PROPERTIES OF ICE AND SUPERCOOLED WATER

The common form of ice at ambient temperature and pressure is hexagonal ice, designated as ice I_h (see phase diagram in Section 12). The data given here refer to that form. Data have been taken from the references indicated; values have been interpolated and smoothed in some cases. All properties are sensitive to the method of preparation of the sample, since air or other gases are sometimes occluded. For this reason there is often disagreement among values found in the literature. Density values (except at 0°C) and the thermal expansion coefficient were calculated from the temperature variation in the crystal lattice constants of ice (see Ref. 1). The thermal expansion coefficient appears to become negative around -200°C, but there is considerable scatter in the data.

Phase transition properties:

Other properties of ice I_h: α_{V} : cubic thermal expansion coefficient, $\alpha_{V} = -(1/V)(\partial V/\partial t)_{n}$

κ[']: adiabatic compressibility, $\kappa = -(1/V)(\partial V/\partial p)_s$ ε : relative permittivity (dielectric constant)

*c*_.: specific heat capacity at constant pressure

 $\Delta_{fus} H(0^{\circ}C) = 333.6 \text{ J/g} (\text{Ref. 2})$

 $\Delta_{cub} H(0^{\circ}C) = 2838 \text{ J/g} \text{ (Ref. 2)}$

k : thermal conductivity

Density of ice I_b and supercooled water in g cm⁻³

t/°C	ρ (ice)	ρ (supercooled water)
	• • •	,
0	0.9167	0.9998
-10	0.9187	0.9982
-20	0.9203	0.9935
-30	0.9216	0.9839
-40	0.9228	
-50	0.9240	
-60	0.9252	
-80	0.9274	
-100	0.9292	
-120	0.9305	
-140	0.9314	
-160	0.9331	
-180	0.9340	
Ref.	1	8

t/°C	$\alpha_{v}/10^{-6} \ ^{\circ}C^{-1}$	$\kappa/10^{-5} MPa^{-1}$	З	$k/W \operatorname{cm}^{-1} {}^{\circ}\mathrm{C}^{-1}$	$c_p/J g^{-1} °C^{-1}$
0	159	13.0	91.6	0.0214	2.11
-10	155	12.8	94.4	0.023	2.03
-20	149	12.7	97.5	0.024	1.96
-30	143	12.5	99.7	0.025	1.88
-40	137	12.4	101.9	0.026	1.80
-50	130	12.2	106.9	0.028	1.72
-60	122	12.1	119.5	0.030	1.65
-80	105	11.9		0.033	1.50
-100	85	11.6		0.037	1.36
-120	77	11.4		0.042	1.23
-140	60	11.3		0.049	1.10
-160	45	11.2		0.057	0.97
-180	30	11.1		0.070	0.83
-200		11.0		0.087	0.67
-220		10.9		0.118	0.50
-240		10.9		0.20	0.29
-250		10.9		0.32	0.17
Ref.	1,2,3,5	1,5	6	7	1

References

- 1. Eisenberg, D., and Kauzmann, W., *The Structure and Properties of Water*, Oxford University Press, Oxford, 1969.
- Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, V/1b, Springer-Verlag, Heidelberg, 1982.
- 3. LaPlaca, S., and Post, B., *Acta Cryst.*, 13, 503, 1960. [Thermal expansion of lattice]
- 4. Brill, R., and Tippe, A., *Acta Cryst.*, 23, 343, 1967. [Thermal expansion of lattice]
- 5. Leadbetter, A. J., *Proc. Roy. Soc. A* 287, 403, 1965. [Compressibility and thermal expansion]
- Auty, R. P., and Cole, R. H., J. Chem. Phys., 20, 1309, 1952. [Dielectric constant]
- 7. Slack, G. A., Phys. Rev. B, 22, 3065, 1980. [Thermal conductivity]
- 8. Hare, D. E., and Sorensen, C. M., *J. Chem. Phys.*, 87, 4840, 1987. [Supercooled water]
- 9. Hobbs, P. V., Ice Physics, Clarendon Press, Oxford, 1974.