REDUCTION AND OXIDATION POTENTIALS FOR CERTAIN ION RADICALS

Petr Vanýsek

There are two tables for ion radicals. The first table lists reduction potentials for organic compounds which produce anion radicals during reduction, a process described as $A + e^- \Rightarrow A^-$. The second table lists oxidation potentials for organic compounds which produce cation radicals during oxidation, a process described as $A \Rightarrow A^+ + e^-$. To obtain reduction potential for a reverse reaction, the sign for the potential is changed.

Unlike the table of the Electrochemical Series, which lists *stan-dard* potentials, values for radicals are experimental values with experimental conditions given in the second column. Since the measurements leading to potentials for ion radicals are very dependent on conditions, an attempt to report standard potentials for radicals would serve no useful purpose. For the same reason, the potentials are also reported as experimental values, usually a half-wave potential ($E_{1/2}$ in polarography) or a peak potential (E_p in cyclic voltammetry). Unless otherwise stated, the values are reported vs. SCE (saturated calomel electrode). To obtain a value vs.

normal hydrogen electrode, 0.241 V has to be added to the SCE values. All the ion radicals chosen for inclusion in the tables result from electrochemically reversible reactions. More detailed data on ion radicals can be found in the *Encyclopedia of Electrochemistry of Elements*, (A. J. Bard, Ed.), Vol. XI and XII in particular, Marcel Dekker, New York, 1978.

Abbreviations are: CV — cyclic voltammetry; DMF — N,N-Dimethylformamide; $E \operatorname{swp}$ — potential sweep; E° — standard potential; E_{p} — peak potential; $E_{p/2}$ — half-peak potential; $E_{1/2}$ — half wave potential; M — mol/L; MeCN — acetonitrile; pol — polarography; rot Pt dsk — rotated Pt disk; SCE — saturated calomel electrode; TBABF₄ — tetrabutylammonium tetrafluoroborate; TBAI — tetrabutylammonium iodide; TBAP — tetrabutylammonium perchlorate; TEAB — tetraethylammonium bromide; TEAP — tetraethylammonium perchlorate; THF — tetrahydrofuran; TPACF₃SO₃ — tetrapropylammonium trifluoromethanesulfite; TPAP — tetrapropylammonium perchlorate; and wr — wire.

Potential

Reduction Potentials (Products are Anion Radicals)

Substance	Conditions/electrode/technique	V (vs. SCE)
Acetone	DMF, 0.1 <i>M</i> TEABr/Hg/pol	$E_{1/2} = -2.84$
1-Naphthyphenylacetylene	DMF, 0.03 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.91$
1-Naphthalenecarboxyaldehyde	-/Hg/pol	$E_{1/2}^{1/2} = -0.91$
2-Naphthalenecarboxyaldehyde	-/Hg/pol	$E_{1/2}^{1/2} = -0.96$
2-Phenanthrenecarboxaldehyde	-/Hg/pol	$E_{1/2}^{1/2} = -1.00$
3-Phenanthrenecarboxaldehyde	-/Hg/pol	$E_{1/2}^{1/2} = -0.94$
9-Phenanthrenecarboxaldehyde	-/Hg/pol	$E_{1/2}^{1/2} = -0.83$
1-Anthracenecarboxaldehyde	-/Hg/pol	$E_{1/2}^{1/2} = -0.75$
1-Pyrenecarboxaldehyde	-/Hg/pol	$E_{1/2}^{1/2} = -0.76$
2-Pyrenecarboxaldehyde	-/Hg/pol	$E_{1/2}^{1/2} = -1.00$
Anthracene	DMF, 0.1 M TBAP/Pt dsk/CV	$E_{\rm n}^{1/2} = -2.00$
	DMF, 0.5 <i>M</i> TBABF,/Hg/CV	$E_{1/2}^{p} = -1.93$
	MeCN, 0.1 M TEAP/Hg/CV	$E_{1/2}^{1/2} = -2.07$
	DMF, 0.1 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.92$
9,10-Dimethylanthracene	DMF, 0.1 M TBAP/Pt/CV	$E_{\rm n}^{1/2} = -2.08$
	MeCN, 0.1 M TBAP/Pt/CV	$E_{p}^{p} = -2.10$
1-Phenylanthracene	DMF, 0.5 M TBABF,/Hg/CV	$E_{1/2}^{p} = -1.91$
	DMF, 0.1 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.878$
2-Phenylanthracene	DMF, 0.1 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.875$
8-Phenylanthracene	DMF, 0.5 <i>M</i> TBABF,/Hg/CV	$E_{1/2}^{1/2} = -1.91$
9-Phenylanthracene	DMF, 0.5 <i>M</i> TBABF,/Hg/CV	$E_{1/2}^{1/2} = -1.93$
	DMF, 0.1 <i>M</i> TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.863$
1,8-Diphenylanthracene	DMF, 0.5 M TBABF,/Hg/CV	$E_{1/2}^{1/2} = -1.88$
1,9-Diphenylanthracene	DMF, 0.1 <i>M</i> TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.846$
1,10-Diphenylanthracene	DMF, 0.1 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.786$
8,9-Diphenylanthracene	DMF, 0.5 <i>M</i> TBABF ₄ /Hg/CV	$E_{1/2}^{1/2} = -1.90$
9,10-Diphenylanthracene	MeCN, 0.1 M TBAP/rot Pt/E swp	$E_{1/2}^{1/2} = -1.83$
	DMF, 0.1 <i>M</i> TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.835$
1,8,9-Triphenylanthracene	DMF, 0.5 <i>M</i> TBABF ₄ /Hg/CV	$E_{1/2}^{1/2} = -1.85$
1,8,10-Triphenylanthracene	DMF, 0.5 <i>M</i> TBABF ₄ /Hg/CV	$E_{1/2} = -1.81$
9,10-Dibiphenylanthracene	MeCN, 0.1 M TBAP/rot Pt/E swp	$E_{1/2} = -1.94$
Benz(a)anthracene	MeCN, 0.1 M TEAP/Hg/CV	$E_{1/2} = -2.11$
	MeCN, 0.1 M TEAP/Hg/pol	$E_{1/2}^{-1} = -2.40^{a}$
Azulene	DMF, 0.1 <i>M</i> TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.10^{\circ}$
Annulene	DMF, 0.5 <i>M</i> TBAP 0°C/Hg/pol	$E_{1/2} = -1.23$
Benzaldehyde	DMF, 0.1 M TBAP/Hg/pol	$E_{1/2}^{1/2} = -1.67$
Benzil	DMSO, 0.1 <i>M</i> TBAP/Hg/pol	$E_{1/2}^{-1} = -1.04$
Benzophenone	-/Hg/pol	$E_{1/2}^{-1} = -1.80$
-	DMF/Pt dsk/CV	$E^{\circ} = -1.72$
Chrysene	MeCN, 0.1 M TEAP/Hg/pol	$E_{1/2} = -2.73^{\text{a}}$
Fluoranthrene	DMF, 0.1 M TBAP/Pt dsk/CV	$E_{\rm p} = -1.76$
Cyclohexanone	DMF, 0.1 M TEABr/Hg/pol	$\dot{E}_{1/2} = -2.79$

Reduction and Oxidation Potentials for Certain Ion Radicals

		Potential
Substance	Conditions/electrode/technique	V (vs. SCE)
5,5-Dimethyl-3-phenyl-2-cyclohexen-1-one	DMF, 0.5 <i>M</i> /Hg/pol	$E_{1/2} = -1.71$
1,2,3-Indanetrione hydrate (ninhydrin)	DMF, 0.2 <i>M</i> NaNO ₃ /Hg/pol	$E_{1/2} = -0.039$
Naphthacene	DMF, 0.1 <i>M</i> TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.53$
Naphthalene	DMF, 0.1 <i>M</i> TBAP/Pt dsk/CV	$E_{\rm n}^{1/2} = -2.55$
•	DMF, 0.5 M TBABF,/Hg/CV	$E_{1/2}^{p} = -2.56$
	DMF, MeCN, 0.1 <i>M</i> ⁴ TEAP/Hg/CV	$E_{1/2}^{1/2} = -2.63$
	DMF, 0.1 <i>M</i> TBAI/Hg/pol	$E_{1/2}^{1/2} = -2.50$
1-Phenylnaphthalene	DMF. 0.5 M TBABF /Hg/CV	$E_{1/2}^{1/2} = -2.36$
1.2-Diphenvlnaphthalene	DMF. 0.5 M TBABF 4 /Hg/CV	$E_{1/2}^{1/2} = -2.25$
Cyclopentanone	DME 0.1 <i>M</i> TEABr/Hg/pol	$E^{1/2} = -2.82$
Phenanthrene	MeCN. 0.1 <i>M</i> TBAP/Pt wr/CV	E = -2.47
	MeCN 0.1 M TEAP/Hg/pol	$E_{1/2} = -2.88^{a}$
Pentacene	THE 0.1 M TBAP/rot Pt dsk/F swp	$E_{1/2} = -1.40$
Pervlene	MeCN 0.1 M TEAP/Hg/CV	$E_{1/2} = -1.73$
1 3-Diphenyl-1 3-propagedione	DMSO 0.2 M TBAP/Hg/CV	$E_{1/2} = -1.73$ $F_{1/2} = -1.42$
2.2 Dimethyl 1.2 diphenyl 1.3 propandiona	DMSO, TRAD/H α/CV	$E_{1/2} = -1.42$ $E_{1/2} = -1.80$
Durono	DME 0.1 M TRAD/Dt/CV	$L_{1/2} = -1.00$ $E_{1/2} = 2.14$
ryrene	D with $0.1 M$ Tr $\Delta D/H \alpha/mal$	$L_{\rm p} = -2.14$
Dinkonstaulfono	DME TEAP.	$E_{1/2} = -2.49^{-1}$
Trial condense	DIVIE, I LADI	$E_{1/2} = -2.16$
	MeCN, 0.1 M TEAP/Hg/pol	$E_{1/2} = -2.8/^{\circ}$
9,10-Anthraquinone	DMF, 0.5 M 1 BAP, 20'/Pt dsk/C V	$E_{1/2} = -1.01$
1,4-Benzoquinone	MeCN, $0.1 M$ TEAP/Pt/CV	$E_{\rm p} = -0.54$
1,4-Naphthonydroquinone, dipotassium sait	DMF, 0.5 M TBAP, 20'/Pt dsk/CV	$E_{1/2} = -1.55$
Rubrene	DMF, 0.1 <i>M</i> TBAP/Pt dsk/CV	$E_{\rm p} = -1.48$
	DMF, 0.1 <i>M</i> TBAI/Hg/pol	$E_{1/2} = -1.410$
Benzocyclooctatetraene	THF, 0.1 <i>M</i> TBAP/Hg/pol	$E_{1/2} = -2.13$
sym-Dibenzocyclooctatetraene	THF, 0.1 <i>M</i> TBAP/Hg/pol	$E_{1/2} = -2.29$
Ubiquinone-6	MeCN, 0.1 <i>M</i> TEAP/Pt/CV	$E_{\rm p} = -1.05^{\rm e}$
(9-Phenyl-fluorenyl) ⁺	$10.2 M H_2 SO_4/Hg/CV$	$E_{\rm p} = -0.01^{\rm b}$
(Triphenylcyclopropenyl) ⁺	MeCN, 0.1 M TEAP/Hg/CV	$E_{\rm p} = -1.87$
(Triphenylmethyl) ⁺	MeCN, 0.1 M TBAP/Hg/pol	$\dot{E_{1/2}} = 0.27$
	H ₂ SO ₄ , 10.2 <i>M</i> /Hg/CV	$E_{\rm p} = -0.58^{\rm b}$
(Tribiphenylmethyl) ⁺	MeCN, 0.1 M TBAP/Hg/pol	$E_{1/2} = 0.19$
(Tri-4- <i>t</i> -butyl-5-phenylmethyl) ⁺	MeCN, 0.1 <i>M</i> TBAP/Hg/pol	$E_{1/2} = 0.13$
(Tri-4-isopropylphenylmethyl)*	MeCN, 0.1 <i>M</i> TBAP/Hg/pol	$E_{1/2} = 0.07$
(Tri-4-methylphenylmethyl)*	MeCN, 0.1 M TBAP/Hg/pol	$E_{1/2}^{1/2} = 0.05$
(Tri-4-cyclopropylphenylmethyl)*	MeCN, 0.1 <i>M</i> TBAP/Hg/pol	$E_{1/2}^{1/2} = 0.01$
(Tropylium)+	MeCN, 0.1 M TBAP/Hg/pol	$E_{1/2}^{1/2} = -0.17$
	DMF, 0.15 <i>M</i> TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.55$
	DMF, 0.15 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.55$
	DMF, 0.15 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.57$
	DMF, 0.15 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.60$
	DMF, 0.15 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.87$
	DMF, 0.15 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -1.96$
	DMF, 0.15 M TBAI/Hg/pol	$E_{1/2}^{1/2} = -2.05$
		1/2

Oxidation Potentials (Products are Cation Radicals)

9,10-DipropylanthraceneMeCN, 0.1 M TEAP/Pt/CV E_p 1,8-Diphenylanthracene CH_2Cl_2 , 0.2 M TPrACF_3SO_3/rot Pt wr/E swp E_{11} 8,9-Diphenylanthracene CH_2Cl_2 , 0.2 M TPrACF_3SO_3/rot Pt wr/E swp E_{11} 9,10-DiphenylanthraceneMeCN/Pt/CV E_p 9,10-DiphenylanthraceneMeCN, 0.1 M TBAP/Pt/CV E_p 9,10-DiphenylanthraceneMeCN, 0.1 M TBAP/Pt/CV E_p PeryleneMeCN, 0.1 M TBAP/Pt/CV E_p PyreneDMF, 0.1 M TBAP/Pt dsk/CV E_p RubreneDMF, 0.1 M TBAP/Pt dsk/CV E_p 1,4-DithiabenzeneMeCN, 0.1 M TEAP/Pt dsk/rot E_1 1,4-DithianaphthaleneMeCN, 0.1 M TEAP/Pt dsk/rot E_1	$r_{2}^{2} = +1.30$ = +1.22 = +1.22 = +1.34 = +1.25 = +1.10 = +0.35 ^d $r_{2}^{2} = +0.69$ $r_{2}^{2} = +0.80$
1,4-DithiabelizerieMeCN, 0.1 // TEAP/Pt dsk/rot $E_{1/}$ 1,4-DithianaphthaleneMeCN, 0.1 // TEAP/Pt dsk/rot $E_{1/}$	$\frac{1}{2} = +0.89$ $\frac{1}{2} = +0.80$
Thianthrene $0.1 M$ TPAP/Pt/CV $E_{1/}$	$_{/2} = +1.28$

^a vs 0.01 M Ag/AgClO₄ ^b vs. Hg/Hg₂SO₄, 17 M H₂SO₄ ^c vs Hg pool ^d vs Ag/saturated AgNO₃ ^e vs Ag/0.01 M Ag+