MEAN FREE PATH AND RELATED PROPERTIES OF GASES

In the simplest version of the kinetic theory of gases, molecules are treated as hard spheres of diameter d which make binary collisions only. In this approximation the mean distance traveled by a molecule between successive collisions, the mean free path l, is related to the collision diameter by:

$$l = \frac{kT}{\pi\sqrt{2}Pd^2}$$

where *P* is the pressure, *T* the absolute temperature, and *k* the Boltzmann constant. At standard conditions ($P = 100\ 000$ Pa and T = 298.15 K) this relation becomes:

$$l = \frac{9.27 \cdot 10^{27}}{d^2}$$

where *l* and *d* are in meters.

Using the same model and the same standard pressure, the collision diameter can be calculated from the viscosity η by the kinetic theory relation:

$$\eta = \frac{2.67 \cdot 10^{-20} (MT)^{1/2}}{d^2}$$

where η is in units of μ Pa s and *M* is the molar mass in g/mol. Kinetic theory also gives a relation for the mean velocity $\bar{\nu}$ of molecules of mass *m*:

$$\overline{\nu} = \left(\frac{8kT}{\pi m}\right)^{1/2} = 145.5(T/M)^{1/2} \,\mathrm{m/s}$$

Finally, the mean time τ between collisions can be calculated from the relation $\tau \bar{\nu} = l$.

The table below gives values of l, \bar{v} , and τ for some common gases at 25°C and atmospheric pressure, as well as the value of d, all calculated from measured gas viscosities (see References 2 and 3 and the table "Viscosity of Gases" in this section). It is seen from the above equations that the mean free path varies directly with T and inversely with P, while the mean velocity varies as the square root of T and, in this approximation, is independent of P.

A more accurate model, in which molecular interactions are described by a Lennard-Jones potential, gives mean free path values about 5% lower than this table (see Reference 4).

References

- 1. Reid, R. C., Prausnitz, J. M., and Poling, B. E., *The Properties of Gases and Liquids, Fourth Edition*, McGraw-Hill, New York, 1987.
- Lide, D. R., and Kehiaian, H. V., CRC Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, FL, 1994.
- 3. Vargaftik, N. B., *Tables of Thermophysical Properties of Liquids and Gases, Second Edition,* John Wiley, New York, 1975.
- Kaye, G. W. C., and Laby, T. H., Tables of Physical and Chemical Constants, 15th Edition, Longman, London, 1986.

Gas	d	l	$ar{\mathbf{v}}$	τ
Air	$3.66 \cdot 10^{-10} \text{ m}$	6.91·10 ⁻⁸ m	467 m/s	148 ps
Ar	3.58	7.22	397	182
CO ₂	4.53	4.51	379	119
H ₂	2.71	12.6	1769	71
He	2.15	20.0	1256	159
Kr	4.08	5.58	274	203
N ₂	3.70	6.76	475	142
NH ₃	4.32	4.97	609	82
Ne	2.54	14.3	559	256
O ₂	3.55	7.36	444	166
Xe	4.78	4.05	219	185