SOLUBILITY PRODUCT CONSTANTS

The solubility product constant $K_{\rm sp}$ is a useful parameter for calculating the aqueous solubility of sparingly soluble compounds under various conditions. It may be determined by direct measurement or calculated from the standard Gibbs energies of formation $\Delta_{\rm f}G^{\circ}$ of the species involved at their standard states. Thus if $K_{\rm sp} = [{\rm M}^+]^m$, $[{\rm A}^-]^n$ is the equilibrium constant for the reaction

$$M_{...}A_{..}(s) \rightleftharpoons mM^{+}(aq) + nA^{-}(aq),$$

where $M_m A_n$ is the slightly soluble substance and M^+ and A^- are the ions produced in solution by the dissociation of $M_m A_n$, then the Gibbs energy change is

$$\Delta G^{\circ} = m \Delta_{r} G^{\circ} (M^{+}, aq) + n \Delta_{r} G^{\circ} (A^{-}, aq) - \Delta_{r} G^{\circ} (M_{u}, A_{u}, s)$$

The solubility product constant is calculated from the equation

$$\ln K_{\rm ep} = -\Delta G^{\circ}/RT$$

The first table below gives selected values of $K_{\rm sp}$ at 25°C. Many of these have been calculated from standard state thermodynamic data in References 1 and 2; other values are taken from publications of the IUPAC Solubility Data Project (References 3 to 7).

The above formulation is not convenient for treating sulfides because the S^{-2} ion is usually not present in significant concentrations (see Reference 8). This is due to the hydrolysis reaction

$$S^{-2} + H_2O \rightleftharpoons HS^- + OH^-$$

Compound	Formula	K_{sp}
Aluminum phosphate	$AlPO_4$	$9.84 \cdot 10^{-21}$
Barium bromate	Ba(BrO ₃) ₂	$2.43\cdot10^{-4}$
Barium carbonate	BaCO ₃	$2.58 \cdot 10^{-9}$
Barium chromate	BaCrO ₄	$1.17 \cdot 10^{-10}$
Barium fluoride	BaF ₂	$1.84\cdot10^{-7}$
Barium hydroxide octahydrate	$Ba(OH)_2 \cdot 8H_2O$	$2.55\cdot 10^{-4}$
Barium iodate	Ba(IO ₃) ₂	$4.01\cdot10^{-9}$
Barium iodate monohydrate	$Ba(IO_3)_2 \cdot H_2O$	$1.67 \cdot 10^{-9}$
Barium molybdate	$BaMoO_4$	$3.54\cdot10^{-8}$
Barium nitrate	$Ba(NO_3)_2$	$4.64\cdot10^{-3}$
Barium selenate	$BaSeO_4$	$3.40\cdot10^{-8}$
Barium sulfate	BaSO ₄	$1.08 \cdot 10^{-10}$
Barium sulfite	BaSO ₃	$5.0\cdot10^{\scriptscriptstyle -10}$
Beryllium hydroxide	Be(OH) ₂	$6.92 \cdot 10^{-22}$
Bismuth arsenate	$BiAsO_4$	$4.43 \cdot 10^{-10}$
Bismuth iodide	BiI_3	$7.71 \cdot 10^{-19}$
Cadmium arsenate	$Cd_3(AsO_4)_2$	$2.2\cdot10^{\scriptscriptstyle{-33}}$
Cadmium carbonate	CdCO ₃	$1.0 \cdot 10^{-12}$
Cadmium fluoride	CdF_2	$6.44\cdot10^{\scriptscriptstyle -3}$
Cadmium hydroxide	Cd(OH) ₂	$7.2\cdot10^{\scriptscriptstyle -15}$
Cadmium iodate	$Cd(IO_3)_2$	$2.5\cdot10^{-8}$
Cadmium oxalate trihydrate	$CdC_2O_4 \cdot 3H_2O$	$1.42\cdot10^{-8}$
Cadmium phosphate	$Cd_3(PO_4)_2$	$2.53\cdot10^{-33}$
Calcium carbonate (calcite)	CaCO ₃	$3.36 \cdot 10^{-9}$
Calcium fluoride	CaF ₂	$3.45\cdot 10^{-11}$
Calcium hydroxide	Ca(OH) ₂	$5.02\cdot10^{-6}$

which is strongly shifted to the right except in very basic solutions. Furthermore, the equilibrium constant for this reaction, which depends on the second ionization constant of H_2S , is poorly known. Therefore it is more useful in the case of sulfides to define a different solubility product $K_{\rm soa}$ based on the reaction

$$M_m S_n(s) + 2H^+ \rightleftharpoons mM^+ + nH_2S$$
 (aq)

Values of $K_{\rm spa}$, taken from Reference 8, are given for several sulfides in the auxiliary table following the main table. Additional discussion of sulfide equilibria may be found in References 7 and 9.

References

- Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 2, 1982.
- Garvin, D., Parker, V. B., and White, H. J., CODATA Thermodynamic Tables, Hemisphere, New York, 1987.
- Solubility Data Series (53 Volumes), International Union of Pure and Applied Chemistry, Pergamon Press, Oxford, 1979–1992.
- 4. Clever, H. L., and Johnston, F. J., J. Phys. Chem. Ref. Data, 9, 751, 1980.
- 5. Marcus, Y., J. Phys. Chem. Ref. Data, 9, 1307, 1980.
- Clever, H. L., Johnson, S. A., and Derrick, M. E., J. Phys. Chem. Ref. Data, 14, 631, 1985.
- Clever, H. L., Johnson, S. A., and Derrick, M. E., J. Phys. Chem. Ref. Data, 21, 941, 1992.
- 8. Myers, R. J., J. Chem. Educ., 63, 687, 1986.
- 9. Licht, S., J. Electrochem. Soc., 135, 2971, 1988.

Compound	Formula	K_{sp}
Calcium iodate	Ca(IO ₃) ₂	$6.47 \cdot 10^{-6}$
Calcium iodate hexahydrate	$Ca(IO_3)_2 \cdot 6H_2O$	$7.10\cdot10^{\scriptscriptstyle -7}$
Calcium molybdate	CaMoO ₄	$1.46\cdot10^{-8}$
Calcium oxalate monohydrate	$CaC_2O_4 \cdot H_2O$	$2.32\cdot10^{-9}$
Calcium phosphate	$Ca_3(PO_4)_2$	$2.07 \cdot 10^{-33}$
Calcium sulfate	CaSO ₄	$4.93\cdot10^{\scriptscriptstyle -5}$
Calcium sulfate dihydrate	CaSO ₄ · 2H ₂ O	$3.14\cdot10^{\scriptscriptstyle -5}$
Calcium sulfite hemihydrate	$CaSO_3 \cdot 0.5H_2O$	$3.1\cdot 10^{-7}$
Cesium perchlorate	CsClO ₄	$3.95\cdot10^{\scriptscriptstyle -3}$
Cesium periodate	CsIO ₄	$5.16\cdot10^{-6}$
Cobalt(II) arsenate	$Co_3(AsO_4)_2$	$6.80 \cdot 10^{-29}$
Cobalt(II) hydroxide (blue)	Co(OH) ₂	$5.92\cdot10^{\scriptscriptstyle -15}$
Cobalt(II) iodate dihydrate	$Co(IO_3)_2 \cdot 2H_2O$	$1.21\cdot10^{\scriptscriptstyle -2}$
Cobalt(II) phosphate	$Co_3(PO_4)_2$	$2.05\cdot10^{\scriptscriptstyle -35}$
Copper(I) bromide	CuBr	$6.27 \cdot 10^{-9}$
Copper(I) chloride	CuCl	$1.72\cdot10^{-7}$
Copper(I) cyanide	CuCN	$3.47 \cdot 10^{-20}$
Copper(I) iodide	CuI	$1.27\cdot 10^{-12}$
Copper(I) thiocyanate	CuSCN	$1.77 \cdot 10^{-13}$
Copper(II) arsenate	$Cu_3(AsO_4)_2$	$7.95\cdot10^{\scriptscriptstyle -36}$
Copper(II) iodate monohydrate	$Cu(IO_3)_2 \cdot H_2O$	$6.94 \cdot 10^{-8}$
Copper(II) oxalate	CuC ₂ O ₄	$4.43 \cdot 10^{-10}$
Copper(II) phosphate	$Cu_3(PO_4)_2$	$1.40\cdot10^{\scriptscriptstyle -37}$
Europium(III) hydroxide	Eu(OH) ₃	$9.38\cdot10^{\scriptscriptstyle -27}$
Gallium(III) hydroxide	Ga(OH) ₃	$7.28\cdot10^{\scriptscriptstyle -36}$
Iron(II) carbonate	FeCO ₃	$3.13\cdot 10^{-11}$

Compound	Formula	K_{sp}	Compound	Formula	K_{sp}
Iron(II) fluoride	FeF,	$2.36 \cdot 10^{-6}$	Radium iodate	Ra(IO ₃) ₂	1.16 · 10 ⁻⁹
Iron(II) hydroxide	Fe(OH),	$4.87 \cdot 10^{-17}$	Radium sulfate	RaSO ₄	$3.66 \cdot 10^{-11}$
Iron(III) hydroxide	Fe(OH) ₃	$2.79 \cdot 10^{-39}$	Rubidium perchlorate	RbClO ₄	$3.00 \cdot 10^{-3}$
Iron(III) phosphate dihydrate	FePO ₄ · 2H ₂ O	$9.91 \cdot 10^{-16}$	Scandium fluoride	ScF ₃	$5.81\cdot10^{-24}$
Lanthanum iodate	La(IO ₃) ₃	$7.50 \cdot 10^{-12}$	Scandium hydroxide	Sc(OH) ₃	$2.22\cdot10^{\scriptscriptstyle -31}$
Lead(II) bromide	PbBr ₂	$6.60 \cdot 10^{-6}$	Silver(I) acetate	AgCH ₃ COO	$1.94\cdot10^{\scriptscriptstyle -3}$
Lead(II) carbonate	PbCO ₃	$7.40 \cdot 10^{-14}$	Silver(I) arsenate	Ag_3AsO_4	$1.03 \cdot 10^{-22}$
Lead(II) chloride	PbCl ₂	$1.70 \cdot 10^{-5}$	Silver(I) bromate	AgBrO ₃	$5.38\cdot10^{-5}$
Lead(II) fluoride	PbF ₂	$3.3 \cdot 10^{-8}$	Silver(I) bromide	AgBr	$5.35\cdot10^{\scriptscriptstyle -13}$
Lead(II) hydroxide	Pb(OH),	$1.43 \cdot 10^{-20}$	Silver(I) carbonate	Ag ₂ CO ₃	$8.46 \cdot 10^{-12}$
Lead(II) iodate	Pb(IO ₃) ₂	$3.69 \cdot 10^{-13}$	Silver(I) chloride	AgCl	$1.77\cdot 10^{-10}$
Lead(II) iodide	PbI ₂	9.8 · 10-9	Silver(I) chromate	Ag ₂ CrO ₄	$1.12 \cdot 10^{-12}$
Lead(II) selenate	PbSeO ₄	$1.37 \cdot 10^{-7}$	Silver(I) cyanide	AgCN	$5.97 \cdot 10^{-17}$
Lead(II) sulfate	PbSO ₄	$2.53 \cdot 10^{-8}$	Silver(I) iodate	AgIO ₃	$3.17\cdot10^{-8}$
Lithium carbonate	Li ₂ CO ₃	$8.15 \cdot 10^{-4}$	Silver(I) iodide	AgI	$8.52 \cdot 10^{-17}$
Lithium fluoride	LiF	$1.84\cdot10^{-3}$	Silver(I) oxalate	$Ag_2C_2O_4$	$5.40 \cdot 10^{-12}$
Lithium phosphate	Li ₃ PO ₄	$2.37 \cdot 10^{-11}$	Silver(I) phosphate	Ag_3PO_4	$8.89 \cdot 10^{-17}$
Magnesium carbonate	MgCO ₃	$6.82 \cdot 10^{-6}$	Silver(I) sulfate	Ag_2SO_4	$1.20\cdot10^{\scriptscriptstyle -5}$
Magnesium carbonate	$MgCO_3 \cdot 3H_2O$	$2.38 \cdot 10^{-6}$	Silver(I) sulfite	Ag_2SO_3	$1.50 \cdot 10^{-14}$
trihydrate			Silver(I) thiocyanate	AgSCN	$1.03\cdot 10^{-12}$
Magnesium carbonate	$MgCO_3 \cdot 5H_2O$	$3.79 \cdot 10^{-6}$	Strontium arsenate	$Sr_3(AsO_4)_2$	$4.29 \cdot 10^{-19}$
pentahydrate		7.4.5.40.11	Strontium carbonate	SrCO ₃	$5.60 \cdot 10^{-10}$
Magnesium fluoride	MgF ₂	5.16 · 10 ⁻¹¹	Strontium fluoride	SrF ₂	$4.33\cdot10^{-9}$
Magnesium hydroxide	Mg(OH) ₂	5.61 · 10 ⁻¹²	Strontium iodate	$Sr(IO_3)_2$	$1.14\cdot10^{-7}$
Magnesium oxalate dihydrate	$MgC_2O_4 \cdot 2H_2O$	4.83 · 10 ⁻⁶	Strontium iodate	$Sr(IO_3)_2 \cdot H_2O$	$3.77\cdot10^{-7}$
Magnesium phosphate	$Mg_3(PO_4)_2$	$1.04 \cdot 10^{-24}$	monohydrate		
Manganese(II) carbonate	MnCO ₃	$2.24 \cdot 10^{-11}$	Strontium iodate hexahydrate	$Sr(IO_3)_2 \cdot 6H_2O$	$4.55 \cdot 10^{-7}$
Manganese(II) iodate	Mn(IO ₃) ₂	$4.37 \cdot 10^{-7}$	Strontium sulfate	$SrSO_4$	$3.44 \cdot 10^{-7}$
Manganese(II) oxalate dihydrate	$MnC_2O_4 \cdot 2H_2O$	$1.70 \cdot 10^{-7}$	Thallium(I) bromate	TlBrO ₃	$1.10 \cdot 10^{-4}$
Mercury(I) bromide	Hg ₂ Br ₂	$6.40 \cdot 10^{-23}$	Thallium(I) bromide	TlBr	$3.71 \cdot 10^{-6}$
Mercury(I) carbonate	Hg ₂ CO ₃	$3.6 \cdot 10^{-17}$	Thallium(I) chloride	TlCl	$1.86 \cdot 10^{-4}$
Mercury(I) chloride	Hg ₂ Cl ₂	$1.43 \cdot 10^{-18}$	Thallium(I) chromate	Tl ₂ CrO ₄	$8.67 \cdot 10^{-13}$
Mercury(I) fluoride	Hg ₂ F ₂	$3.10 \cdot 10^{-6}$	Thallium(I) iodate	$TliO_3$	$3.12 \cdot 10^{-6}$
Mercury(I) iodide	Hg ₂ I ₂	$5.2 \cdot 10^{-29}$	Thallium(I) iodide	TlI	$5.54\cdot10^{-8}$
Mercury(I) oxalate	$Hg_2C_2O_4$	$1.75 \cdot 10^{-13}$	Thallium(I) thiocyanate	TISCN	$1.57 \cdot 10^{-4}$
Mercury(I) sulfate	Hg ₂ SO ₄	$6.5 \cdot 10^{-7}$	Thallium(III) hydroxide	Tl(OH) ₃	$1.68 \cdot 10^{-44}$
Mercury(I) thiocyanate	$Hg_2(SCN)_2$	$3.2 \cdot 10^{-20}$	Tin(II) hydroxide	Sn(OH) ₂	$5.45 \cdot 10^{-27}$
Mercury(II) bromide	HgBr ₂	$6.2 \cdot 10^{-20}$	Yttrium carbonate	$Y_2(CO_3)_3$	$1.03 \cdot 10^{-31}$
Mercury(II) iodide	HgI ₂	$2.9 \cdot 10^{-29}$	Yttrium fluoride	YF_3	$8.62 \cdot 10^{-21}$
Neodymium carbonate	$Nd_2(CO_3)_3$	$1.08 \cdot 10^{-33}$	Yttrium hydroxide	Y(OH) ₃	$1.00 \cdot 10^{-22}$
Nickel(II) carbonate	NiCO ₃	$1.42 \cdot 10^{-7}$	Yttrium iodate	$Y(IO_3)_3$	$1.12 \cdot 10^{-10}$
Nickel(II) hydroxide	Ni(OH),	$5.48 \cdot 10^{-16}$	Zinc arsenate	$\operatorname{Zn_3(AsO_4)_2}$	$2.8 \cdot 10^{-28}$
Nickel(II) iodate	Ni(IO ₃) ₂	$4.71 \cdot 10^{-5}$	Zinc carbonate	ZnCO ₃	$1.46 \cdot 10^{-10}$
Nickel(II) phosphate	$Ni_3(PO_4)_2$	$4.74 \cdot 10^{-32}$	Zinc carbonate monohydrate	$ZnCO_3 \cdot H_2O$	$5.42 \cdot 10^{-11}$
Palladium(II) thiocyanate	$Pd(SCN)_2$	$4.39 \cdot 10^{-23}$	Zinc fluoride	ZnF_2	$3.04 \cdot 10^{-2}$
Potassium	K ₂ PtCl ₆	$7.48 \cdot 10^{-6}$	Zinc hydroxide	Zn(OH) ₂	$3 \cdot 10^{-17}$
hexachloroplatinate	26		Zinc iodate dihydrate	$Zn(IO_3)_2 \cdot 2H_2O$	$4.1 \cdot 10^{-6}$
Potassium perchlorate	KClO ₄	$1.05 \cdot 10^{-2}$	Zinc oxalate dihydrate	$ZnC_2O_4 \cdot 2H_2O$	$1.38 \cdot 10^{-9}$
Potassium periodate	KIO ₄	$3.71 \cdot 10^{-4}$	Zinc selenide	ZnSe	$3.6 \cdot 10^{-26}$
Praseodymium hydroxide	Pr(OH) ₃	$3.39 \cdot 10^{-24}$	Zinc selenite monohydrate	$ZnSeO_3 \cdot H_2O$	$1.59 \cdot 10^{-7}$
	3	,			

Sulfides		
Compound	Formula	$K_{_{ m spa}}$
Cadmium sulfide	CdS	$8 \cdot 10^{-7}$
Copper(II) sulfide	CuS	$6\cdot 10^{-16}$
Iron(II) sulfide	FeS	$6\cdot 10^2$
Lead(II) sulfide	PbS	$3\cdot 10^{-7}$
Manganese(II) sulfide (green)	MnS	$3\cdot 10^7$
Mercury(II) sulfide (red)	HgS	$4\cdot 10^{-33}$
Mercury(II) sulfide (black)	HgS	$2\cdot 10^{-32}$
Silver(I) sulfide	Ag_2S	$6\cdot 10^{-30}$
Tin(II) sulfide	SnS	$1\cdot 10^{-5}$
Zinc sulfide (sphalerite)	ZnS	$2\cdot 10^{-4}$
Zinc sulfide (wurtzite)	ZnS	$3\cdot 10^{-2}$