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The study of complex variables is important for students in engineering and the
physical sciences and is a central subject in mathematics. In addition to being
mathematically elegant, complex variables provide a powerful tool for solving
problems that are either very difficult or virtually impossible to solve in any
other way.

Part I of this text provides an introduction to the subject, including analytic
functions, integration, series, and residue calculus. It also includes transform
methods, ordinary differential equations in the complex plane, numerical meth-
ods, and more. Part II contains conformal mappings, asymptotic expansions,
and the study of Riemann–Hilbert problems. The authors also provide an ex-
tensive array of applications, illustrative examples, and homework exercises.

This new edition has been improved throughout and is ideal for use in intro-
ductory undergraduate and graduate level courses in complex variables.





Complex Variables
Introduction and Applications

Second Edition



Cambridge Texts in Applied Mathematics

FOUNDING EDITOR
Professor D.G. Crighton

EDITORIAL BOARD
Professor M.J. Ablowitz, Department of Applied Mathematics,

University of Colorado, Boulder, USA.
Professor J.-L. Lions, College de France, France.

Professor A. Majda, Department of Mathematics, New York University, USA.
Dr. J. Ockendon, Centre for Industrial and Applied Mathematics, University of Oxford, UK.

Professor E.B. Saff, Department of Mathematics, University of South Florida, USA.

Maximum and Minimum Principles
M.J. Sewell

Solitons
P.G. Drazin and R.S. Johnson

The Kinematics of Mixing
J.M. Ottino

Introduction to Numerical Linear Algebra and Optimisation
Phillippe G. Ciarlet

Integral Equations
David Porter and David S.G. Stirling

Perturbation Methods
E.J. Hinch

The Thermomechanics of Plasticity and Fracture
Gerard A. Maugin

Boundary Integral and Singularity Methods for Linearized Viscous Flow
C. Pozrikidis

Nonlinear Systems
P.G. Drazin

Stability, Instability and Chaos
Paul Glendinning

Applied Analysis of the Navier-Stokes Equations
C.R. Doering and J.D. Gibbon

Viscous Flow
H. Ockendon and J.R. Ockendon

Similarity, Self-similarity and Intermediate Asymptotics
G.I. Barenblatt

A First Course in the Numerical Analysis of Differential Equations
A. Iserles

Complex Variables: Introduction and Applications
Mark J. Ablowitz and Athanssios S. Fokas



Complex Variables
Introduction and Applications

Second Edition

MARK J. ABLOWITZ
University of Colorado, Boulder

ATHANASSIOS S. FOKAS
University of Cambridge



  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , United Kingdom

First published in print format 

-    ----

-    ----

© Cambridge University Press 2003

2003

Information on this title: www.cambridge.org/9780521534291

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

-    ---

-    ---

Cambridge University Press has no responsibility for the persistence or accuracy of
s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (EBL)
eBook (EBL)

paperback

http://www.cambridge.org
http://www.cambridge.org/9780521534291


Contents

Sections denoted with an asterisk (*) can be either omitted or read
independently.

Preface page xi

Part I Fundamentals and Techniques of Complex Function
Theory 1

1 Complex Numbers and Elementary Functions 3
1.1 Complex Numbers and Their Properties 3
1.2 Elementary Functions and Stereographic Projections 8

1.2.1 Elementary Functions 8
1.2.2 Stereographic Projections 15

1.3 Limits, Continuity, and Complex Differentiation 20
1.4 Elementary Applications to Ordinary Differential Equations 26

2 Analytic Functions and Integration 32
2.1 Analytic Functions 32

2.1.1 The Cauchy–Riemann Equations 32
2.1.2 Ideal Fluid Flow 40

2.2 Multivalued Functions 46
∗2.3 More Complicated Multivalued Functions and Riemann

Surfaces 61
2.4 Complex Integration 70
2.5 Cauchy’s Theorem 81
2.6 Cauchy’s Integral Formula, Its ∂ Generalization and

Consequences 91

vii



viii Contents

2.6.1 Cauchy’s Integral Formula and Its Derivatives 91
∗2.6.2 Liouville, Morera, and Maximum-Modulus

Theorems 95
∗2.6.3 Generalized Cauchy Formula and ∂ Derivatives 98

∗2.7 Theoretical Developments 105

3 Sequences, Series, and Singularities of Complex Functions 109
3.1 Definitions and Basic Properties of Complex Sequences,

Series 109
3.2 Taylor Series 114
3.3 Laurent Series 127
∗3.4 Theoretical Results for Sequences and Series 137
3.5 Singularities of Complex Functions 144

3.5.1 Analytic Continuation and Natural Barriers 152
∗3.6 Infinite Products and Mittag–Leffler Expansions 158
∗3.7 Differential Equations in the Complex Plane: Painlevé
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Preface

The study of complex variables is beautiful from a purely mathematical point
of view and provides a powerful tool for solving a wide array of problems
arising in applications. It is perhaps surprising that to explain real phenomena,
mathematicians, scientists, and engineers often resort to the “complex plane.”
In fact, using complex variables one can solve many problems that are either
very difficult or virtually impossible to solve by other means. The text provides
a broad treatment of both the fundamentals and the applications of this subject.

This text can be used in an introductory one- or two-semester undergraduate
course. Alternatively, it can be used in a beginning graduate level course and
as a reference. Indeed, Part I provides an introduction to the study of complex
variables. It also contains a number of applications, which include evaluation
of integrals, methods of solution to certain ordinary and partial differential
equations, and the study of ideal fluid flow. In addition, Part I develops a
suitable foundation for the more advanced material in Part II. Part II contains
the study of conformal mappings, asymptotic evaluation of integrals, the so-
called Riemann–Hilbert and DBAR problems, and many of their applications.
In fact, applications are discussed throughout the book. Our point of view is
that students are motivated and enjoy learning the material when they can relate
it to applications.

To aid the instructor, we have denoted with an asterisk certain sections that are
more advanced. These sections can be read independently or can be skipped.
We also note that each of the chapters in Part II can be read independently.
Every effort has been made to make this book self-contained. Thus advanced
students using this text will have the basic material at their disposal without
dependence on other references.

We realize that many of the topics presented in this book are not usu-
ally covered in complex variables texts. This includes the study of ordinary

xi



xii Preface

differential equations in the complex plane, the solution of linear partial differ-
ential equations by integral transforms, asymptotic evaluation of integrals, and
Riemann–Hilbert problems. Actually some of these topics, when studied at
all, are only included in advanced graduate level courses. However, we believe
that these topics arise so frequently in applications that early exposure is vital.
It is fortunate that it is indeed possible to present this material in such a way
that it can be understood with only the foundation presented in the introductory
chapters of this book.

We are indebted to our families, who have endured all too many hours of
our absence. We are thankful to B. Fast and C. Smith for an outstanding job
of word processing the manuscript and to B. Fast, who has so capably used
mathematical software to verify many formulae and produce figures.

Several colleagues helped us with the preparation of this book. B. Herbst
made many suggestions and was instrumental in the development of the com-
putational section. C. Schober, L. Luo, and L. Glasser worked with us on many
of the exercises. J. Meiss and C. Schober taught from early versions of the
manuscript and made valuable suggestions.

David Benney encouraged us to write this book and we extend our deep
appreciation to him. We would like to take this opportunity to thank those
agencies who have, over the years, consistently supported our research efforts.
Actually, this research led us to several of the applications presented in this book.
We thank the Air Force Office of Scientific Research, the National Science
Foundation, and the Office of Naval Research. In particular we thank Arje
Nachman, Program Director, Air Force Office of Scientific Research (AFOSR),
for his continual support.

Since the first edition appeared we are pleased with the many positive and
useful comments made to us by colleagues and students. All necessary changes,
small additions, and modifications have been made in this second edition. Ad-
ditional information can be found from www.cup.org/titles/catalogue.



Part I
Fundamentals and Techniques of Complex

Function Theory

The first portion of this text aims to introduce the reader to the basic notions and
methods in complex analysis. The standard properties of real numbers and the
calculus of real variables are assumed. When necessary, a rigorous axiomatic
development will be sacrificed in place of a logical development based upon
suitable assumptions. This will allow us to concentrate more on examples and
applications that our experience has demonstrated to be useful for the student
first introduced to the subject. However, the important theorems are stated and
proved.

1





1
Complex Numbers and Elementary Functions

This chapter introduces complex numbers, elementary complex functions, and
their basic properties. It will be seen that complex numbers have a simple two-
dimensional character that submits to a straightforward geometric description.
While many results of real variable calculus carry over, some very important
novel and useful notions appear in the calculus of complex functions. Appli-
cations to differential equations are briefly discussed in this chapter.

1.1 Complex Numbers and Their Properties

In this text we use Euler’s notation for the imaginary unit number:

i2 = −1 (1.1.1)

A complex number is an expression of the form

z = x + iy (1.1.2)

Here x is the real part of z, Re(z); and y is the imaginary part of z, Im(z).
If y = 0, we say that z is real; and if x = 0, we say that z is pure imaginary.
We often denote z, an element of the complex numbers as z ∈ C; where x , an
element of the real numbers is denoted by x ∈ R. Geometrically, we represent
Eq. (1.1.2) in a two-dimensional coordinate system called the complex plane
(see Figure 1.1.1).

The real numbers lie on the horizontal axis and pure imaginary numbers on
the vertical axis. The analogy with two-dimensional vectors is immediate. A
complex number z = x + iy can be interpreted as a two-dimensional vector
(x, y).

It is useful to introduce another representation of complex numbers, namely
polar coordinates (r, θ):

x = r cos θ y = r sin θ (r ≥ 0) (1.1.3)

3



4 1 Complex Numbers and Elementary Functions

θ
r

x

y

z = x+iy

Fig. 1.1.1. The complex plane (“z plane”)

Hence the complex number z can be written in the alternative polar form:

z = x + iy = r(cos θ + i sin θ) (1.1.4)

The radius r is denoted by

r =
√

x2 + y2 ≡ |z| (1.1.5a)

(note: ≡ denotes equivalence) and naturally gives us a notion of the absolute
value of z, denoted by |z|, that is, it is the length of the vector associated with
z. The value |z| is often referred to as the modulus of z. The angle θ is called
the argument of z and is denoted by arg z. When z 
= 0, the values of θ can be
found from Eq. (1.1.3) via standard trigonometry:

tan θ = y/x (1.1.5b)

where the quadrant in which x , y lie is understood as given. We note that
θ ≡ arg z is multivalued because tan θ is a periodic function of θ with period
π . Given z = x + iy, z 
= 0 we identify θ to have one value in the interval
θ0 ≤ θ < θ0 + 2π , where θ0 is an arbitrary number; others differ by integer
multiples of 2π . We shall take θ0 = 0. For example, if z = −1 + i , then
|z| = r = √2 and θ = 3π

4 + 2nπ , n = 0,±1,±2, . . . . The previous remarks
apply equally well if we use the polar representation about a point z0 
= 0. This
just means that we translate the origin from z = 0 to z = z0.

At this point it is convenient to introduce a special exponential function. The
polar exponential is defined by

cos θ + i sin θ = eiθ (1.1.6)

Hence Eq. (1.1.4) implies that z can be written in the form

z = reiθ (1.1.4′)

This exponential function has all of the standard properties we are familiar
with in elementary calculus and is a special case of the complex exponential
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function to be introduced later in this chapter. For example, using well-known
trigonometric identities, Eq. (1.1.6) implies

e2π i = 1 eπ i = −1 e
π i
2 = i e

3π i
2 = −i

eiθ1 eiθ2 = ei(θ1+θ2) (eiθ )m = eimθ (eiθ )1/n = eiθ/n

With these properties in hand, one can solve an equation of the form

zn = a = |a|eiφ = |a|(cosφ + i sinφ), n = 1, 2, . . .

Using the periodicity of cosφ and sinφ, we have

zn = a = |a|ei(φ+2πm) m = 0, 1, . . . , n − 1

and find the n roots

z = |a|1/nei(φ+2πm)/n m = 0, 1, . . . , n − 1.

For m ≥ n the roots repeat.
If a = 1, these are called the n roots of unity: 1, ω, ω2, . . . , ωn−1, where

ω = e2π i/n . So if n = 2, a = −1, we see that the solutions of z2 = −1 = eiπ

are z = {eiπ/2, e3iπ/2}, or z = ±i . In the context of real numbers there are no
solutions to z2 = −1, but in the context of complex numbers this equation has
two solutions. Later in this book we shall show that an nth-order polynomial
equation, zn + an−1zn−1 + · · · + a0 = 0, where the coefficients {a j }n−1

j=0 are
complex numbers, has n and only n solutions (roots), counting multiplicities
(for example, we say that (z − 1)2 = 0 has two solutions, and that z = 1 is a
solution of multiplicity two).

The complex conjugate of z is defined as

z = x − iy = re−iθ (1.1.7)

Two complex numbers are said to be equal if and only if their real and
imaginary parts are respectively equal; namely, calling zk = xk + iyk , for k =
1, 2, then

z1 = z2 ⇒ x1 + iy1 = x2 + iy2 ⇒ x1 = x2, y1 = y2

Thus z = 0 implies x = y = 0.
Addition, subtraction, multiplication, and division of complex numbers fol-

low from the rules governing real numbers. Thus, noting i2 = −1, we have

z1 ± z2 = (x1 ± x2)+ i(y1 ± y2) (1.1.8a)
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and

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1 y2)+ i(x1 y2 + x2 y1) (1.1.8b)

In fact, we note that from Eq. (1.1.5a)

zz = zz = (x + iy)(x − iy) = x2 + y2 = |z|2 (1.1.8c)

This fact is useful for division of complex numbers,

z1

z2
= x1 + iy1

x2 + iy2
= (x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)

= (x1x2 + y1 y2)+ i(x2 y1 − x1 y2)

x2
2 + y2

2

= x1x2 + y1 y2

x2
2 + y2

2

+ i(x2 y1 − x1 y2)

x2
2 + y2

2

(1.1.8d)

It is easily shown that the commutative, associative, and distributive laws of
addition and multiplication hold.

Geometrically speaking, addition of two complex numbers is equivalent to
that of the parallelogram law of vectors (see Figure 1.1.2).

The useful analytical statement

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1| + |z2| (1.1.9)

has the geometrical meaning that no side of a triangle is greater in length than
the sum of the other two sides – hence the term for inequality Eq. (1.1.9) is the
triangle inequality.

Equation (1.1.9) can be proven as follows.

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1z1 + z2z2 + z1z2 + z1z2

= |z1|2 + |z2|2 + 2 Re(z1z2)

iy

x

Fig. 1.1.2. Addition of vectors
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Hence

|z1 + z2|2 − (|z1| + |z2|)2 = 2(Re(z1z2)− |z1||z2|) ≤ 0 (1.1.10)

where the inequality follows from the fact that

x = Re z ≤ |z| =
√

x2 + y2

and |z1z2| = |z1||z2|.
Equation (1.1.10) implies the right-hand inequality of Eq. (1.1.9) after taking

a square root. The left-hand inequality follows by redefining terms. Let

W1 = z1 + z2 W2 = −z2

Then the right-hand side of Eq. (1.1.9) (just proven) implies that

|W1| ≤ |W1 +W2| + | −W2|
or |W1| − |W2| ≤ |W1 +W2|

which then proves the left-hand side of Eq. (1.1.9) if we assume that
|W1| ≥ |W2|; otherwise, we can interchange W1 and W2 in the above discussion
and obtain

||W1| − |W2|| = −(|W1| − |W2|) ≤ |W1 +W2|
Similarly, note the immediate generalization of Eq. (1.1.9)∣∣∣∣∣

n∑
j=1

z j

∣∣∣∣∣ ≤
n∑

j=1

|z j |

Problems for Section 1.1

1. Express each of the following complex numbers in polar exponential form:

(a) 1 (b) − i (c) 1+ i

(d)
1

2
+
√

3

2
i (e)

1

2
−
√

3

2
i

2. Express each of the following in the form a + bi , where a and b are real:

(a) e2+iπ/2 (b)
1

1+ i
(c) (1+ i)3 (d) |3+ 4i |

(e) Define cos(z) = (eiz + e−i z)/(2), and ez = ex eiy .

Evaluate cos(iπ/4+ c), where c is real
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3. Solve for the roots of the following equations:

(a) z3 = 4 (b) z4 = −1

(c) (az + b)3 = c,where a, b, c > 0 (d) z4 + 2z2 + 2 = 0

4. Estabilish the following results:

(a) z + w = z̄ + w̄ (b) |z − w| ≤ |z| + |w| (c) z − z̄ = 2iIm z

(d) Rez ≤ |z| (e) |wz̄ + w̄z| ≤ 2|wz| (f) |z1z2| = |z1||z2|

5. There is a partial correspondence between complex numbers and vec-
tors in the plane. Denote a complex number z = a+ bi and a vector
v = aê1+ bê2, where ê1 and ê2 are unit vectors in the horizontal and ver-
tical directions. Show that the laws of addition z1 ± z2 and v1± v2 yield
equivalent results as do the magnitudes |z|2, |v|2 = v · v. (Here v · v is the
usual vector dot product.) Explain why there is no general correspondence
for laws of multiplication or division.

1.2 Elementary Functions and Stereographic Projections

1.2.1 Elementary Functions

As a prelude to the notion of a function we present some standard definitions
and concepts. A circle with center z0 and radius r is denoted by |z − z0| = r .
A neighborhood of a point z0 is the set of points z for which

|z − z0| < ε (1.2.1)

where ε is some (small) positive number. Hence a neighborhood of the point
z0 is all the points inside the circle of radius ε, not including its boundary.
An annulus r1 < |z − z0| < r2 has center z0, with inner radius r1 and outer
radius r2. A point z0 of a set of points S is called an interior point of S if
there is a neighborhood of z0 entirely contained within S. The set S is said to
be an open set if all the points of S are interior points. A point z0 is said to be
a boundary point of S if every neighborhood of z = z0 contains at least one
point in S and at least one point not in S.

A set consisting of all points of an open set and none, some or all of its
boundary points is referred to as a region. An open region is said to be bounded
if there is a constant M > 0 such that all points z of the region satisfy |z| ≤ M ,
that is, they lie within this circle. A region is said to be closed if it contains
all of its boundary points. A region that is both closed and bounded is called
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iy

x

Fig. 1.2.1. Half plane

compact. Thus the region |z| ≤ 1 is compact because it is both closed and
bounded. The region |z| < 1 is open and bounded. The half plane Re z > 0
(see Figure 1.2.1) is open and unbounded.

Let z1, z2, . . . , zn be points in the plane. The n− 1 line segments z1z2, z2z3,
. . . , zn−1zn taken in sequence form a broken line. An open region is said to be
connected if any two of its points can be joined by a broken line that is contained
in the region. (There are more detailed definitions of connectedness, but this
simple one will suffice for our purposes.) For an example of a connected region
see Figure 1.2.2.)

A disconnected region is exemplified by all the points interior to |z| = 1 and
exterior to |z| = 2: S = {z : |z| < 1, |z| > 2}.

A connected open region is called a domain. For example the set (see
Figure 1.2.3)

S = {z = reiθ : θ0 < arg z < θ0 + α}

is a domain that is unbounded.

z

z

z

z
z

z
2

1

3

5

6

4

Fig. 1.2.2. Connected region
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α

θ

θ

0

0
+ α

Fig. 1.2.3. Domain – a sector

Because a domain is an open set, we note that no boundary point of the
domain can lie in the domain. Notationally, we shall refer to a region as R; the
closed region containing R and all of its boundary points is sometimes referred
to as R. If R is closed, then R = R. The notation z ∈ R means z is a point
contained in R. Usually we denote a domain by D.

If for each z ∈ R there is a unique complex number w(z) then we say w(z)
is a function of the complex variable z, frequently written as

w = f (z) (1.2.2)

in order to denote the function f . Often we simply write w = w(z), or just w.
The totality of values f (z) corresponding to z ∈ R constitutes the range of
f (z). In this context the set R is often referred to as the domain of definition
of the function f . While the domain of definition of a function is frequently a
domain, as defined earlier for a set of points, it does not need to be so.

By the above definition of a function we disallow multivaluedness; no more
than one value of f (z) may correspond to any point z ∈ R. In Sections 2.2
and 2.3 we will deal explicitly with the notion of multivaluedness and its ram-
ifications.

The simplest function is the power function:

f (z) = zn, n = 0, 1, 2, . . . (1.2.3)

Each successive power is obtained by multiplication zm+1 = zm z, m =
0, 1, 2, . . . A polynomial is defined as a linear combination of powers

Pn(z) =
n∑

j=0

a j z
j = a0 + a1z + a2z2 + · · · + anzn (1.2.4)
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where the a j are complex numbers (i.e.,1 a j ∈ C). Note that the domain of
definition of Pn(z) is the entire z plane simply written as z ∈ C. A rational
function is a ratio of two polynomials Pn(z) and Qm(z), where Qm(z) =∑m

j=0 b j z j

R(z) = Pn(z)

Qm(z)
(1.2.5)

and the domain of definition of R(z) is the z plane, excluding the points where
Qm(z) = 0. For example, the function w = 1/(1+ z2) is defined in the z plane
excluding z = ±i . This is written as z ∈ C \ {i,−i}.

In general, the function f (z) is complex and when z = x + iy, f (z) can be
written in the complex form:

w = f (z) = u(x, y)+ i v(x, y) (1.2.6)

The function f (z) is said to have the real part u, u = Re f , and the imaginary
part v, v = Im f . For example,

w = z2 = (x + iy)2 = x2 − y2 + 2i xy

which implies

u(x, y) = x2 − y2 and v = 2xy.

As is the case with real variables we have the standard operations on func-
tions. Given two functions f (z) and g(z), we define addition, f (z) + g(z),
multiplication f (z)g(z), and composition f [g(z)] of complex functions.

It is convenient to define some of the more common functions of a complex
variable – which, as with polynomials and rational functions, will be familiar
to the reader.

Motivated by real variables, ea+b = eaeb, we define the exponential function

ez = ex+iy = ex eiy

Noting the polar exponential definition (used already in section 1.1, Eq. (1.1.6))

eiy = cos y + i sin y

we see that

ez = ex (cos y + i sin y) (1.2.7)

1 Hereafter these abbreviations will frequently be used: i.e. = that is; e.g. = for example.
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Equation (1.2.7) and standard trigonometric identities yield the properties

ez1+z2 = ez1 ez2 and (ez)n = enz, n = 1, 2 . . . (1.2.8)

We also note

|ez| = |ex || cos y + i sin y| = ex
√

cos2 y + sin2 y = ex

and

(ez) = ez = ex−iy = ex (cos y − i sin y)

The trigonometric functions sin z and cos z are defined as

sin z = eiz − e−i z

2i
(1.2.9)

cos z = eiz + e−i z

2
(1.2.10)

and the usual definitions of the other trigonometric functions are taken:

tan z = sin z

cos z
, cot z = cos z

sin z
, sec z = 1

cos z
, csc z = 1

sin z
(1.2.11)

All of the usual trigonometric properties such as

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2,

sin2 z + cos2 z = 1, . . .
(1.2.12)

follow from the above definitions.
The hyperbolic functions are defined analogously

sinh z = ez − e−z

2
(1.2.13)

cosh z = ez + e−z

2
(1.2.14)

tanh z = sinh z

cosh z
, coth z = cosh z

sinh z
, sechz = 1

cosh z
, cschz = 1

sinh z

Similarly, the usual identities follow, such as

cosh2 z − sinh2 z = 1 (1.2.15)
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From these definitions we see that as functions of a complex variable, sinh z
and sin z (cosh z and cos z) are simply related

sinh i z = i sin z, sin i z = i sinh z

cosh i z = cos z, cos i z = cosh z
(1.2.16)

By now it is abundantly clear that the elementary functions defined in this
section are natural generalizations of the conventional ones we are familiar with
in real variables. Indeed, the analogy is so close that it provides an alternative
and systematic way of defining functions, which is entirely consistent with
the above and allows the definition of a much wider class of functions. This
involves introducing the concept of power series. In Chapter 3 we shall look
more carefully at series and sequences. However, because power series of
real variables are already familiar to the reader, it is useful to introduce the
notion here.

A power series of f (z) about the point z = z0 is defined as

f (z) = lim
n→∞

n∑
j=0

a j (z − z0)
j =

∞∑
j=0

a j (z − z0)
j (1.2.17)

where a j , z0 are constants.
Convergence is of course crucial. For simplicity we shall state (motivated

by real variables but without proof at this juncture) that Eq. (1.2.17) converges,
via the ratio test, whenever

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣|z − z0| < 1 (1.2.18)

That is, it converges inside the circle |z − z0| = R, where

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣
when this limit exists (see also Section 3.2). If R = ∞, we say the series con-
verges for all finite z; if R = 0, we say the series converges only for z = z0.
R is referred to as the radius of convergence.

The elementary functions discussed above have the following power series
representations:

ez =
∞∑
j=0

z j

j!
, sin z =

∞∑
j=0

(−1) j z2 j+1

(2 j + 1)!
, cos z =

∞∑
j=0

(−1) j z2 j

(2 j)!

sinh z =
∞∑
j=0

z2 j+1

(2 j + 1)!
, cosh z =

∞∑
j=0

z2 j

(2 j)!

(1.2.19)
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where j! = j ( j − 1)( j − 2) · · · 3 · 2 · 1 for j ≥ 1, and 0! ≡ 1. The ratio test
shows that these series converge for all finite z.

Complex functions arise frequently in applications. For example, in the
investigation of stability of physical systems we derive equations for small de-
viations from rest or equilibrium states. The solutions of the perturbed equation
often have the form ezt , where t is real (e.g. time) and z is a complex number
satisfying an algebraic equation (or a more complicated transcendental sys-
tem). We say that the system is unstable if there are any solutions with Re z > 0
because |ezt | → ∞ as t →∞. We say the system ismarginally stable if there
are no values of z with Re z > 0, but some with Re z = 0. (The corresponding
exponential solution is bounded for all t .) The system is said to be stable and
damped if all values of z satisfy Re z < 0 because |ezt | → 0 as t →∞.

A function w = f (z) can be regarded as a mapping or transformation of the
points in the z plane (z = x + iy) to the points of the w plane (w = u + iv).
In real variables in one dimension, this notion amounts to understanding the
graph y = f (x), that is, the mapping of the points x to y = f (x). In complex
variables the situation is more difficult owing to the fact that we really have four
dimensions – hence a graphical depiction such as in the real one-dimensional
case is not feasible. Rather, one considers the two complex planes, z and w,
separately and asks how the region in the z plane transforms or maps to a
corresponding region or image in the w plane. Some examples follow.

Example 1.2.1 The function w = z2 maps the upper half z-plane including the
real axis, Im z ≥ 0, to the entire w-plane (see Figure 1.2.4). This is particularly
clear when we use the polar representation z = reiθ . In the z-plane, θ lies
inside 0 ≤ θ < π , whereas in the w-plane, w = r2e2iθ = Reiφ , R = r2,
φ = 2θ and φ lies in 0 ≤ φ < 2π .

z

iy

r

x w

iv R = r

u

w = z

-plane

-plane

2

2

θ

φ = 2θ

Fig. 1.2.4. Map of z → w = z2
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z

iy

x
- iy

w

x

w = z

-plane
-plane

Fig. 1.2.5. Conjugate mapping

Example 1.2.2 The function w = z maps the upper half z-plane Im z > 0 into
the lower halfw-plane (see Figure 1.2.5). Namely, z = x+ iy and y > 0 imply
that w = z = x − iy. Thus w = u + iv ⇒ u = x , v = −y.

The study and understanding of complex mappings is very important, and we
will see that there are many applications. In subsequent sections and chapters
we shall more carefully investigate the concept of mappings; we shall not go
into any more detail or complication at this juncture.

It is often useful to add the point at infinity (usually denoted by ∞ or z∞)
to our, so far open, complex plane. As opposed to a finite point where the
neighborhood of z0, say, is defined by Eq. (1.2.1), here the neighborhood of z∞
is defined by those points satisfying |z| > 1/ε for all (sufficiently small) ε > 0.
One convenient way to define the point at infinity is to let z = 1/t and then to
say that t = 0 corresponds to the point z∞. An unbounded region R contains
the point z∞. Similarly, we say a function has values at infinity if it is defined
in a neighborhood of z∞. The complex plane with the point z∞ included is
referred to as the extended complex plane.

1.2.2 Stereographic Projection

Consider a unit sphere sitting on top of the complex plane with the south pole
of the sphere located at the origin of the z plane (see Figure 1.2.6). In this
subsection we show how the extended complex plane can be mapped onto the
surface of a sphere whose south pole corresponds to the origin and whose north
pole to the point z∞. All other points of the complex plane can be mapped in
a one-to-one fashion to points on the surface of the sphere by using the follow-
ing construction. Connect the point z in the plane with the north pole using a
straight line. This line intersects the sphere at the point P . In this way each
point z(= x+iy) on the complex plane corresponds uniquely to a point P on the
surface of the sphere. This construction is called the stereographic projection
and is diagrammatically illustrated in Figure 1.2.6. The extended complex plane
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P

N

S

C(X,Y,Z)

(0,0,0)

(0,0,2) iy

z=x+iy

z

x

-plane

Fig. 1.2.6. Stereographic projection

is sometimes referred to as the compactified (closed) complex plane. It is often
useful to view the complex plane in this way, and knowledge of the construction
of the stereographic projection is valuable in certain advanced treatments.

So, more concretely, the point P : (X, Y, Z) on the sphere is put into corre-
spondence with the point z = x + iy in the complex plane by finding on the sur-
face of the sphere, (X, Y, Z), the point of intersection of the line from the north
pole of the sphere, N : (0, 0, 2), to the point z = x + iy on the plane. The con-
struction is as follows. We consider three points in the three-dimensional setup:

N = (0, 0, 2): north pole
P = (X, Y, Z): point on the sphere
C = (x, y, 0): point in the complex plane

These points must lie on a straight line, hence the difference of the points P−N
must be a real scalar multiple of the difference C − N , namely

(X, Y, Z − 2) = s(x, y,−2) (1.2.20)

where s is a real number (s 
= 0). The equation of the sphere is given by

X2 + Y 2 + (Z − 1)2 = 1 (1.2.21)

Equation (1.2.20) implies

X = sx, Y = sy, Z = 2− 2s (1.2.22)

Inserting Eq. (1.2.22) into Eq. (1.2.21) yields, after a bit of manipulation

s2(x2 + y2 + 4)− 4s = 0 (1.2.23)
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This equation has as its only nonvanishing solution

s = 4

|z|2 + 4
(1.2.24)

where |z|2 = x2 + y2. Thus given a point z = x + iy in the plane, we have on
the sphere the unique correspondence:

X = 4x

|z|2 + 4
, Y = 4y

|z|2 + 4
, Z = 2|z|2

|z|2 + 4
(1.2.25)

We see that under this mapping, the origin in the complex plane z = 0 yields
the south pole of the sphere (0, 0, 0), and all points at |z| = ∞ yield the north
pole (0, 0, 2). (The latter fact is seen via the limit |z| → ∞ with x = |z| cos θ ,
y = |z| sin θ .) On the other hand, given a point P = (X, Y, Z) we can find its
unique image in the complex plane. Namely, from Eq. (1.2.22)

s = 2− Z

2
(1.2.26)

and

x = 2X

2− Z
, y = 2Y

2− Z
(1.2.27)

The stereographic projection maps any locus of points in the complex plane
onto a corresponding locus of points on the sphere and vice versa. For example,
the image of an arbitrary circle in the plane, is a circle on the sphere that does
not pass through the north pole. Similarly, a straight line corresponds to a circle
passing through the north pole (see Figure 1.2.7). Here a circle on the sphere
corresponds to the locus of points denoting the intersection of the sphere with
some plane: AX + BY +C Z = D, A, B,C, D constant. Hence on the sphere
the images of straight lines and of circles are not really geometrically different

N

S

C

image:
straight

line

circle

image:
circle

(0,0,2)

(0,0,0)

-plane

i y

z

Fig. 1.2.7. Circles and lines in stereographic projection
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from one another. Moreover, the images on the sphere of two nonparallel
straight lines in the plane intersect at two points on the sphere – one of which is
the point at infinity. In this framework, parallel lines are circles that touch one
another at the point at infinity (north pole). We lose Euclidean geometry on a
sphere.

Problems for Section 1.2

1. Sketch the regions associated with the following inequalities. Determine
if the region is open, closed, bounded, or compact.

(a) |z| ≤ 1 (b) |2z + 1+ i | < 4 (c) Re z ≥ 4

(d) |z| ≤ |z + 1| (e) 0 < |2z − 1| ≤ 2

2. Sketch the following regions. Determine if they are connected, and what
the closure of the region is if they are not closed.

(a) 0 < arg z ≤ π (b) 0 ≤ arg z < 2π

(c) Re z > 0 and Im z > 0

(d) Re (z− z0)> 0 and Re (z− z1)< 0 for two complex numbers z0, z1

(e) |z| < 1
2 and |2z − 4| ≤ 2

3. Use Euler’s formula for the exponential and the well-known series expan-
sions of the real functions ex , sin y, and cos y to show that

ez =
∞∑
j=0

z j

j!

Hint: Use

(x + iy)k =
k∑

j=0

k!

j!(k − j)!
x j (iy)k− j

4. Use the series representation

ez =
∞∑
j=0

z j

j!
, |z| <∞

to determine series representations for the following functions:

(a) sin z (b) cosh z
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Use these results to deduce where the power series for sin2 z and sech z
would converge. What can be said about tan z?

5. Use any method to determine series expansions for the following func-
tions:

(a)
sin z

z
(b)

cosh z − 1

z2
(c)

ez − 1− z

z

6. Let z1 = x1 and z2 = x2, with x1, x2 real, and the relationship

ei(x1+x2) = eix1 eix2

to deduce the known trigonometric formulae

sin(x1 + x2) = sin x1 cos x2 + cos x1 sin x2

cos(x1 + x2) = cos x1 cos x2 − sin x1 sin x2

and therefore show

sin 2x = 2 sin x cos x

cos 2x = cos2 x − sin2 x

7. Discuss the following transformations (mappings) from the z plane to the
w plane; here z is the entire finite complex plane.

(a) w = z3 (b) w = 1/z

8. Consider the transformation

w = z + 1/z z = x + iy w = u + iv

Show that the image of the points in the upper half z plane (y > 0) that
are exterior to the circle |z| = 1 corresponds to the entire upper half plane
v > 0.

9. Consider the following transformation

w = az + b

cz + d
, � = ad − bc 
= 0

(a) Show that the map can be inverted to find a unique (single-valued) z
as a function of w everywhere.



20 1 Complex Numbers and Elementary Functions

(b) Verify that the mapping can be considered as the result of three suc-
cessive maps:

z′ = cz + d, z′′ = 1/z′, w = −�

c
z′′ + a

c
where c 
= 0 and is of the form

w = a

d
z + b

d
when c = 0.

The following problems relate to the subsection on stereographic projec-
tion.

10. To what curves on the sphere do the lines Re z = x = 0 and Im z = y = 0
correspond?

11. Describe the curves on the sphere to which any straight lines on the z
plane correspond.

12. Show that a circle in the z plane corresponds to a circle on the sphere.
(Note the remark following the reference to Figure 1.2.7 in Section 1.2.2)

1.3 Limits, Continuity, and Complex Differentiation

The concepts of limits and continuity are similar to that of real variables. In this
sense our discussion can serve as a brief review of many previously understood
notions. Consider a function w = f (z) defined at all points in some neighbor-
hood of z = z0, except possibly for z0 itself. We say f (z) has the limit w0 if as
z approaches z0, f (z), approaches w0 (z0, w0 finite). Mathematically, we say

lim
z→z0

f (z) = w0 (1.3.1)

if for every (sufficiently small) ε > 0 there is a δ > 0 such that

| f (z)− w0| < ε whenever 0 < |z − z0| < δ (1.3.2)

where the absolute value is defined in section 1.1 (see, e.g. Eqs. 1.1.4 and
1.1.5a).

This definition is clear when z0 is an interior point of a region R in which
f (z) is defined. If z0 is a boundary point of R, then we require Eq. (1.3.2) to
hold only for those z ∈ R.

Figure 1.3.1 illustrates these ideas. Under the mapping w = f (z), all points
interior to the circle |z − z0| = δ with z0 deleted are mapped to points interior to
the circle |w − w0| = ε. The limit will exist only in the case when z approaches
z0 (that is, z → z0) in an arbitrary direction; then this implies that w→ w0.
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z

z

w = f(z)

w
w

z w-plane-plane

o o

δ

ε

Fig. 1.3.1. Mapping of a neighborhood

This limit definition is standard. Let us consider the following examples.

Example 1.3.1 Show that

lim
z→i

2

(
z2 + i z + 2

z − i

)
= 6i. (1.3.3)

We must show that given ε > 0, there is a δ > 0 such that∣∣∣∣2( z2 + i z + 2

z − i

)
− 6i

∣∣∣∣ = ∣∣∣∣2( (z − i)(z + 2i)

(z − i)

)
− 6i

∣∣∣∣ < ε (1.3.4)

whenever

0 < |z − i | < δ (1.3.5)

Since z 
= i , inequality (1.3.4) implies that 2|z − i | < ε. Thus if δ = ε/2,
Eq. (1.3.5) ensures that Eq. (1.3.4) is satisfied. Therefore Eq. (1.3.3) is demon-
strated.

This limit definition can also be applied to the point z = ∞. We say that

lim
z→∞ f (z) = w0 (1.3.6)

(w0 finite) if for every (sufficiently small) ε > 0 there is a δ > 0 such that

| f (z)− w0| < ε whenever |z| > 1

δ
(1.3.7)

We assert that the following properties are true. (The proof is an exercise of
the limit definition and follows that of real variables.) If for z ∈ R we have
two functions w = f (z) and s = g(z) such that

lim
z→z0

f (z) = w0, lim
z→z0

g(z) = s0
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then

lim
z→z0

( f (z)+ g(z)) = w0 + s0

lim
z→z0

( f (z)g(z)) = w0s0

and

lim
z→z0

f (z)

g(z)
= w0

s0
(s0 
= 0)

Similar conclusions hold for sums and products of a finite number of functions.
As mentioned in Section 1.2, the point z = z∞ = ∞ is often dealt with via the
transformation

t = 1

z

The neighborhood of z = z∞ corresponds to the neighborhood of t = 0. So
the function f (z) = 1/z2 near z = z∞ behaves like f (1/t) = t2 near zero;
that is, t2 → 0 as t → 0, or 1/z2 → 0 as z →∞.

In analogy to real analysis, a function f (z) is said to be continuous at
z = z0 if

lim
z→z0

f (z) = f (z0) (1.3.8)

(z0, f (z0) finite). Equation (1.3.8) implies that f (z) exists in a neighborhood
of z = z0 and that the limit, as z approaches z0, of f (z) is f (z0) itself. In terms
of ε, δ notation, given ε > 0, there is a δ > 0 such that | f (z) − f (z0)| < ε

whenever |z − z0| < δ. The notion of continuity at infinity can be ascertained
in a similar fashion. Namely, if limz→∞ f (z) = w∞, and f (∞) = w∞, then
the definition for continuity at infinity, limz→∞ f (z) = f (∞), is the following:
Given ε > 0 there is a δ > 0 such that | f (z)− w∞| < ε whenever |z| > 1/δ.

The theorems on limits of sums and products of functions can be used to
establish that sums and products of continuous functions are continuous. It
should also be pointed out that since | f (z) − f (z0)| = | f (z) − f (z0)|, the
continuity of f (z) at z0 implies the continuity of the complex conjugate f (z)
at z = z0. (Recall the definition of the complex conjugate, Eq. (1.1.7)). Thus
if f (z) is continuous at z = z0, then

Re f (z) = ( f (z)+ f (z))/2

Im f (z) = ( f (z)− f (z))/2i

and | f (z)|2 = ( f (z) f (z))

are all continuous at z = z0.
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We shall say a function f (z) is continuous in a region if it is continuous
at every point of the region. Usually, we simply say that f (z) is continuous
when the associated region is understood. Considering continuity in a region
R generally requires that δ = δ(ε, z0); that is, δ depends on both ε and the
point z0 ∈ R. Function f (z) is said to be uniformly continuous in a region
R if δ = δ(ε); that is, δ is independent of the point z = z0.

As in real analysis, a function that is continuous in a compact (closed and
bounded) region R is uniformly continuous and bounded; that is, there is a
C > 0 such that | f (z)| < C . (The proofs of these statements follow from the
analogous statements of real analysis.) Moreover, in a compact region, the
modulus | f (z)| actually attains both its maximum and minimum values on R;
this follows from the continuity of the real function | f (z)|.

Example 1.3.2 Show that the continuity of the real and imaginary parts of a
complex function f (z) implies that f (z) is continuous.

f (z) = u(x, y)+ iv(x, y)

We know that

lim
z→z0

f (z) = lim
x→x0
y→y0

(u(x, y)+ iv(x, y))

= u(x0, y0)+ iv(x0, y0) = f (z0)

which completes the proof. It also illustrates that we can appeal to real analysis
for many of the results in this section.

Conversely, we have

|u(x, y)− u(x0, y0)| ≤ | f (z)− f (z0)|
|v(x, y)− v(x0, y0)| ≤ | f (z)− f (z0)|

(because | f |2 = |u|2+|v|2) in which case continuity of f (z) implies continuity
of the real and imaginary parts of f (z). Namely, this follows from the fact that
given ε > 0, there is a δ > 0 such that | f (z)− f (z0)| < ε whenever |z−z0| < δ

(and note that |x − x0| < |z − z0| < δ, |y − y0| < |z − z0| < δ).

Let f (z) be defined in some region R containing the neighborhood of a
point z0. The derivative of f (z) at z = z0, denoted by f ′(z0) or d f

dz (z0), is
defined by

f ′(z0) = lim
�z→0

(
f (z0 +�z)− f (z0)

�z

)
(1.3.9)

provided this limit exists. We sometimes say that f is differentiable at z0.
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Alternatively, letting �z = z − z0, Eq. (1.3.9) has another standard form

f ′(z0) = lim
z→z0

(
f (z)− f (z0)

z − z0

)
(1.3.10)

If f ′(z0) exists for all points z0 ∈ R, then we say f (z) is differentiable in
R – or just differentiable, if R is understood. If f ′(z0) exists, then f (z) is
continuous at z = z0. This follows from

lim
z→z0

( f (z)− f (z0)) = lim
z→z0

(
f (z)− f (z0)

z − z0

)
lim
z→z0

(z − z0)

= f ′(z0) lim
z→z0

(z − z0) = 0

A continuous function is not necessarily differentiable. Indeed it turns out
that differentiable functions possess many special properties.

On the other hand, because we are now dealing with complex functions that
have a two-dimensional character, there can be new kinds of complications not
found in functions of one real variable. A prototypical example follows.

Consider the function

f (z) = z (1.3.11)

Even though this function is continuous, as discussed earlier, we now show that
it does not possess a derivative. Consider the difference quotient:

lim
�z→0

(z0 +�z)− z0

�z
= lim

�z→0

�z

�z
≡ q0 (1.3.12)

This limit does not exist because a unique value of q0 cannot be found; indeed it
depends on how �z approaches zero. Writing �z = reiθ , q0 = lim�z→0 e−2iθ .
So if�z → 0 along the positive real axis (θ = 0), then q0 = 1. If�z → 0 along
the positive imaginary axis, then q0 = −1 (because θ = π/2, e−2iθ = −1), etc.
Thus we find the surprising result that the function f (z) = z is not differentiable
anywhere (i.e., for any z = z0) even though it is continuous everywhere! In
fact, this situation will be seen to be the case for general complex functions
unless the real and imaginary parts of our complex function satisfy certain
compatibility conditions (see Section 2.1). Differentiable complex functions,
often called analytic functions, are special and important.

Despite the fact that the formula for a derivative is identical in form to that of
the derivative of a real-valued function, f (z), a significant point to note is that
f ′(z) follows from a two-dimensional limit (z = x + iy or z = reiθ ). Thus for
f ′(z) to exist, the relevant limit must exist independent of the direction from
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which z approaches the limit point z0. For a function of one real variable we
only have two directions: x < x0 and x > x0.

If f and g have derivatives, then it follows by similar proofs to those of real
variables that

( f + g)′ = f ′ + g′

( f g)′ = f ′g + f g′(
f

g

)′
= ( f ′g − f g′)/g2 (g 
= 0)

and if f ′(g(z)) and g′(z) exist, then

[ f (g(z))]′ = f ′(g(z))g′(z)

In order to differentiate polynomials, we need the derivative of the elementary
function f (z) = zn , n is a positive integer

d

dz
(zn) = nzn−1 (1.3.13)

This follows from

(z +�z)n − zn

�z
= nzn−1 + a1zn−2�z + a2zn−3�z2 + . . .+�zn → nzn−1

as �z → 0, where a1, a2, . . ., are the appropriate binomial coefficients of
(a + b)n .

Thus we have as corollaries to this result

d

dz
(c) = 0, c = constant (1.3.15a)

d

dz
(a0 + a1z + a2z2 + · · · + am zm) = a1 + 2a2z + 3a3z2 + · · · + mam zm−1

(1.3.15b)

Moreover, with regard to the (purely formal at this point) powerseries expan-
sions discussed earlier, we will find that

d

dz

( ∞∑
n=0

anzn

)
=

∞∑
n=0

nanzn−1 (1.3.15)

inside the radius of convergence of the series.
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We also note that the derivatives of the usual elementary functions behave in
the same way as in real variables. Namely

d

dz
ez = ez,

d

dz
sin z = cos z,

d

dz
cos z = − sin z

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z

(1.3.16)

etc. The proofs can be obtained from the fundamental definitions. For example,

d

dz
ez = lim

�z→0

ez+�z − ez

�z

= ez lim
�z→0

(
e�z − 1

�z

)
= ez (1.3.17)

where we note that

lim
�z→0

e�z − 1

�z
= lim

�x→0
�y→0

(
(e�x cos�y − 1)+ ie�x sin�y

(�x + i�y)

)
= 1 (1.3.18)

One can put Eq. (1.3.18) in real/imaginary form and use polar coordinates
for �x , �y. This calculation is also discussed in the problems given for this
section. Later we shall establish the validity of the power series formulae
for ez (see Eq. (1.2.19)), from which Eq. (1.3.18) follows immediately (since
ez = 1+ z + z2/2+ · · ·) without need for the double limit. The other formulae
in Eq. (1.3.16) can also be deduced using the relationships (1.2.9), (1.2.10),
(1.2.13), (1.2.14).

1.3.1 Elementary Applications to Ordinary Differential Equations

An important topic in the application of complex variables is the study of
differential equations. Later in this text we discuss differential equations in the
complex plane in some detail, but in fact we are already in a position to see
why the ideas already presented can be useful. Many readers will have had a
course in differential equations, but it is not really necessary for what we shall
discuss. Linear homogeneous differential equations with constant coefficients
take the following form:

Lnw = dnw

dtn
+ an−1

dn−1w

dtn−1
+ · · · a1

dw

dt
+ a0w = 0 (1.3.19)

where {a j }n−1
j=0 are all constant, n is called the order of the equation, and (for

our present purposes) t is real. We could (and do, later in section 3.7) allow t
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to be complex, in which case the study of such differential equations becomes
intimately connected with many of the topics studied later in this text, but for
now we keep t real. Solutions to Eq. (1.3.19) can be sought in the form

w(t) = cezt (1.3.20)

where c is a nonzero constant. Substitution of Eq. (1.3.20) into Eq. (1.3.19), and
factoring cezt from each term (note ezt does not vanish), yields the following
algebraic equation:

zn + an−1zn−1 + · · · + a1z + a0 = 0 (1.3.21)

There are various subcases to consider, but we shall only discuss the proto-
typical one where there are n distinct solutions of Eq. (1.3.22), which we call
{z1, z2, . . . , zn}. Each of these values, say z j , yields a solution to Eq. (1.3.19)
w j = c j ez j t , where c j is an arbitrary constant. Because Eq. (1.3.19) is a linear
equation, we have the more general solution

w(t) =
n∑

j=1

w j =
n∑

j=1

c j e
z j t (1.3.22)

In differential equation texts it is proven that Eq. (1.3.22) is, in fact, the most
general solution. In applications, the differential equations (Eq. (1.3.19)) fre-
quently have real coefficients {a j }n−1

j=0. The study of algebraic equations of the
form (Eq. (1.3.21)), discussed later in this text, shows that there are at most n
solutions — precisely n solutions if we count multiplicity of solutions. In fact,
when the coefficients are real, then the solutions are either real or come in com-
plex conjugate pairs. Corresponding to complex conjugate pairs, a real solution
w(t) is found by taking complex conjugate constants c j and c j corresponding
to each pair of complex conjugate roots z j and z j . For example, consider one
such real solution, call it wp, corresponding to the pair z, z:

wp(t) = cezt + cezt (1.3.23)

We can rewrite this in terms of trigonometric functions and real exponentials.
Let z = x + iy:

wp(t) = ce(x+iy)t + ce(x−iy)t

= ext [c(cos yt + i sin yt)+ c(cos yt − i sin yt)]

= (c + c)ext cos yt + i(c − c)ext sin yt (1.3.24)
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Because c + c = A, i(c − c) = B are real, we find that this pair of solutions
may be put in the real form

wc(t) = Aext cos yt + Bext sin yt (1.3.25)

Two examples of these ideas are simple harmonic motion (SHM) and vibrations
of beams:

d2w

dt2
+ ω0

2w = 0 (SHM) (1.3.26a)

d4w

dt4
+ k4w = 0 (1.3.26b)

where ω0
2 and k4 are real nonzero constants, depending on the parameters in

the physical model. Looking for solutions of the form of Eq. (1.3.20) leads to
the equations

z2 + ω0
2 = 0 (1.3.27a)

z4 + k4 = 0 (1.3.27b)

which have solutions (see also Section 1.1)

z1 = iω0, z2 = −iω0 (1.3.28a)

z1 = keiπ/4 = k√
2
(1+ i)

z2 = ke3iπ/4 = k√
2
(−1+ i)

z3 = ke5iπ/4 = k√
2
(−1− i)

z4 = ke7iπ/4 = k√
2
(1− i)

(1.3.28b)

It follows from the above discussion that the corresponding real solutions
w(t) have the form

w = A cosω0t + B sinω0t (1.3.29a)

w = e
kt√

2

[
A1 cos

kt√
2
+ B1 sin

kt√
2

]
+ e−

kt√
2

[
A2 cos

kt√
2
+ B2 sin

kt√
2

]
(1.3.29b)

where A, B, A1, A2, B1, and B2 are arbitrary constants.
In this chapter we have introduced and summarized the basic properties of

complex numbers and elementary functions. We have seen that the theory of
functions of a single real variable have so far motivated many of the notions of
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complex variables; though the two-dimensional character of complex numbers
has already led to some significant differences. In subsequent chapters a number
of entirely new and surprising results will be obtained, and the departure from
real variables will become more apparent.

Problems for Section 1.3

1. Evaluate the following limits:

(a) limz→i (z + 1/z) (b) limz→z0 1/zm, m integer

(c) limz→i sinh z (d) limz→0
sin z

z
(e) limz→∞

sin z

z

(f) limz→∞
z2

(3z + 1)2
(g) limz→∞

z

z2 + 1

2. Establish a special case of l’Hopitals rule. Suppose that f (z) and g(z)
have formal power series about z = a, and

f (a) = f ′(a) = f ′′(a) = · · · = f (k)(a) = 0

g(a) = g′(a) = g′′(a) = · · · = g(k)(a) = 0

If f (k+1)(a) and g(k+1)(a) are not simultaneously zero, show that

lim
z→a

f (z)

g(z)
= f (k+1)(a)

g(k+1)(a)

What happens if g(k+1)(a) = 0?

3. If |g(z)| ≤ M , M > 0 for all z in a neighborhood of z = z0, show that if
limz→z0 f (z) = 0, then

lim
z→z0

f (z)g(z) = 0

4. Where are the following functions differentiable?

(a) sin z (b) tan z (c)
z − 1

z2 + 1
(d) e1/z (e) 2z

5. Show that the functions Re z and Imz are nowhere differentiable.

6. Let f (z) be a continuous function for all z. Show that if f (z0) 
= 0, then
there must be a neighborhood of z0 in which f (z) 
= 0.
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7. Let f (z) be a continuous function where limz→0 f (z) = 0. Show that
limz→0(e f (z) − 1) = 0. What can be said about limz→0((e

f (z) − 1)/z)?

8. Let two polynomials f (z) = a0 + a1z + · · · + anzn and g(z) = b0 + b1z
+ · · · + bm zm be equal at all points z in a region R. Use the concept of a
limit to show that m = n and that all the coefficients {a j }nj=0 and {b j }nj=0

must be equal. Hint: Consider limz→0( f (z) − g(z)), limz→0( f (z) −
g(z))/(z), etc.

9. (a) Use the real Taylor series formulae

ex = 1+ x + O(x2), cos x = 1+ O(x2),

sin x = x(1+ O(x2))

where O(x2) means we are omitting terms proportional to power x2

(i.e, lim
x→0

(O(x2))/(x2) = C , where C is a constant), to establish the

following:

lim
z→0

(ez − (1+ z)) = lim
r→0

(er cos θeir sin θ − (1+ r(cos θ + i sin θ))) = 0

(b) Use the above Taylor expansions to show that (c.f. Eq. (1.3.18))

lim
�z→0

(
e�z − 1

�z

)
= lim

r→0

{
(er cos θ cos(r sin θ)− 1)+ ier cos θ sin(r sin θ)

r(cos θ + i sin θ)

}
= 1

10. Let z = x be real. Use the relationship (d/dx)eix = ieix to find the
standard derivative formulae for trigonometric functions:

d

dx
sin x = cos x

d

dx
cos x = − sin x

11. Suppose we are given the following differentialequations:

(a)
d3w

dt3
− k3w = 0

(b)
d6w

dt6
− k6w = 0
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where t is real and k is a real constant. Find the general real solution of
the above equations. Write the solution in terms of real functions.

12. Consider the following differential equation:

x2 d2w

dx2
+ x

dw

dx
+ w = 0

where x is real.

(a) Show that the transformation x = et implies that

x
d

dx
= d

dt
,

x2 d2

dx2
= d2

dt2
− d

dt

(b) Use these results to find that w also satisfies the differential equation

d2w

dt2
+ w = 0

(c) Use these results to establish that w has the real solution

w = Cei(log x) + C̄e−i(log x)

or

w = A cos(log x)+ B sin(log x)

13. Use the ideas of Problem 12 to find the real solution of the following
equations (x is real and k is a real constant):

(a) x2 d2w

dx2
+ k2w = 0, 4k2 > 1

(b) x3 d3w

dx3
+ 3x2 d2w

dx2
+ x

dw

dx
+ k3w = 0



2
Analytic Functions and Integration

In this chapter we study the notion of analytic functions and their properties. It
will be shown that a complex function is differentiable if and only if there is an
important compatibility relationship between its real and imaginary parts. The
concepts of multivalued functions and complex integration are considered in
some detail. The technique of integration in the complex plane is discussed and
two very important results of complex analysis are derived: Cauchy’s theorem
and a corollary – Cauchy’s integral formula.

2.1 Analytic Functions

2.1.1 The Cauchy–Riemann Equations

In Section 1.3 we defined the notion of complex differentiation. For conve-
nience, we remind the reader of this definition here. The derivative of f (z),
denoted by f ′(z), is defined by the following limit:

f ′(z) = lim
�z→0

f (z +�z)− f (z)

�z
(2.1.1)

We write the real and imaginary parts of f (z), f (z) = u(x, y) + iv(x, y),
and compute Eq. (2.1.1) for (a)�z=�x real and (b)�z= i�y pure imaginary
(i.e., we take the limit along the real and then along the imaginary axis). Then,
for case (a)

f ′(z) = lim
�x→0

(
u(x +�x, y)− u(x, y)

�x
+ i

v(x +�x, y)− v(x, y)

�x

)
= ux (x, y)+ ivx (x, y) (2.1.2)

We use the subscript notation for partial derivatives, that is, ux = ∂u/∂x and

32
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vx = ∂v/∂x . For case (b)

f ′(z) = lim
�y→0

u(x, y +�y)− u(x, y)

i�y
+ i (v(x, y +�y)− v(x, y))

i�y

= −iuy(x, y)+ vy(x, y) (2.1.3)

Setting Eqs. (2.1.2) and (2.1.3) equal yields

ux = vy, vx = −uy (2.1.4)

Equations (2.1.4) are called the Cauchy–Riemann conditions.
Equations (2.1.4) are a system of partial differential equations that are neces-

sarily satisfied if f (z) has a derivative at the point z. This is in stark contrast to
real analysis where differentiability of a function f (x) is only a mild smoothness
condition on the function. We also note that if u, v have second derivatives, then
we will show that they satisfy the equations uxx + uyy = 0 and vxx + vyy = 0
(c.f. Eqs. (2.1.11a,b)).

Equation (2.1.4) is a necessary condition that must hold if f (z) is dif-
ferentiable. On the other hand, it turns out that if the partial derivatives of
u(x, y), v(x, y) exist, satisfy Eq. (2.1.4), and are continuous, then f (z) =
u(x, y)+ iv(x, y) must exist and be differentiable at the point z = x + iy; that
is, Eq. (2.1.4) is a sufficient condition as well. Namely, if Eq. (2.1.4) holds,
then f ′(z) exists and is given by Eqs. (2.1.1–2.1.2).

We discuss the latter point next. We use a well-known result of real analysis
of two variables, namely, if ux , uy and vx , vy are continuous at the point (x, y),
then

�u = ux�x + uy�y + ε1|�z|
�v = vx�x + vy�y + ε2|�z| (2.1.5)

where |�z| =
√
�x2 +�y2, lim�z→0 ε1 = lim�z→0 ε2 = 0, and

�u = u(x +�x, y +�y)− u(x, y)

�v = v(x +�x, y +�y)− v(x, y)

Calling � f = �u + i�v, we have

� f

�z
= �u

�z
+ i

�v

�z

=
(

ux
�x

�z
+ uy

�y

�z

)
+ i

(
vx
�x

�z
+ vy

�y

�z

)
+ (ε1 + iε2)

|�z|
�z

, |�z| 
= 0 (2.1.6)
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Then, letting �z
|�z| = eiϕ and using Eq. (2.1.4), Eq. (2.1.6) yields

� f

�z
= (ux + ivx )

�x + i�y

�z
+ (ε1 + iε2)e

−iϕ

= f ′(z)+ (ε1 + iε2)e
−iϕ (2.1.7)

after noting Eq. (2.1.2) and manipulating. Taking the limit of �z approaching
zero yields the desired result.

We state both of the above results as a theorem.

Theorem 2.1.1 The function f (z) = u(x, y) + iv(x, y) is differentiable at a
point z = x + iy of a region in the complex plane if and only if the partial
derivatives ux , uy , vx , vy are continuous and satisfy the Cauchy–Riemann
conditions (Eq. (2.1.4)) at z = x + iy.

A consequence of the Cauchy–Riemann conditions is that the “level” curves
of u, that is, the curves u(x, y) = c1 for constant c1, are orthogonal to the level
curves of v, where v(x, y) = c2 for constant c2, at all points where f ′(z) exists
and is nonzero. From Eqs. (2.1.2) and (2.1.4) we have

| f ′(z)|2 =
(
∂u

∂x

)2

+
(
∂v

∂x

)2

=
(
∂u

∂x

)2

+
(
∂u

∂y

)2

=
(
∂v

∂x

)2

+
(
∂v

∂y

)2

hence the two-dimensional vector gradients∇u = ( ∂u
∂x ,

∂u
∂y

)
and∇v = ( ∂v

∂x ,
∂v
∂y

)
are nonzero. We know from vector calculus that the gradient is orthogonal to
its level curve (i.e., du = ∇u · ds = 0, where ds points in the direction of
the tangent to the level curve), and from the Cauchy–Riemann condition (Eq.
(2.1.4)) we see that the gradients ∇u, ∇v are orthogonal because their vector
dot product vanishes:

∇u · ∇v = ∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y

= −∂u

∂x

∂u

∂y
+ ∂u

∂y

∂u

∂x
= 0

Consequently, the two-dimensional level curves u(x, y) = c1 and v(x, y) = c2

are orthogonal.
The Cauchy–Riemann conditions can be written in other coordinate sys-

tems, and it is frequently valuable to do so. Here we quote the result in polar
coordinates:

∂u

∂r
= 1

r

∂v

∂θ

∂v

∂r
= −1

r

∂u

∂θ

(2.1.8)
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Equation (2.1.8) can be derived in the same manner as Eq. (2.1.4). An
alternative derivation uses the differential relationships

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ

∂

∂y
= sin θ

∂

∂r
+ cos θ

r

∂

∂θ

(2.1.9)

which are derived from x = r cos θ and y = r sin θ , r2 = x2+ y2, tan θ = y/x .
Employing Eq. (2.1.9) in Eq. (2.1.4) yields

cos θ
∂u

∂r
− sin θ

r

∂u

∂θ
= sin θ

∂v

∂r
+ cos θ

r

∂v

∂θ

sin θ
∂u

∂r
+ cos θ

r

∂u

∂θ
= − cos θ

∂v

∂r
+ sin θ

r

∂v

∂θ

Multiplying the first of these equations by cos θ , the second by sin θ , and
adding yields the first of Eqs. (2.1.8). Similarly, multiplying the first by sin θ ,
the second by −cos θ , and adding yields the second of Eqs. (2.1.8).

Similarly, using the first relation of Eq. (2.1.9) in f ′(z) = ∂u/∂x + i∂v/∂x
yields

f ′(z) = cos θ
∂u

∂r
− sin θ

r

∂u

∂θ
+ i cos θ

∂v

∂r
− i

sin θ

r

∂v

∂θ

= (cos θ − i sin θ)

(
∂u

∂r
+ i

∂v

∂r

)
hence,

f ′(z) = e−iθ

(
∂u

∂r
+ i

∂v

∂r

)
(2.1.10)

Example 2.1.1 Let f (z) = ez = ex+iy = ex eiy = ex (cos y + i sin y). Verify
Eq. (2.1.4) for all x and y, and then show that f ′(z) = ez .

u = ex cos y, v = ex sin y

∂u

∂x
= ex cos y = ∂v

∂y

∂u

∂y
= −ex sin y = −∂v

∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= ex (cos y + i sin y)

= ex eiy = ex+iy = ez
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We have therefore established the fact that f (z) = ez is differentiable for
all finite values of z. Consequently, standard functions like sin z and cos z,
which are linear combinations of the exponential function eiz (see Eqs. (1.2.9–
1.2.10)) are also seen to be differentiable functions of z for all finite values of z.
It should be noted that these functions do not behave like their real counterparts.
For example, the function sin x oscillates and is bounded between ±1 for all
real x . However, we have

sin z = sin(x + iy) = sin x cos iy + cos x sin iy

= sin x cosh y + i cos x sinh y

Because |sinh y| and |cosh y| tend to infinity as y tends to infinity, we see that
the real and imaginary parts of sin z grow without bound.

Example 2.1.2 Let f (z) = z = x − iy, so that u(x, y) = x and v(x, y) = −y.
Since ∂u/∂x = 1 while ∂v/∂y = −1, condition (2.1.4) implies f ′(z) does not
exist anywhere (see also section 1.3).

Example 2.1.3 Let f (z) = zn = rneinθ = rn(cos nθ + i sin nθ), for integer
n, so that u(r, θ) = rn cos nθ and v(r, θ) = rn sin nθ . Verify Eq. (2.1.8) and
show that f ′(z) = nzn−1 (z 
= 0 if n < 0). By differentiation, we have

∂u

∂r
= nrn−1 cos nθ = 1

r

∂v

∂θ

∂v

∂r
= nrn−1 sin nθ = −1

r

∂u

∂θ

From Eq. (2.1.10),

f ′(z) = e−iθ (nrn−1)(cos nθ + i sin nθ)

= nrn−1e−iθeinθ = nrn−1ei(n−1)θ

= nzn−1

Example 2.1.4 If a function is differentiable and has constant modulus, show
that the function itself is constant. We may write f in terms of real, imaginary,
or complex forms where

f = u + iv = Rei�

R2 = u2 + v2, tan� = v

u
R = constant
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From Eq. (2.1.8) we have

u
∂u

∂r
+ v

∂v

∂r
= 1

r

(
u
∂v

∂θ
− v

∂u

∂θ

)
= u2

r

∂

∂θ

(
v

u

)
so

∂

∂r

(
u2 + v2

) = 2u2

r

∂

∂θ

(
v

u

)
Thus ∂(v/u)/∂θ = 0 because R2 = u2 + v2 = constant.

Similarly, using Eq. (2.1.8),

u2 ∂

∂r

(
v

u

)
=
(

u
∂v

∂r
− v

∂u

∂r

)

= −1

r

(
u
∂u

∂θ
+ v

∂v

∂θ

)
= − 1

2r

∂

∂θ

(
u2 + v2

) = 0

Thus v/u = constant, which implies � is constant, and hence so is f .

We have observed that the system of partial differential equations (PDEs),
Eq. (2.1.4), that is, the Cauchy–Riemann equations, must hold at every point
where f ′(z) exists. However, PDEs are really of interest when they hold not
only at one point, but rather in a region containing the point. Hence we give
the following definition.

Definition 2.1.1 A function f (z) is said to be analytic at a point z0 if f (z) is
differentiable in a neighborhood of z0. The function f (z) is said to be analytic
in a region if it is analytic at every point in the region.

Of the previous examples, f (z) = ez is analytic in the entire finite z plane,
whereas f (z) = z is analytic nowhere. The function f (z) = 1/z2 (Example
2.1.3, n = −2) is analytic for all finite z 
= 0 (the “punctured” z plane).

Example 2.1.5 Determine where f (z) is analytic when f (z) = (x + αy)2 +
2i(x − αy) for α real and constant.

u(x, y) = (x + αy)2, v(x, y) = 2(x − αy)

∂u

∂x
= 2(x + αy)

∂v

∂y
= −2α

∂u

∂y
= 2α(x + αy)

∂v

∂x
= 2
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The Cauchy–Riemann equations are satisfied only if α2 = 1 and only on the
lines x ± y = ∓1. Because the derivative f ′(z) exists only on these lines,
f (z) is not analytic anywhere since it is not analytic in the neighborhood of
these lines.

If we say that f (z) is analytic in a region, such as |z| ≤ R, we mean that
f (z) is analytic in a domain containing the circle because f ′(z) must exist in
a neighborhood of every point on |z| = R. We also note that some authors use
the term holomorphic instead of analytic.

An entire function is a function that is analytic at each point in the “entire”
finite plane. As mentioned above, f (z) = ez is entire, as is sin z and cos z. So
is f (z) = zn (integer n ≥ 0), and therefore, any polynomial.

A singular point z0 is a point where f fails to be analytic. Thus f (z) = 1/z2

has z = 0 as a singular point. On the other hand, f (z) = z is analytic nowhere
and has singular points everywhere in the complex plane. If any regionR exists
such that f (z) is analytic in R, we frequently speak of the function as being an
analytic function. A further and more detailed discussion of singular points
appears in Section 3.5.

As we have seen from our examples and from Section 1.3, the standard dif-
ferentiation formulae of real variables hold for functions of a complex variable.
Namely, if two functions are analytic in a domain D, their sum, product, and
quotient are analytic in D provided the denominator of the quotient does not
vanish at any point in D. Similarly, the composition of two analytic functions
is also analytic.

We shall see, in a later section (2.6.1), that an analytic function has derivatives
of all orders in the region of analyticity and that the real and imaginary parts
have continuous derivatives of all orders as well. From Eq. (2.1.4), because
∂2v/∂x∂y = ∂2v/∂y∂x ,we have

∂2u

∂x2
= ∂2v

∂x∂y

∂2v

∂y∂x
= −∂2u

∂y2

hence

∇2u ≡ ∂2u

∂x2
+ ∂2u

∂y2
= 0 (2.1.11a)

and similarly

∇2v ≡ ∂2v

∂x2
+ ∂2v

∂y2
= 0 (2.1.11b)



2.1 Analytic Functions 39

Equations (2.1.11a,b) demonstrate that u and v satisfy certain uncoupled
PDEs. The equation ∇2w = 0 is called Laplace’s equation. It has wide
applicability and plays a central role in the study of classical partial differential
equations. The function w(x, y) satisfying Laplace’s equation in a domain D
is called an harmonic function in D. The two functions u(x, y) and v(x, y),
which are respectively the real and imaginary parts of an analytic function in
D, both satisfy Laplace’s equation in D. That is, they are harmonic functions
in D, and v is referred to as the harmonic conjugate of u (and vice versa).
The function v may be obtained from u via the Cauchy–Riemann conditions. It
is clear from the derivation of Eqs. (2.1.11a,b) that f (z) = u(x, y)+ iv(x, y)
is an analytic function if and only if u and v satisfy Eqs. (2.1.11a,b) and v is
the harmonic conjugate of u.

The following example illustrates how, given u(x, y), it is possible to obtain
the harmonic conjugate v(x, y) as well as the analytic function f (z).

Example 2.1.6 Suppose we are given u(x, y) = y2−x2 in the entire z = x + iy
plane. Find its harmonic conjugate as well as f (z).

∂u

∂x
= −2x = ∂v

∂y
⇒ v = −2xy + φ(x)

∂u

∂y
= 2y = −∂v

∂x
⇒ v = −2xy + ψ(y)

where φ(x), ψ(x) are arbitrary functions of x and y, respectively. Taking the
difference of both expressions for v implies φ(x)−ψ(y) = 0, which can only
be satisfied by φ = ψ = c = constant; thus

f (z) = y2 − x2 − 2i xy + ic

= −(x2 − y2 + 2i xy)+ ic = −z2 + ic

It follows from the remark following Theorem 2.1.1, that the two level curves
u = y2 − x2 = c1 and v = −2xy = c2 are orthogonal to each other at each
point (x, y). These are two orthogonal sets of hyperbolae.

Laplace’s equation arises frequently in the study of physical phenomena.
Applications include the study of two-dimensional ideal fluid flow, steady
state heat conduction, electrostatics, and many others. In these applications
we are usually interested in solving Laplace’s equation ∇2w = 0 in a domain
D with boundary conditions, typically of the form

αw + β
∂w

∂n
= γ on C (2.1.12)
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where ∂w/∂n denotes the outward normal derivative of w on the boundary of
D denoted by C; α, β, and γ are given functions on the boundary. We refer
to the solution of Laplace’s equation when β = 0 as the Dirichlet problem, and
when α = 0 the Neumann problem. The general case is usually called the
mixed problem.

2.1.2 Ideal Fluid Flow

Two-dimensional ideal fluid flow is one of the prototypical examples of
Laplace’s equations and complex variable techniques. The corresponding flow
configurations are usually easy to conceptualize. Ideal fluid motion refers
to fluid motion that is steady (time independent), nonviscous (zero friction;
usually called inviscid), incompressible (in this case, constant density), and
irrotational (no local rotations of fluid “particles”). The two-dimensional equa-
tions of motion reduce to a system of two PDEs (see also the discussion in
Section 5.4, Example 5.4.1):

(a) incompressibility (divergence of the velocity vanishes)

∂v1

∂x
+ ∂v2

∂y
= 0 (2.1.13a)

where v1 and v2 are the horizontal and vertical components of the two-dimen-
sional vector v, that is, v = (v1, v2); and

(b) irrotationality (curl of the velocity vanishes)

∂v2

∂x
− ∂v1

∂y
= 0 (2.1.13b)

A simplification of these equations is found via the following substitutions:

v1 = ∂φ

∂x
= ∂ψ

∂y
v2 = ∂φ

∂y
= −∂ψ

∂x
(2.1.14)

In vector form: �v = ∇φ. We call φ the velocity potential, and ψ the stream
function. Equations (2.1.13–2.1.14) show that φ andψ satisfy Laplace’s equa-
tion. Because the Cauchy–Riemann conditions are satisfied for the functions
φ and ψ , we have, quite naturally, an associated complex velocity potential
�(z):

�(z) = φ(x, y)+ iψ(x, y) (2.1.15)
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The derivative of �(z) is usually called the complex velocity

�′(z) = ∂φ

∂x
+ i

∂ψ

∂x
= ∂φ

∂x
− i

∂φ

∂y
= v1 − iv2 (2.1.16)

The complex conjugate �′(z) = ∂φ/∂x + i∂φ/∂y = v1 + iv2 is analogous to
the usual velocity vector in two dimensions.

The associated boundary conditions are as follows. The normal derivative
of φ (i.e., the normal velocity) must vanish on a rigid boundary of an ideal
fluid. Because we have shown that the level sets φ(x, y) = constant and
ψ(x, y) = const. are mutually orthogonal at any point (x, y), we conclude that
the level sets of the stream function ψ follow the direction of the flow field;
namely, they follow the direction of the gradient of φ, which are themselves
orthogonal to the level sets of φ. The level curves ψ(x, y) = const. are called
streamlines of the flow. Consequently, boundary conditions in an ideal flow
problem at a boundary can be specified by either giving vanishing conditions
on the normal derivative of φ at a boundary (no flow through the boundary)
or by specifying that ψ(x, y) is constant on a boundary, thereby making the
boundary a streamline. ∂φ/∂n = ∇φ · n̂, n̂ being the unit normal, implies that
∇φ points in the direction of the tangent to the boundary. For problems with
an infinite domain, some type of boundary condition – usually a boundedness
condition – must be given at infinity. We usually specify that the velocity is
uniform (constant) at infinity.

Briefly in this section, and in subsequent sections and Chapter 5 (see Section
5.4), we shall discuss examples of fluid flows corresponding to various complex
potentials. Upon considering boundary conditions, functions �(z) that are
analytic in suitable regions may frequently be associated with two-dimensional
fluid flows, though we also need to be concerned with locations of nonanalyticity
of �(z). Some examples will clarify the situation.

Example 2.1.7 The simplest example is that of uniform flow

�(z) = v0e−iθ0 z = v0(cos θ0 − i sin θ0)(x + iy), (2.1.17)

where v0 and θ0 are positive real constants. Using Eqs. (2.1.15, 2.1.16), the
corresponding velocity potential and velocity field is given by

φ(x, y) = v0(cos θ0x + sin θ0 y) v1 = ∂φ

∂x
= v0 cos θ0

v2 = ∂φ

∂y
= v0 sin θ0

which is identified with uniform flow making an angle θ0 with the x axis, as
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y

x

θ0

Fig. 2.1.1. Uniform flow

in Figure 2.1.1. Alternatively, the stream function ψ(x, y) = v0(cos θ0 y −
sin θ0x) = const. reveals the same flow field.

Example 2.1.8 A somewhat more complicated flow configuration, flow around
a cylinder, corresponds to the complex velocity potential

�(z) = v0

(
z + a2

z

)
(2.1.18)

where v0 and a are positive real constants and |z| > a. The corresponding
velocity potential and stream function are given by

φ = v0

(
r + a2

r

)
cos θ (2.1.19a)

ψ = v0

(
r − a2

r

)
sin θ (2.1.19b)
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and for the complex velocity we have

�′(z) = v0

(
1− a2

z2

)
= v0

(
1− a2e−2iθ

r2

)
(2.1.20)

whereby from Eq. (2.1.16) the horizontal and vertical components of the ve-
locity are given by

v1 = v0

(
1− a2 cos 2θ

r2

)
v2 = −v0

a2 sin 2θ

r2

(2.1.21)

The circle r = a is a streamline (ψ = 0) as is θ = 0 and θ = π . As
r →∞, the limiting velocity is uniform in the x direction (v1 → v0, v2 → 0).
The corresponding flow field is that of a uniform stream at large distances
modified by a circular barrier, as in Figure 2.1.2, which may be viewed as flow
around a cylinder with the same flow field at all points perpendicular to the flow
direction.

Note that the velocity vanishes at r = a, θ = 0, and θ = π . These points are
called stagnation points of the flow. On the circle r = a, which corresponds
to the streamline ψ = 0, the normal velocity is zero because the corresponding
velocity must be in the tangent direction to the circle. Another way to see this
is to compute the normal velocity from φ using the gradient in two-dimensional
polar coordinates:

v = ∇φ = ∂φ

∂r
ûr + 1

r

∂φ

∂θ
ûθ

r=a

symmetric curves

ψ = 0 ψ = 0

ψ = 0

ψ=

ϕ=constant

vo constant

Fig. 2.1.2. Flow around a circular barrier
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where ûr and ûθ are the unit normal and tangential vectors. Thus the velocity in
the radial direction is vr = ∂φ

∂r and the velocity in the circumferential direction
is vθ = 1

r
∂φ

∂θ
. So the radial velocity at any point (r , θ ) is given by

∂φ

∂r
= v0

(
1− a2

r2

)
cos θ

which vanishes when r = a. As mentioned earlier, as r →∞ the flow becomes
uniform:

φ −→ v0r cos θ = v0x

ψ −→ v0r sin θ = v0 y

So for large r and correspondingly large y, the curves y = const are streamlines
as expected.

Problems for Section 2.1

1. Which of the following satisfy the Cauchy–Riemann (C-R) equations? If
they satisfy the C-R equations, give the analytic function of z.

(a) f (x, y) = x − iy + 1

(b) f (x, y) = y3 − 3x2 y + i(x3 − 3xy2 + 2)

(c) f (x, y) = ey(cos x + i sin y)

2. In the following we are given the real part of an analytic function of z. Find
the imaginary part and the function of z.

(a) 3x2 y − y3 (b) 2x(c − y), c = constant

(c)
y

x2 + y2
(d) cos x cosh y

3. Determine whether the following functions are analytic. Discuss whether
they have any singular points or if they are entire.

(a) tan z (b) esin z (c) e1/(z−1) (d) ez

(e)
z

z4 + 1
(f) cos x cosh y − i sin x sinh y

4. Show that the real and imaginary parts of a twice-differentiable function
f (z) satisfy Laplace’s equation. Show that f (z) is nowhere analytic unless
it is constant.



2.1 Analytic Functions 45

5. Let f (z) be analytic in some domain. Show that f (z) is necessarily a
constant if either the function f (z) is analytic or f (z) assumes only pure
imaginary values in the domain.

6. Consider the following complex potential

�(z) = − k

2π

1

z
, k real,

referred to as a “doublet.” Calculate the corresponding velocity potential,
stream function, and velocity field. Sketch the stream function. The value
of k is usually called the strength of the doublet. See also Problem 4
of Section 2.3, in which we obtain this complex potential via a limiting
procedure of two elementary flows, referred to as a “source” and a “sink.”

7. Consider the complex analytic function, �(z) = φ(x, y)+ iψ(x, y), in a
domain D. Let us transform from z to w using w = f (z), w = u + iv,
where f (z) is analytic in D, with the corresponding domain in thew plane,
D′. Establish the following:

∂φ

∂x
= ∂u

∂x

∂φ

∂u
+ ∂v

∂x

∂φ

∂v

∂2φ

∂x2
= ∂2u

∂x2

∂φ

∂u
− ∂2u

∂x∂y

∂φ

∂v
+
(
∂u

∂x

)2
∂2φ

∂u2
− 2

∂u

∂x

∂u

∂y

∂2φ

∂u∂v

+
(
∂u

∂y

)2
∂2φ

∂v2

Also find the corresponding formulae for ∂φ/∂y and ∂2φ/∂y2. Recall that
f ′(z) = ∂u

∂x − i ∂u
∂y , and u(x, y) satisfies Laplace’s equation in the domain

D. Show that

∇2
x,yφ =

∂2φ

∂x2
+ ∂2φ

∂y2
= (u2

x + u2
y

)(∂2φ

∂u2
+ ∂2φ

∂v2

)
= | f ′(z)|2∇2

u,vφ

Consequently, we find that if φ satisfies Laplace’s equation ∇2
x,yφ = 0 in

the domain D, then so long as f ′(z) 
= 0 in D it also satisfies Laplace’s
equation ∇2

u,vφ = 0 in domain D′.
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8. Given the complex analytic function �(z) = z2, show that the real part
of �, φ(x, y) = Re�(z), satisfies Laplace’s equation, ∇2

x,yφ = 0. Let
z = (1− w)/(1+ w), where w = u + iv. Show that φ(u, v) = Re�(w)

satisfies Laplace’s equation ∇2
u,vφ = 0.

2.2 Multivalued Functions

A single-valued function w = f (z) yields one value w for a given complex
number z. A multivalued function admits more than one value w for a given z.
Such a function is more complicated and frequently requires a great deal of care.
Multivalued functions are naturally introduced as the inverse of single-valued
functions.

The simplest such function is the square root function. If we consider z = w2,
the inverse is written as

w = z
1
2 (2.2.1)

From real variables we already know that x1/2 has two values, often written as
±√x where

√
x ≥ 0. For the complex function (Eq. (2.2.1)) and from w2 = z

we can ascertain the multivaluedness by letting z = reiθ , and θ = θp + 2πn,
where, say, 0 ≤ θp < 2π

w = r1/2eiθp/2enπ i (2.2.2)

where r1/2 ≡ √
r ≥ 0 and n is an integer. (See also the discussion in Sec-

tion 1.1.) For a given value z, the function w(z) takes two possible values
corresponding to n even and n odd, namely

√
reiθp/2 and

√
reiθp/2eiπ = −√reiθp/2

An important consequence of the multivaluedness of w is that as z traverses
a small circuit around z = 0, w does not return to its original value. Indeed,
suppose we start at z = ε for real ε > 0. Let us see what happens to w as
we return to this point after going around a circle with radius ε. Let n = 0.
When we start, θp = 0 and w = √ε; when we return to z = ε, θp = 2π and
w = √εe

2iπ
2 = −√ε. We note that the value −√ε can also be obtained from

θp = 0 provided we take n = 1. In other words, we started with a value w

corresponding to n = 0 and ended up with a value w corresponding to n = 1!
(Any even/odd values of n suffice for this argument.) The point z = 0 is called
a branch point. A point is a branch point if the multivalued function w(z) is
discontinuous upon traversing a small circuit around this point. It should be
noted that the point z = ∞ is also a branch point. This is seen by using the
transformation z = 1

t , which maps z = ∞ to t = 0. Using arguments such
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C

x
L Rθ θ

Fig. 2.2.1. Closed circuit away from branch cut

z = re

z = re

x

0i

2π i

Fig. 2.2.2. Cut plane, z1/2

as that above, it follows that t = 0 is a branch point of the function t−1/2, and
hence z = ∞ is a branch point of the function z1/2. The points z = 0 and
z = ∞ are the only branch points of the function z1/2. Indeed, if we take a
closed circuit C (see Figure 2.2.1) that does not enclose z = 0 or z = ∞, then
z1/2 returns to its original value as z traverses C . Along C the phase θ will vary
continuously between θ = θR and θ = θL . So if we begin at zR = rReiθR and
follow the curve C , the value z will return to exactly its previous value with no
phase change. Hence z1/2 will not have a jump as the curve C is traversed.

The analytic study of multivalued functions usually is best effected by ex-
pressing the multivalued function in terms of a single-valued function. One
method of doing this is to consider the multivalued function in a restricted
region of the plane and choose a value at every point such that the resulting
function is single-valued and continuous. A continuous function obtained from
a multivalued function in this way is called a branch of the multivalued func-
tion. For the functionw = z1/2 we can carry out this procedure by taking n = 0
and restricting the region of z to be the open or cut plane in Figure 2.2.2. For
this purpose the real positive axis in the z plane is cut out. The values of z = 0
and z = ∞ are also deleted. The function w = z1/2 is now continuous in the
cut plane that is an open region. The semiaxis Re z > 0 is referred to as a
branch cut.

It should be noted that the location of the branch cut is arbitrary save that
it ends at branch points. If we restrict θp to −π ≤ θp < π , n = 0 in the
polar representation of z = reiθ , θ = θp + 2nπ , then the branch cut would
naturally be on the negative real axis. More complicated curves (e.g. spirals)
could equally well be chosen as branch cuts but rarely do we do so because
a cut is chosen for convenience. The simplest choice (sometimes motivated
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by physical application) is generally satisfactory. We reiterate that the main
purpose of a branch cut is to artificially create a region in which the function is
single-valued and continuous.

On the other hand, if we took a closed circuit that didn’t enclose the branch
point z = 0, then the function z1/2 would return to its same value. We depict, in
Figure 2.2.1, a typical closed circuit C not enclosing the origin, with the choice
of branch cut (z = reiθ , 0 ≤ θ < 2π ) on the positive real axis.

Note that if we had chosenw = (z−z0)
1/2 as our prototype example, a (finite)

branch point would have been at z = z0. Similarly, if we had investigated
w = (az + b)1/2, then a (finite) branch point would have been at −b/a. (In
either case, z = ∞ would be another branch point.) We could deduce these
facts by translating to a new origin in our coordinate system and investigating
the change upon a circuit around the branch point, namely, letting z = z0+reiθ ,
0 ≤ θ < 2π . We shall see that multivalued functions can be considerably more
exotic than the ones described above.

A somewhat more complicated situation is illustrated by the inverse of the
exponential function, that is, the logarithm (see Figure 2.2.3). Consider

z = ew (2.2.3)

Let w = u + iv. We have, using the properties of the exponential function

z = eu+iv = eueiv = eu(cos v + i sin v) (2.2.4a)

in polar coordinates z = reiθp for 0 ≤ θp < 2π , so

r = eu

v = θp + 2πn, n integer (2.2.4b)

From the properties of real variables

u = log r

Thus, in analogy with real variables, we write w = log z, which is

w = log z = log r + iθp + 2nπ i (2.2.4c)

where n = 0,±1,±2, . . . and where θp takes on values in a particular range of
2π . Here we take

0 ≤ θp < 2π

When n = 0, Eq. (2.2.4) is frequently referred to as the principal branch of the
logarithm; the corresponding value of the function is referred to as theprincipal
value. From (2.2.4) we see that, as opposed to the square root example, the
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function is infinitely valued; that is, n takes on an infinite number of integer
values. For example, if z = i , then |z| = r = 1, θp = π/2; hence

log i = log 1+ i

(
π

2
+ 2nπ

)
n = 0,±1,±2, . . . (2.2.5)

Similarly, if z = x , a real positive quantity, |z| = r = |x |, then

log z = log |x | + 2nπ i n = 0,±1,±2, . . . (2.2.6)

The complex logarithm function differs from the real logarithm by additive
multiples of 2π i . If z is real and positive, we normally take n = 0 so that the
principal branch of the complex logarithm function agrees with the usual one
for real variables.

Suppose we consider a given point z = x0, x0 real and positive, and fix a
branch of log z, n = 0. So log z = log |x0|. Let us now allow z to vary on a
circle about z = 0: z = |x0|eiθ . As θ varies from θ = 0 to θ = 2π the value of
log z varies from log |x0| to log |x0| + 2π i . Thus we see that z = 0 is a branch
point: A small circuit (x0 can be as small as we wish) about the origin results
in a change in log z. Indeed, we see that after one circuit we come to the n = 1
branch of log z. The next circuit would put us on the n = 2 branch of log z and
so on. The function log z is thus seen to be infinitely branched, and the line
Re z > 0 is a branch cut (see Figure 2.2.3).

We reiterate that the branch cut Re z > 0 is arbitrarily chosen, although in
a physical problem a particular choice might be indicated. Had we defined
log z as

log z = log |x0| + i(θp + 2nπ), −π ≤ θp < π (2.2.7)

this would be naturally related to values of log z that have a jump on the negative
real axis. So n = 0, θp = −π corresponds to log z = log |x0| − iπ . A full

=

=

x

p

p

n=0

n=1

2

n=2...

0θ

θ π

Fig. 2.2.3. Logarithm function and branch cut
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Fig. 2.2.4. Logarithm function and alternative branch cut
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Fig. 2.2.5. Branch cuts, stereographic projection

circuit in the counterclockwise direction puts us on the first branch log z =
log |x0| + iπ (see Figure 2.2.4).

It should be noted that the point z = ∞ is also a branch point for log z. As
we have seen, the point at infinity is easily understood via the transformation
z = 1/t , so that t near zero corresponds to z near ∞. The above arguments,
which are used to establish whether a point is in fact a branch point, apply
at t = 0. The use of this transformation and the properties of log |z| yields
log z = log 1/t = − log t . We establish t = 0 as a branch point by letting
t = reiθ , varying θ by 2π , and noting that this function does not return to its
original values.

It is convenient to visualize the branch cut as joining the two branch points
z = 0 and z = ∞. For those who studied the stereographic projection (Section
1.2.2), this branch cut is a (great circle) curve joining the south (z = 0) and the
north (z = ∞) poles (see Figure 2.2.5).

The analyticity of log z (z 
= 0) in the cut plane can be established using the
Cauchy–Riemann conditions. We shall also show the important relationship
d/dz(log z) = 1/z. Using (2.2.3) and (2.2.4a,b,c), we see that for z = x + iy,
w = log z, w = u + iv

e2u = x2 + y2, tan v = y

x
(2.2.8)
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Note that in deriving Eq. (2.2.8) we use w = log[|z|ei arg z], |z| = (x2 + y2)1/2,
and θ = arg z = tan−1 y/x . A branch is fixed by assigning suitable values for
the real functions u and v. The function u is given by

u = 1

2
log(x2 + y2) (2.2.9)

To fix the branch of v corresponding to the inverse tangent of y/x is more subtle.
Suppose we fix tan−1(y/x) to be the standard real-valued function taking values
between −π/2 and π/2; that is

−π
2
≤ tan−1(y/x) <

π

2

Thus the value of v will have a jump whenever x passes through zero (e.g. a
jump of π when we pass from the first to the second quadrant).

Alternatively we could have written

v = tan−1

(
y

x

)
+ Ci (2.2.10)

with C1 = 0, C2 = C3 = π , C4 = 2π , where the values of the constant Ci

correspond to suitable values in each of the four quadrants.
It can be verified that v is continuous in the z plane apart from Re z > 0

where there is a jump of 2π across the Re z > 0 axis. Figure 2.2.6 depicts
the choice of v = tan−1(y/x) that will make log z continuous off the real axis,
Re z 
= 0.

From real variables we know that

d

ds
tan−1 s = 1

1+ s2
(2.2.11)
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Fig. 2.2.6. A branch choice for inverse tangent
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and with this from Eq. (2.2.10) we can verify that the Cauchy–Riemann condi-
tions are satisfied for Eq. (2.2.8). The partial derivatives of u and v are given by

ux = x

x2 + y2
, uy = y

x2 + y2
(2.2.12a)

vx = −y

x2 + y2
, vy = x

x2 + y2
(2.2.12b)

hence the Cauchy–Riemann conditions ux = vy and uy = −vx are satisfied
and the function log z is analytic in the cut plane Re z > 0 (as implied by the
properties of the inverse tangent function). Alternatively we could have used
u = log r , v = θ and Eq. (2.1.8).

Because log z is analytic in the cut plane, its derivative can be easily calcu-
lated. We need only to calculate the derivative along the x direction

d

dz
log z = ∂u

∂x
+ i

∂v

∂x
= x − iy

x2 + y2
= 1

x + iy
= 1

z
(2.2.13)

Hence the expected result is obtained for the derivative of log z in a cut plane.
Indeed, this development can be carried out for any of the branches (suitable cut
planes) of log z. Alternatively from (2.1.10): f ′(z) = e−iθ ∂

∂r (log r) = 1
reiθ = 1

z .

The generalized power function is defined in terms of the logarithm

za = ea log z (2.2.14)

for any complex constant a. When a = m = integer, the power function is
simply zm . Using Eq. (2.2.4) and e2kπ i = cos 2kπ + i sin 2kπ = 1, where k is
an integer, we have

zm = em[log r+i(θp+2πn)] = em log r emiθp = (reiθp )m

whereupon we have the usual integer power function with no branching and no
branch points. If, however, a is a rational number

a = m

l

m and l are integers with no common factor then we have

zm/ l = exp

[
m

l
(log r + i(θp + 2πn))

]

= exp

[
m

l
(log r + iθp)

]
exp

[
2π i

(
mn

l

)]
(2.2.15)
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It is evident that when n = 0, 1, . . . , (l−1), the expression (2.2.15) takes on
different values corresponding to the term e2π i(mn/ l). Thus z(m/ l) takes on l dif-
ferent values. If n increases beyond n = l−1, say n = l, (l + 1), . . . , (2l − 1),
the above values are correspondingly repeated, and so on. The formula (2.2.15)
yields l branches for the function zm/ l . The function zm/ l has branch points at
z = 0 and z = ∞. Similar considerations apply to the functionw = (z−z0)

m/ l

with a (finite) branch point now being located at z = z0. A cut plane can be
fixed by choosing θp appropriately. Hence a branch cut on Re z > 0 is fixed
by requiring 0 ≤ θp < 2π . Similarly, a cut for Re z < 0 is fixed by assigning
−π ≤ θp < π . Thus if m = 1, l = 4, the formula (2.2.15) yields four branches
of the function z1/4.

Values of a that are neither integer nor rational result in functions that are
infinitely branched with branch points at z = 0, z = ∞. Branch cuts can be
defined via choices of θp as above. For any suitable branch, standard differen-
tiation formulae give

d

dz
za = d

dz
ea log z = za

(
a

z

)
= aza−1 (2.2.16)

From Eq. (2.2.4) we also have

log(z1z2) = log(r1eiθ1r2eiθ2)

= log r1r2 + i(θ1p + θ2p)+ 2nπ i

= log r1 + i(θ1p + 2n1π)+ log r2 + i(θ2p + 2n2π)

= log z1 + log z2

where n1 + n2 = n. The other standard algebraic properties of the complex
logarithm, which are analogous to the real logarithm, follow in a similar manner.

The inverse of trigonometric and hyperbolic functions can be computed via
logarithms. It is another step in complication regarding multivalued functions.
For example

w = cos−1 z (2.2.17)

satisfies

cosw = z = eiw + e−iw

2

Thus

e2iw − 2zeiw + 1 = 0 (2.2.18)
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Hence solving this quadratic equation for eiw yields

eiw = z + (z2 − 1)
1
2 = z + i(1− z2)

1
2

and then

w(z) = −i log(z + i(1− z2)
1
2 ) (2.2.19)

This function w(z) has two sources of multivaluedness; one due to the loga-
rithm, the other due to f (z) = (1− z2)

1
2 . The function f (z) has two branches

and two branch points, at z = ±1. We can deduce that z = ±1 are branch points
of f (z) by investigating the local behavior of f (z) near the points z = ±1.
Namely, use z = 1 + r1eiθ1 and z = −1 + r2eiθ2 for small values of r1 and
r2. For, say, z = −1, we have f (z) ≈ (2r2)

1/2eiθ2/2 (dropping r2
2 terms as

much smaller than r2), which certainly has a discontinuity as θ2 changes by 2π .
The function f (z) has two branches. The log function has an infinite number
of branches, hence so does w; sometimes we say that w(z) is doubly infinite
because for each of the infinity of branches of the log we also have two branches
of f (z). In the finite plane the only branch points ofw(z) are at z = ±1 because
the function g(z) = z + i(1 − z2)1/2 has no solutions of g(z) = 0. (Equating
both sides, z = −i(1 − z2)1/2 leads to a contradiction.) The branch structure
of w(z) in Eq. (2.2.19) is discussed further in Section 2.3 (c.f. Eq. (2.3.8)).

Because the log function is determined up to additive multiples of 2π i , it
follows that for a fixed value of (1 − z2)1/2, and a particular branch of the log
function, w = cos−1 z is determined only to within multiples of 2π . Namely, if
we write w1 = −i log(z+ i(1− z2)1/2) for a particular branch, then the general
form for w satisfies

w = −i log(z + i(1− z2)1/2)+ 2nπ

orw = w1+2nπ , n integer, which expresses the periodicity of the cosine func-
tion. Similarly, from the quadratic equation (2.2.18) we find that the product
of the two roots eiw1 and eiw2 satisfies

eiw1 eiw2 = 1 (2.2.20)

or by taking the logarithm of Eq. (2.2.20) with 1 = ei0 or 1 = e2π i we see that
the two solutions of Eq. (2.2.18) are simply related:

w1 + w2 = 0 or w1 + w2 = 2π, etc. (2.2.21)

Equation (2.2.21) reflects the fact that the cosine of an angle, say α, equals the
cosine of −α or the cosine of 2π − α, etc.
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Differentiation establishes the relationship

d

dz
cos−1 z = −i

z + i(1− z2)1/2

(
1− i z

(1− z2)1/2

)

= −i

z + i(1− z2)1/2
(−i)

(z + i(1− z2)1/2)

(1− z2)1/2

= −1

(1− z2)1/2
(2.2.22)

for z2 
= 1. Formulae for the other inverse trigonometric and hyperbolic
functions can be established in a similar manner. For reference we list some of
them below.

sin−1 z = −i log(i z + (1− z2)1/2) (2.2.23a)

tan−1 z = 1

2i
log

i − z

i + z
(2.2.23b)

sinh−1 z = log(z + (1+ z2)1/2) (2.2.23c)

cosh−1 z = log(z + (z2 − 1)1/2) (2.2.23d)

tanh−1 z = 1

2
log

1+ z

1− z
(2.2.23e)

In the following section we shall discuss the branch structure of more com-
plicated functions such as

√
(z − a)(z − b) and cos−1 z.

In Section 2.1 we mentioned that the real and imaginary parts of an analytic
function in a domain D satisfy Laplace’s equation in D. In fact, some simple
complex functions yield fundamental and physically important solutions to
Laplace’s equation.

For example, consider the function

�(z) = A log z + iB (2.2.24)

where A and B are real and we take the branch cut of the logarithm along the
real axis with z = reiθ , 0 ≤ θ < 2π . The imaginary part of �(z): �(z) =
φ(x, y)+ iψ(x, y), satisfies Laplace’s equation

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0 (2.2.25)

in the upper half plane: −∞ < x < ∞, y > 0. (Note that the function is
analytic for y > 0, i.e., there is no branch cut for y > 0.) From Eq. (2.2.24) a



56 2 Analytic Functions and Integration

solution of Laplace’s equation is

ψ(x, y) = Aθ + B

= A tan−1

(
y

x

)
+ B, (2.2.26)

where tan−1(y/x) stands for the identifications in Eq. (2.2.10) (see Figure
2.2.6). Thus, for y > 0, 0 < tan−1(y/x) < π.

Note that as y → 0+, then θ = tan−1(y/x) → 0 for x > 0, and → π for
x < 0. Taking B = 1 and A = −1/π , we find that

ψ(x, y) = 1− 1

π
tan−1

(
y

x

)
(2.2.27)

is the solution of Laplace’s equation in the upper half plane bounded at infinity,
corresponding to the boundary conditions

ψ(x, 0) =
{

1 for x > 0
0 for x < 0

(2.2.28)

Physically speaking, Eq. (2.2.27) corresponds to the steady state heat distribu-
tion of a plate with the prescribed temperature distribution (Eq. (2.2.28)) on the
bottom of the plate (steady state heat flow satisfies Laplace’s equation).

We also mention briefly that in many applications it is useful to employ
suitable transformations that have the effect of transforming Laplace’s equation
in a complicated domain to a “simple” one, that is, one for which Laplace’s
equation can be easily solved such as in a half plane or inside a circle. In terms
of two-dimensional ideal fluid flow, this means that a flow in a complicated
domain would be converted to one in a simpler domain under the appropriate
transformation of variables. (A number of physical applications are discussed
in Chapter 5.)

The essential idea is the following. Suppose we are given a complex analytic
function in a domain D:

�(z) = φ(x, y)+ iψ(x, y)

where φ and ψ satisfy Laplace’s equation in D. Let us transform to a new
independent complex variable w, where w = u + iv, via the transformation

z = F(w) (2.2.29)

where F(w) is analytic in the corresponding domain D′ in the u, v-plane. Then
�(F(w)), which we shall call �(w)

�(w) = φ(u, v)+ iψ(u, v)
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is also analytic in D′. Hence the functionφ andψ will satisfy Laplace’s equation
in D′. (A direct verification of this statement is included in the problem section;
see Problem 7 in Section 2.1.) For this transformation to be useful, D′ must be
a simplified domain in which Laplace’s equation is easily solved.

The complication inherent in this procedure is that of returning back from the
w plane to the z plane in order to obtain the required solution Ω(z), or φ(x, y)
and ψ(x, y). We must invert Eq. (2.2.29) to find w as a function of z. In
general, this introduces multivaluedness, which we shall discuss in Section 2.3.
From a general point of view we can deduce where the “difficulties” in the
transformation occur by examining the derivative of the function �(w). We
denote the inverse of the transformation (2.2.29) by

w = f (z) (2.2.30)

where f (z) is assumed to be analytic in D. By the chain rule, we find that

d�

dw
= d�

dz

dz

dw
= d�

dz

/
dw

dz
= d�

dz

/
d f (z)

dz
(2.2.31)

Consequently, �(w) will be an analytic function of w in D′ so long as there are
no points in the w plane that correspond to points in the z plane via Eq. (2.2.30)
where d f/dz = 0.

In Chapter 5 we shall discuss in considerable detail transformations or map-
pings of the form of Eqs. (2.2.29)–(2.2.30). There it will be shown that if two
curves intersect at a point z0, then their angle of intersection is preserved by the
mapping (i.e., the angle of intersection in the z plane equals the angle between
the corresponding images of the intersecting curves in the w plane) so long as
f ′(z0) 
= 0. Such mappings are referred to as conformal mappings, and as
mentioned above they are important for applications.

A simple example of an ideal fluid flow problem (see Section 2.1) is one in
which the complex flow potential is given by

�(z) = z2 (2.2.32)

As discussed in Section 2.1, the streamlines correspond to the imaginary part
of �(z) = φ + iψ , hence

ψ = r2 sin 2θ = 2xy (2.2.33)

Clearly, the streamline ψ = 0 corresponds to the edges of the quarter plane,
θ = 0 and θ = π/2 (see Figure 2.2.7) and the streamlines of the flow inside
the quarter plane are the hyperbolae xy = const.
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x

y

xy =const

Fig. 2.2.7. Flow configuration corresponding to �(z) = z2

u

v

Fig. 2.2.8. Uniform flow

On the other hand, we can introduce the transformation

z = w1/2 (2.2.34)

which converts the flow configuration � = z2 to the “standard” problem

�(z(w)) = w (2.2.35)

discussed in Section 2.1. This equation corresponds to uniform straight line flow
(see Eq. (2.1.17) with v0 = 1 and θ0 = 0). Equation (2.2.35) may be viewed as
uniform flow over a flat plate with w = u + iv, with the boundary streamline
v = 0 (see Figure 2.2.8). The speed of the flow is |�′(z)| = 2|z| = 2r , which

can also be obtained from Eq. (2.2.35) via
d�

dz
= d�

dw

dw

dz
.
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The transformation (2.2.34) is an elementary example of a conformal
mapping.

Problems for Section 2.2

1. Find the location of the branch points and discuss possible branch cuts for
the following functions:

(a)
1

(z − 1)1/2
(b) (z + 1− 2i)1/4 (c) 2 log z2 (d) z

√
2

2. Determine all possible values and give the principal value of the following
numbers (put in the form x + iy):

(a) i1/2 (b)
1

(1+ i)1/2
(c) log(1+√3i)

(d) log i3 (e) i
√

3 (f) sin−1 1√
2

3. Solve for z:

(a) z5 = 1 (b) 3+ 2ez−i = 1 (c) tan z = 1

4. Let α be a real number. Show that the set of all values of the multivalued
function log(zα) is not necessarily the same as that of α log(z).

5. Derive the following formulae:

(a) coth−1z = 1

2
log

z + 1

z − 1
(b) sech−1z = log

(
1+ (1− z2)1/2

z

)

6. Deduce the following derivative formulae:

(a)
d

dz
tan−1 z = 1

1+ z2
(b)

d

dz
sin−1 z = 1

(1− z2)1/2

(c)
d

dz
sinh−1 z = 1

(1+ z2)1/2

7. Consider the complex velocity potential

�(z) = k log(z − z0)

where k is real and z0 is a complex constant. Find the corresponding
velocity potential and stream function. Show that the velocity is purely
radial relative to the point z = z0, and sketch the flow configuration. Such
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a flow is called a “source” if k > 0 and a “sink” if k < 0. The strength
M is defined as the outward rate of flow of fluid, with unit density, across
a circle enclosing z = z0: M = ∮C Vr ds, where Vr is the radial velocity
and ds is the increment of arc length in the direction tangent to the circle
C . Show that M = 2πk. (See also Subsection 2.1.2.)

8. Consider the complex velocity potential�(z) = −ik log(z−z0), where k is
real. Find the corresponding velocity potential and stream function. Show
that the velocity is purely circumferential relative to the point z = z0, being
counterclockwise if k > 0. Sketch the flow configuration. The strength of
this flow, called a point vortex, is defined to be M = ∮C Vθds, where Vθ is
the velocity in the circumferential direction and ds is the increment of arc
length in the direction tangent to the circle C . Show that M = 2πk. (See
also Subsection 2.1.2.)

9. (a) Show that the solution to Laplace’s equation ∇2T = ∂2T/∂u2 +
∂2T/∂v2 = 0 in the region −∞ < u <∞, v > 0, with the boundary
conditions T (u, 0) = T0 if u > 0 and T (u, 0) = −T0 if u < 0, is
given by

T (u, v) = T0

(
1− 2

π
tan−1 v

u

)
(b) We shall use the result of part (a) to solve Laplace’s equation inside a

circle of radius r = 1 with the boundary conditions

T (r, θ) =
{

T0 on r = 1, 0 < θ < π

−T0 on r = 1, π < θ < 2π

Show that the transformation

w = i

(
1− z

1+ z

)
or z = i − w

i + w

wherew = u+iv, maps the interior of the circle |z| = 1 onto the upper
half of the w plane (−∞ < u < ∞, v > 0) and maps the boundary
conditions r = 1, 0 < θ < π onto 0 < u < ∞, v = 0, and
r = 1, π < θ < 2π onto −∞ < u < 0, v = 0. (See Problem 7
Section 2.1 which explains the relationship between Laplace’s Eq. in
parts a,b.)
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(c) Use the result of part (b) and the mapping function to show that the
solution of the boundary value problem in the circle is given by

T (x, y) = T0

(
1− 2

π
cot−1

(
2y

1− (x2 + y2)

))
= T0

(
1− 2

π
tan−1

(
1− (x2 + y2)

2y

))
,

or, in polar coordinates,

T (r, θ) = T0

(
1− 2

π
cot−1

(
2r sin θ

1− r2

))
= T0

(
1− 2

π
tan−1

(
1− r2

2r sin θ

))

∗2.3 More Complicated Multivalued Functions and Riemann Surfaces

We begin this section by discussing the branch structure associated with the
function

w = [(z − a)(z − b)]1/2 (2.3.1)

Functions such as Eq. (2.3.1) arise very frequently in applications. The
function (2.3.1) is obviously the solution of the equation w2 = (z − a)(z − b),
for real values a and b, a < b. Hence we expect square root type branch points
at z = a, b. Indeed, z = a, b are branch points as can be verified by letting z be
near, say, a, z = a + ε1eiθ1 . Formula (2.3.1) implies that w ≈ q1/2eiθ1/2 with
q = ε1(a − b) and, as θ1 varies between θ1 = 0 and θ1 = 2π , w jumps from
q1/2 to −q1/2 (similarly near z = b). Perhaps surprising is the fact that z = ∞
is not a branch point. Letting z = 1/t , formula (2.3.1) yields

w = [(1− ta)(1− tb)]1/2

t
(2.3.2)

and hence there is no jump near t = 0, because near t = 0, w ≈ 1/t , which is
single valued.

We can fix a branch cut for Eq. (2.3.1) as follows. We define the local polar
coordinates

z − b = r1eiθ1

z − a = r2eiθ2 0 ≤ θ1, θ2 < 2π (2.3.3)



62 2 Analytic Functions and Integration

xz=a z=b

Θ = π Θ = π/2 Θ = 0

Θ = π Θ = 3π/2 Θ = 2π ≡ 0

θ
2

θ
1

Fig. 2.3.1. A branch cut for w = [(z − a)(z − b)]1/2

Note that the magnitudes r1 and r2 are fixed uniquely by the location of the
point z: r1 = |z − b|, r2 = |z − a|. However, there is freedom in the choice
of angles. In Eq. (2.3.3) we have taken 0 ≤ θ1, θ2 < 2π , but another branch
could be specified by choosing θ1 and θ2 differently; as we discuss below.

Then Eq. (2.3.1) yields

w = (r1r2)
1/2ei(θ1+θ2)/2 (2.3.4)

In Figure 2.3.1 we denote values of the function w and the respective phases
θ1, θ2 in those regions where a jump could be expected, that is, on the Re z = x
axis. (A heavy solid line denotes a branch cut.) We denote � = (θ1 + θ2)/2.

For the above choice of angles θ1, θ2, the only jump of w (which depends on
(θ1+ θ2)/2) occurs on the real axis between a and b, a ≤ Re z ≤ b. Hence the
branch cut is located on the Re z = x axis between (a, b). The points z = a, b
are square root branch points. Increasing θ1, θ2 to 4π , 6π , etc., would only
put us on either side of the two branches of Eq. (2.3.1). Sometimes the branch
depicted in Figure 2.3.1 is referred to as the one for which w(z) is real and
positive for z = x , x > a, b.

Other branches can be obtained by taking different choices of the angles θ1,
θ2. For example, if we choose θ1, θ2 as follows, 0 ≤ θ1 < 2π ,−π ≤ θ2 < π , we
would have a branch cut in the region (−∞, a) ∪ (b,∞) whereas the function
is continuous in the region (a, b). In Figure 2.3.2 we give the phase angles in the
respective regions that indicate why the branch cut is in the above-mentioned
location.

The branch cut in the latter case is best thought of as passing from z = a
to z = b through the point at infinity. As mentioned earlier (see Eq. (2.3.2)),
infinity is not a branch point. An alternative and useful view follows from
the stereographic projection. The stereographic projection of the plane to a
Riemann sphere corresponding to the branch cuts of Figures 2.3.1 and 2.3.2 is
depicted in Figure 2.3.3.
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Fig. 2.3.2. Another branch cut for w = [(z − a)(z − b)]1/2
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Fig. 2.3.3. Projection of w onto Riemann sphere

More complicated functions are handled in similar ways. For example,
consider the function

w = ((z − x1)(z − x2)(z − x3))
1/2 with xk real, x1 < x2 < x3 (2.3.5)

If we let

z − xk = rkeiθk , 0 ≤ θk < 2π (2.3.6)

then

w = √r1r2r3ei(θ1+θ2+θ3)/2 (2.3.7)

Defining � = (θ1 + θ2 + θ3)/2, the phase diagram is given in Figure 2.3.4.
From the choices of phase (see Figure 2.3.4) it is clear that the branch cuts lie
in the region {x1 < Re z < x2} ∪ {Re z > x3}.

A somewhat more complicated example is given by Eq. (2.2.19)

w = cos−1 z = −i log(z + i(1− z2)1/2)

= −i log(z + (z2 − 1)1/2) (2.3.8)

It is clear from the previous discussion that the points z = ±1 are square
root branch points. However, z = ∞ is a logarithmic branch point. Letting
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Fig. 2.3.4. Triple choice of phase angles

z = 1/t , we have

w = −i log

(
1+ i(t2 − 1)1/2

t

)
= −i[log(1+ i(t2 − 1)1/2)− log t]

which demonstrates the logarithmic branch point behavior near t = 0. (We
assume that the square root is such that the first logarithm does not have a
vanishing modulus, with the other sign of the square root more work is required.)
There are no other branch points because z+ i(1− z2)1/2 never vanishes in the
finite z plane. It should also be noted that owing to the fact that (1 − z2)1/2

has two branches, and the logarithm has an infinite number of branches, the
function cos−1 can be thought of as having a “double infinity” of branches.

A particular branch of this function can be obtained by first taking

z + 1 = r1eiθ1 , z − 1 = r2eiθ2 , 0 ≤ θi < 2π, i = 1, 2

Then, by adding the above relations,

z = (r1eiθ1 + r2eiθ2)/2

and the function q(z) = z + (z2 − 1)1/2 is given by

q(z) = (r1eiθ1 + r2eiθ2)/2+√r1r2ei(θ1+θ2)/2 (2.3.9)

whereupon

q(z) = r1eiθ1

2

(
1+ r2

r1
ei(θ2−θ1) + 2

√
r2

r1
ei(θ2−θ1)/2

)
(2.3.10)

We further make the choice

1+ r2

r1
ei(θ2−θ1) + 2

√
r2

r1
ei(θ2−θ1)/2 = R ei�, 0 ≤ � < 2π
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� can be chosen to be any interval of length 2π , which determines the particular
branch of the logarithm. Here we made a convenient choice: 0 ≤ � < 2π .

With these choices of phase angle it is immediately clear that the function
(2.3.8), log q(z), has a branch cut for Re z > −1. In this regard we note that
log(R ei�) has no jump for Re z < −1, nor does log(r1eiθ1), but for Re z > −1,
log(r1eiθ1) does have a jump.

In what follows we give a brief description of the concept of a Riemann
surface. Actually, for the applications in this book, the preceding discussion
of branch cuts and branch points is sufficient. Nevertheless, the notion of a
Riemann surface for a multivalued function is helpful and arises sometimes
in application. By a Riemann surface we mean an extension of the ordinary
complex plane to a surface that has more than one “sheet.” The multivalued
function will have only one value corresponding to each point on the Riemann
surface. In this way the function is single valued, and standard theory applies.

For example, consider again the square root function

w = z1/2 (2.3.11)

Rather than considering the normal complex plane for z, it is useful to consider
the two-sheeted surface depicted in Figure 2.3.5. This is the Riemann surface
for Eq. (2.3.11).

Referring to Figure 2.3.5 we have double copies I and II of the z plane with a
cut along the positive x axis. Each copy of the z plane has identical coordinates
z placed one on top of the other. Along the cut plane we have the planes joined
in the following way. The cut along Ib is joined with the cut on IIc, while Ia
is joined with the cut on IId. In this way, we produce a continuous one-to-one
map from the Riemann surface for the function z1/2 onto the w plane, that is,
the set of values w = u + iv = z1/2. If we follow the curve C in Figure 2.3.5,
we begin on sheet Ia, wind around the origin (the branch point) to Ib; we then
go through the cut and come out on IIc. We again wind around the origin to

II

I

y

x

C a
b

c
d

Fig. 2.3.5. Two-sheeted Riemann surface
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n=3

n=2

n=1

n=0

n=-1

n=-2

x

.

.

.

.

.

.

Fig. 2.3.6. Infinitely sheeted Riemann surface

IId, go through the cut and come out on Ia. The process obviously repeats
after this.

In a similar manner we can construct an n-sheeted Riemann surface for the
function w = zm/n , where m and n are integers with no common factors. This
would contain n identical sheets stacked one on top of the other with a cut on
the positive x axis and each successive sheet is connected in the same way that
Ia is connected to IIc in Figure 2.3.5 and the nth sheet would be connected to
the first in the same manner as IId is connected to Ia in Figure 2.3.5.

The logarithmic function is infinitely multivalued, as discussed in Section 2.2.
The corresponding Riemann surface is infinitely sheeted. For example, Fig-
ure 2.3.6 depicts an infinitely sheeted Riemann surface with the cut along the
positive x axis.

Each sheet is labeled n = 0, n = 1, n = 2, . . ., corresponding to the branch
of the log function (2.3.12):

w = log z = log |z| + i(θp + 2nπ), 0 ≤ θp < 2π (2.3.12)

The branch n= 0 is connected to n= 1, the branch n= 1 to n= 2, the branch
n= 2 to n= 3, etc., in the same fashion that Ib is connected to IIc in Figure
2.3.7. A continuous closed circuit around the branch point z= 0 continuing
on all the sheets n = 0 to n = 1 to n= 2 and so on resembles an “infinite”
spiral staircase. The main point here is that because the logarithmic function
is infinitely branched (we say it has a branch point of infinite order) it has an
infinitely sheeted Riemann surface.

This beautiful geometric description, while useful, will be of far less im-
portance for our purposes than the analytical understanding of how to specify
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II

I

C

C

z=a z=b

sheet

sheet

2

1

Fig. 2.3.7. Riemann surface of two sheets

particular branches and how to work with these multivalued functions in exam-
ples and concrete applications.

Finally we remark that more complicated multivalued functions can have very
complicated Riemann surfaces. For example, the function given by formula
(2.3.1) with local coordinates given by Eq. (2.3.3) has a two-sheeted Riemann
surface depicted in Figure 2.3.7.

A closed circuit, for example, C1 in Figure 2.3.7, enclosing both branch
points z = a and z = b, stays on the same sheet. However, a circuit enclosing
either branch point, for example, the z = a circuit C2 in Figure 2.3.7, would
start on sheet I; then after encircling the branch point would go through the cut
onto sheet II and encircling the branch point again would end up on sheet I, and
so on.

As described in Section 2.2, elementary analytic functions may yield phys-
ically interesting solutions of Laplace’s equation. For example, we shall find
the solution to Laplace’s equation

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0 (2.3.13)

for −∞ < x <∞, y > 0, with the boundary conditions

ψ(x, y = 0) =


0 for x < −�
1 for −� < x < �

0 for x > �

(2.3.14)

which are bounded at infinity.
A typical physical application is the following: the steady state temperature

distribution of a two-dimensional plate with an imposed nonzero temperature
(unity) on a portion of the bottom of the plate.

Consider the function

�(z) = A log(z+ �)+ B log(z− �)+ iC, A, B,C real constants
(2.3.15)
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with branch cuts taken by choosing z + l = r1eiθ1 and z − l = r2eiθ2 , where
0 ≤ θi < 2π for i = 1, 2. The function (2.3.15) is therefore analytic in
the upper half plane, and consequently, we know that the imaginary part ψ of
Ω(z) = φ+ iψ satisfies Laplace’s equation. This solution is given by

ψ(x, y) = Aθ1 + Bθ2 + C

= A tan−1

(
y

x + �

)
+ B tan−1

(
y

x − �

)
+ C (2.3.16)

where we are taking 0 < tan−1 α < π (see Eq. (2.2.10)).
It remains to fix the boundary conditions on y = 0 given by Eq. (2.3.14). For

x > � and y = 0, we have θ1 = θ2 = 0; hence we take C = 0. For−� < x < �

and y = 0 we have θ1 = 0 and θ2 = π ; hence B = 1/π . For x < −� and y = 0
we have θ1 = θ2 = π ; hence A + 1/π = 0. The boundary value solution is
therefore given by

ψ(x, y) = 1

π

[
tan−1

(
y

x − �

)
− tan−1

(
y

x + �

)]
(2.3.17)

Problems for Section 2.3

1. Find the location of the branch points and discuss the branch cut structure
of the following functions:

(a) (z2 + 1)1/2 (b) ((z + 1)(z − 2))1/3

2. Find the location of the branch points and discuss the branch cuts associated
with the following functions:

(a) log((z − 1)(z − 2)) (b) coth−1 z

a
= 1

2
log

z + a

z − a
, a > 0

(c) Related to the second function, show that, when n is an integer

coth−1 z

a
= 1

4
log

(x + a)2 + y2

(x − a)2 + y2

+ i

2
tan−1

((
2ay

a2 − x2 − y2

)
+ 2nπ

)

3. Given the function

log(z − (z2 + 1)1/2)
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discuss the branch point/branch cut structure and where this function is
analytic.

4. Consider the complex velocity potential

�(z, z0) = M

2π
[log(z − z0)− log z]

for M > 0, which corresponds to a source at z = z0 and a sink at z = 0.
(See also Exercise 6 in Section 2.1, and Exercises 7 and 8 of Section
2.2.) Find the corresponding velocity potential and stream function. Let
M = k/|z0|, z0 = |z0|eiθ0 , and show that

�(z, z0) = − k

2π

(
log z − log(z − z0)

z0

)
z0

|z0|

Take the limit as z0 → 0 to obtain

�(z) = lim
z→z0

�(z, z0) = −keiθ0

2π

1

z

This is called a “doublet” with strength k. The angle θ0 specifies the
direction along which the source/sink coalesces. Find the velocity potential
and the stream function of the doublet, and sketch the flow.

5. Consider the complex velocity potential

�(w) = − i�

2π
logw, � real

(a) Show that the transformation z = 1
2 (w + 1

w
) transforms the complex

velocity potential to

�(z) = − i�

2π
log(z + (z2 − 1)1/2)

(b) Choose a branch of (z2 − 1)1/2 as follows:

(z2 − 1)1/2 = (r1r2)
1/2ei(θ1+θ2)/2

where 0 ≤ θi < 2π , i = 1, 2, so that there is a branch cut on the
x axis, −1 < x < 1, for (z2 − 1)1/2. Show that a positive circuit
around a closed curve enclosing z = −1 and z = +1 increases � by
� (we say the circulation increases by �).
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(c) Establish that the velocity field v = (v1, v2) satisfies

v1 = − �

2π
√

1−x2 on y = 0+ for − 1 < x < 1, and

v2 =


�

2π
√

x2 − 1
for x > 1, y = 0

− �

2π
√

x2 − 1
for x < −1, y = 0

6. Consider the transformation (see also Problem 5 above) z = 1
2 (w + 1

w
).

Show that T (x, y) = −Im�(z), where � = 1/w satisfies Laplace’s
equation and satisfies the following conditions:

T (x, y = 0+) =
√

1− x2 for |x | ≤ 1

T (x, y = 0−) = −
√

1− x2 for |x | ≤ 1

T (x, y = 0) = 0 for |x | ≥ 1

and

T (x = 0, y) =


1

y +
√

y2 + 1
for y > 0

− 1

−y +
√

y2 + 1
for y < 0

2.4 Complex Integration

In this section we consider the evaluation of integrals of complex variable
functions along appropriate curves in the complex plane. We shall see that
some of the analysis bears a similarity to that of functions of real variables.
However, for analytic functions, very important new results can be derived,
namely Cauchy’s Theorem (sometimes called the Cauchy–Goursat Theorem).
Complex integration has wide applicability, and we shall describe some of the
applications in this book.

We begin by considering a complex-valued function f of a real variable t on
a fixed interval, a ≤ t ≤ b:

f (t) = u(t)+ iv(t) (2.4.1)

where u(t) and v(t) are real valued. The function f (t) is said to be integrable
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on the interval [a, b] if the functions u and v are integrable. Then

∫ b

a
f (t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt (2.4.2)

The usual rules of integration for real functions apply; in particular, from the
fundamental theorems of calculus, we have for continuous functions f (t)

d

dt

∫ t

a
f (τ ) dτ = f (t) (2.4.3a)

and for f ′(t) continuous

∫ b

a
f ′(t) dt = f (b)− f (a) (2.4.3b)

Next we extend the notion of complex integration to integration on a curve
in the complex plane. A curve in the complex plane can be described via the
parameterization

z(t) = x(t)+ iy(t), a ≤ t ≤ b (2.4.4)

For each given t in [a, b] there is a set of points (x(t), y(t)) that are the image
points of the interval. The image points z(t) are ordered according to increasing
t . The curve is said to be continuous if x(t) and y(t) are continuous functions
of t . Similarly, it is said to be differentiable if x(t) and y(t) are differentiable.

A curve or arc C is simple (sometimes called a Jordan arc) if it does
not intersect itself, that is, z(t1) 
= z(t2) if t1 
= t2 for t ∈ [a, b], except that
z(b) = z(a) is allowed; in the latter case we say that C is a simple closed
curve (or Jordan curve). Examples are seen in Figure 2.4.1. Note also that a
“figure 8” is an example of a nonsimple closed curve.

(a) Simple, not closed (b) Not simple, not closed (c) Simple, closed
(Jordan Arc) (Jordan Curve)

Fig. 2.4.1. Examples of curves
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Next we shall discuss evaluation of integrals along curves. When the curve
is closed, our convention shall be to take the positive direction to be the one in
which the interior remains to the left of C . Integrals along a closed curve will be
taken along the positive direction unless otherwise specified. The function f (z)
is said to be continuous on C if f (z(t)) is continuous for a ≤ t ≤ b, and f is
said to be piecewise continuous on [a, b] if [a, b] can be broken up into a finite
number of subintervals in which f (z) is continuous. A smooth arc C is one
for which z′(t) is continuous. A contour is an arc consisting of a finite number
of connected smooth arcs; that is, a contour is a piecewise smooth arc. Thus on
a contour C, z(t) is continuous and z′(t) is piecewise continuous. Hereafter we
shall only consider integrals along such contours unless otherwise specified.
Frequently, a simple closed contour is referred to as a Jordan contour.

The contour integral of a piecewise continuous function on a smooth contour
C is defined to be ∫

C
f (z) dz =

∫ b

a
f (z(t))z′(t) dt (2.4.5)

where the right-hand side of Eq. (2.4.5) is obtained via the formal substitution
dz = z′(t) dt . In general, Eq. (2.4.5) depends on f (z) and the contour C . Thus
the integral (2.4.5) is really a line integral in the (x, y) plane and is naturally
related to the study of vector calculus in the plane. As mentioned earlier, the
complex variable z = x + iy can be thought of as a two-dimensional vector.

We remark that values of the above integrals are invariant if we redefine the
parameter t appropriately. Namely, if we make the change of variables t → s by
t = T (s) where T (s) maps the interval A ≤ s ≤ B to interval a ≤ t ≤ b, T (s)
is continuously differentiable, and T ′(s) > 0 (needed to ensure that t increases
with s), then only the form the integrals take on is modified, but its value is
invariant. The importance of this remark is that one can evaluate integrals by
the most convenient choice of parameterization. Examples discussed later in
this section will serve to illustrate this point.

The usual properties of integration apply. We have∫
C

[α f (z)+ βg(z)] dz = α

∫
C

f (z) dz + β

∫
C

g(z) dz (2.4.6)

for constants α and β and piecewise continuous functions f and g. The arc C
traversed the opposite direction, that is, from t = b to t = a, is denoted by−C .
We then have ∫

−C
f (z) dz = −

∫
C

f (z) dz (2.4.7)
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because the left-hand side of Eq. (2.4.7) is equivalent to
∫ a

b f (z(t))z′(t)dt .
Similarly, if C consists of n connected contours with endpoints from z1 to z2

for C1, from z2 to z3 for C2, . . ., from zn to zn+1 for Cn , then we have∫
C

f =
n∑

j=1

∫
C j

f

The fundamental theorem of calculus yields the following result.

Theorem 2.4.1 Suppose F(z) is an analytic function and that f (z) = F ′(z) is
continuous in a domain D. Then for a contour C lying in D with endpoints z1

and z2 ∫
C

f (z) dz = F(z2)− F(z1) (2.4.8)

Proof Using the definition of the integral (2.4.5), the chain rule, and assuming
for simplicity that z′(t) is continuous (otherwise add integrals separately over
smooth arcs) we have∫

C
f (z) dz =

∫
C

F ′(z) dz =
∫ b

a
F ′(z(t))z′(t) dt

=
∫ b

a

d

dt
[F(z(t))] dt

= F(z(b))− F(z(a))

= F(z2)− F(z1) �

As a consequence of Theorem 2.4.1, for closed curves we have∮
C

f (z) dz =
∮

C
F ′(z) dz = 0 (2.4.9)

where
∮

C denotes a closed contour C (that is, the endpoints are equal).
If the function f (z) satisfies the hypothesis of Theorem 2.4.1, then for all

contours C lying in D beginning at z1 and ending at z2 we have Eq. (2.4.8).
Hence the result demonstrates that the integral is independent of path. Indeed,
Figure 2.4.2 illustrates this fact.

Referring to Figure 2.4.2, we have
∫

C1
f dz = ∫C2

f dz because∮
C

f dz =
∫

C1

f dz −
∫

C2

f dz = 0 (2.4.10)

where the closed curve C = C1 − C2.
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1

2

2

1z

z
C

C

Fig. 2.4.2. Independent paths forming closed curve

C
C

C
1

2
3

(0,0)

(1,1)

(1,0)

Fig. 2.4.3. Contours C1, C2, and C3

The hypothesis in Theorem 2.4.1 requires the existence of F(z) such that
f (z) = F ′(z). Later in this chapter we shall show this for a large class of
functions f (z).

Sometimes it is convenient to evaluate the complex integral by reducing it
to two real-line integrals in the x, y plane. In the definition (2.4.5) we use
f (z) = u(x, y)+ iv(x, y) and dz = dx + idy to obtain∫

C
f (z) dz =

∫
C

[(u dx − v dy)+ i(v dx + u dy)] (2.4.11)

This can be shown, via parameterization, to be equivalent to∫ b

a
f (z(t))z′(t) dt

Later in this chapter we shall use Eq. (2.4.11) in order to derive one form of
Cauchy’s Theorem.

In the following examples we illustrate how line integrals may be calculated
in prototypical cases.

Example 2.4.1 Evaluate
∫

C z dz for (a) C = C1, a contour from z = 0 to z = 1
to z = 1 + i ; (b) C = C2, the line from z = 0 to z = 1 + i ; and (c) C = C3,
the unit circle |z| = 1 (see Figure. 2.4.3).
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(a)
∫

C1

z dz =
∫

C1

(x − iy)(dx + idy)

=
∫ 1

x=0
x dx +

∫ 1

y=0
(1− iy)(i dy)

= 1

2
+ i[y − iy2/2]1

0

= 1+ i

Note in the integral from z = 0 to z = 1, y = 0, hence dy = 0. In the
integral from z = 1 to z = 1+ i , x = 1, hence dx = 0.

(b)
∫

C2

z dz =
∫ 1

x=0
(x − i x)(dx + i dx)

= (1− i)(1+ i)
∫ 1

0
x dx

= 1

Note that C2 is the line y = x , hence dy = dx . Since z is not analytic we
see that

∫
C2

z dz and
∫

C1
z dz need not be equal.

(c)
∫

C3

z dz =
∫ 2π

θ=0
e−iθ ieiθ dθ = 2π i

Note that z = eiθ , z = e−iθ , and dz = ieiθdθ , on the unit circle, r = 1.

Example 2.4.2 Evaluate
∫

C z dz along the three contours described above and
as illustrated in Figure 2.4.3. Because z is analytic in the region containing z,
and z = (d/dz)(z2/2), we immediately have, from Theorem 2.4.1∫

C1

z dz =
∫

C2

z dz = (1+ i)2

2
= i

∫
C3

z dz = 0

These results can be calculated directly via the line integral methods described
above – which we will leave for the reader to verify.

Example 2.4.3 Evaluate
∫

C(1/z) dz for (a) any simple closed contour C not
enclosing the origin, and; (b) any simple closed contour C enclosing the origin.
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x
x

yy

L
L

C

C

2

1

2
-C1

(a) C not enclosing origin (b) “deforming” C2, which encloses origin

Fig. 2.4.4. Integration contours in Example 2.4.3

(a) Because 1/z is analytic for all z 
= 0, we immediately have, from Theorem
2.4.1 and from 1/z = (d/dz)(log z)

∫
C

1

z
dz = 0

because [log z]C = 0 so long as C does not enclose the branch point of log z at
z = 0 (see Figure 2.4.4a)

(b) Any simple closed contour, call it C2, around the origin can be deformed
into a small, but finite circle of radius r as follows. Introduce a “crosscut”
(L1, L2) as in Figure 2.4.4b. Then in the limit of r and the crosscut width
tending to zero we have a closed contour: C = C2 + L1 + L2 − C1. (Note
that for C1 we take the positive counterclockwise orientation.) In Figure 2.4.4b
we have taken care to distinguish the positive and negative directions of C1 and
C2, respectively. From part (a) of this problem

∫
C

1

z
dz = 0

then, because
∫

L1
+ ∫L2

= 0, we have (using z = reiθ and dz = rieiθdθ)

∫
C2

1

z
dz =

∫
C1

1

z
dz =

∫ 2π

0
r−1e−iθ ieiθr dθ = 2π i

Thus the integral of 1/z around any closed curve enclosing the origin is
2π i . We also note that if we formally use the antiderivative of 1/z (namely,
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1/z = d/dz(log z)), we can also find
∫

C2
(1/z) dz = 2π i . In this case, even

though we enclose the branch point of log z, the argument θp of log z = log r +
i(θp + 2nπ) increases by 2π as we enclose the origin. In this case, we need
only select a convenient branch of log z.

Example 2.4.4 Evaluate
∫

C zn dz for integer n and some simple closed contour
C that encloses the origin.

Using the crosscut segment as indicated in Figure 2.4.4, the integral in ques-
tion is equal to that on C1, a small, but finite circle of radius r . Thus∫

C1

zn dz =
∫ 2π

0
rn+1einθ ieiθ dθ

= i
∫ 2π

0
rn+1ei(n+1)θ dθ

=
{

0 n 
= −1
2π i n = −1

}
Hence even though zn is nonanalytic at z = 0 for n < 0, only the value

n = −1 gives a nontrivial contribution. We remark that use of the antiderivative

zn = d

dz

(
zn+1

n + 1

)
, n 
= −1

yields the same results.
As mentioned earlier, complex line integrals arise in many physical appli-

cations. For example, in ideal fluid flow problems (in Section 2.1 we briefly
discussed ideal fluid flows), the real-line integrals

� =
∫

C
(φx dx + φy dy) =

∫
C
v · t̂ ds (2.4.12)

F =
∫

C
(φx dy − φy dx) =

∫
C
v · n̂ ds (2.4.13)

where s is the arc length, v = (φx , φy) is the velocity vector, t̂ = ( dx
ds ,

dy
ds ) is

the unit tangent vector to C , and n̂ = ( dy
ds ,− dx

ds

)
is the unit normal vector to C ,

represent (�) the circulation around the curve C (when C is closed), and (F)
the flux across the curve C . We note that in terms of analytic complex functions
we have the simple equation

� + iF =
∫

C
(φx − iφy)(dx + idy) =

∫
C
�′(z) dz (2.4.14)
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Recall from (2.1.16) that the complex velocity is given by �′(z) = φx +
iψx = φx − iφy (the latter follows from the Cauchy–Riemann conditions).
Using complex function theory to evaluate Eq. (2.4.14) often provides an easy
way to calculate the real-line integrals (2.4.12–2.4.13), which are the real and
imaginary parts of the integral in Eq. (2.4.14). An example is discussed in the
problem section.

Next we derive an important inequality that we shall use frequently.

Theorem 2.4.2 Let f (z) be continuous on a contour C . Then∣∣∣∣∫
C

f (z) dz

∣∣∣∣ ≤ M L (2.4.15)

where L is the length of C and M is an upper bound for | f | on C .

Proof

I =
∣∣∣∣∫

C
f (z) dz

∣∣∣∣ = ∣∣∣∣∫ b

a
f (z(t))z′(t) dt

∣∣∣∣ (2.4.16)

From real variables we know that, for a ≤ t ≤ b,∣∣∣∣∫ b

a
G(t) dt

∣∣∣∣ ≤ ∫ b

a
|G(t)| dt

hence

I ≤
∫ b

a
| f (z(t))| ∣∣z′(t)∣∣ dt

(This can be shown by using Eq. (2.4.19) below, with the triangle inequality.)
Then since | f | is bounded on C , i.e. | f (t)| ≤ M on C , where M is a constant,
then

I ≤ M
∫ b

a
|z′(t)| dt

However, because

|z′(t)| dt = |x ′(t)+ iy′(t)| dt

=
√
(x ′(t))2 + (y′(t))2 dt = ds (2.4.17)

where s represents arc length along C , we have Eq. (2.4.15). �

We also remark that the preceding developments of contour integration could
also have been derived using limits of appropriate sums. This would be in
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(a) D simply connected (b) D multiply connected

Fig. 2.4.5. Connected regions of domain D

analogy to the one-dimensional evaluation of integrals by Riemann sums. More
specifically, given a contour C in the z plane beginning at za and terminating
at zb, choose any ordered sequence {z j } of n+ 1 points on C such that z0 = za

and zn = zb. Define �z j = z j+1 − z j and form the sum

Sn =
n∑

j=1

f (ξ j )�z j (2.4.18)

where ξ j is any point on C between z j−1 and z j . If f (x) is piecewise continuous
on C , then the limit of Sn as n →∞ and |�z j | → 0 converges to the integral
of f (z), namely

∫
C

f (z) dz = lim
n→∞

|�z j |→0

n∑
j=1

f (ξ j )�z j (2.4.19)

Finally, we define a simply connected domain D to be one in which every
simple closed contour within it encloses only points of D. The points within
a circle, square, and polygon are examples of a simply connected domain.
An annulus (doughnut) is not simply connected. A domain that is not simply
connected is called multiply connected. An annulus is multiply connected,
because a contour encircling the inner hole encloses points within and outside
D (see Figure 2.4.5).

Problems for Section 2.4

1. From the basic definition of complex integration, evaluate the integral∮
C f (z) dz, where C is the parametrized unit circle enclosing the origin,
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C : x(t) = cos t, y(t) = sin t or z = eit , and where f (z) is given by

(a) z2 (b) z2 (c)
z + 1

z2

2. Evaluate the integral
∮

C f (z) dz, where C is the unit circle enclosing the
origin, and f (z) is given as follows:

(a) 1+ 2z + z2 (b) 1/(z − 1/2)2 (c) 1/z (d) zz (e)∗ ez

* Hint: use (1.2.19).

3. Let C be the unit square with diagonal corners at −1 − i and 1 + i .
Evaluate

∮
C f (z) dz, where f (z) is given by the following:

(a) sin z (b)
1

2z + 1
(c) z (d) Re z

4. Use the principal branch of log z and z1/2 to evaluate

(a)
∫ 1

−1
log z dz (b)

∫ 1

−1
z1/2 dz

5. Show that the integral
∫

C(1/z2) dz, where C is a path beginning at z = −a
and ending at z = b, a, b > 0, is independent of path so long as C doesn’t
go through the origin. Explain why the real-valued integral

∫ b
−a(1/x2) dx

doesn’t exist, but the value obtained by formal substitution of limits agrees
with the complex integral above.

6. Consider the integral
∫ b

0 (1/z1/2)dz, b > 0. Let z1/2 have a branch cut
along the positive real axis. Show that the value of the integral obtained
by integrating along the top half of the cut is exactly minus that obtained
by integrating along the bottom half of the cut. What is the difference
between taking the principal versus the second branch of z1/2?

7. Let C be an open (upper) semicircle of radius R with its center at the
origin, and consider

∫
C f (z) dz. Let f (z) = 1/(z2 + a2) for real a > 0.

Show that | f (z)| ≤ 1/(R2 − a2), R > a, and

∣∣∣∣ ∫
C

f (z) dz

∣∣∣∣ ≤ πR

R2 − a2
, R > a
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8. Let C be an arc of the circle |z| = R (R > 1) of angle π/3. Show that

∣∣∣∣∫
C

dz

z3 + 1

∣∣∣∣ ≤ π

3

(
R

R3 − 1

)

and deduce limR→∞
∫

C

dz

z3 + 1
= 0

9. Consider IR =
∫

CR

eiz

z2
dz, where CR is the semicircle with radius R in

the upper half plane with endpoints (−R, 0) and (R, 0) (CR is open, it
does not include the x axis). Show that limR→∞ IR = 0.

10. Consider

Iε =
∮

Cε

zα f (z) dz, α > −1, α real

where Cε is a circle of radius ε centered at the origin and f (z) is analytic
inside the circle. Show that limε→0 Iε = 0.

11. (a) Suppose we are given the complex flow field�(z) = −ik log(z−z0),
where k is a real constant and z0 a complex constant. Show that the
circulation around a closed curve C0 encircling z = z0 is given by
� = 2πk. (Hint: from Section 2.4, � + iF = ∮C0

�′(z)dz.)

(b) Suppose �(z) = k log(z − z0). Find the circulation around C0 and
the flux through C0.

2.5 Cauchy’s Theorem

In this section we study Cauchy’s Theorem, which is one of the most important
theorems in complex analysis. In order to prove Cauchy’s Theorem in the most
convenient manner, we will use a well-known result from vector analysis in
real variables, known as Green’s Theorem in the plane, which can be found in
advanced calculus texts; see, for example, Buck (1956).

Theorem 2.5.1 (Green) Let the real functions u(x, y) and v(x, y) along with
their partial derivatives ∂u/∂x , ∂u/∂y, ∂v/∂x , ∂v/∂y, be continuous through-
out a simply connected region R consisting of points interior to and on a simple
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x=a x=b

y

x

C  : y = g  (x)

C  : y = g  (x)

2

1

2

1

Fig. 2.5.1. Deriving Eq. (2.5.1) for region R

closed contour C in the x-y plane. Let C be described in the positive (counter-
clockwise) direction, then

∮
C
(u dx + v dy) =

∫∫
R

(
∂v

∂x
− ∂u

∂y

)
dx dy (2.5.1)

We remark for those readers who may not recall or have not seen this formula,
Eq. (2.5.1) is a two-dimensional version of the divergence theorem of vector
calculus (taking the divergence of a vector �v = (v,−u)).

An elementary derivation of Eq. (2.5.1) can be given if we restrict the region
R to be such that every vertical and horizontal line intersects the boundary of
R in at most two points. Then if we call the “top” and “bottom” curves defining
C , y = g2(x) and y = g1(x), respectively (see Figure 2.5.1)

−
∫∫

R

∂u

∂y
dx dy = −

∫ b

a

∫ g2(x)

g1(x)

∂u

∂y
dy dx

= −
∫ b

a
[u(x, g2(x))− u(x, g1(x))] dx

= +
∫

C2

u(x, y) dx +
∫

C1

u(x, y) dx

=
∮

C
u(x, y) dx
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Following the same line of thought, we also find∫∫
R

∂v

∂x
dx dy =

∮
C
v dy

From these relationships we obtain Eq. (2.5.1).
With Green’s Theorem we can give a simple proof of Cauchy’s Theorem as

long as we make a certain extra assumption to be explained shortly.

Theorem 2.5.2 (Cauchy) If a function f is analytic in a simply connected
domain D, then along a simple closed contour C in D∮

C
f (z) dz = 0 (2.5.2)

We remark that in the proof given here, we shall also require that f ′(z) be
continuous in D. In fact, a more general proof owing to Goursat enables one
to establish Eq. (2.5.2) without this assumption. We discuss Goursat’s proof in
the optional Section 2.7 of this chapter, which shows that even when f (z) is
only assumed analytic, we still have Eq. (2.5.2). From Eq. (2.5.2) one could
then derive as a consequence that f ′(z) is indeed continuous in D (note so far in
our development, analytic only means that f ′(z) exists, not that it is necessarily
continuous). In a subsequent theorem (Theorem 2.6.5: Morera’s Theorem) we
show that if f (z) is continuous and Eq. (2.5.2) is satisfied, then in fact f (z) is
analytic.

Proof (Theorem 2.5.2) From the definition of
∮

C f (z) dz, using f (z) = u + iv,
dz = dx + i dy, we have∮

C
f (z) dz =

∮
C
(u dx − v dy)+ i

∮
C
(u dy + v dx) (2.5.3)

Then, using f ′(z) continuous, we find that u and v have continuous partial
derivatives, hence Theorem 2.5.1 holds, and each of the above line integrals
can be converted to the following double integrals for points of D enclosed
by C :∮

C
f (z) dz = −

∫∫
D

(
∂v

∂x
+ ∂u

∂y

)
dx dy + i

∫∫
D

(
∂u

∂x
− ∂v

∂y

)
dx dy

(2.5.4)
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Because f (z) is analytic we find that the Cauchy–Riemann conditions
(Eqs. (2.1.4)) hold:

∂u

∂y
= −∂v

∂x
and

∂u

∂x
= ∂v

∂y

hence we have
∮

C f (z) dz = 0. �

We also note that Cauchy’s Theorem can be alternatively stated as: If f (z)
is analytic everywhere interior to and on a simple closed contour C , then∮

C f (z)dz = 0.
Knowing that

∮
C f (z) dz = 0 yields numerous results of interest. In par-

ticular, we will see that this condition and continuous f (z) yield an analytic
antiderivative for f .

Theorem 2.5.3 If f (z) is continuous in a simply connected domain D and if∮
C f (z) dz = 0 for every simple closed contour C lying in D, then there exists

a function F(z), analytic in D, such that F ′(z) = f (z).

Proof Consider three points within D: z0, z, and z + h. Define F by

F(z) =
∫ z

z0

f (z′) dz′ (2.5.5)

where the contour from z0 to z lies within D (see Figure 2.5.2). Then from∮
C f (z) dz = 0 we have∫ z+h

z0

f (z′) dz′ +
∫ z

z+h
f (z′) dz′ +

∫ z0

z
f (z′) dz′ = 0 (2.5.6)

where again all paths must lie within D. Although it may seem that choosing a
contour in this way is special, shortly we will show that when f (z) is analytic
in D, the integral over f (z) enclosing the domain D is equivalent to any closed
integral along a simple contour inside D.

z

z
z+h

0

C

Fig. 2.5.2. Three points lying in D



2.5 Cauchy’s Theorem 85

Fig. 2.5.3. Non-simple contour

Then, using Eq. (2.5.6) and reversing the order of integration of the last two
terms,

F(z + h)− F(z) =
(∫ z+h

z0

−
∫ z

z0

)
f (z′) dz′ =

∫ z+h

z
f (z′) dz′

hence

F(z + h)− F(z)

h
=
∫ z+h

z f (z′) dz′

h
(2.5.7)

Because f (z) is continuous, we find, from the definition of the derivative and
the properties of real integration, that as h → 0

F ′(z) = f (z) (2.5.8)

�

We remark that any (nonsimple) contour that has self-intersections can be
decomposed into a sequence of contours that are simple. This fact is illustrated
in Figure 2.5.3, where the complete nonsimple contour (“figure eight” contour)
can be decomposed into two simple closed contours corresponding to each
“loop” of the nonsimple contour. A consequence of this observation is that
Cauchy’s Theorem can be applied to a nonsimple contour with a finite number
of intersections.

In a multiply connected domain with a function f (z) analytic in this domain,
we can also apply Cauchy’s Theorem. The best way to see this is to introduce
crosscuts, as mentioned earlier, such that Cauchy’s Theorem can be applied to
a simple contour. Consider the multiply connected region depicted in Figure
2.5.4(b) with outer boundary C0 and n holes with boundaries C1, C2, . . ., Cn ,
and introduce n crosscuts L1

1L1
2, L2

1L2
2, . . ., Ln

1 Ln
2, as in Figure 2.5.4(a).

Then Cauchy’s Theorem applies to an analytic function in a domain D with
the simple contour

C̃ = C0 −
n∑

j=1

C j +
n∑

j=1

(
L j

1 − L j
2

)



86 2 Analytic Functions and Integration

1111
222

2

n-1 n nLL

n-1
n

1

n-12

C

C

C C C Cn
1

2

0

2 n-1

0

-C -C -C -C

-L
L -L -L

2
1

-LL1

(a) with crosscuts (b) in the limit

Fig. 2.5.4. Multiply connected domain

where we have used the convention that each closed contour is taken in the
positive counterclockwise direction, and we take L j

1, L j
2 in the same direction.

Because the integrals along the crosscuts vanish as the width between the
crosscuts vanishes (i.e.,

∫
L j

1−L j
2

f (z) dz → 0), we have∮
C

f (z) dz = 0

where C = C0 −
∑n

j=1 C j = C0 +
∑n

j=1(−C j ). It is often best to interpret
the integral

∮
C
=
∮

C0

+
n∑

j=1

∮
−C j

as one contour with the enclosed region bounded by C as that lying to the left
of C0 and to the right of C j (or to the left of −C j ). From

∮
C f (z) dz = 0 we

have

∮
C0

f (z) dz =
n∑

j=1

∮
C j

f (z) dz (2.5.9)

with all the contours taken in the counterclockwise direction as depicted in
Figure 2.5.4(b). We often say that the contour C0 has been deformed into the
contours C j , j = 1, . . . , n. A simple case is depicted in Figure 2.5.5.

This is an example of a deformation of the contour, deforming C0 into C1.
By introducing crosscuts it is seen that∮

C0

f (z) dz =
∮

C1

f (z) dz (2.5.10)
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-L L

C
-C

2
1

0

1

Fig. 2.5.5. Nonintersecting closed curves C0 and C1

r=3

r=1
C

C1
2

Fig. 2.5.6. Annulus

where C0 and C1 are two nonintersecting closed curves in which f (z) is analytic
on and in the region between C0 and C1. With respect to Eq. (2.5.10) we say
that C0 can be deformed into C1, and for the purpose of this integration they
are equivalent contours.

The process of introducing crosscuts, and deformation of the contour, effec-
tively allows us to deal with multiply connected regions and closed contours
that are not simple. That is, one can think of integrals along such contours
as a sum of integrals along simple contours, as long as f (z) is analytic in the
relevant region.

Example 2.5.1 Evaluate

I =
∮

C

ez

z
(
z2 − 16

) dz

where C is the boundary of the annulus between the circles |z| = 1, |z| = 3
(see Figure 2.5.6).
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We note that C = C2 + (−C1), and in the region between C1 and C2 the
function f (z) = ez/z(z2 − 16) is analytic because its derivative f ′(z) exists
and is continuous. The only nonanalytic points are at z = 0, z = ±4; hence,
I = 0.

Example 2.5.2 Evaluate

I = 1

2π i

∮
C

dz

(z − a)m
, m = 1, 2, . . . , M

where C is a simple closed contour.
The function f (z) = 1/(z − a)m is analytic for all z 
= a. Hence if C does

not enclose z = a, then we have I = 0. If C encloses z = a, we use Cauchy’s
Theorem to deform the contour to Ca , a small, but finite circle of radius r
centered at z = a (see Figure 2.5.7). Namely∫

C
f (z) dz −

∫
Ca

f (z) dz = 0, f (z) = 1/(z − a)m

We evaluate
∫

Ca
f (z) dz by letting

z − a = reiθ , dz = ieiθr dθ

in which case

I = 1

2π i

∮
Ca

1

(z − a)m
dz = 1

2π i

∫ 2π

0

1

rmeimθ
ieiθr dθ

= 1

2π i

∫ 2π

0
ie−i(m−1)θr−m+1 dθ = δm,1 =

{
1 if m = 1
0 otherwise

C
z=a

-Ca

Fig. 2.5.7. Deformed contour around z = a
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Thus

I =


0 z = a outside C,
0 z = a inside C, m 
= 1
1 z = a inside C, m = 1

By considering contour integrals over functions f (z) that enclose many
points in which f (z) have the local behavior

g j (z)(
z − a j

)m , j = 1, 2, . . . , N , m = 1, 2, . . . , M

where g j (z) is analytic, numerous important results can be obtained. In Chapter
3 we discuss functions with this type of local behavior (we say f (z) has a pole of
order m at z = a j ). In Chapter 4 we discuss extensions of the crosscut concept
and the methods described in Example 2.5.2 will be used to derive the well-
known Cauchy Residue Theorem (Theorem 4.1.1). The following example is
an application of these kinds of ideas.

Example 2.5.3 Let P(z) be a polynomial of degree n, with n simple roots, none
of which lie on a simple closed contour C . Evaluate

I = 1

2π i

∮
C

P ′(z)
P(z)

dz

Because P(z) is a polynomial with distinct roots, we can factor it as

P(z) = A(z − a1)(z − a2) · · · (z − an)

where A is the coefficient of the term of highest degree. Because

P ′(z)
P(z)

= d

dz
(log P(z))

= d

dz
log (A(z − a1)(z − a2) · · · (z − an))

it follows that

P ′(z)
P(z)

= 1

z − a1
+ 1

z − a2
+ · · · 1

z − an
.

Hence, using the result from Example 2.5.2 above, we have

I = 1

2π i

∮
C

P ′(z)
P(z)

dz = number of roots lying within C
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Problems for Section 2.5

1. Evaluate
∮

C f (z) dz, where C is the unit circle centered at the origin, and
f (z) is given by the following:

(a) eiz (b) ez2
(c)

1

z − 1/2
(d)

1

z2 − 4

(e)
1

2z2 + 1
(f)
√

z − 4

2. Use partial fractions to evaluate the following integrals
∮

C f (z) dz, where
C is the unit circle centered at the origin, and f (z) is given by the following:

(a)
1

z(z − 2)
(b)

z

z2 − 1/9
(c)

1

z
(
z + 1

2

)
(z − 2)

3. Evaluate the following integral∮
C

eiz

z(z − π)
dz

for each of the following four cases (all circles are centered at the origin;
use Eq. (1.2.19) as necessary)

(a) C is the boundary of the annulus between circles of radius 1 and ra-
dius 3.

(b) C is the boundary of the annulus between circles of radius 1 and ra-
dius 4.

(c) C is a circle of radius R, where R > π .
(d) C is a circle of radius R, where R < π .

4. Discuss how to evaluate

∮
C

ez2

z2
dz

where C is a simple closed curve enclosing the origin. (Use (1.2.19) as
necessary.)

5. We wish to evaluate the integral I = ∫∞0 eix2
dx . Consider the contour

IR =
∮

C(R)
eiz2

dz, where C(R) is the closed circular sector in the upper

half plane with boundary points 0, R, and Reiπ/4. Show that IR = 0 and
that limR→∞

∫
C1(R)

eiz2
dz = 0, where C1(R) is the line integral along the
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circular sector from R to Reiπ/4. (Hint: use sin x ≥ 2x
π

on 0 ≤ x ≤ π
2 .)

Then, breaking up the contour C(R) into three component parts, deduce

lim
R→∞

(∫ R

0
eix2

dx − eiπ/4
∫ R

0
e−r2

dr

)
= 0

and from the well-known result of real integration,
∫∞

0 e−x2
dx = √π/2,

deduce that I = eiπ/4√π/2.

6. Consider the integral I =
∫ ∞

−∞

dx

x2 + 1
. Show how to evaluate this integral

by considering
∮

C(R)

dz

z2 + 1
, where C(R) is the closed semicircle in the upper

half plane with endpoints at (−R, 0) and (R, 0) plus the x axis. Hint: use
1

z2 + 1
= − 1

2i

(
1

z + i
− 1

z − i

)
, and show that the integral along the

open semicircle in the upper half plane vanishes as R →∞. Verify your
answer by usual integration in real variables.

2.6 Cauchy’s Integral Formula, Its ∂ Generalization and Consequences

In this section we discuss a number of fundamental consequences and exten-
sions of the ideas presented in earlier sections, especially Cauchy’s Theorem.
Subsections 2.6.2 and 2.6.3 are more difficult and can be skipped entirely or
returned to when desired.

2.6.1 Cauchy’s Integral Formula and Its Derivatives

An important result owing to Cauchy shows that the values of an analytic
function f on the boundary of a closed contour C determine the values of f
interior to C .

Theorem 2.6.1 Let f (z) be analytic interior to and on a simple closed contour
C . Then at any interior point z

f (z) = 1

2π i

∮
C

f (ζ )

ζ − z
dζ (2.6.1)

Equation (2.6.1) is referred to as Cauchy’s Integral Formula.

Proof Inside the contour C , inscribe a small circle Cδ , radius δ with center at
point z (see Figure 2.6.1).
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z

C

C

δ

δ

Fig. 2.6.1. Circle Cδ inscribed in contour C

From Cauchy’s Theorem we can deform the contour C into Cδ:∮
C

f (ζ )

ζ − z
dζ =

∮
Cδ

f (ζ )

ζ − z
dζ (2.6.2)

We rewrite the second integral as∮
Cδ

f (ζ )

ζ − z
dζ = f (z)

∮
Cδ

dζ

ζ − z
+
∮

Cδ

f (ζ )− f (z)

ζ − z
dζ (2.6.3)

Using polar coordinates, ζ = z + δeiθ , the first integral on the right in
Eq. (2.6.3) is computed to be

∮
Cδ

dζ

ζ − z
=
∫ 2π

0

iδeiθ

δeiθ
dθ = 2π i (2.6.4)

Because f (z) is continuous

| f (ζ )− f (z)| < ε

for small enough |z − ζ | = δ. Then (see also the inequality (2.4.15))∣∣∣∣∮
Cδ

f (ζ )− f (z)

ζ − z
dζ

∣∣∣∣ ≤ ∮
Cδ

| f (ζ )− f (z)|
|ζ − z| |dζ |

<
ε

δ

∫
Cδ

|dζ |

= 2πε

Thus as ε → 0, the second integral in Eq. (2.6.3) vanishes. Hence Eqs. (2.6.3)
and (2.6.4) yield Cauchy’s Integral Formula, Eq. (2.6.1). �
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A particularly simple example of Cauchy’s Integral Formula is the following.
If on the unit circle |ζ | = 1 we are given f (ζ ) = ζ , then by Eq. (2.6.1)

1

2π i

∮
C

ζ

ζ − z
dζ = z

An alternative way to obtain this answer is as follows:

1

2π i

∮
C

ζ

ζ − z
dζ = 1

2π i

∮
C

(
1+ z

ζ − z

)
dζ

= 1

2π i
[ζ + z log(ζ − z)]C

= z

where we use the notation [·]C to denote the change around the unit circle, and
we have selected some branch of the logarithm.

A corollary of Cauchy’s Theorem demonstrates that the derivatives of f (z):
f ′(z), f ′′(z), . . ., f (n)(z) all exist and there is a simple formula for them. Thus
the analyticity of f (z) implies the analyticity of all the derivatives.

Theorem 2.6.2 If f (z) is analytic interior to and on a simple closed contour C ,
then all the derivatives f (k)(z), k = 1, 2, . . . exist in the domain D interior to
C , and

f (k)(z) = k!

2π i

∮
C

f (ζ )

(ζ − z)k+1
dζ (2.6.5)

Proof Let z be any point in D. It will be shown that all the derivatives of f (z)
exist at z. Because z is arbitrary, this establishes the existence of all derivatives
in D.

We begin by establishing Eq. (2.6.5) for k = 1. Consider the usual difference
quotient:

f (z + h)− f (z)

h
= 1

2π i

1

h

∮
C

f (ζ )

(
1

ζ − (z + h)
− 1

ζ − z

)
dζ

= 1

2π i

∮
C

f (ζ )

(ζ − (z + h)) (ζ − z)
dζ

= 1

2π i

∮
C

f (ζ )

(ζ − z)2
dζ + R (2.6.6)
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where

R = h

2π i

∮
C

f (ζ )

(ζ − z)2(ζ − z − h)
dζ (2.6.7)

We shall call min |ζ − z| = 2δ > 0. Then, if |h| < δ for ζ on C , we have

|ζ − (z + h)| ≥ |ζ − z| − |h| > 2δ − δ = δ

Because | f (ζ )| < M on C , then

|R| ≤ |h|
2π

M

(2δ)2δ
L (2.6.8)

where L is the length of the contour C . Because |R| → 0 as h → 0, we have
established Eq. (2.6.5) for k = 1:

f ′(z) = 1

2π i

∮
C

f (ζ )

(ζ − z)2
dζ (2.6.9)

We may repeat the above argument beginning with Eq. (2.6.9) and thereby
prove the existence of f ′′(z), that is, Eq. (2.6.5) for k = 2. This shows that f ′

has a derivative f ′′, and so is itself analytic. Consequently we find that if f (z)
is analytic, so is f ′(z). Applying this argument to f ′ instead of f proves that f ′′

is analytic, and, more generally, the analyticity of f (k) implies the analyticity
of f (k+1). By induction, we find that all the derivatives exist and hence are
analytic. Because f (k)(z) is analytic, Eq. (2.6.1) gives

f (k)(z) = 1

2π i

∮
C

f (k)(ζ )

ζ − z
dζ (2.6.10)

Integration by parts (k) times (the boundary terms vanish) yields Eq. (2.6.5).
�

An immediate consequence of this result is the following.

Theorem 2.6.3 All partial derivatives of u and v are continuous at any point
where f = u + iv is analytic.

For example, the first derivative of f (z), using the Cauchy–Riemann equa-
tions, is

f ′(z) = ux + ivx = vy − iuy (2.6.11)

Because f ′(z) is analytic, it is certainly continuous. The continuity of f ′(z)
ensures that ux , vy , vx , and uy are all continuous. Similar arguments are
employed for the higher-order derivatives, uxx , uyy , uxy, . . . .
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∗2.6.2 Liouville, Morera, and Maximum-Modulus Theorems

First we establish a useful inequality. From

f (n)(z) = n!

2π i

∮
C

f (ζ )

(ζ − z)n+1
dζ (2.6.12)

where C is a circle, |ζ − z| = R, and | f (z)| < M , we have

| f (n)(z)| ≤ n!

2π

∮
C

| f (ζ )|
|ζ − z|n+1

|dζ |

≤ n!M

2πRn+1

∮
C
|dζ |

≤ n!M

Rn
(2.6.13)

With Eq. (2.6.13) we can derive a result about functions that are everywhere
analytic in the finite complex plane. Such functions are called entire.

Theorem 2.6.4 (Liouville) If f (z) is entire and bounded in the z plane (in-
cluding infinity), then f (z) is a constant.

Proof Using the inequality (2.6.13) with n = 1 we have

| f ′(z)| ≤ M

R

Because this is true for any point z in the plane, we can make R arbitrarily
large; hence f ′(z) = 0 for any point z in the plane. Because

f (z)− f (0) =
∫ z

0
f ′(ζ ) dζ = 0

we have f (z) = f (0) = constant, and the theorem is proven. �

Cauchy’s Theorem tells us that if f (z) is analytic inside C , then
∮

C f (z) dz
= 0. Now we prove that the converse is also true.

Theorem 2.6.5 (Morera) If f (z) is continuous in a domain D and if∮
C

f (z) dz = 0

for every simple closed contour C lying in D, then f (z) is analytic in D.



96 2 Analytic Functions and Integration

Proof From Theorem 2.5.3 it follows that if the contour integral always van-
ishes, then there exists an analytic function F(z) in D such that F ′(z) = f (z).
Theorem 2.6.2 implies that F ′(z) is analytic if F(z) is analytic, hence so is
f (z). �

A corollary to Liouville’s Theorem is the so-called Fundamental Theorem
of Algebra, namely, any polynomial

P(z) = a0 + a1z + · · · + am zm, (am 
= 0) (2.6.14)

m ≥ 1, integer, has at least one point z = α such that P(α) = 0; that is, P(z)
has at least one root.

We establish this statement by contradiction. If P(z) does not vanish, then
the function Q(z) = 1/P(z) is analytic (has a derivative) in the finite z plane.
For |z| → ∞, P(z)→∞; hence Q(z) is bounded in the entire complex plane,
including infinity. Liouville’s Theorem then implies that Q(z) and hence P(z)
is a constant, which violates m ≥ 1 in Eq. (2.6.14) and thus contradicts the
assumption that P(z) does not vanish. In Section 4.4 it is shown that P(z) has
m and only m roots, including multiplicities.

There are a number of valuable statements that can be made about the max-
imum (minimum) modulus an analytic function can achieve, and certain mean
value formulae can be ascertained.

For example, using Cauchy’s integral formula (Eq. (2.6.1)) with C being a
circle centered at z and radius r , we have ζ − z = reiθ , and dζ = ireiθdθ ;
hence Eq. (2.6.1) becomes

f (z) = 1

2π

∫ 2π

0
f
(
z + reiθ

)
dθ (2.6.15)

Equation (2.6.15) is a “mean-value” formula; that is, the value of an analytic
function at any interior point is the “mean” of the function integrated over the
circle centered at z. Similarly, multiplying Eq. (2.6.15) by r dr , and integrating
over a circle of radius R yields

f (z)
∫ R

0
r dr = 1

2π

∫ R

0

∫ 2π

0
f
(
z + reiθ

)
r dr dθ

hence

f (z) = 1

πR2

∫ ∫
D0

f
(
z + reiθ

)
d A (2.6.16)

where D0 is the region inside the circle C , radius R, center z.
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Thus the value of f (z) also equals its mean value over the area of a circle
centered at z.

This result can be used to establish the following maximum-modulus theo-
rem.

Theorem 2.6.6 (Maximum Principles) (i) If f (z) is analytic in a domain D,
then | f (z)| cannot have a maximum in D unless f (z) is a constant. (ii) If f (z)
is analytic in a bounded region D and | f (z)| is continuous in the closed region
D, then | f (z)| assumes its maximum on the boundary of the region.

Proof Equation (2.6.16) is a useful device to establish this result. Suppose z
is an interior point in the region such that | f (ζ )| ≤ | f (z)| for all points ζ in
the region. Choose any circle center z radius R such that the circle lies entirely
in the region. Calling ζ = z + reiθ for any point in the circle, we have (from
Eq. (2.6.16))

| f (z)| ≤ 1

πR2

∫∫
D0

| f (ζ )| d A (2.6.17)

Actually, the assumed inequality | f (ζ )| ≤ | f (z)| substituted into Eq. (2.6.17)
implies that in fact | f (ζ )| = | f (z)| because if in any subregion, equality did
not hold, Eq. (2.6.17) would imply | f (z)| < | f (z)|. Thus the modulus of f (z)
is constant. Use of the Cauchy–Riemann equations then shows that if | f (z)| is
constant, then f (z) is also constant (see Example 2.1.4). This establishes the
maximum principle (i) inside C .

Because f (z) is analytic within and on the circle C , then | f (z)| is continuous.
A result of real variables states that a continuous function in a bounded region
must assume a maximum somewhere in the closed bounded region, including
the boundary. Hence the maximum for | f (z)|must be achieved on the boundary
of the circle C , and the maximum principle (ii) is established for the circle.

In order to extend these results to more general regions, we may construct
appropriate new circles centered at interior points of D and overlapping with
the old ones. In this way, by using a sequence of such circles, the region can
be filled and the above results follow. �

We note that if f (z) does not vanish at any point inside the contour, by
considering 1/( f (z)) = g(z) it can be seen that |g(z)| also attains its maximum
value on the boundary and hence f (z) attains its minima on the boundary.

The real and imaginary parts of an analytic function f (z) = u(x, y) +
iv(x, y), u and v, attain their maximum values on the boundary. This follows
from the fact that g(z) = exp( f (z)) is analytic, and hence it satisfies the
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maximum principle. Thus the modulus |g(z)| = exp u(x, y) must achieve its
maximum value on the boundary. Similar arguments for a function
g(z) = exp(−i f (z)) yield analogous results for v(x, y). Now, because f (z)
is analytic, we have from Theorem 2.6.2 and Eq. (2.6.11) that u and v are in-
finitely differentiable. Furthermore, from the Cauchy–Riemann conditions, u
and v are harmonic functions, that is, they satisfy Laplace’s equation

∇2u = 0, ∇2v = 0 (2.6.18)

(see Section 2.1, e.g. Eqs. 2.1.11a,b). Hence the maximum principle says that
harmonic functions achieve their maxima (and minima by a similar proof) on
the boundary of the region.

∗2.6.3 Generalized Cauchy Formula and ∂ Derivatives

In previous sections we concentrated on analytic functions or functions that are
analytic everywhere apart from isolated “singular” points where the function
blows up or possesses branch points/cuts. On the other hand, as mentioned
earlier (see, for example, Section 2.1 worked Example 2.1.2 and the subse-
quent discussion) there are functions that are nowhere analytic. For example,
the Cauchy–Riemann conditions show that the function f (z) = z (and hence
any function of z) is nowhere analytic. The reader might mistakenly think that
such functions are mathematical artifacts. However, mathematical formulations
of physical phenomena are often described via such complicated nonanalytic
functions. In fact, the main theorem (Theorem 2.6.7), described in this sec-
tion, is used in an essential way to study the scattering and inverse scattering
theory associated with certain problems arising in nonlinear wave propagation
(Ablowitz, Bar Yaakov, and Fokas,1983). Despite the fact that Cauchy’s Inte-
gral Formula (Eq. (2.6.1)) requires that f (z) be an analytic function, there is
nevertheless an important extension, which we shall develop below, that extends
Cauchy’s Integral Theorem to certain nonanalytic functions.

From the coordinate representation z = x + iy, z = x − iy, we have
x = (z + z)/2 and y = (z − z)/2i . Using the chain rule, that is

∂

∂z
= ∂x

∂z

∂

∂x
+ ∂y

∂z

∂

∂y

we find

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
(2.6.19a)

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
(2.6.19b)
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Sometimes it is convenient to consider the function f (x, y) as depending
explicitly on both z and z; that is, f = f (z, z). For simplicity we still use the
notation f (z) to denote f (z, z̄). If f is a differentiable function of z and z, and

∂ f

∂z
= 0 (2.6.20)

then we say that f = f (z). Moreover, any f (z) satisfying Eq. (2.6.20) is
an analytic function, because from Eq. (2.6.19b) and f (z) = u + iv, we find,
from Eq. (2.6.20), that ∂u

∂x − ∂v
∂y + i( ∂u

∂y + ∂v
∂x ) = 0, hence u and v satisfy the

Cauchy–Riemann equations.
In what follows we shall use Green’s Theorem (Eq. (2.5.1)) in the following

form:

∮
C

g dζ = 2i
∫ ∫

R

∂g

∂ζ
d A(ζ ) (2.6.21)

where ζ = ξ + iη, dζ = dξ + i dη, and d A(ζ ) = dξ dη. Note in Eq. (2.5.1)
use u = g, v = ig

∂g

∂ζ
= 1

2

(
∂g

∂ξ
+ i

∂g

∂η

)

and replace x and y by ξ and η.
Next we establish the following:

Theorem 2.6.7 (Generalized Cauchy Formula) If ∂ f/∂ζ exists and is contin-
uous in a region R bounded by a simple closed contour C , then at any interior
point z

f (z) = 1

2π i

∮
C

(
f (ζ )

ζ − z

)
dζ − 1

π

∫ ∫
R

(
∂ f/∂ζ

ζ − z

)
d A(ζ ) (2.6.22)

Proof Consider Green’s Theorem in the form of Eq. (2.6.21) in the region Rε

depicted in Figure 2.6.2, with g = f (ζ )/(ζ − z) and the contour composed of
two parts C and Cε .

We have, from Eq. (2.6.21), noting that 1
ζ−z is analytic in this region,

∮
C

f (ζ )

ζ − z
dζ −

∫
Cε

f (ζ )

ζ − z
dζ = 2i

∫ ∫
Rε

∂ f/∂ζ

ζ − z
d A (2.6.23)
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ε

ε

CCzζ=

R

Fig. 2.6.2. Generalized Cauchy formula in region Rε

Note that on Cε : ζ = z + εeiθ

∮
Cε

f (ζ )

ζ − z
dζ =

∫ 2π

0

f (z + εeiθ )

εeiθ
iεeiθ dθ

=
∫ 2π

0
f
(
z + εeiθ

)
i dθ

−−−−→
ε→0

f (z)(2π i) (2.6.24)

The limit result is due to the fact that f (z) is assumed to be continuous,
and from real variables we find that the limit ε → 0 and the integral of a
continuous function over a bounded region can be interchanged. Similarly,
because 1/(ζ−z) is integrable over Rε and ∂ f/∂ζ is continuous, then the double
integral over Rε converges to the double integral over the whole region R, the
difference tends to zero with ε; namely, using polar coordinates ζ = z + reiθ

∣∣∣∣∫ ∫
R−Rε

(
∂ f/∂ζ

ζ − z

)
i d A

∣∣∣∣ ≤ ∫ ε

0

∫ 2π

0

∣∣∂ f/∂ζ
∣∣

r
r dr dθ

≤ 2πMε (2.6.25)

Using the continuity of ∂ f/∂ζ in a bounded region implies that

∣∣∣∣∂ f

∂ζ

∣∣∣∣ ≤ M
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Thus Eq. (2.6.23) yields in the limit ε → 0∮
C

(
f (ζ )

ζ − z

)
dζ − 2π i f (z) = 2i

∫ ∫
R

(
∂ f/∂ζ

ζ − z

)
d A

and hence the generalized Cauchy formula (Eq. (2.6.22)) follows by manipu-
lation. �

We note that if ∂ f/∂ζ = 0, that is, if f (z) is analytic inside R, then the
generalized Cauchy formula reduces to the usual Cauchy Integral Formula
(Eq. (2.6.1)).

Problems for Section 2.6

1. Evaluate the integrals
∮

C f (z) dz, where C is the unit circle centered at the
origin and f (z) is given by the following (use Eq. (1.2.19) as necessary):

(a)
sin z

z
(b)

1

(2z − 1)2
(c)

1

(2z − 1)3

(d)
ez

z
(e) ez2

(
1

z2
− 1

z3

)
2. Evaluate the integrals

∮
C f (z) dz over a contour C , where C is the bound-

ary of a square with diagonal opposite corners at z = −(1 + i)R and
z = (1+ i)R, where R > a > 0, and where f (z) is given by the follow-
ing (use Eq. (1.2.19) as necessary):

(a)
ez

z − π i
4 a

(b)
ez(

z − π i
4 a
)2 (c)

z2

2z + a

(d)
sin z

z2
(e)

cosh z

z

3. Evaluate the integral ∫ ∞

−∞

1

(x + i)2
dx

by considering
∮

C(R)
(1/(z + i)2) dz, where C(R) is the closed semicircle

in the upper half plane with corners at z = −R and z = R, plus the x
axis. Hint: show that

lim
R→∞

∫
C1(R)

1

(z + i)2
dz = 0
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where C1(R) is the open semicircle in the upper half plane (not including
the x axis).

4. Let f (z) be analytic in a square containing a point w and C be a circle
with center ω and radius ρ inside the square. From Cauchy’s Theorem
show that

f (ω) = 1

2π

∫ 2π

0
f
(
ω + ρeiθ

)
dθ

5. Consider two entire functions with no zeroes and having a ratio equal to
unity at infinity. Use Liouville’s Theorem to show that they are in fact the
same function.

6. Let f (z) be analytic and nonzero in a region R. Show that | f (z)| has
a minimum value in R that occurs on the boundary. (Hint: use the
Maximum-Modulus Theorem for the function 1/ f (z).)

7. Let f (z) be an entire function, with | f (z)| ≤ C |z| for all z, where C is a
constant. Show that f (z) = Az, where A is a constant.

8. Find the ∂ (dbar) derivative of the following functions:

(a) ez (b) zz (= r2)

Verify the generalized Cauchy formula inside a circle of radius R for both
of these functions. Hint: Reduce problem (b) to the verification of the
following formula:

−π z =
∫ ∫

A

d A

ζ − z
=
∫ ∫

A

dξ dη

ζ − z
≡ I

where A is a circle of radius r . To establish this result, transform the
integral I to polar coordinates, ζ = ξ + iη = reiθ , and find

I =
∫ 2π

0

∫ R

0

r dr dθ

reiθ − z

In the θ integral, change variables to u = eiθ , and use du= ieiθdθ ,∫ 2π
0 dθ = 1

i

∮
C0

du
u , where C0 is the unit circle. The methods of Section 2.5
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can be employed to calculate this integral. Show that we have

I = 2π
∫ R

0
r dr

[
−1

z
+ 1

z
H

(
1− |z|

r

)]

where H(x) = {1 if x > 0, 0 if x < 0}. Then show that I = −π |z|2/z =
−π z as is required.

9. Use Morera’s Theorem to verify that the following functions are indeed
analytic inside a circle of radius R:

(a) zn, n ≥ 0 (b) ez

From Morera’s Theorem, what can be said about the following functions?

(c)
sin z

z
(d)

ez

z

10. In Cauchy’s Integral Formula (Eq. (2.6.1)), take the contour to be a circle
of unit radius centered at the origin. Let ζ = eiθ to deduce

f (z) = 1

2π

∫ 2π

0

f (ζ )ζ

ζ − z
dθ

where z lies inside the circle. Explain why we have

0 = 1

2π

∫ 2π

0

f (ζ )ζ

ζ − 1/z
dθ

and use ζ = 1/ζ̄ to show

f (z) = 1

2π

∫ 2π

0
f (ζ )

(
ζ

ζ − z
± z

ζ − z

)
dθ

whereupon, using the plus sign

f (z) = 1

2π

∫ 2π

0
f (ζ )

(
1− |z|2)
|ζ − z|2 dθ
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(a) Deduce the “Poisson formula” for the real part of f (z): u(r, φ) =
Re f , z = reiφ

u(r, φ) = 1

2π

∫ 2π

0
u(θ)

1− r2

[1− 2r cos(φ − θ)+ r2]
dθ

where u(θ) = u(1, θ).
(b) If we use the minus sign in the formula for f (z) above, show that

f (z) = 1

2π

∫ 2π

0
f (ζ )

[
1+ r2 − 2rei(θ−φ)

1− 2r cos(φ − θ)+ r2

]
dθ

and by taking the imaginary part

v(r, φ) = C + 1

π

∫ 2π

0
u(θ)

r sin(φ − θ)

[1− 2r cos(φ − θ)+ r2]
dθ

where C = 1
2π

∫ 2π
0 v(1, θ) dθ = v(r = 0). (This last relationship fol-

lows from the Cauchy Integral formula at z = 0 – see the first equation
in this exercise.)

(c) Show that

2r sin(φ − θ)

1− 2r cos(φ − θ)+ r2
= Im

[
1− r2 + 2ir sin(φ − θ)

1+ r2 − 2r cos(φ − θ)

]

= Im

[
ζ + z

ζ − z

]
and therefore the result for v(r, φ) from part (b) may be expressed as

v(r, φ) = v(0)+ Im

2π

∫ 2π

0
u(θ)

ζ + z

ζ − z
dθ

This example illustrates that prescribing the real part of f (z) on |z| = 1
determines (a) the real part of f (z) everywhere inside the circle and (b)
the imaginary part of f (z) inside the circle to within a constant. We
cannot arbitrarily specify both the real and imaginary parts of an analytic
function on |z| = 1.

11. The “complex delta function” possesses the following property:∫ ∫
A
δ(z − z0)F(z) d A(z) = F(z0)
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or ∫ ∫
A
δ(x − x0)δ(y − y0)F(x, y)d A(x, y) = F(x0, y0)

where z0 = x0 + iy0 is contained within the region A.
In formula (2.6.21) of Section 2.6, let g(z) = F(z)/(z − z0), where

F(z) is analytic in A. Show that∮
C

F(z)

z − z0
dz = 2i

∫ ∫
A

F(z)
∂

∂z

(
1

z − z0

)
d A

where C is a simple closed curve enclosing the region A. Use∮
C

F(z)/(z − z0) dz = 2π i F(z0) to establish

F(z0) = 1

π

∫ ∫
A

F(z)
∂

∂z

(
1

z − z0

)
d A

and therefore the action of ∂/∂z (1/(z − z0)) is that of a complex delta
function, that is, ∂/∂z (1/(z − z0)) = πδ(z − z0).

2.7 Theoretical Developments

In the discussion of Cauchy’s Theorem in Section 2.5, we made use of Green’s
Theorem in the plane that is taken from the vector calculus of real variables.
We note, however, that the use of this result and the subsequent derivations of
Cauchy’s Theorem requires f (z) = u(x, y)+ iv(x, y) to be analytic and have
a continuous derivative f ′(z) in a simply connected region. It turns out that
Cauchy’s Theorem can be proven without the need for f ′(z) to be continuous.
This fact was discovered by Goursat many years after the original derivations
by Cauchy. Logically, this is especially pleasing because Cauchy’s Theorem
itself can subsequently be used as a basis to show that if f (z) is analytic in D,
then f ′(z) is continuous in D.

We next outline the proof of Cauchy’s Theorem without making use of the
continuity of f ′(z); the theorem is frequently referred to as the Cauchy–Goursat
Theorem. We refer the reader to Levinson and Redheffer (1970) and appropriate
supplementary texts for further details.

Theorem 2.7.1 (Cauchy–Goursat) If a function f (z) is analytic at all points
interior to and on a simple closed contour, then∮

C f (z) dz = 0 (2.7.1)
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C

Fig. 2.7.1. Square mesh over region R

Proof Consider a finite region R consisting of points on and within a simple
closed contour C . We form a square mesh over the region R by drawing
lines parallel to the x and y axes such that we have a finite number of square
subregions in which each point of R lies in at least one subregion. If a particular
square contains points not in R, we delete these points. Such partial squares
will occur at the boundary (see Figure 2.7.1).

We can refine this mesh by dividing each square in half again and again and
redefine partial squares as above. We do this until the length of the diagonal of
each square is sufficiently small.

We note that the integral around the contour C can be replaced by a sum of
integrals around the boundary of each square or partial square∮

C
f (z) dz =

n∑
j=1

∮
C j

f (z) dz (2.7.2)

where it is noted that all interior contours will mutually cancel because each
inner side of a square is covered twice in opposite directions.

Introduce the following equality:

f (z) = f (z j )+ (z − z j ) f ′(z j )+ (z − z j ) f̃ j (z) (2.7.3a)

where

f̃ (z) =
(

f (z)− f (z j )

z − z j

)
− f ′(z j ) (2.7.3b)

We remark that ∮
C j

dz = 0,
∮

C j

(z − z j ) dz = 0 (2.7.4)
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which can be established either by direct integration or from the known anti-
derivatives:

1 = d

dz
z, (z − z j ) = d2

dz

(z − z j )
2

2
, . . .

then using the results of Theorem 2.4.1 (Eqs. (2.4.8) and (2.4.9)) in Section 2.4.
Then, it follows that

∣∣∣∣∮
C

f (z) dz

∣∣∣∣ ≤ n∑
j=1

∣∣∣∣∣
∮

C j

f (z) dz

∣∣∣∣∣
=

n∑
j=1

∣∣∣∣∣
∮

C j

(z − z j ) f̃ j (z) dz

∣∣∣∣∣
≤

n∑
j=1

∮
C j

|z − z j |
∣∣ f̃ j (z)

∣∣ dz (2.7.5)

It can be established the mesh can be refined sufficiently such that

∣∣ f̃ j (z)
∣∣ = ∣∣∣∣ f (z)− f (z j )

z − z j
− f ′(z j )

∣∣∣∣ < ε (2.7.6)

Calling the area of each square A j , we observe the geometric fact that

|z − z j | ≤
√

2A j (2.7.7)

Thus, using Theorem 2.4.2 for all interior squares, we have∮
C j

|z − z j |
∣∣ f̃ j (z)

∣∣ dz ≤ (√2A j
)
ε
(
4
√

A j
) = 4

√
2εA j (2.7.8)

and for all boundary squares, the following upper bound holds:∮
C j

|z − z j |
∣∣ f̃ j (z)

∣∣ dz ≤ (√2A j
)
ε
(
4
√

A j + L j
)

(2.7.9)

where L j is the length of the portion of the contour in the partial square C j .
Then

∮
C f (z) dz is obtained by adding over all such contributions Eqs. (2.7.8)
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and (2.7.9). Calling A = ∑ A j , L = ∑ L j , quantity A being the area of the
square mesh bounded by the contour C and L the length of the contour C , we
have ∮

C
f (z) dz| ≤

(
4
√

2A +
√

2AL
)
ε (2.7.10)

We can refine our mesh indefinitely so as to be able to choose ε as small as
we wish. Hence the integral

∮
C f (z) dz must be zero. �



3
Sequences, Series and Singularities of Complex

Functions

The representation of complex functions frequently requires the use of infinite
series expansions. The best known are Taylor and Laurent series, which repre-
sent analytic functions in appropriate domains. Applications often require that
we manipulate series by termwise differentiation and integration. These oper-
ations may be substantiated by employing the notion of uniform convergence.
Series expansions break down at points or curves where the represented function
is not analytic. Such locations are termed singular points or singularities of the
function. The study of the singularities of analytic functions is vitally important
in many applications including contour integration, differential equations in the
complex plane, and conformal mapping.

3.1 Definitions of Complex Sequences, Series
and Their Basic Properties

Consider the following sequence of complex functions: fn(z) for n= 1, 2, 3, . . . ,
defined in a region R of the complex plane. Usually, we denote the sequence
of functions by { fn(z)}, where n = 1, 2, 3, . . .. The notion of convergence of
a sequence is really the same as that of a limit. We say the sequence fn(z)
converges to f (z) on R or a suitable subset of R, assuming that f (z) exists
and is finite, if

lim
n→∞ fn(z) = f (z) (3.1.1)

This means that for each z, given ε > 0 there is an N depending on ε and z,
such that whenever n > N we have

| fn(z)− f (z)| < ε (3.1.2)

If the limit does not exist (or is infinite), we say the sequence diverges for
those values of z.

109



110 3 Sequences, Series and Singularities of Complex Functions

An infinite series may be viewed as an infinite sequence, {sn(z)}, n =
1, 2, 3, . . . , by noting that a sequence of partial sums may be formed by

sn(z) =
n∑

j=1

b j (z) (3.1.3)

and taking the infinite series as the infinite limit of partial sums:

S(z) = lim
n→∞ sn(z) =

∞∑
j=1

b j (z) (3.1.4)

Conversely, given the sequence of partial sums, we may find the sequence
of terms b j (z) via: b1(z) = s1(z), b j (z) = s j (z) − s j−1(z), j ≥ 2. With this
correspondence, no real distinction exists between a series or a sequence.

A basic property of a convergent series such as Eq. (3.1.4) is

lim
j→∞

b j (z) = 0

because

lim
j→∞

b j (z) = lim
j→∞

s j (z)− lim
j→∞

s j−1(z) = S − S = 0 (3.1.5)

Thus a necessary condition for convergence is Eq. (3.1.5).
We say that the sequence of functions sn(z), defined for z in a region R,

converges uniformly in R if it is possible to choose N depending on ε only
(and not z): N = N (ε) in Eq. (3.1.1). In other words, the same estimate for
N holds for all z in the domain R; that is, we may establish the validity of the
limit process independent of which particular z we choose in R.

For example, consider the sequence of functions

fn(z) = 1

nz
, n = 1, 2, . . . (3.1.6)

In the annular region 1 ≤ |z| ≤ 2, the sequence of functions { fn} converges
uniformly to zero. Namely, given ε > 0 for n sufficiently large we have

| fn(z)− f (z)| =
∣∣∣∣ 1

nz
− 0

∣∣∣∣ = 1

n|z| < ε

Thus, the estimate 1/n|z| < 1/n holds in the region 1 ≤ |z| ≤ 2 for the
first integer n such that n > N (ε) = 1/ε. The sequence is therefore uniformly
convergent to zero.
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On the other hand, Eq. (3.1.6) converges to zero, but not uniformly, on the
interval 0 < |z| ≤ 1; that is, | fn − f | < ε only if n > N (ε, z) = 1/ε|z| in the
region 0 < |z| ≤ 1. Certainly limn→∞ fn(z) = f (z) = 0, but irrespective of
the choice of N there is a value of z (small) such that | fn − f | > ε. Further
examples are given in the exercises at the end of the section.

Uniformly convergent sequences possess a number of important properties.
In particular, we may employ the notion of uniform convergence to establish
the following useful theorem.

Theorem 3.1.1 Let the sequence of functions fn(z) be continuous for each
integer n and let fn(z) converge to f (z) uniformly in a region R. Then f (z) is
continuous, and for any finite contour C inside R

lim
n→∞

∫
C

fn(z) dz =
∫

C
f (z) dz (3.1.7)

Proof (a) First we prove the continuity of f (z). For z and z0 in R, we write

f (z)− f (z0) = fn(z)− fn(z0)+ fn(z0)− f (z0)+ f (z)− fn(z)

and hence

| f (z)− f (z0)| ≤ | fn(z)− fn(z0)| + | fn(z0)− f (z0)| + | f (z)− fn(z)|
Uniform convergence of { fn(z)} allows us to choose an N independent of z
such that for n > N

| fn(z0)− f (z0)| < ε/3 and | f (z)− fn(z)| < ε/3

Continuity of fn(z) allows us to choose δ > 0 such that

| fn(z)− fn(z0)| < ε/3 for |z − z0| < δ

Thus for n > N , |z − z0| < δ

| f (z)− f (z0)| < ε

which establishes the continuity of f (z).
(b) Because the function f (z) is continuous, it can be integrated by using

the usual definition as described in Chapter 2. Given the continuity of f (z)
we shall prove Eq. (3.1.7); namely, for ε > 0 we must find N such that when
n > N ∣∣∣∣∫

C
fn(z) dz −

∫
C

f (z) dz

∣∣∣∣ < ε (3.1.8)
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But, for n > N∣∣∣∣∫
C

fn dz −
∫

C
f dz

∣∣∣∣ ≤ ∫
C
| fn − f | |dz| < ε1L

where the length of C is bounded by L and | fn− f | < ε1 by uniform convergence
of fn . Taking ε1 = ε/L establishes Eq. (3.1.8) and hence Eq. (3.1.7). �

An immediate corollary of this theorem applies to series expansions. Namely,
if the sequence of continuous partial sums converge uniformly, then we may
integrate termwise, that is, for b j (z) continuous

∞∑
j=1

(∫
C

b j (z) dz

)
=
∫

C

( ∞∑
j=1

b j (z)

)
dz (3.1.9)

Equation (3.1.9) is important and we will use it extensively in our develop-
ment of power series expansions of analytic functions.

We have already seen that uniformly convergent sequences and series have
important and useful properties, for example, they allow the interchange of
certain limit processes such as interchanging infinite sums and integrals. In
practice it is often unwieldy and frequently difficult to prove that particular
series converge uniformly in a given region. Rather, we usually appeal to
general theorems that provide conditions under which a series will converge
uniformly. In what follows, we shall state one such important theorem, for
which the proof is given in Section 3.4. The interested reader can follow the
logical development by reading relevant portions of Section 3.4 at this point.

Theorem 3.1.2 (“Weierstrass M Test”) Let |b j (z)| ≤ M j in a region R,
with M j constant. If

∑∞
j=1 M j converges, then the series S(z) =∑∞

j=1 b j (z)
converges uniformly in R.

An immediate corollary to this theorem is the so-called ratio test for complex
series. Namely, suppose |b1(z)| is bounded, and∣∣∣∣b j+1(z)

b j (z)

∣∣∣∣ ≤ M < 1, j > 1 (3.1.10)

for M constant. Then the series

S(z) =
∞∑
j=1

b j (z) (3.1.11)

is uniformly convergent.
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In order to prove this statement, we write

bn(z) = b1(z)
b2(z)

b1(z)

b3(z)

b2(z)
· · · bn(z)

bn−1(z)
(3.1.12)

Theboundedness of b1(z) implies

|b1(z)| < B

hence

|bn(z)| < B Mn−1

and therefore

∞∑
j=1

|b j (z)| ≤ B
∞∑
j=1

M j−1 =
(

B

1− M

)

We see that the series
∑∞

j=1 |b j (z)| is bounded by a series that converges and is
independent of z. Consequently, we see that Theorem 3.1.2, via the assertion
Eq. (3.1.10), implies the uniform convergence of Eq. (3.1.11).

We note in the above that if any finite number of terms do not satisfy the
hypothesis, they can be added in separately; this will not affect the convergence
results.

Problems for Section 3.1

1. In the following we are given sequences. Discuss their limits and whether
the convergence is uniform, in the region α ≤ |z| ≤ β, for finite α, β > 0.

(a)

{
1

nz2

}∞
n=1

(b)

{
1

zn

}∞
n=1

(c)

{
sin

z

n

}∞
n=1

(d)

{
1

1+ (nz)2

}∞
n=1

2. For each sequence in Problem 1, what can be said if

(a) α = 0, (b) α > 0, β = ∞

3. Compute the integrals

lim
n→∞

∫ 1

0
nzn−1 dz and

∫ 1

0
lim

n→∞
(
nzn−1

)
dz
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and show that they are not equal. Explain why this is not a counterexample
to Theorem 3.1.1.

4. In the following, let C denote the unit circle centered at the origin. Let
f (z)= limn→∞ fn(z). Evaluate

∮
C f (z) dz and the limit limn→∞

∮
C fn(z)

dz, and discuss why they might or might not be equal.

(a) fn(z) = 1

z − n
(b) fn(z) = 1

z − (1− 1/n)

5. Show that the following series converge uniformly in the given regions:

(a)
∞∑

n=1

zn, 0 ≤ |z| < R, R < 1

(b)
∞∑

n=1

e−nz, R < |Re z| ≤ 1, R > 0 (c)
∞∑

n=1

sech nz, Re z ≥ 1

6. Show that the sequence {zn}∞n=1 converges uniformly inside 0 ≤ |z| <
R, R < 1. (Hint: because |z| < 1, we find that |z| ≤ R, R < 1. Find
N (ε, R) using the definition of uniform convergence.)

3.2 Taylor Series

In a manner similar to a function of a single real variable, as mentioned in
Section 1.2, a power series about the point z = z0 is defined as

f (z) =
∞∑
j=0

b j (z − z0)
j (3.2.1)

where b j , z0 are constants or alternatively

f (z + z0) =
∞∑
j=0

b j z
j (3.2.2)

Without loss of generality we shall simply work with the series

f (z) =
∞∑
j=0

b j z
j (3.2.3)

This corresponds to taking z0= 0. The general case can be obtained by replacing
z by (z − z0).
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We begin by establishing the uniform convergence of the above series.

Theorem 3.2.1 If the series Eq. (3.2.3) converges for some z∗ 
= 0, then it
converges for all z in |z| < |z∗|. Moreover, it converges uniformly in |z| ≤ R
for R < |z∗|.

Proof For j ≥ J , |z| < |z∗|
∣∣b j z

j
∣∣ = ∣∣b j z

j
∗
∣∣ ∣∣∣∣ z

z∗

∣∣∣∣ j < ∣∣∣∣ z

z∗

∣∣∣∣ j ≤ ( R

|z∗|
) j

This follows from the fact that |b j z j
∗| < 1 for sufficiently large j owing to the

assumed convergence of the series at z = z∗ (i.e., lim j→∞ b j z j
∗ = 0). We now

take

M = R

|z∗| < 1 and M j ≡ M j

in the Weierstrass M test for j ≥ J . Thus
∑∞

j=0 b j z j converges uniformly for
|z| ≤ R, |R| < |z∗|, because

∑∞
j=J |b j z j | <∑∞

j=J M j = (M J )/(1− M). �

We now establish the Taylor series for an analytic function.

Theorem 3.2.2 (Taylor Series) Let f (z) be analytic for |z| ≤ R. Then

f (z) =
∞∑
j=0

b j z
j (3.2.4)

where

b j = f ( j)(0)

j!

converges uniformly in |z| ≤ R1 < R.
We note that this is the Taylor series about z = 0. If z = 0 is replaced by

z = z0, then the result of this theorem would state that f (z) =∑ b j (z − z0)
j ,

where b j = f ( j)(z0)/j! converges uniformly in |z − z0| < R. (If f (z) is
analytic for |z| < R then (3.2.4) holds equally well.)

Proof The proof is really an application of Cauchy’s Integral Formula (Eq.
(2.6.1) of Section 2.6). We write

f (z) = 1

2π i

∮
C

f (ζ )

ζ − z
dζ = 1

2π i

∮
C

f (ζ )

ζ

(
1− z

ζ

)−1

dζ (3.2.5)
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where C is a circle of radius R. We use the uniformly convergent expansion

(1− z)−1 =
∞∑
j=0

z j (3.2.6)

Equation (3.2.6) can be established directly. Consider sn(z) =
∑n

j=0 z j for
|z| < 1. Then

sn(z)− zsn(z) = 1− zn+1

hence sn(z) = (1 − zn+1)/(1 − z). Because limn→∞ zn+1 = 0, we have Eq.
(3.2.6). Noting that |z/ζ | < 1, we can replace z by z/ζ in Eq. (3.2.6). Using
this expansion in Eq. (3.2.5) we deduce

f (z) = 1

2π i

∮
C

f (ζ )
∞∑
j=0

(
z j

ζ j+1

)
dζ (3.2.7)

From Theorem 3.1.1 of Section 3.1 we may interchange
∮

C and
∑∞

j=0 to
obtain

f (z) =
∞∑
j=0

b j z
j (3.2.8)

where

b j = 1

2π i

∮
C

f (ζ )

ζ j+1
dζ = f ( j)(0)

j!

where the right-hand side of Eq. (3.2.8) follows from the corollary of Cauchy’s
Theorem (Theorem 2.6.2 of Section 2.6). The uniform convergence of the
power series follows in the same way as discussed in Theorem 3.2.1 of this
section. �

Sometimes a Taylor series converges for all finite z. Then f (z) is analytic
for |z| ≤ R, for every R.

We note that (a) formula (3.2.4) is the same as that for functions of one real
variable and (b) the Taylor series about the point z = z0 is given by

f (z) =
∞∑
j=0

b j (z − z0)
j (3.2.9)

where

b j = 1

2π i

∮
C

f (ζ )

(ζ − z0) j+1
dζ = f ( j)(z0)

j!
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Example 3.2.1

ez =
∞∑
j=0

z j

j!
for |z| <∞ (3.2.10)

ez2 =
∞∑
j=0

z2 j

j!
for |z| <∞ (3.2.11)

The first of these formulae follows from Eq. (3.2.4) because f ( j)(0) = 1
for f (z) = ez . Using the limit form of the “ratio test” discussed in Section 3.1
(Eq. (3.1.10))

lim
n→∞

∣∣∣∣∣
zn+1

(n+1)!
zn

n!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ z

n + 1

∣∣∣∣ = 0

We see that convergence of Eq. (3.2.10) is obtained for all z. The largest
number R for which the power series (3.2.3) converges inside the disk |z| < R
is called the radius of convergence. The value of R may be zero or infinity
or a finite number. A value for the radius of convergence may be obtained
via the usual absolute value tests of calculus such as the ratio test discussed in
Section 3.1, Eq. (3.1.10), or more generally via the root test of calculus (i.e.
R = [limn→∞(supm≥n |am |1/m)]−1 where the supremum, sup, is the least upper
bound: l.u.b.). In Example 3.2.1 we say the radius of convergence is infinite.
The second formula follows by simply using Eq. (3.2.10) and replacing z by
z2. We leave it as an exercise for the reader to verify that formulae (1.2.19)
of Section 1.2 are Taylor series representations (about z = 0) of the indicated
functions.

Taylor series behave just like ordinary polynomials. We may integrate or
differentiate Taylor series termwise. Integrating termwise inside its region of
convergence, about z = 0,∫

f (z) dz =
∫ ( ∞∑

j=0

a j z
j

)
dz =

∞∑
j=0

a j z j+1

j + 1
+ C C constant (3.2.12)

is justified by Eq. (3.1.9) of Section 3.1. Similarly, differentiation

f ′(z) =
∞∑
j=0

ja j z
j−1 (3.2.13)

also follows. We formulate this result as a theorem.
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Theorem 3.2.3 Let f (z) be analytic for |z| ≤ R. Then the series obtained
by differentiating the Taylor series termwise converges uniformly to f ′(z) in
|z| ≤ R1 < R.

Proof If f (z) is analytic in |z| ≤ R, then from our previous results (e.g. The-
orem 2.6.2, Section 2.6), f ′(z) is analytic in D for |z| < R. The Taylor series
for f ′(z) is given by

f ′(z) =
∞∑
j=0

C j z
j , C j = f ( j+1)(0)

j!
(3.2.14)

But the Taylor series for f (z) is given by

f (z) =
∞∑
j=0

f ( j)(0)

j!
z j (3.2.15)

hence formal differentiation termwise yields

f ′(z) =
∞∑
j=1

f ( j)(0)

( j − 1)!
z j−1 =

∞∑
j=0

f ( j+1)(0)

j!
z j (3.2.16)

which is equivalent to Eq. (3.2.14). Moreover, the same argument as presented
in the proof of Theorem 3.2.2 holds for Eq. (3.2.14), which shows that the
differentiated series converges uniformly in |z| ≤ R1 < R. �

We remark that further differentiation for f ′′(z), f ′′′(z), . . ., follows in the
same manner by reapplying the arguments presented in Theorem 3.2.3.

The Taylor series representing the zero function is also clearly zero. (Because
zero is an analytic function, Eq. (3.2.4) applies.) We easily deduce that Taylor
series are unique; that is, there cannot be two Taylor series representations of
a given function f (z) because if there were two, say,

∑
anzn and

∑
bnzn , the

difference
∑

cnzn , where cn = an−bn , must represent the zero function, which
implies an = bn .

Similarly, any convergent power series representation of an analytic function
f (z) must be the Taylor series representation of f (z). In order to demonstrate
this fact, we first show that any convergent power series can be differentiated
termwise.

Theorem 3.2.4 If the power series (3.2.3) converges for |z| ≤ R, then it can
be differentiated termwise to obtain a uniformly convergent series for |z| ≤
R1 < R.
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Proof From Eq. (2.6.5) of Section 2.6 we have, for any closed contour C ,
|z| = R1 < R

f ′(z) = 1

2π i

∮
C

f (ζ )

(ζ − z)2
dζ

= 1

2π i

∮
C

∑∞
j=0 a jζ

j

(ζ − z)2
dζ (3.2.17)

Because the series in Eq. (3.2.17) is uniformly convergent, we may inter-
change the sum and integral (Section 3.1, Eq. (3.1.9)) to find

f ′(z) =
∞∑
j=0

a j

(
1

2π i

∮
C

ζ j

(ζ − z)2
dζ

)

=
∞∑
j=0

a j
d

dz
(z j )

=
∞∑
j=0

ja j z
j−1 (3.2.18)

where we have employed Eq. (2.6.5) of Section 2.6 for the function f (z) = z j .
Uniform convergence follows in the same way as before. �

The formula f (z) =∑∞
j=0 a j z j clearly may be differentiated over and over

again for |z| ≤ R1 < R. Thus it immediately follows that

f (0) = a0

f ′(0) = a1

f ( j)(0) = j!a j (3.2.19)

Hence we have deduced that the power series of f (z) is really the Taylor series
of f (z) (about z = 0).

The usual properties of series hold; namely, the sum/difference of a series
are the sum/difference of the terms. Calling g(z) =∑∞

j=0 b j z j

f (z)± g(z) =
∞∑
j=0

a j z
j ±

∞∑
j=0

b j z
j (3.2.20)

=
∞∑
j=0

(a j ± b j )z
j (3.2.21)
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and it also follows that the product of two convergent series may be written

f (z)g(z) =
∞∑
j=0

C j z
j (3.2.22)

where

C j =
j∑

k=0

bka j−k (3.2.23)

Another result similar to that of real analysis is the comparison test.

Theorem 3.2.5 Let the series
∑∞

j=0 a j z j converge for |z| < R. If |b j | ≤ |a j |
for j ≥ J , then the series

∑∞
j=0 b j z j also converges for |z| < R.

Proof For j ≥ J and |z| < |z∗| < R,

∣∣b j z
j
∣∣ ≤ ∣∣a j z

j
∣∣ = ∣∣a j z

j
∗
∣∣ ∣∣∣∣ z

z∗

∣∣∣∣ j < ∣∣∣∣ z

z∗

∣∣∣∣ j < 1

The latter inequalities follow because
∑∞

j=0 a j z j converges, and we know
that for sufficiently large j , |a j z j

∗| < 1. Convergence then follows, via the
Weierstrass M test. �

For example, we know that
∑∞

n=0(z
n/n!) = ez converges for |z| <∞. Thus

by the comparison test the series
∑∞

n=0[zn/(n!)2] also converges for |z| < ∞
since (n!)2 ≥ n! for all n.

Another example of a Taylor series (about z = 0) is given by

1

1+ z
=

∞∑
n=0

(−1)nzn for |z| < 1 (3.2.24)

(Also see the remark below Eq. (3.2.7).) Equation (3.2.24) is obtained by taking
successive derivatives of the function 1/(1+ z), evaluating them at z = 0, and
employing Eq. (3.2.4), or noting formula (3.2.6) and replacing−z with z. The
radius of convergence follows from the ratio test. Replacing z with z2 yields

1

1+ z2
=

∞∑
n=0

(−1)nz2n, for |z| < 1 (3.2.25)

The divergence, for |z| ≥ 1, of the series given in Eq. (3.2.25) is due to the
zeroes of 1 + z2 = 0, that is, z = ±i . In the case of real analysis, it was not
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really clear why the series (3.2.25) with z replaced by x diverges; only when
we examine the series in the context of complex analysis do we understand the
origins of divergence. Because the function 1/(1 + z2) is nonanalytic only at
z = ±i , it is natural to ask whether there is another series representation valid
for |z| > 1. In fact, there is such a representation that is part of a more general
series expansion (Laurent series) to be taken up shortly.

Having the ability to represent a function by a series, such as a Taylor series,
allows us to analyze and work with a much wider class of functions than the
usual elementary functions (e.g. polynomials, rational functions, exponentials,
and logarithms).

Example 3.2.2 Consider the “error function,” erf(z):

erf(z) = 2√
π

∫ z

0
e−t2

dt (3.2.26)

Using Eq. (3.2.11) with z2 replaced by −t2 and integrating termwise, we have
the Taylor series representation

erf(z) = 2√
π

∫ z

0

( ∞∑
n=0

(−t2)n

n!

)
dt

= 2√
π

∞∑
n=0

(−1)nz2n+1

(2n + 1)n!
= 2√

π

[
z − z3

3
+ z5

5 · 2!
− z7

7 · 3!
+ · · ·

]
(3.2.27)

Because we are integrating an exponential function that is entire, it follows that
the error function is also entire.

With the results of this section we see that the notion of analyticity of a
function f (z) in a regionRmay now be broadened. Namely, if f (z) is analytic,
then by Definition 2.1.1, f ′(z) exists in R. We have seen that this implies that
(a) f (z) has derivatives of all orders in R (an extension of Cauchy’s formula,
Theorem 2.6.2), and that (b) f (z) has a Taylor series representation in the
neighborhood of all points of R (Theorem 3.2.2).

On the other hand, if f (z) has a convergent power series expansion, that is

f (z) =
∞∑

n=0

an(z − z0)
n
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then integrating f (z) over a simple closed contour C implies
∮

C f (z) dz = 0
because

∮
C(z − z0)

ndz = 0. Hence by Theorem 2.6.5, f (z) is analytic inside
C . This is consistent with point (b) above as we have already shown that the
power series is equivalent to the Taylor series representation.

In later chapters we study analytic functions that coincide in a domain or on
a curve or that are zero at distinct points. The following theorems will be useful
(c.f. Section 3.5 and Chapter 7); we will only sketch the proofs.

Theorem3.2.6 Let each of two functions f (z) and g(z)be analytic in a common
domain D. If f (z) and g(z) coincide in some subportion D′ ⊂ D or on a curve
� interior to D, then f (z) = g(z) everywhere in D.

Proof Corresponding to any point z0 in D′ (or on �) consider the largest circle
C contained entirely within D. Both f (z) and g(z) may be represented by a
Taylor series inside C , and by the uniqueness of Taylor series, f (z) = g(z)
inside C . Next pick a new interior point of C but near its boundary, and repeat
the above Taylor series argument to find f (z) = g(z) in an extended domain.
In fact, this procedure can be repeated so as to entirely fill up the common
domain D. (This statement, while intuitively clear, requires some analysis to
substantiate – we shall omit it.) �

Consequently, a function f (z) that vanishes everywhere in a subdomain
D′ ⊂ D or on a curve � entirely contained within D must vanish everywhere
inside D (i.e. g(z) = 0 in the Theorem). The discussion in Theorem 3.2.6
provides us with a way of “analytically continuing” a known function in some
domain to a larger domain. We remark that one must be careful when continuing
a multivalued function; this is discussed further in Section 3.5.

In fact, analytic continuation of a function f (z) to a function g(z), with
which it shares a common boundary, is closely related to the above. It can be
described via the following theorem, which is proven with the aid of Morera’s
Theorem.

Theorem3.2.7 Let D1 and D2 be two disjoint domains, whose boundaries share
a common contour �. Let f (z) be analytic in D1 and continuous in D1 ∪ �

and g(z) be analytic in D2 and continuous in D2 ∪ �, and let f (z) = g(z) on
�. Then the function

H(z) =


f (z) z ∈ D1

f (z) = g(z) z ∈ �

g(z) z ∈ D2
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Fig. 3.2.1. Analytic continuation

is analytic in D = D1 ∪ � ∪ D2. We say that g(z) is the analytic continuation
of f (z).

Proof Consider a closed contour C in D. If C does not intersect �, then∮
C H(z) dz = 0 because C is entirely contained in D1 or D2. On the other

hand, if C intersects �, then we have (referring to Figure 3.2.1)∮
C

H(z) dz =
∫

C1

f (z) dz +
∫ �(β)

�(α)

f (z) dz

+
∫ �(α)

�(β)

g(z) dz +
∫

C2

g(z) dz = 0 (3.2.28)

where we have divided the closed contour C into two other closed contours
C1 + � and C2 − �, and the endpoints of the contour � inside C are labeled
�(α) and�(β). Note that the two “intermediate” integrals in opposite directions
along � mutually cancel owing to the fact that f (z) = g(z) on �. Then, the
fact that f (z) and g(z) are analytic in D1 and D2, respectively, ensures that∮

C H(z) dz = 0, whereupon from Morera’s Theorem (see Section 2.6.2) we
find that H(z) is analytic in D = D1 ∪ � ∪ D2. (If f , g are analytic on � this
statement follows immediately; otherwise some more work is needed). �

Theorem 3.2.8 If f (z) is analytic and not identically zero in some domain D
containing z = z0, then its zeroes are isolated; that is, there is a neighborhood
about z = z0, f (z0) = 0, in which f (z) is nonzero.

Proof Because f (z) is analytic at z0, it has a Taylor series about z = z0. If it
has a zero of order n we write

f (z) = (z − z0)
ng(z)

where g(z) has a Taylor series about z = z0, and g(z0) 
= 0. There must exist a
maximum integer n, otherwise f (z)would be identically zero in a neighborhood
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of z0 and, from Theorem 3.2.6, must vanish everywhere in D. Because g(z) is
analytic, it follows that for sufficiently small ε, |g(z) − g(z0)| < ε whenever
z is in the neighborhood of z0; namely, 0 < |z − z0| < δ. Hence g(z) can
be made as close to g(z0) as desired; hence g(z) 
= 0 and f (z) 
= 0 in this
neighborhood. �

Finally, in closing this section we briefly discuss the behavior of functions
that are represented by integrals. Such integrals arise frequently in applications,
for example, (a) the Fourier transform F(z) of a function f (t)

F(z) =
∫ ∞

−∞
f (t)e−i zt dt

or (b) the Cauchy type integral F(z) associated with a function f (t) on a simple
closed contour C with z inside C ,

F(z) = 1

2π i

∮
C

f (t)

t − z
dt

These are two examples we will study in some detail in subsequent chapters, in
which a given integral depends on another parameter, in this case z. Frequently
one is interested in the question of when the function F(z) is analytic, which
we now address in some generality.

Consider integrals of the following form:

F(z) =
∫ b

a
g(z, t) dt a ≤ t ≤ b (3.2.29)

where (a) for each t , g(z, t) is an analytic function of z in a domain D, and (b)
for each z, g(z, t) is a continuous function of t .
With these hypotheses, it follows that F(z) is analytic in D and

F ′(z) =
∫ b

a

∂g

∂z
(z, t) dt (3.2.30)

Because for each t , g(z, t) is an analytic function of z, we find that

g(z, t) =
∞∑
j=0

c j (t)(z − z0)
j (3.2.31)

where z0 is any point in D and from Eq. (3.2.9) c j (t) = 1
2π i

∮
C

g(ζ,t)
(ζ−z0) j+1 dζ ,

and C is a circle inside D centered at z0. The continuity of g(z, t) as a function
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of t implies the continuity of c j (t). The function g(z, t) is bounded in D:
|g(z, t)| < M because it is analytic there. Hence |c j (t)| ≤ M

2π

∮
C

|dζ |
|ζ−z0| j+1 =

M/ρ j , where ρ = |ζ − z0| is the radius of the circle C . Thus the Taylor series
given by Eq. (3.2.31) converges uniformly for |z − z0| < ρ and can therefore
be integrated and/or differentiated termwise, from which Eq. (3.2.30) follows,
using the series for g with (3.2.29).

We also note that a closed contour in t can be viewed (see Section 2.4) as
a special case of a line integral of the form of Eq. (3.2.30) where a ≤ t ≤ b.
Hence the above results apply when F(z) = ∮C̃ g(z, t) dt and Ĉ is a closed
contour (such as a Cauchy type integral).

On the other hand, if the contour becomes infinite (e.g. a = −∞ or b = ∞),
then, in addition to the hypotheses already stated, it is necessary to specify a
uniformity restriction on g(z, t) in order to have analyticity of F(z) and then
Eq. (3.2.30). Namely, in this case of infinite limits it is sufficient to add that
g(z, t) satisfy |g(z, t)| ≤ G(t), where

∫ b
a G(t) dt < ∞. We will not go into

further details here.

Problems for Section 3.2

1. Obtain the radius of convergence of the series
∑∞

n=1 sn(z), where sn(z) is
given by

(a) zn (b)
zn

(n + 1)!
(c) nnzn (d)

z2n

(2n)!
(e)

n!

nn
zn

2. Find Taylor series expansions around z = 0 of the following functions in
the given regions:

(a)
1

1− z2
, |z| < 1 (b)

z

1+ z2
, |z| < 1

(c) cosh z, |z| <∞ (d)
sin z

z
, 0 < |z| <∞

(e)
cos z − 1

z2
, 0 < |z| <∞ (f)

ez2 − 1− z2

z3
, 0 < |z| <∞

3. Let the Euler numbers En be defined by the power series

1

cosh z
=

∞∑
n=0

En

n!
zn

(a) Find the radius of convergence of this series.
(b) Determine the first six Euler numbers.
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4. Show that about any point z = x0

ez = ex0

∞∑
n=0

(z − x0)
n

n!

5. (a) Use the identity 1
z = 1/((z + 1)− 1) to establish

1

z
= −

∞∑
n=0

(z + 1)n |z + 1| < 1

(b) Use the above identity to also establish

1

z2
=

∞∑
n=0

(n + 1)(z + 1)n |z + 1| < 1

Verify that you get the same result by differentiation of the series in
part (a).

6. Evaluate the integrals
∮

C f (z) dz, where C is the unit circle centered at
the origin and f (z) is given by the following:

(a)
sin z

z
(b)

sin z

z2
(c)

cosh z − 1

z4

7. Use the Taylor series for 1/(1 + z) about z = 0 to find the Taylor series
expansion of log(1+ z) about z = 0 for |z| < 1.

8. Use the Taylor series representation of 1/(1− z) around z = 0 for |z| < 1
to find a series representation of 1/(1 − z) for |z| > 1. (Hint: use
1/(1− z) = −1/(z(1− 1/z))

9. Use the Taylor series representation of 1/(1 − z) around z = 0, for
|z| < 1, to deduce the series representation of 1/(1− z)2, 1/(1− z)3, . . .,
1/(1− z)m .

10. Use the binomial expansion and Cauchy’s Integral Theorem to evaluate∮
C
(z + 1/z)2n dz

z
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where C is the unit circle centered at the origin. Recall the binomial
expansion

(a + b)n = an + nan−1b + · · · =
n∑

k=0

(
n

k

)
an−kbk,

where (
n

k

)
≡ n!

k!(n − k)!

Use this result to establish the following real integral formula:

1

2π

∫ 2π

0
(cos θ)2n dθ = (2n)!

4n(n!)2

11. Define F(z) = ∫∞−∞ f (t)eizt dt , where | f (t)| ≤ e−a|t |, a > 0. Find
where F(z) is analytic. Explain.

3.3 Laurent Series

In many applications we encounter functions that are, in some sense, gener-
alizations of analytic function. Typically, they are not analytic at some point,
points, or in some regions of the complex plane, and consequently, Taylor series
cannot be employed in the neighborhood of such points. However, another se-
ries representation can frequently be found in which both positive and negative
powers of (z − z0) exist. (Recall that Taylor series expansions contain only
positive powers of (z − z0).) Such a series is valid for those functions that are
analytic in and on a circular annulus, R1 ≤ |z − z0| ≤ R2 (see Figure 3.3.1).

In the derivation of Laurent series it is convenient to work with the series
about an arbitrary point z = z0.

R

R

1

2

oz

z

Fig. 3.3.1. Circular annulus R1 ≤ |z − z0| ≤ R2
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1
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2

Fig. 3.3.2. Inner contour C1 and outer contour C2

Theorem 3.3.1 (Laurent Series) A function f (z) analytic in an annulus
R1 ≤ |z − z0| ≤ R2 may be represented by the expansion

f (z) =
∞∑

n=−∞
Cn(z − z0)

n (3.3.1)

in the region R1 < Ra ≤ |z − z0| ≤ Rb < R2, where

Cn = 1

2π i

∮
C

f (z) dz

(z − z0)n+1
(3.3.2)

and C is any simple closed contour in the region of analyticity enclosing the
inner boundary |z − z0| = R1.

(Note: if f (z) is analytic in R1 < |z − z0| < R2 the same result holds.)

Proof We introduce the usual cross cut in the annulus (see Figure 3.3.2) where
we denote by C1 and C2 the inside and outside contours surrounding the point
z = z0.

Contour C1 lies on |z − z0| = R1, and contour C2 lies on |z − z0| = R2.
Application of Cauchy’s formula to the crosscut region where f (z) is analytic
and the crosscut contributions cancel, lets us write f (z) as follows:

f (z) = 1

2π i

∮
C2

f (ζ )

ζ − z
dζ − 1

2π i

∮
C1

f (ζ )

ζ − z
dζ (3.3.3)

In the first integral we write

1

ζ − z
= 1

(ζ − z0)− (z − z0)
= 1

(ζ − z0)
(

1−
(

z−z0
ζ−z0

))
=
(

1

(ζ − z0)

) ∞∑
j=0

(z − z0)
j

(ζ − z0) j
(3.3.4)
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In the above equation we have used Eq. (3.2.6) with z replaced by z−z0
ζ−z0

, and
we note that ∣∣∣∣ z − z0

ζ − z0

∣∣∣∣ = |z − z0|
R2

< 1

In the second integral we write

− 1

ζ − z
= 1

z − z0 − (ζ − z0)
= 1

(z − z0)

1(
1−
(
ζ−z0
z−z0

))
= 1

z − z0

∞∑
j=0

(
ζ − z0

z − z0

) j

(3.3.5)

Again in Eq. (3.3.5) we have made use of Eq. (3.2.6), where z is now replaced
by ζ−z0

z−z0
, and we note that ∣∣∣∣ζ − z0

z − z0

∣∣∣∣ = R1

|z − z0| < 1

Using Eq. (3.3.4) in the first integral of Eq. (3.3.3) and Eq. (3.3.5) in the
second integral of Eq. (3.3.3) gives us the following representation for f (z):

f (z) =
∞∑
j=0

A j (z − z0)
j +

∞∑
j=0

B j (z − z0)
−( j+1) (3.3.6)

where

A j = 1

2π i

∮
C2

f (ζ )

(ζ − z0) j+1
dζ (3.3.7a)

B j = 1

2π i

∮
C1

f (ζ )(ζ − z0)
j dζ (3.3.7b)

We make the substitutions n= j in the first sum of Eq. (3.3.6) and n =
−( j + 1) in the second sum of Eq. (3.3.6) to obtain

f (z) =
∞∑

n=0

An(z − z0)
n +

−1∑
n=−∞

B−n−1(z − z0)
n (3.3.8)

where

An = 1

2π i

∮
C2

f (ζ )

(ζ − z0)n+1
dζ (3.3.9)
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and

B−n−1 = 1

2π i

∮
C1

f (ζ )

(ζ − z0)n+1
dζ (3.3.10)

Because f (z) is analytic in the annulus, it follows from Cauchy’s Theorem
that each of the integrals

∮
C1

and
∮

C2
in Eqs. (3.3.9) and (3.3.10) can be deformed

into any simple closed contour enclosing C1. This yields

Cn = 1

2π i

∮
C

f (ζ )

(ζ − z0)n+1
dζ (3.3.11)

where Cn = An for n ≥ 0 and Cn = B−n−1 for n ≤ −1. Thus Eq. (3.3.8)
becomes

f (z) =
∞∑

n=−∞
Cn(z − z0)

n (3.3.12)

which proves the theorem. �

The coefficient of the term 1/(z − z0), which is C−1 in Eq. (3.3.12), turns
out to play a very special role in complex analysis. It is given a special name:
the residue of the function f (z) (see Chapter 4). The negative powers of the
Laurent series are referred to as the principal part of f (z).

We note two important special cases: (a)Suppose f (z) is analytic everywhere
inside the circle |z−z0| = R1. Then by Cauchy’s Theorem, Cn = 0 for n ≤ −1
because the integrand in Eq. (3.3.11) is analytic; in this case, Eq. (3.3.12)
reduces to the Taylor series

f (z) =
∞∑

n=0

Cn(z − z0)
n (3.3.13)

where Cn is given by Eq. (3.3.11) for n ≥ 0. (b) Suppose f (z) is analytic
everywhere outside the circle |z − z0| = R2. Then the integral (3.3.11) yields
Cn = 0 for n ≥ 1. In particular, for n ≥ 1 we have that the contour C in
Eq. (3.3.11) may be deformed to a large circle |z| = R. Introducing the
transformation (see Section 1.3) t = 1/z, we find

Cn = −1

2π i

∮
Cε

f
(

1
t

)
(1− t z0)n+1

tn−1 dt (3.3.14)

where Cε denotes a circle of radius ε= 1/R. Because f (z) is analytic at infinity,
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the function f (1/t) is bounded, that is,∣∣∣∣ f

(
1

t

)∣∣∣∣ ≤ M (3.3.15)

for sufficiently small t . Hence

|Cn| ≤ 1

2π

∮
Cε

M |t |n−1

|1− t z0|n+1
|dt | (3.3.16)

Using t sufficiently small so that

|1− t z0|n+1 ≥ (1− |t | |z0|)n+1 ≥ 1

2

it follows that (|dt | = ε dθ )

|Cn| ≤ 2Mεn → 0 as ε → 0, n ≥ 1.

Thus, in this case f (z) has the form:

f (z) =
0∑

n=−∞

Cn

(z − z0)n
.

In practice, Laurent series frequently may be obtained from the Taylor series
of a function by appropriate substitutions. (We consider a number of other
examples later in this section.) For example, replacing z in the series expansion
for ez (see Eq. (3.2.10)) by 1/z yields a Laurent series for e1/z :

e1/z =
∞∑
j=0

1

j!z j
(3.3.17)

which contains an infinite number of negative powers of z. This is an example
of case (b) above, that is, e1/z is analytic for all |z| > 0.

Laurent series have properties very similar to those of Taylor series. For
example, the series converges uniformly.

Theorem 3.3.2 The Laurent series, Eqs. (3.3.1) and (3.3.2), of a function f (z)
that is analytic in an annulus R1 ≤ |z − z0| ≤ R2 converges uniformly to f (z)
for ρ1 ≤ |z − z0| ≤ ρ2, where R1 < ρ1 and R2 > ρ2.

Proof The derivation of Laurent series shows that f (z) has two representative
parts, given by the two sums in Eq. (3.3.6). We write f (z)= f1(z) + f2(z).
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The first series in Eq. (3.3.6) is the Taylor series part and it converges uniformly
to f1(z) by the proof given in Theorem 3.2.1. For the second sum

f2(z) =
∞∑
j=0

B j (z − z0)
−( j+1) (3.3.18)

we can use the M test. For j large enough and for z = z1 on |z − z0| = R1

∣∣B j (z − z0)
−( j+1)

∣∣ = |B j |
|z1 − z0| j+1

∣∣∣∣ z1 − z0

z − z0

∣∣∣∣ j+1

<

∣∣∣∣ z1 − z0

z − z0

∣∣∣∣ j+1

< 1 (3.3.19)

where |B j |/|z1 − z0| j+1 < 1 is due to the convergence of the series (3.3.18)
(see Theorem 3.3.1), and the fact that |(z1− z0)/(z− z0)| < 1 is due to z being
inside the annulus with ρ1 > R1. �

A corollary to this result is the fact that the Laurent series may be integrated
termwise, a fact that follows from Theorem 3.1.1. Similarly, the Laurent series
may be differentiated termwise; the proof is similar to Theorem 3.2.3 and
is therefore omitted. It is also easily shown that the elementary operations
such as addition, subtraction, and multiplication for Laurent series behave just
like Taylor series.

In fact, we now show that the Laurent expansion given by Eqs. (3.3.11) and
(3.3.12) is unique. Namely, if

f (z) =
∞∑

n=−∞
bn(z − z0)

n (3.3.20)

is valid in the annulus R1 ≤ |z − z0| ≤ R2, then bn = Cn , with Cn given by
Eq. (3.3.11). This fact will allow us to obtain Laurent expansions by elementary
methods. Before turning to some examples, let us prove this result.

Theorem 3.3.3 Suppose f (z) is represented by a uniformly convergent series

f (z) =
∞∑

n=−∞
bn(z − z0)

n

in the annulus R1 ≤ |z − z0| ≤ R2. Then bn =Cn , with Cn given by
Eqs. (3.3.11).
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Proof Because f (z) is represented by a uniformly convergent series, given
ε → 0, there is an N > 0 (i.e., N = N (ε)) such that when n ≥ N∣∣∣∣∣ f (z)−

N∑
n=−N

bn(z − z0)
n

∣∣∣∣∣ < ε (3.3.21)

inside R1 ≤ |z − z0| ≤ R2. Consider

I =
∣∣∣∣∣ 1

2π i

∮
C

(
N∑

m=−N

bm(ζ − z0)
m − f (ζ )

)
dζ

(ζ − z0)n+1

∣∣∣∣∣ (3.3.22)

where C is the circle |z − z0| = R, and R1 ≤ R ≤ R2. Because we know by
contour integration (Section 2.4) that

1

2π i

∮
C
(ζ − z0)

n dζ =
{

1 when n = −1
0 when n 
= −1

(3.3.23)

we find that only the m = n term in the sum in Eq. (3.3.22) is nonzero, hence

I =
∣∣∣∣bn − 1

2π i

∮
C

f (ζ )

(ζ − z0)n+1

∣∣∣∣ (3.3.24)

However, from Eq. (3.3.21) we have the following estimate for Eq. (3.3.22):

I ≤ ε

2π

∮
C

|dζ |
|ζ − z0|n+1

= ε

Rn
(3.3.25)

Then from Eq. (3.3.24), because ε may be taken arbitrarily small, we deduce
that

bn = Cn = 1

2π i

∮
C

f (ζ )

(ζ − z0)n+1
dζ (3.3.26)

�

We emphasize that in practice one does not use Eq. (3.3.2) to compute the
coefficients of the Laurent expansion of a given function. Instead, one usually
appeals to the above uniqueness theorem and uses well-known Taylor expan-
sions and appropriate substitutions.

Example 3.3.1 Find the Laurent expansion of f (z) = 1/(1+ z) for |z| > 1.
The Taylor series expansion (3.2.6) of (1− z)−1 is

1

1− z
=

∞∑
n=0

zn for |z| < 1 (3.3.27)
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We write
1

1+ z
= 1

z(1+ 1/z)
(3.3.28)

and use Eq. (3.3.27) with z replaced by −1/z, noting that if |z|> 1 then
|−1/z| < 1. We find

1

1+ z
= 1

z

∞∑
n=0

(−1)n

zn
=

∞∑
n=0

(−1)n

zn+1

= 1

z
− 1

z2
+ 1

z3
− · · ·

We note that for |z| < 1, f (z) = 1/(1 + z) = ∑∞
n=0(−1)nzn . Thus there

are different series expansions in different regions of the complex plane. In
summary

1

1+ z
=



∞∑
n=0

(−1)nzn |z| < 1

∞∑
n=0

(−1)n

zn+1
|z| > 1

Example 3.3.2 Find the Laurent expansion of

f (z) = 1

(z − 1)(z − 2)
for 1 < |z| < 2

We use partial fraction decomposition to rewrite f (z) as

f (z) = − 1

z − 1
+ 1

z − 2
(3.3.29)

Anticipating the fact that we will use Eq. (3.3.27), we rewrite Eq. (3.3.29) as

f (z) = −1

z

(
1

1− 1/z

)
− 1

2

(
1

1− z/2

)
(3.3.30)

Because 1 < |z| < 2, |1/z| < 1, and |z/2| < 1, we can use Eq. (3.2.28) to
obtain

f (z) = −1

z

∞∑
n=0

1

zn
− 1

2

∞∑
n=0

(
z

2

)n

= −
(

1

z
+ 1

z2
+ 1

z3
+ · · ·

)
− 1

2

(
1+ z

2
+
(

z

2

)2

+ · · ·
)
(3.3.31)
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Thus

f (z) =
∞∑

n=−∞
Cnzn

where

Cn =
 −1 n ≤ −1

1

2n+1
n ≥ 0

As with Example 3.3.1, there exist different Laurent series expansions for
|z| < 1 and for |z| > 2.

A somewhat more complicated example follows.

Example 3.3.3 Find the first two nonzero terms of the Laurent expansion of
the function f (z) = tan z about z = π/2.

Let us call z = π/2+ u, so

f (z) = sin
(
π
2 + u

)
cos
(
π
2 + u

) = −cos u

sin u
(3.3.32)

This can be expanded using the Taylor series for sin u and cos u:

f (z) = −
(

1− u2

2! + · · ·
)

(
u − u3

3! + · · ·
) = −1

u

(
1− u2

2! + · · ·
)

(
1− u2

3! + · · ·
)

The denominator can be expanded via Eq. (3.3.27) to obtain, for the first two
nonzero terms

f (z) = −1

u

(
1− u2

2!
+ · · ·

)(
1+ u2

3!
+ · · ·

)
= −1

u

(
1− u2

3
+ · · ·

)

= − 1(
z − π

2

) + (z − π
2

)
3

+ · · ·

We also note that this Laurent series converges for |z−π/2| < π since cos z
vanishes at z = −π/2, 3π/2.

Problems for Section 3.3

1. Expand the function f (z) = 1/(1+ z2) in

(a) a Taylor series for |z| < 1
(b) a Laurent series for |z| > 1
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2. Given the function f (z) = z/(a2 − z2), a > 0, expand f (z) in a Laurent
series in powers of z in the regions

(a) |z| < a (b) |z| > a

3. Given the function

f (z) = z

(z − 2)(z + i)

expand f (z) in a Laurent series in powers of z in the regions

(a) |z| < 1 (b) 1 < |z| < 2 (c) |z| > 2

4. Evaluate the integral
∮

C f (z) dz where C is the unit circle centered at the
origin and f (z) is given as follows:

(a)
ez

z3
(b)

1

z2 sin z
(c) tanh z (d)

1

cos 2z
(e) e1/z

5. Let

e
t
2 (z−1/z) =

∞∑
n=−∞

Jn(t)z
n

Show from the definition of Laurent series and using properties of integra-
tion that

Jn(t) = 1

2π

∫ π

−π
e−i(nθ−t sin θ) dθ

= 1

π

∫ π

0
cos(nθ − t sin θ) dθ

The functions Jn(t) are called Bessel functions, which are well-known
special functions in mathematics and physics.

6. Given the function

A(z) =
∫ ∞

z

e−1/t

t2
dt

find a Laurent expansion in powers of z for |z| > R, R > 0. Why will the
same procedure fail if we consider

E(z) =
∫ ∞

z

e−t

t
dt

(See also Problem 7, below.)
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7. Suppose we are given

E(z) =
∫ ∞

z

e−t

t
dt

A formal series may be obtained by repeated integration by parts, that is,

E(z) = e−z

z
−
∫ ∞

z

e−t

t2
dt

= e−z

z
− e−z

z2
+
∫ ∞

z

2e−t

t3
dt = · · ·

If this procedure is continued, show that the series is given by

E(z) = e−z

z

(
1− 1

z
+ · · · + (−)nn!

zn

)
+ Rn(z)

Rn(z) = (−)n+1(n + 1)!
∫ ∞

z

e−t

t n+2
dt

Explain why the series does not converge. (See also Problem 8, below.)

8. In Problem 7, above, consider z = x real. Show that

|Rn(z)| ≤ (n + 1)!
e−x

xn+2

Explain how to approximate the integral E(x) for large x , given some n.
Find suitable values of x for n = 1, 2, 3 in order to approximate E(x)
to within 0.01, using the above inequality for |Rn(x)|. Explain why this
approximation holds true for Rez > 0. Why does the approximation fail
as n →∞?

9. Find the first three nonzero terms of a Laurent series for the function
f (z) = [z(z − 1)]1/2 for |z| > 1.

∗3.4 Theoretical Results for Sequences and Series

In earlier sections of Chapter 3 we introduced the notions of sequences, series,
and uniform convergence. Although the Weierstrass M test was stated, a proof
was deferred to this section for those interested readers. We begin this section
by discussing the notion of a Cauchy sequence.

Definition 3.4.1 A sequence of complex numbers { fn} forms a Cauchy se-
quence if, for every ε > 0, there is an N = N (ε), such that whenever n ≥ N
and m ≥ N we have | fn − fm | < ε.

The same definition as 3.4.1 applies to sequences of complex functions
{ fn(z)}, where it is understood that fn(z) exists in some regionR, z ∈ R. Here,
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in general, N = N (ε, z). Whenever N = N (ε) only, the sequence { fn(z)} is
said to be a uniform Cauchy sequence. The following result is immediate.

Theorem 3.4.1 If a sequence converges, then it is a Cauchy sequence.

Proof If { fn(z)} converges to f (z), then for any ε > 0 there is an N = N (ε, z)
such that whenever n > N and m > N

| fn(z)− f (z)| < ε

2
and | fm(z)− f (z)| < ε

2

Hence

| fn(z)− fm(z)| = | fn(z)− f (z)− ( fm(z)− f (z))|
≤ | fn(z)− f (z)| + | fm(z)− f (z)|
< ε

and so { fn(z)} is a Cauchy sequence.
We note that if { f (z)} converges uniformly to f (z) then N = N (ε) only, and

the Cauchy sequence is uniform. �

We shall next prove the converse, namely that every Cauchy sequence con-
verges. We shall employ the following result of real analysis, namely every
real Cauchy sequence has a limit.

Theorem 3.4.2 If { fn(z)} is a Cauchy sequence, then there is a function f (z)
such that { fn(z)} converges to f (z).

Proof Let us call fn(z) = un(x, y)+ ivn(x, y). Because

|un(x, y)− um(x, y)| ≤ | fn(z)− fm(z)|

|vn(x, y)− vm(x, y)| ≤ | fn(z)− fm(z)|

and { fn(z)} is a Cauchy sequence, we find that {un(x, y)} and {vn(x, y)} are
real Cauchy sequences and hence have limits u(x, y) and v(x, y), respec-
tively. Thus the function f (z) = u(x, y) + iv(x, y) exists and is the limit of
{ fn(z)}.

Convergence will be uniform if the number N for the Cauchy sequence
{ fn(z)} depends only on ε (N = N (ε)) and not on both ε and z (N =
N (ε, z)). �
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The above theorem allows us to prove the Weierstrass M test given in Section
3.1. We repeat the statement of this theorem now for the convenience of the
reader.

Theorem 3.4.3 Let |b j (z)| ≤ M j in some region R, with {M j } a sequence of
constants. If

∑∞
j=1 M j converges, then the series f (z) =∑∞

j=1 b j (z) converges
uniformly in R.

Proof Let n > m and fn(z) =
∑n

j=1 b j (z). Then

| fn(z)− fm(z)| =
∣∣∣∣ n∑

j=m+1

b j (z)

∣∣∣∣
≤

n∑
j=m+1

|b j (z)|

≤
n∑

j=m+1

M j

≤
∞∑

j=m+1

M j

Because
∑∞

j=1 M j converges, we know that there is an N = N (ε) (the M j are
only constants) such that when m > N ,

∑∞
j=m+1 M j < ε. Thus { fn(z)} is a

uniformly convergent Cauchy sequence in R, and Theorem 3.4.2 follows. �

Early in this chapter we proved Theorem 3.1.1, which allowed us to in-
terchange the operation of integration with a limit of a uniformly convergent
sequence of functions. A corollary of this result is Eq. (3.1.9), which allows the
interchange of sum and integral for a uniformly convergent series. A similar
theorem holds for the operation of differentiation.

Theorem 3.4.4 Let fn(z) be analytic in the circle |z− z0| < R, and let { fn(z)}
converge uniformly to f (z) in |z − z0| < R − δ, δ > 0. Then (a) f (z) is
analytic for |z − z0| < R, and (b) { f ′n(z)}, { f ′′n (z)}, . . . , converge uniformly in
|z − z0| < R − δ to f ′(z), f ′′(z), . . . .

Proof (a) Let C be any simple closed contour lying inside |z − z0| ≤ R − δ

(see Figure 3.4.1) for all R > δ > 0. Because { fn(z)} is uniformly convergent,
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δR-

z

R

C

Fig. 3.4.1. Region of analyticity in Theorem 3.4.3(a)

R-

R-
z

z

C o
1

ν

2ν

ζ

Fig. 3.4.2. For Theorem 3.4.4(b), |z − ζ | > ν

we have, from Theorem 3.1.1 of Section 3.1∮
C

f (z) dz = lim
n→∞

∮
C

fn(z) dz (3.4.1)

Because fn(z) is analytic, we conclude from Cauchy’s Theorem that
∮

C fn(z)
dz = 0, hence

∮
c f (z) dz = 0. Now from Theorem 2.6.5 (Morera) of Section

2.6 we find that f (z) is analytic in |z − z0| < R (because δ may be made
arbitrarily small). This proves part (a).

(b) Let C1 be the circle |z− z0| = R−ν for all 0 < ν < R
2 (see Figure 3.4.2).

We next use Cauchy’s Theorem for f ′(z)− f ′n(z) (Theorem 2.6.3, Eq. (2.6.5)),
which gives

(
f ′(z)− f ′n(z)

) = 1

2π i

∮
C1

( f (ζ )− fn(ζ ))

(ζ − z)2
dζ (3.4.2)
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Because { fn(z)} is a uniformly convergent sequence, we find that for n > N
and any z in C1

| f (z)− fn(z)| < ε1

Thus

| f ′(z)− f ′n(z)| <
ε1

2π

∮
C1

|dζ |
|ζ − z|2

If z lies inside C1, say, |z − z0| = R − 2ν, then |ζ − z| > ν,
∮

C1
|dζ | < 2πR,

hence

| f ′(z)− f ′n(z)| <
ε1 R

ν2
(3.4.3)

Taking ε1 as small as necessary, that is, ε1= εν2/R, ensures that | f ′(z)− f ′n(z)|
is arbitrarily small; that is, | f ′(z) − f ′n(z)| < ε and hence { f ′n(z)} converges
uniformly inside |z − z0| ≤ R − 2ν. Taking δ = 2ν and part (a) above
establishes the theorem for the sequence { f ′n(z)}. (The values of δ and ν can
be taken arbitrarily small.) Because the sequence { f ′n(z)} converges uniformly
inside |z − z0| ≤ R − δ, for all R >δ> 0, we can repeat the above procedure
in order to establish the theorem for the sequence { f ′′n (z)}; that is, the sequence
{ f ′′n (z)} converges uniformly to f ′′(z) and so on for { f ′′′n (z)} to f ′′′n (z), etc. �

An immediate consequence of this theorem is the result for series. Namely,
call

Sn(z) =
n∑

j=1

f j (z) (3.4.4)

If Sn(z) satisfies the hypothesis of Theorem (3.4.4), then

lim
n→∞ S′n(z) = lim

n→∞

n∑
j=1

f ′j (z) =
∞∑
j=1

f ′j (z) = S(z) (3.4.5)

We remark that { fn(z)} being a uniformly convergent sequence of analytic
functions gives us a much stronger result than we have for uniformly convergent
sequences of only real functions. Namely, sequences of derivatives of any order
of fn(z) are uniformly convergent. For example, consider the real sequence
{un(x)}, where

un(x) = cos n2x

n
, |x | <∞
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This sequence is uniformly convergent to zero because |un(x)| ≤ 1/n (inde-
pendent of x), which converges to zero. However, the sequence of functions
{u′n(x)}

u′n(x) = 2n sin n2x, |x | <∞ (3.4.6)

has no limit whatsoever! The sequence {u′n(x)} is not uniformly convergent. We
note also the above sequence un(z) for z = x + iy is not uniformly convergent
for |z| <∞ because cos n2z = cos n2x cosh n2 y− i sin n2x sinh n2 y; and both
cosh n2 y and sinh n2 y diverge as n →∞ for y 
= 0.

Another corollary of Theorem 3.4.4 is that power series

f (z) =
∞∑

n=0

an(z − z0)
n

may be differentiated termwise inside their radius of convergence. Indeed, we
have already shown that any power series is really the Taylor series expansion of
the represented function. Hence Theorem 3.4.4 could have alternatively been
used to establish the validity of differentiating Taylor series inside their radius
of convergence.

We conclude with an example.

Example 3.4.1 We are given

ζ(z) =
∞∑

n=1

1

nz
(3.4.7)

(The function ζ(z) is often called the Riemann zeta function; it appears in
many branches of mathematics and physics.) Show that ζ(z) is analytic for all
x > 1, where z = x + iy.

By definition, nz = ez log n , where we take log n to be the principal branch of
the log. Hence

nz = ez log n = e(x+iy) log n

is analytic for all z because ekz is analytic, and

|nz| = ex log n = nx

Thus from the Weierstrass M test (Theorem 3.1.2 or 3.4.3, proven in this
section), we find that the series representing ζ(z) converges uniformly because
the series

∑∞
n=1(1/nx ) (for x > 1) is a convergent series of real numbers. That
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is, we may use the integral theorem for a series of real numbers as our upper
bound to establish this. Note that∫ ∞

1

1

nx
dn = 1

1− x

Thus from Theorem 3.4.4 we find that because {ζm(z)} = {
∑m

n=1 n−z} is a
uniformly convergent sequence of analytic functions for all x > 1, the sum
ζ(z) is analytic.

Problems for Section 3.4

1. Demonstrate whether or not the following sequences are Cauchy sequences:

(a)
{

zn
}∞

n=1 , |z| < 1 (b)
{

1+ z

n

}∞
n=1

, |z| <∞

(c) {cos nz}∞n=1 , |z| <∞ (d)
{

e−n/z
}∞

n=1 , |z| < 1

2. Discuss whether the following series converge uniformly in the given do-
mains:

(a)
n∑

j=1

z j , |z| < 1 (b)
n∑

j=0

e− j z,
1

2
< |z| < 1

(c)
n∑

j=1

j!z2 j , |z| < a, a > 0

3. Establish that the function
∑∞

n=1
1

ennz is an analytic function of z for all z;
that is, it is an entire function.

4. Show that the following functions are analytic functions of z for all z; that
is, they are entire:

(a)
∞∑

n=1

zn

(n!)2
(b)

∞∑
n=1

cosh nz

n!
(c)

∞∑
n=1

z2n+1

[(2n + 1)!]1/2

5. Consider the function f (z) =∑∞
n=1(1/(z

2+n2)). Break the function f (z)
into two parts, f (z) = f1(z)+ f2(z), where

f1(z) =
N∑

n=1

(
1

z2 + n2

)
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and

f2(z) =
∞∑

n=N+1

(
1

z2 + n2

)

For |z| < R, N > 2R, show that in the second sum∣∣∣∣ 1

z2 + n2

∣∣∣∣ ≤ 1

n2 − R2
≤ 4

3n2

whereupon explain why f2(z) converges uniformly and consequently, why
f (z) is analytic everywhere except at the distinct points z = ±in.

6. Use the method of Problem 5 to investigate the analytic properties of f (z) =∑∞
n=1

1
(z+n)2 .

3.5 Singularities of Complex Functions

We begin this section by introducing the notion of an isolated singular point.
The concept of a singular point was introduced in Section 2.1 as being a point
where a given (single-valued) function is not analytic. Namely, z= z0 is a
singular point of f (z) if f ′(z0) does not exist. Suppose f (z) (or any single-
valued branch of f (z), if f (z) is multivalued) is analytic in the region 0< |z−
z0| < R (i.e., in a neighborhood of z= z0), and not at the point z0. Then the
point z= z0 is called an isolated singular point of f (z). In the neighborhood
of an isolated singular point, the results of Section 3.3 show that f (z) may be
represented by a Laurent expansion:

f (z) =
∞∑

n=−∞
Cn(z − z0)

n (3.5.1)

Suppose f (z) has an isolated singular point and in addition it is bounded; that
is, | f (z)| ≤ M where M is a constant. It is clear that all coefficients Cn = 0
for n < 0 in order for f (z) to be bounded. Thus such a function f (z) is given
by a power series expansion, f (z) =∑∞

n=0 Cn(z− z0)
n , valid for |z− z0| < R

except possibly at z = z0. However, because a power series expansion converges
at z = z0, it follows that f (z) would be analytic if C0 = f (z0) (the n = 0
term is the only nonzero contribution), in which case

∑∞
n=0 Cn(z − z0)

n is
the Taylor series expansion of f (z). If C0 
= f (z0), we call such a point a
removable singularity, because by a slight redefinition of f (z0), the function
f (z) is analytic. For example, consider the function f (z) = (sin z)/z, which,
strictly speaking, is undefined at z = 0. If it were the case that f (0) 
= 1, then
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z = 0 is a removable singularity. Namely, by simply redefining f (0) = 1,
then f (z) is analytic for all z including z = 0 and is represented by the power
series

f (z) = 1− z2

3!
+ z4

5!
− z6

7!
+ · · · =

∞∑
n=0

(−1)nz2n

(2n + 1)!

Stated differently, if f (z) is analytic in the region 0 < |z − z0| < R, and
if f (z) can be made analytic at z = z0 by assigning an appropriate value for
f (z0), then z = z0 is a removable singularity.

An isolated singularity at z0 of f (z) is said to be a pole if f (z) has the
following representation:

f (z) = φ(z)

(z − z0)N
(3.5.2)

where N is a positive integer, N ≥ 1, φ(z) is analytic in a neighborhood of z0,
and φ(z0) 
= 0. We generally say f (z) has an Nth-order pole if N ≥ 2 and
has a simple pole if N = 1. Equation (3.5.2) implies that the Laurent expansion
of f (z) takes the form f (z)= ∑∞

n=−N Cn(z− z0)
n; that is, the first coefficient

is C−N = φ(z0). Coefficient C−N is often called the strength of the pole.
Moreover, it is clear that in the neighborhood of z = z0, the function f (z) takes
on arbitrarily large values, or limz→z0 f (z) = ∞.

Example 3.5.1 Describe the singularities of the function

f (z) = z2 − 2z + 1

z(z + 1)3
= (z − 1)2

z(z + 1)3

The function f (z) has a simple pole at z = 0 and a third order (or triple) pole
at z = −1. The strength of the pole at z = 0 is 1 because the expansion of f (z)
near z = 0 has the form

f (z) = 1

z
(1− 2z + · · ·)(1− 3z + · · ·)

= 1

z
− 5+ · · ·

Similarly, the strength of the third-order pole at z = −1 is−4, since the leading
term of the Laurent series near z = −1 is f (z) = −4/(z + 1)3.

Example 3.5.2 Describe the singularities of the function

f (z) = z + 1

z sin z
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Using the Taylor series for sin z

f (z) = z + 1

z
(

z − z3

3! + z5

5! − · · ·
) = z + 1

z2
(

1− z2

3! + z4

5! − · · ·
)

= z + 1

z2

[
1+
(

z2

3!
− z4

5!
+ · · ·

)
+
(

z2

3!
− z4

5!
+ · · ·

)2

+ · · ·
]

=
(

1

z2
+ 1

z

)(
1+ z2

3!
+ · · ·

)
= 1

z2
+ 1

z
+ · · ·

we find that the function f (z) has a second order (double) pole at z = 0 with
strength 1.

Example 3.5.3 Describe the singularities of the function

f (z) = tan z = sin z

cos z

Here the function f (z) has simple poles with strength 1 at z = π/2 + mπ

for m = 0,±1,±2, . . .. It is sometimes useful to make a transformation of
variables to transform the location of the poles to the origin: z = z0+ z′, where
z0 = π/2+mπ , so that

f (z) = sin(π/2+ mπ + z′)
cos(π/2+ mπ + z′)

= sin(π/2+ mπ) cos z′ + cos(π/2+ mπ) sin z′

cos(π/2+ mπ) cos z′ − sin(π/2+ mπ) sin z′

= (−1)m cos z′

(−1)m+1 sin z′

= − (1− (z′)2/2!+ · · ·)
(z′ − (z′)3/3!+ · · ·) = −

1

z′
(1− (z′)2/2!+ · · ·)
(1− (z′)2/3!+ · · ·)

= − 1

z′

(
1−
(

1

2!
− 1

3!

)
z′2 + · · ·

)
= − 1

z′

(
1− 1

3
z′2 + · · ·

)
= − 1

z′
+ 1

3
z′ + · · ·

= − 1

z − (π/2+ mπ)
+ 1

3
(z − (π/2+ mπ))+ · · ·

Hence f (z) = tan z always has a simple pole of strength −1 at z = π
2 + mπ .
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Example 3.5.4 Discuss the pole singularities of the function

f (z) = log(z + 1)

(z − 1)

The function f (z) is multivalued with a branch point at z = −1, hence following
the procedure in Section 2.2 we make f (z) single valued by introducing a
branch cut. We take the cut from the branch point at z = −1 to z = ∞
along the negative real axis with z = reiθ for −π ≤ θ < π ; this branch fixes
log(1) = 0. With this choice of branch, f (z) has a simple pole at z = 1 with
strength log 2. We shall discuss the nature of branch point singularities later in
this section.

Sometimes we might have different types of singularities depending on which
branch of a multivalued function we select.

Example 3.5.5 Discuss the pole singularities of the function

f (z) = z1/2 − 1

z − 1

We let z = 1+ t , so that

f (z) = (1+ t)1/2 − 1

t
= ±√1+ t − 1

t

where± denotes the two branches of the square root function with
√

x ≥ 0 for
x ≥ 0. (The point z = 0 is a square root branch point).

The Taylor series of
√

1+ t is

√
1+ t = 1+ 1

2
t − 1

8
t2 + · · ·

Thus for the “+” branch

f (z) =
t
2 − 1

8 t2 + · · ·
t

= 1

2
− 1

8
t + · · ·

whereas for the “−” branch

f (z) = −2− t
2 + 1

8 t2 − · · ·
t

= −2

t
− 1

2
+ 1

8
t − · · ·

On the + (principal) branch, f (z) is analytic in the neighborhood of t = 0;
that is, t = 0 is a removable singularity. For the − branch, t = 0 is a simple
pole with strength −2.
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An isolated singular point that is neither removable nor a pole is called an
essential singular point. An essential singular point has a “full” Laurent series
in the sense that given f (z) =∑∞

n=−∞ Cn(z− z0)
n , then for any N > 0 there is

an n < −N such that Cn 
= 0; that is, the series for negative n does not terminate.
If this were not the case, then f (z) would have a pole (if Cn = 0 for n < −N
and C−N 
= 0, then f (z) would have a pole of order N with strength C−N ).

The prototypical example of an essential singular point is given by the func-
tion

f (z) = e1/z (3.5.3)

which has the following Laurent series (Eq. (3.3.17)) about the essential sin-
gular point at z = 0

f (z) =
∞∑

n=0

1

n!zn
(3.5.4)

Because f ′(z) = −e1/z/z2 exists for all points z 
= 0, it is clear that f (z) is
analytic in the neighborhood of z = 0; hence it is isolated (as it must be for
z = 0 to be an essential singular point).

If we use polar coordinates z = reiθ , then Eq. (3.5.3) yields

f (z) = e
1
r e−iθ = e

1
r (cos θ−i sin θ)

= e
1
r cos θ

[
cos

(
sin θ

r

)
− i sin

(
sin θ

r

)]
whereupon the modulus of f (z) is given by

| f (z)| = e
1
r cos θ

Clearly for values of θ such that cos θ > 0, f (z)→ ∞ as r → 0, and for
cos θ < 0, f (z) → 0 as r → 0. Indeed, if we let r take values on a suitable
curve, namely, r = (1/R) cos θ (i.e., the points (r, θ) lie on a circle of diameter
1/R tangent to the imaginary axis), then

f (z) = eR [cos(R tan θ)− i sin(R tan θ)] (3.5.5)

and

| f (z)| = eR (3.5.6)

Thus | f (z)|may take on any positive value other than zero by the appropriate
choice of R. As z → 0 on this circle, θ → π/2 (and tan θ →∞) with R fixed,
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then the coefficient in brackets in Eq. (3.5.5) takes on all values on the unit
circle infinitely often. Hence we see that f (z) takes on all nonzero complex
values with modulus (3.5.6) infinitely often.

In fact, this example describes a general feature of essential singular points
discovered by Picard (Picard’s Theorem). He showed that in any neighborhood
of an essential singularity of function, f (z) assumes all values, except possi-
bly one of them, an infinite number of times. The following result owing to
Weierstrass is similar and more easily shown.

Theorem 3.5.1 If f (z) has an essential singularity at z= z0, then for any com-
plex number w, f (z) becomes arbitrarily close to w in a neighborhood of z0.
That is, given w, and any ε > 0, δ > 0, there is a z such that

| f (z)− w| < ε (3.5.7)

whenever 0 < |z − z0| < δ.

Proof We prove this by contradiction. Suppose | f (z) − w| > ε whenever
|z − z0|<δ, where δ is small enough such that f (z) is analytic in the region
0 < |z − z0| < δ. Thus in this region

h(z) = 1

f (z)− w

is analytic, and hence bounded; specifically, |h(z)| < 1/ε. The function f (z)
is not identically constant, otherwise f (z) would be analytic and hence would
not possess an essential singular point. Because h(z) is analytic and bounded,
it is representable by a power series h(z) = ∑∞

n=0 Cn(z − z0)
n , thus its only

possible singularity is removable. By choosing C0 = h(z0), it follows that h(z)
is analytic for |z − z0| < δ. Consequently

f (z) = w + 1

h(z)

and f (z) is either analytic with h(z) 
= 0 or else f (z) has a pole of order N ,
strength CN , where CN is the first nonzero coefficient of the term (z − z0)

N

in the Taylor series representation of h(z). In either case, this contradicts the
hypothesis that f (z) has an essential singular point in the neighborhood of
z = z0. �

Functions that have only isolated singularities, while very special, turn out
to be important in applications. An entire function is one that is analytic
everywhere in the finite z plane. As proved in Chapter 2, the only function
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analytic everywhere, including the point at infinity, is a constant (Section 2.6,
i.e., Liouville’s Theorem). Entire functions are either constant functions, or at
infinity they have isolated poles or essential singularities. Some of the common
entire functions include (a) polynomials, (b) exponential functions, and (c)
sine/cosine functions. For example, f (z) = z, f (z) = ez , f (z) = sin z are all
entire functions.

As mentioned earlier, one can easily ascertain the nature of the singularity at
z = ∞ by making the transformation z = 1/t and investigating the behavior
of the function near t = 0. Polynomials have poles at z = ∞, the order of
which corresponds to the order of the polynomial. For example, f (z) = z
has a simple pole at infinity (strength unity) because f (t) = 1/t . Similarly,
f (z) = z2 has a double pole at z = ∞, etc. The entire functions ez and sin z
have essential singular points at z = ∞. Indeed, the Taylor series for sin z shows
that the Laurent series around t = 0 does not terminate in any finite negative
power:

sin
1

t
=

∞∑
n=0

(−1)n

t2n+1(2n + 1)!

hence it follows that t = 0 or z = ∞ is an essential singular point.
The next level of complication after an entire function is a function that has

only poles in the finite z plane. Such a function is called a meromorphic
function. As with entire functions, meromorphic functions may have essential
singular points at infinity. A meromorphic function is a ratio of entire functions.
For example, a rational function (i.e., a ratio of polynomials)

R(z) = AN zN + AN−1zN−1 + · · · + A1z + A0

BM zM + BM−1zM−1 + · · · + B1z + B0
(3.5.8)

is meromorphic. It has only poles as its singular points. The denominator is
a polynomial, whose zeroes correspond to the poles of R(z). For example,
the function

R(z) = z2 − 1

z5 + 2z3 + z

= (z + 1)(z − 1)

z(z4 + 2z2 + 1)
= (z + 1)(z − 1)

z(z2 + 1)2

= (z + 1)(z − 1)

z(z + i)2(z − i)2
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has poles at z = 0 (simple), at z = ±i (both double), and zeroes (simple) at
z = ±1.

The function f (z) = (sin z)/(1+z) is meromorphic. It has a pole at z = −1,
owing to the vanishing of (1+ z), and an essential singular point at z = ∞ due
to the behavior of sin z near infinity (as discussed earlier).

There are other types of singularities of a complex function that are non-
isolated. In Chapter 2, Section 2.2-2.3, we discussed at length the various
aspects of multivalued functions. Multivalued functions have branch points.
We recall that their characteristic property is the following. If a circuit is made
around a sufficiently small, simple closed contour enclosing the branch point,
then the value assumed by the function at the end of the circuit differs from
its initial value. A branch point is an example of a nonisolated singular point,
because a circuit (no matter how small) around the branch point results in a
discontinuity. We also recall that in order to make a multivalued function f (z)
single-valued, we must introduce a branch cut. Since f (z) has a discontinu-
ity across the cut, we shall consider the branch cut as a singular curve (it is
not simply a point). However, it is important to recognize that a branch cut
may be moved, as opposed to a branch point, and therefore the nature of its
singularity is somewhat artificial. Nevertheless, once a concrete single-valued
branch is defined, we must have an associated branch cut. For example, the
function

f (z) = log z

z

has branch points at z = 0 and z = ∞. We may introduce a branch cut along
the positive real axis: z = reiθ , 0 ≤ θ < 2π . We note that z = 0 is a branch
point and not a pole because log z has a jump discontinuity as we encircle z = 0.
It is not analytic in a neighborhood of z = 0; hence z = 0 is not an isolated
singular point. (We note the difference between this example and Example
3.5.4 earlier.)

Another type of singular point is a cluster point. A cluster point is one in
which an infinite sequence of isolated singular points of a single-valued function
f (z) cluster about a point, say, z= z0, in such a way that there are an infinite
number of isolated singular points in any arbitrarily small circle about z = z0.
The standard example is given by the function f (z) = tan(1/z). As z → 0
along the real axis, tan(1/z) has poles at the locations zn = 1/(π/2 + nπ), n
integer, which cluster because any small neighborhood of the origin contains
an infinite number of them. There is no Laurent series representation valid in
the neighborhood of a cluster point.
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Another singularity that arises in applications is associated with the case of
two analytic functions that are separated by a closed curve or an infinite line.
For example, if C is a suitable closed contour and if f (z) is defined as

f (z) =
{

fi (z) z inside C
fo(z) z outside C

(3.5.9)

where fi (z) and fo(z) are analytic in their respective regions have continuous
limits to the boundary C and are not equal on C , then the boundary C is a
singular curve across which the function has a jump discontinuity. We shall
refer to this as a boundary jump discontinuity.

An example of such a situation is given by

f (z) = 1

2π i

∮
C

1

ζ − z
dζ =

{
fi (z) = 1 z inside C
fo(z) = 0 z outside C

(3.5.10)

The discontinuity depends entirely on the location of C , which is provided
in the definition of the function f (z) via the integral representation. We note
that the functions fi (z)= 1 and fo(z) = 0 are analytic. Both of these functions
can be continued beyond the boundary C in a natural way; just take fi (z) =
1 and fo(z) = 0, respectively. Indeed, functions obtained through integral
representations such as Eq. (3.5.10) have a property by which the function
f (z) is comprised of functions such as fi (z) and fo(z), which are analytic
inside and outside the original contour C .

In Chapter 7 we will study questions and applications that deal with equa-
tions that are defined in terms of functions that have properties very simi-
lar to Eq. (3.5.9). Such equations are called Riemann–Hilbert factorization
problems.

3.5.1 Analytic Continuation and Natural Barriers

Frequently, one is given formulae that are valid in a limited region of space,
and the goal is to find a representation, either in closed series form, integral
representation, or otherwise that is valid in a larger domain. The process of
extending the range of validity of a representation or more generally extending
the region of definition of an analytic function is called analytic continuation.
This was briefly discussed at the end of Section 3.2 in Theorems 3.2.6 and 3.2.7.
We elaborate further on this important issue in this section.

A typical example is the following. Consider the function defined by the
series

f (z) =
∞∑

n=0

zn (3.5.11)
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when |z| < 1. When |z| → 1, the series clearly diverges because zn does not
approach zero as n →∞. On the other hand, the function defined by

g(z) = 1

1− z
(3.5.12)

which is defined for all z except the point z = 1, is such that g(z) = f (z) for
|z| < 1 because the Taylor series representation of Eq. (3.5.12) about z = 0
is Eq. (3.5.11) inside the unit circle. In fact, we claim that g(z) is the unique
analytic continuation of f (z) outside the unit circle. The function g(z) has a
pole at z = 1. This example is representative of a far more general situation.

The relevant theorem was given earlier as Theorem 3.2.6, which implies the
following.

Theorem3.5.2 A function that is analytic in a domain D is uniquely determined
either by values in some interior domain of D or along an arc interior to D.

The fact that a “global” analytic function can be deduced from such a rela-
tively small amount of information illustrates just how powerful the notion of
analyticity really is.

The example above (Eqs. (3.5.11), (3.5.12)) shows that the function f (z),
which is represented by Eq. (3.5.11) inside the unit circle, uniquely deter-
mines the function g(z), which is represented by Eq. (3.5.12) that is valid
everywhere.

We remark that the function 1/(1− z) is the only analytic function (analytic
apart from a pole at z = 1) that can assume the values f (x) = 1/(1− x) along
the real x axis. This also shows how prescribing values along a curve fixes the
analytic extension. Similarly, the function f (z) = ekz (for constant k) is the
only analytic function that can be extended from f (x) = ekx on the real x axis.

Chains of analytic continuations are sometimes required, and care may be
necessary. For example, consider the regions A, B, and C and the associated
analytic functions f , g, and h, respectively (see Figure 3.5.1), and let A ∩ B
denote the usual intersection of two sets.

Referring to Figure 3.5.1, Theorem 3.5.2 (or Theorem 3.2.6) implies that
if g(z) and f (z) are analytic and have a domain A ∩ B in common, where
f (z) = g(z), then g(z) is the analytic continuation of f (z). Similarly, if h(z)
and g(z) are analytic and have a domain B∩C in common, where h(z) = g(z),
then h(z) is the analytic continuation of g(z). However, we cannot conclude
that h(z) = f (z) because the intersecting regions A, B, C might enclose a
branch point of a multivalued function.

The method of proof (of Theorem 3.2.6 or Theorem 3.5.2) extends the
function locally by Taylor series arguments. We note that if we enclose a
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C, h

B, gA, f

Fig. 3.5.1. Analytic continuation in domains A, B, and C

R
R

R

3
2

1

y

x

Fig. 3.5.2. Overlapping domains R1, R2, R3

branch point, we move onto the next sheet of the corresponding Riemann
surface.

For example, consider the multivalued function

f (z) = log z = log r + iθ (3.5.13)

with three regions defined (see Figure 3.5.2) in the sectors

R1 : 0 ≤ θ < π

R2 :
3π

4
≤ θ <

7π

4

R3 :
3π

2
≤ θ <

5π

2

The branches of log z defined by Eq. (3.5.13) in their respective regions R1,
R2, and R3 are related by analytic continuations. Namely, if we call fi (z) the
function Eq. (3.5.13) defined in region Ri , then f2(z) is the analytic continuation
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of f1(z), and f3(z) is the analytic continuation of f2(z). Note, however, that
f3(z) 
= f1(z), that is, the same pointz0 = Reiπ/4 = Re9iπ/4 has

f1(z0) = log R + iπ/4

f3(z0) = log R + 9iπ/4

This example clearly shows that after analytic continuation the function does
not return, upon a complete circuit, to the same value. Indeed, in this example
we progress onto the adjacent sheet of the multivalued function because we
have enclosed the branch point z = 0 of f (z) = log z.

On the other hand, if in a simply connected region, there are no singular
points enclosed between any two distinct paths of analytic continuation that
together form a closed path, then we could cover the enclosed region with
small overlapping subregions and use Taylor series to analytically continue
our function and obtain a single valued function. This is frequently called the
Monodromy Theorem, which we now state.

Theorem 3.5.3 (Monodromy Theorem) Let D be a simply connected domain
and f (z) be analytic in some disk D0 ⊂ D. If the function can be analyti-
cally continued along any two distinct smooth contours C1 and C2 to a point
in D, and if there are no singular points enclosed within C1 and C2, then
the result of each analytic continuation is the same and the function is single
valued.

In fact, the theorem can be extended to cover the case where the region
enclosed by contours C1 and C2 contains, at most, isolated singular points,
f (z) having a Laurent series of the form (3.5.1) in the neighborhood of any
singular point. Thus the enclosed region can have poles or essential singular
points.

There are some types of singularities that are, in a sense, so serious that they
prevent analytic continuation of the function in question. We shall refer to
such a (nonisolated) singularity as a natural barrier (often referred to in the
literature as a natural boundary). A prototypical example of a natural barrier
is contained in the function defined by the series

f (z) =
∞∑

n=0

z2n
(3.5.14)

The series (3.5.14) converges for |z| < 1, which can be easily seen from the
ratio test. We shall sketch an argument that shows that analytic continuation to



156 3 Sequences, Series and Singularities of Complex Functions

|z| > 1 is impossible. Because

f (z2) =
∞∑

n=0

(
z2
)2n =

∞∑
n=0

z2n+1 =
∞∑

n=1

z2n
(3.5.15)

it follows that f satisfies the functional equation

f (z2) = f (z)− z (3.5.16)

From Eq. (3.5.14) it is clear that z0 = 1 is a singular point because f (1) = ∞.
It then follows from Eq. (3.5.16) that f (z1) = ∞, where z2

1 = 1 (i.e., z1 = ±1).
Similarly, f (z2) = ∞, where z4

2 = 1, because Eq. (3.5.14) implies

f (z4) = f (z2)− z2 = f (z)− z − z2 (3.5.17)

Mathematical induction then yields

f (z2m
) = f (z)−

m−1∑
j=0

z2 j
(3.5.18)

Hence the value of the function f (z) at all points zm on the unit circle satisfying
z2m = 1 (i.e., all roots of unity) is infinite: f (zm) = ∞. Therefore all these
points are singular points. In order for the function (3.5.14) to be analytically
continuable to |z| ≥ 1, at the very least we need f (z) to be analytic on some
small arc of the unit circle |z| = 1. However, no matter how small an arc we
take on this circle, the above argument shows that there exist points zm (roots
of unity, satisfying z2m = 1) on any such arc such that f (zm) = ∞. Because
an analytic function must be bounded, analytic continuation is impossible.

Exotic singularities such as natural barriers are found in solutions of certain
nonlinear differential equations arising in physical applications (see, for ex-
ample, Eqs. (3.7.52) and (3.7.53)). Consequently, their study is not merely a
mathematical artifact.

Problems for Section 3.5

1. Discuss the type of singularity (removable, pole and order, essential, branch,
cluster, natural barrier, etc.); if the type is a pole give the strength of the
pole, and give the nature (isolated or not) of all singular points associated
with the following functions. Include the point at infinity.

(a)
ez2 − 1

z2
(b)

e2z − 1

z2
(c) etan z (d)

z3

z2 + z + 1
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(e)
z1/3 − 1

z − 1
(f) log(1+ z1/2) (g) f (z) =

{
z2 |z| ≤ 1

1/z2 |z| > 1

(h) f (z) =
∞∑

n=1

zn!

n!
(i) sech z (j) coth 1/z

2. Evaluate the integral
∮

C f (z) dz, where C is a unit circle centered at the
origin and where f (z) is given below.

(a)
g(z)

z − w
, g(z) entire (b)

z

z2 − w2
(c) ze1/z2

(d) cot z (e)
1

8z3 + 1

3. Show that the functions below are meromorphic; that is, the only singu-
larities in the finite z plane are poles. Determine the location, order and
strength of the poles.

(a)
z

z4 + 2
(b) tan z (c)

z

sin2 z

(d)
ez − 1− z

z4
(e)

1

2π i

∮
C

w dw

(w2 − 2)(w − z)

C is the unit circle centered at the origin. First find the function for |z| < 1,
then analytically continue the function to |z| ≥ 1.

4. Discuss the analytic continuation of the following functions:

(a)
∞∑

n=0

z2n, |z| < 1

(b)
∞∑

n=0

zn+1

n + 1
, |z| < 1

Hint: (b) is also represented by the integral

∫ z

0

( ∞∑
n=0

z′n
)

dz′

(c)
∞∑

n=0

z4n
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5. Suppose we know a function f (z) is analytic in the finite z plane apart
from singularities at z = i and z = −i . Moreover, let f (z) be given by the
Taylor series

f (z) =
∞∑
j=0

a j z
j

where a j is known. Suppose we calculate f (z) and its derivatives at z =
3/4 and compute a Taylor series in the form

f (z) =
∞∑
j=0

b j

(
z − 3

4

) j

Where would this series converge? How could we use this to compute
f (z)? Suppose we wish to compute f (2.5); how could we do this by
series methods?

∗3.6 Infinite Products and Mittag–Leffler Expansions

In previous sections we have considered various kinds of infinite series repre-
sentations (i.e., Taylor series, Laurent series) of functions that are analytic in
suitable domains. Sometimes in applications it is useful to consider infinite
products to represent our functions.

If {ak} is a sequence of complex numbers, then an infinite product is de-
noted by

P =
∞∏

k=1

(1+ ak) (3.6.1)

We say that the infinite product (3.6.1) converges if (a) the sequence of partial
products Pn

Pn =
n∏

k=1

(1+ ak) (3.6.2)

converge to a finite limit, and (b) that for N0 large enough

lim
N→∞

N∏
k=N0

(1+ ak) 
= 0 (3.6.3)

If Eq. (3.6.3) is violated, that is, limN→∞
∏N

k=N0
(1+ak) = 0 for all N0, then

we will consider the product to diverge. The reason for this is that the following
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infinite sum turns out to be intimately connected to the infinite product (see
below, Eq. (3.6.4):

S =
∞∑

k=1

log(1+ ak)

and it would not make sense if P = 0.
Moreover, in analogy with infinite sums, if the infinite product

∏∞
k=1(1+|ak |)

converges, we say P converges absolutely. If
∏∞

k=1(1 + |ak |) diverges but
P converges, we say that P converges conditionally. Clearly, if one of the
ak = −1, then Pn = P = 0. For now we shall exclude this trivial case and
assume ak 
= −1, for all k.

Equation (3.6.2) implies that Pn = (1 + an)Pn−1, whereupon an = (Pn −
Pn−1)/Pn−1. Thus if Pn → P , we find that an → 0, which is a necessary
but not sufficient condition for convergence (note also this necessary condition
would imply Eq. (3.6.3) for N0 large enough).

A useful test for convergence of an infinite product is the following.
If the sum

S =
∞∑

k=1

log(1+ ak) (3.6.4)

converges, then so does the infinite product (3.6.1). We shall restrict log z to
its principal branch.

Calling Sn =
∑n

k=1 log(1+ ak), the nth partial sum of S, then

eSn = e
∑n

k=1
log(1+ak ) = Pn

and as n → ∞, eSn → eS = P . Note again that if P = 0, then S = −∞,
which we shall not allow, excluding the case where individual factors vanish.

The above definition applies as well to products of functions where, for
example, ak is replaced by ak(z) for z in a region R. We say that if a product
of functions converges for each z in a region R, then it converges in R. The
convergence is said to be uniform in R if the partial sequence of products
obey Pn(z) → P(z) uniformly in R. Uniformity is the same concept as that
discussed in Section 3.4; namely, the estimate involved is independent of z.
There is a so-called Weierstrass M test for products of functions, which we
now give.

Theorem 3.6.1 Let ak(z) be analytic in a domain D for all k. Suppose for all
z ∈ D and k ≥ N either

(a) | log(1+ ak(z))| ≤ Mk
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or

(b) |ak(z)| ≤ Mk

where
∑∞

k=1 Mk <∞, Mk are constants. Then the product

P(z) =
∞∏

k=1

(1+ ak(k))

is uniformly convergent to an analytic function P(z) in D. Furthermore P(z)
is zero only when a finite number of its factors 1+ ak(z) are zero in D.

Proof For n ≥ N , define

Pn(z) =
n∏

k=N

(1+ ak(z))

Sn(z) =
n∑

k=N

log (1+ ak(z))

Using inequality (a) in the hypothesis of Theorem 3.6.1 for any z ∈ D with
m > N yields

|Sm(z)| ≤
m∑

k=N

Mk ≤
∞∑

k=1

Mk = M <∞

Similarly, for any z ∈ D with n > m ≥ N we have

|Sn(z)− Sm(z)| ≤
n∑

k=m+1

Mk ≤
∞∑

k=m+1

Mk ≤ εm

where εm→0 as m→∞, and Sn(z) is a uniformly convergent Cauchy sequence.
Because Pk(z) = exp Sk(z), it follows that

(Pn(z)− Pm(z)) = eSm (z)
(
eSn(z)−Sm (z) − 1

)
From the Taylor series, ew =∑∞

n=0 w
n/n!, we have

|ew| ≤ e|w|, |ew − 1| ≤ e|w| − 1

whereupon from the above estimates we have

|Pn(z)− Pm(z)| ≤ eM (eεm − 1)
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and hence {Pn(z)} is a uniform Cauchy sequence. Thus (see Section 3.4)
Pn(z)→ P(z) uniformly in D and P(z) is analytic because Pn(z) is a sequence
of analytic functions. Moreover, we have

|Pm(z)| = |eReSm (z)+iImSm (z)|
= |eReSm (z)|
≥ e−|ReSm (z)|

= e−|ReSm (z)+iImSm (z)|

≥ e−M

Thus Pm(z) ≥ e−M . Because M is independent of m, P(z) 
= 0 in D.
Because we may write P(z) =∏N−1

k=1 (1+ak(z))P̃(z), we see that P(z) = 0
only if any of the factors (1 + ak(z)) = 0, for k = 1, 2, . . . , N − 1. (The
estimate (a) of Theorem 3.6.1 is invalid for such a possibility.) It also follows
directly from the analyticity of ak(z) that

Pn(z) =
N−1∏
k=1

(1+ ak(z))P̃n(z)

is a uniformly convergent sequence of analytic functions.
Finally, we note that the first hypothesis, (a), follows from the second hy-

pothesis, (b), as is shown next.
The Taylor series of log(1+ w), |w| < 1, is given by

log(1+ w) =
(
w − w2

2
+ w3

3
+ · · · + (−1)n−1w

n

n
+ · · ·

)
Hence

| log(1+ w)| ≤ |w| + |w|
2

2
+ |w|

3

3
+ · · · + |w|

n

n
+ · · ·

and for |w| ≤ 1/2 we have

| log(1+ w)| ≤ |w|
(

1+ 1

2
+ 1

22
+ · · · + 1

2n
+ · · ·

)
≤ |w|

(
1

1− 1/2

)
= 2|w|

Thus for |ak(z)| < 1/2

| log(1+ ak(z))| ≤ 2|ak(z)|



162 3 Sequences, Series and Singularities of Complex Functions

If we assume that |ak(z)| ≤ Mk , with
∑∞

k=1 Mk < ∞, it is clear that there
is a k > N such that |ak(z)| < 1/2, and we have hypothesis (a). The theorem
goes through as before simply with Mk replaced by 2Mk . �

As an example, consider the product

F(z) =
∞∏

k=1

(
1− z2

k2

)
(3.6.5)

Theorem 3.6.1 implies that F(z) represents an entire function with simple
zeroes as z = ±1,±2, . . .. In this case, ak(z) = −z2/k2. Inside the circle
|z| < R we have |ak(z)| ≤ R2/k2. Because

∞∑
k=1

R2

k2
<∞

Theorem 3.6.1 shows that the function F(z) is analytic for all finite z inside
the circle |z| < R. Because R can be made arbitrarily large, F(z) is entire,
and the only zeroes of F(z) correspond to the vanishing of (1 − z2/k2), for
k = 1, 2, . . ..

Next we construct a function with simple zeroes at z = 1, 2, . . ., and no other
zeroes. We shall show that the function

G(z) =
∞∏

k=1

{(
1− z

k

)
ez/k

}
(3.6.6)

is one such function. At first it may seem that the “convergence factor” ez/k

could be dropped. But we will show that without this term, the product would
diverge. In fact, the ez/k term is such that the contributions of the (1/k) term
inside the product exactly cancels, that is,(

1− z

k

)
ez/k =

(
1− z

k

)(
1+ z

k
+ z2

2!k2
+ · · ·

)
= 1− z2

2!k2
+ · · ·

We note the Taylor series

log ((1− w)ew) = log(1− w)+ w

= −
(
w2

2
+ w3

3
+ w4

4
+ · · ·

)
= − (w2

)(1

2
+ w

3
+ w2

4
+ · · ·

)
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hence for |w| < 1/2

|log(1− w)ew| ≤ |w|2
(

1

2
+ 1

22
+ 1

23
+ · · ·

)
= |w|2

(
1

2

)(
1

1− 1/2

)
= |w|2

Thus for |z| < R and k > 2R, for any fixed value R∣∣∣∣ log

(
1− z

k

)
ez/k

∣∣∣∣ ≤ ∣∣∣ zk
∣∣∣2 ≤ ( R

k

)2

hence from Theorem 3.6.1 the product (3.6.6) converges uniformly to an entire
function with simple zeroes at (1 − z/k) = 0 for k = 1, 2, . . .; that is, for
z = 1, 2, . . ..

We now show that
∏∞

k=1(1− z/k) diverges for z 
= 0. We note that for any
integer n ≥ 1

Hn =
n∏

k=1

(
1− z

k

)

=
n∏

k=1

(
1− z

k

)
ez/k · e−z/k

= e−zS(n)
n∏

k=1

{(
1− z

k

)
ez/k

}
where S(n) = 1 + 1/2 + 1/3 + · · · + 1/n. Thus, using the above result that
Eq. (3.6.6) converges and because S(n) → ∞, as n → ∞ we find that for
Re z < 0, Hn → ∞; for Re z > 0, Hn → 0; and for Re z = 0 and Im z 
= 0,
Hn does not have a limit as n → ∞. By our definition of convergence of an
infinite product (Eq. (3.6.1) below) we conclude that H is a divergent product.

Often the following observation is useful. If F(z) and G(z) are two entire
functions that have the same zeroes and multiplicities, then there is an entire
function h(z) satisfying

F(z) = eh(z)G(z) (3.6.7)

This follows from the fact that the function F(z)/G(z) is entire with no
zeroes; the ratio makes all other zeroes of F and G removable singularities.
Because F/G is analytic without zeroes, it has a logarithm that is everywhere
analytic: log(F/G) = h(z).
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It is natural to ask whether an entire function can be constructed that has
zeroes of specified orders at assigned points with no other zeroes, or simi-
larly, whether a meromorphic function can be constructed that has poles of
specified orders at assigned points with no other poles. These questions lead
to certain infinite products (the so-called Weierstrass products for entire func-
tions) and infinite series (Mittag–Leffler expansions, for meromorphic func-
tions). These notions extend our ability to represent functions of a certain
specified character. Earlier we only had Taylor/Laurent series representations
available.

First we shall discuss representations of meromorphic functions. In what
follows we shall use certain portions of the Laurent series of a given meromor-
phic function. Namely, near any pole (of order N j at z = z j ) of a meromorphic
function we have the Laurent expansion

f (z) =
N j∑

n=1

an, j

(z − z j )n
+

∞∑
n=0

bn, j (z − z j )
n

The first part contains the pole contribution and is called the principal part at
z = z j , p j (z):

p j (z) =
N j∑

n=1

an, j

(z − z j )n
(3.6.8)

We shall order points as follows: |zr | ≤ |zs | if r < s, with z0 = 0 if the origin
is one of the points to be included.

If the number of poles of the meromorphic function is finite, then the repre-
sentation

f (z) =
m∑

j=1

p j (z) (3.6.9)

is nothing more than the partial fraction decomposition of a rational function
vanishing at infinity, where the right-hand side of Eq. (3.6.9) has poles of
specified character at the points z = z j . A more general formula representing
a meromorphic function with a finite number of poles is obtained by adding to
the right side of Eq. (3.6.9) a function h(z) that is entire. On the other hand, if
the number of points z j is infinite, the sum in Eq. (3.6.9) might or might not
converge; for example, the partial sum

n∑
k=−n
k 
=0

1

z − k
= 2z

(
1

z2 − 12
+ 1

z2 − 22
+ · · · + 1

z2 − n2

)
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converges uniformly for finite z, whereas the partial sum
∑n

k=1 1/(z − k) di-
verges, as can be verified from the elementary convergence criteria of infinite
series. In general, we will need a suitable modification of Eq. (3.6.9) with the
addition of an entire function h(z) in order to find a rather general formula for
a meromorphic function with prescribed principal parts. In what follows we
take the case {z j }; |z j | → ∞ as j →∞, z0 = 0.

Mittag–Leffler expansions involve the following. One wishes to represent a
given meromorphic function f (z) with prescribed principal parts

{
p j (z)

}∞
j=0

in terms of suitable functions. The aim is to find polynomials
{

g j (z)
}∞

j=0,
where g0(z) = 0, such that

f (z) = p0(z)+
∞∑
j=1

(p j (z)− g j (z))+ h(z) = f̃ (z)+ h(z) (3.6.10)

where h(z) is an entire function. The part of Eq. (3.6.10) that is called f̃ (z) has
the same principal part (i.e., the same number, strengths and locations of poles)
as f (z). The difference h(z), between f (z) and f̃ (z), is necessarily entire. In
order to pin down the entire function h(z), more information about the function
f (z) is required.

When the function f (z) has only simple poles (N j = 1), the situation is
considerably simpler, and we now discuss this situation in detail.

In the case of simple poles,

p j (z) = a j

z − z j
= −a j

z j

(
1

1− z/z j

)
(3.6.11)

Then there is an m such that for |z/z j | < 1, the finite series

g j (z) = −a j

z j

(
1+
(

z

z j

)
+ · · · +

(
z

z j

)m−1
)

(3.6.12)

for m ≥ 1, integer (if m = 0 we can take g j (z) = 0), approximates p j (z)
arbitrarily closely; a j is the residue of the pole z = z j . If we call

L(w,m) = 1

w − 1
+ 1+ w + w2 + · · · + wm−1 (3.6.13)

then, assuming convergence of the infinite series, Eq. (3.6.10) takes the form

f (z) = p0(z)+
∞∑
j=1

(
a j

z j

)
L

(
z

z j
,m

)
+ h(z) (3.6.14)

where h(z) is an entire function and the following theorem holds.
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Theorem 3.6.2 (Mittag–Leffler – simple poles) Let {zk} and {ak} be sequences
with zk distinct, |zk | → ∞ as k →∞, and m an integer such that

∞∑
j=1

|a j |
|z j |m+1

<∞ (3.6.15)

Then Eq. (3.6.14) represents a meromorphic function whose only singularities
are simple poles at zk with residue ak for k = 1, 2, . . ..

Proof From the fact that

1+ w + w2 + · · · + wm−1 = 1

1− w
− wm

1− w

we have

L(w,m) = − wm

1− w

For |w| < 1/2 we have |1− w| ≥ 1− |w| ≥ 1/2, and hence

|L(w,m)| ≤ 2|w|m (3.6.16)

Let |z| < R and for J large enough take j > J , |z j | > 2R, then |z/z j | < 1/2,
hence the estimate (3.6.16) holds for w = z/z j , and∣∣∣∣a j

z j
L

(
z

z j
,m

)∣∣∣∣ ≤ ∣∣∣∣a j

z j

∣∣∣∣ 2 ∣∣∣∣ z

z j

∣∣∣∣m
≤ 2|R|m |a j |

|z j |m+1

Thus with Eq. (3.6.15) we find that the series in Eq. (3.6.14) converges uni-
formly for |z|< R (for arbitrarily large R), and Eq. (3.6.14) therefore represents
a meromorphic function with the desired properties. �

Using Theorem 3.6.2, we may determine which value of m ensures the con-
vergence of the sum in Eq. (3.6.15), and consequently we may determine the
function L(w,m) in Eqs. (3.6.13)–(3.6.14).

For example, let us consider the function

f (z) = π cotπ z

This function has simple poles at z j = j , j = 0,±1,±2, . . .. The strength of
any of these poles is a j = 1, which can be ascertained from the Laurent series
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of f (z) in the neighborhood of z j ; that is, calling z′ = z − j

f (z′) = π
cosπ z′

sinπ z′
=

π
(

1− (π z′)2

2! + · · ·
)

π
(

z′ − (π z′)3

3! + · · ·
)

= 1

z′

(
1− 1

3
(π z′)2 + · · ·

)
The principal part at each z j is therefore given by p j (z) = 1

z− j . Then the series
(3.6.15) in Theorem 3.6.2

∞∑
j=−∞

j 
=0

1

| j |m+1

converges for m = 1. Consequently from Theorem 3.6.3 and Eq. (3.6.14) the
general form of the function is fixed to be

π cotπ z = 1

z
+

∞∑
j=−∞

′(
1

z − j
+ 1

j

)
+ h(z) (3.6.17a)

= 1

z
+ 2

∞∑
j=1

z

z2 − j2
+ h(z) =

∞∑
j=−∞

z

z2 − j2
+ h(z) (3.6.17b)

where the prime in the sum means that the term j = 0 is excluded and where
h(z) is an entire function. Note that the (1/j) term in Eq. (3.6.17) is a necessary
condition for the series to converge.

In Chapter 4, Section 4.2, we show that by considering the integral

I = 1

2π i

∮
C
π cotπζ

(
1

z − ζ
+ 1

ζ

)
dζ (3.6.18)

where C is an appropriate closed contour, that the representation (3.17) holds
with h(z) = 0.

The general case in which the principal parts contain an arbitrary number of
poles – Eq. (3.6.8) with finite N j – is more complicated. Nevertheless, so long
as the locations of the poles are distinct, polynomials g j (z) can be found that
establish the following (see, e.g., Henrici, volume 1, 1977).

Theorem 3.6.3 (Mittag–Leffler – general case) Let f (z) be a meromorphic
function in the complex plane with poles {z j } and corresponding principal parts
{p j (z)}. Then there exist polynomials {g j (z)}∞j=1 such that Eq. (3.6.10) holds
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and the series
∞∑
j=1

(p j (z) − g j (z)) converges uniformly on every bounded set

not containing the points {z j }∞j=0.

Proof We only sketch the essential idea behind the proof; the details are cum-
bersome. Each of the principal parts {p j (z)}∞j=1 can be expanded in a convergent
Taylor series (around z= 0) for |z|< |z j |. It can be shown that enough terms can
be taken in this Taylor series that the polynomials g j (z) obtained by truncation
of the Taylor series of p j (z) at order zK j

g j (z) =
K j∑

k=0

Bk, j zk

ensure that the difference |p j (z) − g j (z)| is suitably small. It can be shown
(e.g. Henrici, volume I, 1977) that for any |z| < R, the polynomials g j (z) of
order K j ensure that the series

∞∑
j=1

∣∣p j (z)− g j (z)
∣∣

converges uniformly. �

It should also be noted that even when we only have simple poles for the
p j (z), there may be cases where we need to use the more general polynomials
described in Theorem 3.6.3; for example, if we have p j (z) = 1/(z− z j ) where
z j = log(1+ j), (a j = 1). Then we see that in this case Eq. (3.6.15) is not true
for any integer m.

A similar question to the one we have been asking is how to represent an
entire function with specified zeroes at location zk . We use the same notation
as before: z0 = 0, |z1| ≤ |z2| ≤ . . ., and |zk |→∞ as k→∞. The aim is
to generalize the notion of factoring a polynomial to “factoring” an entire func-
tion. We specify the order of each zero by ak . One method to derive such a
representation is to use the fact that if f (z) is entire, then f ′(z)/ f (z) is mero-
morphic with simple poles. Note near any isolated zero zk with order ak of f (z)
we have f (z) ≈ bk(z− zk)

ak ; hence f ′(z)/ f (z) ≈ ak/(z− zk). Thus the order
of the zero plays the same role as the residue in the Mittag–Leffler Theorem.

From the proof of Eq. (3.6.10) in the case of simple poles, using Eqs.
(3.6.11)–(3.6.15), we have the uniformly convergent series representation

f ′(z)
f (z)

= a0

z
+

∞∑
j=1

(
a j

z − z j
+ a j

z j

m−1∑
k=0

(
z

z j

)k
)
+ h(z) (3.6.19)
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where h(z) is an arbitrary entire function. Integrating and taking the exponential
yields (care must be taken with regard to the constants of integration, cf. Eq.
(3.6.21), below)

f (z) = za0

∞∏
j=1

(1− z/z j ) exp

m−1∑
k=0

(
z
z j

)k+1

k + 1


a j

g(z) (3.6.20)

where g(z) = exp
( ∫

h(z) dz
)

is an entire function without zeroes. Function
(3.6.20) is, in fact, the most general entire function with such specified behavior.
Equation (3.6.20) could, of course, be proven independently without recourse
to the series representations discussed earlier. This result is referred to as the
Weierstrass Factor Theorem. When a j = 1, j = 0, 1, 2, . . . , Eq. (3.6.20) with
(3.6.15) gives the representation of an entire function with simple zeroes.

Theorem 3.6.4 (Weierstrass) An entire function with isolated zeroes at z0 = 0,
{z j }∞j=1, |z1| ≤ |z2| ≤ . . ., where |z j | → ∞ as j →∞, and with orders a j , is
given by Eq. (3.6.20) with (3.6.15).

A more general result is obtained by replacing m by j in (3.6.20). This is
sometimes used when (3.6.15) diverges.

We note that z j cannot have a limit point other than ∞. If z j has a limit
point, say, z∗, then z j can be taken arbitrarily close to z∗; therefore f (z) would
not be entire, resulting in a contradiction. Recall that an analytic function must
have its zeroes isolated (Theorem 3.2.8).

In practice, it is usually easiest to employ the Mittag–Leffler expansion for
f ′(z)/ f (z), f (z) entire as we have done above, in order to represent an entire
function. Note that the expansion (3.6.17a,b) with h(z) = 0 can be integrated
using the principal branch of the logarithm function to find

log sinπ z = log z + A0 +
∞∑

n=1

[
log(z2 − n2)− An

]
where A0 and An are constant. Using

lim
z→0

sinπ z

z
= π

the constants can be evaluated: A0 = logπ and An = − log(−n2). Taking the
exponential of both sides yields

sinπ z

π
= z

∞∏
n=1

(
1−
(

z

n

)2)
(3.6.21)

which provides a concrete example of a Weierstrass expansion.
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Problems for Section 3.6

1. Discuss where the following infinite products converge as a function of z:

(a)
∞∏

n=0

(1+ zn) (b)
∞∏

n=0

(
1+ zn

n!

)

(c)
∞∏

n=1

(
1+ 2z

n

)
(d)

∞∏
n=1

(
1+
(

2z

n

)2)

2. Show that the product

∞∏
k=1

(
1− z4

k4

)
represents an entire function with zeroes at z = ±k,±ik; k = 1, 2, . . ..

3. Using the expansion

sinπ z

π z
=

∞∏
n=1

(
1−
(

z

n

)2)
show that we also have

sinπ z

π z
=

∞∏
n=−∞

′(
1− z

n

)
ez/n

where the prime means that the n = 0 term is omitted. (Also see Problem
4, below.)

4. Use the representation

sinπ z

π z
=

∞∏
n=−∞

′(
1− z

n

)
ez/n

to deduce, by differentiation, that

π cotπ z = 1

z
+

∞∑
n=−∞

′(
1

z − n
+ 1

n

)
where the prime means that the n = 0 term is omitted. Repeat the process
to find

π csc2 π z =
∞∑

n=−∞

1

(z − n)2
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5. Show that if f (z) is meromorphic in the finite z plane, then f (z) must be
the ratio of two entire functions.

6. Let �(z) be given by

1

�(z)
= zeγ z

∞∏
n=1

(
1+ z

n

)
e−z/n

for z 
= 0,−1,−2, . . . and γ = constant.

(a) Show that

�′(z)
�(z)

= −1

z
− γ −

∞∑
n=1

(
1

z + n
− 1

n

)
(b) Show that

�′(z + 1)

�(z + 1)
− �′(z)

�(z)
− 1

z
= 0

whereupon

�(z + 1) = Cz�(z), C constant

(c) Show that limz→0 z�(z) = 1 to find that C = �(1).
(d) Determine the following representation for the constant γ so that

�(1)= 1

e−γ =
∞∏

n=1

(
1+ 1

n

)
e−1/n

(e) Show that

∞∏
n=1

(
1+ 1

n

)
e−1/n = lim

n→∞
2

1

3

2

4

3
· · ·n + 1

n
e−S(n) = lim

n→∞(n+ 1)e−S(n)

where S(n) = 1+ 1
2 + 1

3 + · · · + 1
n . Consequently obtain the limit

γ = lim
n→∞

(
n∑

k=1

1

k
− log(n + 1)

)

The constant γ = 0.5772157 . . . is referred to as Euler’s constant.
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7. In Section 3.6 we showed that

π cotπ z −
(

1

z
+

∞∑
j=−∞

′(
1

z − j
+ 1

j

))
= h(z)

where
∑′ denotes that the j = 0 term is omitted and where h(z) is entire.

We now show how to establish that h(z) = 0.

(a) Show that h(z) is periodic of period 1 by establishing that the left-hand
side of the formula is periodic of period 1. (Show that the second term
on the left side doesn’t change when z is replaced by z + 1.)

(b) Because h(z) is periodic and entire, we need only establish that h(z)
is bounded in the strip 0 ≤ Rez ≤ 1 to ensure, by Liouville’s Theorem
(Section 2.6.2) that it is a constant. For all finite values of z = x + iy
in the strip away from the poles, explain why both terms are bounded,
and because the pole terms cancel, the difference is in fact bounded.
Verify that as y →±∞ the term π cotπ z is bounded.
To establish the boundedness of the second term on the left, rewrite it
as follows:

S(z) = 1

z
+

∞∑
n=1

2z

z2 − n2

Use the fact that in the strip 0 < x < 1, y > 2, |z| ≤ √2y, we have
|z2 − n2| ≥ 1√

2
(y2 + n2) (note that these estimates are not sharp), and

show that

|S(z)| ≤ 1

|z| + 4y
∞∑

n=1

(
1

y2 + n2

)
Explain why

∞∑
n=1

y

y2 + n2
= 1

y

∞∑
n=1

1

1+ (n/y)2
≤
∫ ∞

0

1

1+ u2
du = π

2

and therefore conclude that S(z) is bounded for 0 < x < 1 and y →
∞. The same argument works for y →−∞. Hence h(z) is a constant.

(c) Because both terms on the left are odd in z, that is, f (z) = − f (−z),
conclude that h(z) = 0.

8. Consider the function f (z) = (π2)/(sin2 π z).
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(a) Establish that near every integer z = j the function f (z) has the
singular part p j (z) = 1/(z − j)2.

(b) Explain why the series

S(z) =
∞∑

j=−∞

1

(z − j)2

converges for all z 
= j .
(c) Because the series in part (b) converges, explain why the representation

π2

sin2 π z
=

∞∑
j=−∞

1

(z − j)2
+ h(z)

where h(z) is entire, is valid.
(d) Show that h(z) is periodic of period 1 by showing that each of the

terms (π/ sinπ z)2 and S(z) are periodic of period 1. Explain why
(π/ sinπ z)2 − S(z) is a bounded function, and show that each term
vanishes as |y| → ∞. Hence conclude that h(z) = 0.

(e) Integrate termwise to find

π cotπ z = 1

z
+

∞∑
n=−∞

′(
1

z − n
+ 1

n

)
where the prime denotes the fact that the n = 0 term is omitted.

9. (a) Let f (z) have simple poles at z = zn , n = 1, 2, 3, . . . , N , with
strengths an , and be analytic everywhere else. Show by contour inte-
gration that (the reader may wish to consult Theorem 4.1.1)

1

2π i

∮
CN

f (z′)
z′ − z

dz′ = f (z)+
N∑

n=1

an

zn − z
(1)

where CN is a large circle of radius RN enclosing all the poles. Evaluate
(1) at z = 0 to obtain

1

2π i

∮
CN

f (z′)
z′

dz′ = f (0)+
N∑

n=1

an

zn
(2)

(b) Subtract equation (2) from equation (1) of part (a) to obtain

1

2π i

∮
CN

z f (z′)
z′(z′ − z)

dz′ = f (z)− f (0)+
N∑

n=1

an

(
1

zn − z
− 1

zn

)
(3)
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(c) Assume that f (z) is bounded for large z to establish that the left-hand
side of Equation (3) vanishes as RN → ∞. Conclude that if the sum
on the right-hand side of Equation (3) converges as N →∞, then

f (z) = f (0)+
∞∑

n=1

an

(
1

z − zn
+ 1

zn

)
(4)

(This is a special case of the Mittag-Leffler Theorems 3.6.2–3.6.3)
(d) Let f (z) = π cotπ z − 1/z, and show that

π cotπ z − 1

z
=

∞∑
n=−∞

′(
1

z − n
+ 1

n

)
(5)

where the prime denotes the fact that the n = 0 term is omitted.

(Equation (5) is another derivation of the result in this section.) We
see that an infinite series of poles can represent the function cotπ z.
Section 3.6 establishes that we have other series besides Taylor series
and Laurent series that can be used for representations of functions.

∗3.7 Differential Equations in the Complex Plane: Painlevé Equations

In this section we investigate various properties associated with solutions to
ordinary differential equations in the complex plane.

In what follows we assume some basic familiarity with ordinary differential
equations (ODEs) and their solutions. There are numerous texts on the subject;
however, with regard to ODEs in the complex plane, the reader may wish to
consult the treatises of Ince (1956) or Hille (1976) for an in-depth discussion,
though these books contain much more advanced material. The purpose of this
section is to outline some of the fundamental ideas underlying this topic and
introduce the reader to concepts which appear frequently in physics and applied
mathematics literature.

We shall consider nth-order nonlinear ODEs in the complex plane, with the
following structure:

dnw

dzn
= F

(
w,

dw

dz
, . . . ,

dn−1w

dzn−1
; z

)
(3.7.1)

where F is assumed to be a locally analytic function of all its arguments, i.e.,
F has derivatives with respect to each argument in some domain D; thus F can
have isolated singularities, branch points, etc. A system of such ODEs takes
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the form

dwi

dz
= Fi (w1, . . . , wn; z), i = 1, . . . , n (3.7.2)

where again Fi is assumed to be a locally analytic function of its arguments.
The scalar problem (3.7.1) is a special case of Eq. (3.7.2). To see this, we
associate w1 with w and take

dw1

dz
= w2 ≡ F1

dw2

dz
= w3 ≡ F2

...

dwn−1

dz
= wn ≡ Fn−1

dwn

dz
= F(w1, . . . , wn; z) (3.7.3)

whereupon

w j+1 = d jw1

dz j
, j = 1, . . . , n − 1 (3.7.4a)

and

dnw1

dzn
= F

(
w1,

dw1

dz
, . . . ,

dn−1w1

dzn−1
; z

)
(3.7.4b)

A natural question one asks is the following. Is there an analytic solution to
these ODEs? Given bounded initial values, that is, for Eq. (3.7.2), at z = z0

w j (z0) = w j,0 <∞ j = 1, 2, . . . , n (3.7.5)

the answer is affirmative in a small enough region about z = z0. We state this
as a theorem.

Theorem 3.7.1 (Cauchy) The system (3.7.2) with initial values (3.7.5), and
with Fi (w1, . . . , wn; z) as an analytic function of each of its arguments in a
domain D containing z = z0, has a unique analytic solution in a neighborhood
of z = z0.

There are numerous ways to establish this theorem, a common one being
the method of majorants, that is, finding a convergent series that dominates
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the true series representation of the solution. The basic ideas are most easily
illustrated by the scalar first-order nonlinear equation

dw

dz
= f (w, z) (3.7.6)

subject to the initial conditions w(0) = 0. Initial values w(z0) = w0 could be
reduced to this case by translating variables, letting z′ = z − z0, w′ = w−w0,
and writing Eq. (3.7.6) in terms ofw′ and z′. Function f (w, z) is assumed to be
analytic and bounded when w and z lie inside the circles |z| ≤ a and |w| ≤ b,
with | f | ≤ M for some a, b, and M . The series expansion of the solution to
Eq. (3.7.6) may be computed by taking successive derivatives of Eq. (3.7.6),
that is,

d2w

dz2
= ∂ f

∂z
+ ∂ f

∂w

dw

dz

d3w

dz3
= ∂2 f

∂z2
+ 2

∂2 f

∂z∂w

dw

dz
+ ∂2 f

∂w2

(
dw

dz

)2

+ ∂ f

∂w

d2w

dz2

... (3.7.7)

This allows us to compute

w =
(

dw

dz

)
0

z +
(

d2w

dz2

)
0

z2

2!
+
(

d3w

dz3

)
0

z3

3!
+ · · · (3.7.8)

The technique is to consider a comparison equation with the same initial
condition

dW

dz
= F(W, z), W (0) = 0 (3.7.9)

in which each term in the series representation of F(w, z) dominates that of
f (w, z). Specifically, the series representation for f (w, z), which is assumed
to be analytic in both variables w and z, is

f (w, z) =
∞∑
j=0

∞∑
k=0

C jk z jwk (3.7.10)

C jk = 1

j!k!

(
∂ j+k f

∂z j∂wk

)
0

(3.7.11)
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At w = b and z = a, we have assumed that f is bounded, and we take the
bound on f to be

| f (w, z)| ≤
∞∑
j=0

∞∑
k=0

|C jk |a j bk = M (3.7.12)

Each term of this series is bounded by M ; hence

|C jk | ≤ Ma− j b−k (3.7.13)

We take F(w, z) to be

F(W, z) =
∞∑
j=0

∞∑
k=0

M

a j bk
z j W k (3.7.14)

So from Eqs. (3.7.13) and (3.7.10) the function F(W, z) majorizes f (w, z)
termwise. Because the solution W (z) is computed exactly the same way as for
Eq. (3.7.6), that is, we only replace w and f with W and F in Eq. (3.7.7),
clearly the series solution (Eq. (3.7.8) with w replaced by W ) for W (z) would
dominate that for w. Next we show that W (z) has a solution in a neighborhood
of z = 0. Summing the series (3.7.14) yields

F(w, z) = M(
1− z

a

) (
1− W

b

) (3.7.15)

whereupon Eq. (3.7.9) yields(
1− W

b

)
dW

dz
= M

1− z
a

(3.7.16)

hence by integration

W (z)− 1

2b
(W (z))2 = −Ma log

(
1− z

a

)
(3.7.17)

and therefore

W (z) = b − b

[
1+ 2aM

b
log

(
1− z

a

)]1/2

(3.7.18)

In Eq. (3.7.18) we take the positive value for the square root and the prin-
cipal value for the log function so that W (0) = 0. The series representation
(expanding the log, square root, etc.) of W (z) dominates the series w(z). The
series for W (z) converges up and until the nearest singularity: z = a for the
log function, or to z = R where [·]1/2 = 0, whichever is smaller.
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Because R is given by

1+ 2aM

b
log

(
1− R

a

)
= 0 (3.7.19a)

we have

R = a

(
1− exp

(
− b

2Ma

))
(3.7.19b)

Because R < a, the series representation of Eq. (3.7.9) converges absolutely for
|z| < R. Hence a solutionw(z) satisfying Eq. (3.7.6) must exist for |z| < R, by
comparison. Moreover, so long as we stay within the class of analytic functions,
any series representation obtained this way will be unique because the Taylor
series uniquely represents an analytic function.

The method described above can be readily extended to apply to the system
of equations (3.7.2). Without loss of generality, taking initial values w j = 0
for j = 1, 2, . . . , n at z = 0 and functions Fi (w1, . . . , wn, z) analytic inside
|z| ≤ a, |w j | ≤ b, j = 1, . . . , n, then we can take |Fi | ≤ M in this domain.
For the majorizing function, similar arguments as before yield

dW1

dz
= dW2

dz
= · · · = dWn

dz

= M(
1− z

a

) (
1− W1

b

) · · · (1− Wn
b

) (3.7.20)

where

W j (z) = 0 for 1, . . . , n

Solving

dWi

dz
= dWi+1

dz

Wi (0) = Wi+1(0) = 0 for i = 1, 2, . . . , n − 1, implies that

W1 = W2 = · · · = Wn ≡ W

whereupon Eq. (3.7.20) gives

dW

dz
= M(

1− z
a

) (
1− W

b

)n , W (0) = 0 (3.7.21)

Solving Eq. (3.7.21) yields

W = b − b

[
1+ (n + 1)

b
Ma log

(
1+ z

a

)] 1
n+1

(3.7.22)
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with a radius of convergence given by |z| ≤ R where

R = a
(

1− e−
b

(n+1)Ma

)
(3.7.23)

Hence the series solution to the system (3.7.2), w j (0) = 0, converges abso-
lutely and uniformly inside the circle of radius R. �

Thus Theorem 3.7.1 establishes the fact that so long as fi (w1, . . . , wn; z) in
Eq. (3.7.2) is an analytic function of its arguments, then there is an analytic
solution in a neighborhood (albeit small) of the initial values z = z0. We may
analytically continue our solution until we reach a singularity. This is due to
the following.

Theorem 3.7.2 (Continuation Principle) The function obtained by analytic
continuation of the solution of Eq. (3.7.2), along any path in the complex plane,
is a solution of the analytic continuation of the equation.

Proof We note that because gi (z) = w′i − Fi (w1, . . . , wn; z), i = 1, 2, . . . , n,
is zero inside the domain where we have established the existence of our solu-
tion, then any analytic continuation of gi (z) will necessarily be zero. Because
the solution wi (z) satisfies gi (z)= 0 inside the domain of its existence, and be-
cause the operations in gi (z) maintain analyticity, then analytically extending
wi (z) gives the analytic extension of gi (z), which is identically zero. �

Thus we find that our solution may be analytically continued until we reach
a singularity. A natural question to ask is where we can expect a singularity.
There are two types: fixed and movable. A fixed singularity is one that is
determined by the explicit singularities of the functions fi (., z). For example

dw

dz
= w

z2

has a fixed singular point (SP) at z = 0. The solution reflects this fact:

w = Ae−1/z

whereby we have an essential singularity at z = 0.
Movable SPs, on the other hand, depend on the initial conditions imposed.

In a sense they are internal to the equation. For example, consider

dw

dz
= w2 (3.7.24a)
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There are no fixed singular points, but the solution is given by

w = − 1

z − z0
(3.7.24b)

where z0 is arbitrary. The value of z0 depends on the initial value; that is, if
w(z= 0)=w0, then z0= 1/w0. Equation (3.7.24b) is an example of amovable
pole (this is a simple pole). If we consider different equations, we could have
different kinds of movable singularities, for example, movable branch points,
movable essential singularities, etc. For example

dw

dz
= w p, p ≥ 2 (3.7.25a)

has the solution

w = ((p − 1)(z0 − z))1/1−p (3.7.25b)

which has a movable branch point for p ≥ 3.
In what follows we shall, for the most part, quote some well-known results

regarding differential equations with fixed and movable singular points. We
refer the reader to the monographs of Ince (1956), Hille (1976), for the rigorous
development, which would otherwise take us well outside the scope of the
present text.

It is natural to ask what happens in the linear case. The linear homogeneous
analog of Eq. (3.7.2) is

d �w
dz

= A(z) �w, �w(z0) = �w0 (3.7.26)

where �w is an (n × 1) column vector and A(z) is an (n × n) matrix, that is,

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 , �w =

w1
...

wn


The linear homogeneous scalar problem is obtained by specializing Eq.

(3.7.26):

dnw

dzn
= p1(z)

dn−1w

dzn−1
+ p2(z)

dn−2w

dzn−2
+ · · · + pn(z)w (3.7.27)
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where we take, in Eq. (3.7.26)

A =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

...

0 0 0 · · · 0 1
pn(z) pn−1(z) pn−2(z) · · · p2(z) p1(z)

 (3.7.28a)

and

w2 = dw1

dz
, . . . , wn = dwn−1

dz
, w1 ≡ w (3.7.28b)

The relevant result is the following.

Theorem 3.7.3 If A(z) is analytic in a simply connected domain D, then the
linear initial value problem (3.7.26) has a unique analytic solution in D.

A consequence of this theorem, insofar as singular points are concerned, is
that the general linear equation (3.7.26) has no movable SPs; its SPs are fixed
purely by the singularities of the coefficient matrix A(z), or in the scalar problem
(3.7.27), by the singularities in the coefficients {p j (z)}nj=1. One can prove
Theorem 3.7.3 by an extension of what was done earlier. Namely, by looking
for a series solution about a point of singularity, say, z = 0, w(z) =∑∞

k=0 ck zk ,
one can determine the coefficients ck and show that the series converges until
the nearest singularity of A(z). Because this is fixed by the equation, we have
the fact that linear equations have only fixed singularities.

For example, the scalar first-order equation

dw

dz
= p(z)w, w(z0) = w0 (3.7.29a)

has the explicit solution

w(z) = w0e

∫ z

z0
p(ζ ) dζ

(3.7.29b)

Clearly, if p(z) is analytic, then so is w(z).
For linear differential equations there is great interest in a special class of

differential equations that arise frequently in physical applications. These are
so-called linear differential equations with regular singular points. Equation
(3.7.26) is said to have a singular point in domain D if A(z) has a singular point
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in D. We say z = z0 is a regular singular point of Eq. (3.7.26) if the matrix
A(z) has a simple pole at z = z0:

A(z) =
∞∑

k=0

ak(z − z0)
k−1

where a0 is not the zero matrix. The scalar equation (3.7.27) is said to have a
regular singular point at z = z0 if pk(z) has a kth-order pole, i.e. (z−z0)

k pk(z),
k = 1, . . . , n is analytic at z = z0. Otherwise, a singular point of a linear
differential equation is said to be an irregular singular point. As mentioned
earlier, Eq. (3.7.27) can be written as a matrix equation, Eq. (3.7.26), and the
statements made here about scalar and matrix equations are easily seen to be
consistent.

We may rewrite Eq. (3.7.27) by calling Q j (z) = −(z − z0)
j p j (z)

(z − z0)
n dnw

dzn
+

n∑
j=1

Q j (z)(z − z0)
n− j dn− jw

dzn− j
= 0 (3.7.30)

where all the Q j (z) are analytic at z = z0 for j = 1, 2, . . ..
Fuchs and Frobenius showed that series methods may be applied to solve

Eq. (3.7.30) and that, in general, the solution contains branch points at z = z0.
Indeed, if we expand Q j (z) about z = z0 as

Q j (z) =
∞∑

k=0

c jk(z − z0)
k

then the solution to Eq. (3.7.30) has the form

w(z) =
∞∑

k=0

ak(z − z0)
k+r (3.7.31)

where r satisfies the so-called indicial equation

r(r − 1)(r − 2) · · · (r − n + 1)

+
n−1∑
j=1

c j0r(r − 1)(r − 2) · · · (r − n + j + 1)+ cn0 = 0 (3.7.32)

There is always one solution of (3.7.30) of the form (3.7.31) with a root r
obtained from (3.7.32). In fact there are n such linearly independent solutions
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so long as no two roots of this equation differ by an integer or zero (i.e.,
multiple root). In this special case the solution form (3.7.31) must in general be
supplemented by appropriate terms containing powers of log(z− z0). Equation
(3.7.32) is obtained by inserting the expansion (3.7.31) into Eq. (3.7.30) a
recursion relation for the coefficients ak are obtained by equating powers of
(z − z0). Convergence of the series (3.7.31) is to the nearest singularity of
the coefficients Q j (z), j = 1, . . . , n. If all the functions Q j (z) were indeed
constant, c j0, then Eq. (3.7.32) would lead to the roots associated with the
solutions to Euler’s equation.

The standard case is the second-order equation n = 2, which is covered in
most elementary texts on differential equations:

(z − z0)
2 d2w

dz2
+ (z − z0)Q1(z)

dw

dz
+ Q2(z)w = 0 (3.7.33)

where Q1(z) and Q2(z) are analytic in a neighborhood of z = z0. The indicial
equation (3.7.33) in this case satisfies.

r(r − 1)+ c10r + c20 = 0 (3.7.34)

where c10 and c20 are the first terms in the Taylor expansion of Q1(z) and Q2(z)
about z = z0, that is, c10 = Q1(z0) and c20 = Q2(z0).

Well-known second-order linear equations containing regular singular points
include the following:

Bessel’s Equation

z2 d2w

dz2
+ z

dw

dz
+ (z2 − p2)w = 0 (3.7.35a)

Legendre’s Equation

(
1− z2

) d2w

dz2
− 2z

dw

dz
+ p(p + 1)w = 0 (3.7.35b)

Hypergeometric Equation

z(1− z)
d2w

dz2
+ [c − (a + b + 1)z]

dw

dz
− abw = 0 (3.7.35c)

where a, b, c, p are constant.
We now return to questions involving nonlinear ODEs. In the late 19th and

early 20th centuries, there were extensive studies undertaken by mathematicians
in order to ennumerate those nonlinear ODEs that had poles as their only mov-
able singularities: We say that ODEs possessing this property are of Painlevé
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type (named after one of the mathematicians of that time). Mathematically
speaking, these equations are among the simplest possible because the solu-
tions apart from their fixed singularities (which are known a priori) only have
poles; in fact, they can frequently (perhaps always?) be linearized or solved
exactly. It turns out that equations with this property arise frequently in physi-
cal applications, for example, fluid dynamics, quantum spin systems, relativity,
etc. (See, for example, Ablowitz and Segur (1981), especially the sections on
Painlevé equations.) The historical background and development is reviewed
in the monograph of Ince (1956).

The simplest situation occurs with first-order nonlinear differential equations
of the following form:

dw

dz
= F(w, z) = P(w, z)

Q(w, z)
(3.7.36)

where P and Q are polynomials in w and locally analytic functions of z. Then
the only equation that is of Painlevé type is

dw(z)

dz
= A0(z)+ A1(z)w + A2(z)w

2 (3.7.37)

Equation (3.7.37) is called a Riccati equation. Moreover, it can be linearized
by the substitution

w(z) = α(z)

(
dψ
dz

ψ

)
(3.7.38a)

where

α(z) = −1/A2(z) (3.7.38b)

and ψ(z) satisfies the linear equation

d2ψ

dz2
= (A1(z)+ A′2(z)/A2(z)

) dψ

dz
− A0(z)A2(z)ψ (3.7.38c)

Because Eq. (3.7.38c) is linear, it has no movable singularities. But it does
have movable zeroes; hence w(z) from Eq. (3.7.38a) has movable poles.

Riccati equations are indeed special equations, and a large literature has been
reserved for them. The above conclusions were first realized by Fuchs, but an
extensive treatment was provided by the work of Painlevé. For Eqs. (3.7.36),
Painlevé proved that the only movable singular points possible were algebraic,
that is, no logarithmic or more exotic singular points arise in this case.
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Painlevé also considered the question of enumerating those second nonlinear
differential equations admitting poles as their only movable singularities. He
studied equations of the form

d2w

dz2
= F

(
w,

dw

dz
, z

)
(3.7.39)

where F is rational in w and dw/dz and whose coefficients are locally ana-
lytic in z. Painlevé and colleagues found (depending on how one counts) some
fifty different types of equations, all of which were either reducible to (a) lin-
ear equations, (b) Riccati equations, (c) equations containing so-called elliptic
functions, and (d) six “new” equations.

Elliptic functions are single-valued doubly periodic functions whose mov-
able singularities are poles. We say f (z) is a doubly periodic function if there
are two complex numbers ω1 and ω2 such that

f (z + ω1) = f (z)

f (z + ω2) = f (z) (3.7.40)

with a necessarily nonreal ratio: ω2/ω1 = γ , Im γ 
= 0. There are no doubly
periodic functions with two real incommensurate periods and there are no triply
periodic functions. The numbers m1ω1+nω2,m, n integers, are periods of f (z)
and a lattice formed by the numbers 0, ω1, ω2 with ω1+ω2 as vertices is called
the period parallelogram of f (z).

An example of an elliptic function is the function defined by the convergent
series:

P(z) = z−2 +
∞∑

m,n=0

′[ (
z − ωm,n

)−2 − ω−2
m,n

]
(3.7.41)

(z = 0 can be translated to z = z0 if we wish) where prime means (m, n)

= (0, 0), and ωm,n = mω1 + nω2, where ω1 and ω2 are the two periods of
the elliptic function. The function P(z) satisfies a simple first-order equation.
Calling w = P(z), we have

(w′)2 = 4w3 − g2w − g3 (3.7.42)

where

g2 = 60
∞∑

m,n=0

′
ω−4

m,n

g3 = 140
∞∑

m,n=0

′
ω−6

m,n (3.7.43)

The function w = P(z) is called the Weierstrass elliptic function.
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An alternative representation of elliptic functions is via the so-called Jacobi
elliptic functions w1(z) = sn(z, k), w2(z) = cn(z, k), and w3(z) = dn(z, k),
the first two of which are often referred to as the Jacobian sine and cosine.
These functions satisfy

dw1

dz
= w2w3 w1(0) = 0 (3.7.44a)

dw2

dz
= −w1w3 w2(0) = 1 (3.7.44b)

dw3

dz
= −k2w1w2 w3(0) = 1 (3.7.44c)

Multiplying Eq. (3.7.44a) by w1 and Eq. (3.7.44b) by w2, and adding, yields
(in analogy with the trigonometric sine and cosine)

w2
1(z)+ w2

2(z) = 1

Similarly, from Eqs. (3.7.44a) and (3.7.44c)

k2w2
1(z)+ w2

3(z) = 1

whereupon we see, from these equations, thatw1(z) satisfies a scalar first-order
nonlinear ordinary differential equation:

(
dw1

dz

)2

= (1− w2
1

) (
1− k2w2

1

)
(3.7.45)

Using the substitution u=w2
1 and changing variables, we can put Eq. (3.7.45)

into the form Eq. (3.7.42). Indeed, the general form for an equation having
elliptic function solutions is

(w′)2 = (w − a)(w − b)(w − c)(w − d) (3.7.46)

Equation (3.7.46) can also be transformed to either of the standard forms (Eqs.
(3.7.42) or (3.7.45)). (The “bilinear” transformation w = (α + βw1)/(γ +
δw1), αδ − βγ 
= 0, can be used to transform Eq. (3.7.46) to Eqs. (3.7.42) or
(3.7.45).) We also note that the autonomous (i.e., the coefficients are indepen-
dent of z) second-order differential equation

d2w

dz2
= w3 + ew2 + f w, e, f constant (3.7.47)
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can be solved by multiplying Eq. (3.7.47) by dw/dz and integrating. Then by
factorization we may put the result in the form (3.7.46).

The six new equations that Painlevé discovered are not reducible to “known”
differential equations. They are listed below, and are referred to as the six
Painlevé transcendents listed as PI through PV I . It is understood that w′ ≡
dw/dz.

PI : w′′ = 6w2 + z

PI I : w′′ = 2w3 + zw + a

PI I I : w′′ = (w′)2

w
− w′

z
+ (aw2 + b)

z
+ cw3 + d

w

PI V : w′′ = (w′)2

2w
+ 3w3

2
+ 4zw2 + 2(z2 − a)w + b

w

PV : w′′ =
(

1

2w
+ 1

w − 1

)
(w′)2 − w′

z
+ (w − 1)2

z2

(
aw + b

w

)
+cw

z
+ dw(w + 1)

w − 1

PV I : w′′ = 1

2

(
1

w
+ 1

w − 1
+ 1

w − z

)
(w′)2

−
(

1

z
+ 1

z − 1
+ 1

w − z

)
w′

+w(w − 1)(w − 2)

z2(z − 1)2

[
a + bz

w2
+ c(z − 1)

(w − 1)2
+ dz(z − 1)

(w − z)2

]
where a, b, c, d are arbitrary constants.

It turns out that the sixth equation contains the first five by a limiting pro-
cedure, carried out by first transforming w and z appropriately in terms of
a suitable (small) parameter, and then taking limits of the parameter to zero.
Recent research has shown that these six equations can be linearized by trans-
forming the equations via a somewhat complicated sequence of transformations
into linear integral equations. The methods to understand these transformations
and related solutions involve methods of complex analysis, to be discussed later
in Chapter 7 on Riemann–Hilbert boundary value problems.

Second- and higher-order nonlinear equations need not have only poles or
algebraic singularities. For example, the equation

d2w

dz2
=
(

dw

dz

)2(2w − 1

w2 + 1

)
(3.7.48)
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has the solution

w(z) = tan(log(az + b)) (3.7.49)

where a and b are arbitrary constants. Hence the point z = −b/a is a branch
point, and the function w(z) has no limit as z approaches this point. Similarly,
the equation

d2w

dz2
= α − 1

αw

(
dw

dz

)2

(3.7.50)

has the solution

w(z) = c(z − d)α (3.7.51)

where c and d are arbitrary constants. Equation (3.7.51) has an algebraic branch
point only if α = m/n where m and n are integers, otherwise the point z = d
is a transcendental branch point.

Third-order equations may possess even more exotic movable singular points.
Indeed, motivated by Painlevé’s work, Chazy (1911) showed that the following
equation

d3w

dz3
= 2w

d2w

dz2
− 3

(
dw

dz

)2

(3.7.52)

was solvable via a rather nontrivial transformation of coordinates. His solution
shows that the general solution of Eq. (3.7.52) possesses a movable natural
barrier. Indeed the barrier is a circle, whose center and radius depend on initial
values. Interestingly enough, the solution w in Eq. (3.7.52) is related to the
following system of equations (first considered in the case ε = −1 by Darboux
(1878) and then solved by Halphen (1881), which we refer to as the Darboux-
Halphens system (when ε = −1):

dw1

dz
= w2w3 + εw1(w2 + w3)

dw2

dz
= w3w1 + εw2(w3 + w1)

dw3

dz
= w1w2 + εw3(w1 + w2) (3.7.53)

In particular, when ε = −1, Chazy’s equation is related to the solutions of
Eq. (3.7.53) by

w = −2(w1 + w2 + w3)
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When ε = 0, Eqs. (3.7.53) are related (by scaling) to Eqs. (3.7.44a,b,c), and
the solution may be written in terms of elliptic functions. Equations (3.7.53)
with ε = −1 arise in the study of relativity and integrable systems (Ablowitz
and Clarkson, 1991).

In fact, Chazy’s and the Darboux-Halphen system can be solved in terms of
certain special functions that are generalizations of trigonometric and elliptic
function, so-called automorphic functions that we will study further in Chapter
5 (Section 5.8). By direct calculation (whose details are outlined in the exer-
cises) we can verify that the following (owing to Chazy) yields a solution to
Eq. (3.7.52). Transform to a new independent variable

z(s) = χ2(s)

χ1(s)
(3.7.54a)

where χ1 and χ2 are two linearly independent solutions of the following hyper-
geometric equation (see Eq. (3.7.35c), where a = b = 1

12 and c = 1
2 ):

d2χ

ds2
= α(s)

dχ

ds
+ β(s)χ (3.7.54b)

where

α(s) =
(

7s
6 − 1

2

s(1− s)

)
and β(s) = 1

144s(1− s)

that is

s(1− s)
d2χ

ds2
+
(

1

2
− 7s

6

)
dχ

ds
− χ

144
= 0 (3.7.54c)

Then the solution w of Chazy’s equation can be expressed as follows:

w(s(z)) = 6
d

dz
logχ1 = 6

χ1

dχ1

ds

ds

dz
= 6

χ1

dχ1
ds

(dz/ds)

= 6χ1

W(χ1, χ2)

dχ1

ds
(3.7.55)

where W(χ1, χ2) is the Wronskian of χ1 and χ2, which satisfies W ′ = αW , or

W(χ1, χ2) = χ1
dχ2

ds
− χ2

dχ1

ds
= s−1/2(1− s)−2/3W0 (3.7.56)
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where W0 is an arbitrary constant. Although this yields, in principle, only a
special solution to Eq. (3.7.52), the general solution can be obtained by making
the transformation χ1 �→ aχ1 + bχ2, χ2 �→ cχ1 + dχ2, with a, b, c, and d as
arbitrary constants normalized to ad − bc = 1.

However, to understand the properties of the solution w(z), we really need
to understand the conformal map z = z(s) and its inverse s = s(z). (From s(z)
and χ1(s(z))we find the solutionw(s(z)).) Usually, this map is denoted by s =
s(z;α, β, γ ), where α, β, γ are three parameters related to the hypergeometric
equation (3.7.54c), which are in this case α = 0, β = π/2, γ = π/3. This
function is called a Schwarzian triangle function, and the map transforms
the region defined inside a “circular triangle” (a triangle whose sides are either
straight lines or circular arcs – at least one side being an arc) in the z plane to
the upper half s plane. It turns out that by reflecting the triangle successively
about any of its sides, and repeating this process infinitely, we can analytically
continue the function s(z, 0, π/2, π/3) everywhere inside a circle. For the
solution normalized as in Eqs. (3.7.54a–c) this is a circle centered at the origin.
The function s = s(z; 0, π/2, π/3) is single valued and analytic inside the
circle, but the circumference of the circle is a natural boundary – which in this
case can be shown to consist of a dense set of essential singularities. The reader
can find a further discussion of mappings of circular triangles and Schwarzian
triangle functions in Section 5.8. Such functions are special cases of what
are often called automorphic functions. Automorphic functions have the
property that s(γ (z)) = s(z), where γ (z) = az+b

cz+d , ad − bc = 1, and as such
are generalization of periodic functions, for example, elliptic functions.

It is worth remarking that the Darboux-Halphen system (3.7.53) can also be
solved in terms of a Schwarzian triangle function. In fact, the solutions ω1, ω2,
ω3, are given by the formulae

ω1 = −1

2

d

dz
log

s ′(z)
s

, ω2 = −1

2

d

dz
log

s ′(z)
1− s

,

ω3 = −1

2

d

dz
log

s ′(z)
s(1− s)

(3.7.57)

where s(z) satisfies the equation

{s, z} = −
(

1

s2
+ 1

(1− s)2
+ 1

s(1− s)

)
(s ′(z))2

2
(3.7.58a)

and the term {s, z} is the Schwarzian derivative defined by

{s, z} = s ′′′

s ′
− 3

2

(
s ′′

s ′

)2

(3.7.58b)
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Equation (3.7.58a) is obtained when we substitute ω1, ω2, and ω3 given by
Eq. (3.7.57) into Eq. (3.7.53), with ε = −1. The function s(z) is the
“zero angle” Schwarzian triangle function, s(z) = s(z, 0, 0, 0), which is dis-
cussed in Section 5.8. In the exercises, the following transformation involving
Schwarzian derivatives is established:

{z, s} = {s, z} (−1)

(s ′(z))2 (3.7.59)

Using Eqs. (3.7.58a)–(3.7.59), we obtain the equation

{z, s} = 1

2

(
1

s2
+ 1

(1− s)2
+ 1

s(1− s)

)
(3.7.60)

In Section 5.8 we show how to solve Eq. (3.7.60), and thereby find the inverse
transformation z = z(s) in terms of hypergeometric functions. We will not go
further into these because it will take us too far outside the scope of this book.

Problems for Section 3.7

1. Discuss the nature of the singular points (location, fixed, or movable) of
the following differential equations and solve the differential equations.

(a) z
dw

dz
= 2w + z (b) z

dw

dz
= w2

(c)
dw

dz
= a(z)w3, a(z) is an entire function of z.

(d) z2 d2w

dz2
+ z

dw

dz
+ w = 0

2. Solve the differential equation

dw

dz
= w − w2

Show that it has poles as its only singularity.

3. Given the equation

dw

dz
= p(z)w2 + q(z)w + r(z)

where p(z), q(z), r(z) are (for convenience) entire functions of z
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(a) Letting w = α(z)φ′(z)/φ(z), show that taking α(z) = −1/p(z) elim-
inates the term (φ′/φ)2, and find that φ(z) satisfies

φ′′ −
(

q(z)+ p′(z)
p(z)

)
φ′ + p(z)r(z)φ = 0

(b) Explain why the functionw(z) has, as its only movable singular points,
poles. Where are they located? Can there be any fixed singular points?
Explain.

4. Determine the indicial equation and the basic form of expansion represent-
ing the solution in the neighborhood of the regular singular points to the
following equations:

(a) z2 d2w

dz2
+ z

dw

dz
+ (z2 − p2)w = 0, p not integer,

(Bessel’s Equation)

(b)
(
1− z2

) d2w

dz2
− 2z

dw

dz
+ p(p + 1)w = 0, p not integer,

(Legendre’s Equation)

(c) z(1− z)
d2w

dz2
+ [c − (a + b + 1)z]

dw

dz
−abw = 0, one solution is satisfactory,

(Hypergeometric Equation)

5. Suppose we are given the equation d2w/dz2 = 2w3.

(a) Let us look for a solution of the form

w =
∞∑

n=0

an(z − z0)
n−r = a0(z − z0)

−r + a1(z − z0)
1−r + · · ·

for z near z0. Substitute this into the equation to determine that r = 1
and a0 = ±1.

(b) “Linearize” about the basic solution by letting w = ±1/(z − z0) + v

and dropping quadratic terms in v to find d2v/dz2 = 6v/(z − z0)
2.

Solve this equation (Cauchy–Euler type) to find

v = A(z − z0)
−2 + B(z − z0)

3
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(c) Explain why this indicates that all coefficients of subsequent powers
in the following expansion (save possibly a4)

w = ±1

(z − z0)
+ a1 + a2(z − z0)+ a3(z − z0)

2 + a4(z − z0)
3 + · · ·

can be solved uniquely. Substitute the expansion into the equation for
w, and find a1, a2, and a3, and establish the fact that a4 is arbitrary.
We obtain two arbitrary constants in this expansion: z0 and a4. The
solution to w′′ = 2w3 can be expressed in terms of elliptic functions;
its general solution is known to have only simple poles as its movable
singular points.

(d) Show that a similar expansion works when we consider the equation

d2w

dz2
= zw3 + 2w

(this is the second Painlevé equation (Ince, 1956)), and hence that
the formal analysis indicates that the only movable algebraic singular
points are poles. (Painlevé proved that there are no other singular points
for this equation.)

(e) Show that this expansion fails when we consider

d2w

dz2
= 2w3 + z2w

because a4 cannot be found. This indicates that a more general expan-
sion is required. (In fact, another term of the form b4(z−z0)

3 log(z−z0)

must be added at this order, and further logarithmic terms must be
added at all subsequent orders in order to obtain a consistent formal
expansion.)

6. In this exercise we describe the verification that formulae (3.7.54a)–(3.7.56)
indeed satisfy Chazy’s equation.

(a) Use Eqs. (3.7.54a)–(3.7.55) to verify, by differentiation and resubsti-
tution, the following formulae for the first three derivatives of w. (Use
the linear equation (3.7.54b)

d2χ

ds2
= α(s)

dχ

ds
+ β(s)χ
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to resubstitute the second derivativeχ ′′(s) in terms of the first derivative
χ ′(s) and the function χ(s) successively, thereby eliminating higher
derivatives of χ(s).)

dw

dz
= 6
(
χ4

1β + χ2
1 (χ1

′)2
)
/W2 (i)

d2w

dz2
= 6
[
χ6

1 (β
′ − 2αβ)+ χ5

1χ1
′6β + 2χ3

1 (χ1
′)3
] /W3 (ii)

d3w

dz3
= 6
[
χ8

1

(
β ′′ − 2α′β − 5αβ ′ + 6α2β + 6β2

)
+χ7

1χ1
′(12β ′ − 24αβ)+ 6χ4

1 (χ1
′)4+ 36χ6

1 (χ1
′)2β
]
/W4

(iii)

where W is given by Eq. (3.7.56).

(b) By inserting (i)–(iii) into Chazy’s equation (3.7.52) show that all terms
cancel except for the following equation in α and β:

β ′′ − 2α′β − 5αβ ′ + 6α2β + 24β2 = 0 (iv)

Show that the specific choices, as in Eq. (3.7.54b)

α(s) =
(

7s
6 − 1

2

s(1− s)

)
and β(s) = 1

144s(1− s)

satisfy (iv) and hence verify Chazy’s solution.

7. Consider an invertible function s = s(z).

(a) Show that the derivative d/dz transforms according to the relationship
d

dz
= 1

z′(s)
d

ds
.

(b) As in Eq. (3.7.58b), the Schwarzian derivative is defined as {s, z} =
(s ′′/s ′)′ − 1

2 (s
′′/s ′)2. Show that

{s, z} = 1

z′(s)
d2

ds2

(
1

z′(s)

)
− 1

2

(
d

ds

(
1

z′(s)

))2

= − 1

(z′(s))2 {z, s}

(c) Consequently, establish that

{z, s} = {s, z}
(
− 1

(s ′(z))2

)
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8. In this exercise we derive a different representation for the solution of
Chazy’s equation.

(a) Show that

s ′′(z) = d

dz

(
s ′(z)

) = s ′(z)
d

ds

(
1

z′(s)

)
(b) Use z(s) = χ2(s)/χ1(s), where χ1 and χ2 satisfy the hypergeometric

equation (3.7.54a), and the Wronskian relation W(χ1, χ2) = (χ1χ
′
2 −

χ ′1χ2) =W0s−1/2(1− s)−2/3 in the above formulae, to show that

s ′′(z) = s ′(z)
d

ds

(
s

1
2 (1− s)

2
3 χ2

1 (s)/W0

)
= s ′(z)

(
1

2s
s ′(z)− 2

3(1− s)
s ′(z)+ 2χ1

′

χ1
s ′(z)

)
(c) Use Chazy’s solution (3.7.55), w = 6χ1

′

χ1
s ′(z), to show that

w = 3s ′′

s ′
− 3

2

s ′

s
+ 2s ′

1− s

= 1

2

d

dz
log

(s ′)6

s3(1− s)4

(d) Note that here s(z) is the Schwarzian triangle function with angles 0,
π/2, π/3; that is,

s(z) = s(z, 0, π/2, π/3)

The fact that Chazy’s and the Darboux-Halphen system are related by the
equation w= − 2(ω1 + ω2 + ω3) allows us to find a relation between
the above Schwarzian s(z, 0, π/2, π/3) (for Chazy’s equation) and the
one used in the text for the solution of the Darboux-Halphen system with
zero angles, s(z, 0, 0, 0). Call the latter Schwarzian ŝ(z), that is, ŝ(z) =
s(z, 0, 0, 0). Show that Eq. (3.7.57) and w = −2(w1 + w2 + w3) yields
the relationship

1

2

d

dz
log

(s ′)6

s3(1− s)4
= d

dz
log

(ŝ ′)3

ŝ2(1− ŝ)2

or

(s ′)6

s3(1− s)4
= A

(ŝ ′)6

ŝ4(1− ŝ)4

where A is a constant.
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∗3.8 Computational Methods

In this section we discuss some of the concrete aspects involving computation
in the study of complex analysis. Our purpose here is not to be extensive in our
discussion but rather to illustrate some basic ideas that can be readily imple-
mented. We will discuss two topics: the evaluation of (a) Laurent series and (b)
the solution of differential equations, both of which relate to our discussions in
this chapter. We note that an extensive discussion of computational methods
and theory can be found in Henrici (1977).

∗3.8.1 Laurent Series

In Section 3.3 we derived the Laurent series representation of a function analytic
in an annulus, R1 ≤ |z − z0| ≤ R2. It is given by the formulae (3.3.1) and
(3.3.2), which we repeat here for the convenience of the reader:

f (z) =
∞∑

n=−∞
cn(z − z0)

n (3.8.1)

where

cn = 1

2π i

∮
C

f (z) dz

(z − z0)n+1
(3.8.2)

and C is any simple closed contour in the annulus which encloses the inner
boundary |z− z0| = R1. We shall take C to be a circle of radius r . Accordingly
the change of variables

z = z0 + reiθ (3.8.3)

where r is the radius of a circle with R1 ≤ r ≤ R2, allows us to rewrite
Eq. (3.8.2) as

ĉn = 1

2π

∫ π

−π
f (θ)e−inθ dθ (3.8.4)

where cn = ĉn/rn . In fact, Eq. (3.8.4) gives the Fourier coefficients of the
function

f (θ) =
∞∑

n=−∞
ĉneinθ (3.8.5)

with period 2π defined on the circle (3.8.3). Equation (3.8.4) can be used as a
computational tool after discretization. We consider 2N points equally spaced
along the circle, with θ j = hj, j = −N ,−N + 1, . . . N − 1, and

∫ π
−π →∑N−1

j=−N with dθ → �θ = h = 2π/(2N ) = π/N (note that when j = N then
θN = π ).
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The following discretization corresponds to what is usually called the discrete
Fourier transform:

f (θ j ) =
N−1∑

n=−N

ĉneinθ j (3.8.6)

where

ĉn = 1

2N

N−1∑
j=−N

f (θ j )e
−inθ j (3.8.7)

We note that the formulae (3.8.6) and (3.8.7) can be calculated directly, at a
“cost” of O(N 2) multiplications. (The notation O(N 2) means proportional
to N 2; a formal definition can be found in section 6.1.) Moreover, it is well
known that in fact, the computational “cost” can be reduced significantly to
O(N log N ) multiplications by means of the fast fourier transform (FFT),
(see, e.g., Henrici (1977)).

Given a function at 2N equally spaced points on a circle, one can readily
compute the discrete Fourier coefficients, ĉn . The approximate Laurent coeffi-
cients are then given by cn = ĉn/rn . (For all the numerical examples below we
use r = 1.) As N increases, the approximation improves rapidly if the contin-
uous function is expressible as a Laurent series. However, if the function f (z)
were analytic, we would find that the coefficients with negative indices would
be zero (to a very good approximation).

Example 3.8.1 Consider the functions (a) f (z)= 1/z and (b) f (z)= e1/z . Note
that with z0= 0 the exact answers are (a) c−1= 1 and cn = 0 for n 
= 0, (b) cn =
1/(−n)! for n ≤ 0, and cn = 0 for n ≥ 1. The magnitude of the numerically
computed coefficients, using N = 16, are shown in Figure 3.8.1 (∗ represents
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(a) f (z) = 1/z (b) f (z) = e1/z

Fig. 3.8.1. Laurent coefficients cn for two functions
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the coefficient). Note that for part (a) we obtain only one significantly nonzero
coefficient (c−1 ≈ 1 and cn≈0 to high accuracy). In part (b) we find that cn≈0
for n ≥ 1; all the coefficients agree with the exact values to a high degree of
accuracy. Note that the coefficients decay rapidly for large negative n.

∗3.8.2 Differential Equations

The solution of differential equations in the complex plane can be approximated
by many of the computational methods often studied in numerical analysis. We
shall discuss “time-stepping” methods and series methods.

We consider the scalar differential equation

dy

dz
= f (z, y) (3.8.8)

with the initial condition y(z0) = y0, where f is analytic in both arguments
in some domain D containing z = z0. The key ideas are best illustrated by
the explicit Euler method. Here dy/dz is approximated by the difference
(y(z + hn) − y(z))/hn . Call zn+1 = zn + hn , y(zn) = yn , and note that
hn is complex; that is, hn can take any direction in the complex plane. Also
note that we allow the step size, hn , to vary from one time step to the next,
which is necessary if, for instance, we want to integrate around the unit cir-
cle. In this application we keep |hn| constant. Hence, at z = zn , we have the
approximation

yn+1 = yn + hn f (zn, yn), n = 0, 1, . . . (3.8.9)

with the initial condition y(z0)= y0. It can be shown that under suitable as-
sumptions, Eq. (3.8.9) is an O(h2

n) approximation over every step and an O(hn)

approximation if we integrate over a finite time T with hn → 0. Equation (3.8.9)
is straightforward to apply as we now show.

Example 3.8.2 Approximate the solution of the equation

dy

dz
= y2, y(1) = −2

as z traverses along the contour C , where C is the unit circle in the complex
plane. We discretize along the circle and take zn = eiθn , where θn = 2πn/N
and hn = zn+1 − zn, n = 0, 1, . . . N − 1. The exact solution of dy/dz = y2

is y = 1/(A − z), where A is an arbitrary complex constant and we see that it
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Fig. 3.8.2. Explicit Euler’s method, Example 3.8.2

has a pole at the location z = A. For the initial value y(1) = −2, A = 1
2 , and

the pole is located at z = 1
2 .

Because we are taking a circuit around the unit circle, we never get close to
the singular point. Because the solution is single valued, we expect to return
to the initial value after one circuit. We use the approximation (3.8.9) with
f (zn, yn) = y2

n , y0 = y(z0) = −2. The solutions using N = 256 and N = 512
are shown in Figure 3.8.2, where we plot the real part of y versus the imaginary
part of y: y(zn) = yR(zn) + iyI (zn) for n = 0, 1, . . . , N . Although the
solution using N = 512 shows an improvement, the approximate solution is
not single valued as it should be. This is due to the inaccuracy of the Euler
method.

We could improve the solution by increasing N even further, but in practice
one uses more accurate methods that we now quote. By using more accurate
Taylor series expansions of y(zn + hn) we can find the following second- and
fourth-order accurate methods:

(a) second-order Runge–Kutta (RK2)

yn+1 = yn + 1

2
hn(kn1 + kn2) (3.8.10)

where kn1 = f (zn, yn) and kn2 = f (zn + hn, yn + hnkn1)

(b) fourth-order Runge–Kutta (RK4)

yn+1 = yn + 1

6
hn(kn1 + 2kn2 + 2kn3 + kn4) (3.8.11)
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Fig. 3.8.3. Runge–Kutta methods (Example 3.8.3)

where

kn1 = f (zn, yn), kn2 = f
(

zn + 1

2
hn, yn + 1

2
hnkn1

)
kn3 = f

(
zn + 1

2
hn, yn + 1

2
hnkn2

)
, kn4 = f (zn + hn, yn + hnkn3)

Example 3.8.3 We illustrate how the above methods, RK2 and RK4, work on
the same problem as Example 3.8.2 above, choosing hn in the same way as
before. Using N = 128 we see in Figure 3.8.3 that the solution is indeed single
valued (to numerical accuracy) as expected. It is clear that the solutions obtained
by these methods are nearly single valued; they are a significant improvement
over Euler’s method. Moreover, RK4 is an improvement over RK2, although
RK4 requires more function evaluations and more computer time.

Example 3.8.4 Consider the differential equation

dy

dz
= 1

2
y3

with initial values

(a) y(1) = 1, the exact solution is y(z) = 1/
√

2− z;
(b) y(1) = 2i , the exact solution is y(z) = 2i/

√
4z − 3.

The general solution is y(z) = (z0 − z)−1/2, where the proper branch of the
square root is chosen to agree with the initial value. We integrate around the
unit circle (choosing hn as in the previous examples) using RK2 and RK4 for
N = 128; the results are shown in Figure 3.8.4. For the initial value in part (a)
the singularity lies outside the unit circle and the numerical solutions are single
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Fig. 3.8.4. Part (a) of Example 3.8.4, using y(1) = 1 and N = 128
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Fig. 3.8.5. The error in the numerical solutions shown in Figure 3.8.4

valued. Figure 3.8.5 shows the logarithm of the absolute value of the errors in
the calculations graphed in Figure 3.8.4. Note that the error in RK4 is several
orders of magnitude smaller than the error in RK2. For the initial value of part
(b) the branch point is at z = 3/4 and thus lies inside the unit circle and the
solutions are clearly not single valued. Numerically (see Fig. 3.8.6) we find
that the jump in the function y(z) is approximately 4i as we traverse the circle
from θ = 0 to 2π , as expected from the exact solution.

As long as there are no singular points on or close to the integration contour
there will be no difficulty in implementing the above time-stepping algorithms.
However, in practice one frequently has nearby singular points and the con-
tour may need to be modified in order to analytically continue the solution.
In this case, it is sometimes useful to use series methods to approximate the
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Fig. 3.8.6. Part (b) of Example 3.8.4, using y(1) = 2i and N = 128

solution of the differential equation and estimate the radius of convergence as
the calculation proceeds. This is discussed next.

Given Eq. (3.8.8) and noting Cauchys’ Theorem for differential equations,
Theorem 3.7.1, we can look for a series solution of the form y = ∑∞

n=0 An

(z − z0)
n . By inserting this series into the equation, we seek to develop a

recursion relation between the coefficients; this can be difficult or unwieldy
in complicated cases, but computationally speaking, it can almost always be
accomplished. Having found such a recursion relation, we can evaluate the
coefficients An and find an approximation to the radius of convergence: from
the ratio test R = |z− z0| = limn→∞ |An/An+1|when this limit exists, or more
generally via the root test R = [limn→∞ supm>n |am |1/m]−1 (see Section 3.2).
As we proceed in the calculation we estimate the radius of convergence (for
large n). We may need to modify our contour if the radius of convergence begins
to shrink and move in a direction where the radius of convergence enlarges or
remains acceptably large.

Example 3.8.5 Evaluate the series solution to the equation

dy

dz
= y2 + 1 (3.8.12)

with y(0) = 1. The exact solution is obtained by integrating

dy

1+ y2
= dz

to find y = tan(z + π/4). In order to obtain a recursion relation associated
with the coefficients of the series solution y = ∑∞

n=0 An(z − z0)
n it is useful
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to use the series product formula:

∞∑
n=0

An(z − z0)
n
∞∑

m=0

Bm(z − z0)
m =

∞∑
n=0

Cn(z − z0)
n

where Cn =
∑n

p=0 Ap Bn−p. The insertion of the series for y into Eq. (3.8.12)
yields

∞∑
n=0

n An(z − z0)
n−1 =

( ∞∑
n=0

An(z − z0)
n

)2

+ 1

Using the product formula and the transformation

∞∑
n=0

n An(z − z0)
n−1 =

∞∑
n=0

(n + 1)An+1(z − z0)
n

we obtain the equation

∞∑
n=0

(n + 1)An+1(z − z0)
n =

∞∑
n=0

 n∑
p=0

Ap An−p

 (z − z0)
n + 1

and hence the recursion relation

(n + 1)An+1 =
n∑

p=0

Ap An−p + δn,0 (3.8.13)

where δn,0 is the Kronecker delta function; δn,0 = 1 if n = 0 and 0 otherwise.
Because we have posed the differential equation at z = 0, we begin with z0 = 0
and A0 = y0 = 1. It is straightforward to compute the coefficients from this
formula. Computing the ratios up to n= 12 (for example) we find that the
final terms yield limn→∞ An/An+1≈A11/A12= 0.78539816. It is clear that the
series converges inside a radius of convergence R of approximately π/4 as it
should. Suppose we use this series up to z = 0.1 in steps of 0.01. This means
we use the recursion relation (3.8.13), but we use it repeatedly after each time
step; that is, for each of the values A0 = y(z j ), z j = 0, 0.01, 0.02, . . . , 0.10,
we calculate the corresponding, successive coefficients, An , from Eq. (3.8.13)
before we proceed to the next z j . This means that in the series solution for
y we are reexpanding about a new point z0 = z j . We obtain (still using
n = 12 coefficients) y(0.1)= 1.22305 and an approximate radius of conver-
gence R= 0.6854. Note that these values are very good approximations of the
analytical values. We can also evaluate the series by moving into the complex
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plane. For example, if we expand around z = 0.1 and move in steps of 0.01i
to z = 0.1+ 0.1i , we obtain y(0.1+ 0.1i) = 1.1930+ 0.2457i and an approx-
imate radius of convergence R = 0.6967. The series expansion is now seen to
be valid in a larger region. This is true because we are now moving away from
the singularity. The procedure can be repeated and we can analytically extend
the solution by reexpanding the series about new points and employing the re-
cursion relation to move into any region where the solution is analytic. In this
way we can “internally” decide on how big a region of analyticity we wish to
cover and always be sure to move into regions where the series solution is valid.

A detailed discussion of series methods for solving ODE’s appears in the
work of Corliss and Chang (1982).

Problems for Section 3.8

1. Find the magnitude of the numerically computed Laurent coefficients with
z0 = 0 (using N = 32) for (i) f (z) = ez , (ii) f (z) = √

z, (iii) f (z) =
1/
√

z, (iv) f (z) = tan 1/z, and show that they agree with those in Figure
3.8.7.

(a) Do the Laurent coefficients in Figure 3.8.7 correspond to what you
would expect from analytical considerations? What is the true behavior
of each function; that is, what kind of singularities do these functions
have?

(b) Note that the coefficients decay at very different rates for the examples
(i) to (iv). Explain why this is the case. (Hint: Relate it to the single-
valuedness of the function.)

2. Consider the differential equation
dy

dz
= y2, y(z0) = y0.

(a) Show that the analytical solution is given by

y(z) = y0

1− y0(z − z0)

(b) Write down the position of the singularity of the solution (a) above.
What is the nature of the singularity?

(c) From (b) above note that the position of the singularity depends on the
initial values, that is, z0 and y0. Choose z0 = 1 and find the values y0

for which the singularity lies inside the unit circle.
(d) Use the time-stepping numerical techniques discussed in this section

(Euler, RK2, and RK4) to compute the solution on the unit circle
z = eiθ as θ varies from θ = 0 to 4π .
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Fig. 3.8.7. Laurent coefficients cn for Problem 1: (a) f (z) = ez ; (b) f (z) = z1/2;
(c) f (z) = 1/z1/2; (d) f (z) = tan(1/z).

3. Repeat Problem 2 above for the differential equation dy/dz = 1
2 y3, y(z0)

= y0.

4. Consider the equation

dy

dz
+ 2zy = 1, y(1) = 1

(a) Solve this equation using the series method. Evaluate the solution as
we traverse the unit circle. Show that the solution is single valued.

(b) Evaluate an approximation to y(−1) from the series.
(c) Show that an exact representation of the solution in terms of integrals

is

y(z) =
∫ z

1
et2−z2

dt + e1−z2

and verify that, by evaluating y(z) by a Taylor series (i.e., use et2 =
1 + t2 + t4/2! + t6/3! + t8/4! + · · ·), the answer obtained from this
series is a good approximation to that obtained in part (b).



4
Residue Calculus and Applications of Contour

Integration

In this chapter we extend Cauchy’s Theorem to cases where the integrand is not
analytic, for example, if the integrand possesses isolated singular points. Each
isolated singular point contributes a term proportional to what is called the
residue of the singularity. This extension, called the residue theorem, is very
useful in applications such as the evaluation of definite integrals of various
types. The residue theorem provides a straightforward and sometimes the only
method to compute these integrals. We also show how to use contour inte-
gration to compute the solutions of certain partial differential equations by the
techniques of Fourier and Laplace transforms.

4.1 Cauchy Residue Theorem

Let f (z) be analytic in the region D, defined by 0 < |z − z0| < ρ, and let
z = z0 be an isolated singular point of f (z). The Laurent expansion of f (z)
(discussed in Section 3.3) in D is given by

f (z) =
∞∑

n=−∞
Cn(z − z0)

n (4.1.1)

with

Cn = 1

2π i

∮
C

f (z) dz

(z − z0)n+1
(4.1.2)

where C is a simple closed contour lying in D. The negative part of series∑−1
n=−∞ Cn(z − z0)

n is referred to as the principal part of the series. The
coefficient C−1 is called the residue of f (z) at z0, sometimes denoted as

206
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Fig. 4.1.1. Proof of Theorem 4.1.1

C−1 = Res ( f (z); z0). We note when n = −1, Eq. (4.1.2) yields∮
C

f (z) dz = 2π iC−1 (4.1.3)

Thus Cauchy’s Theorem is now seen to suitably generalize to functions f (z)
with one isolated singular point. Namely, we had previously proven that for
f (z) analytic in D the integral

∮
C f (z) dz = 0, where C was a closed contour in

D. Equation (4.1.3) shows that the correct modification of Cauchy’s Theorem,
when f (z) contains one isolated singular point at z0 ∈ D, is that the integral
be proportional to the residue (C−1) of f (z) at z0. In fact, this concept is easily
extended to functions with a finite number of isolated singular points. The result
is often referred to as the Cauchy Residue Theorem, which we now state.

Theorem 4.1.1 Let f (z) be analytic inside and on a simple closed contour C ,
except for a finite number of isolated singular points z1, . . . , zN located inside
C . Then ∮

f (z) dz = 2π i
N∑

j=1

a j (4.1.4)

where a j is the residue of f (z) at z = z j , denoted by a j = Res ( f (z); z j ).

Proof Consider Figure 4.1.1. We enclose each of the points z j by small non-
intersecting closed curves, each of which lies within C : C1,C2, . . . ,CN and is
connected to the main closed contour by cross cuts. Because the integrals along
the cross cuts vanish, we find that on the contour � = C −C1−C2−· · ·−CN

(with each contour taken in the positive sense)∫
�

f (z) dz = 0
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which follows from Cauchy’s Theorem. Thus

∮
C

f (z) dz =
N∑

j=1

∮
C j

f (z) dz (4.1.5)

We now use the result (4.1.3) about each singular point. Because f (z)
has a Laurent expansion in the neighborhood of each singular point, z = z j ,
Eq. (4.1.4) follows. �

Some prototypical examples are described below.

Example 4.1.1 Evaluate

Ik = 1

2π i

∮
C0

zk dz, k ∈ Z

where C0 is the unit circle |z| = 1. Because zk is analytic for k = 0, 1, 2, . . .,
we have Ik = 0 for k = 0, 1, 2, . . . . Similarly, for k = −2,−3, . . . we find that
the residue of zk is zero; hence Ik = 0. For k = −1 the residue of z−1 is unity
and thus I−1 = 1.

We write Ik = δk,−1, where

δk,� =
{

1 when k = �

0 otherwise

is referred to as the Kronecker delta function.

Example 4.1.2 Evaluate

I = 1

2π i

∮
C0

z e1/z dz

where C0 is the unit circle |z| = 1. The function f (z) = ze1/z is analytic for
all z 
= 0 inside C0 and has the following Laurent expansion about z = 0:

ze1/z = z

(
1+ 1

z
+ 1

2!z2
+ 1

3!z3
+ · · ·

)
Hence the residue Res

(
ze1/z; 0

) = 1/2!, and we have

I = 1

2
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Example 4.1.3 Evaluate

I =
∮

C2

z + 2

z(z + 1)
dz

where C2 is the circle |z| = 2.
We write the integrand as a partial fraction

z + 2

z(z + 1)
= A

z
+ B

z + 1

hence z+2 = A(z+1)+Bz, and we deduce (taking z = 0, z = −1) that A = 2
and B = −1. (In fact, the coefficients A = 2 and B = −1 are the residues of
the function z+2

z(z+1) at z = 0 and z = −1, respectively.) Thus

I =
∮

C

(
2

z
− 1

z + 1

)
dz = 2π i(2− 1) = 2π i

where we note that the residue about z = 0 of 2/z is 2 and the residue of
1/(z + 1) about z = −1 is 1.

So far we have evaluated the residue by expanding f (z) in a Laurent ex-
pansion about the point z = z j . Indeed, if f (z) has an essential singular point
at z = z0, then expansion in terms of a Laurent expansion is the only general
method to evaluate the residue. If, however, f (z) has a pole in the neighborhood
of z0, then there is a simple formula, which we now give.

Let f (z) be defined by

f (z) = φ(z)

(z − z0)m
(4.1.6)

where φ(z) is analytic in the neighborhood of z = z0, m is a positive integer,
and if φ(z0) 
= 0 f has a pole of order m. Then the residue of f (z) at z0 is
given by

C−1 = 1

(m − 1)!

(
dm−1

dzm−1
φ

)
(z = z0)

= 1

(m − 1)!

dm−1

dzm−1
((z − z0)

m f (z))(z = z0) (4.1.7)

(This means that one first computes the (m − 1)st derivative of φ(z) and then
evaluates it at z = z0.)
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The derivation of this formula follows from the fact that if f (z) has a pole
of order m at z = z0, then it can be written in the form (4.1.6). Because φ(z)
is analytic in the neighborhood of z0

φ(z) = φ(z0)+ φ′(z0)(z − z0)+ · · · + φ(m−1)(z0)

(m − 1)!
(z − z0)

m−1 + · · ·

Dividing this expression by (z − z0)
m , it follows that the coefficient of the

(z− z0)
−1 term, denoted by C−1, is given by Eq. (4.1.7). (From the derivation it

also follows that Eq. (4.1.7) holds even if the order of the pole is overestimated;
e.g. Eq. (4.1.7) holds even if φ(z0) = 0, φ′(z0) 
= 0, which implies the order
of the pole is m − 1.)

A simple pole has m = 1, hence the formula

C−1 = φ(z0) = lim
z→z0

((z − z0) f (z)) (4.1.8)

(simple pole)

Suppose our function is given by a ratio of two functions N (z) and D(z),
where both are analytic in the neighborhood of z = z0

f (z) = N (z)

D(z)
(4.1.9)

Then if D(z) has a zero of order m at z0, we may write D(z) = (z− z0)
m D̃(z),

where D̃(z0) 
= 0 and D̃(z) is analytic near z = z0. Hence f (z) takes the form
(4.1.6) where φ(z) = N (z)/D̃(z) and Eq. (4.1.7) applies. In the special case
of a simple pole, m = 1, from the Taylor series of N (z) and D(z), we have
N (z) = N (z0)+ (z − z0)N ′(z0)+ · · ·, and D̃(z) = D′(z0)+ (z − z0)

D′′(z0)

2!
+ · · ·, whereupon φ(z0) = N (z0)

D′(z0)
, and Eq. (4.1.8) yields

C−1 = N (z0)

D′(z0)
, (4.1.10)

D′(z0) 
= 0. Special cases such as N (z0) = D′(z0) = 0 can be derived in a
similar manner.

In the following problems we illustrate the use of formulae (4.1.7) and
(4.1.10).

Example 4.1.4 Evaluate

I = 1

2π i

∮
C2

(
3z + 1

z(z − 1)3

)
dz

where C2 is the circle |z| = 2.
The function

f (z) = 3z + 1

z(z − 1)3
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has the form (4.1.6) near z = 0, z = 1. We have

Res ( f (z); 0) =
(

3z + 1

(z − 1)3

)
z=0

= −1

Res ( f (z); 1) = 1

2!

(
d2

dz2

(
3z + 1

z

))
z=1

= 1

2!

(
d2

dz2

(
3+ 1

z

))
z=1

= +1

hence I = 0.

Example 4.1.5 Evaluate

I = 1

2π i

∮
C0

cot z dz

where C0 is the unit circle |z| = 1.
The function cot z = cos z/ sin z is a ratio of two analytic functions whose

singularities occur at the zeroes of sin z : z = nπ , n = 0,±1,±2, . . . .Because
the contour C0 encloses only the singularity z = 0, we can use formula (4.1.10)
to find

I = lim
z→0

cos z

(sin z)′
= 1

Sometimes it is useful to work with the residue at infinity. The residue
at infinity, Res ( f (z),∞), in analogy with the case of finite isolated singular
points (see Eq. (4.1.5)), is given by the formula

Res ( f (z);∞) = 1

2π i

∮
C∞

f (z) dz (4.1.11a)

where C∞ denotes the limit R → ∞ of a circle CR with radius |z| = R. For
example, if f (z) is analytic at infinity with f (∞) = 0, it has the expansion
f (z) = a−1/z + a−2/z2 + · · ·, hence we find that

Res ( f (z),∞) = 1

2π i

∮
C∞

f (z) dz

= lim
R→∞

1

2π i

∫ 2π

0

(
a−1

Reiθ
+ a−2

(Reiθ )2
+ · · ·

)
i Reiθ dθ

= a−1 (4.1.11b)
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In fact Eq. (4.1.11a,b) holds even when f (∞) 
= 0, as long as f (z) has a
Laurent series in the neighborhood of z = ∞.

As mentioned earlier it is sometimes convenient, when analyzing the be-
havior of a function near infinity, to make the change of variables z = 1/t .
Using dz = − 1

t2 dt and noting that the counterclockwise (positive direction)
of CR : z = Reiθ transforms to a clockwise rotation (negative direction) in
t : t = 1/z = (1/R)e−iθ = εe−iθ , ε = 1/R, we have

Res( f (z);∞) = 1

2π i

∮
C∞

f (z) dz = 1

2π i

∮
Cε

(
1

t2

)
f

(
1

t

)
dt (4.1.12)

where Cε is the limit as ε → 0 of a small circle (ε = 1/R) around the origin in
the t plane. Hence the residue at∞ is given by

Res( f (z);∞) = Res

{
1

t2
f

(
1

t

)
; 0

}
that is, the right-hand side is the coefficient of t−1 in the expansion of f (1/t)/t2

near t = 0; the left-hand side is the coefficient of z−1 in the expansion of f (z)
at z = ∞. Sometimes we write

Res( f (z);∞) = lim
z→∞(z f (z)) when f (∞) = 0. (4.1.13)

The concept of residue at infinity is quite useful when we integrate rational
functions. Rational functions have only isolated singular points in the extended
plane and are analytic elsewhere. Let z1, z2, . . . , zN denote the finite singular-
ities. Then for every rational function,

N∑
j=1

Res( f (z); z j ) = Res( f (z);∞) (4.1.14)

This follows from an application of the residue theorem. We know that

1

2π i
lim

R→∞

∮
CR

f (z) dz =
N∑

j=1

Res( f (z); z j )

because f (z) has poles at {z j }N
j=1. On the other hand, because f (z) is a

rational function it has a Laurent series near infinity, hence we have
Res( f (z); ∞) = (1/2π i) limR→∞

∮
CR

f (z)dz.
We illustrate the use of the residue at infinity in the following examples.
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Example 4.1.6 We consider the problem worked earlier, Example 4.1.4, but
we now use Res( f (z);∞).

We note that all the singularities of f (z) lie inside C2, and the integrand
is a rational function with f (∞) = 0. Thus I = Res( f (z);∞). Because
f (z) = 3/z3 + · · · as z →∞, we use Eq. (4.1.13) to find

Res( f (z);∞) = lim
z→∞

(3z + 1)

(z − 1)3
= 0

Hence I = 0, as we had already found by a somewhat longer calculation!
We illustrate this idea with another problem.

Example 4.1.7 Evaluate

I = 1

2π i

∮
C

a2 − z2

a2 + z2

dz

z

where C is any simple closed contour enclosing the points z = 0, z = ±ia.
The function

f (z) = a2 − z2

a2 + z2

1

z

is a rational function with f (∞) = 0, hence it has only isolated singular points,
and note that f (z) = −1/z + · · · as z →∞.

I = Res( f (z);∞)

We again use Eq. (4.1.13) to find

I = lim
z→∞(z f (z)) = −1

The value w(z j ), defined by

w(z j ) = 1

2π i

∮
C

dz

z − z j
= 1

2π i
[log(z − z j )]C = �θ j

2π
, (4.1.15)

is called the winding number of the curve C around the point z j . Here, �θ j is
the total change in the argument of z− z j when z traverses the curve C around
the point z j . The value w(z j ) represents the number of times (positive means
counterclockwise) that C winds around z j .

By the process of deformation of contours, including the introduction of cross
cuts and the like, one can generalize the Cauchy Residue Theorem (4.1.1) to∮

C
f (z) dz = 2π i

N∑
j=1

w(z j )a j , a j = Res( f (z); z j ) (4.1.16)



214 4 Residue Calculus and Applications of Contour Integration

where the hypothesis of Theorem 4.1.1 remains intact except for allowing the
contour C to be nonsimple — hence the need for introducing the winding num-
bers w(z j ) at every point z = z j with residue a j = Res( f (z); z j ).

In applications it is usually clear how to break up a nonsimple contour into
a series of simple contours; we shall not go through the formal proof in the
general case. Rather than proving Eq. (4.1.16) in general, we illustrate the
procedure of breaking up a nonsimple contour into a series of simple contours
with an example.

Example 4.1.8 Use Eq. (4.1.16) to evaluate

I =
∮

C

dz

z2 + a2

a > 0, where C is the nonsimple contour of Figure 4.1.2.
The residue of 1/(z2 + a2) is

Res

(
1

z2 + a2
;±ia

)
=
(

1

2z

)
±ia

= ± 1

2ai

We see from Figure 4.1.2 that the winding numbers are w(ia) = +2 and
w(−ia) = +1. Thus

I = 2π i

[
2

(
1

2ai

)
− 1

2ai

]
= π

a

More generally, corresponding to any two closed curves C1 and C2 we have∮
C1

dz

z2 + a2
=
∮

C2

dz

z2 + a2
+ Nπ

a
(4.1.17)

x

ia

-ia

Fig. 4.1.2. Nonsimple curve for Example 4.1.8
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where N is an appropriate integer related to the winding numbers of C1 and
C2. Note that Nπ/a is intimately related to the function

Φ(z) =
∫ z

z0

du

u2 + a2
= 1

a
tan−1 z

a
+Φ0

where

Φ0 = −1

a
tan−1

(
z0

a

)
or z = a tan a(Φ −Φ0). Because z is periodic, with period Nπ/a, changing
Φ by Nπ/a yields the same value for z because the period of tan x is π .

Incorporating the winding numbers in Cauchy’s Residue Theorem shows
that, in the general case, the difference between two contours, C1 and C2, of a
function f (z) analytic inside these contours, save for a finite number of isolated
singular points, is given by

(∮
C1

−
∮

C2

)
f (z) dz = 2π i

N∑
j=1

w j a j

The points a j = Res ( f (z); z j ) are the periods of the inverse function z = z(Φ),
defined by

Φ(z) =
∫ z

z0

f (z) dz; z = z(Φ)

Problems for Section 4.1

1. Evaluate the integrals 1
2π i

∮
C f (z) dz, where C is the unit circle centered

at the origin and f (z) is given below.

(a)
z + 1

2z3 − 3z2 − 2z
(b)

cosh(1/z)

z
(c)

e− cosh z

4z2 + π2

(d)
log(z + 2)

2z + 1
, principal branch (e)

(z + 1/z)

z(2z − 1/2z)

2. Evaluate the integrals 1
2π i

∮
C f (z) dz, where C is the unit circle centered at

the origin with f (z) given below. Do these problems by both (i) enclosing
the singular points inside C and (ii) enclosing the singular points outside
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C (by including the point at infinity). Show that you obtain the same result
in both cases.

(a)
z2 + 1

z2 − a2
, a2 < 1 (b)

z2 + 1

z3
(c) z2e−1/z

3. Determine the type of singular point each of the following functions has at
z = ∞:

(a) zm,m = positive integer (b) z1/3 (c) (z2 + a2)1/2, a2 > 0

(d) log z (e) log(z2 + a2), a2 > 0 (f ) ez

(g) z2 sin
1

z
(h)

z2

z3 + 1
(i) sin−1 z ( j) log(1− e1/z)

4. Let f (z) be analytic outside a circle CR enclosing the origin.

(a) Show that

1

2π i

∮
CR

f (z) dz = 1

2π i

∮
Cρ

f

(
1

t

)
dt

t2

where Cρ is a circle of radius 1/R enclosing the origin. For R →∞
conclude that the integral can be computed to be Res ( f (1/t)/t2; 0).

(b) Suppose f (z) has the convergent Laurent expansion

f (z) =
−1∑

j=−∞
A j z

j

Show that the integral above equals A−1. (See also Eq. (4.1.11).)

5. (a) The following identity for Bessel functions is valid:

exp

(
w

2
(z − 1/z)

)
=

∞∑
n=−∞

Jn(w)z
n

Show that

Jn(w) = 1

2π i

∮
C

exp

(
w

2
(z − 1/z)

)
dz

zn+1

where C is the unit circle centered at the origin.
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(b) Use exp

(
w

2
(z − 1/z)

)
= exp

(
w

2
z

)
exp

(
−w

2z

)
; multiply the two

series for exponentials to compute the following series representation
for the Bessel function of “0th” (n = 0) order:

J0(w) =
∞∑

k=0

(−1)k w2k

(k!)222k

6. Consider the following integral

IR =
∮

CR

dz

z2 cosh z

where CR is a square centered at the origin whose sides lie along the lines
x = ±(R+ 1)π and y = ±(R+ 1)π , where R is a positive integer. Evalu-
ate this integral both by residues and by direct evaluation of the line integral
and show that in either case limR→∞ IR = 0, where the limit is taken over
the integers. (In the direct evaluation, use estimates of the integrand. Hint:
See Example 4.2.6.)

7. Suppose we know that everywhere outside the circle CR , radius R cen-
tered at the origin, f (z) and g(z) are analytic with limz→∞ f (z) = C1 and
limz→∞(zg(z)) = C2, where C1 and C2 are constant. Show

1

2π i

∮
CR

g(z)e f (z) dz = C2eC1

8. Suppose f (z) is a meromorphic function (i.e., f (z) is analytic everywhere
in the finite z plane except at isolated points where it has poles) with N
simple zeroes (i.e., f (z0) = 0, f ′(z0) 
= 0) and M simple poles inside a
circle C . Show

1

2π i

∮
C

f ′(z)
f (z)

dz = N − M

4.2 Evaluation of Certain Definite Integrals

We begin this section by developing methods to evaluate real integrals of the
form

I =
∫ ∞

−∞
f (x) dx (4.2.1)

where f (x) is a real valued function and will be specified later. Integrals with
infinite endpoints converge depending on the existence of a limit; namely, we



218 4 Residue Calculus and Applications of Contour Integration

say that I converges if the two limits in

I = lim
L→∞

∫ α

−L
f (x) dx + lim

R→∞

∫ R

α

f (x) dx, α finite (4.2.2)

exist. When evaluating integrals in complex analysis, it is useful (as we will
see) to consider a more restrictive limit by taking L = R, and this is sometimes
referred to as the Cauchy Principal Value at Infinity, Ip:

Ip = lim
R→∞

∫ R

−R
f (x) dx (4.2.3)

If Eq. (4.2.2) is convergent, then I = Ip by simply taking as a special case
L = R. It is possible for Ip to exist but not the more general limit (4.2.2). For
example, if f (x) is odd and nonzero at infinity (e.g. f (x) = x), then Ip = 0
but I will not exist. In applications one frequently checks the convergence of
I by using the usual tests of calculus and then one evaluates the integral via
Eq. (4.2.3). In what follows, unless otherwise explicitly stated, we shall only
consider integrals with infinite limits whose convergence can be established in
the sense of Eq. (4.2.2).

We first show how to evaluate integrals of the form

I =
∫ ∞

−∞
f (x) dx

where f (x) = N (x)/D(x), where N (x) and D(x) are real polynomials (that is,
f (x) is a rational function), D(x) 
= 0 for x ∈ R, and D(x) is at least 2 degrees
greater than the degree of N (x); the latter hypothesis implies convergence of
the integral. The method is to consider the integral∮

C
f (z) dz =

∫ R

−R
f (x) dx +

∫
CR

f (z) dz (4.2.4)

(see Figure 4.2.1) in which CR is a large semicircle and the contour C encloses
all the singularities of f (z), namely, those locations where D(z) = 0, that
is, z1, z2, . . . , zN . We use Cauchy’s Residue Theorem and suitable analysis
showing that limR→∞

∫
CR

f (z) dz = 0 (this is true owing to the assumptions
on f (x) and is proven in Theorem 4.2.1), in which case from (4.2.4) we have,
as R →∞, ∫ ∞

−∞
f (x) dx = 2π i

N∑
j=1

Res( f (z); z j ) (4.2.5)
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CR

-R R

z

z

z

z

1

2

3

N

Fig. 4.2.1. Evaluating Eq. (4.2.5) with the contour in the upper half plane

CR

-R R
z

z

z

z
N

1

2

3

Fig. 4.2.2. Evaluating Eq. (4.2.5) with the contour in the lower half plane

The integral can also be evaluated by using the closed contour in the lower
half plane, shown in Figure 4.2.2. Note that because D(x) is a real polynomial,
its complex zeroes come in complex conjugate pairs.

We illustrate the method first by an example.

Example 4.2.1 Evaluate

I =
∫ ∞

−∞

x2

x4 + 1
dx

We begin by establishing that the contour integral along the semicircular arc
described in Eq. (4.2.4) vanishes as R →∞. Using f (z) = z2/(z4 + 1), z =
Reiθ , dz = i Reiθdθ , |dz| = Rdθ , we have∣∣∣∣∫

CR

f (z) dz

∣∣∣∣ ≤ ∫ π

θ=0

|z|2
|z4 + 1| |dz| ≤

∫ π

θ=0

|z|2
|z|4 − 1

|dz|

= πR3

R4 − 1
−−−→

R→∞
0

These inequalities follow from |z4 + 1| ≥ |z|4 − 1, which implies 1/|z4 +
1| ≤ 1/(R4 − 1); we have used the integral inequalities of Chapter 2 (see, for
example, Theorem 2.4.2). Thus we have shown how Eq. (4.2.5) is arrived at in
this example.

The residues of the function f (z) are easily calculated from Eq. (4.1.10) of
Section 4.1 by noting that all poles are simple; they may be found by solv-
ing z4 = −1 = eiπ , and hence there is one pole located in each of the four
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quadrants. We shall use the contour in Figure 4.2.1 so we need only the ze-
roes in the first and second quadrants: z1 = eiπ/4 and z2 = ei(π/4+π/2) = e3iπ/4.
Thus Eq. (4.2.5) yields

I = 2π i

[(
z2

4z3

)
z1

+
(

z2

4z3

)
z2

]

= 2π i

4

(
e−iπ/4 + e−3iπ/4

) = π

2

(
eiπ/4 + e−iπ/4

)
= π cos(π/4) = π/

√
2

where we have used i = eiπ/2. We also note that if we used the contour depicted
in Figure 4.2.2 and evaluated the residues in the third and fourth quadrants, we
would arrive at the same result – as we must.

More generally, we have the following theorem.

Theorem 4.2.1 Let f (z) = N (z)/D(z) be a rational function such that the
degree of D(z) exceeds the degree of N (z) by at least two. Then

lim
R→∞

∫
CR

f (z) dz = 0

Proof We write

f (z) = anzn + an−1zn−1 + · · · + a1z + a0

bm zm + bm−1zm−1 + · · · + b1z + b0

then, using the same ideas as in Example 4.2.1∣∣∣∣∫
CR

f (z) dz

∣∣∣∣ ≤ ∫ π

0
(R dθ)

|an||z|n + |an−1||z|n−1 + · · · + |a1||z| + |a0|
|bm ||z|m − |bm−1||z|m−1 − · · · − |b1||z| − |b0|

= πR(|an|Rn + · · · + |a0|)
|bm |Rm − |bm−1|Rm−1 − · · · − |b0| −−−→R→∞

0

since m ≥ n + 2. �

Integrals that are closely related to the one described above are of the form

I1 =
∫ ∞

−∞
f (x) cos kx dx, I2 =

∫ ∞

−∞
f (x) sin kx dx,

I3± =
∫ ∞

−∞
f (x)e±ikx dx, (k > 0)
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where f (x) is a rational function satisfying the conditions in Theorem 4.2.1.
These integrals are evaluated by a method similar to the ones described earlier.
When evaluating integrals such as I1 or I2, we first replace them by integrals
of the form I3. We evaluate, say I3+, by using the contour in Figure 4.2.1.
Again, we need to evaluate the integral along the upper semicircle. Because
eikz = eikx e−ky (z = x + iy), we have |eikz| ≤ 1 (y > 0) and∣∣∣∣∫

CR

f (z)eikz dz

∣∣∣∣ ≤ ∫ π

0
| f (z)| |dz| −−−→

R→∞
0

from the results of Theorem 4.2.1. Thus using

I3+ =
∫ ∞

−∞
f (x)eikx dx

=
∫ ∞

−∞
f (x) cos kx dx + i

∫ ∞

−∞
f (x) sin kx dx,

we have from (4.2.5) suitably modified,

I3+ = I1 + i I2 = 2π i
N∑

j=1

Res
(

f (z)eikz; z j
)

(4.2.6)

and hence by taking real and imaginary parts of Eq. (4.2.6), we can compute I1

and I2.
It should be remarked that to evaluate I3−, we use a semicircular contour in

the lower half of the plane, that is, Figure 4.2.2. The calculations are similar to
those before, save for the fact that we need to compute the residues in the lower
half plane and we find that I3− = I1 − i I2 = −2π i

∑N
j=1 Res( f (z); z j ).

We note that in other applications one might need to consider integrals∫
CR

e−kz f (z) dz where CR is a semicircle in the right half plane, and/or∫
CL

ekz f (z) dz where CL is a semicircle in the left half plane. The methods to
show such integrals are zero as R →∞ are similar to those presented above,
hence there is no need to elaborate further.

Example 4.2.2 Evaluate

I =
∫ ∞

−∞

cos kx

(x + b)2 + a2
dx, k > 0, a > 0, b real

We consider

I+ =
∫ ∞

−∞

eikx

(x + b)2 + a2
dx
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and use the contour in Figure 4.2.1 to find

I+ = 2π i Res

(
eikz

(z + b)2 + a2
; z0 = ia − b

)
(a > 0)

= 2π i

(
eikz

2(z + b)

)
z0=ia−b

= π

a
e−kae−ibk (a, k > 0)

From

I+ =
∫ ∞

−∞

cos kx

(x + b)2 + a2
dx + i

∫ ∞

−∞

sin kx

(x + b)2 + a2
dx

we have

I = π

a
e−ka cos bk

and

J =
∫ ∞

−∞

sin kx

(x + b)2 + a2
dx = −π

a
e−ka sin bk

If b = 0, the latter formula reduces to J = 0, which also follows directly from
the fact that the integrand is odd. The reader can verify that∣∣∣∣∫

CR

eikz

(z + b)2 + a2
dz

∣∣∣∣ ≤ ∫
CR

|dz|
|z|2 − 2|b||z| − a2 − b2

= πR

R2 − 2bR − (a2 + b2)
−−−→

R→∞
0

In applications we frequently wish to evaluate integrals like I3± involving
f (x) for which all that is known is f (x) → 0 as |x | → ∞. From calculus
we know that in these cases the integral still converges, conditionally, but our
estimates leading to Eq. (4.2.6) must be made more carefully. We say that
f (z) → 0 uniformly as R → ∞ in CR if | f (z)| ≤ K R , where K R depends
only on R (not on argz) and K R → 0 as R → ∞. We have the following
lemma, called Jordan’s Lemma.

Lemma 4.2.2 (Jordan) Suppose that on the circular arc CR in Figure 4.2.1 we
have f (z)→ 0 uniformly as R →∞. Then

lim
R→∞

∫
CR

eikz f (z) dz = 0 (k > 0)
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sin

2θ/π

θ
π/2

1

θ

Fig. 4.2.3. Jordan’s Lemma

Proof With | f (z)| ≤ K R , where K R is independent of θ and K R → 0 as R→∞,

I =
∣∣∣∣∫

CR

eikz f (z) dz

∣∣∣∣ ≤ ∫ π

0
e−ky K R R dθ

Using y = R sin θ , and sin(π − θ) = sin θ

∫ π

0
e−ky dθ =

∫ π

0
e−k R sin θdθ = 2

∫ π/2

0
e−k R sin θ dθ

But in the region 0 ≤ θ ≤ π/2 we also have the estimate sin θ ≥ 2θ/π (see
Figure 4.2.3).

Thus

I ≤ 2K R R
∫ π/2

0
e−2k Rθ/π dθ = 2K R Rπ

2k R

(
1− e−k R

)
and I → 0 as R →∞ because K R → 0. �

We note that if k < 0, a similar result holds for the contour in Figure 4.2.2.
Moreover, by suitably rotating the contour, Jordan’s Lemma applies to the cases
k = i� for � 
= 0. Consequently, Eq. (4.2.6) follows whenever Jordan’s Lemma
applies. Jordan’s Lemma is used in the following example.

Example 4.2.3 Evaluate

I = 2
∫ ∞

−∞

x sinαx cosβx

x2 + γ 2
dx, γ > 0, α, β real.

The trigonometric formula

sinαx cosβx = 1

2
[sin(α − β)x + sin(α + β)x]
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motivates the introduction of the integrals

J =
∫ ∞

−∞

xei(α−β)x

x2 + γ 2
dx +

∫ ∞

−∞

xei(α+β)x

x2 + γ 2
dx

= J1 + J2

Jordan’s Lemma applies because the function f (z) = z/(z2 + γ 2)→ 0 uni-
formly as z →∞ and we note that,

| f | ≤ R

R2 − γ 2
≡ K R

We note that the denominator is only one degree higher than the numerator.
If α − β > 0, then we close our contour in the upper half plane and the only
residue is z = iγ (γ > 0), hence

J1 = iπe−(α−β)γ

On the other hand, if α − β < 0, we close in the lower half plane and find

J1 = −iπe(α−β)γ

Combining these results

J1 = iπ sgn(α − β)e−|α−β|γ

Similarly, for I2 we find

J2 = iπ sgn(α + β)e−|α+β|γ

Thus

J = iπ
[
sgn(α − β)e−|α−β|γ + sgn(α + β)e−|α+β|γ

]
and, by taking the imaginary part

I = π
[
sgn(α − β)e−|α−β|γ + sgn(α + β)e−|α+β|γ

]
If we take sgn(0) = 0 then the case α = β is incorporated in this result. This
could either be established directly using sinαx cosαx = 1

2 sin 2αx , or by
noting that J1 = 0 owing to the oddness of the integrand. This is a consequence
of employing the Cauchy Principal Value integral. (Note that the integral I is
convergent.)

We now consider a class of real integrals of the following type:

I =
∫ 2π

0
f (sin θ, cos θ) dθ
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where f (x, y) is a rational function of x, y. We make the substitution

z = eiθ , dz = ieiθ dθ

Then, using cos θ = (eiθ + e−iθ )/2 and sin θ = (eiθ − e−iθ )/2i , we have

cos θ = (z + 1/z)/2, sin θ = (z − 1/z)/2i (4.2.7)

Thus ∫ 2π

0
dθ f (sin θ, cos θ) =

∮
C0

dz

i z
f

(
z − 1/z

2i
,

z + 1/z

2

)
where C0 is the unit circle |z| = 1. Using the residue theorem

I =
∮

C0

f

(
z − 1/z

2i
,

z + 1/z

2

)(
dz

i z

)

= 2π i
N∑

j=1

Res

(
f
( z−1/z

2i ,
z+1/z

2

)
i z

; z j

)
The fact that f (x, y) is a rational function of x, y implies that the residue
calculation amounts to finding the zeroes of a polynomial.

Example 4.2.4 Evaluate

I =
∫ 2π

0

dθ

A + B sin θ
(A2 > B2, A > 0)

Employing the substitution (4.2.7) with C0 the unit circle |z| = 1, and assuming,
for now, that B 
= 0,

I =
∮

C0

dz

i z

1(
A + B

( z−1/z
2i

)) = ∮
C0

2 dz

2i Az + B(z2 − 1)

= 2

B

∮
C0

dz

z2 + 2i A
B z − 1

The roots of the denominator z1 and z2 that satisfy (z − z1)(z − z2) = z2 +
2i Az/B − 1 = 0 are given by

z1 = −i
A

B
+ i

√(
A

B

)2

− 1 = −i A + i
√

A2 − B2

B

z2 = −i
A

B
− i

√(
A

B

)2

− 1 = −i A − i
√

A2 − B2

B
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Fig. 4.2.4. Rectangular contour C

Because z1z2 = −1, we find that |z1||z2| = 1;hence if one root is inside C0, the
other is outside. Because A2 − B2 > 0, and A > 0, it follows that |z1| < |z2|;
hence z1 lies inside. Thus, computing the residue of the integral, we have, from
Eq. (4.1.8)

I = 2π i

(
2

B

)(
1

z1 − z2

)

= 4π i

B

B

2i
√

A2 − B2
= 2π√

A2 − B2
.

(The value of I when B = 0 is 2π/A.) We note that we also have computed

I =
∫ 2π

0

dθ

A + B cos θ

simply
¯
by making the substitution θ = π/2+ φ inside the original integral.

As another illustration of the residue theorem and calculation of integrals, we
describe how to obtain a “pole” expansion of a function via a contour integral.

Example 4.2.5 Evaluate

I = 1

2π i

∮
C

π cotπζ

z2 − ζ 2
dζ, (z2 
= 0, 12, 22, 32, . . .)
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where C is the contour given by the rectangle (−N − 1
2 ) ≤ x ≤ (N + 1

2 ),
−N ≤ y ≤ N (see Figure 4.2.4). Show that it implies

π cotπ z = z
∞∑

n=−∞

1

z2 − n2

= z

(
1

z2
+ 2

z2 − 12
+ 2

z2 − 22
+ · · ·

)
(4.2.8)

z 
= 0,±1,±2, . . .

We take N sufficiently large so that z lies inside C . The poles are located at
ζ = n = 0,±1,±2, . . . ,±N , and at ζ = ±z; hence

I =
N∑

n=−N

π

(
cosπζ

π cosπζ

1

z2 − ζ 2

)
ζ=n

+ π

(
cotπζ

−2ζ

)
ζ=z

+ π

(
cotπζ

−2ζ

)
ζ=−z

=
N∑

n=−N

1

z2 − n2
− π

cotπ z

z

Next we estimate the contour integral on the vertical sides, ζ =±(N + 1
2 )+ iη.

Here the integrand satisfies

∣∣∣∣π cotπζ

z2 − ζ 2

∣∣∣∣ ≤ π | tanhπη|
|ζ |2 − |z|2 ≤

π

N 2 − |z|2

Because |ζ | > N , | tanh η| ≤ 1 and we used

|cotπζ | =
∣∣∣∣∣ sin
[
π
(

N + 1
2

)]
(sinhπη)(−i)

sin
[
π
(

N + 1
2

)]
(coshπη)

∣∣∣∣∣
On the horizontal sides, ζ = ξ ± i N , and the integral satisfies

∣∣∣∣π cotπζ

z2 − ζ 2

∣∣∣∣ ≤ π cothπN

|ζ |2 − |z|2 ≤
π cothπN

N 2 − |z|2 ,
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because |ζ | > N and we used

|cotπζ | =
∣∣∣∣e∓πN eiπξ + e±πN e−iπξ

e∓πN eiπξ − e±πN e−iπξ

∣∣∣∣
≤ eπN + e−πN

eπN − e−πN
= cothπN

Thus

I = 1

2π i

∮
C

∣∣∣∣π cotπζ

z2 − ζ 2

∣∣∣∣ |dζ |
≤ 1

2π

2(2N )π

N 2 − |z|2 +
1

2π

2(2N + 1)π cothπN

N 2 − |z|2 −−−→
N→∞

0,

since cothπN → 1 as N → ∞. Hence we recover Eq. (4.2.8) in the limit
N → ∞. Formula (4.2.8) is referred to as a Mittag–Leffler expansion of the
functionπ cotπ z. (The interested reader will find a discussion of Mittag-Leffler
expansions in Section 3.6 of Chapter 3.) Note that this kind of expansion takes
a different form than does a Taylor series or Laurent series. It is an expansion
based upon the poles of the function cotπ z.

The result (4.2.8) can be integrated to yield an infinite product representation
of sinπ z. Namely, from

d

dz
log sinπ z = π cotπ z

it follows by integration (taking the principal branch for the logarithm) that

log sinπ z = log z + A0 +
∞∑

n=1

(log(z2 − n2)− An)

where A0 and An are constants. The constants are conveniently evaluated at
z = 0 by noting that limz→0 log sinπ z

z = logπ . Thus A0 = logπ , and An =
log(−n2); hence taking the exponential yields

sinπ z

π
= z

∞∏
n=1

(
1− z2

n2

)
(4.2.9)

This is an example of the so-called Weierstrass Factor Theorem, discussed in
Section 3.6.
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It turns out that Eq. (4.2.8) can also be obtained by evaluation of a differ-
ent integral, a fact that is not immediately apparent. We illustrate this in the
following example.

Example 4.2.6 Evaluate

I = 1

2π i

∮
C
π cotπζ

(
1

ζ
− 1

ζ − z

)
dζ (z 
= 0,±1,±2, . . .)

where C is the same contour as in Example 4.2.5 and is depicted in Figure 4.2.4.
Residue calculation yields

I = ((−)π cotπζ)ζ=z +
N∑

n=−N

′
{
π cosπζ

π cosπζ

(
1

ζ
− 1

ζ − z

)}
ζ=n,n 
=0

+
(
π cosπζ

π cosπζ

(−)
ζ − z

)
ζ=0

= −π cotπ z +
N∑

n=−N

′
(

1

z − n
+ 1

n

)
+ 1

z

where
∑N

n=−N

′
means we omit the n = 0 contribution. We also note that the

contribution from the double pole at ζ = 0 vanishes because cotπζ/ζ ∼
1/(πζ 2)− π/3+ · · · as ζ → 0.

Finally, we estimate the integral I on the boundary in the same manner as in
Example 4.2.5 to find

|I | ≤ 1

2π

∮
C
|π cotπζ | |z|

|ζ |(|ζ | − |z|) |dζ |

|I | ≤ |z|
2π

(
4Nπ

N (N − |z|) +
2(2N + 1)π cothπN

N (N − |z|)
)

−−−−→ 0 as N →∞

Hence

π cotπ z =
N∑

n=−N

′
(

1

z − n
+ 1

n

)
+ 1

z
(4.2.10)

Note the expansion (4.2.10) has a suitable “convergence factor” (1/n) inside
the sum, otherwise it would diverge. When we combine the terms appropriately
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z  =1

C

C

C

L

x

Rπ/3

Fig. 4.2.5. Contour for Example 4.2.7

for n = ±1,±2, . . ., we find

π cotπ z = 1

z
+ 1

z − 1
+ 1

1
+ 1

z + 1
− 1

1
+ 1

z − 2
+ 1

2
+ 1

z + 2
− 1

2
+ · · ·

= 1

z
+ 2z

z2 − 1
+ 2z

z2 − 22
+ · · · =

∞∑
n=−∞

z

z2 − n2

which is Eq. (4.2.8).
When employing contour integration, sometimes it is necessary to employ

special properties of the integrand, as is illustrated below.

Example 4.2.7 Evaluate

I =
∫ ∞

0

dx

x3 + a3
, a > 0

Because we have an integral on (0,∞), we cannot immediately use a contour
like that of Figure 4.2.1. If the integral was

∫∞
0 f (x)dx where f (x)was an even

function f (x) = f (−x), then
∫∞

0 f (x)dx = 1
2

∫∞
−∞ f (x)dx . However, in this

case the integrand is not even, and for x < 0 has a singularity. Nevertheless there
is a symmetry that can be employed: namely, (xe2π i/3)3 = x3. This suggests
using the contour of Figure 4.2.5, where CR is the sector R eiθ : 0 ≤ θ ≤ 2π/3.

We therefore have∮
C

dz

z3 + a3
=
(∫

CL

+
∫

Cx

+
∫

CR

)
dz

z3 + a3

= 2π i
∑

j

Res

(
1

z3 + a3
; z j

)

The only pole inside C satisfies z3 = −a3 = a3eiπ and is given by z1 = aeiπ/3.
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The residue is obtained from

Res

(
1

z3 + a3
; z1

)
=
(

1

3z2

)
z1

= 1

3a2e2π i/3
= 1

3a2
e−2π i/3

The integral on CR tends to zero because of Theorem 4.2.1. Alternatively,
by direct calculation,∣∣∣∣ ∫

CR

dz

z3 + a3

∣∣∣∣ ≤ 2πR

3(R3 − a3)
→ 0, R →∞

The integral on CL is evaluated by making the substitution z = e2π i/3r (where
the orientation is taken into account)∫

CL

dz

z3 + a3
=
∫ 0

r=R

e2π i/3

r3 + a3
dr = −e2π i/3 I.

Thus taking into account the contributions from Cx (0 ≤ z = x ≤ R) and from
CL , we have

I (1− e2π i/3) = lim
R→∞

∫ R

0

dr

r3 + a3
(1− e2π i/3) = 2π i

3a2
e−2π i/3

Thus

I = 2π i

3a2

e−2π i/3

1− e2π i/3
= π

3a2

(
2i

e−iπ/3 − eiπ/3

)
e−iπ

= π

3a2 sinπ/3
= 2π

3
√

3a2

The following example, similar in spirit to Eq. (4.2.7), allows us to calculate
the following conditionally convergent integrals

C =
∫ ∞

0
cos(t x2) dx (4.2.11)

S =
∫ ∞

0
sin(t x2) dx (4.2.12)

Example 4.2.8 Evaluate

I =
∫ ∞

0
eitx2

dx
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π/4

C

CC

R
x

L R

Fig. 4.2.6. Contour for Example 4.2.8

For convenience we take t > 0. Consider the contour depicted in Figure 4.2.6
where the contour CR is the sector Reiθ : 0 ≤ θ ≤ π/4. Because eitz2

is
analytic inside C = Cx + CR + CL , we have∮

C
eitz2

dz =
(∫

CL

+
∫

Cx

+
∫

CR

)
eitz2

dz = 0

The integral on CR is estimated using the same idea as in Jordan’s Lemma
(sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2)∣∣∣∣ ∫

CR

eitz2
dz

∣∣∣∣ = ∣∣∣∣ ∫ π/4

0
eit R2(cos 2θ+i sin 2θ) Reiθ i dθ

∣∣∣∣
≤
∫ π/4

0
Re−t R2 sin 2θ dθ

≤
∫ π/4

0
Re−t R2 4θ

π dθ = π

4t R
(1− e−t R2

)

where we used sin x ≥ 2x
π

for 0 < x < π
2 . Thus | ∫CR

eitz2
dz| → 0 as R →∞.

Hence on Cx , z = x , and on CL , z = reiπ/4;∫
Cx

eitz2
dz =

∫ R

0
eitx2

dx

∫
CL

eitz2
dz =

∫ 0

R
e−tr2

dreiπ/4.

Thus

I =
∫ ∞

0
eitx2

dx = eiπ/4
∫ ∞

0
e−tr2

dr
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and this transforms I to a well-known real definite integral that can be evaluated
directly. We use polar coordinates

J 2 =
(∫ ∞

0
e−t x2

dx

)2

=
∫ ∞

0

∫ ∞

0
e−t (x2+y2) dx dy

=
∫ π/2

θ=0

∫ ∞

ρ=0
e−tρ2

ρ dρ dθ = π

4t

Thus, taking R →∞,

J =
∫ ∞

0
e−t x2

dx = 1

2

√
π

t
(4.2.13)

and

I = eiπ/4 1

2

√
π

t
=
(

cos
π

4
+ i sin

π

4

)
1

2

√
π

t

Hence Eqs. (4.2.11) and (4.2.12) are found to be

S = C = 1

2

√
π

2t
(4.2.14)

Incidentally, it should be noted that we cannot evaluate the integral I in the same
way (via polar coordinates) we do on J because I is not absolutely convergent.

The following example exhibits still another variant of contour integration.

Example 4.2.9 Evaluate

I =
∫ ∞

−∞

epx

1+ ex
dx

for 0 < Re p < 1. The condition on p is required for convergence of the integral.
Consider the contour depicted in Figure 4.2.7.

∮
C

epz

1+ ez
dz =

(∫
Cx

+
∫

CS R

+
∫

CSL

+
∫

CT

)
epz

1+ ez
dz

= 2π i
∑

j

Res

(
epz

1+ ez
; z j

)
The only poles of the function epz/(1+ ez) occur when ez = −1 or by taking
the logarithm z = i(π+2nπ), n = 0,±1,±2, . . . . The contour is chosen such
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Fig. 4.2.7. Contour of integration, Example 4.2.9

that z = x + iy, 0 ≤ y ≤ 2π ; hence the only pole inside the contour is z = iπ ,
with the residue

Res

(
epz

1+ ez
; iπ

)
=
(

epz

ez

)
z=iπ

= e(p−1)iπ

The integrals along the sides are readily estimated and shown to vanish as
R →∞. Indeed on CS R : z = R + iy, 0 ≤ y ≤ 2π∣∣∣∣∫

CS R

epz

1+ ez
dz

∣∣∣∣ = ∣∣∣∣∫ 2π

0

ep(R+iy)

1+ eR+iy
i dy

∣∣∣∣ ≤ epR

eR − 1
2π → 0,

R →∞, (Re p < 1)

On CSL : z = −R + iy, 0 ≤ y ≤ 2π∣∣∣∣∫
CSL

epz

1+ ez
dz

∣∣∣∣ = ∣∣∣∣∫ 0

2π

ep(−R+iy)

1+ e−R+iy
i dy

∣∣∣∣ ≤ e−pR

1− e−R
2π → 0,

R →∞, (Re p > 0)

The integral on the top has z = x + 2π i , ez = ex , so

∫
CT

epz

1+ ez
dz = e2π i p

∫ −R

+R

epx

1+ ex
dx

Hence, putting all of this together, we have, as R →∞,∫ ∞

−∞

epx

1+ ex
dx

(
1− e2π i p

)
= 2π i e(p−1)iπ
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or ∫ ∞

−∞

epx

1+ ex
dx = 2π i

e−iπ

e−i pπ − eipπ
= π

sin pπ

Problems for Section 4.2

1. Evaluate the following real integrals.

(a)
∫ ∞

0

dx

x2 + a2
, a2 > 0

(Verify your answer by using usual antiderivatives.)

(b)
∫ ∞

0

dx

(x2 + a2)2
, a2 > 0

(c)
∫ ∞

0

dx

(x2 + a2)(x2 + b2)
, a2, b2 > 0

(d)
∫ ∞

0

dx

x6 + 1

2. Evaluate the following real integrals by residue integration:

(a)
∫ ∞

−∞

x sin x

(x2 + a2)
dx; a2 > 0

(b)
∫ ∞

−∞

cos kx

(x2 + a2)(x2 + b2)
dx; a2, b2, k > 0

(c)
∫ ∞

−∞

x cos kx

x2 + 4x + 5
dx; k > 0 (d)

∫ ∞

0

cos kx

x4 + 1
dx, k real

(e)
∫ ∞

0

x3 sin kx

x4 + a4
dx; k real, a4 > 0 (f)

∫ 2π

0

dθ

1+ cos2 θ

(g)
∫ π/2

0
sin4 θ dθ (h)

∫ 2π

0

dθ

(5− 3 sin θ)2

(i)
∫ ∞

−∞

cos kx cos mx

(x2 + a2)
dx, a2 > 0, k,m real.

3. Show ∫ 2π

0
cos2n θdθ =

∫ 2π

0
sin2n θdθ = 2π

22n
Bn, n = 1, 2, 3, . . .
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where Bn = 22n(1 · 3 · 5 · · · (2n − 1))/(2 · 4 · 6 · · · (2n)). (Hint: the fact
that in the binomial expansion of (1+ w)2n the coefficient of the term wn

is Bn .)

4. Show that ∫ ∞

0

cosh ax

coshπx
dx = 1

2
sec

(
a

2

)
, |a| < π

Use a rectangular contour with corners at ±R and ±R + i .

5. Consider a rectangular contour with corners at b± i R and b+1± i R. Use
this contour to show that

lim
R→∞

1

2π i

∫ b+i R

b−i R

eaz

sinπ z
dz = 1

π(1+ e−a)

where 0 < b < 1, |Im a| < π .

6. Consider a rectangular contour CR with corners at (±R, 0) and (±R, a).
Show that

∮
CR

e−z2
dz =

∫ R

−R
e−x2

dx −
∫ R

−R
e−(x+ia)2

dx + JR = 0

where

JR =
∫ a

0
e−(R+iy)2

i dy −
∫ a

0
e−(−R+iy)2

i dy

Show limR→∞ JR = 0, whereupon we have
∫∞
−∞ e−(x+ia)2

dx = ∫∞−∞ e−x2
dx

= √π , and consequently, deduce that
∫∞
−∞ e−x2

cos 2ax dx = √πe−a2
.

7. Use a sector contour with radius R, as in Figure 4.2.6, centered at the origin
with angle 0 ≤ θ ≤ 2π

5 to find, for a > 0,∫ ∞

0

dx

x5 + a5
= π

5a4 sin π
5

8. Consider the contour integral

I (N ) = 1

2π i

∮
C(N )

π cscπζ

z2 − ζ 2
dζ
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where the contour C(N ) is the rectangular contour depicted in Figure 4.2.4
(see also Example 4.2.5).

(a) Show that calculation of the residues implies that

I (N ) =
N∑

n=−N

(−1)n

z2 − n2
− π cscπ z

z

(b) Estimate the line integral along the boundary and show that limN→∞
I (N ) = 0 and consequently, that

π cscπ z = z
∞∑

n=−∞

(−1)n

z2 − n2

(c) Use the result of part (b) to obtain the following representation of π :

π = 2
∞∑

n=−∞

(−1)n

1− 4n2

9. Consider a rectangular contour with corners
(

N + 1
2

)
(±1± i) to evaluate

1

2π i

∮
C(N )

π cotπ z cothπ z

z3
dz

and in the limit as N →∞, show that

∞∑
n=1

coth nπ

n3
= 7

180
π3

Hint: note

Res

(
π cotπ z cothπ z

z3
; 0

)
= −7π3

45

4.3 Indented Contours, Principal Value Integrals, and
Integrals With Branch Points

4.3.1 Principal Value Integrals

In Section 4.2 we introduced the notion of the Cauchy Principal Value integral
at infinity (see Eq. (4.2.3)). Frequently in applications we are also interested
in integrals with integrands that have singularities at a finite location. Consider
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the integral
∫ b

a f (x) dx , where f (x) has a singularity at x0, a < x0 < b. Con-
vergence of such an integral depends on the existence of the following limit,
where f (x) has a singularity at x = x0:

I = lim
ε→0+

∫ x0−ε

a
f (x) dx + lim

δ→0+

∫ b

x0+δ
f (x) dx (4.3.1)

We say the integral
∫ b

a f (x) dx is convergent if and only if Eq. (4.3.1) exists and
is finite; otherwise we say it is divergent. The integral might exist even if the
limx→x0 f (x) is infinite or is divergent. For example, the integral

∫ 2
0 dx/(x −

1)1/3 is convergent, whereas the integral
∫ 2

0 dx/(x−1)2 is divergent. Sometimes
by restricting the definition (4.3.1), we can make sense of a divergent integral.
In this respect the so-called Cauchy Principal Value integral (where δ = ε in
Eq. (4.3.1))

∫ b

a
f (x) dx = lim

ε→0+

(∫ x0−ε

a
+
∫ b

x0+ε

)
f (x) dx (4.3.2)

is quite useful. We use the notation
∫ b

a to denote the Cauchy Principal Value
integral. (Here the Cauchy Principal Value integral is required because of the
singularity at x = x0. We usually do not explicitly refer to where the singularity
occurs unless there is a special reason to do so, such as when the singularity is
at infinity.) We say the Cauchy Principal Value integral exists if and only if the
limit (4.3.2) exists. For example, the integral

∫ 2

−1

1

x
dx = lim

ε→0+

∫ −ε

−1

1

x
dx + lim

δ→0+

∫ 2

δ

1

x
dx

= lim
ε→0+

ln |ε| − lim
δ→0+

ln |δ| + ln 2

does not exist, whereas

∫ 2

−1

1

x
dx = lim

ε→0
(ln |ε| − ln |ε|)+ ln 2 = ln 2

does exist.
More generally, in applications we are sometimes interested in functions on

an infinite interval with many points {xi }N
i=1 for which limx→xi f (x) is either

infinite or does not exist. We say the following Cauchy Principal Value integral
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o

C

z

ε

φ

Fig. 4.3.1. Small circular arc Cε

exists if and only if for a < x1 < x2 < · · · < xN < b∫ ∞

−∞
f (x) dx = lim

R→∞

(∫ a

−R
+
∫ R

b

)
f (x) dx + lim

ε1,ε2,...,εN→0+

(∫ x1−ε1

a

+
∫ x2−ε2

x1+ε1

+
∫ x3−ε3

x2+ε2

+ · · · +
∫ xN−εN

xN−1+εN−1

+
∫ b

xN+εN

)
f (x) dx

(4.3.3)

exists. In practice we usually combine the integrals and consider the double
limit R →∞ and εi → 0+, for example,

∫ x1−ε1

−R in Eq. (4.3.3), and do not
bother to partition the integrals into intermediate values with a, b inserted.
Examples will serve to clarify this point. Hereafter we consider εi > 0, and
limεi→0 means limεi→0+ .

The following theorems will be useful in the sequel. We consider integrals on
a small circular arc with radius ε, center z = z0, and with the arc subtending an
angleφ (see Figure 4.3.1). There are two important cases: (a) (z−z0) f (z)→ 0
uniformly (independent of the angle θ along Cε) as ε → 0, and (b) f (z)
possesses a simple pole at z = z0.

Theorem 4.3.1 (a) Suppose that on the contour Cε , depicted in Figure 4.3.1,
we have (z − z0) f (z)→ 0 uniformly as ε → 0.

Then

lim
ε→0

∫
Cε

f (z) dz = 0

(b) Suppose f (z) has a simple pole at z = z0 with residue Res ( f (z); z0) =
C−1. Then for the contour Cε

lim
ε→0

∫
Cε

f (z) dz = iφC−1 (4.3.4)

where the integration is carried out in the positive (counterclockwise) sense.



240 4 Residue Calculus and Applications of Contour Integration

Proof (a) The hypothesis, (z − z0) f (z)→ 0 uniformly as ε → 0, means that
on Cε , |(z − z0) f (z)| ≤ Kε , where Kε depends on ε, not on arg (z − z0), and
Kε → 0 as ε → 0. Estimating the integral (z = z0 + ε eiθ ) using | f (z)| ≤
Kε/ε, φ = max |arg(z − z0)|,∣∣∣∣∫

Cε

f (z) dz

∣∣∣∣ ≤ ∫
Cε

| f (z)| |dz|

≤ Kε

ε

∫ φ

0
ε dθ = Kεφ→ 0, ε → 0

(b) If f (z) has a simple pole with Res ( f (z); z0) = C−1, then from the
Laurent expansion of f (z) in the neighborhood of z = z0

f (z) = C−1

z − z0
+ g(z)

where g(z) is analytic in the neighborhood of z = z0. Thus

lim
ε→0

∫
Cε

f (z) dz = lim
ε→0

C−1

∫
Cε

dz

z − z0
+ lim

ε→0

∫
Cε

g(z) dz

The first integral on the right-hand side is evaluated, using z = z0 + ε eiθ , to
find ∫

Cε

dz

z − z0
=
∫ φ

0

iε eiθ dθ

ε eiθ
= iφ

In the second integral, |g(z)| ≤ M = constant in the neighborhood of z = z0

because g(z) is analytic there; hence we can apply part (a) of this theorem to
find that the second integral vanishes in the limit of ε → 0, and we recover
Eq. (4.3.4). �

As a first example we show∫ ∞

−∞

sin ax

x
dx = sgn(a) π (4.3.5)

where

sgn(a) =

−1 a < 0

0 a = 0
1 a > 0

(4.3.6)
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R

-R z= z=0

C

z=

C

R

ε

−ε ε

Fig. 4.3.2. Contour of integration, Example 4.3.1

Example 4.3.1 Evaluate

I =
∫ ∞

−∞

eiax

x
dx, a real (4.3.7)

Let us first consider a > 0 and the contour depicted in Figure 4.3.2. Because
there are no poles enclosed by the contour, we have∮

C

eiaz

z
dz =

(∫ −ε

−R
+
∫ R

ε

)
eiax

x
dx +

∫
Cε

eiaz

z
dz +

∫
CR

eiaz

z
dz = 0

Because a > 0, the integral
∫

CR
eiaz dz/z satisfies Jordan’s Lemma (i.e.,

Theorems 4.2.2); hence it vanishes as R →∞. Similarly,
∫

Cε
eiaz dz/z is

calculated using Theorem 4.3.1(b) to find

lim
ε→0

∫
Cε

eiaz

z
dz = −iπ

where we note that on Cε the angle subtended is π . The minus sign is a result
of the direction being clockwise. Taking the limit R →∞ we have,

I =
∫ ∞

−∞

cos ax

x
dx + i

∫ ∞

−∞

sin ax

x
dx = iπ

Thus by setting real and imaginary parts equal we obtain
∫
(cos ax)/x dx = 0

(which is consistent with the fact that (cos ax)/x is odd) and Eq. (4.3.5) with
a > 0. The case a < 0 follows because sin ax

x is odd in a. The same result could
be obtained by using the contour in Figure 4.3.3. We also note that there is
no need for the principal value in the integral (4.3.5) because it is a (weakly)
convergent integral.
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R

-R z=

C

z=0 z=

C

R

ε

−ε ε

Fig. 4.3.3. Alternative contour, Example 4.3.1

The following example is similar except that there are two locations where
the integral has principal value contributions.

Example 4.3.2 Evaluate

I =
∫ ∞

−∞

cos x − cos a

x2 − a2
dx, a real

We note that the integral is convergent and well defined at x = ±a because
l’Hospital’s rule shows

lim
x→±a

cos x − cos a

x2 − a2
= lim

x→±a

− sin x

2x
= − sin a

2a

We evaluate I by considering

J =
∮

C

eiz − cos a

z2 − a2
dz

where the contour C is depicted in Figure 4.3.4. Because there are no poles
enclosed by C , we have

0 =
∮

C

eiz − cos a

z2 − a2
dz

=
{∫ −a−ε1

−R
+
∫ a−ε2

−a+ε1

+
∫ R

a+ε2

+
∫

Cε1

+
∫

Cε2

+
∫

CR

}
eiz − cos a

z2 − a2
dz
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z= -a z=a

R

-R R

C C

C

1 2ε ε

Fig. 4.3.4. Contour C , Example 4.3.2

Along CR we find, by Theorems 4.2.1 and 4.2.2, that

lim
R→∞

∣∣∣∣∫
CR

eiz − cos a

z2 − a2
dz

∣∣∣∣ = 0

Similarly, from Theorem 4.3.1 we find (note that the directions of Cε1 and Cε2

are clockwise; that is, in the negative direction)

lim
ε1→0

∫
Cε1

eiz − cos a

z2 − a2
dz = −iπ

(
eiz − cos a

2z

)
z=−a

= π sin a

2a

and

lim
ε2→0

∫
Cε2

eiz − cos a

z2 − a2
dz = −iπ

(
eiz − cos a

2z

)
z=a

= π sin a

2a

Thus as R →∞ ∫ ∞

−∞

eix − cos a

x2 − a2
dx = −π sin a

a

and hence, by taking the real part, I = −π(sin a)/a.

Again we note that the Cauchy Principal Value integral was only a device
used to obtain a result for a well-defined integral. We also mention the fact that
in practice one frequently calculates contributions along contours such as Cεi

by carrying out the calculation directly without resorting to Theorem 4.3.1.
Our final illustration of Cauchy Principal Values is the evaluation of an inte-

gral similar to that of Example 4.2.9.
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Fig. 4.3.5. Contour of integration for Example 4.3.3

Example 4.3.3 Evaluate

I =
∫ ∞

−∞

epx − eqx

1− ex
dx

where 0 < p, q < 1.
We observe that this integral is convergent and well defined. We evaluate

two separate integrals:

I1 =
∫ ∞

−∞

epx

1− ex
dx

and

I2 =
∫ ∞

−∞

eqx

1− ex
dx,

noting that I = I1 − I2.
In order to evaluate I1, we consider the contour depicted in Figure 4.3.5

J =
∮

C

epz

1− ez
dz

=
(∫ −ε1

−R
+
∫ R

ε1

)
epx

1− ex
dx +

(∫
CS R

+
∫

CSL

)
epz

1− ez
dz

+
(∫ −ε2

R
+
∫ −R

ε2

)
e2π i pepx

1− ex
dx +

(∫
Cε1

+
∫

Cε2

)
epz

1− ez
dz

Along the top path line we take z = x + 2π i . The integral J = 0 because
no singularities are enclosed. The estimates of Example 4.2.9 show that the
integrals along the sides CSL and CS R vanish. From Theorem 4.3.1 we have

lim
ε1→0

∫
Cε1

epz

1− ez
dz = −iπ

(
epz

−ez

)
z=0

= iπ
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and

lim
ε2→0

∫
Cε2

epz

1− ez
dz = −iπ

(
epz

−ez

)
z=2π i

= iπe2π i p

Hence, taking R →∞,

I1 =
∫ ∞

−∞

epx

1− ex
dx = −iπ

1+ e2π i p

1− e2π i p
= π cotπp

Clearly, a similar analysis is valid for I2 where p is replaced by q. Thus, putting
all of this together, we find

I = π(cotπp − cotπq)

4.3.2 Integrals with Branch Points

In the remainder of this section we consider integrands that involve branch
points. To evaluate the integrals, we introduce suitable branch cuts associated
with the relevant multivalued functions. The procedure will be illustrated by a
variety of examples.

Before working out examples we prove a theorem that will be useful in
providing estimates for cases where Jordan’s Lemma is not applicable.

Theorem 4.3.2 If on a circular arc CR of radius R and center z = 0, z f (z)→ 0
uniformly as R →∞, then

lim
R→∞

∫
CR

f (z) dz = 0

Proof Let φ > 0 be the angle enclosed by the arc CR . Then∣∣∣∣∫
CR

f (z) dz

∣∣∣∣ ≤ ∫ φ

0
| f (z)|R dθ ≤ K Rφ

Because z f (z) → 0 uniformly, it follows that |z f (z)| = R| f (z)| ≤ K R ,
K R → 0, as R →∞. �

Example 4.3.4 Use contour integration to evaluate

I =
∫ ∞

0

dx

(x + a)(x + b)
, a, b > 0
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z=0z=-b

R

x=R

z=-a

C

C

ε

Fig. 4.3.6. “Keyhole” contour, Example 4.3.4

Because the integrand is not even, we cannot extend our integration region to
the entire real line. Hence the methods of Section 4.2 will not work directly.
Instead, we consider the contour integral

J =
∮

C

log z

(z + a)(z + b)
dz

where C is the “keyhole” contour depicted in Figure 4.3.6. We take log z to be
on its principal branch z = reiθ : 0 ≤ θ < 2π , and choose a branch cut along
the x-axis, 0 ≤ x <∞.

An essential ingredient of the method is that owing to the location of
the branch cut, the sum of the integrals on each side of the cut do not
cancel.

J =
∫ R

ε

log x

(x + a)(x + b)
dx +

∫ ε

R

log(xe2π i )

(x + a)(x + b)
dx

+
(∫

Cε

+
∫

CR

)
log z

(z + a)(z + b)
dz

= 2π i

{(
log z

z + a

)
z=−b

+
(

log z

z + b

)
z=−a

}
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Theorems 4.3.1a and 4.3.2 show that

lim
ε→0

∫
Cε

log z

(z + a)(z + b)
dz = 0

and

lim
R→∞

∫
CR

log z

(z + a)(z + b)
dz = 0

Using log(x e2π i ) = log x + 2π i , log(−a) = log |a| + iπ (for a > 0) to sim-
plify the expression for J , we have

−2π i
∫ ∞

0

dx

(x + a)(x + b)
= 2π i

(
log b − iπ

a − b
+ log a − iπ

b − a

)
hence

I =
(

log b/a

b − a

)
Of course, we could have evaluated this integral by elementary methods
because (we worked this example only for illustrative purposes)

I =
(

1

b − a

)∫ ∞

0

(
1

x + a
− 1

x + b

)
dx

=
(

1

b − a

)[
ln

(
x + a

x + b

)]∞
0

= log b/a

b − a

Another example is the following.

Example 4.3.5 Evaluate

I =
∫ ∞

0

log2 x

x2 + 1
dx

Consider

J =
∮

C

log2 z

z2 + 1
dz

where C is the contour depicted in Figure 4.3.7, and we take the principal
branch of log z : z = r eiθ , 0 ≤ θ < 2π .
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ε

Fig. 4.3.7. Contour of integration, Example 4.3.5

We have

J =
∫ ε

R

[log(reiπ )]2

(reiπ )2 + 1
eiπ dr +

∫ R

ε

log2 x

x2 + 1
dx

+
(∫

CR

+
∫

Cε

)
log2 z

z2 + 1
dz

= 2π i

(
log2 z

2z

)
z=i=eiπ/2

Theorems 4.3.1a and 4.3.2 show that
∫

Cε
→ 0 as ε → 0 and

∫
CR
→ 0 as

R →∞. Thus the above equation simplifies, and

2
∫ ∞

0

log2 x

x2 + 1
dx + 2iπ

∫ ∞

0

log x

x2 + 1
dx − π2

∫ ∞

0

dx

x2 + 1

= 2π i
(iπ/2)2

2i
= −π3

4

However, the last integral can also be evaluated by contour integration, using
the method of Section 4.2 (with the contour CR depicted in Figure 4.2.1) to find∫ ∞

0

dx

x2 + 1
= 1

2

∫ ∞

−∞

dx

x2 + 1
= 1

2
2π i

(
1

2z

)
z=i

= π

2

Hence we have

2
∫ ∞

0

log2 x dx

x2 + 1
+ 2π i

∫ ∞

0

log x dx

x2 + 1
= π3

4

whereupon, by taking the real and imaginary parts

I = π3

8
and

∫ ∞

0

log x

x2 + 1
dx = 0
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An example that uses some of the ideas of Examples 4.3.4 and 4.3.5 is the
following.

Example 4.3.6 Evaluate

I =
∫ ∞

0

xm−1

x2 + 1
dx, 0 < m < 2

The condition on m is required for the convergence of the integral.
Consider the contour integral

J =
∮

C

zm−1

z2 + 1
dz

where C is the keyhole contour in Figure 4.3.6. We take the principal branch
of zm : z = reiθ , 0 ≤ θ < 2π . The residue theorem yields

J =
∫ R

ε

xm−1

x2 + 1
dx +

∫ ε

R

(xe2π i )m−1

x2 + 1
dx

+
(∫

Cε

+
∫

CR

)
zm−1

z2 + 1
dz

= 2π i

[(
zm−1

2z

)
z=i=eiπ/2

+
(

zm−1

2z

)
z=−i=e3iπ/2

]
Theorems 4.3.1a and 4.3.2 imply that

∫
Cε
→ 0 as ε → 0, and

∫
CR
→ 0 as

R →∞. Therefore the above equation simplifies to∫ ∞

0

xm−1

x2 + 1
dx(1− e2π im) = 2π i

(
eiπ(m−1)/2

2i
− e3iπ(m−1)/2

2i

)
= −π i

(
eimπ/2 + e3imπ/2

)
Hence

I = −π i eimπ/2

(
1+ eimπ

1− e2imπ

)
= π

cos mπ
2

sin mπ
= π

2 sin mπ
2

The following example illustrates how we deal with more complicated mul-
tivalued functions and their branch cut structure. The reader is encouraged to
review Section 2.3 before considering the next example.



250 4 Residue Calculus and Applications of Contour Integration

Lo

Li

εεC C

C

z=1z=-1

z= -i

z=i

R

2
1

Fig. 4.3.8. Contour C for Example 4.3.7
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Fig. 4.3.9. Polar coordinates for example 4.3.7

Example 4.3.7 Evaluate

I =
∫ 1

−1

√
1− x2

1+ x2
dx

where the square root function takes on a positive value (i.e.,
√

1 = +1) in the
range −1 < x < 1.

We consider the contour integral

J =
∮

C

(z2 − 1)1/2

1+ z2
dz

where the contour C and the relevant branch cut structure are depicted in Fig-
ure 4.3.8.

Before calculating the various contributions to J we first discuss the multi-
valued function

√
z2 − 1 (see Figure 4.3.9). Using polar coordinates, we find

(z2 − 1)
1
2 = √ρ1ρ2ei(φ1+φ2)/2, 0 ≤ φ1, φ2 < 2π
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where

(z − 1)
1
2 = √ρ1eiφ1/2, ρ1 = |z − 1|

and

(z + 1)
1
2 = √ρ2eiφ2/2, ρ2 = |z + 1|

With this choice of branch, we find

(z2 − 1)
1
2 =



√
x2 − 1, 1 < x <∞

−√x2 − 1, −∞ < x < −1

i
√

1− x2, −1 < x < 1, y → 0+

−i
√

1− x2, −1 < x < 1, y → 0−

Using these expressions in the contour integral J , it follows that

J =
∫ 1−ε2

−1+ε1

i
√

1− x2

1+ x2
dx +

∫ −1+ε1

1−ε2

−i
√

1− x2

1+ x2
dx

+
(∫

Cε1

+
∫

Cε2

+
∫

CR

)
(z2 − 1)1/2

1+ z2
dz

= 2π i

[(
(z2 − 1)1/2

2z

)
z=eiπ/2

+
(
(z2 − 1)1/2

2z

)
z=e3iπ/2

]
We note that the crosscut integrals vanish

(∫
L0

+
∫

Li

)
(z2 − 1)1/2

1+ z2
dz = 0

because L0 and Li are chosen in a region where (z2 − 1)1/2 is continuous and
single-valued, and L0 and Li are arbitrarily close to each other. Theorem 4.3.1a
shows that

∫
Cεi
→ 0 as εi → 0; that is

∣∣∣∣∣
∫

Cεi

(z2 − 1)1/2

1+ z2
dz

∣∣∣∣∣ ≤
∫ 2π

0

(|(z − 1)(z + 1)|1/2)

|2+ ε2
i e2iθ + 2εi eiθ |εi dθ

≤
∫ 2π

0

√
ε2

i + 2εi

2− 2εi − ε2
i

εi dθ −−−→
εi→0

0
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The contribution on CR is calculated as follows:∫
CR

(z2 − 1)1/2

1+ z2
dz =

∫ 2π

0

(R2e2iθ − 1)1/2

1+ R2e2iθ
i R eiθdθ

where we note that (R2e2iθ − 1)1/2 ≈ R eiθ as R → ∞ because the chosen
branch implies limz→∞(z2 − 1)1/2 = z. Hence

lim
R→∞

∫
CR

(z2 − 1)1/2

1+ z2
dz = 2π i

Calculation of the residues requires computing the correct branch of (z2−1)1/2.(
(z2 − 1)1/2

2z

)
z=eiπ/2

=
√

2ei(3π/4+π/4)/2

2i
= 1√

2(
(z2 − 1)1/2

2z

)
z=e3iπ/2

=
√

2ei(5π/4+7π/4)/2

−2i
= 1√

2

Taking εi → 0, R → ∞, and substituting the above results in the expression
for J , we find

2i
∫ 1

−1

√
1− x2

1+ x2
dx = 2π i

(√
2− 1

)
hence

I = π(
√

2− 1)

It should be remarked that the contribution along CR is proportional to the
residue at infinity. Namely, calling

f (z) = (z2 − 1)1/2

1+ z2

it follows that

f (z) = (z2(1− 1/z2))
1
2

z2
(
1+ 1

z2

) = 1

z

(
1− 1

2z2
+ · · ·

)(
1− 1

z2
+ · · ·

)
Thus the coefficient of 1

z is unity; hence from definition (4.1.11a,b)

Res( f (z);∞) = 1
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and

lim
R→∞

∫
CR

(z2 − 1)1/2

1+ z2
= 2π i Res

(
(z2 − 1)1/2

1+ z2
;∞
)
= 2π i

The above analysis shows that calculating I follows from

2I = 2π i
2∑

j=1

Res( f (z); z j )− zπ i Res( f (z);∞)

where the three residues are calculated at

z1 = eiπ/2, z2 = e3iπ/2, z∞ = ∞

the minus sign is due to the orientation of the contour CR with respect to z∞.

The calculation involving the residue at infinity can be carried out for a large
class of functions. In practice one usually computes the contribution at infinity
by evaluating an integral along a large circular contour, CR , in the same manner
as we have done here.

Problems for Section 4.3

1. (a) Use principal value integrals to show that∫ ∞

0

cos kx − cos mx

x2
dx = −π

2
(|k| − |m|), k,m real.

Hint: note that the function f (z) = (eikz− eimz)/z2 has a simple pole
at the origin.

(b) Let k = 2, m = 0 to deduce that∫ ∞

0

sin2 x

x2
dx = π

2

2. Show that ∫ ∞

0

sin x

x(x2 + 1)
dx = π

2

(
1− 1

e

)
3. Show that∫ ∞

−∞

(cos x − 1)

x2(x2 + a2)
dx = − π

a2
+ π

a3
(1− e−a), a > 0
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4. Use a rectangular contour with corners at ±R and ±R + iπ/k, with an
appropriate indentation, to show that∫ ∞

0

x

sinh kx
dx = π2

4k|k| for k 
= 0, k real.

5. Projection operators can be defined as follows. Consider a function F(z)

F(z) = 1

2π i

∫
C

f (ζ )

ζ − z
dζ

where C is a contour, typically infinite (e.g. the real axis) or closed (e.g. a
circle) and z lies off the contour. Then the “plus” and “minus” projections
of F(z) at z = ζ0 are defined by the following limit:

F±(ζ0) = lim
z→ζ0

±

[
1

2π i

∫
C

f (ζ )

ζ − z
dζ

]

where ζ0
± are points just inside (+) or outside (−) of a closed contour

(i.e., limz→ζ0
+ denotes the limit from points z inside the contour C) or to

the left (+) or right (−) of an infinite contour. Note: the “+” region lies
to the left of the contour; where we take the standard orientation for a
contour, that is, the contour is taken with counterclockwise orientation.
To simplify the analysis, we will assume that f (x) can be analytically
extended in the neighborhood of the curve C .

(a) Show that

F±(ζ0) = 1

2π i

∫
C

f (ζ )

ζ − ζ0
dζ ± 1

2
f (ζ0).

where
∫

C is the principal value integral that omits the point ζ = ζ0.
(b) Suppose that f (ζ ) = 1/(ζ 2 + 1), and the contour C is the real axis

(infinite), with orientation take from −∞ to∞; find F±(ζ0).
(c) Suppose that f (ζ ) = 1/(ζ 2 + a2), a2 > 1, and the contour C is the

unit circle centered at the origin with counterclockwise orientation;
find F±(ζ0).

6. An important application of complex variables is to solve equations for
functions analytic in a certain region, given a relationship on a boundary
(see Chapter 7). A simple example of this is the following. Solve for
the function ψ+(z) analytic in the upper half plane and ψ−(z) analytic
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in the lower half plane, given the following relationship on the real axis
(Re z = x):

ψ+(x)− ψ−(x) = f (x)

where, say, f (x) is differentiable and absolutely integrable. A solution
to this problem for ψ±(z)→ 0 as |z| → ∞ is given by

ψ±(x) = lim
ε→0+

1

2π i

∫ ∞

−∞

f (ζ )

ζ − (x ± iε)
dζ

To simplify the analysis, we will assume that f (x) can be analytically
extended in the neighborhood of the real axis.

(a) Explain how this solution could be formally obtained by introducing
the projection operators

P± = lim
ε→0+

1

2π i

∫ ∞

−∞

dζ

ζ − (x ± iε)

and in particular why it should be true that

P+ψ+ = ψ+, P−ψ− = −ψ−, P+ψ− = P−ψ+ = 0

(b) Verify the results in part (a) for the example

ψ+(x)− ψ−(x) = 1

x4 + 1

and find ψ±(z) in this example.
(c) Show that

ψ±(x) = 1

2π i

∫ ∞

−∞

f (ζ )

ζ − x
dζ ± 1

2
f (x)

In operator form the first term is usually denoted as H( f (x))/2i ,
where H( f (x)) is called the Hilbert transform. Then show that

ψ±(x) = 1

2i
H( f (x))± 1

2
f (x)

or, in operator form

ψ±(x) = 1

2
(±1− i H) f (x)
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7. Use the keyhole contour of Figure 4.3.6 to show that on the principal
branch of xk

(a) I (a) =
∫ ∞

0

xk−1

(x + a)
dx = π

sin kπ
ak−1, 0 < k < 2, a > 0

(b)
∫ ∞

0

xk−1

(x + 1)2
dx = (1− k)π

sin kπ
, 0 < k < 2

Verify this result by evaluating I ′(1) in part (a).

8. Use the technique described in Problem 7 above, using
∮

C f (z)(log z)2dz,
to establish that

(a) I (a) =
∫ ∞

0

log x

x2 + a2
dx = π

2a
log a, a > 0

(b)
∫ ∞

0

log x

(x2 + 1)2
dx = −π

4

Verify this by computing I ′(1) in part (a).

9. Use the keyhole contour in Figure 4.3.6 to establish that∫ ∞

0

x−k

x2 + 2x cosφ + 1
dx = π

sin kπ

sin(kφ)

sinφ

for 0 < k < 1, 0 < φ < π .

10. By using a large semicircular contour, enclosing the left half plane with a
suitable keyhole contour, show that

1

2π i

∫ a+i∞

a−i∞

ezt

√
z

dz = 1√
π t

for a, t > 0

This is the inverse Laplace transform of the function 1/
√

z. (The Laplace
transform and its inverse are discussed in Section 4.5.)

11. Consider the integral

IR = 1

2π i

∮
CR

dz

(z2 − a2)1/2
, a > 0

where CR is a circle of radius R centered at the origin enclosing the points
z = ±a. Take the principal value of the square root.
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(a) Evaluate the residue of the integrand at infinity and show that IR = 1.
(b) Evaluate the integral by defining the contour around the branch points

and along the branch cuts between z = −a to z = a, to find (see Sec-

tion 2.3) that IR = 2

π

∫ a

0

dx√
a2 − x2

. Use the well-known indefinite

integral
∫

dx√
a2 − x2

= sin−1 x/a + const to obtain the same result

as in part (a).

12. Use the transformation t = (x − 1)/(x + 1) on the principal branch of
the following functions to show that

(a)
∫ 1

−1

(
1+ t

1− t

)k−1

dt = 2(1− k)π

sin kπ
, 0 < k < 2

(b)
∫ 1

−1
log

(
1+ t

1− t

)
dt

1− at
= 1

2a
log2

(
1+ a

1− a

)
, 0 < a < 1

13. Use the keyhole contour of Figure 4.3.6 to show for the principal branch
of x1/2 and log x ∫ ∞

0

x1/2 log x

(1+ x2)
dx = π2

2
√

2

and ∫ ∞

0

x1/2

(1+ x2)
dx = π√

2

14. Consider the following integral with the principal branch of the square

root,
∫ 1

0

√
x(1− x) dx . Use the contour integral IR = 1

2π i

∮
CR√

z(z − 1) dz, where CR is the “two-keyhole” or “dogbone” contour
similar to Figure 4.3.8, this time enclosing z = 0 and z = 1. Take the
branch cut on the real axis between z = 0 and z = 1.

(a) Show that the behavior at z = ∞ implies that lim
R→∞

IR = −1

8
.

(b) Use the principal branch of this function to show

IR = 1

π

∫ 1

0

√
x(1− x) dx

and conclude that
∫ 1

0

√
x(1− x) dx = π

8
.
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(c) Use the same method to show

∫ 1

0
xn
√

x(1− x) = πbn+2

where bn+2 is the coefficient of the term xn+2 in the binomial expan-
sion of (1− x)1/2; that is

(1− x)
1
2 = 1− 1

2
x − 1

8
x2 − · · ·

15. In Problem 10 of Section 2.6 we derived the formula

v(r, ϕ) = v(r = 0)+ 1

2π

∫ 2π

0
u(θ)

2r sin(ϕ − θ)

1− 2r cos(ϕ − θ)+ r2
dθ

where u(θ) is given on the unit circle and the harmonic conjugate to
u(r, ϕ), v(r, ϕ) is determined by the formula above. (In that exercise
u(r, ϕ) was also derived.) Let ζ = reiϕ . Show that as r → 1, ζ → eiϕ

with z = eiθ , the above formula may be written as (use the trigonometric
identity (I) below)

v(ϕ) = v(0)− 1

2π i

∫ 2π

0
u(θ)

eiϕ + eiθ

eiϕ − eiθ
dθ

where the integral is taken as the Cauchy principal value. Show that

(I)
eiϕ + eiθ

eiϕ − eiθ
= i

(
sin(θ − ϕ)

1− cos(θ − ϕ)

)
= i cot

(
θ − ϕ

2

)
using

cos x = 2 cos2 x

2
− 1 = 1− 2 sin2 x

2
, sin x = 2 sin

x

2
cos

x

2
,

and therefore deduce that

v(ϕ) = v(0)+ 1

2π

∫ 2π

0
u(θ) cot

(
ϕ − θ

2

)
dθ

This formula relates the boundary values, on the circle, between the real
and imaginary parts of a function f (z) = u+ iv, which is analytic inside
the circle.
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4.4 The Argument Principle, Rouché’s Theorem

The Cauchy Residue Theorem can be used to obtain a useful result regarding
the number of zeroes and poles of a meromorphic function. In what follows,
we refer to second order, third order, . . . poles as “poles of order 2,3,. . . .”

Theorem 4.4.1 (Argument Principle) Let f (z) be a meromorphic function
defined inside and on a simple closed contour C , with no zeroes or poles on C .
Then

I = 1

2π i

∮
C

f ′(z)
f (z)

dz = N − P = 1

2π
[arg f (z)]C (4.4.1)

where N and P are the number of zeroes and poles, respectively, of f (z) inside
C ; where a multiple zero or pole is counted according to its multiplicity, and
where arg f (z) is the argument of f (z); that is, f (z) = | f (z)| exp(i arg f (z))
and [arg f (z)]C denotes the change in the argument of f (z) over C .

Proof Suppose z = zi is a zero/pole of order ni . Then

f ′(z)
f (z)

= ±ni

z − zi
+ φ(z) (4.4.2)

where φ is analytic in the neighborhood of z and the plus/minus sign stands
for the zero/pole case, respectively. Formula (4.4.2) follows from the fact that
if f (z) has a zero of order niz , we can write f (z) as f (z) = (z − zi )

niz g(z),
where g(zi ) 
= 0 and g(z) is analytic in the neighborhood of zi ; whereas if
f (z) has a pole of order nip, then f (z) = g(z)/(z − zi )

nip . Equation (4.4.2)
then follows by differentiation with φ(z) = g′(z)/g(z). Applying the Cauchy
Residue Theorem yields

I = 1

2π i

∮
C

f ′(z)
f (z)

dz =
Mz∑

iz=1

niz −
Mp∑

i p=1

nip = N − P

where Mz (Mp) is the number of zero (pole) locations ziz (zip) with multiplicity
niz (nip), respectively.

In order to show that I = [arg f (z)]C/2π , we parametrize C as in Section
2.4. Namely, we let z = z(t) on a ≤ t ≤ b, where z(a) = z(b). Thus we have,
for I , the line integral
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z

z

w = f(z) w

w

C C~

-plane -plane

θ

Fig. 4.4.1. Mapping w

I = 1

2π i

∫ b

a

f ′(z(t))
f (z(t))

z′(t) dt = 1

2π i
[log f (z(t))]b

t=a

= 1

2π i
[log | f (z(t))| + i arg f (z(t))]b

t=a =
1

2π i
[arg f (z)]C (4.4.3)

where we have taken the principal branch of the logarithm. �

Geometrically, Eq. (4.4.3) corresponds to the following. Consider Figure
4.4.1.

Let w = f (z) be the image of the point z under the mapping w = f (z), and
let θ = arg f (z) be the angle that the ray from the origin towmakes with respect
to the horizontal; then w = | f (z)| exp(iθ). Equation (4.4.3) corresponds to the
number of times the point w winds around the origin on the image curve C̃
when z moves around C . Under the transformation w = f (z) we find

1

2π i

∮
C

f ′(z)
f (z)

dz = 1

2π i

∮
C̃

dw

w
= 1

2π i
[argw]C̃ (4.4.4)

The quantity 1
2π i [argw]C̃ is called the winding number of C̃ about the origin.

The following extension of Theorem 4.4.1 is useful. Suppose that f (z) and
C satisfy the hypothesis of Theorem 4.4.1, and let h(z) be analytic inside and
on C . Then

J = 1

2π i

∮
C

f ′(z)
f (z)

h(z) dz

=
Mz∑

iz=1

nizh(ziz)−
Mp∑

i p=1

niph(zip) (4.4.5)

where h(ziz) and h(zip) are the values of h(z) at the locations ziz and zip.
Formula (4.4.5) follows from Eq. (4.4.2) by evaluating the contour integral
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N

z=

-1

-N-

z=0

z=

1 N

y=N

y=-N

N+1

N+

-N-N-1

-C

-CC

2

1

1
2

1
2

........

ε

−ζ

ζ

ε

Fig. 4.4.2. Contour CN

associated with

f ′(z)
f (z)

h(z) = ±ni

z − zi
h(z)+ h(z)φ(z)

This amounts to obtaining the residue

Res

(
f ′(z)
f (z)

h(z); zi

)
= ±ni h(zi )

If the zeroes/poles are simple, then in Eq. (4.4.5) we take niz = nip = 1.

Example 4.4.1 Consider the following integral:

I (ζ ) = 1

2π i

∮
CN

π cotπ z

ζ 2 − z2
dz

where CN is depicted in Figure 4.4.2. Deduce thatπ cotπζ = ζ
∑∞

n=−∞
1

ζ 2−n2 .

We have an integral of the form (4.4.5), where f (z) = sinπ z, h(z) = 1
ζ 2−z2 ,

zi = n, and n = 0,±1,±2, . . ., ±N . Deforming the contour and using
Eq. (4.4.5) with niz = 1, nip = 0, we find

1

2π i

(∮
CN R

−
∮

Cε1

−
∮

Cε2

)
π cotπ z

ζ 2 − z2
dz =

N∑
n=−N

1

ζ 2 − n2
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R

iR

C

iy

x

Fig. 4.4.3. Contour in first quadrant

where CN R denotes the rectangular contour alone, without crosscuts and circles
around z = ±ζ . Taking N → ∞ and εi → 0, we have, after computing the
residues about Cεi

lim
N→∞

1

2π i

∮
CN R

π cotπ z

ζ 2 − z2
dz −

[(
π cotπ z

−2z

)
z=ζ
+
(
π cotπ z

−2z

)
z=−ζ

]

=
∞∑

n=−∞

1

ζ 2 − n2

It was shown in Section 4.2, Example 4.2.5, that
∮

CN R
→ 0 as N →∞; hence

we have the series representation

π cotπζ = ζ

∞∑
n=−∞

1

ζ 2 − n2
(4.4.6)

The Argument Principle is also frequently used to determine the number of
zeroes located in a given region of the plane.

Example 4.4.2 Determine the number of zeroes located inside the first quadrant
of the function

f (z) = z3 + 1

Consider the contour in Figure 4.4.3.
We begin at z = 0 where f (z) = 1. We take

arg f (z) = φ, tanφ = Im f (x, y)

Re f (x, y)
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with the principal branch φ = 0 corresponding to f (z) = 1. On the circle
|z| = R,

z = R eiθ , f (z) = R3e3iθ

(
1+ 1

R3e3iθ

)
On the real axis z = x , f (x, y) = x3 + 1 is positive and continuous; hence at
x = R, y = 0, θ(R, 0) = 0. Next we follow the arg f (x, y) around the circular
contour. For large R, 1 + 1/(R3e3iθ ) is near 1; hence arg f (z) ≈ 3θ , and
at z = i R, θ = π/2; hence arg f (z) ≈ 3π/2. Now along the imaginary axis
z = iy

f (x, y) = −iy3 + 1

as y traverses from y →∞ to y → 0+, tanφ goes from −∞ to 0− (note
tanφ ≈ −y3 for y →∞); that is, φ goes from 3π

2 to 2π . Note also that we are
in the fourth quadrant because Im f < 0 and Re f > 0.

Thus the Argument Principle gives

N = 1

2π
[arg f ]C = 1

because arg f changed by 2π over this circuit. (P = 0, because f (z) is a poly-
nomial, hence analytic in C .) Thus we have one zero located in the first quadrant.
Because complex roots for a real polynomial must have a complex conjugate
root, it follows that the other complex root occurs in the fourth quadrant. Cu-
bic equations with real coefficients have at least one real root. Because it is
not on the positive real axis (x3 + 1 > 0 for x > 0), it is necessarily on the
negative axis.

In this particular example we could have evaluated the roots directly, that is,
z3 = −1 = eiπ = e(2n+1)π i , n = 0, 1, 2, or z1 = eiπ/3, z2 = eiπ = −1, and
z3 = e5iπ/3. In more complicated examples an explicit calculation of the roots
is usually impossible. In such examples the Argument Principle can be a very
effective tool. However, our purpose here was only to give the reader the basic
ideas of the method as applied to a simple example. As we have seen, one must
calculate the number of changes of sign in Im f (x, y) and Re f (x, y) in order
to compute arg f (x, y).

A result that is essentially a corollary to the Argument Principle is the fol-
lowing, often termed Rouché’s Theorem.

Theorem 4.4.2 (Rouché) Let f (z) and g(z) be analytic on and inside a simple
closed contour C . If | f (z)| > |g(z)| on C , then f (z) and [ f (z) + g(z)] have
the same number of zeroes inside the contour C .
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(z)

C
~

(0,0)
(1,0) (2,0)

-plane

ω

ω

Fig. 4.4.4. Contour C̃ , proof of Rouché’s Theorem

In Theorem 4.4.2, multiple zeroes are enumerated in the same manner as in
the Argument Principle.

Proof Because | f (z)| > |g(z)| ≥ 0 on C , then | f (z)| 
= 0; hence f (z) 
= 0 on
C . Thus, calling

w(z) = f (z)+ g(z)

f (z)

it follows that the contour integral 1
2π i

∮
C

w′(z)
w(z) dz is well defined (no poles on

C). Moreover, (w(z)− 1) = g/ f , whereupon

|w(z)− 1| < 1 (4.4.7)

and hence all points w(z) in the w plane lie within the circle of unit radius
centered at (1, 0). Thus we conclude that the origin w = 0 cannot be enclosed
by C̃ (see Figure 4.4.4). C̃ is the image curve in the w-plane (if w = 0 were
enclosed then |w − 1| = 1 somewhere on C̃). Hence [argw(z)]C = 0 and
N = P for w(z). Therefore the number of zeroes of f (z) (poles of w(z))
equals the number of zeroes of f (z)+ g(z). �

Rouché’s theorem can be used to prove the fundamental theorem of algebra
(also discussed in Section 2.6). Namely, every polynomial

P(z) = zn + an−1zn−1 + an−2zn−2 + · · · + a0

has n and only n roots counting multiplicities: P(zi ) = 0, i = 1, 2, . . . , n. We
call f (z) = zn and g(z) = an−1zn−1 + an−2zn−2 + · · · + a0. For |z| > 1 we
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find

|g(z)| ≤ |an−1||z|n−1 + |an−2||z|n−2 + · · · + |a0|
≤ (|an−1| + |an−2| + · · · + |a0|)|z|n−1

If our contour C is taken to be a circle with radius R greater than unity, | f (z)| =
Rn > |g(z)| whenever

R > max(1, |an−1| + |an−2| + · · · + |a0|)
Hence P(z) = f (z) + g(z) has the same number of roots as f (z) = zn = 0,
which is n. Moreover, all of the roots of P(z) are contained inside the circle
|z| < R because by the above estimate for R

|P(z)| = |zn + g(z)| ≥ Rn − |g(z)| > 0

and therefore does not vanish for |z| ≥ R.

Example 4.4.3 Show that all the roots of P(z) = z8 − 4z3 + 10 lie between
1 ≤ |z| ≤ 2.

First we consider the circular contour C1: |z| = 1. We take f (z) = 10, and
g(z) = z8 − 4z3. Thus | f (z)| = 10, and |g(z)| ≤ |z|8 + 4|z|3 = 5. Hence
| f | > |g|, which implies that P(z) has no roots on C1. Because f has no
roots inside C1, neither does P(z) = ( f + g)(z). Next we take f (z) = z8 and
g(z) = −4z3 + 10. On the circular contour C2: |z| = 2, | f (z)| = 28 = 256,
and |g(z)| ≤ 4|z|3 + 10 = 42, so | f | > |g| and thus P(z) has no roots on
C2. Hence the number of roots of ( f + g)(z) equals the number of zeroes of
f (z) = z8. Thus z8 = 0 implies that there are eight roots inside C2. Because
they cannot be inside or on C1, they lie in the region 1 < |z| < 2.

Example4.4.4 Show that there is exactly one root inside the contour C1: |z| = 1,
for

h(z) = ez − 4z − 1

We take f (z) = −4z and g(z) = ez − 1 on C1

| f (z)| = |4z| = 4, |g(z)| = |ez − 1| ≤ |ez| + 1 < e + 1 < 4

Thus | f | > |g| on C1, and hence h(z) = ( f + g)(z) has the same number of
roots as f (z) = 0, which is one.

Problems for Section 4.4

1. Verify the Argument Principle, Theorem 4.4.1, in the case of the following
functions. Take the contour C to be a unit circle centered at the origin.
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(a) zn , n an integer (positive or negative) (b) ez (c) coth 4π z
(d) P(z)/Q(z), where P(z) and Q(z) are polynomials of degree N and

M , respectively, and have all their zeroes inside C .
(e) What happens if we consider f (z) = e1/z?

2. Show

1

2π i

∮
C

f ′(z)
( f (z)− f0)

dz = N

where N is the number of points z where f (z) = f0 (a constant) inside
C ; f ′(z) and f (z) are analytic inside and on C ; and f (z) 
= f0 on the
boundary of C .

3. Use the Argument Principle to show that

(a) f (z) = z5 + 1 has one zero in the first quadrant, and
(b) f (z) = z7 + 1 has two zeroes in the first quadrant.

4. Show that there are no zeroes of f (z) = z4+ z3+ 5z2+ 2z+ 4 in the first
quadrant. Use the fact that on the imaginary axis, z = iy, the argument
of the function for large y starts with a certain value that corresponds to a
quadrant of the argument of f (z). Each change in sign of Re f (iy) and
Im f (iy) corresponds to a suitable change of quadrant of the argument.

5. (a) Show that ez − (4z2 + 1) = 0 has exactly two roots for |z| < 1. Hint:
in Rouché’s Theorem use f (z) = −4z2 and g(z) = ez − 1, so that
when C is the unit circle

| f (z)| = 4 and |g(z)| = |ez − 1| ≤ |ez| + 1

(b) Show that the improved estimate |g(z)| ≤ e − 1 can be deduced from
ez−1 = ∫ z

0 ew dw and that this allows us to establish that ez−(2z+1) =
0, has exactly one root for |z| < 1.

6. Suppose that f (z) is analytic in a region containing a simple closed contour
C . Let | f (z)| ≤ M on C , and show via Rouché’s Theorem that | f (z)| ≤ M
inside C . (The maximum of an analytic function is attained on its boundary;
this provides an alternate proof of the maximum modulus result in Section
2.6.) Hint: suppose there is a value of f (z), say f0, such that | f0| > M .
Consider the two functions − f0 and f (z) − f0, and use | f (z) − f0| ≥
| f0| − | f (z)| in Rouché’s Theorem to deduce that f (z) 
= f0.
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7. (a) Consider the mapping w = z3. When we encircle the origin in the z
plane one time, how many times do we encircle the origin in the w

plane? Explain why this agrees with the Argument Principle.
(b) Suppose we consider w = z3 + a2z2 + a1z + a0 for three constants

a0, a1, a2. If we encircle the origin in the z plane once on a very large
circle, how many times do we encircle the w plane?

(c) Suppose we have a mapping w = f (z) where f (z) is analytic inside
and on a simple closed contour C in the z plane. Let us define C̃ as the
(nonsimple) image in thew plane of the contour C in the z plane. If we
deduce that it encloses the origin (w = 0) N times, and encloses the
point (w = 1) M times, what is the change in argw over the contour
C̃? If we had a computer available, what algorithm should be designed
(if it is at all possible) to determine the change in the argument?

∗4.5 Fourier and Laplace Transforms

One of the most valuable tools in mathematics, physics, and engineering is
making use of the properties a function takes on in a so-called transform (or
dual) space. In suitable function spaces, defined below, the Fourier transform
pair is given by the following relations:

f (x) = 1

2π

∫ ∞

−∞
F̂(k)eikx dk (4.5.1)

F̂(k) =
∫ ∞

−∞
f (x)e−ikx dx (4.5.2)

F̂(k) is called the Fourier transform of f (x). The integral in Eq. (4.5.1) is
referred to as the inverse Fourier transform. In mathematics, the study
of Fourier transforms is central in fields like harmonic analysis. In physics
and engineering, applications of Fourier transforms are crucial, for example,
in the study of quantum mechanics, wave propagation, and signal processing.
In this section we introduce the basic notions and give a heuristic derivation
of Eqs. (4.5.1)–(4.5.2). In the next section we apply these concepts to solve
some of the classical partial differential equations.

In what follows we make some general remarks about the relevant function
spaces for f (x) and F̂(k). However, in our calculations we will apply complex
variable techniques and will not use any deep knowledge of function spaces.
Relations (4.5.1)–(4.5.2) always hold if f (x) ∈ L2 and F̂(k) ∈ L2, where
f ∈ L2 refers to the function space of square integrable functions

‖ f ‖2 =
(∫ ∞

−∞
| f |2(x) dx

)1/2

<∞ (4.5.3)
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In those cases where f (x) and f ′(x) are continuous everywhere apart from
a finite number of points for which f (x) has integrable and bounded discon-
tinuities (such a function f (x) is said to be piecewise smooth), it turns out
that at each point of discontinuity, call it x0, the integral given by Eq. (4.5.1)
converges to the mean: limε→0+

1
2 [ f (x0 + ε) + f (x0 − ε)]. At points where

f (x) is continuous, the integral (4.5.1) converges to f (x).
There are other function spaces for which Eqs. (4.5.1)–(4.5.2) hold. If

f (x) ∈ L1, the space of absolutely integrable functions (functions f satisfy-
ing
∫∞
−∞ | f (x)| dx <∞), then F̂(k) tends to zero for |k| → ∞ and belongs to

a certain function space of functions decaying at infinity (sometimes referred to
as bounded mean oscillations (BMO)). Conversely, if we start with a suitably
decaying function F̂(k) (i.e., in BMO), then f (x) ∈ L1. In a sense, purely
from a symmetry point of view, such function spaces may seem less natural
than when f (x), F̂(k) are both in L2 for Eqs. (4.5.1)–(4.5.2) to be valid. Nev-
ertheless, in some applications f (x) ∈ L1 and not L2. Applications sometimes
require the use of Fourier transforms in spaces for which no general theory
applies, but nevertheless, specific results can be attained. It is outside the scope
of this text to examine L p (p = 1, 2, . . .) function spaces where the general
results pertaining to Eqs. (4.5.1)–(4.5.2) can be proven. Interested readers can
find such a discussion in various books on complex or Fourier analysis, such as
Rudin (1966). Unless otherwise specified, we shall assume that our function
f (x) ∈ L1 ∩ L2, that is, f (x) is both absolutely and square integrable. It
follows that

|F̂(k)| ≤ ‖ f ‖1 =
∫ ∞

−∞
| f (x)| dx

and
1√
2π
‖F̂‖2 = ‖ f ‖2

The first relationship follows directly. The second is established later in this
section. In those cases for which f (x) is piecewise smooth, an elementary
though tedious proof of Eqs. (4.5.1)–(4.5.2) can be constructed by suitably
breaking up the interval (−∞,∞) and using standard results of integration
(Titchmarsch, 1948).

Statements analogous to Eqs. (4.5.1)–(4.5.2) hold for functions on finite
intervals (−L , L), which may be extended as periodic functions of period 2L:

f (x) =
∞∑

n=−∞
F̂n einπx/L (4.5.4)

F̂n = 1

2L

∫ L

−L
f (x) e−inπx/L dx (4.5.5)
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The values F̂n are called the Fourier coefficients of the Fourier series repre-
sentation of the function f (x) given by Eq. (4.5.4).

A simple example of how Fourier transforms may be calculated is afforded
by the following.

Example 4.5.1 Let a > 0, b > 0, and f (x) be given by

f (x) =
{

e−ax x > 0
ebx x < 0

Then, from Eq. (4.5.2), we may compute F̂(k) to be

F̂(k) =
∫ ∞

0
e−ax−ikx dx +

∫ 0

−∞
ebx−ikx dx

= 1

a + ik
+ 1

b − ik
(4.5.6)

The inversion (i.e., reconstruction of f (x)) via Eq. (4.5.1) is ascertained by
calculating the appropriate contour integrals. In this case we use closed semi-
circles in the upper (x > 0) and lower (x < 0) half k-planes. The inversion
can be done either by combining the two terms in Eq. (4.5.6) or by noting that

1

2π

∫ ∞

−∞

eikx

a + ik
dk =


e−ax x > 0
1/2 x = 0
0 x < 0

and

1

2π

∫ ∞

−∞

eikx

b − ik
dk =


0 x > 0
1/2 x = 0
ebx x < 0

The values at x = 0 take into account both the pole and the principal value
contribution at infinity; that is, 1

2π

∫
CR

dk
a+ik = 1/2 where on CR : k = R eiθ ,

0 ≤ θ ≤ π . Thus Eq. (4.5.1) gives convergence to the mean value at x = 0:
1
2 + 1

2 = 1 = (limx→0+ f (x)+ limx→0− f (x))/2.

A function that will lead us to a useful result is the following:

�(x; ε) =


1

2ε
|x | < ε

0 |x | > ε

(4.5.7)

Its Fourier transform is given by

�̂(k; ε) = 1

2ε

∫ ε

−ε
e−ikx dx = sin kε

kε
(4.5.8)
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Certainly, �(x; ε) is both absolutely and square integrable; so it is in L1 ∩ L2,
and �̂(k; ε) is in L2. It is natural to ask what happens as ε → 0. The function
defined by Eq. (4.5.7) tends, as ε → 0, to a novel “function” called the Dirac
delta function, denoted by δ(x) and having the following properties:

δ(x) = lim
ε→0

�(x; ε) (4.5.9)

∫ ∞

−∞
δ(x − x0)dx = lim

ε→0

∫ x=x0+ε

x=x0−ε
δ(x − x0)dx = 1 (4.5.10)

∫ ∞

−∞
δ(x − x0) f (x) dx = f (x0) (4.5.11)

where f (x) is continuous. Equations (4.5.10)–(4.5.11) can be ascertained by
using the limit definitions (4.5.7) and (4.5.9). The function defined in Eq. (4.5.9)
is often called a unit impulse “function”; it has an arbitrarily large value con-
centrated at the origin, whose integral is unity. The delta function, δ(x), is not
a mathematical function in the conventional sense, as it has an arbitrarily large
value at the origin. Nevertheless, there is a rigorous mathematical framework in
which these new functions – called distributions – can be analyzed. Interested
readers can find such a discussion in, for example, Lighthill (1959). For our
purposes the device of the limit process ε → 0 is sufficient. We also note that
Eq. (4.5.7) is not the only valid representation of a delta function; for example,
others are given by

δ(x) = lim
ε→0

{
1√
πε

e−x2/ε

}
(4.5.12a)

δ(x) = lim
ε→0

{
ε

π(ε2 + x2)

}
(4.5.12b)

It should be noted that, formally speaking, the Fourier transform of a delta
function is given by

δ̂(k) =
∫ ∞

−∞
δ(x)e−ikx dx = 1 (4.5.13)

It does not vanish as |k| → ∞; indeed, it is a constant (unity; note that δ(x)
is not L1). Similarly, it turns out from the theory of distributions (motivated
by the inverse Fourier transform), that the following alternative definition of a
delta function holds:

δ(x) = 1

2π

∫ ∞

−∞
δ̂(k)eikx dk

= 1

2π

∫ ∞

−∞
eikx dk (4.5.14)
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Formula (4.5.14) allows us a simple (but formal) way to verify Eqs. (4.5.1)–
(4.5.2). Namely, by using Eqs. (4.5.1)–(4.5.2) and assuming that interchanging
integrals is valid, we have

f (x) = 1

2π

∫ ∞

−∞
dk eikx

(∫ ∞

−∞
dx ′ f (x ′) e−ikx ′

)

=
∫ ∞

−∞
dx ′ f (x ′)

(
1

2π

∫ ∞

−∞
dk eik(x−x ′)

)

=
∫ ∞

−∞
dx ′ f (x ′)δ(x − x ′) (4.5.15)

In what follows, the Fourier transform of derivatives will be needed. The
Fourier transform of a derivative is readily obtained via integration by parts.

F̂1(k) ≡
∫ ∞

−∞
f ′(x) e−ikx dx

= [ f (x) e−ikx
]∞
−∞ + ik

∫ ∞

−∞
f (x) e−ikx dx

= ik F̂(k) (4.5.16a)

and by repeated integration by parts

F̂n(k) =
∫ ∞

−∞
f (n)(x)e−ikx dx = (ik)n F̂(k) (4.5.16b)

Formulae (4.5.16a,b) will be useful when we examine solutions of differential
equations by transform methods.

It is natural to ask what is the Fourier transform of a product. The result is
called the convolution product; it is not the product of the Fourier transforms.
We can readily derive this formula. We use two transform pairs: one for a
function f (x) (Eqs. (4.5.1)–(4.5.2)) and another for a function g(x), replacing
f (x) and F̂(k) in Eqs. (4.5.1)–(4.5.2) by g(x) and Ĝ(k), respectively. We
define the convolution product,

( f ∗ g)(x) =
∫ ∞

−∞
f (x − x ′)g(x ′) dx ′ =

∫ ∞

−∞
f (x ′)g(x − x ′) dx ′.

(The latter equality follows by renaming variables.) We take the Fourier trans-
form of ( f ∗ g)(x) and interchange integrals (allowed since both f and g are
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absolutely integrable) to find∫ ∞

−∞
( f ∗ g)(x)e−ikx dx =

∫ ∞

−∞
dx

(∫ ∞

−∞
f (x − x ′)g(x ′)dx ′

)
e−ikx

=
∫ ∞

−∞
dx ′eikx ′g(x ′)

∫ ∞

−∞
dxe−ik(x−x ′) f (x − x ′)

= F̂(k)Ĝ(k). (4.5.17)

Hence, by taking the inverse transform of this result,

1

2π

∫ ∞

−∞
eikx F̂(k)Ĝ(k) dk =

∫ ∞

−∞
g(x ′) f (x − x ′) dx ′

=
∫ ∞

−∞
g(x − x ′) f (x ′)dx ′. (4.5.18)

The latter equality is accomplished by renaming the integration variables. Note
that if f (x) = δ(x− x ′), then F̂(k) = 1, and Eq. (4.5.18) reduces to the known
transform pair for g(x), that is, g(x) = 1

2π

∫∞
−∞ Ĝ(k)eikx dk.

A special case of Eq. (4.5.18) is the so-called Parseval formula, obtained
by taking g(x) = f (−x), where f (x) is the complex conjugate of f (x), and
evaluating Eq. (4.5.17) at x = 0:∫ ∞

−∞
f (x) f (x) dx = 1

2π

∫ ∞

−∞
F̂(k)Ĝ(k) dk.

Function Ĝ(k) is now the Fourier transform of f (−x):

Ĝ(k) =
∫ ∞

−∞
e−ikx f (−x) dx =

∫ ∞

−∞
eikx f (x) dx

=
(∫ ∞

−∞
e−ikx f (x) dx

)
= (F̂(k))

Hence we have the Parseval formula:∫ ∞

−∞
| f |2(x) dx = 1

2π

∫ ∞

−∞

∣∣F̂(k)∣∣2 dk (4.5.19)

In some applications,
∫∞
−∞ | f |2(x) dx refers to the energy of a signal. Fre-

quently it is the term
∫∞
−∞ |F̂(k)|2 dk which is really measured (it is some-

times referred to as the power spectrum), which then gives the energy as per
Eq. (4.5.19).
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In those cases where we have f (x) being an even or odd function, then
the Fourier transform pair reduces to the so-called cosine transform or sine
transform pair. Because f (x) being even/odd in x means that F̂(k) will be
even or odd in k, the pair (4.5.1)–(4.5.2) reduces to statements about semiinfinite
functions in the space L2 on (0,∞) (i.e.,

∫∞
0 | f (x)|2dx <∞) or in the space

L1 on (0,∞) (i.e.,
∫∞

0 | f (x)| dx < ∞). For even functions, f (x) = f (−x),
the following definitions

f (x) = 1√
2

fc(x), F̂(k) =
√

2F̂c(k) (4.5.20)

(or more generally F̂(k) = aF̂c(k), f (x) = b fc(x), a = 2b, b 
= 0) yield the
Fourier cosine transform pair

fc(x) = 2

π

∫ ∞

0
F̂c(k) cos kx dk (4.5.21)

F̂c(k) =
∫ ∞

0
fc(x) cos kx dx (4.5.22)

For odd functions, f (x) = − f (−x), the definitions

f (x) = 1√
2

fs(x), F̂(k) = −
√

2i F̂s(k)

yield the Fourier sine transform pair

fs(x) = 2

π

∫ ∞

0
F̂s(k) sin kx dk (4.5.23)

F̂s(k) =
∫ ∞

0
fs(x) sin kx dx (4.5.24)

Obtaining the Fourier sine or cosine transform of a derivative employs inte-
gration by parts; for example

F̂c,1(k) =
∫ ∞

0
f ′(x) cos kx dk

= [ f (x) cos kx]∞0 + k
∫ ∞

0
f (x) sin kx dk = k F̂s(k)− f (0) (4.5.25)

and

F̂s,1(k) =
∫ ∞

0
f ′(x) sin kx dk

= [ f (x) sin kx]∞0 − k
∫ ∞

0
f (x) cos kx dk = −k F̂c(k) (4.5.26)

are formulae for the first derivative. Similar results obtain for higher derivatives.
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It turns out to be useful to extend the notion of Fourier transforms. One way
to do this is to consider functions that have support only on a semi-interval.
We take f (x) = 0 on x < 0 and replace f (x) by e−cx f (x)(c > 0) for
x > 0. Then Eqs. (4.5.1)–(4.5.2) satisfy, using F̂(k) from Eq. (4.5.2) in
Eq. (4.5.1):

e−cx f (x) = 1

2π

∫ ∞

−∞
dk eikx

[∫ ∞

0
e−ikx ′e−cx ′ f (x ′) dx ′

]
hence

f (x) = 1

2π

∫ ∞

−∞
dk e(c+ik)x

[∫ ∞

0
e−(c+ik)x ′ f (x ′) dx ′

]
Within the above integrals we define s = c + ik, where c is a fixed real

constant, and make the indicated redefinition of the limits of integration to
obtain

f (x) = 1

2π i

∫ c+i∞

c−i∞
ds esx

(∫ ∞

0
e−sx ′ f (x ′) dx ′

)
or, in a form analogous to Eqs. (4.5.1)–(4.5.2):

f (x) = 1

2π i

∫ c+i∞

c−i∞
F̂(s)esx ds (4.5.27)

F̂(s) =
∫ ∞

0
f (x)e−sx dx (4.5.28)

Formulae (4.5.27)–(4.5.28) are referred to as the Laplace transform (F̂(s))
and the inverse Laplace transform of a function ( f (x)), respectively. The usual
function space for f (x) in the Laplace transform (analogous to L1 ∩ L2 for
f (x) in Eq. (4.5.1)) are those functions satisfying:∫ ∞

0
e−cx | f (x)| dx <∞. (4.5.29)

Note Re s = c in Eqs. (4.5.27)–(4.5.28). If Eq. (4.5.29) holds for some c > 0,
then f (x) is said to be of exponential order.

The integral (4.5.27) is generally carried out by contour integration. The
contour from c− i∞ to c+ i∞ is referred to as the Bromwich contour, and
c is taken to the right of all singularities in order to insure (4.5.29). Closing the
contour to the right will yield f (x) = 0 for x < 0.
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Fig. 4.5.1. Bromwich contour, Example 4.5.2

We give two examples.

Example 4.5.2 Evaluate the inverse Laplace transform of F̂(s) = 1
s2+ω2 , with

ω > 0. See Figure 4.5.1.

f (x) = 1

2π i

∫ c+i∞

c−i∞

esx

s2 + w2
ds

For x < 0 we close the contour to the right of the Bromwich contour. Because
no singularities are enclosed, we have, on CR2

s = c + Reiθ ,
−π
2

< θ <
π

2

thus f (x) = 0, x < 0 because
∫

CR2
→ 0 as R → ∞. On the other hand, for

x > 0, closing to the left yields (we note that
∫

CR1
→ 0 as R →∞ where on

CR1 : s = c + Reiθ , π
2 ≤ θ ≤ 3π

2 )

f (x) =
2∑

j=1

Res

(
esx

s2 + w2
; s j

)
, s1 = iw, s2 = −iw

f (x) = eiwx

2iw
− e−iwx

2iw
= sinwx

w
(x > 0)

Example 4.5.3 Evaluate the inverse Laplace transform of the function

F̂(s) = s−a, (0 < a < 1)

where we take the branch cut along the negative real axis (see Figure 4.5.2).
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Fig. 4.5.2. Contour for Example 4.5.3

As is always the case, f (x) = 0 for x < 0 when we close to the right.
Closing to the left yields (schematically)

f (x)+
(∫

CRA

+
∫

CRB

+
∫

s=reiπ

+
∫

s=re−iπ

+
∫

Cε

)
F̂(s)

2π i
esx ds = 0

The right-hand side vanishes because there are no singularities enclosed by this
contour. The integrals

∫
CRA

,
∫

CRB
, and

∫
Cε

vanish as R → ∞ (on CRA : s =
c + Reiθ , π

2 < θ < π ; on CRB : s = c + Reiθ ,−π < θ < −π
2 ), and ε → 0

(on Cε : s = εeiθ , −π < θ < π). On Cε we have∣∣∣∣∫
Cε

F(s)

2π i
esx ds

∣∣∣∣ ≤ ∫ π

−π
ε1−a eεx

2π
dθ −→

ε→0
0

Hence

f (x)− 1

2π i

∫ 0

r=∞
r−ae−iaπe−r x dr − 1

2π i

∫ ∞

r=0
r−aeiaπe−r x dr = 0

or

f (x) = (eiaπ − e−iaπ )

2π i

∫ ∞

0
r−a e−r x dr (4.5.30)

The gamma function, or factorial function, is defined by

�(z) =
∫ ∞

0
uz−1 e−u du (4.5.31)
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This definition implies that �(n) = (n − 1)! when n is a positive integer:
n = 1, 2, . . . . Indeed, we have by integration by parts

�(n + 1) = [−une−u]∞0 + n
∫ ∞

0
un−1e−u du

= n�(n) (4.5.32)

and when z = 1, Eq. (4.5.31) directly yields �(1) = 1. Equation (4.5.32)
is a difference equation, which, when supplemented with the starting condi-
tion �(1) = 1, can be solved for all n. So when n = 1, Eq. (4.5.32) yields
�(2) = �(1) = 1; when n = 2, �(3) = 2�(2) = 2!, . . ., and by induction,
�(n) = (n − 1)! for positive integer n. We often use Eq. (4.5.31) for general
values of z, requiring only that Re z > 0 in order for there to be an integrable
singularity at u = 0. With the definition (4.5.31) and rescaling r x = u we have

f (x) =
(

sin aπ

π

)
xa−1 �(1− a)

The Laplace transform of a derivative is readily calculated.

F̂1(s) =
∫ ∞

0
f ′(x) e−sx dx

= [ f (x)e−sx
]∞

0 + s
∫ ∞

0
f (x)e−sx dx

= s F̂(s)− f (0)

By integration by parts n times it is found that

F̂n(s) =
∫ ∞

0
f (n)(x)e−sx dx

= sn F̂(s)− f (n−1)(0)− s f (n−2)(0)− · · ·
− sn−2 f ′(0)− sn−1 f (0) (4.5.33)

The Laplace transform analog of the convolution result for Fourier transforms
(4.5.17) takes the following form. Define

h(x) =
∫ x

0
g(x ′) f (x − x ′) dx ′ (4.5.34)

We show that the Laplace transform of h is the product of the Laplace transform
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of g and f .

Ĥ(s) =
∫ ∞

0
h(x) e−sx dx

=
∫ ∞

0
dx e−sx

∫ x

0
g(x ′) f (x − x ′) dx ′

By interchanging integrals, we find that

Ĥ(s) =
∫ ∞

0
dx ′ g(x ′)

∫ ∞

x ′
dx e−sx f (x − x ′)

=
∫ ∞

0
dx ′ g(x ′) e−sx ′

∫ ∞

x ′
dx e−s(x−x ′) f (x − x ′)

=
∫ ∞

0
dx ′ g(x ′) e−sx ′

∫ ∞

0
du e−su f (u)

hence

Ĥ(s) = Ĝ(s)F̂(s) (4.5.35)

The convolution formulae (4.5.34–4.5.35) can be used in a variety of ways. We
note that if F̂(s) = 1/s, then Eq. (4.5.27) implies f (x) = 1. We use this in the
following example.

Example 4.5.4 Evaluate h(x) where the Laplace transform of h(x) is given by

Ĥ(s) = 1

s(s2 + 1)

We have two functions:

F̂(s) = 1

s
, Ĝ(s) = 1

s2 + 1

Using the result of Example 4.5.2 shows that g(x) = sin x ; hence Eq. (4.5.35)
implies that

h(x) =
∫ x

0
sin x ′ dx ′ = 1− cos x

This may also be found by the partial fractions decomposition

Ĥ(s) = 1

s
− s

s2 + 1

and noting that F̂(s) = s
s2+w2 has, as its Laplace transform, f (x) = coswx .
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Problems for Section 4.5

1. Obtain the Fourier transforms of the following functions:

(a) e−|x | (b)
1

x2 + a2
, a2 > 0

(c)
1

(x2 + a2)2
, a2 > 0 (d)

sin ax

(x + b)2 + c2
, a, b, c > 0.

2. Obtain the inverse Fourier transform of the following functions:

(a)
1

k2 + w2
, w2 > 0 (b)

1

(k2 + w2)2
, w2 > 0

Note the duality between direct and inverse Fourier transforms.

3. Show that the Fourier transform of the “Gaussian”
f (x) = exp(−(x − x0)

2/a2) x0, a real, is also a Gaussian:

F̂(k) = a
√
πe−(ka/2)2

e−ikx0

4. Obtain the Fourier transform of the following functions, and thereby show
that the Fourier transforms of hyperbolic secant functions are also related
to hyperbolic secant functions.

(a) sech [a(x − x0)]eiωx , a, x0, ω real

(b) sech2[a(x − x0)], a, x0 real

5. (a) Obtain the Fourier transform of f (x) = (sinωx)/(x), ω > 0.
(b) Show that f (x) in part (a) is not L1, that is,

∫∞
−∞ | f (x)|dx does

not exist. Despite this fact, we can obtain the Fourier transform,
so f (x) ∈ L1 is a sufficient condition, but is not necessary, for the
Fourier transform to exist.

6. Suppose we are given the differential equation

d2u

dx2
− ω2u = − f (x)

with u(x = ±∞) = 0, ω > 0.

(a) Take the Fourier transform of this equation to find (using Eq. (4.5.16))

Û (k) = F̂(k)/(k2 + ω2)

where Û (k) and F̂(k) are the Fourier transform of u(x) and f (x),
respectively.
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(b) Use the convolution product (4.5.17) to deduce that

u(x) = 1

2ω

∫ ∞

−∞
e−ω|x−ζ | f (ζ ) dζ

and thereby obtain the solution of the differential equation.

7. Obtain the Fourier sine transform of the following functions:

(a) eωx , ω > 0 (b)
x

x2 + 1
(c)

sinωx

x2 + 1
, ω > 0

8. Obtain the Fourier cosine transform of the following functions:

(a) e−ωx , ω > 0 (b)
1

x2 + 1
(c)

cosωx

x2 + 1
, ω > 0

9. (a) Assume that u(∞) = 0 to establish that∫ ∞

0

d2u

dx2
sin kx dx = k u(0)− k2Ûs(k)

where Ûs(k) =
∫∞

0 u(x) sin kx dx is the sine transform of u(x)
(Eq. (4.5.23)).

(b) Use this result to show that by taking the Fourier sine transform of

d2u

dx2
− ω2u = − f (x)

with u(0) = u0, u(∞) = 0, ω > 0, yields, for the Fourier sine
transform of u(x)

Ûs(k) = u0k + F̂s(k)

k2 + ω2

where F̂s(k) is the Fourier sine transform of f (x).
(c) Use the analog of the convolution product for the Fourier sine trans-

form

1

2

∫ ∞

0
[ f (|x − ζ |)− f (x + ζ )]g(ζ ) dζ

= 2

π

∫ ∞

0
sin kx F̂c(k)Ĝs(k) dk,
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where F̂c(k) is the Fourier cosine transform of f (x) and Ĝs(k) is
the Fourier sine transform of g(x), to show that the solution of the
differential equation is given by

u(x) = u0e−ωx + 1

2ω

∫ ∞

0
(e−ω|x−ζ | − e−ω(x+ζ )) f (ζ ) dζ

(The convolution product for the sine transform can be deduced from the
usual convolution product (4.5.17) by assuming in the latter formula that
f (x) is even and g(x) is an odd function of x .)

10. (a) Assume that u(∞) = 0 to establish that∫ ∞

0

d2u

dx2
cos kx dx = −du

dx
(0)− k2Ûc(k)

where Ûc(k) =
∫∞

0 u(x) cos kx dx is the cosine transform of u(x).
(b) Use this result to show that taking the Fourier cosine transform of

d2u

dx2
− ω2u = − f (x), with

du

dx
(0) = u0

′, u(∞) = 0, ω > 0

yields, for the Fourier cosine transform of u(x)

Ûc(k) = F̂c(k)− u0
′

k2 + ω2

where F̂c(k) is the Fourier cosine transform of f (x).
(c) Use the analog of the convolution product of the Fourier cosine

transform

1

2

∫ ∞

0
( f (|x − ζ |)+ f (x + ζ ))g(ζ ) dζ

= 2

π

∫ ∞

0
cos kx F̂c(k)Ĝc(k) dk

to show that the solution of the differential equation is given by

u(x) = −u0
′

ω
e−ωx + 1

2ω

∫ ∞

0

(
e−ω|x−ζ | + e−ω|x+ζ |

)
f (ζ ) dζ

(The convolution product for the cosine transform can be deduced from
the usual convolution product (4.5.17) by assuming in the latter formula
that f (x) and g(x) are even functions of x .)
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11. Obtain the inverse Laplace transforms of the following functions, assum-
ing ω,ω1, ω2 > 0.

(a)
s

s2 + ω2
(b)

1

(s + ω)2
(c)

1

(s + ω)n

(d)
s

(s + ω)n
(e)

1

(s + ω1)(s + ω2)
(f)

1

s2(s2 + ω2)

(g)
1

(s + ω1)2 + ω2
2

(h)
1

(s2 − ω2)2

12. Show explicitly that the Laplace transform of the second derivative of a
function of x satisfies∫ ∞

0
f ′′(x)e−sx dx = s2 F̂(s)− s f (0)− f ′(0)

13. Establish the following relationships, where we use the notation L( f (x))
≡ F̂(s):

(a) L(eax f (x)) = F̂(s − a) a > 0

(b) L( f (x − a)H(x − a)) = e−as F̂(s) a > 0,

where

H(x) =
{

1 x ≥ 0
0 x < 0

(c) Use the convolution product formula for Laplace transforms to show
that the inverse Laplace transform of Ĥ(s) = 1/(s2(s2 + ω2)), ω > 0
satisfies

h(x) = 1

ω

∫ x

0
x ′ sinω(x − x ′) dx ′

= x

ω2
− sinωx

ω3

Verify this result by using partial fractions.

14. (a) Show that the inverse Laplace transform of F̂(s) = e−as1/2
/s, a > 0,

is given by

f (x) = 1− 1

π

∫ ∞

0

sin(ar1/2)

r
e−r x dr

Note that the integral converges at r = 0.
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(b) Use the definition of the error function integral

erfx = 2√
π

∫ x

0
e−r2

dr

to show that an alternative form for f (x) is

f (x) = 1− erf

(
a

2
√

x

)
(c) Show that the inverse Laplace transform of F̂(s) = e−as1/2

/s1/2, a >

0, is given by

f (x) = 1

π

∫ ∞

0

cos(ar1/2)

r1/2
e−r x dr

or the equivalent forms

f (x) = 2

π
√

x

∫ ∞

0
cos

au√
x

e−u2
du = 1√

πx
e−a2/4x

Verify this result by taking the derivative with respect to a in the
formula of part (a).

(d) Follow the procedure of part (c) and show that the inverse Laplace
transform of F̂(s) = e−as1/2

is given by

f (x) = a

2
√
πx3/2

e−a2/4x

15. Show that the inverse Laplace transform of the function

F̂(s) = 1√
s2 + ω2

ω > 0, is given by

f (x) = 1

π

∫ ω

−ω

eixr

√
ω2 − r2

dr = 2

π

∫ 1

0

cos(ωxρ)√
1− ρ2

dρ

(The latter integral is a representation of J0(ωx), the Bessel function of
order zero.) Hint: Deform the contour around the branch points s = ±iω,
then show that the large contour at infinity and small contours encircling
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±iω are vanishingly small. It is convenient to use the polar representations
s+iω1 = r1eiθ1 and s−iω2 = r2eiθ2 , where−3π/2 < θi ≤ π/2, i = 1, 2,
and
(
s2 + ω2

)1/2 = √r1r2 ei(θ1+θ2)/2. The contributions on both sides of
the cut add to give the result.

16. Show that the inverse Laplace transform of the function F̂(s) = (log s)/
(s2 + ω2), ω > 0 is given by

f (x) = π

2ω
cosωx + (logω)

sinωx

ω
−
∫ ∞

0

e−r x

r2 + ω2
dr for x > 0

Hint: Choose the branch s = reiθ ,−π ≤ θ < π . Show that the contour at
infinity and around the branch point s = 0 are vanishingly small. There
are two contributions along the branch cut that add to give the second
(integral) term; the first is due to the poles at s = ±iω.

17. (a) Show that the inverse Laplace transform of F̂1(s) = log s is given by
f1(x) = −1/x .

(b) Do the same for F̂2(s) = log(s + 1) to obtain f2(x) = −e−x/x .
(c) Find the inverse Laplace transform F̂(s) = log((s + 1)/s) to obtain

f (x) = (1− e−x )/x , by subtracting the results of parts (a) and (b).
(d) Show that we can get this result directly, by encircling both the s = 0

and s = −1 branch points and using the polar representations s+1 =
r1eiθ1 , s = r2eiθ2 , −π ≤ θi < π , i = 1, 2.

18. Establish the following results by formally inverting the Laplace transform.

F̂(s) = 1

s

1− e−�s

1+ e−�s
, � > 0,

f (x) =
∑

n=1,3,5,...

(
4

nπ

)
sin

nπx

�

Note that there are an infinite number of poles present in F̂(s); conse-
quently, a straightforward continuous limit as R → ∞ on a large semi-
circle will pass through one of these poles. Consider a large semicircle
CRN , where RN encloses N poles (e.g. RN = π i

�
(N + 1

2 )) and show that
as N → ∞, RN → ∞, and the integral along CRN will vanish. Choos-
ing appropriate sequences such as in this example, the inverse Laplace
transform containing an infinite number of poles can be calculated.
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19. Establish the following result by formally inverting the Laplace transform

F̂(s) = 1

s

sinh(sy)

sinh(s�)
� > 0

f (x) = y

�
+

∞∑
n=1

2(−1)n

nπ
sin

(
nπy

�

)
cos

(
nπx

�

)
See the remark at the end of Problem 18, which explains how to show
how the inverse Laplace transform can be proven to be valid in a situation
such as this where there are an infinite number of poles.

∗4.6 Applications of Transforms to Differential Equations

A particularly valuable technique available to solve differential equations in
infinite and semiinfinite domains is the use of Fourier and Laplace transforms.
In this section we describe some typical examples. The discussion is not in-
tended to be complete. The aim of this section is to elucidate the transform
technique, not to detail theoretical aspects regarding differential equations. The
reader only needs basic training in the calculus of several variables to be able
to follow the analysis. We shall use various classical partial differential equa-
tions (PDEs) as vehicles to illustrate methodology. Herein we will consider
well-posed problems that will yield unique solutions. More general PDEs and
the notion of well-posedness are investigated in considerable detail in courses
on PDEs.

Example 4.6.1 Steady state heat flow in a semiinfinite domain obeys Laplace’s
equation. Solve for the bounded solution of Laplace’s equation

∂2φ(x, y)

∂x2
+ ∂2φ(x, y)

∂y2
= 0 (4.6.1)

in the region −∞ < x < ∞, y > 0, where on y = 0 we are given φ(x, 0) =
h(x)with h(x) ∈ L1∩L2 (i.e.,

∫∞
−∞ |h(x)| dx <∞ and

∫∞
−∞ |h(x)|2 dx <∞).

This example will allow us to solve Laplace’s Equation (4.6.1) by Fourier
transforms. Denoting the Fourier transform in x of φ(x, y) as Φ̂(k, y):

Φ̂(k, y) =
∫ ∞

−∞
e−ikx φ(x, y) dx

taking the Fourier transform of Eq. (4.6.1), and using the result from Section 4.5
for the Fourier transform of derivatives, Eqs. (4.5.16a,b) (assuming the validity



286 4 Residue Calculus and Applications of Contour Integration

of interchanging y-derivatives and integrating over k, which can be verified
a posteriori), we have

∂2Φ̂
∂y2

− k2Φ̂ = 0 (4.6.2)

Hence

Φ̂(k, y) = A(k)eky + B(k)e−ky

where A(k) and B(k) are arbitrary functions of k, to be specified by the boundary
conditions. We require that Φ̂(k, y) be bounded for all y > 0. In order that
Φ̂(k, y) yield a bounded function φ(x, y), we need

Φ̂(k, y) = C(k)e−|k|y (4.6.3)

Denoting the Fourier transform of φ(x, 0) = h(x) by Ĥ(k) fixes C(k) = Ĥ(k),
so that

Φ̂(k, y) = Ĥ(k)e−|k|y (4.6.4)

From Eq. (4.5.1) by direct integration (contour integration is not necessary) we
find that F̂(k, y) = e−|k|y is the Fourier transform of f (x, y) = 1

π

y
x2+y2 , thus

from the convolution formula Eq. (4.5.17) the solution to Eq. (4.6.1) is given by

φ(x, y) = 1

π

∫ ∞

−∞

y h(x ′)
(x − x ′)2 + y2

dx ′ (4.6.5)

If h(x) were taken to be a Dirac delta function concentrated at x = ζ , h(x) =
hs(x − ζ ) = δ(x − ζ ), then Ĥ(k) = e−ikζ , and from Eq. (4.6.4) directly (or
Eq. (4.6.5)) a special solution to Eq. (4.6.1), φs(x, y) is

φs(x, y) = G(x − ζ, y) = 1

π

(
y

(x − ζ )2 + y2

)
(4.6.6)

Function G(x−ζ, y) is called a Green’s function; it is a fundamental solution
to Laplace’s equation in this region. Green’s functions have the property of
solving a given equation with delta function inhomogeneity. From the boundary
values hs(x − ζ, 0) = δ(x − ζ ) we may construct arbitrary initial values

φ(x, 0) =
∫ ∞

−∞
h(ζ ) δ(x − ζ ) dζ = h(x) (4.6.7a)
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and, because Laplace’s equation is linear, we find by superposition that the
general solution satisfies

φ(x, y) =
∫ ∞

−∞
h(ζ )G(x − ζ, y) dζ (4.6.7b)

which is Eq. (4.6.5), noting that ζ or x ′ are dummy integration variables. In
many applications it is sufficient to obtain the Green’s function of the underlying
differential equation.

The formula (4.6.5) is sometimes referred to as the Poisson formula for a
half plane. Although we derived it via transform methods, it is worth noting
that a pair of such formulae can be derived from Cauchy’s integral formula. We
describe this alternative method now. Let f (z) be analytic on the real axis and
in the upper half plane and assume f (ζ )→ 0 uniformly as ζ →∞. Using a
large closed semicircular contour such as that depicted in Figure 4.2.1 we have

f (z) = 1

2π i

∮
C

f (ζ )

ζ − z
dζ

0 = 1

2π i

∮
C

f (ζ )

ζ − z̄
dζ

where Im z > 0 (in the second formula there is no singularity because the
contour closes in the upper half plane and ζ = z̄ in the lower half plane).
Adding and subtracting yields

f (z) = 1

2π i

∮
C

f (ζ )

(
1

ζ − z
± 1

ζ − z̄

)
dζ

The semicircular portion of the contour CR vanishes as R → ∞, implying
the following on Im ζ = 0 for the plus and minus parts of the above integral,
respectively: calling z = x + iy and ζ = x ′ + iy′,

f (x, y) = 1

π i

∫ ∞

−∞
f (x ′, y′ = 0)

(
x ′ − x

(x − x ′)2 + y2

)
dx ′

f (x, y) = 1

π

∫ ∞

−∞
f (x ′, y′ = 0)

(
y

(x − x ′)2 + y2

)
dx ′

Calling

f (z) = f (x, y) = u(x, y)+ i v(x, y), Re f (x, y = 0) = u(x, 0) = h(x)
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and taking the imaginary part of the first and the real part of the second of the
above formulae, yields the conjugate Poisson formulae for a half plane:

v(x, y) = −1

π

∫ ∞

−∞
h(x ′)

(
x ′ − x

(x − x ′)2 + y2

)
dx ′

u(x, y) = 1

π

∫ ∞

−∞
h(x ′)

(
y

(x − x ′)2 + y2

)
dx ′

Identifying u(x, y) as φ(x, y), we see that the harmonic function u(x, y) (be-
cause f (z) is analytic its real and imaginary parts satisfy Laplace’s equation) is
given by the same formula as Eq. (4.6.5). Moreover, we note that the imaginary
part of f (z), v(x, y), is determined by the real part of f (z) on the boundary.
We see that we cannot arbitrarily prescribe both the real and imaginary parts
of f (z) on the boundary. These formulae are valid for a half plane. Similar
formulae can be obtained by this method for a circle (see also Example 10,
Section 2.6).

Laplace’s equation, (4.6.1), is typical of a steady state situation, for example,
as mentioned earlier, steady state heat flow in a uniform metal plate. If we have
time-dependent heat flow, the diffusion equation

∂φ

∂t
= k∇2φ (4.6.8)

is a relevant equation with k the diffusion coefficient. In Eq. (4.6.8), ∇2 is the
Laplacian operator, which in two dimensions is given by ∇2 = ∂2

∂x2 + ∂2

∂y2 . In
one dimension, taking k = 1 for convenience, we have the following initial
value problem:

∂φ(x, t)

∂t
= ∂2φ(x, t)

∂x2
(4.6.9)

The Green’s function for the problem on the line −∞ < x < ∞ is obtained
by solving Eq. (4.6.9) subject to

φ(x, 0) = δ(x − ζ )

Example 4.6.2 Solve for the Green’s function of Eq. (4.6.9). Define

Φ̂(k, t) =
∫ ∞

−∞
e−ikxφ(x, t) dx
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whereupon the Fourier transform of Eq. (4.6.9) satisfies

∂Φ̂(k, t)

∂t
= −k2Φ̂(k, t) (4.6.10)

hence

Φ̂(k, t) = Φ̂(k, 0)e−k2t = e−ikζ−k2t (4.6.11)

where Φ̂(k, 0) = e−ikζ is the Fourier transform of φ(x, 0) = δ(x − ζ ). Thus,
by the inverse Fourier transform, and calling G(x − ζ, t) the inverse transform
of (4.6.11),

G(x − ζ, t) = 1

2π

∫ ∞

−∞
eik(x−ζ )−k2t dk

= e−(x−ζ )
2/4t · 1

2π

∫ ∞

−∞
e−(k−i x−ζ

2t )2t dk

= e−
(x−ζ )2

4t

2
√
π t

(4.6.12)

where we use
∫∞
−∞ e−u2

du = √
π . Arbitrary initial values are included by

again observing that

φ(x, 0) = h(x) =
∫ ∞

−∞
h(ζ )δ(x − ζ ) dζ

which implies

φ(x, t) =
∫ ∞

−∞
G(x − ζ, t)h(ζ ) dζ = 1

2
√
π t

∫ ∞

−∞
h(ζ ) e−

(x−ζ )2
4t dζ (4.6.13)

The above solution to Eq. (4.6.9) could also be obtained by using Laplace
transforms. It is instructive to show how the method proceeds in this case. We
begin by introducing the Laplace transform of φ(x, t) with respect to t :

Φ̂(x, s) =
∫ ∞

0
e−st φ(x, t) dt (4.6.14)

Taking the Laplace transform in t of Eq. (4.6.8), with φ(x, 0) = δ(x − ζ ),
yields

∂2Φ̂
∂x2

(x, s)− sΦ̂(x, s) = −δ(x − ζ ) (4.6.15)
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Hence the Laplace transform of the Green’s function to Eq. (4.6.9) satisfies
Eq. (4.6.15). We remark that generally speaking, any function G(x − ζ ) satis-
fying

LG(x − ζ ) = −δ(x − ζ )

where L is a linear differential operator, is referred to as a Green’s function. The
general solution corresponding to φ(x, 0) = h(x) is obtained by superposition:
φ(x, t) = ∫∞−∞ G(x − ζ )h(ζ ) dζ . Equation (4.6.15) is solved by first finding
the bounded homogeneous solutions on −∞ < x < ∞, for (x − ζ ) > 0 and
(x − ζ ) < 0:

Φ̂+(x − ζ, s) = A(s)e−s1/2(x−ζ ) for x − ζ > 0

Φ̂−(x − ζ, s) = B(s)es1/2(x−ζ ) for x − ζ < 0 (4.6.16)

where we take s1/2 to have a branch cut on the negative real axis; that is,
s = reiθ , −π ≤ θ < π . This will allow us to readily invert the Laplace trans-
form (Re s > 0).

The coefficients A(s) and B(s) in Eq. (4.6.16) are found by (a) requiring
continuity of Φ̂(x − ζ, s) at x = ζ and by (b) integrating Eq. (4.6.15) from
x = ζ − ε, to x = ζ + ε, and taking the limit as ε → 0+. This yields a jump
condition on ∂#̂

∂x (x − ζ, s):[
∂Φ̂
∂x

(x − ζ, s)

]x−ζ=0+

x−ζ=0−
= −1 (4.6.17)

Continuity yields A(s) = B(s), and Eq. (4.6.17) gives

−s1/2 A(s)− s1/2 B(s) = −1 (4.6.18a)

hence

A(s) = B(s) = 1

2s1/2
(4.6.18b)

Using Eq. (4.6.16), Φ̂(x − ζ, s) is written in the compact form:

Φ̂(x − ζ, s) = e−s1/2|x−ζ |

2s1/2
(4.6.19)

The solution φ(x, t) is found from the inverse Laplace transform:

φ(x, t) = 1

2π i

∫ c+i∞

c−i∞

e−s1/2|x−ζ | est

2s1/2
ds (4.6.20)



4.6 Applications of Transforms to Differential Equations 291

for c > 0. To evaluate Eq. (4.6.20), we employ the same keyhole contour as
in Example 4.5.3 in Section 4.5 (see Figure 4.5.2). There are no singularities
enclosed, and the contours CR and Cε at infinity and at the origin vanish in the
limit R → ∞, ε → 0, respectively. We only obtain contributions along the
top and bottom of the branch cut to find

φ(x, t) = −1

2π i

∫ 0

∞

e−ir1/2|x−ζ | e−r t

2r1/2eiπ/2
eiπ dr

+ −1

2π i

∫ ∞

0

eir1/2|x−ζ | e−r t

2r1/2e−iπ/2
e−iπ dr (4.6.21)

In the second integral we put r1/2 = u; in the first we put r1/2 = u and then take
u →−u, whereupon we find the same answer as before (see Eq. (4.6.12)):

φ(x, t) = 1

2π

∫ ∞

−∞
e−u2t+iu|x−ζ | du

= 1

2π

∫ ∞

−∞
e−(u−i |x−ζ |2t )2t e−

(x−ζ )2
4t du

= e−(x−ζ )
2/4t

2
√
π t

(4.6.22)

The Laplace transform method can also be applied to problems in which the
spatial variable is on the semiinfinite domain. However, rather than use Laplace
transforms, for variety and illustration, we show below how the sine transform
can be used on Eq. (4.6.9) with the following boundary conditions:

φ(x, 0) = 0, φ(x = 0, t) = h(t), lim
x→∞

∂φ

∂x
(x, t) = 0, (4.6.23)

Define, following Section 4.5

φ(x, t) = 2

π

∫ ∞

0
Φ̂s(k, t) sin kx dk (4.6.24a)

Φ̂s(k, t) =
∫ ∞

0
φ(x, t) sin kx dx (4.6.24b)
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We now operate on Eq. (4.6.9) with the integral
∫∞

0 dx sin kx , and via integra-
tion by parts, find∫ ∞

0

∂2φ

∂x2
sin kx dx =

[
∂φ

∂x
(x, t) sin kx

]∞
x=0

− k
∫ ∞

0

∂φ

∂x
cos kx dx

= kφ(0, t)− k2Φ̂s(k, t) (4.6.25)

whereupon the transformed version of Eq. (4.6.9) is

∂Φ̂s

∂t
(k, t)+ k2Φ̂s(k, t) = k h(t) (4.6.26)

The solution of Eq. (4.6.26) with φ(x, 0) = 0 is given by

Φ̂s(k, t) =
∫ t

0
h(t ′)k e−k2(t−t ′) dt ′ (4.6.27)

If φ(x, 0) were nonzero, then Eq. (4.6.27) would have another term. For sim-
plicity we only consider the case φ(x, 0) = 0. Therefore

φ(x, t) = 2

π

∫ ∞

0
dk sin kx

{∫ t

0
h(t ′)e−k2(t−t ′)k dt ′

}
(4.6.28)

By integration we can show that (use sin kx = (eikx − e−ikx )/2 and integrate
by parts to obtain integrals such as those in (4.6.12))

J (x, t − t ′) =
∫ ∞

0
k e−k2(t−t ′) sin kx dk

=
√
πxe−x2/4(t−t ′)

4(t − t ′)3/2
(4.6.29)

hence by interchanging integrals in Eq. (4.6.28), we have

φ(x, t) = 2√
π

∫ t

0
h(t ′)J (x, t − t ′) dt ′

When h(t) = 1, if we call η = x
2(t−t ′)1/2 , then dη = x

4(t−t ′)3/2 dt ′, and we have

φ(x, t) = 2

π

∫ ∞

x
2
√

t

e−η
2

dη

≡ erfc

(
x

2
√

t

)
(4.6.30)
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We note that erfc(x) is a well-known function, called the complementary
error function: erfc(x) ≡ 1− erf(x), where erf(x) ≡ 2√

π

∫ x
0 e−y2

dy.
It should be mentioned that the Fourier sine transform applies to problems

such as Eq. (4.6.23) with fixed conditions on φ at the origin. Such solutions
can be extended to the interval −∞ < x < ∞ where the initial values
φ(x, 0) are themselves extended as an odd function on (−∞, 0). However,
if we should replace φ(x = 0, t) = h(t) by a derivative condition, at the ori-
gin, say, ∂φ

∂x (x = 0, t) = h(t), then the appropriate transform to use is a cosine
transform.

Another type of partial differential equation that is encountered frequently
in applications is the wave equation

∂2φ

∂x2
− 1

c2

∂2φ

∂t2
= F(x, t) (4.6.31)

where the constant c, c > 0, is the speed of propagation of the unforced wave.
The wave equation governs vibrations of many types of continuous media with
external forcing F(x, t). If F(x, t) vibrates periodically in time with constant
frequency ω > 0, say, F(x, t) = f (x)eiωt , then it is natural to look for special
solutions to Eq. (4.6.31) of the form φ(x, t) = Φ(x)eiωt . Then Φ(x) satisfies

∂2Φ
∂x2

+
(
ω

c

)2

Φ = f (x) (4.6.32)

A real solution to Eq. (4.6.32) is obtained by taking the real part; this would
correspond to forcing of φ(x, t) = φ(x) cosωt . If we simply look for a Fourier
transform solution of Eq. (4.6.32) we arrive at

Φ(x) = −1

2π

∫
C

F̂(k)

k2 − (ω/c)2
eikx dk (4.6.33)

where F̂(k) is the Fourier transform of f (x). Unfortunately, for the standard
contour C , k real, −∞ < k < ∞, Eq. (4.6.33) is not well defined because
there are singularities in the denominator of the integrand in Eq. (4.6.33) when
k = ±ω/c. Without further specification the problem is not well posed. The
standard acceptable solution is found by specifying a contour C that is indented
below k = −ω/c and above k = +ω/c (see Figure 4.6.1); this removes the
singularities in the denominator.

This choice of contour turns out to yield solutions with outgoing waves at
large distances from the source F(x, t). A choice of contour reflects an imposed
boundary condition. In this problem it is well known and is referred to as the
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c

c

k= -

k= +

x
ω

ω

Fig. 4.6.1. Indented contour C

Sommerfeld radiation condition. An outgoing wave has the form eiω(t−|x |/c)

(as t increases, x increases for a given choice of phase, i.e., on a fixed point on
a wave crest). An incoming wave has the form eiω(t+|x |/c). Using the Fourier
representation F̂(k) = ∫∞−∞ f (ζ )e−iζkdζ in Eq. (4.6.33), we can write the
function in the form

Φ(x) =
∫ ∞

−∞
f (ζ )H(x − ζ, ω/c) dζ (4.6.34a)

where

H(x − ζ, ω/c) = −1

2π

∫
C

eik(x−ζ )

k2 − (ω/c)2
dk (4.6.34b)

and the contour C is specified as in Figure 4.6.1. Contour integration of
Eq. (4.6.34b) yields

H(x − ζ, ω/c) = i e−i |x−ζ |(ω/c)

2(ω/c)
(4.6.34c)

At large distances from the source, |x | → ∞, we have outgoing waves for the
solution φ(x, t):

φ(x, t) = Re

{
i

2(ω/c)

∫ ∞

−∞
f (ζ )eiω(t−|x−ζ |/c) dζ

}
. (4.6.34d)

Thus, for example, if f (ζ ) is a point source: f (ζ ) = δ(ζ − x0)where δ(ζ − x0)

is a Dirac delta function concentrated at x0, then (4.6.34d) yields

φ(x, t) = − 1

2(ω/c)
sinω(t − |x − x0|/c). (4.6.34e)

An alternative method to find this result is to add a damping mechanism to
the original equation. Namely, if we add the term −ε ∂φ

∂t to the left-hand side
of Eq. (4.6.31), then Eq. (4.6.33) is modified by adding the term iεω to the
denominator of the integrand. This has the desired effect of moving the poles
off the real axis (k1 = −ω/c + iεα, k2 = +ω/c − iεα, where α = constant)
in the same manner as indicated by Figure 4.6.1. By using Fourier transforms,
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and then taking the limit ε → 0 (small damping), the above results could have
been obtained.

In practice, wave propagation problems such as the following one

∂u

∂t
+ ∂3u

∂x3
= 0, −∞ < x <∞, u(x, 0) = f (x), (4.6.35)

where again f (x) ∈ L1∩L2, are solved by Fourier transforms. Function u(x, t)
typically represents the small amplitude vibrations of a continuous medium such
as water waves. One looks for a solution to Eq. (4.6.35) of the form

u(x, t) = 1

2π

∫ ∞

−∞
b(k, t)eikx dk (4.6.36)

Taking the Fourier transform of (4.6.35) and using (4.5.16) or alternatively, sub-
stitution of Eq. (4.6.36) into Eq. (4.6.35) – assuming interchanges of derivative
and integrand are valid (a fact that can be shown to follow from rapid enough
decay of f (x) at infinity, that is, f ∈ L1 ∩ L2) yields

∂b

∂t
− ik3b = 0 (4.6.37a)

hence

b(k, t) = b(k, 0)eik3t (4.6.37b)

where

b(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx (4.6.37c)

The solution (4.6.36) can be viewed as a superposition of waves of the form
eikx−iω(k)t , ω(k) = −k3. Function ω(k) is referred to as the dispersion rela-
tion. The above integral representation, for general f (x), is the “best” one can
do, because we cannot evaluate it in closed form. However, as t → ∞, the
integral can be approximated by asymptotic methods, which will be discussed
in Chapter 6, that is, the methods of stationary phase and steepest descents.
Suffice it to say that the solution u(x, t)→ 0 as t →∞ (the initial values are
said to disperse as t →∞) and the major contribution to the integral is found
near the location where ω′(k) = x/t ; that is, x/t = −3k2 in the integrand
(where the phase $ = kx − ω(k)t is stationary: ∂$

∂k = 0). The quantity ω′(k)
is called the group velocity, and it represents the speed of a packet of waves
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centered around wave number k. Using asymptotic methods for x/t < 0, as
t →∞, u(x, t) can be shown to have the following approximate form

u(x, t) ≈ c√
t

(
2∑

i=1

b(ki )√|ki |
ei(ki x+k3

i t+φi )

)
(4.6.38)

k1 =
√−x/3t, k2 = −

√−x/3t, c, φi constant

When x/t > 0 the solution decays exponentially. As x/t → 0, Eq. (4.6.38)
may be rearranged and put into the following self-similar form

u(x, t) ≈ d

(3t)1/3
A(x/(3t)1/3) (4.6.39)

where d is constant and A(η) satisfies (by substitution of (4.6.39) into (4.6.35))

Aηηη − ηAη − A = 0

or

Aηη − ηA = 0 (4.6.40a)

with the boundary condition A → 0 as η → ∞. Equation (4.6.40a) is called
Airy’s equation. The integral representation of the solution to Airy’s equation
with A → 0, η→∞, is given by

A(η) = 1

2π

∫ ∞

−∞
ei(kη+k3/3) dk (4.6.40b)

(See also the end of this section, Eq. (4.6.57).) Its wave form is depicted in
Figure 4.6.2. Function A(η) acts like a “matching” or “turning” of solutions
from one type of behavior to another: i.e., from exponential decay as η→+∞
to oscillation as η→−∞ (see also Section 6.7).

Sometimes there is a need to use multiple transforms. For example, consider
finding the solution to the following problem:

∂2φ

∂x2
+ ∂2φ

∂y2
−m2φ = f (x, y), φ(x, y)→ 0 as x2 + y2 →∞ (4.6.41)

A simple transform in x satisfies

φ(x, y) = 1

2π

∫ ∞

−∞
Φ(k1, y)eik1x dk1
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A(  )η

η

Fig. 4.6.2. Airy function

We can take another transform in y to obtain

φ(x, y) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Φ̂(k1, k2)e

ik1x+ik2 y dk1 dk2 (4.6.42)

Using a similar formula for f (x, y) in terms of its transform F̂(k1, k2), we find
by substitution into Eq. (4.6.41)

φ(x, y) = −1

(2π)2

∫∫
F̂(k1, k2)eik1x+ik2 y

k2
1 + k2

2 + m2
dk1 dk2 (4.6.43)

Rewriting Eq. (4.6.43) using

F̂(k1, k2) =
∫ ∞

−∞

∫ ∞

−∞
f (x ′, y′)e−ik1x ′−ik2 y′ dx ′ dy′

and interchanging integrals yields

φ(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (x ′, y′)G(x − x ′, y − y′) dx ′ dy′ (4.6.44a)

where

G(x, y) = − 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

eik1x+ik2 y

k2
1 + k2

2 + m2
dk1 dk2 (4.6.44b)
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By clever manipulation, one can evaluate Eq. (4.6.44b). Using the methods of
Section 4.3, contour integration with respect to k1 yields

G(x, y) = − 1

4π

∫ ∞

−∞

eik2 y−
√

k2
2+m2|x |√

k2
2 + m2

dk2 (4.6.45a)

Thus, for x 
= 0

∂G

∂x
(x, y) = sgn(x)

4π

∫ ∞

−∞
eik2 y−

√
k2

2+m2|x | dk2 (4.6.45b)

where sgnx = 1 for x > 0, and sgnx = −1 for x < 0. Equation (4.6.45b) takes
on an elementary form for m = 0 (

√
k2

2 = |k2|):

∂G

∂x
(x, y) = x

2π(x2 + y2)

and we have

G(x, y) = 1

4π
ln(x2 + y2) (4.6.46)

The constant of integration is immaterial, because to have a vanishing
solution φ(x, y) as x2 + y2 → ∞, Eq. (4.6.44a) necessarily requires that∫∞
−∞
∫∞
−∞ f (x, y)dx dy = 0, which follows directly from Eq. (4.6.41) by in-

tegration with m = 0. Note that Eq. (4.6.43) implies that when m = 0, for
the integral to be well defined, F̂(k1 = 0, k2 = 0) = 0, which in turn implies
the need for the vanishing of the double integral of f (x, y). Finally, if m 
= 0,
we only remark that Eq. (4.6.44b) or (4.6.45a) is transformable to an integral
representation of a modified Bessel function of order zero:

G(x, y) = − 1

2π
K0
(
m
√

x2 + y2
)

(4.6.47)

Interested readers can find contour integral representations of Bessel functions
in many books on special functions.

Frequently, in the study of differential equations, integral representations can
be found for the solution. Integral representations supplement series methods
discussed in Chapter 3 and provide an alternative representation of a class of
solutions. We give one example in what follows. Consider Airy’s equation in
the form (see also Eq. (4.6.40a))

d2 y

dz2
− zy = 0 (4.6.48)
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and look for an integral representation of the form

y(z) =
∫

C
ezζ v(ζ ) dζ (4.6.49)

where the contour C and the function v(ζ ) are to be determined. Formula
(4.6.49) is frequently referred to as a generalized Laplace transform and the
method as the generalized Laplace transform method. (Here C is generally not
the Bromwich contour.) Equation (4.6.49) is a special case of the more general
integral representation

∫
C K (z, ζ )v(ζ )dζ . Substitution of Eq. (4.6.49) into

Eq. (4.6.48), and assuming the interchange of differentiation and integration,
which is verified a posteriori gives∫

C
(ζ 2 − z)v(ζ )ezζ dζ = 0 (4.6.50)

Using

zezζ v = d

dζ
(ezζ v)− ezζ dv

dζ

rearranging and integrating yields

− [ezζ v(ζ )
]

C
+
∫

C

(
ζ 2v + dv

dζ

)
ezζ dζ = 0 (4.6.51)

where the term in brackets, [·]C , stands for evaluation at the endpoints of the
contour. The essence of the method is to choose C and v(ζ ) such that both
terms in Eq. (4.6.51) vanish. Taking

dv

dζ
+ ζ 2v = 0 (4.6.52)

implies that

v(ζ ) = Ae−ζ
3/3, A = constant (4.6.53)

Thinking of an infinite contour, and calling ζ = R eiθ , we find that the
dominant term as R →∞ in [·]C is due to v(ζ ), which in magnitude is given
by

|v(ζ )| = |A|e−R3(cos 3θ)/3 (4.6.54)

Vanishing of this contribution for large values of ζ will occur for cos 3θ > 0,
that is, for

−π

2
+ 2nπ < 3θ <

π

2
+ 2nπ, n = 0, 1, 2 (4.6.55)
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3π/2

π/2

−π/6

5π/6 π/6

7π/6

Fig. 4.6.3. Three standard contours

So we have three regions in which there is decay:
−π

6 < θ < π
6 (I)

π
2 < θ < 5π

6 (II)
7π
6 < θ < 3π

2 (III)

(4.6.56)

There are three standard contours Ci , i = 1, 2 and 3, in which the integrated
term [·]C vanishes as R → ∞, depicted in Figure 4.6.3. The shaded region
refers to regions of decay of v(ζ ).

The three solutions, of which only two are linearly independent (because the
equation is of second order), are denoted by

yi (z) = αi

∫
Ci

ezζ−ζ 3/3 dζ (4.6.57)

αi being a convenient normalizing factor, i = 1, 2, 3. In order not to have a
trivial solution, one must take the contour C between any two of the decaying
regions. If we change variables ζ = ik then the solution corresponding to
i = 2, y2(z), is proportional to the Airy function solution A(η) discussed
earlier (see Eq. (4.6.40b)).

Finally, we remark that this method applies to linear differential equations
with coefficients depending linearly on the independent variable. Generaliza-
tions to other kernels K (z, ζ ) (mentioned below Eq. (4.6.49)) can be made and
is employed to solve other linear differential equations such as Bessel functions,
Legendre functions, etc. The interested reader may wish to consult a reference
such as Jeffreys and Jeffreys (1962).
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Problems for Section 4.6

1. Use Laplace transform methods to solve the ODE

L
dy

dt
+ Ry = f (t), y(0) = y0, constants L , R > 0

(a) Let f (t) = sinω0t , ω0 > 0, so that the Laplace transform of f (t) is
F̂(s) = ω0/(s2 + ω0

2). Find

y(t) = y0e−
R
L t + ω0

L
(
(R/L)2 + ω0

2
)e−

R
L t + R

L2

sinω0t(
(R/L)2 + ω0

2
)

− ω0

L

cosω0t(
(R/L)2 + ω0

2
)

(b) Suppose f (t) is an arbitrary continuous function that possesses a
Laplace transform. Use the convolution product for Laplace trans-
forms (Section 4.5) to find

y(t) = y0e−
R
L t + 1

L

∫ t

0
f (t ′)e−

R
L (t−t ′) dt ′

(c) Let f (t) = sinω0t in (b) to obtain the result of part (a), and thereby
verify your answer.

This is an example of an “L,R circuit” with impressed voltage f (t) arising
in basic electric circuit theory.

2. Use Laplace transform methods to solve the ODE

d2 y

dt2
− k2 y = f (t), k > 0, y(0) = y0, y′(0) = y′0

(a) Let f (t) = e−k0t , k0 
= k, k0 > 0, so that the Laplace transform of
f (t) is F̂(s) = 1/(s + k0), and find

y(t) = y0 cosh kt + y0
′

k
sinh kt + e−k0t

k0
2 − k2

− cosh kt

k0
2 − k2

+ (k0/k)

k0
2 − k2

sinh kt
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(b) Suppose f (t) is an arbitrary continuous function that possesses a
Laplace transform. Use the convolution product for Laplace trans-
forms (Section 4.5) to find

y(t) = y0 cosh kt + y′0
k

sinh kt +
∫ t

0
f (t ′)

sinh k(t − t ′)
k

dt ′

(c) Let f (t) = e−k0t in (b) to obtain the result in part (a). What happens
when k0 = k?

3. Consider the differential equation

d3 y

dt3
+ ω0

3 y = f (t), ω0 > 0, y(0) = y′(0) = y′′(0) = 0

(a) Find that the Laplace transform of the solution, Ŷ (s), satisfies (as-
suming that f (t) has a Laplace transform F̂(s))

Ŷ (s) = F̂(s)

s3 + ω0
3

(b) Deduce that the inverse Laplace transform of 1/(s3 + ω0
3) is given

by

h(t) = e−ω0t

3ω0
2
− 2

3ω0
2

eω0t/2 cos

(
ω0

2

√
3t − π

3

)
and show that

y(t) =
∫ t

0
h(t ′) f (t − t ′) dt ′

by using the convolution product for Laplace transforms.

4. Let us consider Laplace’s equation (∂2φ)/(∂x2)+ (∂2φ)/(∂y2) = 0, for
−∞ < x < ∞ and y > 0, with the boundary conditions (∂φ/∂y)(x, 0)
= h(x) and φ(x, y)→ 0 as x2 + y2 → ∞. Find the Fourier transform
solution. Is there a constraint on the data h(x) for a solution to exist? If
so, can this be explained another way?

5. Given the linear “free” Schrödinger equation (without a potential)

i
∂u

∂t
+ ∂2u

∂x2
= 0, with u(x, 0) = f (x)



4.6 Applications of Transforms to Differential Equations 303

(a) solve this problem by Fourier transforms, by obtaining the Green’s
function in closed form, and using superposition. Recall that∫∞
−∞ eiu2

du = eiπ/4√π .
(b) Obtain the above solution by Laplace transforms.

6. Given the heat equation

∂φ

∂t
= ∂2φ

∂x2

with the following initial and boundary conditions

φ(x, 0) = 0,
∂φ

∂x
(x = 0, t) = g(t),

lim
x→∞φ(x, t) = lim

x→∞
∂φ

∂x
= 0

(a) solve this problem by Fourier cosine transforms.
(b) Solve this problem by Laplace transforms.
(c) Show that the representations of (a) and (b) are equivalent.

7. Given the wave equation (with wave speed being unity)

∂2φ

∂t2
− ∂2φ

∂x2
= 0

and the boundary conditions

φ(x, t = 0) = 0,
∂φ

∂t
(x, t = 0) = 0,

φ(x = 0, t) = 0, φ(x = �, t) = 1

(a) obtain the Laplace transform of the solution Φ̂(x, s)

Φ̂(x, s) = sinh sx

s sinh s�

(b) Obtain the solution φ(x, t) by inverting the Laplace transform to find

φ(x, t) = x

�
+

∞∑
n=1

2(−1)n

nπ
sin

(
nπx

�

)
cos

(
nπ t

�

)

(see also Problem (19), Section 4.5).
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8. Given the wave equation

∂2φ

∂t2
− ∂2φ

∂x2
= 0

and the boundary conditions

φ(x, t = 0) = 0,
∂φ

∂t
(x, t = 0) = 0,

φ(x = 0, t) = 0, φ(x = �, t) = f (t)

(a) show that the Laplace transform of the solution is given by

Φ̂(x, s) = F̂(s) sinh sx

sinh s�

where F̂(s) is the Laplace transform of f (t).
(b) Call the solution of the problem when f (t) = 1 (so that F̂(s) = 1/s)

to be φs(x, t). Show that the general solution is given by

φ(x, t) =
∫ t

0

∂φs

∂t ′
(x, t ′) f (t − t ′) dt ′

9. Use multiple Fourier transforms to solve

∂φ

∂t
−
(
∂2φ

∂x2
+ ∂2φ

∂y2

)
= 0

on the infinite domain −∞ < x < ∞, −∞ < y < ∞, t > 0, with
φ(x, y)→ 0 as x2 + y2 →∞, and φ(x, y, 0) = f (x, y). How does the
solution simplify if f (x, y) is a function of x2+ y2? What is the Green’s
function in this case?

10. Given the forced heat equation

∂φ

∂t
− ∂2φ

∂x2
= f (x, t), φ(x, 0) = g(x)

on −∞ < x <∞, t > 0, with φ, g, f → 0 as |x | → ∞
(a) use Fourier transforms to solve the equation. How does the solution

compare with the case f = 0?
(b) Use Laplace transforms to solve the equation. How does the method

compare with that described in this section for the case f = 0?
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11. Given the ODE

zy′′ + (2r + 1)y′ + zy = 0

look for a contour representation of the form y =
∫

C
ezζ v(ζ ) dζ .

(a) Show that if C is a closed contour and v(ζ ) is single valued on this
contour, then it follows that v(ζ ) = A(ζ 2 + 1)r−1/2.

(b) Show that if y = z−sw, then when s = r ,w satisfies Bessel’s equation
z2w′′ + zw′ + (z2 − r2)w = 0, and a contour representation of the
solution is given by

w = Azr
∮

C
ezζ (ζ 2 + 1)r−1/2 dζ

Note that if r = n + 1/2 for integer n, then this representation yields
the trivial solution. We take the branch cut to be inside the circle C
when (r − 1/2) 
= integer.

12. The hypergeometric equation

zy′′ + (a − z)y′ − by = 0

has a contour integral representation of the form y =
∫

C
ezζ v(ζ )dζ .

(a) Show that one solution is given by

y =
∫ 1

0
ezζ ζ b−1(1− ζ )a−b−1 dζ

where Re b > 0 and Re (a − b) > 0.
(b) Let b = 1, and a = 2; show that this solution is y = (ez − 1)/(z),

and verify that it satisfies the equation.
(c) Show that a second solution, y2 = vy1 (where the first solution is

denoted as y1) obeys

zy1v
′′ + (2zy1

′ + (a − z)y1)v
′ = 0

Integrate this equation to find v, and thereby obtain a formal repre-
sentation for y2. What can be said about the analytic behavior of y2

near z = 0?

13. Suppose we are given the following damped wave equation:

∂2φ

∂x2
− 1

c2

∂2φ

∂t2
− ε

∂φ

∂t
= eiωtδ(x − ζ ), ω, ε > 0
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(a) Show that ψ(x) where φ(x, t) = eiωtψ(x) satisfies

ψ ′′ +
((

ω

c

)2

− iωε

)
ψ = δ(x − ζ )

(b) Show that Ψ̂(k), the Fourier transform of ψ(x),is given by

Ψ̂(k) = −e−ikζ

k2 − (ωc )2 + iωε

(c) Invert Ψ̂(k) to obtain ψ(x), and in particular show that as ε → 0+

we have

ψ(x) = ie−i ωc |x−ζ |

2
(
ω
c

)
and that this has the effect of deforming the contour as described in
Figure 4.6.1.

14. In this problem we obtain the Green’s function of Laplace’s equation in
the upper half plane, −∞ < x <∞, 0 < y <∞, by solving

∂2G

∂x2
+ ∂2G

∂y2
= δ(x − ζ )δ(y − η),

G(x, y = 0) = 0, G(x, y)→ 0 as r2 = x2 + y2 →∞

(a) Take the Fourier transform of the equation with respect to x and find
that the Fourier transform, Ĝ(k, y) = ∫∞−∞ G(x, y)e−ikx dk, satisfies

∂2Ĝ

∂y2
− k2Ĝ = δ(y − η)e−ikζ with Ĝ(k, y = 0) = 0

(b) Take the Fourier sine transform of Ĝ(k, y) with respect to y and find,
for

Ĝs(k, l) =
∫ ∞

0
Ĝ(k, y) sin ly dy

that it satisfies

Ĝs(k, l) = − sin lηe−ikζ

l2 + k2
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(c) Invert this expression with respect to k and find

G(x, l) = −e−l|x−ζ | sin lη

2l

whereupon

G(x, y) = − 1

π

∫ ∞

0

e−l|x−ζ | sin lη sin ly

l
dl

(d) Evaluate G(x, y) to find

G(x, y) = 1

4π
log

(
(x − ζ )2 + (y − η)2

(x − ζ )2 + (y + η)2

)
Hint: Note that taking the derivative of G(x, y) (of part (c) above)
with respect to y yields an integral for (∂G)/(∂y) that is elementary.
Then one can integrate this result using G(x, y = 0) = 0 to obtain
G(x, y).





Part II

Applications of Complex Function Theory

The second portion of this text aims to acquaint the reader with examples of
practical application of the theory of complex functions. Each of the chapters 5,
6 and 7 in Part II can be read independently.
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5
Conformal Mappings and Applications

5.1 Introduction

A large number of problems arising in fluid mechanics, electrostatics, heat con-
duction, and many other physical situations can be mathematically formulated
in terms of Laplace’s equation (see also the discussion in Section 2.1). That is,
all these physical problems reduce to solving the equation

Φxx +Φyy = 0 (5.1.1)

in a certain region D of the z plane. The function Φ(x, y), in addition to satis-
fying Eq. (5.1.1), also satisfies certain boundary conditions on the boundary C
of the region D. Recalling that the real and the imaginary parts of an analytic
function satisfy Eq. (5.1.1), it follows that solving the above problem reduces
to finding a function that is analytic in D and that satisfies certain boundary
conditions on C . It turns out that the solution of this problem can be greatly
simplified if the region D is either the upper half of the z plane or the unit
disk. This suggests that instead of solving Eq. (5.1.1) in D, one should first
perform a change of variables from the complex variable z to the complex vari-
able w = f (z), such that the region D of the z plane is mapped to the upper
half plane of the w plane. Generally speaking, such transformations are called
conformal, and their study is the main content of this chapter.

General properties of conformal transformations are studied in Sections 5.2
and 5.3. In Section 5.3 a number of theorems are stated, which are quite natural
and motivated by heuristic considerations. The rigorous proofs are deferred to
Section 5.5, which deals with more theoretical issues. We have denoted Section
5.5 as an optional (more difficult) section. In Section 5.4 a number of basic
physical applications of conformal mapping are discussed, including problems
from ideal fluid flow, steady state heat conduction, and electrostatics. Physical
applications that require more advanced methods of conformal mapping are
also included in later sections.
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According to a celebrated theorem first discussed by Riemann, if D is a
simply connected region D, which is not the entire complex z plane, then there
exists an analytic function f (z) such that w = f (z) transforms D onto the up-
per half w plane. Unfortunately, this theorem does not provide a constructive
approach for finding f (z). However, for certain simple domains, such as do-
mains bounded by polygons, it is possible to find an explicit formula (in terms
of quadratures) for f (z). Transformations of polygonal domains to the upper
half plane are called Schwarz–Christoffel transformations and are studied in
Section 5.6. A classically important case is the transformation of a rectangle to
the upper half plane, which leads to elliptic integrals and elliptic functions. An
important class of conformal transformations, called bilinear transformations,
is studied in Section 5.7. Another interesting class of transformations involves
a “circular polygon” (i.e., a polygon whose sides are circular arcs), which is
studied in Section 5.8. The case of a circular triangle is discussed in some detail
and relevant classes of functions such as Schwarzian functions and elliptic mod-
ular functions arise naturally. Some further interesting mathematical problems
related to conformal transformations are discussed in Section 5.9.

5.2 Conformal Transformations

Let C be a curve in the complex z plane. Let w = f (z), where f (z) is some
analytic function of z; define a change of variables from the complex variable
z to the complex variable w. Under this transformation, the curve C is mapped
to some curve C∗ in the complex w plane. The precise form of C∗ will depend
on the precise form of C . However, there exists a geometrical property of C∗

that is independent of the particular choice of C : Let z0 be a point of the curve
C , and assume that f ′(z0) 
= 0; under the transformation w = f (z) the tangent
to the curve C at the point z0 is rotated counterclockwise by arg f ′(z0) (see
Figure 5.2.1), w0 = f (z0).

Before proving this statement, let us first consider the particular case that the
transformation f (z) is linear, that is, f (z) = az + b, a, b ∈ C, and the curve
C is a straight ray going through the origin. The mathematical description of
such a curve is given by z(s) = seiϕ , where ϕ is constant, and the notation
z(s) indicates that for points on this curve, z is a function of s only. Under the
transformation w = f (z), this curve is mapped to w(s) = az(s) + b = |a|s
exp[i(ϕ + arg (a))] + b, that is, to a ray rotated by arg (a) = arg ( f ′(z)); see
Figure 5.2.2.

Let us now consider the general case. Points on a continuous curve C are
characterized by the fact that their x and y coordinates are related. It turns
out that, rather than describing this relationship directly, it is more convenient
to describe it parametrically through the equations x = x(s), y = y(s), where
x(s) and y(s) are real differentiable functions of the real parameter s. For
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Fig. 5.2.1. Conformal transformation
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+ arg

ϕ

ϕ

Fig. 5.2.2. Ray rotated by arg (a)

example, for the straight ray of Figure 5.2.2, x = s cosϕ, y = s sinϕ; for a
circle with center at the origin and radius R, x = R cos s, y = R sin s, etc.
More generally, the mathematical description of a curve C can be given by
z(s) = x(s)+ iy(s). Suppose that f (z) is analytic for z in some domain of
the complex z plane denoted by D. Our considerations are applicable to that
part of C that is contained in D. We shall refer to this part as an arc in order
to emphasize that our analysis is local. For convenience of notation we shall
denote it also by C . For such an arc, s belongs to some real interval [a, b].

C : z(s) = x(s)+ iy(s), s ∈ [a, b] (5.2.1)

We note that the image of a continuous curve is also continuous. Indeed, if
we write w = u(x, y)+ iv(x, y), u, v ∈ R, the image of the arc (5.2.1) is the
arc C∗ given by w(s) = u(x(s), y(s))+ iv(x(s), y(s)). Because x and y are
continuous functions of s, it follows that u and v are also continuous functions of
s, which establishes the continuity of C∗. Similarly, the image of a differentiable
arc is a differentiable arc. However, the image of an arc that does not intersect
itself is not necessarily nonintersecting. In fact, if f (z1) = f (z2), z1, z2 ∈ D,
any nonintersecting continuous arc passing through z1 and z2 will be mapped
onto an arc that does intersect itself. Of course, one can avoid this if f (z) takes
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no value more than once in D. We define dz(s)/ds by

dz(s)

ds
= dx(s)

ds
+ i

dy(s)

ds

Let f (z) be analytic in a domain containing the open neighborhood of z0 ≡
z(s0). The image of C is w(s) = f (z(s)); thus by the chain rule

dw(s)

ds

∣∣∣∣
s=s0

= f ′(z0)
dz(s)

ds

∣∣∣∣
s=s0

(5.2.2)

If f ′(z0) 
= 0 and z′(s0) 
= 0, it follows that w′(s0) 
= 0 and

arg (w′(s0)) = arg (z′(s0))+ arg ( f ′(z0)) (5.2.3)

or arg dw = arg dz + arg f ′(z0), where dw, dz are interpreted as infinitesimal
line segments. This concludes the proof that, under the analytic transforma-
tion f (z), the directed tangent to any curve through z0 is rotated by an angle
arg ( f ′(z0)).

An immediate consequence of the above geometrical property is that, for
points where f ′(z) 
= 0, analytic transformations preserve angles. Indeed, if
two curves intersect at z0, because the tangent of each curve is rotated by
arg f ′(z0), it follows that the angle of intersection (in both magnitude and
orientation), being the difference of the angles of the tangents, is preserved by
such transformations. A transformation with this property is called conformal.
We state this as a theorem; this theorem is enhanced in Sections 5.3 and 5.5.

Theorem 5.2.1 Assume that f (z) is analytic and not constant in a domain D of
the complex z plane. For any point z ∈ D for which f ′(z) 
= 0, this mapping
is conformal, that is, it preserves the angle between two differentiable arcs.

Remark A conformal mapping, in addition to preserving angles, has the prop-
erty of magnifying distances near z0 by the factor | f ′(z0)|. Indeed, suppose
that z is near z0, and let w0 be the image of z0. Then the equation

| f ′(z0)| = lim
z→z0

| f (z)− f (z0)|
|z − z0|

implies that |w − w0| is approximately equal to | f ′(z0)||z − z0|.

Example 5.2.1 Let D be the rectangular region in the z plane bounded by
x = 0, y = 0, x = 2 and y = 1. The image of D under the transformation
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Fig. 5.2.4. Transformation w = z2

w = (1 + i)z + (1 + 2i) is given by the rectangular region D′ of the w

plane bounded by u + v = 3, u − v = −1, u + v = 7 and u − v = −3.
If w = u + iv, where u, v ∈ R, then u = x − y + 1, v = x + y + 2. Thus

the points a, b, c, and d are mapped to the points (0,3), (1,2), (3,4), and (2,5),
respectively. The line x = 0 is mapped to u = −y+1, v = y+2, or u+v = 3;
similarly for the other sides of the rectangle.

The rectangle D is translated by (1 + 2i), rotated by an angle π/4 in the
counterclockwise direction, and dilated by a factor

√
2. In general, a linear

transformation f (z) = αz + β, translates by β, rotates by arg (α), and dilates
(or contracts) by |α|. Because f ′(z) = α 
= 0, a linear transformation is always
conformal. In this example, α = √2 exp(iπ/4), β = 1+ 2i .

Example 5.2.2 Let D be the triangular region bounded by x = 1, y = 1, and
x + y = 1. The image of D under the transformation w = z2 is given by the
curvilinear triangle a′b′c′ shown in Figure 5.2.3.

In this example, u = x2 − y2, v = 2xy. The line x = 1 is mapped to
u = 1 − y2, v = 2y, or u = 1 − v2

4 ; similarly for the other sides of the
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triangle. Because f ′(z) = 2z and the point z = 0 is outside D, it follows that
this mapping is conformal; hence the angles of the triangle abc are equal to the
respective angles of the curvilinear triangle a′b′c′.

Problems for Section 5.2

1. Show that under the transformation w = 1/z the image of the lines x =
c1 
= 0 and y = c2 
= 0 are the circles that are tangent at the origin to the
v axis and to the u axis, respectively.

2. Find the image of the region Rz , bounded by y = 0, x = 2, and x2−y2 = 1,
for x ≥ 0 and y ≥ 0 (see Figure 5.2.5), under the transformation w = z2.

3. Find a linear transformation that maps the circle C1: |z − 1| = 1 onto the
circle C2: |w − 3i/2| = 2.

4. Show that the function w = ez maps the interior of the rectangle, Rz ,
0 < x < 1, 0 < y < 2π (z = x + iy), onto the interior of the annulus,
Rw, 1 < |w| < e, which has a jump along the positive real axis (see Fig-
ure 5.2.6).

5. Show that the mapping w = √1− z2 maps the hyperbola 2x2 − 2y2 = 1
onto itself.

6. (a) Show that transformation w = 2z + 1/z maps the exterior of the unit
circle conformally onto the exterior of the ellipse:

(
u

3

)2

+ v2 = 1

A B

C(2,   3 )

1

2

1 20

Rz

z-plane

Fig. 5.2.5. Region in Problem 5.2.2
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Fig. 5.2.6. Mapping of Problem 5.2.4

(b) Show that the transformation w = 1
2 (ze−α + eα/z), for real constant

α, maps the interior of the unit circle in the z plane onto the exterior of
the ellipse (u/ coshα)2 + (v/ sinhα)2 = 1 in the w plane.

5.3 Critical Points and Inverse Mappings

If f ′(z0) = 0, then the analytic transformation f (z) ceases to be conformal.
Such a point is called a critical point of f . Because critical points are zeroes
of the analytic function f ′, they are isolated. In order to find what happens
geometrically at a critical point, we use the following heuristic argument. Let
δz = z − z0, where z is a point near z0. If the first nonvanishing derivative
of f (z) at z0 is of the nth order, then representing δw by the Taylor series, it
follows that

δw = 1

n!
f (n)(z0)(δz)n + 1

(n + 1)!
f (n+1)(z0)(δz)n+1 + · · · (5.3.1)

where f (n)(z0) denotes the nth derivative of f (z) at z = z0. Thus as δz → 0

arg (δw)→ narg (δz)+ arg
(

f (n)(z0)
)
, (5.3.2)

This equation, which is the analog of Eq. (5.2.3), implies that the angle between
any two infinitesimal line elements at the point z0 is increased by the factor n.
This suggests the following result.

Theorem 5.3.1 Assume that f (z) is analytic and not constant in a domain D of
the complex z plane. Suppose that f ′(z0) = f ′′(z0) = · · · = f (n−1)(z0) = 0,
while f (n)(z0) 
= 0, z0 ∈ D. Then the mapping z → f (z) magnifies n times
the angle between two intersecting differentiable arcs that meet at z0.
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Fig. 5.3.1. Angle between line segments (θ2 − θ1) tends to angle between arcs (θ ) as
r → 0

Proof We now give a proof of this result. Let z1(s) and z2(s) be the equations
describing the two arcs intersecting at z0 (see Figure 5.3.1). If z1 and z2 are
points on these arcs that have a distance r from z0, it follows that

z1 − z0 = reiθ1 , z2 − z0 = reiθ2 , or
z2 − z0

z1 − z0
= ei(θ2−θ1)

The angle θ2 − θ1 is the angle formed by the linear segments connecting the
points z1 − z0 and z2 − z0. As r → 0, this angle tends to the angle formed by
the two intersecting arcs in the complex z plane. Similar considerations apply
for the complex w plane. Hence if θ and ϕ denote the angles formed by the
intersecting arcs in the complex z plane and w plane, respectively, it follows
that

θ = lim
r→0

arg

(
z2 − z0

z1 − z0

)
, ϕ = lim

r→0
arg

(
f (z2)− f (z0)

f (z1)− f (z0)

)
(5.3.3)

Hence

ϕ = lim
r→0

arg

{(
f (z2)− f (z0)

(z2−z0)n

f (z1)− f (z0)

(z1−z0)n

)(
z2 − z0

z1 − z0

)n
}

(5.3.4)

Using

f (z) = f (z0)+ f (n)(z0)

n!
(z − z0)

n + f (n+1)(z0)

(n + 1)!
(z − z0)

n+1 + · · · (5.3.5)

it follows that

lim
r→0

f (z2)− f (z0)

(z2 − z0)n
= lim

r→0

f (z1)− f (z0)

(z1 − z0)n
= f (n)(z0)

n!
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Fig. 5.3.2. Transformation w = z2

Hence, Eqs. (5.3.4) and (5.3.3) imply

ϕ = lim
r→0

arg

(
z2 − z0

z1 − z0

)n

= n lim
r→0

arg

(
z2 − z0

z1 − z0

)
= nθ

�

Example 5.3.1 Let D be the triangular region bounded by x = 0, y = 0 and
x + y = 1. The image of D under the transformation w = z2 is given by
the curvilinear triangle a′b′c′ shown in Figure 5.3.2 (note the difference from
example 5.2.2).

In this example, u = x2 − y2, v = 2xy. The lines x = 0; y = 0; and
x + y = 1 are mapped to v = 0 with u ≤ 0; v = 0 with u ≥ 0; and v =
1
2 (1 − u2), respectively. The transformation f (z) = z2 ceases to be con-
formal at z = 0. Because the second derivative of f (z) at z = 0 is the first
nonvanishing derivative, it follows that the angle at b (which is π/2 in the z
plane) should be multiplied by 2. This is indeed the case, as the angle at b′ in
the w plane is π .

Critical points are also important in determining whether the function f (z)
has an inverse. Finding the inverse of f (z) means solving the equation w =
f (z) for z in terms of w.

The following terminology will be useful. An analytic function f (z) is called
univalent in a domain D if it takes no value more than once in D. It is clear

that a univalent function f (z) provides a one-to-one map of D onto f (D); it
has a single-valued inverse on f (D).

There are a number of basic properties of conformal maps that are useful and
that we now point out to the reader. In this section we only state the relevant
theorems; they are proven in the optional Section 5.5.

Theorem 5.3.2 Let f (z) be analytic and not constant in a domain D of the
complex z plane. The transformationw = f (z) can be interpreted as a mapping
of the domain D onto the domain D∗ = f (D) of the complex w plane.
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The proof of this theorem can be found in Section 5.5. Because a domain is
an open connected set, this theorem implies that open sets in the domain D of
the z plane map to open sets D∗ in the w plane. A consequence of this fact is
that | f (z)| cannot attain a maximum in D∗ because any point w = f (z) must
be an interior point in the w plane. This theorem is useful because in practice
we first find where the boundaries map. Then, since an open region is mapped
to an open region, we need only find how one point is mapped if the boundary
is a simple closed curve.

Suppose we try to construct the inverse in the neighborhood of some point z0.
If z0 is not a critical point, thenw−w0 is given approximately by f ′(z0)(z−z0).
Hence it is plausible that in this case, for every w there exists a unique z, that
is, f (z) is locally invertible. However, if z0 is a critical point, and the first
nonvanishing derivative at z0 is f (n)(z0), then w − w0 is given approximately
by f (n)(z0)(z − z0)

n/n!. Hence now it is natural to expect that for every w

there exist n different z’s; that is, the inverse transformation is not single valued
but it has a branch point of order n. These plausible arguments can actually be
made rigorous (see Section 5.5).

Theorem 5.3.3 (1) Assume that f (z) is analytic at z0 and that f ′(z0) 
= 0. Then
f (z) is univalent in the neighborhood of z0. More precisely, f has a unique
analytic inverse F in the neighborhood ofw0 ≡ f (z0); that is, if z is sufficiently
near z0, then z = F(w), wherew ≡ f (z). Similarly, ifw is sufficiently nearw0

and z ≡ F(w), then w = f (z). Furthermore, f ′(z)F ′(w) = 1, which implies
that the inverse map is conformal.

(2) Assume that f (z) is analytic at z0 and that it has a zero of order n; that
is, the first nonvanishing derivative of f (z) at z0 is f (n)(z0). Then to each w

sufficiently close to w0 = f (z0), there correspond n distinct points z in the
neighborhood of z0, each of which has w as its image under the mapping w =
f (z). Actually, this mapping can be decomposed in the form w−w0 = ζ n ,
ζ = g(z − z0), g(0) = 0, where g(z) is univalent near z0 and g(z) = zH(z)
with H(0) 
= 0.

The proof of this theorem can be found in Section 5.5.

Remark We recall that w = zn provides a one-to-one mapping of the z plane
onto an n-sheeted Riemann surface in thew plane (see Section 2.2). If a complex
number w 
= 0 is given without specification as to the sheet in which it lies,
there are n possible values of z that give this w, and so w = zn has an n-valued
inverse. However, when the Riemann surface is introduced, the correspondence
becomes one-to-one, and w = zn has a single-valued inverse.
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Theorem 5.3.4 Let C be a simple closed contour enclosing a domain D, and let
f (z) be analytic on C and in D. Suppose f (z) takes no value more than once on
C . Then (a) the map w = f (z) takes C enclosing D to a simple closed contour
C∗ enclosing a domain D∗ in the w plane; (b) w = f (z) is a one-to-one map
from D to D∗; and (c) if z traverses C in the positive direction, then w = f (z)
traverses C∗ in the positive direction.

The proof of this theorem can be found in Section 5.5.

Remark By examining the mapping of simple closed contours it can be estab-
lished that conformal maps preserve the connectivity of a domain. For example,
the conformal mapw = f (z) of a simply connected domain in the z plane maps
into a simply connected domain in thew plane. Indeed, a simple closed contour
in the z plane can be continuously shrunk to a point, which must also be the
case in the w plane – otherwise, we would violate Theorem 5.3.2.

Problems for Section 5.3

1. Find the families of curves on which Re z2 = C1 for constant C1, and
Im z2 = C2, for constant C2. Show that these two families are orthogonal
to each other.

2. Let D be the triangular region of Figure 5.3.2a, that is, the region bounded
by x = 0, y = 0, and x + y = 1. Find the image of D under the mapping
w = z3. (It is sufficient to find a parameterization that describes the
mapping of any of the sides.)

3. Express the transformations

(a) u = 4x2 − 8y, v = 8x − 4y2

(b) u = x3 − 3xy2, v = 3x2 y − y3

in the form w = F(z, z), z = x + iy, z = x − iy. Which of these
transformations can be used to define a conformal mapping?

4. Show that the transformation w = 2z−1/2 − 1 maps the (infinite) domain
exterior of the parabola y2 = 4(1− x) conformally onto the domain |w| <
1. Explain why this transformation does not map the (infinite) domain
interior of the parabola conformally onto the domain |w| > 1. (Hint: the
“intermediate” map p = −i(1 − w)/(1 + w) taking |w| > 1 to Imp > 0
is useful.)
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5. Let D denote the domain enclosed by the parabolae v2 = 4a(a − u) and
v2 = 4a(a + u), a > 0, w = u + iv. Show that the function

w = c2

[∫ z

0

dt√
t (1+ t2)

]2

where

√
a = c

∫ 1

0

dt√
t (1+ t2)

maps the unit circle conformally onto D.

5.4 Physical Applications

It was shown in Section 2.1 that the real and the imaginary parts of an analytic
function satisfy Laplace’s equation. This and the fact that the occurrence of
Laplace’s equation in physics is ubiquitous constitute one of the main reasons
for the usefulness of complex analysis in applications. In what follows we
first mention a few physical situations that lead to Laplace’s equation. Then we
discuss how conformal mappings can be effectively used to study the associated
physical problems. Some of these ideas were introduced in Chapter 2.

A twice differentiable function Φ(x, y) satisfying Laplace’s equation

∇2Φ = Φxx +Φyy = 0 (5.4.1)

in a region R is called harmonic in R. Let V (z), z = x + iy, be analytic in R.
If V (z) = u(x, y)+ iv(x, y), where u, v ∈ R and are twice differentiable, then
both u and v are harmonic in R. Such functions are called conjugate functions.
Given one of them (u or v), the other can be determined uniquely within an
arbitrary additive constant (see Section 2.1).

Let u1 and u2 be the components of the vectoru along the positive x and y axis,
respectively. Suppose that the components of the vector u (where u = (u1, u2))
satisfy the equation

∂u1

∂x
+ ∂u2

∂y
= 0 (5.4.2)

Suppose further that the vector u can be derived from a potential, that is, there
exists a scalar function Φ such that

u1 = ∂Φ
∂x

, u2 = ∂Φ
∂y

(5.4.3)

Then Eqs. (5.4.2) and (5.4.3) imply that Φ is harmonic. These equations arise
naturally in applications, as shown in the following examples.
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Fig. 5.4.1. Flow through a rectangle of sides �x , �y

Example 5.4.1 (Ideal Fluid Flow) A two-dimensional, steady, incompress-
ible, irrotational fluid flow (see also the discussion in Section 2.1).

If a flow is two dimensional, it means that the fluid motion in any plane is
identical to that in any other parallel plane. This allows one to study flow in a
single plane that can be taken as the z plane. A flow pattern depicted in this plane
can be interpreted as a cross section of an infinite cylinder perpendicular to this
plane. If a flow is steady, it means that the velocity of the fluid at any point
depends only on the position (x, y) and not on time. If the flow is incompressible,
we take it to mean that the density (i.e., the mass per unit volume) of the fluid
is constant. Let ρ and u denote the density and the velocity of the fluid. The
law of conservation of mass implies Eq. (5.4.2). Indeed, consider a rectangle
of sides �x,�y. See Figure 5.4.1.

The rate of accumulation of fluid in this rectangle is given by d
dt

∫ x+�x
x

∫ y+�y
y

ρdx dy. The rate of fluid entering along the side located between the points
(x, y) and (x, y + �y) is given by

∫ y+�y
y (ρu1)(x, η) dη. A similar integral

gives the rate of fluid entering the side between (x, y) and (x+�x, y). Letting
ρ be a function of x , y, and (for the moment) t , conservation of mass implies

d

dt

∫ x+�x

x

∫ y+�y

y
ρ dx dy =

∫ y+�y

y
[(ρu1)(x, η)− (ρu1)(x +�x, η)] dη

+
∫ x+�x

x
[(ρu2)(ξ, y)− (ρu2)(ξ, y +�y)] dξ

Dividing this equation by �x�y and taking the limit as �x,�y tend to zero,
and assuming that ρ, u1, and u2 are smooth functions of x , y, and t , it follows
from calculus that

∂ρ

∂t
+ ∂(ρu1)

∂x
+ ∂(ρu2)

∂y
= 0

Because the flow is steady (∂ρ)/(∂t) = 0, and because the flow is incompress-
ible, ρ is constant. Hence this equation yields Eq. (5.4.2).
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If the flow is irrotational, it means that the circulation of the fluid along any
closed contour C is zero. The circulation around C is given by

∮
C u ·ds, where

ds is the vector element of arc length along C . We could use a derivation similar
to the above, or we could use Green’s Theorem (see Section 2.5, Theorem 2.5.1
with (u, v) replaced by u = (u1, u2) and ds = (dx, dy)), to deduce

∂u2

∂x
= ∂u1

∂y
(5.4.4)

This equation is a necessary and sufficient condition for the existence of a
potential Φ, that is, Eq. (5.4.3). Therefore Eqs. (5.4.2) and (5.4.4) imply that
Φ is harmonic.

Because the function Φ is harmonic, there must exist a conjugate harmonic
function, say, Ψ(x, y), such that

�(z) = Φ(x, y)+ iΨ(x, y) (5.4.5)

is analytic. Differentiating �(z) and using the Cauchy–Riemann conditions
(Eq. (2.1.4)), it follows that

d�

dz
= ∂Φ

∂x
+ i

∂Ψ
∂x

= ∂Φ
∂x

− i
∂Φ
∂y

= u1 − iu2 = ū (5.4.6)

where u = u1 + iu2 is the velocity of the fluid. Thus the “complex velocity”
of the fluid is given by

u =
(

d�

dz

)
(5.4.7)

The function Ψ(x, y) is called the stream function, while �(z) is called the
complex velocity potential (see also the discussion in Section 2.1). The families
of the curves Ψ(x, y) = const are called streamlines of the flow. These lines
represent the actual paths of fluid particles. Indeed, if C is the curve of the path
of fluid particles, then the tangent to C has components (u1, u2) = (Φx ,Φy).
Using the Cauchy–Riemann equations (2.1.4) we have

ΦxΨx +ΦyΨy = 0

it follows that as vectors (Φx ,Φy) · (Ψx ,Ψy) = 0, that is, the vector perpen-
dicular to C has components (Ψx ,Ψy), which is, the gradient of Ψ. Hence we
know from vector calculus that the curve C is given by Ψ = const.
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Example 5.4.2 (Heat Flow) A two-dimensional, steady heat flow.
The quantity of heat conducted per unit area per unit time across a surface of

a given solid is called heat flux. In many applications the heat flux, denoted by
the vector Q, is given by Q = −k∇T , where T denotes the temperature of the
solid and k is called the thermal conductivity, which is taken to be constant. The
conductivity k depends on the material of the solid. Conservation of energy, in
steady state, implies that there is no accumulation of heat inside a given simple
closed curve C . Hence if we denote Qn = Q · n̂ where n̂ is the unit outward
normal ∮

C
Qn ds =

∮
C
(Q1 dy − Q2 dx) = 0

This equation, together with Q = −k∇T , that is

Q1 = −k
∂T

∂x
, Q2 = −k

∂T

∂y

and Green’s Theorem 2.5.1 from vector calculus (see Section 2.5), imply that
T satisfies Laplace’s equation. Let Ψ be the harmonic conjugate function of
T , then the function

Ω(z) = T (x, y)+ iΨ(x, y) (5.4.8)

is analytic. This function is called the complex temperature. The curves of the
family T (x, y) = const are called isothermal lines.

Example 5.4.3 (Electrostatics) We have seen that the appearance of Laplace’s
equation in fluid flow is a consequence of the conservation of mass and of the
assumption that the circulation of the flow along a closed contour equals zero
(irrotationality). Furthermore, conservation of mass is equivalent to the condi-
tion that the flux of the fluid across any closed surface equals zero. The situation
in electrostatics is similar: If E denotes the electric field, then the following
two laws (consequences of the governing equations of time-independent elec-
tromagnetics) are valid. (a) The flux of E through any closed surface enclosing
zero charge equals zero. This is a special case of what is known as Gauss’s
law; that is,

∮
C En ds = q/ε0, where En is the normal component of the elec-

tric field, ε0 is the dielectric constant of the medium, and q is the net charge
enclosed within C . (b) The electric field is derivable from a potential, or stated
differently, the circulation of E around a simple closed contour equals zero. If
the electric field vector is denoted by E = (E1, E2), then these two conditions
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imply

∂E1

∂x
+ ∂E2

∂y
= 0,

∂E2

∂x
= ∂E1

∂y
(5.4.9)

From Eq. (5.4.9) we have

E1 = −∂Φ
∂x

, E2 = −∂Φ
∂y

(5.4.10)

(the minus signs are standard convention) and thus from Eq. (5.4.9) the function
Φ is harmonic, that is, it satisfies Laplace’s equation. Let Ψ denote the function
that is conjugate to Φ. Then the function

Ω(z) = Φ(x, y)+ iΨ(x, y) (5.4.11)

is analytic in any region not occupied by charge. This function is called the
complex electrostatic potential. Differentiating Ω(z), and using the Cauchy–
Riemann conditions, it follows that

dΩ
dz

= ∂Φ
∂x

+ i
∂Ψ
∂x

= ∂Φ
∂x

− i
∂Φ
∂y

= −E (5.4.12)

where E = E1 + i E2 is the complex electric field (E = E1− i E2). The curves
of the families Φ(x, y) = const and Ψ(x, y) = const are called equipotential
and flux lines, respectively. From Eq. (5.4.12) Gauss’s law is equivalent to

Im
∮

C
E dz =

∮
C
(E1dy − E2dx) =

∮
C

Ends = q/ε0 (5.4.13)

We also note that integrals of the form
∫

Edz are invariant under a conformal
transformation. More specifically, using Eq. (5.4.12), a conformal transforma-
tion w = f (z) transforms the analytic function �(z) to �(w)∫

E dz = −
∫

dΩ
dz

dz = −
∫

dΩ
dw

dw = −
∫

d� (5.4.14)

In order to find the unique solution Φ of Laplace’s equation (5.4.1), one needs
to specify appropriate boundary conditions. Let R be a simply connected region
bounded by a simple closed curve C . There are two types of boundary-value
problems that arise frequently in applications: (a) In theDirichlet problem one
specifiesΦ on the boundary C . (b) In theNeumann’s problem one specifies the
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normal derivative of Φ on the boundary C . (There is a third case, the “mixed
case” where a combination of Φ and the normal derivative are given on the
boundary. We will not discuss this possibility here.)

If a solution exists for a Dirichlet problem, then it must be unique. Indeed if
Φ1 and Φ2 are two such solutions then Φ = Φ1 − Φ2 is harmonic in R and
Φ = 0 on C . The well-known vector identity (derivable from Green’s Theorem
(2.5.1))∮

C
Φ
(
∂Φ
∂x

dy − ∂Φ
∂y

dx

)
=
∫∫

R

[
Φ∇2Φ+

(
∂Φ
∂x

)2

+
(
∂Φ
∂y

)2
]

dx dy

(5.4.15)
implies ∫∫

R

[(
∂Φ
∂x

)2

+
(
∂Φ
∂y

)2
]

dx dy = 0 (5.4.16)

Therefore Φ must be a constant in R, and because Φ = 0 on C , we find that
Φ = 0 everywhere. Thus Φ1 = Φ2; that is, the solution is unique. The same
analysis implies that if a solution exists for a Neumann problem (∂Φ/∂n = 0
on C), then it is unique to within an arbitrary additive constant.

It is possible to obtain the solution of the Dirichlet and Neumann problems
using conformal mappings. This involves the following steps:

(a) Use a conformal mapping to transform the region R of the z plane onto a
simple region such as the unit circle or a half plane of the w plane.

(b) Solve the corresponding problem in the w plane.
(c) Use this solution and the inverse mapping function to solve the original

problem (recall that if f (z) is conformal ( f ′(z) 
= 0), then according to
Theorem 5.3.3, f (z) has a unique inverse).

This procedure is justified because of the following fact. Let Φ(x, y) be
harmonic in the region R of the z plane. Assume that the region R is mapped
onto the region R′ of the w plane by the conformal transformation w = f (z),
where w = u + iv. Then Φ(x, y) = Φ(x(u, v), y(u, v)) is harmonic in R′.
Indeed, by differentiation and use of the Cauchy–Riemann conditions (2.1.4)
we can verify (see also Problem 7 in Section 2.1) that

∂2Φ
∂x2

+ ∂2Φ
∂y2

=
∣∣∣∣d f

dz

∣∣∣∣2(∂2Φ
∂u2

+ ∂2Φ
∂v2

)
(5.4.17)

which, because d f/dz 
= 0, proves the above assertion. We use these ideas in
the following example.
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Fig. 5.4.2. Transformation of the unit circle

Example 5.4.4 Solve Laplace’s equation for a function Φ inside the unit circle
that on its circumference takes the value Φ2 for 0 ≤ θ < π , and the value Φ1

for π ≤ θ < 2π . This problem can be interpreted as finding the steady state
heat distribution inside a disk with a prescribed temperature Φ on the boundary.

An important class of conformal transformations are of the form w = f (z)
where

f (z) = az + b

cz + d
, ad − bc 
= 0. (5.4.18)

These transformations are called bilinear transformations. They will be
studied in detail in Section 5.7. In this problem we can verify that the bilinear
transformation (see also the discussion in Section 5.7, especially Eq. (5.7.18))

w = i

(
1− z

1+ z

)
(5.4.19)

that is,

u = 2y

(1+ x)2 + y2
, v = 1− (x2 + y2)

(1+ x)2 + y2

maps the unit circle onto the upper half of the w plane. (When z is on the unit
circle z = eiθ , then w(z) = u = sin θ

1+cos θ .) The arcs A1 A2 A3 and A3 A4 A5 are
mapped onto the negative and positive real axis, respectively, of the w plane.
Let w = ρeiψ . The function aψ + b, where a and b are real constants, is
the real part of the analytic function −ai logw + b in the upper half plane and
therefore is harmonic. Hence a solution of Laplace’s equation in the upper half
of the w plane, satisfying Φ = Φ1 for u < 0, v = 0 (i.e., ψ = π ) and Φ = Φ2
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Fig. 5.4.3. Flow velocity

for u > 0, v = 0 (i.e., ψ = 0), is given by

Φ = Φ2 − (Φ2 −Φ1)
ψ

π
= Φ2 − Φ2 −Φ1

π
tan−1

(
v

u

)
Owing to the uniqueness of solutions to the Dirichlet problem, this is the only
solution. Using the expressions for u and v given by Eq. (5.4.19), it follows
that in the x, y plane the solution to the problem posed in the unit circle is given
by

Φ(x, y) = Φ2 − Φ2 −Φ1

π
tan−1

[
1− (x2 + y2)

2y

]
(See also Problem 9 in Section 2.2.)

Example 5.4.5 Find the complex potential and the streamlines of a fluid moving
with a constant speed u0 ∈ R in a direction making an angle α with the positive
x axis. (See also Example 2.1.7.)

The x and y component of the fluid velocity are given by u0 cosα and u0 sinα.
The complex velocity is given by

u = u0 cosα + iu0 sinα = u0eiα

thus

dΩ
dz

= ū = u0e−iα, or Ω = u0e−iαz

where we have equated the constant of integration to zero . LettingΩ = Φ+iΨ,
it follows that

Ψ(x, y) = u0(y cosα − x sinα) = u0r sin(θ − α)

The streamlines are given by the family of the curves Ψ = const, which are
straight lines making an angle α with the positive x axis.
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� = k log(z − a) � = ik log(z − a)

Fig. 5.4.4. Streamlines

Example 5.4.6 Analyze the flow pattern of a fluid emanating at a constant rate
from an infinite line source perpendicular to the z plane at z = 0.

Let ρ and ur denote the density (constant) and the radial velocity of the fluid,
respectively. Let q denote the mass of fluid per unit time emanating from a line
source of unit length. Then

q = (density)(flux) = ρ(2πrur )

Thus

ur = q

2πρ

1

r
≡ k

r
, k > 0

where the constant k = q/2πρ is called the strength of the source. Integrating
the equation ur = ∂Φ/∂r and equating the constant of integration to zero (Φ is
cylindrically symmetric), it follows that Φ = k log r , and hence with z = reiθ

�(z) = k log z

The streamlines of this flow are given by Ψ = ImΩ(z) = const, that is, θ =
const. These curves are rays emanating from the origin.

The complex potential �(z) = k log(z − a) represents a “source” located at
z = a. Similarly, �(z) = −k log(z − a) represents a “sink” located at z = a
(because of the minus sign the velocity is directed toward z = 0).

It is clear that if �(z) = Φ+ iΨ is associated with a flow pattern of stream-
lines Ψ = const, the function i�(z) is associated with a flow pattern of stream-
lines Φ = const. These curves are orthogonal to the curves Ψ = const; that
is, the flows associated with �(z) and i�(z) have orthogonal streamlines.

This discussion implies that in the particular case of the above example the
streamlines ofΩ(z) = ik log z are concentric circles. Because d�/dz = ikz−1,
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it follows that the complex velocity is given by(
d�

dz

)
= k sin θ

r
− ik cos θ

r

This represents the flow of a fluid rotating with a clockwise speed k/r around
z = 0. This flow is usually referred to as a vortex flow, generated by a vortex
of strength k localized at z = 0. If the vortex is localized at z = a, then the
associated complex potential is given by� = ik log(z−a). (See also Problems
7 and 8 of Section 2.2.)

Example 5.4.7 (The force due to fluid pressure) In the physical circumstances
we are dealing with, one neglects viscosity, that is, the internal friction of a fluid.
It can be shown from the basic fluid equations that in this situation the pressure
P of the fluid and the speed |u| of the fluid are related by the so-called Bernoulli
equation

P + 1

2
ρ|u|2 = α (5.4.20)

where α is a constant along each streamline. Let Ω(z) be the complex potential
of some flow and let the simple closed curve C denote the boundary of a
cylindrical obstacle of unit length that is perpendicular to the z plane. We shall
show that the force F = X + iY exerted on this obstacle is given by

F̄ = 1

2
iρ
∮

C

(
d�

dz

)2

dz

Let ds denote an infinitesimal element around some point of the curve C ,
and let θ be the angle of the tangent to C at this point. The infinitesimal force

θ
θ

y

x

C

ds

Pds

Fig. 5.4.5. Force exerted on a cylindrical object
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exerted on the part of the cylinder corresponding to ds is perpendicular to ds
and has magnitude Pds. (Recall that force equals pressure times area, and area
equals ds times 1 because the cylinder has unit length). Hence

d F = d X + i dY = −P ds sin θ + i P ds cos θ = i Peiθds

Also

dz = dx + i dy = ds cos θ + i ds sin θ = ds eiθ

Without friction, the curve C is a streamline of the flow. The velocity is tangent
to this curve, where we denote the complex velocity as u = |u|eiθ ; hence

d�

dz
= |u| e−iθ (5.4.21)

The expression for d F and Bernoulli’s equation (5.4.20) imply

F = X + iY =
∮

C
i

(
α − 1

2
ρ|u|2

)
eiθds

The first term in the right-hand side of this equation equals zero because∮
eiθds = ∮ dz = 0. Thus

F̄ = 1

2
iρ
∮

C
|u|2e−iθds = 1

2
iρ
∮

C

(
d�

dz

)2

eiθds = 1

2
iρ
∮

C

(
d�

dz

)2

dz

where we have used Eq. (5.4.21) to replace |u| with dΩ/dz, as well as dz with
ds eiθ .

Example 5.4.8 Discuss the flow pattern associated with the complex potential

�(z) = u0

(
z + a2

z

)
+ iγ

2π
log z

This complex potential represents the superposition of a vortex of circulation
of strength γ with a flow generated by the complex potential u0(z + a2z−1).
(The latter flow was also discussed in Example 2.1.8.) Let z = reiθ ; then if
� = Φ+ iΨ

Ψ(x, y) = u0

(
r − a2

r

)
sin θ + γ

2π
log r, a > 0, u0, a, γ real constants

If r = a, then Ψ(x, y) = γ log a/2π = const, therefore r = a is a streamline.
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Fig. 5.4.6. Flow around a circular obstacle (γ = 0)

Furthermore

d�

dz
= u0

(
1− a2

z2

)
+ iγ

2π z

which shows that as z → ∞, the velocity tends to u0. This discussion shows
that the flow associated with Ω(z) can be considered as a flow with circulation
about a circular obstacle. In the special case that γ = 0, this flow is depicted
in Figure 5.4.6.

Note that when γ = 0, dΩ/dz = 0 for z = ±a; that is, there exist two
points for which the velocity vanishes. Such points are called stagnation points
see Figures (5.4.6–5.4.9); the streamline going through these points is given by
Ψ = 0. In the general case of γ 
= 0, there also exist two stagnation points
given by dΩ/dz = 0, or

z = − iγ

4πu0
±
√

a2 − γ 2

16π2u2
0

If 0 ≤ γ < 4πau0, there are two stagnation points on the circle (see Figure
5.4.7). If γ = 4πau0, these two points coincide (see Figure 5.4.8) at z = −ia.
If γ > 4πau0, then one of the stagnation points lies outside the circle, and one
inside (see Figure 5.4.9).
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s s

(Stagnation points marked with S )

Fig. 5.4.7. Separate stagnation points (γ < 4πau0)

s

(Stagnation point marked with S )

Fig. 5.4.8. Coinciding stagnation points (γ = 4πau0)
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s

(Stagnation point marked with S )

Fig. 5.4.9. Streamlines and stagnation point (γ > 4πau0)

Using the result of Example 5.4.7, it is possible to compute the force exerted
on this obstacle

F̄ = 1

2
iρ
∮

C

[
u0

(
1− a2

z2

)
+ iγ

2π z

]2

dz = −iρu0γ

(Recall that
∮

zndz = 2π iδn,−1, where δn,−1 is the Kronecker delta function.)
This shows that there exists a net force in the positive y direction of magnitude
ρu0γ . Such a force is known in aerodynamics as lift.

Example 5.4.9 Find the complex electrostatic potential due to a line of constant
charge q per unit length perpendicular to the z plane at z = 0.

The relevant electric field is radial and has magnitude Er . If C is the circular
basis of a cylinder of unit length located at z = 0, it follows from Gauss’s law
(see Example 5.4.3) that

∮
C

Er ds = Er 2πr = 4πq, or Er = 2q

r
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Fig. 5.4.10. Electrostatic potential between parallel plates

where q is the charge enclosed by the circle C , and here we have normalized to
ε0 = 1/4π . Hence the potential satisfies

∂Φ
∂r

= −2q

r
, or Φ = −2q log r, or �(z) = −2q log z

This is identical to the complex potential associated with a line source of strength
k = −2q. From Eq. (5.4.13) we see that Im(

∮
E dz) = Im(

∮ −�′(z) dz) =
4πq , as it should.

Example 5.4.10 Consider two infinite parallel flat plates, separated by a dis-
tance d and maintained at zero potential. A line of charge q per unit length
is located between the two planes at a distance a from the lower plate (see
Figure 5.4.10). Find the electrostatic potential in the shaded region of the z
plane.

The conformal mappingw = exp(π z/d)maps the shaded strip of the z plane
onto the upper half of the w plane. So the point z = ia is mapped to the point
w0 = exp(iπa/d); the points on the lower plate, z = x , and on the upper plate,
z = x + id, map to the real axis w = u for u > 0 and u < 0, respectively. Let
us consider a line of charge q at w0 and a line of charge −q at w0. Consider
the associated complex potential (see also the previous Example 5.4.9)

Ω(w) = −2q log(w − w0)+ 2q log(w − w0) = 2q log

(
w − w0

w − w0

)
Calling Cq a closed contour around the charge q , we see that Gauss’ law is
satisfied,

∮
Cq

En ds = Im
∮

Cq

E dz = Im
∮

C̃q

−�′(w) dw = 4πq
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where C̃q is the image of Cq in the w-plane. (Again, see Example 5.4.3, with
ε0 = 1/4π .) Then, calling � = Φ + iΨ, we see that Φ is zero on the real
axis of the w plane (because log A/A∗ is purely imaginary). Consequently,
we have satisfied the boundary condition Φ = 0 on the plates, and hence the
electrostatic potential at any point of the shaded region of the z plane is given by

Φ = 2q Re log

[
w − e−iν

w − eiν

]
= 2q Re log

[
e

π z
d − e−iν

e
π z
d − eiν

]
, ν ≡ πa

d

Problems for Section 5.4

1. Consider a source at z = −a and a sink at z = a of equal strengths k.

(a) Show that the associated complex potential is �(z) = k log[(z +
a)/(z − a)].

(b) Show that the flow speed is 2ka/
√

a4 − 2a2r2 cos 2θ + r4, where
z = reiθ .

2. Use Bernoulli’s equation (5.4.20) to determine the pressure at any point
of the fluid of the flow studied in Example 5.4.6.

3. Consider a flow with the complex potential �(z) = u0(z + a2/z), the
particular case γ = 0 of Example 5.4.8. Let p and p∞ denote the pres-
sure at a point on the cylinder and far from the cylinder, respectively.

(a) Use Eq. (5.4.20) to establish that p − p∞ = 1
2ρu0

2(1− 4 sin2 θ).
(b) Show that a vacuum is created at the points ±ia if the speed of the

fluid is equal to or greater than u0 =
√

2p∞/(3ρ). This phenomenon
is usually called cavitation.

4. Discuss the fluid flow associated with the complex velocity potential
�(z) = Q0z + Q̄0a2

z + iγ
2π log z, a > 0, γ real, Q0 = U0 + iV0. Show

that the force exerted on the cylindrical obstacle defined by the flow field
is given by F = iρ Q̄0γ . This force is often referred to as the lift.

5. Show that the steady-state temperature at any point of the region given in
Figure 5.4.11, where the temperatures are maintained as indicated in the
figure, is given by

T (r, θ) = 10

π
tan−1

{
(r2 − 1) sin θ

(r2 + 1) cos θ − 2r

}

− 10

π
tan−1

{
(r2 − 1) sin θ

(r2 + 1) cos θ + 2r

}
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1

10˚ C

0˚ C 0˚ C

Fig. 5.4.11. Temperature distribution for Problem 5.4.5

Φ1

Φ2

α

Fig. 5.4.12. Electrostatic potential for Problem 5.4.7

Hint: use the transformationw = z+1/z to map the above shaded region
onto the upper half plane.

6. Let Ω(z) = zα , where α is a real constant and α > 1
2 . If z = reiθ show

that the rays θ = 0 and θ = π/α are streamlines and hence can be replaced
by walls. Show that the speed of the flow is αrα−1, where r is the distance
from the corner.

7. Two semiinfinite plane conductors meet at an angle 0 < α < π/2 and are
charged at constant potentials Φ1 and Φ2.

Show that the potential Φ and the electric field E = (Er , Eθ ) in the
region between the conductors are given by

Φ = Φ2 +
(

Φ1 −Φ2

α

)
θ, Eθ = Φ2 −Φ1

αr
, Er = 0,

where z = reiθ , 0 ≤ θ ≤ α.

8. Two semiinfinite plane conductors intersect at an angle α, 0 < α < π ,
and are kept at zero potential.
A line of charge q per unit length is located at the point z1, which is
equidistant from both planes. Show that the potential in the shaded region
is given by

Re

{
−2q log

(
z

π
α − z1

π
α

z
π
α − z

π
α

1

)}
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α
q

d

d

z1

Fig. 5.4.13. Electrostatics, Problem 5.4.8.

u0 u0
ab

Fig. 5.4.14.

9. Consider the flow past an elliptic cylinder indicated in Figure 5.4.14.

(a) Show that the complex potential is given by

�(z) = u0

(
ζ + (a + b)2

4ζ

)
where

ζ ≡ 1

2

(
z +
√

z2 − c2
)
, c2 = a2 − b2

(b) Show that the fluid speed at the top and bottom of the cylinder is
u0(1+ b

a ).

10. Two infinitely long cylindrical conductors having cross sections that are
confocal ellipses with foci at (−c, 0) and (c, 0) (see Figure 5.4.15) are
kept at constant potentials Φ1 and Φ2.

(a) Show that the mapping z = c sin ζ = c sin(ξ + iη) transforms the
confocal ellipses in Figure 5.4.15 onto two parallel plates such as those
depicted in Figure 5.4.10, where Φ = Φ j on η = η j , with cosh η j =
R j/c, j = 1, 2. Use the transformation w = exp( πd (ζ − iη1)), where
d = η2− η1 (see Example 5.4.10) to show that the complex potential
is given by

�(w)=Φ1+Φ2 −Φ1

iπ
logw=Φ1+Φ2 −Φ1

id

[
sin−1

( z

c

)
− iη1

]
.

(b) If the capacitance of two perfect conductors is defined by C =
q/(Φ1 −Φ2), where q is the charge on the inside ellipse, use Gauss’
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Φ

Φ

Fig. 5.4.15. Confocal ellipses, Problem 5.4.10

R

u0

Fig. 5.4.16. Ideal flow, Problem 5.4.11

law to show that the capacitance per unit length is given by

C = 1

2d
= 2π

2
(
cosh−1

(
R2
c

)− cosh−1
(

R1
c

))
(c) Establish that as c → 0 (two concentric circles):

C → 1

2 log(R2/R1)

11. A circular cylinder of radius R lies at the bottom of a channel of fluid that,
at large distance from the cylinder, has constant velocity u0.

(a) Show that the complex potential is given by

�(z) = πRu0 coth

(
πR

z

)
(b) Show that the difference in pressure between the top and the bottom

points of the cylinder is ρπ4u2
0/32, where ρ is the density of the fluid

(see Eqs. (5.4.20)–(5.4.21)).
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∗5.5 Theoretical Considerations – Mapping Theorems

In Section 5.3, various mapping theorems were stated, but their proofs were
postponed to this optional section.

Theorem5.5.1 (originally stated as Theorem 5.3.2) Let f (z)be analytic and not
constant in a domain D of the complex z plane. The transformation w = f (z)
can be interpreted as a mapping of the domain D onto the domain D∗ = f (D)

of the complex w plane. (Sometimes this theorem is summarized as “open sets
map to open sets.”)

Proof A point set is a domain if it is open and connected (see Section 1.2).
An open set is connected if every two points of this set can be joined by a
contour lying in this set. If we can prove that D∗ is an open set, its connectivity
is an immediate consequence of the fact that, because f (z) is analytic, every
continuous arc in D is mapped onto a continuous arc in D∗. The proof that D∗

is an open set follows from an application of Rouche’s Theorem (see Section
4.4), which states: if the functions g(z) and g̃(z) are analytic in a domain and
on the boundary of this domain, and if on the boundary |g(z)| > |g̃(z)|, then in
this domain the functions g(z)− g̃(z) and g(z) have exactly the same number
of zeroes. Because f (z) is analytic in D, then f (z) has a Taylor expansion at a
point z0 ∈ D. Assume that f ′(z0) 
= 0. Then g(z) ≡ f (z)− f (z0) vanishes (it
has a zero of order 1) at z0. Because f (z) is analytic, this zero is isolated (see
Theorem 3.2.7). That is, there exists a constant ε > 0 such that g(z) 
= 0 for
0 < |z − z0| ≤ ε. On the circle |z − z0| = ε, g(z) is continuous; hence there
exists a positive constant A such that A = min | f (z)− f (z0)| on |z − z0| = ε.
If g̃(z) ≡ a is a complex constant such that |a| < A, then |g(z)| > |a| = |g̃(z)|
on |z − z0| = ε, and Rouche’s Theorem implies that g(z)− g̃(z) vanishes in
|z − z0| < ε.

Hence, for every complex number a = |a|eiφ , |a| < A, we find that there
is exactly one value for g(z) = w − w0 = a corresponding to every z inside
|z − z0| < ε. Therefore, if z0 ∈ D, f ′(z0) 
= 0, and w0 = f (z0), then for
sufficiently small ε > 0 there exists a δ > 0 such that the image of |z− z0| < ε

contains the disk |w − w0| < δ (here δ = A), and therefore D∗ is open. If
f ′(z0) = 0, a slight modification of the above argument is required. If the first
nonvanishing derivative of f (z) at z0 is of the nth order, then g(z) has a zero
of the nth order at z = z0. The rest of the argument goes through as above,
but in this case one obtains from Rouche’s Theorem the additional information
that in |z − z0| < ε the values w, for which |w − w0| < A, will now be taken
n times. �
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Theorem 5.5.2 (originally stated as Theorem 5.3.3) (1) Assume that f (z) is
analytic at z0 and that f ′(z0) 
= 0. Then f (z) is univalent in the neighbor-
hood of z0. More precisely, f has a unique analytic inverse F in the neigh-
borhood of w0 ≡ f (z0); that is, if z is sufficiently near z0, then z = F(w),
where w ≡ f (z). Similarly, if w is sufficiently near w0 and z ≡ F(w), then
w = f (z). Furthermore, f ′(z)F ′(w) = 1, which implies that the inverse map is
conformal.

(2) Assume that f (z) is analytic at z0 and that it has a zero of order n;
that is, the first nonvanishing derivative of f (z) at z0 is f (n)(z0). Then to each
w sufficiently close to w0 ≡ f (z0), there correspond n distinct points z in
the neighborhood of z0, each of which has w as its image under the mapping
w = f (z). Actually, this mapping can be decomposed in the formw−w0 = ζ n ,
ζ = g(z − z0), g(0) = 0 where g(z) is univalent near z0 and g(z) = zH(z)
with H(0) 
= 0.

Proof (1) The first part of the proof follows from Theorem 5.5.1, where it was
shown that each w in the disk |w − w0| < A denoted by P is the image of
a unique point z in the disk |z − z0| < ε, where w = f (z). This uniqueness
implies z = F(w) and z0 = F(w0). The equations w = f (z) and z = F(w)
imply the usual equation w = f (F(w)) satisfied by a function and its inverse.
First we show that F(w) is continuous in P and then show that this implies that
F(w) is analytic.

Let w1 ∈ P be the image of a unique point z1 in |z − z0| < ε. From
Theorem 5.5.1, the image of |z − z1| < ε1 contains |w − w1| < δ1, so for suffi-
ciently small δ1 we have |z − z1| = |F(w)− F(w1)| < ε1, and therefore F(w)
is continuous.

Next assume thatw1 is nearw. Thenw andw1 are the images corresponding
to z = F(w) and z1 = F(w1), respectively. If w is fixed, the continuity of F
implies that if |w1 − w| is small, then |z1 − z| is also small. Thus

F(w1)− F(w)

w1 − w
= z1 − z

w1 − w
= z1 − z

f (z1)− f (z)
−→ 1

f ′(z)
(5.5.1)

as |w1 − w| −→ 0.
Because f (z) = w has only one solution for |z − z0| < ε, it follows that

f ′(z) 
= 0. Thus Eq. (5.5.1) implies that F ′(w) exists and equals 1/ f ′(z).
We also see, by the continuity of f (z), that every z near z0 has as its image a
point near w0. So if |z − z0| is sufficiently small, w = f (z) is a point in P
and z = F(w). Thus z = F( f (z)) near z0, which by the chain rule implies
1 = f ′(z)F ′(w), is consistent with Eq. (5.5.1).
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(2) Assume for convenience, without loss of generality, that z0 = w0 = 0.
Using the fact that the first (n − 1) derivatives of f (z) vanish at z = z0, we
see from its Taylor series that w = znh(z), where h(z) is analytic at z = 0 and
h(0) 
= 0. Because h(0) 
= 0 there exists an analytic function H(z) such that
h(z) = [H(z)]n , with H(0) 
= 0. (The function H(z) can be found by taking
the logarithm.) Thus w = (g(z))n , where g(z) = zH(z). The function g(z)
satisfies g(0) = 0 and g′(0) 
= 0, thus it is univalent near 0. The properties of
w = ζ n together with the fact that g(z) is univalent imply the assertions of part
(2) of Theorem 5.3.3. �

Theorem 5.5.3 (originally stated as Theorem 5.3.4) Let C be a simple closed
contour enclosing a domain D, and let f (z) be analytic on C and in D. Suppose
f (z) takes no value more than once on C . Then (a) the map w = f (z) takes
C enclosing D to a simple closed contour C∗ enclosing a region D∗ in the
w plane; (b) w = f (z) is a one-to-one map from D to D∗; and (c) if z
traverses C in the positive direction, then w = f (z) traverses C∗ in the positive
direction.

Proof (a) The image of C is a simple closed contour C∗ because f (z) is ana-
lytic and because f (z) takes on no value more than once for z on C .

(b) Consider the following integral with the transformationw = f (z), where
w0 corresponds to an arbitrary point z0 ∈ D and is not a point on C∗:

I = 1

2π i

∮
C

f ′(z) dz

f (z)− w0
= 1

2π i

∮
C∗

dw

w − w0
(5.5.2)

From the argument principal in Section 4.4 (Theorem 4.4.1) we find that I =
N − P , where N and P are the number of zeroes and poles (respectively) of
f (z)− w0 enclosed within C . However, because f (z) is analytic, P = 0 and
I = N .

If w0 lies outside C∗, the right-hand side of Eq. (5.5.2) is 0, and therefore
N = 0 so that f (z) 
= w0 inside C . If w0 lies inside C∗, then the right-hand
side of Eq. (5.5.2) is 1 (assuming for now, the usual positive convention in

∮
),

and therefore f (z) = w0 once inside C . Finally, w0 could not lie on C∗ because
it is an image of some point z0 ∈ D, and, from Theorem 5.5.1 (open sets map
to open sets), some point in the neighborhood of w0 would need to be mapped
to the exterior of C∗, which we have just seen is not possible.

Consequently, each value w0 inside C∗ is attained once and only once, and
the transformation w = f (z) is a one-to-one map.
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(c) The above proof assumes that both C and C∗ are traversed in the positive
direction. If C∗ is traversed in the negative direction, then the right-hand side of
Eq. (5.5.2) would yield−1, which contradicts the fact that N must be positive.
Clearly, C and C∗ can both be traversed in the negative directions.

Finally, we conclude this section with a statement of the Riemann Mapping
Theorem. First we remark that the entire finite plane, |z| <∞, is simply con-
nected. However, there exists no conformal map that maps the entire finite
plane onto the unit disk. This is a consequence of Liouville’s Theorem because
an analytic function w = f (z) such that | f (z)| < 1 for all finite z ∈ C would
have to be constant. Similar reasoning shows that there exists no conformal
map that maps the extended plane |z| ≤ ∞ onto the unit disc. By Riemann’s
Mapping Theorem, these are the only simply connected domains that cannot
be mapped onto the unit disk.

Theorem 5.5.4 (Riemann Mapping Theorem) Let D be a simply connected
domain in the z plane, which is neither the z plane or the extended z plane.
Then there exists a univalent function f (z), such that w = f (z) maps D onto
the disk |w| < 1.

The proof of this theorem requires knowledge of the topological concepts of
completeness and compactness. It involves considering families of mappings
and solving a certain maximum problem for a family of bounded continuous
functionals. This proof, which is nonconstructive, can be found in advanced
textbooks (see, for example, Nehari (1952)). In the case of a simply connected
domain bounded by a smooth Jordan curve, a simpler proof has been given
(Garabedian, 1991).

Remarks It should be emphasized that the Riemann Mapping Theorem is a
statement about simply connected open sets. It says nothing about the behavior
of the mapping function on the boundary. However, for many applications
of conformal mappings, such as the solution of boundary value problems, it
is essential that one is able to define the mapping function on the boundary.
For this reason it is important to identify those bounded regions for which
the mapping function can be extended continuously to the boundary. It can be
shown (Osgood–Carathéodory Theorem) that if D is bounded by a simple closed
contour, then it is possible to extend the function f mapping D conformally
onto the open unit disk in such a way that f is continuous and one to one on
the boundaries.

A further consequence of all this is that fixing any three points on the bound-
ary of the mapping w = f (z), where the two sets of corresponding points
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{z1, z2, z3}, {w1, w2, w3} appear in the same order when the two boundaries are
described in the positive direction, uniquely determines the map. The essential
reason for this is that two different maps onto the unit circle can be transformed
to one another by a bilinear transformation, which can be shown to be fixed
by three points (see Section 5.7). Alternatively, if z0 is a point in D, fixing
f (z0) = 0 with f ′(z0) > 0 uniquely determines the map.

We also note that there is a bilinear transformation (e.g. Eq. (5.4.19) and see
also Eq. (5.7.18)) that maps the unit circle onto the upper half plane, so in the
theorem we could equally well state that w = f (z) maps D onto the upper half
w plane.

5.6 The Schwarz–Christoffel Transformation

One of the most remarkable results in the theory of complex analysis is Rie-
mann’s Mapping Theorem, Theorem 5.5.4. This theorem states that any simply
connected domain of the complex z plane, with the exception of the entire z
plane and the extended entire z plane, can be mapped with a univalent transfor-
mationw = f (z) onto the disk |w| < 1 or onto the upper half of the complexw
plane. Unfortunately, the proof of this celebrated theorem is not constructive,
that is, given a specific domain in the z plane, there is no general constructive
approach for finding f (z). Nevertheless, as we have already seen, there are
many particular domains for which f (z) can be constructed explicitly. One
such domain is the interior of a polygon. Let us first consider an example of a
very simple polygon.

Example 5.6.1 The interior of an open triangle of angle πα, with vertex at the
origin of thew plane is mapped to the upper half z plane byw = zα , 0 < α < 2;
see Figure 5.6.1.

If z = reiθ , w = ρeiϕ , then the rays ϕ = 0 and ϕ = πα of the w plane
are mapped to the rays θ = 0 and θ = π of the z plane. We note that the

v

u
πα

z plane w plane

Fig. 5.6.1. Transformation w = zα
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conformal property, that is that angles are preserved under the transformation
w = f (z) = zα , doesn’t hold at z = 0 since f (z) is not analytic there when
α 
= 1.

The transformationw = f (z) associated with a general polygon is called the
Schwarz–Christoffel transformation. In deriving this transformation we will
make use of the so-called Schwarz reflection principle. The most basic version
of this principle is really based on the following elementary fact. Suppose that
f (z) is analytic in a domain D that lies in the upper half of the complex z
plane. Let D̃ denote the domain obtained from D by reflection with respect
to the real axis (obviously D̃ lies on the lower half of the complex z plane).
Then corresponding to every point z ∈ D̃, the function f̃ (z) = f (z̄) is analytic
in D̃.

Indeed, if f (z) = u(x, y) + iv(x, y), then f (z̄) = u(x,−y) − iv(x,−y).
This shows that the real and imaginary parts of the function f̃ (z) ≡ f (z̄) have
continuous partial derivatives, and that the Cauchy–Riemann equations (see
Section 2.1) for f imply the Cauchy–Riemann equations for f̃ , and hence f̃ is
analytic. Call ũ(x, y′) = u(x,−y), ṽ(x, y′) = −v(x,−y), y′ = −y, then the
Cauchy Riemann conditions for ũ and ṽ in terms of x and y′ follow.

Example 5.6.2 The function f (z) = 1/(z + i) is analytic in the upper half z
plane. Use the Schwarz reflection principle to construct a function analytic in
the lower half z plane.

The function f (z̄) = 1/(z − i) has a pole at z = i as its only singularity;
therefore it is analytic for Imz ≤ 0.

The above idea not only applies to reflection about straight lines, but it also
applies to reflections about circular arcs. (This is discussed more fully in Section
5.7.) In a special case, it implies that if f (z) is analytic inside the unit circle,
then the function f (1/z̄) is analytic outside the unit circle. Note that the points
in the domains D and D̃ of Figure 5.6.2 are distinguished by the property that

D

D
~

z

z

Fig. 5.6.2. Reflection principle



5.6 The Schwarz–Christoffel Transformation 347

L l1 1

Fig. 5.6.3. Analytic continuation across the real axis

they are inverse points with respect to the real axis. If one uses a bilinear
transformation (see, e.g., Eqs. (5.4.19) or (5.7.18)) to map the real axis onto
the unit circle, the corresponding points z and 1/z̄ will be the “inverse” points
with respect to this circle. (Note that the inverse points with respect to a circle
are defined in property (viii) of Section 5.7).

The Schwarz reflection principle, across real line segments is the following.
Suppose that the domain D has part of the real axis as part of its boundary.
Assume that f (z) is analytic in D and is continuous as z approaches the line
segments L1, . . . , Ln of the real axis and that f (z) is real on these segments.
Then f (z) can be analytically continued across L1, . . . , Ln into D̃ (see also
Theorems 3.2.6, 3.2.7, and 3.5.2). Indeed, f (z) is analytic in D, which implies
that f̃ (z) ≡ f (z̄) is analytic in D̃ because f (z) = f̃ (z) on the line segments
(due to the reality condition). These facts, together with the continuity of
f (z) as z approaches L1, . . . , Ln , imply that the function F(z) defined by
f (z) in D, by f̃ (z) in D̃, and by f (z) on L1, . . . , Ln is also analytic on these
segments.

A particular case of such a situation is shown in Figure 5.6.3. Although D
has two line segments in common with the real axis, let us assume that the
conditions of continuity and reality are satisfied only on L1. Then there exists
a function analytic everywhere in the shaded region except on l1.

The important assumption in deriving the above result was Im f = 0 on
Imz = 0. If we think of f (z) as a transformation from the z plane to the w

plane, this means that a line segment of the boundary of D of the z plane is
mapped into a line segment of the boundary of f (D) in the w plane which
are portions of the real w axis. By using linear transformations (rotations and
translations) in the z andw plane, one can extend this result to the case that these
transformed line segments are not necessarily on the real axis. In other words,
the reality condition is modified to the requirement that f (z)maps line segments
in the z plane into line segments in the w plane. Therefore, if w = f (z) is
analytic in D and continuous in the region consisting of D together with the
segments L1, . . . , Ln , and if these segments are mapped into line segments in
the w plane, then f (z) can be analytically continued across L1, . . . , Ln .
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Fig. 5.6.4. Transformation of a polygon

As mentioned above the Schwarz reflection principle can be generalized
to the case that line segments are replaced by circular arcs (see also, Nehari
(1952)). We discuss this further in Section 5.7.

Theorem 5.6.1 (Schwarz–Christoffel) Let � be the piecewise linear boundary
of a polygon in the w plane, and let the interior angles at successive vertices be
α1π, . . . , αnπ . The transformation defined by the equation

dw

dz
= γ (z − a1)

α1−1(z − a2)
α2−1 · · · (z − an)

αn−1 (5.6.1)

where γ is a complex number and a1, . . . , an are real numbers, maps � into
the real axis of the z plane and the interior of the polygon to the upper half of
the z plane. The vertices of the polygon, A1, A2, . . ., An , are mapped to the
points a1, . . . , an on the real axis. The map is an analytic one-to-one conformal
transformation between the upper half z plane and the interior of the polygon.

When A j is finite then 0 < α j ≤ 2;α j = 2 corresponds to the tip of a “slit”
(see Example 5.6.5 below). Should a vertex A j be at infinity then−2 ≤ α j ≤ 0
(using z = 1/t).

In this application we consider both the map and its inverse, that is, mapping
the w plane to the z plane; z = F(w), or the z plane to the w plane; w = f (z).

We first give a heuristic argument of how to derive Eq. (5.6.1). Our goal is
to find an analytic function f (z) in the upper half z plane such that w = f (z)
maps the real axis of the z plane onto the boundary of the polygon. We do this
by considering the derivative of the mapping dw

dz = f ′(z), or dw = f ′(z)dz.
Begin with a point w on the polygon, say, to the left of the first vertex A1 (see
Figure 5.6.4) with its corresponding point z to the left of a1 in the z plane. If we
think of dw and dz as vectors on these contours, then arg (dz) = 0 (always) and
arg (dw) = const. (always, since this “vector” maintains a fixed direction) until



5.6 The Schwarz–Christoffel Transformation 349

D D1

D2

Fig. 5.6.5. Continuation of D

we traverse the first vertex. In fact arg (dw) only changes when we traverse the
vertices. Thus arg ( f ′(z)) = arg (dw) − arg (dz) = arg (dw). We see from
Figure 5.6.4 that the change in arg ( f ′(z)) as we traverse (from left to right) the
first vertex is π−πα1, and more generally, through any vertex A� the change is
arg ( f ′(z)) = π(1−α�). This is precisely the behavior of the arguments of the
function (z−a�)

α�−1: as we traverse a point z = z� we find that arg (z−a�) = π

if z is real and on the left of a� and that arg (z − a�) = 0 if z is real and on the
right of a�. Thus arg (z − a�) changes by −π as we traverse the point a�, and
(α�−1) arg (z−a�) changes by π(1−α�). Because we have a similar situation
at each vertex, this suggests that dw

dz = f ′(z) is given by the right-hand side of
Eq. (5.6.1). Many readers may wish to skip the proof of this theorem, peruse
the remarks that follow it, and proceed to the worked examples.

Proof We outline the essential ideas behind the proof. Riemann’s mapping
theorem, mentioned at the beginning of this section (see also Section 5.5)
guarantees that such a univalent map w = f (z) exists. (Actually, one could
proceed on the assumption that the mapping function f (z) exists and then
verify that the function f (z) defined by (5.6.1) satisfies the conditions of the
theorem.) However we prefer to give a constructive proof. We now discuss its
construction.

Let us consider the function w = f (z) analytically continued across one
of the sides of the polygon D in the w plane to obtain a function f1(z) in an
adjacent polygon D1; every point w ∈ D corresponds to a point in the upper
half z plane, and every point w ∈ D1 corresponds to a symmetrical point, z̄, in
the lower half z plane. Doing this again along a side of D1, we obtain a function
f2(z) in the polygon D2, etc., as indicated in Figure 5.6.5.

Each reflection of a polygon in the w plane across, say, the segment Ak Ak+1,
corresponds (by the Schwarz reflection principle) to an analytic continuation
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of f (z) across the line segment akak+1. By repeating this over and over, the
Schwarz reflection principle implies that f (z) can be analytically continued
to form a single branch of what would be, in general, an infinitely branched
function.

However, because we have reflections about straight sides, geometrical argu-
ments imply that the functions f (z) ∈ D and f2(z) ∈ D2 are linearly related to
each other via a rotation and translation: that is, f2(z) = A f (z)+ B, A = eiα .
The same is true for any even number of reflections, f4, f6, . . .. But g(z) =
f ′′(z)/ f ′(z) is invariant under such linear transformations, so any point in the
upper half z plane will correspond to a unique value of g(z); because g(z) =
( f2

′′(z))/( f2
′(z)) = ( f4

′′(z))/( f4
′(z)) = · · ·, any even number of reflections

returns us to the same value. Similarly, any odd number of reflections returns us
a unique value of g(z) corresponding to a point z in the lower half plane. Also
from Riemann’s Mapping Theorem and the symmetry principle f ′(z) 
= 0, f (z)
is analytic everywhere except possibly at the endpoints z = a�, � = 1, 2, . . . .
The only possible locations for singularities correspond to the vertices of the
polygon. On the real z axis, g(z) is real and may be continued by reflection to
the lower half plane by g(z) = g(z). In this way, all points z (upper and lower
half planes) are determined uniquely and the function g(z) is therefore single
valued.

Next, let us consider the points z = a� corresponding to the polygonal vertices
A�. In the neighborhood of a vertex z = a� an argument such as that preceding
this theorem shows that the mapping has the form

w−w0 = f (z)− f (z0) = (z− a�)
α�

[
c(0)� + c(1)� (z− a�)+ c(2)� (z− a�)

2+ · · ·
]

Consequently, g(z) = f ′′(z)/ f ′(z) is analytic in the extended z plane except
for poles at the points a1, . . ., an with residues (α1−1), . . . , (αn−1). It follows
from Liouville’s Theorem that

f ′′(z)
f ′(z)

−
n∑

l=1

(αl − 1)

z − al
= c (5.6.2)

where c is some complex constant. But f (z) is analytic at z = ∞ (assuming
no vertex, z = a� is at infinity), so f (z) = f (∞)+ b1/z + b2/z2 + . . .; hence
f ′′(z)/ f ′(z) → 0 as as z → ∞, which implies that c = 0. Integration of
Eq. (5.6.2) yields Eq. (5.6.1). �

Remarks (1) For a closed polygon,
∑n

l=1(1− αl) = 2, and hence
∑n

l=1 αl =
(n−2)where n is the number of sides. This is a consequence of the well known
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geometrical property that the sum of the exterior angles of any closed polygon
is 2π .

(2) It is shown in Section 5.7 that for bilinear transformations, the corres-
pondence of three (and only three) points on the boundaries of two domains
can be prescribed arbitrarily. Actually, it can be shown that this is true for any
univalent transformation between the boundary of two simply-connected do-
mains. In particular, any of the three vertices of the polygon, say A1, A2, and
A3, can be associated with any three points on the real axis a1, a2, a3 (of course
preserving order and orientation). More than three of the vertices a� cannot
be prescribed arbitrarily, and the actual determination of a4, a5, . . . , an (some-
times called accessory parameters) might be difficult. In application, symmetry
or other considerations usually are helpful, though numerical computation is
usually the only means to evaluate the constants a4, a5, . . . , an . Sometimes it
is useful to fix more independent real conditions instead of fixing three points,
(e.g. map a point w0 ∈ D to a fixed point z0 in the z plane, and fix a direction
of f ′(z0), that is, fix arg f ′(z0)).

(3) The integration of Eq. (5.6.1) usually leads to multivalued funcions.
A single branch is chosen by the requirement that 0 < arg (z − al) < π , l =
1, . . . , n. The function f (z) is analytic in the semiplane Im z > 0; it has branch
points at z = a�.

(4) Formula (5.6.1) holds when none of the points coincide with the point
at infinity. However, using the transformation z = an − 1/ζ , which transforms
the point z = an to ζ = ∞ but transforms all other points a� to finite points
ζ� = 1/(an − a�), we see that Eq. (5.6.1) yields

d f

dζ
(ζ 2) = γ

(
an − a1 − 1

ζ

)α1−1

· · ·
(

an − an−1 − 1

ζ

)αn−1−1(
− 1

ζ

)αn−1

Using Remark (1), we have

d f

dζ
= γ̂ (ζ − ζ1)

α1−1 · · · (ζ − ζn−1)
αn−1−1 (5.6.3a)

where ζ� = 1/(an − a�) and γ̂ is a new constant. Thus, formula (5.6.1) holds
with the point at ∞ removed. If the point z = an is mapped to ζ = ∞, then,
by virtue of Remark (2), only two other vertices can be arbitrarily prescribed.
Using Remark (1), we find that as ζ →∞

d f

dζ
= γ̂ ζ−αn−1

[
1+ c1

ζ
+ · · ·

]
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(5) Using the bilinear transformation

z = i

(
1+ ζ

1− ζ

)
, ζ = z − i

z + i
,

dz

dζ
= 2i

(1− ζ )2

which transforms the upper half z plane onto the unit circle |ζ | < 1, it follows
that Eq. (5.6.1) also with z replaced by ζ and with suitable constants γ → γ̂ ,
a� → ζ�, ζ� being on the unit circle, � = 1, 2, . . . , n, which can be found by
using the above bilinear transformation and Remark (1).

(6) These ideas can be used to map the complete exterior of a closed polygon
(with n vertices) in the w plane to the upper half z plane. We note that at first
glance one might not expect this to be possible because an annular region (not
simply connected) cannot be mapped onto a half plane. In fact, the exterior of
a polygon, which contains the point at infinity, is simply connected. A simple
closed curve surrounding the closed polygon can be continuously deformed to
the point at infinity. In order to obtain the formula in this case, we note that
all of the interior angles πα�, � = 1, 2, . . . , n, must be transformed to exterior
angles 2π − πα� because we traverse the polygon in the opposite direction,
keeping the exterior of the polygon to our left. Thus the change in arg f ′(z) at
a vertex A� is −(π − πα�) and therefore in Eq. (5.6.1) (α� − 1)→ (1− α�).
We write the transformation in the form

dw

dz
= g(z)(z − a1)

1−α1(z − a2)
1−α2 · · · (z − an)

1−αn

The function g(z) is determined by properly mapping the point w = ∞, which
is now an interior point of the domain to be mapped. Let us map w = ∞ to
a point in the upper half plane, say, z = ia0, a0 > 0. We require w(z) to be
a conformal transformation at infinity, so near z = ia0, g(z) must be single
valued and w(z) should transform like

w(ζ ) = γ1ζ + γ0 + · · · , ζ = 1

z − ia0
as ζ →∞, or z → ia0

Similar arguments pertain to the mapping of the lower half plane by using the
symmetry principle. Using the fact that the polygon is closed,

∑n
�=1(1− α�)

= 2, and conformal at z = ∞, we deduce that

g(z) = γ

(z − ia0)2(z + ia0)2

(Note that g(z) is real for real z.) Thus, the Schwarz–Christoffel formula
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mapping the exterior of a closed polygon to the upper half z plane is given
by

dw

dz
= γ

(z − ia0)2(z + ia0)2
(z−a1)

1−α1(z−a2)
1−α2 · · · (z−an)

1−αn (5.6.3b)

We also note that using the bilinear transformation of Remark (5) with a0 = 1,
we find that the Schwarz–Christoffel transformation from the exterior of a
polygon to the interior of a unit circle |ζ | < 1 is given by

dw

dζ
= γ̂

ζ 2
(ζ − ζ1)

1−α1(ζ − ζ2)
1−α2 · · · (ζ − ζn)

1−αn (5.6.3c)

where the points ζi , i = 1, 2, . . . , n lie on the unit circle.

Example 5.6.3 Determine the function that maps the half strip indicated in
Figure 5.6.6 onto the upper half of the z plane.

We associate A(∞) with a(∞), A1(−k) with a1(−1), and A2(k) with a2(1).
Then, from symmetry, we find that B(∞) is associated with b(∞). Equation
(5.6.1) with α1 = α2 = 1

2 , a1 = −1, and a2 = 1 yields

dw

dz
= γ (z + 1)−

1
2 (z − 1)−

1
2 = γ̃√

1− z2

Integration implies

w = γ̃ sin−1 z + c

When z = 1, w = k, and when z = −1, w = −k. Thus

k = γ̃ sin−1(1)+ c, −k = γ̃ sin−1(−1)+ c

a

1

ba

w

A

A
v

k-k

B

A
u

-1

a

z = sin( )π
2k

2 1 21

z plane w plane

Fig. 5.6.6. Transformation of a half strip
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Fig. 5.6.7. Constant temperature boundary conditions

Using sin−1(1) = π/2 and sin−1(−1) = −π/2, these equations yield c = 0,
γ̃ = 2k/π . Thus w = (2k/π) sin−1 z, and z = sin(πw/2k).

Example 5.6.4 A semiinfinite slab has its vertical boundaries maintained at
temperature T0 and 2T0 and its horizontal boundary at a temperature 0 (see
Figure 5.6.7). Find the steady state temperature distribution inside the slab.

We shall use the result of Example 5.6.3, with k = a/2 (interchanging w

and z). It follows that the transformation w = sin(π z/a) maps the semiinfinite
slab onto the upper half w plane. The function T = α1θ1 + α2θ2 + α (see also
Section 2.3, especially Eqs. (2.3.13)–(2.3.17)), where α1, α2, and α are real
constants and is the imaginary part of α1 log(w + 1)+ α2 log(w − 1)+ iα,
and is thereby harmonic (i.e., because it is the imaginary part of an analytic
function, it satisfies Laplace’s equation) in the upper half strip. In this strip,
w + 1 = r1eiθ1 and w − 1 = r2eiθ2 , where 0 ≤ θ1, θ2 ≤ π . To determine α1,
α2, and α, we use the boundary conditions. If θ1 = θ2 = 0, then T = 2T0; if
θ1 = 0 and θ2 = π , then T = 0; if θ1 = θ2 = π , then T = T0. Hence

T = T0

π
θ1 − 2T0

π
θ2 + 2T0 = T0

π
tan−1 v

u + 1
− 2T0

π
tan−1 v

u − 1
+ 2T0

Using

w = u + iv = sin

(
π z

a

)
that is,

u = sin

(
πx

a

)
cosh

(
πy

a

)
and v = cos

(
πx

a

)
sinh

(
πy

a

)
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Fig. 5.6.8. Transformation of the cut half plane onto a slit

we find

T = T0

π
tan−1

[
cos
(
πx
a

)
sinh
(
πy
a

)
sin
(
πx
a

)
cosh
(
πy
a

) + 1

]
− 2T0

π
tan−1

[
cos
(
πx
a

)
sinh
(
πy
a

)
sin
(
πx
a

)
cosh
(
πy
a

) − 1

]

+ 2T0

Example 5.6.5 Determine the function that maps the “slit” of height s depicted
in Figure 5.6.8 onto the upper half of the z plane.

We associate A1(0−) with a1(−1), A2(si) with a2(0), and A3(0+) with
a3(1). Then Eq. (5.6.1) with α1 = 1

2 , a1 = −1, α2 = 2, a2 = 0, α3 = 1
2 , and

a3 = 1 yields

dw

dz
= γ (z + 1)−

1
2 z(z − 1)−

1
2 = γ̃ z√

1− z2

Thus

w = δ
√

z2 − 1+ c

When z = 0, w = si , and when z = 1, w = 0. Thus

w = s
√

z2 − 1 (5.6.4)

Example 5.6.6 Find the flow past a vertical slit of height s, which far away
from this slit is moving with a constant velocity u0 in the horizontal direction.

It was shown in Example 5.6.5 that the transformation w = s
√

z2 − 1 maps
the vertical slit of height s in the w plane onto the real axis of the z plane. The
flow field over a slit in thew plane is therefore transformed into a uniform flow in
the z plane with complex velocity�(z) = U0z = U0(x+iy), and with constant
velocity U0. The streamlines of the uniform flow in the z plane correspond to
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Fig. 5.6.10. Transformation of the exterior of an isosceles triangle

y = c (recall that Ω = Φ+ iΨ where Φ and Ψ are the velocity potential and
stream function, respectively) where c is a positive constant and the flow field in
thew plane is obtained from the complex potentialΩ(w) = U0((

w
s )

2+1)
1
2 . The

image of each of the streamlines y = c in thew plane isw = s
√
(x + ic)2 − 1,

−∞ < x <∞. Note that c = 0 and c →∞ correspond to v = 0 and v→∞.
Alternatively, from the complex potential Ω = Φ + iΨ, Ψ = 0 when v = 0
and Ω′(w) → U0/s as |w| → ∞. Thus one gets the flow past the vertical
barrier depicted in Figure 5.6.9, with u0 = U0/s.

Example 5.6.7 Determine the function that maps the exterior of an isosceles
triangle located in the upper half of the w plane onto the upper half of the z
plane.

We note that this is not a mapping of a complete exterior of a closed polygon;
in fact, this problem is really a modification of Example 5.6.5. We will show
that a limit of this example as k → 0 (see Figure 5.6.10) reduces to the previous
one. Note tan(πα) = s/k.

We associate A1(−k) with a1(−1), A2(si) with a2(0), and A3(k) with a3(1).
The angles at A1, A2, and A3 are given by π − πα, 2π − (π − 2πα), and
π − πα, respectively. Thus α1 = 1 − α, α2 = 1 + 2α, α3 = 1 − α, and
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Eq. (5.6.1) yields

dw

dz
= γ (z + 1)−αz2α(z − 1)−α = γ̃

z2α

(1− z2)α

Thus

w = γ̃

∫ z

0

ζ 2α

(1− ζ 2)α
dζ + c (5.6.5)

When z = 0, w = si , and when z = 1, w = k. Hence c = si , and

k = γ̃

∫ 1

0

ζ 2α

(1− ζ 2)α
dζ + si

The integral
∫ 1

0 can be expressed in terms of gamma functions by calling t = ζ 2

and using a well-known result for integrals

B(p, q) =
∫ 1

0
t p−1(1− t)q−1 dt = �(p)�(q)

�(p + q)

B(p, q) is called the beta function. (See Eq. (4.5.30) for the definition of the
gamma function, �(z).) Using this equation with p = α+1/2, q = 1−α, and
�( 3

2 ) = 1
2�(

1
2 ), where �( 1

2 ) =
√
π , it follows that γ̃ �(α + 1/2)�(1 − α) =

(k − si)
√
π. Thus

w = (k − si)
√
π

�(α + 1/2)�(1− α)

∫ z

0

ζ 2α

(1− ζ 2)α
dζ + si (5.6.6)

We note that Example 5.6.5 corresponds to the limit k→ 0, α→ 1
2 in Eq. (5.6.6),

that is, under this limit, Eq. (5.6.6) reduces to Eq. (5.6.4)

w = si − si
∫ z

0

ζ√
1− ζ 2

dζ = si
√

1− z2 = s
√

z2 − 1

An interesting application of the Schwarz–Christoffel construction is the
mapping of a rectangle. Despite the fact that it is a simple closed polygon, the
function defined by the Schwarz–Christoffel transformation is not elementary.
(Neither is the function elementary in the case of triangles.) In the case of
a rectangle, we find that the mapping functions involve elliptic integrals and
elliptic functions.
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Fig. 5.6.11. Transformation of a rectangle

Example 5.6.8 Find the function that maps the interior of a rectangle onto the
upper half of the z plane. See Figure 5.6.11.

We associate A1(−1+ si) with a1(−1/k), A2(−1) with a2(−1), and z = 0
with w = 0. Then by symmetry, A3, A4 are associated with a3, a4 respectively.
In this example we regard k as given and assume that 0 < k < 1. Our goal is
to determine both the transformation w = f (z) and the constant s as a func-
tions of k. In this case, α1 = α2 = α3 = α4 = 1

2 , a1 = − 1
k , a2 = −1, a3 = 1,

and a4 = 1/k. Furthermore, because f (0) = 0 (symmetry), the constant of
integration is zero; thus Eq. (5.6.1) yields

dw

dz
= γ (z − 1)−1/2(z + 1)−1/2(z − 1/k)−1/2(z + 1/k)−1/2

Then by integration manipulation and by redefining γ (to γ̃ )

w = γ̃

∫ z

0

dζ√
(1− ζ 2)(1− k2ζ 2)

= γ̃ F(z, k) (5.6.7)

The integral appearing in Eq. (5.6.7), with the choice of the branch defined ear-
lier, in Remark 3 (we fix

√
1 = 1 and note w is real for real z, |z| > 1/k),

is the so-called elliptic integral of the first kind; it is usually denoted by
F(z, k). (Note, from the integral in Eq. (5.6.7), that F(z, k) is an odd func-
tion; i.e, F(−z, k) = −F(z, k).) When z = 1, this becomes F(1, k) which
is referred to as the complete elliptic integral, usually denoted by K (k) ≡
F(1, k) = ∫ 1

0 dζ/
√
(1− ζ 2)(1− k2ζ 2). The association of z = 1 with w = 1

implies that γ̃ = 1/K (k). The association of z = 1/k with w = 1+ is yields

1+ is = 1

K

∫ 1
k

0

dζ√
(1− ζ 2)(1− k2ζ 2)

= 1

K

(
K +

∫ 1
k

1

dζ√
(1− ζ 2)(1− k2ζ 2)

)
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or K s = K ′, where K ′ denotes the associated elliptic integral (not the deriva-
tive), which is defined by

K ′(k) =
∫ 1

k

1

dξ√
(ξ 2 − 1)(1− k2ξ 2)

This expression takes an alternative, standard form if one uses the substitution
ξ = (1− k ′2ξ ′2)−1/2, where k ′ = √1− k2 (see Eq. (5.6.9)).

In summary, the transformation f (z) and the constant s are given by

w = F(z, k)

K (k)
, s = K ′(k)

K (k)
(5.6.8)

where (the symbol ≡ denotes “by definition”)

F(z, k) ≡
∫ z

0

dζ√
(1− ζ 2)(1− k2ζ 2)

, K (k) ≡ F(1, k)

K ′(k) ≡
∫ 1

0

dξ√
(1− ξ 2)[1− (1− k2)ξ 2]

(5.6.9)

The parameter k is called the modulus of the elliptic integral. The inverse of
Eq. (5.6.8) gives z as a function of w via one of the so-called Jacobian elliptic
functions (see, e.g., Nehari (1952))

w = F(z, k)

K (k)
⇒ z = sn(wK , k) (5.6.10)

We note that Example 5.6.3 (with k = 1 in that example) corresponds to the
following limit in this example: s →∞, which implies that k → 0 because
limk→0 K ′(k) = ∞, and limk→0 K (k) = π/2. Then the rectangle becomes an
infinite strip, and Eq. (5.6.8a) reduces to equation

w = 2

π

∫ z

0

dζ√
1− ζ 2

= 2

π
sin−1 z

Remark The fundamental properties of elliptic functions are their “double pe-
riodicity” and single valuedness. We illustrate this for one of the elliptic func-
tions, the Jacobian “sn” function, which we have already seen in Eq. (5.6.10).
A standard “normalized” definition is (replacing wK by w in Eq. (5.6.10))

w = F(z, k) ⇒ z = F−1(w, k) = sn(w, k) (5.6.11)
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Fig. 5.6.12. Reflecting in the w plane

where again

F(z, k) ≡
∫ z

0

dζ√
(1− ζ 2)(1− k2ζ 2)

so that sn(0, k) = 0 and sn′(0, k) = 1 (in the latter we used dz
dw = 1/ dw

dz ).
We shall show the double periodicity

sn(w + nω1 + imω2, k) = sn(w, k) (5.6.12)

where m and n are integers, ω1 = 4K (k), and ω2 = 2K ′(k). Given the nor-
malization of Eq. (5.6.11) it follows that the “fundamental” rectangle in the w
plane corresponding to the upper half z plane is A1 = −K + i K ′, a1 = −1/k,
A2 = −K , and a2 = −1, with A3, a3, A4, and a4 as the points symmetric to
these (in Figure 5.6.11, all points on the w plane are multiplied by K ; this
is now the rectangle R in Figure 5.6.12). The function z = sn(w, k) can be
analytically continued by the symmetry principle.

Beginning with any point w in the fundamental rectangle R we must obtain
the same point w by symmetrically reflecting twice about a horizontal side
of the rectangle, or twice about a vertical side of the rectangle, etc., which
corresponds to returning to the same point in the upper half z plane each time.
This yields the double periodicity relationship (5.6.12).

These symmetry relationships also imply that the function z = sn(w, k)
is single valued. Any point z in the upper half plane is uniquely determined
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and corresponds to an even number of reflections, and similarly, any symmetric
point z̄ in the lower half plane is found uniquely by an odd number of reflections.
Analytic continuation of z = sn(w, k) across any boundary therefore uniquely
determines a value in the z plane. The only singularities of the map w = f (z)
are at the vertices of the rectangle, and near the vertices of the rectangle we have

w − Ai = Ci (z − ai )
1
2

[
1+ c(1)i (z − ai )+ · · ·

]
and we see that z = sn(w, k) is single valued there as well. The “period
rectangle” consists of any four rectangles meeting at a corner, such as R, R1,
R3, R4 in Figure 5.6.12. All other such period rectangles are periodic extensions
of the fundamental rectangle. Two of the rectangles map to the upper half z
plane and two map to the lower half z plane. Thus a period rectangle covers the
z plane twice, that is, for z = sn(w, k) there are two values ofw that correspond
to a fixed value of z.

For example, the zeroes of sn(w, k) are located at w = 2nK + 2mi K ′ for
integers m and n. From the definition of F(z, k) we see that F(0, k) = 0. If we
reflect the rectangle R to R1, this zero is transformed to the location w = 2i K ′,
while reflecting to R3 transforms the zero to w = 2K , etc. Hence two zeroes
are located in each period rectangle. From the definition we also find the pairs
w = −K , z = −1; w = −K + i K ′, z = − 1

k ; and w = i K ′, z = ∞. The
latter is a simple pole.

Schwarz-Christoffel transformations with more than 4 vertices usually re-
quires numerical computation (cf. Trefethan, 1986, Driscoll and Trefethan,
2002).

Problems for Section 5.6

1. Use the Schwarz–Christoffel transformation to obtain a function that maps
each of the indicated regions below in the w plane onto the upper half of
the z plane in Figure 5.6.13a,b.

2. Find a function that maps the indicated region of the w plane in Fig-
ure 5.6.14 onto the upper half of the z plane, such that (P, Q, R) �→
(−∞, 0,∞).

3. Show that the function w =
∫ z

0
(dt/(1 − t6)

1
3 ) maps a regular hexagon

into the unit circle.

4. Derive the Schwarz–Christoffel transformation that maps the upper half
plane onto the triangle with vertices (0, 0), (0, 1), (1, 0). (See Figure
5.6.15.)
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Fig. 5.6.13. Schwarz–Christoffel transformations–Problem 5.6.1

5. A fluid flows with initial velocity u0 through a semiinfinite channel of
width d and emerges through the opening AB of the channel (see Figure
5.6.16). Find the speed of the fluid.

Hint: First show that the conformal mapping w = z + e2π z/d maps the
channel |y| < d/2 onto the w-plane excluding slits, as indicated in Figure
5.6.17.

6. The shaded region of Figure 5.6.18 represents a semiinfinite conductor
with a vertical slit of height h in which the boundaries AD, DE (of height
h) and DB are maintained at temperatures T1, T2, and T3, respectively.

Find the temperature everywhere. Hint: Use the conformal mapping
studied in Example 5.6.5.

7. Utilize the Schwarz–Christoffel transformation in order to find the com-
plex potential F(w) governing the flow of a fluid over a step with velocity
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Fig. 5.6.14. Schwarz–Christoffel transformations–Problem 5.6.2
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Fig. 5.6.15. Schwarz–Christoffel transformations–Problem 5.6.4
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Fig. 5.6.16. Fluid flow–Problem 5.6.5

at infinity equal to q , where q is real. The step A1(−∞)A2(ih)A3(0) is
shown in Figure 5.6.19. The step is taken to be a streamline.

8. By using the Schwarz reflection principle, map the domain exterior to a
T-shaped cut, shown in Figure 5.6.20, onto the half plane.

9. Find a conformal mapping onto the half plane, Imw > 0, of the z domain
of the region illustrated in Figure 5.6.21 inside the strip−π

2 < Re z < π
2 ,

by taking cuts along the segments [−π/2,−π/6] and [π/6, π/2] of the
real axis.
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Fig. 5.6.21. Schwarz–Christoffel transformation–Problem 5.6.9

10. Show that the mapping w = ∫ z
0 (dt/(t1/2(t2 − 1)1/2)) maps the upper

half plane conformally onto the interior of a square. Hint: show that the
vertices of the square arew(0) = 0, w(1) = A, w(−1) = −i A, w(∞) =
A − i A where A is given by a real integral.

11. Use the Schwarz–Christoffel transformation to show that

w = log(2(z2 + z)1/2 + 2z + 1)

maps the upper half plane conformally onto the interior of a semi infinite
strip.

12. Show that the function w =
∫ z

1
((1− ζ 4)1/2/ζ 2) dζ maps the exterior of

a square conformally onto the interior of the unit circle.

13. Show that a necessary (but not sufficient) condition for z = z(w) appear-
ing in the Schwarz–Christoffel formula to be single valued (i.e., for the
inverse mapping to be defined and single valued) is that α� = 1/n�, where
n� is an integer.

14. Find the domain onto which the function

w =
∫ z

0

(1+ t3)α

(1− t3)
2
3+α

dt, −1 < α <
1

3

maps the unit disk.

15. Find the mapping of a triangle with angles α1π, α2π, α3π where the side
opposite angle α3π has length l.
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5.7 Bilinear Transformations

An important class of conformal mappings is given by the particular choice of
f (z)

w = f (z) = az + b

cz + d
, ad − bc 
= 0 (5.7.1)

where a, b, c, and d are complex numbers. This transformation is called bilin-
ear, or Möbius, or sometimes linear fractional.

Bilinear transformations have a number of remarkable properties. Further-
more, these properties are global. Namely, they are valid for any z including
z = ∞, that is, valid in the entire extended complex z plane. Throughout this
section, we derive the most important properties of bilinear transformations
(labeled (i)–(viii)):

(i) Conformality

Bilinear transformations are conformal.
Indeed, if c = 0, f ′(z) = a

d 
= 0. If c 
= 0

f ′(z) = ad − bc

(cz + d)2

which shows that f ′(z) is well defined for z 
= −d/c, z finite. In order to analyze
the point z = ∞, we let z̃ = 1/z, then w = f (z) becomes w = (bz̃+a)/(dz̃+
c), which is well behaved at z̃ = 0. The image of the point z = −d/c isw = ∞,
which motivates the transformation w̃ = 1/w. Then w̃ = (cz + d)/(az + b),
and because the derivative of the right-hand side is not zero at z = −d/c, it
follows that w = f (z) is conformal at w̃ = 0.

Example 5.7.1 Find the image of x2 − y2 = 1 under inversion, that is, under
the transformation w = 1/z.
Using z = x + iy and z̄ = x − iy, it follows that the hyperbola x2 − y2 = 1
can be written as

(z + z̄)2 + (z − z̄)2 = 4, or z2 + z̄2 = 2

This becomes

1

w2
+ 1

w̄2
= 2, or w2+ w̄2 = 2|w|4, or u2−v2 = (u2+v2)2 (5.7.2)

under z = 1/w, w = u + iv. For small u and v, Eq. (5.7.2) behaves like
u ≈ ±v. This together with conformality at the points A and B suggests
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Fig. 5.7.1. Inversion (w = 1/z)

the lemniscate graph depicted in Figure 5.7.1. (In polar coordinates w = ρeiφ ,
the lemniscate above is ρ2 = cos 2φ.) Note that the left (right) branch of the
hyperbola transforms to the left (right) lobe of the lemniscate.

(ii) Decomposition

Any bilinear transformation, which is not linear, can be decomposed into two
linear transformations and an inversion.

Indeed, if c = 0 the transformation is linear. If c 
= 0, then it can be written
in the form

w = a

c
+ bc − ad

c(cz + d)

This shows that a general bilinear transformation can be decomposed into the
following three successive transformations:

z1 = cz + d, z2 = 1

z1
, w = a

c
+ bc − ad

c
z2 (5.7.3)

(iii) Bilinear Transformations Form a Group

This means that bilinear transformations contain the identity transformation
and that the inverse as well as the “product” of bilinear transformations are also
bilinear transformations (i.e., closure under the operation product).

Indeed, the choice b = c = 0, a = d = 1, reduces w = f (z) to w = z,
that is, to the identity transformation. The inverse of the transformation f (z)
is obtained by solving the equation w = f (z) for z in terms of w. Hence the
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inverse of f (z) is given by

dz − b

−cz + a
(5.7.4)

This corresponds to Eq. (5.7.1) with a → d , b → −b, c → −c, and d →
a, therefore ad − bc → ad − bc, which shows that the inverse of f (z) is
also bilinear. In order to derive the product of two transformations, we let
z2 = f2(z) and w = f1(z2), where f1 and f2 are defined by Eq. (5.7.1) with
all the constants replaced by constants with subscripts 1 and 2, respectively.
Computing w = f1( f2(z)) = f3(z), one finds

f3(z) = a3z + b3; a3 = a1a2 + b1c2, b3 = a1b2 + b1d2

c3z + d3 c3 = c1a2 + d1c2, d3 = c1b2 + d1d2
(5.7.5)

It can be verified that (a3d3 − b3c3) = (a1d1 − b1c1)(a2d2 − b2c2) 
= 0, which
together with Eq. (5.7.5) establishes that f3(z) is a bilinear transformation.
Actually the operation product in this case is composition.

There exists an alternative, somewhat more elegant formulation of bilinear
transformations: Associate with f (z) the matrix

T =
(

a b
c d

)
(5.7.6)

The condition ad − bc 
= 0 implies that det T 
= 0; that is, the matrix T is
nonsingular. The inverse of T is denoted by

T−1 =
(

d −b
−c a

)
Equation (5.7.4) implies that the inverse of f is associated with the inverse of
T . (If ad − bc = 1, then T−1 is exactly the matrix inverse.) Furthermore,
Eq. (5.7.5) can be used to show that the product (composition) of two bilinear
transformations f3(z) ≡ f1( f2(z)) is associated with T1T2. Using this notation
and Property (ii), it follows that any bilinear transformation is either linear or
can be decomposed in the form T1T2T3 where T1 and T3 are associated with
linear transformations and T2 is associated with inversion, that is,

T1 =
(

a1 b1

0 1

)
, T2 =

(
0 1
1 0

)
, T3 =

(
a3 b3

0 1

)
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(iv) The Cross Ratio of Four Points Is an Invariant

This means that

(w1 − w4)

(w1 − w2)

(w3 − w2)

(w3 − w4)
= (z1 − z4)

(z1 − z2)

(z3 − z2)

(z3 − z4)
(5.7.7)

where wi is associated with zi in Eq. (5.7.1). This property can be established
by manipulating expressions of the form:

w1 − w2 = (ad − bc)(z1 − z2)

(cz1 + d)(cz2 + d)
(5.7.8)

An alternative proof is as follows. Let X (z1, z2, z3, z4) denote the right-hand
side of Eq. (5.7.7). Because every bilinear transformation can be decomposed
into linear transformations and an inversion, it suffices to show that these trans-
formations leave X invariant. Indeed, if zl is replaced by azl + b, then both
the numerator and the denominator of X are multiplied by a2, and hence X is
unchanged. Similarly, if zl is replaced by 1/zl , X is again unchanged.

If one of the points wl , say w1, is ∞, then the left-hand side of Eq. (5.7.7)
becomes (w3 −w2)/(w3 −w4). Therefore this ratio should be regarded as the
ratio of the points∞, w2, w3, w4.

Equation (5.7.7) has the following important consequence: letting w4 = w,
z4 = z, Eq. (5.7.7) becomes

(w1 − w)(w3 − w2)

(w1 − w2)(w3 − w)
= (z1 − z)(z3 − z2)

(z1 − z2)(z3 − z)
(5.7.9)

Equation (5.7.9) can be written in the form w = f (z), where f (z) is some
bilinear transformation uniquely defined in terms of the points zl and wl . This
allows the interpretation that bilinear transformations take any three distinct
points zl , into any three distinct point wl . Furthermore, a bilinear transfor-
mation is uniquely determined by these three associations.

The fact that a bilinear transformation is completely determined by how it
transforms three points is consistent with the fact that f (z) depends at most on
three complex parameters (because one of c, d is different than zero and hence
can be divided out).

Example 5.7.2 Find the bilinear transformation that takes the three points z1 =
0, z2 = 1, and z3 = −i into w1 = 1, w2 = 0, and w3 = i .
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Equation (5.7.9) implies

(1− w)i

i − w
= (−z)(−i − 1)

(−1)(−i − z)
, or w = 1− z

1+ z

(v) Bilinear Transformations Have One or Two Fixed Points

By fixed points, we mean those points of the complex z plane that do not
change their position if z → f (z). In other words, now we interpret the trans-
formation f (z) not as a transformation of one plane onto another, but as a
transformation of the plane onto itself. The fixed points are the invariant points
of this transformation. We can find these fixed points by solving the equation
z = (az + b)/(cz + d). It follows that we have a quadratic equation and, ex-
cept for the trivial cases (c = 0 and a = d , or b = c = 0), there exist two
fixed points. If (d − a)2 + 4bc = 0, these two points coincide. We exclude
these cases and denote the two fixed points by α and β. Equation (5.7.9) with
w1 = z1 = α, w3 = z3 = β implies

w − α

w − β
= λ

(
z − α

z − β

)
(5.7.10)

where λ is a constant depending on w2, z2, α, and β. Thus the general form of
a bilinear transformation with two given fixed points α and β depends only on
one extra constant λ.

Example 5.7.3 Find all bilinear transformations that map 0 and 1 to 0 and 1,
respectively.

Equation (5.7.10) implies

w − 1

w
= λ

(
z − 1

z

)
or w = z

(1− λ)z + λ

(vi) Bilinear Transformations Map Circles and Lines Into Circles or Lines

In particular, we will show that under inversion a line through the origin goes
into a line through the origin, a line not through the origin goes into a circle,
a circle through the origin goes into a line, and a circle not through the origin
goes into a circle.

The derivation of these results follows. The mathematical expression of a
line is

ax + by + c = 0, a, b, c ∈ R
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Using z = x + iy, z̄ = x − iy, this becomes

Bz + B̄ z̄ + c = 0, B = a

2
− ib

2
(5.7.11)

The mathematical expression of a circle with center z0 and radiusρ is |z − z0|=ρ
or (z − z0)(z̄ − z̄0) = ρ2, or

zz̄ + B̄z + Bz̄ + c = 0; B = −z0, c = |B|2 − ρ2 (5.7.12)

Under the inversion transformation w = 1/z, the line given by Eq. (5.7.11),
replacing z = 1/w and z̄ = 1/w̄, becomes

cww̄ + B̄w + Bw̄ = 0

If c = 0 (which corresponds to the line (5.7.11) going through the origin), this
equation defines a line going through the origin. If c 
= 0, using Eq. (5.7.12),
the above equation is a circle of radius |B|/|c| and with center at −B/c.

Under the inversion transformation, the circle defined by Eq. (5.7.12) be-
comes

cww̄ + Bw + B̄w̄ + 1 = 0

If c = 0 (which corresponds to the circle (5.7.12) going through the origin),
this equation defines a line. If c 
= 0, the above equation is the equation of a
circle.

Remark It is natural to group circles and lines together because a line in the
extended complex plane can be thought of as a circle through the point z = ∞.
Indeed, consider the line (5.7.11), and let z = 1/ζ . Then Eq. (5.7.11) reduces
to the equation cζ ζ̄ + Bζ̄ + B̄ζ = 0, which is the equation of a circle going
through the point ζ = 0, that is, z = ∞. Using the terminology of this remark,
we say that the inversion transformation maps circles into circles.

The linear transformation az+ b translates by b, rotates by arg a, and dilates
(or contracts) by |a| (see Example 5.2.1). Therefore a linear transformation also
maps circles into circles. These properties of the linear and inversion transfor-
mations, together with Property (ii), imply that a general bilinear transformation
maps circles into circles.

The interior and the exterior of a circle are called the complementary domains
of the circle. Similarly, the complementary domains of a line are the two half
planes, one on each side of the line. Let K , Kc denote the complementary
domains of a circle in the z plane and K ∗, K ∗

c denote the complementary
domains of the corresponding circle in the w plane (in this terminology for a
circle we include the degenerate case of a line).
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q

zo

Fig. 5.7.2. Inverse points p, q

(vii) If K , Kc Denote the Complementary Domains of a Circle, Then Either
K ∗ = K and K ∗

c = Kc or K ∗ = Kc and K ∗
c = K

The derivation of this property could be derived in a manner similar to the
derivation of Properties (vi), where one uses inequalities instead of the equality
(5.7.12). These inequalities follow from the fact that the interior and exterior
of the circle are defined by |z − z0| < ρ and |z − z0| > ρ, respectively. We
will not go through the details here.

Example 5.7.4 The inversion w = 1/z maps the interior (exterior) of the unit
circle in the z plane to the exterior (interior) of the unit circle in the w plane.

Indeed, if |z| < 1, then |w| = 1/|z| > 1.

(viii) Bilinear Transformations Map Inverse Points (With Respect to a Circle)
to Inverse Points

The points p and q are called inverse with respect to the circle of radius ρ and
center z0 if z0, p, and q lie, in that order, on the same line and the distances
|z0 − p| and |z0 − q| satisfy |z0 − p||z0 − q| = ρ2 (see Figure 5.7.2).

If the points z0, p, and q lie on the same line, it follows that p = z0 + r1

exp(iϕ), q = z0 + r2 exp(iϕ). If they are inverse, then r1r2 = ρ2, or (p − z0)

(q̄ − z̄0) = ρ2. Thus the mathematical description of two inverse points is

p = z0 + reiϕ, q = z0 + ρ2

r
eiϕ, r 
= 0 (5.7.13)

As r → 0, p = z0 and q = ∞. This is consistent with the geometrical descrip-
tion of the inverse points that shows that as q recedes to∞, p tends to the center.
When a circle degenerates into a line, then the inverse points, with respect to
the line, may be viewed as the points that are perpendicular to the line and are
at equal distances from it.

Using Eq. (5.7.13) and z = z0 + ρeiθ (the equation for points on a circle),
we have

z − p

z − q
= ρeiθ − reiϕ

ρeiθ − ρ2

r eiϕ
= r

ρ
· re−iθ − ρe−iϕ

reiθ − ρeiϕ
· (−eiϕeiθ ) (5.7.14)
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whereupon ∣∣∣∣ z − p

z − q

∣∣∣∣ = r

ρ
(5.7.15)

We also have the following. Let p and q be distinct complex numbers, and
consider the equation ∣∣∣∣ z − p

z − q

∣∣∣∣ = k, 0 < k ≤ 1 (5.7.16)

It will be shown below that if k = 1, this equation represents a line and the
points p and q are inverse points with respect to this line. If k 
= 1, this equation
represents a circle with center at z0 and radius ρ, given by

z0 = p − k2q

1− k2
, ρ = k|p − q|

1− k2
(5.7.17)

the points p and q are inverse points with respect to this circle, and the point p
is inside the circle.

Indeed, if k = 1, then |z− p| = |z−q|, which states that z is equidistant from
p and q; the locus of such points is a straight line, which is the perpendicular
bisector of the segment pq . If k 
= 1, then Eq. (5.7.16) yields

(z − p)(z̄ − p̄) = k2(z − q)(z̄ − q̄)

This equation simplifies to Eq. (5.7.12), describing a circle with

B = k2q − p

1− k2
, c = |p|2 − k2|q|2

1− k2

These equations together with z0 = −B, ρ2 = |B|2 − c imply Eqs. (5.7.17).
Equations (5.7.17) can be written as |p− z0| = kρ and |q − z0| = ρ/k, which
shows that p and q are inverse points. Furthermore, because k < 1, the points
p and q are inside and outside the circle, respectively.

Using Eq. (5.7.16), we demonstrate that bilinear transformations map inverse
points to inverse points. Recall that bilinear transformations are compositions
of linear transformations and inversion. If w = az + b, we must show that the
points p̃ = ap + b, q̃ = aq + b are inverse points with respect to the circle in
the complex w plane. But ∣∣∣∣w − p̃

w − q̃

∣∣∣∣ = |z − p|
|z − q| = k
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which shows that indeed p̃ and q̃ are inverse points in the w plane. Similarly,
if w = 1/z, p̃ = 1/p, and q̃ = 1/q∣∣∣∣w − p̃

w − q̃

∣∣∣∣ =
∣∣∣∣∣

p−z
pz

q−z
qz

∣∣∣∣∣ = |q|
|p|k

which shows that again p̃ and q̃ are inverse points, though p̃ might now lie
inside or outside the circle. (Here we consider the generic case p 
= 0, q 
= ∞;
the particular cases of p = 0 or q = ∞ are handled in a similar way.)

Example 5.7.5 A necessary and sufficient condition for a bilinear transforma-
tion to map the upper half plane Imz > 0 onto the unit disk |w| < 1, is that it
be of the form

w = β
z − α

z − ᾱ
, |β| = 1, Imα > 0 (5.7.18)

Sufficiency: We first show that this transformation maps the upper half z
plane onto |w| < 1. If z is on the real axis, then |x − α| = |x − ᾱ|. Thus
the real axis is mapped to |w| = 1; hence y > 0 is mapped onto one of the
complementary domains of |w| = 1. Because z = α is mapped into w = 0,
this domain is |w| < 1.

Necessity: We now show that the most general bilinear transformation map-
ping y > 0 onto |w| < 1 is given by Eq. (5.7.18). Because y > 0 is mapped
onto one of the complementary domains of either a circle or of a line, y = 0 is
to be mapped onto |w| = 1. Let α be a point in the upper half z plane that is
mapped to the center of the unit circle in the w plane (i.e., to w = 0). Then ᾱ,
which is the inverse point of α with respect to the real axis, must be mapped to
w = ∞ (which is the inverse point of w = 0 with respect to the unit circle).
Hence

w = a

c

z − α

z − ᾱ

Because the image of the real axis is |w| = 1, it follows that | ac | = 1, and the
above equation reduces to Eq. (5.7.18), where β = a/c.

Example 5.7.6 A necessary and sufficient condition for a bilinear transforma-
tion to map the disk |z| < 1 onto |w| < 1 is that it be of the form

w = β
z − α

ᾱz − 1
, |β| = 1, |α| < 1 (5.7.19)
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Sufficiency: We first show that this transformation maps |z| < 1 onto |w| <
1. If z is on the unit circle z = eiθ , then

|w| = |β|
∣∣∣∣ eiθ − α

ᾱeiθ − 1

∣∣∣∣ = |α − eiθ |
|ᾱ − e−iθ | = 1

Hence |z| < 1 is mapped onto one of the complementary domains of |w| = 1.
Because z = 0 is mapped into βα, and |βα| < 1, this domain is |w| < 1.

Necessity: We now show that the most general bilinear transformation map-
ping |z| < 1 onto |w| < 1 is given by Eq. (5.7.19). Because |z| < 1 is mapped
onto |w| < 1, then |z| = 1 is to be mapped onto |w| = 1. Let α be the point in
the unit circle that is mapped to w = 0. Then, from Eq. (5.7.13), 1/ᾱ (which
is the inverse point of α with respect to |z| = 1) must be mapped to w = ∞.
Hence, if α 
= 0

w = a

c

z − α

z − 1
ᾱ

= aᾱ

c

z − α

ᾱz − 1

Because the image of |z| = 1 is |w| = 1, it follows that | aᾱc | = 1, and the above
equation reduces to Eq. (5.7.19), with β = aᾱ

c . If α = 0 and β 
= 0, then the
points 0,∞map into the points 0,∞, respectively, and w = βz, |β| = 1. Thus
Eq. (5.7.19) is still valid.

It is worth noting that the process of successive inversions about an even
number of circles is expressible as a bilinear transformation, as the following
example illustrates.

Example 5.7.7 Consider a point z inside a circle C1 of radius r and centered
at the origin and another circle C2 of radius R centered at z0 (see Figure 5.7.3)
containing the inverse point to z with respect to C1. Show that two successive
inversions of the point z about C1 and C2, respectively, can be expressed as a
bilinear transformation.

The point z̃ is the inverse of z about the circle C1 and is given by

zz̃ = r2 or z̃ = r2

z

The second inversion satisfies, for the point ˜̃z

(z̃ − z0)( ˜̃z − z0) = R2
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Fig. 5.7.3. Two successive inversions of point z

or

˜̃z = z0 + R2

(z̃ − z0)
= z0 + R2

r2

z − z0

= r2z0 + (R2 − |z0|2)z
r2 − z0z

which is a bilinear transformation.
In addition to yielding a conformal map of the entire extended z plane, the

bilinear transformation is also distinguished by the interesting fact that it is the
only univalent function in the entire extended z plane.

Theorem 5.7.1 The bilinear transformation (5.7.1) is the only univalent func-
tion that maps |z| ≤ ∞ onto |w| ≤ ∞.

Proof Equation (5.7.8) shows that if z1 
= z2, then w1 
= w2; that is, a bilinear
transformation is univalent. We shall now prove that a univalent function that
maps |z| ≤ ∞ onto |w| ≤ ∞ must necessarily be bilinear.

To achieve this, we shall first prove that a univalent function that maps the
finite complex z plane onto the finite complex w plane must be necessarily
linear. We first note that if f (z) is univalent in some domain D, then f ′(z) 
= 0
in D. This is a direct consequence of Theorem 5.3.3, because if f ′(z0) = 0,
z0 ∈ D, then f (z) − f (z0) has a zero of order n ≥ 2, and hence equation
f (z) = w has at least two distinct roots near z0 for w near f (z0). It was shown
in Theorem 5.3.2 (i.e., Theorem 5.5.1) that the image of |z| < 1 contains some
disk |w−w0| < A. This implies that∞ is not an essential singularity of f (z).
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Fig. 5.7.4. Region between two cylinders

Because if∞ is an essential singularity, then as z →∞, f (z) comes arbitrarily
close to w0 (see Theorem 3.5.1); hence some values of f corresponding to
|z| > 1 would also lie in the disk |w − w0| < A, which would contradict the
fact that f is univalent. It cannot have a branch point; therefore, z = ∞ is at
worst a pole of f ; that is, f is polynomial. But because f ′(z) 
= 0 for z ∈ D,
this polynomial must be linear. Having established the relevant result in the
finite plane, we can now include infinities. Indeed, if z = ∞ is mapped into
w = ∞, f (z) being linear is satisfactory, and the theorem is proved. If z0 
= ∞
is mapped to w = ∞, then the transformation ζ = 1/(z− z0) reduces this case
to the case of the finite plane discussed above, in which case w(ζ ) being linear
(i.e., w(ζ ) = aζ + b) corresponds to w(z) being bilinear. �

Example 5.7.8 Consider the region bounded by two cylinders perpendicular
to the z plane; the bases of these cylinders are the discs bounded by the two
circles |z| = R and |z − a| = r , 0 < a < R − r (R, r, a ∈ R). The inner
cylinder is maintained at a potential V , while the outer cylinder is maintained at
a potential zero. Find the electrostatic potential in the region between these two
cylinders.

Recall (Eq. (5.7.16)) that the equation |z−α| = k|z−β|, k > 0 is the equation
of a circle with respect to which the points α and β are inverse to one another.
If α and β are fixed, while k is allowed to vary, the above equation describes a
family of nonintersecting circles. The two circles in the z plane can be thought
of as members of this family, provided that α and β are chosen so that they are
inverse points with respect to both of these circles (by symmetry considerations,
we take them to be real), that is, αβ = R2 and (α − a)(β − a) = r2. Solving
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for α and β we find

β = R2

α
and α = 1

2a
(R2 + a2 − r2 − A),

A2 ≡ [(R2 + a2 − r2)2 − 4a2 R2]

where the choice of sign of A is fixed by taking α inside, and β outside both
circles. The bilinear transformation w = κ(z − α)/(αz − R2) maps the above
family of nonintersecting circles into a family of concentric circles. We choose
constant κ = −R so that |z| = R is mapped onto |w| = 1. (Here z = Reiθ

maps onto w = (Beiθ )/(B̄), where B = R−αe−iθ , so that |w| = 1.) By using
Eq. (5.7.17), for the circle |z| = R, k2

1 = α/β, and for the circle |z − a| = r ,
k2

2 = α−a
β−a . Thus from Eqs. (5.7.16)–(5.7.17) we see that the transformation

w = R
z − α

R2 − αz
=
(−R

α

)(
z − α

z − β

)
maps |z| = R onto |w| = 1 and maps |z − a| = r onto |w| = ρ0, where ρ0 is
given by

ρ0 = k2

∣∣∣∣ Rα
∣∣∣∣ = ∣∣∣∣ Rα

∣∣∣∣√α − a

β − a

From this information we can now find the solution of the Laplace equa-
tion that satisfies the boundary conditions. Calling w = ρeiφ , this solution is
Φ = V log ρ/ log ρ0. Thus

Φ = V

log ρ0
log |w| = V

log ρ0
log

∣∣∣∣R z − α

R2 − αz

∣∣∣∣
From the mapping, we conclude that when |z| = R, |w| = 1; hence Φ = 0,
and when |z − a| = r , |w| = ρ0, and therefore Φ = V . Hence the real part of
the analytic function Ω(w) = V

log ρ logw leads to a solution Φ (Ω = Φ+ iΨ)
of Laplace’s equation with the requisite boundary conditions.

In conclusion, we mention without proof, the Schwarz reflection principle
pertaining to analytic continuation across arcs of circles. This is a general-
ization of the reflection principle mentioned in conjunction with the Schwarz–
Christoffel transformation in Section 5.6, which required the analytic continu-
ation of a function across straight line segments, for example, the real axis.
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Fig. 5.7.5. Schwarz symmetry principle

Theorem 5.7.2 (Schwarz Symmetry Principle) Let z ∈ D and w ∈ Dw be
points in the domains D and Dw, which contain circular arcs γ and γw respec-
tively. (These arcs could degenerate into straight lines.) Let f (z) be analytic
in D and continuous in D ∪ γ . If w = f (z) maps D onto Dw so that the arc
γ is mapped to γw, then f (z) can be analytically continued across γ into the
domain D̃ obtained from D by inversion with respect to the circle C of which γ
is a part. Let γ, γw be part of the circles C : |z − z0| = r , Cw : |w −w0| = R,
then the analytic continuation is given by

z̃ − z0 = r2

z̄ − z̄0
, f (z̃)− w0 = R2

f (z)− w0

Consequently, if z and z̃ are inverse points with respect to C , where z ∈ D
and z̃ ∈ D̃, then the analytic continuation is given by f (z̃) = f̃ (z), where
f̃ (z) = w̃ is the inverse point to w with respect to circle Cw.

In fact, the proof of the symmetry principle can be reduced to that of symmetry
across the real axis by transforming the circles C and Cw to the real axis, by
bilinear transformations. We will not go into further detail here.

Thus, for example, let γ be the unit circle centered at the origin in the z plane,
and let f (z) be analytic within γ and continuous on γ . Then if | f (z)| = R
(i.e., γw is a circle of radius R in the w plane centered at the origin) on γ ,
then f (z) can be analytically continued across γ by means of the formula
f (z) = R2/ f (1/z̄) because R2/ f̄ is the inverse point of f with respect to
the circle of radius R centered at the origin and 1/z̄ is the inverse point to
the point z inside the unit circle γ . On the other hand, suppose f (z) maps
to a real function on γ . By transforming z to z − a, and f to f − b we
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find z − a = r2/(z̄ − ā), f (z̃) − b = R2/( f̄ (z) − b̄) as the inverse points of
circles radii r, R centered at z = a, w = b resp. Then the formula for analytic
continuation is given by f (z) = f̄ ( 1

z̄ ) because f̄ is the inverse point of f with
respect to the real axis.

We note the “symmetry” in this continuation formula; that is, w̃ = f̃ (z) is
the inverse point to w = f (z) with respect to the circle Cw of which γw is a
part, and z̃ is the inverse point to z with respect to the circle C of which γ is a
part. As indicated in Section 5.6, in the case where γ and γw degenerate into
the real axis, this formula yields the continuation of a function f (z)where f (z)
is real for real z from the upper half plane to the lower half plane: f (z̄) = f̄ (z).
Similar specializations apply when the circles reduce to arbitrary straight lines.
We also note that in Section 5.8 the symmetry principle across circular arcs is
used in a crucial way.

Problems for Section 5.7

1. Show that the “cross ratios” associated with the points (z, 0, 1,−1) and
(w, i, 2, 4) are (z + 1)/2z and (w − 4)(2 − i)/2(i − w), respectively.
Use these to find the bilinear transformation that maps 0, 1, -1 to i , 2, 4,
respectively.

2. Show that the transformation w1 = ((z + 2)/(z − 2))1/2 maps the z plane
with a cut −2 ≤ Rez ≤ 2 to the right half plane. Show that the latter
is mapped onto the interior of the unit circle by the transformation w =
(w1 − 1)/(w1 + 1). Thus deduce the overall transformation that maps
the simply connected region containing all points of the plane (including
∞) except the real points z in −2 ≤ z ≤ 2 onto the interior of the unit
circle.

3. Show that the transformation w = (z− a)/(z+ a), a =
√

c2 − ρ2 (where
c and ρ are real, 0 < ρ < c), maps the domain bounded by the circle

a c

ρ

y

δ

x u

v

1

Fig. 5.7.6. Mapping of Problem 5.7.3
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Fig. 5.7.7. Mapping of Problem 5.7.5

|z − c| = ρ and the imaginary axis onto the annular domain bounded by
|w| = 1 and an inner concentric circle (see Figure 5.7.6). Find the radius,
δ, of the inner circle.

4. Show that the transformation w1 = [(1+ z)/(1− z)]2 maps the upper half
unit circle to the upper half plane and thatw2 = (w1− i)/(w1+ i)maps the
latter to the interior of the unit circle. Use these results to find an elementary
conformal mapping that maps a semicircular disk onto a full disk.

5. Let C1 be the circle with center i/2 passing through 0, and let C2 be the
circle with center i/4 passing through 0 (see Figure 5.7.7). Let D be the
region enclosed by C1 and C2. Show that the inversion w1 = 1/z maps D
onto the strip −2 < Imw1 < −1 and the transformation w2 = eπw1 maps
this strip to the upper half plane. Use these results to find a conformal
mapping that maps D onto the unit disk.

6. Find a conformal map f that maps the region between two circles |z| = 1
and |z − 1

4 | = 1
4 onto an annulus ρ0 < |z| < 1, and find ρ0.

7. Find the function φ that is harmonic in the lens-shaped domain of Fig-
ure 5.7.8 and takes the values 0 and 1 on the bounding circular arcs. Hint:
It is useful to note that the transformation w = z/(z − (1 + i)) maps the
lens-shaped domain into the region Rw : 3π

4 ≤ argw ≤ 5π
4 with φ = 1 on

argw = 3π/4 and φ = 0 on argw = 5π/4. Then use the ideas introduced
in Section 5.4 (c.f. Example 5.4.4) to find the corresponding harmonic
function φ(w).
Note: φ can be interpreted as the steady state temperature inside an in-
finitely long strip (perpendicular to the plane) of material having this lens-
shaped region as its cross section, with its sides maintained at the given
temperatures.
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Fig. 5.7.8. Mapping of Problem 5.7.7

∗5.8 Mappings Involving Circular Arcs

In Section 5.6 we showed that the mapping of special polygonal regions to the
upper half plane involved trigonometric and elliptic functions. In this section we
investigate the mapping of a region whose boundary consists of a curvilinear
polygon, that is, a polygon whose sides are made up of circular arcs. We
outline the main ideas, and in certain important special cases we will be led
to an interesting class of functions called automorphic functions, which can
be considered generalizations of elliptic functions. We will study a class of
automorphic functions known as Schwarzian triangle functions, of which the
best known (with zero angles) is the so-called elliptic modular function.

Consider a domain of the w plane bounded by circular arcs. Our aim is to
find the transformation w = f (z) that maps this domain onto the upper half of
the z plane (see Figure 5.8.1).

The relevant construction is conceptually similar to the one used for linear
polygons (i.e., the Schwarz–Christoffel transformation). We remind the reader
that the crucial step in that construction is the introduction of the ratio f ′′/ f ′.
The Riemann mapping Theorem ensures that there is a conformal ( f ′(z) 
= 0)
map onto the upper half plane. The Schwarz reflection principle implies that
this ratio is analytic and one to one in the entire z plane except at the points
corresponding to the vertices of the polygon; near these vertices in the z plane,
that is, near z = a�

f (z) = (z − a�)
α�
[
c(0)� + c(1)� (z − a�)+ · · ·

]
therefore f ′′/ f ′ has simple poles. These two facts and Liouville’s Theorem
imply the Schwarz–Christoffel transformation. The distinguished property of
f ′′/ f ′ is that it is invariant under a linear transformation; that is, if we transform
f = A f̂ + B, where A and B are constant, then f ′′/ f ′ = f̂ ′′/ f̂ ′. The fact that
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Fig. 5.8.1. Mapping of a region whose boundary contains circular arcs

the mapping is constructed from a given polygon through an even number of
Schwarz reflections implies that the most general form of the mapping is given
by f (z) = A f̂ (z)+ B where A and B are constants.

The generalization of the above construction to the case of circular arcs is
as follows. In Section 5.7 the Schwarz symmetry principle across circular
arcs was discussed. We also mentioned in Section 5.7 that an even succession
of inversions across circles can be expressed as a bilinear transformation. It
is then natural to expect that the role that was played by f ′′(z)/ f ′(z) in the
Schwarz–Christoffel transformation will now be generalized to an operator
that is invariant under bilinear transformations. This quantity is the so-called
Schwarzian derivative, defined by

{ f, z} ≡
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

(5.8.1)

Indeed, let

F = a f + b

c f + d
, ad − bc 
= 0 (5.8.2)

Then

F ′ = (ad − bc) f ′

(c f + d)2
, or (log F ′)′ = (log f ′)′ − 2(log(c f + d))′

Hence

F ′′

F ′
= f ′′

f ′
− 2c f ′

c f + d

Using this equation to compute (F ′′/F ′)′ and (F ′′/F ′)2, it follows from Eq.
(5.8.1) that

{ f, z} = {F, z} (5.8.3)
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Single-valuedness of { f, z} follows in much the same way as the derivation
of the single-valuedness of f ′′(z)/ f ′(z) in the Schwarz–Christoffel derivation.
Riemann’s Mapping Theorem establishes the existence of a conformal map to
the upper half plane. From the Schwarz reflection principle f (z) is analytic and
one to one everywhere except possibly the endpoints z = a�, � = 1, 2 . . . . In
the present case, any even number of inversions across circles is a bilinear trans-
formation (see Example 5.7.7). Because the Schwarzian derivative is invariant
under a bilinear transformation, it follows that the function { f, z} corresponding
to any point in the upper half z plane is uniquely obtained. Similar arguments
hold for an odd number of inversions and points in the lower half plane. More-
over, the function { f, z} takes on real values for real values of z. Hence we
can analytically continue { f, z} from the upper half to lower half z plane by
Schwarz reflection. Consequently, there can be no branches whatsoever and the
function { f, z} is single valued. Thus the Schwarzian derivative is analytic in
the entire z plane except possibly at the points a�, � = 1, . . . , n. The behavior
of f (z) at a� can be found by noting that (after a bilinear transformation) f (z)
maps a piece of the real z axis containing z = a� onto two linear segments
forming an angle πα�. Therefore in the neighborhood of z = a�

f (z) = (z − a�)
α�g(z) (5.8.4)

where g(z) is analytic at z = a�, g(a�) 
= 0, and g(z) is real when z is real.
This implies that the behavior of { f, z} near a� is given by the following (the
reader can verify the intermediate step: f ′′

f ′ (z) = α�−1
z−a�

+ 1+α�
α�

g′(a�)
g(a�)

+ · · ·):

{ f, z} = 1

2

1− α2
�

(z − a�)2
+ β�

z − a�
+ h(z), β� ≡ 1− α2

�

α�

g′(a�)
g(a�)

(5.8.5)

where h(z) is analytic at z = a�. Using these properties of { f, z} and Liouville’s
Theorem, it follows that

{ f, z} = 1

2

n∑
�=1

(1− α2
� )

(z − a�)2
+

n∑
�=1

β�

z − a�
+ c (5.8.6)

where α1, . . . , αn , β1, . . . , βn , a1, . . . , an, are real numbers and c is a constant.
We recall that in the case of the Schwarz–Christoffel transformation the anal-
ogous constant c was determined by analyzing z = ∞. We now use the same
idea. If we assume that none of the points a1, . . . , an coincide with∞, then f (z)
is analytic at z = ∞; that is, f (z) = f (∞)+ c1/z + c2/z2 + · · · near z = ∞.
Using this expansion in Eq. (5.8.1) it follows that { f, z} = k4/z4+ k5/z5+ · · ·
near z = ∞. This implies that by expanding the right-hand side of (5.8.6) in a
power series in 1/z, and equating to zero the coefficients of z0, 1/z, 1/z2, and
1/z3, we find that c = 0 (the coefficient of z0) and for the coefficients of 1/z,
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1/z2 and 1/z3

n∑
�=1

β� = 0,
n∑

�=1

(
2a�β�+1−α2

�

) = 0,
n∑

�=1

[
βla

2
� +a�

(
1−α2

�

)] = 0

(5.8.7)
In summary, let f (z) be a solution of the third-order differential equation

(5.8.6) with c = 0, where { f, z} is defined by Eq. (5.8.1) and where the real
numbers appearing in the right-hand side of Eq. (5.8.6) satisfy the relations
given by Eq. (5.8.7). Then the transformation w = f (z) maps the domain of
thew plane, bounded by circular arcs forming vertices with anglesπα1, . . . παn ,
0 ≤ α� ≤ 2, � = 1, . . . n onto the upper half of the z plane. The vertices are
mapped to the points a1, . . . , an of the real z axis.

It is significant that the third-order nonlinear differential Eq. (5.8.6) can be
reduced to a second-order linear differential equation. Indeed, if y1(z) and y2(z)
are two linearly independent solutions of the equation

y′′(z)+ 1

2
P(z)y(z) = 0 (5.8.8)

then

f (z) ≡ y1(z)

y2(z)
(5.8.9a)

solves

{ f, z} = P(z) (5.8.9b)

The proof of this fact is straightforward. Substituting y1 = y2 f into Eq. (5.8.8),
demanding that both y1 and y2 solve Eq. (5.8.8) and noting that the Wronskian
W = y2 y′1 − y1 y′2 is a constant for Eq. (5.8.8), it follows that

f ′′

f ′
= −2

y′2
y2

which implies Eq. (5.8.9b). This concludes the derivation of the main results
of this section, which we express as a theorem.

Theorem 5.8.1 (Mapping of Circular Arcs) If w = f (z) maps the upper half
of the z plane onto a domain of the w plane bounded by n circular arcs, and if
the points z = a�, � = 1, . . . , n, on the real z axis are mapped to the vertices
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of angle πα�, 0 ≤ α� ≤ 2, � = 1, . . . , n, then

w = f (z) = y1(z)

y2(z)
(5.8.10)

where y1(z) and y2(z) are two linearly independent solutions of the linear
differential equation

y′′(z)+
[

n∑
�=1

(1− α2
� )

4(z − a�)2
+ 1

2

n∑
�=1

β�

z − a�

]
y(z) = 0 (5.8.11)

and the real constants β�, � = 1, . . . , n satisfy the relations (5.8.7).

Remarks (1) The three identities (5.8.7) are the only general relations that exist
between the constants entering Eq. (5.8.11). Indeed, the relevant domain is
specified by n circular arcs, that is, 3n real parameters (each circle is prescribed
by the radius and the two coordinates of the center). However, as mentioned
in Section 5.7, three arbitrary points on the real z axis can be mapped to any
three vertices (i.e., six real parameters) in the w plane. This reduces the number
of parameters describing the w domain to 3n − 6. On the other hand, the
transformation f (z) involves 3n−3 independent parameters: 3n real quantities
{α�, β�, a�}n�=1, minus the three constraints (5.8.7). Because three of the values
a� can be arbitrarily prescribed, we see that the f (z) also depends on 3n − 6
parameters.

(2) The procedure of actually constructing a mapping function f (z) in terms
of a given curvilinear polygon is further complicated by the determination of
the constants in Eq. (5.8.11) in terms of the given geometrical configuration.
In Eq. (5.8.11) we know the angles {α�}n�=1. We require that the points a� on
the real z axis correspond to the vertices A� of the polygon. Characterizing
the remaining n − 3 constants, that is, the n values β� (the so-called accessory
parameters) minus three constraints, by geometrical conditions is in general
unknown. The cases of n = 2 (a crescent) and n = 3 (a curvilinear triangle; see
Figure 5.8.2) are the only cases in which the mapping is free of the determination
of accessory parameters. Mapping with more than 3 vertices generally requires
numerical computation (cf. Trefethan, 1986, Driscoll and Trefethan, 2002).

(3) The Schwarz-Christoffel transformation discussed in Section 5.6 (see
Eq. 5.6.1–2) can be deduced from Eq. (5.8.6–7) with suitable choices for β�.

(4) If one of the points a� say a1 is taken to be∞ then the sum in eq. (5.8.6),
(5.8.11) is taken from 2 to n. The conditions (5.8.7) must then be altered since
f (z) is not analytic at∞ (see Example 5.8.1 below).

Example 5.8.1 Consider a domain of the w plane bounded by three circular
arcs with interior angles πα, πβ, and πγ . Find the transformation that maps
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Fig. 5.8.2. Mapping from three circular arcs

this domain to the upper half of the z plane. Specifically, map the vertices with
angles πα, πβ, and πγ to the points∞, 0, and 1.

We associate with the vertices A1, A2, and A3 the points a1(∞), a2(0), and
a3(1). Calling α2 = β, α3 = γ , a2 = 0, and a3 = 1, Eq. (5.8.6) with c = 0
becomes

{ f, z} = 1− β2

2z2
+ 1− γ 2

2(z − 1)2
+ β2

z
+ β3

z − 1
(5.8.12)

When one point, in this case w = A1, is mapped to z = ∞, then the terms
involving a1 drop out of the right-hand side of Eq. (5.8.6), and from Eq.
(5.8.4), recalling the transformation z − a1 → 1/z, we find that f (z) = γ z−α

[1+c1/z+· · ·] for z near∞. Similarly, owing to the identification a1 = ∞, one
must reconsider the derivation of the relations (5.8.7). These equations were de-
rived under the assumption that f (z) is analytic at∞. However, in this example
the above behavior of f (z) implies that { f, z} = ((1−α2)/2z2)[1+D1/z+· · ·]
as z → ∞. Expanding the right-hand side of Eq. (5.8.12) in powers of 1/z
and equating the coefficients of 1/z and 1/z2 to 0 and (1−α2)/2, respectively,
we find β2 + β3 = 0 and β3 ≡ (β2 + γ 2 − α2 − 1)/2. Using these values for
β2 and β3 in Eq. (5.8.12), we deduce that w = f (z) = y1/y2, where y1 and y2

are two linearly independent solutions of Eq. (5.8.11):

y′′(z)+ 1

4

[
1− β2

z2
+ 1− γ 2

(z − 1)2
+ β2 + γ 2 − α2 − 1

z(z − 1)

]
y(z) = 0 (5.8.13)

Equation (5.8.13) is related to an important differential equation known as the
hypergeometric equation, which is defined as in Eq. (3.7.35c)

z(1− z)χ ′′(z)+ [c − (a + b + 1)z]χ ′(z)− abχ(z) = 0 (5.8.14)
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where a, b, and c are, in general, complex constants. It is easy to verify that if

a = 1

2
(1+α−β− γ ), b = 1

2
(1−α−β− γ ), c = 1−β (5.8.15)

(all real), then solutions of Eqs. (5.8.13) and (5.8.14) are related byχ=u(z)y(z),
where u(z) = z A/(1− z)B, A = −c/2, and B = a+b−c+1

2 , and therefore f (z) =
y1/y2 = χ1/χ2.

In summary, the transformation w = f (z) that maps the upper half of the z
plane onto a curvilinear triangle with angles πα, πβ, and πγ , in such a way that
the associated vertices are mapped to ∞, 0, and 1, is given by f (z) = χ1/χ2 ,
where χ1 and χ2 are two linearly independent solutions of the hypergeometric
equation (5.8.14) with a, b, and c given by Eqs. (5.8.15).

The hypergeometric equation (5.8.14) has a series solution (see also Section
3.7 and Nehari(1952)) that can be written in the form

χ1(z; a, b, c) = k

(
1+ ab

c
z + a(a + 1)b(b + 1)

c(c + 1)2!
z2 + · · ·

)
(5.8.16a)

where k is constant as can be directly verified. This function can also be ex-
pressed as an integral:

χ1(z; a, b, c) =
∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt (5.8.16b)

where the conditions b > 0 and c > b (a, b, c assumed real) are necessary for
the existence of the integral.

We shall assume that α+β + γ < 1, α, β, γ > 0; then we see that Eq.
(5.8.15) ensures that the conditions b > 0, c > 0 hold. Moreover, expanding
(1−t z)−a in a power series in z leads to Eq. (5.8.16a), apart from a multiplicative
constant. (To verify this, one can use

∫ 1
0 tb−1(1− t)c−b−1 dt = �(b)�(c− b)/

�(c) = k.) To obtainw = f (z), we need a second linearly independent solution
of Eq. (5.8.14). We note that the transformation z′ = 1 − z transforms Eq.
(5.8.14) to

z′(1− z′)χ ′′ + [a + b − c + 1− (a + b + 1)z′]χ ′ − abχ = 0

and we see that the parameters of this hypergeometric equation are a′ = a,
b′ = b, c′ = a + b− c+ 1, whereupon a second linearly independent solution
can be written in the form

χ2(z; a, b, c) = χ1(1− z, a, b, a + b − c + 1)

=
∫ 1

0
tb−1(1− t)a−c(1− (1− z)t)−adt (5.8.16c)
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Once again, the condition α + β + γ < 1 ensures the existence of the integral
(5.8.16c) because we find that b > 0 and a > c − 1.

Consequently, the mapping

w = f (z) = χ1(z; a, b, c)

χ2(z; a, b, c)
(5.8.16d)

taking the upper half z plane to thew plane is now fixed withχ1 andχ2 specified
as above. The real z axis maps to the circular triangle as depicted in Figure
5.8.2. So, for example, the straight line on the real axis from z = 0 to z = 1
maps to a circular arc between A2 and A3 in the w plane.

We note that the case of α + β + γ = 1 can be transformed into a triangle
with straight sides (note that the sum of the angles is π ) and therefore can
be considered by the methods of Section 5.6. In the case of α + β + γ > 1,
one needs to employ different integral representations of the hypergeometric
function (cf. Whittaker and Watson (1927)).

In the next example we discuss the properties of f (z) and the analytic con-
tinuation of the inverse of w = f (z), or alternatively, the properties of the map
and its inverse as we continue from the upper half z plane to the lower half
z plane and repeat this process over and over again. This is analogous to the
discussion of the elliptic function in Example 5.6.8.

Example 5.8.2 (The Schwarzian Triangle Functions) In Example 5.8.1 we
derived the function w = f (z) that maps the upper half of the z plane onto a
curvilinear triangle in the w plane. Such functions are known as Schwarzian
s functions, w = s(z), or as Schwarzian triangle functions. Now we shall
further study this function and the inverse of this function, which is impor-
tant in applications such as the solution to certain differential equations (e.g.
Chazy’s Eq. (3.7.52) the Darboux-Halphen system (3.7.53)) which arise in
relativity and integrable systems. These inverse functions z = S(w) are also
frequently called Schwarzian S functions (capital S) or Schwarzian triangle
functions.

We recall from Example 5.6.8 that although the functionw= f (z)= F(z, k),
which maps the upper half of the z plane onto a rectangle in the w plane, is
multivalued; nevertheless, its inverse z = sn(w, k) is single valued. Similarly,
the Schwarzian function f (z) = s(z), which maps the upper half of the z
plane onto a curvilinear triangle in the w plane, is also multivalued. While the
inverse of this function is not in general single valued, we shall show that in the
particular case that the angles of the curvilinear triangle satisfy α+ β + γ < 1
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Fig. 5.8.3. Two straight segments, one circular arc

and

α = 1

l
, β = 1

m
, γ = 1

n
, l,m, n ∈ Z+, α, β, γ 
= 0

(5.8.17)
(Z+ is the set of positive integers) the inverse function is single valued.

For convenience we shall assume that two of the sides of the triangle are
formed by straight line segments (a special case of a circle is a straight line)
meeting at the origin, and that one of these segments coincides with part of the
positive real axis.

This is without loss of generality. Indeed, let C1 and C2 be two circles that
meet at z = A2 at an angle πβ. Because β 
= 0, these circles intersect also at
another point, say, A. The transformation w̃ = (w − A2)/(w − A) maps all
the circles through A into straight lines. (Recall from Section 5.7 that bilinear
transformations map circles into either circles or lines, but becausew = A maps
to w̃ = ∞, it must be the latter.) In particular, the transformation maps C1 and
C2 into two straight lines through A2. By an additional rotation, it is possible
to make one of these lines to coincide with the real axis (see Figure 5.8.3, w
plane).

It turns out that if

α + β + γ < 1 (5.8.18)

then there exists a circle that intersects at right angles the three circles that make
up a curvilinear triangle. Indeed, as discussed above, we may without loss of
generality consider a triangle with two straight sides (see Figure 5.8.3). Any
circle centered at the origin, which we will call C0, is obviously orthogonal to
the two straight sides of the triangle. Let C denote the circle whose part forms
the third side of the triangle (see Figure 5.8.4, and note specifically the arc
between A1 and A3 that extends to the circle C). Equation (5.8.18) implies that
the origin of C0 lies exterior to C because the arc (A1, A3) is convex. Hence it
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is possible to draw tangents from the origin of C0 to C . If P and Q denote the
points of contact of the tangents with C , then the circle C0 is orthogonal to C .
This circle, C0, is called the orthogonal circle of the triangle. Given the angles
απ , βπ , and γπ and the points A1 and A3 (point A2 is the origin) that are
determined by the properties of the equation (i.e., the hypergeometric equation;
we discuss this issue later in this example), the circle C and the orthogonal
circle C0 are then fixed.

If either of the angles α or γ are zero, then the lines A2 A1 or A2 A3, respec-
tively, correspond to a tangent to the circle C , in which case the vertex A1 or
A3, respectively lies on the orthogonal circle C0.

Let w = s(z;α, β, γ ) denote the transformation that maps the upper half
of the z plane onto the triangle depicted in Figure 5.8.3. If the angles of this
triangle satisfy the conditions (5.8.17) and (5.8.18), then it turns out that the
inverse of this transformation, denoted by S

w = s(z;α, β, γ ), z = S(w;α, β, γ ) (5.8.19)

is single valued in the interior of the orthogonal circle associated with this
triangle. We next outline the main ideas needed to establish this result.

The derivation is based on two facts. First, the function S has no singularities
in the entire domain of its existence except poles of order α−1. Second, the
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domain of existence of S is simply connected. Using these facts (see the
Monodromy Theorem, Section 3.5), it follows that S is single valued. The
singularity structure of S follows from the fact that for the original triangle,
s(z) = z−αg1(z), s(z) = zβg2(z), and s(z) = (z − 1)γ g3(z) near z = ∞,
z = 0, and z = 1, respectively, where the gi (z), i = 1, 2, 3 are analytic and
nonzero. This follows from the properties of the mapping of two line segments
meeting at an angle to the real z axis (see Section 5.6). Hence, S(w) behaves like
c1(w− A1)

−1/α , c2w
1/β , and 1+ c3(w− A3)

1/γ , c1, c2, c3 const. respectively,
which shows that if the reciprocals of α, β, γ are positive integers then the only
singularity of S(w) is a pole of order 1/α at w = A1 corresponding to z = ∞
(recall that vertex A1 corresponds to z = ∞). Because the transformation is
conformal, there can be no other singularities inside the triangle. All possible
analytic continuations of z = S(w;α, β, γ ) to points outside the original tri-
angle can be obtained by reflections about any of the sides of the triangles, by
using the Schwarz reflection principle (Theorem 5.7.2).

By the properties of bilinear transformations, we know that an inversion with
respect to a circular arc transforms circles into circles, preserves angles, and
maps the orthogonal circle onto itself. It follows that any number of inver-
sions of a circular triangle will again lead to a circular triangle situated in the
interior of the orthogonal circle. This shows that S cannot be continued to
points outside the orthogonal circle and that the vertices are the locations of
the only possible singularities. Any point within the orthogonal circle can be
reached by a sufficient number of inversions. Indeed, at the boundary of the
domain covered by these triangles, there can be no circular arcs of positive
radius, because otherwise it would be possible to extend this domain by an-
other inversion. Hence, the boundary of this domain, which is the orthogonal
circle, is made up of limit points of circular arcs whose radii tend to zero. This
discussion implies that the domain of existence of S(w) is the interior of the
orthogonal circle, which is a simply connected domain. The function S(w)
cannot be continued beyond the circumference of this circle, so the circum-
ference of the orthogonal circle is a natural boundary of S(w;α, β, γ ). The
boundary is a dense set of singularities, in this case a dense set of poles of order
1/α.

Next let us find the analytic expression of the function w = s(z;α, β, γ ).
Recall that because f (z) = s(z) satisfies Eq. (5.8.12) then s(z) = χ̂1/χ̂2, where
χ̂1 and χ̂2 are any two linearly independent solutions of the hypergeometric
Eq. (5.8.14) and the numbers a, b, c are related to α, β, γ by Eq. (5.8.15). A
solution χ̂2 of the hypergeometric equation that we will now use is given by
Eqs. (5.8.16b): χ̂2 = χ1(z; a, b, c). A second solution can be obtained by
the observation that if χ is a solution of the hypergeometric Eq. (5.8.4), then
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z1−cχ(z; a′, b′, c′) is also a solution of the same equation, where a′ = a−c+1,
b′ = b − c + 1, and c′ = 2− c. Because the value of χ1(z; a, b, c) at z = 0
is a nonzero constant, while the value of z1−cχ1(z; a′, b′, c′) at z = 0 is zero
(for 0 < c < 1), it follows that the Wronskian is nonzero and that these two
solutions are linearly independent. Hence

w = s(z;α, β, γ ) = z1−cχ1(z; a − c + 1, b − c + 1, 2− c)

χ1(z; a, b, c)
(5.8.20)

where a, b, and c are given by Eq. (5.8.15). (This is a different representation
than that discussed in Example 5.8.1. It is more convenient for this case, two
sides being straight lines.) The vertices of the triangle with angles β, γ , α corre-
spond to the points z = 0, 1,∞, respectively. Because c < 1, s(0;α, β, γ ) = 0;
that is, the origin of the z plane corresponds to the origin (vertex A2 in Figure
5.8.3) in the w plane. We choose the branch of z1−c is such a way that z1−c is
real for positive z. Thus s(z) is real if z varies along the real axis from z = 0
to z = 1; hence one side of the curvilinear triangle is part of the positive real
axis of the w plane. For negative z, we find (using c = 1− β)

z1−c = (eiπ |z|)1−c = |z|βeiπβ

which shows that −∞ < z < 0 is mapped by the transformation (5.8.20) onto
another side of the triangle, the linear segment that makes the angle πβ with
the real axis at the origin.

The remaining portions of the circular triangle in the w plane are fixed by
knowledge of the hypergeometric equation and formula (5.8.20) (details of
which we do not go into here; the interested reader can consult one of the many
references to properties of the hypergeometric equation such as Whittaker and
Watson (1927) or Nehari (1952)). So, for example, the vertices S(1;α, β, γ )
corresponding to point A3 and S(∞;α, β, γ ) corresponding to point A1, may
be calculated from Eq. (5.8.20) and use of the properties of the hypergeometric
functions. This yields

S(1;α, β, γ ) = �(2− c)�(c − a)�(c − b)

�(c)�(1− a)�(1− b)

which is real, and

S(∞;α, β, γ ) = eiπ(1−c)�(b)�(c − a)�(2− c)

�(c)�(b − c + 1)�(1− a)
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Fig. 5.8.5. Tiling the orthogonal circle with circular triangles

where, given any positive α, β, γ satisfying α + β + γ < 1, we determine
a, b, c from Eq. (5.8.15). The fundamental triangle obtained by the map
w = S(z;α, β, γ ) is the one depicted in Figures 5.8.3 and 5.8.4 (also see
Figure 5.8.5).

The single-valuedness of the inverse function z = S(w;α, β, γ ), α = 1/�,
β = 1/m, γ = 1/n, in the case when �, m, n are integers, makes their study
particularly important. Successive continuations of the fundamental triangle
in the w plane across their sides correspond to reflections from the upper to
lower half z plane, and this corresponds to analytically continuing the solution
in terms of the hypergeometric functions given by Eq. (5.8.20). Inverting an
infinite number of times allows us to eventually “tile” the orthogonal circle C0.
A typical situation is illustrated in Figure 5.8.5, with m = 3 and � = n = 4,
that is, β = π/3 and α = γ = π/4. The shaded and white triangles correspond
to the upper and lower half planes, respectively.

Finally, we note that when β → 0 (A2 remaining at the origin) and thus
c → 1, the triangle degenerates to a line segment. We note that when c → 1,
the representation (5.8.20) breaks down because χ̂1 and χ̂2 are not linearly
independent. The important special case α = β = γ = 0, corresponding to
three points lying on the orthogonal circle, is discussed below in Example 5.8.3.
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Remark An even number of reflections with respect to circular arcs is a bilinear
transformation (see Example 5.7.7). An inversion (reflection) with respect to
a circular arc maps circles into circles, preserves the magnitude of an angle,
and inverts its orientation. Hence an even number of inversions preserves the
magnitude of an angle and its orientation and is a conformal transformation
mapping circles into circles; that is, it is equivalent to a bilinear transformation
(see Example 5.7.7). Because, these inversions are symmetric with respect to
the real axis in the z plane, it follows that an even number of inversions in the
w plane will return us to the original position in the z plane. Hence z = S(w)
satisfies the functional equation

S

(
aw + b

cw + d

)
= S(w) (5.8.21)

Functions that satisfy this equation are usually referred to as automorphic
functions. Such functions can be viewed as generalizations of periodic func-
tions, for example, elliptic functions. Equation (5.8.21) can also be ascertained
by studying the Schwarzian equation (5.8.12) for w = s(z) and its inverse
z = S(w).

In order to determine the precise form of the bilinear transformation associ-
ated with the curvilinear triangles, we first note that these transformations must
leave the orthogonal circle invariant. Suppose we normalize this circle to have
radius 1. We recall that the most general bilinear transformation taking the unit
circle onto itself is (see Example 5.7.6)

w = B

(
z − A

Āz − 1

)
, |B| = 1, |A| < 1 (5.8.22)

This shows that under the conditions (5.8.17) and (5.8.18), S(w;α, β, γ ) is a
single-valued automorphic function in |w| < 1 satisfying the functional equa-
tion

S

(
B

(
w − A

Āw − 1

)
;α, β, γ

)
= S(w;α, β, γ ) (5.8.23)

The bilinear transformations associated with an automorphic function form
a group. Indeed, if T and T̃ denote two such bilinear transformations, that is,
if S is an automorphic function satisfying Eq. (5.8.21), S(Tw) = S(w) and
S(T̃w) = S(w), then

S(T T̃w) = S[T (T̃w)] = S[T̃w] = S(w)
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Furthermore, if T−1 denotes the inverse of T , then

S(w) = S(T T−1w) = S(T−1Tw)

Example 5.8.3 Find the transformation that maps a curvilinear triangle with
zero angles onto the upper half of the z plane.

In this case, α = β = γ = 0, so that a = b = 1
2 , c = 1, and the hypergeo-

metric equation (5.8.14) reduces to

z(1− z)χ ′′(z)+ [(1− z)− z]χ ′(z)− 1

4
χ(z) = 0

From this equation we see that ifχ(z) is a solution, thenχ(1−z) is also a solution
(see also Example 5.8.1). We use w = χ̂2

χ̂1
, where χ̂1 and χ̂2 are two linearly

independent solutions of the above hypergeometric equation, specifically

χ̂2 = χ(1− z) χ̂1 = χ(z)

where χ is given by Eq. (5.8.16b) with α = β = γ = 0, a = b = 1
2 , c = 1,

that is,

χ(z) =
∫ 1

0

dt√
t (1− t)(1− zt)

Using the change of variables t = τ 2, as well as z = k2, we find

w = f (z) = χ(1− z)

χ(z)
= K ′(k)

K (k)
z = k2

where the functions K ′ and K are defined as in Example 5.6.8. The variable k
is usually referred to as the modulus of the elliptic function z = F−1(w, k) =
sn(w, k). Because of this connection, the inverse of the function w = K ′(k)/
K (k) is often referred to as the elliptic modular function. This function is
usually denoted by J . It is actually customary to give this name to the inverse
of i K ′/K (note the extra factor of i , which is a standard normalization):

w = s(z; 0, 0, 0) = i K ′(k)
K (k)

⇒ z = k2 = J (w) = S(w; 0, 0, 0)

(5.8.24)

It is useful to determine the location of the “zero angle triangle” in the w

plane consistent with Eq. (5.8.24), which we will see has degenerated into a
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Fig. 5.8.6. Fundamental domain of a zero angle triangle

strip. Note that when z = 0, K (0) = π/2 and K ′(0) = ∞, and when z = 1,
K (1) = ∞ and K ′(1) = 0. As z increases from z = 0 to z = 1, w decreases
along the imaginary axis from i∞ to 0. We know that the angles of the “triangle”
are zero so at the vertex corresponding to z = 0 we have a half circle, cutting out
a piece of the upper half w plane, which begins at the origin and intersects the
realw axis somewhere to the right of the origin. The fundamental triangle must
lie in the first quadrant to be consistent with an orientation that has the upper
half z plane to the left as we proceed from z = 0 to z = 1 to z = ∞. Finally,
the last critical point has value w(z = ∞) = s(∞; 0, 0, 0) = 1 (see Figure
5.8.6). We could determine this from the properties of the hypergeometric
equation or from the following. From Eq. (5.8.24) we have the relation-
ship

s(z; 0, 0, 0) s(1− z; 0, 0, 0) = −1 (5.8.25)

Calling s(z; 0, 0, 0) = s(z), for simplicity of notation, and letting z = 1
2 + iy,

the Schwarz reflection principle about y = 0 implies s( 1
2 + iy) = −s̄( 1

2 − iy)
because s(z) is pure imaginary for 0 < z < 1; hence Eq. (5.8.25) yields

∣∣∣∣s(1

2
+ iy

)∣∣∣∣2 = 1
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and for y →∞, |s(∞)| = 1. But s(∞) must lie on the positive real axis,
whereupon s(∞) = 1.

Successive inversions (i.e., reflections) about the z axis correspond to inver-
sions of the fundamental strip in the w plane. It turns out that after an infinite
number of inversions we fill the entire upper half w plane (see Nehari (1952)
for a more detailed discussion). In this formulation the real w axis is a natural
boundary; that is, the orthogonal circle described in the previous example is
now the real w axis.

Problems for Section 5.8

1. In this problem the equation

{w, z} = 1− β2

2z2
+ 1− γ 2

2(z − 1)2
+ β2 + γ 2 − α2 − 1

2z(z − 1)

(c.f. Eq. (5.8.12) where w = f (z)) is derived. Frequently, it is useful to
consider z = z(w) instead of w = w(z).

(a) Show that
d

dz
= 1

z′
d

dw
and

d2w

dz2
= − z′′

z′3
, where z′ ≡ dz

dw

(b) Use these results to establish {w, z} = − 1

(z′)2
{z, w}, where {z, w} =(

z′′

z′

)′
− 1

2

(
z′′

z′

)2

and hence derive the equation

{z, w} + (z′)2

2

(
1− β2

z2
+ 1− γ 2

(z − 1)2
+ β2 + γ 2 − α2 − 1

z(z − 1)

)
= 0

2. In the previous problem, consider the special case α = β = γ = 1 so that
{z, w} = 0. Show that the general solution of this equation (and hence of
the mapping) is given by

z = A

w − w0
+ B

3. Using Eq. (5.8.16d), whereχ1 andχ2 given by Eqs. (5.8.16b) and (5.8.16c),
respectively, show that the vertices with the anglesπα andπβ (correspond-
ing to z = 0 and z = 1) are mapped to

w0 = sinπα

cos
[
π
2 (α − β − γ )

] and w1 =
cos
[
π
2 (α + β − γ )

]
sinπγ
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Hint: Use the identities∫ 1

0
tr−1(1− t)s−1 dt = �(r)�(s)

�(r + s)
, r > 0, s > 0

and

�(r)�(1− r) = π

sinπr

4. If β = γ , show that the function f (z) = χ1/χ2, where χ1 and χ2 are given
by Eqs. (5.8.16b) and (5.8.16c), respectively, satisfy the functional equation

f (z) f (1− z) = 1

5. Consider the crescent-shaped region shown in the figure below.

(a) Show that in this case Eq. (5.8.6) reduces to

{ f, z} = (1− α2)(a − b)2

2(z − a)2(z − b)2

where a and b are the points on the real axis associated with the vertices.
(b) Show that the associated linear differential equation (see Eq. 5.8.13) is

y′′ + (1− α2)(a − b)2

4(z − a)2(z − b)2
y = 0

πα

πα

Fig. 5.8.7. Crescent region–Problem 5.8.5
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(c) Show that the above equation is equivalent to the differential equation

g′′ + (1− α)

[
1

z − a
+ 1

z − b

]
g′ − α(1− α)

(z − a)(z − b)
g = 0

which admits (z − a)α and (z − b)α as particular solutions.
(d) Deduce that

f (z) = c1(z − a)α + c2(z − b)α

c3(z − a)α + c4(z − b)α

where c1, . . . , c4 are constants, for which C1C4 
= C2C3.

5.9 Other Considerations

5.9.1 Rational Functions of the Second Degree

The most general rational function of the second degree is of the form

f (z) = az2 + bz + c

a′z2 + b′z + c′
(5.9.1)

where a, b, c, a′, b′, c′ are complex numbers. This function remains invariant
if both the numerator and the denominator are multiplied by a nonzero constant;
therefore f (z) depends only on five arbitrary constants. The equation f (z)−
w0 = 0 is of second degree in z, which shows that under the transformation
w = f (z), every value w0 is taken twice. This means that this transformation
maps the complex z plane onto the doubly covered w plane, or equivalently
that it maps the z plane onto a two-sheeted Riemann surface whose two sheets
cover the entire w plane. The branch points of this Riemann surface are those
points w that are common to both sheets. These points correspond to points z
such that either f ′(z) = 0 or f (z) has a double pole. From Eq. (5.9.1) we can
see that there exist precisely two such branch points. We distinguish two cases:
(a) f (z) has a double pole, that is, w = ∞ is one of the two branch points.
(b) f (z) has two finite branch points. It will turn out that in case (a), f (z) can
be decomposed into two successive transformations: a bilinear one, and one of
the type z2+ const. In case (b), f (z) can be decomposed into three successive
transformations: a linear one, a bilinear one, and one of the type z + 1/z.

We first consider case (a). Let w = ∞ and w = λ be the two branch points
of w = f (z), and let z = z1 and z = z2 be the corresponding points in the z
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plane. The expansions of f (z) near these points are of the form

f (z) = α−2

(z − z1)2
+ α−1

(z − z1)
+ α0 + α1(z − z1)+ · · · , α−2 
= 0

and

f (z)− λ = β2(z − z2)
2 + β3(z − z2)

3 + · · · , β2 
= 0

respectively. The function
√
( f (z)− λ), takes no value more than once (because

f (z) takes no value more than twice), and its only singularity in the entire z
plane is a simple pole at z = z1. Hence from Liouville’s Theorem this function
must be of the bilinear form (5.7.1). Therefore

f (z) = λ+
(

Az + B

Cz + D

)2

(5.9.2)

that is

w = λ+ z2
1, z1 ≡ Az + B

Cz + D
(5.9.3)

We now consider case (b). Call w = λ and w = µ the two finite branch
points. Using a change of variables from f (z) to g(z), these points can be
normalized to be at g(z) = ±1, hence

f (z) = λ− µ

2
g(z)+ λ+ µ

2
(5.9.4)

Let z = z1 and z = z2 be the points in the z plane corresponding to the branch
points λ and µ, respectively. Series expansions of g(z) near these points are of
the form

g(z)− 1 = α2(z − z1)
2 + α3(z − z1)

3 + · · · , α2 
= 0

and

g(z)+ 1 = β2(z − z2)
2 + β3(z · z2)

3 + · · · , β2 
= 0

respectively. The function f (z) has two simple poles: therefore the function
g(z) also has two simple poles, which we shall denote by z = ζ1 and z = ζ2.
Using a change of variables from g(z) to h(z), it is possible to construct a
function that has only one simple pole

g(z) = 1

2

(
h(z)+ 1

h(z)

)
(5.9.5)
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Indeed, the two poles of g(z) correspond to h(z) = γ (z−ζ1)[1+c1(z−ζ1)+· · ·]
and to h(z) = δ(z − ζ2)

−1[1 + d1(z − ζ2) + · · ·]; that is, they correspond to
one zero and one pole of h(z). Furthermore, the expansions of g(z) near ±1
together with Eq. (5.9.5) imply that h(z) is regular at the points z = z1 and
z = z2. The only singularity of h(z) in the entire z plane is a pole, hence h(z)
must be of the bilinear form (5.7.1). Renaming functions and constants, Eqs.
(5.9.4) and (5.9.5) imply

w = A′ζ2 + B ′, ζ2 = 1

2

(
ζ1 + 1

ζ1

)
, ζ1 = Az + B

Cz + D
(5.9.6)

The important consequence of the above discussion is that the study of the
transformation (5.9.1) reduces to the study of the bilinear transformation (which
was discussed in Section 5.7) of the transformation w = z2 and of the transfor-
mation w = (z + z−1)/2.

Let us consider the transformation

w = z2; w = u + iv, z = x + iy; u = x2 − y2, v = 2xy
(5.9.7)

Example 5.9.1 Find the curves in the z plane that, under the transformation
w = z2, give rise to horizontal lines in the w plane.

Because horizontal lines in the w plane are v = const, it follows that the
relevant curves in the z plane are the hyperbolae xy = const. We note that
because the lines u = const are orthogonal to the lines v = const, it follows
that the family of the curves x2− y2 = const is orthogonal to the family of the
curves xy = const. (Indeed, the vectors obtained by taking the gradient of the
functions F1(x, y) = (x2 − y2)/2 and F2(x, y) = xy, (x,−y), and (y, x) are
perpendicular to these curves, and clearly these two vectors are orthogonal).

Example 5.9.2 Find the curves in the z plane that, under the transformation
w = z2, give rise to circles in the w plane.

Let c 
= 0 be the center and R be the radius of the circle. Then |w− c| = R,
or if we call c = C2, then w = z2 implies

|z − C ||z + C | = R (5.9.8)

Hence, the images of circles are the loci of points whose distances from two
fixed points have a constant product. These curves are called Cassinians. The
cases of R > |C |2, R = |C |2, and R < |C |2 correspond to one closed curve,
to the lemniscate, and to two separate closed curves, respectively. These three
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R < |C |2 R = |C |2 R > |C |2

Fig. 5.9.1. Cassinians associated with Eq. (5.9.8)

cases are depicted in Figure 5.9.1, when C is real. Otherwise, we obtain a
rotation of angle θ when C = |C |eiθ .

We now consider the transformation

w = 1

2

(
z + 1

z

)
, u = 1

2

(
r + 1

r

)
cos θ, v = 1

2

(
r − 1

r

)
sin θ

(5.9.9)
where z = r exp(iθ).

Example 5.9.3 Find the image of a circle centered at the origin in the z plane
under the transformation (5.9.9).

Let r = ρ be a circle in the z plane. Equation (5.9.9) implies

u2[
1
2 (ρ + ρ−1)

]2 + v2[
1
2 (ρ − ρ−1)

]2 = 1, ρ = const

This shows that the transformation (5.9.9) maps the circle r = ρ onto the ellipse
of semiaxes (ρ+ρ−1)/2 and (ρ−ρ−1)/2 as depicted in Figure 5.9.2. Because

1

4
(ρ + ρ−1)2 − 1

4
(ρ − ρ−1)2 = 1

all such ellipses have the same foci located on the u axis at ±1.
The circles r = ρ and r = ρ−1 yield the same ellipse; if ρ = 1, the ellipse

degenerates into the linear segment connecting w = 1 and w = −1. We note
that because the ray θ = ϕ is orthogonal to the circle r = ρ, the above ellipses
are orthogonal to the family of hyperbolae

u2

cos2 ϕ
− v2

sin2 ϕ
= 1, ϕ = const

which are obtained from Eq. (5.9.9) by eliminating r .
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-1 1ρ = 1

ρ = 1.4

ρ = 1.8

ρ = 2.2

ρ = 2.6

z plane w plane

Fig. 5.9.2. Transformation of a circle onto an ellipse

Example 5.9.4 (Joukowski Profiles) The transformation

w = 1

2

(
z + 1

z

)
(5.9.10)

arises in certain aerodynamic applications. This is because it maps the exterior
of circles onto the exterior of curves that have the general character of airfoils.

Consider, for example, a circle having its center on the real axis, passing
through z = 1, and having z = −1 as an interior point. Because the derivative
of w vanishes at z = 1, this point is a critical point of the transformation, and
the angles whose vertices are at z = 1 are doubled. (Note from Eq. (5.9.10) that
the series in the neighborhood of z = 1 is 2(w−1) = (z−1)2−(z−1)3+· · ·.)
In particular, because the exterior angle at point A on C is π (see Figure 5.9.3),
the exterior angle at point A′ on C ′ is 2π . Hence C ′ has a sharp tail at w = 1.
Note that the exterior of the circle maps to the exterior of the closed curve in
thew plane; |z| → ∞ implies |w| → ∞. Because we saw from Example 5.9.3
that the transformation (5.9.10) maps the circle |z| = 1 onto the slit |w| ≤ 1,
and because C encloses the circle |z| = 1, the curve C ′ encloses the slit |w| ≤ 1.

Suppose that the circle C is translated vertically so that it still passes through
z = 1 and encloses z = −1, but its center is in the upper half plane. Using the
same argument as above, the curve C ′ still has a sharp tail at A′ (see Figure 5.9.4).
But because C is not symmetric about the x axis, we can see from Eq. (5.9.10)
that C ′ is not symmetric about the u axis. Furthermore, because C does not
entirely enclose the circle |z| = 1, the curve C ′ does not entirely enclose the
slit |w| ≤ 1. A typical shape of C ′ is shown in Figure 5.9.4.

By changing C appropriately, other shapes similar to C ′ can be obtained.
We note that C ′ resembles the cross section of the wing of an airplane, usually
referred to as an airfoil.
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Fig. 5.9.3. Image of circle centered on real axis under the transformationw = 1
2 (z+1/z)
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Fig. 5.9.4. Image of circle whose center is above the real axis

5.9.2 The Modulus of a Quadrilateral

Let � be a positively oriented Jordan curve (i.e., a simple closed curve), with
four distinct points a1, a2, a3, and a4 being given on �, arranged in the direction
of increasing parameters. Let the interior of � be called Q. The system
(Q; a1, a2, a3, a4) is called a quadrilateral (see Figure 5.9.5).

Two quadrilaterals (Q; a1, . . . , a4) and (Q̃; ã1, . . . , ã4) are called confor-
mally equivalent if there exists a conformal map, f , from Q to Q̃ such that
f (ai ) = ãi , i = 1, . . . , 4.

If one considers trilaterals instead of quadrilaterals, that is, if one fixes three
instead of four points, then one finds that all trilaterals are conformally equiv-
alent. Indeed, it follows from the proof of the Riemann Mapping Theorem
that in a conformal mapping any three points on the boundary can be chosen
arbitrarily (this fact was used in Sections 5.6–5.8).

Not all quadrilaterals are conformally equivalent. It turns out that the equiv-
alence class of conformally equivalent quadrilaterals can be described in terms
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Q

a

a

a

a

1

2

3

4

Fig. 5.9.5. Quadrilateral

of a single positive real number. This number, usually called the modulus, will
be denoted by µ. We shall now characterize this number.

Let h be a conformal map of (Q; a, b, c, d) onto the upper half plane. This
map can be fixed uniquely by the conditions that the three points a, b, d are
mapped to 0, 1,∞, that is,

h(a) = 0, h(b) = 1, h(d) = ∞

Then h(c) is some number, which we shall denote by ξ . Because of the ori-
entation of the boundary, 1 < ξ < ∞. By letting z̃ = (az + b)/(cz + d) for
ad − bc 
= 0, we can directly establish that there is a bilinear transformation,
that we will call g, that maps the upper half plane onto itself such that the
points z = {0, 1, ξ,∞} are mapped to z̃ = {1, η,−η,−1}. We find after some
calculations that η is uniquely determined from ξ by the equation

η + 1

η − 1
=
√
ξ, η > 1

Recall the Example 5.6.8. We can follow the same method to show that for
any given η > 1, there exists a unique real number µ > 0 such that the
upper half z plane can be mapped onto a rectangular region R and the image
of the points z = {0, 1, ξ,∞}, which correspond to z̃ = {1, η,−η,−1}, can
be mapped to the rectangle with the corners {µ,µ + i, i, 0}. (The number µ
can be expressed in terms of η by means of elliptic integrals.) Combining the
conformal maps h and g, it follows that (Q; a, b, c, d) is conformally equivalent



5.9 Other Considerations 407

V 0

0

V

a

b

d

0

i

v

+i

u

c

Q

µ

µ

z plane w plane

Fig. 5.9.6. Electric current through sheet Q

to the rectangular quadrilateral (R;µ,µ+ i, i, 0). Thus two quadrilaterals are
said to be conformally equivalent if and only if they have the same value µ,
which we call the modulus.

Example 5.9.5 (Physical Interpretation of µ) Let Q denote a sheet of metal
of unit conductivity. Let the segments (a, b) and (c, d) of the boundary be kept
at the potentials V and 0, respectively, and let the segments (b, c) and (d, a) be
insulated. Establish a physical meaning for µ.

From electromagnetics, the current I flowing between a, b is given by (see
also Example 5.4.3)

I =
∫ b

a

∂Φ
∂n

ds

where ∂/∂n denotes differentiation in the direction of the exterior normal, and
Φ is the potential. Φ is obtained from the solution of (see Figure 5.9.6)

∇2Φ = 0 in Q, Φ = V on (a, b), Φ = 0 on (c, d),

∂Φ
∂n

= 0 on (b, c) and (d, a).

In the w plane we can verify the following solution for the complex potential:
Ω(w) = V

µ
w. From the definition of the potential (5.4.11), Ω = Φ + iΨ, so

Φ = Re Ω = V
µ

Rew = V
µ

u. At the top and bottom we have ∂Φ
∂v
= 0; on u = 0,

Φ = 0; and for u = µ, Φ = V . Hence we have verified that the solution of this
problem in thew plane is given by Φ = Vµ−1Rew. Furthermore, we know that
(see Eq. (5.4.14)) the integral I is invariant under a conformal transformation.
Computing this integral in the w plane we find

I = µ−1V, or V = µI
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Therefore µ has the physical meaning of the resistance of the sheet Q
between (a, b) and (c, d) when the remaining parts of the boundary are
insulated.

5.9.3 Computational Issues

Even though Riemann’s Mapping Theorem guarantees that there exists an an-
alytic function that maps a simply connected domain onto a circle, the proof is
not constructive and does not give insight into the determination of the mapping
function. We have seen that conformal mappings have wide physical applica-
tion, and, in practice, the ability to map a complicated domain onto a circle,
the upper half plane, or indeed another simple region is desirable. Toward this
end, various computational methods have been proposed and this is a field of
current research interest. It is outside the scope of this book to survey the var-
ious methods or even all of the research directions. Many of the well-known
methods are discussed in the books of Henrici, and we also note the collection
of papers in Numerical Conformal Mapping edited by L. N. Trefethen (1986)
where other reviews can be found and specific methods, such as the numerical
evaluation of Schwarz–Christoffel transformations, are discussed.

Here we will only describe one of the well-known methods used in numer-
ical conformal mapping. Let us consider the mapping from a unit circle in
the z plane to a suitable (as described below) simply connected region in the
w plane. We wish to find the mapping function w = f (z) that will describe the
conformal mapping. In practice, we really are interested in the inverse func-
tion, z = f −1(w). Numerically, we determine a set of points for which the
correspondence between points on the circle in the z plane and points on the
boundary in the w plane is deduced.

We assume that the boundary C in the w plane is a Jordan curve that can be
represented in terms of polar coordinates, w = f (z) = ρeiθ , where ρ = ρ(θ),
and we impose the conditions f (0) = 0 and f ′(0) > 0 (Riemann’s Map-
ping Theorem allows us this freedom) on the unit circle z = eiϕ . The map-
ping fixes, in principle, θ = θ(ϕ) and ρ = ρ(θ(ϕ)). The aim is to determine
the boundary correspondence points, that is, how points in the z domain,
ϕ = {ϕ1, ϕ2, . . . , ϕN }, transform to points in the w domain that is parametrized
by θ = {θ1, θ2, . . . , θN } (see Figure 5.9.7).

The method we describe involves the numerical solution of a nonlinear in-
tegral equation. This equation is a modification of a well-known formula (de-
rived in the homework exercises – see Section 2.6, Exercise 10, and Section
4.3, Exercise 15) that relates the boundary values (on |z| = 1) of the real and
imaginary parts of a function analytic inside the circle. Specifically, consider
F(z) = u(x, y) + iv(x, y), which is analytic inside the circle z = reiϕ , for
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Fig. 5.9.7. Boundary correspondence points

r < 1. Then on the circle r = 1 the following equation relating u and v holds:

v(ϕ) = v(r = 0)+ 1

2π

∫ 2π

0
u(t) cot

(
ϕ − t

2

)
dt (5.9.11)

where the integral is taken as a Cauchy principal value (we reiterate that both
t and ϕ correspond to points on the unit circle). The integral equation we shall
consider is derived from Eq. (5.9.11) by considering F(z) = log( f (z)/z), re-
calling that f (0) = 0, f ′(0) > 0. Then, using the polar coordinate representa-
tion f (z) = ρeiθ , we see that F(z) = log ρ + i(θ − ϕ); hence in Eq. (5.9.11)
we take u = log ρ(θ). We require that f ′(0) be real, thus v(r = 0) = 0. On
the circle, v = θ − ϕ; this yields

θ(ϕ) = ϕ + 1

2π

∫ 2π

0
log ρ(θ(t)) cot

(
ϕ − t

2

)
dt (5.9.12)

Equation (5.9.12) is called Theodorsen’s integral equation. The goal is to
solve Eq. (5.9.12) for θ(ϕ). Unfortunately, it is nonlinear and cannot be solved
in closed form, though a unique solution can be proven to exist. Consequently
an approximation (i.e., numerical) procedure is used. The methods are effective
when ρ(θ) is smooth and |ρ ′(θ)/ρ(θ)| is sufficiently small.

Equation (5.9.12) is solved by functional iteration:

θ(n+1)(ϕ) = ϕ + 1

2π

∫ 2π

0
log ρ

(
θ(n)(t)

)
cot

(
ϕ − t

2

)
dt (5.9.13)

where the function θ(0) is a starting “guess.”
Numerically speaking, Eq. (5.9.13) is transformed to a matrix equation; the

integral is replaced by a sum, and log ρ(θ) is approximated by a finite Fourier
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series, that is, a trigonometric polynomial, because ρ(θ) is periodic. Then,
corresponding to 2N equally spaced points (roots of unity) on the unit circle
in the z plane (t : {t1, . . . , t2N } and ϕ: {ϕ1, . . . , ϕ2N }), one solves, by iteration,
the matrix equation associated with Eq. (5.9.13) to find the set θ(n+1)(ϕ j ),
j = 1, 2, . . . , 2N , which corresponds to an an initial guess θ(0)(ϕ j ) = ϕ j ,
j = 1, 2, . . . , 2N , which are equally spaced points on the unit circle. As
n is increased enough, the iteration converges to a solution that we call θ̂ :
θ(n)(ϕ j ) → θ̂ (ϕ j ). These points are the boundary correspondence points.
Even though the governing matrix is 2N × 2N and ordinarily the “cost” of cal-
culation is O(N 2) operations, it turns out that special properties of the functions
involved are such that fast Fourier algorithms are applicable, and the number
of operations can be reduced to O(N log N ).

Further details on this and related methods can be found in Henrici (1977),
and articles by Gaier (1983), Fornberg (1980), and Wegmann (1988).



6
Asymptotic Evaluation of Integrals

6.1 Introduction

The solution of a large class of physically important problems can be repre-
sented in terms of definite integrals. Frequently, the solution can be expressed
in terms of special functions (e.g. Bessel functions, hypergeometric functions,
etc.; such functions were briefly discussed in Section 3.7), and these func-
tions admit integral representations (see, e.g., Section 4.6). We have also seen
in Section 4.6 that by using integral transforms, such as Laplace transforms
or Fourier transforms, the solution of initial and/or boundary value problems
for linear PDEs reduces to definite integrals. For example, the solution by
Fourier transforms of the Cauchy problem for the Schrödinger equation of a
free particle

iΨt +Ψxx = 0 (6.1.1a)

is given by

Ψ(x, t) = 1

2π

∫ ∞

−∞
Ψ̂0(k)e

ikx−ik2t dk (6.1.1b)

where Ψ̂0(k) is the Fourier transform of the initial data Ψ(x, 0). Although such
integrals provide exact solutions, their true content is not obvious. In order to
decipher the main mathematical and physical features of these solutions, it is
useful to study their behavior for large x and t . Frequently, such as for wave
motion, the interesting limit is t→∞ with c = x/t held fixed. Accordingly,
for the particular case of Eq. (6.1.1b) one needs to study

Ψ(x, t) =
∫ ∞

−∞
Ψ̂0(k)e

itφ(k) dk, t →∞ (6.1.2)

where φ(k) = kc − k2.

411
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In this chapter we will develop appropriate mathematical techniques for eval-
uating the behavior of certain integrals, such as Eq. (6.1.2), containing a large
parameter (such as t→∞). Historically speaking, the development of these
techniques was motivated by concrete physical problems. However, once these
techniques were properly understood it became clear that they are applicable to
a wide class of mathematical problems dissociated from any physical meaning.
Hence, these techniques were recognized as independent entities and became
mathematical methods. The most well-known such methods for studying the
behavior of integrals containing a large parameter are: Laplace’s method, the
method of stationary phase, and the steepest descent method. These methods
will be considered in Sections 6.2, 6.3, and 6.4, respectively.

In recent years the solution of several physically important nonlinear PDEs
has also been expressed in terms of definite integrals. This enhances further
the applicability of the methods discussed in this chapter. Some interesting
examples are discussed in Section 6.5.

There are a number of books dedicated to asymptotic expansions to which
we refer the reader for futher details. For example: Bleistein and Handelsman,
Dingle, Erdelyi and Olver. Many of the methods are discussed in Bender and
Orszag, and in the context of an applied complex analysis text see Carrier et al.

In order to develop the methods mentioned above, we need to introduce some
appropriate fundamental notions and results.

6.1.1 Fundamental Concepts

Suppose we want to find the value of the integral

I (ε) =
∫ ∞

0

e−t

1+ εt
dt, ε > 0

for a sufficiently small real positive value of ε. We can develop an approximation
to I (ε) using integrating by parts repeatedly. One integration by parts yields

I (ε) = 1− ε

∫ ∞

0

e−t

(1+ εt)2
dt

Repeating this process N more times yields

I (ε) = 1− ε + 2!ε2 − 3!ε3 + · · · + (−1)N N !εN

+(−1)N+1(N + 1)!εN+1
∫ ∞

0

e−t

(1+ εt)N+2
dt (6.1.3)
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Equation (6.1.3) motivates the introduction of several important notions. We
assume that ε is sufficiently small, and we use the following terminology:

(a) −ε is of order of magnitude (or simply is of order) ε, while 2!ε2 is of order
ε2. We denote these statements by −ε = O(ε) and 2!ε2 = O(ε2);

(b) 2!ε2 is of smaller order than ε, which we denote by 2!ε2 " ε; and
(c) if we approximate I (ε) by 1 − ε + 2!ε2, this is an approximation correct

to order ε2.

We now make these intuitive notions precise. First we discuss the situation
when the parameter, such as ε in Eq. (6.1.3), is real. The following definitions
will be satisfactory for our purposes.

Definition 6.1.1 (a) The notation

f (k) = O(g(k)), k → k0 (6.1.4)

which is read “f (k) is of order g(k) as k → k0,” means that there is a finite
constant M and a neighborhood of k0 where | f | ≤ M |g|.

(b) The notation

f (k)" g(k), k → k0 (6.1.5)

which is read “ f (k) is much smaller than g(k) as k → k0,” means

lim
k→k0

∣∣∣∣ f (k)

g(k)

∣∣∣∣ = 0

Alternatively, we write Eq. (6.1.5) as

f (k) = o(g(k)), k → k0

(c) We shall say that f (k) is an approximation to I (k) valid to order δ(k), as
k → k0, if

lim
k→k0

I (k)− f (k)

δ(k)
= 0 (6.1.6)

For example, return to Eq. (6.1.3), where now k is ε and k0 = 0. Consider
the approximation f (ε) = 1 − ε + 2!ε2; then, in fact, limε→0

I (ε)− f (ε)
ε2 = 0.

Thus f (ε) is said to be an approximation of I (ε) valid to order ε2.
Equation (6.1.3) involves the ordered sequence 1, ε, ε2, ε3, . . .. This se-

quence is characterized by the property that its ( j+1)st member is much smaller
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than its j th member. This property is the defining property of an asymptotic
sequence. Equation (6.1.3) actually provides an asymptotic expansion of I (ε)
with respect to the asymptotic sequence {ε j }∞j=0, that is, 1, ε, ε2, . . ..

Definition 6.1.2 (a) The ordered sequence of functions {δ j (k)}, j = 1, 2, · · ·
is called an asymptotic sequence as k → k0 if

δ j+1(k)" δ j (k), k → k0

for each j .
(b) Let I (k) be continuous and let {δ j (k)} be an asymptotic sequence as

k → k0. The formal series
∑N

j=1 a jδ j (k) is called an asymptotic expansion
of I (k), as k → k0, valid to order δN (k), if

I (k) =
m∑

j=1

a jδ j (k)+ O(δm+1(k)), k → k0, m = 1, 2, . . . , N

(6.1.7)
then we write

I (k) ∼
N∑

j=1

a jδ j (k), k → k0 (6.1.8)

The notation∼will be used extensively in this chapter. The notation I (k) ∼
η(k), k → k0, means

lim
k→k0

∣∣∣∣ I (k)η(k)

∣∣∣∣ = 1

With regard to Eq. (6.1.8), the notation ∼ implies that each term can be
obtained successively via

an = lim
k→ko

(
I (k)−∑n−1

j=0 a jδ j (k)

δn(k)

)
When an arbitrarily large number of terms can be calculated, frequently

one uses Eq. (6.1.8) with N =∞, despite the fact (as we discuss below) that
asymptotic series are often not convergent.

Let us return to Eq. (6.1.3). The right-hand side of this equation is an asymp-
totic expansion of I (k) provided that the (n + 1)st term is much smaller than
the nth term. It is clear that this is true for all n = 0, 1, . . . , N − 1. For n = N



6.1 Introduction 415

because ε > 0 we have 1+ εt ≥ 1; thus∫ ∞

0
e−t/(1+ εt)N+2 dt ≤

∫ ∞

0
e−t dt = 1

hence ∣∣∣∣(−1)N+1(N + 1)!εN+1
∫ ∞

0

e−t

(1+ εt)N+2
dt

∣∣∣∣
≤ ∣∣(−1)N+1(N + 1)!εN+1

∣∣" ∣∣(−1)N N !εN
∣∣

It is important to realize that the expansion Eq. (6.1.3) is not convergent. Indeed,
for ε fixed the term (−1)N N !εN tends to infinity as N →∞. But for fixed N
this term vanishes as ε → 0, and this is the reason that the above expansion
provides a good approximation to I (ε) as ε→ 0.

Example 6.1.1 Find an asymptotic expansion for J (k) = ∫∞0 e−kt

1+t dt as real
k →∞.
Calling t ′ = kt and ε = 1/k, we see that

J = ε

∫ ∞

0

e−t ′

1+ εt ′
dt ′

Thus from Eq. (6.1.3), with ε = 1/k, we have

J (k) = 1

k
− 1

k2
+ 2!

k3
− · · · + (−1)N−1 (N − 1)!

k N
+ RN (k)

RN (k) = (−1)N N !

k N+1

∫ ∞

0

e−t dt

(1+ t/k)N+1

(6.1.9)

and from the discussion above we find that

|RN (k)| ≤ N !/k N+1 " 1/k N

Note that Eq. (6.1.9) is exact. As k→∞, 1
k , 1

k2 , · · · form an asymptotic se-
quence; thus Eq. (6.1.9) provides an asymptotic expansion of I (k) for large k.
Again we remark that the above expansion is not convergent: As N → ∞, k
fixed, the series does not converge; but as k → ∞, N fixed, RN → 0 (in the
asymptotic expansion, |RN (k)| " 1/k N ).

Example 6.1.2 Find an asymptotic expansion for I (k) = ∫∞k e−t

t dt as real
k →∞.
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Integrating by parts N times we find

I (k) = e−k

[
1

k
− 1

k2
+ 2!

k3
− · · · + (−1)N−1 (N − 1)!

k N

]
+ RN (k)

RN (k) = (−1)N N !
∫ ∞

k

e−t

t N+1
dt (6.1.10)

As k →∞, the terms e−k

k , e−k

k2 , · · · form an asymptotic sequence. We also see
that

|RN (k)| < N !

k N+1

∫ ∞

k
e−t dt = N !e−k/k N+1 " e−k/k N

thus Eq. (6.1.10) is an asymptotic expansion as k →∞. As N →∞ for fixed
k, the series is divergent, and |RN | → ∞. As k → ∞ for fixed N , RN → 0
(we have an asymptotic expansion).

Asymptotic series frequently give remarkably good approximations. For
example, when k = 10 and N = 2, the error between the exact answer and the
first two terms of the series, R2(10), satisfies |R2(10)| < 0.002e−10, which is
clearly very small. In fact, even when k = 3 and N = 2, we have |R2(3)| <
2/(3e)3 .= 3.7× 10−3. However, we cannot take too many terms in the series,
because the remainder, which decreases for a while, eventually increases as N
increases. In principle, one can find the “optimal” value of N for fixed k for
which the remainder is smallest (best approximation); we will not go into this
in more detail at this point. In most applications, obtaining the first few terms
of the asymptotic expansion is sufficient.

The following property of an asymptotic expansion can be readily estab-
lished: Given an asymptotic sequence {δ j (k)}∞j=1, then the asymptotic expan-

sion of a function f (k) is unique. Specifically, let f (k) ∼∑N
j=1 a jδ j (k) as k →

k0, where {δ j (k)} is an asymptotic sequence. Then the coefficients an are unique.
Indeed, if f (k) had another asymptotic expansion f (k) ∼∑N

j=1 b jδ j (k), then
calling c j = a j − b j we would find that 0 ∼ c1δ1(k)+ c2δ2(k)+ c3δ3(k)+· · ·.
Dividing by δ1(k) and taking the limit k → k0 implies c1 = 0. Repeating this ar-
gument with δ1(k) replaced by δ2(k), etc., implies that c j = 0 for j = 1, 2, . . . ,
and hence a j = b j for j = 1, 2, . . ..

Until now we have discussed asymptotic expansions when the parameter k is
real. However, the previous definitions can be extended to complex values of the
parameter k, which we will now call z. Consider a function f (z) that is analytic
everywhere outside a circle |z| = R. Then we know that f (z) has a convergent
Taylor series at infinity of the form f (z) = a0+a1/z+a2/z2+· · ·. In this case
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the convergent Taylor series is equivalent to a convergent asymptotic series with
an asymptotic sequence {1/z j }∞j=0. If f (z) is not analytic at infinity, it cannot
possess an asymptotic expansion valid for all arg z as z → ∞. Typically
asymptotic expansions are found to be valid only within some sector of the
complex plane; that is, the expansion is constrained by some bounds on arg z.

Often the asymptotic expansion of a given function f (z) has the form

f (z) ∼ Φ(z)
(
a0 + a1/z + a2/z2 + · · · )

for z in a sector of the complex plane. The asymptotic sequence is either
{Φ(z)/z j }∞j=0 when considering f (z), or more simply {1/z j }∞j=0 if we choose
to work with the asymptotic expansion of f (z)/Φ(z).

A function f is said to have an asymptotic power series in a sector of the z
plane as z →∞ if

f (z) ∼ a0 + a1/z + a2/z2 + · · ·

The series is generally not convergent. Let another function g(z) have an
asymptotic power series representation in the same sector of the form

g(z) ∼ b0 + b1/z + b2/z2 + · · ·

Then the arithmetic combinations f + g (sum) and f g (product) also have
asymptotic power series representations that are obtained by adding or multi-
plying the series termwise. An asymptotic power series can be integrated or
differentiated termwise to yield an asymptotic expansion:

f ′(z) ∼ −a1/z2 − 2a2/z3 + · · · ,∫ ∞

z
( f (ζ )− a0 − a1/ζ ) dζ ∼ a2

z
+ a3

2z2
+ · · · .

We note that more general asymptotic series (as opposed to asymptotic power
series) can be integrated termwise but it is, in general, not permissible to dif-
ferentiate termwise in order to obtain an asymptotic expansion. (The interested
reader may wish to consult Erdelyi (1956).)

A given asymptotic expansion can represent two entirely different functions.
Suppose as z → ∞ for Rez > 0 (i.e., −π2 < arg z < π

2 ), the function f (z) is
given by the asymptotic power series expansion

f (z) ∼
∞∑

n=0

an

zn



418 6 Asymptotic Evaluation of Integrals

Then the same expansion also represents f (z)+ e−z in this sector. The reason
is that the asymptotic power series representation of e−z for Rez > 0 is zero,
that is

e−z ∼
∞∑

n=0

bn

zn

has bn = 0 for n ≥ 0 because limz→∞ zne−z = 0 for n ≥ 0 and Re z > 0.
The term e−z is transcendentally small, or said to be “beyond all orders”, with
respect to the asymptotic power series

∑∞
n=0

an
zn . An asymptotic power series

contains no information about terms beyond all orders.
When f (z) has an asymptotic representation (not necessarily an asymptotic

power series) in a sector of the complex plane, it can happen that an entirely
different asymptotic representation is valid in an adjacent sector. In fact, even
when f (z) is analytic for large but finite values of z, the asymptotic repre-
sentation can change discontinuously as the sector is crossed. This is usually
referred to as theStokesphenomenon, which we discuss in detail in Section 6.7.
The Stokes phenomenon arises frequently in applications. Linear second-order
ODEs possess convergent series expansions around regular singular points (see
Section 3.7). In general they possess asymptotic series representations around
irregular singular points, i.e., singular points which are not regular.

Example 6.1.3 Discuss the asymptotic behavior of I (z) = sinh(z−1), z → 0,
z complex.

Let z= reiθ . Then as z→ 0 the dominant term is 1
2 ez−1

or− 1
2 e−z−1

depending
on whether cos θ is > 0 or < 0, respectively. Thus

I (z) ∼ 1

2
ez−1

as z → 0 in |arg z| < π

2

and I (z) ∼ −1

2
e−z−1

as z → 0 in
π

2
< arg z <

3π

2

We see that the asymptotic expansion of sinh(z−1) changes discontinuously
across the ray θ = π/2.

In much of this chapter we concentrate on the situation when the large
parameter is real. The Stokes phenomenon is discussed in more detail in Sec-
tion 6.7.

6.1.2 Elementary Examples

It is sometimes possible to determine the behavior of an integral without using
any sophisticated asymptotic methods. Next we present two classes of such
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integrals. The first class involves the evaluation of the integral
∫ b

a f (k, t) dt
as k → k0, where f (k, t) ∼ f0(t), as k → k0 uniformly for t in [a, b]. The
second class involves the evaluation of the integral

∫ b
k f (t) dt as k →∞.

To determine the leading behavior of integrals of the first class, we use the
following fact. Assume that f (k, t)∼ f0(t) as k→ k0 uniformly for t in [a, b],
and that

∫ b
a f0(t) dt is finite and nonzero. Then the limit as k → k0 and the

integral can be interchanged (this is a special case of the fact that asymptotic
sequences can be integrated termwise) hence

∫ b

a
f (k, t) dt ∼

∫ b

a
f0(t) dt, k → k0 (6.1.11)

To determine the behavior of integrals of the second class we use integration
by parts.

Example 6.1.4 Find the first two nonzero terms of the asymptotic expansion
of I (k) = ∫ 1

0
sin tk

t dt as k → 0.
Because sin z has a uniformly convergent Taylor series sin z = z−z3/3!+· · ·

sin tk

t
∼ k − t2k3

3!
+ · · · ,

so I (k) ∼
∫ 1

0

(
k − t2k3

3!
+ · · ·

)
dt = k − k3

3 · 3!
+ · · ·

Sometimes it is possible to modify the above technique when Eq. (6.1.11) is
not directly applicable. This is illustrated in Examples 6.1.5 and 6.1.6.

Example 6.1.5 Evaluate I (k) = ∫∞k e−t2
dt as k → 0.

We would like to expand e−t2
, which has an expansion provided that t is

finite. Also intuitively we expect that as k → 0, the main contribution to I (k)
comes from

∫∞
0 e−t2

dt . For both of these reasons we write I (k) as

I (k) =
∫ ∞

0
e−t2

dt −
∫ k

0
e−t2

dt (6.1.12)

The first integral of Eq. (6.1.12) can be evaluated exactly (see Example 4.2.8,
Eq. (4.2.13), and the definition of the gamma function, Eq. (4.5.31))

∫ ∞

0
e−t2

dt = 1

2

∫ ∞

0
e−ss−

1
2 ds = 1

2
�

(
1

2

)
=
√
π

2
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To evaluate the second integral of Eq. (6.1.12), we use the Taylor series e−t2 =
1− t2 + t4/2− · · ·; hence

I (k) =
√
π

2
− k + k3

3
− k5

10
+ · · ·

Example 6.1.6 Evaluate E1(k) =
∫∞

k
e−t

t dt, k → 0+.
As in Example 6.1.5, we write

∫∞
k = ∫∞0 − ∫ k

0 . But now the integrand has
a logarithmic singularity at t = 0. If we subtract (and add) 1/t in order to
cancel the singularity at t = 0, then we are left with an integral (

∫∞
k dt/t) that

does not converge. But if we subtract (and add) 1/[t (t + 1)], this difficulty is
avoided:

E1(k) =
∫ ∞

k

dt

t (t + 1)
+
∫ ∞

0

(
e−t − 1

t + 1

)
dt

t
−
∫ k

0

(
e−t − 1

t + 1

)
dt

t

(6.1.13)

The first integral of Eq. (6.1.13) equals log 1+k
k = − log k + log(1 + k) =

− log k + k − k2

2 + k3

3 − · · ·, while the second integral is a constant that we
call −γ . (It can be shown (Abramowitz and Stegun, 1965) that γ is the so-
calledEuler constant, which is approximately 0.577216.) To compute the third
integral of Eq. (6.1.13), we note that Taylor series expansions yield

e−t − 1

t + 1
=
(

1− t + t2

2
− · · ·

)
−
(

1− t + t2 − · · ·
)
= − t2

2
+ · · ·

thus the third integral equals − k2

4 + · · ·. Hence

E1(k) = −γ − log k + k − k2

4
+ · · ·

We now consider integrals of the type
∫ b

k f (t) dt, k → ∞. Such integrals
can often be evaluated using integration by parts. Sometimes the integral must
be appropriately rewritten before integration by parts is applied.

Example 6.1.7 Evaluate I (k) = ∫∞k e−t2
dt, k →∞.

The largest value of e−t2
occurs at the boundary t = k. Because integration

by parts computes the value of the integrand on the boundaries, we expect that
integration by parts will work:

I (k) =
∫ ∞

k

(
− 1

2t

)(− 2te−t2)
dt = e−t2

(
− 1

2t

)∣∣∣∣∞
k

−
∫ ∞

k
e−t2 dt

2t2
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or

I (k) = e−k2

2k
+ O

(
e−k2

k3

)

Example 6.1.8 Evaluate I (k) = ∫ k
0 t−1/2e−t dt as k →∞.

As k → ∞ we expect that the main contribution to I (k) will come from∫∞
0 t−1/2e−t dt . Thus

I (k) =
∫ ∞

0
t−1/2e−t dt −

∫ ∞

k
t−1/2e−t dt

As before (see Example 6.1.5), the first integral above can be evaluated exactly;
it is �( 1

2 ) =
√
π . The second integral can be evaluated using integration by

parts

I (k) = √π − e−k

√
k
+ O

(
e−k

k3/2

)
The rigorous justification that the formulae obtained in Examples 6.1.7 and

6.1.8 are actually the first terms in an asymptotic expansion requires one to find
a bound on the remainder. (See Example 6.1.4).

Problems for Section 6.1

1. (a) Consider the function

f (ε) = eε

Find the asymptotic expansion of f (ε) in powers of ε, as ε → 0

(b) Similarly for the function

f (ε) = e−
1
ε

find the asymptotic expansion in powers of 1/ε, as ε → 0

2. Show that both the functions (1+ x)−1 and (1+ e−x )(1+ x)−1 possess the
same asymptotic expansion as x →∞.

3. Find the asymptotic expansions of the following integrals:

(a)
∫ 1

0

sin kt

t
dt, k → 0 (b)

∫ k

0
t−

1
4 e−t dt, k → 0+



422 6 Asymptotic Evaluation of Integrals

(Hint: let s = t1/4.)

(c)
∫ ∞

k
e−t4

dt, k → 0

4. (a) Show the bound on the remainder for the asymptotic expansion of the
integral in Example 6.1.7 is

e−k2

4k3

Hint: note that the remainder R2 =
∫∞

k
e−t2

2t2 dt , thus

|R2| =
∣∣∣∣ ∫ ∞

k

(2t)e−t2

4t3
dt

∣∣∣∣,
then use the fact that t > k.

(b) Show that a bound on the remainder: R2 =
∫∞

k
e−t

2t3/2 dt in the asymptotic

expansion of the integral in Example 6.1.8 is e−k

2k3/2 .

5. Find the asymptotic expansion of the integral

I (z) =
∫ b

a

u(x)

x − z
dx Im z 
= 0

as z →∞.
(
Hint: Use 1

x−z = 1
(−z)(1− x

z )
.
)

Show that if all the integrals∫ ∞

−∞
|u(x)|xn dx <∞

then the analogous result holds when −a = b = ∞.

6. Find the asymptotic expansion of
∫ k

0
e−t

1+t2 dt as k →∞.

6.2 Laplace Type Integrals

In this section we shall study the asymptotic behavior as k →+∞ of integrals
of the form

I (k) =
∫ b

a
f (t)e−kφ(t) dt (6.2.1)

where f (t) and φ(t) are real differentiable functions. A special case of such
integrals (when φ(t) = t , a = 0, b = ∞) is the Laplace transform (Section
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4.5), which is why integrals such as Eq. (6.2.1) are referred to as Laplace type
integrals.

Our analysis of the above integrals will be developed at an intuitive, a heuris-
tic, and a rigorous level. At the intuitive level we identify the region in the t
domain that gives the most important contribution to the large k evaluation of
Eq. (6.2.1). At the heuristic level, by assuming that our intuition is correct,
we derive appropriate mathematical formulae expressing the large k behavior
of Eq. (6.2.1). At the rigorous level we establish the validity of our approach
by proving that these formulae indeed express the asymptotic behavior of
Eq. (6.2.1) as k →+∞.

In order to gain some intuition, suppose first that I (k) = ∫ b
0 f (t)e−kt dt . As

k →∞, the integrand becomes exponentially small for all t except for t near
0, because as t → 0 and k →∞, kt could remain finite. Hence we expect that
the major asymptotic contribution comes from the immediate neighborhood
of t = 0. Thus the problem of analyzing this integral becomes a problem of
studying the neighborhood of t = 0. In this way a global problem is replaced by
a local one, which is precisely why the asymptotic evaluation of such integrals is
successful. To render further support to our intuition, let’s consider an integral
that can be evaluated exactly. Let J (k) = ∫∞0 (1+ t)e−kt dt , then separating
the integrals and integration by parts yields the exact formula J (k) = 1

k + 1
k2 .

We expect that for large k, I (k) ∼ ∫ R
0 e−kt dt , where R is arbitrarily small

but limk→∞ k R = ∞. Hence we expect that I (k) ∼ 1
k , which indeed agrees

with the large k behavior of the exact formula. The generalization of the above
argument to integrals such as Eq. (6.2.1) is not difficult. If t = c is the minimum
of the function φ(t) in the interval a ≤ t ≤ b and if f (c) 
= 0, then it is the
neighborhood of t = c that gives the dominant contribution to the asymptotic
expansion of I (k) for large k. Furthermore, the minimum can occur either at
the boundaries or at an interior point, which in the latter case necessarily means
φ′(t) = 0. It follows that one only needs to carefully study such (critical)
points. We distinguish two cases depending on whether the minimum occurs at
the boundaries or at an interior point. The case that φ(t) is monotonic (i.e., the
major contribution to the asymptotics of I (k) comes from the boundaries) is
considered in Sections 6.2.1 and 6.2.2. The case that φ(t) has a local minimum
in [a, b] is considered in Section 6.2.3.

6.2.1 Integration by Parts

Suppose that φ(t) is monotonic in [a, b]; then one needs to analyze the behavior
of the integrand near the boundaries. Because integration by parts is based on
such an analysis, we expect that it is a useful technique for studying Laplace
type integrals when φ(t) is monotonic.
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Example 6.2.1 Evaluate
∫∞

0 (1+ t2)−2e−kt dt as k →+∞.
Using integration by parts we find∫ ∞

0
(1+ t2)−2e−kt dt = (1+ t2)−2e−kt

−k

∣∣∣∣∞
0

+ 1

k

∫ ∞

0
(−4t)(1+ t2)−3e−kt dt

= 1

k
+ O

(
1

k3

)

Example 6.2.2 Evaluate I (k) = ∫∞0 (t + 1)−1e−k(t+2)2
dt as k →+∞.

Again we use integration by parts by first rewriting I (k) as

I (k) =
∫ ∞

0

(
d

dt
e−k(t+2)2

)
(t + 1)−1

(−2k)(t + 2)
dt

= e−k(t+2)2 (t + 1)−1

(−2k)(t + 2)

∣∣∣∣∞
0

+ 1

2k

∫ ∞

0
e−k(t+2)2 d

dt

(
(t + 1)−1

t + 2

)
dt

= e−4k

4k
+ O

(
e−4k

k2

)

Example 6.2.3 Evaluate I (k) = ∫ 2
1 exp(k cosh t) dt as k →∞.

The function cosh t increases monotonically in the interval [1, 2]; thus rewrit-
ing the integral in the form

I (k) =
∫ 2

1

d

dt
exp(k cosh t)

dt

k sinh t

and integrating by parts yields

I (k) ∼ ek cosh 2

k sinh 2
, k →+∞

From the above examples it follows that the asymptotic evaluation of integrals
of the form

∫ b
a f (t)e−kt dt depends on the behavior of f (t) near t = a. In

particular, if f (t) is sufficiently smooth, the integration by parts approach
provides the full asymptotic expansion. The rigorous justification for the results
of Example 6.2.1 is obtained from:∫ ∞

0
t (1+ t2)−3e−kt dt ≤

∫ ∞

0
te−kt dt = 1

k

The rigorous justification of the integration by parts in general follows from the
following lemma.
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Lemma 6.2.1 (Integration by Parts) Consider the integral

I (k) =
∫ b

a
f (t)e−kt dt (6.2.2)

where the interval [a, b] is a finite segment of the real axis. Let f (m)(t) denote
the mth derivative of f (t), f (0)(t) ≡ f (t). Suppose that f (t) has N + 1
continuous derivatives while f (N+2)(t) is piecewise continuous on a ≤ t ≤ b.
Then

I (k) ∼
N∑

n=0

e−ka

kn+1
f (n)(a), k →+∞ (6.2.3)

Proof For m ≤ N , integration by parts yields

I (k) =
m−1∑
n=0

e−ka

kn+1
f (n)(a)−

m−1∑
n=0

e−kb

kn+1
f (n)(b)

+ 1

km

∫ b

a
e−kt f (m)(t) dt, m = 1, . . . , N

The contribution from the upper endpoint t = b is asymptotically negligible
(“beyond all orders”) compared to that from t = a; indeed, limk→∞ knek(a−b) =
0, n = 1, 2, . . .. Also, another integration by parts yields

Rm−1(k) ≡ 1

km

∫ b

a
e−kt f (m)(t) dt

= − 1

km+1

[
e−kb f (m)(b)− e−ka f (m)(a)

]
+ 1

km+1

∫ b

a
e−kt f (m+1)(t) dt

Thus as k →∞, Rm−1(k) = O(k−(m+1)e−ka). For m = N we can decompose
[a, b] into subintervals in each of which f (N+2)(t) is continuous. Then a final
integration by parts for RN completes the proof. �

We mention two generalizations of the above result. (a) If b = ∞, then
the above result is also valid provided that as t →∞ f (t) = O(eαt ), α real
constant, so that I (k) exists for k sufficiently large. In particular, if a = 0 then



426 6 Asymptotic Evaluation of Integrals

I (k) becomes the Laplace transform of f and the asymptotic expansion follows
from Eq. (6.2.3) by setting a = 0.

(b) If φ(t) is monotonic in [a, b], then the integral
∫ b

a f (t)e−kφ(t) dt can be
transformed to Eq. (6.2.2) by the change of variables τ = φ(t). Although in
practice, this is usually not the most convenient way to evaluate such integrals,
it does provide a rigorous justification for the integration by parts approach to
such integrals.

Example 6.2.4 Evaluate I (ε) = ∫∞0 (1+ εt)−1e−t dt as ε → 0.
This integral can be transformed to a Laplace type integral by letting εt = τ .

Then

I (k) = 1

ε

∫ ∞

0
(1+ τ)−1e−

τ
k dt,

1

ε
→∞

Hence, using f (τ ) = (1+ τ)−1, f (n)(0) = (−1)nn!, Eq. (6.2.3) with k = 1/ε
yields

I (k) ∼
N∑

n=0

(−1)nn!εn, ε → 0

6.2.2 Watson’s Lemma

If f (t) is not sufficiently smooth at t = a, then the integration by parts approach
for the asymptotic evaluation of Eq. (6.2.2) may not work.

Example 6.2.5 Obtain the first two terms of the asymptotic expansion of I (k) =∫ 5
0 (t

2 + 2t)−1/2e−kt dt as k →∞.
The function f (t) is of O(t−1/2) as t → 0; thus a straightforward integration

by parts fails. Indeed

I (k) = (t2 + 2t)−1/2

−k
e−kt

∣∣∣∣5
0

+ 1

k

∫ 5

0
e−kt

(
d

dt
(t2 + 2t)−1/2

)
dt

and the first term above is singular at t = 0.
Intuitively, we expect that the main contribution to I (k) for large k will come

near t = 0. Thus it would be desirable to expand (t2 + 2t)−1/2 in the neighbor-
hood of the origin. At first glance this seems prohibited because 0 ≤ t ≤ 5.
However, owing to the rapid decay of exp(−kt), I (k) should be asymptotically
equivalent to

∫ R
0 (t2 + 2t)−1/2e−kt dt , where R is sufficiently small but finite.
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If R < 2, we can expand (t2+ 2t)−1/2 as t → 0. For example, keeping only
two terms in this expansion, that is, replacing (t2 + 2t)−1/2 by

(2t+t2)−1/2 = (2t)−1/2

(
1+ t

2

)−1/2

∼ (2t)−1/2

(
1− t

4

)
= (2t)−1/2− (2t)1/2

8

we find

I (k) ∼
∫ R

0
e−kt (2t)−1/2 dt − 1

8

∫ R

0
e−kt (2t)1/2 dt

To evaluate the above integrals in terms of known functions, we replace R by
∞. Again we expect, and below we will show, that this introduces only an
exponentially small error (i.e., terms beyond all orders) as k →∞. Thus

I (k) ∼
∫ ∞

0
e−kt (2t)−1/2 dt − 1

8

∫ ∞

0
e−kt (2t)1/2 dt

= 1

(2k)1/2

∫ ∞

0
e−t t−1/2 dt − 1

2(2k)3/2

∫ ∞

0
e−t t1/2 dt

= �(1/2)

(2k)1/2
− �(3/2)

2(2k)3/2

where �(z) is the so-called gamma function (see Eq. (4.5.31)), which we
remind the reader is defined by

�(z) =
∫ ∞

0
t z−1e−t dt, Re z > 0

In the above example, following our intuition that the main asymptotic con-
tribution comes from t = 0, we have used the following formal steps: (a) re-
placed 5 by R, where R < 2; (b) expanded (t2+ 2t)−1/2 in a series using the
binomial formula; (c) interchanged orders of integration and summation; and
(d) replaced R by∞.

Watson’s lemma provides a rigorous justification for the above heuristic
approach.

Lemma 6.2.2 (Watson’s Lemma) Consider the integral

I (k) =
∫ b

0
f (t)e−kt dt, b > 0 (6.2.4)
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Suppose that f (t) is integrable in (0, b) and that it has the asymptotic series
expansion

f (t) ∼ tα
∞∑

n=0

antβn, t → 0+; α > −1, β > 0 (6.2.5)

Then

I (k) ∼
∞∑

n=0

an
�(α + βn + 1)

kα+βn+1
, k →∞ (6.2.6)

If b is finite, we require that for t > 0, | f (t)| ≤ A, where A is a constant; if
b = ∞, we need only require that | f (t)| ≤ Mect , where c and M are constants.

Proof We break the integral in two parts, I = I1(k)+ I2(k), where

I1(k) =
∫ R

0
f (t)e−kt dt, I2(k) =

∫ b

R
f (t)e−kt dt

and R is a positive constant, R < b. The integral I2(k) is exponentially small as
k→∞. For finite b, because f (t) is bounded for t > 0, there exists a positive
constant A such that | f | ≤ A for t ≥ R; thus

|I2(k)| ≤ A
∫ b

R
e−kt dt = A

k

(
e−k R − e−kb

)
Thus from Definition 6.1.1

I2(k) = O

(
e−k R

k

)
as k →∞

Equation (6.2.5) implies that for each positive integer N

I1(k) =
∫ R

0

[
N∑

n=0

antα+βn + O
(
tα+β(N+1)

)]
e−kt dt, k →∞

However,∫ R

0
tα+βne−kt dt =

∫ ∞

0
tα+βne−kt dt −

∫ ∞

R
tα+βne−kt dt

= �(α + βn + 1)

kα+βn+1
+ O

(
e−k R

k

)
, k →∞
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where we have used the definition of the gamma function in the first integral
and integration by parts to establish the second. Moreover, using the definition
of big-O (Definition 6.1.1)

∫ R

0
O
(
tα+β(N+1)

)
e−kt dt ≤ AN

∫ R

0
tα+β(N+1)e−kt dt

≤ AN
�(α + β(N + 1)+ 1)

kα+β(N+1)+1

Thus

I (k) =
N∑

n=0

an
�(α + βn + 1)

kα+βn+1
+ O

(
1

kα+β(N+1)+1

)
, k →∞

We note that the assumptions α > −1, β > 0 are necessary for convergence
at t = 0. Also if b = ∞, then it is only necessary that | f (t)| ≤ Mect for some
real constants M and c, in order to have convergence at t →+∞. In this case,
the estimate of I2 gives

I2(k) ≤ M
e−(k−c)R

k − c
= O

(
e−k R

k

)
as k →∞

�

Example 6.2.6 Let us return to Example 6.2.5. Find the complete asymptotic
expansion of I (k) = ∫∞0 (t2 + 2t)−1/2e−kt dt as k →∞.

In this case the binomial formula gives

(t2 + 2t)−
1
2 = (2t)−

1
2

(
1+ t

2

)− 1
2

= (2t)−
1
2

∞∑
n=0

(
t

2

)n

ĉn

where ĉn are the coefficients in the Taylor expansion of (1+ z)α for |z| <
1, where α = − 1

2 ; more generally, the binomial coefficients of the Taylor
expansion of (1+ z)α are given by

cn(α) = α(α − 1)(α − 2) · · · (α − n + 1)

n!
= α!

n!(α − n)!

= �(α + 1)

�(n + 1)�(α − n + 1)
, n ≥ 1
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c0 = 1, so that ĉn = cn(− 1
2 ). Thus, Watson’s Lemma (e.g. Eq. (6.2.6) with

α = −1/2, β = 1) implies

I (k) ∼
∞∑

n=0

ĉn

2(n+ 1
2 )

�
(
n + 1

2

)
k(n+ 1

2 )
, k →∞ (6.2.7)

It turns out that the integral I (k) is related to the modified Bessel function
of order zero, K0(k). Modified Bessel functions satisfy the Bessel equation
of order p (Eq. (3.7.35a)) with the transformation (rotation) of coordinates
z = ik, and for k real, K p(k) ∼ e−k/

√
2k/π (independent of p) as k → ∞.

Indeed, it can be shown that K0(k)= e−k I (k). Thus Eq. (6.2.7) yields the large
k behavior of K0(k).

This example is an illustration of the power of Watson’s Lemma. Equation
(6.2.6) indicates that the asymptotic behavior of I (k) to all orders comes from
the neighborhood of t = 0. Hence it is possible to find an infinite asymptotic
expansion just by analyzing the behavior of the integrand in the neighborhood
of a single point!

6.2.3 Laplace’s Method

In the previous two sections we considered integrals of the type (6.2.1) when
φ(t) is monotonic in [a, b]. Now we consider the case that φ(t) is not mono-
tonic. We suppose, for simplicity, that the local minimum occurs at an interior
point c, a < c < b, φ′(c) = 0, φ′′(c) > 0. Further, we assume that φ′(t) 
= 0
in [a, b] except at t = c and that f , φ are sufficiently smooth for the operations
below to be justified.

We first proceed heuristically, following the intuitive argument that the main
asymptotic contribution comes from the neighborhood of the minimum of φ(t),
which is at t = c. A rigorous derivation of the relevant results will be given
later.

From Eq. (6.2.1), by expanding both f and φ in the neighborhood of c, we
expect that for large k, I is asymptotic to∫ c+R

c−R
f (c) exp

{
− k

[
φ(c)+ (t − c)2

2
φ′′(c)

]}
dt

where R is small but finite. To evaluate this integral, we let τ =
√

k
2φ

′′(c)(t−c);
thus

I ∼ e−kφ(c) f (c)
∫ c+R

c−R
e−k (t−c)

2

2
φ′′(c) dt = e−kφ(c) f (c)√

k
2φ

′′(c)

∫ R
√

k
2φ

′′(c)

−R
√

k
2φ

′′(c)
e−τ

2
dτ
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As k →∞ the last integral becomes
√
π ; hence

∫ b

a
f (t)e−kφ(t) dt ∼ e−kφ(c) f (c)

√
2π

kφ′′(c)
, k →∞ (6.2.8)

The approximation expressed by Eq. (6.2.8) is often referred to as Laplace’s
formula, and the application of this approach is called Laplace’s method. We
note that the use of the asymptotic symbol∼ in Eq. (6.2.8) is premature because
no error estimate has been obtained. Indeed, the best we can say at the moment
is that it seems plausible that the right-hand side of Eq. (6.2.8) represents the
leading term of an asymptotic expansion of Eq. (6.2.1) as k→∞. The rigor-
ous derivation of this result follows from Lemma 6.2.3. In the following, the
notation f (t) ∈ Cn[a, b] means that f (t) has n derivatives and that f (n)(t) is
continuous in the interval [a, b].

Lemma 6.2.3 (Laplace’s Method) Consider the integral Eq. (6.2.1) and as-
sume that φ′(c) = 0, φ′′(c) > 0 for some point c in the interval [a, b]. Further,
assume that φ′(t) 
= 0 in [a, b] except at t = c, φ ∈ C4[a, b], and f ∈ C2[a, b].
Then if c is an interior point, Eq. (6.2.8) expresses the leading term of an asymp-
totic expansion of Eq. (6.2.1) as k → ∞, with an error O(e−kφ(c)/k3/2). If c
is an endpoint, then the leading term is half that obtained when c is an interior
point, and the error is O(e−kφ(c)/k).

Proof The main idea of the proof is to split [a, b] into two half-open intervals
[a, c), (c, b], in each of which φ(t) is monotonic so that, using a change of
variables, Watson’s Lemma can be applied. Let I (k) = Ia(k) + Ib(k), where
Ia and Ib are integrals to be evaluated inside [a, c) and (c, b], respectively. Let
us consider Ib. Because φ is monotonic in [c, b], we let φ(t)− φ(c) = τ ; then
Ib becomes

Ib = e−kφ(c)
∫ φ(b)−φ(c)

0

f (t)

φ′(t)

∣∣∣∣
t=t (τ )

e−kτ dτ (6.2.9)

and because φ(t) is monotonic in this interval, we can invert the change of
variables, which we denote as t (τ ) = φ−1(τ + φ(c)). To apply Watson’s
Lemma, we need to determine the behavior of f (t)

φ′(t) |t=t (τ ) as τ → 0+. To achieve
this, we use the inversion of φ(t)−φ(c) = τ in the neighborhood of τ = 0 and
then expand f (t)

φ′(t) near t = c. Even though the function t = t (τ ) is multivalued
in the full neighborhood of τ = 0, we bypassed this problem by considering the
half interval and noting that as t increases from c to b, τ increases from 0 to
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φ(b)− φ(c). To find t = t (τ ) near τ = 0 we expand

φ′′(c)(t − c)2 + φ′′′(c)
3

(t − c)3 + O(t − c)4 = 2τ (6.2.10)

and solve Eq. (6.2.10) recursively. To the first order, t − c =
√

2
φ′′(c) τ

1/2;

substituting t − c =
√

2
φ′′(c) τ

1/2 + Aτα + · · · with α > 1
2 in Eq. (6.2.10), we

find α = 1 and A = −
(

φ′′′(c)
3(φ′′(c))2

)
. Thus

t − c =
√

2

φ′′(c)
τ 1/2

[
1− φ′′′(c)

3
√

2(φ′′(c))3/2
τ 1/2 + O(τ )

]
(6.2.11)

Using

f (t) = f (c)+ (t − c) f ′(c)+ O((t − c)2)

φ′(t) = φ′′(c)(t − c)+ φ′′′(c)(t − c)2

2
+ O((t − c)3),

we find

f (t)

φ′(t)
= f (c)

φ′′(c)(t − c)
− f (c)φ′′′(c)

2(φ′′(c))2
+ f ′(c)

φ′′(c)
+ O(t − c)

Substituting Eq. (6.2.11) in this equation we obtain

f (t)

φ′(t)
= f (c)√

2φ′′(c)
τ−1/2 +

(
f ′(c)
φ′′(c)

− f (c)φ′′′(c)
3(φ′′(c))2

)
+ O
(
τ 1/2
)

≡ a0τ
−1/2 + a1 + O

(
τ 1/2
)
,

where

a0 = f (c)√
2φ′′(c)

and

a1 = f ′(c)
φ′′(c)

− f (c)φ′′′(c)
3(φ′′(c))2

Substituting this equation in Eq. (6.2.9) and then using Watson’s lemma
Eqs. (6.2.5)–(6.2.6) with α = −1/2 and β = 1/2 it follows that

Ib(k) = a0
�(1/2)

k1/2
+ a1

�(1)

k
+ O

(
1

k3/2

)
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or

Ib(k) =
√

π

2kφ′′(c)
f (c)e−kφ(c) +

(
f ′(c)
φ′′(c)

− f (c)φ′′′(c)
3(φ′′(c))2

)
e−kφ(c)

k

+ O

(
e−kφ(c)

k3/2

)
, k →∞ (6.2.12)

Similarly, for the interval [a, c) (note in this interval t−c = −
√

2
φ′′(c) τ

1/2+· · ·),

Ia(k) =
√

π

2kφ′′(c)
f (c)e−kφ(c) −

(
f ′(c)
φ′′(c)

− f (c)φ′′′(c)
3(φ′′(c))2

)
e−kφ(c)

k

+ O

(
e−kφ(c)

k3/2

)
, k →∞ (6.2.13)

If c is an interior point, then the desired expansion for I (k) is given by the sum
of Eqs. (6.2.12) and (6.2.13), which to leading order yields Eq. (6.2.8) with
error

O

(
e−kφ(c)

k3/2

)
If c = b or c = a, then Eqs. (6.2.12) or (6.2.13) provides the correct expansion.

�

We note that further terms in the expansion of I (k) can be obtained by
determining further terms in the asymptotic expansion of f (t)

φ′(t) |t=t (τ ). This would
require, of course, additional smoothness assumptions about the behavior of f
and φ near t = c. However, because Laplace’s method is based on Watson’s
Lemma that can, in principle, give infinite asymptotic expansions, it follows
that Laplace’s method can, in principle, give the asymptotic expansion of an
integral to all orders. This fact, will be utilized further in connection with the
steepest descent method. In the examples presented below, for simplicity of
presentation, we give only the leading asymptotic behavior (which in many
applications is sufficient).

Example 6.2.7 Evaluate I (k) = ∫∞0 e−k sinh2 t dt as k →∞.
The relevant minimum of φ(t) = sinh2 t occurs at the endpoint t = 0; hence

φ′′(t) = 2 cosh 2t , φ′′(0) = 2, f (t) = 1, and Eq. (6.2.12) yields I (k) ∼ 1
2

√
π
k .

Example 6.2.8 Evaluate I (k) = ∫ b
a f (t)ekφ(t) dt , k → ∞, when φ(t) has a

unique maximum at an interior point t = c. We use the same ideas as those
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motivating Laplace’s method (beginning of Section 6.2.3).

I (k) ∼
∫ c+R

c−R
f (c)ek

[
φ(c)+ (t−c)2

2 φ′′(c)
]

dt

= f (c)ekφ(c)√
−k φ′′(c)

2

∫ R
√
− k

2φ
′′(c)

−R
√
− k

2φ
′′(c)

e−τ
2dτ

∼
√

2π

−kφ′′(c)
f (c)ekφ(c) =

√
2π

k|φ′′(c)| f (c)ekφ(c) (6.2.14)

where we have used τ = (t−c)
√
− kφ′′(c)

2 , noting that φ′′(c)< 0 (because t = c
is a maximum).

Example 6.2.9 Use Laplace’s method to show that for an appropriate class of
functions the L p norm converges to the “maximum” norm, as p →∞.

The L p norm of a function g is given by ‖g‖p = (I (p))1/p, where I (p) =∫ b
a |g(t)|p dt . We assume that |g(t)| ∈ C4 and that it has a unique maxi-

mum with g(c) 
= 0 at t = c inside [a, b]. Using Laplace’s method, φ(t) =
log |g(t)|, φ′(c) = 0, φ′′(c) = g′′(c)/g′(c), and example 6.2.8,

I (p) =
∫ b

a
ep log |g(t)| dt = A√

p
|g(c)|p

{
1+ O

(
1

p

)}
,

p →∞, A =
√

2π |g(c)|
|g′′(c)|

Thus

‖g‖p ∼ A
1
p p−

1
2p |g(c)|

{
1+ O

(
1

p

)}
= |g(c)|

{
1− log p

2p
+ O

(
1

p

)}
where we have used

p−
1

2p = e−
1

2p log p ∼ 1− log p

2p
, A

1
p = e

log A
p ∼ 1+ log A

p

Thus ‖g‖p tends to |g(c)| as p → ∞, which is referred to as the maximum
norm.

The main ideas used in deriving Eq. (6.2.8) can also be used in dealing with
other similar integrals.
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Example 6.2.10 Evaluate I (k)= ∫ b
a f (t)ekφ(t) dt , k→∞, withφ′(c) = φ′′(c)

= · · ·φ(p−1)(c) = 0, and φ(p)(c) < 0, where φ is maximum at the interior point
t = c. Again we expand f (t) and φ(t) near t = c:

I (k) ∼
∫ c+R

c−R
f (c)ek

[
φ(c)+ (t−c)p

p! φ(p)(c)
]

dt

= f (c)ekφ(c)(−kφ p(c)
p!

) ∫ +R
(
− k

p!φ
p(c)
)1/p

−R
(
− k

p!φ
p(c)
)1/p

e−τ
p

dτ

∼ f (c)ekφ(c)(− kφ(p)(c)
p!

) 1
p

(2�
(

1
p

)
p

)
(6.2.15)

where we have used τ = (t − c)
(− k φ(p)(c)

p!

) 1
p , and τ p = s

∫ ∞

−∞
e−τ

p
dτ =

∫ ∞

−∞
e−ss

1
p−1 ds

p
=

2�
(

1
p

)
p

We point out that Laplace’s method can also work in some cases that are
not directly covered by Lemma 6.2.3. For example, it can be used when f (t)
either vanishes algebraically or becomes infinite at an algebraic rate. This is
illustrated in the following examples.

First we discuss integrals where f (t) behaves algebraically. We will see that
this has a significant effect on the asymptotic result.

Example 6.2.11 Evaluate I = ∫ 5
0 sin se−k sinh4 s ds. Note that the minimum of

sinh4 s is at s= 0, which is the location of the major contribution to the integral.

I ∼
∫ R

0
se−ks4

ds = 1

2

∫ R1/2

0
e−kt2

dt ∼ 1

4
√

k

∫ ∞

0
e−τ τ−

1
2 dτ

= 1

4

√
1

k
�

(
1

2

)
= 1

4

√
π

k

using, in the latter three expressions, the substitutions s2 = t , τ = kt2, and
�
(

1
2

) = √π .
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Example 6.2.12 Evaluate I = ∫∞0 e−kt2√
sinh t

dt . Note that the dominant contribu-

tion to the integral is at t = 0. Again, using τ = kt2 and the definition of the
gamma function

I ∼
∫ ∞

0

e−kt2

t1/2
dt = 1

2k1/4

∫ ∞

0
e−τ τ

1
4−1dτ = �

(
1
4

)
2k1/4

If f (t) vanishes exponentially fast, the direct application of Laplace’s method
fails. However, an intuitive understanding of the basic ideas used in Laplace’s
method leads to the appropriate modifications needed for the evaluation of such
integrals. This is illustrated in the following examples.

Example 6.2.13 Consider I (k) = ∫∞0 e−kt− 1
t dt . The maximum of e−kt occurs

at t = 0, but f (t) = exp
(− 1

t

)
vanishes exponentially fast at t = 0. The first

step in the evaluation of an integral of the type Eq. (6.2.1) is the determination of
the domain of t that yields the dominant contribution to the asymptotic value of
the given integral. For the integral I (k) this domain is not the neighborhood of
t = 0 but the neighborhood of the minimum of kt + 1

t , that is, the neighborhood
of t = 1√

k
. This point depends on k; thus it is a movable maximum. The change

of variables t = s√
k

maps this maximum to a fixed one, and so it now allows a
direct application of Laplace’s method:

I (k) = 1√
k

∫ ∞

0
e−
√

k(s+ 1
s ) ds = 1√

k

∫ ∞

0
e−
√

kφ(s) ds

where φ(s) = s + 1/s. The function φ(s) has a minimum at s = 1 (an interior
point), so letting s = 1+ t , and expanding, yields

I ∼ 1√
k

e−2
√

k
∫ ∞

−∞
e−
√

kt2
dt = e−2

√
k

k3/4

∫ ∞

0
u−1/2e−u du

=
√
πe−2

√
k

k3/4
, k →∞

where we used the substitution u = √kt2, and �( 1
2 ) =

√
π .

Example 6.2.14 (Asymptotic Expansion of the Gamma Function (Stirling’s
Formula) Consider �(k+ 1)= ∫∞0 e−t t k dt . Because t k = ek log t , the maxi-
mum of log t occurs as t → ∞, but f (t) = e−t vanishes exponentially as
t → ∞. The true maximum of e−t t k occurs at d

dt (k log t − t) = 0, or t = k.
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This suggests the change of variables t = sk, and we find

�(k + 1) = kk+1
∫ ∞

0
e−k(s−log s) ds = kk+1

∫ ∞

0
e−kφ(s) ds

where φ(s) = s− log s. The function φ(s) has a minimum at s = 1 (an interior
point), so letting s = 1+ t with φ′(1) = 0, φ′′(1) = 1, it follows from (6.2.8)
that

�(k + 1) ∼
√

2πk

(
k

e

)k

using the substitution u = kt2/2, and �( 1
2 ) =

√
π .

Laplace’s method can also be used to find the asymptotic behavior of certain
sums. The basic idea is to rewrite the sum in terms of an appropriate integral,
as illustrated in the following example.

Example 6.2.15 Evaluate

I (n) =
n∑

k=0

(
n

k

)
k!n−k

as n → ∞ where
(n

k

)
are the binomial coefficients:

(n
k

) ≡ n!
k!(n−k)! . (See also

Example 6.2.6, where α and n are replaced by n and k, respectively.) We use∫∞
0 e−nx xk dx = n−k−1

∫∞
0 e−t t k dt = �(k − 1)n−k−1 = k!n−k−1, (nx = t), to

obtain

I (n) =
n∑

k=0

(
n

k

)
n
∫ ∞

0
e−nx xk dx =

∫ ∞

0
e−nx n

(
n∑
0

(
n

k

)
xk

)
dx

where we have exchanged the order of integration and summation (this is al-
lowed because the sum is finite). Because

∑n
k=0

(n
k

)
xk = (1 + x)n , we find

that

I (n) = n
∫ ∞

0
e−nx (1+ x)n dx = n

∫ ∞

0
en[log(1+x)−x] dx

We now use Laplace’s method to evaluate the large n asymptotics of the above
integral, noting that the function φ(x) = log(1 + x) − x has its maximum at
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x = 0. We expand, substitute u = nx2, and use �
(

1
2

) = √π to find

I (n) ∼ n
∫ ∞

0
e−nx2/2 dx =

√
n

2

∫ ∞

0
e−uu−1/2 du =

√
πn

2
, n →∞

Problems for Section 6.2

1. Use Lemma 6.2.1 to obtain the first two terms of the asymptotic expansion
of

(a)
∫ 4

1
e−kt sin t dt, as k →∞ (b)

∫ 9

5
e−kt t−1 dt, as k →∞

2. Use integration by parts to obtain the first two terms of the asymptotic
expansion of ∫ ∞

1
e−k(t2+1) dt

3. Use Watson’s Lemma to obtain an infinite asymptotic expansion of

I (k) =
∫ π

0
e−kt t−

1
3 cos t dt

as k →∞.
Note that

cos t =
∞∑

n=0

(−1)n t2n

(2n)!
for −∞ < t <∞

4. Use Watson’s lemma to find an infinite asymptotic expansion of

I (k) =
∫ 9

0

e−kt

1+ t4
dt

as k →∞.

5. Use Laplace’s method to determine the leading behavior (first term) of

I (k) =
∫ 1

2

− 1
2

e−k sin4 t dt

as k →∞.
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6. Show that ∫ ∞

0
log

(
u

1− e−u

)
e−ku

u
du ∼ 1

2k
, k →∞

7. Show that for 0 < α < 1∫ ∞

0

e−kx

1+ kαx x
dx ∼ 1

k
, k →∞

8. Show that∫ ∞

0

(
1+ u

k

)−k

e−u du ∼ 1

2
+ 1

8k
− 1

32k2
, k →∞

6.3 Fourier Type Integrals

In this section we study the asymptotic behavior as k →∞ of integrals of the
form

I (k) =
∫ b

a
f (t)eikφ(t) dt (6.3.1)

where f (t) and φ(t) are real continuous functions. The assumption that f (t)
is real is actually without loss of generality because if it were complex, f (t)
could be decomposed into the sum of its real and imaginary parts. The more
general case of φ(t) complex will be considered in Section 6.4. A special case
of I (k) when φ(t) = t is the Fourier transform, which is why such integrals
are referred to as Fourier type integrals.

Our analysis of the above integrals will be similar to that of Laplace type
integrals: After identifying intuitively the region of the t domain that gives the
dominant contribution to the large k behavior of I (k), we will use a heuristic
analysis to develop the relevant formulas; subsequently, the formal approach
will be rigorously justified.

For a Laplace type integral it is clear that, because of the decay of the expo-
nential factor in the integrand, its value tends to zero as k→∞. It turns out
that the value of a Fourier type integral also tends to zero as k→∞. This is a
consequence of the fact that as k→∞, the exponential factor oscillates rapidly
and these oscillations are self-canceling. Indeed, there exists a rather gen-
eral result called the Riemann–Lebesgue lemma that guarantees that I (k)→ 0
as k→∞, provided that

∫ b
a | f (t)| dt exists, that φ(t) is continuously differ-

entiable, and that φ(t) is not constant on any subinterval of [a, b] (see, e.g.,
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Titchmarsh (1948)). A special case of this lemma implies that the Fourier trans-
form (when φ(t) = t) of a function f (t) tends to zero as k → ∞, provided
that
∫∞
−∞ | f (t)| dt exists, that is, f (t) ∈ L1.

Although the Riemann–Lebesgue lemma is very useful in proving certain
estimates, it does not provide an evaluation of how fast I (k) vanishes for large
k. Computing the leading term of the asymptotic expansion of I (k) demands
better understanding. This usually requires knowledge of the zeroes of φ′(t).
Suppose that t = c is a point in (a, b) for which φ′(t) does not vanish. If Ωc

is a small neighborhood of c, then we expect that I (k) can be approximated
by Ic(k) = f (c)

∫
�c

eikφ(t) dt . As k→∞, the rapid oscillation of exp(ikφ)
produces cancelations that, in turn, tend to decrease the value of Ic(k). But
if we assume that φ′(t) vanishes at t = c, then, even for large k, there exists a
small neighborhood of c throughout which kφ does not change so rapidly. In
this region, exp(ikφ) oscillates less rapidly and less cancelation occurs. Thus
we expect that the value of I (k) for large k depends primarily on the behavior
of f and φ near points for which φ′(t)= 0. Such points are called, in calculus,
stationary points. Furthermore, in many applications, φ has the physical inter-
pretation of a phase. Thus the asymptotic method based on the above arguments
is usually referred to as the method of stationary phase.

In analogy with Laplace type integrals we distinguish two cases. The case
that φ is monotonic in [a, b] is considered in Sections 6.3.1 and 6.3.2, while
the case that φ′(t) vanishes in [a, b] is considered in Section 6.3.3.

6.3.1 Integration by Parts

If φ(t) is monotonic and φ(t) and f (t) are sufficiently smooth, an asymptotic
expansion of Eq. (6.3.1) can be obtained by the integration by parts procedure.

Lemma 6.3.1 (Integration by Parts) Consider the integral

I (k) =
∫ b

a
f (t)eikt dt (6.3.2)

where the interval [a, b] is a finite segment of the real axis. Let f (m)(t) denote
the mth derivative of f (t). Assume that f (t) has N +1 continuous derivatives
and that f (N+2) is piecewise continuous on [a, b]. Then

I (k) ∼
N∑

n=0

(−1)n

(ik)n+1

[
f (n)(b)eikb − f (n)(a)eika

]
, k →∞ (6.3.3)
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The proof of this result is essentially the same as that of Lemma 6.2.1 and it
is therefore omitted.

We note that in the case N = 0, Eq. (6.3.3) reduces to

I (k) ∼ 1

ik

[
f (b)eikb − f (a)eika

]
, k →∞

This is a weak version of the Riemann–Lebesgue lemma for Fourier transform
type integrals.

Equation Eq. (6.3.3) can be generalized for integrals of the type (6.3.1) by
transforming to a new coordinate τ =φ(t) provided that φ is monotonic and
differentiable (φ′(t) 
= 0).

Example 6.3.1 Evaluate I (k) = ∫ 1
0

eikt

1+t dt as k →∞.
Using integration by parts we find

I (k) ∼ eik

[
1

2(ik)
+ 1

22(ik)2
+ · · · + (n − 1)!

2n(ik)n
+ · · ·

]

−
[

1

(ik)
+ 1

(ik)2
+ · · · (n − 1)!

(ik)n
+ · · ·

]
, k →∞

6.3.2 Analog of Watson’s Lemma

We recall that in Section 6.2 we made use of Watson’s Lemma in two impor-
tant ways: (a) to prove the asymptotic nature of the Laplace’s method; and (b)
to compute Laplace type integrals when φ(t) is monotonic in [a, b] but f (t)
is not sufficiently smooth at t = a. In this section we shall use, in a similar
manner, a certain lemma that is an analog of Watson’s Lemma for Fourier type
integrals. Alternatively, it can be thought of as an extension of the Riemann–
Lebesgue Lemma. In deriving this lemma we will need to compute the integral∫∞

0 tγ exp(iµt) dt , where γ and µ are real, γ > −1. This type of integral ap-
pears often in connection with the asymptotic analysis of Fourier type integrals,
so we first present a method for computing them.

Example 6.3.2 Show that

I =
∫ ∞

0
tγ−1eit dt = e

γπ i
2 �(γ ), γ real, 0 < γ < 1 (6.3.4)

The technique of computing integrals like Eq. (6.3.4) is to rotate the contour
of integration so that the relevant integral can be related to a gamma function
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(see also Section 4.2). In Example 6.3.2 we rotate the path of integration from
the real axis to the imaginary axis in the upper half plane. Using Cauchy’s
Residue Theorem, noting that there are no singularities in the first quadrant, the
above integral becomes

I =
∫ eiπ/2∞

0
zγ−1eiz dz =

∫ ∞

0
(eiπ/2r)γ−1e−r i dr

= (eiπ/2)γ
∫ ∞

0
rγ−1e−r dr = e

γπ i
2 �(γ )

where we have used z = eiπ/2r .

Example 6.3.3 Show that

I =
∫ ∞

0
tγ eiνt p

dt =
(

1

|ν|
) γ+1

p �
(
γ+1

p

)
p

e
iπ
2p (γ+1)sgnν (6.3.5)

where γ and ν are real constants, γ > −1, and p is a positive integer.
We first consider the case ν > 0, and as in Example 6.3.2 we use Cauchy’s

Residue Theorem to rotate the contour of integration in the upper half plane
from the real t axis to the ray along angle π

2p . Then

I = e
iπ(γ+1)

2p

∫ ∞

0
rγ e−νr p

dr = eiπ (γ+1)
2p

p(ν)
γ+1

p

∫ ∞

0
e−uu

γ+1
p −1 du

where we have used the change of variables u = νr p. Using the definition of
the gamma function the integral above becomes that of Eq. (6.3.5) for ν > 0.
Similarly, if ν < 0 we rotate by an angle −π/2p.

Lemma 6.3.2 Consider the integral

I (k) =
∫ b

0
f (t)eikµt dt, b > 0, µ = ±1, k > 0 (6.3.6)

Suppose that f (t) vanishes infinitely smoothly at t = b (i.e., f (t) and all its
derivatives vanish at t = b) and that f (t) and all its derivatives exist in (0, b].
Furthermore, assume that

f (t) ∼ tγ + o(tγ ), as t → 0+, γ ∈ R and γ > −1

Then

I (k) =
(

1

k

)γ+1

�(γ + 1)e
iπ
2 (γ+1)µ + o

(
k−(γ+1)

)
, k →∞ (6.3.7)
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Proof We will not go into the details of the estimates leading to Eq. (6.3.7).
Here we make the (natural) assumption that the leading term of the asymptotic
expansion of I (k) comes from the neighborhood of t = 0; a rigorous justifica-
tion of this fact (which is based upon integration by parts where u = f (t)/tγ

and dv = tγ eikµt dt) is given in Erdelyi (1956). I (k) is approximated by

I (k) ∼
∫ ∞

0
tγ eikµt dt =

(
1

k

)γ+1

�(γ + 1)e
iπ
2 (γ+1)µ, k →∞

where we have used Eq. (6.3.5) with p = 1, ν = kµ. �

6.3.3 The Stationary Phase Method

A heuristic analysis of the leading term of the asymptotic expansion of Fourier
type integrals closely follows Laplace’s method. Indeed, suppose that f is
continuous, φ is twice differentiable, φ′ vanishes in [a, b] only at the point
t = c, and φ′′(c) 
= 0. Then we expect that the large k behavior of Eq. (6.3.1)
is given by ∫ c+R

c−R
f (c) exp

{
ik

[
φ(c)+ (t − c)2

2
φ′′(c)

]}
dt

where R is small but finite. To evaluate this integral, we let

µτ 2 = (t − c)2φ
′′(c)
2

k, or τ = (t − c)

√
|φ′′(c)|k

2

where µ = sgn φ′′(c). Then the above integral becomes

f (c)eikφ(c)

√
2

|φ′′(c)|k
∫ R
√

k|φ′′(c)|/2

−R
√

k|φ′′(c)|/2
exp[iµτ 2] dτ

As k→∞ the last integral reduces to
∫∞
−∞ exp(iµτ 2) dτ , which can be evalu-

ated exactly (see also Eq. (4.2.14) and above)∫ ∞

−∞
eiµτ 2

dτ = 2
∫ ∞

0
eiµτ 2

dτ = √πe
iπµ

4

where we have used Eq. (6.3.5) with γ = 0, p = 2, and ν = µ (recall that
�(1/2) = √π ). Hence our formal analysis suggests that

∫ b

a
f (t)eikφ(t) dt ∼ eikφ(c) f (c)

√
2π

k|φ′′(c)|e
iπµ

4 , µ = sgnφ′′(c) (6.3.8)
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The asymptotic nature of Eq. (6.3.8) is proven below using Lemma 6.3.2. Ac-
tually Eq. (6.3.8) can be generalized because Lemma 6.3.2 allows f (t) to be
singular at t = c. On the other hand, in order to simplify the rigorous consider-
ations, we assume that f and φ are infinitely smooth (i.e., all their derivatives
exist) on the half-open interval not containing c.

Lemma 6.3.3 (Stationary Phase Method) Consider the integral Eq. (6.3.1)
and assume that t = c is the only point in [a, b] where φ′(t) vanishes. Also
assume that f (t) vanishes infinitely smoothly at the two end points t = a and
t = b, and that both f and φ are infinitely differentiable on the half-open
intervals [a, c) and (c, b]. Furthermore assume that

φ(t)− φ(c) ∼ α(t − c)2 + o((t − c)2), f (t) ∼ β(t − c)γ + o((t − c)γ )

t → c; γ > −1 (6.3.9)

Then

∫ b

a
f (t)eikφ(t) dt ∼ eikφ(c)β�

(
γ + 1

2

)
eiπ (γ+1)

4 µ

(
1

k|α|
) γ+1

2

+ o
(

k−
(γ+1)

2

)
, k →∞, (6.3.10)

where µ = sgnα.

Proof As in the case of Laplace’s method we split [a, b] into two half intervals
[a, c) and (c, b]; let Ia and Ib be the corresponding integrals. The purpose of
assuming that f (t) vanishes infinitely smoothly at the end points is to localize
the main contribution of the integral to be at the stationary point. To analyze
Ib, we let

µu = φ(t)− φ(c), µ = sgnα (6.3.11)

thus we can invert Eq. (6.3.11) to obtain t = t (u); hence

Ib(k) = eikφ(c)
∫ |φ(b)−φ(c)|

0
F(u)eikµu du, F(u) = µ f (t)

φ′(t)
(6.3.12)

To evaluate Ib, we need to determine F(u) as u → 0+. To achieve this, we
use the inversion of Eq. (6.3.11) in the neighborhood of t = c (any ambiguity
arising in this inversion is resolved by requiring that u increase as t increases);
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that is, as t → c

µu = φ(t)− φ(c) ∼ α(t − c)2 or t − c ∼
(

u

|α|
)1/2

(6.3.13)

Using Eq. (6.3.13), the definition of F(u), and Eq. (6.3.9), we find

F(u) ∼ µβ(t − c)γ

2α(t − c)
= β

2|α| (t−c)γ−1 ∼ βu
γ−1

2

2|α| γ+1
2

, u → 0+ (6.3.14a)

Hence for the integral Ib(k) we know that F(u) vanishes infinitely smoothly as
u → |φ(b) − φ(c)|, and that its asymptotic behavior as u → 0+ is given by
Eq. (6.3.14a). Hence Lemma 6.3.2 implies that

Ib(k) = 1

2
eikφ(c)β�

(
γ + 1

2

)
eiπ (γ+1)

4 µ

(
1

k|α|
)γ+1

2

+ o

(
k−
(

γ+1
2

))
(6.3.14b)

The leading term of the expansion of Ia is obtained in a completely analogous
manner and is the same as (6.3.14b). Adding Ib and Ia we find Eq. (6.3.10).

�

We note that in the special case when γ = 0, β = f (c), and α = φ′′(c)/2,
Eq. (6.3.10) reduces to Eq. (6.3.8).

The result of Lemma 6.3.3 can be generalized substantially. It is possible
to allow φ(t) and f (t) to have different asymptotic behaviors as t → c+ and
t → c−. Using the same ideas as in the above lemma for the integral Ib, if

φ(t)− φ(c) ∼ α+(t − c)ν, f (t) ∼ β+(t − c)γ , as t → c+, γ > −1
(6.3.15a)

then

Ib(k) ∼ 1

ν
eikφ(c)β+�

(
γ + 1

ν

)
eiπ (γ+1)

2ν µ

(
1

k|α+|
) γ+1

ν

, µ = sgnα+

(6.3.15b)
The integral Ia follows analogously with α+ and β+ replaced by α− and β− in
the expansions of φ(t)− φ(c) and f (t) as t → c−.

There is an important difference between Fourier and Laplace type integrals.
For Fourier type integrals, although the stationary points give the dominant
contribution, we must also consider the endpoints if more than the leading
term is needed. The endpoint contribution is only algebraically smaller than the
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stationary point contribution. In contrast, we recall that for the Laplace type
integrals we have considered so far, the entire asymptotic expansion depends
only on the behavior of the integrand in a small neighborhood of the global
minimum of φ; the points away from the minimum are exponentially small
in comparison. Generalizations of Laplace’s method to cases where the phase
φ(t) is complex are discussed in Section 6.4.

Example 6.3.4 Evaluate I (k) = ∫ π/2
0 eik cos t dt as k →∞.

The function φ′(t) = − sin t vanishes at t = 0 and φ′′(0) = −1. Because
t = 0 is an end point, I (k) is one-half of the value obtained from Eq. (6.3.8),
where µ = −1, f (t) = 1 (in particular, f (0) = 1), φ(0) = 1, and φ′′(0) = −1

I (k) ∼
√

π

2k
ei(k− π

4 )

Example 6.3.5 Show that if φ′(a) = · · · = φ(p−1)(a) = 0, φ(p)(a) 
= 0
if φ′(t) 
= 0 for all t in (a, b], and if f (t) is sufficiently smooth, then, as
k →+∞

∫ b

a
f (t)eikφ(t) dt ∼ f (a)eikφ(a)

(
p!

k|φ(p)(a)|
) 1

p �(1/p)

p
e

iπ
2p µ,

µ = sgnφ(p)(a) (6.3.16)

Equation (6.3.16) is a special case of Eq. (6.3.15b) where

α+ = φ(p)

p!
, ν = p, γ = 0, β+ = f (a), c = a

Equation (6.3.16) can also be derived formally from first principles; expanding
f (t) and φ(t) near t = a

I (k) ∼ f (a)eikφ(a)
∫ ∞

a
eik φ(p)(a)

p! (t−a)p

dt ∼ f (a)eikφ(a)
∫ ∞

0
eik φ(p)(a)

p! s p

ds

where we have replaced the upper limit of integration by ∞, because using
integration by parts, the error introduced is O

(
1
k

)
. But Eq. (6.3.5) implies that

∫ ∞

0
eik φ(p)(a)

p! s p

ds =
(

p!

k|φ(p)(a)|
) 1

p �
(

1
p

)
p

e
iπ
2p µ, µ = sgn φ(p)(a)

thus Eq. (6.3.16) follows.
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Example 6.3.6 Evaluate the leading behavior of Jn(n) as n → ∞, where the
Bessel function Jn(x) is given by Jn(x) = 1

π

∫ π
0 cos(x sin t − nt) dt .

We rewrite Jn(n) in the form

Jn(n) = 1

π
Re
∫ π

0
ein(sin t−t) dt ∼ 1

π
Re
∫ ∞

0
e−int3/6 dt

= 1

3π

(
cos

π

6

)
�

(
1

3

)(
6

n

) 1
3

, n →∞

where we have used Eq. 6.3.5, with γ = 0, ν = −n/6, and p = 3.

Problems for Section 6.3

1. Use integration by parts to obtain the asymptotic expansions as k →∞ of
the following integrals up to order 1

k2

(a)
∫ 2

0
(sin t + t)eikt dt (b)

∫ ∞

0

eikt

1+ t2
dt

2. Consider ∫ 1

0

√
teikt dt as k →∞

(a) Show that ∫ 1

0

√
teikt dt = − i

k
eik + i

2k

∫ 1

0

eikt

√
t

dt

(b) Show the leading order term of∫ 1

0

eikt

√
t

dt = 1√
k

∫ k

0

eis

√
s

ds ≡ I

satisfies

I ∼
√

π

k
eiπ/4

(c) Deduce that ∫ 1

0

√
teikt dt ∼ −ieik

k
+
√
πe3iπ/4

2k3/2

as k →∞.
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3. Use the method of stationary phase to find the leading behavior of the
following integrals as k →∞:

(a)
∫ 1

0
tan(t)eikt4

dt (b)
∫ 2

1
2

(1+ t)eik
(

t3

3 −t
)

dt

4. Show that the asymptotic expansion of

I (k) =
∫ ∞

−∞

eikt2

1+ t2
dt, as k →∞

is given by

I (k) ∼
∞∑

n=0

(
1

k

)n+ 1
2

(−1)n�

(
n + 1

2

)
ei π2 (n+ 1

2 )

5. Show that the integral

I (k) =
∫ ∞

−∞

eikx

1+ x2
dx

has a vanishing power series, i.e., I (k) = o
(

1
kn

)
, for all n, as k →∞. Use

contour integration to establish that I (k) = πe−k .

6. (a) Show that the integral I (k) = ∫∞−∞ cos kx
cosh x dx has a vanishing power

series, I (k) = 0
(

1
kn

)
, for all n, as k →∞. Use contour integration to

establish that I (k) = π
2 sech kπ

2 ∼ πe−kπ/2

(b) The methods of Section 6.4 can sometimes be used to find exponentially
small contributions located at poles of the integrand. The interested
reader should establish that∫ ∞

−∞

cos xk

cosh x
√

x2 + π2
dx ∼ 4√

3
e−

πk
2

by reading ahead and using the methods of Section 6.4.

6.4 The Method of Steepest Descent

The method of steepest descent is a powerful approach for studying the large k
asymptotics of integrals of the form

I (k) =
∫

C
f (z)ekφ(z) dz (6.4.1)
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where C is a contour in the complex z plane and f (z) and φ(z) are analytic
functions of z. The basic idea of the method is to utilize the analyticity of the
integrand to justify deforming the contour C to a new contour C ′ on which
φ(z) has a constant imaginary part. Thus if φ(z) = u + iv, the integral I (k)
becomes (Imφ = v = constant)

I (k) = eikv
∫

C ′
f (z)eku dz (6.4.2)

Although z is complex, u is real and hence the ideas used in connection
with Laplace type integrals can be used to study Eq. (6.4.2). In this sense the
steepest descent method is an extension of Laplace’s method to integrals in the
complex plane. We note that, if f (z) and φ(z) have singularities such as poles,
important contributions can arise in the deformation process.

It turns out that paths on which v is constant are also paths for which either
the decrease of u is maximal (paths of steepest descent) or the increase of u is
maximal (paths of steepest ascent). In evaluating I (k) we will use the former
paths, which is why this method is called the method of steepest descent. Also,
usually the paths of steepest descent will go through a point z0 for which
φ′(z0) = 0. Such a point is called a saddle point (for reasons that will be made
clear below), and the method is alternatively referred to as the saddle point
method.

We note that we could consider deforming C into a path for which u rather
than v is constant (so that v varies rapidly) and then apply an extension of
the method of stationary phase. However, we expect intuitively that the self-
canceling of oscillations is a weaker decay mechanism than the exponential
decay of the exponential factor in the integrand. This is indeed true, which is
why the asymptotic expansion of a generalized Laplace integral can be found
locally. Namely, it depends only on a small neighborhood of certain points
which are called critical points. There are points where φ′(z) = 0, singular
points of the integrand, and endpoints. By summing up contributions from all
the critical points it is possible to obtain an infinite asymptotic expansion of the
generalized Laplace integral. By contrast, in general, without deformations to
a Laplace type integral, only the leading term of the asymptotic expansion of a
generalized Fourier integral can be found from purely local considerations.

In order to develop the method of steepest descent, we need to better un-
derstand the relationship between steepest paths and v equal constant and to
investigate the direction of these paths around saddle points.

Steepest Paths. Let φ(z) = u(x, y)+ iv(x, y), z = x + iy. Consider a point
z0 in the complex z plane. A direction away from z0 in which u is decreasing is
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called a direction of descent. The direction on which the decrease is maximal is
called direction of steepest descent. Similar considerations apply for directions
of ascent. We recall that if f (x, y) is a differentiable function of two variables,
then the gradient of f is the vector ∇ f = (∂ f/∂x , ∂ f/∂y). This vector points
in the direction of the most rapid change of f at the point (x, y). Thus for any
point z0 = x0 + iy0 corresponding to u(z0) = u(x0, y0) at which ∇u 
= 0, the
direction of steepest ascent coincides with that of ∇u, with u increasing away
from u(z0), while the direction of steepest descent coincides with that of−∇u,
with u decreasing away from u(z0).

The curves of steepest descent and of steepest ascent associated with a point
z0 = x0+ iy0 are given by v(x, y) = v(x0, y0). Indeed, to show that the curves
defined by v(x, y) = v(x0, y0) are curves of steepest descent or steepest ascent,
we note that the direction normal to such curves is ∇v= (∂v/∂x , ∂v/∂y),
which, using the Cauchy–Riemann equations, equals (−∂u/∂y, ∂u/∂x); hence
the direction tangent to such curves is ∇u = (∂u/∂x, ∂u/∂y). Hence from the
vector argument above, v(x, y) = v(x0, y0) correspond to the directions of the
steepest curves. To show that the steepest curves are v(x, y) = v(x0, y0), we
define δφ = φ(z) − φ(z0) = δu + iδv. Then |δu| ≤ |δφ| and equality is
achieved; that is, δu is maximal only if δv = 0, or v(x, y) = v(x0, y0).

In practice, we need to establish that the contour can be deformed onto the
steepest descent curve, which passes through the saddle point. This requires
some global understanding of the geometry. Usually the contribution near the
saddle point gives the dominant contribution. However, sometimes the contour
cannot be deformed onto a curve passing through a saddle point. In this case,
endpoints or singularities of the integrand yield the dominant contribution.
Moreover, sometimes the deformation process introduces poles that can lead to
significant (and possibly dominant) contributions to the asymptotic expansion.

Saddle Points. We say that the point z0 is a saddle point of order N if the first
N derivatives vanish, or alternatively, letting n = N + 1

dmφ

dzm

∣∣∣∣
z=z0

= 0, m = 1, . . . , n − 1,
dnφ

dzn

∣∣∣∣
z=z0

= aeiα, a > 0 (6.4.3)

When only the first derivative vanishes (N = 1), we simply say that z0 is a
saddle point, or a “simple” saddle point, and omit the phrase “of order one.”

If the first n − 1 derivatives vanish, then we will show that for such points
there exist n directions of steepest descent and n directions of steepest ascent.
If

z − z0 = ρeiθ (6.4.4)
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these directions are given by

steepest descent directions: θ = −α

n
+ (2m + 1)

π

n
, m = 0, 1, . . . , n − 1

steepest ascent directions: θ = −α

n
+ 2m

π

n
, m = 0, 1, . . . , n − 1

(6.4.5)
where α is defined in Eq. (6.4.3). We note that in these equations we have
arbitrarily chosen the integers to be 0, 1, . . . , n − 1. However, negative values
of m (i.e., m = −1,−2, . . . ,−(n − 1)) might be necessary in dealing with
problems where a branch cut is fixed (see Example 6.4.10, part (b)).

To derive Eqs. (6.4.5) we note that

φ(z)− φ(z0) ∼ (z − z0)
n

n!

dnφ

dzn

∣∣∣∣
z=z0

= ρneinθ

n!
aeiα = ρna

n!
[cos(α + nθ)+ i sin(α + nθ)]

(6.4.6)

Since the directions of steepest descent at z = z0 are defined by Im(φ(z) −
φ(z0)) = 0 it follows that sin(α + nθ) = 0, and for u to decrease away from
z0, cos(α + nθ) < 0. Similarly, the directions of steepest ascent are given
by sin(α+ nθ) = 0, cos(α + nθ) > 0. These relationships are equivalent to
Eqs. (6.4.5). This local information is very important in applications, as we
will see below.

For n = 2, that is, for a simple saddle point, Eqs. (6.4.5) imply

descent: θ = −α

2
+ π

2
, θ = −α

2
+ 3π

2

ascent: θ = −α

2
, θ = −α

2
+ π

(6.4.7)

We shall use an arrow to point to the direction of descent. Equations (6.4.7)
are depicted in Figure 6.4.1a. The shaded regions represent valleys where the
function decreases from the saddle point.

Figure 6.4.1b depicts a typical surface u(x, y) about the point (x0, y0) for
the case n = 2. Locally, the surface is shaped like saddle, which is why a point
z0 at which dφ/dz = 0 is called a (simple) saddle point. The steepest descent
path is distinguished by the fact that Im φ = const along this path. If we pick
an adjacent path, the real part of φ is larger, but the contribution to the integral
is smaller owing to the rapid oscillations in the imaginary part of φ. Equations
(6.4.5) are further illustrated in Example 6.4.1.
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(a) directions of ascent and descent (b) saddle surface

Fig. 6.4.1. Steepest descent

-1 1

example 6.4.1(a) example 6.4.1(b)

example 6.4.1(c) example 6.4.1(d)

Fig. 6.4.2. Steepest descent, Example (a)–(d)

Example 6.4.1 Find the directions of steepest descent at the saddle point for
the functions φ(z) given below and the points z0 indicated.

(a) φ(z) = z − z3/3. Therefore φ′(z) = 1 − z2, φ′′ = −2z. There exist two
simple saddle points at z0 = 1 and z0 = −1.
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For z0 = 1, φ′′(1) = −2 = 2eiπ , that is, α = π . Hence Eqs. (6.4.7) imply
θ = 0, π .
For z0 = −1, φ′′(−1) = 2, that is, α = 0. Hence Eqs. (6.4.7) imply θ

= π/2, 3π/2.
(b) φ(z) = i cosh z. Therefore φ′(z) = i sinh z, φ′′(z) = i cosh z. Consider

z0 = 0:
φ′′(0) = i = e

iπ
2 , that is, α = π/2. Hence Eq. (6.4.7) imply θ = π/4,

5π/4.
(c) φ(z) = sinh z− z. Therefore φ′(z) = cosh z− 1, φ′′(z) = sinh z, φ′′′(z) =

cosh z.
Consider z0 = 0: φ′(0) = φ′′(0) = 0, φ′′′(0) = 1, that is, α = 0, n =
3. This is a saddle point of order two; hence Eqs. (6.4.5) imply θ =
π/3, π, 5π/3.

(d) φ(z) = cosh z− (z2/2). Therefore φ′(z) = sinh z− z, φ′′(z) = cosh z− 1,
φ′′′(z) = sinh z, φ′′′′(z) = cosh z.
Consider z0= 0: φ′(0)=φ′′(0)=φ′′′(0) = 0, φ′′′′(0)= 1, that is, α= 0,
n = 4. This is a saddle point of order 3. Hence Eqs. (6.4.5) imply θ =
π
4 ,

3π
4 ,

5π
4 ,

7π
4 .

6.4.1 Laplace’s Method for Complex Contours

We consider the integral (6.4.1) and we assume that the contour C can be
deformed into a contour Cs through the saddle point of order n− 1. Let us
consider a portion of the dominant contribution; that is, consider a single path
of steepest descent originating from a saddle point z0 of order n − 1. We also
will assume that f (z) is of order (z − z0)

β−1 near z0, that is, as z → z0

φ(z)− φ(z0) ∼ (z − z0)
n

n!
φ(n)(z0), φ(n)(z0) = |φ(n)(z0)|eiα

f (z) ∼ f0(z − z0)
β−1, Reβ > 0 (6.4.8)

Then we shall show that

I (k) ∼ f0(n!)
β

n eiβθ

n

ekφ(z0)�
(
β

n

)
(k|φ(n)(z0)|) β

n

(6.4.9)

To derive Eq. (6.4.9), we note that because C ′ is a path of steepest descent,
we can make the change of variables, −t = φ(z)− φ(z0), where t is real and
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positive. Recall that along the steepest descent path, Im(φ(z)−φ(z0)) = 0. In
the neighborhood of the saddle point, using Eq. (6.4.5),

(z − z0)
n

n!
φ(n)(z0) = −t, or |z − z0| = t

1
n

(
n!

|φ(n)(z0)|
) 1

n

(6.4.10)

Then Eq. (6.4.1) yields

I (k) ∼ ekφ(z0)

∫ ∞

0

(
− f (z)

φ′(z)

)
e−kt dt (6.4.11)

where we used φ′(z) dz = −dt and we replaced the upper limit of integration
by∞ because from Watson’s lemma we expect that the dominant contribution
comes from the neighborhood of the origin. In order to evaluate Eq. (6.4.11),
we need to compute f (z)/φ′(z) near z0. Using Eq. (6.4.8)

f (z)

φ′(z)
∼ f0(z − z0)

β−1

(z−z0)n−1

(n−1)! φ(n)(z0)
= (n − 1)! f0

(z − z0)
β−n

φ(n)(z0)
(6.4.12)

Also,

z − z0 = |z − z0|eiθ and φ(n)(z0) = |φ(n)(z0)|eiα

Using these equations and Eq. (6.4.10) we find

f (z)

φ′(z)
∼ f0(n!)

β

n eiβθ−i(θn+α)

n
∣∣φ(n)(z0)

∣∣ βn t
β

n −1 (6.4.13)

Recall that θ is given by Eq. (6.4.5); thus θn + α= (2m + 1)π , that is,
exp[−i(θn+α)] = −1. Substituting Eq. (6.4.13) in Eq. (6.4.11) and using the
definition of the gamma function, we find Eq. (6.4.9).

In order to obtain the higher-order terms in the asymptotic expansion of
Eq. (6.4.12), one must solve for z − z0 in terms of a series in t from

−t = φ(z)− φ(z0) = −(z − z0)
nφ̂(z)

where φ̂(z) is an analytic function of z in a neighborhood of z0: φ̂(z)= ∑∞
m=0φ̂m

(z−z0)
m . There are n roots of this equation. A series expressing z− z0 in terms

of t , z− z0 =
∑∞

m=1 cmtm (t = 0 when z = z0) can be obtained by recursively
solving z − z0 = t1/n[φ̂(z)]1/n . This inversion can always be accomplished in
principle, by the Implicit Function Theorem. In practice, the necessary devices
to accomplish this are often direct and motivated by the particularities of the
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functions in question (see Example 6.4.8 below). We do not need to go into
further details for our purposes.

The asymptotic nature of Eq. (6.4.9) can be rigorously established by solving
for z in terms of t as mentioned above, and then using Watson’s Lemma.
This shows the great advantage of the method of steepest descent: Because
it is based on Watson’s Lemma, it is possible both to justify it rigorously and
to obtain the asymptotic expansion to all orders. A difficulty encountered in
practice is the deformation of the original contour of integration onto one or
more of the paths of steepest descent. However, the local nature of the method
of steepest descent makes even this task relatively simple. This is because
quantitative information about the deformed contours is needed only near the
critical points; away from these points qualitative information is sufficient (by
critical points we mean saddle points, endpoints of integration, and singularities
of f (z) and φ(z)). A contour C1 that coincides with a steepest descent contour
Cs for some finite length near the critical point z0 but that then continues
merely as a descent contour is said to be asymptotically equivalent to Cs .
It can be shown rigorously (Bleistein and Handelsman, 1986; Olver, 1974)
that asymptotic expansions derived from asymptotically equivalent contours
differ only by an exponentially small quantity. Therefore, it is really these
asymptotically equivalent contours and not the steepest descent curves that are
important. One must establish that a given contour can be deformed onto such
contours, in which case the problem then becomes local. It is not always easy to
see how to deform the contours. Besides the examples provided here, we refer
the reader to Bleistein and Handelsman (1986) for a more detailed discussion
and further examples.

Steepest descents is one of the most widely used methods of complex vari-
ables. The essential idea of deforming a path onto a saddle point dates back
to Riemann in his study of hypergeometric equations. Debye (1954) realized
that by transforming the entire contour onto a steepest descent path, one could
obtain an infinite asymptotic expansion.

Before going into examples let us review the basic steps.

(a) Identify all critical points of the integrand, that is, saddle points, endpoints,
and possible singular points.

(b) Determine the paths of steepest descent, Cs . (We note that a detailed de-
termination of Cs is usually not necessary, qualitative features usually are
sufficient.)

(c) Deform the original contour C (using Cauchy’s Theorem) onto one or more
paths of steepest descent Cs or paths that are asymptotically equivalent to
Cs . (One needs some global information about the steepest descent paths



456 6 Asymptotic Evaluation of Integrals

in order to justify the replacement of C by Cs or by those contours which
are asymptotically equivalent to Cs . This step is very important and can be
difficult.)

(d) Evaluate the asymptotic expansion by using Eq. (6.4.9), Watson’s Lemma,
integration by parts, etc. The integrals are of Laplace type.

Having presented the basic elements of the steepest descent method, we now
consider several examples that illustrate the main features.

Example 6.4.2 Find the complete asymptotic expansion of I (k)=∫ 1
0 log teiktdt,

as k →∞.
A direct application of the method of stationary phase fails because there is

no stationary point. Also, integration by parts fails because log t diverges at
t = 0. We solve this problem by the method of steepest descent, which also
shows how, by deforming the contour, a Fourier type integral can be mapped
onto a Laplace type integral. Let us replace the real variable t by the complex
variable z. Note that

φ(z) = i z = i(x + iy) = −y + i x (6.4.14)

Clearly there does not exist any saddle point (φ′(z) = i); we will see that the
dominant contribution comes from the endpoints. The steepest paths Im φ =
const are given by x = constant; if y > 0, these paths are paths of steepest
descent. Thus x = 0, y > 0 and x = 1, y > 0 are the paths of steepest descent
going through the endpoints. We note that Imφ(0) 
= Imφ(1); hence there is
no continuous contour joining t = 0 and t = 1 on which Imφ is constant. We
connect the two steepest paths by the contour C2 (see Figure 6.4.3) and use
Cauchy’s theorem to deform the contour [0, 1]. (Since t = 0 is an integrable
singularity we shall allow the contour to pass through the origin.) Note that
here, i = eiπ/2.

I (k) =
∫

C1+C2+C3

log zeikz dz

= i
∫ R

0
log(ir)e−kr dr +

∫ 1

0
log(x + i R)eikx−k R dx

− ieik
∫ R

0
log(1+ ir)e−kr dr

Letting R →∞ we obtain

I (k) = i
∫ ∞

0
log(ir)e−kr dr − ieik

∫ ∞

0
log(1+ ir)e−kr dr (6.4.15)
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Fig. 6.4.3. Contour of integration for Example 6.4.2

Using s = kr , the first integral in Eq. (6.4.15) becomes

i

k

∫ ∞

0

(
log

(
i

k

)
+ log s

)
e−s ds = − i log k

k
−
(
iγ + π

2

)
k

where we used the fact that−γ is the well-known integral
∫∞

0 log se−sds (and
the Euler constant, γ , equals 0.577216 . . .). To compute the second integral
in Eq. (6.4.15), we use the Taylor expansion log(1+ ir) = −∑∞

n=1(−ir)n/n,
and Watson’s Lemma. Thus as k → ∞, the complete asymptotic expansion
of the second integral is: ieik

∑∞
n=1(−i)n(n − 1)!/kn+1. Adding these two

contributions we find

I (k) ∼ − i log k

k
− iγ + π/2

k
+ ieik

∞∑
n=1

(−i)n(n − 1)!

kn+1
, k →∞

Example 6.4.3 Find the asymptotic behavior of the Hankel function

H (1)
ν (k) = 1

π

∫
C

eik cos zeiν(z− π
2 ) dz, as k →∞,

where the contour C is illustrated in Figure 6.4.4a. (The Hankel function of
the first kind, H (1)

ν (z), satisfies Bessel’s equation (3.7.35a) with the asymptotic
behavior

H (1)
ν (x) ∼

√
2

πx
ei(x−αν) as x →+∞
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Fig. 6.4.4. Hankel function

where αν = (2ν + 1) π4 . The other linearly independent solution of Bessel’s
equation, H (2)

ν (x), is the complex conjugate of H (1)
ν (x), x real.)

In this example φ(z)= i cos z and φ′(z)= − i sin z, thus z= 0 is a simple
saddle point. In what follows we first obtain the leading-order approximation,
then we show how to find higher-order approximations. Calculation of fur-
ther approximations is usually algebraically tedious, hence in the remaining
examples (other than Example 6.4.8) we only find the first approximation.

Because φ′′(0) = −i = e−
iπ
2 , using Eqs. (6.4.3)–(6.4.5), α = −π

2 hence
Eq. (6.4.7) implies

θ = 3π

4
,

3π

4
+ π
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are the directions of steepest descent. We first consider the local deformed
contour (depicted in Figure 6.4.4b) passing through the origin, which is as
mentioned earlier, asymptotic to C . We use Eq. (6.4.9) with

z0 = 0, n = 2, |φ′′(0)| = 1, β = 1,

f0 = e−iν π2

π
, φ(0) = i

Noting that
∫

C ∼
∫

Ĉ (2) −
∫

Ĉ (1) , where theĈ
(1)

contour has θ = 7π
4 andĈ

(2)
has

θ = 3π
4 , we need to subtract the formulae obtained with θ = 7π

4 and θ = 3π
4 ,

which gives the leading contribution as

H (1)
ν (k) ∼

√
2

πk
ei(k− νπ

2 − π
4 ), k →∞

Next we outline the procedure to get higher-order asymptotic corrections to
this integral. The steepest descent curves are given by Im φ(z) = Im φ(0) or

cos x cosh y = 1

near the saddle point. Recall that for real y

cos iy = cosh y

sin iy = i sinh y
and

cosh iy = cos y

sinh iy = i sin y.

We have (
1− x2

2
+ · · ·

)(
1+ y2

2
+ · · ·

)
= 1

or

y2

2
− x2

2
≈ 0

with the steepest descent curve being y = −x as depicted in Figure 6.4.4b. For
|y| → ∞ it is clear that cos x ∼ e−|y|/2; hence x ∼ +π/2 as y → −∞, and
x ∼ −π/2 as y → +∞. This qualitative information implies that we can
deform our curve C onto a steepest descent curve Cs , as depicted in Figure
6.4.4c. (Note that the integral converges when Re φ = sinh y sin x < 0; that
is, for y →∞, −π < x < 0, and for y →−∞, 0 < x < π .)

Next we show how to work with the steepest descent transformation: φ(z)−
φ(z0) = −t , t > 0, t real. We have

i(cos z − 1) = −t
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or for z near the saddle point, z0 = 0, t = 0

z2

2!
− z4

4!
+ · · · = e−iπ/2t

We solve for z as a function of t iteratively:

z =
√

2e−iπ/4t1/2

(
1+ 1

24
z2 + · · ·

)
or

z =
√

2e−iπ/4t1/2 +
√

2

12
e−3iπ/4t3/2 + · · ·

Asymptotically the integral is given by

H (1)
ν (k) ∼ 1

π

∫
Cs

eike−kt eiνz(t)e−iνπ/2 dz

dt
dt

∼ eike−iνπ/2

π

∫
Cs

e−kt

(
1+ iνz + (iνz)2

2!
+ (iνz)3

3!
+ · · ·

)
dz

dt
dt

Using the expansion of z(t) above and splitting the steepest descent contour
into two pieces, one each from the origin, after some algebra we have

H (1)
ν (k) ∼ 2eike−iνπ/2

π

∫ ∞

0
e−kt
(
c0t−1/2 + c1 + c2t1/2 + c3t + · · · ) dt

∼ 2eike−iνπ/2

π

(
c0�
(

1
2

)
k1/2

+ c1

k
+ c2�

(
3
2

)
k3/2

+ c3

k2
+ · · ·

)

∼ 2eike−iνπ/2

π

(√
2π

2

e−iπ/4

k1/2
+ ν

k

+
√

2π

4

(
1
4 − ν2

)
e−3iπ/4

k3/2
+ iν(ν2 − 1)

3k2
+ · · ·

)

where we have inserted the requisite values for the coefficients c0, c1, c2, c3,
. . ., and used �( 1

2 ) =
√
π and �( 3

2 ) = 1
2�(

1
2 ). The leading term agrees with

that obtained above.
In practice it is advisable to go through the above calculation even for the

first term, as opposed to using the formula (6.4.9). We use this formula in order
to condense the description.
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s

Fig. 6.4.5. Steepest descent contour Cs for example 6.4.4

Example 6.4.4 Evaluate I (k) = ∫∞−∞ eikt (1+ t2)−kdt, k →∞.
We first rewrite this integral in the form Eq. (6.4.1): Using (1 + t2)−k =

e−k log(1+t2), its integrand becomes ek[i t−log(1+t2)].

φ(z) = i z − log(1+ z2), φ′(z) = i − 2z

1+ z2

There exist two simple saddle points (see Figure 6.4.5) given by z2+2i z+1 = 0,
or z0 = i(±√2− 1) We consider the saddle point z0 = ic, c = √2− 1

φ′′(ic) = − (1+ c2)

2c2
= (1+ c2)

2c2
eiπ

that is, α = π , (note that 1−c2 = 2c for c = √2−1); hence Eqs. (6.4.7) imply
θ = 0, π are the directions of steepest descent. Also, φ(ic) = −c − log(2c).
We deform the original contour C (−∞ < x < ∞) so that it passes through
the point ic, which can be done because the integral converges for Imt > 0. We
take the branch cut for log(1+ z2) to be from ±i to ±i∞; that is, not through
the real z axis. The exact form of the deformed contour with this choice of
branch for log(1 + z2) is given by Imφ(z) = Imφ(ic) = 0, or x − θ̂ = 0,
where θ̂ = arg (1 + z2). The deformed contour Cs approaches the original
contour as |x | → ∞. To evaluate the leading order contribution of I (k) on the
deformed contour, we use Eq. (6.4.9) with

z0 = ic, n = 2, |φ′′(ic)| = (1+ c2)

2c2
, f0 = 1,

β = 1, φ(ic) = −c − log(2c)

Thus for the local steepest descent contribution we have, on the right half of
Cs , θ = 0 and on the left half of Cs , θ = π . Using Eq. (6.4.9) with θ = 0 and
θ = π and subtracting the two contributions (which is necessary in order for
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the steepest descent curve to be consistent with the original contour) we find

I (k) ∼ 2c√
1+ c2

√
π

k
e−kc(2c)−k, c =

√
2− 1, k →∞

In what follows we briefly discuss the derivation of the above formula from
first principles, rather than simply using Eq. (6.4.9). This should help the reader
to do the same in the following problems for which we only use Eq. (6.4.9).

Transforming to the deformed contour Cs and using φ(z) − φ(z0) = −t
where t is real and t > 0 (recall that Im(φ(z)− φ(z0)) = 0), we have

I =
∫

Cs

ekφ(z0)e−kt

(
dz

dt

)
dt = ekφ(z0)

∫
Cs

e−kt

( −dt

φ′(z)

)

∼ ekφ(z0)

∫
Cs

e−kt

( −dt

(z − z0)φ′′(z0)

)
To find the leading order, we use

φ′′(z0)

2
(z − z0)

2 = −t

and noting that φ′′(z0) < 0, we find

I ∼ 2ekφ(z0)

∫ ∞

0

e−kt dt

t1/2
√

2|φ′′(z0)|

which yields the previous result after substitution and integration. (The factor
of 2 corresponded to taking both descent contours, each one emanating from
the saddle, into account.)

It is also worth mentioning that with knowledge of the saddle point, the steep-
est descent contour, and the fact that these calculations are intrinsically local,
various modifications of the ideas presented above are possible. For example,
we can expand the phase φ(z) directly in the integrand after deforming the
contour, that is

I =
∫

Cs

ekφ(z) dz ∼
∫

Cs

ekφ(z0)ekφ′′(z0)
(z−z0)

2

2 dz

Through the saddle point on the steepest descent contour, we can transform
to a more convenient variable. Recall that in the neighborhood of the saddle,
in general, one needs the correct phase, z − z0 = reiθ , θ determined by the
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(a) Sommerfeld contour (b) deformed local steepest descent contour

Fig. 6.4.6. Integrating eksechν sinh z−z as k →∞

steepest descent contour; that is, calling φ′′(z0) = |φ′′(z0)|eiα , the steepest
descent contour has 2θ + α = π, 3π , so that

I ∼ 2ekφ(z0)

∫ ∞

0
e−k| φ′′(z0)

2 |r2
dr

Directly integrating or transforming to a new variable (e.g. t = |φ′′(z0)

2 |r2) yields
the previous results.

Example 6.4.5 Evaluate I (k) = ∫C ek(sechν sinh z−z) dz, k → ∞, ν 
= 0, where
C is the so-called Sommerfeld contour illustrated in Figure 6.4.6a and ν is a
fixed real positive number.

In this exampleφ(z) = sech ν sinh z−z, φ′(z) = sech ν cosh z−1, and z0 =
ν is a simple saddle point. Also, φ′′(ν)= tanh ν; henceα= 0. From Eq. (6.4.5),
θ = π/2, 3π/2 are directions of steepest descent. We consider a deformed
contour passing through the point ν; this contour is given by Imφ(z) =
0 and is asymptotic to C as z → ±iπ + ∞. (Imφ(z) = 0 is given by
sechν cosh x sin y = y; hence y → ±iπ as x → ∞.) We use Eq. (6.4.9)
with

z0 = ν, n = 2, |φ′′(ν)| = tanh ν β = 1, f0 = 1, φ(ν) = tanh ν − ν

(note that φ(ν) < 0) and we subtract the formulae obtained with θ = π
2 and

θ = 3π
2 :

I (k) ∼ i

√
2π

k tanh ν
e−k(ν−tanh ν) k →∞
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Cs

i

i

−π

π

Fig. 6.4.7. Steepest descent contour Cs

It turns out that I (k) = Jk(ksechν)/2iπ , where Jk is the Bessel function of
order k (see Eq. (3.7.35a)). This example has historical significance. It is the
consideration of such an integral that led Debye (1954) to the discovery of the
steepest descent technique. As mentioned earlier, Riemann also discovered this
technique independently in a problem involving the asymptotic behavior of a
hypergeometric function.

Example 6.4.6 Evaluate I (k)= ∫C ek(sinh z−z) dz, k→∞ where C is the Som-
merfeld contour illustrated in Figure 6.4.6a.

This problem corresponds to the case ν = 0 of Example 6.4.5. Here we have
φ(z)= sinh z−z having a second-order saddle point z0= 0, which was analyzed
in Example 6.4.1(c). We consider the contour Cs defined by Imφ(z) = 0 or
cosh x sin y = y; note that cosh x = y/ sin y, that is, x →∞ as y → ±π and
Cs is asymptotic to C (see Figure 6.4.7).

We use Eq. (6.4.9) with

z0 = 0, n = 3, |φ′′′(0)| = 1,

f0 = 1, β = 1, φ(0) = 0

and subtract the formulae obtained with θ = π
3 and θ = 5π

3

I (k) ∼ e
iπ
3 − e

5iπ
3

3
�

(
1

3

)(
3!

k

) 1
3

= 2i

3
sin

(
π

3

)
�

(
1

3

)(
6

k

) 1
3

, k →∞

We remark that I (k) = Jk(k)/2π i , where Jk denotes the Bessel function of
order k (see Eq. (3.7.35a)).
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Fig. 6.4.8. Integrating ek(cosh z−z2/2) as k →∞

Example 6.4.7 Evaluate I (k) = ∫C ek(cosh z− z2

2 ), k → ∞, where C is the
contour illustrated in Figure 6.4.8a.

Note that φ(z) = cosh z − z2

2 and the saddle point z0 = 0 was analyzed in
Example 6.4.1(d). We consider the contour Cs defined by Imφ(z) = 0 (i.e.,
sinh x sin y − xy = 0), which goes through z0 = 0 and is asymptotic to C (see
Figure 6.4.8b). We use Eq. (6.4.9) with

z0 = 0, n = 4,
∣∣φ(iv)(0)

∣∣ = 1, f0 = 1, β = 1, φ(0) = 1

and subtract the formula obtained with θ = π
4 and θ = −π

4

I (k) ∼ e
iπ
4 − e−

iπ
4

4
�

(
1

4

)(
4!

k

) 1
4

ek, k →∞

In Examples 6.4.3–6.4.7 it was possible to replace the contour C by a single
contour Cs . However, as was already indicated by Example 6.4.2, sometimes we
have to replace the contour C by several contours. This will also be illustrated
in Examples 6.4.8 and 6.4.9. These examples differ from Example 6.4.2 in that
one of the deformed contours passes through a saddle point (recall that there
were no saddle points in Example 6.4.2).

Example 6.4.8 Find the “full” asymptotic expansion of I (k) = ∫ 1
0 eikt2

dt , as
k →∞.

Because φ(z) = i z2 and φ′(z) = 2i z, z0 = 0 is a simple saddle point. The
steepest paths are given by Imφ(z) = constant, that is, x2 − y2 = constant.
Hence the steepest paths going through z = 0 and the endpoint z = 1 are given
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(a) saddle point at 0 (b) steepest descent contours C1 and C3

Fig. 6.4.9. Expanding
∫ 1

0
eikt2

dt

by x = ±y and x2− y2 = 1, respectively. The corresponding paths of steepest
descent are x = y, y > 0, and x =

√
1+ y2. (Note that along the curve

x = −
√

1+ y2 the function eiz2
increases; this is the steepest ascent path.)

Because Imφ(0) 
= Imφ(1) there is no continuous contour joining 0 and 1 on
which Imφ is constant. We connect the two steepest paths by the contour C2

(see Figure 6.4.9b) and use Cauchy’s theorem to find I (k) = ∫C1
+ ∫C2

+ ∫C3
.

Along C1, z = eiπ/4r ; along C3, z = (x + iy) =
√

1+ y2 + iy, and along C2,
z = x + i R, x > 0; the function eiz2 = ei(x2−R2)−2x R .

Hence letting R →∞, we find
∫

C2
→ 0 and

I (k) = eiπ/4
∫ ∞

0
e−kr2

dr − eik
∫ ∞

0
e−2ky

√
1+y2

(
y√

1+ y2
+ i

)
dy.

(6.4.16)
The first integral in Eq. (6.4.16) can be evaluated exactly

eiπ/4
∫ ∞

0
e−kr2

dr = 1

2

√
π

k
e

iπ
4 (6.4.17)

To obtain the leading behavior of the second integral in Eq. (6.4.16) as k →∞,
we note that the dominant contribution is near y= 0. In this location the
integrand can be approximated by e−2ky(y + i), hence

∫ ∞

0
e−2ky

√
1+y2

(
y√

1+ y2
+ i

)
dy

∼
∫ ∞

0
e−2ky(y + i) dy ∼ i

2k
+ 1

4k2
, k →∞
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(Alternatively we can use integration by parts.) Adding these two contributions
we find

I (k) ∼ 1

2

√
π

k
e

iπ
4 − eik

(
i

2k
+ 1

4k2

)
, k →∞

To obtain the “complete” asymptotic expansion of the second integral in
Eq. (6.4.16), we use the change of variables s= 2y

√
1+ y2 so that this integral

can be transformed to one for which Watson’s Lemma is applicable. Actually, if
we go back to the original coordinates, we find for the steepest descent contour

z = x + iy =
√

1+ y2 + iy, or z2 = 1+ 2iy
√

1+ y2 = 1+ is

or more simply z = (1+ is)
1
2 . Hence

∫
C3

eikz2
dz = − i

2
eik
∫ ∞

0

e−ks

√
1+ is

ds (6.4.18)

Using the Taylor expansion (see also Example 6.2.6)

(1+ is)−
1
2 =

∞∑
n=0

(i)ncn

(
− 1

2

)
sn

where c0(− 1
2 ) = 1, and for n ≥ 1

cn(α) = α(α − 1)(α − 2) · · · (α − n + 1)

n!
= �(α + 1)

�(n + 1)�(α − n + 1)

and applying Watson’s Lemma to evaluate Eq. (6.4.18) and adding the contri-
bution from Eq. (6.4.17), we find

I (k) ∼ 1

2

√
π

k
e

iπ
4 − 1

2
ieik

∞∑
n=0

(i)n cn
(− 1

2

)
n!

kn+1
, k →∞

In this problem we see that the “complete” asymptotic expansion could also
be found using the transformation z =

√
1+ y2 + iy and the expansion of the

Taylor series (1+ is)−1/2. In fact, if one is only interested in the first few terms
of the expansion of

J =
∫ ∞

0
e−2ky

√
1+y2

(
y√

1+ y2
+ i

)
dy
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we can let s = 2y
√

1+ y2, expand for y small, that is, s = 2y+ y3+ · · ·, and
successively invert to find y in terms of s: y = s

2 − s3

16 + · · ·. Then the integral
for J is given by

J =
∫ ∞

0
e−ks

(
y − y3

2
+ · · · + i

)
dy

ds
ds

After replacing y by the first few terms of its expansion, this yields

J =
∫ ∞

0
e−ks

(
i

2
+ s

4
− 3is2

16
+ · · ·

)
ds

= i

2k
+ 1

4k2
− 3i

8k2
+ · · ·

This example provides yet another illustration of the power of the steepest
descent method. It gives the full asymptotic expansion of a Fourier type integral.
However, it would be false to think that the method of stationary phase is
a special case of the steepest descent method. Indeed, the stationary phase
formula does not require the strong analyticity assumptions made in the present
subsection. Obviously, the two methods are applicable to overlapping classes
of integrals, but neither is a special case of the other. If Fourier type integrals
involve analytic integrands, then the method of steepest descent is usually the
method of choice.

Example 6.4.9 Evaluate I (k) = ∫ a
−∞ e−kz2

f (z) dz, k → ∞, where 0 <

arg a < π
4 and f (z) is analytic and bounded for 0 ≤ arg z ≤ π .

In this example, φ(z) = −z2, φ′(z) = −2z; hence z0 = 0 is a simple saddle
point. Also, φ′′(0) = −2 = 2eiπ , that is, α=π and from Eq. (6.4.5) we see
that θ = 0, π are the directions of steepest descent for the point z0 = 0. The
steepest path (Imφ(z) = Imφ(z0)) going through a = x1 + iy1 is given by
xy = x1 y1 (see Figure 6.4.10).

We use Cauchy’s Theorem in order to deform the contour C onto steepest
descent paths, that is, I (k) = ∫C1

+ ∫C2
+ ∫C3

. Letting R→∞, we see that∫
C3
→ 0 and

I (k) =
∫ ∞

−∞
e−kx2

f (x) dx −
∫

C3

e−kz2
f (z) dz (6.4.19)

To evaluate the first integral in Eq. (6.4.19), we use Eq. (6.4.9) with

z0 = 0, n = 2, |φ′′(0)| = 2,

f0 = f (0), β = 1, φ(0) = 0
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Fig. 6.4.10. Deforming C onto steepest descent curves

and subtract the formulae obtained with θ = 0 and θ = π

∫ ∞

−∞
e−kr2

f (r) dr ∼ f (0)

√
π

k
, k →∞

To evaluate the second integral in Eq. (6.4.19), we note that on C3, z = x +
i x1 y1/x , that is

z2 − a2 = x2 − x2
1 y2

1

x2
− (x2

1 − y2
1) = x2 − x2

1 + y2
1 − y2

1

(
x1

x

)2

is real and positive (x ≥ x1 and y1 ≤ x1). Thus it is convenient to let z2−a2 = t ,
t > 0 and use Laplace’s method. Expanding f ((a2 + t)1/2)/(a2 + t)1/2 near
t = 0, we find that as k →∞

∫
C3

e−kz2
f (z) dz ∼ −1

2

∫ ∞

0

e−k(a2+t) f ((a2 + t)1/2)

(a2 + t)1/2
dt ∼ −e−ka2

2ak
f (a)

Thus the term due to
∫

C3
is exponentially smaller than the steepest path through

z = 0; hence

I (k) ∼ f (0)

√
π

k
, k →∞
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z  =  i t 0 < t  < 1

z  = i

Cs

p

0

0 0

Fig. 6.4.11. steepest descent contour, saddle point, and pole

Example 6.4.10 Consider the integrals

(a) I1(k) =
∫ ∞

−∞

eik(t+t3/3)

t2 + t2
0

dt, k > 0

(b) Iα(k) =
∫ ∞

−∞

eik(t+t3/3)

(t2 + 1)α
dt, k > 0, 0 < α < 1

where t0 is a real constant, t0 > 0. Find the leading term of the expansions of
these integrals, as k → ∞. (The reader may wish to also see Example 6.5.3,
where similar integrals are considered.)

We begin with part (a). The phase is given by φ(z)= i(z + z3/3). We
have φ′(z) = i(1 + z2); hence there are saddle points at z0= ± i . Because
φ′′(z)= 2i z, we haveφ′′(±i)=∓2. When z0= i , Eq. (6.4.5) shows thatα = π ;
hence the steepest descent directions are θ = 0, π . When z=−i , α= 0 and
θ = π

2 ,
3π
2 . The steepest descent curves are given by Imφ(z) = Imφ(z0):

−x(3y2 − x2 − 3) = 0. Thus, corresponding to z0 = i , the steepest descent
curve is 3y2 − x2 − 3 = 0; for z0 = −i it is x = 0. Because of the given
integrand, we can only deform onto the hyperbola 3y2− x2−3 = 0. Indeed, at
infinity the exponential exp(ik(z+ z3/3)) decays in the upper half plane when
z = reiθ : 0 < θ < π/3 and 2π/3<θ <π and this contains the hyperbola
(see Figure 6.4.11). We cannot deform onto the steepest descent contour x = 0
(note the integral does not converge at y = ±i∞). The fact that the value of the
integrand at the saddle point at z = −i is exponentially large, ekφ(−i) = e2k/3,
immediately indicates that we cannot deform the contour onto a steepest descent
curve through z = −i . (Since the integral is highly oscillatory, it must vanish
as k→∞). In completing the contour we note that if 0 < t0 < 1, by Cauchy’s
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Theorem we have to include the contribution from the pole at z p = i t0. If
t0 > 1 there is no pole within the deformed contour.

We calculate the leading-order steepest descent contributions from Eq. (6.4.9)
with n = 2, z0 = i , f0 = 1/(t2

0 − 1), β = 1, φ(i) = −2/3, φ′′(i) = −2, and
θ = 0, π . Subtracting the contribution of θ = π from the contribution with
θ = 0, and calculating the pole contribution we find,

I1(k) ∼
√

π
k e−

2
3 k

t2
0 − 1

+ π

t0
e−k(t0−t3

0 /3)H(1− t0) (6.4.20)

where H(x) is the Heaviside function; H(x) = 1 if x > 0 and H(x) = 0 if
x < 0. Note that for 0< t0 < 1, the pole contribution dominates that from the
saddle point.

We also remark that if t0 = 1, Eq. (6.4.20) breaks down. The situation when
t0 = 1 is more subtle. When t0 = 1 the steepest descent contour can take the
local form

t =1=z0 0

which has the effect of halving the pole contribution and treating the saddle
point as a principle value integral. In this case, letting z = i + s in the
neighborhood of the saddle yields the following:

I1(k) ∼
∫ ∞

−∞

e−2k/3e−ks2
eiks3/3

s(2i + s)
ds + π

2t0
e−2k/3

Letting s = u/
√

k reduces the principle value integral to the form∫ ∞

−∞

e−u2
eiu3/3

√
k

u(2i + u/
√

k)
du ∼

∫ ∞

−∞

e−u2

2iu
du = 0

(noting that the second integral above is odd); hence when t0 = 1

I1(k) ∼ π

2
e−2k/3

Next we consider part (b). Here the important point to note is that the branch
cuts are taken from z = i to z = i∞ and z = −i to z = −i∞ with local
coordinates (z2+ 1) = (z+ i)(z− i) = r1eiϕ1r2eiϕ2 , and−π/2 < ϕ1 < 3π/2,
and −3π/2 < ϕ2 < π/2 so that there is no jump across the Im z axis when
z = 0. With these choices for ϕ1 and ϕ2 our saddle point directions at z = i
are θ = 0,−π , not θ = 0, π . So after deforming the contour onto the steepest
descent path we can now either use formula (6.4.9) or work out the asymptotic
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contribution from first principles (always a better idea in practice). For brevity
we use Eq. (6.4.9) where z0= i , f0= 1

(2i)α = 1
2α e−iπα/2 (note that f0 comes from

the contribution of the local coordinate z + i = r1eiϕ1 when z= i), β = 1− α,
n = 2, φ(i) = −2/3, and φ′′(i) = 2eiπ . Substituting the contributions
corresponding to θ = 0, θ = −π we find

Iα(k) ∼ e
−iπα

2 2
1−α

2

2α+1

e
−2k

3 �
(

1−α
2

)
(2k)

1−α
2

− e
−iπα

2 2
1−α

2 ei(α−1)πe
−2k

3 �
(

1−α
2

)
2α+1(2k)

1−α
2

= e
−2k

3

2α
�
(

1−α
2

)
k

1−α
2

cos
πα

2

Problems for Section 6.4

1. Use the method of steepest descent to find the leading asymptotic behavior
as k →∞ of

(a)
∫ ∞

−∞

teik
(

t3

3 +t
)

1+ t4
dt (b)

∫ ∞

−∞

eik
(

t5

5 +t
)

1+ t2
dt

2. Show that for 0 < θ ≤ π/2∫ θ

0
e−k sec x dx ∼

√
π

2k
e−k, k →∞

3. Find the leading asymptotic behavior as k →∞ of∫ ∞

0
eik
(

t4

4 + t3

3

)
e−t dt

4. In this problem we will find the “complete” asymptotic behavior of

I (k) =
∫ π

4

0
eikt2

tan t dt as k →∞

(a) Show that the steepest descent paths are given by

x2 − y2 = C; C = constant

(b) Show that the steepest descent/ascent paths that go through z = 0 are
given by

x = ±y

and the steepest paths that go through z = π
4 are given by

x = ±
√(π

4

)2
+ y2
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1

2

3C

C

C

iR

y

xπ/4

π
4

Fig. 6.4.12. Contour for Problem 6.4.4

(c) Note that the steepest descent paths in the first quadrant are C1 : x = y

and C3 : x =
√(

π
4

)2 + y2. Construct a path C2 as shown in the Figure
6.4.12, and therefore
I (k) can be written as I1+ I2+ I3 where Ii refers to the integral along
contour Ci , for i = 1, 2, 3. As k →∞: show that

I1 ∼ i

2k
− 1

6k2

I2 ∼ 0,

I3 ∼ −2i

kπ
eik(π/4)2

5. Consider the integral

I (k) =
∫ 1

0
eikt3

dt as k →∞

Show that I (k) = I1 + I2 + I3 where as k →∞:

I1 ∼ eiπ/6

3k1/3
�

(
1

3

)
I2 ∼ 0,

I3 ∼ − ieik

3k
− 2eik

9k2

and the contour associated with I1 is the steepest descent contour y= x/
√

3
passing through z = 0; the contour I3 is the steepest descent contour
x3 − 3xy2 = 1 passing through z = 1; and the contour associated with I2
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is parallel to the x-axis and is at a large distance from the origin (see also
Problem 6.4.4).

6. Consider

I (k) =
∫ 1

0

eik(t2+t)

√
t

dt as k →∞

Show that I (k) ∼ I1 + I2 + I3 where

I1 ∼
√

π

k
eiπ/4

(
1− 3i

4k
− 105

32k2

)
I2 ∼ 0,

I3 ∼ i

3
e2ik

(
− 1

k
+ 7i

18k2
+ 111

324k3
+ · · ·

)
and the contour of I1 passes through the origin (with steepest descent
contour: C1 : x2 − y2 + x = 0), the contour of I3 passes through z = 1
(with steepest descent contour: C3 : x2 − y2 + x = 2) and the contour of
I2 is parallel to the x axis and is at a large distance from the origin (see also
Problems 6.4.4 and 6.4.5).

6.5 Applications

We now illustrate how the methods developed in Sections 6.2–6.4 can be used
to evaluate integrals that arise from solutions of physically interesting partial
differential equations (PDEs).

Example 6.5.1 Consider the “free”Schrödinger equation

iψt + ψxx = 0, −∞ < x <∞, t > 0, ψ → 0 as |x | → ∞
ψ(x, 0) = ψ0(x) with

∫ ∞

−∞
|ψ0|2 dx <∞

This PDE is the time-dependent Schrödinger equation with a zero potential. It
arises in many physical problems, for example, quantum mechanics and also
in the study of linear wave communications in fiber optics.

Using a Fourier transform in x , that is

ψ(x, t) = 1

2π

∫ ∞

−∞
b(k, t)eikx dk
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and substituting this integral into the PDE (assuming the interchange of deriva-
tives and integrals is valid) yields the ordinary differential equation bt = −ik2b
or b(k, t) = b(k, 0)e−ik2t . Thus we find that ψ is given by Eq. (6.1.1b),
where b(k, 0) replaces Ψ0(k). Let us consider the large t behavior of ψ(x, t),
where x/t is fixed. Equation (6.1.1b) implies ψ(x, t) = 1

2π

∫
b0(k)eitφ(k) dk,

where we write b0(k) = b(k, 0) and

φ(k) = k
x

t
− k2, φ′(k) = x

t
− 2k, φ′′(k) = −2 (6.5.1)

Hence, using the method of stationary phase, (there exists a stationary point at
k0 = x/2t), the leading order behavior of the integral as t → ∞ is (see Eq.
(6.3.8))

ψ(x, t) ∼ eit ( x
2t )

2
b0

(
x

2t

)√
π

t
e−

iπ
4 (6.5.2)

Fromψ(x, t) = 1
2π

∫∞
−∞ b0(k)eik(x−kt)dk we see that the solution can be thought

of as a superposition of infinitely many wave trains each having a phase ve-
locity k. Different waves have different phase speeds; this leads to destructive
interference, which in turn implies that the solution disperses away as t →∞.
Indeed Eq. (6.5.2) shows that the amplitude decays as t−1/2, which is a typical
decay rate of such one-dimensional linear dispersive problems.

Equation (6.5.1) indicates that the important propagation velocity is not the
phase velocity k, but is really the velocity that yields the dominant asymptotic
result; that is for this problem φ′(k) = 0 yields x = 2kt . This velocity is 2k. In
general the quantity cg = x/t is called the group velocity. The significance of
this velocity is that after a sufficiently long time, each wave number k dominates
the solution in a region defined by x ∼ cg(k)t , where cg is the group velocity (see
also Section 4.6). In other words, different wave numbers (after a sufficiently
long time) propagate with the group velocity.

It is straightforward to generalize the above notions to any dispersive linear
equation: Equation (6.1.2) is replaced by

ψ(x, t) =
∫ ∞

−∞
ψ̂0(k)e

i(kx−w(k)t) dk (6.5.3)

where w(k) is a real function of k, called the dispersion relationship. The phase
velocity is given by cp(k) = w/k. Note that if cp(k) is constant, call it c0, then
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the solution at any time t > 0 is simply the initial function translated by c0t :

ψ(x, t) =
∫ ∞

−∞
ψ̂0(k)e

ik(x−c0t) dk = ψ0(x − c0t)

A linear equation in one space, one time dimension, is called dispersive if
w(k) is real and d2w/dk2 is not identically zero. The group velocity is given
by cg(k) = dw/dk, which corresponds to the stationary point

ψ(x, t) =
∫ ∞

−∞
ψ̂0(k)e

itφ(k) dk, φ(k) = k
x

t
− w,

φ′(k) = x

t
− dw

dk
= x

t
− cg(k) = 0

Hence we expect the dominant contribution to the solution for large t to be in
the neighborhood of x

t = w′(k) = cg(k). In Example 6.5.1, w(k) = k2; thus
the phase and group velocities are given by cp = k, cg = 2k, respectively. On
the other hand in the case where w(k) = c0k, constant, then the phase velocity
cp = w/k = c0 also equals the group velocity cg = w′(k) = c0. This is an
example of a nondispersive wave; note w′′(k) = 0.

Example 6.5.2 (Burgers equation) The simplest model combining the effects
of weak nonlinearity and diffusion is the Burgers equation

ut + uux = εuxx (6.5.4)

This equation appears in various physical applications. For example, it models
weak shock waves in compressible fluid dynamics. It is distinguished among
other nonlinear equations in that it can be linearized via an explicit transforma-
tion. Indeed, Hopf and Cole noted that the Burgers equation can be mapped
to the heat equation via the transformation u = −2εvx/v = −2ε(log v)x (see,
e.g., Whitham (1974)):

ut =
(
εux − 1

2
u2

)
x

or (log v)t x =
(
εvxx

v
− εv2

x

v2
+ εv2

x

v2

)
x

or after integrating (assuming for example that v→ const as x →∞)

vt = εvxx (6.5.5)

Let us consider an initial value problem for the Burgers equation, with

u(x, 0) = u0(x)
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Using a Laplace transform in t to solve Eq. (6.5.5), we can obtain the explicit
transformation between u and v. The method is illustrated in Example 4.6.2.
The solution of Eq. (6.5.5) is given by Eq. (4.6.13) with t replaced by εt (this
change of variables is needed to transform the heat Eq. (4.6.9) without ε to
Eq. (6.5.5)). Thus

v(x, t) = 1

2
√
πεt

∫ ∞

−∞
h(η)e−

(x−η)2
4εt dη

where

h(x) = v(x, 0) = v0(x)

But from u0(x) = −2εv0x/v0 we have

v0(x) = Ae−
∫ x

0

u0(η
′)

2ε dη′ = h(x)

and we see that u(x, t) = −2εvx (x, t)/v(x, t) is given by

u(x, t) =
∫∞
−∞

x−η
t e−

G
2ε dη∫∞

−∞ e−
G
2ε dη

, G(η; x, t) ≡
∫ η

0
u0(η

′) dη′ + (x − η)2

2t
(6.5.6)

In the physical application of shock waves in fluids, ε has the meaning of
viscosity. Here we are interested in the inviscid limit, that is, ε → 0, of the
Burgers equation (see also Whitham (1974)).

As ε → 0 we use Laplace’s method to evaluate the dominant contributions
to the integrals appearing in Eq. (6.5.6). To achieve this, we need to find the
points for which ∂G/∂η = 0,

∂G

∂η
= u0(η)− x − η

t
(6.5.7)

Let η = ξ(x, t) be such a point; that is, ξ(x, t) is a solution of

x = ξ + u0(ξ)t (6.5.8)

Then Laplace’s method implies, using 6.2.8 (or the sum of Eqs. (6.2.12) and
(6.2.13)), with k = 1/2ε∫ ∞

−∞

x − η

t
e−

G
2ε dη ∼ x − ξ

t

√
4πε

|G ′′(ξ)|e
− G(ξ)

2ε ,

∫ ∞

−∞
e−

G
2ε dη ∼

√
4πε

|G ′′(ξ)|e
− G(ξ)

2ε
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Hence, if Eq. (6.5.8) for a given u0 has only one solution for ξ , then

u(x, t) ∼ x − ξ

t
= u0(ξ) (6.5.9)

where ξ is defined by Eq. (6.5.8). Equation (6.5.9) has a simple interpretation:
Consider the problem

ρt + ρρx = 0, ρ(x, 0) = u0(x) (6.5.10)

Equation (6.5.10) is a first-order hyperbolic equation and can be solved by the
method of characteristics

dρ

dt
= 0

on the characteristic ξ(x, t):

dx

dt
= ρ

Integrating these relations, we see that the solution of Eq. (6.5.10) is given by

ρ(x, t) = u0(ξ) (6.5.11)

where ξ(x, t) is defined by x = ξ + u0(ξ)t , provided that “breaking” does
not occur, that is, the characteristics do not cross or, equivalently, provided
that Eq. (6.5.8) has a single solution. (The reader can verify that if u0(ξ) is a
“hump,” for example, u0(ξ) = e−ξ

2
, then characteristics must cross because

parts on the “top” of the hump will “move faster” than parts on the lower part
of the hump.)

The above analysis shows that for appropriate u0, the ε→ 0 limit of the
solution of the Burgers equation is given by the solution of the limit Eq. (6.5.10).
However, the relationship between the Burgers equation and Eq. (6.5.10) must
be further clarified. Indeed, for some u0(x), Eq. (6.5.10) gives multivalued
solutions (after the characteristics cross), while the solution (6.5.6) is always
single valued. This means that, out of all the possible (“weak”) solutions that
Eq. (6.5.10) can support, there exists a unique solution that is the correct limit of
the Burgers equation as ε→ 0. It is interesting that Laplace’s method provides
us with a way of picking this correct solution: When the characteristics of
Eq. (6.5.10) cross, Eq. (6.5.8) admits two solutions, which we denote by ξ1

and ξ2 with ξ1 >ξ2 (both ξ1 and ξ2 yield the same values of x and t from
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Eq. (6.5.8)). Laplace’s method shows that for the sum of these contributions,
using Eq. (6.5.8)

u(x, t) ∼ u0(ξ1)|G ′′(ξ1)|− 1
2 e−

G(ξ1)
2ε + u0(ξ2)|G ′′(ξ2)|− 1

2 e−
G(ξ2)

2ε

|G ′′(ξ1)|− 1
2 e−

G(ξ1)
2ε + |G ′′(ξ2)|− 1

2 e−
G(ξ2)

2ε

(6.5.12)

Hence, owing to the dominance of exponentials

u(x, t) ∼ u0(ξ1) for G(ξ1) < G(ξ2);
u(x, t) ∼ u0(ξ2) for G(ξ1) > G(ξ2) (6.5.13)

The changeover will occur at those (x, t) for which G(ξ1) = G(ξ2), or using
the definition of G and the fact that both ξ1, ξ2 satisfy Eq. (6.5.8), these values
of (x, t) satisfy (by integrating (6.5.8))

(x − ξ1)
2

2t
− (x − ξ2)

2

2t
= −

∫ ξ1

ξ2

u0(η) dη, or

(ξ1 − ξ2)

(
− x

t
+ (ξ1 + ξ2)

2t

)
= −

∫ ξ1

ξ2

u0(η) dη

Using Eq. (6.5.8) for ξ1 and ξ2, and summing, we find that

− x

t
+ ξ1 + ξ2

2t
= −1

2
(u0(ξ1)+ u0(ξ2))

hence

1

2
(u0(ξ1)+ u0(ξ2)) (ξ1 − ξ2) =

∫ ξ1

ξ2

u0(η) dη (6.5.14)

Equations (6.5.13) with (6.5.8) show that at ε → 0 the changeover in the
behavior of u(x, t) leads to a discontinuity. In this way the solution of the
Burgers equation tends to a shock wave as ε → 0. This solution is that
particular solution of the limiting equation (6.5.10) that satisfies the shock
condition (6.5.14). This condition has a simple geometrical interpretation:
given u0(ξ), find ξ1, ξ2 using the requirement that the part between the chord
ξ1−ξ2 and the curve u0(ξ) be divided by two equal areas. (Eq. (6.5.14) indicates
that the area under u0(ξ) equals the area enclosed by the trapezoid with base
ξ1− ξ2.) Then insert a shock (see Figure (6.5.1c) in the multivalued solution ρ
(ρ = u0(ξ)) of Eq. (6.5.10) at the position x = s(t), where

s(t) = ξ1 + u0(ξ1)t = ξ2 + u0(ξ2)t (6.5.15)
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shock

u
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>

ξ

ξ
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(a) chord ξ1–ξ2 (b) multivalued solution (c) characteristic diagram
at x = s(t)

Fig. 6.5.1. Shock wave

Note that because Eq. (6.5.10) preserves the area (from Eq. (6.5.11) we see that
all points x = ξ evolve linearly according to their amplitude), the equal area
property still holds under the curve describing ρ(x, t) (Whitham, 1974). This is
sometimes referred to as the “equal area” rule. The mathematical determination
of ξ1(t), ξ2(t), s(t) involves the simultaneous solution of Eqs. (6.5.14) and both
of the equations in (6.5.15).

Example 6.5.3 The Korteweg–deVries (KdV) equation (1895) governs small,
but finite, waves in shallow water. The KdV equation, in nondimensional form,
is written as

Vt + 6V Vx + Vxxx = 0 (6.5.16)

In this example, we will consider the linearized KdV equation (see also
Eq. (4.6.35))

ut + uxxx = 0, −∞ < x <∞, t > 0,

u → 0 sufficiently rapidly as |x | → ∞ (6.5.17)

with the initial values

u(x, 0) = u0(x), u0 real

This equation is the small amplitude limit of both the KdV Eq. (6.5.16) and
of the modified KdV (mKdV) equation, which arises in plasma physics and
lattice dynamics

vt + vxxx ± 6v2vx = 0 (6.5.18)
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Indeed, letting V = εu and v= εu, these equations reduce to Eq. (6.5.17) as
ε→ 0. Equations (6.5.16) and (6.5.18), although nonlinear, have the remark-
able property that they can be solved exactly. The solution of Eq. (6.6.18)
will be described at the end of this section. Using a Fourier transform in x in
Eq. (6.5.17), we find that

u(x, t) = 1

2π

∫ ∞

−∞
û0(k)e

ikx+ik3t dk (6.5.19)

where û0(k) is the Fourier transform of u0(x). Here we are interested in the
long-time behavior of u(x, t) for a fixed value of x/t . Equation (6.6.19) can
be written as

u(x, t) = 1

2π

∫ ∞

−∞
û0(k)e

tφ(k) dk, φ(k) = i

(
k3 + kx

t

)
(6.5.20)

(Also see Example 6.4.10, where a similar problem is discussed.) In this case,
the dispersion relationship isw(k) = k3 and the group velocity is cg = w′(k) =
3k2. We assume that û0(k) can be continued analytically off the real k axis so
that we can apply Cauchy’s Theorem when needed. We distinguish three cases:
x
t < 0, x

t > 0 (in these two cases we assume x
t = O(1)), and x

t → 0.
(a) In the case where x

t < 0

φ′(z) = i

(
3z2 + x

t

)
, φ′′(z) = 6i z

there exist two simple real stationary points, z± = ±| x
3t |

1
2 , and

φ′′(z±) = ±6i

∣∣∣∣ x

3t

∣∣∣∣ 1
2

so that in the notation of Eq. (6.4.8)

α+ = π

2
, α− = 3π

2

Hence using Eqs. (6.4.7), it follows that z+ and z− have the steepest descent
directions θ given by π

4 , 5π
4 and −π

4 , 3π
4 , respectively (see Figure 6.5.2a).

Calling z = zR + i z I , the steepest contours are given by Im φ(z) = Im φ(z±)
or zR(z2

R − 3z2
I − | x

t |) = 0. The steepest descent contour is the hyperbola;
zR = 0 is a steepest ascent contour. Because the exponential decays rapidly in
the upper half plane at z = |z|eiϕ , ϕ = π/4, 3π/4 for large |z|, we see that



482 6 Asymptotic Evaluation of Integrals

z z z z_ + _ +

(a) Simple saddle points z−, z+ (b) deformed contour

Fig. 6.5.2. Linearized KdV equation

we can deform our original contour (−∞ < z <∞) onto the steepest descent
contour going through both saddle points (see Figure 6.5.2b).

Using Eq. (6.4.9) we find that the contributions of z+ and z− to the evaluation
of u are given (we use φ(z±) = ∓2i( x

3t )
3/2) by

û0

(∣∣ x
3t

∣∣ 1
2

)
e−2i t| x

3t | 3
2 + iπ

4

2
√
π t
∣∣ x

3t

∣∣ 1
4

and
û0

(
− ∣∣ x

3t

∣∣ 1
2

)
e2i t| x

3t | 3
2 − iπ

4

2
√
π t
∣∣ x

3t

∣∣ 1
4

(6.5.21)

Also, because u0(x) is real, we see by taking the complex conjugate of
the Fourier transform that û0(−k) = û0(k); thus if we write û0(| x

3t |
1
2 ) =

ρ(| x
t |)eiψ( x

t ), adding the contributions from Eq. (6.5.21) we find

u(x, t) ∼ ρ
(

x
t

)
√
π t
∣∣ 3x

t

∣∣ 1
4

cos

(
2t
∣∣∣ x

3t

∣∣∣ 3
2 − π

4
− ψ

(
x

t

))
, t →∞,

x

t
< 0

(6.5.22)
(b) In the case where x

t > 0, the saddle points become complex, z± =
±i( x

3t )
1
2 , and φ(z±) = ∓2( x

3t )
1/2. The steepest descent paths are found as

above. But we can only deform the original contour onto the steepest descent
contour through the saddle point z+ because the exponential etφ decays in the
upper half plane, but grows in the lower half plane. At the saddle point z = z+
we have

φ′′(z+) = −6

(
x

3t

) 1
2

, i.e. α+ = π

thus, from Eq. (6.4.7), θ = 0, π are the directions of steepest descent. Eq.
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(6.4.9) implies

u(x, t) ∼
û0

(
i
(

x
3t

) 1
2

)
e−2
(

x
3t

) 3
2

t

2
√
π t
(

3x
t

) 1
4

, t → 0,
x

t
> 0 (6.5.23)

(We note again the assumption that û0(k) can be continued off the real axis onto
the upper half plane, so that û0(i(

x
3t )

1/2) is defined.)
(c) In the case where x

t → 0, both Eqs. (6.5.22) and (6.5.23) clearly break
down. To find the asymptotics of u(x, t) in this region, we introduce new
“similarity” variables in Eq. (6.5.20):

ξ = k(3t)
1
3 , η = x

(3t)
1
3

thus

u(x, t) = 1

2π(3t)
1
3

∫ ∞

−∞
û0

(
ξ

(3t)
1
3

)
eiξη+ iξ3

3 dξ (6.5.24)

To find the asymptotic expansion of Eq. (6.5.24) for large t , we can expand û0

in a Taylor series near ξ = 0. Then Eq. (6.5.24) becomes

u(x, t) ∼ 1

2π(3t)
1
3

∫ ∞

−∞
eiξη+ iξ3

3

(
û0(0)+ ξ

(3t)
1
3

û′0(0)+ · · ·
)

dξ

or

u(x, t) ∼ (3t)−
1
3 û0(0)Ai(η)− i(3t)−

2
3 û′0(0)Ai′(η) as t →∞ (6.5.25)

where Ai(η) is an integral representation of the Airy function (see Eqs. (4.6.40b)
and (4.6.57) in Chapter 4)

Ai(η) = 1

2π

∫ ∞

−∞
eiξη+ iξ3

3 dξ (6.5.26)

and prime denotes derivatives. The Airy function satisfies the differential equa-
tion Ai′′ − ηAi = 0. By analyzing the asymptotic expansion of Ai(η) for large
η from Eq. (6.5.26) it can be shown that Eq. (6.5.25) in fact matches smoothly
with the asymptotic solutions: Eq. (6.5.23) as η → +∞, and Eq. (6.5.22)
as η → −∞. (The relevant asymptotic formulae are given in Eqs. (6.7.10),
(6.7.11)).
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Remark The modified Korteweg-deVries (mKdV) equation

ut + uxxx − 6u2ux = 0, −∞ < x <∞, t > 0 (6.5.27)

with initial conditions u(x, 0) = u0(x) decaying sufficiently rapidly as |x | →
∞ can be solved by a new method of mathematical physics called the inverse
scattering transform (IST). IST shows that mKdV can be solved as follows
(see, for example, Ablowitz and Segur, 1981)

u(x, t) = −2K (x, x; t) (6.5.28a)

where K (x, y; t) satisfies the linear integral equation

K (x, y; t)+ F(x + y; t)−
∫ ∞

x

∫ ∞

x
K (x, z; t)

× F(z + s; t)F(s + y; t) dz ds = 0 (6.5.28b)

for y ≥ x , where

F(x; t) = 1

2π

∫ ∞

−∞
r0(k)e

i(kx+8ik3t) dk (6.5.28c)

The quantity r0(k) is called the reflection coefficient, and it can be determined
from u0(x). The integral equation (6.5.28b) is a Fredholm equation (in Section
7.4 we discuss integral equations in more detail), and it can be shown that it
has a unique solution. This solution can be obtained by iteration:

K (x, y, t) = −F(x + y; t)−
∫ ∞

x

∫ ∞

x
F(x + z; t)F(z + s; t)

× F(z + y; t) dz ds + · · · (6.5.29)

This is called the Neumann series of the integral equation.
It is important to note that F(x; t) given by Eq. (6.5.28c) is the solution

of the linearized equation (6.5.17) where t is replaced by 8t and where û0(k)
is replaced by r0(k). As before, there are three cases to consider in the limit
t→∞: x/t > 0, x/t < 0, and x/t → 0. We only mention the case x/t > 0.
(The interested reader can consult Ablowitz and Segur (1981) and Deift and
Zhou (1993) for further details, especially with regard to x

t < 0.) As before,
we assume that r0(k) is analytically extendible in the upper half plane. Then
from Eq. (6.5.23), replacing t → 8t , we have

F(x, t) ∼ r0
(
i
(

x
24t

)1/2)
√

8π t
(

6x
t

)1/4 e−16
(

x
24t

)3/2
t (6.5.30)
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Using the fact that the double integral (6.5.29) is exponentially small compared
to F(x + y; t), it follows that K (x, y; t) ∼ −F(x + y; t). Therefore the
asymptotic expansion of the solution of the mKdV equation in this region,
from Eqs. (6.5.28a) and (6.5.29), is

u(x, t) ∼ r0
(
i
(
x/12t

)1/2)
√

2π t(x/12t)1/4
e−2
(

x
3t

)3/2
t (6.5.31)

Problems for Section 6.5

1. Consider the following initial value problem for the heat equation

ψt = ψxx , −∞ < x <∞, t > 0; ψ → 0 as |x | → ∞

ψ(x, 0) = ψ0(x), ψ0(x) real,
∫ ∞

−∞
|ψ0(x)| dx <∞

(a) Use Fourier transforms to show that

ψ(x, t) = 1

2π

∫ ∞

−∞
b0(k)e

ikx−k2t dk

where

b0(k) =
∫ ∞

−∞
e−ikxψ0(x) dx

(b) Show that the large time asymptotic behavior of ψ(x, t) is

ψ(x, t) ∼ b0(k0)√
4π t

e−
x2

4t

where

k0 = i x

2t

provided that b0(k) has an analytic continuation onto the upper half
plane.

(c) Establish that the energy
∫∞
−∞ |ψ |2 dx always decays, which is con-

sistent with (b) above.
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2. The so-called Klein–Gordon equation arises in many areas of physics; for
example, relativistic quantum mechanics. This equation is given by

utt − uxx + u = 0

Let −∞ < x < ∞, t > 0, and consider the following initial value prob-
lem: u(x, 0), ut (x, 0) are both given, they are real, and we assume that
u → 0 sufficiently rapidly as |x | → ∞.

(a) Establish conservation of energy:∫ ∞

−∞

(
u2

t + u2
x + u2

)
dx = constant

(b) Show that the dispersion relation satisfies ω2 = 1 + k2, where u =
ei(kx−ωt) is a special wave solution. Show that the phase speed c(k),
|c(k)| = |ωk | ≥ 1 and the group velocity cg(k), |cg(k)| = | dωdk | ≤ 1.

(c) Establish that the Fourier transform solution is

u(x, t) = 1

2π

∫ ∞

−∞

(
A(k)ei(kx+√k2+1)t + B(k)ei(kx−√k2+1)t

)
dk

Furthermore show that because u(x, 0) and ut (x, 0) are real

u(x, t) = 1

2π

∫ ∞

−∞

(
A(k)ei(kx+√k2+1)t

)
dk + (∗)

where (∗) denotes the complex conjugate of the first integral.
(d) Show that as t →∞ for x/t fixed, |x/t | < 1,

u(x, t) ∼ 1√
2π

t

(t2 − x2)3/4
A

(
− x√

t2 − x2

)
ei
√

t2−x2+i π4 + (∗)

3. (Semidiscrete free Schrödinger equation) Consider the following initial
value problem for the semidiscrete version of the free Schrödinger equation
discussed in Example 6.5.1

i
dψn

dt
+ ψn+1 + ψn−1 − 2ψn

h2
= 0, h a real constant

n ∈ Z, t > 0, we assume that ψn → 0 sufficiently rapidly as |n| → ∞,
and ψn(0) = ψn,0 is given. Here ψn(t) is the nth function of time in a
denumberably infinite sequence of such functions.
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(a) The discrete analog of the Fourier transform is given by

ψn(t) = 1

2π i

∮
C
ψ̂(z, t)zn−1 dz (1)

ψ̂(z, t) =
∞∑

m=−∞
ψm(t)z

−m (2)

where the contour integral is taken around the unit circle |z| = 1. Sub-
stitute (2) into (1) and show that you obtain an identity.

(b) The dispersion relation of a semidiscrete problem is obtained by looking
for a particular solution in the formψn(t) = zne−iωt . Show that for this
semidiscrete problem

iω(z) = − (z − 1)2

zh2

Note if z = eikh then

iω(k) = − (eikh − 1)2

h2eikh

Explain why this is consistent with the analogous result obtained in
Example 6.5.1 of the text.

(c) Use (a) and (b) to establish

ψn(t) = 1

2π i

∮
C
ψ̂0(z)z

n−1ei (z−1)2

zh2 t dz

where C is the unit circle or if z = eiθh

ψn(t) = h

2π

∫ 2π

0
ψ̂0(θ)e

inhθ+2i t cos h−1
h2 dθ

(d) Show that there are stationary points when n
t = 2 sin θ

h2 . If | nh2

2t | " 1,
obtain the leading term in the asymptotic solution as t →∞; and show
that the amplitude of the solution decays as t−

1
2 as t →∞.

4. (Fully discrete heat equation) Consider the following explicit fully discrete
evolution equation.

ψm+1
n − ψm

n

�t
= ψm

n+1 + ψm
n−1 − 2ψm

n

(�x)2
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(a) The dispersion relation of a discrete equation is obtained by looking
for a solution of the form ψm

n = zn�m or ψm
n = eikn�x eiω�tm (see also

Problem 3 above). In this case, show that

� = 1+ σ

(
z + 1

z
− 2

)
or

eiω�t = 1+ 2σ(cos k�x − 1), σ = �t

(�x)2

(b) For stability we need |�|< 1. Show that this leads to the condition
σ < 1

2 .
(c) Use the results of Problem 3, part (a) above, to obtain the Fourier

transform solution in the form

ψm
n =

1

2π i

∫
C
ψ̂0(z)z

n−1

(
1+ σ

(
z + 1

z
− 2

))m

dz

= �x

2π

∫ 2π

0
ψ̂0(k)e

ink�x (1+ 2σ(cos k�x − 1))m dk

(d) When |�| < 1, | n�x2

2m�t | " 1, obtain the long-time solution as m →∞,
and show that the solution approaches zero as m →∞.

6.6 The Stokes Phenomenon

In Section 6.1 we discussed the fact that even if a function f (z) is analytic and
single valued in the neighborhood of infinity but not at infinity, its asymptotic
expansion can change discontinuously (see Example 6.1.3). If f (z) is ana-
lytic at infinity, its asymptotic expansion coincides with its power series, and
the series converges. In this case, the asymptotic expansion of f (z) changes
continuously at infinity. If the point at infinity is a branch point, the asymp-
totic expansion changes discontinuously across the branch cut. It is interesting
that, if the point at infinity is a local essential singular point, and even though
f (z) is single valued in the neighborhood of infinity, the asymptotic expansion
has lines (rays) across which it changes discontinuously. This manifestation is
usually referred to as the Stokes phenomenon, after George Stokes (Stokes,
1864), who first discovered this.

We use a concrete example to illustrate a nontrivial case of the Stokes phe-
nomenon. This example also shows how the methods developed in this chapter
can be employed when the large parameter is complex.
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Example 6.6.1 Evaluate f (z) = ∫∞0 e−zt

1+t4 dt , z →∞, z complex.
Let z = reiθ , then exp(−zt) = exp[−r t (cos θ + i sin θ)]. Thus as t → ∞

the integral converges provided that cos θ > 0, or |θ | < π
2 . Then the asymptotic

analysis of f (z) can be treated as if z were real. The dominant contribution
comes from the neighborhood of t near zero. For t near zero, 1

1+t4 ∼ 1 − t4

thus

f (z) ∼
∫ ∞

0
e−zt dt −

∫ ∞

0
e−zt t4 dt = 1

z
− 4!

z5
(6.6.1)

where we have used s= zt and the definition of gamma function (see Eq.
4.5.31–4.5.32) to compute the second integral in Eq. (6.6.1). Hence

f (z) ∼ 1

z
− 4!

z5
, z →∞ in |arg z| < π

2
(6.6.2)

Equation (6.6.2) gives the correct asymptotic expansion of f (z) for |arg z| < π
2 .

In order to find the behavior of f (z) outside this region, we must understand
the origin of the constraint on the argument of z.

This constraint comes from the requirement that Re(zt) > 0. Therefore,
if t is also complex, then arg z will satisfy a different constraint. Let us, for
example, use contour integration to change the path of integration from the
real axis to the negative imaginary axis, assuming the contribution owing to the
large contour at infinity vanishes. Taking into consideration the pole at e−

iπ
4 we

find

f (z) =
∫ ∞e−

iπ
2

0

e−zζ

1+ ζ 4
dζ + π i

2

e−ze−
iπ
4

e−
3iπ

4

(6.6.3)

The integral in Eq. (6.6.3) converges provided that Re(zζ ) > 0 or cos(θ − π
2 )

> 0, or 0 < θ < π . The original integral representing f (z) is well defined
for −π

2 < arg z < π
2 , while the integral in the right-hand side of Eq. (6.6.3) is

well defined for 0 < arg z < π . Because there is an overlap between these two
domains, it follows that Eq. (6.6.3) provides the concrete analytic continuation
of f (z). Therefore, we now know how to compute f (z) for −π

2 < arg z < π .
To evaluate the asymptotic behavior of f (z) in this extended region, we note
that in the pole contribution in Eq. (6.6.3)

e−ze−
iπ
4 = e−|z|(cos(arg z− π

4 )+i sin(arg z− π
4 ))
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hence exp(−ze−
iπ
4 ) is exponentially small in −π

4 < arg z < 3π
4 but exponen-

tially large in 3π
4 < arg z < π . Equations (6.6.1) and (6.6.3) imply that

f (z) ∼ 1

z
− 4!

z5
, z →∞ in −π

4
< arg z <

3π

4

f (z) ∼ π i

2
e

3iπ
4 e−ze−

iπ
4
, z →∞ in

3π

4
< arg z < π

and −π

2
< arg z < −π

4

We see therefore that the asymptotic expansion of f (z) changes discontinu-
ously across the rays arg z = −π

4 and 3π
4 . In fact the asymptotic form is entirely

different in the two regions. In the first region there is an asymptotic power
series representation of f (z). In the second region there is an exponentially
large contribution. On the rays arg z = −π

4 ,
3π
4 one needs both contributions

in the asymptotic expansion.

The approach used in Example 6.6.1 provides an extension of Watson’s
Lemma for integrals where the large parameter is complex:

Lemma 6.6.1 (Watson’s Lemma in the complex plane.) Consider the integral

I (z) =
∫ ∞

0
f (t)e−zt dt, z ∈ C (6.6.4)

Assume that f (t) has the asymptotic series expansion

f (t) ∼
∞∑

n=0

antαn, t → 0+; α0 > −1 (6.6.5)

(a) If f (t) = O(eβt ) as t →∞ and f (t) is continuous in (0,∞), then

I (z) ∼
∞∑

n=0

an
�(αn + 1)

zαn+1
as z →∞ for |arg (z − β)| < π

2
(6.6.6)

(b) If f (t)= O(eβt ) as t→∞ and f (t) is analytic in φ1 ≤ arg t ≤ φ2, then
I (z) has the asymptotic behavior given by Eq. (6.6.6) but for z in

−π

2
− φ2 < arg (z − β) <

π

2
− φ1 (6.6.7)
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Proof The proof is similar to that of Lemma 6.2.2. We concentrate only on
the differences between the two proofs:

(a) For convergence of the integral I (z) as t →∞ one needs Re(z−β) > 0,
which implies that |arg (z − β)| < π/2. Then the asymptotic expansion in
Eq. (6.6.6) follows from the approach used in Lemma 6.2.2.

(b) We use the analyticity of f (t) and rotate the contour by an angle φ such
that φ1 ≤ φ ≤ φ2. Then from Cauchy’s Theorem, I (z) is given by

Iφ(z) =
∫ ∞eiφ

0
f (t)e−zt dt for − π

2
−φ < arg (z−β) <

π

2
−φ (6.6.8)

the constraint on arg z follows from the fact that for convergence of the integral
one needs −π

2 < arg (z − β) + φ < π
2 . Since −φ2 < φ < φ1, adding these

constraints implies that for z in the sector given by Eq. (6.6.7) the large z
asymptotics follow as usual.

Therefore I (z) is valid for −π
2 < arg (z − β)< π

2 and Iφ(z) is valid for
−π

2 − φ < arg (z − β) < π
2 − φ. Because there exists an overlap between the

two sectors

I (z) = Iφ(z) for
−π
2

< arg(z − β) <
π

2
− φ (6.6.9)

and Iφ(z) provides the analytic continuation of I (z). It is clear that the largest
possible sector in the z plane where the above procedure of analytic continuation
holds, is given by Eq. (6.6.7). �

Example 6.6.2 Find the sector in the complex z plane in which the large z
asymptotics of I (z) = ∫∞0 (1 + t)−1/2e−zt dt can be computed via Watson’s
Lemma.

Taking a branch cut along the negative real axis in the complex t plane, it
follows that (1+ t)−1/2 is analytic and single valued in −π < arg t < π , that
is, φ1 = −π , φ2 = π . Note that convergence of the integral is obtained for
−π/2 < arg z < π/2 and β = 0. Therefore Eq. (6.6.7) implies that Watson’s
lemma holds in

−3π

2
< arg z <

3π

2
(6.6.10)

Example 6.6.3 Discuss the asymptotic expansion as z→∞ of e(z)=∫∞
z e−t ′2 dt ′, z complex.
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Using the change of variables t ′ = z(1+ t)1/2 it follows that

e(z) = z

2
e−z2
∫ ∞

0
e−z2t (1+ t)−1/2 dt (6.6.11)

Expanding (1 + t)−1/2 in a Taylor series for small t , Eqs. (6.6.6) and (6.6.10)
imply (note β = 0 and z is replaced by z2, therefore arg z is replaced by 2 arg z
in these equations)

e(z) ∼ e−z2
∞∑

n=0

(−1)n1 · 3 · · · (2n − 1)

2n+1z2n+1
, z →∞

in − 3π

4
< arg z <

3π

4

(6.6.12)

It is possible to extend even further the validity of e(z). Indeed writing∫ −z
−∞ =

∫∞
−∞−

∫∞
−z and computing the integral

∫∞
−∞ exactly, it follows that

e(z) = √π − e(−z) (6.6.13)

where we note that
∫ −z
−∞ e−t ′2 dt ′ = ∫∞z e−t ′2 dt ′ by replacing t ′ → −t ′. Let∑

denote the sum appearing in Eq. (6.6.12). Using the transformation t ′ =
−z(1+ t)1/2, we find that the asymptotic expansion for large z of −e(−z) is
also given by the right-hand side of Eq. (6.6.11). Thus the asymptotic expansion
of−e(−z) is also given by e−z2∑

, provided that−3π/4 < arg (−z) < 3π/4,
or π/4 < arg z < 7π/4 (where we have used−z = |z|e−iπ , so that arg (−1) =
−π ). Hence, using Eqs. (6.6.12) and (6.6.13), it follows that

e(z) ∼


e−z2∑

for −3π

4
< arg z <

3π

4√
π + e−z2∑

for
π

4
< arg z <

7π

4

as z →∞

(6.6.14)
From Eq. (6.6.14) we see that despite the fact that e(z) is analytic and

single valued for any finite z, its asymptotic expansion for large z suffers a
discontinuity as we vary θ = arg z through 3π/4. The function e(z) does
have an essential singular point at z=∞, hence the Stokes phenomenon is
expected.

Furthermore, note that e−z2
is exponentially large in the region π/4 < θ <

3π/4. We say that e−z2
is dominant and the other contribution

√
π is recessive

in this region. Indeed
√
π is negligible in comparison with e−z2

in this re-
gion. When θ = 3π/4, e−z2

is purely oscillatory, and
√
π is no longer small by

comparison. Such rays are called antistokes lines (the rays θ = π/4, 7π/4, . . .
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e-z 2

e-z 2
is

π/4 < θ < 3π/4

is

in

e-z 2

θ = 3π/4

θ = π/2

5π/4

π/4

θ = arg z

exponentially large
in

3π/4 < θ < 5π/4

exponentially small
e-z 2

is

is oscillatory on

is maximal on

(a) sectors of the z plane

arg z

-z

-z

e

e

2

2
π

−3π/4 0

π/4 π/2

3π/4

π 5π/4 3π/2 7π/4

Σ

Σ+

(b) overlapping regions of arg z

Fig. 6.6.1. Large z behavior of e(z) as a function of θ = arg z

are also called antistokes lines). When θ = π/2, Im z2 = 0 and e−z2
is max-

imal. Such rays are called the stokes lines. So when we traverse in θ = arg z
through θ = π/4 to θ = 3π/4 then we “pick up” an exponentially small term in
comparison with e−z2

). This situation is graphically depicted in Figure 6.6.1.
The situation illustrated by Example 6.6.3 for e(z) is actually typical of

solutions to linear second-order differential equations such as those discussed
in Section 3.7. Calling the solution of such a differential equation y(z), its
asymptotic expansion for |z| → ∞ frequently takes the form

y(z) ∼ A+(z)eφ+(z) + A−(z)eφ−(z) (6.6.15)

where Re φ+(z) # Re φ−(z) in some sector α < θ < β, θ = arg z; the terms
+ and− refer to the dominant and recessive parts of the solution, respectively,
and A±(z) are represented by asymptotic power series. In fact, the function
y = e(z) satisfies the simple second-order differential equation

d2 y

dz2
+ 2z

dy

dz
= 0 (6.6.16a)
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which can be readily solved via d
dz

( dy
dz ez2) = 0 to find

y(x) = A
∫ ∞

z
e−t2

dt + B (6.6.16b)

We can see that Eq. (6.6.16b) is consistent with the asymptotic representation
(6.6.14) (in the region, π

4 < arg z < 3π
4 , φ+ = 0 and φ− = −z2) and therefore

with Eq. (6.6.15).
The rays for which Re φ+ = Re φ−, are called the antistokes lines, and in

this case both terms of Eq. (6.6.15) are of the same order. The rays for which
Im φ+ = Im φ−, are called the stokes lines, and in this case one exponential
dominates over the other.

The situation is complicated because we have two asymptotic series with
differing exponential factors. Apart from the regions near the antistokes lines
where both exponentials are of the same asymptotic order, the usual asymptotic
techniques do not work with both exponentials and their power series A±(z)
present. This inadequacy manifests itself by the Stokes phenomenon, that is,
discontinuities in asymptotic expansions.

∗6.6.1 Smoothing of Stokes Discontinuities

The Stokes phenomenon has been a topic that has interested mathematicians
for over a century. (A review can be found in Dingle (1973).) In this section
we present a simple example that shows how, within the framework of conven-
tional asymptotic analysis, one can analyze the fundamental issues involving
Stokes discontinuities and develop a mathematical formulation in which there
are no discontinuities, that is, the Stokes discontinuities are “smoothed.” This
point of view and analysis was recently developed by M. Berry (1989). In the
example that follows we use an asymptotic method which is somewhat different
from Berry’s. (We appreciate important conversations with M. Kruskal on this
issue.)

We consider the exponential integral

E(z) =
∫ z

a

et

t
dt (6.6.17)

where a is an arbitrary constant to be fixed below. It is worth mentioning that
E(z) satisfies a simple second-order ODE:

y′′ +
(

1

z
− 1

)
y′ = 0
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as can be verified directly. Consequently, Eq. (6.6.17) falls within the frame-
work of the linear ODEs mentioned at the end of the previous subsection, that
is, Eqs. (6.6.15)–(6.6.16a,b). If we take a = −∞, then it is easily seen that the
value of E(z) depends sensitively on the contour from−∞ to z. For example, if
we let z = x+ iε, x > 0, that is, take the indented contour above the singularity
at t = 0,

t=0 z−∞

we obtain a different answer than if we let z = x − iε, x > 0, and use an
indented contour below t = 0:

t=0 z−∞

Clearly, as ε → 0 we have

lim
ε→0

(E(x + iε)− E(x − iε)) = 2π i

Note that along a large circular contour from z = −R to z = i R as R → ∞,
the integral

∫ i R
−R

et

t dt is small. Hence we can avoid any ambiguity by taking
a = i∞.

Let z = |z|eiθ , and for now restrict θ : 0 < θ ≤ π/2, |z| large. Repeated
integration by parts yields the following asymptotic series as |z| → ∞:

E(z) =
∫ z

i∞

et

t
dt ∼ ez

z

(
1+ 1

z
+ 2!

z2
+ 3!

z3
+ · · · (N − 1)!

zN−1
+ N !

zN
+ · · ·

)
(6.6.18)

The series (6.6.18) is clearly asymptotic but not convergent. It is typical of
such expansions that their terms decrease and then increase. It turns out that
the approximate minimum term is obtained when z ∼ N for large N . This
follows by using Stirling’s formula (see Example 6.2.14), that is,

�(N + 1) = N ! ∼
√

2πN

(
N

e

)N

and finding the value of z for which N !/zN ∼ √2πN ( N
ez )

N is smallest. We
find that z ∼ N and the value of the smallest term in the asymptotic expansion
(6.6.18) is approximately ez N !

zN+1 ∼
√

2π/N .
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We argue that it is the difference between E(z) and the first N terms of the
asymptotic expansion that should have a smooth asymptotic structure for large
N . So we consider

J (z; N ) =
∫ z

i∞

et

t
dt − ez

z

N−1∑
k=0

k!

zk
.

Integrating by parts yields

J (z; N ) = N !
∫ z

i∞

et

t N+1
dt

= N !
∫ z

i∞

et−N log t

t
dt (6.6.19)

Changing variables t = Nτ and calling z = N ẑ in Eq. (6.6.19) yields

J (z; N ) = N !

N N

∫ ẑ

i∞

eN (τ−log τ)

τ
dτ (6.6.20)

At this point we can use the method of steepest descents to evaluate the
asymptotic contribution as N →∞. Call the phase φ(τ) = τ − log τ , that is,
eN (τ−log τ) = eNφ(τ). We have φ′(τ ) = 1 − 1

τ
, hence there is a saddle point at

τ = 1. The steepest descent curves are Imφ(τ) = 0. Calling τ = u + iv, they
are given by v− tan(v/u) = 0, and near the saddle point u = 1, v = 0 we have
v− ( vu − 1

3 (
v
u )

3 + · · ·) = 0 or v(1− u)− v3

3u2 + · · · = 0. It is clear that we can
deform our contour onto the steepest descent path (see Figure 6.6.2).

Because the endpoint z will play an important role in the asymptotic cal-
culation, we will derive the necessary approximation, rather than using stan-
dard formulae. In the neighborhood of the saddle point, τ = 1 + iζ , φ(ζ ) =
1+ iζ − log(1+ iζ ), hence using the Taylor series for log(1+ iζ )

φ(ζ ) ∼ 1+ iζ −
(

iζ − (iζ )2

2
+ · · ·

)
∼ 1− ζ 2

2

The deformation of the contour in the neighborhood of the saddle therefore
yields

J (z, N ) ∼ N !eN

N N

∫ (ẑ−1)e−iπ/2

∞
e−Nζ 2/2i dζ (6.6.21)
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u

v

u=1

Fig. 6.6.2. Steepest descent path

or calling ζ = √
2/Nη, and using Stirling’s approximation, from Example

(6.2.14) N ! ∼ √2πN
(

N
e

)N
, we have

J (z, N ) ∼ 2
√
π i
∫ (ẑ−1)e−iπ/2

√
N/2

∞
e−η

2
dη (6.6.22)

In fact, we now see explicitly how the smoothing of Stokes discontinuity
occurs. Recall that ẑ = z/N . The smoothed variable is

z̃ = (ẑ − 1)e−iπ/2

√
N

2
=
(

z

N
− 1

)
e−iπ/2

√
N

2
(6.6.23)

(Note that the quantity (ẑ − 1) is purely imaginary on the steepest descent
path near the saddle.) So if (a) (ẑ − 1)e−iπ/2 > 0, then J (z, N ) ∼ 0; if (b)
ẑ = 1, then J (z, N ) ∼ iπ ; and if (c) (ẑ − 1)e−iπ/2 < 0, then J (z, N ) ∼ 2π i .
The smoothing takes place on the scale (ẑ − 1)e−iπ/2 ∼ C/

√
N , where C is a

constant – that is, in a “layer of width” O(1/
√

N ) around the point ẑ = 1, (along
the imaginary direction), or in terms of z, in a width of O(

√
N ) around the point

z = N . Hence the asymptotic expansion of E(z) can be expressed as follows:

E(z) ∼ ez

z

(
1+ 1

z
+ 2!

z2
+ · · · + (N − 1)!

zN−1

)
+ 2π i S(z) (6.6.24)

where S(z) = 1
2π i J (z, N ). J (z, N ) varies smoothly and is given asymptoti-

cally by Eq. (6.6.22). Note that in an appropriate scale, that is, z ∼ O(N ), or
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z̃ = O(1), S(θ) is a rapidly changing function

S(z) =


0 if z̃ > 0
1
2 if z̃ = 0

1 if z̃ < 0

(6.6.25)

where z̃ is defined in Eq. (6.6.23).
We see that the rapid variation is in the vicinity of the Stokes ray Imz = 0,

where the term ez

z (1 + 1/z + · · ·) is maximally dominant as compared to a
constant. When we cross the Stokes ray we see that the asymptotic expansion
of E(z), Eq. (6.6.24), is such that the term (ez/z)(1+· · ·) “picks up” a constant.

In fact, the same analysis can be developed for solutions of second-order
ODEs whose asymptotic form is given by Eq. (6.6.15). The coefficient A−(z)
in Eq. (6.6.15) changes rapidly in the neighborhood of the Stokes line Im φ+ =
Im φ−, but in suitable coordinates the variation is smooth[6].

Problems for Section 6.6

1. Investigate Stokes phenomena for the integral

I (k) =
∫ 1

0
ekt3

dt as k →∞; k = reiθ

(a) Show that there are Stokes lines at |arg k| = π/2.
(b) If 0 ≤ θ < π

2 , show that∫ 1

0
e(r cos θ+ir sin θ)t3

dt →∞

(c) If θ = π
2 , show that

I (k) ∼ eiπ/6

3r1/3
�

(
1

3

)
(See also Problem 5, Section 6.4)

(d) If π
2 < θ < 3π

2 , show that

I (k) ∼ eiπ/3

3k1/3
�

(
1

3

)
2. Show that as k →∞∫ ∞

0

ekx

�(x + 1)
dx ∼ −1

k
+ exp(exp k), Re k > 0, |Im k| < π
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3. Show that as k →∞∫ ∞

1
e−kx (x2 − 1)ν−

1
2 dx

∼ e−k �(ν + 1
2 )√

2k

(
2

k

)ν ∞∑
n=0

�
(
n + ν + 1

2

)
�
(
ν + 1

2 − n
)
n!
(2k)−n

for |arg k| < π
2 .

4. Show that as k →∞∫ π
4

0
e−k sec x dx ∼

√
π

2k
e−k, |arg k| < π

2

5. In this problem we investigate the asymptotic expansion of

I (k) =
∫ 1

0

1√
t
eik(t2+t) dt as k →∞

Note if we call φ(t) = t2+ t , then Im φ(t)= y(1+2x), where t = x + iy.

(a) Show that the path of integration can be deformed as indicated in Figure
6.6.3. Where the steepest descent contours C1 and C2 are given by

C1 : x2 − y2 + x = 0

C2 : x2 − y2 + x = 1

C

C

C

0 1 x

y

-1/2

1

2

3

curves of
constant  Im Φ(t)

Fig. 6.6.3. Figure for Problem 6.6.5
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(b) Show that by changing variable si = t2 + t and 2 + iη = t2 + t in
the integral associated with the contours C1 and C2, respectively, one
obtains

I (k) =
∫ ∞

0

e−ksi ds(− 1
2 + 1

2

√
1+ 4is

) 1
2
√

1+ 4is

−
∫ ∞

0

e2ike−kηidη(− 1
2 + 1

2

√
9+ 4iη

) 1
2
√

9+ i4η

(c) Show that by using Watson’s Lemma

I (k) =
√

π

k
ei π4

(
1− 3i

4k
− 105

32k2
+ · · ·

)

+ i

3
e2ik

(
− 1

k
+ 7i

18k2
+ 111

324k3
+ · · ·

)

∗6.7 Related Techniques

∗6.7.1 WKB Method

Frequently, differential equations arise in which a small or large parameter
appears. In this section we briefly introduce the reader to the most basic of
these problems. The equation we consider is

y′′ + λ2u(x)y = 0 (6.7.1)

where λ is a large parameter and we take x to be real. This equation is related to
the time-independent Schrödinger equation, where λ is inversely proportional
to Planck’s constant. It was analyzed by Wentzel, Kramers, and Brillouin
(hence the name WKB) in the early part of this century; especially important
was their contribution regarding turning points, which is discussed later in this
section. Actually there is a much larger history owing to the work of Liouville,
Green, Jeffreys, etc. (see also the discussion in Carrier et al. 1966). The asymp-
totic solution of Eq. (6.7.1) can be obtained by looking for a solution of the
form

y(x) = eλφ(x)
(

z0(x)+ 1

λ
z1(x)+ · · ·

)
(6.7.2)
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Substituting Eq. (6.7.2) into Eq. (6.7.1), and factoring out eλφ , one finds

λ2(φ′2 + u(x))

(
z0(x)+ 1

λ
z1(x)+ 1

λ2
z2(x)+ · · ·

)
+ λ(2φ′z0

′ + φ′′z0)+ (2φ′z1 + φ′′z1 + z0
′′)+ · · · = 0 (6.7.3)

Solving Eq. (6.7.3) asymptotically yields the formal WKB solutions (for a
rigorous discussion see Olver (1974)). We obtain only the leading-order con-
tribution here. At O(λ2) we have φ′2 = −u(x), which has two solutions
denoted as φ±(x):

φ±(x) = ±i
∫

u1/2(x) dx (6.7.4)

At O(λ), 2φ′z0
′ +φ′′z0 = 0; hence z0

′/z0 = −φ′′/2φ′, so that z0± = const/√
φ′± or

z0± =
C±

u1/4(x)
(6.7.5)

Eqs. (6.7.4) and (6.7.5) yield the asymptotic solution for large λ

y(x) ∼ 1

u1/4(x)

(
C+eiλ

∫
u1/2dx + C−e−iλ

∫
u1/2dx

)
(6.7.6)

assuming u(x) 
= 0.
However, if u(x) vanishes, then Eq. (6.7.6) breaks down. In such a case,

we need a transition region. Suppose the only zero of u(x) has the form
u(x) = −kxm + · · ·, k > 0 (say m is a positive integer), then y(x) near x = 0
satisfies

y′′ − kλ2xm y = 0. (6.7.7)

The point near x = 0, is referred to as a turning point (a change in the behavior
of the asymptotic expansion). We can rescale to eliminate the dependence on
λ; that is, letting z = λq x . Eq. (6.7.7) yields

d2 y

dz2
− kλ2−qm−2q zm y = 0

We take q = 2/(m + 2) to find the “universal” differential equation in this
region:

d2 y

dz2
− kzm y = 0 (6.7.8)
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u(x) > 0 u(x) < 0u(x) ~ -kx
x = 0

x < 0 x > 0(transition)

L  (left) C  (center) R  (right)

Fig. 6.7.1. Regions of solution to y′′ + λ2u(x)y = 0 with a turning point u(x) =
−kx + · · ·, as x → 0

One can use power series to solve the linear equation (6.7.8). In fact Eq. (6.7.8)
is related to Bessel functions of an imaginary argument. Namely, y = x1/2 Z p

(i
√

k xs

s ), where s = m+2
2 , p = 1

m+2 , and w = Z p(i
√

kx) is either of the two
linearly independent solutions that satisfy x2w′′ + xw′ − (kx2 + p2)w = 0;
see also Section 3.7.

Suppose m = 1. Then the solution of Eq. (6.7.8) is given by Airy
functions:

y = C1Ai
(
k1/3z

)+ C2Bi
(
k1/3z

)
(6.7.9)

where Ai(x) and Bi(x) are the two standard solutions of Eq. (6.7.8) with
k= 1 and m= 1 (see, also Eqs. (4.6.40a,b)). Asymptotic expansions of Ai(x)
and Bi(x) for x→ ± ∞ are well known. They can be computed by the
methods of this chapter from the integral representations of these functions;
see Eq. (4.6.40b). We simply quote them here (see, e.g., Abramowitz and
Stegun, 1965). As x →+∞

Ai(x) ∼ 1

2
√
πx1/4

e−
2
3 x3/2

Bi(x) ∼ 1√
πx1/4

e
2
3 x3/2

(6.7.10)

and as x →−∞

Ai(x) ∼ 1√
π |x |1/4

sin

(
2

3
|x |3/2+ π

4

)
Bi(x) ∼ 1√

π |x |1/4
cos

(
2

3
|x |3/2+ π

4

)
.

(6.7.11)

Recalling that z = λ2/3x , the asymptotic solution of Eq. (6.7.1) for λ # 1
through a transition region with m= 1 takes the following form (see Figure
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6.7.1); we also transform Eq. (6.7.9) from z to x with z = λ2/3x :

yL(x) ∼ 1

|u(x)|1/4

(
C L
+eiλ
∫ x

0
u1/2 dx + C L

−e−iλ
∫ x

0
u1/2 dx

)
yC(x) ∼ C1Ai

(
k1/3λ2/3x

)+ C2Bi
(
k1/3λ2/3x

)
yR(x) ∼ 1

|u(x)|1/4

(
C R
+eλ
∫ x

0
|u|1/2 dx + C R

−e−λ
∫ x

0
|u|1/2 dx

)
where u(x)1/2 stands for the positive square root.

These solutions match smoothly from one region to the other provided
the constants are chosen properly. This can be achieved as follows. Tak-
ing the outer limits of the inner solution and the inner limits of the outer
solution,

yC(x) ˜x→+∞
1√

π(k1/2λ)1/6x1/4

(
C1

e−θ

2
+ C2eθ

)
,

yC(x) ˜x→−∞
1√

π(k1/2λ)1/6(−x)1/4

(
C1

(
eiθ+iπ/4 − eiθ−iπ/4

2i

)

+ C2

(
eiθ+iπ/4 − eiθ−iπ/4

2

))
,

yR(x) x̃→0+
1

k1/4x1/4

(
C R
+eθ + C R

−e−θ
)
,

yL(x) x̃→0−
1

k1/4(−x)1/4

(
C L
+e−θ + C L

−eθ
)
,

where θ = 2
3 k1/2λ|x |3/2. These formulae match smoothly so long as

C R
+ =

C2√
π

(
k

λ

)1/6

,

C R
− =

C1

2
√
π

(
k

λ

)1/6

,

C L
+ =

1

2
√
π

(
k

λ

)1/6 (
C1eiπ/4 + C2e−iπ/4

)
,

C L
− =

1

2
√
π

(
k

λ

)1/6 (
C1e−iπ/4 + C2eiπ/4

)
. (6.7.12)
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Higher-order turning points, that is, m > 1, and problems where u(x) has zeroes
at more than one point can be studied in a similar fashion. The Airy functions
Ai(x) and Bi(x) are often called turning point functions or connection functions.
We see that they change character from exponential decay (x → +∞) to
oscillation (x →−∞).

∗6.7.2 The Mellin Transform Method

The methods discussed so far are most useful for evaluating integrals that involve
a large parameter appearing in the exponential. Now we mention a method that,
when applicable, can be rather versatile because the large parameter need not
appear exponentially. This method, although often quick and easy to apply, is
not widely known. (We appreciate L. Glasser for bringing this analysis to our
attention).

It turns out that given a function f (x), xε[0,∞), there exists an integral
representation of f (x) that is quite convenient for discussing its behavior for
large x . This representation is

f (x) = 1

2π i

∫ c+i∞

c−i∞
x−s F(s) ds, α < c < β (6.7.13)

where F(s) is called the Mellin transform of f (x), and which is given by

F(s) =
∫ ∞

0
xs−1 f (x) dx, α < Re(s) < β (6.7.14)

(A derivation is sketched in Exercise 6.7.5.) The real constants α and β are
determined by the behavior of f (x) as x → ∞ and x → 0+ and are chosen
in such a way that the above integrals converge. Extensive tables of these
pairs are available. The derivation of Eqs. (6.7.13) and (6.7.14) follows from
the Fourier transform formulae. From (6.7.13) we can formally obtain the
Fourier transform by using the substitutions log x = u, ik = s, and noting that
xs = es log x .

Because x−s = e−s log x , it follows that as x→∞ the integrand in Eq. (6.7.14)
decays exponentially fast for s in the right half of the complex s plane. Thus
if F(s) is meromorphic in this part of the complex s plane, the asymptotic
expansion of f (x) can be found from Eq. (6.7.13) by closing the contour into
the right half plane and summing the residues of the integrand.
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Example 6.7.1 Find the asymptotic behavior of

f (x) =
∫ ∞

0
sin(xτ)e−τ

h
dτ, h > 0 (6.7.15)

for large x .
Our aim is to write f (x) in the form (6.7.13). To achieve this we find the

Mellin transform of f (x), that is, compute the integral

F(s) =
∫ ∞

0

(∫ ∞

0
xs−1 sin(xτ) dx

)
e−τ

h
dτ, −1 < Re(s) < 1

First, from contour integration, we find that∫ ∞

0
xs−1 sin(xτ) dx = τ−s�(s) sin

(
πs

2

)
, −1 < Re(s) < 1 (6.7.16)

This integral can be computed by letting sin xτ = eixτ−e−i xτ

2i and using equation
(6.3.5) with γ = s − 1, ν = τ and p = 1. Thus from Eq. (6.7.16) it follows
that

F(s) = �(s) sin

(
πs

2

)∫ ∞

0
τ−se−τ

h
dτ

By changing variables (u = τ h), this latter integral can also be evaluated in
terms of a Gamma function; thus we have

F(s) = 1

h
�(s)�

(
1− s

h

)
sin

(
πs

2

)
(6.7.17a)

Substituting F(s) from Eq. (6.7.17) into Eq. (6.7.13), we find

f (x) = 1

2π ih

∫ c+i∞

c−i∞
x−s�(s)�

(
1− s

h

)
sin

(
πs

2

)
ds (6.7.17b)

Because x−s decays exponentially fast as x → +∞ in the right half s plane
(the formula for f (x) was derived when −1 < Re(s) < 1, however it can
be established that the above integral converges for Re(s) > 0), we wish to
calculate any possible residues from pole singularities in the integrand. Neither
�(s) nor sin(πs/2) have poles, but in fact �( 1−s

h ) has poles for s = 1 + mh,
m = 0, 1, 2, . . . . This follows from the fact that �(z) has poles for any negative
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t=0

C

Fig. 6.7.2. Hankel’s contour for the Gamma function

integer z. To see this, we note that the integral used to define the Gamma
function (see Eq. (4.5.31))

�(z) =
∫ ∞

0
e−t t z−1 dt (6.7.18)

is useful to us only for Re z > 0 due to the singular behavior at t = 0. A suitable
definition of the gamma function for all z, owing to Hankel, is

�(z) = 1

2i sinπ z

∫
C

et t z−1 dt (6.7.19)

where C is the contour given in Figure 6.7.2.
If Re z > 0, then the integral in Eq. (6.7.19) agrees with that of Eq. (6.7.18).

This can be seen by carrying out the calculation with t = eiπr on the top
part and t = e−iπr on the bottom part of the contour and using the definition
of sinπ z. But for Re z ≤ 0, only Eq. (6.7.19) converges. Equation (6.7.19)
implies that the only singularities of �(z) are poles at z = −n, n = 0, 1, 2, . . ..
The residue of one of these poles is given by

Res�(z = −n) = (−1)n

2π i

∫
C

et t−(n+1) dt (6.7.20)

Expanding et in a Taylor series, the integral over C picks up a nontrivial con-
tribution due to the term 1

n!t , hence

Res�(z = −n) = (−1)n

n!
(6.7.21)

Thus the singularities of the integrand of the integral (6.7.17b) in the right half
s plane are the simple poles s = 1+ mh, m = 0, 1, 2, . . .. The corresponding
residues for f (x) as x → ∞ are found from Eq. (6.7.21); that is, the residue
of �( 1−s

h ) at s = 1 + mh is (−1)m/m!. Thus the full asymptotic expansion
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of f (x) is

f (x) ∼ 1

x

∞∑
m=0

(−1)m

m!

�(1+ mh)

xmh
cos

(
πmh

2

)
, x →∞

Remark As x → 0+, x−s decays exponentially fast for s in the left half of the
complex s plane. So by closing the contour to the left, we can find in a similar
way the behavior of f (x) for small x .

Problems for Section 6.7

1. Consider the boundary value problem

εy′′ + y = 0, y(0) = 0, y(1) = 1, ε → 0

The above equation is a particular case of Eq. (6.7.1): (u(x) = 1,
λ = 1√

ε
). Show that in this case the WKB approximation yields the

exact solution

y(x) =
sin
(

x√
ε

)
sin
(

1√
ε

)
2. Consider the equation

d4 y

dx4
+ λ4u(x)y = 0

(a) Suppose u(x) > 0 on −∞ < x < ∞. Find the leading term of the
solution of the above equation as λ→∞.

(b) Suppose u(x) has a simple zero at x = x0, that is, u(x) = u0(x −
x0)+· · ·. Show that the equation governing the solution of the above
equation in the local neighborhood near x = x0 is

d4 y

dx4
+ λ4u′(x0)(x − x0)y ∼ 0

3. Consider the equation

dy

dx
+ λu(x)y + q(x)y2 = 0

where u(x) > 0 on −∞ < x <∞.
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(a) Show that the leading term of the asymptotic expansion of the solution
as λ→∞ is

y ∼ A exp

(
−λ
∫ x

−∞
u(x) dx

)
, A constant

(b) Show that the above equation can be transformed to a linear equation
for W (x) using: y(x) = α(x)W ′

W .

Derive the asymptotic expansion for W (x) and then obtain the result
in (a) for y(x, λ).

4. Consider the differential equation

−ε2 y′′ +
(

e−
x2

4 − 1
)

y = 0, ε → 0

This is a prototypical example of a second order turning point because
since near x = 0 this equation becomes

ε2 y′′ + x2

4
y = 0, ε → 0

(i.e., u(x) in Eq. (6.7.1) has a double zero) Let I and III denote the regions
for which x > 0 and x < 0, respectively; let II denote the neighborhood
of x = 0.

(a) Show that in II

yII(x) ∼ αD− 1
2

(
e−

iπ
4

x√
ε

)
+ βD− 1

2

(
− e−

iπ
4

x√
ε

)
where Dν(t) denotes the parabolic cylinder function that solves

−y′′ +
(

t2

4
− ν − 1

2

)
y = 0

and α and β are arbitrary constants.
(b) Using the well-known asymptotic formulae

Dν(t) ∼
 tνe−

t2

4 t →∞, |arg t | < 3π
4

tνe−
t2

4 −
√

2π
�(−ν)e

iπν t−ν−1e
t2

4 , t →∞, π
4 < arg t < 5π

4



6.7 Related Techniques 509

where �(z) is the Gamma function, show that

yII(x)

∼
 ε

1
4 x−

1
2
[(
αe

iπ
8 + βe−

3iπ
8
)
e

ix2

4ε + β
√

2e
iπ
8 e−

i x2

4ε
]
, x√

ε
→∞

ε
1
4 (−x)−

1
2
[(
αe−

3iπ
8 + βe

iπ
8
)
e

ix2

4ε + α
√

2e
iπ
8 e−

i x2

4ε
]
, x√

ε
→−∞

(c) Show that in region I

yI ∼ A
(
1− e−

x2

4
)− 1

4 exp

[
− i

ε

∫ x

0

√
1− e−

t2
4 dt

]
where A is a constant. Furthermore, show that

yI ∼
 Ae−

i I
ε e−

i x
ε , x →∞

A
(

2
x

) 1
2 e−

i x2

4ε , x → 0+

where

I ≡
∫ ∞

0

(√
1− e−

t2
4 − 1

)
dt

(d) By matching yII and yI show that

A = ε
1
4 βe

iπ
8 , αe

iπ
8 + βe−

3iπ
8 = 0

(e) Show that in III

yIII ∼
(
1− e−

x2

4
)− 1

4

{
B exp

[
i

ε

∫ 0

x

√
1− e−

t2
4 dt

]

+C exp

[
− i

ε

∫ 0

x

√
1− e−

t2
4 dt

]}
where B and C are constants. Furthurmore, show that

yIII ∼
{

Be
i I
ε e−

i x
ε + Ce−

i I
ε e

ix
ε , x →−∞(− 2

x

) 1
2
(

Be
ix2

4ε + Ce−
i x2

4ε
)
, x → 0−

(f ) By matching yIII and yII, show that

B
√

2 = ε
1
4
(
αe−

3iπ
8 + βe

iπ
8
)
, C = αe

iπ
8 ε

1
4

Note that the steps (d) and (f) provide global matching across region
II.
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5. In Chapter 4 we derived the direct and inverse Laplace transforms.
Namely, if g(τ ) is such that

∫ τ
0 |g(ξ)| dξ <∞ for all τ > 0 and g(τ )=

O(eατ ) as τ→∞ for some real constant α, then the right one-sided
Laplace transform pair is given by

G(s) =
∫ ∞

0
e−sτ g(τ ) dτ, g(τ ) = 1

2π i

∫ c+i∞

c−i∞
esτG(s) ds

for Re c > α.

(a) Show that the following analogous formulae hold for the left one-
sided Laplace transform pair if (β real),

∫ τ
0 |g(−ξ)| dξ < ∞, and

g(τ ) = O(eβτ ) as τ →−∞:

G(s) =
∫ 0

−∞
e−sτ g(τ ) dτ, g(τ ) = 1

2π i

∫ c+i∞

c−i∞
esτG(s) ds

for Re c < β.
(b) Conclude that for α < Re c < β the two-sided Laplace transform

pair holds:

G(s) =
∫ ∞

−∞
e−sτ g(τ ) dτ, g(τ ) = 1

2π i

∫ c+i∞

c−i∞
esτG(s) ds

(c) Transform the pair in (b) using the variable τ = − log t , and define
f (t) = g(− log t) to find the Mellin transform:

M(s) =
∫ ∞

0
t s−1 f (t) dt, f (t) = 1

2π i

∫ c+i∞

c−i∞
t−s M(s) ds

for α < Re c < β.

6. Parseval’s formula for Mellin transforms (see Problem 5c): Consider the
integral

I = 1

2π i

∫ c+i∞

c−i∞
H(s)F(1− s) ds

where H(s), F(s) are the Mellin transforms associated with h(t), f (t),
respectively, and assume H(s), F(1 − s) are analytic in some common
vertical strip: α < s < β and α < Re c < β, α, β real.
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(a) Show that

I = 1

2π i

∫ c+i∞

c−i∞
F(1− s)

(∫ ∞

0
h(t)t s−1 dt

)
ds

(b) Assuming the integrals can be interchanged, derive the Parseval re-
lation for Mellin transforms:

I =
∫ ∞

0
h(t) f (t) dt = 1

2π i

∫ c+i∞

c−i∞
H(s)F(1− s) ds

(Note: if
∫∞
−∞ |F(1−c− iy)| dy <∞,

∫∞
−∞ t c−1|h(t)| dt <∞, then

the integrals in part (a) can be interchanged.)

7. Establish the following Mellin transforms: (see Problem 5c)

(a) f (t) = e−t , F(s) = �(s) Re s > 0

(b) f (t) = eit , F(s) = e
iπs

2 �(s), 0 < Re s < 1

(c) f (t) = 1

1+ t
, F(s) = π

sinπs
, 0 < Re s < 1

(d) f (t) = 1

t
e−

1
t , F(s) = �(1− s), Re s < 1

These particular transforms are useful in applications.

8. Consider the integral

I =
∫ ∞

0
h(λt) f (t) dt, λ > 0

(a) Use the Parseval formula for Mellin transforms derived in Problem
6.7.6 to establish

I =
∫ ∞

0
h(λt) f (t) dt = 1

2π i

∫ c+i∞

c−i∞
λ−s H(s)F(1− s) ds

where c lies in a (common) strip of analyticity of G(s) = H(s)F(1−
s).

(b) Assume that

lim
|y|→∞

G(x + iy) = 0,
∫ ∞

−∞
|G(R + iy)| dy <∞
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Show that

I = −
∑

res{λ−s G(s)} + 1

2π i

∫ R+i∞

R−i∞
λ−s G(s) ds

and that as λ→∞

1

2π i

∫ R+i∞

R−i∞
λ−s G(s) ds

= 1

2π

∫ ∞

−∞
λ−R−iyG(R + iy) dy = O(λ−R).

The above formulae are useful for asymptotic evaluation of certain
classes of integrals.

9. Consider

I =
∫ ∞

0

e−
1
t

t (1+ λt)
dt; λ→∞

(a) Show that Problem 6.7.8 applies where f (t) = e−
1
t

t , h(t) = 1
1+t . Use

the results of Problem 6.7.8 to establish that

I = 1

2π i

∫ c+i∞

c−i∞
λ−s π�(s)

sinπs
ds, 1 > Re c > 0

(b) Show that for s = x + iy, y →∞
π

sinπs
∼ O(e−π |y|)

�(s) = O
(|y|x− 1

2 e−
π
2 |y|
)

(for �(s) use Stirling’s formula of the gamma function derived in
Section 6.2.3)) and therefore the asymptotic expansion of I is obtained
from the poles of π

sinπs for Re s > 0; that is,

I ∼
∞∑

m=0

(−1)mm!

λm+1

(c) Show that the result in part (b) can also be obtained from Watson’s
Lemma (Section 6.2.2).

10. Consider

I (λ) =
∫ ∞

0

f (t)

1+ λt
dt, λ→∞,
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where

f (t) ∼t→0+

∞∑
m=0

αmtam , am 
= integer,
∫ ∞

0
| f (t)| dt <∞

(a) Using the results of Problems 6.7.7 and 6.7.8, show that H(s) =
π

sinπs , and hence

I (λ) = 1

2π i

∫ c+i∞

c−i∞
λ−s

(
π

sinπs

)
F(1− s) ds

(b) Establish the asymptotic formula,

I (λ) ∼
∞∑

m=0

(−1)mλ−1−m F(−m)−
∞∑

m=0

λ−(1+am )

(
παm

sinπam

)
that is, that the asymptotic form of I (λ) is composed of the pole
contributions from H(s) and F(1− s), respectively, and that the poles
of F(1− s) are determined by the t → 0+ behavior of f (t).



7
Riemann–Hilbert Problems

7.1 Introduction

It is remarkable that a large number of diverse problems of physical and math-
ematical significance involve the solution of the so-called Riemann–Hilbert
(RH) problem. Let us mention a few such problems.

(1) Find a function w(z) = u(x, y)+ iv(x, y), u, v real, analytic inside a
region enclosed by a contour C , such that

α(t)u(t)+ β(t)v(t) = γ (t), t on C (7.1.1)

where α, β, and γ are given, real functions. In the special case of α = 1, β = 0,
C a circle, this problem reduces to deriving the well-known Poisson formula
(see Problem 10 of Section 2.6 for the case of a circle, and the discussion in
Section 4.6 for when C is the real axis.)

(2) Solve the linear singular integral equation,

f (t)+
∫ b

a

α(t ′)
t ′ − t

f (t ′) dt ′ = β(t) (7.1.2)

where α(t) and β(t) are given functions and
∫

denotes a principal value integral
(see Sections 4.3 and 7.2). Such equations arise in many applications. For
example, the equation

∫ b
0

f (t ′) dt ′
t ′−t = β, plays an important role in airfoil theory.

(3) Solve the linear integral equation

f (t)+
∫ ∞

0
α(t − t ′) f (t ′) dt ′ = β(t), t > 0 (7.1.3)

where α and β are given, integrable functions. (In Section 7.3 some of the basic
notions associated with integral equations will be introduced).

514
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(4) Solve the time independent wave equation (Helmholtz equation)

ϕxx + ϕyy + k2ϕ = 0, −∞ < x <∞, y ≥ 0, k constant, real,
(7.1.4)

where ϕ(x, 0) = f (x) for −∞ < x ≤ 0, (∂ϕ/∂y)(x, 0) = g(x) for 0 < x <

∞, and ϕ satisfies an appropriate boundary (“radiation”) condition at infinity.
(5) Derive the inverse of the Radon transform. The Radon transform is a

generalized Fourier transform and plays a fundamental role in the mathematical
foundation of computerized tomography.

(6) Solve an inverse scattering problem associated with the time-independent
Schrödinger equation

ψxx + (q(x)+ k2)ψ = 0, −∞ < x <∞ (7.1.5)

that is, reconstruct the potential q(x) from appropriate inverse scattering data.
Inverse problems arise in many areas of application, for example, geophysics,
image reconstruction, quantum mechanics, etc. In many cases, they can be
solved using Riemann–Hilbert problems.

(7) Solve the following initial value problem for the Korteweg–deVries (KdV)
equation

ut + uxxx + uux = 0, −∞ < x <∞, t > 0

u(x, 0) = u0(x); u→ 0 as |x | → ∞
(7.1.6)

Many other nonlinear PDEs as well as many nonlinear ODEs can also be related
to RH problems.

The class of functions in which the above problems are solved will be stated
when these problems are considered in detail in this chapter.

The above list is by no means exhaustive. Several aspects of RH theory were
motivated and developed because of the relation of RH problems with prob-
lems arising in physical applications, for example, elasticity and hydrodynamics
(Freund, 1990; Gakhov, 1966; Muskhelishvili, 1977).

Problems 1–5 above are associated with scalar RH problems. The simplest
such problem involves finding two analytic functions Φ+(z) and Φ−(z), defined
inside and outside a closed contour C of the complex z plane such that

Φ+(t)− g(t)Φ−(t) = f (t), t on C (7.1.7)

for given functions g(t) and f (t). This problem can be solved in closed form;
its solution is intimately related to the Cauchy type integral

Φ(z) = 1

2π i

∫
C

ϕ(t) dt

z − t
(7.1.8)
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where ϕ is a certain function related to f and g. A generalization of the above
problem allows C to be an open contour; this problem can also be solved in
closed form. In this chapter we will not use the notation

∮
C ; the specification

of the RH problem will suffice to denote whether the contour is closed or
open. Cauchy type integrals will be discussed in Section 7.2, and scalar RH
problems for both open and closed contours will be discussed in Section 7.3.
Several applications, including the solution of Problems 1–5 will be given in
Section 7.4.

Problem 1 above was first formulated by Riemann in 1851. In 1904, Hilbert
reduced this problem to a RH problem of the form (7.1.7), which he also
expressed in terms of a singular integral equation of the form (7.1.2). In 1908,
Plemelj gave the first closed form solution of a simple RH problem (an RH
problem of “zero index,” see Section 7.3). The closed form solution of a general
scalar RH problem was given by Gakhov (1938). Integral equations of the form
(7.1.3) were studied by Carleman, who solved such an equation in 1932 using a
method similar to the so-called Wiener–Hopf method. This method, introduced
originally in 1931, was also in connection with the solution of a particular
integral equation of the type (7.1.3). The Wiener–Hopf method, which also can
be used for the solution of Problem 4, actually reduces to solving a certain RH
problem. (The interested reader can find relevant references in the books of
Gakhov (1966) and Muskhelishvili (1977).) The derivation of transforms, such
as the Radon transform, via RH techniques appears to be rather recent (Fokas
and Novikov, 1991).

Problems 6 and 7 are associated with vector RH problems. The formulation
of such problems is similar to that for scalar ones, where Φ+ and Φ− are now
vectors instead of scalars. Unfortunately, in general, vector RH problems cannot
be solved in closed form; their solution can be given in terms of linear integral
equations of Fredholm type. In most of this chapter we concentrate on scalar
RH problems. Vector RH problems will be introduced briefly in Section 7.5.

There exists a significant generalization of the RH problem that is called a ∂̄
(DBAR) problem. This problem involves solving the equation

∂Φ(x, y)

∂ z̄
= g(x, y), z ∈ D, z = x + iy (7.1.9)

for Φ(x, y), where g is given, D is some domain in the complex z plane, and z̄
is the complex conjugate of z. To appreciate the relationship between ∂̄ and
RH problems, it is convenient to consider the particular RH problem

Φ+(x)−Φ−(x) = f (x), −∞ < x <∞ (7.1.10)
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where Φ+(z) and Φ−(z) are analytic in the upper and lower half complex
z plane. Let Φ(z) = Φ+(z) for y > 0 and Φ(z) = Φ−(z) for y < 0. Solving
the RH problem (7.1.10) means finding a function Φ(z) that is analytic in the
entire z complex plane except on the real axis, where it has a prescribed “jump.”
The quantity ∂Φ/∂ z̄ measures the departure of Φ from analyticity; if Φ(z) is
analytic everywhere in D, then ∂Φ/∂ z̄ = 0 in D. But for Eq. (7.1.10), ∂Φ

∂ z̄ =
1
2 (

∂Φ
∂x + i∂Φ

∂y ) (see also Section 2.6.3) vanishes everywhere in the z complex
plane except on the real axis, where it is given by i

2 f (x)δ(y) and where δ(y)
denotes the Dirac delta function. Thus the RH problem (7.1.10) can be viewed
as a special case of a DBAR problem where g(x, y) = i

2 f (x)δ(y).
DBAR problems have recently appeared in applications in connection with

the solution of multidimensional inverse problems and with the solution of
certain nonlinear PDEs in x, y, t . A brief introduction to DBAR problems will
be given in Section 7.6. Applications of vector RH problems and of DBAR
problems will be discussed in Section 7.7.

7.2 Cauchy Type Integrals

Consider the integral

Φ(z) = 1

2π i

∫
L

ϕ(τ)

τ − z
dτ (7.2.1)

where L is a smooth curve (L may be an arc or a closed contour) and ϕ(τ) is a
function satisfying the Hölder condition on L , that is for any two points τ and
τ1 on L

|ϕ(τ)− ϕ(τ1)| ≤ *|τ − τ1|λ, * > 0, 0 < λ ≤ 1 (7.2.2)

If λ = 1, the Hölder condition becomes the so-called Lipschitz condition. For
example, a differentiable function ϕ(τ) satisfies the Hölder (Lipschitz) condi-
tion with λ = 1. (This follows from the definition of a derivative.) If λ > 1
on L , it follows, from the definition of the derivative, that dϕ/dτ = 0 and
hence ϕ = const on L , which is a trivial case. We have encountered inte-
grals similar to Eq. (7.2.1) before, for example, Cauchy’s Integral Theorem in
Section 2.6. The integral (7.2.1) is well defined and Φ(z) is analytic provided
that z is not on L (see Section 3.2, Eqs. (3.2.29) and (3.2.30)). We also note
that from the series expansion, as |z|→ ∞ off L , we have Φ(z) ∼ c/z where
c = − 1

2π i

∫
L ϕ(τ) dτ . However, if z is on L , this integral becomes ambiguous;

to give it a unique meaning we must know how z approaches L . We denote by
+ the region that is on the left of the positive direction of L and by− the region
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L

Fig. 7.2.1. Regions on either side of L

L
L

t- t
t+

ε

ε

ε

Fig. 7.2.2. Definition of Lε

on the right (see Figure 7.2.1). It turns out that Φ(z) has a limit Φ+(t), t on L ,
when z approaches L along a curve entirely in the + region. Similarly, Φ(z)
has a limit Φ−(t), when z approaches L along a curve entirely in the− region.
These limits, which play a fundamental role in the theory of RH problems, are
given by the so-called Plemelj formulae.

Lemma 7.2.1 (Plemelj Formulae) Let L be a smooth contour (closed or open)
and let ϕ(τ) satisfy a Hölder condition on L . Then the Cauchy type integral
Φ(z), defined in Eq. (7.2.1), has the limiting values Φ+(t) and Φ−(t) as z
approaches L from the left and the right, respectively, and t is not an endpoint
of L . These limits are given by

Φ±(t) = ± 1

2
ϕ(t)+ 1

2π i

∫
L

ϕ(τ)

τ − t
dτ (7.2.3±)

In Eq. (7.2.3±),
∫

denotes the principal value integral defined by∫
L

ϕ(τ) dτ

τ − t
= lim

ε→0

∫
L−Lε

ϕ(τ ) dτ

τ − t
(7.2.4)

where Lε is the part of L that has length 2ε and is centered around t , as depicted
in Figure 7.2.2.

Proof The derivation of Eq. (7.2.3) is straightforward if ϕ(τ) is analytic at t .
In this case, we can use the Cauchy Theorem to deform the contour L to two
contours, L − Lε and Cε, where Cε is a semicircle of radius ε centered at t (see
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t

Cε

L - Lε
ε

Fig. 7.2.3. Contours L − Lε and Cε

Figure 7.2.3).

Φ+(t) = lim
ε→0

1

2π i

∫
L−Lε

ϕ(τ )

τ − t
dτ + lim

ε→0

1

2π i

∫
Cε

ϕ(τ )

τ − t
dτ (7.2.5)

Using τ = t + εeiθ , the second integral in Eq. (7.2.5) becomes 1
2π i

∫ 0
−π ϕ(t)i dθ

= 1
2ϕ(t), and Eq. (7.2.5) reduces to Eq. (7.2.3+); similarly for Eq. (7.2.3−). If

ϕ(τ) satisfies a Hölder condition at t , then the proof is more complicated; we
give only the essential idea. In this case it is convenient to consider

Ψ(z) = 1

2π i

∫
L

ϕ(τ)− ϕ(t)

τ − z
dτ (7.2.6)

and to assume that L is closed. (If L is open, we can supplement it by an
arbitrary curve so that it becomes a closed one, provided we set ϕ(τ) = 0 on
the additional curve.) Let D+, D− denote the areas inside and outside L . Then
the Cauchy Theorem implies

1

2π i

∫
L

dτ

τ − z
=


1, z ∈ D+

0, z ∈ D−
1

2
, z ∈ L

Thus, Eq. (7.2.6) yields

Ψ+(t) = Φ+(t)− ϕ(t), Ψ−(t) = Φ−(t) (7.2.7)

It can be shown (Gakhov, 1966; Muskhelishvili, 1977) that if ϕ(t) satisfies a
Hölder condition, then the function Ψ(z) behaves as a continuous function as
z passes through t . Taking z on L in Eq. (7.2.6), we have

Ψ+(t) = Ψ−(t) = 1

2π i

∫
ϕ(τ)

τ − t
dτ − ϕ(t)

2π i

∫
dτ

τ − t

= 1

2π i

∫
ϕ(τ) dτ

τ − t
− ϕ(t)

2
(7.2.8)

Equations (7.2.7) and (7.2.8) imply Eq. (7.2.3±). �
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In the above formulation we have assumed that L is a finite contour, otherwise
ϕ(τ) must satisfy an additional (uniformity) condition. Suppose, for example,
that L is the real axis; then we assume that ϕ(τ) satisfies a Hölder condition
for all finite τ , and that as t →±∞, ϕ(τ)→ ϕ(∞), where

|ϕ(τ)− ϕ(∞)| < M

|τ |µ , M > 0, µ > 0 (7.2.9)

Equations (7.2.3±) are equivalent to

Φ+(t)−Φ−(t) = ϕ(t), Φ+(t)+Φ−(t) = 1

π i

∫
ϕ(τ)

τ − t
dτ (7.2.10)

Equations (7.2.10) will be extensively used hereafter. The function Φ(z) is said
to be sectionally analytic; see Section 7.3. Functions that are the boundary
values of Φ(z) as z → L from the left and the right will sometimes be referred
to as and functions.

Example 7.2.1 Find Φ±(t) corresponding to Φ(z) = 1
2π i

∮
C(τ + 1

τ
) dτ
τ−z , where

C is the unit circle (see Figure 7.2.4).
To compute Φ+(z), we consider Φ(z) with z inside the circle, thus using

contour integration Φ+(z) = z + 1
z − 1

z = z. Similarly, to compute Φ−(z)
we consider Φ(z) with z outside the circle and use contour integration to find
Φ−(z) = − 1

z . Therefore on the contour z = t

Φ+(t) = t, Φ−(t) = −1

t

Also, using contour integration, it follows that 1
iπ

∫
(τ + 1

τ
) dτ
τ−t = (t − 1

t );
therefore Eqs. (7.2.10) are verified. We note that Φ+(z) is indeed analytic

x

y

+
-

Fig. 7.2.4. Inside and outside unit circle C



7.2 Cauchy Type Integrals 521

inside the unit circle, while Φ−(z) is analytic outside the unit circle. Taking
this into consideration, as well as that Φ+(t) −Φ−(t) = ϕ(t), it follows that
in this simple example, Φ+(z) = z and Φ−(z) = −1/z could have been found
by inspection.

Example 7.2.2 Find Φ±(t) corresponding to Φ(z) = 1
2π i

∫∞
−∞

2
τ 2+1

dτ
τ−z .

We split 2/(t2 + 1) as follows:

2

t2 + 1
= i

t + i
− i

t − i

Furthermore, i
(z−i) is analytic in the lower half plane, while i

(z+i) is analytic in
the upper half plane. Hence this suggests that

Φ+(t) = i

t + i
Φ−(t) = i

t − i

These formulae can be verified by contour integration. For example, computing
Φ(z)with z in the upper half plane (we can consider a large semicircular contour
in the lower half plane), we find Φ+(z) = i

(z+i) .

The above analysis is sufficient for studying RH problems on closed con-
tours. However, in order to study RH problems for open contours, we need to
analyze the behavior of Φ(z) near the end points. Also, as is necessary in some
applications we allow ϕ(t) to have integrable singularities at the endpoints.

Lemma 7.2.2 Consider the Cauchy type integral

Φ(z) = 1

2π i

∫ b

a

ϕ(τ)

τ − z
dτ (7.2.11)

where ϕ(t) satisfies a Hölder condition on any closed interval a′b′ of the smooth
arc ab, except possibly at the ends where it satisfies

ϕ(t) = ϕ̃(t)

(t − c)γ
, γ = α + iβ, 0 ≤ α < 1 (7.2.12)

where c is either a or b, α and β are real constants, and ϕ̃(t) satisfies a Hölder
condition. Then the following limits are valid:

(1) γ = 0.
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(a) As z → c, with z not on the contour

Φ(z) = ±ϕ(c)

2π i
log

1

z − c
+Φ0(z) (7.2.13)

(b) t → c,

Φ(t) = ± ϕ(c)

2π i
log

1

t − c
+Ψ0(t) (7.2.14)

In these formulae the upper sign is taken for c = a and the lower for c = b.
The function Φ0(z) is bounded and tends to a definite limit as z → c along
any path. The function Ψ0(t) satisfies a Hölder condition near c. The function
log 1

z−c denotes any branch that is single valued near c with the branch cut taken
to go through the contour.

(2) γ 
= 0.
(a) As z → c, with z not on the contour

Φ(z) = ± e±γπ i

2i sin γπ

ϕ̃(c)

(z − c)γ
+Φ0(z) (7.2.15)

(b) as t → c

Φ(t) = ± cot γπ

2i

ϕ̃(c)

(t − c)γ
+Ψ0(t) (7.2.16)

In these formulae the signs are chosen as in part 1. If α = 0, then the behavior
of Φ0(z) and Ψ0(t) are as in part 1, while if α > 0

|Φ0(z)| < A0

|z − c|α0
, Ψ0(t) = Ψ̃0(t)

|t − c|α0
, α0 < α

where A0 and α0 are real constants and Ψ̃0(t) satisfies a Hölder condition near
c. The function (z − c)γ is any branch that is single valued near c with the
branch cut taken to go through the contour and with the value (t − c)γ on the
left side of the contour.

Proof The proof is rather involved; it can be found in Muskhelishvili (1977) or
Gakhov (1966). However, the leading order asymptotic form of these formulae
can be intuitively understood by an application of Plemelj formulae. Let us
first consider the case of γ 
= 0 with c = a.
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b

a

Fig. 7.2.5. Contour around the branch cut from a to∞ through b

We take the branch cut of (z − a)γ from the endpoint a to∞ going through b,
and we select the branch that tends to (t − a)γ on the left of the cut, that is

(t − a)γ = [(t − a)γ ]+ (7.2.17a)

To find the value of (t − a)γ on the right of the cut, we follow the contour
indicated in Figure 7.2.5, thus

[(t − a)γ ]− = e2iπγ [(t − a)γ ]+ (7.2.17b)

Equations (7.2.17a,b) can be written as

[(t − a)−γ ]+ − [(t − a)−γ ]− = (1− e−2iπγ )(t − a)−γ

or

eiπγ

2i sinπγ
[(t − a)−γ ]+ − eiπγ

2i sinπγ
[(t − a)−γ ]− = (t − a)−γ (7.2.18)

Equation (7.2.18) shows that the function (t − a)−γ can be written as the
difference of and functions. Furthermore, we expect that the largest
contribution to the integral will come from the locations where ϕ(t) is singular,
that is, the endpoints. Hence as z → a

Φ(z) ∼ ϕ̃(a)

2π i

∫ b

a

(τ − a)−γ

τ − z
dτ

(The reader can find the basic definitions of asymptotic symbols “∼” and or-
der relations “big-O” and “small-O” in Section 6.1.) Thus using the Plemelj
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formulae and Eq. (7.2.18) we find, for z not on the contour

Φ(z) ∼ eγπ i

2i sin γπ

ϕ̃(a)

(z − a)γ

Also, for z = t on the contour

Φ(t) = 1

2
(Φ+(t)+Φ−(t)) ∼ eγπ i

2i sin γπ

ϕ̃(a)

2
[[(t − a)−γ ]+ + [(t − a)−γ ]−]

= cot γπ

2i

ϕ̃(a)

(t − a)γ

where we have used [(t−a)−γ ]+ = (t−a)−γ , [(t−a)−γ ]− = e−2iπγ (t−a)−γ .
In the case γ = 0 near z = a, we rewrite the integral (7.2.11) as

Φ(z) = 1

2π i

∫ b

a

ϕ(τ)− ϕ(a)

τ − z
dτ + ϕ(a)

2π i

∫ b

a

dτ

τ − z

Hence by integration

Φ(z) = ϕ(a)

2π i
log

(
z − b

z − a

)
+ 1

2π i

∫ b

a

ϕ(τ)− ϕ(a)

τ − z
dτ.

The second term is not singular, as z → a, thus the leading asymptotic contri-
bution is given by

Φ(z) ∼ ϕ(a)

2π i
log

(
1

z − a

)
As we approach the contour to leading order, we obtain the same dominant
contribution on either side of the branch cut, so that on the contour in the
neighborhood of t = a

Φ(t) ∼ ϕ(a)

2π i
log

(
1

t − a

)
The discussion for z → b is similar. �

Problems for Section 7.2

1. Consider the integral

Φ(z) = 1

2π i

∫
C

dτ

τ(τ − 4)(τ − z)
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where C denotes the unit circle.

(a) Use Cauchy’s Theorem to show that Φ(z) = 1
4(z−4) ≡ Φ+(z) for z

inside the unit circle, and Φ(z) = 1
4z ≡ Φ−(z) outside the unit circle.

(b) Use Cauchy’s Theorem to show that if t is on the unit circle, then the
principal value integral is given by

1

2π i

∫
C

dτ

τ(τ − 4)(τ − t)
= t − 2

4t (t − 4)

(c) Use the results of (a) and (b) to verify the Plemelj formulae for the
above integral.

2. Consider the integral

Φ(z) = 1

2π i

∫ ∞

−∞

1

τ 2 + 4

dτ

τ − z

Show that Φ(z) = − 1
4i(z+2i) ≡ Φ+(z) if z is in the upper half plane and

Φ(z) = −1
4i(z−2i) ≡ Φ−(z) if z is in the lower half plane.

Hint: Use

1

τ 2 + 4
= 1

4i

(
1

τ − 2i
− 1

τ + 2i

)
3. Consider the integral

Φ(z) = 1

2π i

∫
L

ϕ(τ)

τ − z
dτ

where L is a finite, smooth, closed contour. Assume that the mth derivative
of ϕ(t) satisfies the Hölder condition.

(a) Show that

Φ(m)(z) = m!

2π i

∫
L

ϕ(τ)

(τ − z)m+1
dτ

where Φ(m)(z) denotes the m th derivative.
(b) Use integration by parts to obtain

Φ(m)(z) = 1

2π i

∫
L

ϕ(m)(τ )

τ − z
dτ
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(c) Use the Plemelj formulae to establish

Φ(m)+(t) = 1

2
ϕ(m)(t)+ 1

2π i

∫
L

ϕ(m)(τ )

τ − t
dτ

Φ(m)−(t) = −1

2
ϕ(m)(t)+ 1

2π i

∫
L

ϕ(m)(τ )

τ − t
dτ

4. Show that the change of variables

ζ = z − i

z + i
, σ = τ − i

τ + i

maps a Cauchy type integral over the real axis in the z plane to a Cauchy
type integral over the unit circle in the ζ plane.

5. Consider the integral

U (z) = 1

2π

∫ 2π

0
u(θ)

eiθ + z

eiθ − z
dθ

where u is a real function. This integral is usually referred to as a Schwarz
type integral. Establish the following relationship between Schwarz type
and Cauchy type integrals

U (z) = 1

2π i

∫
C

2u(−i log τ)

τ − z
dτ − 1

2π

∫ 2π

0
u(θ) dθ

where C denotes the unit circle.
Hint: Use the transformation τ = eiθ and note that

τ + z

τ − z
= −1+ 2τ

τ − z

6. Let u(x, y) + iv(x, y) be a function that is analytic inside the unit circle.
It can be shown (see also Section 7.4) that

u(x, y)+ iv(x, y) = 1

2π

∫ 2π

0
u(θ)

eiθ + z

eiθ − z
dθ + iv0

where u(θ) is the limiting value of u(x, y) as x + iy approaches the unit
circle, and v0 is a real constant.
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(a) Using the result of Problem 7.2.5, show that the limit of the above
expression as x + iy approaches the unit circle is

u(θ)+ iv(θ) = u(θ)+ 1

2π i

∫
C

2u(−i log τ)

τ − t
dτ

− 1

2π

∫ 2π

0
u(θ) dθ + iv0

(b) Combining the two integrals above, establish that

v(θ) = 1

2π i

∫ 2π

0
u(ϕ)

eiϕ + eiθ

eiϕ − eiθ
dϕ + v0

(c) Show that this equation can also be written as

v(θ) = − 1

2π

∫ 2π

0
u(ϕ) cot

(
ϕ − θ

2

)
dϕ + v0

This equation, which expresses the boundary value of the imaginary
part of an analytic function in terms of the real part, is called the Hilbert
inversion formula.

(d) Consider the function −i(u + iv). For this function the real part is v
and the imaginary part is −u. Deduce that

u(θ) = 1

2π

∫ 2π

0
v(ϕ) cot

(
ϕ − θ

2

)
dϕ + u0

where u0 is a real constant.

See Section 5.9.3 where an application of these inversion formulae is dis-
cussed.

7.3 Scalar Riemann–Hilbert Problems

The machinery introduced in Section 7.2, namely, the formulae that express the
behavior of a Cauchy integral as z approaches any point on the contour, will
now be used to solve scalar RH problems. We first introduce some definitions.

(1) Let C be a simple, smooth, closed contour dividing the complex z plane
into two regions D+ and D−, where the positive direction of C will be taken as
that for which D+ is on the left (see Figure 7.3.1). Hereafter, unless otherwise
specified all contours will be assumed to be smooth. A scalar function Φ(z)
defined in the entire plane, except for points on C , will be called sectionally
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+
_

D

C

D

Fig. 7.3.1. Simple closed contour C and the “+”, “−” regions

analytic if (a) the function Φ(z) is analytic in each of the regions D+ and D−

except, perhaps, at z = ∞, and (b) as z approaches any point t on C along
any path that lies wholly in either D+ or D−, the function Φ(z) approaches
a definite limiting value, Φ+(t) or Φ−(t), respectively. The values Φ±(t) are
called the boundary values of the function Φ(z).

It then follows that Φ(z) is continuous in the closed region D+ + C if it
is assigned the value Φ+(t) on C . A similar statement applies for the region
D− + C .

(2) The sectionally analytic function Φ(z) has a finite degree at infinity if for
some finite integer m, limz→∞Φ(z)/|z|m = 0. The function Φ(z) is said to
have degree κ at infinity if

Φ(z) ∼ cκ zκ + O(zκ−1) as z →∞, cκ a nonzero constant (7.3.1)

(3) The index of a function ϕ(t) with respect to C is the increment of its
argument in traversing a curve C in the positive direction, divided by 2π , that
is

indϕ(t) = 1

2π
[argϕ(t)]C = 1

2π i
[logϕ(t)]C = 1

2π i

∫
C

d(logϕ(t)) (7.3.2)

Example 7.3.1 Show that if the function ϕ(t) is analytic inside a closed contour
C except at a finite number of points where it may have poles, then its index
equals to the difference between the number of zeroes and the number of poles
inside the contour.

If ϕ(t) is differentiable, then Eq. (7.3.2) yields

ind ϕ(t) = 1

2π i

∫
C

ϕ′(t)
ϕ(t)

dt = N − P (7.3.3)

where N and P are the number of zeroes and poles of ϕ(t), respectively, and
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where a multiple zero or pole is counted according to its multiplicity. This
is really the argument principle (see Theorem 4.4.1) and can be derived from
contour integration.

To illustrate this result, let us compute the index of ϕ(t) = tn where C is an
arbitrary finite contour enclosing the origin. Because tn has a zero of order n
inside the contour and no poles, it follows that ind(tn) = n.

7.3.1 Closed Contours

The scalar homogeneous RH problem for closed contours is formulated as
follows: Given a closed contour C and a function g(t) that satisfies a Hölder
condition on C with g(t) 
= 0 on C , find a sectionally analytic function Φ(z),
with finite degree at infinity, such that

Φ+(t) = g(t)Φ−(t) on C (7.3.4)

where Φ±(t) are the boundary values of Φ(z) on C . We assume that the index
of g(t) is κ . Here we only consider RH problems in a simply connected region.
The extension to a multiply connected region can be dealt with by similar
methods, cf. Gakhov (1966).

The solution of this RH problem with degree m at infinity is given by

Φ(z) = X (z)Pm+κ(z) (7.3.5)

where Pm+κ(z) is an arbitrary polynomial of degree m+ κ ≥ 0, and X (z), called
the fundamental solution of Eq. (7.3.4), is given by

X (z) ≡
{

e�(z), z in D+

z−κe�(z), z in D− (7.3.6a)

�(z) ≡ 1

2π i

∫
C

dτ log(τ−κg(τ ))

τ − z
(7.3.6b)

withκ = indg(t)on C . We assume C encloses the origin so that ind(τ−κ) = −κ .
Note that this definition of X (z) implies the normalization X−(z) ∼ z−κ as
z →∞. One can modify this normalization as needed in a given problem; for
example, X (z) can be multiplied by a constant.

These results follow from an application of the Plemelj formulae. However,
care must be taken to ensure that the function appearing in the integrand of the
Cauchy integral used in the Plemelj formulae satisfies a Hölder condition. The
index of g(t) is κ , and as such, log g(t) does not satisfy the Hölder condition,
and the arguments leading to the Plemelj formulae fail. To remedy this, we
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note that the index of t−κg(t) is zero, and hence log(t−κg(t)) satisfies a Hölder
condition. This suggests rewriting Eq. (7.3.4) in the form

Φ+(t) = (t−κg(t))tκΦ−(t)

or

log Φ+(t)− log(tκΦ−(t)) = log(t−κg(t))

A special solution of this equation (the fundamental solution) Φ = X (z) is ob-
tained by letting log X+(t)=�+(t) and log(tκ X−(t))=�−(t), which implies

�+(t)− �−(t) = log(t−κg(t))

The representation (7.3.6b) for �(z) follows from the Plemelj formulae. Equa-
tion (7.3.5) follows from the fact that X (z) ∼ z−κ as z →∞ (recall that�(z) ∼
O(1/z) as z →∞). Note that X+(z) is nonvanishing in D+ and X−(z) is non-
vanishing in D− except perhaps as z→∞. Hence log(X+(z)), log(zκ X−(z))
are analytic in their respective regions.

Thus the solution of Eq. (7.3.4) that satisfies the requisite condition at infinity
is therefore given by Φ(z) = X (z)Pm+κ(z). Note that multiplying the funda-
mental solution X (z) by a polynomial that is analytic for all z has no effect on
Eq. (7.3.4).

RH problems are closely related to singular integral equations. For this and
other applications one is often interested in finding all solutions of Eq. (7.3.4)
that vanish at infinity. The solution (7.3.5) implies the following.

(a) if κ > 0, then there exist κ linearly independent solutions of Eq. (7.3.4)
vanishing at infinity; this follows from the fact that as z → ∞, z−κ Pm+κ(z),
and for decaying solutions we require m = −1. The polynomial Pκ−1(z) =
A0 + A1z + A2z2 + · · · + Aκ−1zκ−1 has κ arbitrary constants.

(b) If κ ≤ 0, then there exists no nontrivial solution of Eq. (7.3.4) vanishing at
infinity. Stated differently, the fundamental solution X (z) grows algebraically
at infinity for κ < 0 or is bounded at infinity for κ = 0. Consequently, to have
a vanishing solution we must take Pm+κ(z) = 0 and we only have the trivial
solution.

The so-called inhomogeneous RH problem differs from the homogeneous
one in that Eq. (7.3.4) is replaced by

Φ+(t) = g(t)Φ−(t)+ f (t), t on C (7.3.7)

where f (t) also satisfies a Hölder condition on C . The solution of this problem
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(derived below) is given by

Φ(z) = X (z)[Pm+κ(z)+Ψ(z)], Ψ(z) ≡ 1

2π i

∫
C

f (τ ) dτ

X+(τ )(τ − z)
(7.3.8)

where X (z) is given by Eq. (7.3.6a).
To derive Eq. (7.3.8), we rewrite g(t) as X+(t)/X−(t) using Eq. (7.3.6a),

hence Eq. (7.3.7) becomes

Φ+(t)
X+(t)

− Φ−(t)
X−(t)

= f (t)

X+(t)

Then a special solution Φ
X (z) = Ψ(z) is obtained from the Plemelj formulae,

and the equation for Φ(z) given by Eq. (7.3.8) follows.
Again (thinking ahead to applications) it is useful to find solutions vanishing

at infinity. Because for large z, X (z) = O(z−κ) and Ψ(z) = O(z−1), it follows
that:

(a) Ifκ > 0, then there existκ linearly independent solutions given by Eq. (7.3.8)
with m = −1 (This follows by the same argument as discussed in part (a)
of the homogeneous problem, above.)

(b) If κ = 0, then there exists a unique solution X (z)Ψ(z); here we need to
take Pm+κ(z) = 0.

(c) If κ < 0, then there exists a unique solution X (z)Ψ(z) if and only if the
orthogonality conditions

∫
C

f (τ )τ n−1

X+(τ )
dτ = 0, n = 1, 2, . . . ,−κ (7.3.9)

hold . As in (b), we need to take Pm+κ(z) = 0. These orthogonality conditions
follow from the asymptotic expansion of Ψ(z) for large z and the requirement
that Ψ(z) ∼ O(z−|κ|−1) as z →∞, because X (z) ∼ z|κ|.

Note that

1

2π i

∫
C

f (τ )

X+(τ )
1

τ − z
dτ

= 1

2π i

(−1)

z

∫
C

f (τ )

X+(τ )
dτ

(1− τ/z)

∼ −1

2π i

∫
C

f (τ )

X+(τ )

(
1

z
+ τ

z2
+ τ 2

z3
+ · · · + τ n−1

zn
+ · · ·

)
dτ
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The behavior of Ψ(z) and X (z) is such that all coefficients of z−n , n =
1, 2, . . . , |κ| must vanish in order for Φ(z) → 0 as z→∞.

Example 7.3.2 Solve the RH problem (7.3.7) with g(t) = t/(t2 − 1), f (t) =
(t3 − t2 + 1)/(t2 − t); C encloses the points 0, 1,−1, and Φ(z) vanishes at
infinity.

Because g(t) is analytic inside C and it has one zero and two poles, it follows
from Example 7.3.1 that κ = ind g = −1. The fundamental solution X (z)
satisfies, X+(t)/X−(t) = g(t) (recall X−(z)→ z−κ as z →∞), hence

X+(t) = t

(t − 1)(t + 1)
X−(t), X−(z)→ z as z →∞ (7.3.10)

The solution of Eq. (7.3.10) can be found by inspection: Because t/(t−1)(t+1)
is analytic outside C (C encloses both t = ±1), it follows that the right-hand
side Eq. (7.3.10) is a function; thus it follows that

X+(t) = t

(t − 1)(t + 1)
X−(t) = X̂−(t)

and a solution follows: X+(t) = X̂−(t) = c = constant. To satisfy the
boundary condition X−(z) → z as z → ∞, we take c = 1; thus X+(z) = 1,
X−(z) = (z2 − 1)/z, and

X+(t) = 1, X−(t) = t2 − 1

t

To compute Ψ(z) via Eq. (7.3.8), we need to evaluate the Cauchy integral
associated with f (t)/X+(t) = f (t) = t + 1/[t (t − 1)]. This can also be
done by inspection namely Ψ(z) satisfies the RH problem: Ψ+(t)−Ψ−(t) =
t + 1/t (t − 1), which has the solution

Ψ+(z) = z, Ψ−(z) = − 1

z(z − 1)

where Ψ−(z) → 0 as z → ∞. Of course these formulae can be verified by
contour integration; for example, from Eq. (7.3.8), if z ∈ D+

Ψ+(z) = 1

2π i

∫
C

(
τ + 1

τ(τ − 1)

)
dτ

τ − z
= z

Similarly, we have seen from general considerations that a solution of this
RH problem could exist only if the orthogonality condition (7.3.9) is satisfied
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for n = 1 (because κ = −1). Let us verify this. Evaluating Eq. (7.3.9) with
n = 1, X+ = 1, and f (t) = t + 1

t (t−1) , we find∫
C

(
τ + 1

τ(τ − 1)

)
dτ = 0

Thus the above inhomogeneous RH problem has the unique solution

Φ+(z) = z, Φ−(z) = − z + 1

z2

7.3.2 Open Contours

Let a and b be the endpoints of L , as in Figure 7.3.2. The scalar homogeneous
RH problem for open contours is defined as in Eq. (7.3.4) but now the closed
contour C is replaced by an open smooth contour L . (Sometimes this is called
a discontinuous RH problem because in the RH problem (7.3.4), g(t) could
be thought of as a discontinuous function taking the value zero on a portion
of a closed contour. Similarly, the closed contour problem, discussed in Sec-
tion 7.3.1, is sometimes referred to as a continuous RH problem.) We again
seek a sectionally analytic solution Φ(z) with finite degree at infinity. In some
applications it is useful to find solutions that are not bounded at the endpoints
but which have integrable singularities at these points. Therefore we shall allow
Φ(z) to have such behavior at the endpoints of the contour.

In analogy with Section 7.3.1 we first look for a fundamental solution X (z)
to Eq. (7.3.4). We add the condition that as z approaches c, where c is either of
the two endpoints of L , that is, c = a or c = b, then

X (z) ∼ O(z − c)ν, z → c, |Re ν| < 1 (7.3.11)

The condition that −1 < Re ν follows from the requirement that X (z) be inte-
grable at c; requiring Re ν < 1 is without loss of generality because the general
solution will be obtained from X (z) by multiplication with an arbitrary poly-
nomial.

L
b

a
Fig. 7.3.2. Open contour L
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The function e�(z), where

�(z) = 1

2π i

∫
L

log g(τ ) dτ

τ − z
(7.3.12)

provides a particular solution of the RH problem under consideration. Because
L is open, the function log g(τ ) will satisfy the Hölder condition so long as
g(τ ) does; hence we see that the notion of index is different from that where
L is closed. Later we will define the index on the basis of the properties of
the fundamental solution at infinity. Equation (7.2.13) implies that for g(τ )
satisfying a Hölder condition

�(z)→


− 1

2π i
log g(a) log(z − a)+ �a(z), z → a

1

2π i
log g(b) log(z − b)+ �b(z), z → b

(7.3.13)

where�a(z) and�b(z) are bounded functions tending to definite limits at z = a
and z = b, respectively. Thus

e�(z) =
{

O(z − a)α+i A, z → a

O(z − b)β+i B, z → b
(7.3.14)

where

α + i A ≡ − 1

2π i
log g(a), β + i B ≡ 1

2π i
log g(b) (7.3.15)

and α, A, β, B are real numbers. The fundamental solution X (z) of the RH
problem (7.3.4) on an open contour is defined by

X (z) = (z − a)λ(z − b)µe�(z) (7.3.16)

where λ and µ are integers chosen to satisfy

−1 < λ+ α < 1, −1 < µ+ β < 1 (7.3.17)

Let us summarize the above result: Consider the RH problem

Φ+(t) = g(t)Φ−(t), t on L (7.3.18)

where g(t) satisfies a Hölder condition and is nonzero on L and Φ+, Φ− are
the limits of a sectionally analytic function Φ(z) as z approaches L from the
left and right, respectively. The fundamental solution of this problem X (z) is
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given by Eq. (7.3.16) where the integers λ and µ are defined by Eq. (7.3.17)
and �(z) is given by Eq. (7.3.12). This solution has the following properties:

(i) The boundary values of X (z) are given by

X+(t) =
√

g(t)X (t), X−(t) = X (t)√
g(t)

(7.3.19)

where

X (t) ≡ (t − a)λ(t − b)µe�p(t), �p(t) = 1

2π i

∫
L

log g(τ ) dτ

τ − t
(7.3.20)

and we have used

�±(t) = ±1

2
log g(t)+ 1

2π i

∫
L

log g(τ )

τ − t
dτ

The functions X± satisfy Eq. (7.3.18); the square root appearing in X+(t) is
defined by

√
g(t) = e

1
2 log g(t).

(ii) Because �(z)→ 0 as z →∞

X (z) = O(zλ+µ) as z →∞ (7.3.21)

(iii) From Eqs. (7.3.13)–(7.3.15),

X (z) =
{

O((z − a)λ+α+i A), z → a
O((z − b)µ+β+i B), z → b

(7.3.22)

We note that Eqs. (7.3.17) uniquely determine λ and µ only if α and β are
integers; in this case λ = −α, µ = −β. We call these ends special ends. In
fact, if α and β are not special, then there are two solutions; for example, we
can write α = M + α̂ where M is an integer and 0 < α̂ < 1, in which case
Eqs. (7.3.17) imply that λ+ M = 0 or λ+ M = −1. Similar statements apply
for the case when β is not an integer. If the end b is nonspecial, then X (z)
will be bounded near b if µ+ β > 0, and X (z) will be unbounded near b if
µ+ β < 0; furthermore, if X (z) is bounded near b, it will necessarily be zero
there. Similar statements apply if the end a is nonspecial.

Obviously

Φ(z) = X (z)P(z) (7.3.23)

where P(z) is an arbitrary polynomial, is also a solution of the RH problem
(7.3.18). From Eq. (7.3.22) we see that Φ(z) is bounded near any special end
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and if Φ(z) is bounded near any nonspecial end, then it is zero at this end. If
the degree of P(z) is m, then beacuse X (z) = O(zµ+λ) as z → ∞, we find
that Φ(z) = O(zµ+λ+m) as z →∞.

Having obtained a fundamental solution for the homogeneous RH problem,
the solutions of the inhomogeneous RH problem can be constructed in the same
manner as in Section 7.3.1 (see Eqs. (7.3.7) and (7.3.8)), and is given by

Φ(z) = X (z)[P(z)+Ψ(z)], Ψ(z) ≡ 1

2π i

∫
L

f (τ ) dτ

X+(τ )(τ − z)
(7.3.24)

where again we assume that f (t) satisfies a Hölder condition. Equation (7.2.15)
implies that if X (z) is bounded near a nonspecial end, then Φ(z) is also bounded
near this end (but it is not, in general, zero at this end. Note that if X (z) vanishes,
from Lemma 7.2.2, Ψ(z) will have an integrable singularity that, in general, is
canceled when we multiply by X (z)). The function Φ(z) is also bounded near
a special end c, unless g(c) = 1, that is, λ = 0 or µ = 0, in which case beacuse
X (z) is bounded, Ψ(z) and therefore Φ(z) have logarithmic singularities (see
Eq. (7.2.13)).

In some applications it is important to find those solutions of the inhomo-
geneous RH problem that vanish at infinity. Noting that X (z) = O(zλ+µ) at
infinity, and comparing with the case of the closed contour RH problem where
X (z) = O(z−κ) at infinity, the index of the open contour problem is naturally
defined by

κ = −(λ+ µ) (7.3.25)

The same arguments leading to κ linearly independent solutions for κ ≥ 0, or
the necessity for the additional orthogonality conditions (7.3.9) follow in the
same way as in the case of a closed contour.

Example 7.3.3 Solve the RH problem

Φ+(t)+Φ−(t) = f (t), t on L (7.3.26)

where L is an open contour such as that depicted in Figure 7.3.2. In this case,
g(t) = −1, so that (1/2π i) log g(t) = n + 1/2, where the integer n depends
on the choice of the branch of the logarithm. It does not matter which branch
we choose. (We will see that n = 0 is without loss of generality.) From
Eq. (7.3.12), �(z) = (n + 1

2

)
log z−b

z−a ; hence e�(z) = ( z−b
z−a

)n+1/2
. Equations

(7.3.15)–(7.3.17) imply that α = −n − 1/2, β = n + 1/2, and consequently
λ = n or λ = n + 1; µ = −n or µ = −n − 1. For e�(t) we take some definite
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branch of this function; a cut is chosen along the contour from a to b and we
define e�(z) = ( z−b

z−a

)n
R(z), where

R(z) ≡
(

z − b

z − a

) 1
2

, R−(t) = −R+(t) = −R(t) (7.3.27)

The particular form of the fundamental solution X (z) depends on the require-
ment of boundedness:

(a) Solution unbounded at both ends: λ+ µ = −1 = −κ

X (z) = 1

[(z − a)(z − b)]
1
2

(7.3.28a)

(b) Solution bounded at a (or b), but unbounded at b (or a): λ+ µ = 0 = −κ

X (z) =
(

z − a

z − b

) 1
2

(
or X (z) =

(
z − b

z − a

) 1
2
)

(7.3.28b)

(c) Solution bounded at both ends: λ+ µ = 1 = −κ

X (z) = [(z − a)(z − b)]
1
2 (7.3.28c)

It is clear that the choice of integer n is immaterial, so n = 0 without loss of
generality.

In what follows we consider solutions Φ(z) to the inhomogeneous problem
(7.3.26) such that Φ(z) → 0 as z → ∞. For case (a) the index κ = 1,
the solution Φ(z) will depend on one arbitrary constant, and Φ(z) is given
by Eq. (7.3.24) with P(z) = A0 = constant. Because X = R(z)

z−b (note that
R(z)→ 1 as z →∞), we have

Φ(z) = R(z)

z − b

[
1

2π i

∫
L

τ − b

R(τ )

f (τ ) dτ

τ − z
+ A0

]
, and

Φ(z)→ 0 as z →∞
(7.3.29a)

For case (b) the index κ = 0 and the solution of Eq. (7.3.26) is unique; here
X (z) = (R(z))−1

Φ(z) = 1

2π i R(z)

∫
L

R(τ )
f (τ )

τ − z
dτ (7.3.29b)

and Φ(z)→ 0 as z →∞.



538 7 Riemann–Hilbert Problems

For case (c) the index κ = −1, X = (z − a)R(z), the solution is given by

Φ(z) = (z − a)R(z)

2π i

∫
L

1

R(τ )(τ − a)

f (τ )

τ − z
dτ (7.3.29c)

and Φ(z)→ 0 as z →∞ if and only if the following orthogonality condition
is satisfied, ∫

L

f (τ )

R(τ )(τ − a)
dτ = 0 (7.3.29d)

To compute Φ±(t) we use Eqs. (7.2.3), (7.3.29a–d), and (7.3.27). For ex-
ample, in case (a)

Φ±(t) = ± R(t)

t − b

[
± 1

2

(t − b)

R(t)
f (t)+ 1

2π i

∫
L

τ − b

R(τ )

f (τ )

t − τ
dτ+ A0

]
(7.3.30)

7.3.3 Singular Integral Equations

In this section we discuss how solutions of certain “singular integral equations”
can be reduced to and solved via Riemann–Hilbert problems. First we introduce
some basic notions. It is outside the scope of this book to discuss, in any detail,
the general theory of integral equations. There are numerous texts on this
subject that the reader can consult.

An equation of the form

g(t)φ(t)= f (t)+ λ

∫ b

a
K (t, τ )φ(τ) dτ (7.3.31)

where t lies on a given smooth contour from a to b (usually this is the real axis
from a to b) in which g(t), f (t), and K (t, τ ) are given integrable functions, is
called a linear integral equation for the function φ(t). The function K (t, τ )
is called the kernel. If g(t) = 0 everywhere on the contour from a to b, the
integral equation is said to be of the first kind. If g(t) 
= 0 anywhere on the
contour, then we can divide by g(t) and the equation is said to be of the second
kind.

If K (t, τ ) = 0 for t < τ , then the equation is called a Volterra integral
equation

g(t)φ(t)= f (t)+ λ

∫ t

a
K (t, τ )φ(τ) dτ (7.3.32)

Otherwise the equation is said to be a Fredholm integral equation. For
convenience in the rest of the discussion we assume that g(t) = 1.
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A Volterra equation of the second kind can always be solved by iteration so
long as

∫ b

a

∫ t

a
|K (t, τ )|2 dt dτ <∞ and

∫ b

a
| f (t)|2 dt <∞

Namely, the following series, called the Neumann series, converges for all λ:

φ(t)= f (t)+
∞∑

n=1

λn
∫ t

a
Kn(t, τ ) f (τ ) dτ (7.3.33a)

where Kn is defined iteratively:

Kn(t, τ )=
∫ t

a
Kn−1(t, t ′)K (t ′, τ ) dt ′, n ≥ 2 (7.3.33b)

and K1(t, τ ) = K (t, τ ).
Even in the case of a Fredholm integral equation of the second kind, the Neu-

mann series, that is Eqs. (7.3.33a,b) with the upper integration limit t replaced
by b, converges for sufficiently small λ, provided that

∫ b

a

∫ b

a
|K (t, τ )|2 dt dτ <∞,

∫ b

a
| f (t)|2 dt <∞

In general, this Fredholm equation has a solution so long as λ is not one of a
set of special values, called eigenvalues. This solution is of the form

φ(t)= f (t)+
∫ b

a

D̂(t, τ ; λ)
D(λ)

φ(τ) dτ (7.3.34)

where D̂(t, τ ; λ) and D(λ) are entire functions of the complex variable λ.
The eigenvalues satisfy D(λ) = 0. They are isolated and since D(λ) is entire
only a finite number of them can lie in a bounded region. The function φ(t)
that corresponds to an eigenvalue is called an eigenfunction. In the special
case when K (t, τ ) = K (τ, t), the function K (t, τ ) is said to be symmetric.
There are many further results known when the kernel is symmetric; this is
called Hilbert–Schmidt Theory. When K (t, τ ) = ∑n

j=1 M j (t)N j (τ ), K (t, τ )
is called a degenerate kernel, and the integral equation can be reduced to a
matrix eigenvalue problem.
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An integral equation is usually said to be singular if (a) the contour extends
to infinity, for example, a = −∞ or b = ∞ or both, and/or (b) the kernel is
unbounded. A “weakly singular” kernel is of the form

K (t, τ )= K̂ (t, τ )

(t − τ)α
(7.3.35)

where 0 < Reα < 1 and |K̂ (t, τ )| <∞. The case when (t − τ)α is replaced
by a logarithm, (e.g. log(t − τ), (log(t − τ))−1, etc.) is also weakly singular.
A Cauchy singular kernel has α = 1, and in this case the contour integral is
usually taken to be a principal value integral. For weakly singular kernels,
standard methods will work; perhaps after redefining the kernel of the integral
equation by doing a finite number of iterations (recall in the standard case we
only need

∫ b
a

∫ b
a |K (t, τ )|2 dt dτ < ∞). However, in the case of a Cauchy

singular kernel, the situation is more complicated. Here we only discuss some
of the prototypical cases. An extensive discussion of Cauchy singular integral
equations can be found in Muskhelishvili (1977).

We will now show that the solution of scalar RH problems provides an effec-
tive way of solving certain singular integral equations. We note the following
equivalence: Solving the singular integral equation

a(t)ϕ(t)+ b(t)

π i

∫
L

ϕ(τ)

τ − t
dτ = c(t) (7.3.36)

where a(t), b(t), c(t) satisfy the Hölder condition on L with a ± b 
= 0 on L ,
is equivalent to finding the sectionally analytic function

Φ(z) = 1

2π i

∫
L

ϕ(τ)

τ − z
dτ (7.3.37)

associated with the RH problem

Φ+(t) = g(t)Φ−(t)+ f (t) for t on L; Φ−(∞) = 0,

g(t) ≡ a(t)− b(t)

a(t)+ b(t)
, f (t) ≡ c(t)

a(t)+ b(t)

(7.3.38)

To show that Eq. (7.3.36) reduces to the RH problem (7.3.38), we use the
Plemelj formula for Φ(z), that is,

ϕ(t) = Φ+(t)−Φ−(t),
1

π i

∫
L

ϕ(τ)dτ

τ − t
= Φ+(t)+Φ−(t)
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Substituting these equations in Eq. (7.3.36), we immediately find Eq. (7.3.38).
The converse is also true: If Φ(z) solves the RH problem (7.3.38) with the
boundary condition Φ−(∞) = 0, then ϕ = Φ+ −Φ− solves Eq. (7.3.36) (see
Muskhelishvili, 1977).

A singular integral equation of the form (7.3.36) is usually referred to as
a dominant singular equation. It plays an important role in studying the
solvability of the more general equation

a(t)ϕ(t)+ 1

iπ

∫
L

(
K (t, τ )φ(τ)

τ − t

)
dτ = c(t). (7.3.39)

Writing K (t, τ ) = K (t, t) + (K (t, τ ) − K (t, t)), and calling b(t) = K (t, t)
and F(t, τ ) = 1

iπ (K (t, τ )− K (t, t))/(t − τ), we obtain

a(t)ϕ(t)+ b(t)

π i

∫
L

ϕ(τ)

τ − t
dτ +

∫
L

F(t, τ )ϕ(τ) dτ = c(t) (7.3.40)

Under mild assumptions on K (t, τ ) the kernel F(t, τ ) is a Fredholm kernel. The
study of such equations with F(t, τ ) 
= 0 is more complicated than Eq. (7.3.36)
and is outside the scope of this book. Here we only note that if F(t, τ ) is
degenerate, that is, if F(t, τ ) =∑n

1 M j (t)N j (τ ), then Eq. (7.3.40) can also be
solved in closed form. An example of this follows.

Example 7.3.4 Solve the singular integral equation

(t + t−1)ϕ(t)+ t − t−1

π i

∫
C

ϕ(τ)

τ − t
dτ

− 1

2π i

∫
C
(t + t−1)(τ + τ−1)ϕ(τ ) dτ = 2t2 (7.3.41)

where C is the unit circle.
The Fredholm kernel F(t, τ ) = (t + t−1)(τ + τ−1) is degenerate. According

to the above remark we expect to be able to solve Eq. (7.3.41) in closed form. Let

A ≡ 1

2π i

∫
C
(τ + τ−1)ϕ(τ ) dτ

Then Eq. (7.3.41) yields the dominant singular integral equation

(t + t−1)ϕ(t)+ t − t−1

π i

∫
C

ϕ(τ)

τ − t
dτ = 2t2 + A(t + t−1)
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Using the Plemelj formula, this equation is equivalent to the scalar RH problem

(t + t−1)(Φ+ −Φ−)+ (t − t−1)(Φ+ +Φ−) = 2t2 + A(t + t−1)

or

Φ+(t) = t−2Φ−(t)+ t + A

2
(1+ t−2), Φ−(∞) = 0 (7.3.42)

The analytic function g(t) = t−2 has a second-order pole inside C ; thus from
Eq. (7.3.3) the index κ = ind g= − 2. From Eq. (7.3.6a,b) the fundamental
solution X (z) of the homogeneous RH problem satisfies X−(z)= O(z2) as
z →∞; it turns out that X (z) can be found by inspection:

t2 X+(t) = X−(t)

that is

X+(t) = 1, X−(t) = t2

Because the index is −2, the solution of Eq. (7.3.42) exists (see Eq. (7.3.9),
where in this case f (t) = t + (A/2)(1+ t−2)) if and only if∫

C

[
τ + A

2
(1+ τ−2)

]
dτ = 0,

∫
C

[
τ + A

2
(1+ τ−2)

]
τdτ = 0

The first of these functions is automatically satisfied, and the second equation
above implies that A = 0. Thus from Eq. (7.3.8), using f (t) = t , X+(z) = 1,
and X−(z) = z2

Φ(z) = X (z)

2π i

∫
C

τdτ

τ − z
=
{

z, z inside the circle
0, z outside the circle

Therefore Φ+(t) = t , Φ−(t) = 0, and ϕ(t) = Φ+(t) − Φ−(t) = t . Hence
Eq. (7.3.41) has the unique solution ϕ(t) = t provided that A = 0, which is
indeed the case because from the definition of A

1

2π i

∫
C
(τ + τ−1)ϕ(τ) dτ = 1

2π i

∫
C
(τ + τ−1)τ dτ = 0

Problems for Section 7.3

1. Consider the RH problem that satisfies the same jump condition as that of
Example 7.3.2 discussed in the text, that is

Φ+(t) = t

t2 − 1
Φ−(t)+ t3 − t2 + 1

t2 − t
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but now for the case that the contour C encloses the point 0 and does not
enclose the points 1 and −1.

(a) Show that the index is 1.
(b) Establish that the solution of the homogeneous problem for which

X (z)→ z−1 as z →∞ is

X+(z) = 1

z2 − 1
, X−(z) = 1

z

(c) Show that the general solution of the inhomogeneous problem vanish-
ing at∞ is

Φ+(z) = z + α

z2 − 1
, Φ−(z) = − z + 1

z2
+ α

z

where α is an arbitrary constant.

2. Consider the RH problem that satisfies the same jump condition, as in
Problem 7.3.1 above, but now for the case that the contour C encloses the
points 0, 1, but not -1.

(a) Show that the index is 0.
(b) Establish that the solution of the homogeneous problem for which

X (z)→ 1 as z →∞, is

X+(z) = 1

z + 1
, X−(z) = z − 1

z

(c) Show that the solvability condition is satisfied and that the unique
solution of the inhomogeneous problem vanishing at∞ is

Φ+(z) = z2

z + 1
, Φ−(z) = −1

z

3. Consider the following scalar inhomogeneous RH problem defined on a
finite closed contour C

Φ+(t) = p(t)

q(t)
Φ−(t)+ f (t)



544 7 Riemann–Hilbert Problems

where p(t) and q(t) are polynomials, which do not vanish on C . The
polynomials p(t) and q(t) can always be written in the form

p(z) = p+(z)p−(z), q(z) = q+(z)q−(z)

where p+(z) and q+(z) are polynomials with zeroes enclosed by C , while
p−(z) and q−(z) are polynomials with zeroes in the region outside C .

(a) Let m+ and n+ be the number of zeroes of p+ and q+, respectively.
Show that the associated index of the RH problem is m+ − n+.

(b) Show that the canonical solution X (z)of the homogeneous RH problem
satisfies

q−(t)
p−(t)

X+(t) = p+(t)
q+(t)

X−(t)

X−(z)→ zn+−m+ , z →∞

Note that this RH problem can be solved by inspection because the
left-hand side above is a function, while the right hand side above
is a function.

4. Consider the singular integral equation

(t + t−1)ϕ(t)+ t − t−1

π i

∫
C

ϕ(τ)

τ − t
dτ = 2t2 + α(t + t−1)

where α is a constant and C is the unit circle.

(a) Show that the associated RH problem is given by

Φ+ = t−2Φ− + t + α

2
(1+ t−2)

(b) Establish that the canonical solution X (z) of the corresponding homo-
geneous problem is

X+ = 1, X− = z2

(c) Show that the solvability conditions imply∫
C

[
t + α

2
(1+ t−2)

]
dt = 0,

∫
C

[
t2 + α

2
(t + t−1)

]
dt = 0

and deduce that the above integral equation is solvable if and only if
α = 0. Its unique solution is ϕ(t) = t .
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5. Consider the singular integral equation

(t2 + t − 1)ϕ(t)+ t2 − t − 1

π i

∫
C

ϕ(τ)

τ − t
dτ = 2

(
t3 − t + 1+ 1

t

)

where C is a finite, closed contour that encloses the point 0 but does not
enclose the points 1 and −1.
(a) Show that the associated RH problem is the one considered in Problem

7.3.1.

(b) Deduce that the general solution of this integral equation is

ϕ(t) = t3 + t + 1

t2
+ α(1+ t − t2)

t3 − t

where α is an arbitrary constant.

6. Consider the singular integral equation of Problem 7.3.5, but now in the
case where C encloses 0, 1, and −1. Use the result of Problem 7.3.2 to
deduce that its unique solution is given by

ϕ(t) = 1+ t + t3

t2

7. Show that the singular integral equation

(t2 − 2)ϕ(t)+ 3t

π

∫
C

ϕ(τ)

τ − t
dτ = 2t (t − 2i)(1+ αt)

where α is a constant, and C is a finite closed contour that encloses−i but
does not enclose i, 2i,−2i, is solvable if and only if α = −i . In this case
show that its unique solution is

ϕ(t) = −2i t (t − 2i)

t + 2i

8. Consider the following scalar RH problem on the real axis:

Φ− = Φ+ for |x | > 1

Φ− = (1+ α2)Φ+ for|x | < 1
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with Φ→ 1 as z →∞, where α is a real constant. Show that its solution
is given by

Φ(z) =
(

z − 1

z + 1

)ν

, ν = 1

2π i
log(1+ α2)

7.4 Applications of Scalar Riemann–Hilbert Problems

We shall see that the methods and techniques developed in Sections 7.2 and 7.3
provide effective ways to solve several problems of mathematical and physical
interest.

Example 7.4.1 (The Hilbert Problem) Let D+ denote the interior of the unit
circle C . Solving Laplace’s equation with Dirichlet boundary conditions is
equivalent to solving what is sometimes called the Riemann problem of Dirich-
let form. This consists of finding a function harmonic in D+, continuous in
D+ +C , and satisfying the boundary condition

u(t) = f (t), t on C (7.4.1)

where f (t) is a real, continuous function on C .
We shall map this problem to an appropriate RH problem. In order to apply

the RH theory developed earlier, we assume that f (t) satisfies the Hölder
condition; however, it is clear that the final formula is valid even if f (t) is just
continuous. Let

Φ+(z) = u(x, y)+ iv(x, y)

be a function analytic in D+ such that u(x, y) → u(t) as z → t from D+

(u and v are real functions). The basic idea needed in this problem is to construct
a suitable function analytic in D−, that is, analytic outside the circle. By the
Schwarz reflection principle (Sections 5.6, 5.7), because the function Φ+( 1

z̄ ) is
analytic outside the unit circle, we can write

Φ−(z) = Φ+(1/z̄) (7.4.2)

where the bar denotes the complex conjugate. The function Φ−(z) is indeed
analytic in D−, and on C , Φ−(t) = Φ+(t) = u(t)− iv(t), that is

Φ+(t) = u(t)+ iv(t), Φ−(t) = u(t)− iv(t)

Using these equations, the boundary condition (7.4.1) becomes

Φ+(t)+Φ−(t) = 2 f (t), t on C (7.4.3)
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Thus the Dirichlet problem on the circle formulated above is mapped onto
the RH problem of finding a sectionally analytic function Φ(z) satisfying the
boundary condition (7.4.3). The function Φ(z) must also satisfy the constraint
(7.4.2); in particular, applying Eq. (7.4.2) at infinity, it follows that Φ−(∞) is
bounded, because Φ+(0) is bounded.

The method to find the solution of the RH problem (Eq. (7.4.3)) was given in
Section 7.3. There exist several approaches to satisfying the constraint (7.4.2).
Our approach is direct; that is, we first find the most general solution of
Eq. (7.4.3) that is bounded at infinity, and then we choose the relevant arbi-
trary constants by imposing Eq. (7.4.2).

The fundamental solution of Eq. (7.4.3) satisfies

X+(z) = −X−(z), X−(z)→ 1 as z →∞

We have used the fact that κ = ind(−1) = 0 and the Eqs. (7.3.6a,b). Hence
g(t) = −1 = eiπ+2nπ i , so that

�(z) = iπ + 2nπ i

2π i

∫
C

dτ

τ − z

=
{

iπ + 2nπ i z ∈ D+

0 z ∈ D−

Computing e�(z), we find X+(z) = −X−(z) = −1. The most general solu-
tion of Eq. (7.4.3) bounded at infinity is Φ(z) = X (z)(A0 + Ψ(z)), where
A0 = constant (a “zeroth-order” polynomial) and from Eq. (7.3.8), Ψ(z) =

1
2π i

∫
C

2 f (τ ) dτ
X+(τ )(τ−z) = − 1

iπ

∫
C

f (τ ) dτ
τ−z . Thus

Φ+(z) = 1

π i

∫
C

f (τ ) dτ

τ − z
− A0 (7.4.4)

Next we use Eq. (7.4.2). If we call

F(z) =
∫

C

f (τ ) dτ

τ − z
⇒ F

(
1

z̄

)
= z
∫

C

f (τ ) dτ

τ(τ − z)
= F(z)−

∫
C

f (τ )

τ
dτ

where we have used the fact that f (τ ) is real, τ̄ = 1/τ (recall that τ = eiθ on
C) and dτ = −dτ/τ 2. Thus

Φ+
(

1

z̄

)
= −A0 + 1

iπ

∫
C

f (τ )

τ
dτ − 1

iπ
F(z)
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On the other hand, the solution of the RH problem implies that

Φ−(z) = A0 − 1

iπ
F(z)

Thus Φ+(1/z̄) = Φ−(z) yields

A0 + Ā0 = 1

iπ

∫
f (τ ) dτ

τ
, or

A0 + Ā0

2
= A0R = 1

2π i

∫
C

f (τ )

τ
dτ = 1

2π

∫ 2π

0
f (θ) dθ

and A0I ≡ −B for arbitrary B constant. By combining terms

Φ+(z) = 1

π i

∫
C

f (τ ) dτ

τ − z
− 1

2π i

∫
C

f (τ ) dτ

τ
+ i B (7.4.5)

where B is an arbitrary real constant, we have obtained the solution of the
Dirichlet problem, u(x, y) = Re Φ+(z).

This example can be generalized in several ways.
(a) The boundary condition (7.4.1) can be replaced by the more general

“mixed” boundary condition

α(t)u(t)− β(t)v(t) = γ (t), t on C

In this case, using Φ±(t) = u(t)± iv(t), Eq. (7.4.3) is replaced by

Φ+(t)
(
α(t)+ iβ(t)

2

)
+Φ−(t)

(
α(t)− iβ(t)

2

)
= γ (t), t on C

or

Φ+(t) = −α(t)− iβ(t)

α(t)+ iβ(t)
Φ−(t)+ 2γ (t)

α(t)+ iβ(t)
, t on C

Solving this RH problem (via the method described in Section 7.3) for the
sectionally analytic function Φ(z), which is bounded at infinity and which
satisfies the constraint (7.4.2), yields the solution to the mixed problem on the
circle C .

(b) In principle, the circle C can be replaced by a more general contour.
However, one must first use a conformal mapping to reduce the problem to one
on a circle, whereupon the Schwarz reflection principle can be used, and then
proceed as above.
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(c) The Hilbert problem on a half plane (C is now the real axis) could be
solved by mapping the real axis onto a circle. Alternatively, it can be solved
directly (see also Section 7.4.1 where RH problems on the real axis are discussed
in more detail) by using the fact that if Φ+(z) is analytic in the upper half
z plane, then by the Schwarz reflection principle (Sections 5.6, 5.7)

Φ−(z) = Φ+(z̄) (7.4.6)

is analytic in the lower half complex plane. For example, the solution of the
Dirichlet problem (see Eqs. (7.4.1) and (7.4.3)) on the real axis follows the
same route as that for the circle. As before, the functions X (z) and Φ(z) satisfy
X+(z) = −X−(z) = −1, Φ(z) = X (z)(A0 +Ψ(z)), where

Ψ(z) = − 1

iπ

∫ ∞

−∞

f (τ )

τ − z
dτ

(note that
∫

C is replaced by
∫∞
−∞). Thus

Φ+(z) = −A0 + 1

iπ

∫ ∞

−∞

f (τ )

τ − z
dτ

Φ+(z̄) = − Ā0 − 1

iπ

∫ ∞

−∞

f (τ )

τ − z
dτ ( f (τ ) is real for real τ )

Φ−(z) = A0 − 1

iπ

∫ ∞

−∞

f (τ )

τ − z
dτ

Using Eq. (7.4.6) we have A0 + Ā0 = 0 so that A0R = 0 and A0I is arbitrary:
A0I = −i B for arbitrary B. Hence Φ+(z) is given by

Φ+(z) = 1

π i

∫ ∞

−∞

f (τ ) dτ

τ − z
+ i B (7.4.7)

where B is an arbitrary real constant. We can rewrite this, letting z = x + iy,
as

Φ+(z) = i B + 1

iπ

∫ ∞

−∞

f (τ )((τ − x)+ iy)

(τ − x)2 + y2
dτ

Therefore the solution of the Dirichlet problem u(x, y) = Re Φ+(z) yields the
Poisson formula for the half plane

u(x, y) = 1

π

∫ ∞

−∞

f (τ )y dτ

(τ − x)2 + y2

(see also Eq. (4.6.5)).
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Fig. 7.4.1. Airfoil
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| |

Fig. 7.4.2. Vortex sheet ds

Example 7.4.2 (Planar Wing Theory) The mathematical construction of an
airfoil assumes that a thin envelope of material is wrapped around a mean
camper line (see Figure 7.4.1). The mean line lies halfway between the upper
and lower surfaces of the airfoil and intersects the chord line at the leading and
trailing edges.

Experiments performed by NACA as early as 1929 established that the lifting
characteristics of an airfoil are negligibly influenced by either viscosity or the
thickness function, provided that the ratio of the maximum thickness, tmax, to
the chord length c, that is, tmax/c, is small, and the airfoil is operating at a small
angle of attack (i.e., the angle between the incident flow and the mean camper
line is assumed to be small). This motivated the development of what is known
as thin airfoil theory. In this approximate theory, viscosity is neglected and the
airfoil is replaced by its mean camper line. The flow pattern past the airfoil is
found by placing a vortex sheet (an idealized surface in a fluid in which there is
a discontinuity in velocity across the surface) on the mean line and by requiring
that the mean line be a streamline of this flow.

It can be shown that, according to the law of Biot and Savart, the circum-
ferential velocity induced at a point P by an element of a vortex sheet ds (see
Figure 7.4.2) is given by dV = γ ds/2πr , where γ (s) is the strength of the
sheet per unit length. (It was shown in Section 5.4 that the velocity potential
associated with a point vortex located at z = ζ is �(z) = γ

2π i log(z − ζ ),
where γ /2π is the strength of the vortex. The incremental velocity potential
associated with a varying sheet strength γ (s) ds is d�/dz = γ (s)ds

2π i /(z − ζ ).
The incremental circumferential velocity, dV = γ ds/2πr , follows from this
relationship.) This velocity field is consistent with the assumption of zero vis-
cosity because it is continuous and irrotational everywhere except on the sheet
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o
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α

Fig. 7.4.3. Planar wing

where there is a jump in velocity and the vorticity is infinity. Let V∞ be the
velocity at infinity and let α be the angle of attack. Then it can be shown that
the above flow is uniquely determined provided that the circulation around the
airfoil satisfies the so-called Kutta condition, which implies that γ must be
zero at the trailing edge.

For simplicity we make a further approximation and assume that the wing is
planar, that is, the mean line is a straight line (see Figure 7.4.3).

The velocity due to an element dx of the vortex sheet dx on a point P of the
planar airfoil is dV = γ (x) dx/2π(x0 − x); hence

V = 1

2π

∫ c

0

γ (x) dx

x0 − x

The condition for the mean line to be a streamline is that it must line up with
the impinging flow: V + V∞α = 0 (sinα ∼ α because α is small). Thus the
problem of determining the unknown vortex strength reduces to

1

2π

∫ c

0

γ (x) dx

x − x0
= −αV∞ (7.4.8)

subject to the Kutta condition γ (c) = 0.
We will see that this equation can be solved by the formulae given in Example

7.3.3 of Section 7.3. Let Φ(z) = 1
2π i

∫ c
0

γ (x)
x−z dx ; then by the Plemelj formula

γ (x) = Φ+(x)−Φ−(x) (7.4.9a)

Φ+(x) + Φ−(x) = 2iαV∞ (7.4.9b)

Equation (7.4.9b) is the same RH problem as that of Eq. (7.3.26), where we
identify b = c, a = 0. Following Example 7.3.3, the fundamental solution
bounded at c but not at 0 is X (z)= ( c−z

z )1/2, where we have multiplied X (z)
by (−1)1/2 for convenience. The index κ = 0, so we have a unique solution to
the forced problem Φ(z)→ 0 as |z| → ∞. From Eq. (7.3.24) we find that the
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solution of the RH problem (7.4.9b) bounded at x = c but unbounded at x = 0
is given by

#(z) = X (z)

2π i

∫ c

0

2iαV∞ dx

X+(x)(x − z)
, X+(x) =

√
c − x

x

where the branch cut is taken along the real axis. Thus, taking the limits to the
real axis, we have

Φ±(x) = ±
√

c − x

x

(
1

2π i

∫ c

0

2iαV∞
X+(x ′)(x ′ − x)

dx ′ ± iαV∞√
c−x

x

)

hence using Eq. (7.4.9a)

Φ+(x)−Φ−(x) = γ (x) =
2αV∞

√
c−x

x

π

∫ c

0

dx ′

(x ′ − x)

√
x ′

c − x ′
(7.4.10)

We can transform the integral appearing in Eq. (7.4.10) by letting x = c
2 (1−

cos θ) and x ′ = c
2 (1− cos θ ′), that is

√
c − x

x
=
√

1+ cos θ

1− cos θ
=
√

(1+ cos θ)2

1− cos2 θ
= 1+ cos θ

sin θ

and Eq. (7.4.10) becomes

γ (x) = 2αV∞
π

(
1+ cos θ

sin θ

)
I, I =

∫ π

0

sin2 θ ′ dθ ′

(1+ cos θ ′)(cos θ − cos θ ′)

It can be shown that the integral I = π ; hence

γ (x) = 2αV∞
(1+ cos θ)

sin θ
(7.4.11)

The solution γ (x) satisfies γ (c) = 0 (θ = π ), but γ (and hence the veloc-
ity) becomes infinity at the leading edge (θ = 0). This is a consequence of
neglecting viscosity.

The lift per unit span is given by L = ∫ c
0 ρV∞γ dx , and carrying out the

integral yields

L = 2αρV 2
∞

∫ π

0

(
1+ cos θ

sin θ

)(
c

2
sin θ

)
dθ = παρV 2

∞c
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Example 7.4.3 (A Generalized Abel Integral Equation) We shall show that
the integral equation

α(x)
∫ x

a

ϕ(t) dt

(x − t)µ
+ β(x)

∫ b

x

ϕ(t) dt

(t − x)µ
= γ (x), 0 < µ < 1 (7.4.12)

can be reduced to the classical Abel equation

∫ x

a

Ψ(t) dt

(x − t)µ
= g(x), 0 < µ < 1 (7.4.13)

which can be solved directly. We assume that the real functions α(x), β(x) de-
fined on [a, b] do not vanish simultaneously and that they satisfy a Hölder
condition. Furthermore, it is convenient to assume that γ (x) = (x − a)
(b − x)ε�(x), �(x) real, and ε > 0, where d�

dx (x) satisfies the Hölder con-
dition. We seek a solution in the class

ϕ(x) = η(x)

[(x − a)(b − x)]1−µ−ε , η(x) Hölder (7.4.14)

(Knowledge of the function classes for γ (x) and η(x) are not essential in order
to understand what follows.)

The form of the integrals appearing in Eq. (7.4.12) suggests the introduction
of the analytic function

∫ b
a

ϕ(t) dt
(t−z)µ ; however, this function is O(z−µ) at infinity.

It is convenient to have a function of order O(z−1) at infinity and to define

Φ(z) = R(z)
∫ b

a

ϕ(t) dt

(t − z)µ
, R(z) ≡ [(z − a)(b − z)]

1
2 (µ−1) (7.4.15)

We introduce a branch cut from a to b and we choose the argument of t− z to be
−π as z → x above the cut with a < t < x ; then t− z will have argument π as
z → x below the cut with a < t < x , and t−z has 0 argument when z = x < t .
(A choice of local angles, see Section 2.3, is as follows: t − z = (z − t)e−iπ ,
z − t = reiθ , 0 < θ < 2π , so that on top of the cut t − x = (x − t)e−iπ , and
on the bottom of the cut t − x = (x − t)eiπ .) If we choose R+(x) = R(x),
then R−(x) = e2iπ 1

2 (µ−1)R(x) = −eiπµR(x). (Similarly, a choice of local
angles for f (z) = (z − a)(b − z) = (z − a)(z − b)e−iπ = r1r2ei(θ1+θ2−π)

with 0 ≤ θ1, θ2 < 2π , so on top of the cut R+(x) = [(x − a)(b − x)](µ−1)/2,
and on the bottom R−(x) = e(µ−1)π i [(x − a)(b− x)](µ−1)/2.) Taking the limit
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z → x ± iε

Φ+(x) = R(x)

[
eiµπ

∫ x

a

ϕ(t) dt

(x − t)µ
+
∫ b

x

ϕ(t) dt

(t − x)µ

]

Φ−(x) = −eiµπ R(x)

[
e−iµπ

∫ x

a

ϕ(t) dt

(x − t)µ
+
∫ b

x

ϕ(t) dt

(t − x)µ

]
These equations are the analog of the Plemelj formula for the integral (7.4.15).
They can also be written in the form

∫ x

a

ϕ(t) dt

(x − t)µ
= eiµπΦ+(x)+Φ−(x)

R(x)(e2iµπ − 1)
(7.4.16a)

∫ b

x

ϕ(t) dt

(t − x)µ
= eiµπΦ−(x)+Φ+(x)

R(x)(1− e2iµπ)
(7.4.16b)

Using Eqs. (7.4.16), the integral Equation (7.4.12) reduces to the RH problem

Φ+(x) = β(x)eiµπ − α(x)

α(x)eiµπ − β(x)
Φ−(x)+

(
e2iµπ − 1

)
γ (x)R(x)

α(x)eiµπ − β(x)
(7.4.17)

This RH problem is also supplemented with the boundary conditions (from
Eq. (7.4.15))

Φ(z) = O(z−1), z →∞; Φ(z) = O
(
(z − a)

µ−1
2
)
, z → a;

Φ(z) = O(b − z)
µ−1

2 , z → b
(7.4.18)

Conversely, as in the case of singular integral equations with Cauchy kernels,
it can be shown (Carleman, 1922 a,b) that the RH problem satisfying Eqs.
(7.4.17) and (7.4.18) is equivalent to the integral equation (7.4.12).

The above RH problem can be solved for Φ+, Φ− by the method presented
in Section 7.3; after finding Φ+(t) and Φ−(t), ϕ(t) is found by solving the
classical Abel equation (7.4.16a) (or (7.4.16b), which is really the same as
(7.4.16a) apart from a negative sign) described below.

We briefly sketch the method of solution to Abel’s equation. Write Abel’s
equation in the form

Kµ(Ψ) =
∫ x

a

Ψ(t)

(x − t)µ
dt = g(x), g(a) = 0
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where the operator Kµ (acting on a function f ) is defined as

Kµ( f ) =
∫ x

a

dt

(x − t)µ
f (t)

Consider

K1−µ(Kµ(Ψ)) =
∫ x

a

dx ′

(x − x ′)1−µ

∫ x ′

a

Ψ(t) dt

(x ′ − t)µ
=
∫ x

a
g(x ′)

dx ′

(x − x ′)1−µ

(7.4.19)

We interchange integrals to find on the left-hand side

K1−µ(KµΨ) =
∫ x

a

(∫ x

t

dx ′

(x − x ′)1−µ(x ′ − t)µ

)
Ψ(t) dt

The inside integral can be evaluated exactly, by the change of variables, x ′ =
t + (x − t)u, whereupon∫ x

t

dx ′

(x − x ′)1−µ(x ′ − t)µ
=
∫ 1

0

du

(1− u)1−µ uµ
= π

sinµπ

the latter being a well-known integral. Therefore Eq. (7.4.19) yields∫ x

a
Ψ(t) dt = sinµπ

π

∫ x

a

g(x ′)
(x − x ′)1−µ dx ′

By taking the derivative of this equation, the solution of Abel’s equation (7.4.13)
is given by

Ψ(x) = sinµπ

π

d

dx

∫ x

a

g(x ′) dx ′

(x − x ′)1−µ (7.4.20)

As an illustration of the above approach we consider an equation solved by
Carleman (1922 a):∫ b

a

ϕ(t) dt

|x − t |µ =
∫ x

a

ϕ(t) dt

(x − t)µ
+
∫ b

x

ϕ(t) dt

(t − x)µ
= γ (x), 0 < µ < 1

(7.4.21)

This equation is a special case of Eq. (7.4.12) whereα = β = 1; thus Eq. (7.4.17)
becomes

Φ+(x) = Φ−(x)+ (1+ eµπ i )R(x)γ (x)
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The unique solution of this RH problem, satisfying Eqs. (7.4.18) is found by the
method of Section 7.3.2: see Eqs. (7.3.18) where we note that g(t) = 1 = e2π in

for integer n, and therefore

�(z) = 1

2π i

∫ b

a

log(e2π in)

t − z
dt = n log

(
z − b

z − a

)
Thus

X (z) = (z − a)λ(z − b)µe�(z) = (z − a)λ−n(z − b)µ+n

and hence, λ = n, µ = −n, and λ+µ = 0 = κ (index). The decaying solution
is given by Eq. (7.3.24) with P(z) = 0, X (z) = 1, f (x) = (1 + eµπ i )R(x)
γ (x):

Φ(z) = 1+ eµπ i

2π i

∫ b

a

R(t)γ (t)

t − z
dt (7.4.22)

Using Eq. (7.4.22) to determine Φ+(x) and Φ−(x) (from Eq. (7.2.3±)), and
substituting these values in Eq. (7.4.16a) we find∫ x

a

ϕ(t) dt

(x − t)µ
= γ (x)

2
− cot

(
µπ

2

)
2π

1

R(x)

∫ b

a

R(t)γ (t)

t − x
dt

Solving this Abel equation (by using Eqs. (7.4.13) and (7.4.20)), it follows that
the solution of the singular integral equation (7.4.20) is given by

ϕ(x) = sinµπ

2π

d

dx

∫ b

a

γ (t) dt

(x − t)1−µ

− cos2
(
µπ

2

)
π2

d

dx

∫ x

a

1

(x − t)1−µ
1

R(t)

(∫ b

a

R(τ )γ (τ )

τ − t
dτ

)
dt

Example 7.4.4 (Integral Equations With Logarithmic Kernels) We shall
show that the weakly singular integral equation

α(x)
∫ b

a
log|t − x |ϕ(t) dt − π iβ(x)

∫ x

a
ϕ(t) dt = γ (x) (7.4.23)

where α(x), β(x), and γ (x) satisfy the Hölder condition, can also be reduced
to a RH problem (we also assume that α2 − β2 
= 0).

Associated with Eq. (7.4.23), we consider the function

Φ(z) =
∫ b

a
log

(
1− a − t

a − z

)
ϕ(t) dt (7.4.24a)
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or equivalently

Φ(z) =
∫ b

a
log(t − z)ϕ(t) dt − A log(a − z); A ≡

∫ b

a
ϕ(t) dt (7.4.24b)

We introduce a branch cut from a to b, and (as in Example 7.4.3) we choose as
−π the argument of a− z, as z → x above the cut. (The choice of local angles
is a − z = (z − a)e−iπ , z − a = reiθ , 0 < θ < 2π , and t − z = (z − t)e−iπ ,
z − t = ρeiφ , 0 < φ < 2π , so that arg(t − z) = 0 when z = x < t .) Then as
z → x ± iε, splitting the integral

∫ b
a to

∫ x
a +
∫ b

x and noting that

log(t − x) = log|x − t |e±iπ as z → x ± iε for x > t

log(t − x) = log|x − t | as z → x ± iε for x < t

we have

Φ±(x) =
∫ b

a
log|x − t |ϕ(t) dt ∓ π i

∫ x

a
ϕ(t) dt − A log(x − a)± π i A

(7.4.25±)
These equations are the analog of the Plemelj formulae for the integrals
(7.4.24a,b). Subtracting and adding, they are equivalent to

−2π i
∫ x

a
ϕ(t) dt = Φ+(x)−Φ−(x)− 2π i A (7.4.26a)

2
∫ b

a
log|t − x |ϕ(t) dt = Φ+(x)+Φ−(x)+ 2A log(x − a) (7.4.26b)

Substituting these equations into Eq. (7.4.23), this integral reduces to the RH
problem

Φ+(x) = β(x)− α(x)

β(x)+ α(x)
Φ−(x)+ 2γ (x)+ 2π i Aβ(x)− 2Aα(x) log(x − a)

α(x)+ β(x)
.

(7.4.27)
Equations (7.4.24a,b) also imply that Φ(z) is of order O(z−1) as z →∞ and
it has a certain behavior as z approaches the endpoints. (We usually assume
that ϕ(x) has an integrable singularity at the endpoints and that Φ(z) will be
bounded at x = a and x = b.) After finding Φ(z) satisfying these boundary
conditions using the method of Section 7.3, we obtain ϕ(x), which is given by
(see Eq. (7.4.26a)

−2π iϕ(x) = d

dx
(Φ+(x)−Φ−(x)) (7.4.28)

The solution ϕ(x) depends linearly on the constant A; this constant can be
found by integrating the expression (7.4.28), because A = ∫ b

a ϕ(t) dt .
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7.4.1 Riemann–Hilbert Problems on the Real Axis

In many applications one encounters RH problems formulated on the real axis.
For such problems it turns out that the space of integrable functions is more
convenient to work with than the space of Hölder functions. We shall consider,
in more detail, the set (which is, in fact, a ring) *1 of functions of the form

c +
∫ ∞

−∞
f (x)e−ikx dx, c ∈ C, k ∈ R (7.4.29)

where f (x) is continuous and

f (x) ∈ L1 (7.4.30)

that is,
∫∞
−∞| f (x)| dx exists

Let *1
− denote the subset of *1 consisting of functions of the form c +∫∞

0 f (x)e−ikx dx . Letting k = kR + ikI , it is clear that functions in *1
− are

analytically continuable in the lower half k-complex plane (note that x > 0),
which we denote by π−. Similarly, *1

+ denotes the subset of *1 consisting of
functions of the form c + ∫ 0

−∞ f (x)e−ikx dx , which are analytic in the upper
half k-complex plane (note that x < 0), denoted by π+.

Example 7.4.5 (Integral equations with displacement kernels – also see the
Wiener–Hopf method discussed in Example 7.4.7) We shall show that the in-
tegral equation

ϕ(x)−
∫ ∞

0
g(x − t)ϕ(t) dt = f (x), x > 0 (7.4.31)

where f (x) and g(x) are continuous and belong to the space of integrable
functions L1, can be reduced to a RH problem. We assume that the Fourier
transform of g (see Section 4.5 for the definition of the Fourier transform), which
we denote by Ĝ(k) = ∫∞−∞g(x)e−ikx dx , satisfies the following conditions:
(a) 1 − Ĝ(k) 
= 0 for k ∈ R, and (b) the index of (1 −Ĝ) ≡ ind(1 −Ĝ) = 0,
where

ind(1−Ĝ) = 1

2π i
[log(1−Ĝ)]∞−∞ =

1

2π
[arg(1−Ĝ)]∞−∞ for k ∈ R

We seek a solution ϕ(x) whose Fourier transform belongs to *1.
In order to take the Fourier transform of Eq. (7.4.31), we extend this equation

so that it is valid for all x . Let ϕ̃(x) = ϕ(x) for x > 0 and ϕ̃(x) = 0 for x < 0.
Then Eq. (7.4.31) can be rewritten as

ϕ̃(x)−
∫ ∞

−∞
g(x − t)ϕ̃(t) dt = f (x), x > 0 (7.4.32a)
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For x < 0

ϕ̃(x)−
∫ ∞

−∞
g(x − t)ϕ̃(t) dt = −

∫ ∞

0
g(x − t)ϕ(t) dt = h(x), x < 0

(7.4.32b)
where h(x) is some unknown function. Let

{ϕ̃(x), f̃ (x), h̃(x)} =
{ {0, 0, h(x)} x < 0
{ϕ(x), f (x), 0} x > 0

Equations (7.4.32a,b) can be written as the single equation

ϕ̃(x)−
∫ ∞

−∞
g(x − t)ϕ̃(t) dt = f̃ (x)+ h̃(x), −∞ < x <∞

Denoting by Φ̂,F̂,Ĥ ,Ĝ, the Fourier transforms of ϕ̃, f̃ , h̃, g, respectively, and
taking the Fourier transform of the above equation (using the Fourier transform
of a convolution product) we find

(1−Ĝ(k))Φ̂(k) = F̂(k)+ Ĥ(k) (7.4.33a)

But because ϕ̃ = 0 when x < 0, we have

Φ̂(k) =
∫ ∞

0
ϕ̃(x)e−ikx dx, i.e. Φ̂(k) ∈ *1

−

Similarly, F̂(k) ∈ *1
− and Ĥ(k) ∈ *1

+. Thus Eq. (7.4.33a) defines the RH
problem

Ĥ
+
(k) = (1−Ĝ(k))Φ̂

− − F̂
−
(k), −∞ < k <∞. (7.4.33b)

This is an RH problem where F̂
−

is known (because f (x) is given) and the un-
knowns are Ĥ

+
and Φ̂

−
. To connect with the previous notation, we will denote

the unknown Ĥ
+

as Φ̂
+

. Because we have so far assumed that ind(1−Ĝ) = 0,
the solution of this RH problem vanishing at infinity is unique. Equation (7.4.34)
can be solved by the formulae developed in Section 7.3 with the “closed” con-
tour now being L = (−∞,∞). We also assume thatĜ(k) and F̂(k) satisfy the
Hölder condition (which is not guaranteed in the space *1). In particular, the
fundamental solution satisfies

X̂+(k) = (1−Ĝ(k))X̂−(k), X̂±(∞) = 1, −∞ < k <∞,

and it is given (see Eq. (7.3.6a,b)) by

X̂(k) = exp

[
1

2π i

∫ ∞

−∞

log(1−Ĝ(τ ))dτ

τ − k

]
, k ∈ C.
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The solution to the nonhomogeneous problem is given by Eq. (7.3.8) where
P(z) = 0 and f (t) = −F̂

−
(t), that is,

Φ̂(k) = −X (z)

2π i

∫ ∞

−∞

F̂
−
(τ ) dτ

X+(τ )(τ − k)
, k ∈ C.

Thus the solution ϕ(x) to Eq. (7.4.31) is obtained by finding Φ̂
±
(k) and then

taking the inverse Fourier transform of Φ̂
−
(k).

We also note that an extensive theory for equations of the form (7.4.31)
has been developed in Gohberg and Krein (1958), including important results
involving systems of equations of the form (7.4.31) where φ and f are vectors
and g a matrix. (We discuss the matrix case in Section 7.7.) In connection with
such scalar equations these authors have considered the following factorization
problem: Given 1 − Ĝ(k) ∈ *1 and 1 − Ĝ 
= 0, find Ĝ

± ∈ *1
± such that

(the analysis of Gohberg and Krein does not require Ĝ to satisfy a Hölder
condition!)

(1−Ĝ)(k) = η̂+(k) η̂−(k), η̂±(∞) = 0, −∞ < k <∞.

(7.4.34)
A factorization is called proper if either η̂+(k) 
= 0 in π+ or if η̂−(k) 
= 0 in
π−. A factorization is called canonical if both η̂±(k) 
= 0 in π±. They show
that (1−Ĝ) admits a canonical factorization if and only if

(1−Ĝ(k)) 
= 0 and ind (1−Ĝ) = 0, −∞ < k <∞.

Furthermore, the canonical factorization is the only proper one. These results
are consistent with the RH theory presented here. Indeed, because η̂− 
= 0 in
π−, it follows that (η̂−)−1 is analytic in π− and Eq. (7.4.34) can be written as

X+(k) = (1−Ĝ)−1(k)X−(k) on −∞ < k <∞, and X±(±∞) = 1

where

X+(k) = (η+(k))−1, and X−(k) = η−(k)

Furthermore, because ind(1−Ĝ) = 0, the solutions (found by taking the log-
arithm and using the Plemelj formulae) X+(k) and X−(k) are unique.

Actually, one can go further. Suppose ind(1 −Ĝ(k)) = κ; then the unique
factorization into nonvanishing functions η±(k) analytic for Im k 
= 0 is given
by

η+(k) = m(k)

(
k + i

k − i

)κ

η−(k) on −∞ < k <∞
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where we define m(k)= (1−Ĝ(k)). We will show below that the index of the
function m(k)

(
k+i
k−i

)κ
is zero, and therefore the solution to this RH problem can

be readily found by taking the logarithm and using the Plemelj formulae.
It is significant that the case of nonzero index has a nice interpretation in terms

of the original integral equation. It can be shown that if κ > 0 there exists
a κ-dimensional family (κ linearly independent solutions) of homogeneous
solutions to Eq. (7.4.31):

ϕ(x)−
∫ ∞

0
g(x − t)φ(t) dt = 0

If κ < 0, there exists a |κ|-dimensional family of solutions to the adjoint prob-
lem

Ψ(x)−
∫ ∞

0
g(t − x)Ψ(t) dt = 0

where, in addition, there needs to be supplemented |κ| conditions of the form∫ ∞

0
f (t)Ψ(t) dt = 0

corresponding to each of the |κ| linearly independent solutions Ψ(t).

At this point it is convenient to discuss a more general RH problem on the
real axis that arises frequently in applications which is not only associated with
integral equations such as Eq. (7.4.31). Consider

Φ+(k) = m(k)Φ−(k)+ f (k) on −∞ < k <∞

where we wish to find the sectionally analytic function Φ(k) analytic for
Im k > 0 and Im k < 0, satisfying the above boundary condition on the real k
axis. We look for solutions Φ that are bounded at infinity, usually we specify
m(±∞) = 1, f (±∞) bounded (usually f (±∞) = 1), assume that m(k) and
f (k) satisfy Hölder conditions, m(k) 
= 0 on the real axis, and that the index

ind(m(k)) = 1

2π i
[log m(k)]∞−∞ =

1

2π
[arg m(k)]∞−∞ = κ

First we find the fundamental solution of the homogeneous problem

X+(k) = m(k)X−(k) on −∞ < k <∞

where X±(∞) = 1. The process is similar to those used for the closed contour,
except that the factor multiplying m(k) must be modified to achieve a zero
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index. (Previously, we used k−κ , which is not acceptable in this case because
k = 0,∞ now lie on the contour.) We note that ind

(
k−i
k+i

) = 1. This follows
from the argument principle (Thm. 4.4.1) or

ind

(
k − i

k + i

)
= 1

2π i

[
log

k − i

k + i

]∞
−∞

= 1

2π i

[
log

r1eiθ1

r2eiθ2

]∞
−∞

= 1

2π i
(θd(∞)− θd(−∞))

= 1

where θd = θ1 − θ2. It is useful to take local angles to be −π/2 ≤ θ1 < 3π/2
and −π/2 ≤ θ2 < 3π/2 (or any angles for which log

(
k−i
k+i

)
does not have a

branch cut on the real axis). Thus ind
((

k−i
k+i

)−κ)= − κ and we rewrite the
homogeneous problem as

X+(k) =
((

k − i

k + i

)−κ
m(k)

)(
k − i

k + i

)κ

X−(k) on −∞ < k <∞

so that the first factor in the right-hand side of this equation has zero index.
Taking the logarithm of this equation

log X+(k)− log

((
k − i

k + i

)κ

X−(k)
)

= log

((
k − i

k + i

)−κ
m(k)

)
on −∞ < k <∞

Using the Plemelj formulae yields the fundamental homogeneous solution

X+(k) = e�
+(k)

X−(k) =
(

k + i

k − i

)κ

e�
−(k)

where

�(k) = 1

2π i

∫ ∞

−∞

log
((

�−i
�+i

)−κ
m(�)

)
�− k

d�

We see that if κ < 0, then X−(k) has a pole of order |κ| at k = −i ; hence
X−(k) is not analytic for Im k < 0, and there is no solution to the homogeneous
problem satisfying the analyticity requirements.
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Next we solve the forced problem, Φ+ = mΦ− + f by using m = X+/X−,
which leads to

Φ+(k)
X+(k)

− Φ−(k)
X−(k)

= f (k)

X+(k)
on −∞ < k <∞.

The forced solution follows from the Plemelj formulae. For κ ≥ 0

Φ(k) = X (k)

[
1

2π i

∫ ∞

−∞

f (�)

X+(�)(�− k)
d�+ Pκ(k)

(k + i)κ

]
where Pκ(k) is a polynomial of degree κ; Pκ(k) = a0 + a1k + a2k2 + · · · +
aκkκ . Note that because X+(k) = e�

+(k) and X−(k) = ( k+i
k−i

)κ
e�

−(k), we see
that for κ ≥ 0 the above expression for Φ(k) is analytic for Im k > 0 and
Im k < 0 and bounded at infinity for large k. Thus when κ ≥ 0 we have a
solution with κ + 1 arbitrary constants.

On the other hand, when κ < 0 there is in general no solution. With suitable
extra conditions added, the most general solution to the forced problem is given
by

Φ(k) = X (k)

[
1

2π i

∫ ∞

−∞

f (�)

X+(�)�− k)
d�+ c

]
where c is an appropriate constant (determined below), and X±(k) are those
obtained above. This formula leads to Φ−(k) having a pole of order |κ| at
k = −i , which can be removed by choosing c to be

c = −1

2π i

∫ ∞

−∞

f (k)

X+(k)(k + i)
dk

and requiring the supplementary conditions

1

2π i

∫ ∞

−∞

f (�)

X+(�)(�+ i)m
d� = 0, m = 2, 3, . . . , |κ| + 1

These conditions follow from the Taylor expansion of 1/(�− k) for k near−i ,
that is with k̂ = k + i

1

�+ i − k̂
= 1

�+ i

(
1+ k̂

�+ i
+ (k̂)2

(�+ i)2
+ · · ·

)
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and requiring boundedness of the solution. Note also that if we require Φ(k)→
0 as k →∞, with f (∞) = 0, then: for κ < 0, c = 0, Pκ(k) = 0 and we need
to have the supplementary conditions satisfied for m = 1, 2, 3, . . . , |κ|+ 1; for
κ = 0, Pκ(k) = 0 and for κ > 0 we take aκ = 0 in Pκ(k).

Example 7.4.6 (The Fourier and Radon transforms) The Radon transform is
defined by

q̃(k, p) =
∫

l
q(x1, x2) dτ

where the integral is taken along a line l with direction determined by the unit
vector k = ( 1√

1+k2 ,
k√

1+k2

)
, at a distance p from the origin, and τ is a parameter

on this line (see Figure 7.4.4).
This transform plays a fundamental role in the mathematical formulation of

computerized tomography. By computerized tomography (CT), we mean the
reconstruction of a function from knowledge of its line integrals, irrespective
of the particular field of application. However, the most prominent application
of CT is in diagnostic radiology. Here a cross section of the human body is
scanned by a thin X-ray beam whose intensity loss is recorded by a detector
and processed by a computer to produce a two-dimensional image that in turn
is displayed on a screen.

A simple physical model is as follows (see Figure 7.4.5). Let f (x1, x2) be
the X-ray attenuation coefficient of the tissue at the point x = (x1, x2). This
means that X-rays traversing a small distance �τ along the line l suffer the
relative intensity loss

�I

I
= − f (x1, x2)�τ

p

l

x

x

1

2

Fig. 7.4.4. Line l, distance p
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Source

Detector

Fig. 7.4.5. Simple physical model of CT

Let I0 and I1 be the initial and final intensity of the beam, before and after
leaving the body, respectively. In the limit �τ → 0 it follows from the above
equation that

I1

I0
= e−

∫
l

f (x1,x2) dτ

that is, the scanning process determines an integral of the function f (x1, x2)

along each line l. Given all these integrals, one wishes to reconstruct the
function f .

Let k be a unit vector along l and let k⊥ be the unit vector orthogonal to k,
that is, k⊥ = (− k√

1+k2 ,
1√

1+k2

)
. Then any point x = (x1, x2) can be written

as x = pk⊥ + τk, or x1 = (τ − pk)/
√

1+ k2 and x2 = (τk + p)/
√

1+ k2.
Note that for fixed p, as τ varies, x moves along the line l as depicted in Figure
7.4.4. Therefore the Radon transform can also be written as

q̃(k, p) =
∫ ∞

−∞
q

(
τ − pk√

1+ k2
,
τk + p√

1+ k2

)
dτ

Next we show how the reconstruction of functions via the classical Fourier
transform and the Radon transform can be viewed as RH problems. More
generally, we mention that in recent years a new method has been discovered
(see, e.g., Ablowitz and Clarkson, 1991; Ablowitz and Segur, 1981; Fokas and
Zakharov, 1993) for solving certain nonlinear PDEs. This method, which is
called the inverse scattering transform (IST), can be thought as a nonlinear
version of the transform methods discussed in Chapter 4. For example, the
Fourier transform has a certain nonlinear version that can be used to solve
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several equations of physical interest such as the Korteweg–deVries equation,
the nonlinear Schrödinger equation, and others. We will discuss this further
in Section 7.7. Similarly, the Radon transform has a nonlinear version that
can be used to solve a special case (a 2 + 1 dimensional reduction) of the
so-called self-dual Yang–Mills equation. Both of these nonlinear transforms
can be derived by using the analytic properties of solutions of certain linear
eigenvalue problems and then formulating appropriate RH problems. These
eigenvalue problems, appropriately simplified, can also be used to derive the
corresponding linear transforms. This is interesting for both conceptual and
practical considerations. Conceptually, it unifies the RH theory and the theory
of linear transforms by establishing that in some sense the latter is a special case
of the former. Practically, it also provides constructive approaches to deriving
linear transforms.

First we illustrate the approach for the classical Fourier transform. Then we
derive the Radon transform.

7.4.2 The Fourier Transform

Consider the linear differential equation

µx − ikµ = q(x), q → 0 as |x | → ∞, −∞ < x <∞, k ∈ C

(7.4.35)

where µx = ∂µ/∂x , and assume that q and qx are integrable:
∫∞
−∞|q| dx <∞

and
∫∞
−∞|qx | dx < ∞, that is, q and qx belong to L1. We define a solution

µ(x, k) of Eq. (7.4.35), which is bounded for all k ∈ C. Let µ be defined by

µ(x, k) =
{
µ+(x, k), kI ≥ 0,

µ−(x, k), kI ≤ 0,
k = kR + ikI

where µ+ and µ− are the following particular solutions of Eq. (7.4.35)

µ+(x, k) =
∫ x

−∞
q(ξ)eik(x−ξ) dξ (7.4.36a)

µ−(x, k) = −
∫ ∞

x
q(ξ)eik(x−ξ) dξ (7.4.36b)

which are obtained by direct integration of Eq. (7.4.35). We see that µ+ is
analytic in the upper half plane (x − ξ > 0; kI > 0), while µ− is analytic in
the lower half plane (x − ξ < 0; kI < 0). Furthermore, the large x behavior of
both µ+ and µ− is uniquely determined by q̂(k), which is defined by

q̂(k) ≡
∫ ∞

−∞
q(x)e−ikx dx, k ∈ R (7.4.37)
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Indeed,

lim
x→−∞

(
e−ikxµ−

) = −q̂(k), lim
x→∞

(
e−ikxµ+

) = q̂(k) (7.4.38)

Equation (7.4.37) defines q̂ in terms of q . We now want to invert this relation-
ship. This problem can be solved in an elementary way because q̂(k) is the
Fourier transform of q(x). However, we shall use instead a method that can
also be used in other more complicated cases. Namely, we shall formulate a
(RH) problem. Subtracting Eq. (7.4.36a,b), we find

µ+(x, k)− µ−(x, k) = eikx q̂(k), k ∈ R (7.4.39a)

Equations (7.4.36a,b), using integration by parts, imply

µ = O

(
1

k

)
, as k →∞ (7.4.39b)

Equations (7.4.39), with µ → 0 as k →∞, define an elementary RH problem
for the sectionally holomorphic functionµ(x, k). Its unique solution is given by

µ(x, k) = 1

2π i

∫ ∞

−∞

ei�x q̂(�)

�− k
d�, k ∈ C (7.4.40)

Given q̂(�), Eq. (7.4.40) yields µ(x, k), which then implies q(x) through
Eq. (7.4.35). An elegant formula for q can be obtained by comparing the
large k asymptotics of Eqs. (7.4.35) and (7.4.40). Equation (7.4.35) implies
q = −i limk→∞(kµ), while Eq. (7.4.40) yields

lim
k→∞

(kµ) = − 1

2π i

∫ ∞

−∞
eikx q̂(k) dk

Hence

q(x) = 1

2π

∫ ∞

−∞
eikx q̂(k) dk (7.4.41)

Equations (7.4.37) and (7.4.41) are the usual formulae for the direct and inverse
Fourier transform.

7.4.3 The Radon Transform

In this subsection we consider the linear differential equation

µx1 + kµx2 = q(x1, x2), −∞ < x1 <∞, −∞ < x2 <∞, k ∈ C

(7.4.42)
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where µx1 = ∂µ

∂x1
, µx2 = ∂µ

∂x2
, and |q(x1, x2)| < c(1 + |x |)−(2+ε), where |x | =√

x2
1 + x2

2 , c is a constant, and ε > 0. As before, we will define a suitable
solutionµ(x1, x2, k) of Eq. (7.4.42). Letµ+ andµ− be the following particular
solutions of Eq. (7.4.42)

µ±(x1, x2, k) = ± 1

2π i

∫
R2

q(y1, y2) dy1 dy2

(x2 − y2)− k(x1 − y1)
, k ∈ C

±, Im k 
= 0

(7.4.43)
where the integral

∫
R2 is taken over the entire plane. To derive Eqs. (7.4.43), it

is convenient to define the associated Green’s function

Gx1 + kGx2 =
1

(2π)2

∫
R2

ei(x1ξ1+x2ξ2) dξ1 dξ2 = δ(x1)δ(x2) Im k 
= 0

(7.4.44)
where we have used δ(x1) = 1

2π

∫
R eix1ξ1 dξ1. Thus

G(x1, x2, k) = 1

i(2π)2

∫
R2

ei(x1ξ1+x2ξ2)

ξ1 + kξ2
dξ1 dξ2 (7.4.45)

Using contour integration to evaluate the above integral, it follows that for
Im(k) 
= 0

G = sgn Im(k)

2π i(x2 − kx1)
(7.4.46)

Using the Plemelj formulae and contour integration to evaluate the limit of the
integrals (7.4.43) as k → kR ± i0, it follows that

µ±(x1, x2, k) = ± 1

2π i

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

q(y1, y2)

(x2 − y2)− k(x1 − y1)

+ 1

2

(∫ x1

−∞
−
∫ ∞

x1

)
q (y1, x2 − k(x1 − y1)) dy1, k ∈ R

where a principal value integral is assumed for one of the integrals. Subtracting
the above equations, we obtain

(µ+ − µ−) (x1, x2, k) = 1

iπ

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

q(y1, y2)

(x2 − y2)− k(x1 − y1)
,

k ∈ R (7.4.47)
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The right-hand side of this equation can be written in terms of the Radon
transform of the function q(x1, x2) defined by

q̃(k, p) =
∫ ∞

−∞
q

(
τ − pk√

1+ k2
,
τk + p√

1+ k2

)
dτ (7.4.48)

Indeed, changing variables from (y1, y2) to (p′, τ ′) where

y1 = τ ′ − p′k√
1+ k2

, y2 = τ ′k + p′√
1+ k2

(7.4.49)

and using Eq. (7.4.47) and the Jacobian of the transformation

J =

∣∣∣∣∣∣∣det


∂y1

∂τ ′
∂y2

∂τ ′
∂y1

∂p′
∂y2

∂p′


∣∣∣∣∣∣∣ = 1

it follows that

µ+(x1, x2, k)− µ−(x1, x2, k) = 1

iπ

∫ ∞

−∞

q̃(k, p′) dp′

x2 − kx1 − p′
√

1+ k2
,

k ∈ R (7.4.50a)

Equation (7.4.43) implies that

µ = O

(
1

k

)
, k →∞ (7.4.50b)

hence Eqs. (7.4.50a,b) define an elementary RH problem for the sectionally
analytic function µ(x1, x2, k). Its unique solution is

µ(x1, x2, k) = 1

2π i

∫ ∞

−∞

dk ′

k ′ − k

(
1

iπ

∫ ∞

−∞

q̃(k ′, p′) dp′

x2 − k ′x1 − p′
√

1− k ′2

)
,

Im k 
= 0 (7.4.51)

Comparing the large-k asymptotics of Eqs. (7.4.42), (7.4.43), and (7.4.51), it
follows that

q = lim
k→∞

∂

∂x2
(kµ)
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or

q(x1, x2) = 1

2π2

∂

∂x2

∫ ∞

−∞
dk
∫ ∞

−∞

q̃(k, p)

x2 − kx1 − p
√

1+ k2
dp, k ∈ R

(7.4.52)
Equations (7.4.48) and (7.4.52) are the usual direct and inverse Radon trans-
forms.

Example 7.4.7 (The Wiener–Hopf Method) In this example we consider the
so-called Sommerfeld half-plane diffraction problem; that is, we are interested
in obtaining the reflected and diffracted acoustic wave fields generated by a
plane wave incident on a semiinfinite plane. This problem is prototypical and
appears in several physical applications.

The incident wave is given by ϕ̃I = ϕI eiλt = exp[−iλ(x cos θ+y sin θ)]eiλt ,
−π

2 < θ < π
2 . The total field, ϕ̃T , can be thought to be the sum of the potential

ϕ̃I due to the incident wave (in the absence of the plane), and the potential ϕ̃ due
to the disturbance produced by the presence of the plane, that is, ϕ̃T = ϕ̃ + ϕ̃I .
Both ϕ̃T and ϕ̃I satisfy the linear wave equation, so it follows that ϕ̃ = ϕeiλt and
ϕ̃T = ϕT eiλt also satisfy this equation, which leads to the so-called reduced
wave equation or Helmholtz equation for ϕ; namely, 2ϕ̃T = 2ϕ̃I = 0,
where 2 = ∂2

∂x2 + ∂2

∂y2 − ∂2

∂t2 , and therefore

∇2ϕ + λ2ϕ = ϕxx + ϕyy + λ2ϕ = 0 (7.4.53)

Next, we formulate the boundary conditions satisfied by ϕ.
(a) In this physical problem, ϕ̃ represents the velocity potential of an acoustic

wave field and ∂ϕ̃/∂y represents the vertical velocity. The normal velocity on
the plate must vanish; hence

∂ϕT
∂y (x, 0) = 0 for x ≤ 0, thus on the plate

∂ϕ

∂y

∣∣∣∣
y=0

= −∂ϕI

∂y

∣∣∣∣
y=0

y

x

II

I III
θ

ϕI

semi-infinite
plate

Fig. 7.4.6. Sommerfeld half-plane diffraction problem
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hence,

ϕy(x, 0) = iλ sin θe−iλx cos θ for −∞ < x ≤ 0 (7.4.54)

(b) We look for a solution in which the normal velocity
∂ϕT
∂y (x, 0) is conti-

nuous for all x , but ϕT (x, 0) is continuous only for positive x , that is,

ϕy(x, 0) is continuous for −∞ < x <∞
ϕ(x, 0) is continuous for 0 < x <∞ (7.4.55)

(c) At infinity, ϕ satisfies a radiation condition, which means that

ϕ ∼ ce−iλr as r →∞ (7.4.56)

so that ϕ̃ ∼ ce−iλ(r−t) consists of outgoing waves (r2 = x2 + y2).
(d) At the edge of the plate, ϕ̃T and ϕ̃ are allowed to have integrable singu-

larities, which allows energy in the wave field to remain finite.
We shall show that the solution of the reduced wave equation (7.4.53) satis-

fying these boundary conditions can be obtained by solving a RH problem. The
method of solving this type of problem is usually referred to as the Wiener–Hopf
method. It is similar to the method used in Example 7.4.5. Equation (7.4.53) is
solved by a Fourier transform (see also Sections 4.5–4.6) and then the bound-
ary conditions (7.4.54)–(7.4.56) are used to determine the relevant regions of
analyticity. This leads to a RH problem, which can be solved uniquely after
taking into consideration the edge conditions.

Taking the x-Fourier transform of Eq. (7.4.53)

Φ̂(k, y) =
∫ ∞

−∞
ϕ(x, y)eikx dx (7.4.57)

we find (note that we have replaced k by −k in the definition of the Fourier
transform)

d2Φ̂
dy2

− γ 2Φ̂ = 0, γ = (k2 − λ2)
1
2 = (k − λ)

1
2 (k + λ)

1
2 (7.4.58)

We define the multivalued function γ in such a way that γ → |k| as k →∞.
In particular, we shall take the branch cut associated with (k+ λ)1/2 to be from
−∞ to−λ, and define (k+λ)1/2 for real κ to be the limit of the analytic function
(k + λ)1/2 as k approaches the negative real axis from above. Similarly, the
branch cut of (k−λ)1/2 is from λ to∞, and (k−λ)1/2 for real k is the limit of the
analytic function (k − λ)1/2 as k approaches the positive real axis from below.
In this sense, the functions (k + λ)1/2 and (k − λ)1/2 are and functions,
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respectively. (Note: Convenient local angles are given by (k − λ) = r1eiθ1 for
−2π ≤ θ1 < 0, and (k + λ) = r2eiθ2 for −π ≤ θ2 < π .)

The potential ϕ is discontinuous at y = 0; hence Φ̂ changes form at y = 0

Φ̂(k, y) =
{

A1(k)e−γ y + B1(k)eγ y, y > 0
A2(k)e−γ y + B2(k)eγ y, y < 0

The requirements of boundedness as |y| → ∞ and of the radiation condition
can be used to show that A2 = B1 = 0. Indeed, for |k| > |λ|, γ is real and
positive, thus boundedness as |y| → ∞ implies A2 = B1 = 0. For |k| < |λ|,
γ is imaginary and although both exponentials are bounded, only one of them
is consistent with the radiation condition (7.4.47). Thus

Φ̂(k, y) =
{

A1(k)e−γ y, y > 0
B2(k)eγ y, y < 0

The continuity of ϕy (i.e., Eq. (7.4.55a)) implies A1(k) = −B2(k) = A(k).
Hence

Φ̂(k, y) =
{

A(k)e−γ y, y > 0
−A(k)eγ y, y < 0

(7.4.59)

As in Example 7.4.5, we see that the definitions

Φ̂
+
(k, y) =

∫ ∞

0
ϕ(x, y)eikx dx, Φ̂

−
(k, y) =

∫ 0

−∞
ϕ(x, y)eikx dx

(7.4.60)
imply that Φ̂

+
(k, y) and Φ̂

−
(k, y) are analytically extendible into the upper

and lower half k planes, respectively. Continuity of ϕ(x, 0) for positive x , and
continuity of ϕy(x, 0) for all x (i.e., Eqs. (7.4.55)) imply

Φ̂
+
(k, 0+) = Φ̂

+
(k, 0−) ≡ Φ̂

+
(k, 0)

Φ̂
+′
(k, 0+) = Φ̂

+′
(k, 0−) ≡ Φ̂

+′
(0)

Φ̂
−′
(k, 0+) = Φ̂

−′
(k, 0−) ≡ Φ̂

−′
(0)

where prime denotes the derivative with respect to y. Since ϕ(x, y) can be dis-
continuous across y = 0 for−∞ < x < 0, we have Φ̂

−
(k, 0+) 
= Φ̂

−
(k, 0−).

Note that

Φ̂
+
(k, 0)+ Φ̂

−
(k, 0+) = lim

y→0+

[∫ ∞

0
ϕeikx dx +

∫ 0

−∞
ϕeikx dx

]
= lim

y→0+
#̂(k, y) = A(k) (7.4.61a)
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and similarly, we find

Φ̂
+
(k, 0)+ Φ̂

−
(k, 0−) = lim

y→0−
Φ̂(k, y) = −A(k) (7.4.61b)

Φ̂
+′
(k, 0)+ Φ̂

−′
(k, 0) = lim

y→0

∂Φ̂
∂y

(x, y) = −γ A(k) (7.4.61c)

The functions Φ̂
±′
(k, 0) are analytic in the upper/lower half planes; the deriva-

tive in y does not affect the analyticity in k.
We now show that Eq. (7.4.61c) actually defines a RH problem. Indeed, sub-

tracting Eqs. (7.4.61a,b) it follows that 2A(k) = Φ̂
−
(k, 0+)−Φ̂

−
(k, 0−), that

is, A(k) is analytic in the lower half k-complex plane. Also from Eq. (7.4.54)
Φ−′(k, 0) can be computed

Φ̂
−′
(k, 0) =

∫ 0

−∞
eikx iλ sin θe−iλ cos θ dx = λ sin θ

k − iε − λ cos θ

Note for convergence of the integral we assume k is slightly extended into the
lower half plane: k → k − iε for ε > 0. Therefore, calling Ψ−(k) ≡ A(k)

and Ψ+(k) ≡ Φ̂
+′
(k, 0), Eq. (7.4.61c) defines the RH problem on the “closed

contour” L : −∞ < k <∞:

Ψ+(k) = −γΨ−(k)− λ sin θ

k − iε − λ cos θ
(7.4.62)

Writing γ as (k + λ)1/2(k − λ)1/2, and dividing by (k + λ)1/2, it follows that

Ψ+(k)
(k + λ)1/2

= −(k − λ)
1
2 Ψ−(k)− λ sin θ

(k + λ)
1
2 (k − iε − λ cos θ)

(7.4.63)

The function 1
(k+λ)1/2 , as mentioned earlier, is analytic in the upper half plane

(a function), and the function (k − λ)1/2 is analytic in the lower half plane
(a function). Calling

Ψ+(k)
(k + λ)1/2

= µ+(k) and − (k − λ)1/2 Ψ−(k) = µ−(k)

we see that Eq. (7.4.63) is now a standard RH problem for which the
method of Section 7.3 applies. In fact it can be solved “directly.” Note that
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[(k + λ)1/2(k − iε − λ cos θ)]−1 can be written as the sum of

1

(k − iε − λ cos θ)

[
1

(k + λ)
1
2

− 1

(λ+ 2iε + λ cos θ)
1
2

]
and

1

(k − iε − λ cos θ)(λ+ 2iε + λ cos θ)
1
2

which are (the apparent singularity at k = iε + λ cos θ cancels) and
functions of k, respectively. Therefore

Ψ+(k)

(k + λ)
1
2

= − λ sin θ

(k − iε − λ cos θ)

×
[

1

(k + λ)
1
2

− 1

(λ+ 2iε + λ cos θ)
1
2

]
(7.4.64a)

(k − λ)
1
2 $−(k) = − λ sin θ

(k − iε − λ cos θ)(λ+ 2iε + λ cos θ)
1
2

(7.4.64b)

Having obtained Ψ−(k), that is, A(k) in Eq. (7.4.59), then the definition of the
Fourier transform implies

ϕ(x, y) = sgn(y)

2π

∫ ∞

−∞
A(k)e−γ |y|e−ikx dk

and hence from the definition A(k) = Ψ−(k)

ϕ(x, y) = − sgn(y)λ sin θ

2π

× lim
ε→0+

∫ ∞

−∞

e−ikx−γ |y|

(k − λ)
1
2 (k − iε − λ cos θ)(λ+ 2iε + λ cos θ)

1
2

dk

= − sgn(y)

2π
(λ− λ cos θ)

1
2 lim
ε→0+

∫ ∞

−∞

e−ikx−γ |y|

(k − λ)
1
2 (k − iε − λ cos θ)

dk

= − sgn(y)

2π
(λ− λ cos θ)

1
2

∫
Cu

e−ikx−γ |y|

(k − λ)
1
2 (k − λ cos θ)

dk (7.4.65)

where Cu represents the contour from −∞ to∞ indented underneath the pole
k= λ cos θ . (Note that we have used λ sin θ/(λ+ λ cos θ)

1
2 = (λ−λ cos θ)

1
2 to
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simplify the form of A(k).) It can be verified that this solution satisfies the
edge conditions, that is, it has an integrable singularity. We also note that the
integral (7.4.65) can actually be evaluated in closed form, but because we do
not need to go further, we leave the result as an integral.

Traditionally, the splitting process involved in Wiener–Hopf problems uses
strips where the analytic functions have overlapping regions of analyticity. This
can be achieved by introducing a small amount of damping: the Helmholtz
equation is replaced by

∇2ϕ + λ2ϕ − iελϕ = 0

Alternatively, in the above analysis we can modify λ, that is, λ → λ1 + iλ2

where λ2 > 0. It can then be shown that Ψ+(k)
(k+λ1+iλ2)1/2 is actually analytic for

Im k > −λ2, and Ψ−(k)(k − λ1 − iλ2)
1/2 is analytic for Im k < λ2.

From the above discussion it follows that the RH method is actually more
general than the Wiener–Hopf method: (a) The RH problem is formulated on
a contour and not in a strip. Hence it can be used to solve problems where the
overlapping region of analyticity is just a curve. (b) The function g(t) appearing
in the RH problem need be defined only on a contour. Therefore there is no
need for g(t) to be derived from a function of a complex variable that is analytic
in a strip of the complex plane.

Problems for Section 7.4

1. Let C be a finite, closed contour and f (t) a given function satisfying the
Hölder condition.

(a) Show that the solution of the singular integral equation

1

π i

∫
C

ϕ(τ)

τ − t
dτ = f (t)

is given by

ϕ(t) = 1

π i

∫
C

f (τ )

τ − t
dτ

Hint: Note that the associated RH problem is

Φ+(t)+Φ−(t) = f (t)

and thus for z /∈ C

Φ±(z) = ± 1

2iπ

∫
C

f (τ )

τ − z
dτ
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(b) Use (a) to establish the so-called Poincaré–Bertrand formula:

f (t) = − 1

π2

∫
C

dτ

τ − t

(∫
C

f (τ ′)
τ ′ − τ

dτ ′
)

2. Define the Hilbert transform of a suitably decaying function f (x) by

(H f )(x) = 1

π

∫ ∞

−∞

f (ξ)

ξ − x
dξ

(a) Use the results of Problem 7.4.1 to show that, in the space of suitably
decaying functions, H(H f (x)) = −1 (or in shorthand notation we
often write H 2 = −1).

(b) Note that the functions

Φ+(x) = f (x)− i(H f )(x) and Φ−(x) = f (x)+ i(H f )(x)

are analytic in the upper and lower half complex planes, respectively.
Use this fact to establish the following property of the Hilbert transform

H [ f Hg + gH f ] = − f g + (H f )(Hg)

Hint: the product of the two functions f − i H f and g − i Hg is
also a function.

3. Verify the following identity∫
C

dτ

τ − t

∫
C

f (τ, τ ′)
τ ′ − τ

dτ ′ =
∫

C

dτ

τ − t

∫
C

f (τ, τ ′)− f (τ, τ )

τ ′ − τ
dτ ′

+
∫

C

f (τ, τ )− f (t, t)

τ − t
dτ
∫

C

dτ ′

τ ′ − τ

+ f (t, t)
∫

C

dτ

τ − t

∫
C

dτ ′

τ ′ − τ

where C is a closed, finite contour.
Note that the first two terms in the right-hand side involve only single sin-

gular integrals. By reversing the order of integration in these two integrals
and by using the formulae∫

C

dτ

τ − t

∫
C

dτ ′

τ ′ − τ
= −π2
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(See also Problem 7.4.1b), establish the so-called Poincaré–Bertrand trans-
position formula:∫

C

dτ

τ − t

∫
C

f (τ, τ ′)
τ ′ − τ

dτ ′ =
∫

C
dτ ′
∫

C

f (τ, τ ′)
(τ − t)(τ ′ − τ)

dτ − π2 f (t, t)

4. Consider the following integral

I (t) =
∫ 1

−1

(1− τ)α−1

(1+ τ)α(τ − t)
dτ, −1 < t < 1

where 0 < α < 1.

(a) Let

Φ(z) = 1

2π i

∫ 1

−1

(1− τ)α−1

(1+ τ)α(τ − z)
dτ

Show that I (t) = iπ(Φ+(t) +Φ−(t)) and that Φ(z) satisfies the RH
problem

Φ+(t)−Φ−(t) = (1− t)α−1

(1+ t)α

(b) Verify that the function,

Φ(z) = − 1

2i sinαπ

(z − 1)α−1

(z + 1)α

solves the above RH problem.
(c) Deduce that

I (t) = π(cotαπ)(1− t)α−1(1+ t)−α

5. Consider the following boundary value problem:

ϕxx + ϕyy + λ2ϕ = 0, −∞ < x <∞, 0 < y <∞
ϕy(x, 0) = g(x) for −∞ < x < 0

ϕ(x, 0) = f (x) for 0 < x <∞

where ϕ satisfies a radiation condition at infinity, λ is a real constant, and
f (x) and g(x) are given, suitably decaying functions.
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(a) If Φ(k, y) is defined by

Φ(k, y) =
∫ ∞

−∞
φ(x, y)eikx dx

show that

Φ(k, y) = A(k)e−γ y, γ = (k2 − λ2)
1
2

where the function γ (k) is defined in Example 7.4.7 of the text.
(b) Show that

Φ−(k, 0) ≡
∫ 0

−∞
φ(x, 0)eikx dx, and

Φ′
+(k, 0) ≡

∫ ∞

0
φy(x, 0)eikx dx

satisfy the following RH problem

Φ′
+(k, 0)+Φ′

−(k, 0) = −γ [Φ+(k, 0)+Φ−(k, 0)]

where Φ+(k, 0) and Φ′
−(k, 0) are given by

Φ+(k, 0) =
∫ ∞

0
f (x)eikx dx, Φ′

−(k, 0) =
∫ 0

−∞
g(x)eikx dx

6. Consider the following linear differential equation for µ(x, k) with
qx ≡ ∂q

∂x (x) as a forcing function:

(x − k)µx + 1

2
µ = qx α < x <∞, q(α) = 0, k ∈ C (1)

(a) Show that a solution of this equation, bounded for all complex k, is
given by

µ(x, k) =
∫ x

α

qξ (ξ) dξ

(k − ξ)
1
2 (k − x)

1
2

(b) Define the function (k − ξ)
1
2 (k − x)

1
2 in such a way that there is a

branch cut between ξ and x . By splitting the integral
∫ x
α

in the form∫ k
α
+ ∫ x

k , show that for k real,

(µ+ − µ−)(x, k) =
{

2q̂(k)

(k−x)
1
2
, α < k < x

0, k > x
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where q̂(k) is the following Abel transform of q(x):

q̂(k) =
∫ k

α

qξ (ξ)√
k − ξ

dξ (2)

(c) Deduce that

µ(x, k) = 1

π

∫ x

α

q̂(k ′)√
x − k ′

dk ′

k ′ − k
, Im k 
= 0 (3)

(d) Comparing the large k behavior of equations (1) and (3) show that

q(x) = − lim
k→∞

(kµ) = 1

π

∫ x

α

q̂(k)√
x − k

dk (4)

Equations (2) and (4) are the usual direct and inverse Abel transforms.
(An appropriate nonlinearization of this transform can be used to solve
a certain two-dimensional reduction of Einstein’s equation).

∗7.5 Matrix Riemann–Hilbert Problems

Matrix or vector RH problems are, in general, far more complicated than scalar
RH problems. The solution cannot, in general, be found in closed form (i.e.,
not in terms of explicit integrals); it is characterized through a system of linear
integral equations. We do not intend to present a complete theory of such RH
problems here; our aim is simply to introduce important aspects. Emphasis
will be given to those results that are constructive. For simplicity, we consider
only the case of closed contours.

The vector homogeneous RH problem for a closed contour C is defined as
follows. Given a contour C and an N × N matrix G(t) that satisfies a Hölder
condition and is nonsingular on C (i.e., all the matrix elements {G}i j satisfy
a Hölder condition and det G(t) 
= 0 on C), find a sectionally analytic vector
function Φ(z),1 with finite degree at infinity2 such that

Φ+(t) = G(t)Φ−(t), t on C (7.5.1)

The meaning of + and − is the same as in Section 7.3 (meant for each
component of Φ(z)).

1 Φ(z) is a column vector: Φ(z) = (φ1(z), φ2(z), . . . , φn(z))T , where T represents the transpose.
2 If all components of the vector Φ(z) have finite degree at infinity, we say that Φ(z) has finite

degree at infinity. We say that Φ(z) has degree k at infinity if k is the highest degree of any of
its components.
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In contrast to the scalar case, where the existence or nonexistence of solutions
is a priori determined in terms of the index, the existence and uniqueness
of solutions of Eq. (7.5.1) must be investigated by analyzing certain integral
equations. This difficulty arises from the fact that the solutions of Eq. (7.5.1)
depend on a set of integers, often called partial indices or the individual
indices κ1, . . . , κN , which cannot a priori be calculated from G(t). We will
see that only their sum

κ = κ1 + · · · + κN = ind det G(t) (7.5.2)

can be explicitly calculated in terms of G(t).
Solving Eq. (7.5.1) means finding a fundamental solution matrix X (z) com-

posed of solution vectors X1(z), · · · , X N (z). The individual indices are defined
by the behavior of the functions X1, . . . , X N at infinity, so that the individual
index κ1 is related to the behavior of X1(z) as z → ∞, etc. Suppose we are
looking for solutions of Eq. (7.5.1) with a sufficiently large degree at infin-
ity. Among these solutions there exist some with the lowest possible degree
(−κ1). Let X1 denote a solution with degree (−κ1), that is, X1 = X̂1(z)/zκ1 ,
where X̂1(z) is analytic in D. From the remaining solutions, consider all those
that cannot be obtained from X1 by φ(z) = P1(z)X1(z), where P1(z) is an
arbitrary polynomial. Among these solutions, pick the one with the lowest
possible degree. Call X2 and (−κ2) the solution and degree, respectively,
of one of these solutions. Denote as (−κ3) the lowest degree of those solu-
tions that are not related to X1(z) and X2(z) by any relationship of the form
φ(z) = P1(z)X1(z)+ P2(z)X2(z), where P1(z) and P1(z) are arbitrary polyno-
mials. The vector X3 is one of these solutions. We repeat the process to obtain
the matrix X (z) = (X1(z), X2(z), . . . , X N (z))T . It can be shown (Vekua,
1967) that the solution matrix X (z) constructed this way has the following two
properties:

det X (z) 
= 0 for all finite z, and

det(zκ1 X1, · · · , zκN X N ) 
= 0 at infinity
(7.5.3)

Furthermore, any solution of the homogeneous RH problem is given by

Φ(z) = X (z)P(z) (7.5.4)

where P(z) is an arbitrary polynomial vector, that is, each component of P(z)
is an arbitrary polynomial. In this way we think of Eq. (7.5.1) as an RH problem
for the matrix-valued function Φ (or X ).

The relationship (7.5.2) can now be derived from X+ = G X− and the prop-
erties (7.5.3). We take 1

2π i of the logarithm of the determinant around the
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contour C :

1

2π i
[log det X+]C = 1

2π i
[log det G]C + 1

2π i
[log det X−]C

where [ f ]C denotes the change of f over the closed curve C taken in the +
direction. The function det X+ is analytic and nonvanishing in D+; hence

1
2π i [log det X+]C = 0, and from

X−(z) =
(

X̂
−(1)

(z)

zκ1
,

X̂
−(2)

(z)

zκ2
, . . . ,

X̂
−(n)

(z)

zκn

)

we find that 1
2π i [log det X−]C = −(κ1+ κ2+ · · ·+ κN ) because X̂− is analytic

and nonvanishing in D−. Thus

κ ≡ 1

2π i
[log det G]C = κ1 + κ2 + · · · + κn

The above nonconstructive approach for determining X (z) can be turned
into a constructive one provided that the individual indices κl , l = 1, . . . , N
are known. For example, suppose that κ1 = κ2 = · · · = κN = 0 (a necessary
but not sufficient condition, for this is ind det G(t) = 0). Then we show below
that X−(t) solves the matrix Fredholm integral equation

X−(t)− 1

2π i

∫
C

[G−1(t)G(τ )− IN ]X−(τ ) dτ

τ − t
= IN (7.5.5)

where IN denotes the N × N identity matrix, and the integral is over the closed
contour C . (In this and following sections, it will be clear from the context
whether C is closed or open). Equation (7.5.5) is a matrix Fredholm integral
equation of the second kind. The method of solution described in Section 7.3
for scalar Fredholm equations (see Eqs. (7.3.32)–(7.3.34) also applies to matrix
Fredholm equations. We also note that if Eq. (7.5.5) has a unique solution
X−(t), then all the individual indices are zero because it can be shown that the
behavior of X−(z) at infinity is IN .

Before deriving Eq. (7.5.5) we first show that a necessary and sufficient
condition for the function Φ−(t) to be the boundary value of a function analytic
in D− and tending to IN at∞ is

1

2
Φ−(t)+ 1

2π i

∫
C

Φ−(τ ) dτ

τ − t
= IN (7.5.6)
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Let us call Φ(z) the sectionally analytic function Φ(z) = {Φ+(z) for z ∈
D+,Φ−(z) for z ∈ D−}. First assume that Φ− is analytic in D− and that it
tends to IN at∞. Then using Cauchy’s theorem, we have

1

2π i

∫
C−CR

Φ−(τ )
τ − z

dτ = −Φ−(z),

where CR denotes a large circular contour at infinity, and z ∈ D−. This implies

−Φ−(z) = 1

2π i

∫
C

Φ−(τ )
τ − z

dτ − IN for z in D−

On the other hand, if z ∈ D+, there is no singularity enclosed in C − CR , and
we have

0 = 1

2π i

∫
C

Φ−(τ )
τ − z

dτ − IN for z in D+

We next take the limit to the boundary (i.e., the Plemelj formulae),

1

2π i

∫
C

Φ−(τ )
τ − z

dτ →±1

2
Φ−(z)+ 1

2π i

∫
C

Φ−(τ )
τ − z

dτ

as z → C from D+or D−

Using this limit, we find that both of these equations yield Eq. (7.5.6). Con-
versely, assume that Φ−(t) satisfies Eq. (7.5.6) and that it satisfies a Hölder
condition. Define a function Φ(z) in D− by

Φ(z) = − 1

2π i

∫
C

Φ−(τ )
τ − z

dτ + IN , z in D− (7.5.7)

Clearly, Φ(z)→ IN as z → ∞, and by its definition Φ(z) is analytic in D−.
Its limit on the boundary is given by

lim
z→t

z∈D−

Φ(z) = 1

2
Φ−(t)− 1

2π i

∫
C

Φ−(τ )
τ − t

dτ + IN

which, using Eq. (7.5.6), equals Φ−(t). Thus Φ−(t) is the boundary value of
the analytic function defined by Eq. (7.5.7).
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Similar ideas show that Φ+(z) = 1
2π i

∫
C

Φ+(τ )
τ−z dτ is analytic for z ∈ D+

and that Φ+(t) is the boundary value of a function analytic in D+ if and only if

−1

2
Φ+(t)+ 1

2π i

∫
C

Φ+(τ )
τ − t

dτ = 0 (7.5.8)

The derivation of Eq. (7.5.5) is a consequence of Eqs. (7.5.6) and (7.5.8).
Using the RH problem, Φ+(t) = G(t)Φ−(t), Eq. (7.5.8) becomes

−1

2
G(t)Φ−(t)+ 1

2π i

∫
C

G(τ )Φ−(τ )
τ − t

dτ = 0

Multiplying this equation by G(t)−1 and subtracting it from Eq. (7.5.6) we
find Eq. (7.5.5), where we have denoted Φ−(t) to be X−(t) as a fundamental
solution.

To investigate the case when not all individual indices are zero, one needs to
analyze several RH problems related to Eq. (7.5.1) (the so-called adjoint and
accompanying RH problems). This leads to the study of integral equations of
the type (7.5.5) where IN is replaced by suitable forcing functions, (cf. Vekua,
1967). One then needs to use the results of Fredholm theory and, in particular,
the Fredholm alternative theorem.

As mentioned earlier, Eq. (7.5.5) is a Fredholm integral equation of the second
kind; because G satisfies a Hölder condition, its kernel satisfies

G−1(t)G(τ )− IN

τ − t
= A(t, τ )

|τ − t |α , 0 ≤ α < 1, A Hölder (7.5.9)

where A satisfies a Hölder condition. The theory of such Fredholm integral
equations is outside the scope of this book. (For 0 < α < 1, Eq. (7.5.9) is a
weakly singular Fredholm equation.) Here we concentrate on those cases when
the direct investigation of Fredholm equations can be bypassed. In particular,
(a) if G is rational, then the RH problem can be solved in closed form; (b) if G
is a triangular matrix, then the RH problem can also be solved in closed form;
(c) if G satisfies certain symmetry conditions, then it can be shown directly
that all the individual indices are zero (this also means that the homogeneous
version of Eq. (7.5.5), that is, Eq. (7.5.5) with IN replaced by 0, has only the
zero solution).



584 7 Riemann–Hilbert Problems

7.5.1 The Riemann–Hilbert Problem for Rational Matrices

We assume that all the elements of the matrix G(t) are rational functions, that
is, {G(t)}i j = pi j (t)

qi j (t)
, where pi j (t), qi j (t) are polynomials. This G(t) can be

written as G(t) = Q(t)
r(t) , where r(t) is a scalar polynomial and Q(t) is a matrix

whose elements are polynomials. Insight into the general case can be obtained
by studying two particular cases.

Example 7.5.1 Solve Eq. (7.5.1) with G(t) = Q(t)
r(t) where det Q(t) has no

zeroes in D+.
We write r(t) as r(t) = r+(t)r−(t), where r+(t) and r−(t) are polynomials

that have no zeroes in D+ and D−, respectively. Then Eq. (7.5.1) becomes

r+(t)Q−1(t)Φ+(t) = Φ−(t)
r−(t)

Because 1
r−(t)

is analytic in D− and Q−1(t)r+(t) is analytic in D+, it follows that
the above equation defines an analytic function in the entire complex z plane.
Taking this function to be IN , we obtain the fundamental solution X (z):

X−(z) = r−(z)IN , X+(z) = Q(z)

r+(z)
(7.5.10)

We can verify that the solutions (7.5.10) satisfy Eqs. (7.5.3).
As a concrete illustration, take r(t) = t (t − 2) and let C be the unit circle.

Then r+(t) = t − 2, r−(t) = t and X−(z) = z IN , X+(z) = Q(z)/(z − 2).
We note that det G = det Q

t N (t−2)N , thus the total index κ = κ1 + κ2 + · · · + κN

is κ = −N , by using the argument theorem (there are no zeroes and N poles
inside C). On the other hand, X−(z) = z IN implies that κ j = −1, 1 ≤ j ≤ N ,
so Eq. (7.5.2) is verified as well.

Example 7.5.2 Solve Eq. (7.5.1) with G(t) = Q+(t)Q−(t)
r(t) , where det Q+(t) and

det Q−(t) are polynomials that have no zeroes in D+ and D−, respectively.
As in Example 7.5.1, we split r(t) = r+(t)r−(t) where r±(t) have no zeroes

in D±. Equation (7.5.1) now becomes

r+(t)Q−1
+ (t)Φ+(t) = Q−(t)Φ−(t)

r−(t)

and similar arguments as in Example 7.5.1 yield

X−(z) = r−(z)Q−1
− (z), X+(z) = Q+(z)

r+(z)
(7.5.11)
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As a concrete illustration, consider C to be the unit circle and let

Q(t) =
(

t2 − 1 t − 2
1
2 2

)
, r(t) = t2 − 3t

We note that

Q(t) =
(

t −2
1 1

)(
t 1
1
2 1

)
= Q+(t)Q−(t), r(t) = t (t−3) = r−(t)r+(t)

Thus

X−(z) = z

z − 1
2

(
1 −1

− 1
2 z

)
, X+(z) = 1

z − 3

(
z −2
1 1

)
(7.5.12)

From the behavior at infinity, Eq. (7.5.12) implies that κ1 = 0, κ2 = −1, and
κ = κ1 + κ2 = −1. On the other hand det Q(t)

r(t) =
(t+2)(t− 1

2 )

t2(t−3)2 ; therefore from
the argument theorem we see (there are two poles and one zero inside C) that
κ = −1, and Eq. (7.5.2) is again verified in two ways.

Using the ideas of the above example, one can solve the general case where,
as before, G(t) = Q(t)/r(t). We note that Q(t) can always be written as
Q+(t)D(t)Q−(t), where D(t) is a diagonal polynomial matrix and det Q+,
det Q− are polynomials that have no zeroes in D+ and D−, respectively
(Gohberg and Krein (1958)). LettingΨ+(t)= r+(t)Q−1

+ (t)Φ+(t) andΨ−(t)=
Q−(t)
r−(t)

Φ−(t), where as before r(t) = r+(t)r−(t) for polynomials r±(t) with no
zeroes in D±, Eq. (7.5.1) becomes the following diagonal RH problem

Ψ+(t) = D(t)Ψ−(t), D = diag(D1, . . . , DN ) (7.5.13)

The matrix RH problem (7.5.13) can be solved as follows. Let D j (t) =
D j+(t)D j−(t), where D j+(t) and D j−(t) are polynomials that have no zeroes in
D+ and D−, respectively. Then

(Ψ+(z))i j =
{

0 i 
= j
D j+(z) i = j

(Ψ−(z))i j =
{

0 i 
= j
1

D j− (z)
i = j

(7.5.14)

Having obtained Ψ; the solution for Φ follows from

Φ+(t) = 1

r+(t)
Q+(t)Ψ+(t), and Φ−(t) = r−(t)Q−1

− (t)Ψ−(t)

As an illustration of how to solve the diagonal RH problem (7.5.13), consider
D(t) = diag(t, t−2)with contour C as the unit circle. Then D+(z) = (1, z−2),
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D−(z) = (z, 1), and Eqs. (7.5.14) yield

Ψ+(z) =
(

1 0
0 z − 2

)
, Ψ−(z) =

( 1
z 0
0 1

)
We note that κ1 = 1, κ2 = 0, and κ = ind[t (t − 2)] = 1 for the RH problem
defining Ψ.

7.5.2 Inhomogeneous Riemann–Hilbert Problems and Singular Equations

The method used in Section 7.3 for solving scalar inhomogeneous RH problems
is also applicable to matrix RH problems. The solution of

Φ+(t) = G(t)Φ−(t)+ f (t), t on C

where G is a N × N matrix that satisfies a Hölder condition and is nonsingular
on C and f (t) is an N -dimensional vector that satisfies a Hölder condition
on C , is derived in an analogous manner once the fundamental homogeneous
solution X (z) is obtained. Namely, X+(t)(X−(t))−1 = G(t), which used in
the above equation yields

(X+(t))−1Φ+(t)− (X−(t))−1Φ−(t) = (X+(t))−1 f (t)

and from the Plemelj formulae we obtain the solution

Φ(z) = X (z)

[
1

2iπ

∫
C

[X+(τ )]−1 f (τ ) dτ

τ − z
+ P(z)

]
(7.5.15)

In Eq. (7.5.15), P(z) is an N -dimensional vector with arbitrary polynomial
components.

The equivalence established in Section 7.3.3 between RH problems and cer-
tain singular integral equations can also be extended to the matrix case. The
singular integral equation

A(t)ϕ(t)+ B(t)

π i

∫
C

ϕ(τ)

τ − t
dτ = f (t), t on C (7.5.16)

where A(t) and B(t) are N × N Hölder matrices such that A± B are nonsin-
gular on C and f (t) is an N -dimensional Hölder vector, is equivalent to the
matrix RH problem

A(t)(Φ+(t)−Φ−(t))+ B(t)(Φ+(t)+Φ−(t)) = f (t), t on C (7.5.17a)
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or

Φ+(t) = (A(t)+ B(t))−1 (A(t)− B(t))Φ−(t)

+ (A(t)+ B(t))−1 f (t), t on C (7.5.17b)

#(z)→ 0 as z →∞

where we have used the Plemelj formulae

Φ±(t) = ±1

2
ϕ(t)+ 1

2π i

∫
C

ϕ(τ)

τ − t
dτ

in Eq. (7.5.16) to obtain Eq. (7.5.17a).

7.5.3 The Riemann–Hilbert Problem for Triangular Matrices

The RH problem the (7.5.1) where G(t) is either an upper or lower triangular
matrix can be solved in closed form. For this discussion it is more convenient
to multiply G from the right. So we consider the matrix RH problem Φ+(t) =
Φ−(t)G(t), where Φ±(t) are N × N matrices, and G(t) is upper triangular;
that is, we consider

Φ+(t) = Φ−(t)


G11 G12 · · · G1N

0 G22 · · · G2N
...

...

0 G N N

 (7.5.18)

Writing the matrix Φ(t) in terms of the vectors Φ j , 1 ≤ j ≤ N , that is,
Φ(t) = (Φ1,Φ2, · · · ,ΦN ), and decomposing G into the sum of its diagonal
and “upper diagonal” parts, we can verify that Eq. (7.5.18) reduces to

Φ+(t) = Φ−(t)D + F

where D is a diagonal matrix and F is the matrix F = (0, F2, . . . , FN ), with

D = diag(G11,G22, . . . ,G N N ), Fj ≡
j−1∑
l=1

Gl jΦ−
l (t), 2 ≤ j ≤ N

The above RH problem can be solved step by step: The equation

Φ+
1 = G11Φ−

1 (7.5.19a)



588 7 Riemann–Hilbert Problems

yields Φ1, then the equation

Φ+
2 = G22Φ−

2 + G12Φ−
1 (7.5.19b)

yields Φ2

Φ+
3 = G33Φ−

3 + G13Φ−
1 + G23Φ−

2 (7.5.19c)

yields Φ3, etc.
We now give relevant formulae for N = 2; the generalization to arbitrary N

follows analogously. Let us call a1(z) the solution of the scalar RH problem
a+1 (t) = G11(t)a

−
1 (t); then

Φ1(z) =
(

a1(z)
0

)
is a solution of Eq. (7.5.19a). Using this expression for Φ1 in Eq. (7.5.19b) we
find (

Φ+
2

)
1 = G22

(
Φ−

2

)
1 + G12a−1(

Φ+
2

)
2 = G22

(
Φ−

2

)
2

where (Φ+
2 )i is the i th component of the vector Φ+

2 .
Let a2(z) be a solution of the scalar RH problem a+2 (t) = G22(t)a

−
2 (t); then

we have

Φ+
2 (t)

a+2 (t)
− Φ−

2 (t)

a−2 (t)
=
(

G12(t)a
−
1 (t)

a+2 (t)

0

)
Thus

Φ2(z)

a2(z)
= 1

2π i

∫
C

G12(τ )a
−
1 (τ ) dτ

a+2 (τ )(τ − z)

(
1

0

)
+
(

0

1

)
Therefore a solution of the RH problem for Φ2(z) is given by

Φ2(z) =
(

0
a2(z)

)
+ a2(z)

2π i

∫
C

G12(τ )a
−
1 (τ )

a+2 (τ )
dτ

τ − z

(
1

0

)
Thus a general solution to Eqs. (7.5.19a–c) in the case N = 2 is

Φ(z) = P(z)

(
a1(z) 0

0 a2(z)

)
+
(

0 a2(z)
2π i

∫
C

G12(τ )a
−
1 (τ )

a+2 (τ )
dτ
τ−z

0 0

)
(7.5.20)

where P(z) is a scalar polynomial.
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Example 7.5.3 Find the fundamental solution of the triangular RH problem
(7.5.18) where N = 2 and G11(t) = t , G22(t) = 1

(t− 1
2 )

, G12(t) = g(t) (g(t)

satisfies a Hölder condition), and C is the unit circle.
Using the above results and solving (by inspection) a+1 (t) = ta−1 (t), we

find a+1 (t) = 1 and a−1 (t) = 1/t . Similarly, a+2 (t) = a−2 (t)/(t − 1
2 ) yields

a+2 (t) = 1 and a−2 (t) = t − 1
2 . Substituting these expressions in Eq. (7.5.20)

and letting

P(z) = I2 =
(

1 0
0 1

)
we find

Φ−(z) = I2

( 1
z 0
0 z − 1

2

)
+ 1

2π i

∫
C

(
0 1
0 0

)
g(τ )(z − 1

2 )

τ − z
dτ

From the behavior of X−(z) as z →∞we see that κ1 = 1 and κ2 = −1, which
is consistent with the fact that κ = κ1 + κ2 = ind det G(t) = ind

(
t

t−1/2

) = 0.

7.5.4 Some Results on Zero Indices

In their investigation of certain matrix integral equations (of the form (7.4.31),
see also Section 7.7), Gohberg and Krein(1958) were led to study the factor-
ization problem

G(k) = G+(k)G−(k), k on the real axis; G±(∞) = IN (7.5.21)

where G is an N × N nonsingular matrix whose components belong to the set
*1 defined in Eq. (7.4.29), and G+ and G− are analytic in the upper and lower
complex k plane (more precisely the components of G± belong to *1

±, see
the discussion in Section 7.4.1). The factorization problem (7.5.21) is clearly
closely related with the homogeneous RH problem (7.5.1). The following
remarkable result was proven in Gohberg and Krein (1958).

If the real or imaginary part of G(k) is definite, where {G(k)}i j ∈ *1 and
det G(k) 
= 0, then all its individual indices are zero. The real and imaginary
parts of a matrix G are defined by

G R ≡ 1

2
(G + G∗), G I ≡ 1

2i
(G − G∗), G∗ = GT (7.5.22)

where the superscript T denotes transpose and the over bar denotes complex
conjugate. We recall that a matrix G is positive (negative) definite if ξ∗Gξ is
real and positive (negative) for all N × 1 vectors ξ 
= 0.
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The above result, in one or another form, has appeared in the literature many
times and it provides a useful approach to establish the uniqueness and existence
of solutions of certain RH problems. It has been considered for functions in a
space other than*1 and it has also been extended to more complicated contours.
Such extensions are discussed below.

We consider the RH problem

Φ+(k) = Φ−(k)G(k), −∞ < k <∞ (7.5.23a)

where Φ±(k) are N × N matrices with the boundary condition

Φ±(∞) = IN (7.5.23b)

We assume that G is nonsingular, that is, det G 
= 0, and that g(k) = G(k) −
IN satisfies g(k), g′(k) ∈ L2 ∩ L∞. (Recall that a function f ∈ L2 satisfies∫∞
−∞| f (x)|2 dx < ∞, and f ∈ L∞ if | f (x)| < M < ∞ for all x ; g and g′

must satisfy both conditions.)
Letting G = IN + g, Eq. (7.5.23a) reduces to

Φ+(k)−Φ−(k) = Φ−(k)g(k) (7.5.24a)

or (
Φ+(k)− IN

)− (Φ−(k)− IN
) = Φ−(k)g(k), −∞ < k <∞

(7.5.24b)
Using the Plemelj formulae and the boundary condition (7.5.23b), this equation
yields

Φ−(k) = IN − 1

2
Φ−(k)g(k)+ 1

2π i

∫ ∞

−∞

Φ−(ξ)g(ξ)
ξ − k

dξ

= IN + 1

2π i

∫ ∞

−∞

Φ−(ξ)g(ξ)
ξ − (k − iε)

dξ (7.5.25)

or

Φ−(k) = IN +
∫ ∞

−∞
K (k, ξ)Φ−(ξ)dξ, K (k, ξ) = 1

2π i

g(ξ)

ξ − (k − iε)
(7.5.26)

It has recently been shown in Zhou (1989) that in the space where g(k), g′(k) ∈
L2 ∩ L∞ (i.e., g(k) and g′(k) are both square integrable and bounded), Eq.
(7.5.26) is actually a Fredholm integral equation of the second kind. For such
Fredholm equations it is known that a solution exists so long as the only solution
to the homogeneous problem (i.e., replace IN by 0 in the integral equation above)
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is the zero solution. This is equivalent to establishing uniqueness because the
difference of any two solutions satisfies the homogeneous problem. Therefore
the question of solvability reduces to the question of existence of nontrivial
homogeneous solutions. We shall prove that if g ± g∗ is definite, then there
exists no nontrivial homogeneous solution.

Lemma 7.5.1 (Vanishing Lemma) Let G(x) = I + g(x) where I denotes the
identity matrix. Assume that g and its derivative belong to L2 ∩ L∞, and that
either G+G∗

2 or G−G∗
2i is definite, where G∗ denotes the adjoint of G: G∗ = GT .

Then the RH problem

Φ+(x) = Φ−(x)G(x), −∞ < x <∞, Φ±(∞) = 0 (7.5.27)

has only the zero solution: Φ±(x) = 0.

Proof Recall from the symmetry principle (Section 5) that if Φ(z) is analytic
in the lower z plane, then Φ(z) is analytic in the upper half complex plane. Let
Φ(z) be the solution of Eq. (7.5.27). Then H ≡ Φ+(z)(Φ−(z))∗ is analytic in
the upper half complex plane, and H → 0 as z →∞. Multiplying Eq. (7.5.27)
by (Φ−(x))∗ and integrating we find∫ ∞

−∞
Φ+(x)(Φ−(x))∗ dx =

∫ ∞

−∞
Φ−(x)G(x)(Φ−(x))∗ dx = 0 (7.5.28)

where we have used Cauchy’s Theorem to evaluate the first integral by closing
the contour in the upper half complex plane where H is analytic. Adding or
subtracting the adjoint of Eq. (7.5.28), that is,∫ ∞

−∞
Φ−(x) (G(x))∗ (Φ−(x))∗dx = 0

to Eq. (7.5.28), we find that∫ ∞

−∞
Φ−(x)(G(x)± G(x)∗)(Φ−(x))∗dx = 0. (7.5.29)

Thus if either G+G∗
2 or G−G∗

2i is definite, then Φ−(x) = 0. �

The theory presented above can be extended to more complicated contours.
In particular, Lemma 7.5.3 can be generalized to cover any set of contours that
remain invariant under the map z → z̄. Rather than quoting the general result
we give a concrete example.
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Fig. 7.5.1. RH problem defined in six sectors

Example 7.5.4 Consider the matrix RH problem defined on the rays jπ
3 , 0 ≤

j ≤ 5 (see Figure 7.5.1).

Φ j+1 = Φ j g j , 1 ≤ j ≤ 5; Φ1 = Φ6g6 (7.5.30)

Φ j → 0 as z →∞, 1 ≤ j ≤ 6 (7.5.31)

We assume that g j ∈ L2 ∩ L∞, and that

(i) g2(z) = g∗4(z̄), g1(z) = g∗5(z̄) (7.5.32)

(ii)
g3 + g∗3

2

(
or

g3 − g∗3
2i

)
and

g6 + g∗6
2

(
or

g6 − g∗6
2i

)
(7.5.33)

are both positive or both negative definite.

(iii) +6
j=1g j = IN (7.5.34)

Show that the only solution of this RH problem is zero.
We first note that Eq. (7.5.34) is a consistency condition. Indeed

Φ1 = Φ6g6 = Φ5g5g6 = · · · = Φ1

6∏
j=1

g j

and hence Eq. (7.5.34) follows.
We define H = X (z)X∗(z̄), and choose the gs and X (z), X∗(z) in such a

way that H is analytic in the upper half plane. This is achieved by ensuring
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that H has no jumps across the contours: On the contour arg z = 2π
3 (note the

notations “+” and “−” in Figure 7.5.1):

H+(z) = Φ2(z)Φ∗
5(z̄) = Φ2(z)g

∗
4(z̄)Φ

∗
4(z̄)

H−(z) = Φ3(z)Φ∗
4(z̄) = Φ2(z)g2(z)Φ∗

4(z̄)

From Eq. (7.5.32) we see that H+(z) = H−(z) on arg z = 2π/3. Similarly,
continuity across the contour arg z = π

3 , and using g1(z) = g∗5(z̄), implies
that

H+(z) = Φ2(z)Φ∗
5(z̄) = Φ1(z)g1(z)Φ∗

5(z̄)

H−(z) = Φ1(z)Φ∗
6(z̄) = Φ1(z)g

∗
5(z̄)Φ

∗
5(z̄)

Because we have constructed a function H that is analytic in the upper half plane
and H → 0 as z →∞, Cauchy’s Theorem implies that

∫∞
−∞H(x) dx = 0 or

∫ 0

−∞
Φ3(x)Φ∗

4(x) dx +
∫ ∞

0
Φ1(x)Φ∗

6(x) dx = 0

or

∫ 0

−∞
Φ3(x)g

∗
3(x)Φ

∗
3(x) dx +

∫ ∞

0
Φ6(x)g6(x)Φ∗

6(x) dx = 0

Adding or subtracting to this equation its adjoint, we deduce the equation

∫ 0

−∞
Φ3(x)(g

∗
3(x)± g3(x))Φ∗

3(x) dx

+
∫ ∞

0
Φ6(x)(g6(x)± g∗6(x))Φ

∗
6(x) dx = 0 (7.5.35)

From Eq. (7.5.33) we deduce that Φ3(x) = Φ6(x) = 0, and therefore Φi (x) =
0 for all i .

Problems for Section 7.5

1. Consider the following matrix RH problem:

Φ−(k) = Φ+(k)V (k)
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with

V (k) =
(

1 b(k)
−λb(k) 1− λ|b(k)|2

)
, k real

Φ(k)→ I as k →∞

and where λ is either 1 or −1 and b(k) and b′(k) are square integrable.
Assume that if λ = 1 then |b|2 < 1.

(a) Show that

G(k) ≡ V (k)+ V (k)T =
(

2 (1− λ)b
(1− λ)b 2− 2λ|b|2

)

(b) Establish that both the eigenvalues of G are positive, and hence deduce
that the above RH problem is always solvable.
Hint: If λ = −1, then det G = 4; if λ = 1, then det G = 4(1−|b|2) >
0. Also note that one of the diagonal elements of G is 2.

2. A natural generalization of a matrix RH problem is to replace the jump
matrix by an operator. This yields a so-called nonlocal RH problem. A
scalar nonlocal RH problem on the infinite line is defined as
follows:

ϕ+(k)− ϕ−(k) =
∫ ∞

−∞
f (k, l)ϕ−(l) dl, k real

ϕ(k)→ 1 as k →∞

where f (k, l) is a given function that has the property that f and its deriva-
tives are square integrable. Show that

ϕ−(k) = 1+ 1

2π i

∫ ∞

−∞

∫ ∞

−∞

f (k ′, l)ϕ−(l)
k ′ − (k − i0)

dl dk ′

3. A particular case of a nonlocal RH problem is the so-called RH problem
with a shift. This problem arises when f (k, l) = δ(l − α(k))g(k), where
δ(x) is a Dirac delta function and f (k, l) is defined in Problem 7.5.2 above.
We now study such a RH problem: Let C be a finite, closed contour, letα(t)
be differentiable, and h(t), α′(t) satisfy a Hölder condition, continuous on
C . Assume that α(t) maps C onto itself and that α′(t) does not vanish
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anywhere on C . Consider the RH problem

Φ+[α(t)]−Φ−(t) = h(t) on C (1)

Φ−(z)→ 1 as z →∞

(a) Using a similar argument to that which led to Eq. 7.5.6 of the text
show that

−1

2
Φ+(t)+ 1

2π i

∫
C

Φ+(τ )
τ − t

dτ = 0 (2)

1

2
Φ−(t)+ 1

2π i

∫
C

Φ−(τ )
τ − t

dτ = 1 (3)

(b) Replace t with α(t) in equation (2), and use (1) and (3) to establish that

Φ−(t)− 1

2π i

∫
C

[
α′(τ )

α(τ)− α(t)
− 1

τ − t

]
Φ−(τ ) dτ

= 1− 1

2
h(t)+ 1

2π i

∫
C

h(τ )α′(τ )
α(τ)− α(t)

dτ

It can be shown that the kernal of this equation has at the point
τ = t a singularity of order lower than one (see Gakhov, 1966).
Furthermore, it can be shown that this equation is solvable for any
Hölder continuous h(t).

4. Consider the matrix RH problem with the jumps indicated in Figure 7.5.2.

Φ j+1 = Φ j

(
e−i z3

0
0 eiz3

)
G j

(
eiz3

0
0 e−i z3

)
= Φ j DG j D−1

where

D =
(

e−i z3
0

0 eiz3

)
, 1 ≤ j ≤ 6, Φ7 ≡ Φ1

G1 =
(

1 0
a 1

)
, G2 =

(
1 b
0 1

)
, G3 =

(
1 0
c 1

)
G4 =

(
1 a
0 1

)
, G5 =

(
1 0
b 1

)
, G6 =

(
1 c
0 1

)
and a, b, and c are constants.
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Φ
G

G

Φ

Φ

G

G

Φ

Φ

2

1

1

6

6

G5Φ
5

4

4

3

3

G2

α
α

α

π
α = 

−−

−
++

+

3

Fig. 7.5.2. RH problem for problem 7.5.4

(a) Show that by analytic continuation, a consistency condition in the
neighborhood of z = 0 implies

Φ1 = Φ7 = Φ6 D−1G6 D = Φ5 D−1G5 DD−1G6 D = · · ·
= Φ1 D−1G1G2 · · ·G6 D

Hence G1G2 · · ·G6 = I , and therefore,

a + b + c + abc = 0

(b) Show that the above RH problem is equivalent to the one depicted in
Figure 7.5.3.
Hint: Note that e2i z3

is analytic and decreasing in regions I, III, and V
and e−2i z3

is analytic and decreasing in regions II, IV, and VI where
region I is the sector 0 ≤ arg z < π/3, etc. Because Φ1 and e2i z3

are analytic in region I, the equation Φ2 = Φ1 DG1 D−1provides the
analytic continuation of Φ2 into region I. From Φ1 = Φ6 DG6 D−1 we
have Φ2 = Φ6 DG6 D−1 etc.

(c) Show that the conditions for the vanishing lemma are satisfied pro-
vided that G2 = G∗

5 and, G3G4+ (G3G4)
∗, and G6G1+ (G6G1)

∗

are positive definite.
(d) Establish that these conditions are fulfilled if

b = b, |a − c| < 2
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G

G G

G

G G 143 6

5

2

+

+

−

−

Fig. 7.5.3. Reduced RH problem

Note: It turns out that this result can be used to establish the solvability
of the second Painlevé equation (PII):

ytt = 2y3 + t y

for y purely imaginary.

5. Consider the matrix RH problem

Φ− = Φ+
(

1 −be−θ

beθ 1− |b|2
)
, eθ = ei(kx+k2t), k real

Φ→ I as k →∞ (1)

where b(k) is a given complex valued function of k, which decays rapidly
for large k.

Note that because(
1 −be−θ

beθ 1− |b|2
)
=
(

1 0
beθ 1

)(
1 −be−θ

0 1

)
it follows that

Φ−
(

1 be−θ

0 1

)
= Φ+

(
1 0

beθ 1

)
Let I, II, III, IV denote the first, second, third, and fourth quadrant of the
k-complex plane. Show that if x and t are real and positive, and b is analytic
for k ∈ IV, then the left-hand side of the above equation is analytic for k ∈
IV, while the right-hand side is analytic for k ∈ I .
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7.6 The DBAR Problem

We now consider the scalar equation

∂Φ(z, z̄)

∂ z̄
= f (z, z̄), z ∈ D (7.6.1)

(see also Section 2.6) where D is some simply connected domain of the complex
z plane. We shall refer to this equation as a scalar DBAR (or ∂̄) problem.
Equation (7.6.1) is the complex form of the nonhomogeneous Cauchy-Riemann
equations. Indeed, letting

Φ = u + iv, f = g + ih

2
, z = x + iy

where u, v, g, and h are real functions of the real variables x and y, and using

∂

∂ z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
(7.6.2)

Eq. (7.6.1) yields

∂u

∂x
− ∂v

∂y
= g(x, y),

∂u

∂y
+ ∂v

∂x
= h(x, y) (7.6.3)

If Φ is analytic for z ∈ D, then the Cauchy–Riemann equations must be
satisfied. In fact, we see that if g(x, y) = h(x, y) = 0, then ∂#

∂ z̄ = 0, and one
recovers the Cauchy–Riemann equations. It was pointed out in Section 7.1 that
a ∂̄ problem can be considered to be a generalization of an RH problem. We
recall that the solution of a scalar RH problem was obtained in closed form
using a Cauchy type integral. The solution of a ∂̄ problem can also be obtained
in closed form.

In the following we introduce the so-called wedge product

dξ ∧ dξ = dη ∧ dη = 0, −dη ∧ dξ = dξ ∧ dη = dξ dη

Lemma 7.6.1 Assume that Φ(z, z̄) is continuous and has continuous partial
derivatives in a finite region D and on a simple closed contour C enclosing D.
Then the solution of the ∂̄ problem (7.6.1) is given by

Φ(z, z̄) = 1

2π i

∫
C

Φ(ζ, ζ̄ ) dζ

ζ − z
+ 1

2π i

∫∫
D

f (ζ, ζ̄ )

ζ − z
dζ ∧ d ζ̄ (7.6.4)

where dζ ∧ d ζ̄ = (dξ + i dη) ∧ (dξ − i dη) = −2i dξ dη.
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ζcomplex    -plane

ζ = ε

C

z

Dε

-z

ε

Fig. 7.6.1. Boundary C of finite region D in the complex ζ plane

Actually, we proved this theorem in Section 2.6 with Theorem 2.6.7. For
the convenience of the reader we reproduce the proof using slightly different
notation (see Figure 7.6.1).

Proof We first derive the complex form of Green’s theorem (Theorem 2.5.1)∫
C
w(z, z̄) dz = −

∫∫
D

∂w

∂ z̄
dz ∧ dz̄ (7.6.5)

where dz ∧ dz̄ = −2i dx dy. Indeed, lettingw = u(x, y)+ iv(x, y) and using
Green’s theorem, we find∫

C
w(z, z̄) dz =

∫
C
(u + iv)(dx + i dy)

=
∫

C
(u dx − v dy)+ i

∫
C
(v dx + u dy)

= −
∫∫

D

(
∂v

∂x
+ ∂u

∂y

)
dx dy + i

∫∫
D

(
∂u

∂x
− ∂v

∂y

)
dx dy

= i
∫∫

D

[(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+ ∂u

∂y

)]
dx dy

= i
∫∫

D

[(
∂u

∂x
+ i

∂u

∂y

)
+ i

(
∂v

∂x
+ i

∂v

∂y

)]
dx dy

= i
∫∫

D

(
∂

∂x
+ i

∂

∂y

)
(u + iv) dx dy = 2i

∫∫
D

∂w

∂ z̄
dx dy

Let z be a fixed point in the complex ζ plane. Then the function 1
(ζ−z) is an

analytic function of ζ for |ζ − z| ≥ ε. Because the ∂̄ derivative of an analytic
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function is zero, it follows that

∂

∂ζ̄

(
Φ(ζ, ζ̄ )

ζ − z

)
=
(

1

ζ − z

)
∂Φ(ζ, ζ̄ )

∂ζ̄
in Dε

where Dε is the domain D punctured by a disc of radius ε at the point ζ = z.
Applying Eq. (7.6.5) in Dε with w = #

ζ−z , we find

∫
C

Φ(ζ, ζ̄ ) dζ

ζ − z
−
∫
|ζ−z|=ε

Φ(ζ, ζ̄ ) dζ

ζ − z
= −

∫∫
Dε

∂#(ζ,ζ̄ )

∂ζ̄

ζ − z
dζ ∧ d ζ̄

But

lim
ε→0

∫∫
Dε

∂#(ζ,ζ̄ )

∂ζ̄

ζ − z
dζ ∧ d ζ̄ =

∫∫
D

∂#(ζ,ζ̄ )

∂ζ̄

ζ − z
dζ ∧ d ζ̄

because
∫∫

D−Dε
→ 0 as ε→ 0 (see Eq. (2.6.25)).

Similarly, as ε → 0, the second term in the above equation becomes−2π iΦ
(z, z̄), and Eq. (7.6.4) follows. �

In many applications Φ→ 1 as z →∞ and D is the entire complex plane.
In this case, Eq. (7.6.4) reduces to

Φ(z, z̄) = 1+ 1

2π i

∫∫
R2

f (ζ, ζ̄ )

ζ − z
dζ ∧ d ζ̄ (7.6.6)

where R
2 denotes integration over the entire complex plane. Actually Eq. (7.6.6)

provides a solution of Eq. (7.6.1) provided that the integral in Eq. (7.6.6) makes
sense. Assuming f (ζ, ζ̄ ) is continuous, the only possible values of ζ for which
this integral may have singularities are ζ = z and ζ = ∞. It turns out that if
f ∈ L2+ε (i.e.,

∫∫ | f |2+ε dx dy <∞), where ε is arbitrarily small, the integral
is well behaved as ζ → z, and if f ∈ L2−ε, then the integral is well behaved
as ζ → ∞. In fact, a convenient class of functions for which Eq. (7.6.6)
provides a solution to Eq. (7.6.1) is f ∈ L1 ∩ L∞. (The function f ∈ L1 if∫∫ | f (x, y)| dx dy <∞, and f ∈ L∞ if | f (x, y)| ≤ M ; f ∈ L1 ∩ L∞ means
that both f ∈ L1 and f ∈ L∞.) In this case, Φ → 1 as z → ∞ and Φ is
continuous. Also Φ satisfies ∂#

∂ z̄ = f , but in general only in a weak sense. In
order for ∂#

∂ z̄ to exist in a strong sense, one needs some smoothness conditions
on f (for example, ∂ f/∂z, ∂ f/∂ z̄ ∈ L1 ∩ L∞).
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7.6.1 Generalized Analytic Functions

An analytic function Φ(z) in a region R satisfies ∂#
∂ z̄ = 0 in R. A simple

generalization of analytic functions, so-called generalized analytic functions,
have been studied extensively by Vekua (1962). The equation ∂#

∂ z̄ = 0 is now
replaced by a special form of a ∂̄ equation, namely

∂Φ
∂ z̄

= A(z, z̄)Φ+ B(z, z̄)Φ̄ (7.6.7)

in a region R, where Φ̄ is the complex conjugate of Φ and A, B are given
functions of z and z̄. Generalized analytic functions have had applications
in differential geometry, in elasticity, and more recently in the solution of a
certain class of multidimensional nonlinear PDEs, and in multidimensional
inverse scattering.

If B = 0, Eq. (7.6.7) can be solved in closed form. A derivation of this
solution can be obtained using the following formal argument. The first term
in the right-hand side of Eq. (7.6.4) is analytic and therefore its ∂̄ derivative is
zero. Applying ∂/∂ z̄ in Eq. (7.6.4), we find (note that f = ∂Φ/∂ z̄)

f (z, z̄) = ∂

∂ z̄

1

2π i

∫∫
D

f (ζ, ζ̄ )

ζ − z
dζ ∧ d ζ̄ (7.6.8)

Using Eq. (7.6.8), it follows that the general solution of ∂#
∂ z̄ = A(z, z̄)Φ is

Φ(z, z̄) = w(z)e
1

2π i

∫∫
D

A(ζ,ζ̄ )
ζ−z dζ∧d ζ̄ (7.6.9)

where w(z) is an arbitrary analytic function; (take ∂/∂ z̄ of Eq. (7.6.9) and use
Eq. (7.6.8)). Similarly, the same procedure shows that the general solution of
Eq. (7.6.7) can be expressed (Vekua, 1962) as

Φ(z, z̄) = w(z) exp

(
1

2π i

∫ ∫
D

[
A(ζ, ζ̄ )+ B(ζ, ζ̄ )

Φ̄(ζ, ζ̄ )

Φ(ζ, ζ̄ )

]
dζ ∧ d ζ̄

ζ − z

)
(7.6.10)

Note that Eq. (7.6.7) is really a first-order PDE. Its general solution depends on
an arbitrary function, which in this case is w(z).

We now make some further comments about Eq. (7.6.7). We assume that D
is the entire complex plane, A, B ∈ L1 ∩ L∞, and seek a solution Φ that tends
to 1 as z →∞.

If B = 0, we know that
∫ ∫

R2
A(ζ,ζ̄ )
ζ−z dζ ∧ d ζ̄ → 0 as z → ∞. Therefore,

from Eq. (7.6.9), w(z)→ 1 as z →∞. Because w(z) is analytic and bounded,
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by Liouville’s Theorem, w(z) = 1. Thus we expect that

Φ(z, z̄) = exp

(
1

2π i

∫∫
R2

A(ζ, ζ̄ )

ζ − z
dζ ∧ d ζ̄

)
(7.6.11)

is the unique solution of equation ∂#
∂ z̄ = AΦ, Φ→ 1 as z →∞.

In the general case, equation Eq. (7.6.6) implies

Φ = 1+ 1

2π i

∫∫
R2
(A(ζ, ζ̄ )Φ(ζ, ζ̄ )+ B(ζ, ζ̄ )Φ̄(ζ, ζ̄ ))

dζ ∧ d ζ̄

ζ − z
(7.6.12)

It can be shown (Vekua, 1962) that this equation is a Fredholm integral equation,
and therefore the question of its solvability reduces to the question of existence
of nontrivial homogeneous solutions. We claim that Eq. (7.6.12) has no such so-
lutions. Indeed, suppose that ϕ(ζ, ζ̄ ) is a homogeneous solution of Eq. (7.6.12);
that is, ϕ solves the same equation as Eq. (7.6.12) except 1 is replaced by 0.
Then ϕ→ 0 as z →∞. But from Eq. (7.6.10), ϕ can be written as

ϕ(z, z̄) = w(z) exp

(
1

2π i

∫∫
R2

[
A(ζ, ζ̄ )+ B(ζ, ζ̄ )

ϕ̄(ζ, ζ̄ )

ϕ(ζ, ζ̄ )

]
dζ ∧ d ζ̄

ζ − z

)
and because ϕ→ 0 as z →∞, it follows thatw→ 0 as |z| → ∞. But because
w(z) is analytic and bounded, by Liouville’s Theorem we find that w = 0 ev-
erywhere. (This is provided that the integral in the exponential is well behaved,
which is indeed the case since for well-behaved functions A and B, |ϕ̄/ϕ| = 1.)

Problems for Section 7.6

1. Note that the function (z − α)−1 is analytic everywhere except at z = α.
Thus its derivative with respect to z is zero everywhere except at z = α.
Indeed, it can be shown that the following identity is valid

∂

∂z
(z − α)−1 = −2π iδ(z − α)

where δ denotes the dirac delta function. (See also Problem 2.6.11 in
Section 2.6). This function has the property that if f (z, z) is a sufficiently
smooth function, and D contains the origin, then∫∫

D

f (z, z)δ(z) dz ∧ dz = f (0, 0)
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Use the above result to verify that the function

Φ(z, z) = w(z) exp

[
1

2π i

∫∫
D

A(ζ, ζ )

ζ − z
dζ ∧ dζ

]

where w(z) is an arbitrary analytic function, satisfies

∂Φ
∂z

= A(z, z)Φ in D

2. Consider the following PDE:

Φx + iΦy = 2Φ
x2 + y2 + 1

, Φ→ 1 as x2 + y2 →∞

Show that

Φ(z, z) = exp

[
1

2π i

∫∫
R2

dζ ∧ dζ

(|ζ |2 + 1)(ζ − z)

]

Hint: Note that the above PDE can be written as

∂Φ
∂z

= Φ
|z|2 + 1

3. Consider the following linear differential equation for the scalar function
µ(x, y, k), with the scalar function q(x, y) as a forcing function:

µx + iµy − 2kµ = 2q, −∞ < x <∞, −∞ < y <∞ (1)

where q(x, y) and its derivatives decay sufficiently fast as |x | + |y| → ∞.
Show that the unique solution of this equation, which decays as x2+ y2 →
∞ and which is bounded for all complex k, is given by

µ(x, y, kR, kI ) = 1

π

∫∫
R2

ek(z−ζ )−k(z−ζ )

z − ζ
q(ξ, η) dξ dη (2)

where z = x + iy, ζ = ξ + iη, k = kR + ikI .
Hint: Note that (1) can be written as ∂µ

∂z −kµ= q. The Green’s function of
the operator ∂

∂z is 1
π z , thus the Green’s function of the left-hand side of (1)

is c
π z ekz where c is independent of z. Choose c so that this Green function

is bounded for all complex k.
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4. In Section 7.4 the equation µx − ikµ = q(x) was used to derive the direct
and inverse Fourier transforms. Now we use equation (1) of Problem 7.6.3,
that is

∂µ

∂z
− kµ = q(x, y), z = x + iy

to derive the direct and inverse two-dimensional Fourier transform. A
certain nonlinearization of these results is discussed in the exercises of
Section 7.7

(a) Let µ be defined by equation (2) of Problem 7.6.3. Show that

lim
z→∞(zekz−kzµ) = q̂(kI , kR)

where

q̂(kI , kR) ≡ 1

π

∫
R2

∫
e−2i(kI x−kR y)q(x, y) dx dy (1′)

(b) Show that equation (2) of Problem 7.6.3 implies

∂µ

∂k
= e−kz−kzq̂, µ = O

(
1

k

)
as k →∞

(c) Establish that the unique solution of the ∂ problem formulated in (b) is

µ = −1

π

∫∫
R2

e2i(lI x−lR y)q̂(lI , lR)

k − l
dlRdlI , l = lR + ilI

(d) By comparing the large k assumptions of equation (1) of Problem 7.6.3
and those of the above equation, show that

q = − lim
k→∞

(kµ) = 1

π

∫∫
R2

e2i(kI x−kR y)q̂(kI , kR) dkR dkI (2′)

Equations (1′) and (2′) are the usual formulae for the two-dimensional
direct and inverse Fourier transforms.

∗7.7 Applications of Matrix Riemann–Hilbert Problems and ∂̄ Problems

It was shown in Section 7.4 (Example 7.4.6) that the inversion formulae for the
Fourier transform can be obtained by relating the linear ODE with a parameter k,
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µx − ikµ = q(x), to the solution of a certain scalar RH problem. Similarly, the
inversion formulae associated with more general transforms can be obtained
by connecting more general linear eigenvalue problems with the solution of
certain vector RH and ∂̄ problems. It is well known that the Fourier transform
can be used to solve linear PDEs. It is interesting and significant that these
more general transforms (called the inverse scattering transform: IST) can be
used to solve certain nonlinear PDEs.

In Examples 7.7.2–7.7.5 below we study the RH and ∂̄ problems that arise
from the analysis of certain linear (scattering) equations associated with the so-
called Korteweg–deVries, Kadomtsev–Petviashvili, and Painlevé IV equations.
In these examples we concentrate on the relevant RH and ∂̄ problems without
addressing in detail (though we do give the interested reader some background
concepts behind the derivations for Examples 7.7.2–7.7.3) the more difficult
questions of how they are derived from the underlying linear equations.

Throughout this section we assume that the jump functions appearing in
the RH and ∂̄ problems we study are in the proper spaces so that the theory
mentioned in Sections 7.5 and 7.6 applies, and then the associated linear integral
equations are of the Fredholm type. We recall that, if the jump functions are
in the spaces L2 ∩ L∞ and in L1 ∩ L∞ for RH and ∂̄ problems, respectively,
then it can be shown that the linear integral equations are indeed Fredholm
integral equations. It is known that to establish the solvability of Fredholm
integral equations of the second kind, it is sufficient to establish uniqueness,
that is, to prove that the associated homogeneous equations have only the zero
solution.

We begin this section by discussing an important extension of the example
we considered in Section 7.4, namely, integral equations with displacement
kernels. In this example we will consider systems of such equations. As
mentioned earlier, Gohberg and Krein considered this problem in their seminal
work (Gohberg and Krein, (1958)), and in this example we mention some of
their main results.

Example 7.7.1 We consider the following system of N coupled integral equa-
tions

ϕ�(x)−
∫ ∞

0
g�m(x − t)ϕm(t) dt = f�(x),

0 < x <∞, �,m = 1, 2, . . . , N

where f�(x) and g�m(x) are continuous and belong to the space L1 of abso-
lutely integrable functions,

∫∞
0 | f�| dx <∞ and

∫∞
0 |g�m | dx <∞. It is more
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convenient to work with vector-matrix notation:

ϕ(x)−
∫ ∞

0
g(x − t)ϕ(t) dt = f (x),

where ϕ(x) and f(x) represent the column vectors (ϕ1, . . . , ϕn)
T and ( f1, . . . ,

fn)
T , and g(x) is the matrix whose coefficients are {g�m(x)}. The vectors ϕ,

f , and matrix g all belong to the space L1 because their components do so.
We assume that the Fourier transform of the matrix g(x) (i.e., the transform of
each coefficient), which we denote as Ĝ(k), satisfies det(I − Ĝ) 
= 0; that is,
the matrix I − Ĝ(k) is not singular. The matrix Ĝ(k) is in the dual space of
suitably bounded functions denoted by *1.

In the same way as shown in Example 7.4.5 we can reduce the above integral
equation to a RH problem – in this case a vector RH problem. Let us define ϕ̃

as ϕ̃(x) = ϕ(x) for x > 0 and ϕ̃(x) = 0 for x < 0, and obtain the system

ϕ̃(x)−
∫ ∞

−∞
g(x − t)ϕ̃(t) dt = f (x), x > 0

−
∫ ∞

−∞
g(x − t)ϕ̃(t) dt = h(x), x < 0

where h(x) is an unknown vector function to be found.
Calling

ϕ̃(x), f̃ (x), h̃(x) =
{
ϕ(x), f (x), 0 x > 0
0, 0,h(x) x < 0

the two vector-matrix equations above for x > 0 and x < 0 can be written as
the single matrix equation

ϕ̃(x)−
∫ ∞

−∞
g(x − t)ϕ̃(t) dt = f̃ (x)+ h̃(x)

for −∞ < x <∞. Let us denote by Φ̂(k), Ĝ(k), F̂(k), and Ĥ(k), the Fourier
transforms of ϕ̃, g,→ f̃ , and→ h̃, respectively, using the convention

#̂(k) =
∫ ∞

−∞
ϕ̃(x)e−ikx dx =

∫ ∞

0
ϕ̃(x)e−ikx dx

Because all components of ϕ̃ and f̃ have support only for x > 0, and similarly h̃
has support only for x < 0, their Fourier transforms are analytically extendible
to the lower half plane (Φ̂

−
(k), F̂

−
(k)) and the upper half plane (Ĥ

+
(k)),
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respectively. For convenience we call the unknown Ĥ
+
(k) to be Φ̂

+
(k), hence

the Fourier transform of the above integral equation for ϕ̃(x) yields

Φ̂
+
(k) = (I − Ĝ(k))Φ̂

−
(k)− F̂

−
(k) on −∞ < k <∞, G(±∞) = 0

which is the vector RH analog of Eq. (7.4.33b).
If we assume that Ĝ(k) and F̂−(k) satisfy a Hölder condition in addition to

being in the space *1, then we connect with the study of vector and matrix RH
problems that was discussed in Section 7.5, suitably extended to the real line,
−∞ < k <∞ (see also Section 7.4.1). The critical issue involves solving the
homogeneous matrix RH problem

X̂
+
(k) = (I −Ĝ(k))X̂

−
(k), I −Ĝ(±∞) = I, X̂

±
(±∞) = I,

−∞ < k <∞
because with this in hand we can readily solve the inhomogeneous equation;
that is

Φ̂
+
(k) = X̂+(k)(X̂−(k))−1Φ̂

−
(k)− F̂

−
(k) on −∞ < k <∞

or

(X̂+(k))−1Φ̂
+
(k)− (X̂−(k))−1Φ̂

−
(k) = −(X̂+(k))−1F̂

−
(k)

and therefore

Φ(z) = X̂(z)

[
− 1

2π i

∫ ∞

−∞

X̂
+
(k)F̂

−
(k)

k − z
dk + D(1)(z)P(z)

]
where P(z) is a vector of polynomials and D(1)(z) is an appropriate diagonal
matrix that depends on the partial index associated with I − Ĝ(k) discussed
below. Below is a brief summary of the results of Gohberg and Krein (1958);
some readers may wish to skip the summary because the connection between
systems of integral equations with displacement kernels and with RH problems
has been established.

Call M(k) = (I − Ĝ(k)) and write the homogeneous RH problem in the
form

X̂+(k) = M(k)X̂−(k), −∞ < k <∞
where X±(±∞) = I , M(±∞) = I . Gohberg and Krein show that the matrix
M(k) can always be factorized into the following product:

M(k) = η+(k)D(k)η−(k)
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(called the “left” standard form), where η±(k) are matrices that are analytically
extendible into the upper (+) and lower (−) half planes where (a)η±(±∞) = I ,
(b) detη±(k) do not vanish anywhere in their analytically extended half planes,
and (c) D(k) is the diagonal matrix

D(k) = diag

((
k − i

k + i

)κ1

,

(
k − i

k + i

)κ2

, . . . ,

(
k − i

k + i

)κn
)

the integers κ1, κ2, . . . , κn are the partial indices associated with the RH prob-
lem, analogous to those discussed in Section 7.5. While the partial indices can
be characterized, other than for special cases (M(k) triangular, M(k) polyno-
mial, M(k) satisfies M ±M∗ definite, in which case κ1 = κ2 = · · · = κn = 0),
in general it is not known how to calculate the indices constructively. However,
the total index can be calculated from M(k) = η+(k)D(k)η−(k) by taking the
logarithm of the determinant of this equation:

ind(M(k)) = 1

2π i

[
log det M(k)

]∞
−∞

= 1

2π i

[
log(det η+(k))+ log (det D(k))+ log(det η−(k))

]∞
−∞

Because log(det η±(k)) never vanish in their respective half planes, their index
is zero. Moreover, from Section 7.4.1 we know that the index of

(
k−i
k+i

)κ j is
κ j . Let us denote the index of M(k) as κ . Thus the sum of the partial indices,
referred to as the total index, is known a priori:

κ1 + κ2 + . . .+ κn = indM(k) = κ

Calling X−(k) = (η−(k)D(k))−1 and X+(k) = η+(k), we see that X−(k) has
a zero at k = −i of order κ j (κ j > 0) in its j th column, and det(X−(k)) does
not vanish anywhere else in the LHP. If κ j < 0, then there is no solution to the
homogeneous problem because X−(k) has a pole of order |κ j | at k = −i .

We also note that Gohberg and Krein(1958) show that corresponding to each
partial indexκ j > 0 there corresponds aκ j -dimensional family of homogeneous
solutions to the original integral equation; that is, ϕ(x)−∫∞0 g(x− t)ϕ(t) dt =
0, and for each κ� < 0 there corresponds a |κ�|-dimensional family of solutions
to the homogeneous adjoint equation

Ψ(x)−
∫ ∞

0
gT (t − x)Ψ(t) dt = 0

On the other hand, if M(k) satisfies M ± M∗ definite, then it can be shown
that κ1 = κ2 = · · · = κn = 0, and then X±(k) satisfy Fredholm integral



7.7 Applications of Matrix Riemann–Hilbert Problems and ∂̄ Problems 609

equations, similar in form to Eq. (7.5.5). (Via a similar derivation one finds
that in Eq. (7.5.5) the contour C is replaced by an integral along the real axis
(−∞,∞), and the right-hand side of that equation must be modified to be
(M−1(k)+IN )IN/2.) In the forced solution ofΦ(z) above, P(z)= P0 a constant
vector and D(1)(z) = IN . Other cases where the indices are positive or negative
can be discussed, but the zero indices case is sufficiently representative of the
essential ideas.

Example 7.7.2 (The Time Independent Schrödinger Equation) We now con-
sider Problem 6 of the introduction to this section; given appropriate scatter-
ing data, reconstruct the potential q(x) of the time independent Schrödinger
equation

ψxx + (q(x)+ k2)ψ = 0, −∞ < x <∞ (7.7.1)

The results we quote assume that q(x) is real, and
∫∞
−∞ dx(1+ x2)|q(x)| <∞.

This problem has a natural quantum mechanical interpretation. If a “poten-
tial” is bombarded by quantum particles, then its shape can be reconstructed
from knowledge of how these particles scatter. To be more precise, if a wave
e−ikx impinges on the potential q(x) from the right, this wave creates a trans-
mitted wave to the left with amplitude T (k) and a reflected wave to the right
with amplitude R(k), that is

ψ(x, k)→ T (k)e−ikx as x →−∞,

ψ(x, k)→ e−ikx + R(k)eikx as x →+∞
(7.7.2)

The potential q(x) can also support “bound states,” that is, there may exist a
finite number of discrete eigenvalues, kn , such that there exist square integrable
solutions of Eq. (7.7.1):∫ ∞

−∞
ψ2

n (x) dx <∞, n = 1, 2, . . . , N (7.7.3)

It is significant that the reconstruction of q(x) from scattering data can be
turned into a matrix RH problem. In what follows we will only sketch the
main ideas. The “inverse scattering” analysis requires us to study solutions of
Eq. (7.7.1) with suitable boundary conditions imposed as x →±∞; that is

ϕL(x, k) ∼ e−ikx as x →−∞
ψ̂R(x, k) ∼ e−ikx as x →+∞
ψR(x, k) ∼ eikx as x →+∞
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The solutions ψ̂R and ψR are linearly independent because the Wronskian
W =W(ψ̂R, ψR) = ψ̂RψRx − ψ̂RxψR = 2ik 
= 0 (k 
= 0). Thus ϕL is linearly
dependent upon ψ̂R and ψR :

ϕL(x, k) = a(k)ψ̂R(x, k)+ b(k)ψR(x, k) (7.7.4)

The transmission and reflection coefficients, T (k) and R(k) in Eq. (7.7.2), are
defined by T (k) = 1/a(k), R(k) = b(k)/a(k), and we see that the func-
tion ϕL(x, k)/a(k) = T (k)ϕL(x, k) is identified with the function ψ(x, k) in
Eq. (7.7.2). Multiplying Eq. (7.7.4) by eikx and defining

Φ̃(x, k) = ϕL(x, k)eikx

Ψ̂(x, k) = ψ̂R(x, k)eikx

Ψ(x, k) = ψR(x, k)e−ikx

we obtain the equation

Φ̃(x, k)

a(k)
= Ψ(x,−k)+ R(k)e2ikxΨ(x, k) (7.7.5)

where we have used the fact that Ψ̂R(x,−k) = ΨR(x, k) (note that Ψ̂R(x, k)
andΨR(x, k) satisfy the same ODE, and the boundary conditions for Ψ̂R(x,−k)
and ΨR(x, k) are the same). When q(x) is such that

∫∞
−∞(1+ x2)|q(x)| dx <

∞, the following analytic properties can be established: Φ̃(x, k), Ψ(x, k),
a(k) are extendible to analytic functions in the upper half k plane, and by
the symmetry principle, Ψ(x,−k) is extendible to a function analytic in the
lower half k plane. The functions Φ̃(x, k), Ψ(x, k), and a(k) all tend to unity
as |k| → ∞.

The method usually employed to establish these analytic conditions is to
study the integral equations (cf. Ablowitz and Clarkson, 1991) that govern
Φ̃(x, k) and Ψ(x, k); the function a(k) is given by an integral over q(x) and
Φ̃(x, k). So for example, Φ̃(x, k) satisfies the ODE

Φ̃xx − 2ikΦ̃x = −q(x)Φ̃

and has the following representation as an integral equation:

Φ̃(x, k) = 1+
∫ ∞

−∞
G(x − ξ, k)q(ξ)Φ̃(ξ, k) dξ

where G(x, k) is defined below.
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The kernel G(x, k) is often called the Green’s function associated with
Φ̃(x, k), and G satisfies the same ODE as Φ̃ except the right-hand side of
the ODE is replaced by a Dirac delta function, that is, q(x)Φ̃(x, k)→ δ(x), so
that Gxx − 2ikGx = −δ(x). The kernel G(x, k) is given by

G(x, k) = 1

2π

∫
C+

eipx

p(p − 2k)
dp

= 1

2ik
(1− e2ikx ) θ(x)

where C+ is the contour from −∞ to ∞ indented below p = 0, p = 2k;
θ(x) = {1 if x > 0, 0 if x < 0}. The above integral equation for Φ̃(x, k)
is a Volterra integral equation; note that the kernel (Green’s function) is ana-
lytic in the upper half k plane (i.e., for Im k > 0). When q(x) satisfies the
condition

∫∞
−∞(1+ x2)|q(x)| dx < ∞, one can establish that the Volterra in-

tegral equation has a unique solution (i.e., its Neumann series converges; cf.
Ablowitz and Clarkson (1991)).

In fact, with these analyticity results Eq. (7.7.5) is a generalized RH problem
– the generalization being due to the fact that Φ̃(x, k)/a(k) is a meromorphic
function in the upper half k plane, owing to the zeroes of a(k). (The analyticity
of a(k) for Im k > 0 follows from the analyticity of Φ̃(x, k) for Im k > 0; in
fact, it can be shown that a(k) = 1 + 1

2ik

∫∞
−∞q(x)Φ̃(x, k) dx , or alternatively

from Eq. (7.7.4)

a(k) = 1

2ik
(ϕLψR x − ϕL xψR) = 1

2ik
W (ϕL , ψR)

where W(φL , ψR) is the Wronskian.) Because a(k) is analytic for Im k > 0,
a(k) → 1 as |k| → ∞, and is continuous for Im k ≥ 0, its zeroes must
be isolated and finite in number. One can also show that all the zeroes of
a(k) are simple and lie on the imaginary axis: a(kn) = 0, kn = i pn , n =
1, 2, . . . , N . A more standard form for this generalized RH problem is obtained
by subtracting the poles of Φ̃(x, k)/a(k) from both sides of Eq. (7.7.5). At a
zero of a(k), a(kn) = 0, the bound states of ϕL(x, kn) andψL(x, kn) are related:
ϕL(x, kn) = cnψR(x, kn), and the so-called normalization constants are given
by cn = bn/a′(kn). Calling

Φ+(x, k) = Φ̃(x, k)

a(k)
−

N∑
n=1

cne2ikn x$+(x, kn)

k − kn
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Eq. (7.7.5) is given by

Φ+(x, k) = Ψ+(x,−k)+ R(k)e2ikx$+(x, k)

−
N∑

n=1

cne2ikn xΨ+(x, kn)

k − kn
, −∞ < k <∞ (7.7.6)

where Φ+(x, k) and Ψ+(x,−k) tend to 1 as k→∞ (note that G(x, k)→ 0
as k→∞). We show below that Eq. (7.7.6) can be viewed as a vector RH
problem.

It turns out that the above physical picture can be turned into a rigorous
mathematical theory. Given a reflection coefficient R(k), N discrete eigenval-
ues {kn}N

1 and N normalization constants {cn}N
1 , there exists a unique way to

reconstruct the potential q(x) (as mentioned above, the discrete eigenvalues are
pure imaginary: kn = i pn , pn > 0):

q(x) = ∂

∂x

[
− 1

π

∫ ∞

−∞
dk R(k)e2ikxΨ+(x, k)+ 2i

N∑
n=1

cne2ikn xΨ+(x, kn)

]
(7.7.7)

where Ψ+ is a solution of the generalized RH problem (7.7.6). (Eq. (7.7.7)
can be established by equating the O(1/k) term in the large k expansion of
Ψ+ using the Greens function with the O(1/k) term from the + projection of
Eq. (7.7.6).)

This inverse scattering analysis can be thought of as a generalized Fourier
transform. On the “direct” side we give q(x) and find R(k), T (k), {cn, kn}N

n=1,
Φ+(x, k), Ψ+(x,−k), etc. On the “inverse” side we “recover” q(x) via
Eqs. (7.7.6)–(7.7.7) by giving R(k), {cn, kn}N

n=1. However, a significant com-
plication is that even if R(k), {cn}N

n=1 and {kn}N
n=1 are given, one first needs to

solve the generalized RH problem (7.7.6) for Φ+(x, k) and Ψ+(x,−k) before
evaluating q(x). In fact, Eq. (7.7.6) together with the equation obtained from
it by letting k → −k defines a vector RH problem for the and func-
tions (Φ+(x, k),Ψ+(x, k))T and (Φ+(x,−k),Ψ+(x,−k))T , respectively. We
show this concretely in the simpler case where there are no discrete eigenvalues.
(We make this assumption in order to simplify the algebra.) Equation (7.7.6)
for arguments k and −k yields

Φ+(x, k)−Ψ+(x,−k) = R(k)e2ikxΨ+(x, k)

Φ+(x,−k)−Ψ+(x, k) = R(−k)e−2ikxΨ+(x,−k)
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Substitution of Ψ+(x, k) in the first of these equations by using the second
equation yields, in place of the first

Φ+(x, k) = (1− R(k)R(−k))Ψ+(x,−k)+ R(k)e2ikxΦ+(x,−k)

This equation and the second of the above pair yields(
Φ+(x, k)
Ψ+(x, k)

)
=
(

1− R(k)R(−k) R(k)e2ikx

−R(−k)e−2ikx 1

)(
Ψ+(x,−k)
Φ+(x,−k)

)
= Ĝ(k)

(
Ψ+(x,−k)
Φ+(x,−k)

)
Actually, if q(x) is real, then R(−k) = R̄(k), and it is possible to establish
solvability for this RH problem provided that |R(k)| < 1. Indeed

G + G∗ =
(

2
(
1− |R(k)|2) 0

0 1

)
thus if |R(k)| < 1, G + G∗ is positive definite and Lemma 7.5.3 implies solv-
ability. An alternative approach for solving this RH problem is to transform the
RH problem to a certain Fredholm linear integral equation called the Gel’fand–
Levitan–Marchenko equation (see, e.g., Ablowitz and Segur, 1981; Ablowitz
and Clarkson, 1991) whose solution can be proven to exist.

Example 7.7.3 (The KdV equation.) In this example we consider the solution
of the Korteweg-deVries (KdV) equation

qt + qxxx + 6qqx = 0 −∞ < x <∞, t > 0 (7.7.8)

where we assume that q(x, 0) is sufficiently differentiable and it satisfies∫∞
−∞(1 + x2)|q(x)| dx < ∞. This equation was first derived in 1895 as an

approximation to the equations of water waves. The KdV equation has subse-
quently appeared in many physical applications. In the context of water waves,
it describes the amplitude of long waves of small amplitude propagating in shal-
low water (it is assumed that viscosity is negligible and that waves propagate
only in one direction).

It turns out that there is an intimate relationship between the KdV equation and
the time independent Schrödinger equation, which was discussed in Example
7.7.2. Assume that the potential q appearing in Eq. (7.7.1) evolves in time
according to the KdV equation. Then, the remarkable fact is that the evolution
of the scattering data: R(k), cn , and kn is very simple; namely (Ablowitz and
Segur, 1981)

d

dt
kn = 0,

d

dt
R(k, t) = 8ik3 R(k, t),

d

dt
cn(t) = 8ik3

ncn(t) (7.7.9)
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This means that Eqs. (7.7.6) and (7.7.7), with R(k) and cn replaced by R(k, 0)
e8ik3t and cn(0)e8ik3

n t , respectively, can be used to integrate the KdV equation!
In particular, given initial data q(x, 0), one first computes R(k, 0), cn(0), and

kn . Then Eq. (7.7.7), where Ψ+ is found by solving the RH problem (7.7.6),
describes the evolution of q(x, t).

Before computing some explicit solutions we give an interpretation of the
above construction. Suppose that the amplitude q(x, t) of the water wave
described by the KdV is frozen at a given instant of time. Knowing the scat-
tering data, we can reconstruct q(x, t) from knowledge of how particles would
scatter off q(x, t). In other words, the scattering data provides an alternative
description of the wave at a fixed time. The time evolution of the water wave
satisfies the KdV equation, which is a nonlinear equation. The above alterna-
tive description of the shape of the wave is useful because the evolution of the
scattering data is linear, that is, Eq. (7.7.9). This highly nontrivial change of
variables, from the physical to scattering space, provides a linearization of the
KdV equation.

We now consider the special case when R = 0. Then the RH problem (7.7.6)
reduces to

Φ+(x, t, k)−Ψ+(x, t,−k) = −
N∑

n=1

cn(0)e2ikn x+8ik3
n tΨ+(x, t, kn)

k − kn
,

−∞ < k <∞ (7.7.10)

where we have integrated the equation for cn(t) in Eq. (7.7.9). The function
Ψ+(x, t, k) is a function (with respect to k), thus by the symmetry prin-
ciple, Ψ+(x, t,−k) is a function. The function on the right-hand side of
Eq. (7.7.10) is also a function because kn = i pn , pn > 0, and the poles lie
on the upper half plane. Thus the solution of Eq. (7.7.10) is immediately found
to be

Ψ+(x, t,−k) = 1+
N∑

j=1

c j (0)e
2ik j x+8ik3

j tΨ+(x, t, k j )

k − k j

and Φ+(x, t, k)=1. (Recall the boundary conditions that Φ(x, k) and Ψ+(x, k)
go to 1 as |k| → ∞.) Evaluating the above equation at k = −kn , we find the
following linear system of algebraic equations for the vector Ψ+(kn, x, t) for
n = 1, . . . , N :

Ψ+(x, t, kn) = 1−
N∑

j=1

c j (0)e
2ik j x+8ik3

j tΨ+(x, t, k j )

kn + k j
(7.7.11)
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The N × N linear algebraic system (7.7.11) can be shown to be solvable because
the relevant matrix is positive definite. Having obtained {Ψ+(x, t, kn)}N

n=1,
q(x, t) follows from Eq. (7.7.7) with R(k) = 0:

q(x, t) = 2i
∂

∂x

N∑
n=1

cn(0)e
8ik3

n tΨ+(x, t, kn) (7.7.12)

This solution is known as an N -soliton solution. As t → ∞, it describes
the interaction of N exponentially localized traveling waves. These localized
waves have the remarkable property that they regain their initial amplitude and
velocity upon interaction (i.e., they behave like particles).

The simplest situation occurs when N = 1, which is called the one-soliton
solution. From Eq. (7.7.11) we have

Ψ+(x, k1) = 1

1+ c1(0)e
8ik3

1
t

2k1
e2ik1x

Calling k1= i p1, p1 > 0, the one-soliton solution is found from Eq. (7.7.12)
to be

q(x, t) = 2p2
1 sech2

(
p1
(
x − 4p2

1t
)− α0

)
(7.7.13)

where α0 is defined by e2α0 = c1(0)/(2k1).

Example 7.7.4 (A ∂̄ problem for a 2-spatial-dimensional generalization of the
KdV equation – the so-called Kadomtsev–Petviashvili (KP) equation.)

We consider the KP equation

(qt + 6qqx + qxxx )x + 3qyy = 0, −∞ < x, y <∞, t > 0 (7.7.14)

and we assume that q is real, q(x, y, 0) is sufficiently smooth and bounded,
and q(x, y, 0) ∈ L2(R

2) ∩ L∞(R2). This equation governs weakly dispersive
nonlinear waves with slow transverse variations. It is a natural generalization
of the one-dimensional KdV equation and arises in many physical applications
such as water waves, stratified fluids, plasma physics, etc. We also note that the
qyy term can have a minus sign (formally, y �→ iy) but in that case the inverse
scattering is quite different. Equation (7.7.14) is sometimes referred to as the
KPII equation.

The KP equation is associated with the following linear “scattering” problem:

−ψy +ψxx + 2ikψx + q(x, y)ψ = 0, −∞ < x <∞, −∞ < y <∞
(7.7.15)
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In what follows we sketch the essential ideas in the method of solution of the
KP equation. (The main results are Eqs. (7.7.18) and (7.7.20) below.)

By considering the integral equation that governs a solution ψ(x, y, k)
(ψ(x, y, k)→ 1 as |k| → ∞), one can derive a ∂̄ equation that ψ satisfies.
Namely, by taking

∂

∂ k̄
= 1

2

(
∂

∂kR
+ i

∂

∂kI

)
of the integral equation (k = kR + ikI )

ψ(x, y, k) = 1+
∫ ∞

−∞

∫ ∞

−∞
G(x − x ′, y − y′, k)ψ(x ′, y′, k) dx ′ dy′ (7.7.16)

where the Green’s function is given by

G(x, y, k) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

eiξ x+iηy

ξ 2 + 2ξk + iη
dξ dη (7.7.17)

one can establish (cf. Ablowitz and Clarkson, 1991) the following ∂̄ equation
for ψ :

∂

∂ k̄
ψ(x, y, k) = sgn kR

2π
e−2i(x−2kI y)kR T (kR, kI ) ψ̄(x, y, k) (7.7.18)

where T (kR, kI ) plays the role of scattering data and where ψ → 1 as k→∞.
(Note that ψ̄(x, y, k) = ψ(x, y,−kR, kI ).) Equation (7.7.18) is exactly in the
form studied in Section 7.6. It is therefore a generalized analytic function and
Eq. (7.7.18) is uniquely solvable given appropriate (decaying) scattering data
T (kR, kI ).

A reconstruction formula for q(x, y) is obtained by considering asymptotic
formulae for ψ(x, y, k) as |k|→∞ in an analogous way as done for one-
dimensional problems. As |k|→∞, ψ(x, y, k) has the expansion

ψ(x, y, k) ∼ 1+ ψ(1)(x, y)

k
+ · · ·

From Eq. (7.7.15) we find that q(x, y) = −2iψ(1)
x . On the other hand, Eq.

(7.7.18) is equivalent to the integral equation (see, e.g., Eq. (7.6.6))

ψ(x, y, k) = 1− 1

π

∫ ∞

−∞

∫ ∞

−∞

∂ψ

∂ z̄ (x, y, z)

z − k
dzR dzI (7.7.19)
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where ∂ψ/∂ z̄(x, y, z) satisfies Eq. (7.7.18). As |k|→∞ this integral equation
simplifies:

ψ(x, y, k) ∼ 1+ 1

πk

∫ ∞

−∞

∫ ∞

−∞

∂ψ

∂ z̄
(x, y, z) dzR dzI

hence q(x, y) is given by

q(x, y) = −2i

π

∂

∂x

∫ ∞

−∞

∫ ∞

−∞
dkR dkI

∂ψ

∂ k̄
(x, y, kR, kI ) (7.7.20)

As with the KdV equation, if q satisfies the KP equation, it can be shown that
the evolution of the scattering data, T (kR, kI ) which we now call: T (kR, kI , t),
evolves simply:

dT (kR, kI , t)

dt
= −4i(k3 + k̄3)T (kR, kI , t) (7.7.21)

Hence Eqs. (7.7.18) and (7.7.20), with T replaced by T (kR, kI , 0)e−4i(k3+k̄3)t ,
provide the solution of the KP equation.

Example 7.7.5 (A Special Solution for the Painlevé IV Equation: PIV) The
mathematical and physical significance of the Painlevé equations was briefly
discussed in Section 3.7. These equations were studied extensively by math-
ematicians at the turn of the century, and in recent years considerable interest
in Painlevé equations has developed because of the deep connection with inte-
grable equations and physical phenomena, for example, spin systems, relativ-
ity, field theory, and quantum gravity theory where special solutions of the PIV
equation have appeared. In this example we discuss how these special solutions
can be obtained via RH theory.

We consider the following special case of the PIV equation (see PIV in
Section 3.7 where the parameters a and b are given by a= − 2θ + 1 and
b = −8θ2)

qtt = q2
t

2q
+ 3

2
q3+ 4tq2+ 2(t2+ 2θ − 1)q − 8θ2

q
, 0 < Re θ <

1

2
(7.7.22)

It turns out that the Painlevé equations can be solved via RH problems. The
conceptual framework is similar to that discussed for the KdV equation; that is,
one can relate the PIV equation to a linear problem that is intimately connected
to a RH problem. (In this case, the linear problem is an ODE, in an auxiliary
variable, say k, whose coefficients depend on the variable t in PIV. Such ODEs
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2 I

1

R

l k

l

k

π/4

arg k = 3π/4

arg k = 7π/4

arg k = −π/4

Fig. 7.7.1. RH problem defined on contour l = l1 + l2

are often called Monodromy problems, and the reconstruction procedure is
referred to as the Inverse Monodromy Transform, IMT.) For a special choice
of initial data, one can establish that a solution of PIV is expressible as

q(t) = −2t − ∂

∂t
log

[
lim

k→∞

(
1

k

)θ

(kψ12(t, k))

]
(7.7.23)

where ψ12 is the 12 component of a matrix ψ(t, k), which is found from a
RH problem defined on the contour � = �1 + �2 where �2 is a line along the
ray arg k = 3π/4 and along line �1 we will have a branch cut with the rays
arg k = −π/4, 7π/4 on either side of the cut as depicted in Figure 7.7.1.

This RH problem is given by

Ψ+(t, k) = Ψ−(t, k)

(
a(t, k) b(t, k)

0 c(t, k)

)
(7.7.24)

where

Ψ(t, k)→
((

1
k

)θ
0

0
(

1
k

)−θ
)

as k →∞
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and where

{a, b, c} =
{
{e2iπθ , e2Q−2iπθ , e−2iπθ } on l1,

{1, e2Q, 1} on l2
Q = k2

2
+ kt (7.7.25)

The jump matrix of the above RH problem is upper triangular; hence we
can solve this matrix RH problem in closed form. Even though the coefficients
a, b, c are discontinuous at k = 0 (and do not satisfy the Hölder condition),
we can solve this problem in a manner analogous to the way we solved RH
problems with open contours. In fact, discontinuous problems such as these
can be thought of as the sum of two RH problems with open contours �1

and �2.
Letting Ψ = (Ψ1,Ψ2), where Ψ1 and Ψ2 are each two-component vectors,

Eq. (7.7.24) reduces to the vector equations

Ψ+
1 = aΨ−

1 (7.7.26a)

Ψ+
2 = cΨ−

2 + bΨ−
1 (7.7.26b)

Let us consider the equation for Ψ1 in Eq. (7.7.26a). We note that the
boundary condition

Ψ1 ∼
(

1

k

)θ

in fact satisfies the homogeneous RH problem exactly. Namely, across �2 there
is no jump; hence Ψ+

1 = Ψ−
1 , and across �1,

Ψ−
1 =

(
1

|k|
)θ

e−7iπθ/4, Ψ+
1 =

(
1

|k|
)θ

e−iπθ/4

hence

Ψ+
1 = e2iπθΨ−

1

thus

Ψ1 =
(

1

k

)θ ( 1
0

)
Next we consider the equation for Ψ2 in Eq. (7.7.26b). The same arguments

we just used for Ψ1 hold for the homogeneous solution of Eq. (7.7.26b), that
is, Ψ+

2,H = cΨ−
2,H , so that

Ψ2,H =
(

1

k

)−θ ( 0
1

)
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Because Ψ1 has a nontrivial contribution only in its first component, we have
a scalar equation to solve:

Ψ+
2
(1) = cΨ−

2
(1) + bΨ−

1
(1)

along � = �1 + �2

where the superscript (1) stands for the first component of Ψ2 = (Ψ(1)
2 ,Ψ(2)

2 )+.

Using c = Ψ+
2,H

(2)
/Ψ−

2,H
(2)

, we obtain

Ψ+
2
(1)

Ψ+
2,H

(2) −
Ψ−

2
(1)

Ψ−
2,H

(2) = b
Ψ−

1
(1)

Ψ+
2,H

(2) along � = �1 + �2

and by the Plemelj formulae (note that b depends explicitly on t)

Ψ(1)
2 (t, k) = Ψ(2)

2,H (k)

2π i

∫
�=�1+�2

bΨ−
1
(1)
(k ′)

Ψ+
2,H

(2)
(k ′)(k ′ − k)

dk ′

Substituting Ψ(2)
2,H (k) = ( 1

k )
−θ and Ψ(1)(k) = ( 1

k )
θ , where we understand that

k = |k|e7iπ/4 along �1 in Ψ−
1
(1)
(k), we find

Ψ(2)
2 (t, k) = 1

2π i

(
1

k

)−θ ∫
�

e2Q(t,k ′)
(

1
k ′
)2θ

k ′ − k
dk ′ (7.27)

and therefore the matrix Ψ(t, k) = (Ψ1,Ψ2)(t, k) is given by

Ψ(t, k) =

( 1
k

)θ 1
2π i

(
1
k

)−θ ∫
l

e
2Q(t,k′)
(

1
k ′
)2θ

k ′−k dk ′

0
(

1
k

)−θ
 (7.28)

Equation (7.7.23) therefore yields the special solution of PIV:

q(t) = −2t − 1

2π i

∂

∂t
log
∫
�

e2Q(t,k)

(
1

k

)2θ

dk (7.29)

We note that the integral representation,
∫
�

e2Q(t,k)
(

1
k

)2θ
dk, is expressible in

terms of a classical special function, the Weber–Hermite function, and hence
this special solution of PIV is also related to this function.

Problems for Section 7.7

1. Consider the linear matrix eigenvalue equation

µx + ik[σ3, µ] = Qµ (1)
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where [A, B] ≡ AB − B A,

σ3 =
(

1 0
0 −1

)
, Q =

(
0 q
q 0

)
and where the function q(x) and all its derivatives are absolutely inte-
grable. Let Φ and Ψ be defined by

Φ = I +
∫ x

−∞
e−ik(x−ξ)σ3 QΦeik(x−ξ)σ3 dξ

Ψ = I −
∫ ∞

x
e−ik(x−ξ)σ3 QΨeik(x−ξ)σ3 dξ

(a) Show that Φ and Ψ satisfy (1)
Hint: Note that the transformation µ = W eikxσ3 transforms equation
(1) to

Wx + ikσ3W = QW (2)

(b) Show that

Φ = (Φ+,Φ−) =
(

Φ+
1 Φ−

1

Φ+
2 Φ−

2

)
Ψ = (Ψ−,Ψ+) =

(
Ψ−

1 Ψ+
1

Ψ−
2 Ψ+

2

)
,

where+ and− denote analyticity in the upper and lower half k plane,
respectively.
Hint: Note that eασ3 = diag(eα, e−α)

(c) Show that

det Φ = det Ψ = 1

and

Φ−
2 (x, k) = Φ+

1 (x, k), Φ−
1 (x, k) = Φ+

2 (x, k)

Ψ+
2 (x, k) = Ψ−

1 (x, k), Ψ+
1 (x, k) = Ψ−

2 (x, k)

2. (a) Show that the eigenfunctions Φ and Ψ introduced in Problem 7.7.1
satisfy

Φ−Ψ = Φe−ikxσ3 T e+ikxσ3 , k ∈ R
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where

T (k) =
∫ ∞

−∞
eikxσ3 Q(x)Ψ(x, k)e−ikxσ3 dx, k ∈ R

Hint: If W1 and W2 satisfy equation (2) of Problem 7.7.1, then W2 =
W1C , where C is an x-independent matrix.

(b) Establish that

det(I − T (k)) = 1, k ∈ R

and

T21(k) = T12(k), k ∈ R, T22(k) = T11(k), Im k > 0

where T11, T12, T21, T22 denote the 11, 12, 21, 22 entries of the ma-
trix T .
Hint: Use (c) of problem 7.7.1.

(c) Let α ≡ T12, β ≡ T22. Use (b) to show that

(1− β(k))(1− β(k)) = 1+ |α(k)|2, k ∈ R

(d) This equation, together with β(k) = O( 1
k ) as |k| → ∞, define a

scalar RH problem for β(k). Show that if β(k) has no zeroes in the
upper half plane, then

1− β(k) = exp

[
1

2iπ

∫ ∞

−∞

log(1+ |α(l)|2)
l − k

dl

]
, Im k > 0

Hint: Note that β(k) is analytic in the upper half plane, while β(k) is
analytic in the lower half plane.

3. (a) Rearrange the equation obtained in part (a) of Problem 7.7.2 to show
that(

Ψ−,
Φ−

1− β

)
=
(

Φ+

1− β
,Ψ+

)( 1 α

1−β e−2ikx

− α
1−β e2ikx 1− |α|2

|1−β|2

)
,

k ∈ R

(b) This equation, together with Φ → I + O
(

1
k

)
,Ψ → I + O

(
1
k

)
as

|k| → ∞ defines a matrix RH problem. Show that this RH problem
is equivalent toΨ+

2 (x, k)

Ψ+
1 (x, k)

 = ( 1
0

)
+ 1

2π i

∫ ∞

−∞

e2ilx

l − k

α(l)

1− β(l)

(
$+

1 (x, l)
$+

2 (x, l)

)
dl,

Im k < 0
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(c) Use the result of Problem 7.5.1 to show that the above RH problem
is always solvable.

4. Combine the results of Problems 1–3 above to show that

q(x) = 1

π

∫ ∞

−∞
e−2ikx α(k)

1− β(k)
Ψ+

2 (x, k) dk

Hint: Equation (1) of Problem 7.7.1 implies Q = i limk→∞ k[σ3, µ] or
q = 2i limk→∞ kΨ+

1 . Compute this limit by using (b) of Problem 7.7.3.

5. In Section 7.4 a scalar RH problem was used to derive the Fourier trans-
form. Use the results of Problems 7.7.1–7.7.4 to derive the following
nonlinear Fourier transform.
Let q(x) ∈ S(R), where S(R) denotes the space where q and all its deri-
vatives are absolutely integrable. Given q , obtain Ψ1(x, k) and Ψ2(x, k)
as the solution of

Ψ1(x, k) = −
∫ ∞

x
e2ik(ξ−x)q(ξ)Ψ2(ξ, k) dξ

Ψ2(x, k) = 1−
∫ ∞

x
q(ξ)Ψ1(ξ, k) dξ, Im k > 0

A nonlinear Fourier transform of q denoted by α(k) is defined by

α(k) ≡
∫ ∞

−∞
e2ikx q(x)Ψ2(x, k) dx (1)

Conversely, given α(k) ∈ S(R) obtain β(k), Ψ1(x, k) and Ψ2(x, k) by

1− β(k) = exp

[
1

2π i

∫ ∞

−∞
dl

log(1+ |α(l)|2)
l − k

]
, Im k > 0

and(
Ψ2(x, k)

Ψ1(x, k)

)
=
(

1
0

)
+ 1

2π i

∫ ∞

−∞

e2ilx

l − k

α(l)

1− β(l)

(
Ψ1(x, l)
Ψ2(x, l)

)
dl,

Im k < 0

A nonlinear inverse Fourier transform of α(k) is defined by

q(x) ≡ 1

π

∫ ∞

−∞
e−2ikx α(k)

1− β(k)
Ψ2(x, k) dk (2)
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6. Show that the defocusing nonlinear Schrödinger equation (NLS)

iqt + qxx − 2|q|2q = 0, −∞ < x <∞,

0 < t <∞, q(x, 0) = q0(x)

is the compatibility condition (1) of Problem 7.7.1 and of

µt + 2ik2[σ3, µ] = (iλ|q|2σ3 − 2k Q + i Qxσ3)µ (1)

Hint: use

∂2µ

∂x∂t
= ∂2µ

∂t∂x

7. (a) Show that if µ satisfies equation (1) of Problem 7.7.1 and equation
(1) of Problem 7.7.6 and if T (k), α(k), and β(k) are defined as in
Problem 7.7.2, then

Tt + 2ik2[σ3, T ] = 0

that is

βt = 0, αt + 4ik2α = 0

Hint: Use I − T = limx→−∞ eikxσ3Ψ(x, k)e−ikxσ3 .

(b) Deduce that the nonlinear Fourier transform defined in Problem 7.7.5
can be used to solve the initial-value problem of the NLS equation as
follows: Letα(k, 0)be defined by equation (1) of Problem 7.7.5 where
q(x) is replaced by q0(x). Define q(x, t) equation (2) of Problem 7.7.5
where α(k) is replaced by α(k, 0)e−4ik2t . Then q(x, t) solves the NLS
equation with q(x, 0) = q0(x).

8. Consider the following linear eigenvalue system of equations:

∂µ1

∂z
= 1

2 qµ2,
∂(µ2ekz)

∂z
= 1

2 q(µ1ekz),

z = x + iy, −∞ < x, y <∞
where q(x, y) and all its derivatives are absolutely integrable. Show that
the unique solution of these equations that is bounded for all complex k
and that satisfies the boundary condition

(µ1, µ2)
T → (1, 0)T as |x | + |y| → ∞
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is given by

µ1(x, y; kR, kI )

= 1+ 1

2π

∫
R2

∫
q(ξ, η)µ2(ξ, η, kR, kI )

z − ζ
dξ dη, ζ = ξ + iη

µ2(x, y; kR, kI )

= 1

2π

∫
R2

∫
ek(ζ−z)−k(ζ−z)q(ξ, η)µ1(ξ, η, kR, kI )

z − ζ
dξ dη

Hint: see Problem 7.6.4.

9. (a) Show that the eigenvectors (µ1, µ2)
T defined in Problem 7.7.8 satisfy

the ∂ equation

∂

∂k
(µ1 ± µ2) = ekz−kzα(µ2 ± µ1)

where

α(kI , kR) ≡ 1

2π

∫
R2

∫
e−2i(kI x+kR y)q(x, y)µ1(x, y, kR, kI ) dx dy

(b) The above equations, together with the limit (µ1, µ2)
T → (1, 0) as

k →∞, define a ∂ problem. Show that the unique solution of this ∂
problem is

(µ1 ± µ2)(x, y; kR, kI )

= 1+ 1

π

∫
R2

∫
el̄ z̄−lz

k − l
α(lI , lR)(µ2 ± µ1)(x, y, lR, lI ) dlR dlI

where l = lR + ilI .
Hint: use the fact that µ1 ± µ2 is a generalized analytic function.

10. Combine the results of Problems 7.7.8 and 7.7.9 to show that

q(x, y) = 2

π

∫
R2

∫
e2i(kI x+kR y)α(kI , kR)µ1(x, y, kR, kI ) dkR dkI

Hint: Use q = 2 limk→∞ kµ̄2.
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Note: The expressions for α(kI , kR) in part (a) of Problem 7.7.9 and
q(x, y) above define a nonlinear two-dimensional Fourier transform.
These equations can be used to solve a certain two-dimensional gen-
eralization of the nonlinear Schrödinger equation.

11. Let µ+(k) and µ−(k) be analytic in the upper and lower half planes,
respectively, and let µ± = 1+ O

(
1
k

)
as |k| → ∞. Suppose that µ+ and

µ− are related to a function µ(k) by

µ+(k) = µ(k)+
∫ ∞

−∞
α(k, l)µ(l) dl

µ−(k) = µ(k)+
∫ ∞

−∞
β(k, l)µ(l) dl

where α and β are given functions with suitable decay properties. Show
that µ satisfies the following linear integral equation:

µ(k) = 1+
∫
R2

∫ (
α(k ′, l)

k − (k ′ − i0)
− β(k ′, l)

k − (k ′ + i0)

)
µ(l) dk ′ dl

Hint: Note that because µ+ − 1 is a function, P−(µ+ − 1) = 0, where

(P− f )(k) = 1

2iπ

∫ ∞

−∞

f (l)

l − (k − i0)
dl

similarly, P+(µ− − 1) = 0.
Note: this result is useful for the linearization of the so-called

Kadomtsev–Petviashvili I equation.



Appendix A
Answers to Odd-Numbered Exercises

Chapter 1

Section 1.1

1. (a) e2π ik, k = 0,±1,±2, . . .

(b) e
3π i

2 +2π ik, k = 0,±1,±2, . . .

(c)
√

2ei( π4 )+2kπ i , k = 0,±1,±2, . . .

(d) ei( π3 )+2kπ i , k = 0,±1,±2, . . .

(e) ei( −π3 )+2kπ , k = 0,±1,±2, . . .

3. (a) zκ = 41/3e2π iκ/3, κ = 0, 1, 2

(b) zκ = ei(π+2κπ)/4, κ = 0, 1, 2, 3

(c) zκ = c1/3e2π iκ/3 − b

a
, κ = 0, 1, 2

(d) z1 = 21/4ei3π/8, z2 = 21/4ei11π/8, z3 = 21/4e5iπ/8,
z4 = 21/4e13iπ/8

Section 1.2

1. (a) compact;
x

1

y

(b) open, bounded; x

y

r=2

-1/2

-1/2

627
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(c) closed, unbounded;
x

4

y

(d) closed, unbounded;

-1/2

y

x

(e) bounded, not open or closed;

y

x
r=1

1/2

5. (a)
∞∑
j=0

(−1) j z2 j

(2 j + 1)!
(b)

∞∑
j=0

z2 j

(2 j + 2)!
(c)

∞∑
j=0

z j+1

( j + 2)!

11. circle passing through the north pole

Section 1.3

1. (a) 0 (b)

(
1

zo

)m

(c) i sin(1) (d) 1

(e) doesn’t exist (f)
1

9
(g) 0

Chapter 2

Section 2.1

1. (a) C-R not satisfied (b) C-R satisfied; f (z) = i(z3 + 2)

(c) C-R not satisfied

3. (a) analytic except at singular points z = (π/2+ nπ), n ∈ Z

(b) entire; singularity at∞
(c) analytic except at singular point z = 1
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(d) analytic nowhere

(e) analytic except at z = exp (i(π/4+ nπ/2)), n = 0, 1, 2, 3

(f) entire; singularity at∞

Section 2.2

1. (a) Branch points at z = 1,∞. Possible branch cuts: (i){z : Re z ≥ 1, Im z = 0}
obtained by letting z − 1 = reiθ , 0 ≤ θ < 2π ; (ii){z : Re z ≤ 1, Im z = 0}
obtained by letting z − 1 = reiθ , −π ≤ θ < π .

(b) Branch points at z = −1 + 2i,∞. Possible branch cut: {z : Re z ≥ −1,
Im z= 2} obtained by letting z + 1− 2i = reiθ , 0 ≤ θ < 2π .

(c) Branch points at z = 0,∞. Possible branch cut: {z : Re z ≥ 0, Im z = 0}
obtained by letting z = reiθ , 0 ≤ θ < 2π .

(d) Branch points at z = 0,∞. Possible branch cut: {z : Re z ≥ 0, Im z = 0}
obtained by letting z = reiθ , 0 ≤ θ < 2π .

3. (a) z= e2π in/5, n= 0, 1, 2, 3, 4 (b) z= i(1+ (2n + 1)π), n= integer
(c) z=π/4+ nπ, n= integer

7.
φ = κ log ρ
ψ = κθ

where z − zo = ρeiθ

Section 2.3

1. (a) Branch points at z = ±i . Branch cut: {z : Re z = 0,−1 ≤ Im z ≤ 1} obtained
by letting z − i = r1eiθ1 and z + i = r2eiθ2 for −3π

2 ≤ θ1, θ2 <
π

2 .

(b) Branch points at z = −1, 2,∞. Branch cut: {z : Re z ≥ −1, Im z = 0}
obtained by letting z + 1 = r1eiθ1 and z − 2 = r2eiθ2 for 0 ≤ θ1, θ2 < 2π .

3. Branch points at z = ±i,∞. Branch cut: {z : Re z = 0, Im z ≤ 1} obtained by
letting z + i = r1eiθ1 and z − i = r2eiθ2 for −π

2 ≤ θ1, θ2 <
3π
2 .

Section 2.4

1. (a) 0 (b) 0 (c) 2π i

3. (a) 0 (b) π i (c) 8i (d) 4i

11. (a) � = 0, F = 2πκ

Section 2.5

1. (a) 0 (b) 0 (c) 2π i (d) 0 (e) 0 (f) 0

3. (a) 0 (b) −2i (c) −4i (d) −2i
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Section 2.6

1. (a) 0 (b) 0 (c) 0 (d) 2π i (e) −2π i

3. 0

Chapter 3

Section 3.1

“UC” means uniformly convergent

1. (a) limn→∞ 1
nz2 = 0;UC (b) limn→∞ 1

zn = 0for1<α≤ |z| ≤β;UC

(c) limn→∞ sin
(

z
n

) = 0; UC (d) limn→∞ 1
1+(nz)2

= 0; UC

3. limn→∞
∫ 1

0
nzn−1dz= 1;

∫ 1

0
limn→∞ nzn−1dz= 0; not a counterexample since

convergence is not uniform.

Section 3.2

1. (a) R= 1 (b) R=∞ (c) R= 0 (d) R=∞ (e) R= e

3. (a) R = π/2

(b) E0= 1, E1= 0, E2= − 1, E3= 0, E4= 5, E5= 0, E6= − 61

7. log(1+ z) =
∞∑

k=0

(−1)k zk+1

k + 1

9.
∞∑

k=m−1

k(k − 1) · · · (k − (m − 2))zk−(m−1)

(m − 1)!

11. |Imz| < a

Section 3.3

1. (a)
∞∑

n=0

(−1)nz2n (b)
∞∑

n=0

(−1)n

z2n+2

3. (a)

(
2

5
− i

5

) ∞∑
n=0

(2i)n − 1

2n
zn

(b)
−2+ i

5

( ∞∑
n=0

(
z

2

)n

− (−1)n

(
i

z

)n+1
)

(c)
2− i

5

∞∑
n=0

((
2

z

)n+1

+ (−1)n

(
i

z

)n+1)
9. ±(z − 1

2 − 1
8z + · · ·)
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Section 3.4

1. (a) yes (b) yes (c) no (d) Cauchy sequence for Re z > 0.

Section 3.5

1. (a) z = 0 is a removable singularity; z = ∞ is an essential singularity.

(b) z = 0 is a simple pole; z = ∞ is an essential singularity.

(c) z = π

2 + nπ are essential singularities for n ∈ Z; z = ∞ is a nonisolated
singularity; it is a cluster point.

(d) Simple poles at z = − 1
2 ± i

√
3

2 ,∞.

(e) Branch points at z = 0,∞. Depending on which branch of z
1
3 is chosen, may

have simple pole at z = 1. Letting z = reiθ for 0 ≤ θ < 2π , z = 1 is a
removable singularity; letting z = reiθ for 2π ≤ θ < 4π , z = 1 is a simple
pole; letting z = reiθ for 4π ≤ θ < 6π , z = 1 is a simple pole.

(f) z = 0,∞ are branch points. If we let z = reiθ for 2π ≤ θ < 4π , then z = 1
is an additional branch point.

(g) |z| = 1 is a boundary jump discontinuity.

(h) |z| = 1 is a natural boundary.

(i) Simple poles at z = i(π/2+ nπ) for n ∈ Z, and z = ∞ is a cluster point.

(j) Simple poles at z = i/(nπ) for n ∈ Z, and z = 0 is a cluster point.

3. (a) Simple poles at z = 2
1
4 eiπ(1+2n)/4, n = 0, 1, 2, 3, with strength −i

4
√

2
, i

4
√

2
, −i

4
√

2
,

i
4
√

2
, respectively.

(b) Simple poles at z = π/2+ nπ , C−1 = −1.

(c) Poles of order two at z = nπ ; C−2 = nπ, n 
= 0,±1,±2, . . . ; pole order one
at z = 0,C−1 = 1.

(d) Pole of order two at z = 0; C−2 = 1
2 .

(e) Simple pole at z=√2, C−1= 1/2; simple pole at z= −√2, C−1= 1/2.

Section 3.6

1. (a) Converges for |z| < 1. (b) Converges for all z.

(c) Diverges. (d) Converges for all z.

Section 3.7

1. (a) z = 0 fixed singularity, no movable singularities; w(z) = −z + cz2.
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(b) z = 0 fixed singularity, z = ec a movable singularity, where w(z) = (1)/(c −
log z).

(c) No fixed singular points; movable singular point at z : c − 2
∫ z

z0
a(z) dz = 0,

c = 1/ω2
0 where ω(z0) = ω0, and

w(z) = 1[
1
w2

0
− 2
∫ z

z0
a(z′) dz′

] 1
2

(d) z = 0 fixed singularity, no movable singularities; w(z) = [c1 sin(log z) +
c2 cos(log z)].

3. (b) Movable zeroes of φ yield movable poles of w. Fixed singular points are lo-
cated at p(z) = 0.

Chapter 4

Section 4.1

1. (a) − 3
10 (b) 1 (c) 0 (d) 1

2 log
(

3
2

)
(e) 1

2

3. (a) Pole of order m (b) branch point (c) simple pole

(d) branch point (e) branch point (f) essential singularity

(g) simple pole (h) analytic (i) branch point

(j) branch point

Section 4.2

1. (a)
π

2a
(b)

π

4a3
(c)

π

2ab(b + a)
(d)

π

3

Section 4.4

1. (a) I = n (b) I = 0

(c) The theorem can’t be applied; singularity on contour. (d) I = N − M

(e) The theorem can’t be applied; essential singularity.

3. (a) 3 times (b) 3 times (c) 2πN

Section 4.5

1. (a) F̂(k) = 2

1+ k2

(b) F̂(k) = π

a
e−|k|a
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(c) F̂(k) = πe−|k|a

2a2

(
1

a
+ |k|
)

(d) F̂(k) =


π

2ic

(
e(−ib−c)(−k+a) − e(−ib−c)(−k−a)

)
for k < −a

π

2ic

(
e(−ib−c)(−k+a) − e(−ib+c)(−k−a)

)
for −a < k < a

π

2ic

(
e(−ib+c)(−k+a) − e(−ib+c)(−k−a)

)
for a < k

5. (a) F̂(k) =
{
π, |k| < w

0, |k| > w

7. (a) F̂s(k) = k

w2 + k2

√
2

(b) F̂s(k) = π√
2

e−k

(c) F̂s(k) =


1√
2
πe−w sinh k k < w

1√
2
πe−k sinhw w < k

11. (a) f (x) = coswx

(b) f (x) = xe−wx

(c) f (x) = xn−1

(n − 1)!
e−wx

(d) f (x) = 1

(n − 1)!
[(n − 1)xn−2e−wx − wxn−1e−wx ]

(e) f (x) = e−w1x

w2 − w1
+ e−w2x

w1 − w2

(f) f (x) = x

w2
− sinwx

w3

(g) f (x) = e−w1x (sinw2x)

w2

(h) f (x) = ewx

4w3
(xw − 1)+ e−wx

4w3
(xw + 1)

Section 4.6

5. u(x, t) = e−iπ/4

2
√
π t

∫ ∞

−∞
ei(x−ξ)2/4t f (ξ)dξ

9. #(x, y, t) =
∫ ∞

−∞

∫ ∞

−∞
f (x ′, y′)

1

4π t
exp

(
− [(x − x ′)2 + (y − y′)2

]
4t

)
dx ′dy′
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Chapter 5

Section 5.2

1. The function w = u + iv = (1)/(x + iy) gives the relation

u = x

x2 + y2
, v = −y

x2 + y2

and noticing that u2 + v2 = (1)/(x2 + y2), we obtain

x = u

u2 + v2
, y = −v

u2 + v2

Thus when x = c1 and y = c2, we have

u

u2 + v2
= c1,

−v
u2 + v2

= c2

Upon completing the square in the above equation, we obtain(
u − 1

2c1

)2

+ v2 =
(

1

2c1

)2

, u2 +
(
v + 1

2c2

)2

=
(

1

2c2

)2

which are the desired image circles of the lines x = c1 
= 0 and y = c2 
= 0

3. w = 2z − 2+ 3i
2

Section 5.3

1. x2 − y2 = c1, xy = c2

3. (a) w = (1+ i)(z2 + z2)+ (2− 2i)zz + 8i z (b) w = z3

Only (b) can define a conformal mapping.

Section 5.6

1. (a) w = z5/4 (b) w = log z

5. q2 = u2
0

1+ ( 2π
d

)2
e

4πx
d + 4π

d e
2πx

d cos 2πy
d

w = z + e
2π z

d , z = x + iy, w = u + iv, q is the speed of the flow (an explicit
formula for z in terms of w, i.e., x = x(u, v) and y = y(u, v), does not exist).

7. F(w) = hq

π
f −1(w) = hq

π
z

where

w = f (z) = h

π

(
(z2 − 1)1/2 + cosh−1 z

)
.
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9. w =
(

2 sin z + 1

2 sin z − 1

)1/2

15. f (z)= ∫ z

0
zα1−1(1−z)α2−1dz; f (0)= 0, f (1)=

( sinα3π

π

)
�(α1)�(α2)�(α3)= �

Section 5.7

1. w = (8− 3i)z + i

(3− i)z + 1

3. Radius of the inner circle

δ = ρ

c +
√

c2 − ρ2

5. w = eπ/z − i

eπ/z + i

7. φ(x, y) = 2

π

(
π

4
− tan−1 x − y

x(x − 1)+ y(y − 1)

)

Chapter 6

Section 6.1

1. (a) f (ε) ∼
∞∑

n=0

εn

n!

(b) f (ε) ∼ 0, ε > 0 does not exist if ε < 0.

3. (a) k − 1

18
k3 + 1

600
k5 − · · · + (−1)n−1 k2n−1

(2n − 1)(2n − 1)!
+ · · ·

(b)
4

3
k

3
4 − 4

7
k

7
4 + 2

11
k

11
4 − 2

45
k

15
4 + · · ·

(c)
1

4
�

(
1

4

)
− k + k5

5
− k9

9
+ · · ·

5. I (z) ∼ −
∞∑
0

∫ b

a
u(x)xndx

zn+1

Section 6.2

1. (a) e−k

[
1

k
sin 1+ 1

k2
cos 1+ · · ·

]
(b) e−5k

[
1

5k
− 1

25k2
+ · · ·

]
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3. I (k) ∼
∞∑

n=0

(−1)n�
(

2
3 + 2n

)
(2n)!k

2
3+2n

5. I (k) ∼ �
(

1
4

)
2k

1
4

Section 6.3

1. (a) − i

k
(sin 2+ 2)e2ik + 1

k2
(cos 2+ 1)e2ik − 2

k2
(b)

i

k

3. (a)

√
πeiπ/4

4k1/2
(b) 2

√
π

k
e−

2ik
3 eiπ/4

Section 6.4

1. (a)
i
√
π

2
√

k
e−

2k
3 (b)

√
π

k
e
− 4k

5
√

2 cos

(
4k

5
√

2
− 3π

8

)
3.

e
iπ
6 �( 1

3 )

3
2
3 k

1
3
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Abel equation, 553
absolute value, 4
accessory parameters, 386
airfoil, 404, 550
Airy’s function, 297
Airy’s equation, 296
algebraic equation, 14, 27
analytic, 24

continuation, 123, 152
function, 24, 37, 38
zero’s of, 123
in a region, 37

annulus, 8, 79
antiderivative, 76, 84
antistokes lines, 492
arc, 71, 313

Jordan, 71
simple, 71
smooth, 72

argument, 4
Argument principle, 259
associative law, 6
asymptotic

behavior, 423
expansion, 414

asymptotic power series, 417
sequence, 414
zero’s of, 123

automorphic function, 190, 395

barrier, 43
circular, 43

Bernoulli equation, 331
Berry, 494
Bessel function, 136, 216, 283
Bessel’s equation, 183
bibliography, 445
bilinear transformation, 328, 366
binomial coefficients, 25
Biot, 550

Bleistein, 455
BMO (bounded mean oscillations), 268
boundary, 8

conditions, 38, 326
correspondence points, 408
jump discontinuity, 152
natural, 155
point, 8

boundary value problems, 326
bounded mean oscillations, 268
bounded region, 8
branch, 47

cut, 47
movable point, 180
point, 46
principal, 48

Bromwich contour, 274
Burgers equation, 476

camper line, 550
canonical factorization, 560
capacitance, 407
Carleman, 516, 555
Cassinians, 402
Cauchy–Euler type equation, 192
Cauchy–Goursat Theorem, 70, 105
Cauchy Integral Formula, 91
Cauchy (Type) Integrals, 517ff
Cauchy Principal Value at Infinity, 218
Cauchy Principal Value Integrals, 237ff
Cauchy Residue Theorem, 207
Cauchy–Riemann conditions, 33, 34

in polar form, 34
Cauchy sequence, 137
Cauchy’s Theorem, 70
cavitation, 337
chain rule, 57, 73, 98
Chazy, 188
Chazy’s equation, 188
circular barrier, 43
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circulation, 77, 81, 324
Clarkson, 610, 611
closed contour, 72

simple, 72
closed region, 8
cluster point, 151
Cole, 476
commutative law, 6
compact, 9
compactified, 16
compact region, 23
comparison test, 120
complementary domains (circle), 372
complementary error function, 293
complex, 3

conjugate, 5, 22
conjugate pairs, 27
electrostatic potential, 326
integration, 70ff
logarithm, 49
number, 1
number exponential form, 4
number, real part, 1

imaginary part, 1
number, properties, 5, 6
plane, 3
plane compactified (closed), 16
plane extended, 15, 16

complex logorithm, 48
exponential, 11

complex temperature, 325
complex electrostatic potential, 326

velocity potential, 40
computerized tomography (CT), 564
conduction, 39

steady state heat, 39
conductivity, 325
conformal mapping, 57, 311 ff
conformal transformation, 312, 314
conjugate (complex), 5, 22
conjugate, harmonic, 39
conjugate mapping, 15
connected, 9

at infinity, 22
connection functions, 504
continuous, 22

everywhere, 24
function, 22, 72
in a region, 23

contour, 72
Bromwich, 274
deformed, 86, 87
dogbone, 257

contour integral, 72
Jordan, 72
keyhole, 246
two-keyhole, 257

convergence, 217, 222
absolute, 159
radius of, 117
uniform, 110, 222

convolution product – Fourier, 271
convolution product – Laplace, 277–278
coordinates, 3

polar, 3
cos (cosine), 12
cosine transform, 273
critical point, 317, 449
crosscut, 76, 85
cross ratio, 369
CT (see computerized tomography), 564
curl, 40
curve, 71

Jordan, 71
simple, 71
simple closed, 71

curvilinear polygon, 382
cylinder, 42

damped and stable, 14
Darboux, 184, 188, 190, 195
Darboux-Halphen system, 188–189,

190, 195
DBAR (∂̄) problem, 516, 598
Debye, 455, 464
deformation of contours, 213
deformed contour, 86, 87
degenerate kernel, 539
delta function, 270
derivative

definition, 23
Schwarzian, 190, 194, 383

differentiable function, 34
dielectric constant, 325
difference quotient, 24
differentiable, 23, 24

nowhere, 24
difference equation, 277
differential equations, 174ff
diffusion equation, 288
Dingle, 494
Dirac delta function, 270
Dirichlet problem, 40, 326, 546
dispersion relation, 295, 475
dispersive, 476
dispersive solution, 475
displacement kernal, 558
distributive law, 6
divergence, 40
divergence theorem, 82
dogbone contour, 257
domain, 9
domain multiply connected, 79
domain of definition of a function, 10
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dominant (part of an asymptotic expansion),
492

doublet, 45, 69
doubly periodic function, 185
doughnut, 79
dual space, 267

eigenfunction, 539
eigenvalues, 539
electrodes, 407
electrostatics, 39, 325
elliptic function, 185, 186, 359
elliptic integral, 358
elliptic modular function, 382, 396
entire function, 38, 95, 149, 185
equation

Abel, 553
Airy’s, 296
Bernoulli, 331
Bessel’s, 183, 192
Cauchy–Euler type, 192
Chazy, 188
Darboux-Halphen, 188–189, 190, 195
diffusion, 288
Fredholm, 484
Fredholm integral, 538
Gel’fand–Levitan–Marchenko, 613
heat, 303
Helmholtz, 570
hypergeometric, 189, 305
indicial, 182
integral, 538
Kadomtsev–Petviashvili, 615
Korteweg–deVries (KdV), 480
Laplace’s, 39
Legendre’s, 183, 192
linear homogeneous differential, 26,
180
linear integral, 538
modified KdV, 480, 484
Painlevé, 174, 184, 617
polynomial, 5
reduced wave, 570
Riccati, 184
Schrödinger, 411, 474, 609
self-dual Yang–Mills, 566
Theodorsen’s integral, 409
Volterra integral, 538
wave, 293

equilibrium states, 14
equipotential lines, 326
Erdelyi, 417, 443
erf (error function), 283
error function, 283
essential singular point, 148, 149
essential singularity, 149
Euclidean geometry, 18

Euler
constant, 420
formula, 18
method, 198
notation, 3
numbers, 125

expansion
asymptotic, 414
Laurent, 206
Mittag–Leffler, 165
Taylor (series), 114ff
Weierstrass expansion, 169

exponential
exponential function, 4, 11

order, 274
exponential integral, 494

polar, 4
extended complex plane, 15

factorial function, 276
factorization

canonical, 560
problem, 560
proper, 560

FFT (fast fourier transform), 197
field, flow and velocity, 41
flow field, uniform, 41
fluid ideal flow, 39, 40, 323
flux, 77
flux lines, 326
forcing, 293
Fornberg, 410
four dimensions, 14
Fourier coefficients, 269
Fourier sine transform, 291
Fourier transform, 267

cosine, 273
discrete, 197
fast (FFT), 197
inverse, 267
pair, 267
sine, 273

Fourier type integrals, 439ff
Fredholm equation, 484
Fredholm integral equation, 538
friction zero, 40
Frobenius, 182
Fuchs, 182, 184
function, 10

absolutely integrable, 268
Airy, 297
analytic, 24, 37, 38
automorphic, 190, 395
Bessel, 136, 216, 283
branch of, 47
complementary error, 293
complex logarithm, 49
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continuous, 22, 72
continuous in a region, 23
cos (cosine), 12
differentiable, 34
differentiable nowhere, 24
Dirac delta, 270
domain, 10
doubly periodic, 185
elliptic modular, 382, 396
entire, 38, 95
error, 283
exponential, 4, 11
exponential integral, 494
factorial, 276
gamma (�(z)), 436
gamma (�(g)), 276, 427
generalized analytic, 601
Green’s, 286
Hankel, 457
harmonic, 39
Heaviside, 471
hyperbolic, 12
inverse trigonometric and hyperbolic, 53, 55
Jacobian elliptic, 359
Kronecker delta, 203, 208
meromorphic, 217
multivalued, 46
of exponential order, 274
periodic, 4
piecewise continuous, 72
principal branch, 48
power, 10, 52
range, 10
rational, 11, 150
residue, 206
Schwarzian S, 389
Schwarzian triangle, 190, 382, 389
sin (sine), 12
square integrable, 267
stream, 40, 324
symmetric, 539
trigometric, 12
uniformly continuous, 23
univalent, 319
zeros of, 123, 259

Fundamental Theorem of Algebra, 96, 264

Gaier, 410
Gakhov, 516
gamma function (�(z)), 171, 276, 427,

436
Gaussian, 279
Gel’fand–Levitan–Marchenko equation, 613
generalized analytic function, 601
geometric interpretation, 3, 6
Glasser, 504
Gohberg, 560, 605, 607

Goursat, 83, 105
gradient, 34, 43
Green, 500
Green’s function, 286, 288
Green’s Theorem, 81
group velocity, 295, 475

Halphen’s (Darbaux-Halphen) system,
188–189, 190, 195

Handelsmac, 455
Hankel, 506
Hankel function, 457
harmonic, 39

conjugate, 39
function, 39
motion, 28

heat equation, 303
heat flow, 325

steady state conduction, 39
Heaviside function, 471
Helmholtz equation, 570
Hilbert problem, 546
Hilbert transform, 255
Hille, 174, 180
Hölder condition, 517
holomorphic, 38
homogeneous differential equations, 26, 180
Hopf, 476
hyperbolae, 39, 57, 366, 402
hyperbolic function, 12
hypergeometric equation, 183, 305

ideal fluid flow, 40, 323, 329ff
identities

hyperbolic function, 12
trigonometric, 5, 12

image, 14
images on the sphere, 17
imaginary part, 3, 11
IMT (inverse Monodromy transform),

618
Ince, 174, 180
incompressible, 40
indicial equation, 182
individual indices, 580
inequality, triangle, 6
inequality derivatives, 95
inequality integral, 78
infinite products, 158ff
integrable, 70
integral equation, 538

with displacement kernel, 558
with logarithmic kernel, 556
with Abel, 553

integral representation, 298, 299
integral, independence of path, 73
integration (complex), 70ff
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integration by parts, 423
interior point, 8
invariance of the cross-ratio, 369
inverse Fourier transform, 267
inverse function, 53, 55
inverse hyperbolic function, 53, 55
inverse Laplace transform, 274
inverse mapping, 317ff
inverse Monodromy transform (IMT), 618
inverse points (circle), 372–373, 374
inverse scattering, 515, 609
Inverse Scattering Transform, 484, 565
inverse tangent function, 52
inverse transformation, 57
inverse trigonometric functions, 53, 55
inviscid, 40
irrotational, 40, 324
isolated singular point, 144
isolated zero’s, 123
isothermal lines, 325
IST (inverse scattering transform), 484

Jacobi/Jacobian elliptic function, 186, 359
Jeffreys, 300, 500
Jordan arc, 71
Jordan contour, 72
Jordan curve, 71
Jordan’s Lemma, 222
Joukowski profiles, 404

Kadomtsev–Petviashvili equation,
615

KdV (Kortewg–deVries), 480, 613
kernel, 538

degenerate, 539
kernel displacement, 558
kernel logarithmic, 556
keyhole contour, 246
Korteweg–deVries (KdV) equation, 480, 613
KP (Kadomtsev–Petviashvili), 615
Krein, 560, 605, 607
Kronecker delta function, 203, 208
Kruskal, 494
Kurta condition, 551

Laplace’s equation, 39
Laplace transform and inverse, 274, 510
Laplace’s formula, 431
Laplace’s method, 430ff, 431
Laplace type integrals, 422ff, 423
Laplacian operator, 288
Laurent

expansion, 206
series, 121, 127, 196

least upper bound (l.u.b.), 117
Legendre’s equation, 183
lemulscate, 367, 402
level curves, 41

l’Hopital’s rule, 29, 242
lift, 335, 337
Lighthill, 270
limits, 20ff
limit at infinity, 21
linear fractional transformation, 366
linear homogeneous differential equations,

26, 180
line integral, 72, 74
linear integral equation, 538
Linearize, 192
Liouville, 500
Liouville’s Theorem, 95
Lipschitz condition, 517
lower half plane, 224
logarithm, 48, 49
logarithmic kernel, 556
L R circuit, 301

maximum-modulus theorem, 97
maximum principles, 97
M test, 112, 139
majorants, 175
mapping, 14
mapping, conformal, 311ff
mapping: one-to-one, 319
mapping: inverse, 317ff
marginally stable, 14
matching solution, 296
Mean value formula, 96
Mellin transform, 504, 510
meromorphic function, 150, 217
Mittag–Leffler expansion, 165, 228
Mittag–Leffler Theorem, 166, 167
modified Bessel function, 298
mKdV (modified KdV), 480
Möbius transformation, 366
modified KdV, 480, 484
modulus, 4, 406
monodromy problem, 618
Monodromy Theorem, 155
Morera’s Theorem, 95
movable branch point, 180
multiple solutions, 5, 27
multiplication of series, 120
multiply connected, 79
multivalued function, 4, 46
multivaluedness, 10
Muskhelishvili, 516, 522, 540

NACA, 550
natural barrier (boundary), 155, 392
necessary condition, 33
Nehari, 344, 348, 359, 393, 398
neighborhood, 8, 15
Neumann problem, 40, 326
nonisolated singularity, 155
nonlinear differential equation, 174
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nonlinear wave propagation, 98
nonviscous, 40
normal (unit vector), 77
normalization constants, 611
north pole, 15, 18
N -soliton, 615

o notation, 413
one-to-one, mapping, 319
open set, 8
open sets map to open sets, 341
orientation of contour, standard, 254
orthogonality of level curves, 39
Osgood–Carathéodory theorem, 344

Painlevé equation, 193, 174
Painlevé transcendents, 187
Painlevé type ODE, 184
parallelogram law, 6
Parseval formula, 272
Parseval formula for Mellin transforms, 510
Parseval identity, 272
partial differential equations, 37, 39, 285
partial indices, 580
PDE (partial differential equation), 37
periodic function, 4
periodicity, 5
phase, 47
phase diagram, 63
phase velocity, 475
Picard’s Theorem, 149
piecewise continuous function, 72
piecewise smooth, 268
PIV (Painlevé IV equation), 617
Plemelj, 516
Plemelj formula, 518, 540
Poincare-Bertrand transposition formula,

577
point at infinity, 15, 18

cluster, 151
Point Vortex, 58
Poisson formula (half plane), 287

(circle), 104
polar

coordinates, 3
exponential, 4
form, 4
representation, 14

pole, 146
at infinity, 150
double, 146
movable, 180
N ’th-order, 145
simple, 145
strength of, 145
triple, 145

potential, complex velocity, 40
electrostatic, 326

polygon, curvilinear, 382
polygon, mapping, 348ff
polynomial, 10, 11, 25, 30
polynomial equation, 5

zeros (roots) of, 5, 96, 264
power function, 10, 52
power series, 13, 114
power spectrum, 272
principal branch, 49
principal part, 130, 164, 206
principal value at infinity, 218
principal value integral, 237ff
principle of the argument, 259
product, infinite, 158ff
projection

operators, 255
stereographic, 15

proper factorization, 560
punctured z-plane, 37

radiation condition, 571
radius of convergence, 13, 117, 202
Radon transform, 515, 564–566
range of a function, 10
rational function, 150
ratio test, 120
rays of maximum dominance, 493
real part, 3, 11
reduced wave equation, 570
recessive (part of asymptotic expansion), 492
recursion relation (differential equation),

183
reflection principle (Schwarz), 346, 379
region

bounded, 8
closed, 8
compact, 23

regular singular point, 182
removable singularity, 144
residue, 130, 206

at infinity, 211
residue theorem, 206, 207
RH (Riemann–Hilbert), 514
Riccati equation, 184
Riemann–Hilbert (RH) problem, 514
Riemann–Lebesgue lemma, 439
Riemann Mapping Theorem, 344
Riemann surface, 65

infinitely sheeted, 66
n-sheeted, 66
two-sheeted, 65

Riemann zeta function, 142
RK4 (Runge–Kutta method), 199
roots of unity, 5, 410
root test, 117
Rouché’s Theorem, 263
Rudin, 268
Runge–Kutta methods, 199
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saddle point, 449
Savart, 550
scattering theory, 98, 515, 609
Schrödinger equation, 411, 474, 609
Schwarz–Christoffel theorem (formula),

348
Schwarz-Christoffel transformation, 312,

346
Schwarzian derivative, 190, 383
Schwarzian S-function, 389
Schwarzian triangle function, 190, 382,

389
Schwarz reflection principle, 346, 379
Schwarz symmetry principle, 346, 379
sectionally analytic, 520, 528
sector, 10
Segur, 484, 613
self-dual Yang–Mills equation, 161
sequence, 109

Cauchy, 137
asymptotic, 484

series
Taylor, 70, 114ff
Laurent, 121, 127, 146
power, 164

series asymptotic power, 417
series expansions, 18
series methods (numerical), 201
sheet (Riemann surface), 65
SHM (simple harmonic motion),

28
shock condition, 479
shock wave, 479
simple

arc, 71
closed curve, 71
closed contour, 72
curve, 71
harmonic motion, 28
pole, 145

simply connected, 79
sin (sine), 12
sine transform, 273, 291
singularity

fixed, 179
movable, 179
nonisolated, 155
removable, 144

singular integral equations, 538ff
singular point, 38, 98

essential, 179
fixed, 179
isolated, 145
regular, 182

sink, 60, 69
smooth arc, 72
square root, 46

Sommerfeld contour, 463
Sommerfeld diffraction problem,

570
Sommerfeld radiation condition,

294
source, 60, 69
south pole, 15
special ends, 535
sphere, 15
SP (singular point), 179
square integrable function, 267
stable, 14

marginally, 14
stagnation point, 43
standard orientation of contour,

254
stationary phase method, 443ff
steepest descent method, 448ff
stereographic projection, 15, 50,

62
Stirling’s formula, 436, 495
stokes lines, 493
Stokes phenomenon, 418, 488
stream lines, 41, 324
stream function, 40, 324
strength of a pole, 145
sufficient condition, 33
supremum (sup), 117, 202
symmetric function, 539

tangent (unit vector), 77
Taylor series, 30, 114ff
temperature distribution, 56

steady state, 67
test

comparison, 120
ratio, 120

Theodorsen’s integral equation, 409
thermal conductivity, 325
thin airfoil theory, 550
time independent Schrödinger equation,

609
time-stepping methods, 198
Titchmarsh, 440
to all orders, 430
tomography, 564
total index, 608
transcendental, 14
transformation, 14

bilinear, 328, 366
conformal, 314
critical point, 317
linear fractional, 366
Möbius, 366
Schwarz–Christoffel, 312, 346
inverse Monodromy, 618
inverse scattering, 484
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Laplace, 274
Mellin, 504
Radon, 515, 564

transform space, 267
transform

Fourier, 267
Laplace, 274
Mallin, 504
Hilbert, 255

triangle inequality, 6
triangular region, 315, 319
trigonometric functions, 12
trigonometric identifies, 5
trilaterals, 405
turning point, 501
turning solution (function), 296, 504
two-keyhole contour, 257

unbounded region, 15
uniform convergence, 222
uniform flow, 41
uniformly continuous, 23
uniqueness

of Taylor series, 118
of Laurent series, 132
of analytic inverse, 320, 342

univalent, 319
unstable system, 14
upper half plane, 14, 224

values at infinity, 15
vector, 3
vector gradients, 34

Vekua, 583, 601
velocity, fluid, 40, 324
velocity field, 41
velocity potential, 40
vibrations of beams, 28
Volterra integral equation, 538
vortex, point, 60

Watson, 389, 393
Watson’s Lemma 426ff, 427
Watson’s Lemma in the complex plane, 490
wave, 98

equation, 293
nonlinear propagation, 98

wedge product, 598
Wegmann, 410
Weierstrass, 149
Weierstrass elliptic function, 185
Weierstrass M test, 112, 139
Weierstrass Factor Theorem, 169, 228
Whitham, 476, 477
Whittaker, 389, 393
Wiener–Hopf method, 516, 570
winding number, 213, 260
WKB (Wentzel-Kramner-Brillouin),

500
Wronskian, 189

zeroes of a function, 123, 259
zero friction, 40
zeta function, 142
z plane, 4, 11

punctured, 37
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