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Introduction

This book, a companion to the textbook, Understanding Physics, is your guide
to observations and explorations in the world of physics. Prepare for chal-
lenging work, fun, and some surprises. One of the best ways to learn physics
is by doing physics, in the laboratory and everywhere. One cannot rely on
reading and class work alone. The explorations in this book are your op-
portunity to gain some actual, hands-on experience with physics. Many of
these explorations will assist you to design your own experiments and to
discover many of the important ideas of science yourself.

As you will see from the Contents, this Student Guide provides a variety
of potentially helpful materials. Following the Introduction is a review of
units, mathematics, and scientific notation, and a list of suggested further
reading and Web Sites. However, a large portion of the Student Guide con-
tains further materials relating to many of the textbook chapters, as well as
to laboratory explorations. In the section containing “Further Chapter Ma-
terials” you will find elaborations on topics in many of the chapters, as well
as derivations of important equations. A complete list of the suggested mini-
and major-laboratory explorations is also given in the Contents. Each ex-
ploration is keyed to specific portions of the textbook, and lists are also
provided of the explorations pertaining to each part of the text.

There are actually three types of laboratory explorations in this book:
“mini-laboratories,” “major laboratories,” and some suggested “laboratory
activities.” The mini-laboratories are hands-on experiences and demon-
strations that enable you to observe and study an event in nature, either in
class or in a laboratory. The major laboratories are designed for more in-
depth exploration. Finally, the laboratory activities provide ideas for ways
in which you might design your own investigations. All three types of ex-
plorations are closely tied to the material in the book.

The textbook material and the laboratory explorations go hand-in-hand.
You will get the most out of them by working on both together. All of the
laboratories are deliberately designed to be as “low tech” as possible in or-
der to provide you with as direct an experience as possible with the mate-

1
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rial and with the analysis of the data. As you become more familiar with
the material, your instructor may introduce computer and other techno-
logical enhancements.

Scientific research is often performed in groups, and no research results
are accepted in science until they have been reviewed and discussed by oth-
ers. Your class may also work in pairs or in groups. This is a wonderful way
to learn, as long as everyone does his or her best to contribute to the work.
Group work is also a model used in many careers, and it is essential in
nearly every career to be able to get along with your colleagues. Commu-
nicating your results to others in written and oral form is also important.

In studying the text and engaging in these laboratory explorations, we
suggest that you keep a notebook or a journal of your work. This notebook
should include your notes from reading the text, your answers to the ques-
tions at the end of each chapter, your questions on any of the material in
this course, the results of your group discussions, and your work in the lab-
oratory. You will notice that the laboratory explorations in this guide do
not contain any tables for plugging in your data results. Part of the research
experience will be to understand the data to such an extent that you can
construct your own tables to organize and present the data in the way that
you think it can be done most clearly—exactly as research scientists do.

A journal will also help you to keep all of your work together, enabling
you to compare what you learn in the laboratory with what you find in the
text, and it will help you in preparing for examinations. It will also provide

2 INTRODUCTION
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a record of your progress in the course. When you look back in the end,
you will be amazed how far you have progressed.

Physics is not an easy subject, but it is no more difficult than most other
academic subjects. Like other subjects, studying physics requires a certain
amount of dedication, but the rewards are well worth the effort! Studying
physics may give you an entirely new perspective on your world. It will
help prepare you for the scientific age in which we live, and enhance your
abilities in any career that you choose.

INTRODUCTION 3
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A Word to Future 
and Current Teachers

Understanding Physics is an introductory course designed for non-science
majors in general, and for future and current teachers, including those in
K–12 classrooms, as well as in college. One aim of this course is to bring
all undergraduate students at least to the level of science literacy in physics
outlined in the recent national initiatives for the introductory physics
course. These initiatives have been very influential in recent years at State
level. Many States have been issuing more stringent education standards in
science, and they are introducing new teacher certification examinations in
line with these new standards. At present, the two most prominent national
initiatives are:

• National Research Council. National Science Education Standards (Wash-
ington, DC: National Academy Press, 1996).
Online text: http://www.nap.edu/readingroom/books/nses/html/

• Project 2061 (American Association for the Advancement of Science).
Benchmarks for Science Literacy (New York: Oxford University Press,
1993).
Online text: http://www.project2061.org/tools/benchol/bolframe.html/

In keeping with these developments, a second, related aim of this course
is to equip future and in-service teachers with the knowledge and ability to
teach the basic physical science recommended in these two national initia-
tives at different grade levels. In many instances you will find the same or
very similar recommendations in your State standards for science educa-
tion, and many of the concepts here will appear on teacher certification 
examinations.

5
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Both of the above online sites may be accessed through the Understand-
ing Physics Web site at: http://www.springer-ny.com/. At these sites you will
find specific learning goals in science for different grade levels. You will
also find links to cognitive research for each grade level, bibliographic ref-
erences, and many other helpful materials.

6 A WORD TO FUTURE AND CURRENT TEACHERS
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Reviewing Units,
Mathematics, and
Scientific Notation

UNITS

Every measurement in science is made in the units of a standard measure
appropriate for the property that is being measured. For example, length
might be 3 m, or 2 in, or 8 cm. (It can never be just 3 or 2 or 8). Other
measurements might be 8 s, 5 g, 16 l, 46°C, and so on.

Standard units in the sciences are those defined, accepted, and used by
the scientific community. For instance, the standard unit of mass in the
metric system is the kilogram (about 2.2 lb). The kilogram has been de-
fined as the mass of a platinum–iridium cylinder kept by the International
Bureau of Weights and Measures in Paris, with a duplicate in the United
States in the National Institute of Standards and Technology (formerly the
Bureau of Standards) in Washington, DC.

In the United States, two systems of units are often encountered: the
English system and the metric system. The English system arose through
common practice in the marketplace and most of it is ill-suited for used in
the laboratory. It uses the following standard measures:

Distance: inch (in), foot (ft), yard (yd), rod, furlong (fur), mile (mi) (statute and 
nautical).

Time: second (s), minute (min), hour (hr), year (yr).
Mass: ounce (oz), pound (lb).
Force: ounce (oz), pound (lb), ton (t).
Volume: ounce (oz), cup, pint (pt), quart (qt), gallon (gal).
Temperature: degree Fahrenheit (°F).
Energy: foot-pound (ft-lb), British thermal unit (Btu), calorie (cal).

7
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As you can see, these units can be confusing—for instance, “ounce” may
refer to volume, mass, or force. Notice also how difficult it is to convert
smaller units to larger ones (feet to miles, ounces to quarts, rods to fur-
longs, etc.). In addition, the definitions of some units, such as gallons, dif-
fer from country to country. The British, Canadian, American, and Aus-
tralian gallons are all different.

Because of these problems, the English system is avoided in scientific re-
search. Instead, the metric system, based on units of ten, is used. In this
system, the prefixes of the measures tell you the relationship to the stan-
dard measure. For instance, “milli” stands for 1/1000, “centi” stands for
1/100, and “kilo” stands for 1000.

The metric system uses the following standard measures:

Distance: millimeter (mm), centimeter (cm), meter (m), kilometer (km).
Time: second (s).
Mass: milligram (mg), gram (g), kilogram (kg).
Force: newton (1 kg-m/s2) (N) or dyne (1 g-cm/s2) (dyn).
Volume: milliliter (ml), liter (l).
Temperature: degree Celsius (centigrade) (°C) or absolute temperature (Kelvin) (K).
Energy: erg (1 dyne-cm), joule (1 n-m) (J), calorie (cal)

When substituting actual measurements into an equation, always be care-
ful to retain the units along with the numbers, since they provide the units
of your final answer and serve as a check on your calculation. Generally
you should convert all similar types of measurements to the same units. In
multiplication and division, the units are treated like numbers, while in ad-
dition and subtraction the units are simply carried through.

� Examples

5 m � 30 cm � 5 m � 0.3 m � 5.3 m,
16 kg � 4 m/s2 � 64 kg-m/s2 � 64 N.

During this course, when you need to convert from English to metric units
or vice versa, you will be able to use the following (approximate) relations.
(There is no need to memorize these.)

English Metric Metric English

1 inch 2.54 centimeters 1 cm 0.39 in
1 foot 0.30 meters 1 m 3.28 ft
1 mile 1.61 kilometers 1 km 0.62 mi
1 gallon 3.79 liters 1 l 0.26 gal
1 pound weight 4.45 newtons 1 N 0.22 lb
°F °C � 9⁄5 � 32 °C 5⁄9 (°F � 32)

8 REVIEWING UNITS, MATHEMATICS, AND SCIENTIFIC NOTATION
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In the metric system, if measurements of mass, distance, and time are in
grams, centimeters, and seconds, this is called the cgs system. If the meas-
urements are in kilograms, meters, seconds, this is called the mks system. The
units for force and energy in the cgs system are: dyne, calorie, erg. The units
for force and energy in the mks system are: newton, kilocalorie (Calorie),
joule.

The cgs system is usually used in chemistry or when the amounts of ma-
terial studied in the laboratory are typically small. The mks system is usu-
ally used in physics, which often concerns itself with larger objects.

The erg (in cgs) and joule (in mks) are units of mechanical energy, while
the calorie (cgs) and Calorie (mks) are units of heat energy. Since they are
all units of energy, but in different forms, they are all related to each other
according to the following:

1 Calorie � 1000 calories � 4190 joules � 4190 � 107 ergs.

SIGNIFICANT FIGURES

The accuracy of every measurement is limited by the precision of the in-
strument being used. For example, if the length of a table is measured us-
ing a meter stick that is divided into centimeters and millimeters, you can
measure the length to an accuracy of plus or minus 1 mm. Although it is
possible to guess to a fraction of a millimeter, one cannot be more accu-
rate than the nearest millimeter. Thus, you might measure the table to be
1.23 m long. Is it exactly 1.23 m long, or could it be 1.232 m or 1.229 m?
One can’t tell with this type of measuring instrument. A more precise in-
strument might yield a length of 1.23175 m. But then, could it be really
1.231749 m? It’s possible, but this measurement can’t tell us because, again,
the instrument we are using is not that precise.

Every measuring instrument, no matter how precise, will have some im-
precision. Because of the imprecision in every measurement, the last digit
of a measurement is usually regarded only as an approximation. The last
number is as “significant” as the other numbers in the measurement, but
it is “uncertain.” Thus, in the example above, for the table measured with
a meter stick to be 1.23 m long, there are three significant figures, while
the last figure, 3, is “uncertain.” For the more precision measurement about,
there are six significant figures, 1.23175, the 5 being approximate.

In calculations using measurements like the above, the answer you ob-
tain can, of course, never be more precise than the measurements with
which you started. If your answer has more digits than you started with,
round off your answer to the same number of significant figures as the least

REVIEWING UNITS, MATHEMATICS, AND SCIENTIFIC NOTATION 9
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number that you started with. This is especially important when you use 
a hand calculator, which can give eight to ten figures in an answer. For 
example,

� 0.3333333 m/s by using a hand calculator,

but physically the answer is only 0.333 m/s.
Obviously, the original measurements were not made to the seventh dec-

imal place. The extra decimals given by the calculator have no physical
meaning, so the result has to be rounded to 0.333 m/s. Similarly,

� 2.6838235 m/s by calculator,

but physically the answer is only 2.7 m/s.
If in a measurement you use all of the decimals available, you should still

indicate the precision of your measurement by including zeros in your data.
For instance, suppose you are using a meter stick that has centimeters and
millimeters to measure the distance between two dots on a time tape. The
measurement turns out to be exactly 4 cm. You may think to record 4 in
your data table, but the number 4 alone does not convey the precision of
your measurement. In fact, it conveys the impression that you measured
only to the nearest centimeter. To indicate that you really measured to the
nearest millimeter, this result should be recorded as 4.0 cm.

SCIENTIFIC NOTATION

Often when working with very large numbers or very small numbers, it is
easier to express them in “scientific notation.” This notation involves a dec-
imal number, called the “argument,” multiplied by 10 raised to an integer
power (the exponent). The power of 10 is determined by the number of
places that the decimal is moved to the left (positive) or to the right 
(negative).

� Examples

93,000,000 � 9.3 � 107,
0.000000935 � 9.35 � 10�7.

18.25 m
�

6.8 s

1.23 m
�
3.69 s

10 REVIEWING UNITS, MATHEMATICS, AND SCIENTIFIC NOTATION
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When multiplying two numbers in scientific notation, first multiply the
arguments, then add the exponents. Thus,

(6.3 � 107)(1.2 � 10�5) � 7.6 � 102

(9.3 � 107)(8.6 � 10�2) � (9.3 � 8.6) � 105 � 79.98 � 105,

� 7.998 � 106.

When dividing two numbers, first divide the arguments, then subtract
the exponent of the denominator from the exponent of the numerator. The
result may be positive or negative. Thus,

� 5.3 � 1012,

� � 105 � 1.08 � 105.

When adding or subtracting numbers in scientific notation, first express
all of the numbers in scientific notation with the same exponent, then add
or subtract the arguments, maintaining the same exponent in the result.
Thus,

(9.30 � 107) � (5.80 � 106) � (9.30 � 107) � (0.58 � 107) � 9.88 � 107.

To square or cube a number in scientific notation, you first square or
cube the “argument” then multiply the power of 10 by 2 or 3.

� Example

(9.0 � 107)3 � 729 � 1021 � 7.29 � 1023.

To take the cube root of a number in scientific notation, you must first ex-
press the power of 10 in a power that is divisible by 3. Then take the cube
root of the argument and divide the power of 10 by 3.

� Example

(0.8 � 107)1/3 � (8.0 � 106)1/3 � 2.0 � 102.

9.3
�
8.6

9.3 � 107

��
8.6 � 10�2

6.3 � 107

��
1.2 � 10�5

REVIEWING UNITS, MATHEMATICS, AND SCIENTIFIC NOTATION 11
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� Exercises

1. (9.3 � 107)(8.6 � 10�2) � ?.
2. (9.3 � 107)/(8.6 � 10�2) � ?.
3. (9.3 � 107) � (5.8 � 106) � (1.23 � 108) � ?.
4. The speed of light is approximately 300,000 km/s. How many kilo-

meters does light travel in 1 year? (This distance traveled by light in 
1 year is confusingly called a “light year”.)

GEOMETRY REVIEW

CIRCLES

Any line through the center of a circle and intersecting the circle is a di-
ameter d. The center point divides the diameter into two equal halves, each
of which is a radius r. The ratio of the circumference (C ) of any circle to
its diameter is a universal number known as pi (�):

� � � 3.14159 . . . .

The circumference of a circle is

C � �d � 2�r.

The area of a circle is

A � �r2.

The tangent to a circle at any point is perpendicular to the radius at that point.

C

rr
d

C
�
d

12 REVIEWING UNITS, MATHEMATICS, AND SCIENTIFIC NOTATION
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REVIEWING UNITS, MATHEMATICS, AND SCIENTIFIC NOTATION 13

TRIANGLES

The sum of the angles of any triangle is 180°.
In a right triangle, one of the angles is 90°; while the sum of the other

two angles is equal to 90°.
In an equilateral triangle, the sides are all of equal length and the three

angles are each 60°.

In an isosceles triangle, two of the sides are equal. The angles formed
by those two sides and the third side are equal. In the triangle above, an-
gle a � angle b. An altitude drawn from the third side to the opposite 
angle bisects the opposite angle, divides the third side in half, and forms 
a perpendicular with the third side. Thus, in the triangle above, angle 
c � angle d, and segment B1 � segment B2. The altitude thus divides an
isosceles triangle into two congruent (identical) right triangles.

The area of a triangle is one-half of the base times the height of the tri-
angle, or in symbols:

A � 1⁄2bh.

h

b

c d

a

B1 B2

b

60°

60° 60°
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PARALLEL LINES

The following sets of angles are all equal to each other:

a � b � c � d,

e � f � g � h.

REVIEW OF BASIC TRIGONOMETRY

Two intersecting lines form an angle A, which stays constant no matter how
far the two lines are extended. (This is a postulate of Euclidean geometry.)

If lines are dropped at various intervals from the upper line perpendi-
cular to the lower line, right triangles are formed, all with the common 
angle A.

Since two of the angles in each of these right triangles are equal to
each other (90° and angle A), the third angles are also equal. Since the
sides are not equal to each other, the triangles are not congruent, but they
are similar.

a

o

a′

h′

h

A

o′

A

h d
c g

bf
a e
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Because these right triangles are all similar, the ratios of their corre-
sponding sides are all equal (although the sides themselves are all differ-
ent). From this the following ratios of sides are equal to each other:

� ,

� ,

� .

The ratio of the corresponding sides of any right triangle with an angle
A will be equated to one of the ratios above. These ratios are thus univer-
sal for all right triangles with the same size angles—from triangles on pa-
per to the Earth–Sun–Moon system and beyond!

To simplify matters, these ratios are given special names. They are called
the sine (abbreviation: sin), cosine (cos), and tangent (tan), and their values
for a given angle may be found in standard tables or obtained on a pocket
calculator. Referring to the first triangle formed, the definitions are

sin A � ,

cos A � ,

tan A � .

(The inverse ratios also have special names, but we will not consider them
here.)

For example, if A � 30°, then o/h or o�/h�, etc., will always have the ra-
tio of 1:2 or 1/2; a/h or a�/h�, etc., will be �3�/2; o/a or o�/a, etc., will be
1/�3�.

The powerful advantage of these “trigonometric functions” is that, if you
know the size of an angle in any right triangle and the length of one of the
sides, you can find the other two sides simply by looking up the corre-

o
�
a

a
�
h

o
�
h

o�
�
h�

o
�
a

a�
�
h�

a
�
h

o�
�
h�

o
�
h
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sponding trigonometric functions and multiplying to obtain the unknown
side. Conversely, if you know the ratio of any two sides of a right triangle,
you can find the angles by finding the angle that yields the value of that
trigonometric function.

An easy way to remember these functions is by remembering 
SOHCAHTOA. This word is made up of the first letters of: Sine is Op-
posite over Hypotenuse, Cosine is Adjacent over Hypotenuse, Tangent is
Opposite over Adjacent.

� Exercises

1. In a right triangle, one of the angles is 30° and the opposite side is 
1 m long. Find the other angles and sides.

2. In an isosceles triangle, the base is 5 m long and the equal sides are 
each 6 m long. Find the angles and the length of the altitude from 
the base.

REVIEWING GRAPHS

A flat plane, such as a table top, has two dimensions, length and width,
which can be labeled y and x. A point on the table or plane can be identi-
fied if we define a corner of the plane as the “origin,” that is, the place from
which we start measuring length and width, y and x. In this case, if the ori-
gin is defined as x � 0 and y � 0, any point on the plane can be designated
simply by giving the values of x and y that one must move away from the
origin to reach the designated point.

In graph 1 on the next page, a series of points were designated such that,
as the value of the x coordinate increased by the same amount each time,
the value of the y coordinate also increased each time by the same amount
(not necessarily the amount that x increased). When this occurs, the points
lie on a straight line, which is shown in graph 1.

0 x

y
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Here is an example: Measured from the origin, a plane has traveled a to-
tal distance of 1000 m in 1 s, 2000 m in 2 s, 3000 m in 3 s, and 4000 m in
4 s. These data can be placed in a table:

Time (s) Total distance (m)

1 1000
2 2000
3 3000
4 4000

In graph 2 below, we plotted the position of the plane, which is the dis-
tance traveled (d ), on the y-axis and the time (t) on the x-axis. Notice that
each interval on the t-axis and on the d-axis of our graph has the exact same
value: 1 s each for the time axis and 1000 m for each interval on the dis-
tance axis. Also, we set up the axes so that all of the data fit on the graph
without going over the top or without being “scrunched” into the corner.
We were also careful to label the units of each axis, seconds and feet.

The resulting data points produced a straight-line graph, as you might
expect, since as time increased by 1 s at each point, the plane’s position in-
creased by 1000 m.

When the y and x variables increase or decrease together in this fash-

1 2 3 4 5
Time
(2)

Di
st

an
ce

0 s

ft

1000

2000

3000

4000

x1

(1)

x

y

x2

y1

y2
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ion, we say that variable y is proportional to variable x. This phrase may be
written in symbols

y � x or in this case d � t.

Whenever two variables are proportional to each other, we can replace the
proportional sign, �, by an equal sign, �, if we include a constant, which
is called “the constant of proportionality.” Usually this constant is given
the symbol m.

y � mx where m is a proportionality constant.

It is important to note that two variables are proportional only if the points
on a graph form a straight line. Otherwise, the variables are not propor-
tional.

In the example of the airplane (graph 2), the straight line produced would
indicate that d � t, or that d � mt.

How do we obtain the constant of proportionality, m? If the graph of y
versus x does form a straight line, the line has a constant “slope.” The slope
is different for different lines, depending upon how fast or how slow the 
y variable changes compared to the change in the x variable. For instance,
the line on a graph for a plane that travels 2000 m more every second, would
have a steeper slope than for a plane that flew only 1000 m every second.

The ratio of the changes in the two variables gives the slope. More 
precisely, the ratio of the change in y between any two points on the line,
y2 � y1, over the change in x between those same two points, x2 � x1, is the
slope. For a straight line, this ratio is the same no matter which two points
you choose. This constant value of the slope of the line is equal to the con-
stant of proportionality, m in the equation y � mx.

m � .

In the example of the first plane, the slope of the line measured between
the first and last points is

m � � � 1000 ft/s.

This is just the (constant) speed of the plane. So, in this case, the slope of

3000 ft
�

3 s
4000 ft � 1000 ft
��

4 s � 1 s

y2 � y1
�
x2 � x1
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the distance–time graph of an object moving at constant speed is the speed,
v. So we can write

d � mt � vt.

One can also find the slope of any portion of a graph that is linear over a
small distance, as indicated in graph 3. In fact, a tangent can be drawn to a
curve at any desired point on the curve, and the slope of the tangent can be
found in the same way. This gives you a value for the slope at that point alone.

If the line does not go through the origin, as in graph 4, it will intersect
the y-axis at some other point, y � b. In that case, the relationship between
y and x for this line may be written

y � mx � b.

If a graph of a series of values for y and x does not yield a straight line, but
an upward curve, as in graph 5, it may be a parabola. To see if it is, instead
of graphing y versus x, try y versus x2, that is, square each value of the x value
(leaving the y values alone) and then graph those new numbers against y.

(5)
0 x

y

(4)
0 x

y

b

(3)
0 x

y
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If the new graph turns out to be a straight line, then you have found a
new proportionality between y and x2, rather than between y and x. In this
case

y � x2 or y � kx2.

This is the equation of a parabola. In this case, k is the slope of the new
graph of y versus x2.

Of course, one can substitute other variables for y and x, such as distance
d and time t of a moving plane or any other object.

Although your graph does not have to start at the origin, most of the
time it will. Always be sure to indicate the value of the origin variables; al-
ways indicate which variable is placed on each axis; and always clearly in-
dicate the units for each axis.

(6)
x2

y
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Further Reading 
and Web Sites

SOME GENERAL READING

E.B. Bolles, ed., Galileo’s Commandment: 2,500 Years of Great Science Writing (New
York: Freeman, 1999).

J. Carey, ed., Eyewitness to Science: Scientists and Writers Illuminate Natural Phenom-
ena from Fossils to Fractals (Cambridge, MA: Harvard University Press, 1995).

R.P. Feynman, The Character of Physical Law (New York: Modern Library, 1994).
M. Gardner, ed., Great Essays in Science (Amherst, NY: Prometheus Books, 1994).
G. Holton, Einstein, History, and Other Passions (Cambridge, MA: Harvard Uni-

versity Press, 2000).
G. Holton, Science and Anti-Science (Cambridge, MA: Harvard University Press,

1994).
P. Morrison, Nothing is Too Wonderful to be True (New York: Springer-Verlag, 1995).
R. Pool, Beyond Engineering: How Society Shapes Technology (New York: Oxford Uni-

versity Press, 1997).
C. Sagan, Cosmos (New York: Ballantine Books, 1993).

Plays

B. Bertolt, Galileo (New York: Grove Press, 1991).
F. Durrenmatt, The Physicists (New York: Grove Press, 1992).
M. Frayn, Copenhagen (London: Metheuen, 2000).
H. Kipphardt, In the Matter of J. Robert Oppenheimer (London: Hill and Wang,

1968).

Recent Fiction

C. Djerassi, Cantor’s Dilemma (New York: Penguin, 1991).
C. Minichino, The Hydrogen Murder (New York: Thomas Bouregy, 1997).
C. Minichino, The Helium Murder (New York: Avalon, 1998).
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C. Minichino, The Lithium Murder (New York: William Morrow, 1999).
D. Sobel, Galileo’s Daughter: A Historical Memoir of Science, Faith, and Love (New

York: Walker, 1999).

Poetry and Art

D.H. Levy, More Things in Heaven and Earth: Poets and Astronomers Read the Night
Sky (Wolfville, Nova Scotia: Wombat Press, 1997).

L. Shlain, Art and Physics: Parallel Visions in Space, Time, and Light (New York: 
Morrow, 1991).

(See also the end of each chapter.)

SLOAN TECHNOLOGY BOOK SERIES 
ON HISTORY OF TECHNOLOGY

R. Buderi, The Invention That Changed the World: How a Small Group of Radar Pi-
oneers Won the Second World War and Launched a Technological Revolution (New
York: Touchstone Books, 1998).

M. Campbell-Kelly and W. Aspray, Computer: A History of the Information Machine
(New York: Basic Books, 1997).

C. Canine, Dream Reaper: The Story of an Old-Fashioned Inventor in the High-Stakes
World of Modern Agriculture (Chicago: University of Chicago Press, 1997).

D.E. Fisher, and M.J. Fisher, Tube: The Invention of Television (New York: Harcourt
Brace, 1997).

S.S. Hall, A Commotion in the Blood: A Century of Using the Immune System to Bat-
tle Cancer and Other Diseases (New York: Henry Holt, 1997).

J. Hect, City of Light: The Story of Fiber Optics (New York: Oxford University Press,
1999).

T.A. Heppenheimer, Turbulent Skies: The History of Commercial Aviation (New York:
Wiley, 1998).

R. Kanigel, The One Best Way: Frederick Winslow Taylor and the Enigma of Efficiency
(New York: Viking Press, 1997).

B.H. Kevles, Naked to the Bone: Medical Imaging in the Twentieth Century, (Piscat-
away, NJ: Rutgers University Press, 1997).

V. McElheny, Insisting on the Impossible: The Life of Edwin Land, Inventor of Instant
Photography (New York: Perseus Press, 1999).

R. Pool, Beyond Engineering: How Society Shapes Technology (New York: Oxford Uni-
versity Press, 1997).

R. Rhodes, Dark Sun: The Making of the Hydrogen Bomb (New York: Touchstone
Books, 1996).

R. Rhodes, ed., Visions of Technology: A Century of Vital Debate about Machines, Sys-
tems and the Human World (New York: Simon and Schuster, 2000).
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M. Riordan, and L. Hoddeson, Crystal Fire: The Birth of the Information Age (New
York: Norton, 1997).

C.H. Townes, How the Laser Happened: Adventures of a Scientist (New York: Oxford
University Press, 1999).

Some Web Sites

Web sites come and go. Visit the course Web site for an up-to-date list, at:
http://www.springer-ny.com/.

A. Einstein: http://www.aip.org/history/einstein
A. Sakharov: http://www.aip.org/history/sakharov
M. Curie: http://www.aip.org/history/Curie/contents.html
Heisenberg and the Uncertainty Principle: http://www.aip.org/history/heisenberg
The Discovery of the Electron: http://www.aip.org/history/electron
Double Slit Experiment with Electrons or Photons: http://www.inkey.com/dslit
Virtual Physics Laboratories: http://explorescience.com
Discovery of the Transistor: http://www.pbs.org/transistor
Lasers: http://www.aip.org/success/industry/index.html
Superconducting Devices: http://superconductors.org and http://www.oml.gov/

reports/m/ornlm3063r1/pt4.html
Todd’s Intro to Quantum Mechanics: http://www-theory.chem.washington.edu/

�trstedl/quantum/quantum.html
Nobel Prize Winners: http://nobelprizes.com/nobel/nobel.html
Women in Physics: http://www.physics.ucla.edu/�cwp
L. Kristick: “Physics: An Annotated List of Key Resources on the Internet,”

http://www.ala.org/acrl/resmar00.html
PhysLink (information resource on all aspects of physics): http://www.physlink.com
PhysicsEd: Physics Education Resources: http://www-hpcc.astro.washington.edu/

scied/physics.html. A host of resource references on curricula, video, demon-
stration materials, software, and more.

Physics-2000: http://www.colorado.edu/physics/2000. Many interactive virtual 
experiments.

NASA: http://spacelink.nasa.gov
“How Stuff Works”: http://www.howstuffworks.com
Physics Web: http://physicsweb.org/tiptop/lab
“Beyond Discovery Series,” National Academy of Sciences: http://www.Beyond-

Discovery.org
“Physics Success Stories”: http://www.aip.org/success/
“Top 20 Engineering Achievements of the Twentieth Century,” National Academy

of Engineering: http://greatachievements.org
Flash-Card physics: http://hyperphysics.phys-astr.gsu.edu/hphys.html
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SOME FURTHER
CHAPTER MATERIALS

PART ONE

Prologue to Part One
1 Motion Matters
2 Moving the Earth
3 Understanding Motion
4 Newton’s Unified Theory
5 Conserving Matter and Motion
6 The Dynamics of Heat
7 Heat—A Matter of Motion
8 Wave Motion
9 Einstein and Relativity Theory

CHAPTER 1. MOTION MATTERS

Instantaneous Speed

In Section 1.3 we discuss the average speed of an object, which is defined
to be the ratio of the distance traveled, �d, divided by the time interval, �t: 

vav � .

You may have noticed that we cannot measure the speed of an object in
an instant of time. The average speed is the only kind of speed that we can
actually measure, since we can only measure distance intervals and time in-
tervals. We can use more sophisticated instruments to obtain the distance
traveled in smaller and smaller time intervals. If the time interval �t has ap-
proached zero, we are dealing with an instant in time, and the average speed

�d
�
�t
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becomes the actual speed at that instant. This is called the instantaneous speed.
However, in any real experiment we can never actually achieve an instant
in time, an infinitesimally small time interval, since every measurement, no
matter how fast we can make it, still takes some amount of time.

Nevertheless, we can use a graph of the motion to calculate a reasonable
value for the instantaneous speed at an instant of time. We point out in
Section 1.4 that the slope of the line on a distance–time graph is

slope of line � ,

which is just the average speed during the time interval �t. As the time in-
terval becomes smaller and smaller, the line on the graph during the time
interval becomes straighter and straighter. In such a situation, for very tiny
time intervals, the average speed becomes, by definition, equal to the in-
stantaneous speed at the center of the time interval. To put it differently,
as the value of �t approaches the limit of zero (which we cannot actually
measure), the value for the average speed vav approaches the instantaneous
speed, which is given the symbol v. In this case, the slope of the line be-
comes a tangent to the curve at that instant. This means: the instantaneous
speed of an object at an instant of time t is defined as the tangent at time t to the
line representing the object’s motion on a distance–time graph.

This can also be expressed in mathematical symbols as follows:

lim
�t�0

� v.

In words, this says that in the limit as the time interval approaches zero,
the ratio of the distance traveled divided by the time interval approaches
the instantaneous speed at the time t at the center of the original time 
interval. (Readers who have had some calculus may recognize this as a 
differential.)

Derivation of Galileo’s Expression d � 1⁄2at2

Galileo’s famous expression gives the distance (d ) traveled by an object start-
ing from rest and moving with uniform acceleration (a) during the time in-
terval (t). Note that this expression does not contain the speed, only the
distance and time, starting from zero, and the acceleration.

Galileo originally used a geometrical argument to derive this expression.
Algebra was used more than 100 years later to derive the same expression.

�d
�
�t

�d
�
�t
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Since it is more straightforward, we will use the algebraic derivation, along
with some of Galileo’s original assumptions.

We start with the definition of the average speed of a uniformly accel-
erating object during the time interval �t. (This expression holds no mat-
ter how the object is moving.)

vav � .

We can rewrite this equation as

�d � vav � �t.

What would be the average velocity for a uniformly accelerating object?
Galileo reasoned (as others had before him) that for any quantity that
changes uniformly, the average value is just halfway between the beginning
value and the final value. For uniformly accelerated motion starting from
rest, the initial speed is zero, vinitial � 0. So, the average speed is halfway
between 0 and vfinal:

vav � 1⁄2vfinal.

Substituting, we have

�d � 1⁄2vfinal � �t.

Now we have to obtain a value for vfinal. We can do this by starting with
Galileo’s definition of average acceleration

aav � .

In our case, aav has a constant value, a, since the acceleration is uniform
(constant). The value of �v is vfinal � vinitial, which is just vfinal, since 
vinitial � 0. Substituting in the equation for aav, we have

a � .

Rearranging, we get

vfinal � a � �t.

vfinal
�

�t

�v
�
�t

�d
�
�t
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So now we can replace vfinal in the expression for �d, and we obtain

�d � 1⁄2vfinal � �t,

�d � 1⁄2a(�t)2.

This is equivalent to Galileo’s expression. If we measure the distance and
the time interval from the position and the instant when the motion starts,
then dinitial and tinitial are zero. We can then write this equation as

dfinal � 1⁄2atfinal
2.

Or, if we let dfinal � d and tfinal � t, we have an even simpler expression

d � 1⁄2at2.

If we start with a nonzero initial speed, then we have

d � vinitial t � 1⁄2at2.

CHAPTER 3. UNDERSTANDING MOTION

Derivation of the Parabolic 
Trajectory of a Projectile

The motion of a projectile is composed of two independent motions: uni-
form velocity in the horizontal direction and uniform acceleration in the
vertical direction. During the time interval t, the distance traveled by the
projectile in the horizontal direction, x, with uniform speed vx is

x � vxt.

The distance the projectile moves in the vertical direction, y, during the
same time interval t is

y � 1⁄2gt2.

Solving the equation x � vx t for t gives

t � .
x

�
vx
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Because the time interval t is the same in both equations, we can substitute
x/vx for t in the equation for y. This gives

y � 1⁄2g� �
2
,

or

y � ��
2v

g

x
2�� x2.

This last equation contains two variables, x and y. It also contains three
constant quantities: g, 2, and the horizontal speed vx. The vertical distance
y that the projectile falls is thus a constant times the square of the hori-
zontal displacement x:

y � (constant)x2.

The mathematical curve represented by this relationship between x and
y is called a parabola. Galileo deduced the parabolic shape of trajectories
by an argument similar to the one used here. This discovery greatly sim-
plified the study of projectile motion, because the geometry of the parabola
had been established centuries earlier by Greek mathematicians.

x
�
vx
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Derivation of the Equation for Centripetal
Acceleration, ac � v2/R

Assume that a stone on the end of a string is moving uniformly in a circle
of radius R. You can find the relationship between ac, v, and R by treating
a small part of the circular path as a combination of tangential motion and
acceleration toward the center. To follow the circular path, the stone must
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accelerate toward the center through a distance h in the same time that it
would move through a tangential distance d. The stone, with speed v, would
travel a tangential distance d given by d � v�t. In the same time �t, the
stone, with acceleration ac, would travel toward the center through a dis-
tance h given by h � 1⁄2ac �t2. (You can use this last equation because at 
t � 0, the stone’s velocity toward the center is zero.)

You can apply the Pythagorean theorem to the triangle in the figure that
follows:

R2 � d2 � (R�h)2

� R2 � 2Rh � h2.

When you subtract R2 from each side of the equation, you are left with

d2 � 2Rh � h2.

You can simplify this expression by making an approximation. Since h is
very small compared to R, h2 will be very small compared to Rh. And since
�t must be vanishingly small to get the instantaneous acceleration, h2 will
become vanishingly small compared to Rh. So you can neglect h2 and write

d2 � 2Rh.

Also, d � v�t and h � 1⁄2ac�t2; so you can substitute for d2 and for h ac-
cordingly. Thus,

(v �t)2 � 2R � 1⁄2ac (�t)2,

v2(�t)2 � Rac(�t)2,

v2 � Rac,

or

ac � �
v
R

2

�.

h

R

d

R
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The approximation becomes better and better as �t becomes smaller and
smaller. In other words, v2/R gives the magnitude of the instantaneous cen-
tripetal acceleration for a body moving on a circular arc of radius R. For
uniform circular motion, v2/R gives the magnitude of the centripetal ac-
celeration at every point of the path. (Of course, it does not have to be a
stone on a string. It can be a small particle on the rim of a rotating wheel,
or a house on the rotating Earth, or a coin sitting on a rotating phono-
graph disk, or a car in a curve on the road, an electron in its path through
a magnetic field, or the Moon going around the Earth in a nearly circular
path.)

The relationship among ac, v, and R was discovered by the Dutch sci-
entists Christiaan Huygens and was published by him in 1673. Newton,
however, must have known it in 1666, but he did not publish his proof un-
til 1687, in the Principia.

We can substitute the relation v � 2�Rf or v � 2�R/T (see Section 4.11)
into the equation for ac:

ac � �
v
R

2

�

�

� 4�2Rf 2

or

ac � .

These two resulting expressions for ac are entirely equivalent.

CHAPTER 4. NEWTON’S UNIFIED THEORY

“Weighing the Earth”

Now that we know how g arises in terms of Newton’s law of universal grav-
itation, we can use the last equation above to find the mass of the Earth.
This is possible because all of the terms in this equation are known, except

4�2R
�

T 2

(2�Rf )2

�
R
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for MEarth. To find MEarth, first solve for it in the equation, using simple 
algebra: 

MEarth � �
gR

G
Earth
�.

(Be sure that you understand each step in obtaining the answer below; look
at the review of scientific notation in the Student Guide, if necessary.)

Now substitute the known values on the right side of the equation

MEarth � .

To obtain a result from this expression, we perform all of the indicated
arithmetic on the numbers and, separately, on the units. We’ll first collect
each of these together, which results in the following:

MEarth ��
(9

6
.8
.6
)(
7
6.

�

4 �

10
1
�

0
11

6)2

� .

For simplicity, let’s first work on the numbers (but never forgetting 
the units, which we’ll carry along). We start by squaring the term in the
numerator

(6.4 � 106)2 � 40.96 � 1012 �
(
N
m/

m
s2

2

)
/
(m
kg

)
2

2

�.

So now we have

�
(
N
m/

m
s2

2

)
/
(m
kg

)
2

2

�.

Multiply and divide the numbers, then subtract the exponent of the de-
nominator from that of the numerator

MEarth � �
(9.8

6
)(
.
4
6
0
7
.96)

� � 1012 � 1011 �
(
N
m/

m
s2

2

)
/
(m
kg

)
2

2

�

� 60.18 � 1023 � 6.02 � 1024 �
(
N
m/

m
s2

2

)
/
(m
kg

)
2

2

�.

(9.8)(40.96 � 1012)
���

6.67 � 10�11

(m/s2)(m)2

��
N m2/kg2

(9.8 m/s2)(6.4 � 106 m)2

���
(6.67 � 10�11 N m2/kg2)
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Now let’s work on the units (carrying along the numerical value):

MEarth � 6.02 � 1024 �
(m

(s
)(
2

m
)(N

)2

m
(k

2

g
)
)2

�

� 6.02 � 1024 �
m
s2N

3 k
m
g

2

2

�.

Cancel the m2:

� 6.02 � 1024 �
m
s2

k
N
g2

�.

By definition 1 N � 1 kg m/s2. Substituting for N we have

� 6.02 � 1024 �
m
s2

k
k
g
g

2

m
s2

�.

Canceling as indicated, we are left simply with kg. So our final result is

MEarth � 6.02 � 1024 kg.

This is a lot of mass, and the Earth is only one small blue planet just 4000
miles in radius! The value we have obtained agrees with the mass of the
Earth obtained by other means, once again confirming Newton’s theory.

Newton’s Work: Impact and Reaction

Newton’s work opened whole new lines of investigation, both theoretical
and observational. In fact, much of our present science and also our tech-
nology had their effective beginnings with the work of Newton and those
who followed in his spirit. New models, new mathematical tools, and a new
confidence encouraged those followers to attack new problems, to open
new vistas of research, and to answer long-standing questions. The mod-
ern view of science is that it is a continuing exploration of ever more in-
teresting fields.

Newton’s influence was not limited to science alone. The period fol-
lowing his death in 1727 was a period of further understanding and appli-
cation of his discoveries and method. His influence was felt especially in
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philosophy and literature, but also in many other fields outside science. Let
us round out our view of Newton by referring to some of these effects.

The eighteenth century is often called the Age of Reason, the apogee of
the so-called Enlightenment. “Reason” was the motto of the eighteenth-
century philosophers. Enlightened by reason, especially scientific reason,
humanity would overcome the darkness of ignorance and usher in a new
age of the flowering of human potential. Such ideals appeared, for instance,
in the following excerpt from Hymn to Science by the poet Mark Akenside
(1721–1770).*

Science! thou fair effusive ray
From the great source of mental day,

Free, generous, and refined!
Descend with all thy treasures fraught,
Illuminate each bewilder’d thought,

And bless my labouring mind. . . . 

Oh! let thy powerful charms impart
The patient head, the candid heart,

Devoted to thy sway;
Which no weak passions e’er mislead,
Which still with dauntless steps proceed

Where reason points the way. . . . 

Give me to learn each secret cause;
Let Number’s, Figure’s, Motion’s laws

Reveal’d before me stand;
These to great Nature’s scenes apply,
And round the globe, and through the sky,

Disclose her working hand.

Many thinkers of the Enlightenment believed they could extend the tri-
umph of human reason in science to other areas of human endeavor. As a
result, Newtonian physics, religious toleration, and republican government
were all advanced by the same movement. However, their theories about
improving religion and society were not convincingly connected. This does
not mean there was really a logical link among these concepts. Nor were
many eighteenth-century thinkers, in any field or nation, much bothered
by other gaps in logic and feeling. For example, they believed that “all men
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are created equal.” Yet they did little to remove the chains of black slaves,
the ghetto walls imprisoning Jews, or the laws that denied rights to women.

Still, compared with the previous century, the dominant theme of the
eighteenth century was moderation, the “happy medium.” The emphasis was
on greater toleration of different opinions, restraint of excess, and balance
of opposing forces. Even reason was not allowed to question religious faith
too strongly. Atheism, which some philosophers thought would logically
result from unlimited rationality, was still regarded with horror by most
Europeans.

The Constitution of the United States of America is one of the most en-
during achievements of this period. Its system of “checks and balances” was
designed specifically to prevent any one group from getting too much
power. It attempted to establish in politics a state of equilibrium of oppos-
ing trends. This equilibrium, some thought, resembled the balance between
the Sun’s gravitational pull and the tendency of a planet to fly off in a
straight line. If the gravitational attraction upon the planet increased with-
out a corresponding increase in planetary speed, the planet would fall into
the Sun. If the planet’s speed increased without a corresponding increase
in gravitational attraction, it would escape from the solar system. When
the opposing tendencies balanced, harmony resulted.

Political philosophers, some of whom used Newtonian physics as a
model, hoped to create a similar balance in government. They tried to de-
vise a system that would avoid the extremes of dictatorship and anarchy.
According to James Wilson (1742–1798), who played a major role in writ-
ing the American Constitution:

In government, the perfection of the whole depends on the balance
of the parts, and the balance of the parts consists in the indepen-
dent exercise of their separate powers, and, when their powers are
separately exercised, then in their mutual influence and operation
on one another. Each part acts and is acted upon, supports and is
supported, regulates and is regulated by the rest.

Both Newton’s life and his writings seemed to support the idea of po-
litical democracy. A former farm boy had attained the outermost reaches
of the human imagination. What he had found there meant, first of all, that
the same set of laws governed motion in the celestial and terrestrial spheres.
This smashed the old beliefs about “natural place” and extended a new
democracy throughout the Universe. Newton had shown that all matter,
whether the Sun or an ordinary stone, was created equal; that is to say, all
matter had the same standing before “the Laws of Nature and of Nature’s
God.” (This phrase was used at the beginning of the Declaration of Inde-
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pendence to justify the desire of the people in the American colonies to
throw off their oppressive political system and to become an independent
people.) All political thought at this time was heavily influenced by New-
tonian ideas. The Principia seemed to offer a parallel to theories about
democracy. It seems logical that all people, like all natural objects, are cre-
ated equal before nature’s creator.

In literature, too, as already indicated, many welcomed the new scien-
tific viewpoint. It supplied new ideas, convenient figures of speech,
metaphors, parallels, and concepts which writers used in poems and essays.
Many poems of the eighteenth century referred to Newton’s discovery that
white light is composed of colors (see Chapter 8). Samuel Johnson advo-
cated that words drawn from the vocabulary of the natural sciences be used
in literary works. He defined many such words in his Dictionary and illus-
trated their application in his Rambler essays.

However, not everyone welcomed the new rational, scientific viewpoint.
That viewpoint was based on the idea that nature consists only of matter
moving through empty space according to gravity and Newton’s laws of
motion. Many writers and artists of the Romantic movement were partic-
ularly disturbed by this so-called “mechanical world view” which, they ar-
gued, replaced the vibrancy and beauty of nature with an ugly, lifeless world
of inert particles moving forever in empty space. Where in this system is
there room for the beauty and warmth and feeling of a gorgeous rainbow,
a melodious concerto, or the emotions of love and hate, ambition and pride,
happiness and sorrow?

Romanticism started in Germany about 1780 among young writers in-
spired by the poet–philosopher Johann Wolfgang von Goethe. The most
familiar examples of Romanticism in English literature are the poems and
novels of Blake, Coleridge, Shelley, Byron, Scott, and Wordsworth. Most
of the Romantics scorned the mathematical view of nature. They believed
that any whole thing, whether a single human being or the entire Universe,
is filled with a unique, nonmaterial spirit. This spirit cannot be explained
by reason; it can only be felt. The Romantics insisted that phenomena can-
not be meaningfully analyzed and reduced to their separate parts by me-
chanical explanations or pure reason alone. Contrast the following excerpt
from William Wordsworth’s (1770–1850) “The Tables Turned”* with 
Akenside’s “Hymn to Science” quoted earlier:*

Up! Up! my friend, and clear your looks,
Why all this toil and trouble?
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Up! Up! my friend, and quit your books,
Or surely you’ll grow double. . . . 

Books! ’tis a dull and endless strife,
Come, hear the woodland linnet,
How sweet his music; on my life
There’s more of wisdom in it.

And hark! How blithe the throstle sings!
And he is no mean preacher;
Come forth into the light of things,
Let Nature be your teacher.

The Romantic philosophers in Germany regarded Goethe as their great-
est scientist as well as their greatest poet. They pointed in particular to his
theory of color, which flatly contradicted Newton’s theory of light. Goethe
held that white light does not consist of a mixture of colors and that it is
useless to “reduce” or “torture” a beam of white light by passing it through
a prism to study its separate spectral colors. Rather, he charged, the colors
of the spectrum are artificially produced in Newton’s experiment using the
prism, acting on and changing the light which is itself pure.

In the judgment of all modern scientists on this point, Newton was right
and Goethe wrong. This does not mean that so-called Nature Philosophy, in-
troduced by Friedrich Schelling in the early 1800s as the Romantic answer
to Newtonian physics, was without any value. It encouraged speculation about
ideas, even if they were so general that they could not be easily tested by ex-
periment. At the time, it was condemned by most scientists for just this rea-
son. Today, most historians of science agree that Nature Philosophy eventu-
ally played an important role in making possible certain scientific discoveries
later on. Among these was the general principle of conservation of energy,
which is described in the next two chapters. This principle asserted that all
the “forces of nature,” that is, the phenomena of heat, gravity, electricity,
magnetism, and so forth, are forms of one underlying “force” (which we now
call energy). This idea had agreed well with the viewpoint of Nature Phi-
losophy. But it also could be put eventually in a scientifically acceptable form.

Movements hostile to conventional science have in fact occurred from
time to time since Antiquity, in various forms, and are again visible today.
Some modern artists, some intellectuals, and most members of the “alter-
native” or “new age” movements express deep-felt dislikes and mistrust of
science. Their feelings are similar to, and historically related with, those of
the Romantics. They are based in part on the mistaken notion that mod-
ern scientists dogmatically claim to be able to find (or have) a mechanical
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explanation for everything, whereas science is so powerful by being neither
dogmatic, nor beholden only to “mechanics,” nor ambitious to other fields
in which it does not belong.

Even the Roman philosopher Lucretius (100–55 B.C.), who supported
the atomic theory in his poem On the Nature of Things, wished to preserve
some role for “free will” in the Universe, by suggesting that atoms might
swerve randomly in their paths. This was not enough for Romantics, or
even for some scientists. For example, Erasmus Darwin, a scientist and
grandfather of evolutionist Charles Darwin, asked:

Dull atheist, could a giddy dance
Of atoms lawless hurl’d

Construct so wonderful, so wise,
So harmonised a world?

The Romantic Nature philosophers thought they could discredit the
Newtonian scientists by forcing them to answer this question. To say “yes,”
they argued, would be absurd, and to say “no” would be disloyal to New-
tonian beliefs. But the Newtonians succeeded quite well without commit-
ting themselves to any definite answer to Erasmus Darwin’s question. They
went on to discover immensely powerful and valuable laws of nature, which
are discussed in the chapters ahead.

Questions

1. Describe some of the impacts of Newton’s work outside the field of 
science.

2. What impact did Newtonian physics have on political thought?
3. Why did some people eventually reject the new physics?
4. Contrast the excerpts from the poems by Akenside and Wordsworth.
5. The poem by Erasmus Darwin asks a question. What is it in your own

words? How did Nature Philosophers attempt to discredit Newtonian
scientists?

CHAPTER 5. CONSERVING MATTER AND MOTION

An Example of Conservation of Momentum

(1) A space capsule at rest in space, far from the Sun or planets, has a mass
of 1000 kg. A meteorite with a mass of 0.1 kg moves toward it with a speed
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of 1000 m/s. How fast does the capsule (with the meteorite stuck in it)
move after being hit?

mA (mass of the meteorite) � 0.1 kg,

mB (mass of the capsule) � 1000 kg,

vA (initial speed of meteorite) � 1000 m/s,

vB (initial speed of capsule) � 0,

vA	 (final speed of meteorite) � ?,

v	B (final speed of capsule) � ?.

The law of conservation of momentum states

mAvA � mBvB � mAv	A � mBv	B.

Inserting the values given, we have

(0.1 kg)(1000 m/s) � (1000 kg) (0)

� (0.1 kg) v	A � (1000 kg) v	B,

100 kg � m/s � (0.1 kg) v	A � (1000 kg) v	B.

Since the meteorite sticks to the capsule, v	B � v	A; so we can write

100 kg � m/s � (0.1 kg) v	A � (1000 kg) v	A,

100 kg � m/s � (1000 � 1 kg) v	A.

Therefore,

vA	 � �
10

1
0
00

k
0
g
.1

�

k
m
g
/s

�

� 0.1 m/s

PART ONE 39

3669_CassidySG_01b.text  5/23/02  10:08 AM  Page 39



(in the original direction of the motion of the meteorite). Thus, the cap-
sule (with the stuck meteorite) moves on with a speed of 0.1 m/s.

Another approach to the solution is to handle the symbols first, and sub-
stitute the values as a final step. Substituting v	A for v	B and letting v	B � 0
would leave the equation mAvA � mAv	A � mBv	B � (mA � mB)v. Solving for
v	A we obtain

v	A � .

This equation holds true for any projectile hitting (and staying with) a body
initially at rest that moves on in a straight line after collision.

(2) An identical capsule at rest nearby is hit by a meteorite of the same
mass as the other. However, this meteorite, hitting another part of the cap-
sule, does not penetrate. Instead, it bounces straight back with almost no
change of speed. How fast does the capsule move after being hit? Since all
these motions are assumed to be along a straight line, we can drop the vec-
tor notation from the symbols and indicate the reversal in direction of the
meteorite with a minus sign.

The same symbols are appropriate as in (1):

mA � 0.1 kg, vB � 0,

mB � 1000 kg, v	A � 1000 m/s,

vA � 1000 m/s, v	B � ?.

The law of conservation of momentum states

mAvA � mBvB � mAv	A � mBv	B.

(1)

THUNK!

(2)

CLANG!

mAvA
��
(mA � mB)
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Here,

(0.1 kg)(1000 m/s) � (1000 kg)(0),

� (0.1 kg)(�1000 m/s) � (1000 kg) v	B

100 kg � m/s � �100 kg � m/s � (1000 kg) v	B,

v	B � �
20

1
0
0
k
0
g
0

�

k
m
g

/s
� � 0.2 m/s.

Thus, the struck capsule moves on with about twice the speed of the cap-
sule in (1). (A general symbolic approach to this solution can be taken, too.
The result is valid only for the special case of a projectile rebounding per-
fectly elastically from a body of much greater mass.)

There is a general lesson here. It follows from the law of conservation of
momentum that a struck object is given less momentum if it absorbs the pro-
jectile than if it reflects it. (A goalie who catches the soccer ball is pushed
back less than one who lets the ball bounce off.) Some thought will help you
to understand this idea: An interaction that merely stops the projectile is not
as great as an interaction that first stops it and then propels it back again.

Doing Work on a Sled

Suppose a loaded sled of mass m is initially at rest on low-friction ice. You,
wearing spiked shoes, exert a constant horizontal force F on the sled. The
weight of the sled is balanced by the upward push exerted by the ice, so F
is effectively the net force on the sled. You keep pushing, running faster and
faster as the sled accelerates, until the sled has moved a total distance d.

If the net force F is constant, the acceleration of the sled is constant.
Two equations that apply to motion starting from rest with constant ac-
celeration are

v � at

and

d � 1⁄2at2,

where a is the acceleration of the body, t is the time interval during which
it accelerates (i.e., the time interval during which a net force acts on the
body), v is the final speed of the body, and d is the distance it moves in the
time interval t.
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(a) (b)

According to the first equation, t � v/a. If we substitute this expression
for t in the second equation, we obtain

d � 1⁄2at2 � 1⁄2a�
v
a2

2

� � 1⁄2 �
v
a

2

�.

The work done on the sled is W � Fd. From Newton’s second law, 
F � ma, so

W � Fd

� ma � 1⁄2�
v
a2

2

�.

The acceleration cancels out, giving

W � 1⁄2mv2.

Therefore, the work done in this case can be found from just the mass
of the body and its final speed. With more advanced mathematics, it can
be shown that the result is the same whether the force is constant or not.

More generally, we can show that the change in kinetic energy of a body
already moving is equal to the work done on the body. By the definition
of average speed

d � vavt.

If we consider a uniformly accelerated body whose speed changes from v0
to v, the average speed (vav) during t is 1⁄2(v � v0). Thus,

d � �
v �

2
v0

� � t.

F

m
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By the definition of acceleration, a � � v/t; therefore, t � � v/a � (v � v0)/a.
Substituting (v � v0)/a for t gives

d � �
v �

2
v0

� � �
v �

a
v0

�

��
(v � v0

2
)(
a
v � v0)
�

� �
v2 �

2a
v0

2

�.

The work W done is W � Fd, or, since F � ma:

W � ma � d

� ma �

� �
m
2

� (v2 � v2
0)

� 1⁄2 mv2 � 1⁄2 mv2
0.

CHAPTER 6. THE DYNAMICS OF HEAT

You will often see energies expressed in terms of other units. A few of them
are listed here.

Unit name Symbol Definition Conversion

kilowatt hour kWhr A watt (W) is 1 J/s, so 1 kWh � 3.60 MJ
1 J � 1 W � s. A kWh is the 
amount of energy delivered 
in 1 hr if 1 kJ is delivered per
second.

Calorie Cal The energy required to heat 4.19 kJ
(or kilocalorie) (or kcal) 1 kg of water by 1°C.

British thermal Btu The energy required to heat 1.06 kJ
unit 0.454 kg by 0.556°C.

v2 � v2
0

�
2a
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Carnot’s Proof

Carnot’s proof of maximum efficiency of ideal, reversible engines starts with
the premise that when a cold object is in contact with a warmer one, the cold
object does not spontaneously cool itself further and so give more heat to the
warm object. However, an engine placed between the two bodies can move
heat from a cold object to a hot one. Thus, a refrigerator can cool a cold bot-
tle further, ejecting heat into the hot room. You will see that this is not simple.
Carnot proposed that during any such experiment, the net result cannot be
only the transfer of a given quantity of heat from a cold body to a hot one.

The engines considered in this case all work in cycles. At the end of each
cycle, the engine itself is back to where it started. During each cycle, it has
taken up and given off heat, and it has exerted forces and done work.

Consider an engine, labeled R in the figure, which suffers no internal
friction, loses no heat because of poor insulation, and runs so perfectly that
it can work backward in exactly the same way as forward (Figure A).

Now suppose someone claims to have invented an engine, labeled Z in
the next figure, which is even more efficient than the ideal engine R. That
is, in one cycle it makes available the same amount of work, W, as the R
engine does, but takes less heat energy, Q	, from the hot object to do it
(Q1	 
 Q1). Since heat and energy are equivalent and since Q2 � Q1 � W
and Q2	 � Q	1 � W, it will also be true that Q2	 
 Q2 (Figure B).

Q2	 � Q	1 � W,

Suppose the two engines are connected so that the work from one can
be used to drive the other. For example, the Z engine can be used to make
the R engine work like a refrigerator (Figure C).

B

Z
Q′2

Q′1
W

Hot

Cold

A

R

(a) (b)

Q2

Q1
W

Hot object

Cold object

R
Q2

Q1

Hot object

Cold object
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At the end of one cycle, both Z and R are back where they started. No
work has been done; the Z engine has transferred some heat to the cold
object; and the R engine has transferred some heat to the hot object. The
net heat transferred is Q1 � Q	1, and the net heat taken from the cold ob-
ject is Q2 � Q2. These are, in fact, the same

Q2 � Q2	 � (Q1 � W ) � (Q	1 � W )

� Q1 � Q	1.

Because Z is supposed to be more efficient than R, this quantity should
be positive; that is, heat has been transferred from the cold object to the
hot object. Nothing else has happened. But, according to the fundamental
premise, this is impossible, and does not happen.

The only conclusion is that the Z engine was improperly “advertised”
and that it is either impossible to build or that in actual operation it will
turn out to be less efficient than R.

As for two different reversible engines, they must have the same effi-
ciency. Suppose the efficiencies were different; then one would have to be
more efficient than the other. What happens when the more efficient en-
gine is used to drive the other reversible engine as a refrigerator? The same
argument just used shows that heat would be transferred from a cold body
to a hot one. This is impossible. Therefore, the two reversible engines must
have the same efficiency.

To actually compute that efficiency, you must know the properties of one
reversible engine; all reversible engines working between the same tem-
peratures must have that same efficiency. (Carnot computed the efficiency
of an engine that used an ideal gas instead of steam.)

CHAPTER 7. HEAT—A MATTER OF MOTION

Averages and Fluctuations

Molecules are too small, too numerous, and too fast for us to measure the
speed of any one molecule, its kinetic energy, or how far it moves before

RZ

C

Q2

Q1

Q ′2

Q ′1 W

Hot

Cold

PART ONE 45

3669_CassidySG_01b.text  5/23/02  10:08 AM  Page 45



colliding with another molecule. For this reason, the kinetic theory of gases
concerns itself with making predictions about average values. The theory
enables us to predict quite precisely the average speed of the molecules in
a sample of gas, the average kinetic energy, or the average distance the mol-
ecules move between collisions.

Any measurement made on a sample of gas reflects the combined effect
of billions of molecules, averaged over some interval of time. Such average
values measured at different times, or in different parts of the sample, will
be slightly different. We assume that the molecules are moving randomly.
Thus, we can use the mathematical rules of statistics to estimate just how
different the averages are likely to be. We will call on two basic rules of
statistics for random samples:

1. Large variations away from the average are less likely to occur than are
small variations. (For example, if you toss 10 coins, you are less likely
to get 9 heads and 1 tail than to get 6 heads and 4 tails.)

2. Percentage variations are likely to be smaller for large samples. (For
example, you are likely to get nearer to 50% heads by flipping 1000
coins than by flipping just 10 coins.)

A simple statistical prediction is the statement that if a coin is tossed
many times, it will land “heads” 50% of the time and “tails” 50% of the
time. For small sets of tosses there will be many “fluctuations” (variations)
to either side of the predicted average of 50% heads. Both statistical rules
are evident in the charts. The top chart shows the percentage of heads in
sets of 30 tosses each. Each of the 10 black squares represents a set of 30
tosses. Its position along the horizontal scale indicates the percentage of

0 10

30-Toss sets

20 30 40 50 60 70 80 90 100 % Heads

0 10

90-Toss sets

20 30 40 50 60 70 80 90 100 % Heads

0 10

180-Toss sets

20 30 40 50 60 70 80 90 100 % Heads

(a)

(b)

(c)
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heads. As we would expect from Rule 1, there are more values near the the-
oretical 50% than far from it. The second chart is similar to the first, but
here each square represents a set of 90 tosses. As before, there are more
values near 50% than far from it. And, as we would expect from Rule 2,
there are fewer values far from 50% than in the first chart.

The third chart is similar to the first two, but now each square repre-
sents a set of 180 tosses. Large fluctuations from 50% are less common still
than for the smaller sets.

Statistical theory shows that the average fluctuation from 50% shrinks in
proportion to the square root of the number of tosses. We can use this rule
to compare the average fluctuation for sets of, say, 30,000,000 tosses with
the average fluctuation for sets of 30 tosses. The 30,000,000-toss sets have
1,000,000 times as many tosses as the 30-toss sets. Thus, their average fluc-
tuation in percent of “heads” should be 1,000 times smaller!

These same principles hold for fluctuations from average values of any
randomly distributed quantities, such as molecular speed or distance be-
tween collisions. Since even a small bubble of air contains about a quintil-
lion (1018) molecules, fluctuations in the average value for any isolated sam-
ple of gas are not likely to be large enough to be measurable. A measurably
large fluctuation is not impossible, but extremely unlikely.

Deriving an Expression for Pressure 
from the Kinetic Theory

We begin with the model of a gas described in Section 7.2: “a large num-
ber of very small particles in rapid, disordered motion.” We can assume
here that the particles are points with vanishingly small size, so that colli-
sions between them can be ignored. If the particles did have finite size, the
results of the calculation would be slightly different. But the approxima-
tion used here is accurate enough for most purposes.

The motions of particles moving in all directions with many different ve-
locities are too complex as a starting point for a model. So we fix our at-
tention first on one particle that is simply bouncing back and forth between
two opposite walls of a box. Hardly any molecules in a real gas would ac-
tually move like this. But we will begin here in this simple way and later in
this chapter extend the argument to include other motions. This later part
of the argument will require that one of the walls be movable. Therefore,
we will arrange for that wall to be movable, but to fit snugly into the box.

In Chapter 5, you saw how the laws of conservation of momentum and
energy apply to cases like this. When a very light particle hits a more mas-
sive object, like the wall, very little kinetic energy is transferred. If the col-
lision is elastic, the particle will reverse its direction with very little change
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in speed. In fact, if a force on the outside of the wall keeps it stationary
against the impact from inside, the wall will not move during the collisions.
Thus no work is done on it, and the particles rebound without any change
in speed.

How large a force will these particles exert on the wall when they hit it?
By Newton’s third law the average force acting on the wall is equal and op-
posite to the average force with which the wall acts on the particles. The
force on each particle is equal to the product of its mass times its acceler-
ation (F � ma), by Newton’s second law. The force can also be written as

F � ,

where �mv is the change in momentum. Thus, to find the average force
acting on the wall we need to find the change in momentum per second
due to molecule–wall collisions.

Imagine that a particle, moving with speed vx (the component of v in
the x direction) is about to collide with the wall at the right. The compo-
nent of the particle’s momentum in the x direction is mvx. Since the parti-
cle collides elastically with the wall, it rebounds with the same speed. There-
fore, the momentum in the x direction after the collision is m(�vx). The
change in the momentum of the particle as a result of this collision is

final momentum � initial momentum � change in momentum,

(�mvx) � (mvx) � (�2mvx).

Vx

−Vx

�(mv)
�

�t

L

L

L

m

v
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Note that all the vector quantities considered in this derivation have only
two possible directions: to the right or to the left. We can therefore indi-
cate direction by using a � or a � sign, respectively.

Now think of a single particle of mass m moving in a cubical container
of volume L3 as shown in the figure.

The time between collisions of one particle with the right-hand wall is the
time required to cover a distance 2L at a speed of vx; that is, 2L/vx. If 2L/vx
equals the time between collisions, then vx/2L equals the number of colli-
sions per second. Thus, the change in momentum per second is given by

� � � � � � � �,

(�2mvx) � �
2
v
L
x
� � .

The net force equals the rate of change of momentum. Thus, the aver-
age force acting on the molecule (due to the wall) is equal to �mvx

2/L, and
by Newton’s third law, the average force acting on the wall (due to the mol-
ecule) is equal to �mvx

2/L. So the average pressure on the wall due to the
collisions made by one molecule moving with speed vx is

P � �
A
F

� � �
L
F

2� � �
m
L
v
3

2
x

� � ,

where V (here L3) is the volume of the cubical container.
Actually, there are not one but N molecules in the container. They do

not all have the same speed, but we need only the average speed in order

mv2
x

�
V

�mv2
x

�
L

change in momentum
per second

number of collisions
per second

change in momentum
in one collision

v
mVx

L

L

m
=

2

Average
Force

−mvx mvx

−2 mvx
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to find the pressure they exert. More precisely, we need the average of the
square of their speeds in the x direction. We call this quantity (vx

2)av. The
pressure on the wall due to N molecules will be N times the pressure due
to one molecule, or

P � .

In a real gas, the molecules will be moving in all directions, not just in
the x direction; that is, a molecule moving with speed v will have three
components: vx, vy, and vz. If the motion is random, then there is no 
preferred direction of motion for a large collection of molecules, and
(v2

x)av � (v2
y )av � (v2

z)av. It can be shown from Pythagoras’ theorem that 
v2 � v2

x � v2
y � v2

z. These last two expressions can be combined to give

(v2)av � 3(v2
x )av

or

(v2
x ) � 1/3(v2)av.

By substituting this expression for (v2
x )av in the pressure formula, we get

P ��
Nm �

V
1/3(v2)av
�

� 1/3 �
N
V
m
� (v2)av.

Notice now that Nm is the total mass of the gas, and therefore Nm/V is
just the density D. So

P � 1/3D(v2)av.

This is our theoretical expression for the pressure P exerted on a wall by
a gas in terms of its density D and the molecular speed v.

Vx

V2

Vy

V

Nm(v2
x)av

�
V
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CHAPTER 8. WAVE MOTION

Calculating the Wavelength from an
Interference Pattern

V � (S1S2) � separation between S1 and S2. (S1 and S2 may be actual sources
that are in phase, or two slits through which a previously prepared wave
front passes.)

l � OQ � distance from sources to a far-off line or screen placed
parallel to the two sources,

x � distance from center axis to point P along the detection
line,

L � OP � distance to point P on detection line measured from
sources.

Waves reaching P from S1 have traveled farther than waves reaching P from
S2. If the extra distance is � (or 2�, 3�, etc.), the waves will arrive at P in
phase. Then P will be a point of strong wave disturbance. If the extra dis-
tance is 1⁄2� (or 3⁄2�, 5⁄2�, etc.), the waves will arrive out of phase. Then P
will be a point of weak or no wave disturbance.

With P as center, draw an arc of a circle of radius PS2; it is indicated on
the figure by the dotted line S2M. Then line segment PS2 equals line seg-
ment PM. Therefore, the extra distance that the wave from S travels to
reach P is the length of the segment SM.
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Now if d is very small compared to l, as you can easily arrange in prac-
tice, the circular arc S2M will be a very small piece of a large-diameter 
circle, or nearly a straight line. Also, the angle S1MS2 is very nearly 90°.
Thus, the triangle S1S2/M can be regarded as a right triangle. Furthermore,
angle S1S2/M is equal to angle POQ. Then the right triangle S1S2M is sim-
ilar to triangle POQ:

�
S
S

1

1

M
S2
� � �

O
X
P
� or �

S1

d
M
� � �

X
L

�.

If the distance l is large compared to x, the distances l and L are nearly
equal. Therefore,

�
S1

d
M
� �

But S1/M is the extra distance traveled by the wave from source S1. For P
to be a point of maximum wave disturbance, S1/M must be equal to n�
(where n � 0 if P is at Q, and n � 1 if P is at the first maximum of wave
disturbance found to one side of Q, etc.). So the equation becomes

�
n
d
�
� � �

x
l
�

and

� � �
d
n
x
l
�.

This important result says that if you measure the source separation d, the
distance l, and the distance x from the central line to a wave disturbance
maximum, you can calculate the wavelength �.

The Sonic Boom

In the last half century a new kind of noise has appeared: the sonic boom.
An explosion-like sonic boom is produced whenever an object travels
through air at a speed greater than the speed of sound (supersonic speed).
Sound travels in air at about 340 m/s. Many types of military airplanes can
travel at two or three times this speed. Flying at such speeds, the planes

x
�
l
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unavoidably and continually produce sonic booms, which can cause phys-
ical damage, and anxiety in people and animals. SST (Supersonic Trans-
port) planes such as the Concorde are now in civilian use in some countries.
The unavoidable boom raises important questions. What are the conse-
quences of this technological “progress”? Who gains, and what fraction of
the population do they represent? Who and how many pay the price? Must
we pay it; must SST’s be used? How much say has the citizen in decisions
that affect the environment so violently?

The formation of a sonic boom is similar to the formation of a wake by a
boat. Consider a simple point source of waves. If the source remains in the
same position in a medium, the wave it produces spreads out symmetrically
around it, as in Diagram 1. If the source of the disturbance is moving through
the medium, each new crest starts from a different point, as in Diagram 2.

Notice that the wavelength has become shorter in front of the object
and longer behind it. This is called the Doppler effect. The Doppler effect
is the reason that the sound an object makes seems to have a higher pitch
when it is moving toward you and a lower pitch when it is moving away
from you. In Diagram 3, the source is moving through the medium faster
than the wave speed. Thus, the crests and the corresponding troughs over-
lap and interfere with one another. The interference is mostly destructive
everywhere except on the line tangent to the wave fronts, indicated in Di-
agram 4. The result is a wake that spreads like a wedge away from the mov-
ing source, as in the diagram.

All these concepts apply not only to water waves but also to sound waves,
including those disturbances set up in air by a moving plane as it pushes
the air out of the way. If the source of sound is moving faster than the speed
of sound wave, then there is a cone-shaped wake (in three dimensions) that
spreads away from the source.

Actually, two cones of sharp pressure change are formed. One cone orig-
inates at the front of the airplane and one at the rear, as indicated in the
graph at the right.

4

31 2
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Because the double shock wave follows along behind the airplane, the
region on the ground where people and houses may be struck by the boom
(the “sonic-boom carpet”) is as long as the supersonic flight path itself. In
such an area, typically thousands of kilometers long and 80 km wide, there
may be millions of people. Tests made with airplanes flying at supersonic
speed have shown that a single such cross-country flight by a 315-ton su-
personic transport plane would break many thousands of dollars worth of
windows, plaster walls, etc., and cause fright and annoyance to millions of
people. Thus, the supersonic flight of such planes has been confined to
over-ocean use. It may even turn out that the annoyance to people on ship-
board, on islands, and on coastal areas near the flight paths is so great that
over-ocean flights, too, will have to be restricted.
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Model, Analogy, Hypothesis, Theory

Model, analogy, hypothesis, and theory have similar but distinct meanings
when applied to physics. An analogy is a corresponding situation which,
though perhaps totally unrelated to the situation at hand, helps you un-
derstand it. Many electronic circuits have analogs in mechanical systems.
A model is a corresponding situation that may offer a picture of what “is re-
ally going on” and therefore can be taken more seriously as an explanation.
An electron rotating around a nucleus is one model for an atom. A hypoth-
esis is a statement that can usually be directly or indirectly tested. To
Franklin, the statement “lightning is caused by electricity” was at first a hy-
pothesis. A theory is a more general construction, perhaps putting together
several models and hypotheses to explain a collection of effects that previ-
ously seemed unrelated. Newton’s explanation of Kepler’s laws, Galileo’s
experiments in mechanics and, finally, the Cavendish experiment were 
all part of the theory of universal gravitation. This is a good example of a
theory.

A well-tested theory, such as Newton’s theory of gravitation or Einstein’s
theory of relativity, is a robust part of science, explaining a myriad of indi-
vidual events or facts, and not to be confused with the vernacular use of
“just a theory.”

CHAPTER 9. EINSTEIN AND RELATIVITY THEORY

Differences in Speed for Light Waves Traveling
Parallel and Perpendicular to the Ether Wind

Instead of light waves moving parallel and perpendicular to the ether wind,
we examine an equivalent situation: a swimmer swimming at constant speed,
first parallel and perpendicular to a current, in a river 1 mi wide. Assume
the swimmer can swim at 2 mi/hr and the stream runs 1 mi/hr from left
to right in the diagram below. We will calculate the time required for the
swimmer to travel 1 mi each way with and against the current and 1 mi
back and forth across the current.

With and against the current

1 mile

v = 1 mi/hr
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Traveling 1 mi with the current, the swimmer’s speed is enhanced by the
speed of the current, while traveling 1 mi back against the current, his speed
is hindered by it. Thus the total time for the round trip is

t � �

� �
3

1
m

m
i/h

i
r

� �

� 1.33 hr

Across the current

In order to swim directly across the river from the starting point and back,
the swimmer, in each direction, must head toward a point upstream from the
destination point. The path taken relative to the fixed shore will be directly
across and back, 1 mi in each direction. But the path taken in each direction
by the swimmer relative to the flowing water will be along the hypothenuse of
a right triangle formed by the 1-mi width of the river and the speed of the
river current times one-half the total time for the round trip (1 mi/hr)t/2.

Using the Pythagorean theorem, the total distance traveled by the swim-
mer at the speed of 2 mi/hr is

(2 mi/hr) t � 2�(1 mi)�2 � [(1� mi/hr�) t/2]2�.�

In order to solve for t, cancel 2 on both sides and square both sides to get

mi2/hr2 t2 � mi2 � 1⁄4 mi2/hr2 t2.

Cancel mi2, multiply through by hr2 and solve for t2:

3⁄4t2 � 1 hr2,

t � �4/3� hr � 1.15 hr.

1 m
ile

(1 mi/hr) t/2

(2 m
i/hr) t/2

1 mile v = 1 mi/hr

1 mi
�
1 mi/hr

1 mi
���
2 mi/hr � 1 mi/hr

1 mi
���
2 mi/hr � 1 mi/hr
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Note that the time to cross the river back and forth at constant swimming
is less than the time it took in the earlier example to swim the same dis-
tance parallel to the current and back.

Michelson and Morley reasoned that exactly the same kind of result
would occur for a light beam split in half—one-half sent “swimming” per-
pendicular to the supposed ether wind and back, the other half “swim-
ming” parallel to the wind and back. Although the two halves of the beam
started out together, the one sent parallel to the wind should return slightly
behind the one sent parallel to the wind. The difference in time was ex-
pected to be small but detectable. Yet, when comparing the two light waves
experimentally, they could find no difference in the time of travel of the two
beams. We now know from Einstein’s second postulate that the times 
had to be the same, and that the ether model, while usually appealing, is
misleading.
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CHAPTER 10. ELECTRICITY AND MAGNETISM

Electrical Conduction in Metals

While charges cannot move freely through an insulator, they can move
freely through a conductor. Yet when a conductor (say, a piece of copper
wire or a steel knife blade) is connected between the two terminals of a bat-
tery, a steady current starts immediately and persists until the battery is dis-
charged. This is puzzling. The battery sets up a potential difference be-
tween the two ends of the conductor and so there is an electric field along
the conductor. This means that there is an electrical force on the charges.
If this were the net force on the charges, they would be moving faster and
faster. In that case, the current should increase with time, a situation not
at all like what actually happens.

An acceptable model for a conductor must be a little more complex, then,
than a substance “through which charge can move freely.” One of the first
useful models for a conductor (and one which is still used today) was con-
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structed around 1900 by Drude and Lorentz. They pictured the atoms of
a perfect crystal of metal locked into position in a regular array (called a
lattice). Each atom has one or more electrons (depending on the metal)
that are shared with all the other atoms in the metal. These mobile elec-
trons are always in random motion at very high speeds (roughly 106 m/s
for copper), very much like the molecules of a gas studied in Chapter 7.
The electrons’ motion is much faster, though, than that of the gas mole-
cules at the same temperature (the reason for this was not discovered un-
til about 1930 when quantum mechanics was applied to the problem).

An electric current exists where there is net flow of charge along the wire.
As long as the electrons are moving at random, the net flow is zero, on av-
erage. The electrons are constantly experiencing collisions with any metal
atom which gets “out of line,” for example, impurities in the metal or im-
perfections in the lattice, and with vibrations of the atoms caused by their
own random thermal motion. On average, an electron travels freely for a time
t between consecutive collisions (for copper, this time t is about 10�14 s).

When a battery is connected to the metal, there is an electric field E cre-
ated along the length of the conductor. This field does indeed accelerate
the electrons, but since they move freely only for a time t, the change in
their velocity caused by the field is just

�v� at

� E t.
qe
�
m

Path of an electron.
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This additional velocity imparted to the electrons is called the “drift veloc-
ity” and is responsible for the conduction of electricity. Since E is propor-
tional to the battery’s voltage, it is easy to see that the current will be pro-
portional to the voltage (Ohm’s law) so long as the average time between
collisions, t, does not change. For example, when a metal is cooled, the
thermal motion of the atoms is reduced and collisions with these thermal
vibrations become less frequent. Therefore, cooling a metal makes it a bet-
ter conductor. Similarly, a very pure sample of copper is a better conduc-
tor than a sample with many impurities from which electrons are scattered
as they move. A more quantitative model can also be described (though
that is not necessary in understanding the basic model). Picture a piece of
wire of length L, cross-sectional area A, with an average of n electrons in
each cubic centimeter.

Ignore the random motion of the electrons, since this makes no contri-
bution to the conduction, and picture all the electrons moving with the
drift velocity

vd � �v � E t.

The current is just the amount of charge crossing the surface each second:

I � � � � qe.

The number of electrons crossing the surface each second is nAvd ( just as
you calculated in Chapter 7 for gas molecules). Thus,

I � � �E.
nq2

e tA
�

m

number of electrons
crossing surface in 1 s

qe
�
m
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But E � V/L if the wire is uniform so that the field is a constant along its
length, and

I � � �V.

That is, I � V. But this is Ohm’s law! Thus, this model determines the re-
sistance of a wire as

R � � � ,

where R � V/I. It follows that, for a given material, doubling the length
should double the resistance; doubling the cross-sectional area should halve
the resistance. This is just what is found experimentally.

CHAPTER 14. A QUANTUM MODEL 
OF THE ATOM

Bohr’s Quantization Rule and the Size of Orbits

The magnitude of the charge on the electron is qe; the charge on a nucleus
is Zqe, and for hydrogen (Z � 1) it is just qe. The electric force with which
the hydrogen nucleus attracts its electron is therefore

Fel � k ,

where k is the coulomb constant, and r is the center-to-center distance. If
the electron is in a stable circular orbit of radius r around the nucleus, mov-

qeqe
�
r2

A

L

mL
�
nq2

e tA

A
�
L

nqe
2tA

�
m
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ing at a constant speed v, then the centripetal force is equal to mv2/r. Since
the centripetal force is provided by the electric attraction,

� k .

In the last equation, m, qe, and k are constants; r and v are variables, whose
values are related by the equation. What are the possible values of v and r
for stationary states of the atom?

You can begin to get an answer if you write the last equation in slightly
different form. Multiplying both sides by r2 and dividing both sides by v,
you get

mvr � .

The quantity on the left side of this equation is the product of the mo-
mentum of the electron and the radius of the orbit. You can use this quan-
tity to characterize the stable orbits. According to classical mechanics, the
radius of the orbit could have any value, so the quantity mvr could also
have any value. Of course, classical physics also seemed to deny that there
could be any stable orbits in the hydrogen atom. But Bohr’s first postulate
implies that certain stable orbits (and only those) are permitted. So Bohr
needed to find the rule that decides which stable orbits are possible. Here
Bohr appears to have been largely guided by his intuition. He found that
what was needed was the recognition that the quantity mvr does not take
on just any value, but only certain allowed values. These values are defined
by the relation

mvr � n ,

where h is Planck’s constant, and n is a positive integer; that is, n � 1, 2, 
3, 4, . . . (but not zero). When the possible values of mvr are restricted in
this way, the quantity mvr is said to be quantized. The integer n that ap-
pears in the formula is called the quantum number. The main point is that
each quantum number (n � 1, 2, 3 . . .) corresponds to one allowed, stable
orbit of the electron.

If you accept this rule, you can at once describe the “allowed” states of
the atom, for example, in terms of the radii r of the possible orbits. You

h
�
2�

kq2
e

�
v

q2
e

�
r2

mv2

�
r
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can combine the last expression above with the classical centripetal force
relation as follows. The quantization rule is

mvr � n

so

r �

and

r2 � .

From classical mechanics

� k

so

v2 � .

Substituting this “classical” value for v2 into the quantization expression for
r2 gives

r2 �

Simplifying, you get the expression for the allowed radii, rn:

rn � � � � n2.
h2

��
4�2kmq2

e

n2h2

��
4�2kmq2

e

n2h2

��

4�2m2 ��
k
m
q
r

2
e

��

kq2
e

�
mr

q2
e

�
r

mv2

�
r

n2h2

�
4�2m2v2

nh
�
2�mv

h
�
2�
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CHAPTER 15. QUANTUM MECHANICS

The de Broglie Wavelength: Examples

A body of mass 1 kg moves with a speed of 1 m/s. What is the de Broglie
wavelength?

� � ,

h � 6.6 � 10�34 J � s,

mv � 1 kg � m/s,

� � ,

so

� � 6.6 � 10�34 m.

The de Broglie wavelength is many orders of magnitude smaller than an
atom. Thus, it is much too small to be detected. There are, for example,
no slits or obstacles small enough to show diffraction effects. You would
expect to detect no wave aspects in the motion of this body.

An electron mass 9.1 � 10�31 kg moves with a speed of 2 � 106 m/s.
What is its de Broglie wavelength?

� � ,

h � 6.6 � 10�34 J � s,

mv � 1.82 � 10�24 kg � m/s,

� � ,

so

� � 3.6 � 10�10 m.

6.6 � 10�34 J � s
���
1.82 � 10�24 kg � m/s

h
�
mv

6.6 � 10�34 J � s
��

1 kg � m/s

h
�
mv
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The de Broglie wavelength is of atomic dimensions. For example, it is of
the same order of magnitude as the distances between atoms in a crystal.
So you can expect to see wave aspects in the interaction of electrons with
crystals.

The Uncertainty Principle: Examples

Applied to a large mass
Consider a car, with a mass of 1000 kg, moving with a speed of about 
1 m/s. Suppose that in this experiment the inherent uncertainty �v in the
measured speed is 0.1 m/s (10% of the speed). What is the minimum un-
certainty in the position of the car?

�x �p 	 ,

�p � m �v � 100 kg � m/s,

h � 6.63 � 10�34 J � s,

�x 	 � ,

�x 	 1 � 10�36 m.

This uncertainty in position, which is many orders smaller than the size of
an atom, is much too small to be observable. In this case, you can deter-
mine the position of the body with as high an accuracy as you would ever
need.

Applied to a small mass
Consider an electron, with a mass of 9.1 � 10�31 kg, moving with a 
speed of about 2 � 106 m/s. Suppose that the uncertainty �v in the speed
is 0.2 � 106 m/s (10% of the speed). What is the minimum uncertainty in
the position of the electron?

�x �p 	

�p � m�v � 1.82 � 10�25 kg � m/s,

h
�
2


10�34 J � s
��
102 kg � m/s

6.63
�
6.28

h
�
2�
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h � 6.63 � 10�34 J � s,

�x 	 � ,

�x 	 5 � 10�10 m.

The uncertainty in position is of the order of atomic dimensions and is
significant in atomic problems. It is impossible to specify exactly where an
electron is in an atom.

The reason for the difference between these two results is that Planck’s
constant h is very small, so small that the uncertainty principle becomes
important only on the atomic scale. For ordinary-sized objects, the equa-
tions give the same result as if h had the value zero.

CHAPTER 17. PROBING THE NUCLEUS

The Mathematics of Decay

The activity of a sample, the number of disintegrations per second, the de-
cay rate are alternative expressions for the same quantity. Using the letter
N to represent generally the number of atoms of a given kind present in
a radioactive sample, the activity is �N/�t, where �N is the number of
atoms disintegrating in the same interval �t. But �N/�t depends both on
the type of atom involved, and how many happen to be in the sample.
Therefore, a more useful quantity is needed. If, in a time interval �t, �N
atoms disintegrate out of a total number N, the fraction of atoms disinte-
grating is �N/�N. The fraction of atoms disintegrating per unit time is
�N/N/�t. (This quantity can be thought of as the ratio of the activity
�N/�t to the total number, N.) This quantity, usually called � or the de-
cay constant, will be important, as you will see at once below. It is analo-
gous to the death rate in a human population. In the United States, for
example, about 5,000 persons die each day out of a population of about
200,000,000. The death rate is therefore one person per 40,000 per day
(or one person per day per 40,000).

The beautifully simple mathematical aspect of radioactive decay is that
the fraction of atoms decaying per second does not change with time. If
initially there are N0 atoms, and a certain fraction � decay in 1 s, the ac-
tual number of atoms decaying in 1 s is �N0. Then, at any later time t,

10�34 J � s
���
1.82 � 10�25 kg � m/s

6.63
�
6.28

PART TWO 67

3669_CassidySG_02  5/23/02  10:10 AM  Page 67



when there are only Nt, atoms remaining, the fraction that decay in 1 s will
still be �, but the number of atoms decaying in 1 s is now �Nt, a smaller
number than before.

The constant fraction � of atoms decaying per unit time is called the de-
cay constant. The value of this constant � can be found for each radioactive
species. For example, � for radium is 1.36 � 10�11 per second, which means
that on average 0.0000000000136th of the total number of atoms in any
sample of radium will decay in 1 s.

The fact that � is a constant can be represented by the expression

� � � constant

which can be rewritten as

� constant � N or � N.

This form of the relation expresses clearly the fact that the decay rate de-
pends directly on the number of atoms left.

By using calculus, a relation of this type can be turned into an expres-
sion for N as a function of elapsed time t:

� e��t or Nt � N0e��t,

where N0 is the number of atoms at t � 0, Nt is the number remaining un-
changed at time t, and e is a mathematical constant that is approximately
equal to 2.718. The factor e��t has the value 1 when t � 0, and decreases
toward 0 as t increases. Since the decay constant appears as an exponent,
the decay is called “exponential” and takes the form shown by the graph in
Section 17.9.

The relationship between the half-life T1/2 and the decay constant � can
be derived as follows. Write the exponential decay equation in logarithmic
form by taking the logarithm of both sides of the equation

log � log e��t � ��t log e.
Nt
�
N0

Nt
�
N0

�N
�
�t

�N
�
�t

�N/�t
�

N
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After a time equal to the half-life T1/2, the ratio Nt/N0 � 1⁄2 . So you can
substitute 1⁄2 for Nt/N0 if you substitute T1/2 for t in the above equation,
and get

log (1⁄2) � ��T1/2 log e.

The value of log (1⁄2) is �0.301 and the value of log e � 0.4343; therefore,

�0.301 � ��T1/2(0.4343),

and

�T1/2 � 0.693.

So the product of the decay constant and the half-life is always equal to
0.693. Knowing either one allows you to compute the other.

For example, radium-226 has a decay constant � � 1.36 � 10�11 per sec-
ond; so

(1.36 � 10�11 s�1)T1/2 � 0.693,

T1/2 � ,

T1/2 � 5.10 � 1010 s.

Thus, the half-life of radium-226 is 5.10 � 1010 s (about 1620 yr).

The Mass Spectrograph
The magnetic separation of isotopes begins by electrically charging the
atoms of a sample of material, for example, by means of an electric dis-
charge through a sample of gas. The resulting ions are then further accel-
erated by means of the electric potential difference between the lower pair
of electrodes, and a beam emerges.

Before the different isotopes in the beam are separated, there is usually
a preliminary stage that allows only those ions with a certain velocity to
pass through. In one type, the ion beam initially enters a region of crossed
magnetic fields B and E, produced by current in coils and charged plates
as shown. There, each ion experiences a magnetic force of magnitude qvB
and an electric force of magnitude qE. The magnetic and electric forces act
on an ion in opposite directions, and only for ions of a certain speed will

0.693
��
1.36 � 10�11 s�1
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the forces be balanced, allowing them to pass straight through the crossed
fields and the hole in the diaphragm below them. For each of these ions,
qvB � qE; so their speed v � E/B. Because only ions with this speed in the
original direction remain in the beam, this portion of the first part of the
apparatus is called a velocity selector.

The separation of isotopes in the beam is now accomplished in another
magnetic field of strength B�. As the beam enters this field, the magnetic
field causes a centripetal force to act on each ion, deflecting it into a cir-
cular arc whose radius R depends upon the ion’s charge-to-mass ratio. That
is, qvB� � mv2/r, and so q/m � vB�R.

The divided beams of ions fall on either a photographic plate (in a mass
spectrograph) or a sensitive ion current detector (in a mass spectrometer), al-
lowing the radii R of their deflections to be calculated from the geometry
of the apparatus. Since v, B�, and R can be determined from measurements,
the charge-to-mass ratio of each beam of ions can be calculated directly.

Because this method uses electric and magnetic fields, it is called the 
electromagnetic method of separation of isotopes.

CHAPTER 18. THE NUCLEUS 
AND ITS APPLICATIONS

Determining the Neutron’s Mass

(a) The sketch in (a) represents an elastic collision of a neutron (n) and a
proton (p). If it were a head-on collision, the neutron would rebound
straight back and the proton would be seen to emerge along the same
line. To determine the mass of the neutron, mn, you may use the prin-
ciples of conservation of kinetic energy and conservation of momen-
tum, which provide two algebraic equations that must both hold. The
case is particularly simple if you consider a perfectly elastic head-on
collision. As shown in (c), an expression for the proton’s recoil speed
v�p can be derived by combining the equations algebraically (solving
the momentum equation for vn, substituting the resulting expression
for v�n in the energy equation, expanding, collecting terms, and solv-
ing for v�p). However, this expression includes the term vn, the neu-
tron’s initial speed, which cannot be measured directly. You can elim-

n
P

Vn

Mn

Mp

Paraffin

(a)
V ′n

V ′p
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inate vn from the equation by analyzing another collision and com-
bining the results with what you already have.

(b) The sketch in (b) represents a perfectly elastic collision between a neu-
tron (n) and a nitrogen nucleus (N). When the collision is head-on,
you can write energy and momentum equations similar to what you
wrote before, but this time leading to an expression for the recoil speed of
the nitrogen nucleus, v�N. This expression also includes the unmeasur-
able quantity vn.

(c) The vp equation and v�N equation are then combined algebraically
(eliminating vn), and solved for mn. The expression for mn now con-
tains only terms that can be measured, so the mass of the neutron, mn,
can be calculated. Note that only the ideas developed for ordinary elas-
tic collisions are used here.
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n
N

Vn

Mn

MN

Nitrogen

V ′n

V ′N
(b)

(c)

Conservation of energy
1/2MnVn

2 = 1/2MnV′n2 + 1/2MPV′p2

1/2MnVn
2 = 1/2Mn + 1/2MpV′p22

V′n =

Conservation of momentum
MnVn = MnV′n + MPV′p

MnVn − MpV′p
Mn

Conservation of energy
1/2MnVn

2 = 1/2MnV′n2 + 1/2MNV′N2

V′N =

Conservation of momentum
MnVn = MnV′n + MNV′N

2MnVn
MN + Mn

Mn =
MNV′N − MpV′p
V′p − V′N

=
MN + Mn
Mp + Mn

V′p 
V′N

V′p =
2MnVn

Mp + Mn

MnVn − MpV′p
Mn

( )
MnVn

2 =

Mn
2Vn

2 = Mn
2Vn

2 − 2MnMpVnV′p + Mp
2V′p2 + MvMpV′p2

Mp
2V′p2 + MnMpV′p2 = 2MnMpVnV′p

MpV′p + MnV′p = 2MnVn

+ MpV′p2Mn
2Vn

2 − 2MnMpVnV′p+ Mp
2V′p2

Mn
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LABORATORY
EXPLORATIONS

LABORATORY
EXPLORATIONS

Physics is an experimental science. With few exceptions, the great
advances in physics have arisen in close association with experi-
mental evidence. Direct, hands-on experience with the phenomena
is essential to understanding concepts in physics.
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GOALS OF THE LABORATORY EXPLORATIONS

Most of you will be pursuing careers in fields other than physics, perhaps in
other sciences: medicine, the liberal arts, business, or teaching. Whatever your
personal goal, these explorations will provide a useful introduction to the fun-
damental principles of physics and to the principles underlying experimenta-
tion of any kind. Here are some of the goals of the laboratory work:

• Conceptual Learning. The explorations are meant to provide hands-on ex-
perience and to help reinforce some of the fundamental concepts you are
learning in the other parts of the course.

• Collaborative Learning. Collaboration in small groups is a very beneficial
way of learning. Working in groups should also help you develop collabo-
rative skills that are vital to success in many lifelong endeavors.

• Experimental and Analytical Skills. During the course of this semester you
will be making observations, recording measurements, analyzing experi-
mental results, and drawing conclusions at various levels of sophistication,
ranging from purely qualitative to highly quantitative.
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Suggested 
Mini-Laboratory
Explorations
1 Our Place in Space (Sections P.2, 14.4)   75

2 Reviewing Graphs (Chapter 1 and Major Laboratories)   77

3 Falling Objects (Section 1.9)   80

4 Kepler’s Third Law (Section 2.10)   80

5 Relative Motion (Chapter 2, Sections 3.9, 9.3)   81

6 Galileo and Inertia (Sections 3.1, 3.8, 3.9, 5.9, 5.10)   82

7 Finding the Centripetal Acceleration Vector (Sections 3.3, 3.12)   83

8 Three States of Matter (Chapter 7, Section 16.2, Major Laboratory 
“Heat Transfer and Latent Heat of Fusion”)   85

9 How Do We Know That Atoms Really Exist? The Brownianscope 
(Section 7.8, Chapter 13)   86

10 Light and Color (Chapter 8, Section 14.1)   86

11 Spectroscopy (Chapter 14)   87

12 Radioactivity and Nuclear Half-Life (Chapter 17)   88

1. OUR PLACE IN SPACE (SECTIONS P.2, 14.4)

Most drawings of the solar system are badly out of scale, because it is im-
possible to show both the sizes of the Sun and planets and their relative
distances on an ordinary-sized piece of paper. Constructing a simple scale
model of the distances and sizes of objects in the solar system will help you
develop a better picture of the real dimensions of the solar system—in a
sense, your greater home.

75
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A. Scale of Distances

1. To begin, find a straight stretch of sidewalk, street, empty ball court, sta-
dium, etc., that is at least 102 yd, or 60 m, in length. This can also be
done on a football field or another open area having an equivalent length.

2. The table on the next page lists the radii of the orbits of all the plan-
ets, in miles and kilometers. Convert these distances to “scale” inches
or centimeters, where 1 in � 1,000,000 mi, or 1 cm � 1,000,000 km.

3. Calculate the distance between planets, scaled to inches or centime-
ters. Using the new scale, measure and label strings to represent the
distances between each pair of planets.

4. Beginning with the Sun, lay out the scale distances in the entire solar
system on the sidewalk, street, field, etc., you have chosen, and mark
the location of each planet. Include the Earth’s moon, which is about
384,000 km, or 240,000 mi, from the Earth.

5. Survey your result and record your observations.
6. The nearest star to our Sun is Alpha Centauri. How far away from the

Sun would this star be on your scale? (See Section 2 of the Prologue.)
7. Using the scale on a local map, or driving in a car or bus, find a land-

mark or building that is approximately at the position of Alpha Cen-
tauri on your scale.

8. What fraction of a light year is represented by the distance between
the Earth and the Sun?

9. The distance to the farthest part of the visible universe, as observed by
the Hubble Telescope in space, is about thirteen billion light years.
How many inches or centimeters would this be on your scale? How
many miles or kilometers would this be?

B. Scale of Sizes

Let a tennis ball about 7 cm in diameter represent the Sun. Since the di-
ameter of the Sun is about 1,400,000 km, in this model 1 cm will represent
about 200,000 km. The Earth has an approximate diameter of 13,000 km,
so on this scale model it would have a diameter of only 0.065 cm. This is
about the size of a pinhead.

The table below lists the approximate diameters of the planets and our
Moon. Fill in the table, giving the approximate size on this scale. Try to
find a sample object of this size, and use it in your scale model of distances.

C. The Size of An Atom (Section 14.4)

1. Using the same method as above, create a scale model of the distances
involved in a hydrogen atom, the smallest atom. Use a handbook or ref-
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erences in the text to find the size of the nucleus (a single proton) and
of an electron, and the radius of the first Bohr orbit of the electron.

2. Assign a reasonable scale to these measurements, then lay out the dis-
tance scales on the long sidewalk or street or field you have chosen.

3. Record your impressions of the result.

2. REVIEWING GRAPHS (CHAPTER 1 
AND MAJOR LABORATORIES)

You may want to read first the section on graphs in the essay “Reviewing
Units, Mathematics, and Scientific Notation.”

The following table records the growth of a tomato plant from a seedling
of zero height over a period of 7 weeks.

Week Approx. height (cm)

1 7
2 14
3 22
4 29
5 35
6 42
7 50

1. Examine the data and draw some conclusions about the trend over the
period of observation.

2. REVIEWING GRAPHS (CHAPTER 1 AND MAJOR LABORATORIES) 77

A Scale Model of the Solar System

Solar Average Distance
Diameter

km mi Model Sample
Object (�106) (�106) (cm/in) (approx. km) (cm) Object

Sun — — 1,400,000 7 Tennis ball
Mercury 58 36 4,600
Venus 107 67 12,000
Earth 150 93 13,000 0.065 Pinhead
Mars 228 141 6,600
Jupiter 780 484 140,000
Saturn 1408 879 120,000
Uranus 2870 1780 48,000
Neptune 4470 2790 45,000
Pluto 5886 3674 1,300
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2. By inspection of these data, what would you expect the graph to look
like?

3. Now make such a graph, or “picture,” of the data by placing the week
on the horizontal axis and the height on the vertical axis. The hori-
zontal axis should be divided evenly into weeks, starting from 0. The
vertical axis should also be divided evenly. Start the vertical axis at 
0 cm. Make sure that the numbers (data) fill as much of each axis as
possible without going beyond the end. Label the axes and their units.

4. Graph each pair of points and connect the points.
5. Describe in your own words what the plant did during this period. Was

its growth exactly the same each week? What was the overall trend?
6. Do your observations of the graph in Question 5 agree with your ex-

pectations in Question 2?

You know from the study of graphs that any time you obtain a straight
line, the two variables are considered to be “proportional,” or in symbols:
y � x. We can replace the proportional sign, �, by an equals sign, �, if we
multiply the x variable by a constant. Call the constant m. So, instead of

y � x,

we have

y � mx.

If the line intersects the y-axis at the value y � b, then we have the equation

y � mx � b.

You may recognize this as the general formula for a straight line. How do
we obtain the value of m? As you may recall, it is just the numerical value
of the “slope” of the line.

7. The data points on your graph probably do not form an exact straight
line, since the slope tends to vary slightly from week to week. How-
ever, we can find the “average slope” by choosing the slope between
the first and last data points. Find this average slope.

8. Using your result for the average slope, and assuming an approximate
straight line for the graph, write an equation for the approximate
straight line. Extrapolate your data back to height at week 0. Includ-
ing the y intercept, b, in your equation.
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9. When a graph involves time on the x-axis, the slope has a special
meaning. It tells us the rate that the y variable is changing, for exam-
ple, in units of centimeters per second for speed, or centimeters per
week week in our case. What was the overall rate of growth of the
plant during this period?

10. You now have an exact equation for the height of the plant for the
period of its recorded growth. Using your equation, what would be
the height of the plant 4 weeks from the last data point, assuming this
trend continued? One year? (This absurd result shows the weakness
of “linear extrapolation” in many situations.)

Now you try it
1. Obtain your own data on a variable that changes over a period of time.

Examples might include the daily temperature, the growth of a baby,
the maximum height of a local tide, the ups and downs of the stock
market, etc. Examine the numbers and attempt by inspection to pre-
dict what a graph of these data will look like. Then graph the result
and compare with your prediction.

2. You may know that an object moving from rest with constant acceler-
ation (a) covers the distance d in the time interval t given by Galileo’s
famous equation

d � 1⁄2at2.

Here is a table of distances covered during different time intervals for
an object moving with constant acceleration from rest. Find the accel-
eration by the graph method.

Distance covered (cm) Time interval (s)

3.60 0.1
14.5 0.2
32.0 0.3
57.5 0.4
90.2 0.5
129.5 0.6
176.4 0.7
230.0 0.8
291.5 0.9

Using a spread sheet
1. If your class has access to computers and to a so-called spreadsheet pro-

gram, enter the table of data for the tomato plant in the spreadsheet.

2. REVIEWING GRAPHS (CHAPTER 1 AND MAJOR LABORATORIES) 79

3669_CassidySG_03  5/23/02  10:16 AM  Page 79



2. Use the graphing function of the spreadsheet to create a graph of data
similar to your earlier graph. Make sure the program labels the axes.

3. In what ways, if any, does the spreadsheet graph differ from your own
graph? Examine, for instance, the spacing of data on the x-axis.

4. Define a cell on the spreadsheet in such a way that it gives the slope
of the line between any two of your data points, and provide a label in
a neighboring cell.

5. Try this again with your own data, obtained above.

3. FALLING OBJECTS (SECTION 1.9)

The study of falling objects is an important part of Chapter 2. It is the gate-
way (and was historically) to understanding the new mechanics.

1. Try dropping different types of objects at the same time from the same
height and compare when they hit the ground. Is there any difference?
If there is, what do you think are the reasons for the difference?

2. Predict what will happen if you drop a book and a piece of unfolded
paper simultaneously to the floor from the same height.

3. Try this. Is the result what you predicted? Explain what happened.
4. Now crumple up the paper tightly into a ball and try the experiment

again. Explain what you observe.
5. It has been reported that, in order to slow down the fierce speeds of

serve during world championship tennis, the size of the official tennis
ball is to be increased by a small amount. Explain how this would ac-
complish the purpose.

6. Using Galileo’s formula d � 1⁄2at2, explain why two objects dropped
from the same height should hit the ground at the same time. What
assumption is necessary?

4. KEPLER’S THIRD LAW (SECTION 2.10)

Review Kepler’s third law of planetary motion in the text.

1. A table of the periods and radii of the orbits of the planets, and of the
distances of the Sun and fixed stars, is given in Section 2.6, as first ob-
tained by Copernicus. Examine the data in this table, from the Sun to
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the planets and fixed stars. What is the harmony that Copernicus saw
in these numbers?

2. What is an “astronomical unit” (AU)? How large is it?
3. If you know the radii of the orbits and the periods of all the planets,

how could you test the accuracy of Kepler’s third law? Using the method
you devised, test the law using the data in the table in Section 2.6.

Notice, however, that the periods of planets are given in days for some
planets and years for others, while all of the radii are in AU. The peri-
ods must all be in the same unit for this comparison. Chose a convenient
unit and then convert the periods to that unit before testing the data.

4. What do you conclude about the validity of Kepler’s third law? Give
the reasons for your conclusion.

5. RELATIVE MOTION (CHAPTER 2, 
AND SECTIONS 3.9, 9.3)

In this investigation two different observers will observe the same event,
but report seeing two different phenomena. The difference between these
two observers is that the first observer is at rest relative to the event, while
to the second observer the event is in motion relative to that second 
observer.

The event will be a ball dropping to the ground. The first observer will
be the person who drops the ball as he or she walks forward at constant
speed and direction. The second observer will be a person standing still in
the room.

1. One person walks forward on a straight line at constant speed while
holding the ball over his head and to one side. While steadily walking
forward, he lets the ball drop, and he carefully watches its motion.

2. At the same time, a student standing in the room near the walking stu-
dent is also carefully observing the motion of the ball. Each observer
should then draw the path of the ball as he or she observed it, from
the position of the hand on release to the place where the ball landed.

3. Record your observations, repeating the experiment several times if
necessary.

4. Compare the observations made by the observers, one moving, the
other stationary relative to the horizontal motion of the ball. What do
you conclude about the effect that relative motion has on the observa-
tions of two different observers?
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5. If, instead of walking, the first observer was inside a ship moving
smoothly forward relative to the shore, would his observation on the
trajectory of the ball give any clue that he is actually moving with re-
spect to the shore?

Now you try it
Repeat the above observations and analyses, only this time the walking stu-
dent will toss the ball straight up and catch it as it returns to his hand.

Thought Experiments

1. One argument against the moving Earth was that a ball dropped from
a high tower would land behind the tower, since the tower is moving
forward during the time the ball is dropping. Since, in fact, the ball al-
ways lands at the base of the tower, people concluded that the Earth
cannot be moving. Does the first part of this experiment support or
refute that argument?

2. Two observers are observing the setting of the Sun as seen by a per-
son on Earth. One observer is on Earth, but the other is on the Moon.
How does each one account for the observation of the first observer,
that the Sun is “setting”?

3. If you are the observer on Earth, is there any way that you could de-
termine whether it is the Sun or the Earth that is moving as the Sun
“sets”?

4. The opening sentence of this mini-laboratory states: “In this investi-
gation two different observers will observe one and the same event, but
report seeing two different phenomena.” How can this be? How would
you explain it to someone?

6. GALILEO AND INERTIA 
(SECTIONS 3.1, 3.8, 3.9, 5.9, 5.10)

A. The Pendulum

The text describes an experiment with a pendulum in which the string hits
a peg at the center of the line.

Observe two or three swings of a pendulum without the peg, and com-
pare the height to which the bob rises on each side. Allowing for friction
and air resistance, are they nearly equal?

Now let the string hit a peg or other obstruction, and compare the height
to which the pendulum bob rises on each side.
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Again taking friction and air resistance into account, what do you con-
clude from this experiment?

B. Two Inclined Planes

Galileo reasoned that he should obtain the same result as above if, instead
of a pendulum, he used a ball rolling on two inclined planes facing each other.

1. Test this result by letting a ball roll down one incline and up the other.
The inclines must be arranged so that there is a smooth transition at
the bottom from one to the other. Carefully observe the starting and
stopping points.

2. Taking all factors into account, do your observations confirm Galileo’s
prediction?

3. Galileo then predicted that this result should be the same, even if the
angle of the second incline with respect to the horizontal is much less
than the first one. Test this prediction and write your conclusion.

4. Finally, Galileo predicted that the same result should hold, even with
a zero incline of the second inclined plane (a flat table). In a labora-
tory where the curvature of the Earth can be neglected, he predicted
that the ball will keep on rolling in a straight line at uniform speed un-
til it is stopped by a wall or falls off the table). Try it. Does Galileo’s
statement seem reasonable?

C. Kinetic and Potential Energy 
(Sections 5.9, 5.10)

1. Examine the results of this experiment by using the concepts of kinetic
energy and potential energy.

2. Explain why, neglecting friction and air resistance, the pendulum and
the ball always rise to the same height on both sides, even with a peg
in the way or with a different incline.

7. FINDING THE CENTRIPETAL ACCELERATION
VECTOR (SECTIONS 3.3, 3.12)

Take a ball and string and whirl the ball in a vertical circle in a counter-
clockwise direction. Make sure that the direction of the ball, moving at any
point on the circle, is not pointing at anyone else or any fragile objects in
the room.
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When you are certain it is safe to do so, release the ball just when it is
at the top of its circular motion. Carefully note the direction in which the
ball moves. Do this several times, carefully observing each case.

1. How does the ball move immediately after you release it?
2. Draw a circle and an arrow representing the velocity vector, which will

be tangent to the circle at the point where you released it. The length
of the arrow represents the speed. Let this be 5 cm. Its direction will
represent the direction in which the ball moved. Label this vector v1.

3. Where would the ball be if you had released it a fraction of a second
later? Draw an arrow to represent the velocity vector at that point.
Since the speed is constant, the length of the arrow should be the same;
but the direction should be different. Label this vector v2.

Acceleration is a vector, and it is defined as the change in the velocity
vector per unit of time.

a � � .

In the case of centripetal acceleration, the velocity is changing in direction
but not in speed. Assume the time interval is 1 s, and solve for v2:

v2 � v1 � at.

This equation states that the second velocity vector is the vector sum of
the first velocity vector and the acceleration vector multiplied by the time
elapsed. In other words, the acceleration (times time) transforms the ini-
tial velocity v1 into the final velocity v2.

Let’s find out what vector quantity we need to add to.
As discussed in Section 3.3, the representations of vectors by arrows can

be moved around on a piece of paper, as long as the same length is main-
tained and as long as they remain parallel to the original vector. The vec-
tor arrows are added by placing them together head to tail to form a chain.
The sum or resultant is then represented by the vector arrow that goes
from the starting tail to the ending head.

In this case we know the starting vector (v1) and the resultant vector (v2).
But we don’t know the second vector (at) that adds to v1 to obtain v2. We’ll
find out what it is by drawing.

1. Move the arrow for vector v1 to another place on the paper, keeping
the same length and direction. The arrow v2 will represent the result-
ant. It will connect the tail of v1 to the head of at.

v2 � v1
�

t
�v
�

t
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2. Draw arrow v2, placing its tail at the tail of v1, keeping the same di-
rection and length as the original.

3. Arrow at will make up the difference. Draw at from the head of v1 to
the head of v2. Label it at. This arrow represents the direction and
magnitude of the acceleration vector (times the elapsed time).

4. Place a dot on the circle between the positions of v1 and v2. Move the
arrow representing at to the circle at that point, placing its tail on the
dot. Be sure to keep the same direction and length as in your drawing.

5. Draw a tangent to the circle at the position of arrow at. What angle
does it form with at?

6. You will recall from geometry that a radius is always perpendicular to
the tangent of a circle at that point. What do you conclude about the
direction of the acceleration vector a for uniform circular motion?

On what line does it always lie?
Why is it called “centripetal acceleration”?

8. THREE STATES OF MATTER (CHAPTER 7,
SECTION 16.2, MAJOR LABORATORY “HEAT
TRANSFER AND LATENT HEAT OF FUSION”)

1. In what ways do solids, liquids, and gases differ from one another?
Adding heat to a substance usually causes the temperature of a sub-

stance to rise. It might also cause the state or “phase” of the substance
to change. In the following you will constantly add heat to ice until it
melts in water, then continue adding heat until the water boils and fi-
nally evaporates completely.

2. Predict what a graph of the temperature, plotted over the entire time
of the experiment, will look like.

3. Now place some crushed ice in a pyrex glass container, put a ther-
mometer in the ice, and gently apply heat until all of the ice melts,
then boils, then evaporates. Carefully record the temperature and the
time every 10 s until all of the water has boiled away. Note the time
when each of the phase transitions occurs. (Take care with the source
of heat and the boiling water.)

4. Construct a graph of the temperature versus the time and indicate what
is happening during each block of time.

5. Compare the results with your predictions in Question 2.
6. Attempt to account for what you observe by using the kinetic–molecular

theory of matter.

8. THREE STATES OF MATTER (CHAPTER 7) 85

3669_CassidySG_03  5/23/02  10:16 AM  Page 85



9. HOW DO WE KNOW THAT ATOMS 
REALLY EXIST? THE BROWNIANSCOPE* 
(SECTION 7.8, CHAPTER 13)

The Brownianscope is a 200-power microscope that is able to focus on a
chamber at one end containing microscopic smoke particles. The smoke
particles are about 50,000 to 100,000 times larger than the air molecules.
If the air molecules really do exist, then, in analogy with Einstein’s results
for small objects such as pollen grains suspended in a liquid, the smoke par-
ticles suspended in air should exhibit random motions caused by the ran-
dom bombarding they receive from fast-moving air molecules. This scope
is designed to test this predicted observation.

1. To create the smoke for the chamber, burn two matches about half way
down, then blow out the flame. Holding the chamber over the smoke,
capture the smoke, then (keeping it vertical) place the chamber over
the end of the microscope.

2. Point the objective lens of the microscope at the bare light bulb for a
light source. Wrap your fingers around the other end to block out the
light from the source. If you wear glasses, try to observe this without
them.

3. Try to focus the microscope on the smoke particles in the chamber.
Note that, because of the arrangement of the optics, they will appear
light against a dark background.

4. What do you observe?
5. How would you account for your observations?

10. LIGHT AND COLOR (CHAPTER 8, PART 2;
SECTION 14.1)

The amount of refraction that a light wave experiences when it moves from
air into glass, then back into air, depends upon the frequency of the light
wave. We can use this dependence to separate visible white light into its
constituent frequencies, which we observe as colors. This is the principle
behind the operation of a glass prism. In a diffraction grating, the light waves
diffract into different angles depending upon the frequency of the light.
The result is the separation of the light into its constituent frequencies,
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which we again observe as colors. This is the principle behind the diffrac-
tion grating. Both of these devices enable us to observe the visible spectrum.

1. Use the prism and the diffraction grating to observe the visible spec-
trum. For the prism you will need direct sunlight for the best result. For
the diffraction grating, use any artificial light source. DO NOT LOOK
AT THE SUN THROUGH THE DIFFRACTION GRATING!

2. What do you think would happen if you filtered the incoming light
through a color filter?

3. Use one of the color filters and record your result.

Adding and subtracting colors
1. Your instructor may have different color filters which can be placed

over the light of an overhead projector. What happens as the filters are
added?

2. Shine white light through a color filter onto objects of the same and
different colors in a darkened space. Record your observations. How
would you explain what you observe?

11. SPECTROSCOPY (CHAPTER 14)

Equipment: A diffraction-grating spectroscope (Cenco Scientific), a light
bulb source, a discharge lamp, and single-element source, flourescent lights
in room (optional).

A spectroscope is a device for viewing the spectrum and measuring the
frequencies or wavelengths of the light observed. Our spectroscope uses a
diffraction grating. The numbers on the scale read from 4 to 7, indicating
wavelengths from 400 nm to 700 nm (nm is the abbreviation for nanome-
ter, which is 10�9 m.)

1. Use the spectroscope to observe the visible spectrum emitted by the
incandescent light bulb. Record the wavelength at the center of each
of the colors you observe. (Do not use a flourescent light or the Sun.)

2. Observe the spectrum emitted by a flourescent light (if one is avail-
able). How does it differ from the spectrum emitted by the light bulb?

3. Your instructor will set out a discharge lamp emitting rays from a sin-
gle element. Observe the spectrum of the element and record the wave-
lengths of the observed lines. What you see is the visible portion of
the bright-line or emission spectrum of that element.

4. Again observe the spectrum from the flourescent light. How would you
account for what you see?
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5. How does Bohr’s quantum model of the atom account for the emis-
sion spectrum you observed? Why are there lines only at certain
frequencies?

12. RADIOACTIVITY AND NUCLEAR HALF-LIFE
(CHAPTER 17)

This investigation uses plastic simulated atoms in a kit provided by Frey
Scientific, S16402. An age determination using the decay of carbon-14 is
simulated through instructions provided with the kit.
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1. INVESTIGATING MEASUREMENTS 
AND UNCERTAINTY

INTRODUCTION

Precision and uncertainty
Physics can claim to be one of the most precise sciences. For example, by
laser pulse reflection the distance to the Moon is known to about 1 cm,
and some physical constants are known to one part per billion. But there
is a paradox.

On the one hand, obviously most experimental work in physics involves
measurement. Reliable measurements are essential for the accumulation of
accurate data that can lead to major laws and theories, and for the testing

89
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of new theories. Many of the measurements in physics involve such basic
properties as distance, time, mass, voltage, and temperature. From these,
more complicated properties, such as speed, force, and energy, can be 
constructed.

On the other hand, measuring instruments are never able to help us ob-
tain absolutely exact measurements of any quantity, no matter how carefully
made or how sophisticated the instruments may be. Every measuring in-
strument has a limit to its precision. For instance, look carefully at the divi-
sions or marks on a meter stick. The numbered divisions are centimeters 
(1 cm � 0.01 m). The smallest divisions are millimeters (1 mm � 0.1 cm).
Can you read your meter stick more accurately than to the nearest millime-
ter? If you are like most people, you read it to the nearest mark of 0.1 cm
(the nearest millimeter) and estimate the next digit between the marks for the
nearest tenth of a millimeter (0.01 cm), as illustrated in the diagram below.

In the same way, whenever you read the divisions of any measuring de-
vice, you should read accurately to the nearest division or mark and then
estimate the next digit in the measurement. Then probably your measure-
ment, including your estimate of a digit between divisions, is not more than
half a division in error. It is not likely, for example, that in the above dia-
gram you would read more than half a millimeter away from where the
edge being measured comes between the divisions. In this case, in which
the divisions on the ruler are millimeters, you are at most no more than
0.5 mm (0.05 cm) in error. So, in recording this measurement, you would
record the best estimate of the distance and indicate the likely error as plus
or minus 0.05 cm. This is written

2.58 � 0.05 cm.

The �0.05 is called the uncertainty of your measurement. The uncertainty
for a single measurement is commonly taken to be half a scale division.
With many measurements, this uncertainty may be even less.

Error and uncertainty for repeated measurements 
of a single quantity using a single instrument
Many experiments involve a series of repeated measurements of a quantity,
such as the distance traveled by an object in uniform motion in fixed time

0 1 2 3 3

90 SUGGESTED MAJOR LABORATORY EXPLORATIONS

3669_CassidySG_04  5/23/02  10:22 AM  Page 90



intervals. However, because of the precision of the instruments, or simpli-
fications such as the neglect of air resistance, or simple carelessness, the
recorded measurements are often not identical.

For instance, suppose you measure the length of a book page four times
and obtain the following values: 27.61 cm, 27.59 cm, 27.70 cm, and 27.64 cm.

Is there any way to decide from the data which is the “true” value for
the length of the page? Unfortunately, the answer is no. But we can pick
the average value as most likely the closest to the true value, on the as-
sumption that half the time the measurement will be too high, and half the
time too low. (This assumption becomes more likely, the more measure-
ments we include.) In our example, the average is 27.635 cm. However,
since our data are given only to the second decimal place, we are allowed
only four significant figures. We must round off 27.635 cm to 27.64 cm.
The average value is selected as the accepted value of our measurement.

How can we indicate the possible error in our accepted value as repre-
sented by the variation in our individual measurements? The difference be-
tween each measurement and the accepted value is �0.03 cm, �0.05 cm,
0.06 cm, 0.00 cm. The average of these differences, without regard to sign
is 0.035 cm. This average deviation is taken as the experimental error for
these measurements of a single quantity. The result of this measurement
would then be given as the average value, plus or minus the average devi-
ation, rounded off to the hundredth decimal place

27.64 � 0.04 cm.

Relative error: Comparing an experimental 
result with an “accepted value”
Finally, there is an experimental error that is associated with the relative
deviation of a measured quantity from the standard value for that quantity.
For instance, the generally accepted value for the acceleration of gravity
(as a result of many measurements) is 9.8 m/s2; but in an experiment you
might obtain a value for the acceleration of gravity of 9.7 m/s2 (both at 
sea level). The difference between your result and the accepted result is 
0.1 m/s2. Is your result off by a lot or by a little? It depends upon how
much difference there is in comparison with the number. The ratio of the
difference to the size of the accepted value, expressed as a percent, is known
as the relative error. It may be defined in symbols as follows:

relative error � � 100%.
�experimental value � accepted value�
�����

accepted value
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In our example

relative error � � 100%

� � 100%

� � � 100% � 0.01 � 100% � 1%.

In the following you will explore these concepts with some concrete 
examples.

Exploration

1. Your instructor will have set up various stations around the room. At
each one, you are to make a measurement. Everyone will use the same
instrument located at each station. The stations might include meas-
urements of a voltage across a resistor in a circuit with a constant cur-
rent, the temperature of ice water, and the length of a strip of paper.

2. You may work together on this, but each student should make each
measurement and record the result in a table in his or her notebook.
The table should include the object measured, the precision of the in-
strument you used, and the result of your measurement with the un-
certainty and units indicated. Make your measurements as carefully as
possible.

Together in class
1. After you have completed your measurements, your instructor will col-

lect the results and write them in a large table on the board. He/she
will select one of the measurements that has an accepted or a predicted
value, such as the voltage, which may be compared with the result ob-
tained from Ohm’s law.

2. Working with your instructor, you will obtain the best value for the
voltage and the average of the class’s measurements.

3. The class will also obtain the experimental error in the result from the
average deviations of the measurements from the average value for 
the voltage.

4. Together with your instructor plot the class’s results for the voltage,
indicating the value and the frequency that each value appeared. This

0.1
�
9.8

��0.1 m/s2�
��

9.8 m/s2

�9.7 m/s2 � 9.8 m/s2�
���

9.8 m/s2
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will result in a “curve.” Indicate on the graph the position of the av-
erage value and the experimental error on each side of the average.

5. Finally, since in this case there is a theoretically predicted value for the
voltage, given the current and resistance in the circuit, obtain the rel-
ative error of the class’s result for the voltage.

Now you try it
1. Find the class’s experimental result for the other two quantities mea-

sured and the experimental error in both cases.
2. Plot the results for both measurements, indicating the value and the

frequency that each value appeared. Indicate the average values and 
the errors on each “curve.”

3. Examine the class’s results for each of the objects measured. What do
you observe? Did everyone obtain exactly the same results? If not, why
do you think this is so?

4. Is there an accepted value for either of these measurements? If so, find
the relative error.

Think about it
1. When we obtain and plot a lot of data as in the above, an “error curve”

or “bell-shaped curve” is formed. This is an important concept in the
understanding of all types of measurement.

2. Sometimes the scores of all members of a class of substantial size on a
test are also plotted on a curve of this type, and grades are computed
on the basis of where the scores fall on the curve in relation to other
students in the class. This is sometimes called “grading on the curve.”
What are some of the advantages and disadvantages of this type of grad-
ing system?

3. Your friend who has not had this course measures the width of a stan-
dard 81⁄2 � 11 in sheet of paper one time with a metric ruler and ob-
tains 21.5 cm. How would you explain to your friend that the “true”
width of the sheet of paper might not be 21.5 cm?

4. How would your friend obtain the most likely value for the width, along
with the error?

Measurement
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2. EXPLORING MOTION (CHAPTER 1)

A. Observing Motion

How can we recognize and distinguish acceleration, deceleration, and uni-
form motion? In order to answer this question, at first in qualitative terms,
assemble the apparatus and place the cart on the track with the timing tape
attached, but with the timer off.

1. Give the cart a push and describe what happens to the speed of the cart.
2. Now try it again with the timer on. The timer tells us where the tape

(hence the cart) was at each tenth of a second. Describe what happens
to the distance the cart travels in each 1⁄10 s at the start, middle, and
end of the run.

3. Compare your answers to Questions 1 and 2. How would you recog-
nize that an object is decelerating?

4. Now lift up the timer end of the track to its highest position. Give the
cart a push to describe what happens to the speed of the cart as it moves
down the track.

5. Now try it again with the timer on. Describe what happens to the 
distance the cart travels in each 1⁄10 s at the start, middle, and end of
the run.

6. Compare you answers to Questions 1 and 2. How would you recog-
nize that an object is accelerating?

7. From the above, how would you recognize uniform speed, in which there
is no acceleration or deceleration?

8. What would you have to do to give a cart uniform speed?
9. Try to obtain uniform speed before turning on the timer. Then, when

you think you have obtained it, turn on the timer and compare the re-
sults with your answer to Question 8. You may have to try this several
times to obtain an as close to uniform motion as possible.

B. Uniform Speed

Instead of analyzing a photograph, as in Section 2.3, you will use the timer
to analyze the motion of the cart you observed in Part A. A timer places a
dot on the tape every 1⁄10 s. Each dot tells us where the tape (hence, the
cart) is at each 1⁄10 s. So the distance from the start of the tape to a dot tells
us how far the cart has moved since the timer was turned on.

1. Notice that the timer tape introduces a lot of friction, which acts to
decelerate the motion. Attempt to compensate for this friction and
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obtain a motion for the cart that is as uniform as possible (see Part
A). Turn on the timer and let it record the motion. Remove the tape
and mark the starting dot.

2. Place a meter stick alongside the tape, starting with zero at the start-
ing dot. The distance of each dot from the start provides a position
reading for the cart at each 1⁄10 s to the end of the run. Let’s see if
there is a relationship between these two variables.
Use the symbol d for the position reading of each dot, and the sym-
bol t for the time reading that goes with it.

Draw a table, like the table in Section 1.3, and record the values of d
and t for the entire run. (Leave room on the right for three more columns.)
Be sure to include the units in your table. Use only the metric scale for
distances.

3. Add two more columns to your table. One is for �d, the distance trav-
eled in the each time interval (the distance covered between times
when the dots are produced). Another column is for �t, the corre-
sponding time interval. Indicate the units.

4. Why is the top line of the table in the text left blank?
5. Examine your data so far and carefully describe the motion of the cart

overall and during the early, middle, and later parts of the motion.
6. Now add a fifth column to your table for the rate or the average ve-

locity, vav, in each time interval, and complete the table. Indicate the
units.

Drawing conclusions

7. Once again examine your results. What can you say about the aver-
age speed of the cart during the run? Take into account the variations
due to the uncertainty in the measurements of distance.

8. What is the overall average of the separately obtained average speeds?
What is the average of the values in the fifth column? Write this at
the bottom of that column.

9. Now obtain the average speed for the entire run from the total dis-
tance covered and the total elapsed time.

10. How does the overall average of the average speeds (Question 8) com-
pare with the average speed for the total run (Question 9)?

11. Is the answer to Question 10 what you expected?
12. Can you give an experimentally testable definition of uniform speed?
13. Is the velocity vector in this case also uniform? How do you know?
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Picturing the motion
1. If you graphed the distance and time measurements for the data in your

table, what do you expect the resulting graph to look like?
2. Now plot such a graph using the first two columns in your table. Place

the distance on the vertical axis and the corresponding time on the hor-
izontal axis. Be careful to label the axes and the units and to fit the data
onto the axes so that the data points do not go off the end, nor are
they “scrunched” into one corner.

3. If the data points are in a line, use a ruler to draw a straight line through
them. If they are not, draw a smooth curve.

4. Using your graph, describe the motion of the cart throughout the run.
5. For a straight section of the line on your graph, obtain the speed of

the cart from the slope of the line.
6. Compare the speed with the average speeds in the table for that seg-

ment of the motion. Finally, compare it with the overall average of the
average speeds. Take into account the uncertainties in measurement.

7. Is this what you expected to obtain? Try to account for any differences
that you see.

8. Finally, obtain the instantaneous speed of the cart from the graph at a
chosen instant of time. Indicate the instant of time and show how you
obtained the speed.

Using a spreadsheet
1. Using the spreadsheet functions and features, recreate your data table

above. Have the program automatically compute the values for �d, �t,
and vav, as well as the overall average velocity.

2. Use the program to create automatically a distance–time graph and to
compute the slope of the line. If you are adept at using macros, create
a pop-up data-input table that is activated by a “button” and then au-
tomatically enters the data in the proper cells on the table.

3. Save your work for Part C.

C. Now You Try It

Design an experiment to examine the motion of an object, other than a cart.
The object might be a ball rolling down the hallway, a car traveling on a
road, or a person riding a bike or roller blading or swimming or walking.

You will need to measure the time at which the person or object reaches
various distances from the starting point. Your instructor can help you find
any equipment you might need.
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In a brief report, describe the purpose of your experiment, your proce-
dure, the data you obtained, your analysis of the data using both a table
and a graph, your conclusions based on the data and graph, and the diffi-
culties encountered, and sources of error.

If you used the spreadsheet in Part B, replace the old data with your data
in this part of the experiment, and allow the spreadsheet to analyze your
data automatically.

D. Changing the Speed

This investigation will parallel the study of uniform speed in Part B, but it
will involve uniform acceleration instead of uniform speed.

Since the force of friction plays a large part in the motion of a cart drag-
ging a piece of tape, we can balance the friction force with the force of
gravity. This can be done by raising one end of the track or table so that
the force of gravity balances the force of friction retarding the motion, as
in Part A of this investigation. Alternatively, a hanging mass may be at-
tached by a string to the cart over a pulley.

1. With the timer tape attached but the timer off, give the cart a push
and attempt to obtain acceleration, either by increasing the incline or
by increasing the mass of the hanging weight. When you have achieved
accelerated motion, start over: turn on the timer and let it record the
motion. Remove the tape and mark on it the point where the meas-
urements start.

2. Place a meter stick alongside the tape, starting with zero at the start
of the timer marks. As before, the distance of each dot from the start
corresponds to the position of the cart at that instant of time.

As before, create a table displaying the position (d ) corresponding
to each dot, the time reading (t) that goes with it, the time interval
�t between successive dots, the distance �d traveled in each time 
interval, and the average speed in each time interval, which is 
vav � �d/�t. Be sure to indicate the units for each column.

3. Examine your data so far and describe the motion of the cart overall
and during the early, middle, and later parts of the motion.

4. Now add a sixth column to your table for the rate of change of the
average speed, that is, the average acceleration in each time interval
which is, by definition, aav � �vav/�t. Complete the table.
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Drawing conclusions
5. Examine your results. What can you say about the overall average ac-

celeration of the cart during the entire run? Take into account the
variations due to the uncertainty in the measurements of distance.

6. If any of your values for �vav came out negative, what does this mean?
7. If any of your values for aav came out negative, what does this mean?
8. What is the overall average of the individual average accelerations?

Write this at the bottom of the last column of your table.
9. Now obtain the average acceleration for the entire run from the to-

tal change in speed and the total elapsed time from start to finish.
10. How does the average in Question 9 compare with the overall aver-

age acceleration for the total run (Question 8)?
11. Is your answer to Question 9 what you expected?
12. Can you give an experimentally testable definition of uniform accel-

eration?
13. On a sketch of your apparatus draw and label an arrow representing

the acceleration vector. Is the acceleration vector in this case uniform?
How do you know?

Picturing the motion
1. If you graphed the average speed against the corresponding time meas-

urements in your table, what do you expect the resulting graph to look
like?

2. Now plot a graph of the average speed, vav, and the total elapsed time,
t, for each velocity from your table. Place the speed on the vertical axis
and the time on the horizontal axis. Be careful to label the axes and the
units and to fit the data onto the axes so that the numbers do not go
off the end nor are they “scrunched” into one corner.

3. If the data points are in a line, use a ruler to draw a straight line through
them. If not, draw a smooth curve.

4. Using your graph, describe the motion of the cart throughout the run.
5. For a straight section of the line on your graph, obtain the accelera-

tion of the cart from the slope of the line.
6. Compare the acceleration for that segment of the motion with the av-

erage acceleration in the table. Finally, compare the acceleration with
the overall average of the average accelerations. Take into account the
uncertainties in measurement.

7. Is this what you expected to obtain? Try to account for any differences
that you see.

8. Finally, obtain the instantaneous acceleration of the cart from the graph
at a chosen instant of time. Indicate the instant of time and show how
you obtained the acceleration.
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Using a spreadsheet
As in Part C, use a spreadsheet to recreate your table, once the data are
provided, and to render a velocity–time graph and the slope of the result-
ing line.

E. Now You Try It

Design an experiment to examine the acceleration (or deceleration) of an
object. The object might be a ball rolling down an inclined plane, or a
speeding cart that rolls onto a rough surface, or a person speeding up and
slowing down deliberately as they walk, ride a bike, jog, or roller blade a
brief distance.

You will need to measure the time and distance. Your instructor can help
you find any equipment you might need.

In a report describe the purpose of your experiment, your procedure,
the data gathered, your analysis of the data using both a table and a graph,
your conclusions based on the data and graph, and the difficulties encoun-
tered and sources of error.

If you created the spreadsheet in Part D, replace the data with your new
data and allow the spreadsheet to perform an automatic analysis.

F. Checking Galileo’s Result

You saw in Section 1.9 of the textbook that Galileo could not test his hy-
pothesis directly that free fall is an example of uniformly accelerated mo-
tion. Instead, he had to test it indirectly by studying the motion of a rolling
ball on an inclined plane.

But there was another difficulty: He could not measure short time in-
tervals during the motion or the corresponding distances traveled in order
to obtain the changes in speed. He found a way around this problem, too:
he derived a formula that did not include speed at all. It included only the
total time (t) and the total distance (d ) covered in that time, in addition to
the acceleration (a). If the acceleration is uniform for the entire time and
distance, and the object starts from rest at time 0 and distance 0, Galileo
obtained the formula

d � 1⁄2at2.

Then, in either a thought experiment or a real experiment (historians
still debate this), Galileo studied a ball rolling down a long inclined plane
at various angles of incline. He hypothesized that, if the acceleration is con-
stant for a fixed inclination, the distance covered and the square of the time
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needed should be directly proportional to each other, the constant of pro-
portionality being 1⁄2a:

d � t2.

Indeed, this is what can be obtained experimentally. Galileo claimed that
this relation also applied to freely falling objects if air resistance and fric-
tion are neglected. Devise an experiment to check Galileo’s result using an
inclined plane. Your instructor will have some equipment available for you
to use. Since the distances are short and the falling objects are heavy, you
will not need to worry about air resistance or friction.

Cautions
When testing different inclines, do not go over about 20° inclination, be-
cause beyond that the ball will begin to slide as well as roll, which changes
the experiment.

Because of inherent uncertainties in the measurements, take at least four
readings for each distance and time, then average the results.

Extrapolating to free fall
Although he could not test higher inclinations of the incline, Galileo no-
ticed that the acceleration increased roughly as the angle of the incline in-
creased. (This is true only for small angles.)

From your results, is it reasonable to conclude that an “incline” of 90°,
when free fall occurs, will also be an example of uniform acceleration? Why
or why not?

3. EXPLORING THE HEAVENS (CHAPTER 2)

INTRODUCTION

Each of the following inquiries may be performed as individual units. In ad-
dition, the tasks outlined in each unit may be divided among various groups.

A. The Seasons in the Heliocentric System

Celestial observations were made for thousands of years by Egyptian,
Mayan, and Chinese people (and others). In this exploration we shall re-
peat some of their efforts with apparatus different but not more sophisti-
cated than theirs (but during a relatively brief time).

The “planetarium” is a very helpful, hands-on working model of the rel-
ative positions of the Sun, Earth, and Moon in the heliocentric system. The
distances, however, are not to scale.
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1. Notice that N–S axis of the Earth is tilted at 231⁄2° to the plane of its
orbit around the Sun. Move the model representing the Earth around
the Sun. What do you observe about the axis of the Earth as it moves
around the Sun?

2. Now place the Earth in the position on its orbit where the North Pole
is pointing most directly at the Sun. Draw a sketch of this arrangement
in your notebook. Then, using a straight edge and a different pen or
pencil, draw a series of parallel lines from the Sun across the entire
width of the Earth. These will represent rays of light from the Sun.
Since the Sun is actually much farther away from the Earth than in this
model, the rays from the Sun are effectively parallel.

3. Examine your drawing. Where on the Earth do the Sun’s rays hit most
directly? Where do they hit least directly?

4. Where will the temperature on the Earth’s surface be the warmest,
where will it be the coldest?

5. To the people in the northern hemisphere, what season is it on this
day? What about in the southern hemisphere? What is the special name
for this day?

6. Will the time of illumination by the Sun’s rays during a day be any longer
in the northern hemisphere at any other position on the Earth’s orbit
than at this position? Try some other positions to test your answer.

7. From your drawing can you tell where on the Earth the Sun would be
directly overhead at noon?

8. Is there any place on the Earth where the Sun never sets?
9. Is there any place where it never rises?

A second situation
This time, move the “Earth” to the position on its orbit where its north
pole is pointing at the greatest angle away from the Sun. Draw a sketch of
this arrangement in your notebook. Then, using a straight edge and a dif-
ferent pen or pencil, draw a series of parallel lines from the Sun across the
entire width of the Earth. These will represent rays of light from the Sun.

Work through Questions 3–8 above for this arrangement.

Two other positions
Let the “Earth” now move forward slowly in its orbit. Notice the behav-
ior of the N–S axis. Stop the motion when the Earth has moved about one-
quarter of the way around its annual orbit and three-quarters of the way
around. At these point the Sun’s rays should be hitting a level surface at
the equator at a 90° angle (the Sun is directly overhead).

1. Draw a sketch of the Earth–Sun relationship at one of these two po-
sitions and include the direction of the Earth’s axis.
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2. Draw another sketch, as before, of the Earth and Sun, along with a se-
ries of parallel lines representing the rays of light from the Sun.

3. Examine your drawing. Where on the Earth do the Sun’s rays hit most
directly? Where do they hit least directly?

4. Compare the amount of daylight in the northern hemisphere with the
amount in the southern hemisphere?

5. To the people in the northern hemisphere, what season do you think
it is on this day? What about in the southern hemisphere? What spe-
cial names do these 2 days have?

Inquiry
1. Find your location on “Earth.” As the Earth revolves around the Sun

in 1 year, predict what will happen to the length of the day at your lo-
cation on Earth during that year.

2. Now move the Earth around its orbit and identify its position at each
of the four seasons.

3. As seen from your location on Earth, how does your prediction com-
pare with your observations about the time of daily sunlight during the
course of 1 year?

Solar noon
Solar noon is the time during the day when the Sun is at its maximum “al-
titude,” the angle of the Sun with respect to a plane to the horizon. Solar
noon may not occur exactly at 12:00 noon, or at 1:00 p.m. if Daylight Sav-
ings Time (DST) is in effect.

1. Why wouldn’t solar noon occur everywhere in your time zone at ex-
actly at 12:00 noon (or 1:00 p.m.)? At a given location on Earth, could
it occur at 12:08 p.m. (1:08 p.m. DST)?

2. In your local newspaper find the time when the Sun will next rise and
set. Since the Sun appears to move in a circle across the sky, solar noon
will be the time exactly half-way between rising and setting. Figure out
when this will be.

3. Use the length of the shadow cast by a tree or a stick you have placed
in the ground to gain a qualitative measure of the altitude of the Sun
1⁄2 hr before the predicted solar noon, at solar noon, and 1⁄2 hr after
solar noon. Does this confirm your prediction of solar noon in Step 2?
Caution: Never look directly at the Sun, even with sunglasses. It can
cause permanent eye damage. This is only a qualitative measurement.

A geometric inquiry
1. Draw the Earth represented by a perfect circle, and draw the equator

through the center. Locate your latitude on the Earth and draw and
label the latitude angle with respect to the equator. Now draw a line
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that is an extension of the equator all the way to the edge of the paper.
This line will also represent a ray of light coming from the Sun at so-
lar noon on the Vernal Equinox. Draw another line from the edge of
the paper, parallel to this one, hitting the Earth at your location. This
represents a ray from the Sun at your location at solar noon on the Ver-
nal Equinox. Using geometry, find the altitude of the Sun with respect
to the horizon at your location at solar noon on the Vernal Equinox.

2. During the course of a year will the Sun ever be directly overhead at
solar noon at your location on the Earth?

3. To check your answer to Question 2, find by construction the altitude
of the Sun at its highest point in the sky in your hemisphere—that is,
on either the Summer or Winter Solstice. On this day the Sun’s rays
are exactly perpendicular to a plane surface at noon at 231⁄2° north (or
south) latitude. Using this information and your latitude, find the al-
titude of the Sun with respect to the horizon at your location at solar
noon on the Summer or Winter Solstice.

4. Do the same for the opposite solstice.
5. Describe the changes in the Sun’s altitude at solar noon at your loca-

tion during an entire year. Be precise about the maximum and mini-
mum values.

B. Observing the Sun’s Apparent Motion

1. On a clear day, find in a newspaper the time when the Sun is sched-
uled to set. Go outside at that time, and just after the Sun has set (so
you are not looking at it directly), record the date, time, and position

An Example
L = Latitude angle at your location

tangent

L

extension of
radius
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where it has set. In most places today, the horizon is obstructed by
buildings or trees. In these cases, the “setting” of the Sun will involve
its disappearance behind the object obstructing the horizon. In this
case, record the position by noting exactly where the Sun disappears
behind a building or tree or fence. Even better, if you have a compass,
record the angle at which the Sun sets on a scale from 0° to 360° (due
north is 0° or 360°, due east is 90°, due south is 180°, and due west is
270°). Draw a simple sketch of the horizon and indicate the location
where the Sun set. Note also your exact observation point. (You could
also do this experiment just before sunrise, if that is more convenient.)

2. Predict how you would expect these observations to change, if at all, 
1 week later.

3. Actually repeat these observations once a week on the same day for 
1 or, preferably, 2 months. Some scheduled days you may not be able
to make the observations if the sky is overcast. In that case, observe on
the next available day (or the day before if the forecast is for cloudy
conditions).

4. Record how the position and time of the Sun’s setting has changed
from the week before. How do your observations compare with what
you expected?

5. At the end of the observation period, draw some general conclusions
about the changing position of the Sun’s setting and the length of the
day with reference to the season in which you made these observations.

6. The title of this investigation is “Observing the Sun’s Apparent Mo-
tion.” Your laboratory partner might argue that it is really the Earth
that is moving and the Sun that is stationary. Is there any way to de-
termine from your observations whether it is really the Sun or the Earth
that is moving? Which is the more plausible from your observations?

7. How do your observations fit with the heliocentric theory, in which
the Earth is indeed rotating on its axis and the Sun is stationary?

C. Observing the Sun Pass through Solar Noon

You will need a large sheet of cardboard (sometimes known as “oaktag”), a
pointed stick about 25 cm in length, a meter stick, a penny, a piece of string,
and tape.
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In this experiment you will observe the motion of the Sun as it crosses
solar noon. But you will do this only indirectly by observing the motion of
the shadow cast by the Sun onto the cardboard sheet.

1. As you saw in the earlier section on solar noon, the time of solar noon
is around our clock-time of 12:00 noon, or 1:00 p.m. if DST is in ef-
fect. But, because of the width of your time zone on the Earth’s sur-
face, solar noon at your location is very probably not exactly on the
hour by the clock. To anticipate this, you will begin the investigation
30 min before the hour and continue until 30 min after the hour.

2. Find a level, preferably a paved area, with an unobstructed view of
the Sun when it is overhead on a clear day. Before starting, note the
location of the Sun in the sky in relation to the “cardinal points”
(north, south, east, west). How do you expect the Sun to move from
its present position during the course of this experiment?

3. Hold the pointed stick upright and notice the shadow the Sun casts.
From your answer to Question 2, how do you expect the shadow to
change during the course of this experiment?

4. Place the cardboard behind the stick so that the shadow falls on the
cardboard and there is room on the cardboard for the expected move-
ment of the shadow. Hold the cardboard in place with weights or
books, so that it does not move during this experiment. Also mark the
exact position of the end of the stick at the edge of the cardboard.

5. It is important that the stick is always in the same location and per-
pendicular to the ground. To help ensure that the stick is perpendi-
cular, tape a penny to the string and tape the other end of the string
near the upper end of the pointed stick. The penny and string should
now lie flat against the stick as long as it remains perpendicular. Now
you are ready to begin.

6. Beginning exactly 30 min before the predicted solar noon, set up the
stick and mark the approximate point of the end of the shadow. (The
end of the shadow is actually a bit fuzzy, because the Sun is a bright
ball, not a point source of light, so the several shadows cast by dif-
ferent parts of the Sun overlap to form the shadow on the cardboard.)
Use the meter stick to draw on the cardboard a line connecting the
end of the shadow with the position of the low end of the stick. Record
the time on the line, and in your notebook. Record also the length of
the line.

7. Repeat this procedure exactly every 5 min for 1 hr. (If the motion of
the shadow takes it off the cardboard, reposition the cardboard and
start again.)

8. From the type of observations you have made so far, how would you
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know approximately when solar noon occurred? Write down the ap-
proximate time.

9. Why is this only the approximate time of solar noon?
10. How would you determine from your data the direction of due north

and due south? Indicate the cardinal points on your cardboard.
11. Your instructor may review with you the definition of the tangent of

an angle in trigonometry. How could you use this definition to de-
termine the altitude of the Sun (angle with respect to the horizon) at
solar noon?

12. Find the altitude of the Sun at solar noon.
13. How did the actual motion of the shadow compare with your expec-

tations?
14. Is there any way to determine from your observations of the Sun’s

moving shadow whether it is really the sun or the Earth that is mov-
ing? Which is the more plausible from your observations?

15. How do your observations fit with the heliocentric theory, in which
the Earth is moving and the Sun is stationary?

D. Phases of the Moon

1. The phases of the Moon, as seen from the Earth, occur because of the
different positions of the Moon in relation to the Sun and Earth dur-
ing the course of its monthly orbit around the Earth. Use the plane-
tarium to observe how the Moon’s phases change as seen from the Earth
during the course of one orbit of the Moon around the Earth.

2. Sketch the relative positions of the Earth, Moon, and Sun at full moon,
half moon, and new moon.

3. What would the positions of the three objects be for the appearance
of the Moon in which one-quarter, and three-quarters, of the Moon’s
face is visible? Is there more than one position for each?

Now you try it
1. During the course of 1 month, either in the evening or in the morn-

ing, observe the Moon and sketch its phases; record the correspond-
ing date and time. Note or guess the approximate location of the Sun
at each observation.

2. From the position of the Sun and the brightened portion of the Moon,
sketch the positions of the Sun, Moon, and Earth for each observation.

3. How does the position of the Moon in the sky in relation to the Sun
change from day to day?

4. Assume that the Sun is stationary. Is there any way to determine from
your observations whether it is really the Moon or the Earth that is
moving? Which is the more plausible from your observations?
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5. Ancient observers (and some people to this day!) believed the phases
of the Moon are caused by the interposition of the Earth in the path
of light beams from the Sun to the Moon. Give some arguments against
this view.

6. Why are there only occasional eclipses of the Sun at new moon, and
occasional eclipses of the Moon at full moon? Answer this in terms of
(a) the geocentric system, and
(b) the heliocentric system.

7. Draw the relative positions of the Sun, Moon, and Earth at the oc-
currence of solar and lunar eclipses. Include rays of sunlight repre-
senting the limits of the shadows in each case.

E. The Motion of an Outer Planet

You saw in Section 2.4 that, seen from the Earth, the planets appear to
“wander,” that is, they appear to fall behind the stars each day, as do the
Sun and Moon. This is called their eastward drift. But every once in a while,
they also tend to move forward (to the west) faster than the stars. This is
called their retrograde motion. The result is a looping or S-shaped motion
as seen against the background of the stars. (See the text Section 2.4).

You also saw how Ptolemy explained this motion in the geocentric view
by placing the planet on a circle that rode on another circle. (See figure 2.7
in the text.) Copernicus presented a quite different explanation in the helio-
centric model, one that is also more plausible (and the one we accept today.)

Below is a top-view diagram of the Earth, Mars, and the Sun in the he-
liocentric model (not to scale). The diagram shows several locations of the
Earth and the planet Mars at intervals of 1 month apart. The background
of stars is also represented.

1. Which path represents the orbit of the Earth, and which represents the
orbit of Mars? In which direction is each planet traveling? Explain your
reasoning.

2. Copy the diagram onto a separate sheet of paper. Number the posi-
tions at each month from 1 to 7 for the Earth and Mars.

Stars

S

3. EXPLORING THE HEAVENS (CHAPTER 2) 107

3669_CassidySG_04  5/23/02  10:23 AM  Page 107



3. For each month shown on the diagram, draw a straight line from the
Earth to the corresponding position of Mars, continuing the line to the
background of stars. Each line represents the line of sight for an as-
tronomer on the Earth who is observing Mars against the background
of the stars. Number the ends of the lines from 1 to 7.

4. From the lines of sight you have drawn, determine how Mars appears
to change location with respect to the background stars. Explain your
reasoning.

5. During which of the months shown, if any, does Mars appear to move
eastward with respect to the background of stars (eastward drift)? Ex-
plain how you can tell from your diagram.

6. During which of the months shown, if any, does Mars appear to move
westward with respect to the background of stars (retrograde motion)?
Explain your reasoning.

7. Do any of these answers change if the experiment is done on the Earth’s
southern hemisphere?

Evaluating your results
1. What was the purpose of this laboratory exploration?
2. Summarize the overall steps as well as the procedure in your own in-

vestigation in relation to the purpose of this exploration.
3. What conclusions did you make? What is the supporting evidence for

them? What are the sources of error?
4. What difficulties did you encounter? How did you overcome them?

How could this exploration be improved?
5. Connections: How does this laboratory relate to the material in the

textbook and to your own daily experiences?

4. SKYGLOBE: A COMPUTER PLANETARIUM
(CHAPTER 2)

Skyglobe is a computer planetarium that simulates many of the astronomi-
cal observations discussed in the text. It is by no means a substitute for ac-
tual observations, which physically connect you to the real universe which
is our home. But the program does allow you to obtain a sense of what you
would see if you were observing the actual events. Study each observation
for a while and try to imagine yourself being outside and looking up at the
sky on a beautiful clear evening.

Because of the complexity of the calculations involved in displaying the
observations, Skyglobe is a DOS-based program (written in Assembly lan-
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guage). So when you start it up, the computer switches to the DOS oper-
ating system. It will switch back when you exit.

STARTING AND SETTING UP THE PROGRAM

After you have started the computer and it has completed booting to 
Windows, click the Start button, then click Run. Type the location of the
program, then click OK or press Enter.

The program starts in a full-screen DOS window. Press the space bar to
make the logo disappear.

Except where requested, do not use the mouse, as it changes the angle
of observation too quickly.

You can exit the program at any time by pressing Esc twice.
The upper left corner indicates some of the settings. We will change

most of them.

Set up the program by pressing the following
NumLock Turn it off (so the green light goes off ).
F1 Remove the help list of key commands. (You can 

access it anytime by pressing F1 again.)
	 (at right of Press several times to increase number of stars to 

keyboard) maximum.
L To obtain a list of locations from which to observe.

Go to a city closest to your location using the arrow 
keys or the mouse and click or hit Enter.

F6 Remove the Sun’s ecliptic path, the dotted red line. 
(We’ll leave the planets and their names.)

N This will place you facing due north.

The circular green line is your horizon line. You cannot see anything be-
low the horizon line (even though the program shows some stars).

Up and down arrows These raise and lower your view of the sky.
Place N at the bottom of the screen.

The red lines are drawn to indicate the various constellations.

C To remove or replace most of the constellations. Note the 
locations of the Big Dipper and Little Dipper.

F10 Removes all constellations and returns them. Leave them 
turned off for now.

F9 Remove names of constellations.
F8 Remove star names.
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The grid lines are some of the latitude and longitude lines of the celestial
sphere.

F7 Remove the grid lines on the celestial sphere for now.
F4 Remove the deep-space objects, which we can’t see 

anyway without a telescope.
K Turns the Milky Way on and off. Be sure it is on.
M, D, H, T Sets date and time forward. Shift-M, D, T, or H  

moves each one backward. Be sure it’s set to the
current date and time.

The little green 	 sign is the Zenith (90° altitude), and the green line is
the horizon (0°).

You are now ready to begin.

OBSERVING THE CELESTIAL SPHERE

The settings you just entered enable you to see the celestial sphere as it
would look right now at your location, facing due north, if the Sun were
not visible and no buildings were in the way.

1. Look in the other directions on your horizon plane by pressing S, 
E, W. You can also slowly “turn” in different directions by pressing
the left and right arrow keys, � and �. Try both of these.

2. If it is still daylight outside, observe the position of the Sun in the
southern sky. Place the mouse over the Sun, and its altitude and az-
imuth will be given in the lower left corner. Record the result. (The
azimuth runs from 0 at north to 180, due south, to 359.)
Altitude:
Azimuth:

3. Are the Moon and any planets above the horizon at this time? Which
ones?

4. Return to looking due north, by hitting N. Place N on the bottom of
the screen, if it is not there already, by using the arrow keys. Press C
several times until just the Big and Little Dippers and a few other
constellations appear.

You can now set the celestial sphere in motion by pressing A. To
stop it, press A again. However, the motion will probably be too 
fast to be meaningful. Slow it down to “slow motion” by pressing 
shift �. You can speed it back up, if necessary, by pressing shift �.

Observe for a while what happens to the stars and constellations as
time advances. While the sphere is rotating, turn the grid lines on and
off by pressing F7.
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In what general direction are the stars moving?
What do you observe about the motion of the sphere?
Do all of the visible stars and constellations rise and set each day?

5. Stop the motion by pressing A. Place the mouse over the central star
and look in the lower left corner of the screen.

What star is this?
What is its altitude?
How does its altitude compare with the latitude of the location

nearest you?
How could you use the Big and Little Dippers to find this star?
Try to find this star tonight, if it is a clear night and if your view

is not blocked.
6. Set the celestial sphere in slow motion again (A). Now look to the E,

S, W. Turn the grid lines on and off (F7). What is the apparent mo-
tion of the stars as observed in each of these directions? (Stop the 
motion when you finish.)

7. Now let’s look at the celestial sphere after traveling to two other im-
portant locations.

Press L to obtain the location list. Select “More Locations,” the
North Pole at bottom right.

Be sure the Little and Big Dippers and a few other constellations
are on by pressing C.

Where is the “central star” from Question 5 in relation to the
zenith?

Set the sphere in slow motion once again, turning the grid lines on
and off. Look in all four cardinal directions and use the left or right
arrow key to turn completely around in a circle.

Is there any difference in your observations in any direction?
How could you describe the overall motion of the celestial sphere

as seen from the North Pole?
8. Press L and go to an observation point on the Equator. Where is the

“central star” this time?
Set the sphere in motion. Look at each of the four cardinal direc-

tions. Notice that the central grid line (celestial equator) is directly
on the E and W points. Describe the apparent motions of the stars
at each of the cardinal points.

How could you describe the overall motion of the celestial sphere
as seen from the equator?

9. Finally, return to the location nearest you (press L). Perform the same
observations as in Questions 7 and 8. How could you now describe
the overall motion of the celestial sphere as seen from this location?

10. How could these observations be used to argue that we are observ-
ing the celestial sphere from a position on a sphere?
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OBSERVING THE APPARENT MOTION OF THE SUN

Set the date to today’s date and the time to 12:00 noon, if Standard Time,
or to 1:00 p.m., if DST. Use the M, D, H, and T keys to do this. If you
overshoot a setting, use the shift key with M, D, H, or T to go backward.

Look to the south (press S) and turn on the grid lines (F7). Be sure the
ecliptic path (red line) is still off (F6). Turn off all constellations (F10).

1. Is the Sun due south in the sky at noon today? If not, why not?
2. Is the Sun directly overhead (at the zenith) at noon today?
3. Use the mouse to place the cursor on the Sun. What are the altitude

and azimuth of the sun at noon today?
Altitude:
Azimuth:

4. Notice where the Sun is in relation to a few nearby stars. You can move
the celestial sphere ahead exactly 24 hr by pressing the D key. Press
the D key several times, pausing briefly each time to observe the po-
sition of the Sun in relation to the nearby stars. Try this again a few
more times. (Ignore the planets for now.)

Carefully describe what you observe about the position of the Sun
in relation to the fixed stars.

5. Turn on the ecliptic path (red line) by pressing F6. Hold down the D
key and observe the motion of the Sun. (Again ignore the planets and
the Moon, which flies across the screen every month.) Remember that
each jump forward of the sphere represents the motion of an entire day.

Is the Sun staying up with the stars, or is it falling behind? What is
this motion called?

6. Observe the motion of the Sun for an entire year against the back-
ground of the celestial sphere. Notice how the altitude of the Sun
changes as it moves eastward along the ecliptic path. (There are two
jumps by an hour each year as the time shifts into and out of DST, in-
dicated by D in front of the time.)

7. Return to today’s date and time and continue to look south. Find the
date and altitude of the Sun at solar noon on the two solstices during
the next year.
Summer Soltice:
Winter Solstice:
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8. At your location is the Sun ever directly overhead at any time during
the year? (Remember that the green + mark is the zenith point.) What
is the highest it ever gets in the sky?

9. Return to today’s date and time.
(a) What is the location of the Sun right now? (Change your view

with the arrow keys, if necessary.)
(b) What time will (or did) the Sun set today?
If feasible, go outside right now and approximately confirm (a). If fea-
sible, confirm prediction (b) either by direct observation or, if neces-
sary, in a newspaper.

OBSERVING THE APPARENT MOTION OF THE MOON

Find the location of the Moon by pressing F, then select Moon. Use the
arrow keys to place the moon in a comfortable viewing position for when
the sphere begins to turn.

Notice where the Moon is in relation to a grid line. Then press A and move
forward in time exactly 24 hr. You can use shift � to speed up the motion.

1. What two motions does the Moon exhibit relative to the stars?
2. Leave the Sun’s ecliptic path on (F6). Carefully notice the location of

the Moon in relation to a longitude line. Press D, pausing briefly to
count each time, as you advance a day at a time. Carefully keeping your
eye on the grid line as the Moon disappears.

How many days does it take for the Moon to be completely “lapped”
by the stars? This is known as a lunar month.

3. The Moon moves near the sun’s ecliptic. Why don’t we observe lunar
or solar eclipses every month.

4. Finally, set the date to today and the time to sometime this evening
when you will have a chance to observe the Moon (if it’s not cloudy
and if the Moon is not in new phase).

What will be the location of the Moon at that time?
Confirm your prediction this evening.

OBSERVING THE PLANETS

1. Return to today’s date and set the time for around noon. Find the Sun.
Turn the grid lines off and turn off all constellations (F10), but leave
the ecliptic path on (F6).

2. Note the location of the planet Mercury. Advance by days at a time by
holding down the D key and carefully observe the apparent motion of
Mercury. (Again ignore the Moon’s rapid motion across the screen.)
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3. Using the A and D keys, carefully attempt to observe all three motions
of Mercury: the daily westward motion, eastward drift, and retrograde
motion.

4. Sketch the path of motion that you observe for Mercury over the course
of time. Include the Sun and the ecliptic in your sketch.

5. Try to observe the retrograde motion of another planet.

Now you try it
Go to a date of your choosing (such as your birth date) at your location
and record when the Sun rises and sets, the time and altitude of the Sun
at solar noon, and the Moon and any planets that are visible in the sky at
sunset.

5. EXPLORING FORCES (SECTION 3.4)

In this investigation, as is often done in scientific research, you will first
confirm previously obtained results (here, those discussed in Section 3.4 of
the textbook). Then you will go on to explore new territory, using the re-
sults you obtained from the first part of this investigation.

Question: An unbalanced force causes an acceleration. How are force and
acceleration related to each other? To investigate this, you will apply dif-
ferent forces to a given mass, then the same force to different masses, ob-
serving the accelerations that result. Let’s start with an unbalanced force
on one object.

A. Acceleration With a Constant Force Acting
On a Constant Mass (1.0 kg)

We do not want any part of the force that we apply to the cart to be bal-
anced out by friction, nor do we want gravity to add to the force. So, be-
fore starting, we’ll arrange the set-up so that gravity on the cart balances
the force of friction on the cart.

1. How would you arrange the apparatus so that the effects of gravity and
of friction balance?

2. How should the cart move when the effects of gravity and of friction
just balance?

3. Use the available masses to obtain a total mass for the cart, with its
load, of just 1.0 kg.

4. On the basis of your above answers, carefully arrange the cart and track
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so that the balance of the forces described above is achieved as closely
as possible. Note that, if you are using a tape to record the time in-
tervals, it should be included as a source of friction.

5. Now obtain by experiment the average acceleration of the cart (mass
of 1.0 kg) when you apply a constant force of, say, 1.0 N parallel to the
track by means of the spring scale. Remember that to obtain the aver-
age acceleration, you must start with the observed distance and the
time, and then obtain from your data the average velocity, the change
in average velocity, the average acceleration for each time interval, and
the overall average acceleration. Construct a table for your data and
obtain the overall average acceleration for this force.

6. From your results so far, what do you conclude about the validity of
Newton’s second law of motion regarding the relationship between a
constant force and the acceleration of a given mass?

B. Acceleration with Different Forces Acting
On the Same Mass (1.0 kg)

So far, you have investigated the effect of only one force on the accelera-
tion of the 1.0 kg cart.

1. If you applied larger and smaller forces to the cart, what do you 
predict will happen to the acceleration of the cart on the basis of 
Newton’s second law?

2. How would you test these predictions? (You may want to refer to 
Part A.)

3. Discuss the testing procedure with your group and with your instruc-
tor. Once you have decided upon a procedure, proceed with the test.

4. Construct appropriate tables to display your data. Construct a sum-
mary table, showing the different forces applied and the resulting av-
erage accelerations for the 1.0 kg mass. You might use a spreadsheet
program to present your data, if this is available and your instructor
recommends it.

5. Examine your data and compare your results with your predictions in
Questions 1 and 2 above. Discuss the reasons for any disagreement
with what you expected to find. What are the sources of error?

Finding a pattern
1. You now have the results for the average accelerations on the 1.0-kg

mass caused by different forces. Is there a pattern in the relationship
between force and acceleration for a single mass?
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2. To see any pattern more clearly, create a graph with force on the y-axis
and average acceleration on the x-axis. Take care in constructing the
scales and labeling the axes. If the data points appear to fall on a straight
line, use a ruler to draw a straight line through the data points.

3. What does this pattern tell you about the relationship between the two
variables, force and acceleration?

4. Now obtain the slope of the line and be careful to include the units of
the slope.

5. Express the relationship between the force and the acceleration as an
equation, and including the actual mass of the cart in this equation.

6. How does your result compare with Newton’s second law of motion?
Discuss whether it confirms the law or conflicts with it, and why.

C. Acceleration with Different Masses 
and the Same Force

So far you have found the relationship between forces and accelerations for
one mass.

In this investigation you will test the relationship to see if it holds for
other masses, as it should if it is a law of nature. This procedure is com-
mon in actual research: first testing a result to see if it holds in one case,
then testing to see if it holds in other cases under various conditions.

You will test only two other masses. (You may perform other tests if you
wish.)

1. Chose other total masses for the cart that are simple multiples of each
other and of the 1-kg mass used in Part A; for example, 2.0 kg, 0.5 kg.

2. As before, arrange the apparatus so that the effects of friction are bal-
anced out by the effects of gravity.

3. Using the same amount of force as in Part B (1.0 N) on each total mass
of the cart, obtain the overall average acceleration of the cart from the
distance and time data.

4. Create a summary table of the different masses, including the mass in
Part B, and the corresponding overall average accelerations. Can you
discern a pattern in the relationship between mass and acceleration?

5. In order to obtain a clearer picture of the relationship, graph your re-
sults. From the type of line formed by this graph, what do you con-
clude about the relationship between mass and acceleration?

6. How does your conclusion compare with what you might expect from
Newton’s second law?

7. Theoretically, what should be the value of the slope of the line? Ob-
tain the slope of the line. Does it equal this expected quantity?
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D. Conclusions

1. Write your conclusions regarding:
(a) the relationship between force and acceleration, from Part B;
(b) the relationship between mass and acceleration, from Part C;
(c) the overall relationship between force, mass, and acceleration.

2. Does this experiment so far confirm or deny Newton’s second law of
motion? Explain.

E. Exploring the Unknown

Once scientists are confident of a general result, they can rely on it as a
tool for exploring the unknown. Newton’s second law of motion has been
tested and confirmed so many times in many different situations that it now
accepted as a law of nature (at speeds much less than the speed of light).

1. Your instructor will give you an unknown mass to place on the cart.
Using your results above, design an experiment to obtain the value of
the mass (without using a scale) and then carry it out.

2. Confirm your result by using a scale. What are your conclusions about
using Newton’s law?

3. Once you know the mass, you can predict the acceleration it will have
when a known force is applied to it.

4. Design an experiment to do just that and carry it out. (Again, use a
spreadsheet if available and recommended by your instructor.)

5. What do you conclude from this result?

F. A Practical Application

Place a volunteer from the class on a smoothly running cart or on roller
blades or on a scooter. On a stretch of sidewalk or other open area, mea-
sure out a distance of 10 m.

1. When your volunteer is on wheels and some distance from the mea-
sured 10 m, push him or her from rest until you reach the 10-m 
measured stretch, then release the volunteer to cover the 10-m stretch
at constant speed. Using two stop watches, record:
(a) the time during which the acceleration occurred;
(b) the time it takes your volunteer to cover the 10-m stretch;
(c) the time it takes your volunteer to stop after completing the 

10-m stretch.
Record also the total mass of your volunteer and the device on which
they are riding.
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2. From these data obtain:
(a) the acceleration of the volunteer;
(b) the force required to produce this acceleration;
(c) the amount of force required to stop the volunteer. What provides

this force?
3. Why is the mass in Newton’s second law sometimes called “inertial mass”?
4. Describe with the aid of a sketch the action and reaction forces in the

process of accelerating your volunteer.

6. EXPLORING FORCE, WORK, ENERGY, 
AND POWER (CHAPTERS 3, 5, SECTION 6.3)

How are all of the basic physical concepts of force, work, energy, and power
related to each other? The textbook states that work done by a force on an
object is defined as the force exerted times the distance the object moves
under the action of the force. The textbook also referred to two types of
mechanical energy: potential energy and kinetic energy.

Write down in your own words the definitions of these other concepts
below. Refer to the textbook as needed, but put these in your own words.
If it is still not clear to you what these concepts actually mean, ask for help.

Force:
Work:
Kinetic energy:
Potential energy:
Power:
Law of conservation of energy:

A. The Force of a Spring

In this exploration you will investigate how the above concepts apply to a
simple mechanical device—a spring. Just as scientists do in investigating a
new phenomenon, you will make observations, develop and test hypothe-
ses, change your hypotheses as needed, draw conclusions, and apply your
conclusions to new situations.

Since the concept of force is essential to the concept of work, we first
need to obtain an expression for the amount of force that a spring exerts
when it is pulled off equilibrium (or squeezed together).

1. Pull on the two different springs to obtain a sense of how the force
changes as the spring is stretched more and more. Try this several times.
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(Do not pull the spring so much that it is bent and does not go back
to its original position.) What do you conclude about the force as you
increase the elongation of the spring?

2. Your answer to the above question can be regarded as a rough hy-
pothesis about the force exerted by a stretched spring. Now you will
test this hypothesis and obtain an exact relationship between the force
and the elongation of the spring.

3. It is difficult to measure the force exerted by your hand. Instead you
will use several masses, each of which, by its weight, owing to the grav-
itational pull of the Earth, will exert a precise, measurable force on the
spring. The weight of an object on the Earth’s surface is equal to the
mass m of the object times the acceleration of gravity, g. Or

W � m � g.

In this equation g has a constant value at a given location. In general,
it is taken to be g � 980 cm/s2.

4. If the mass is not given on each of the available masses, measure the
masses in grams using a scale.

5. Place the shorter spring on a cross bar and hook the 50-g hanger to
the end of the spring. In order to give the spring a stretch before start-
ing the investigation, place the 500-g mass on the hanger. This will be
the starting position. We will define this as the position when there is
zero added mass on the spring, even though we know that there are al-
ready 550 g attached to the spring.

Measure the length of the spring from its top to the end of the spring
(not to the end of the hanger).

6. Now place increasing amounts of added mass on the hanger from 
100 g to 500 g in 100-g intervals. In each case the elongation of the
spring increases. Measure the length of the spring, again from the top
of the spring to the end of the spring.

7. Create a table with four columns in which to present your data, giv-
ing the units in each case:
• In the first column, list the mass added to the hanger and 500-g

mass, starting with zero mass.
• Leave the second column blank for now.
• In the third column give the total length of the spring corre-

sponding to each mass. Call it l.
• In the fourth column give the increase in length l with each mass,

call it x. For zero added mass, x � 0.
8. The second column of your data table will list the weight of each

mass. Call it the force F. Using the definition of the weight, find the
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weight for each mass and present the results in the table, including
the units.

In this experiment we are measuring mass in grams, distance in cen-
timeters, and time in seconds. Using these measures, in the metric sys-
tem the unit of weight (and any other force) is

1 g cm/s2 which has a special name; it is called a “dyne.”

Revising your hypothesis
Carefully examine the results in your table and compare with your earlier
tentative hypothesis (Question 1). What do you conclude from your table
about the stretch of the spring as the force increases?

Examining the data
1. Your table gives the increase in the length of the spring for added weight

(force) applied to it. In order to see more clearly how the two variables
of force and length increase (x) are related, we can use graphical rep-
resentation of the data, in other words, a graph.

2. Using a sheet of graph paper, place the added force (weight), F, on the
vertical axis and the increase in length, x, on the horizontal axis. Then
plot your data. Use a ruler to connect your data points.

3. Examine the result of your graph. How would you now revise your ear-
lier hypothesis about the relationship between the F on a spring and
the increased length, x?

Obtaining a precise equation
1. If your graph turned out to be close to a straight line, you can obtain

an exact equation relating the two variables by obtaining the slope of
the line. Call the slope of the line k. Here k � �F/�x. Obtain the value
of k, including its units, and write an equation relating the force, F,
and the increase in the length of the spring, x. Show all your work.

2. If the length of the spring with zero added force (neglecting the ini-
tial weight added) is defined as zero length, then all increases are mea-
sured from zero length. So �l, which we have called x, is simply l.
Rewrite the above equation for the situation when l is measured from
the position l � 0. This equation was first obtained by Newton’s col-
league Robert Hooke in the 1600s. It is known as Hooke’s law.

Using Hooke’s law
1. How could Hooke’s law be used to measure the unknown weight of an

object?
2. Find the unknown mass of the object.
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B. Work and Energy (Chapter 5)

Attach the spring to the crossbar and attach the hanger and the 700 g of
mass to the spring. Observe that the spring extends and comes to rest.

1. The weight of the mass that you attached to the spring does work on
the spring, while stretching it. What happened to the energy that was
created by this amount of work? Did it disappear?

2. We want to find a value for the work performed by each added mass
as it stretches the spring. Unfortunately, to obtain the amount of work
done, we cannot simply multiply the amount of stretch, x, times the
force, F, because the force is constantly increasing as the spring
stretches. Instead, the amount of work can be represented by the area
in the triangle under the graphed line:

Work is numerally equal to the area � 1⁄2 (base)(height)
� 1⁄2x (k x) � 1⁄2k(x)2.

3. Using this equation and your data from Part A, obtain the amount of
additional energy stored in the spring for each mass that you added
(beyond the initial mass). Present your results in a table and include
the units. The table should have four columns: the mass applied to 
the spring, the force, the increase in length (x), and the work done,
W � 1⁄2k(x)2.

4. When a weight is at rest on the spring, we say it is in equilibrium.
What does Newton’s first law of motion say about the forces on a weight
at equilibrium?

Observing energy transformations
1. With an added mass of 200 g on the hanger (in addition to the initial

mass), gently pull the spring slightly off equilibrium and let it go. What
do you observe?

2. Using either energy or work concepts, what is happening during the
motion of the spring right after you release it as it moves back to the
point of equilibrium?

x Stretch

F

0
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3. What is happening in terms of either energy or work during the part
of the motion from equilibrium to the top of the oscillation?

4. Starting from your initial pull off equilibrium, carefully trace all of the
energy transformations that are occurring and where they occur. As-
sume that the mechanical energy is conserved.

5. Where does each of the following have its largest and smallest values?
(a) the elastic potential energy of the spring;
(b) the kinetic energy of the mass;
(c) the gravitational potential energy of the mass.

Obtaining quantitative results
1. With the 200-g additional mass still on the spring, pull the spring off

equilibrium by exactly 3.0 cm and let it go. See if you can find a way
to give a quantitative value to the maximum amount of the following.
(These numbers will be very large, because the units used, ergs, are
very small.)
(a) the elastic potential energy of the spring;
(b) the gravitational potential energy of the spring.

2. What is the speed of the mass as it passes through equilibrium?

C. Now You Try It (Section 6.3)

Power is defined as the rate of doing work. Two examples might be a person
walking up a flight of stairs and another person running up the same flight
of stairs. In both cases they perform the same amount of work, but they ap-
ply different amounts of power. In order to see this, examine the difference.

1. Find a staircase in your building. After measuring the height of one
step, obtain the height from one floor to the next.

2. Let one student casually walk up the stairs. Then let the same or an-
other student run up the same flight of stairs. Time each student with
a stopwatch.

3. You will need to convert the weight of the student(s) to newtons.
4. From these data, obtain the work performed and the power output of

each student for their ascent. Show your calculations.
5. Compare each with the power output of a 100-W light bulb.

D. Devise Your Own Experiment

Devise an experiment to measure the power output of a person riding a bi-
cycle. Describe exactly what you would do, and how you would obtain your
results.

Try the experiment if time and equipment permit.
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7. FINDING THE MECHANICAL EQUIVALENT 
OF HEAT (SECTION 6.1)

INTRODUCTION
Scientific research may involve a variety of aims. Some research is directed
at finding whether known laws of nature hold under extreme conditions;
other research may seek to test a new theory or prediction, or to under-
stand a puzzling or new phenomenon; and some research is undertaken to
obtain a precise measurement of a given quantity or variable. This inves-
tigation is similar to the last of these. It involves a measurement of the
quantity known as the mechanical equivalent of heat—one of the funda-
mental constants of nature.

Before starting: review the section on scientific notation in “Reviewing
Units, Mathematics, and Scientific Notation.”

Mechanical work and heat are different manifestations of one overall
concept—energy. Although each is a manifestation of energy, they are mea-
sured in different units. In the study of mechanical work, we speak of foot-
pounds, ergs, or joules. In the study of heat, we speak of calories, kilo-
calories (equal to 1000 calories), or Btus (British thermal units). Briefly
defined, 1 cal is the amount of heat required to raise the temperature of 
1 g of liquid water 1°C.

Since heat and work are both manifestations of energy, we should be able
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to convert from one system of units to the other. That is, there should be
a conversion factor that tells us how much heat energy is equivalent to a
certain amount of work, and vice versa. Unfortunately, there is no theo-
retical procedure that gives us this factor. We have to resort to experiment.
By directly measuring the amount of heat produced by a given amount of
work, we can find a numerical factor with which we can multiply calories
of heat to obtain the equivalent number of ergs or joules of work. This fac-
tor has been named “the mechanical equivalent of heat.” In this experiment
we will make a direct measurement of this factor.

The mechanical equivalent of heat was first measured by Joule in 
England in 1840, and many times thereafter. The method by which he
achieved his most accurate result was one in which a mass of water was
churned by a set of paddle wheels set in rotation by a series of falling
weights. The heat developed in the water came as a result of the work done
on the water by the paddle wheels, kept churning by their connection to
the weights as they fell.

The mechanical equivalent of heat ( J) is today usually defined in joules
per calorie and the accepted value is J � 4.19 joules/calorie—which is very
close to Joules’ original result. However, this mixes units of the mks ( joules)
and the cgs (calories) systems of metric units. The measurements in our
experiment will be done using centimeters and grams, so we will want J in
cgs units. Since calories are already in cgs units, we only need to transform
joules into ergs to obtain J in the proper units. Since 1 J � 107 ergs, what
is the value of J in cgs units?

J � ___________________________ erg/cal.

The mechanical equivalent of heat may be defined in symbols by the 
relationship

W � JQ,

where W is the amount of mechanical work in ergs, Q is the equivalent
number of calories of heat, and J is the conversion factor, the mechanical
equivalent of heat.

Or, one may write

J � .

The above indicates that J can also be thought of as the number of ergs of
work necessary to produce the same effect on a system as that produced by
the absorption of 1 cal of heat.

W
�
Q
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INVESTIGATION

Materials
Bits of copper and tin, PVC tubes of 1-m length with corks or stoppers to
insert in each end, thermometer, meter stick, beakers, plastic cup.

Procedure
In this experiment, the mechanical equivalent of heat is to be obtained by
measuring the heat produced by the expenditure of a definite amount of
work. Quantities of first lead shot and then copper bits are allowed to fall
many times from end to end in a cardboard tube. Knowing the mass of
each metal and the length of fall, one can calculate the mechanical work
done on each metal by gravity. By measuring the temperature change of
each metal resulting from this work, the heat energy gained can be deter-
mined from the known specific heat of the metal.

The specific heat has the symbol C, which is not to be confused with the
kilocalorie of the Celsius unit. The specific heat of any substance is defined
as the amount of heat in calories required to raise the temperature of 1 g
of the substance by 1°C. Thus, the amount of heat Q absorbed by each
metal with a temperature change of �T is

Q � mC�T,

where m is the mass of the metal, C is the specific heat (given in the table
below), and �T is the increase in temperature.

To compensate for heat gained from and lost to the room, the shot will
first be cooled below room temperature.

Part I
Since there are many pieces of metal falling down a narrow tube, they can-
not all fall the entire length of the tube. To determine the average distance
that a piece falls with the corks inserted in each end, perform the follow-
ing measurements, recording them in the data table on the following page.

1. Place one of the corks tightly into the end of the tube and, inserting
the meter stick, measure the length to the opposite end. Call this l1.

2. Remove the meter stick and, holding the cork in place, carefully pour
the tin bits into the tube. Holding the tube vertically, measure the dis-
tance again to the open end of the tube. Call this l2.

3. Half the difference between the two distances in Steps 1 and 2 is the
position of the average piece of lead from the bottom of the tube. Let
(l1 � l2)/2 � h.

4. Place the other cork securely into the other end. Measure the amount
of cork (c) that enters the tube. Subtract this amount from l1.
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5. When flipping the tube, the average piece of metal will fall from a
position h above the bottom of the tube to a position h above the cork
at the other end of the tube. The average distance that it falls is thus
the net distance in Step 4, less 2h. Call this distance d.

TIN COPPER

1. Finding average distance of fall, d.

(a) l1

(b) l2

(c) (l1 � l2)/2 � h

(d) d � l1 � c � 2h

(Write your result for (d ) in row 1 of the table on the next page.)

Part II
You will now measure the mass and temperature of the tin pieces.

6. Determine the mass of the tin by weighing it in the beaker. Since the
scale reads only to 300 g, you must weigh the tin in two or more
batches. Then subtract the number of weighings times the mass of
the beaker. Record your data in the data table.

7. Before beginning, cool the tin in the ice bath, being careful to keep
the tin dry. Pour the tin from the beaker into the plastic cup. Insert
the thermometer probe into the tin pieces in the plastic cup, cover-
ing it as much as possible with the tin. When the tin has reached a
temperature around 4° below room temperature, record the temper-
ature in the table. You are now ready to begin.

8. Remove the thermometer and pour the tin into the long tube, hold-
ing the cap tightly on the tube at the opposite end. Be careful not to
lose any of the bits. Place the other cap tightly on the tube.

9. Holding the caps tightly in place to prevent any bits from escaping,
sharply flip the tube over to a vertical position 100 times, keeping
careful count. Try not to allow the tin to slide down the tube. Per-
form each inversion quickly in such a manner that all the pieces fall
vertically from one end to the other. Do not raise or lower the tube
during the inversions.

10. Carefully but quickly pour the tin back into the beaker. Measure and
record the final equilibrium temperature.

11. Using your measurements, calculate the work done on the lead shot
(Step 10 in the table); the heat Q produced by this work (Step 11 in
the table); and the mechanical equivalent of heat (Step 12 in the table).
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Part III
Repeat the above procedure using the copper bits.

Data and Analysis

TIN COPPER

1. Average distance of fall, d.
2. Mass of metal and beaker

(a) First batch g
(b) Second batch g
(c) Third batch g
(d) Total g

3. Mass of beaker g
4. Mass of metal g
5. Initial temperature of metal °C
6. Number of times the metal falls N
7. Final temperature of the metal °C
8. Specific heat of metal (cal/g°C) 0.054 0.092
9. Acceleration of gravity (g) 980 980 cm/s2

10. Work done on the metal
W � Nmgd erg

11. Heat produced by this work
Q � mC�T cal

12. Mechanical equivalent of heat

J � erg/cal

13. Mechanical equivalent of heat, average of your results for two metals in the above table:
________________erg/cal.

14. Mechanical equivalent of heat, accepted value:
________________erg/cal.

W
�
Q
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THOUGHT QUESTIONS
1. How do the measured and accepted values for J compare? Express this

as a relative error (percentage difference).
2. List some of the sources of experimental error in this experiment.
3. Why did we use a PVC tube and not an aluminum tube?
4. An unknown metal has a specific heat only half that for tin. If you per-

formed this experiment on the metal, would you expect the tempera-
ture increase to be less than, equal to, or greater than that for lead?
Explain.

5. Joule’s biographer reports that Joule took a thermometer with him on
his honeymoon to the Swiss Alps in order to measure the tempera-
ture increase of water landing at the base of a high water fall. Niagara
Falls is 59-m high (5900 cm). If Joule were to honeymoon at Niagara
Falls, what temperature increase of the water would he find? What as-
sumptions should be made in this measurement? Use the accepted
value of J.

(Hint: Note that mgd � JQ � JmC�T, and C for water is 1 cal/(g°C).
Thus, �T � gd/JC. Note that you do not need to know the mass of
the water!)

8. EXPLORING HEAT TRANSFER AND THE LATENT HEAT 
OF FUSION (CHAPTER 7, SECTION 16.2)

INTRODUCTION
Most substances can appear in three states, or phases: solid (frozen), liq-
uid, and vapor (gas). The amount of heat energy—or, in the old caloric
theory, the amount of caloric fluid—that each atom possesses determines
the state of the substance: the least energy in the solid state, the most en-
ergy in the gaseous state.

Heat flowing from one substance to another often simply warms up the
substance that gains the heat, increasing its temperature. However, if suffi-
cient heat is absorbed, the substance can undergo a change of state, e.g., from
solid to liquid, or from liquid to vapor. In this case, the added heat does not
increase the temperature of the substance while the change of state takes
place. Instead it serves to break up the structure of the substance as it trans-
fers to the next state. For instance, a certain amount of heat energy is re-
quired simply to melt a substance in a frozen state, turning it into liquid at
the same temperature. Since this heat seems to “disappear” (i.e., the temper-
ature does not change during the phase transition), it is called “latent” heat.

There are three parts to this investigation.
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PART I. HEAT TRANSFER IN AIR

As everyone knows, hot water in contact with air will cool down. This is
said colloquially because heat gradually “flows” from the hot water to the
cooler air. The reverse occurs when cold water is exposed to air.

But does the heat “flow” as quickly in each direction?
Does the presence of frozen ice in cold water have any effect on the rate

of temperature change?

1. Before you start, how would you answer each of these questions?
2. Now let’s see what actually happens in each of these three cases. The

three cases are:
(a) plain hot water;
(b) a mixture of ice and cold water;
(c) plain cold water.

3. Use the insulated cups, hot water, and crushed ice to prepare each of
these situations. Why should you keep the lids on the cups until you
are ready to begin?

4. Since you are investigating the rate of heat transfer in these three sit-
uations, the time will be an important factor, as well as the tempera-
ture. Before starting, create a table in which to record the temperature
and the time for each cup.

5. Record the starting temperature in each cup, the room temperature,
and the time.

6. Now remove the tops from the cups, so that heat can flow from and to
the room.

7. Continue to measure the temperature of the water in each cup every
minute for 5 min, and record.

8. Put these cups in a safe place to the side (without tops). During the rest
of the experiment, continue to measure the temperature of each cup
about every 10 min until after you have finished Parts II and III of this
experiment. Be sure to record both the temperatures and the times of
observation in the data tables. (This will require some organization of
time and equipment by your group.)

Analysis
1. After you have completed all measurements. You can observe and com-

pare any trends more easily if, on a single sheet of graph paper, you plot
the temperature on the vertical axis and the elapsed time in minutes
on the horizontal axis (starting time is 0 min) for each of the three sets
of data. Draw a smooth curve through each set of points. Label your
axes and curves. Also indicate room temperature on your graph and
draw a horizontal line at that temperature.
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2. Examine your results. Describe any differences you see between the
three curves.

3. How do results compare with what you expected to find (Question 1)?
4. How would you account for the differences between these three curves,

using the kinetic–molecular theory and the idea of latent heat?

PART II. CONSERVATION OF HEAT IN MIXTURES

(Remember to continue recording every 10 min the temperature of the wa-
ter and the time of observation for the three cups in Part I.)

In this part of the experiment, you will test whether or not heat is con-
served (not lost) when it flows from a liquid at high temperature to another
liquid at a lower temperature.

In this case, the two samples of liquid are both water. They will be mixed
together until they reach a uniform temperature (this is when heat ceases
to flow). To determine if heat is conserved, we can compare the observed
final temperature with the value predicted on the assumption that heat is
conserved. Naturally, there is some systematic error, since some heat is lost
to the air and surroundings. So the predicted and observed values may not
exactly match. But if they are close, then we know that heat was conserved
within the limits of experimental uncertainty.

As discussed in the text, when heat flows into or out of any substance
without a change of phase, its temperature changes. The amount of heat,
Q, is proportional to the temperature change, �T � Tf � Ti. If �T is pos-
itive, heat flows into the body; if �T is negative, heat flows out. The amount
of heat is also proportional to the mass m, and there is a proportionality
constant C, which is different for each substance and is called the specific
heat. Thus

Q � mC�T.

Since we don’t yet know the starting temperatures of the liquids, we can’t
make any predictions at this time. We will have to start with observation,
then compare with our predicted result for this particular case.

1. Using a graduated cylinder and insulated cups with tops, prepare 
50 ml of hot water and 50 ml of cold water without ice. (Be careful not
to burn yourself in obtaining the hot water.)

2. Measure and record the temperature of the water in each cup.
3. Now pour one cup into the other, keeping the top on as much as 

possible.
4. Record the equilibrium temperature.
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5. Now repeat this procedure, but use different quantities of cold and hot
water, for example, 75 ml cold water and 25 ml hot water, and record
your measurements. Create a table in which to present your data in
both cases.

Analysis
1. Now let’s see if experimentally the heat gained by the cold water is equal

to the heat lost by the hot water. To do this, use the equation for the
heat gained or lost, Q � mC�T, to find the heat gained by the cold wa-
ter and the heat lost by the hot water.

Here m is the mass of each amount of water, C for water is just 
1 cal/(g°C), and �T � Tf � Ti. Negative values for �T and Q simply
indicate a loss of heat.

(It is fortunate that the metric units are defined in such a way that
for water 1 ml contains 1 g of water. The specific heat C for water is
defined by convention to be 1 cal/g°C.)

Trial 1
Qc � m1C�Tc � ,
Qh� m2C�Th � .

Trial 2
Qc � m1C�Tc � ,
Qh� m2C�Th � .

2. If heat is conserved in each mixture, how should you be able to deter-
mine this from the above calculations?

3. Taking into account uncontrolled losses and gains of heat, from your
results so far would you say that heat was conserved or not in each case?

4. If the two numbers in each case are not exactly equal, how much net
heat was lost or gained? Indicate whether heat is lost or gained.

Trial 1:
Trial 2:

Making a theoretical prediction
You can calculate theoretically what the value of the equilibrium tempera-
ture Te in Trial 1 should have been by assuming that heat is conserved and
that absolutely no heat is lost or gained from the surroundings.

If heat is conserved, then

heat gained � heat lost
m1C�Tc � �m2C�Tc,

(Te � T1) � (T2 � Te).
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C cancels out since only liquid water is used; no change of state occurs.
The masses also cancel out, since they are both the same (50 ml � 50 g).
This is now an equation for one unknown, Te, since all of the other factors
are known from the above table.

Substitute in your values for T1 and T2 from Trial 1 above and solve the
equation for the unknown Te.

Comparing the theoretical and experimental results
1. How does the observed final temperature compare with the predicted

value in Trial 1?
2. Taking experimental error into account, what does this say about the con-

servation of heat in mixtures?

Extra credit
Make the same prediction of the equilibrium temperature in the case of
Trial 2 above. Note that C cancels out again, but that the masses are now
different.

PART III. LATENT HEAT OF FUSION OF ICE

(Remember to continue recording every 10 min the temperature of the wa-
ter and the time of observation for the three cups in Part I.)

A. Observing Latent Heat

1. If you placed several ice cubes in a glass or metal container and started
heating the container, the ice would melt. That’s obvious, but what will
happen to the temperature of the mixture of ice and liquid water as the
ice melts?

2. Now try the above experiment. Record the temperature every few min-
utes, until several minutes after all of the ice is melted.

3. Compare your observations with your prediction in Question 1.
4. How would you explain what you observed?

Extra Credit
Make a graph of your results as a function of time.

B. Measuring Latent Heat

In this part of the experiment, you will actually measure the latent heat of
fusion of ice. We will make several assumptions about the melting process,
based on Parts I and II. The main assumption is the conservation of heat,
with only negligible loss of heat to the surroundings. By observing the cool-
ing of hot water, when an ice cube at melting temperature (0°C) is placed
into it, we also assume that all of the heat extracted from the hot water is
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used for the melting of the ice cube, followed by the heating of the water
from the melted ice (which starts at 0°C) to the equilibrium temperature
of the mixture. This may be expressed as follows in symbols and words:

Q(lost by hot water) � Q(latent of ice)
	 Q(gained by cold water obtained from melted ice)

or

Q(latent of ice) � Q(lost by hot water)
� Q(gained by cold water obtained from melted ice).

Since there is no temperature change of the ice while the ice melts, the
heat Q required to melt the ice is the number of calories per gram. Instead
of Q, the symbol for latent heat is usually given as L. The value of L, the la-
tent heat of fusion of per gram of ice, has been found experimentally to be

L � 79.4 cal/g.

If there is more or less than 1 g of ice, the heat required to melt the ice is
simply

Q(to melt ice of mass m) � mL.

Thus, to turn 10 g of ice at 0°C into 10 g of water at the same tempera-
ture requires an amount of heat equal to Q � mL � 794 cal. Note that wa-
ter obtained from melting ice is always at an initial temperature of 0°C.

We can now rewrite the earlier equations for heat transfer in the melt-
ing of an ice cube in hot water as follows:

Q(lost by hot water) � mL
	 Q(gained by cold water obtained from melted ice)

or

mL � Q(lost by hot water)
� Q(gained by cold water obtained from melted ice).

The two expressions for heat on the right side of the last equation, Q(lost
by hot water) and Q(gained by cold water obtained from melted ice), in-
volve the familiar relationship Q � mC�T.

In order to obtain the value of L from the second equation, we need to
know the masses of the ice cube and the hot water, and the change of tem-
perature of the hot water and the cold water from the melted ice cube.

8. EXPLORING HEAT TRANSFER AND THE LATENT HEAT OF FUSION (CHAPTER 7, SECTION 16.2) 133

3669_CassidySG_04  5/23/02  10:23 AM  Page 133



Now you try it
Find the latent heat of fusion of ice, L. Start by measuring the mass and
temperature of 100 ml of hot water (be sure not to include the container
in the mass). Obtain an ice cube and allow it to begin melting, which in-
dicates that it is at the melting temperature of 0°C. Drop the ice cube into
the water and measure the equilibrium temperature after all of the ice has
melted. Find the mass of the ice and resulting water by measuring the new
mass of the water and subtracting the initial mass of the hot water from
your measurement. Create a table in which to present all of your meas-
urements. Finally, using the data in your table, calculate each of the two
heat expressions on the right side of the above equation, then solve for L.

This will require some thought and discussion, and perhaps some help,
but you should be able to carry this out and obtain a fairly good result.

Analysis
1. How does your result for the latent heat L compare with the accepted

value? Express your answer as a percentage difference.
2. How do you account for the variation from the accepted value?
3. Calculate your contribution to the net entropy gain of the universe in

the melting of the ice cube. Note that �S � �Q/T, where T is kelvins
(not celsius). At the freezing point of water T(K) � 0°C 	 273°C.

(Complete Part I of this investigation.)

9. INVESTIGATING WAVES (CHAPTER 8)

PART I. WAVES ON SPRINGS

Many waves are too fast or too small to observe easily. Using a long metal
spring and a Slinky you can make large waves that move slowly enough 
to study.

A. Longitudinal Waves

1. Together with a partner, pull the Slinky out across the laboratory table
or on the floor to a length of about 14 ft (6 m). (Do not pull it so far
that the spring is bent.) Create a longitudinal pulse from one end by
grasping the stretched spring about 20 cm from the end with your free
hand. Pull the spring together toward your end, then release it, being
careful not to let go of the fixed end with your other hand.

2. Try this from either end and then from both ends simultaneously. Write
down everything you observe.
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3. What happens when the two waves meet? This is called interference.
4. In order to see the longitudinal wave more easily, tie pieces of string

to a loop of the spring at several places. What do you observe about
their motion as the pulse passes?

5. Does a pulse carry matter all along its path, or does it carry something
else? Explain your reasoning.

B. Transverse Waves

1. Leave the strings attached to the Slinky. To create a single transverse
pulse, move your hand quickly back and forth once at right angles to
the stretched spring. Try this from each end of the Slinky, while the
other end is held steady.

Perform experiments to answer the following questions about trans-
verse pulses.
(a) What is the motion of the attached strings as a transverse pulse

passes by?
(b) Does the size of the pulse change as it travels along the spring?

If so, in what way?
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(c) Does the pulse reflected from the fixed far end return to you on
the same side of the spring as the original pulse, or on the oppo-
site side?

(d) What happens when two pulses on opposite sides of the spring
interfere? Try to draw what happens before, during, and after.

(e) What happens when two pulses on the same side of the spring in-
terfere? Again, try to draw this.

C. Standing waves

1. Use the thin helical spring. Note that it is much more taut than the
Slinky. Again with a partner, stretch it to about 14 ft (6 m). Repeat your
observations and conclusions about transverse pulses. Is the speed of
the pulses any different compared with the Slinky?

2. By vibrating your hand steadily with the same amplitude, back and forth
perpendicular to the spring, you can create a train of pulses, a periodic
wave. When this wave reflects off the opposite, fixed end, it interferes
with itself and forms a standing wave. Try this.
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3. A standing wave is also created if periodic transverse waves are sent
from both ends of the spring. The waves must be of the same size and
the frequency. Try this.

4. In either case, how does the frequency of the oscillation affect the wave-
length of the standing wave? Can you express this as a proportionality?

PART II. WAVES ON WATER

So far you have observed reflection, refraction, and interference of waves
moving along one dimension. In order that you can make more realistic
comparisons with other forms of traveling energy, especially light waves,
you can first observe the same wave properties spread out over a two-
dimensional surface, the surface of water.

Pulses, waves, and interference
1. Put a large yellow or other bright color cafeteria tray on a horizontal

table and fill it with water almost to the top, but don’t fill it to the top.
Orient the tray sideways in order to minimize the effects of reflection
off the sides of the tray. �

2. To see what a single pulse looks like on water, gently touch the surface
with the eraser of a pencil or the cap end of a ball-point pen. Then
with the pipette dropper held only about a centimeter above the sur-
face, let a single drop of water fall onto the surface. Sketch and de-
scribe the pulses on the water surfaces which you observe.

3. Using two pipette droppers at opposite sides of the tray, let a single
drop of water fall onto the surface simultaneously from each dropper.
Carefully observe what happens when the two pulses meet. Describe
and sketch your observations before, during, and after the interaction.
This is an example of interference.

4. You can generate a single straight pulse by moving the small plastic
ruler back and forth sharply once in the water. Use the large ruler to
act as a barrier in the water, about 8 in from the source. Then observe
what happens when a continuous series of straight pulses forming a pe-
riodic wave strikes the barrier.

5. By changing the frequency of the motion of the small ruler, you can
set up a standing wave. Sketch and describe your observations.

Diffraction patterns
Orienting the tray sideways as before, use a continuous series of straight
pulses forming a periodic wave to observe what happens in the following
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situations. Describe and sketch what you see. These are examples of 
diffraction.

1. Use the larger ruler to generate a periodic wave that hits the smaller
ruler straight on. Observe what happens on the sides of the barrier.

2. Place the 100 g mass in the water to act as a small barrier. Create
straight waves of wavelength about the size of the mass, striking the
mass. Observe and sketch what you see.

3. Now allow the straight waves to strike a barrier with a gap in the mid-
dle that is about the size of a wavelength. Use two small rulers to form
the barrier and gap.

Interfering waves from point sources
1. Set up a standing wave in the tray by using a pencil eraser or a ball-

point pen as a single point source. Strike the surface gently at a con-
stant frequency near one of the long sides of the tray. Change the fre-
quency and observe what happens to the wavelength. Describe and
sketch your observations.

2. Observe what happens when the waves emitted simultaneously by two
point sources near each other interfere. Use two pipettes or two pen-
cils held together by their points so as to form a double source. Vi-
brate the source rapidly near one side of the tray to set up the stand-
ing wave interference pattern on the surface of the water.

If you look carefully, you can observe the patterns of constructive
and destructive interference (nodal lines) that spread across the tray to
the opposite side. Notice how they form a pattern that is much wider
than the distance between the two point sources. Carefully sketch what
you observe and label the lines representing constructive and destruc-
tive interference. What type of line is at the center of the pattern?

Now you try it
Investigate any other properties of one- or two-dimensional waves that you
would like to know more about.

1. Write down a question in advance.
2. Describe what you did to answer it.
3. Describe the answer you found. Draw the result, if appropriate.

Thought question
If the tray had been filled with small particles instead of liquid, in what
ways would particles behave differently from water waves in some of the
above observations?
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10. SPACETIME: A COMPUTER EXCURSION INTO
RELATIVITY THEORY (CHAPTER 9)

Spacetime is a DOS program created by Professor Edwin F. Taylor and his
students at MIT. It is used under license from Physics Academic Software,
American Institute of Physics, College Park, MD.

STARTING AND EXITING THE PROGRAM

After you have started the computer and it has completed booting to Win-
dows, click the Start button, then click Run. Type the location of the pro-
gram, then click OK or press Enter. The program starts in a full-screen
DOS window.

Make sure “1 Run SPACETIME” is highlighted, then press Enter twice.
Then press any key.

You can exit the program at any time, by typing Q. Then hold down the
Ctrl key and type C.

THE DISPLAY

The display you see is called the Highway Display. The large blank area in
the middle of the window represents a “superhighway” running from left
to right across the screen. Different lanes on the Highway are for objects
traveling at different speeds. Objects lying on the horizontal line through
the middle of the screen are on the center strip of the Highway and do not
move. They are at zero velocity relative to the computer screen (and to
you). Objects above the center move to the right; the farther above the cen-
ter, the faster they move. Objects in the very top lane move to the right
with the speed of light; only light flashes (and neutrinos) can occupy this
lane.

Objects below the center of the screen move to the left; the farther be-
low the center, the faster they move. Objects in the very bottom lane move
to the left with the speed of light; only light flashes (and neutrinos) can oc-
cupy this lane.

The Highway convention is British, but modified; vehicles drive on the
left side, but slow lanes are near the center strip, fast lanes are near 
the edge of the road.

To understand what appears on the Highway, think of a movie of all the
objects traveling along the Highway. At any given instant, you are looking
at a single “still picture” of the movie. As you change the time, you change
the movie as you progress from one still to the next. You are going to learn

10. SPACETIME: A COMPUTER EXCURSION INTO RELATIVITY THEORY (CHAPTER 9) 139

3669_CassidySG_04  5/23/02  10:23 AM  Page 139



how to make such movies and how to step time forward and backward
through the stills of the movie.

A vertical ruler, at the left of the screen, shows � (Greek beta), the ve-
locity as a fraction of the speed of light: � � v/c. � is also indicated at the
bottom of the screen. The range of � extends from 	1 at the top (v � c,
light moving to the right), through 0 at the center, to �1 at the bottom
(v � �c, light moving to the left). Notice that this is not a linear scale; equal
vertical lane separations do not correspond to equal changes in �. This 
is done so that more of the interesting velocities near � � v/c � 1.0 can 
fit on the screen. The other parameter is called � (gamma). It is equal to
1/�1 � �2�.

The square object at the center of the screen represents the Earth. The
vertical red line indicates the position x � 0. The number inside the Earth’s
square represents the time registered on a clock attached to the Earth. The
Earth starts the position x � 0 at time t � 0.0. We’ll let the units on the
clock represent minutes.

You’re now ready to start.

RELATIVITY OF LENGTH

Press R (for rod). A cross bar appears.
Press � several times to move the rod to the position x � 	4.0000.

You can see it on the x-axis, or read the position at the bottom of
the screen.

Press Enter to set the rod at this position.

A rectangle appears representing a rod at x � 4.0 and v � 0 relative to
the Earth.

We’ll place a second rod at a different place:

Press R. A crossbar appears.
Press the up arrow to set � � 	0.9000 (or v � 0.9000c), as indicated at

the bottom of the screen.
Press � several times to move the rectangle to x � �4.0000, also in-

dicated at the bottom of the screen.
Hit Enter. Another rectangle appears.

It is a rod of the same length as the first rod when at rest on the Earth,
but now we have a “snapshot” of the rod flying toward the Earth at 
v � 0.9c as seen from the Earth.

Now let time move forward by holding down the up arrow. What has
happened to this identical moving rod as seen from the stationary Earth?
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Notice that there is an effect only on the length of the rod, not on its
width.

Release the up arrow and press zero (0) to return to time 0.0 on the
Earth.

Changing reference frames
Suppose you could jump from the Earth to the moving rod, so that you
are riding at rest on it (at rest in its reference frame) and the Earth and the
first rod are now moving toward you.

Will there be any change in the length of the first rod as measured by
you? If so, what change?

Will there be any change in the distance between the Earth and the first
rod? If so, what change?

Now let’s make the jump:

Press F6 to select an object.
Press C to select the moving rod. A box appears around it to indicate

selection.
Type J to jump to the frame of the moving rod. Now it’s at rest on the

center line and the Earth and first rod are in the speed lanes mov-
ing to the left.

What has happened to the length of the previously moving rod? Why?
What has happened to the length of the previously stationary rod? Why?
What has happened to the distance between the Earth and the rod mov-

ing with it? Why?
What has happened to the time registered on the Earth’s clock?

(The reason for this is the relativity of simultaneity. A clock on the rod at
rest and a clock on the moving Earth are not synchronized.)

Press the up arrow to let time move forward.
Return to time 0.0 by pressing 0.
Now jump (press J) to rod B, which is at rest relative to the Earth, and

note your observations about the Earth and the other rod.

Trying different relative speeds
Press N twice to start over.
Now place rods at different distances from Earth and different speeds

up to the highest 	 and � values for � you can obtain.
What happens to the lengths of the rods as � increases? Why?
What happens to the widths of the rods as � increases? Why?
What is the highest value for � that you can obtain? Why can’t you go

any higher?
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RELATIVITY OF TIME

Press N twice to start over, with the Earth at rest in the center at x � 0
at time t � 0.0.

Press C (for clock). A crossbar appears.
Use the arrows to move it to x � �4.0000 and � � 	0.900.
Press Enter to place the clock in this position.
Notice that the time indicated on the moving clock is not 0.0 but 

8.3 min. Again, this is because of the relativity of simultaneity. We
cannot synchronize a moving clock with a stationary clock.

Write the starting times of the Earth clock and the moving clock in the
table below:

Table of clock readings. Clock is moving relative to stationary Earth.

Start Stop Elapsed time

Earth’s clock
Moving clock

Now press the up arrow to let time move forward on the Earth to 
9.0 min as the moving clock flies to the right past the Earth at speed
v � 0.9c.

If you pass 9.0, move time backward by pressing the down arrow (un-
fortunately not possible in real life).

Record the new clock readings in the above table and obtain the elapsed
time recorded by each clock.

What do you conclude about the rate of the moving clock compared
with the rate of the Earth’s clock at rest?

Changing the reference frame
Suppose you jumped from the Earth to the moving clock, so that you are
riding at rest on it (at rest in its reference frame) and the Earth is now mov-
ing toward you.

From this perspective, will there be any change in the rate of the two
clocks from what you just observed? If so, what change do you predict?

Let’s make the jump, as before.
Press 0 to go back to time 0.0 on the Earth’s clock.
Press F6 then B to select the moving clock (B).
Jump to the moving clock by pressing J.
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You now have a still picture of the previously moving clock, which is now
at rest in your reference frame on the center line, with the Earth and its
clock moving toward you from the right.

Again the two clocks are not synchronized, and you can see a contrac-
tion in the distance between your clock and the Earth.

Record the starting time on the two clocks in the table below:

Table of clock readings. Earth is moving relative to stationary clock.

Start Stop Elapsed time

Earth’s clock (moving)
Stationary clock

Now let time move forward for a while by pressing the up arrow. Stop
the motion before the Earth goes off the screen.

Record the new clock readings in the above table and obtain the elapsed
time recorded by each clock.

What do you conclude about the rate of the clock on the moving Earth
compared with the rate of the clock at rest relative to you?

Compare your two observations of the rate of time as measured from
the two reference frames of the Earth and the clock. Is there a con-
tradiction, or are they consistent with each other?

When you are finished, press N twice to return to the opening screen.

OPTIONAL

A TRIP TO ALPHA CENTAURI: 
THE TWIN PARADOX

Now let’s take a longer trip. The visible star nearest to our Sun is Alpha
Centauri, about 4 light years distant. You will remain on Earth while your
identical twin will travel on the Space Shuttle at a speed of v � 0.9c to Al-
pha Centauri and back. Assume that the distance units on the x-axis dis-
play are light years and the time units on the clocks are years.

As before, the reference clock in the center of the start-up screen rep-
resents Earth.

Press C, then use the up arrow, and Enter, to place a second clock, rep-
resenting Alpha Centauri, on the center strip (� � 0) at a distance
of 4 light years to the right of Earth (x � 	4.0).
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(Notice that this time the two clocks are synchronized, since they are at
rest relative to each other.)

Now prepare the Space Shuttle for the trip to Alpha Centauri.
Press S (for Space Shuttle) and use the up arrow to move the Space Shut-

tle straight up to the speed lane � � 	0.900 at the Earth’s position,
at x � 0.0.

Press Enter to create the Space Shuttle.
Press the up arrow four or five times to step time forward. Watch the Space

Shuttle move toward Alpha Centauri from you position on Earth. Note
that its clock runs slower than the clocks at rest, as we expect.

We need details of the Space Shuttle’s position in order to line it up with
Alpha Centauri. Get the Space Shuttle details this way:
• Press F6, then press S to select the Space Shuttle.
• When the box appears around the Space Shuttle, press I for in-

formation.
• Details of the Space Shuttle’s position, speed, and time will appear

across the bottom of the screen. This information is updated as
you move the Space Shuttle toward Alpha Centauri.

Keep changing time until the Space Shuttle is approximately lined up
with Alpha Centauri (when its position is approximately x � 4 as shown at
the bottom of the screen). The lineup with Alpha Centauri will not be per-
fect, actually x � 4.0500.

Now we need to turn the Space Shuttle around by placing it in a lower
lane so that it can head for home.

Press P. A crossbar appears at the position of the Space Shuttle.
Move the cursor down with down arrow key until it is in a lane below

the center strip with � � �0.900. (Note the minus sign.)
Press Enter, when you get to the correct lane.
Now the Space Shuttle is turned around and ready to head for home.

Press the up arrow to move time forward again.
Bring the Space Shuttle back to Earth (x � 0).
Welcome your twin home after all this time.

Read the number of years on the Earth’s clock and the number of years
on the Space Shuttle’s clock. These are the number of years that have passed
for each clock.

Earth’s clock: ___________________________
Space Shuttle’s clock: ____________________
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Who has aged less: you or your twin, the Space Shuttle pilot?
But wait a minute. Your twin could say that he or she had actually gone

nowhere, but that it was the Earth that had flown 4 light years away and
returned. So, when you return, riding with the Earth, it is you who should
be younger, not your twin.

Obviously you both can’t be younger. So who’s right? This is a way of
phrasing the so-called Twin Paradox.

Let’s try to see this from your twin’s perspective.

Press 0 to reset the time to zero.
Press F6, then S to select the Space Shuttle, if it’s not already selected.
Press J to jump to the Space Shuttle.

Now the Space Shuttle is at rest with respect to you on the center line
at x � 0. Earth is lined up just below you, at x � 0 but in a leftward-
moving lane. Alpha Centauri is in the same lane as Earth, but far-
ther to the right.

Earth and Alpha Centauri are moving in your rest frame; therefore, the
distance between them is contracted, just as the length of a moving
rod was contracted.

Now hold down the up arrow to replay the movie of the earlier trip to
Alpha Centauri and back to Earth, this time while riding on the Space
Shuttle.

The Earth will turn around automatically and return to the Space 
Shuttle.

The Earth is always the object to the left of Alpha Centauri. Try to line
it up just above the Space Shuttle in the center of the screen.

The motion is very rapid because the distances are contracted. If you
want to repeat the motion, press 0 (zero), then the up arrow.

Now what are the times registered on each of the clocks?
Which twin would be younger?

How can we resolve the twin paradox?
The answer is that the two situations are not quite identical. There is a
crucial difference between the motion of the twin who left on the Space
Shuttle and the motion of the twin who stayed at home. The twin who
stayed at home remained at zero or constant velocity for the entire time.
But the twin who left on the Space Shuttle had to turn around, and when
the Space Shuttle turned around, he or she experienced an acceleration. Be-
cause of the acceleration both twins can then determine that it was really
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the one on the Space Shuttle who traveled while the other one stayed at
home. Therefore the traveling twin will be younger.

11. EXPLORING ELECTRIC CHARGES, MAGNETIC
POLES, AND GRAVITATION (CHAPTER 10)

A. Comparing the Three Forces

• In what ways are the gravitational, electric, and magnetic forces simi-
lar to one another?

• In what ways are they different?

1. Your instructor will provide you with a variety of small objects to sub-
ject to electric, magnetic, and gravitational forces. By observing what
happens in each case, you will be able to draw some conclusions in an-
swering the above questions.

2. In order to organize your observations, construct a table in your note-
book with four columns. Label the first column “Objects” and list all
of the objects you have. Label the other columns “Gravitational Force,”
“Electric Force,” and “Magnetic Force.”

Gravitational force
1. How could you determine whether or not an object is subject to the

gravitational force of the Earth? In the second column of your table,
indicate which of the objects is subject to the gravitational force down-
ward toward the Earth.

2. Was there anything you had to do to initiate the gravitational force to
act on the objects?

Electric force
1. Separate the objects from each other. Rub the clear plastic (acrylic) rod

with the silk, or the dark plastic (delvin) rod with the fur. Pass the rod
over each object and observe what happens. If there is an attraction
upward, this is the result of an electrical interaction between the rod and
the object. The upward motion is due to an electric force. Indicate in
your table which objects respond to an electric force.

2. Compare the electric force upward to the rod with the gravitational
force downward to the Earth. Which force is stronger?

3. Is it possible that the electric force is actually due to a gravitational at-
traction of the objects to the rod? Explain.

4. Was there anything you had to do to initiate the electric force?
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Note: The term charge is used to describe the property of an object that
enables it to engage in electrical interactions with other objects. Notice that
the other object does not have to be charged, although it can be. You’ll see
examples later in this investigation.

The rubbing of the rod produces a build up of charge on the rod. This
charge is often called an electrostatic charge, since the charge is static (not
moving). You encounter an electrostatic charge when you experience elec-
trostatic cling on a cold day with low humidity, or after running a comb
through your hair. Humidity enables the charge to escape from the rod by
clinging onto water molecules in the air. The charge can be produced again
by rubbing (friction).

Magnetic force
1. Perform the same test on the objects as you performed with the electric

force, only this time use the bar magnet. Write your results in the table.
2. What do you conclude from your results about the types of objects that

are subject to the magnetic force? What types of objects are not sub-
ject to the magnetic force?

3. Compare the magnetic force upward to the bar magnet with the grav-
itational force downward to the Earth. Which force is stronger? Ex-
plain your reasoning.

4. Is it possible that the magnetic force is actually due to a gravitational
attraction of the objects to the magnet? Or an electrical attraction of
the objects to the magnet? Explain in each case.

5. Was there anything you had to do to initiate the action of the magnetic
force?

Conclusions
On the basis of your observations so far, as recorded in your tables and in
your answers to the questions, answer the two opening questions:

• In what ways are the gravitational, electric, and magnetic forces simi-
lar to each other?

• In what ways are they different?

B. Like and Unlike Charges

• How many types of electric charges are there?
• How do they alter the direction of the electric force?

1. You can easily generate an electrostatic charge by pulling a piece of
Scotch tape off a clean dry surface. Take a piece of Scotch tape, about
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5 to 8 cm in length. Bend the end of it over to form a little “handle.”
Tape it onto a clean table top or other surface, then peel it off briskly
and stick it to the crossbar, just below the “handle.” Be careful not to
let the tape curl back to touch your hand or any other object. If it does
touch another object, or if you need to recharge it, simply stick it again
to the surface and briskly peel it off.

2. After you have prepared one tape, prepare a second tape pulled from
the same surface. Bring it near the first tape (sticky sides facing away).
What do you observe?

3. Construct a table listing at least three different surfaces—such as wood,
glass, plastic—in the first column, and the same surfaces across the top.
Now compare strips pulled from the same and different surfaces, and
record your results in the table. Do not let the strips touch each other.

4. Strips that are pulled from the same surface always have like charges,
since they are prepared in exactly the same way. What do you conclude
about the electric force between like charges?

5. Strips pulled from different surfaces usually may have unlike charges.
What do you surmise from your observations about the force between
unlike charges?

How many?
Let’s see if we can determine how many different types of charges there
are.

1. You can create unlike charges by again using Scotch tape. Stick one
piece of tape (with a handle) to a surface. Then stick another piece di-
rectly over it. Keeping both pieces stuck together, briskly pull both
pieces of tape together off the table. Now carefully separate the two
pieces. Do not allow them to curl back to your hand or to touch each
other after separated.

After they are separated, bring the two strips near each other, back
to back. What do you observe?

2. What does your observation tell you about the nature of the charges
on the two strips? (Repeat this again, until you are convinced of your
conclusion.)

3. If you found these charges to be unlike and mutually attracting, you
can use them to test other charges. To do so, prepare another two strips
of unlike charges and place them carefully on the crossbar. Replace or
recharge them as necessary in the following.

4. Construct a table with different charged objects in the first column and
Strip 1 and Strip 2 in the next two columns. Bring the charged clear
and plastic rods (using silk and fur, respectively) near each strip and
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observe what happens. Do not touch the strips with the rods. Try charg-
ing other objects, such as a balloon or a comb, by friction and bring
each one near the charged strips of Scotch tape. Observe whether the
interaction with the strip is attractive or repulsive with each strip. Be
sure that each object is indeed charged. Record the result in your table.

Conclusions
1. Carefully examine your table. What conclusions can you draw from

this?
2. Is there any charged object that repels or attracts both strips?
3. If a charged object attracts one of the two strips, what does it do to the

other strip. Is there any exception to this?
4. You saw previously that like charges always repel. What do your ob-

servations say about unlike charges?
5. What do you conclude from your observations about the number of

different types of charges? Support your conclusion.
Note: By agreement, the two different charges have been called “pos-

itive” and “negative.” But they could have been called “red” and
“green,” or “up” and “down,” or any other names. Ben Franklin chose
“positive” and “negative” for various historical reasons. The “positive”
charge has been defined as the charge produced on the clear rod when
rubbed with silk. The negative charge is defined as the one produced
on the dark plastic rod when it is rubbed with fur.

The electrical interaction between these types of charges is either
attractive (between unlike charges) or repulsive (between like charges).

6. How would you now answer the opening questions to this section, and
what evidence would you use to support your conclusions?
• How many types of charges are there?
• How do they affect the attractive or repulsive nature of the elec-

tric force?

C. Neutral Objects

You have learned that all matter is made up of atoms, which contain charges
inside them. However, the atoms themselves are usually neutral, because
the positive charge of the nucleus is exactly balanced by the negative charge
of the electrons orbiting the nucleus. Some materials can have some of their
electrons removed when they are rubbed with another material. This is
how objects are made to carry net electric charge.

A neutral object has no charges added or removed, so it has a net charge
of zero. This does not mean that it has no charge in it. It simply means
that the numbers of like and unlike, positive and negative, charges are equal.
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What happens when you bring a charged object near a neutral object?

1. To find out, attach the aluminum ball on the thread to a crossbar and
bring a charged rod near it but without touching the ball. What do
you observe?

2. Now bring the other type of rod (with an opposite charge) near the
ball. What do you observe?

3. Does this violate our recent conclusion that “we have never found a
charged object that either attracts or repels both of the two strips that
attract each other”?

Note: The answer is no. The key word in the conclusion is charged
object. The object tested is a neutral object, one without net charge.
What is happening here is that the charged glass rod (positive) is at-
tracting the negative charges in atoms of the ball, and repelling the
positive charges. The negative charges move toward the front of the
ball, and the positive charges toward the back. Because the electric force
is proportional to 1/r2 (see Section 3.4), the attractive force is stronger
than the repulsive force, because the negative charges are closer (r is
smaller) to the positive glass rod than the positive charges.

4. Make sure the ball is electrically neutral by holding it in your hand for
a moment. Charges from your hand will cancel out any net charge on
the ball. Recharge the dark plastic rod with the fur and this time touch
the ball, after bringing it close. Carefully observe what happens before
and after you touch the ball.

5. How would you explain this?
Note: Remember, the clear rod charged with silk is (by definition)

positive, so negative charges are drawn to the front of the ball. When
the rod touches the ball, some negative charges move to the rod, leav-
ing behind a ball that now has a net positive charge; the ball is then
repelled by the positive rod.

6. To test this explanation, try the experiment again. This time, bring the
negatively charged plastic rod (the dark plastic rod rubbed with fur)
near the ball. What do you observe?

7. Does this agree or disagree with the explanation?

D. Magnets

Now let’s look at some of the similar properties of magnets.

Properties
1. Using two bar magnets, examine the attractions and repulsions between

the ends as well as the middle of each magnet. Be careful to experience
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yourself the actual push and pull. If the magnets are strong enough,
attempt to experience why scientists (such as Faraday) believed that
there is a “field” that exerts the repulsion. Lift up one magnet by the
other. What does this say about the strength of gravity on the magnet
compared to magnetism?

Like and unlike poles
How many poles does a magnet have?

2. To find out, tie one magnet in the middle and hang it from the cross-
bar. Place a sticker near one end of the magnet to distinguish the two
sides. Now bring one end of the other magnet near the marked end.
What do you observe?

3. Now bring the other end of the magnet in your hand toward that end.
What do you observe?

4. Repeat this for the other end of the dangling magnet, and record your
observations.

5. Is there any side to a magnet that attracts both ends of another mag-
net or repels both ends?

6. Is there any end of a magnet that attracts one end and does not repel
the other?

7. What do you conclude from this?
Note: The end sides of a magnet are called the poles of the magnet.

As with charges, like poles repel and unlike poles attract. One pole is
called the “north” pole and the other pole is called the “south” pole.
There was a good reason for this. As discussed in Section 10.1 of the
text, Gilbert discovered that the Earth itself is a magnet. The end of
the magnet that seeks the geographic North Pole of the Earth is called
the “north-seeking pole.” It is actually the “south pole” of the mag-
net. The pole that seeks the Earth’s South Pole is the magnet’s “north
pole.”

8. Using the little compass, determine the directions of north, south, east,
and west in your room. Be sure that you are far away from any nearby
magnets. Now compare the approximate alignment of the dangling bar
magnet with the geographic directions. (Be sure the string is not
twisted.) Use a piece of tape to indicate which end of the bar magnet
is its north pole and which is its south pole.

9. To continue the investigation in Part A, do magnets have an effect on
the electrically charged Scotch tapes? Prepare Scotch tapes with un-
like charges and see if there is any effect. What do you conclude from
this about the electric and magnetic forces?
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E. Magnetic Fields

You may already have experienced the repulsion generated by the magnetic
field between the opposite poles of two bar magnets. Can a thin piece of
material block the magnetic field?

1. To find out, place a sheet of paper vertically near the dangling mag-
net, then bring the other bar magnet close to the first magnet but be-
hind the sheet of paper. Does the paper block the field?

2. Try some other objects, such as aluminum foil, glass, a piece of cop-
per, or steel, a hand, etc. Which ones block the field and which do not?

3. You can trace out the field by using iron filings spread over a trans-
parency or a piece of paper lying on top of the magnet. Do not put the
filings directly on the magnet(s). Sprinkle the filings over the transparency
lying on top of a single bar magnet and sketch the result.

4. Place two like poles near each other. Place a sheet of paper or a trans-
parency over the region between them and use the iron filings to sketch
the result.

5. Do the same with unlike poles near each other, but not touching.
6. What are the characteristics of the field for attraction and repulsion?

Mapping the field
1. The magnetic field is a vector, and you can “map” the field near a bar

magnet by using a small compass. The direction of the magnetic field
at any point is defined as the direction in which the north pole of a
compass at that position is pointing. The compass needle is tangent to
the magnetic field line at that position. Note that the end of the com-
pass that points to the magnetic north of the Earth is actually the south
pole of the compass needle.

2. Using the small compass, plot the magnetic field at various positions
around a bar magnet and draw your result. Indicate the direction of
the field at each position, and the north and south poles of the bar
magnet. Draw your result here.

12. INVESTIGATING ELECTRIC CURRENTS I
(CHAPTERS 10, 16)

A. Let There Be Light!

You are given a battery, a light bulb, and some wires. The battery has a
voltage of only 1.5 V and will not cause a shock or any harm to you.
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Working together, think of the right arrangements (“circuits”) to get the
light bulb to light; then try them.

Sketch each arrangement that you try, including those that do not work.
When you find an arrangement that works, try to find another, similar

arrangement that will also work.

Conclusions
1. What is the common feature of the arrangements that work?
2. What is the common feature of the arrangements that do not work?

B. The Bulb and Battery Holders

For convenience in making electrical connections, bulbs are usually screwed
into sockets and batteries placed into holders.

1. Carefully examine the bulb socket and the battery holder. Then place
the bulb and battery into their holders and hook up the wires to ob-
tain the lighted bulb. Include a switch in order to open or close the
“circuit.”

2. Why is this arrangement called a “circuit”?
3. The protrusion on one end of the cylindrical battery is the positive end

of the battery. The flat rear side is the negative end. Sketch the circuit
again and trace the current flow through the circuit from the positive
end of the battery through the switch and bulb and back to the nega-
tive side of the battery.

Note: The current enters the bulb through the pointed metal protrusion
at the base, and it leaves through the metal threads of the base that are
screwed into the holder.

C. Circuit Diagrams

Instead of drawing realistic sketches, engineers have invented a way of di-
agraming circuits that includes special symbols for each component in the
circuit. Here are some of the symbols and the components they represent:

a DC battery or power source; the long line represents
the positive side.
a light bulb.
a switch.
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This is what a light bulb circuit would look like with these symbols:

Here are some circuit diagrams:

1. In which of the above diagrams would the light bulb light after clos-
ing the switches? In which one would it not light?

2. How can you tell from a circuit diagram whether or not the bulb will
light?

3. What do the terms “closed circuit” and “open circuit” mean?
Here are several more electrical symbols and the objects they 

represent:

a resistor.
a variable resistor (allows changing the resistance).

a voltmeter (measures the potential difference in volts).
an ammeter (measures the current in amperes).

4. Use the circuit board, the bulb holder, and other components to make
the following circuits.

In each case the bulb should light. If it does not light, check to make
sure you have created a closed circuit.

Always leave the switch open until you have completed the set up.
To save the battery, use the converter from AC to DC current, set-

ting it at 3 V.

5. Create the following circuit with the variable resistor. Use the variable
resistor to vary the amount of current in the circuit. What happens to
the light from the light bulb?

A

A

V
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6. Using Ohm’s law, V � IR (V is potential difference in volts, I is the cur-
rent in amperes, and R is the resistance in ohms), obtain the resistance
of the light bulb from your circuit.

Please note:
(a) If you are using analog meters, the ammeter and voltmeter have pos-

itive (red post) and negative (black post) sides. In any circuit, the 
positive side should always be closest to the positive side of the power
source. If this is reversed, the needle on the scale will go in the neg-
ative direction, and may be damaged.

Therefore, when you close the switch, watch the needle. If it goes
negative, instantly open the switch and reverse the leads to the meter.

(b) Each of the meters has scales for different amounts of current and
voltage. If you close the switch and the needle is pinned to the right,
off the scale, instantly open the switch and transfer the meter to the
highest scale.

D. The Light Bulb’s Power

After you have found the resistance of the light bulb, you decide to apply
your result to the useful task of finding out how much power the bulb con-
sumes. You remember from the text that the power output is the square of
the current times the resistance

P � I2R.

1. For the current you are using, what is the power output of the bulb?
Show your work.

2. You leave the bulb on for 10 s. How much energy is released by the
bulb?

3. Is this energy all in the form of light energy, or is it converted into
other forms of energy? How do you know?

E. Thought Questions

1. An insulator does not allow any significant current to pass through it.
What is its resistance?

V

A
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2. A superconductor allows all of the current to pass through unhindered.
What is its resistance?

3. Voltage is the amount of work required to move a charge from one
point to another. Why does a larger resistance require a larger voltage
to yield the same current?

13. INVESTIGATING ELECTRIC CURRENTS II
(CHAPTER 10)

IDEAS

In electricity there are two concepts that are basic to all other studies. These
are voltage (potential difference) and current. The first refers to the work
necessary to move a unit of positive charge from one point to the other;
the second refers to the amount of electric charge that is transported per
second between the two points in question. One is measured in volts, the
other in amperes. One ampere is 1 coulomb per second.

Is there a relationship between the voltage and the current between two
points? In 1851 Georg Ohm discovered that there is. If one measures the
voltage on and the current through several objects, such as a copper wire,
a salt solution, and a bar of silver, no relationship seems to exist between
the measured volts and amps. However, by keeping the copper wire as a
constant factor and varying the amount of voltage, while noting the amount
of current that flows through the wire, Ohm found a simple relationship,
known as “Ohm’s law,” between the volts and amps for the copper wire.
According to this law, the voltage is directly proportional to the current,
where the constant of proportionality is the resistance.

This may be expressed in symbols as follows:

V � I or V � IR,

where V is the voltage, I is the current, and the constant R is the resistance
of the wire. Resistance is measured in units of “ohms,” 1 
, whereby 
1 
 � 1 V/A. We will test this relationship and utilize it in today’s exper-
iment.

We are going to follow the way actual research is done when a new law
is proposed. First, in Part I, you will test the law to see if it is valid. Then,
in Part II, you will assume it is valid and make predictions to see if they
are accurate. Once Ohm’s law has passed those two tests, we can be so con-
fident it is valid that we can use it to explore the unknown (Part III)—in
this case the value of unknown resistances.
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INVESTIGATION

Materials: 12-V power source, switch, variable resistor (rheostat), amme-
ter, voltmeter, resistors, connectors, circuit board.

The following symbols are used:

a DC power source; the long line represents the 
positive side.
a resistor.

a switch.

a variable resistor (rheostat).

a voltmeter.

an ammeter (mA refers to milliamps or 10�3 A).

Before you begin, please note the following concerning the circuit 
components (assuming you are using analog meters):

• Always leave the switch open while wiring the circuits. Do not close it
until the instructor has approved the wiring connections.

• The voltmeter and ammeter have a positive and a negative side. In any
circuit, the negative side should always be closest to the negative side
of the power source. This is also indicated in the circuits later in these
instructions. If you should close the switch and the needle moves to 
the left, instead of to the right, instantly open the circuit and reverse
the leads to the meter.

• Each of the meters has scales for different amounts of current and volt-
age. In most cases here, the scale to be used is indicated. If it is not, or
you are uncertain which scale to use, always start with the scale for the
largest amount of voltage or amperage and decrease in sequence as nec-
essary. Also, if you close the switch and the needle is pinned to the right
of the scale, quickly open the switch and transfer to a higher scale.

• To help keep the positive and negative sides of the circuit apparent, the
circuit board has black and red binding posts. As is standard in electri-
cal equipment, the black signifies negative, and the red signifies positive.

The variable resistance, or rheostat, is used not only to vary current in
the circuit, but also to protect the meters and other components from an
overload. The principle of the rheostat is that the longer the length of
wire that the current from the battery must transverse the more the re-

A

V

13. INVESTIGATING ELECTRIC CURRENTS II (CHAPTER 10) 157

3669_CassidySG_04  5/23/02  10:23 AM  Page 157



sistance. The length of the wire, hence the resistance, is controlled by 
the slide wire at the top. When the rheostat is connected at the lower 
left corner and the top right, all the way to the right is maximum resis-
tance; all the way to the left is minimum resistance. To begin with, slide
the wire all the way to the right for maximum resistance (hence minimum
current in the circuit).

PART I. OHM’S LAW

You are a researcher in your school’s laboratory and Dr. Ohm has just re-
ported in the latest journal that he has concluded from his research that
the current and voltage are related to each other for these types of resis-
tors according to the simple relationship

V � IR

which he is calling “Ohm’s law.”
You are very excited to read of his discovery, because it relates the three

basic electrical properties so simply. However, being a good scientist, you
want to check it out for yourself before you accept it.

Here is one way to test to see if Ohm’s law is indeed valid.

1. Connect the circuit shown below, placing the power source, open
switch, rheostat, 250-
 resistance, and ammeter in series (i.e., on one
continuous line). Note that the voltmeter is connected in parallel with
(or across) the resistance being studied. Place the transformer on 12 V,
positive (	) polarity. Be sure that the little red light is lit. Do not close
the switch until the instructor has approved the wiring.

Use the 50-mA scale on the ammeter and the 15-V scale on the volt-
meter.

2. Slowly decrease the variable resistance until the ammeter reads al-
most full scale. Take six readings of the potential difference across

A
250 Ω

V

12 V

−
−

−

+
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the 250-
 resistance and the current through it as the variable resis-
tance is increased.

Reading # Voltage (V) Current (I)

1

2

3

4

5

6

3. To see any regularity in the relation of V and I, plot your values of V
and I on a sheet of graph paper, with V on the y-axis and I on the 
x-axis.

4. Note that, as printed on the resistors, the resistors are accurate only to
�10%. Within this limit of precision, do you see a smooth pattern?

5. If your graph is a straight line, what does this tell you about the rela-
tionship between the variables V and I?

6. If your graph is a straight line, find the slope of the straight line and
compare with what you would expect the slope to be from Ohm’s law.

Expected result:

Slope:

7. Do your data confirm or refute Ohm’s law? Explain.
Turn in your graph with your laboratory report.

PART II. SERIES CIRCUITS

Now that you have tested the validity of Ohm’s law, you will want use it to
make predictions about series circuits and see if these predictions agree
with the observed phenomena.

Two circuit elements are in series if they are connected end to end in a
continuous line.

1. Connect the circuit below, this time with the 100-
 resistor in series
with the 250-
 resistor. Put the variable resistance at maximum before
closing the switch. Leave the voltmeter disconnected for the time be-
ing. Use the 50-mA scale on the ammeter and the 15-V scale on
the voltmeter.
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2. By changing the variable resistor, set the current at 25 mA.
3. Knowing the resistance of each resistor and the current through each

one (25 mA), use Ohm’s law to predict the voltage drop across each re-
sistor and across both resistors together. Note that they should not be
the same (why not?), even though the battery voltage stays constant.
Show how you got these results in the table below.

4. Now measure the voltage drop across each resistor and across both of
them together.

Voltage Predicted Observed

V1

V2

V1 	 V2

THOUGHT QUESTIONS

1. So far we have tried one resistance and two resistances in series. Can
you make an inductive generalization about Ohm’s law—that is, about
the relationship between V and I—for any number of resistors in se-
ries? Write this as an equation.

PART III. STUDYING UNKNOWN RESISTANCES

Now that you have tested Dr. Ohm’s conclusions and used his new law to
make predictions that are confirmed by actual measurement, you are con-
fident enough of the validity of Ohm’s law to use it as a tool to explore the
unknown.

1. In this case the unknown consists of two conductors of electricity with
resistances unknown to you. They are a unknown resistor and a con-
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ducting solution. Using the equipment available to you, try to deter-
mine the resistance of each of these conductors without asking the 
instructor. Show any calculations you make. Ask the instructor if you
are stuck.
Resistance of unknown resistor:
Resistance of conducting solution:

2. Leave the circuit connected for a while to the salt solution. Carefully
observe and note everything that you see occurring in the solution.

THOUGHT QUESTIONS

1. An insulator does not allow any significant current to pass through it.
What is its resistance? Explain using Ohm’s law.

2. A superconductor allows all of the current to pass through unhindered.
What is its resistance? Explain using Ohm’s law.

3. If voltage is the amount of work required to move a charge from one
point to another, why does a larger resistance require a higher voltage
to yield the same current?

14. AVOGADRO’S NUMBER AND THE SIZE AND
MASS OF A MOLECULE (CHAPTERS 7, 13)

INTRODUCTION

The acceptance of Avogadro’s hypothesis enabled the determination of the
relative masses of many atoms and molecules. Atomic weights and molec-
ular weights (really “masses”) were defined in terms of an accepted stan-
dard. The isotope 12C was chosen as the standard and an atom of this iso-
tope was defined as 12.000 u, where u is the standard symbol for atomic
mass units (amu).

If the weight of an element is known in amu, then the same number of
grams of that element or compound is called the gram atomic weight or
the gram molecular weight. Each of these contains a standard “package”,
or mole, of atoms or molecules. One gram mole of 12C contains a mass of
12.000 g.

It is a fact of nature that 1 g-mol of every substance contains the same
number of atoms or molecules. The name Avogadro’s number was given to
the number of molecules or atoms in 1 g-mol. (“Loschmidt’s number” refers
to the number of atoms in 1 kg-mol). This number has been determined
to be 6.02 � 1023. Thus, for example, 1 g-mol of water, H2O, would have
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a gram molecular mass of 2 (H) 	 1 (O), or 2 (1.0080) 	 1 (15.999) �
18.015 g. Thus, this small amount of water would contain 6.02 � 1023 wa-
ter (15.999) � 18.015 g. Thus, this small amount of water would contain
6.02 � 1023 water molecules. As you see, Avogadro’s number is extremely
large, because atoms and molecules are extremely small.

Avogadro’s number has been determined by various methods, all of
which yield the same results, within the limits of experimental error. The
method we shall use, although relatively primitive, yields surprisingly
good results which are of the right order of magnitude (power of ten) if
the experiment is carefully performed. It utilizes an interesting property
of certain large molecules, such as fatty acids. If a drop of fatty acid is
placed on the surface of water, it will spread out to form an extremely
thin film on the surface of the water. Observations of this sort were
recorded as long ago as 1773 by Benjamin Franklin, who noted that one
teaspoon of oil spread out to form a film of about 22,000 ft2 on a pond
near London.

That this extremely thin film is probably the thickness of one long-chain
molecule may be demonstrated by placing a wire across the surface of a
shallow container filled to the brim with water, and allowing a drop of oil
to fall on the water to one side of the wire. The oil will spread out over
the water surface and attach itself to the wire and to the edges of the con-
tainer because of intermolecular forces. If the wire is moved to stretch the
film, the film breaks in places, and islands of water are visible.

Stearic acid and oleic acid, because of their large intermolecular forces,
and their uncomplicated straight chain structure, are often used to study
single-molecule films. In this experiment, the fatty acids used must be quite
dilute. One drop of pure oleic acid will cover a water surface of about 200/m2

(about 2000 ft2)!
In this experiment the concentration of oleic acid used is only 0.25%

(by volume). The thickness of the film, which is the thickness of one mol-
ecule, can be calculated from a measurement of the size of the film made
by one drop and a knowledge of the volume and concentration of the
drop. If the simplifying assumption is made that the molecules are cubes,
than the volume of one molecule can be calculated from the size and
thickness of the film. Avogadro’s number can be obtained from the known
density of oleic acid and its gram molecular weight. Finally, the mass of
one molecule can be obtained from Avogadro’s number and the molecu-
lar weight.

Note: Since we will be multiplying and dividing numbers expressed in
scientific notation, do not perform this investigation until you have re-
viewed the section on scientific notation in the Mathematics Review.
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Equipment
Cafeteria tray, medicine dropper bulb, micropipet, 25 ml Erlenmeyer flask
and stopper, 10 ml graduated cylinder, powder, 0.25% (volume) solution of
oleic acid in methyl or ethyl alcohol.

INVESTIGATION

1. Withdraw about 5 ml of the oleic acid solution from the stock bottle
and place in the clean, dry Erlenmeyer flask. Keep this closed with the
stopper, when not in use. Otherwise the alcohol will evaporate, chang-
ing the concentration of the oleic acid.

2. In the following, use only the micropipet, not the medicine dropper.
Determine the volume of one drop of oleic acid solution delivered by
the micropipet. This can be done by first placing exactly 2 ml of this
solution in the 10 ml graduated cylinder. Then count the number of
drops necessary to increase this volume to exactly 3 ml. 1 ml is equal
to 1 cm3. In reading the volume, hold the cylinder at eye level and mea-
sure to the bottom of the miniscus.

3. Add tap water to the tray until it is completely covered with water up
to the rim.

4. Evenly dust the surface with a very thin layer of the powder. The pow-
der makes the boundaries of the oleic acid film easily visible. However,
if there is too much powder, it prevents the oleic acid from spreading
out completely. Try not to breathe in this powder.

5. Discard the first drop. Then put one drop of oleic acid solution on the
surface of the water and wait about 30 s. The alcohol in the solution
will evaporate upward and dissolve downward into the water, leaving a
layer of pure oleic acid.

6. Measure the diameters of the film in two directions at right angles,
record, and average.

DATA AND ANALYSIS (IMPORTANT: 
YOU MUST SHOW YOUR WORK.)

1. Number of drops in 1 cm3 of 0.25% oleic acid solution.
2. Volume of one drop of oleic acid solution (in units of cm3).
3. Volume of pure oleic acid in one drop. This value takes into account

the fact that only 0.25% of the volume of the drop is actually oleic
acid.

4. Diameters of the film (in cm) in two perpendicular directions.
5. Average diameter and radius of film (in cm).
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6. Area of film, assuming a circle

A � �r2

� ,

7. Thickness of the film �

� .

8. Volume of one molecule, assuming the molecules are cubes and that they
are in contact with each other. The thickness of the film tells you the
length of the edge of the cube.

9. Gram molecular weight of oleic acid as determined from its formula,
which is C18H34O2. Consult the periodic table.

10. Volume occupied by 1 mol of oleic acid. This can be determined from
the density (0.098 g/cm3) and the gram molecular weight.

11. Avogadro’s number: The number of molecules in 1 mol, assuming the
molecules are cubes. This is determined by knowing the volume of
one molecule and the volume occupied by a mole of molecules.

12. Write down the accepted value of Avogadro’s number.
13. Mass of one molecule, determined from your value of Avogadro’s num-

ber and the molecular weight.

THOUGHT QUESTIONS

1. How do the measured and accepted values of Avogadro’s number com-
pare? Note that since we are dealing with such large numbers and mak-
ing such great assumptions, good agreement is attained if the numbers
are within a “ball park” of each other (i.e., within a power of 10).

2. Define Avogadro’s number in words.
3. In this experiment, we made a number of simplifying assumptions.

What were some of these assumptions? Which were the most impor-
tant? How would each of these assumptions influence our calculation
of Avogadro’s constant?

4. To gain an idea how tiny a molecule of oleic acid really is, how many
molecules would you have to line up end to end to make 1 mm of
length, the smallest interval on a meter stick? Assume the molecules
are cubes and use the length of one side determined in Exercise 7.

5. To gain an idea how enormous Avogadro’s number is, assume that each
molecule of a mole of oleic acid is the size of a cube 1 ft on a side. If
Avogadro’s number of such cubes were placed into a cubic box, 

volume of the acid
���

area
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how long would one side of the box be in feet and in miles (1 mi �
5000 ft)? Hint: First find the volume of the box, then find the length
of one side by taking the cube root. Compare your result to the size
of the Earth (diameter about 8000 mi).

ADDITIONAL INVESTIGATIONS

The following “mini-laboratories” may be utilized or extended to serve as
major explorations pertaining to the latter chapters of the textbook.

• How Do We Know That Atoms Really Exist? The Brownianscope
(Chapter 13).

• Light and Color (Section 14.1).
• Spectroscopy (Chapter 14).
• Radioactivity and Nuclear Half-Life (Chapter 17).
• “The Photoelectric Effect,” an investigation using light and an elec-

troscope, described by P. Hewitt, in Conceptual Physics Laboratory Man-
ual (Boston, MA: Addison-Wesley), pp. 305–307.
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