VOLUMETRIC PROPERTIES OF AQUEOUS SODIUM CHLORIDE SOLUTIONS

This table gives the following properties of aqueous solutions of NaCl as a function of temperature and concentration:

All data refer to a pressure of 100 kPa (1 bar). The reference gives properties over a wider range of temperature and pressure.

Specific volume ν (reciprocal of density) in cm³/g Isothermal compressibility $\kappa_T = -(1/\nu)(\partial\nu/\partial P)_T$ in GPa⁻¹ Cubic expansion coefficient $\alpha_\nu = (1/\nu)(\partial\nu/\partial T)_p$ in kK⁻¹

Reference

Rogers, P. S. Z., and Pitzer, K. S., J. Phys. Chem. Ref. Data, 11, 15, 1982.

Molality in mol/kg									
t/°C	0.100	0.250	0.500	0.750	1.000	2.000	3.000	4.000	5.000
Specific voli	ume v in cm³/g								
0	0.995732	0.989259	0.978889	0.968991	0.959525	0.925426	0.896292	0.870996	0.848646
10	0.995998	0.989781	0.979804	0.970256	0.961101	0.927905	0.899262	0.874201	0.851958
20	0.997620	0.991564	0.981833	0.972505	0.963544	0.930909	0.902565	0.877643	0.855469
25	0.998834	0.992832	0.983185	0.973932	0.965038	0.932590	0.904339	0.879457	0.857301
30	1.000279	0.994319	0.984735	0.975539	0.966694	0.934382	0.906194	0.881334	0.859185
40	1.003796	0.997883	0.988374	0.979243	0.970455	0.938287	0.910145	0.885276	0.863108
50	1.008064	1.002161	0.992668	0.983551	0.974772	0.942603	0.914411	0.889473	0.867241
60	1.0130	1.0071	0.9976	0.9885	0.9797	0.9474	0.9191	0.8940	0.8716
70	1.0186	1.0127	1.0031	0.9939	0.9851	0.9526	0.9240	0.8987	0.8762
80	1.0249	1.0188	1.0092	0.9999	0.9909	0.9581	0.9293	0.9037	0.8809
90	1.0317	1.0256	1.0157	1.0063	0.9972	0.9640	0.9348	0.9089	0.8858
100	1.0391	1.0329	1.0228	1.0133	1.0040	0.9703	0.9406	0.9144	0.8910
Compressib	ility K _r in GPa	-1							
0	0.503	0.492	0.475	0.459	0.443	0.389	0.346	0.315	0.294
10	0.472	0.463	0.449	0.436	0.423	0.377	0.341	0.313	0.294
20	0.453	0.446	0.433	0.422	0.411	0.371	0.338	0.313	0.294
25	0.447	0.440	0.428	0.417	0.407	0.369	0.337	0.313	0.294
30	0.443	0.436	0.425	0.414	0.404	0.367	0.337	0.313	0.294
40	0.438	0.432	0.421	0.411	0.401	0.367	0.338	0.315	0.296
50	0.438	0.431	0.421	0.411	0.402	0.369	0.340	0.317	0.299
60	0.44	0.44	0.43	0.42	0.41	0.38	0.35	0.32	0.30
70	0.45	0.44	0.43	0.42	0.42	0.38	0.36	0.33	0.31
80	0.46	0.45	0.44	0.43	0.43	0.39	0.37	0.34	0.32
90	0.47	0.47	0.46	0.45	0.44	0.41	0.38	0.35	0.33
100	0.49	0.48	0.47	0.46	0.45	0.42	0.39	0.37	0.34
Cubic expa	nsion coefficien	tα, in kK-1							
0	-0.058	-0.026	0.024	0.069	0.110	0.237	0.313	0.355	
10	0.102	0.123	0.156	0.186	0.213	0.297	0.349	0.380	
20	0.218	0.232	0.254	0.274	0.292	0.349	0.384	0.406	
25	0.267	0.278	0.296	0.312	0.327	0.373	0.401	0.420	
30	0.311	0.320	0.334	0.347	0.359	0.395	0.418	0.433	
40	0.389	0.394	0.402	0.410	0.417	0.438	0.451	0.460	
50	0.458	0.460	0.464	0.467	0.470	0.479	0.484	0.486	
60	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	
70	0.58	0.58	0.58	0.57	0.57	0.56	0.55	0.54	
80	0.64	0.63	0.63	0.62	0.61	0.60	0.58	0.56	
90	0.69	0.68	0.67	0.67	0.66	0.63	0.61	0.59	
100	0.74	0.73	0.72	0.71	0.70	0.66	0.64	0.61	