — U,_(x) . (17.5.4)
The first polynomials are
Ty(x) =1 Uyx) =0
Ty(x) =x U(x) =1
Ty(x) =2x* -1 U(x) = 2x
Ty(x) = 4x* — 3x Uyx) = 4x* — 1
T(x) = 8x* — 8x* + 1 U(x) = 8x* — 4x

Ty(x) = 16x* — 20x* + 5x Uyx) = 16x*— 12x* + 1
From (17.3.5) we have directly

0
+1 dx iz _
S_x TNT) - e =42, m=nz0, (17.5.5)

T, m=n:0,

thatis, the polynomials T',(x) are orthogonal with the weight function 1/1/T— .
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Chebyshev discovered the following remarkable property of the polynomials
T,(x). For -1 < x < 1, we consider all polynomials p,(x) of degree n and
with the coefficient of x* equal to 1. Putting a, = sup_,,, |p.(X)|, We seek
the polynomial p,(x) for which «, is as small as possible. The desired poly-
nomial is then 2-*~VT,(x), as will become clear from the following discussion.

First we observe that T,(x) = cos (narccos x) = 0, when

x:&:cosM, r=0,1,2,....,n—1,
2n

and that T,(x) = (— 1) forx = x, = cos rz/n,r =0,1,2,...,n. Now suppose
that [p (x)| < 2=~V everywhere in the interval —1 < x < 1. Then we have

27T (%) — pa(X0) > 0,
27T (%) — pa(®) <O,

that is, the polynomial f,_,(x) = 2=**~VT,(x) — p,(x) of degree (n — 1) would
have an alternating sign in (n + 1) points x,, x,, ..., x,. Hence f,_(x)
would have n roots in the interval, which is possible only if f,_(x) = 0, that
is, py(x) = 27*VT (x).

Suppose that we want to approximate a function f{x) with a Chebyshev series:

f(x) = %co + clTl('x) + csz(x) +oeee+ c,,_,T,,_,(x) + Rn(x) . (17'5'6)

In analogy to (17.3.3), if j, k < n and at least one of them different from zero,
we have

FTEITUE) = 26 (17.5.7)

The general formula is
n—1
L TEITUE) = - [(=D)I0m0(] + k, 2n) + (= 1)9705(] — k, 2n))

To determine the coefficients ¢, in (17.5.6), we can use either (17.5.5) or
(17.5.7). The latter might be preferable, since the integration is often some-
what difficult:

2 2 =, 2 1k
=2 FREITE) = 2T fe)eos L (17.5.)

r—0

In particular we observe that ¢, depends upon n, which means that we cannot
justadd another term if the expansion has to be improved; all coefficients change
if we alter the degree n. If we use (17.5.5), we obtain the limiting values of ¢,
when n — oco.

The remainder term R, can be expressed as

Rn = chn(x) + cuHTn+l(x) +oe
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and if the convergence is sufficiently fast, we have R, ~ ¢,T,(x). In this case
the error oscillates between —c, and +c,.

If the function f'is such that we know a power-series expansion which con-
verges in the interval, a direct method can be recommended. We have

1 =1T,, x*= 43T, + 4T, + T,),
x=T, x* = (10T, + ST, + T,),
X =4(T,+ Ty, x* = (107, 4 15T, + 6T, + T,

®={G3T, +T,), x =BT, +2IT, + 1T, + T),

The general coefficient in the expansion x* = 37 ¢, 7T, becomes

= 2. Sﬂx"T(x)d—x = 3§xcos"<pcosmpdcp.
or )T VT T ke
If k is odd, n takes the values 1, 3, S, ..., k, and if k is even, n takes the values

0,2,4,...,k. The integrand can be written
(et'go — e—ip)k em';o + e-iu'¢
2k 2
ekiv 4 (’l‘) etk—Mip | (IZ‘) elk—Nip 4 . o—kip emiv 4. ¢ iy
N 2k 2

The term et*~2%¢ . e becomes 1 if r = (n + k)/2, and analogously, we get 1
also for the term e® —*%¢ . =i with the same r. When we integrate, all other
terms vanish, and we are left with

— 2—k+1 k )
c.=2 ((n s o) (17.5.9)
If k = 0 we have ¢, = 0 except when n = 0, since ¢, = 1.

By use of these formulas, a power-series expansion can be replaced with an
expansion in Chebyshev polynomials. This latter expansion is truncated in
such a way that our requirements with respect to accuracy are fulfilled, and
then the terms can be rearranged to a polynomial. Clearly, the coefficients
in this polynomial differ from the corresponding coefficients in the original
expansion.

EXAMPLES

1. f(x) = arcsin x. Since f(x) is an odd function, we get ¢, = 0. For the
other coefficients we find
" arcsin x - cos ((2k + 1) arccos x) dx

- VT — %

2
Caky1 = x
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Putting x = cos p, we obtain

Con = %S(l - cp) . cos (2k + lypdp

o\2
4 1
T 2k + 1y
Thus
arcsinx:_4_|:T,(x)+&)_+M+...]_
T 9 25
Forx = l wehave T, = T, = T, =--- = 1, and again we get the formula
’ 1 1
—-:1 — — LU
g Totmt

Expansion of other elementary functions in Chebyshev series gives rise to rather
complicated integrals, and we will not treat this problem here (cf. [7]).

2. If we expand e~* in power series and then express the powers in Chebyshev
polynomials, we find
e~ = 1.266065 877752T,
— 1.130318 2079847, + 0.271495 339533T,
— 0.044336 849849T, + 0.005474 240442T,
— 0.000542 9263127, +- 0.000044 977322T,
— 0.000003 1984367, + 0.000000 1992127,
— 0.000000 0110377, + 0.000000 0005507,
— 0.000000 0000257, + 0.000000 0000017, .
This expansion is valid only for —1 < x < 1. If we truncate the series after
the T,-term and rearrange in powers of x, we obtain
e * ~ 1.000045 — 1.000022x + 0.499199x*
— 0.166488x* + 0.043794x* — 0.008687x° .
The error is essentially equal to 0.0000457,, whose largest absolute value is

0.000045. If, instead, we truncate the usual power series after the x’-term,
we get

e*~1—x+ 0.5x* — 0.166667x° + 0.041667x* — 0.008333x%,

where the error is essentially x*/720; the maximum error is obtained for x = —1
and amounts to 1/720 + 1/5040 - ... = 0.001615, that is, 36 times as large as
in the former case. The error curves are represented in Fig. 17.5.* For small

* For convenience, the latter curve is reversed.
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1} E(x)

+0.001

$0.0001
Figure 17.5

values of x the truncated power series is, of course, superior. On the other
hand, the Chebyshev series has the power of distributing the error over the
whole interval.

When Chebyshev series are to be used on a computer, a recursive technique
is desirable. Such a technique has becn devised by Clenshaw [9] for the com-
putation of

SAx) = g o, Ty(x),

where the coefficients ¢, as well as the value x are assumed to be known. We
form a sequence of numbers a,, a,_,, ..., a, by means of the relation

a, — 2xa,., + a,,, = ¢, (17.5.10)

where a,,, = a,,, = 0. Insertion in f{x) gives
a2
fx) = ‘;D (@ — 2xa,4, + 8,,))T(X) + (@, — 2xa,)T,_(x) + a,T(X)
=32
= g(Tk - Zkaﬂ + Tkn)ak-n + aoTo + ax(Tx - szo) .

Using (17.5.2) we find

S1x) = a, Ty + a(T, — 2xT,)
or
f(x) =a, — ax. (17.5.11)



354 APPROXIMATION sgc. 17.6.

17.6. Approximations with continued fractions

A finite continucd fraction is an expression of the form

by + &
by +4
b, + 2
» + b, 7
: (17.6.1)
an—l
bn—l + —‘bxl:'
A convenient notation for this expression is the following:
by + @l %l oy Gl A 17.6.2
°+ |b1+ Ib2+ + Ibn Bn ( )
A, and B, are polynomials in the elements a, and b,, s =0, 1,...,r. Asis
easily found, the following recursion formulas are valid:
A, =bA A._,,
I r r‘fr—1 + ar r—3 (17-6.3)

iBr = err—l + arBr—-Z .

Here A_, = 1,B_, =0, A, = b,, and B, = 1. The formula is proved by induc-
tion, taking into account that 4,,,/B, ., is obtained from 4,/B, if b, is replaced
by b, + a, /b, .-

Generalization to infinite continued fractions is obvious; such a fraction is
said to be convergent if lim,__ A4,/B, = & exists.

Continued fractions containing a variable z are often quite useful for repre-
sentation of functions; in particular, such expansions often have much better
convergence properties than, for example, the power-series expansions. Space
limitations make it impossible to give a description of the relevant theory, and
so we restrict ourselves to a few examples.

r+1

z| oz | z| oz z| z| | z| z| z|

e=1+"—- 42— - - -
Iz 13 0z s 1z 17 42 |
G TR R VI T TP TIPS
oz+u | l lz | l It |z
e're_uduz Wy 4 9 _ 16 _
U e 11 [*x+3 [x+5 [x+7 ([x+9

Details on the theory and application of continued fractions can be found, for
example, in [10] and [11].
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17.7. Approximations with rational functions

A finite continued fraction containing a variable z can be written 4,/B,, where
A, and B, are polynomials in z, and hence 4,/B, is also a rational function.
Here we encounter the problem of finding rational approximations of the form
P(x)/Q(x) to a given function f{x) in an interval [, b]. Then it is first necessary
to prescribe how the deviation between the function and the approximation
should be measured. If this is to be done in the least squares sense, then one
still does not know very much. One could also demand conditions of the form

x) — Pa(x) < M |x|",
9= gl = MM
where the coefficients of P, and Q, should be chosen so as to make p as large
as possible. In typical cases this implies that the Taylor expansions of f{x) and
P, (x)/@.(x) should coincide as far as possible. This type of approximation was
introduced by Padé (cf. Exercise 4).

Most common, however, are Chebyshev approximations, and in this respect
there are several theoretical results. For example, under quite general condi-
tions there exists a “best”” approximation characterized by the property that all
maximal deviations are equal but with alternating sign (cf. [13] and [14]). In the
examples we shall specialize to the same degree in numerator and denominator.
Nearest to hand are the following two representations:

a,+ax +---+ a x™
xX) =22 L LI 17.7.1
Sx) by + bx + .-+ b x ( )

fix) = %t ax -+ a..xz: ) (17.7.2)
Bo”“‘ﬁxf 'i"'"+/3nx

The coefficients are determined by a semiempirical but systematic trial-
and-error technique. The main idea is to adjust the zeros of the function
f(x) — P(x)/Q(x) until all maximal deviations are numerically equal.

Without specializing we can put b, = 8, = 1. The second formula should
be used if f{x) is an even or an odd function; in the latter case it should first
be multiplied by a suitable (positive or negative) odd power of x. It is inter-
esting to compare the errors of the different types of approximations; naturally
the type depends on the function to be approximated. However, an overall
qualitative rule is the following. Let 4, B, C, and D stand for power series,
Chebyshev polynomial, continued fraction, and rational function, respectively,
and let the signs > and » stand for “better” and “much better.” Then we
have, on comparing approximations with the same number of parameters,

D>C>»B>A.

There are exceptions to this general rule, but this relation seems to be the
typical one.
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Last, we give a few numerical examples of rational approximation, all of
them constructed in the Chebyshev sense; ¢ is the maximum error, and if
nothing else is mentioned, the interval is 0 < x < 1. Also cf. [12].

__ 1.0000000007 — 0.47593 58618x + 0.0884921370x* — 0.00656 58101x°
1 + 0.52406 42207x + 0.11255 48636x* + 0.01063 37905x°

e=17.34.10"".
—0.6931471773 +0.06774 12133x +0.5297501385x* + 0.09565 58162x°

—%

’

logz = T+ 1.34496 44663x + 0.45477 29177x0 1 0.02868 18192%° ;
x=2z-1; 1<zL1; €=3.29.10""°.

arctan x

arcan x

_ 0.99999 99992 + 1.13037 54276x + 0.28700 44785x" + 0.00894 72229x*
- 1 +1.46370 86496x* +0.57490 98994x* +0.05067 70959x°

€ =17.80.10"",
sinx _ 1 — 0.13356 39326x* + 0.00328 11761x*
x 1 + 0.03310 27317 + 0.00046 49838x*’
€ =4.67.10™1,

cos x ~ 0:99999 99992 — 0.45589 22221x* 4+ 0.02051 21130x*
- 1 + 0.04410 77396x* + 0.00089 96261x* ’

e=17.55-10"",

’

The errors were computed before the coefficients were rounded to ten places.
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EXERCISES
1. The following data x and y are subject to errors of the same order of magnitude:

x||l|2|3|4|5|6|7|8
ylafslelslslelelr
Find a straight-line approximation, using the least-squares method.

2. The points (2, 2), (5, 4), (6, 6), (9, 9), and (11, 10) should be approximated by a
straight line. Perform this, assuming

(a) that the errors in the x-values can be neglected;

(b) that the errors in the x- and y-values are of the same order of magnitude.

3. Approximate e * for 0 < x < 1 by @ — bx in the Chebyshev sense.
4. For small values of x, we want to approximate the function y = €**, with

1 + ax + bx* + cx*
1 —ax + bx* —cex*’

fx)=

Find a, b, and c.
5. For |x| < 1, there exists an expansion of the form
e® = (1 + axXl + ax*¥1 + asx*) - -+
Determine the constants a,, a,, .. ., @.

6. For 0 < x < /2, the function cosx is to be approximated by a second-degree
polynomial y = ax* + bx + ¢ such that §;’*(y — cos x)* dx is minimized. Find a, b,
and c.

7. The radiation intensity from a radioactive source is given by the formula I =

Ie™*. Determine the constants «a and J, using the data below.

t || 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8
I || 3.16| 2.38| 1.75| |.34| |.00| o.74| 0.56

8. y is a function of x, given by the data below. It should be represented in the
form Ae™°* + Be™*. Determine the constants a, b, 4, and B.

x || 0.4 | 0.5 | 0.6 | 0.7 l 0.8 l 0.9 | 1.0 | 1.1
y I 2.31604 | 2.02877 I 1.78030| 1.56513 l 1.37354| 1.21651 ‘ 1.07561 |0.95289

9. The function y of x given by the data below should be represented in the form
y = e **sinbx. Find a and b.

x||o| 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | 1.6
y || 0 |0.15398‘0.184l7|0.l6156|0.12301 Io.osssl |o.oss37|o.03362lo.01909
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10. The function y(¢) is a solution of the differential equation y +ay=0,y0)=5b.
Using the method of least squares, find a and b if the following values are known:

¢ || 0.1 | 0.2 ‘ 0.3 | 0.4 | 0.5

(1) || so.4| 53.9| 36.1 [ 24.2| 16.2

11. The function y = 1/x should be approximated in the interval 1 < x <2 by two
different straight lines. One line is used in 1 < x < a and another in @ < x < 2. Each
line intersects with the curve in two points, and the two lines intersect in x = a. All
five maximum deviations are numerically equal. Find a and the maximum deviation.

12. The parabola y = f{x) = x* is to be approximated by a straight line y = g(x) in
the Chebyshev sense in a certain interval I so that the deviations in the two endpoints
and the maximum deviations in 7 all are numerically =¢. Compute B/4 when

Al

A= S, (6(x) — fx))dx and B= S: |g(x) — fx)) dx .

13. Approximate x/(e* — 1) by a polynomial of lowest possible degree so that the
absolute value of the error is <5 x 107 when x € [0, 1].

14. Find a third-degree polynomial P(x) which approximates the function f(x)=
cos 7x in 0 < x < 1 so that P(0) = f{0); P(1) = f(1); P'(0) = f(0); P'(1) = f'(1). Then
calculate max,g,<, |[P(x) — f(x)| to 3 significant figures.

15. The function e™* should be approximated by ax + b so that [e™* — ax — b] <
0.005. The constants a and b are to be chosen so that this accuracy is attained for an
interval [0, ¢] as large as possible. Find a, b, and c to three decimals.

16. The function F is defined through

F(x) = S: exp (——’;) dt .

Determine a polynomial P(x) of lowest possible degree so that |F(x) — P(x)] < 107*
for |x| < 1.

17. Expand [sin x| in a Fourier series!
18. Expand the function cos x in a series of Chebyshev polynomials.



Chapter 18

Special Functions

Iam so glad I am a Beta,
the Alphas work so hard.
And we are much better than the Gammas
and Deltas.
AvrLpous HUXLEY

18.0. Introduction

In this chapter we shall treat a few of the most common special functions.
Primarily we shall choose such functions as are of great importance from a
theoretical point of view, or in physical and technical sciences. Among these
functions there are two main groups, one associated with simple linear homo-
geneous differential equations, usually of second order, and one with more
complicated functions. In the latter case a rather thorough knowledge of the
theory of analytic functions is indispensable for a comprehensive and logical
treatment. However, it does not seem to be reasonable to assume such a knowl-
edge, and for this reason it has been necessary to keep the discussion at a more
elementary level, omitting some proofs and other rather vital parts. This is
especially the case with the gamma function, but also for other functions with
certain formulas depending on, for example, complex integration and residue
calculus. Since the gamma and beta functions are of such a great importance
in many applications, a rather careful description of their properties is desirable
even if a complete foundation for the reasons mentioned cannot be given.

18.1. The Gamma Function

For a long time a function called the factorial function has been known and is
defined for positive integer values of n throughn! = 1.2.3 ... With this
starting point, one has tried to find a more general function which coincides with
the factorial function for integer values of the argument. Now we have trivially

nl=n.(n-1) n=273,4,...,

and if we prescribe the validity of this relation also for n = 1 we find 0! = 1.
For different (mostly historical) reasons, one prefers to modify the functional
equation slightly, and instead we shall consider functions g(z) satisfying

gz + 1) = zg(2)
for arbitrary complex z, and the condition g(n + 1) =n! forn =0,1,2, ...

359
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Taking logarithms and differentiating twice we get
L tog gz + 1) = —=; + 2 log g(2)
From gz + n + 1) = (z + n)(z + n — 1) - - - zg(z), we find in a similar way
forn=0,1,2,...,
1 d:

_logg()—E"(z+k)z+ logg(z+n+1).
Now we put
_ 1
A2 = g (z + k)

and find immediately

1
ﬂ)*Eo(z_}__k),"‘ﬂz‘*'”‘i'l)'

It now seems natural indeed to identify f{z) with 4*/dz* log g(z), and in this way
define a function I"(z) through

1

dx oo
—logP(z) gm (18.1.1)
with
r'(z+4 1)=2z2r(2); ray=1. (18.1.2)
Integrating (18.1.1) from 1 to z 4 1, we find
d = /1 1
—1 =1 2 - ]
dz gl +1) F(l)+-z=1(n z+n>

One more integration from 0 to z gives
log 'z + 1) = z. I'(1 ”{_z._l 1 _z.},
gl(z+1)=z ()+§n °g(+n)
Putting z = 1 we get because of I'(2) = 1 . I'(1) = 1:
=1 1
—r(l) = {__l 1 _}
(1) = {5 —tog(1+ 1)

. 1 1 1
=lim(1 —_— —_— o — - =7r.
+2+3+ +n logn) 7

n—co

Here, as usual, y is Euler’s constant. Hence we obtain the representation

I = %e""ﬂI:Il e'/"/(l + %) (18.1.3)
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Ifweuse 17 {1/n —log(1 + 1/n)} instead of Euler’s constant we get the equiva-
lent formula

1y + 1/
@z =— 18.1.4
@ z uI=Il (1 + z/n) ( )
From this formula we see that the I"-function has poles (simple infinities) for
z=0, —1, —2,... Another representation which is frequently used is the fol-
lowing:
r() = S e~t-1dt, Rez>0. (18.1.5)

By the aid of parual integration it is easily verified that (18.1.2) is satisfied.
We are now going to derive some important formulas for the gamma function.
First we consider I"(1 — z):

r(l —z) = —z[(~2) = e ﬁ(l _ %>_le"/".

Multiplying with I"(z) we get
rerQ —z) =z g(l - F>— .

Let us now perform a very superficial investigation of the function

B0 -3)
Then we find

(1= D)= §) e (o)

1 1 1 1 1 1
+zb(1.__ o e =2 202 )_
4+ 9+ +4 9+4 16+

The first coefficient is 72/6 while the second can be written

L{(] 1.1 )(1 1, 1 )
AU+ g+ totg T

_1__1____1__...}_L(£‘_ ”‘)- N
4.4 9.9 2\3 90/ 120°
Hence the leading three terms in the serics are
_m
6 120’

coinciding with the three leading terms in the series expansion for sin 7z/z. In
the theory of analytic functions it is strictly proved that

- N
JI(1 - 5) =22,
n=1 n® (4
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(Note that we have the same zeros on both sides!) This gives the important result

rErQ -z = sin”m. (18.1.6)

In particular we find for z = } that
[F@r== and IG)=vr,

since I'(x) > 0 when x > 0. If the formula is used for purely imaginary argu-
ment z = iy, we get
L1 L3

ranrd —iy) = —yrri-iy) = sinziy isinhzy

and hence

\riy)f = —2—, (18.1.7)

ysinh zy
since |"(iy)| = [I(—iy)|. By theaid of (18.1.3) we can also compute the argu-
ment using the well-known relations arg (z,2,) = arg z, + arg z,; arg(x + iy) =
arctan (y/x); and arg e¢** = a. In this way the following formula is obtained:

arg I'(iy) = E{%:- — arctan (%)} -1y - (%) sign (y) . (18.1.8)
n=1
By use of the functional relation we can then derive formulas for the absolute
value and the argument of I"(N — iy) when N is an integer.
We shall now construct a formula which can be used for computation of the
I’-function in points close to the real axis, and in particular for real values of
the argument. We start from (18.1.4) in the form

2z + 1)I(2) = I'(z + 2) = exp {Z“: |:z log (1 + ﬁ) — log (l + %):I} .

n-2

But

(14 2) - -2 BE ()

k=2 k n

If we now perform first the summation over n from 2 to N for
z[log(l + __l_) - i:',
n— 1 n

z[log2+log%+log%+---+log NNI —%_%_..._i]

we obtain
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When N — co this expression tends to z(1 — y), and we get

re+n=eplat -n+ S LG (2)}

n=2 k=2 n

Now the summation order in n and k is reversed (which is allowed if [z| < 2)
and using the notation

c<k)=ﬁ;n-*, k> 1,

we obtain finally

Iz + 2) = exp {z(l R g(;k‘l'[c(k) - l]z"}. (18.1.9)

For z = —1, we find the well-known identity
+AB 45 LA L2,
v+ > + 3 + 2 +

with z, = {(k) — 1 (alsocf. Ex. 19 of Chapter 11). Formula(18.1.9)should only
be used when |z| is small, preferably for real values of x such that —1 < x < 1.

If one wants to compute the value of the /™-function for an arbitrary com-
plex argument z, an asymptotic formula constructed by Stirling should be used.
For, say, 10-digit accuracy it is suitable to require |z > 15and Rez > 0. Other
values of z can be mastered if Stirling’s formula is used on z — N (N positive
integer) and the functional relation then is applied N times.

We shall now derive Stirling’s formula starting from Euler-McLaurin’s sum-
mation formula. Suppose f(x) = log x and # = 1 and let M and N be large
positive integers, N > M. Since

f(2r+l)(x) o (2,)! x—(2r+l) s

we obtain the following asymptotic relation:
N N l
3 logn = g log x dx + 7[logM + log N}
n=M M
_L[L _L]+ ‘ [L _L] - _'_[_'_ - L} .
12lM  NJ360LM* N 1260LM> N

+(_l)r+l Br-H [ l l 4 ..

(2r 1 1)2r + 2) LM e T ONTH
Applying
N
3 logn = log N! — log(M -- 1)!
n= M
and

gylogxdx = NlogN — N - MlogM + M
M
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and collecting terms in M and N we find

1 1
M — (M log M + M — L S
log ( + 2) og M + T2 T 36008

1 1
= log Nt — (N + =) log N + N — L.,
log 7)Y T N T 30w
where both sides must be considered as asymptotic expansions. Now let M and
N tend to infinity and truncate the two series just before the terms 1/12M and
1/12N. Then we see at once that the remainder must be a constant K:
K = lim {logn! — (n + 3)logn + n}.

n—oo

Hence we obtain the asymptotic expansion

1 1
2n 360w

However, we have still to compute the value of K. To do this we again apply
the same expansion, but now for 2n:

logn! = K + n+%)logn—n+

1 1

1
log (2n)! = K (2 )1 2n) — 2n 1
g (2n) + (2 + 5 )log (2n) t 2an " 2880w T

or
log (2n)! — 2logn! = —K + (Zn + %)logZ
1 1 1
— —lo - - e,
2 8" " g T 1oz

The left-hand side can be estimated by considering the integral /,, = {*/*sin™ x dx
for non-negative integer values of m. By partial integration we find, whenm > 2,
;] M= 1,

™ m—2

m

with I, = /2 and J, = 1. Hence we have

=n-12n-3 1 z_ Qo =
2n 2n—-2 2 2 27nly 2

and

2n_ 2n -2 2 22(n!)?

2n+ 1 2n — 1 3 @n)!@2n+ 1)

Further we have for n > 1

2n+l —

=l2 | =2
S sin***! x dx < S
[

. rl2
sin* x dx < S sin*~' x dx ,
0

0
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that is, I,,,, < L, < L,—,- From this follows

Ly U or 20 _ (@'
Izn—l < Iin—l < 2" + 1 2“(”!)‘

Hence we finally get

. (2avn _ 1
um 2nly  Vr

which is the well-known formula by Wallis. For large values of n we have

log (2n)! — 2logn! = 2nlog2 — 3} log (n7)
and comparing with our previous expression we get when n — co
K = 4log2rm.

The derivation has been performed for positive integers, but the formula can be
continued to arbitrary complex values z sufficiently far away from the singular
pointsz =0, —1, =2, ... We now present Stirling’s formula in the following
shape (log I'(n) = logn! — logn):

log I'(z) = %loan + (z - li)logz— z

NLEEUS U S
12z 360z 1260z°
+ ETE%% +R,,,, (18.1.10)
where
IRyl < By p=argz.

@n + D20 + )|zl (cos (@)™

For the I"-function itself we have

1 1 139 7
2—1/2,—2 - _ . .. X
F(@) ~ vi2rzie [ t12: ' 2887  Sisa0r 24883207 | }

The formulas can be used only if |arg z| < &, but it is advisable to keep to the
right half-plane and apply the functional relation when necessary. Often the
logarithmic derivative of the I"-function is defined as a function of its own,
the so-called ¢-function or the digamma function. From the functional rela-
tion for the I"-function we have directly ¢(z + 1) — ¢(z) = 1/z. Further from
(18.1.3) we obtain:

¢(2)=—r+g( P ). (18.1.11)

o\n + 1 zZ+4+n
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As is the case for the I"-function the ¢-function also has poles for z = —n,
n = 0,1,2,3,... The function values for positive integer arguments can easily
be computed:

gy =~r; ¢@)=1-7r; ¢B)=1+3%—7;
B =1+3+3-7, and so on.

It is immediately recognized that for large values of n we have ¢(n) ~ logn.
An asymptotic expansion can be obtained from (18.1.10):

1 1 1 1

~1 _ — = —
g ~logz — o — o * 0w~ 2527 T

Due to the relation 4¢(z) = 1/z the ¢-function is of some importance in the
theory of difference equations (cf. Section 13.3).

The derivative of the ¢-function can also be computed from (18.1.5) which
allows differentiation under the integral sign:

P'(2) = S:e"t"‘ log tdt .
For z = 1 and z = 2 we find in particular
()= —y = S:e"logtdt,
P2)=1~7p = S:te“ log t dt .

As an example we shall now show how the properties of the I'-function can

be used for computation of infinite products of the form I, u, where u, is a

rational function of n. First we can split u, in factors in such a way that the
product can be written

pP_TjAn—a)n—a)-.- (n—a,)
#i(n—b)n—b)---(n—b)

A necessary condition for convergence is lim,__ u, = 1 which implies 4 = 1
and r = 5. The general factor then gets the form

P,.=(l —%)...(1 —%)(l _%)‘1”.(1_%)-1
:'—Z:L;M+0(n-*).

But a product of the form [[7_ (1 — a/n) is convergent if and only if a = O (it
a > 0 the product tends to 0, if @ < 0 to co). Hence we must have 2a, =3Xb
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and we may add the factor exp {n{(Z a; — T b;)} without changing the value
of P. In this way we get

P— ﬁ(l _ ﬂ) e“nl’-...<l - &)e«,/n(l _ ﬁ)"'e-o,/n. i .(1 _ ﬁ)”e—»,/..‘
n-1 n n n n

But according to (18.1.3) we have

N Z\ em e’ _ e
,.I._Il<l B "n")el T [=ar(=2] TA -2

and from this we get the final result:

r 1'(1 — b.)
P=J—"——. 18.1.12
I I'(l — a,) ( )
18.2. The Beta Function
Many integrals can be brought to the form
B(x, y) = S‘ (1 — prde (18.2.1)
(]

(Unfortunately, capital Beta cannot be distinguished from an ordinary capital
B.) This relation defines the beta function B(x, y) which, obviously, is a func-
tion of two variables x and y. For convergence of the integral we must claim
Re x > 0, Re y > 0. First it will be shown that the beta function can be ex-
pressed in terms of gamma functions. Starting from (18.2.1) we perform the
transformation ¢ = v/(1 + v) obtaining

B(x,y) = S:v“‘(l + ooy vy . (18.2.2)
Multiplying by I"(x + y) and observing that
S:e—n»fweeuy—x dz = (1 + v)=*I'(x + y),
which follows through the transformation (I + v)¢ = z, we obtain
I'(x + y)B(x,y) = S:dv - vt S:e““"’%”"“ d¢
= S:dee—65:+y-l S:‘ vele=ri dy .
The inner integral has the value £-2I"(x) and this gives

o
0

I'(x + y)B(x, y) = r(x)S etertde = [(I(Y) .
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Hence we get the desired formula

rery)

BN = Favy)

sec. 18.3.

(18.2.3)

We can now make use of this relation in deriving another important formula.
If the integration interval in 18.2.2 is divided into two parts we obtain

g vs—l

B(x, y) = S: + S: de

The second integral is transformed through v = 1/t and hence

_ 1 yz—1 + pv!
B(x,y) = So-——-(l oy dv

Putting y = x we get

B(x, x) =

['(x)z _ 2 gl vz—l
I'(2x) o(l + v)*=

Ifwe put v = (1 — £)/(1 + ¢), the integral is transformed to 2=+ §! (1 —

and then #* = z gives

rey 1 S'z—m(l — z)ldz = B(x, 3) .
T2x) 2+ ) 2321

From this we finally get
I'(2x) = a7\ D(x)[(x + 3) .

This duplication formula is initially due to Legendre.

EXAMPLE

Smsin”tcos"tdt =F(x+ HL + é), x> —-%, y> —4%.

: 2T(x +y + 1)

This important formula is obtained if we put sin®*¢ = z.

18.3. Some functions defined by definite integrals

tﬁ)z—l dt,

(18.2.4)

(18.2.5)

In this section we shall very briefly touch upon still a few functions other than
the gamma and beta functions (which could also be brought here since they can
be defined through definite integrals). The error integral is used extensively in

statistics and probability theory and is defined through

Erfc (x) =

1—/2=§’e“’dt ,
T Jo

(18.3.1)
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where Erfc is an abbreviation for Error function. For large values of x the
function converges quickly toward 1 and then an asymptotic expansion can be
used conveniently:
— - 1 1.3 1.3.5

— Erf ~e__(1___ - ). (1832

v (l - Erfe () ~ — e ey | @y (18.3.2)
The exponential integrals are defined through

Ei(x) = S

"T’d:, x>0, (18.3.3)

o 5—t
E,(x):s i, x>0 (18.3.4)

In the first integral the integrand is singular in the origin and the integral should
be interpreted as the Cauchy principal value

1im§" + S’i’ dr .

=0 J)—o s t

Nearly related are the sine and cosine integrals

Si(x) = §oﬂ:‘_’dt, (18.3.5)
Ci(x) = —S:%s'dt — 7 +logx + So%—‘ dt.  (18.3.6)
The complete elliptic integrals are defined through
/3 1
Ko = So'I/I —dl’c’ St So V({1 - xgz‘l — k%)’ (18.3.7)
Ek) = Sml/l_—m dt = S’ UL (18.3.8)
0 0 1 — x?

A large variety of definite integrals can be reduced to this form (cf. [7]).

EXAMPLES

I:SwL:gl{-X“ dt =2S1 dt
oVl + 1 ) 1'_|;l+t‘ oV + ¢

(put t — u~* in the second integral).
Then transform through ¢ = tan (x/2):

=" dx [ K(1
o Vsin'(x/2) + cos*(x/2)  Jo VT — jsimx ( )
= 1.85407 46773 .

S
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18.4. Functions defined through linear homogeneous differential equations

First we shall very briefly discuss how solutions of linear differential equations
can be determined by series expansion. In general, one makes the attempt

y:ia,x",

where the numbers a, so far represent unknown coefficients; also the starting
level r remains to be established. By insertion into the differential equation we
get relations between adjacent coefficients through the condition that the total
coefficient for each power x* must vanish. In the beginning of the series we
obtain a special condition for determining r (the index equation).

ExAMPLE
y" + y = 0 .

We suppose that the series starts with the term x”. Introducing this single term
and collecting terms of lowest possible degree we are left with the expression
r(r — 1)x~~*. The index equation is r(r — 1) = 0 and we get two possible values
ofr:r=0andr = 1.

(a) r=0.
y= 2 a,x".
Y= Lonn = Daget = 3 (n -+ 10 + D,

Hence we obtain the relation (n + 1)(n + 2)a,,, + a, = 0, and choosing a, = 1
we find successively

a:—#‘ a'——l_'
! ’ ‘T1.2.3.4°

1.2
and the solution
_ x3 x*  x* _
y_l_ﬂ-'_ﬂ_a_’””_cosx'

(b) r = 1. Here we have the same relation for the coefficients, and choosing
a, = 1 we find

7
y:x—£+x° x

3! E—ﬁ+'--=81nx.

The general solution is y = 4 cos x + Bsin x.
Similar series expansions cannot generally be established for all linear differ-

ential equations. If the equation has the form y” + P(x)y’ + Q(x)y = 0, P(x)
and Q(x) as a rule must not contain powers of degree lower than — 1 and —2,
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respectively. The equations we are now going to discuss are all of great im-
portance in physics and other sciences, and the condition mentioned here will
be satisfied for all these equations.

18.5. Bessel functions
We shall now treat the differential equation

du | 1 du (l v’)
_ —_— — =—lu=0. 18.5.1
dx? * x dx * x? ( )
Putting u = x" we find the index equation r(r — 1) +r —v* =0 with the two
roots r — =+yp. Trying the expansion u = 3, a,x*, we find
., = — il
T Tk 2+ o)k + 2 - )
We now start with k = y and a, = 1 obtaining
SN S
22 + 2)

1
av+4

] 2-42v + 2)2v + 4)’

av+2

(=1 _ (=D -2
T Ko+ D +2)--- W+ k) 2 KT+ k+1)

The factor 2*I"(v + 1) is constant and can be removed, and so we define a func-
tion J,(x) through the formula

a9 =

~ 3y (=D 18.5.2

M) = LT kT D (18-3-2)

The function J,(x) is called a Bessel function of the first kind. Replacing v by

— v we get still another solution which we denote by J_,(x), and a linear com-

bination of these two will give the general solution. However, if y is an integer

n, the terms correspondingtok =0, 1,...,n — 1 will disappear since the gamma
function in the denominator becomes infinite. Then we are left with

J _ L4 (___ l)k(x/z)—l+,k - i (___ l)u(__ l)i(x/z)—n +2n 42y _ _ .
-+(%) ::-Z;k!l'(—n +k+1) Z—% (n+ o) I'w -+ 1) (=I"u(x) -

where we have put k = n + y. Note that (n + v)! = I'(n + vy + 1) and
I'(y + 1) = p!. Assoon as y is an integer we only get one solution by direct
series expansion, and we must try to find a second solution in some other way.
A very general technique is demonstrated in the following example. Consider
the differential equation y”’ + a’y = 0 with the solutions y, = %, y, = e~
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If « = 0 we get y, = V= 1 and one solution has got lost. It is now clear that
also y, = (J, — »)/2a is a solution, and this holds true even if ¢ — 0. Since
lim,_, y, = x, the general solution becomes y = A4 + Bx.

Along the same lines we now form

J(x) — (=) (%)

Y, (x) = — lim
T ovn yv—n
or
Vo) = L tim {20 = L) gy L) = L))
T v—m Yy —n Yy —n
L@ (2L
n { oy oy Ji=n
We shall now prove that Y (x) satisfies the Bessel equation
d*u du
£ — 4 (- =0.
x,dx’ +xdx+( v

Differentiating with respect to y, and with u replaced by J,(x) and J_,(x), we get
o 4 0% 4 x d 3J(x) + (8 — ) aJ,(x) = Wi (x),

dx* oy dx oy
@ A (x), d (%) a_ (") = 2
dax oy +x dx oy te v) Pl

We multiply the second equation by (—1)* and subtract:
a d 0J.(x) »0J_(%)
— — + X — pad Sl SN | i e
(# o+ + 2 —v) (B - 1y 220)

dx?
= W(I(x) — (=) (x).

Now letting y — n the right-hand side will tend to zero, and we find after multi-
plication with 1/r:

dY (x) dY (x)
x? 2 s x — n!)Y =0;
o tX—g T (@l
that is, Y,(x) satisfies the Bessel differential equation.
It is also possible to define a function Y,(x) even if y is not an integer:

Y.(x) = J(x)cosyr — J_,(x)
g sin yr ’

and by use of I’Hospital’s rule, for example, one can easily establish that
lim Y (x) = Y (x).

The general solution can now be written in a more consistent form:
u = AJ(x) + BY (x).
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The Y-functions are usually called Bessel functions of the second kind or Neumann
Sunctions. In particular we find for n = 0:

_ 2 (30X _ 2 [0 5~ (=Dkx2)r
Vx) = = (28) -2 {E,Qk! T +k+ 1)}»=°

= 2 [ (DM (10 X 9 j0e +k+l}
- {k-ok!['(v+k+l) %87 5, 8l )) -
Hence

Yi(x) = kz; (= 1()1:(';/2)" (log — ik + 1)). (18.5.5)

If n > 0 the calculations get slightly more complicated and we only give the
final result:
2 x 1 (x\™" &= (n— k- 1)
= 2o 30 1 (5) A= (3"
() =—log 200 - —(3) 5 .
LD ke a1y k+1 18.5.6
T g Gk D gk D). (18.5.6)

We are now going to prove a general relation for linear, homogeneous second-
order equations. Consider the equation

Y+ P(x)y + Q(x)y =0,

and suppose that two linearly independent solutions y, and y, are known:
(W + Pxpyi + Qxy, =0,
2 + P+ Q) = 0.

The first equation is multiplied by y,, the second by — y,, and then the equations
are added:

d ’ ’ ’ ’
n e = nys) + PX) 3y, —y2) =0,

and hence we have yjy, — y,y; = exp{—§ P(x)dx}. For the Bessel equation
we have P(x) = 1/x, and using this we get

TN _x) = @I = £
x
The constant C can be determined from the first terms in the series expansions:

I = 21y oey); s = am = {1+ 06<)).

'(v+1)
In this way we obtain
J(x)J - 1 1
() = LWL(x) = — { To T DI(=y)  ToOIl(=v t 1)}

+ O(x)
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and C = 2sinyx/x. If y = n is an integer we get C = 0, that is, J,(x) and
J_.(x) are proportional since J}/J, = J' [J_..

Relations of this kind are called Wronski-relations and are of great impor-
tance. An alternative expression can be constructed from J, and Y, and we

find immediately
TRV ~ LY = -2
X
In connection with numerical computation of functions such relations offer ex-
tremely good checking possibilities.

Recursion formulas

Between Bessel functions of adjacent orders there are certain simple linear
relationships from which new functions can be computed by aid of old ones.
First we shall prove that

Joa®) + Jon(%) = 20 (x). (18.5.7)

3
Choosing the term (k) from the first expansion, (k — 1) from the second, and (k)
from the third, we obtain the same power (x/2)****~!. The coefficients become

(- (- , and __(=Dw
KT + k) k-D'Tw+k+1) KT+ k+1)

and it is easily seen that the sum of the first two is equal to the third. However,
we must also investigate the case k = O separately by comparing powers (x/2)*~%,
since there is no contribution from the second term. The coefficients are 1/I"(v)
and y/I"(v + 1) and so the whole formula is proved. In a similar way we can
prove

Jv—l(x) - Jvu(x) == 2":(x) . (18.5.8)

Eliminating either J,_,(x) or J, ,(x) one can construct other relations:
UE) + ZIx) = J(),
JUx) = Z I = = Tl()
A corresponding set of formulas can be obtained also for the functions Y,(x).
In particular we find for y = 0:
Jux) = —Jy(x);  Yix) = —Y(x).
Integral representations

Consider the Bessel equation in the special case y = 0:

xu' +u +xu=0.
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If the coefficients had been constant, we could have tried u = e** leading to a
number of discrete particular solutions from which the general solution would
have been obtained as a linear combination. When the coefficients are functions
of x we cannot hope for such a simple solution, but we still have a chance to
try a solution which takes care of the properties of the exponential functions.
Instead of discrete “frequencies” we must expect a whole band of frequencies
ranging over a suitable interval, and the summation must be replaced by inte-
gration. In this way we are led to the attempt

u= S:¢(a)e«= da .

We now have large funds at our disposal consisting of the function g(«) and the
limits @ and b. The differential equation is satisfied if

Sb{(a’ + g(a)xe** + ag(a)e*}da = 0.
Observing that xe*s = (3/da)e**, we can perform a partial integration:
[ + Da@e]s — (@ + (@) 1+ ag(@lerr da — 0.

We can now waste part of our funds by claiming that the integrated part shall
be zero; this is the case if we choose @ = —i, b == i (also — co will work if
x > 0). Then the integral is also equal to zero, and we spend still a part of our
funds by claiming that the integrand shall be zero:

dg ada _

0 4+ —
¢ o +1

or ¢(a) = 1/V/@® + 1, since a constant factor can be neglected here. In this
way we have obtained

S+i ex* d
u = —_—d .
-va +1

Putting a = i and ncglccting a trivial factor i we get

+1 eiﬂz
7 —
-1

dg .
T F

Writing e*** = cos 8x + isin Bx, we can discard the second term since the
integral of an odd function over the interval (—1, 1) will disappear. Putting
B = cos 6, we finally get u = { cos (x cos §) df.

We now state that

J(x) = Lgxcos (x cos 6) 6 . (18.5.9)
7T Jo
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This follows because

1 (= _ (
;Socos(xcoso)dﬁ— So g_——(Zk)'

2 1)*x** cos® § de

T

2y (=) IRk + 3)

T (2k)! 2rk + 1)

1 (= Dexesnl(k + 3)

k=0 2k . 2%\ (k)[(k + %) - ['(k + 1)

9 1 °

— D2 _ oy

(kY
where we have made use of (2k)! = 2kI"(2k)and the duplication formula (18.2.4)
for I"(2k).

The technique we have worked with here is a tool which can often be used
on a large variety of problems in numerical analysis and applied mathematics;
it is known under the name Laplace transformation.

We shall now by other means derive a similar integral representation for the
Bessel function J,(x). The general term in the series expansion can be written:

(=Dfx2p** (= DAx2y x* 'y + H)I'(k + 3)
RTw+k+1) T'o+HI@) @) Tw+k+1)

_ _(=D¥x2y  x* Sl p(l gy
Iy + HIB) (2k)! Do

where again we have made use of formula (18.2.4). Summing the whole series,
we now get

L o1 (= 1)kx?(1 — )2
= Iy + %)F(%)S I {E k)! }d’

After the transformation ¢ = sin? §, we obtain

J(x) = __x2)r Smsin"”—l 0 {E (= 1)*x™ cos ™™ 0} 2 sin @ cos 6 df

I'(v + 3)I'(3) Jo 0 (2k)!
or
_— (x/Z) 2
J(x) = mg sin® § cos (x cos 8) df . (18.5.10)

The factor 2 has been used for extending the integration interval from (0, 7/2)
to (0, ). Putting v = 0 we get back our preceding formula (18.5.9).

The formula which has just been derived can be used, for example, in the
case when p is half-integer, that is, v = n + } where n is integer. It is then
suitable to perform the transformation ¢ = cos 6;

J~+1/z(x) = (—;;/'2);1/—:/1

+1
S (1 — )" cosxtdt.
-1
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This integral can be evaluated in closed form, and one finds, for example,

(%) = \/Z sin x ; J_16(X*) = \/ -71-2_x cos x ,
Jia(x) = \/T SInX _ cos x); J_spu(X) = — ;_2:(‘:0;" + sin x) .
Finally we quote a few useful summation formulas:
T(x) + 20(x) + 20 (x) + - =1,
Jo(x) — 2Jy(x) + 2J(x) —---=cosx, (18.5.11)
2J,(x) — 2Jy(x) + 2Jy(x) —---=sinx.

The first of these formulas has been used for numerical calculation of Bessel
functions by use of (18.5.7) (see Section 1.3). For proof of the relations, cf.
Ex. 12 at the end of this chapter.

Numerical values of Bessel functions can be found in several excellent tables.
In particular we mention here a monumental work from Harvard Computation
Laboratory [8]. In 12 huge volumes J, (x) is tabulated for 0 < x < 100 and for
n < 135; for higher values of n we have |J,(x)| < 3 - 107" in the given interval
for x. There is also a rich literature on the theory of Bessel functions, but we
restrict ourselves to mentioning the standard work by Watson [5].

18.6. Modified Bessel functions

We start from the differential equation

du
ML u=20. 18.6.1
dx? * d - (v ( )
If we put x= —it the equation goes over into the usual Bessel equation, and

for example, we have the solutions J,(ix) and J_ (ix). But
Ju(ix) _ i (__ l)k(x/z)v+1kiik+v _ ey“'/’ * (x/2)»+lk )
= K'yv+k+1) =Kk Iy+k+1)
Thus e~**/3J (ix) is real for real values of x, and we now define
Ix) =3 2" 18.6.2
() = uEk'I’(v+k+l) ( )

where the function I (x) is called a modified Bessel function. In a similar way
we define I_(x). When vy is an integer we encounter the same difficulties as
before, and a second solution is defined through

K(x) 71' -u(x) — Iv(x)
sin 7y ’
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For integer values of y = n the limiting value is taken instead, and we obtain

L (L) — k= DR (2
K =54 k! D S e TR

x[logi—l¢(k+1)—l¢(n+k+ 1)]. (18.6.3)
2 2 2

In exactly the same way as for J,(x) we can derive an integral representation

for I (x):

— (x/2)y i 3 . .6.
L) = So sin® g cosh (x cos 8) df (18.6.4)

Also for K (x) there exists a simple integral representaion:
K (x) = g:exp (—xcosh t) cosh yr dt . (18.6.5)
In particular, if y = } the integral'can be evaluated directly and we get
K, p(x) = V'T[2xe™" .

The modified Bessel functions also satisfy simple summation formulas:

Iy(x) — 2I(x) + 2I(x) —--- =1,
I(x) + 2I,(x) + 2I,(x) +--- = e*, (18.6.6)
I(x) — 2I(x) + 2I(x) —---=e7*.

There are excellent tables also for the functions 7,(x) and K, (x) [9].

18.7. Spherical harmonics
Many physical situations are governed by the Laplace equation
’¢ O, ¢
d¢ = =L —= — =0
¢ ox’ * oy * oz

or by the Poisson equation 4¢ + k¢ = 0 where, as a rule, a unique and finite
solution is wanted. Very often it is suitable to go over to polar coordinates:

x =rsinfcos g,

Yy =rsingsing,
z=1rcosé.

If now £ = #(r) is a function of the radius only, the variables can be separated
if we assume that ¢ can be written ¢ = f(r)Y(6, ¢). The following equation is
then obtained for Y:

1 oY

1 a(- 3Y>
— —(sing =— — — + Y =0,
Sing 26 56) " sin'g g T
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where 1 is the separation constant (cf. Chapter 15). One more separation
Y(8, @) = w(0)v(p) gives

d
— v=0.
p + 8
The uniqueness requirement implies v(¢ + 27) = v(p) and hence g = n,
m =0, +1, +2, ... The remaining equation then becomes
1 d ( . du) m*u
— —~(snf—)— —— + u=0.
sin§ df de sin® § *

We shall here only take the case m = 0 into account. After the transformation
cos § = x, we obtain
d

du
2;[(1 _x’)a]+ w=0. (18.7.1)

The index equation is r(r — 1) = 0 and further we get from u = 3} a x":

:r(r+l)—la
r+r+2 "

For large values of r the constant 2 can be neglected and we find approximately
(r + 2)a,,, = ra,, thatis, a, ~ C/r. But the series

x*  x xox®

1+7+T+ and S

are both divergent when x = 1 while we are looking for a finite solution. The
only way out of this difficulty is that 2 has such a value that the series expansion
breaks off, thatis, 2 = n(n -+ 1) where n is an integer. In this case the solutions
are simply polynomials, the so-called Legendre polynomials. Already in con-
nection with the Gaussion integration formulas we have touched upon some
properties of the spherical harmonics (see Section 10.2). First, we shall now
prove that the polynomials defined by Rodrigues’ formula

1 dr
2*n! dx»
are identical with the Legendre polynomials by showing that they satisfy (18.7.1)

with 2 = n(n + 1). Putting y = (x> — 1)" we have y’ = 2nx(x* — 1)*~*and hence
by repeated differentiation:

r+3

P(x) = (o — 1y (18.7.2)

(x* =1y =2nxy,

(> —=1y" =2n—-1)xy + 2ny,

(x* =1y =2(n—2)xy" +2n+(n-1)]y,

(F =Y =20 = 3" 4 2n + (n - 1) + (n = 2)]y",

(x _ ™Y = 2(n — n)xy™ + 2[n + (n — 1) + (n—2)+. - 24 1]y,
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Thus we obtain (x* — 1)y** = n(n + 1)y*~" and differentiating once more

ifo-

In Section 10.2 the first polynomials were given explicitly, and further it was
proved that

dP":|+n(n+ 1)P, = 0.
dx

Sﬂx'P,(x)dx =0, r=0,1,2,...,n—1, (18.7.3)
-1
Y Po(X)P(x)dx = ) 18.7.4
x = 2 . 7.
g_l I( ) n( ) 2 1 mn ( )

In the case m # n, a simpler proof can be of some interest in view of the fact
that the general idea for the proof is applicable in many similar situations.
We start from the equations

(1 — x*)P; — 2xP,, + m(m + 1)P, =
(1 — x*)P; — 2xP, + n(n + 1)P, =0.

Multiplying the first equation by P, and the second by — P, and adding the
equations, we obtain

(1 — X*)(P P! — PP') — 2x(P,P., — P,P') + (m —n)(m + n + 1)P_P, = 0.
Integrating from — 1 to + 1 and observing that the first two terms can be written
(d/dx){(1 — x*\(P,P, — P,P,)} we get the result
1
r P, (x)P (x)dx =0 provided that m = n .
-1

We are now going to look for another solution to Eq. (18.7.1), and we should
then keep in mind that the factor (1 — x*) enters in an essential way. Hence it
becomes natural to try with the following expression

u:llogl +"‘P -Ww,,
2 1 —
since the derivative of
1 1 +x
—1lo
2 g 1 —x
is exactly 1/(1 — x?). One further finds
1 +x 1
u’__lo P, + P, — W.,
g 1 _ x’ " -
"o lOgl + xP:" 2 P 2x . W:’ s

" P,
1 — x3 + (1 -xy "
and after insertion:

(1 — X)W/ — 2xW', + n(n + )W, = 2P,
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It is easy to see that the equation is satisfied if W, is a polynomial of degree n — 1,
and by the aid of indeterminate coefficients the solution W, can be computed
explicitly. For n = 3, for example, we have

P, = _;_(sx‘ _3x); 2P, = 15x* — 3;

and hence
(1 — X)Wy — 2xWj + 12W, = 15x* — 3.

Putting W, = ax* + Bx + y wegeta = 3,8 = 0, and y = —§. In this way
we obtain W, = §x* — § and the complete solution

1 l+x S 2
= — —3 —_x’ —_—
0x) = - (5% — 3x)log 1= — =¥ + 2

In an analogous way we find

1 1 4+ x

___.—l 'Y

Qyx) = o log -—
1

Q‘(x):%loglti—l’

1 +x 3

1 —x 2

0x) = 4 (3% — 1) log

For integer values n > 0 we can derive a number of recursion formulas:
(2n + 1)xP, = (n + 1)P,,, + nP,_,,
P, + P, ,=2xP, + P,,
2n+ )P, =P, , - P._,, (18.7.5)
Pl =@+ 1)P, + xP,,
P, , = —nP, + xP,.
These formulas are conveniently proved by complex integration (cf. [2]), but
with some difficulty they can also be proved in an elementary way (cf. Ex. 9

below). Similar formulas are also valid for Q.
Finally we also give two integral representations:

P,(x) = %S:(x + V@ = cost)dt, (18.7.6)
0.(x) = S:(x + VX = Tcoshrydr. (18.7.7)
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EXERCISES
1. Show that
l o
S Xdx =) (=1)y**'n"".
0 a=1

2. Show that

”(l+x—2)_(.+l)/2dx=ﬁg-r S\/p s+ 1 5§50
o s 2 2 2 ’ ’

Also find the numerical values when s = 4.
3. Compute §; x¥T — x* dx exactly.
4. Show that whenn > 1,

|- le=s
ol 4+ x* T VT —x
and compute the exact values.

5. Show that

Sxexp (2cosx)dx =z Y, (') .
0 n=0
6. Compute the exact value of the double integral

Sl Slxw/a(l _ xz)l/zyx/s(l —y)l/zdxdy .
°

0
7. Compute
I‘."I (10n — 1X10n — 9)
- (10m —5)°
8. Find
41
S x"P,(x)dx .
-1
9. Using Rodrigues’ formula, show that (2n + 1)P,(x) = P;.\(x) — P, .,(x). Then
use the formula for computing S:. P,(x)dx when n is odd.
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10. Using Laplace transformation find a solution in integral form to the differential
equation xy’’ —y = 0.

11. Derive the general solution of the difterential equation xy’’ — y = 0 by perform-
ing the transformations ¢ = 4xand y = £z. Then use the result to give the exact value
of the integral obtained in Ex. 10.

12. Expand cos (x sin ) in a Fourier series after cosine functions and sin (xsin 4)
after sine functions. Which formulas are obtained for § = 0 and § = =/2?

13. Find the area 7', bounded by the curve x* + y* = I, p > 0, and the positive x- and
y-axes. Then compute limy_.p(1 — T5).



Chapter 19

The Monte Carlo method

Im dichten Manne ist ein Kind versteckt;
das will spielen. NIETZSCHE.

19.0. Introduction

The Monte Carlo method is an artificial sampling method which can be used
for solving complicated problems in analytic formulation and for simulating
purely statistical problems. The method is being used more and more in recent
years, especially in those cases where the number of factors included in the
problem is so large that an analytical solution is impossible. The main idea
is either to construct a stochastic model which is in agreement with the actual
problem analytically, or to simulate the whole problem directly. In both cases
an element of randomness has to be introduced according to well-defined rules.
Then a large number of trials or plays is performed, the results are observed,
and finally a statistical analysis is undertaken in the usual way. The advantages
of the method are, above everything, that even very difficult problems can often
be treated quite easily, and desired modifications can be applied without too
much trouble. Warnings have been voiced that the method might tempt one
to neglect to search for analytical solutions as soon as such solutions are not
quite obvious. The disadvantages are the poor precision and the large number
of trials which are necessary. The latter is, of course, not too important, since
the calculations are almost exclusively performed on automatic computers.

19.1. Random numbers

Random numbers play an important role in applications of the Monte Carlo
method. We do not intend to go into strict definitions since this would require
a rather elaborate description.

First we are reminded of a few fundamental concepts from the theory of
probability. For an arbitrary value x the distribution function F(x) associated
with a stochastic variable X gives the probability that X' < x, that is

Fx) = PX < x). (19.1.1)

A distribution function is always nondecreasing, and further lim F(x)=0,
lim,_,+,, F(x) =1.

We define a series of random numbers from the distribution F(x) as a sequence
of independent observations of X. In a long series of this kind the relative
amount of numbers < x is approximately equal to F(x). If, for example, the

distribution is such that F(0) = 0.2, then in a long series of random numbers

z——00

384
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approximately 209, of the numbers should be negative or zero while the rest
should be positive. .

The distribution is said to be of continuous type if we can represent F(x) in
the form

F(x) = S;f(t) dr . (19.1.2)

The function f{x) = F(x) is called the frequency function and is always >0. A
long series of random numbers from the corresponding distribution will have
the property that the relative amount of random numbers in a small interval
(x, x + h) is approximately equal to Af(x).

In the following we are only going to deal with distributions of continuous
type. In this connection the rectangular distribution is of special importance;
it is defined by

0, x<0,
fix) =41, 0<x<l,
0, x> 1.

The values for x = 0 and x = 1 can be put equal to 0 or 1 depending on the
circumstances. The corresponding distribution function becomes

0, x<0,
F(x) = {x, 0<x<1,
1, x>1.

The reason that the rectangular distribution plays such an important role for the
Monte Carlo method is that random numbers from other distributions can be
constructed from random numbers of this simple type. If y is a random number
with rectangular distribution we get a random number from the distribution
F(x) by solving x from the equation

Fx)=y. (19.1.3)

This relation means that the two numbers will cut off the same amount of the
area between the frequency functions and the abscissa axes. Later on we shall
provide an example of this.

We shall now discuss how rectangular random numbers can be prepared, and
then we shall distinguish between physical and mathematical methods. In prac-
tically all applications of the Monte Carlo method, large amounts of random
numbers are needed, and an essential requirement is that they should be quickly
obtainable. The following arrangement is near at hand. A suitable number of
binary counters are controlled by radioactive sources or by the noise from
vacuum tubes. In the latter case we have an output voltage ¥ fluctuating
around a mean value ¥V,. Each time V' = V,, the binary counter gets an im-
pulse which shifts the counter from 0 to 1, or vice versa. When a random
number is needed, all counters are locked, and every one of them gives one
binary digit of the desired number. Clearly, the numbers must not be taken
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out so often that two consecutive numbers are correlated. Even if the proba-
bilities for 0 (=a) and for 1 (=b) are different, we obtain a useful technique
by disregarding the combinations aa and bb, and by letting ab and ba represent
0 and 1, respectively.

The “mathematical” methods are remarkable because we cannot prove that
the generated numbers are random. As a matter of fact, we obtain a finite series
of numbers which come back periodically at certain intervals. However, if the
period is large cnough and, further, a number of statistical tests are satisfied,
then we can use these so-called pseudorandom numbers. Mainly, the following
three methods have been discussed, viz., the midsquare method, the Fibonacci
method, and the power method. The midsquare method is best illustrated by
an example. Consider the interval 0 < z < 10* and form with an arbitrary z,:

z=1234 2=-01[5227]|56

2=5227 #=27[3215]|29
z,=3215 2=10[3362|25

z=3362 z2=11[3030][44
2=3030 2=09[1809]|00

25=1809

The procedure stops if the result 0000 should appear, and the probability for
this cannot be neglected. Thus the method must
be rejected.
Th{a Fibonacci method seems to give good T

results when some precautions are taken. How- \
ever, the power method seems to be most widely
used. The following process gives acceptable
results:

X, = 23x,_,mod 2* + 1,

i—1
z, = 27%x; . c T T2 b

Here x, is integer, and z; is pseudorandom. A
detailed account of different methods for gener-
ating random numbers together with a descrip-
tion of the properties of the methods has been
given by Birger Jansson [4].

As has been mentioned before, we can obtain &«
random numbers from any distribution if we
have rectangular random numbers at our dis- a
posal. For this purpose we make use of equation Figure 19.1
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(19.1.3), and we shall show how the method works for the normal distribution.
The frequency function is f{x) = (27)~?e~="* and hence we have to solve the
equation

Q2myn S et = ¢,
where & is a random number from the rectangular distribution. By the aid of
a table we seek out N — 1 values x,, x,, . . ., X,_, such that

Zr

1

(27;)—ms “e“"“dt == ¥ for r=0,1,....,.N—-1,

Zr

where x, = —co and x, = +oco. Thus the area between the curve y =
(27)*%e~*** and y = 0 has been divided into N equal parts by use of the
vertical lines x = x,. For a given rectangular ¢ we determine a value r such
' that r/N < & < (r + 1)/N, that is, r = entier (N¢). Hence the desired normal
random number falls between x, and x,,,. Putting z = N¢ — r, we have to
find an abscissa which, together with x,_, delimits the fraction z of the segment
number r + 1.

For sufficiently large N the segments can be approximated by a trapezoid,
except for the first and the last segments, where additional prescriptions must
be given. Here we neglect this complication and find with a — x,,, — x,;
b = f(x,,)); ¢ = f(x,); T)(T, + T,) = z, and using elementary geometrical

calculations, that
a = ac [li\/l—z<1—_bi)]
c—b c?

Since @ must be 0 when z — 0, we have to choose the minus sign. Hence we
obtain the approximate formula

X=X, + .

Against this method the following objection, first made by von Neumann,
can be raised: that we choose a number completely at random and then, with
the utmost care, perform a series of complex operations on it. However, it is
possible to reach some kinds of distributions in a different way. For example,
the sum of a sufficiently large number of rectangularly distributed numbers has
normal distribution. The frequency function for thc sum of thrce rectangular
numbers is composed of three parabolic arcs:

y = x*2 for 0<x<1,
y=—x*+3x - 32 for 1<x<2,
y =3 - x)2 for 2<x<3.

Here we are already surprisingly close to the normal Gaussian curve.
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A simple and elegant method is the following. Take two rectangular random
numbers x and y and construct

u = (—2logx)"'*cos 2my ,
v = (—2log x)"*sin 27ty .

Then u and v are normal random numbers with mean 0 and standard devi-
ation 1.

Next we assume that we want random numbers @ in the interval (—1,1)
with the frequency function f(§) = (1/z)(1 — 6*)~*. Then the distribution
function is F(§) = (1/z)(arcsin § + r/2), where arcsin @ is determined in such
a way that — /2 < arcsin§ < m/2. Hence the number § can be determined
from a random number ¢ with uniform distribution in (0, 1) through the equa-
tion (1/r)(arcsin g + 7/2) = &, that is, § = —cos & = cos r(l — £). The
same thing can be attained if we choose two rectangular numbers x and y.
Then we form X = 2x — 1 and Y = 2y — 1 and test whether X? + ¥Y? < 1;
otherwise the numbers are rejected. Thus the point (X, Y) will lie inside a
circle with radius 1. Then z = X/1/X? + Y? is a number from the desired
distribution. Alternatively, we see that (X? — Y?)/(X* 4 Y?) has the same
distribution; the latter formulation should be preferred, since no square roots
are present.

The discrimination technique is also very useful. Let z = min (x, y), where x
and y are rectangular in (0, 1). We easily find that z has the frequency func-
tion 2 — 2z for 0 <z < 1 and O otherwise. Other examples of the same
technique can be found in such references as [1], the contribution by von
Neumann.

In the discussion as to whether physical or mathematical methods should be
preferred, quite a few arguments may be raised. The physical method needs
special equipment and yields nonreproducible results at rather low speed. The
fact that the results cannot be reproduced is an advantage in some situations,
but it has the drawback that the computation cannot be checked.

“Would you tell me, please, which way I
ought to walk from here?”’

‘“That depends a good deal on where you
want to get to,” said the Cat.

I don't much care where—"' said Alice.
““Then it doesn’t matter which way you
walk,"’ said the Cat. Lewis CARROLL.

19.2. Random walks

A random walk can be defined as a game with the following rules. A domain
is divided into a square pattern. One player starts with a particle in the origin,
draws a random number which decides in what direction the particle should be
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moved, and moves the particle to the nearest point in this direction. After
that a new random number is taken.

In the following example we shall assume that the probabilities for a move-
ment to the four closest points are all equal to 3. We denote by P(x, y, t) the
probability that the particle after # moves is at the point (x, y). Then we have

P(x,y,t +1)=3[P(x — L,p,t) + P(x,y — 1,1)
+ P(x+ 1,y,t) + P(x,y + 1,1)]. (19.2.1)

This equation can be rewritten

Px,y,t + 1) — P(x,y,t) = 4[P(x + 1,y,t) — 2P(x, y, t) + P(x — 1, p,1)
+ P(x,y + 1,1) — 2P(x, y,t) + P(x,y — 1,1)],

and we find an obvious similarity with equation (15.2.3), or rather with its
two-dimensional equivalent. Our difference equation evidently approximates
the two-dimensional heat equation

o _c(ZE+ 2.
ot ox* oy

Now we suppose that a random-walk process is performed in a limited domain
and in such a way that the particle is absorbed when it reaches the boundary.
At the same time, a certain profit ¥ is paid out; its amount depends on the
boundary point at which the particle is absorbed. Boundary points will be
denoted by (x,, y,) and interior points by (x, y). At each interior point we
have a certain probability P(x, y, x,, y,) that the particle which starts at the
point (x, y) will be absorbed at the boundary point (x,,y,). The expected
profit is obviously

u(x, y) = : P(x, y, x,, y,V(x,5.) - (19.2.2)
We find imm'ediately that u(x, y) satisfies the difference equation

u(x,y) = }u(x + 1, )
+ux —1,y) +uxy+ 1)+ uxy~ 1), (19.2.3)

with u(x,, y,) = V(x,, y,). This equation is a well-known approximation of the
Laplace equation,

gu , Ou_

x* 9y

In a simple example we will show how this equation can be solved by the

random-walk technique. As our domain we choose a square with the corners
(0, 0), (4,0), (4,4), and (0, 4), including integer grid points. As boundary
values we have u = 0 for x = 0; u = x/(x* + 16) for y = 4; u = 4/(16 + )?)
for x —~ 4; and u = 1/x for y = 0. We shall restrict ourselves to considering
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0.30 0.09 0.03 ™ iv 75
0.30 . o0 . . . 0.03 0. . o
0.09 . . . . . 0.03 0. -y
0.03 . . . . . 0.02 0. -y
0.03 0.03 0.02 I 3 3
Probabilities Boundary values
Figure 19.2

the interior point Q(1, 3). From this point we can reach the point (1, 4) in
one step with probability 3. But we can also reach it in three steps in two
different ways with total probability 2/4* = 1/32, and in five steps in ten dif-
ferent ways with total probability 10/4° = 5/512, and so on. Adding all these
probabilities, we obtain about 0.30. In a similar way the other probabilities
have been computed (see Fig. 19.2).

Insertion in (19.2.2) gives u(Q) = 0.098, in good agreement with the value
0.1 obtained from the exact solution u = x/(x? + ?).

Clearly, the method can easily be programmed for a computer, and then
the probabilities are obtained by the random-walk technique. It is also evident
that the method can hardly compete with direct methods if such can be
applied.

19.3. Computation of definite integrals

Computation of multidimensional integrals is an extremely complicated prob-
lem, and an acceptable conventional technique still does not exist. Here the
Monte Carlo method is well suited, even if the results are far from precise.
For simplicity we demonstrate the technique on one-dimensional integrals and
consider

= S:f(x)dx; 0<fix)<1. (19.3.1)

We choose N number pairs (x;, y;) with rectangular distribution and define z
through

I (U PP AP
Tl if y, <Ax),
(the case y; - f(x;) can be neglected). Putting n = 37z, we have n/N = I.
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Somewhat more precisely, we can write

I=2" 4 oN-13). 19.3.2
~ ( ) ( )

Obviously, the accuracy is poor; with 100 pairs we get a precision of the order
of +5095, and the traditional formulas, for example, Simpson’s formula, are
much better. In many dimensions we still have errors of this order of magni-
tude, and since systematic formulas (so far as such formulas exist in higher
dimensions) are extremely difficult to manage, it might well be the case that
the Monte Carlo method compares favorably, at least if the number of dimen-
sions is >6.

It is even more natural to consider the integral as the mean value of f(§),
where ¢ is rectangular, and then estimate the mean value from

1 N
I~_—%" f&)- (19.3.3)
N =
This formula can easily be generalized to higher dimensions.
Equation (19.3.1) can be rewritten in the following way:

I= S’ L) g(xydx, (19.3.4)
> g(x)

and hence I can be interpreted as the mean value of f(£)/g(¢), where £ is a

random number with the frequency g(¢). Thus

I« f(§)
I~ _ %" L858, (19.3.5
N & g&) )
where &; is a random number with the frequency g(¢). Conveniently, the

function g(¢) is chosen in such a way that it does not deviate too much from
the function to be integrated.

19.4. Simulation

The main idea in simulation is to construct a stochastic model of the real
events, and then, by aid of random numbers or random walk, play a large
number of games. The results are then analyzed statistically, as usual. This
technique can be used for widely different purposes, for example, in social
sciences, in physics, in operational analysis problems such as combat prob-
lems, queuing problems, industrial problems, and so on. An example which
is often quoted is the case when neutrons pass through a metallic plate. The
energy and direction distributions are known, and these quantities are chosen
accordingly. Further, the probabilities for reflection and absorption are known,
and hence we can trace the history of each neutron. When a sufficient number
of events has been obtained, the whole process can be analyzed in detail.
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Many phenomena which one wants to study in this way occur with very low
frequency. The probability that the neutron passes through the plate might not
be more than 10-%, and naturally we need a very large number of trials to get
enough material. In situations like this some kind of “importance sampling”
is often used. This means that intentionally one directs the process toward
the interesting but rare cases and then compensates for this by giving each
trial correspondingly less weight. Exactly the same technique was used in a
preceding discussion where random numbers were chosen with a frequency
function agreeing as far as possible with the function to be integrated. Under
certain circumstances when it is difficult to state exactly whether a case is
interesting, one can with probability 3 stop a trial which seems to be unsuc-
cessful; if it does continue, its weight is doubled. In the same way trials
which seem to be promising are split into two whose weights are halved at
the same time.

The tricks which have been sketched here are of great practical importance,
and in many cases they can imply great savings of computing time and even
more make the use of the Monte Carlo method possible.

Apart from these indications, we cannot go into detail about the different
applications. Instead we will content ourselves with a simple though important
feature. Suppose that we have a choice among N different events with the
probabilities P,, P,, ..., P,, where 3.7 P, = 1. We form so-called accumu-
lated probabilities @, according to

0, =3 P,. (19.4.1)
=1
Choosing a rectangular random number ¢, we seek a value of r such that
0,,<¢<0,. (19.4.2)

Then the event number r should be chosen. We can interpret the quantities P,
as distances with total length I, and if the pieces are placed one after another,
the point £ will fall on the corresponding piece with probability P;.
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EXERCISES

1. A distribution with the frequency function f(x) = 0 when x < 0 and f{x) = 2¢™**
when x > 0 (2 > 0) is called an exponential distribution. Show how a random number
out of this distribution can be obtained from a random number of the rectangular
distribution.
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2. Construct a normal random number with mean value m and standard deviation
o from a normal random number & with mean value 0 and standard deviation 1
(frequency functions o~'(27)™"/* exp {—(x — m)’/25°} and (2z)™"/* exp (—x*/2)).

3. The following method has been suggested for obtaining pseudorandom numbers.
Starting from such a value x, that 0<x, <1 and x, # k/4, k = (14, we form a
sequence Xy, X,, Xy, - . ., Where x,,, = 4x,(1 — x,). Using this method, compute

! dx 1 o 1
§ol+x _m§1l+xi
with x, = 0.120.

4. Using a table of random numbers with rectangular distribution (for example,
Reference 3), take three such numbers and denote them with x;, y;, and z;, where
x; > y; > z;. Form 20 such triples, compute X = 4 X xi; Y= XV Z =4 X z,
and compare with the theoretical values, which should also be computed.

5. Two random numbers ¢, and §,, with rectangular distribution, are chosen. Then
Xy, X;, and x, are formed by

x=1-vE; x=VE-(1-&); X, =VE & .

Finally, these numbers are ordered in decreasing series and renamed: z, > z, > z;.

(a) Find the mean values of x,, x,, and x;.

(b) Find the mean values of z,, z,, and z;.
[Hint: Each triple can be represented as a point inside the triangle x > 0, y > 0, z > 0,
inthe plane x +y + z=1; note that x, + x, + X, =z, + 2z, + z; = 1.]

(c) Using a table of random numbers, construct 20 triples, form x; and z;, and com-
pare the mean values with the theoretical results.

6. Two salesmen, 4 and B, are trying to sell their products to a group of 20 people.
A is working three times as hard as B, but unfortunately his product, the dietetic drink
‘““Moonlight Serenade,”’ is inferior and nobody is willing to become a customer until he
has received three free samples. ‘‘Lady Malvert,” the brand offered by B, is much
better, and any person offered this brand will accept it at once. All 20 people are very
conservative, and when one of them has accepted a brand, he is not going to change.
In 50 trials simulate the process described here. In each trial, two random numbers
should be used, one for determining whether A or B is going to work, and one for
choosing the person he will try to get as a customer.



Chapter 20

Linear programming

Le mieux est I’ennemi du bien. VOLTAIRE.

20.0. Introduction

Linear programming is a subject characterized by one main problem: to seek
the maximum or the minimum of a linear expression when the variables of the
problem are subject to restrictions in the form of certain linear equalities or
inequalities. Problems of this kind are encountered when we have to exploit
limited resources in an optimal way. Production and transport problems, which
play an important role in industry, are of special significance in this respect.

It is rather surprising that a problem category like this one came into the
limelight only during the last decades. However, the background is that during
World War II, mathematical methods were used for planning portions of mili-
tary activities in an optimal manner, especially in England and the United
States. The methods developed during this period were then taken over by
civilian industry, and in this way the theory of linear progamming developed.

20.1. The simplex method

We shall start by discussing a simple example. Find the maximum value of
y = 7x, + 5x, under the conditions

»+2,< 6, x20,

4x, + 3x, < 12, x>0.

The point (x,, x,) must lie inside or on the boundary of the domain marked
with lines in the figure. For different values of y the equation

1%, + 5%, =y

represents parallel straight lines, and in order to get useful solutions we must
have the lines pass through the domain or the boundary. In this way it is
easy to see that we only have to look at the values in the corners (0, 0), (0, 3),
(1.2,2.4),and (3,0). Wegety =0, 15, 20.4, and 21 respectively, and hence
Pmax = 21 for x;, = 3 and x, = 0.

394
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X2
(0,4)
©,3)
(12,2.4)
B
©.0¢ 3.0 (6.0) -
Figure 20.1

We shall now formulate the main problem. We assume that we have n
variables x,, x,, . . ., X, subject to the conditions

a,x, + apX, +---+a,x, =b,,
ayX, + AuXy + -0+ @X, =b,, m<n,

QX + Xy + -0+ + A X, = bn ’
and further that x; > 0,i = 1,2, ..., n. Find the minimum value of
V=0X + 6% -0+ € X, .

Using matrix notations, we get the alternative formulation: Minimize y = ¢"x
under the conditions x > 0; Ax = b. Often the conditions Ax = b are given as
inequalities, but by adding so-called slack variables, the inequalities are trans-
formed to equalities. Hence a;,x, + a,x, + - - - + a;,x, < b, is replaced by

a,x, + ayx, +-+-+ a,x, + x,,.; = b;, i=1,2,...,m,

and then we can also replace m + n by n.

By choosing the signs of the coefficients in a suitable way, we can always
formulate the problem as has just been described with all b, > 0. Clearly,
the domain defined by the secondary conditions is a convex hyperpolyhedron,
which can be either limited or unlimited. In some cases the conditions may be
such that this domain vanishes; then the problem has no solution. For different
values of y, the equation y = ¢,x, + ¢,x, + - - - + ¢,x, defines a family of hyper-
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planes; for suitable values of y they have points in common with the hyper-
polyhedron. When y decreases, the intersection changes, and it is easily inferred
that in general there exists a position where the intersection has contracted to
a point (or possibly a straight line), and this represents the solution. As a rule,
the solution is a corner of the domain, and it is now possible to construct a
method which implies that we start at one corner and then proceed succes-
sively to other corners, simultaneously watching that y must decrease all the
time. This method, which has been invented by Dantzig, is known as the
simplex method (a simplex is a hyperpolyhedron with n 4+ 1 corners in n
dimensions, for example, a point, a limited straight line, a triangle, a tetra-
hedron, etc.).

Before discussing the solution technique we shall define a few important
concepts. Each vector x satisfying the equation Ax = b is called a solution. If
no component is negative, the vector x is said to be a feasible solution. In
general, none of these is the optimal solution which we are looking for. If m
columns of the matrix A can be chosen in such a way that the determinant is
not equal to 0, these vectors are said to form a basis and the corresponding
variables are called basic variables. If all other variables are put equal to 0,
the system can be solved, but naturally we cannot guarantee that the solution
is feasible. If some of the basic variables vanish, the solution is said to be
degenerate.

In the sequel we suppose that all slack variables needed have already been
introduced so that we obtain a linear system of m equations in n unknowns
(m < n). As already mentioned, the system represents m hyperplanes and
normally the optimal solution is a corner in the corresponding hyperpoly-
hedron. In the typical case we have m equations with m slack variables and
hence only n — m proper variables. Thus the hyperplanes belong to an (n — m)-
dimensional space. Normally, a corner is obtained as the intersection of n — m
hyperplanes, and for each hyperplane one slack variable will vanish, that is,
we have in total n — m variables equal to zero. Since the coordinate planes
x; = 0 may contribute in forming corners, proper variables may also vanish
in a corner, but the total number of variables not equal to 0 will be the same.
In degenerate cases more than n — m hyperplanes may pass through the same
corner, but the conclusion is still unchanged. Hence, in an optimal solution
at most m variables are positive. The reasoning can easily be generalized to
cover also the case when a number of equalities needing no slack variables are
present already from the beginning.

For a description of the method, we introduce the column vectors

a, a,, a,, b,
a a a

P=|"]P= PP R =), P >o.
anl an mn -
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Then we have to minimize ¢7x under the secondary conditions x > 0;

x,P,+x,P,+.--+x,P,=P.,.

We assume that we know a feasible solution x with components x,, X,, ..., X
(Xpy1 = Xy =---=%X, =0)x, 20,7 = 1,2,...,m. Then we have
xP, + xXPy + -+ x P, =Py, (20.1.1)

and the corresponding y-value is
X+ €% +cc t CuX = Yoo (20.1.2)

The vectors P,, P,, . . ., P,, are supposed to be linearly independent (in practice,
they are often chosen in such a way that they belong to the slack variables, and
consequently they become unit vectors), and then P, P,, ..., P, can be
expressed as linear combinations of the base vectors:

P, = x;P, + x,;P, + -+ - + x.;P i=1,2,...,n. (20.1.3)

-

Further, we define y; by
Vi = 01Xy + €% F vt CuXy; e (20.1.4)

If for some value j the condition y; — ¢; > 0 is satisfied, then we can find a
better solution. Multiplying (20.1.3) by a number p and subtracting from
(20.1.1), we obtain

(‘xl - lei)Pl + (x: - qu')P: +oee
+ (Xp — pXn;)P,. + pP; = P,. (20.1.5)
Analogously, from (20.1.2) and (20.1.4),

(x, — qu‘)cl + (x; — lei)ci L
+(x-_Pxnj)c-+Pc:'=y0_P(y:‘—ci)' (20'1'6)

If the coefficients for P, P,, ..., P,, P; are all >0, then we have a new
feasible solution with the corresponding y-value y = y, — p(y; — ¢;) < Yo
since p > 0 and y; — ¢; > 0. If for a fixed value of j at least one x;; > O,
then the largest p-value we can choose is

p = min X >0,

. X.-j
and if the problem has not degenerated, this condition determines i and p. The
coefficient of P, now becomes zero, and further we have again P, represented
as a linear combination of m base vectors. Finally, we have also reached a
lower value of y. The same process is repeated and continued until either all
Y — ¢; <0, or for some y; — ¢; > 0, we have all x;; < 0. In the latter case
we can choose p as large as we want, and the minimum value is — oo.
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Before we can proceed with the next step, all vectors must be expressed by
aid of the new base vectors. Suppose that the base vector P; has to be replaced
by the base vector P,. Our original basis was P,, P,, ..., P;, ..., P,, and our
new basis is to be P, P,, ..., P,_,P;,,, ..., P,, P,. Now we have

(Po =xP, +xP, + -+ xP;, +---+ x,P,_,
‘lpk =Xy P+ X3Pyt -+ Xy P+ -+ X, P
P; = x;P, + X;P, + -+ -+ x;P; + - + X,,;P, .

J

From the middle relation we solve P, which is inserted into the two others:

{Po=X;P1 +"'+x:—-xpi—1 +x;¢Pk +x$+1p-‘+1 + . um’
P,' = x;jpl +eet x:-l.jpt'—l + x;:ij + x$+l,jPi+l +- n:Pal ’
where x! = x, (x/x,,,)x,,‘forr_12 ,i—1Li+1,...,m and x| =
x;/x;,. Analogously, x,; = x,; — (x ,/x,,‘)x,,, f'or r # iand x;; = x;;/x,,.

Now we have
’ —
Vi—=C=X0 + o4 X + o+ X0 — €

X.: X..
Exncr - c = E(xrj - * xrk) c, | #‘ck - Cj

rd Xk Xk

X.:
= Exn c, — - ;"—(E XokCp — XCi — ck) — ¢
r

sk

i

-—-)’i—"i—%‘i(h—ck),

sk

and further

Yo=CXit o+ aX 4o+ X

(x —_x,k)c +——C,,
rHs x,.,‘ X

sk

=;cfxr.~cx —';‘(Exfkc — XuC; —Ck)

ik

=)’o“;—;()’k — ).

EXAMPLE
Seek the maximum of y = —5x, + 8x, + 3x, under the conditions
2x, + Sx,— x, <1,
—3x, — 8x,+2x,< 4,
—2x, — 12x, + 3x, < 9,
x120, xzzo, X,ZO.
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This problem is fairly difficult to solve by use of the direct technique, and for
this reason we turn to the simplex method. We rewrite the problem in standard

form as follows.
Find the minimum value of

y = 5x, — 8x, — 3x,

when
2%, + Sx, — X3 + X, 1,
—3x, — 8x, + 2x, + X =4, x,>0.
—2x, — 12x, + 3x, +x =9,
We use the following scheme:
5 -8 -3 0 0 0
Basis ¢ p, P P, P, P, P, P,
P, 0 1 2 5 -1 1 0 0
P, 0 4 -3 -8 2 0 1 0
P, 0 9 -2 —12 3 0 0 1
0 -5 8 3 0 0 0
Over the vectors P,, ..., P, one places the coefficients c;; the last line contains

Y,and y; — c;; thus
0.1+0.-4+0.9=0;

0.24+0:-(=3)+0-(~2)-5= -5,

and so on. Now we choose a positive number in the last line (8), and in the
corresponding column a positive number (5) (both numbers are printed in bold-
face type). In the basis we shall now exchange P, and P,, that is, we have
i =4, k=2. The first line (P,) holds an exceptional position, and in the
reduction all elements (except c) are divided by 5; the new value of ¢ becomes

—8, belonging to the vector P,.

5 -8 -3 0 0 0

Basis ¢ p, P P, P, P, P, P,
P, -8 & & 1 —f { 0 0
P, 0 3 4§ 0 25 % 1 0
P, 0 57 4 0 8 12 0 1
-8 —4% 0 235 -8 0 0
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The other elements are obtained in the following way:
9 — H(—12) =%

the numbers 9, 1, 5, and — 12 stand in the corners of a rectangle. Analo-
gously, —2 — §(—12) = %, and so on. Note also that the elements in the
last line can be obtained in this way, which makes checking simple. In the next
step we must choose k = 3, since 22 > 0, but we have two possibilities for the
index i, namely, i = 5 and i = 6, corresponding to the elements £ and %,
respectively. But 38 + § = 14 is less than 37 + 2 = 19, and hence we must
choose i = 5. This reduction gives the result

5 -8 -3 0 0 0

Basis ¢ p, P P, P, P, P, P,
P, -8 3 3 1 0 1 3 0
P, -3 14 3 0 1 4 3 0
P, 0 3 3 0 0 0 -3 1
—66 —2 0 0 —-20 —% 0

Since all numbers in the last line are negative or zero, the problem is solved
and we have y_,, = —66 for

X, = 3,

x, = 14,

(Xe = 3,
which gives

(Xlzo,

x‘:O,

lx,,:O.

We have now exclusively treated the case when all unit vectors entered the
secondary conditions without special arrangements. If this is not the case,
we can master the problem by introducing an artificial basis. Suppose that
we have to minimize ¢,x, + - - - 4+ ¢,x, under the conditions

anX, + -+ @X, = bl ’

anlxl + o '+ auuxx = bn >

andx, >0(i=1,2,...,n).
Instead we consider the problem of minimizing

clxl +-o0t caxn + wxu+l + wxn+2 +-+ wxn'(-u
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under the conditions

a,X, +---+ %, + Xo4y = bl ’
AuX, + -+ QX + Xaia = b: ’
By Xy + -0 -+ Gu.X, + Xt — bu ’

andx, >0(i=1,2,...,n+ m).

Then we let w be a large positive number, which need not be specified. In
this way the variables x,,,, ..., x,, . are, in fact, eliminated from the secon-
dary conditions, and we are back to our old problem. The expressions y; — c;
now become linear functions of w; the constant terms are written as before in
a special line, while the coefficients of w are added in an extra line below. Of
these, the largest positive coefficient determines a new base vector, and the
old one, which should be replaced, is chosen along the same lines as before.
An eliminated base vector can be disregarded in the following computations.

EXAMPLE
Minimize
Yy =X + x + 2x,
under the conditions
Xy + X3 + X3 S 9 4
2x, — 3x, + 3x, =1, x,>0.
—3x, + 6x, —4x, =3,
First we solve the problem by conventional methods. In the inequality we add
a slack variable x, and obtain
X+ X+ X+ x,=9.
Regarding x, as a known quantity, we get
x, = 3(13 — 3x,),
X, = i(l3 — X,

X =3(—1+x).
Hence

y=x+x, + 2x; = (33 — x,).

The conditions x, > 0, x, > 0, x, > 0 together give the limits 1 < x, < 3.
Since y is going to be minimized, x, should be chosen as large as possible, that
is x, = . Thus we get

x1=0; x,.—_lg; x.:%, and ymln=‘l'8'
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Now we pass to the simplex method.

1 1 2 0 w w
Basis ¢ p, P P, P PP P
P, 0 9 1 1 1 1 0 0
P, w 1 2 -3 3 0 1 0
P, w 3 -3 6 -4 0 0 1
o -1 -1 -2 0 0 0
4 -1 3 -1 0 0 0
P, 0 w3 0 H 1 0o -
P, 3 3 0 1 0 1 -
P, 1 2 —3 1 —% 0 0o -
} -3 0 -3 0o o -
) % 0 1 0 0o -
P, 0 B3 g 0 0 1 - =
P, 2 3 3 0 1 0o - -
P, 1 w1 1 0 o - -
@2 - 0 0 0

Hence we get x, = '?; x; = 3; x, = ¢, and y,,, = 47, exactly as before.
Here we mention briefly the existence of the dual counterpart of a linear
programming problem. Assume the following primary problem: Find a vector
x such that ¢’x = min under the conditions x > 0, Ax = b. Then the dual
unsymmetric problem is the following: Find a vector y such that

b"y = max

under the condition 4"y < c. Here we do not require that y be >0. The
following theorem has been proved by Dantzig and Orden: If one of the
problems has a finite solution, then the same is true for the other problem,
and further

min ¢’x = max b7y .

Alternatively for the primary problem: Find a vector x such that ¢"x = min
under the conditions Ax > b and x > 0. We then have the following dual
symmetric problem: Find a vector y such that 7y = max under the conditions
A"y < cand y > 0. The theorem just mentioned is valid also in this case.
For proof we refer to Reference 1.
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Among possible complications we have already mentionfad degeneration.
This is not quite unusual but on the other hand not very difficult to master.
An obvious measure is perturbation as suggested by Charnes. The vector b is
replaced by another vector b":

B = b+ 3 cP,,
k=1

where N is the total number of vectors including possible artificial base vectors.
Here ¢ can be understood as a small positive number which need not be specified
closer, and when the solution has been obtained, ¢ = 0.

Under very special circumstances, “cycling” may appear. This means that
after exchange of base vectors sooner or later we return to the same combina-
tion in spite of the fact that the simplex rules have been strictly obeyed. Only
a few particularly constructed cases are known, and cycling does never seem
to occur in practice.

Der Horizont vieler Menschen ist ein Kreis
mit Radius Null—und das nennen sie ihren
Standpunkt.

20.2. The transportation problem

In many cases, we have linear programming problems of a special kind with
a very simple structure, and among these the transportation problem occupies
a dominant position. The problem can be formulated in the following way:
An article is produced by m producers in the quantities a,, a,, .. ., a,,, and it
is consumed by n consumers in the quantities b, b,, ..., b,. To begin with,
we assume that 3 a, = 37 b,. The transportation cost from producer i to
consumer k is c;, per unit, and we search for the quantities x,, which should
be delivered from 7 to & so that the total transportation cost will be as small
as possible. The problem can be solved by the conventional simplex meth-
od, but usually one prefers a less involved iterative technique, introduced by
Hitchcock.

In the usual simplex method, when we are dealing with m cquations and n
variables, the solution is, in general, a corner of a hyperpolyhedron. The solu- .
tion contains at least n — m variables which are zero. In our case the number
of equations is 7 + n — 1 (namely, 3 .x;; = a, and T, x;; = b;; however, we
must take the identity 3 a, = 37 b; into account) and the number of variables
is mn. Thus a feasible solutnon must not contain more than m + » — 1 non-
zero elements.

We now formulate the problem mathematically. Find such numbers x,; > 0
that

n

/=3 % cyx; = min (20.2.1)

121 §=1



404 LINEAR PROGRAMMING SEC. 20.2.

under the conditions X, = a;, (20.2.2)
i=1

DEFE b;, (20.2.3)

a, =),b;. (20.2.4)

i=1 . j=1

In order to make the discussion easier we shall consider a special case; the
conclusions which can be drawn from this are then generalized without dif-
ficulty, Suppose m = 3 and n = 4 and write down the coefficient matrix A for
(20.2.2) and (20.2.3):

1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
A=11 0 0 0 1 0 0 0 1 0 0 0f,
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

We have m + n rows and mn columns; the first m rows correspond to (20.2.2)
and the last n to (20.2.3). Since the sum of the first m rows is equal to the sum
of the last n rows the rank is at most m 4+ n — 1. We shall denote the columns
of A by p,;, which should correspond to the variables x;; taken in the order
X1y Xigs X135 Xigs Xap» X35 Xa35 Xagr X315 X330 X335 X3 LEL US NOW COMpare two vectors
p;;and p_,. We see at once that if i = r, then the first m components coincide;
and if j = s, then the last n components coincide. This observation gives us
simple means to examine linear dependence for vectors p,;. If we form a cyclic
sequence where two adjacent vectors alternately coincide in row-index and
column-index, then the vectors must become linearly dependent. For example,
we have p,, — py, + Psy — Pa + Pss — Pis = 0. This fact is of great importance
when a feasible initial solution is chosen; as has already been observed it must
contain m + n — 1 elements not equal to 0. If the vectors p,; are arranged in
matrix form, we get the picture:

Pu P Ps  Pu
(Pn Pss P Pu)
Py P2 Ps Py
or, using the example above,
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From this discussion it is clear that a feasible initial solution cannot be chosen
in such a way that x;; = 0 in points (#, j) which are corners in a closed polygon
with only horizontal and vertical sides. For this would imply that the deter-
minant corresponding to a number, possibly all, of the variables x,; which are
not equal to 0, would become zero because the vectors related to these x,; are
linearly dependent, and such an initial solution cannot exist.

EXAMPLES

c  ® ® ¢ © ©®© ©® 0
® ©® o o ® ¢ o .

Forbidden Allowed Allowed Forbidden

Thus we start by constructing a feasible solution satisfying the following
conditions:

1. exactly m + n — 1 of the variables x,; shall be positive, the others zero;
2. the boundary conditions (20.2.2) and (20.2.3) must be satisfied;

3. x;; # 0 in such points that no closed polygon with only horizontal and
vertical sides can appear.

How this construction should be best performed in practice will be discussed
later.

First we determine ; and 8; in such a way that ¢;; = a; + B; for all such
indices /and j that x,, > 0; one value, for example, a,, can be chosen arbitrarily.
Then we define auxiliary quantities (also called fictitious transportation costs)
k;; = a; + B; in all remaining cases. One could, for example, imagine that
the transport passes over some central storage which would account for the
transport cost being split into two parts, one depending on the producer and
one depending on the consumer. Thus we get

f= gcsi"ci = %("-‘i = ky)x; + Z‘:ai;xﬁ + ;B,-Z;x.-;

=2 (e — kx; + Daa + 548, (20.2.5)
But ¢;; = k;; for all x,; = 0, and hence we obtain
f=2 aa + Xb8;. (20.2.6)
s j

If for some i, j we have ¢; < k,;, it is possible to find a better solution. Suppose
that we move a quantity ¢ to the place (i, j). Then the total cost will decrease
with e(k;; — c;;). This fact suggests the following procedure. We search for
the minimum of ¢;; — k;;, and if this is <0, we choose ¢ as large as possible
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with regard to the conditions (20.2.2) and (20.2.3). Then we calculate new
values a;, B;, and k,; and repeat the whole procedure. When all ¢;; > k,;,
we have attained an optimal solution; in exceptional cases several such solu-
tions can exist.

The technique is best demonstrated on an example. We suppose that a
certain commodity is produced in three factories in quantities of 8, 9, and 13
units, and it is used by four consumers in quantities of 6, 7, 7, and 10 units.
The transportation costs are given in the following table:

3 8 9 16
(c;)=1{6 11 14 9.
5 13 10 12

We start by constructing a feasible solution. To the left of the x,;-matrix,
which is so far unknown, we write down the column g,, and above the matrix
we write the row b;. Then we fill in the elements, one by one, in such a way
that the conditions (20.2.2) and (20.2.3) are not violated. First we take the
element with the lowest cost, in this case (I, 1), and in this place we put a
number as large as possible (6).

60 7 7 10

8)2] 6
8 |0
13 |0

Then we get zeros in the first column, while the row sum 8 is not fully exploited.
From among the other elements in the first row, we choose the one with the
lowest ¢, in this case (1, 2), and in this place we put a number as large as
possible (2):
0 (s 7 10

20| 6 2 0 0

9 0

13 0

In a similar way we obtain in the next step:
0 5 7 (10)1
0 6 2 0 o0

%00 o o 9
13 | o

In the last step we have no choice, and hence we obtain

6 2 0 0
(x;;) = (0 0 0 9) .

0 5 7 1
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We find f = ¥ c;;x;; = 262. Then we compute a; and 8;, choosing arbitrarily
a, = 0, and we get without difficulty 8, = 3; 8, = 8;a, = 58, = 5; 8. = T;
@, = 2. These values are obtained from the elements (1, 1), (1, 2), (2,4), (3, 2),
(3, 3), and (3, 4) of (c;;); they correspond to the x,;-elements which are not zero.
From k;; = a; + B;, we easily get

3 8 5 7 o 0 4 9
(k,.,.)=(5 10 7 9); (c,.,.-,.,.):(l 17 o0}.

8 13 10 12 3 0 0 0

Thus we have ¢, — k;, < 0, and it should be possible to reduce the transpor-
tation cost by moving as much as possible to this place. Hence, we modify
(x;;) in the following way:
6-¢ 2+4+¢ O 0
(x:5) = ( 0 0o o 9) .
€ 5—-¢ 1 1

The elements which can be affected are obtained if we start at the chosen place
(i, j), where c;; — k;; < 0, and draw a closed polygon with only horizontal and
vertical sides, and with all corners in elements that are not zero.

Since all x;; must be >0, and the number of nonzero elements should be
m+n—1=6,wefinde =5and

1 7 0 o0
xyH=1(0 0o 0o 9.
5 0 71 1

As before, we determine «;, 8;, and k;; and obtain

0 0 1 6
(cs—ky)=[4 4 1 0],
0 3 0 o0

which shows that the solution is optimal. The total transportation cost becomes
f=247.

We see that the technique guarantees an integer solution if all initial values
also are integers. Further we note that the matrix (c;; — k;;) normally contains
m + n — 1 zeros at places corresponding to actual transports. If there is, for
example, one more zero we have a degenerate case which allows for several
optimal solutions. A transport can be moved to this place without the solution
ceasing to be optimal. Combining two different optimal solutions we can form
an infinite number of optimal solutions. In this special case we can actually
construct solutions with more than m + n — 1 elements not equal to 0, and,
of course, there are also cases when we have less than m + n — 1 elements
not equal to 0.

We shall now briefly indicate a few complications that may arise. So far we
have assumed that the produced commodities are consumed, that is, there is no
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overproduction. The cases of over- and underproduction can easily be handled
by introducing fictitious producers and consumers. For example, if we have a
fictitious consumer, we make the transportation costs to him equal to zero.
Then the calculation will show who is producing for the fictitious consumer;
in other words, the overproduction is localized to special producers. If we
have a fictitious producer, we can make the transportation costs from him
equal to zero, as in the previous case. We give an example to demonstrate
the technique. Suppose that two producers manufacture 7 and 9 units, while
four consumers ask for 2, 8, 5, and 5 units. Obviously, there is a deficit of 4
units, and hence we introduce a fictitious producer. We assume the following
transportation cost table:

0 0 0 0
()=1[3 6 10 12).

We easily find
0 0 0 4 -6 —3 -4 0
(xy) =12 5 0 0 and (k;;) = 3 6 5 9
0 3 5 1 2 5 4 8

Hence

6 3 4 0
(c‘.’. — k'.’.) = (0 0 5 3) .
5 0o o0 0
Hence, the solution is optimal, and the fourth customer, who asked for 5 units,
does not obtain more than 1.

As a rule, m + n — 1 elements of our transport table should not be zero.
In the initial construction of a feasiblé solution or in the following reduction,
it sometimes happens that we get an extra zero. This difficulty can be overcome
if we observe that all quantities are continuous functions of the values a;, b,
and ¢;;. Hence, we simply replace one of the zeros by §, where we put 5 = 0
in all arithmetic calculations. The only use we have for this § is that the rule
requiring that m + n — 1 elements shall not be zero still holds, and that the
formation of the closed polygon is made possible.

As a rule, m + n — | elements of our tranport table should differ from zero.
However, there are two cases when this requirement cannot be met. It may
sometimes happen that a remaining production capacity and a remaining con-
sumer demand vanish simultaneously while the transport table is constructed.
But also on transformation of the table as described above extra zeros may
appear. This difficulty can be overcome by the same perturbation technique
as has been used before, and a quantity § (some authors use + instead) is
placed in the table to obey the polygon rule, whereas § is put equal to zero
in all arithmetic calculations. This is motivated by the fact that the desired

minimum value is a continuous function of the quantities a,, b;, and c,;, and
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hence degeneration can be avoided by a slight change of some of them. The
quantity (or quantities) § are used also on computation of k,;.

EXAMPLE
5
5
3
To begin, we get:
513 2 (k) =6 10 16], f=122.
3 . 4 8 14
3 3

Obviously we ought to move as much as possible (4 units) to the (2, 1)-place,
but then we get zeros in both (1, 1) and (2, 2). Let us therefore put, for ex-
ample, the (1, 1)-element = 0 and the (2, 2)-element = 4:

I 5 s
- - - 0 6 (12)
5 3 k=4 10 16|, f=116.
513 8 2 2 8 14
3 3
Now we move as much as possible (2 units) to the (1, 3)-place and get:
3 5 0o 6 11
5 302 ky=[a 10 15|, f=114.
5132 3 9 14
3 3

This is the optimal solution.

20.3. Quadratic, integer, and dynamic programming

Linear programming is, in fact, only a special case (though a very important
one), and generalizations in different directions are possible. Near at hand is
the possibility of minimizing a quadratic expression instead of a linear one,
adhering to the secondary linear conditions (equalities or inequalities). This
problem is known as quadratic programming (see [2] and [5]).

If we have a process which occurs in several stages, where each subprocess
is dependent on the strategy chosen, we have a dynamic programming problem.
The theory of dynamic programming is essentially due to Bellman [3]. As an
illustration we give the following example, taken from [2].

We have n machines of a certain kind at our disposal, and these machines
can perform two different kinds of work. If z machines are working in the
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first way, commodities worth g(z) are produced and if z machines are work-
ing in the second way, commodities worth k(z) are produced. However, the
machines are partly destroyed, and in the first case, a(z) machines are left over
and in the second, b(z) machines. Here, a, b, g, and A are given functions. We
assign x, machines for the first job, and y, = n — x, machines for the second
job. After one stage we are left with n, = a(x,) + b(y,) machines, of which
we assign x, for the first job and y, for the second job. After N stages the
total value of the produced goods amounts to

f= );) 1&g(x:) + A(y)]»

with
X; + Yo =N, n=mn,
a(xi)-l_b(yi):nivt»l’ i= 1,2"'-:N— l )
0<x,<n, i=1,2,...,N.

The problem is to maximize f. In particular, if the functions are linear, we
have again a linear programming problem.

Let f,(n) be the maximum total value when we start with n machines and
work in N stages using an optimal policy. Then we have

fin) = max [g(x) + h(n — x)],
fim) = max {g(x) + hin — x) + fuoila(®) + bn — W; k> 1.

In this way the solution can be obtained by use of a recursive technique.

Last, we also mention that in certain programming problems, all quantities
must be integers (integer programming). However, a closer account of this
problem falls outside the scope of this book.

Finally we shall illustrate the solution technique in a numerical example
simultaneously containing elements of dynamic and integer programming.
Suppose that a ship is to be loaded with different goods and that every article
is available only in units with definite weight and definite value. The problem
is now to choose goods with regard to the weight restrictions (the total weight
being given) so that the total value is maximized. Let the number of articles
be N, the weight capacity z, and further the value, weight, and number of
units of article i be v;, w, and x;. Then we want to maximize

Ly(x) = 3 %,
i=1
under the conditions ZL; xw; < z with x; integer and >0. Defining
fu(2) = max Ly(x),

we shall determine the maximum over combinations of x;-values satisfying the
conditions above. We can now derive a functional relation as follows. Let us
first choose an arbitrary value x,, leaving a remaining weight capacity z—x,w,,.



sec. 20.3. QUADRATIC, INTEGER, AND DYNAMIC PROGRAMMING 411

By definition, the best value we can get from this weight is f,_,(z — x,wy).
Our choice of x, gives the total value x,v, + fy_(z -~ X W), and hence we
must choose x,, so that this value is maximized. From this we get the funda-

mental and typical relationship
fv(2) = max {xyvy + fy_i(z — XyWy)},
N
with 0 < x, < entier (z/w,). The initial function is trivially

. z
fi(z) = v, - entier W
Below the solution in the case N = S, z = 20 is derived for the following values
of v; and w,:

i A w; Vfw;

1 9 4 2.25

2 13 5 2.60

3 16 6 2.67

4 20 9 2.22

5 31 11 2.82

The computation can be performed through successive tabulationof f;, f;, . . ., f;
forz=1,2,3,...,20. The results are presented in the following table.

z fi f S S Js
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 9 9 9 9 9
5 9 13 13 13 13
6 9 13 16 16 16
7 9 13 16 16 16
8 18 18 18 18 18
9 18 22 22 22 22
10 18 26 26 26 26
11 18 26 29 29 31
12 27 27 32 32 32
13 27 31 32 32 32
14 27 35 35 35 35
15 27 39 39 39 40
16 36 39 42 42 44
17 36 40 45 45 47
18 36 44 48 48 48
19 36 48 48 48 49
20 45 52 52 52 53
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The maximum value 53 is attained for x, = 1, x, =1, x, = 0, x, = 0, and
Xy = 1.

A

SO |-

Ts

30+

20

1 { | ]
5 10 15 20

Figure 20.2. Maximum value as a function of weight capacity.
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EXERCISES
1. Find the maximum of y = x, — x; + 2x, when

X+ X+ 3x,+ x, <5,
X, + x3—4x, <2,
X,'Zo.

2. Find the minimum of y = 5x, — 4x, + 3x, when

2x, + x;— 6x; =20,
6x, + 5x, + 10x, < 76,
8x, — 3x; + 6x, <50,

X > 0.

3. Find the minimum of = ix, — x, as a function of (—co < 2 < o), when

xl+ sz 61
X +2x, <10,
x> 0,
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4. Find the maximum of f= —1 + x; — x; when

X =X, — X3 + X5,
Xg=2 —x, — Xy,
x;>0.

5. Find the minimum of f = x, + x, when

2x, + 2x; + X <17,
2x, + X, + 2x; <4,
x; + x‘ZIr

X;+ xXg+x,=3,
X;ZO.

6. Find the minimum of f = 4x, + 2x, + 3x; when

2, + 4x, > 5,
2, +3x,+ xs 24,
x.-20.

7. Maximize f = 2x, + x, when

X — X <2,
x+ x,<6,
X+, < a,

x;>0.

The maximum value of fshould be given as a function of « when 0 < a < 12.
8. Minimize f = —3x + y — 3z under the conditions

—x+2y4+ z<0,
2x—2y—-3z=9,
x— y—222>6,

andx >0,y >0, —© < z< oo.

9. The following linear programming problem is given: Maximize ¢”x under the con-
ditions Ax = b, x > d > 0. Show how this problem can be transformed to the following
type: Maximize gy under the conditions Fy = f, y > 0, where the matrix F is of the
same type (m, n) as the matrix 4. Also solve the following problem: Maximize z =
3x, + 4x; + x3 + 7x, when

8x, +3x, +4x; + x, <42,
6x2+ x;+2X.$20,
X, + 4x, + Sx; + 2x, < 37,

and x, > 2;x, > 1; x3 > 3; x, > 4.

10. A manufacturer uses three raw products, a, b, ¢, priced at 30, 50, 120 $/Ib, respec-
tively. He can make three different products, 4, B, and C, which can be sold at 90, 100,
and 120 $/1b, respectively. The raw products can be obtained only in limited quantities,
namely, 20, 15, and 101b/day. Given: 21b of @ plus 11b of & plus 11b of ¢ will yield
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41b of A4; 31b of a plus 21b of b plus 21b of ¢ will yield 71b of B; 21b of b plus 11b of
¢ will yield 31b of C. Make a production plan, assuming that other costs are not influ-
enced by the choice among the alternatives.

11. A mining company is taking a certain kind of ore from two mines, Aand B. The
ore is divided into three quality groups, a, b, and c¢. Every week the company has to
deliver 240 tons of a, 160 tons of b, and 440 tons of c¢. The cost per day for running
mine A is $ 3000 and for running mine B $2000. Each day 4 will produce 60 tons of a,
20 tons of b, and 40 tons of c. The corresponding figures for B are 20, 20, and 80. Con-
struct the most economical production plan.

Solve the following transport problems:

12.
3 3 4 5
4 |13 11 15 20
6 (17 14 12 13
9 |18 18 15 12
13.
75 75 75 75
100 (19 15 19 20
100 {20 23 17 31
100 |14 25 20 18
14.
10 7 6
18 2 11 6 3
9 (12 10 15 5
11 4 9 13 10

(Give at least two different solutions.)

15.
10 5 5
8 3 2 2
3 2 4 2
6 4 2 2
16.
20 40 30 10 50 25
30 1 2 1 4 5 2
50 3 3 2 1 4 3
75 4 2 5 9 6 2
20 3 1 7 3 4 6

17. For three different services, a, b, and ¢, 100, 60, and 30 people, respectively, are
needed. Three different categories, A, B, and C, are available with 90 of A, 70 of B,
and 50 of C. The following table displays the *‘suitability numbers’’;

a b c

AW
o N
)
o o &
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Make a choice among the 210 people available for the 190 places so that the sum of the
**suitability numbers’’ becomes as large as possible.

18. The following transport problem has a degenerate solution with only five trans-
ports. Find this solution and the minimum value!
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Answers to exercises

Chapter 1

1. 11259375 2. 0.2406631213. .. 3. 3%

4. The error in the latter case is 14(2 ++/3)° = 10136 times greater than in the former
case.

1 1.3 1.3.5 6. ay, = 0; @y = (— Y2k
5.y ~§+2‘Lx'+ TEt T T e (—lg)b"tl‘(Zk(— 1))1(; b:m =0
Chapter 2
1. x = 1.403602 2. (x, =1.7684 3. x —=1.30296
4. x = 2.36502 {x: =2.2410 5. x = 2.55245
6. x = 0.94775 7. x = 1.28565 8. x = 2.8305
9. Ymaxr = —Ymin = Y(0) = —y(1) = 0.00158 10. a = 0.8514
11. K=0.98429 12. a = 0.804743 13. 0.23611
14. ab < 3 15, g FaFa =X g6 o g4sg
Xpog — W + Xniy
17. x =y = 1.1462 18. a; = o, a3 = x35, @3 = 375%gs X = +£0.551909.
19. £ =0.268
20. (x, = 17.017 21. (¢=0.05693 22, (aqy=¢ 23. (a =0.3619
{x, = —2.974 {x = 7.78975 { a=3.03 {b = 1.3093
x; = 0.958 y = 1.99588 x = 0.8858
24. 0.278465. This value is a root of the equation loga + a« + 1 = 0.
25. {x=0.9727 26. A=1,B=1%,C =}, x = 20.371303
y = 1.3146
2. A= —§, B= 14§ 28. x,,=14+i,x,,=3+4i
29. (x = 1.086 30. The error is proportional to the fourth power of ¢.
{y = 1.944 3.0
Chapter 3
3. /—430 512 332 5. (a= 0.469182
(—516 614 396) {b = —2.53037
234 278 —177

6.( cosa sina) 7. (q 4) 0. g9—ax \/W

—sina cosa 3} 4

P = t(aa® 4 1)/
@ =17+4i,d =17—4i

419
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13. For instance, U = — 1 (l ’); B= a + bi 0 )

%3 1 0 a—bi
14. P, has at least one characteristic value 15. One solution is X = A"(4A4")™* (provid-
0; hence det P, = 0. ed AA" isregular). The general solution
of the special example is
7 -3 —9 -1 a b c
P,=L -3 7 1 9 l—a 1-b 1-—c¢
20(-9 1 13 -3 220—3 2b—-3 2c—4)’
-1 9 -3 13 a b+1 c+1
where a, b, and c are arbitrary.
Chapter 4
x=3,y=-2,z=1,9v=5§ 2. x=4,y=3,z=2,9p=1

x=0,y=1,z=—-lL,u=2,p= -2

. %, = 0433, x, = 0911, x;, = 0.460, x, = —0.058, x, = —0.115, x, = 0.244
. x=0.660, y = 0.441, z = 1.093

. {x: 2.999 966

= —1.999982 {xm =3 — &)
General solution (cf. Chapter 13): Ve = =2 + A3

AN h W=

Chapter 5
1. 15 15 — 170 63 2. 25 —41 16 —é
a(—m 588 —630) —16 27 —11 4
63 —630 73S 16 —27 13 —5§
— 6 10 -5 2,
3. 6.1 -—-23 0.1 —-o0.1 4. 5 —10 10 -5 1
86 —28 —04 —-0.6 -10 30 -35 19 —4
—44 1.2 0.6 04 10 -35 46 —27 6
-17.1 33 -1.1 0.1 -5 19 -27 17 —4
1 — 4 6 — 4 1
5. 135 -6 2 —1.5 6. 41 —-08 -1
3 -2 1 <—0.2 0.1 0 )
—2 10 -3 —1.25 0.25 0.25
- l .5 -3 1
7.a-—-l/(l—n)n22 8. M =42,000; N = 5500
9. 1/ 6— 8 —244i 10. 7 -3 0 — 5
6 (—3+10i l-Si) 8 1 -2 —11

-5 0 1 6
19 S —6 —28
11. B — 5BE,B; 1276  13.72 5.88 3.92
7.46 — 1.63 12.73 8.82
5.88 6.86 2.94 1.96
834  4.23 15.67 10.78
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12.

1
1
L=10
0

©C O = =0
O — O O
- -0 00
coo=o
coNOO
owm o 0O
£ ocoocoo

14. a(ney* /(1 — ne)
15. —18.895 — 1.791 12.150  21.900
— 2.54 20.476 33.939 18.775

-3 ; maximum =0.18 . 1072,
071 11788 — 7854  1.949 — 3.695 ximum error
—24.755 —10918 — 3.422 1.998
17. ag = — TC,-/aTC,, i#r
{a, = 1/a”C,
Chapter 6
1. 98.522 —110.595 (l
24.957 3. 12.054; | 0.552% )
2. 0.0122056; .
0.0122056: { _ 77,665 0.0995(3 + 2i)
1
4. 19.29; —7.08 5. 4.040129 6. 8.00 7. 70.21
8. h=a,+ a+a,+ a 1 1 1 1
Ah=a — a +a; — a 1 —1}. i —i
X, = ;s X = y Xy = M =
A3 = @, + ia, — a, — ia, ! 1 : 1 : -1 x, -1

A =a, —la, — a;, + ia, 1 —1 -1 i
9.p=2a+ (n—2); g =(a—b)a+ (n— 1))
A=a+ (n—1)b (simple); 23 =a—b [(n— 1)fold)].
10. A = (9.5714 6 _(9.9552 6 ) . A= 9.9955 6 )
1 » H

~\0.6122 1.4286/° T \0.0668 1.0448 T \0.0067 1.0045
Exact eigenvalues: 10 and 1.

11. An arbitrary vector o can be written as a linear combination of the eigenvectors.
RR, R _ p . R, — R, .
R, — 2R, + R, (Ry — Ry)[(Ry — Ry) — 1

4,

12. 2, =

Chapter 7
6. 3} (x*) = 2; 8%(x*) = 6x; 8%(x') = 12x* + 2
fix) = 2x* + 4x* (To this we can add an arbitrary solution of the equation uf(x) = 0.)
7. a=r/4; b =r(r + 3)/32
3 2 3 2 2 2
=1- _PA=p) e _pA—pX4—p)
0. y=1-Lw AP 2 LR
10. 3y, = (31 — y-1) — d5(8Y1 — 3'y-1) + 245(@Ys — 8ly-) —- -
11. b) ¢, =0; ¢, = 1; ¢; = 30; ¢, = 150; ¢, = 240; ¢ = 120; N = 63.
12. Joyo = h(ys + 246'V0 — w3350 +++ )
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422 ANSWERS TO EXERCISES
2,2 2/..2 2
12 _ 252 n'(n* — 1) ”("—lxn~4)5‘

13. 6" =n"s" + 3 o + 360 +
14. Use operator technique! The new seriesis 2,1,3,4,7,11, ...
Chapter 8

1. f(3.63) = 0.136482 2. 3.625 3. 0.55247 22945
4. 3.4159 5. 0.46163 21441 (correct value 6. 0.000034

0.46163 21450)
7. 0.267949 9. The remainder term is of fourth order.
f(2.74) = 0.0182128
S | ’r 1) 3p* -7
10. y, = pys + 22 5 L wyir + B2 3¥mp ) Ky
2 4 2
+ B2 = l)(?;p512—0 18p" + 31) yey7t 4 (similar terms in g and y,).

ll.a=q;c=—%(q+l)2

x = 0.46996
y = 1.56250

12. {

b=pid=— %(p + 1); Ai(1.1) = 0.120052.

13. (x =0.191 14. 12.95052 15. 27.7718 16. 2.7357
{ y =0.525

19. Differences of the rounded values 20. 3.1415 21. ¢ =0.33275
Chapter 9
1. —0.43658 2. 0.9416 3.23.a=9,b6=30 4. 0.061215
S.a=8,b=6 6. n=233
Chapter 10

1. 20.066 (exact value 21) 2. 0.7834 3. 0.6736

4. 1.46746 5. Speed 3087 m/sec; beight 112.75 km 6. 0.54003

7. 3.1044 8. 1.9049

9. C, = 0.6565 (correct value = {l - —‘—,} = 0.6601618) .

(odd primes) (p - l)
10. 1.8521 11. —0.94608 12. 1.3503 13. 9.688448
4h
14. -3—(2y, — Yo+ 2y-y) 15. A=4: B=3}1:C= -
16. {x, = —0.2899 {x, = 0.6899 17. a=4; R=0("
x, = 0.5266 Xy = —0.1266

18. Ymaxr = 1.01494 for x = {n 19. 0.6716 20. 1.816
21. —0.57722 (exact value = —C, where C = Euler’s constant).
22. 1.644934 and 0.822467 (exact values }x* and ") 23. 0.2797
24. (a, = 0.389111 x, = 0.821162 25. (A, =0.718539 x, = 0.1120088

{ {

a, = 0.277556 x, = 0.289949

R {

A; = 0.281461 x;, = 0.6022769
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1+ 3a 1 — 3a 4 _
2. ky = ———; k, = s ky= . 5.06734 (exact value 1§ = 5.06667).
SRt e T e K- ( i

27.a=110-;b=-88»;6=%§;a=\/§

1 A
28. A=%;B=%;C=3—%; D= —%;R=mf"’(xo+$):0<€<h-
29. k=3%; (x, =0.0711 30. 0.1089
x, = 0.1785
x5 = 0.7504
3. x N V2 ¥s Y Ys
0 1 1 1 1 1

0.25 1.1224 1.1299 1.1305 1.1303 1.1303
0.50 1.2398 1.2685 1.2709 1.2710 1.2710
0.75 1.3522 1.4134 1.4213 1.4220 1.4221
1.00 1.4597 1.5654 1.5816 1.5835 1.5836

Chapter 11
1. 0.27768 2. 0.6677 3. 0.92430 4. 0.91596 55942
5. 0.63201 6. 0.58905 7. 0.2257 8. 1.20206
9. Se 10. 0.6557 11. 1.40587 12. 1.341487
13. 0.671941.0767 14. 1.7168 15. 9.20090 16. 0.8225
17. 8 = fix) = 4 /) = 4f7) + 4" x) + oS 17(x) — 25 f7(0) +- -
18. 1.782 20. {5 (Incidentally, the answer is exact.) 2I. =%/4 and =%/6
22. z*/6 and z%/12  23. 0.309017 (=sin (x/10)) 24. 777564
Chapter 12
1. 0.2313 2. Numerically: 0.722; exactly: =*/*/8 = 0.696.

3. a=4%; b = ¢%. The value of the integral is 2.241.
4. The side of the square is a.

Chapter 13

L. flx) = w(X)A] + wy(x)2;, where 2;,, = k(a + 2 + Va® + 4a).
Special case: f = w,cosx + w,sinx  and  f= e’ + w,e”*

2. (x,= 19912 3. e 4. A=};B=4;C=}
X, = — 2.895 5. (a) u, = cos nx; (b) sin nx/sin x
X3 = 1.020
x, = — 1.038
7. o = n/3/9; y, = §(log 3 — z+/3/9)
k Ve kK n k Ve k Ve
0 0.604600 4 0.080339 7 0.047006 10 0.033117
1 0.247006 5 0.065061 8 0.041251 11 0.030140
2 0.148394 6 0.054600 9 0.036743 12 0.027652
3 0.104600

N = 8.255
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8. 3.359886 9. fud) = sin(i‘x+ 1)p where 2 cos ¢ = A.
sin ¢
Eigenvalues: 2 = 2cos k= ; k=1,2,...,n
n+1
lo'k:Ntan%,p:l,Z,3,...,p<-g,-. P cos’l’V " sin 227

11. tan (narctanx) 12. {x.=5-9"—2-2"

y”=9'+2”
Chapter 14
1. (x 02 0.4 0.6 0.8 1 .
M : (0.58, 0.76).
{ y 08512 07798 07620 0.7834  0.8334 inimum: ( )

x 0.5 1.0
Y(R.-K) 0.50521 1.08508
y(Ser.)  0.50522 1.08533

2. {x 0.5 1.0 1.5 2.0 3.
y 1.3571 1.5837 1.7555 1.8956

4. AR)y=1—h+ k20 — B 3v + k4

B AR Ath)—e™

0.1 0905 8.20.1077

02 0819 258.10°

0.5 0607 2.40.10"

1 0375 7.12.10°°

2 0333 198.10"

5 1371 1371

Yioo — €10 = 4.112. 107"

5. (x 24 2.6 2.8 3.0 -
M 1 (2.84, 047).
{ y 06143 0518 04687 0.4944 T imimum:(2.84,047)
6. (x 0.5 1.0 . 3x* 4+ 4
E 1 L y=
{ y 12604 22799 actsomtions y =g
7. _ksinngp 12 — 5K°. 8. & = 1.455
= h — — = =V. . :
¥y sin where cos ¢ P Ve 0.0005
9. z, = (—1)"n! a"b. 10. Try y =sin(ax™);n > 1.
1. (x 025 050 075 12. )(3) = 0.21729; z(4) = 0.92044
yo 02617  0.5223  0.7748
¥ 02629  0.5243  0.7764
13. y(3) = 0.496, 2(0) = 0.547 14. p = 0.54369; ¢ = 1.83928
15. h< V6 16. h < a/b

17. Weak stability; we get the approximate values
h V3
14+ — V[ —— i -
(+8)( :tlz) and 1—h
18. y(0) = 0.0883; y(4) = 0.0828 19. y(0) = 0.0856
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20. _ 2(1 -2 2’1 — X3 =2 21 -3 -25-2 L
a)=1+ TR 5t + e +
A=4.58
21. 179 22. 8.60 23. 12.362 24. 2.40 25. 31
Chapter 15
1. x=0.25 x=0.5 x=0.75 2. x=1.5 x=2 x=2.5

y=0.75 —0.176 —0.067 0.035 y=15 -0.84 —0.57 0.05
y=0.5 —0.379 —0.200 —0.057 y=1 —0.46 0.00 0.78
y=0.25 —0.538 —0.297 —0.120 y=05 —0.32 0.27 1.14

3. —0.21 4. w3, 1) =0.71; u(g, 3)=1.04; u(d,3) = 1.05 u3,3) =138
5. u=Jy(px)exp(—p°t) where Jy(p)= 0 (smallest value of p ~ 2.4048).

More general: u = ), aJy(px)exp(—pst) where Jy(p,)=0.
r=1
7. 2=12.27 (exact value 5z%/4 = 12.34)

8. h=1% gives 2, =41.3726 9. h=14 gives 1, =64
h=1} gives 21, =44.0983 h=14 gives 2, =71.85
Extrapolated value: 2, = 48.94 Extrapolated value: 78.13
(exact value: 5z* = 49.35)
10. 2, =34; 2,=12 11. ., du .
—ah® —— + O(k
o xar + O
Chapter 16
1. D) =1—2/3; 2.y=x"4x 3. (45— 1520x" + 9
D(x, 1; 2) = Axt Y= 3 —ar
. A= ~—84+ V76 5. y = 1.486x — 0.483x® 4 0.001725x°

A = +4/vz* — 4.—Note that cos (x + ¢) can be written as a degenerate kernel.
. y = xexp (x'/4)

. x* x® x’ x3\ (= IS
= - iy ——d
YEXt T3 trsstr3 st °xp(2)§o°xp( 2)'
10. 2y = (21 + 1)’z%/4; y, = sin(n + $)rx. The equation can be transformed to the
differential equation y’’ 4+ 1y = 0.

Il.y=6x+2 12. (x 0 0.2 0.4 0.6 0.8 1.0
{y 1 1.167 1.289 1.384 1.461 1.525

© o N &

13, yooy = 1 + S:y(t)dt 14. y(x)=1_2x—4x’+§'[3 +6(x — 1) — 4(x — '] (1) dt
[}

Chapter 17

L.y =059 + 2.22 2. (a) y = 0.9431x — 0.0244; (b) y = 0.9537x — 0.0944
3. a=0.96103; b = 0.63212 da=Lb=gc=1y
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S.ay=—La=ha=ha=%8a=14a=14}
6. a = —0.33824; b = —0.13313; c = 1.01937 7. a =289 I,=5.63
8. a=1.619; b=0.729; A= 3.003; B=0.99; y satisfies the difference equation

£y + (a+p)dy +afy =0, where a=1—€" p=1—¢€" ¢=a+pand
» = af are determined with the least-squares method.

9. a = 2.415; b = 1.258. y satisfies the same difference equation as in Ex. 8 with
a=1—e"*" and g=1—e*e ™. We find e** =1—¢ + 7 cosbh=
(1 — VT —€+7. .

10. a=4.00; b=120 11. a =83 — V8) =1.3726; &= (3 — \/8)/8 = 0.02145

12. 24/2 -1 13. 0.99992 — 0.49878x + 0.08090x*
14. P(x) = 4x* —6x* +1; ¢=0.0200 15. a=0.862; b =0.995; c==0.305
16. P(x) = 0.999736x — 0.164497x® + 0.020443x" 17. 2 4 = cos2kx
T - T k=1 4k2 - l

18. cos x = Jy(1) — 2J,(1)Ty(x) + 2J,(1)T(x) — - - - (For definition of J,(x), see Ch. 18.)
Chapter 18

2. ¢ 3. 2r/3/9 4. (z/m)sin (z/m) 6. 272/1729

7. sin (x/10) = (v/3 — 1)/4 = 0.309 8. 2n!(2n + N

9% (—pymvn 2%n — 1) 10. y= rexp (_’ _ %) dt, x>0

[]

((n = D) ((n + D/2)!
y = VAx{AL(VEX) + BK(VAD)); S"‘exp (_: - %) dt = VAXK,(V/3%).
0

From the definition of K, we have lim,_, xK;(x) = 1 and further the integral ap-
proaches zero when x — o, and hence we find 4 =0, B=1.

12, cos (x sin 8) = Jy(x) + 2J,(x) cos 26 + 2J(x) cos (46) + - - -
sin (x sin §) = 2J,(x) sin § + 2Jy(x)sin 36 + 2Ji(x)sin 56 + - - -
For 6 = 0 and 6 = =/2, we obtain the relations (18.5.11). Necessary trigonometric
integrals can be computed by the same technique as was used in Section 17.5.

13. (F(1 + 1p)VPIT(1 + 2/p); =°/6

11.

Chapter 19

1. x=—21"log(l — &) 2. m+ ot 3. 0.688
4. Theoretical values: 0.75, 0.50, 0.25 5.(@)3 (b) 14, S %

Chapter 20

. Ymax = 4.4 for x" =(4.4,0,0,06) 2.y,,=—2 for x"=(6,8,0)
32 —Lifun=64 —1 <2< —§ frun=20—4 —} < X fon = =5

4. foax=1 for xT=(2,2,0,0,0)
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16.
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ANSWERS TO EXERCISES

 fon=0 for x"=(0,3—1¢,c,0;0<c<3

 Ymn =13 for xT=(0, 4, %)

L 0<a<2 fou=2a
ZSass; fmax=2+a
8<a< 12 fuu=10

Znax = 31567

for

427

8. fmun=3 for x=3y=3,z=-3.
zcan be written z= u — y where u > 0,

v=>0.

T =143, 1,3, 4

. 0lbof A4, 17.51b of B, and 151b of C give a maximum profit of $1,375.

. Mine A should be running 2 days, and B6 days. Minimum cost: $18,000 per week.
13.
31 75 25
2 4 Min = 186 25 75 Min = 5000
5 50 50
5 76 10 ! or any combination of these two
or 3 solutions. Min = 135.
55 5
Several optimal solutions exist, for example,
4 4 4 4
3 or 3 Min = 38
5 1 1 5
There are several optimal solutions, for example,
20 10 10 20
20 10 20 10 10 30 L
40 02| % |10 4 25 | Min=430
20 20
18.
70 10
60 10 60 .
30 20 5 15 Min =730
10







Index

Adjoint matrix 50 Characteristics 295
Aitken’s extrapolation 185 method of, for hyp. eq. 295
Aitken’s interpolation 172 Chebyshev approximation 349
Algebraic complement 49 polynomials 349
Algebraic eigenvalue problems 113 quadrature formula 213
ALGOL 11 polynomials 215
Alternating series 239 Choleski’s method 106
Approximation 335 unsymmetrical method 105
by use of least squares 336 Column vector 47

Chebyshev polynomials 349 Companion matrix 57

continued fractions 354 Complex systems of equations 100

exponential functions 347 matrices, inverse 108

orthogonal polynomials 340 eigenvalues 134

rational functions 356 Condition number 93

trigonometric functions 344 Conjugation 48
Artificial basis 400 Consistency conditions 273
Asymptotic series 14 Convergence, solution of equations 23, 36
Autoanalysis 347 Conversion 2

Convolution integral 347
. , Cote’s formulas 198

Bairstow’s method 28 numbers 201

Band matrix 125 .
Bernoulli’s method (alg. eq.) 256 Cowell-Numerov's method 280

. Cramer’s rule 81
Bernoull bers 224
:c‘)l;n c;n‘::lalll; 22': Crank-Nicolson’s method 307
Bessel functions 9, 371 g";‘: s '“;;‘fd 86
Bessel’s interpolation formula 178 ubature
Beta function 367 )
Biorthogonal vectors 54, 132 Descart_es method 20
Block iteration 311 Determinant 49

Differences 173
Brun’ 20.
run’s formula 202 divided 170

of elementary functions 254

Cauchy-Schwarz inequality 71 modified 181

Cayley-Hamilton’s theorem 63 Difference equations 250

Change of sign 127 inhomogeneous 253

Characteristic equation, matrices 52 linear, homogeneous 250, 252
difference equations 252 partial 257

429



430 INDEX
Difference operators 148
Difference schemes 173
Differential equations, ordinary 260
boundary value problems 286
eigenvalue problems 288
elliptic 309
existence proof 262, 315
hyperbolic 296
Milne’s method 279
parabolic 300
partial 294
Runge-Kutta methods 268
series expansion 266
systems of first order 284
Differentiation operator 148
Di-gamma function 255
Dirichlet’s problem 310
Discrimination technique 388
Divided differences 170
Dual problem (lin. programming) 402
Dynamic programming 408

Eigenfunctions (ordinary diff. eq.) 289
Eigenvalues of matrices 52
inequalities for localization 55
of ordinary diff. eq. 289
of partial diff. eq. 315
Eigenvectors 52
Elliptic differential equations 309
Equations 17
of 4th degree and less 19
systems of linear 81
systems of non-linear 42
Error analysis, lin. systems of equations 89
Errors 3, 265
absolute 3
initial 6
instability 4, 271
propagated 7
relative 3
round-off 6, 265
truncation 4, 6, 265
Escalator method 107
Euler’s constant 233
transformation 235
Euler’s method 265
Everett’s formula 178
Extrapolation 185

Factorials 158

central 161

mean 161

sum of 160, 206
Fibonacci numbers 253
Fictitious transportation costs 405
Filon’s formula 204
Floating representation 2
Fredholm’s equations 320
Fourier series 345

integrals 347
Functions, computing of 10

with binary repr. 12

Gamma function 359
Gauss elimination method 82
interpolation 177
quadrature 205
Gauss-Hermite’s quadrature formula 213
Gauss-Laguerre quadrature formula 211
Gauss-Legendre quadrature formula 210
Gauss-Seidel method 95
Generating function 224
Gershgorin inequalities 56
Givens’ method (matrix eigenvalues) 125
Graeffe’s method (cquations) 32
Gram-Schmidt's orthogonalization
process 74
Gregory’s formula 218
Growth parameters 277

Heat equation 300
Hermitian interpolation 168
matrices 158
polynomials 211
Horner 38
Householder’s method 130
Hyperbolic differential equations 296
Hyman's method 137

Ill-conditioned equations 18
problems 7
systems of lin. equations 93
Instability 7, 271
inherent 277
partial 271
Integral equations 320



Integration, see Numerical quadrature
operators 148
Interpolation 164
Aitken 172
Bessel 178
Everett 178
Gaussian 177
Hermite 168
inverse 183
Lagrangian 164
Newton 153, 171, 175
Steffensen 179
Stirling 178
in two variables 244
Inverse matrix 50, 103
operator 147, 149
Iterative methods, equations 33
lin. systems 93
matrix inversion 108

Jacobi’s method 94, 120
Jordan’s elimination 83
inversion 103
normal form 75

Lagrange’s interpolation formula 164
method (difference eq.) 258

Laguerre polynomials 210

Lanczos’ method 132

Laplace’s method (difference eq.) 257
equation 309

Least-square method 335

Legendre polynomials 207

Lehmer’s method (equations) 42

Liebmann’s method 310

Linear programming 394
dual problem 402

Linear systems of equations 81
independence 51
operators 147

Lipschitz condition 262

Localization of eigenvalues 56

LR-method 134

Lubbock’s formula 235

Main diagonal 49
Matrices 47
adjoint 50

INDEX

defective 75

derogatory 75

Hermitian 58

orthogonal 54

regular 50

singular 50

unitary 59
Matrix functions 62

inversion 103

norms 68
Mean value operator 148
Milne-Simpson’s method 279
Minimum polynomial 65
Monte Carlo method 384
Muller’s method (equations) 33
Multiple integrals 244

Newton’s identities 53
interpolation formulas 171, 175
Newton-Raphson method 21
Norm 67
absolute 67
compatible matrix 68
Euclidean 67, 68
Hilbert 68
maximum 67, 68
spectral 68
Normal equations 336
Number representation 1
Number system 1
binary 1
octal 1
sedecimal 1
Numerical cancellation 9
computations 1, 6
differentiation 190
quadrature 195
Chebyshev 213
Cote’s 198
with differences 217
Gaussian 205
Monte Carlo method 384
with singularity 195

Open quadrature formulas 203

Operator, linear 146

Ordinary differential equations, see
Differential equations
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Orthogonal matrix 154
Orthonormal system 52
Overrelaxation 96

Parabolic differential equations, 300
Partial differential equations, see
Differential equations

Partitioning of matrices 108
Peaceman-Rachford’s method 312
Picard’s method 262
Pivot element 82
Poisson’s equation 310
Polynomial approximation 336

matrix 63
Positive definite 49

semidefinite 49
Power method 115

series expansion 11

with respect to § 151

Prony’s method 348

Q-D-method 39
Q-R-method 142

Quadratic programming 408
Quadrature 195

Random numbers 384
normal 387
rectangular 385
walk 388
Range operations 18
Rank 51
Rayleigh’s quotient 117
Recurrence equation 250
Regula falso 23
Residual vector 94
Richardson, extrapolation 186, 201
Romberg's method 203
Root 17
Row vector 47
Runge-Kutta’s method 268

Salzer’s method 235
Schur’s lemma 59, 75
Semi-convergent expansion 14

Shifting operator 148
Significant digits 3
Similarity transformation 53
Simplex-method 394
Simpson’s formula 199
with end-correction 202
error analysis 199
Simulation 391
Slack variables 394
Square root 27
method 86, 107
Stability, ordinary diff. eq. 271
partial diff. eq. 304
Steepest descent 43
Steffensen’s interpolation 179
Stirling’s interpolation 178
numbers of first kind 158
of second kind 159
Sturm-Liouville’s problem 289
Sturm’s sequence 128
Subtabulation 183
Summation 224
according to Laplace 231
Gauss 231
Lubbock 235
McLaurin 232
operators 148
Sums of factorials 160, 228
powers 229
Sylvester’s method 66
Synthetic division 20

Taylor’s formula 151

Taylor series expansion 266
Telescope method 128
Throwback 181

Trace 49

Transformation of matrices 73
Transposition of matrices 48
Transportation problem 316
Triangularization 84, 104

Unitary matrix 59
Vandermonde's determinant 165

Vector norms 67
Volterra’s equations 329
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Wave equation 296 Wilkinson’s method (eigenvectors) 128
Weddle’s rule 201 Woolhouse’s formula 236

Weierstrass’ theorem 336

Wijngaarden’s, van, method 240 Young’s method 96



	Title Page
	Copyright
	Preface
	Contents
	Chapter 1 Numerical Computations�
	1.0 Representation of numbers�
	1.1 Conversion�
	1.2 On errors�
	1.3 Numerical cancellation�
	1.4 Computation of functions�
	1.5 Computation of functions, using binary representation�
	1.6 Asymptotic series�

	Chapter 2 Equations�
	2.0 Introduction�
	2.1 Cubic and quartic equations. Horner's scheme�
	2.2 Newton-Raphson's method�
	2.3 Bairstow's method�
	2.4 Graeffe's root-squaring method�
	2.5 Iterative methods�
	2.6 The Q.-D.-method�
	2.7 Equations with several unknowns�

	Chapter 3 Matrices�
	3.0 Definition�
	3.1 Matrix operations�
	3.2 Fundamental computing laws for matrices�
	3.3 Eigenvalues and eigenvectors�
	3.4 Special matrices�
	3.5 Matrix functions�
	3.6 Norms of vectors and matrices�
	3.7 Transformation of vectors and matrices�
	3.8 Limits of matrices�

	Chapter 4 Linear Systems of Equations�
	4.0 Introduction�
	4.1 The elimination method by Gauss�
	4.2 Triangularization�
	4.3 Crout's method�
	4.4 Error estimates�
	4.5 Iterative methods�
	4.6 Complex systems of equations�

	Chapter 5 Matrix Inversion�
	5.0 Introduction�
	5.1 Jordan's method�
	5.2 Triangularization�
	5.3 Choleski's method�
	5.4 The escalator method�
	5.5 Complex matrices�
	5.6 Iterative methods�

	Chapter 6 Algebraic Eigenvalue-Problems�
	6.0 Introduction�
	6.1 The power method�
	6.2 Jacobi's method�
	6.3 Given's method�
	6.4 Householder's method�
	6.5 Lanczos' method�
	6.6 Other methods�
	6.7 Complex matrices�
	6.8 Hyman's method�
	6.9 The QR-method by Francis�

	Chapter 7 Linear Operators�
	7.0 General properties�
	7.1 Special operators�
	7.2 Power series expansions with respect to 5�
	7.3 Factorials�

	Chapter 8 Interpolation�
	8.0 Introduction�
	8.1 Lagrange's interpolation formula�
	8.2 Hermite's interpolation formula�
	8.3 Divided differences�
	8.4 Difference schemes�
	8.5 Interpolation formulas by use of differences�
	8.6 Throw-back�
	8.7 Subtabulation�
	8.8 Special and inverse interpolation�
	8.9 Extrapolation�

	Chapter 9 Numerical Differentiation�
	Chapter 10  Numerical Quadrature�
	10.0 Introduction�
	10.1 Cote's formulas�
	10.2 Gauss's quadrature formulas�
	10.3 Chebyshev's formulas�
	10.4 Numerical quadrature by aid of differences�

	Chapter 11 Summation�
	11.0 Bernoulli numbers and Bernoulli polynomials�
	11.1 Sums of factorials and powers�
	11.2 Series with positive terms�
	11.3 Slowly converging series. Euler's transformation�
	11.4 Alternating series�

	Chapter 12 Multiple Integrals�
	Chapter 13 Difference Equations�
	13.0 Notations and definitions�
	13.1 The solution concept of a difference equation�
	13.2 Linear homogeneous difference equations�
	13.3 Differences of elementary functions�
	13.4 Bernoulli's method for algebraic equations�
	13.5 Partial difference equations�

	Chapter 14 Ordinary Differential Equations�
	14.0 Existence of solutions�
	14.1 Classification of solution methods�
	14.2 Different types of errors�
	14.3 Single-step methods�
	14.4 Taylor series expansion�
	14.5 Runge-Kutta's method�
	14.6 Multi-step methods�
	14.7 Milne-Simpson's method�
	14.8 Methods based on numerical integration�
	14.9 Systems of first-order linear differential equations�
	14.10 Boundary value problems�
	14.11 Eigenvalue problems�

	Chapter 15 Partial Differential Equations�
	15.0 Classification�
	15.1 Hyperbolic equations�
	15.2 Parabolic equations�
	15.3 Elliptic equations�
	15.4 Eigenvalue problems�

	Chapter 16 Integral Equations�
	16.0 Definition and classification�
	16.1 Fredholm's inhomogeneous equation of the second kind�
	16.2 Fredholm's homogeneous equation of the second kind�
	16.3 Fredholm's equation of the first kind�
	16.4 Volterra's equations�
	16.5 Connection between differential and integral equations�

	Chapter 17 Approximation�
	17.0 Different types of approximation�
	17.1 Least square polynomial approximation�
	17.2 Polynomial approximation by use of orthogonal polynomials�
	17.3 Approximation with trigonometric functions�
	17.4 Approximation with exponential functions�
	17.5 Approximation with Chebyshev polynomials�
	17.6 Approximation with continued fractions�
	17.7 Approximation with rational functions�

	Chapter 18 Special Functions�
	18.0 Introduction�
	18.1 The gamma-function�
	18.2 The beta-function�
	18.3 Some functions defined by definite integrals�
	18.4 Functions defined through linear homogeneous differential equations�
	18.5 Bessel functions�
	18.6 Modified Bessel functions�
	18.7 Spherical harmonics�

	Chapter 19 The Monte Carlo Method�
	19.0 Introduction�
	19.1 Random numbers�
	19.2 Random walks�
	19.3 Computation of definite integrals�
	19.4 Simulation�

	Chapter 20 Linear Programming�
	20.0 Introduction�
	20.1 The simplex method�
	20.2 The transport problem�
	20.3 Quadratic, integer, and dynamic programming�

	Answers to Exercises�
	Index�

