BOND LENGTHS AND ANGLES IN GAS-PHASE MOLECULES

This table is reprinted from *Kagaku Benran, 3rd Edition*, Vol. II, pp. 649–661 (1984), with permission of the publisher, Maruzen Company, LTD. (Copyright 1984 by the Chemical Society of Japan). Translation was carried out by Kozo Kuchitsu.

Internuclear distances and bond angles are represented in units of Å (1 Å = 10^{-10} m) and degrees, respectively. The same but inequivalent atoms are discriminated by subscripts a, b, etc. In some molecules ax for axial and eq for equatorial are also used. All measurements were made in the gas phase. The methods used are abbreviated as follows. UV: ultraviolet (including visible) spectroscopy; IR: infrared spectroscopy; R: Raman spectroscopy; MW: microwave spectroscopy; ED: electron diffraction; NMR: nuclear magnetic resonance; LMR: laser magnetic resonance; EPR: electron paramagnetic resonance; MBE: molecular beam electric resonance. If two methods were used jointly for structure determination, they are listed together, as (ED, MW). If the numerical values listed refer to the equilibrium values, they are specified by r_{1} and θ . In other cases the listed values represent various average values in vibrational states; it is frequently the case that they represent the r_s structure derived from several isotopic species for MW or the r_{a} structure (i.e., the average internuclear distances at thermal equilibrium) for ED. These internuclear distances for the same atom pair with different definitions may sometimes differ as much

as 0.01 Å. Appropriate comments are made on the symmetry and conformation in the equilibrium structure.

In general, the numerical values listed in the following tables contain uncertainties in the last digits. However, for certain molecules such as diatomic molecules, with experimental uncertainties of the order of 10^{-5} Å or smaller, numerical values are listed to four decimal places.

References

- L. E. Sutton, Ed., *Tables of Interatomic Distances and Configuration* in *Molecules and Ions*, The Chemical Society Special Publication, No. 11, 18, The Chemical Society (London) (1958, 1965).
- K.-H. Hellwege, Ed., Landolt-Börnstein Numerical Data and Functional Relations in Science and Technology, New Series, II/7, J. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki, C. S. Pote, with assistance of I. Buck and B. Starck, Structure Data of Free Polyatomic Molecules, Springer-Verlag (1976).
- K. P. Huber and G. Herzberg, *Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules*, Van Nostrand Reinhold Co., London (1979).
- 4. B. Starck, Microwave Catalogue and Supplements.
- 5. B. Starck, Electron Diffraction Catalogue and Supplements.

STRUCTURES OF ELEMENTS AND INORGANIC COMPOUNDS Compounds are arranged in alphabetical order by their chemical formulas

(Lengths in Å and Angles in Degrees)

Compound			Structure			Method
AgBr	Ag—Br (r_{e})	2.3931				MW
AgCl	Ag—Cl (r_{e})	2.2808				MW
AgF	Ag - F(r)	1.9832				MW
AgH	Ag—H (r_e)	1.617				UV
AgI	$Ag-I(r_e)$	2.5446				MW
AgO	Ag $-O(r_e)$	2.0030				UV
AlBr	Al—Br (r_e)	2.295				UV
AlCl	Al—Cl (r_e)	2.1301				MW
AlF	Al—F (r_{e})	1.6544				MW
AlH	Al—H (r_e)	1.6482				UV
AlI	Al—I (r_e)	2.5371				MW
AlO	Al $-O(r_e)$	1.6176				UV
Al ₂ Br ₆	Br_a Br_b Br_a			Al—Br _a	2.22	ED
	Al			Al—Br _b	2.38	
	Br _a Br _b Br _a			$\angle Br_{b}AlBr_{b}$	82	
	u o u			∠Br _a AlBr _a	118	
				(D _{2b})		
Al ₂ Cl ₆	Cl _a Cl _b Cl _a			Al—Cl	2.04	ED
2 0	Al Al			Al—Cl	2.24	
				∠Cl _b AlCl _b	87	
				∠Cl_AlCl_	122	
				(D _{2b})		
AsBr ₃	As—Br	2.324		∠BrAsBr	99.6	ED
AsCl ₂	As—Cl	2.165		∠ClAsCl	98.6	ED, MW
AsF,	As—F	1.710		∠FAsF	95.9	ED, MW
AsF.	F.	As—F	1.711	As—F,	1.656	
5	$\begin{bmatrix} a \\ F_b \end{bmatrix}$	а		(D _{a1})		
	F _b —As			' on'		
	$\stackrel{'}{F_a}$ F_b					

Compound				Structure					Method
AsH ₃	As—H (r_e)		1.511			\angle HAsH (θ_{e})	92.1		MW, IR
AsI ₃	As—I		2.557			∠IAsI	100.2		ED
AuH	$Au - H(r_{e})$		1.5237						UV
BBr ₃	B—Br		1.893			(D _{3b})			ED
BCl	B—Cl		1.742			(D _{3b})			ED
BF	$B-F(r_e)$		1.2626			5 A			UV
BF ₂ H	В—Н	1.189		B—F	1.311		∠FBF	118.3	MW
BF,OH	B—F	1.32		B—O	1.34		O—H	0.941	MW
2	∠FBF	118		∠FBO	123		∠BOH	114.1	
BF,	B—F		1.313			(D_{2b})			ED, IR
BH	B—H (r_)		1.2325			511			UV
BH,PH,	B—P	1.937		B—H	1.212		P—H	1.399	MW
5 5	∠PBH	103.6		∠BPH	116.9		∠HBH	114.6	
	∠HPH	101.3		stagge <i>re</i> d f	orm				
BL	B—I		2.118			(D_{ab})			ED
BN	B-N(r)		1.281			. 30			UV
BO	B = O(r)		1.2045						EPR
BO ₂	B—O		1.265			linear			UV
BS	B—S		1.6091						UV
B ₂ H ₆	H _a , H _b	H,				B—H	1.19		IR, ED
2 0	B B	a				B—H	1.33		
	н н	Ч				В…В	1.77		
	II _a II _b	11 _a				∠H_BH_	122		
						∠H, BH,	97		
B _a H _a O _a	B—O		1.376			∠BOB≃∠OBO	120		ED
B.H.N.	B—N	1.435		B—H	1.26		N—H	1.05	ED
3 6 3	/NBN	118		/BNB	121		(C.)		
BaH	Ba - H(r)		2.2318				(-2)		UV
BaO	Ba = O(r)		1.9397						MW
BaS	Ba = S(r)		2.5074						MBE
BeF	Be— $F(r)$		1.3609						UV
BeH	Be-H(r)		1.3431						UV
BeO	Be—O (r)		1.3308						UV
BiBr	Bi—Br (r)		2.6095						MW
BiBr	Bi—Br		2.63			∠BrBiBr	90	(C_{a})	ED
BiCl	Bi-Cl(r)		2.4716					× 3V′	MW
BiCl	Bi—Cl		2.423			∠ClBiCl	100	(C_{a})	ED
BiF	Bi-F(r)		2.0516					× 3V′	MW
BiH	Bi - H(r)		1.805						UV
BiI	Bi-I(r)		2.8005						MW
BiO	Bi - O(r)		1.934						UV
BrCN	C - N(r)		1.157			C - Br(r)	1.790		IR
BrCl	Br-Cl(r)		2.1361			e.			MW
BrF	Br - F(r)		1.7590						MW
BrF ₂	F ₂ —Br—F ₂			Br—F	1.810		Br—F	1.721	MW
3				∠F_BrF,	86.2		(C,)		
	Fb			a D			24		
BrF ₅	Br—F (average)		1.753						ED, MW
5	(Br—F) – (Br–	$-F_{av} = 0.$	069						
	∠F_BrF_	ax.	85.1			(C_{4y})			
BrO	$Br \rightarrow O(r)$		1.7172			11			MW
Br ₂	Br - Br(r)		2.2811						R
ĊBr₄	C—Br		1.935			(T _d)			ED
CCl	C—Cl		1.6512			u			UV
CClF ₃	C—Cl	1.752		C—F	1.325		∠FCF	108.6	ED, MW
CCl ₃ F	C—Cl	1.754		C—F	1.362		∠ClCCl	111	MW
5							(C_{3v})		
CCl	C—Cl		1.767			(T ₄)	· 5V.		ED
CF [*]	C - F(r)		1.2718			u			EPR
CF ₃ I	C—I	2.138		C—F	1.330		∠FCF	108.1	ED, MW
CF ₄	C—F		1.323			(T _d)			ED

Compound				Structure					Method
СН	C - H(r)		1.1199						UV
CI.	C—I		2.15			(T,)			ED
CN	C-N(r)		1.1718			` d'			MW
СО	C = O(r)		1.1283						MW
COBr.	C-0		1.178			C—Br	1.923		ED, MW
2	∠BrCBr		112.3						,
COCIF	C—F	1.334		С—О	1.173		C—Cl	1.725	ED, MW
	/FCCl	108.8		/CICO	127.5				,
COCL	C-0		1.179			C—Cl	1.742		ED, MW
2	/CICCI		111.8						,
COF	C-F		1.3157			C0	1.172		ED. MW
0012	/FCF		107.71			0 0	111/2		22) 111 11
CO	C = O(r)		1 1600						IR
	C = P(r)		1.1000						IIV
CS	C = S(r)		1.5349						MW
CS	$C = S(r_e)$		1 5526						IR
C	C = C(r)		1.2425						UV
C_2	C = O		1 163			C-C	1 289		ED
$0_{3}0_{2}$	linear (large-am	plitude b	ending vibra	tion)		0 0	1.207		
СаН	C_{a} $H(r)$	piiruue b	2 002	cion)					UV
CaO	Ca = O(r)		1 8221						UV
CaS	Ca = S(r)		2 3178						UV
Сан	Cd = H(r)		1 781						FPR
CdBr	Cd = Br		2.35			linear			ED
CdCl	Cd-Cl		2.33			linear			FD
	Cd—I		2.21			linear			FD
CICN	C = C [(r)]		1.629			C = N(r)	1 160		MW
CIE	$C = CI(r_e)$		1.6283			$C = IV(r_e)$	1.100		MW/
CIF	E - C - E		1.0205	Cl_F	1 698		Cl_F	1 598	MW/
011 ₃	F_{b}			$\angle F_a ClF_b$	1.050	87.5	(C_{2v})	1.570	101 00
CIO	$C = O(\pi)$		1 5606						MW/ IIV
	$CI = O(r_e)$		1.5090	0 4	0.075			102 5	MW/ ID
CION			1.090	0-11	0.975		∠HOCI 117.20	102.5	MIW, IK
ClO_2	CI = O		1.470				117.56		M W
CIO ₃ (OH)	U _a -Cl		1.407	(0 Cl0		$0_{b} - 0_{c}$	1.039	104.1	ΕD
	Н					114.5		104.1	
	Ob								
	$O_a \stackrel{\uparrow}{O}_a O_a$								
Cl	C = C (r)		1.9878						UV
	Cl=0		1.5070			/CIOCI	110.89		MW
CoH	$C_0 - H(r)$		1.542			20000	110.09		UV
Cr(CO)	C = 0		1.512			Cr-C	1 92		ED
$er(eo)_{6}$	2°0 /CrCO		180			er e	1.72		LD
CrO	Cr = O(r)		1615						UV
CeBr	C_{e} Cs-Br (r)		3 0723						MW/
CsCl	$Cs = Cl(r_e)$		2 9063						MW/
CsE	$Cs = Cl(r_e)$		2.2003						MW/
CsH	Cs = H(r)		2.3434						LIV
Cel	$Cs = I(r_e)$		2.4950						MW/
COH	$C_{s} = 1 \left(r_{e} \right)$		2.3152 2.395			O = H(r)		0.97	MW/
CuBr	$C_{\rm H} = \frac{1}{2} O\left(r_{\rm e}\right)$		2.595 2.1724			$O = \Pi(r_e)$		0.77	MW/
CuCl	$Cu = Cl(r_e)$		2.17.54						MW/
CuE	$Cu = Cr(r_e)$		1 7440						MW/
CuH	$Cu = I \left(r_{e} \right)$		1.7 == 9						IIV
Cul	$C_{II} = I(r_e)$		2 3383						MW/
ECN	C = F		1 262			C—N	1 159		MW/
FOH	о_н	0.96	1.404	O—F	1 442	C 11	/HOF	97.2	MW/
F	F = F(r)	0.70	1 4110	U 1	1.114		21101	21.4	R
* 2	$\mathbf{I} = \mathbf{I} (r_e)$		1.7117						K

Compound				Structure					Method
Fe(CO) ₅	Fe—C (average)		1.821						ED
	$(Fe-C)_{eq} - (Fe-$	$-C)_{ax}$		0.020					
	C—O (average)		1.153			(D _{3h})			
GaBr	$Ga-Br(r_e)$		2.3525						MW
GaCl	$Ga-Cl(r_e)$		2.2017						MW
GaF	$Ga = F(r_e)$		1.7744			(—)			MW
GaF ₃	Ga—F		1.88			(D _{3h})			ED
GaI	$Ga-I(r_e)$		2.5747			(—)			MW
Gal ₃	Ga—I		2.458			(D _{3h})	100		ED
Gdl ₃	Gd—I		2.841			∠IGdI	108	(C _{3v})	ED
GeBrH ₃	Ge—H		1.526			Ge—Br	2.299		MW, IR
	∠HGeH		106.2						
GeBr_4	Ge—Br		2.272			(T_d)			ED
GeClH ₃	Ge—H		1.537			Ge—Cl	2.150		IR, MW
	∠HGeH		111.0						
GeCl_2	Ge—Cl		2.183			∠ClGeCl	100.3		ED
GeCl_4	Ge—Cl		2.113			(T_d)			ED
GeFH ₃	Ge—H		1.522			Ge—F	1.732		MW, IR
	∠HGeH		113.0						
GeF_2	Ge—F (r_e)		1.7321			\angle FGeF (θ_e)	97.17		MW
GeH	$Ge-H(r_e)$		1.5880						UV
GeH₄	Ge—H		1.5251			(T_d)			IR, R
GeO	Ge $-O(r_e)$		1.6246			u			MW
GeS	$Ge = S(r_e)$		2.0121						MW
GeSe	Ge—Se (r_e)		2.1346						MW
GeTe	Ge—Te (r_e)		2.3402						MW
Ge ₂ H ₆	Ge—H		1.541			Ge—Ge	2.403		ED
2 0	∠HGeH		106.4			∠GeGeH	112.5		
HBr	H—Br $(r_{\rm o})$		1.4145						MW
HCN	C - H(r)		1.0655			C-N(r)	1.1532		MW, IR
	, e					linear			
HCNO	H—C	1.027		C—N	1.161		N—O	1.207	MW
							linear		
HCl	H-Cl(r)		1.2746						MW
HF	H = F(r)		0.9169						MW
HI	H = I(r)		1.6090						MW
HNCO	N—H	0.986		N—C	1.209		C—O	1.166	MW
	∠HNC	128.0							
HNCS	N—H	0.989		N—C	1.216		C—S	1.561	MW
	∠HNC	135.0		∠NCS	180				
HNO	N—H	1.063		N-O	1.212		/HNO	108.6	UV
HNO.	0.			<i>s-trans</i> cor	former		s-cis		MW
2	a						conformer		
	N-O _b H			O _b —H	0.958		0.98		
				N–O	1.432		1.39		
				N-O.	1.170		1.19		
				∠O NO.	110.7		114		
				∕NO.H	102.1		104		
HNO.	Н			0 —Н	0.96		N—O	1.41	MW
3	0			N—O	1.20		N-O.	1.21	
				/HO N	102.2		$\sqrt{0}$ NO	113.9	
	N			/0 NO	115.9		planar		
	$O_a \cap O_b$			_o _c rio _b			F		
HNSO	N—H	1.029		N—S	1.512		S—O	1.451	MW
	∠HNS	115.8		∠NSO	120.4				
				planar					
H	H = H(r)		0.7414	-					UV
H ₀	O - H(r)		0.9575			\angle HOH (θ)	104.51		MW, IR
H ₂ O ₂	0-0		1.475			∠OOH	94.8		IR
2 2	dihedral angle o	f internal	rotation			119.8	(C_)		
H ₂ S	H-S(r)		1.3356			\angle HSH (θ)	92.12		MW, IR

 H_2S

Compound				Structure						Method
H_2SO_4	H			O—H	0.97			S—O _a	1.574	MW
	² O _b			S-O _c	1.422			$\angle H_aO_aS$	108.5	
	$O_{a'_{l}} H_{a}$			$\angle O_a SO_b$	101.3			$\angle O_{c}SO_{d}$	123.3	
	S.			$\angle O_a SO_c$	108.6			$\angle O_a SO_d$	106.4	
	$\dot{\mathbf{O}}_{\mathbf{d}}$ $\dot{\mathbf{O}}_{\mathbf{a}}$		dihedral an	gle between 1	the H _a O _a S	and	$O_a SO_c$ planes		20.8	
	u c		dihedral an	gle between 1	the H _a O _a S	and	O _a SO _b planes		90.9	
			dihedral an	gle between 1	the H _a SO _b	, and	O _c SO _d planes		88.4 (C_2)	
H_2S_2	S—S	2.055		S—H	1.327			∠SSH	91.3	ED, MW
	dihedral angle of i	nternal	rotation	90.6	(C_{2})					
HfCl ₄	Hf—Cl		2.33				(T_d)			ED
HgCl ₂	Hg—Cl		2.252				linear			ED
HgH	Hg—H (r_e)		1.7404				1			
Hgi ₂	$\Pi g = I$		2.555				linear			ED MW
ICN	$I = BI(r_e)$		1 005				C N	1 150		MWW
	I = Cl(r)		2 3210				C-N	1.157		MW/
IEI	I (v_e) I (v_e)		1 860		(1	—F)	– (I—F)	0.03		ED MW
5	/F IF		82.1		(C.)	/	eq (1 1) _{ax}	0.00		22,111
Ю	I = O(r)		1.8676		(- _{4v})					MW
I.	I = I(r)		2.6663							R
InBr	In—Br (r)		2.5432							MW
InCl	In—Cl (r)		2.4012							MW
InF	In—F (r_e)		1.9854							MW
InH	In—H (r_e)		1.8376							UV
InI	In—I (r_e)		2.7537							MW
IrF ₆	Ir—F		1.830				(O _h)			ED
KBr	K—Br (r_e)		2.8208							MW
KCl	K—Cl (r_e)		2.6667							MW
KF	$K = F(r_e)$		2.1716							MW
КН	$K - H(r_e)$		2.244							UV
KI	$K = I(r_e)$		3.0478				K O	0.010 !:		MW
KOH	O - H		2.0051				K-0	2.212 linear		MW
K ₂ KrE	$K = K(r_e)$		5.9051 1.90				linoar			UV ED
LiBr	$K_1 = 1$ Li = Br (r)		2 1704				lilleal			MW
LiCl	Li - Cl(r)		2.0207							MW
LiF	Li - F(r)		1.5639							MW
LiH	Li - H(r)		1.5949							MW
LiI	Li - I(r)		2.3919							MW
Li ₂	Li—Li (r)		2.6729							UV
Li ₂ Cl ₂	Li						Li—Cl	2.23		ED
	CÍCI						Cl—Cl	3.61		
	Li						∠ClLiCl	108		
LuCl ₃	Lu—Cl		2.417				∠ClLuCl	112	(C _{3v})	ED
MgF	Mg—F (r_e)		1.7500							UV
MgH	Mg—H (r_e)		1.7297							UV
MgO	Mg $-O(r_e)$		1.749							UV
MnH	$Mn - H(r_e)$	0.000	1.7308	<i>c</i> 0	1 -	145		(\mathbf{O})		
$M_0(CO)_6$	Mo_C	2.065	2.270	C-0	1.	145	Ma O	(O _h)		
WIOCI ₄ O	/CIMoCl		2.217 879				(C)	1.030		ĽΡ
MoF	Mo_F		1 820				(\bigcirc_{4v})			FD
NCIH	N—H		1.017				N-Cl	1.748		MW IR
	/HNCl		103.7				/HNH	107		
NCL	N—Cl		1.759				∠CINCI	107.1		ED
NF.	N—F		1.3528				∠FNF	103.18		MW
NH	N—H		1.024				∠HNH	103.3		UV
NHĴCN	N—H		1.00				N_C	1.35		MW
2							a			

Compound				Structure					Method
Ĩ	Н			C-N _b	1.160		∠HNH	114	
	$N_{o}-C \equiv N_{b}$			angle betw	een the NH, p	lane and the N—O	C bond	142	
	Н			U	2 *				
NH ₂ NO ₂	N—N		1.427			N—H	1.005		MW
	∠HNH		115.2			∠ONO	130.1		
	dihedral angle b	etween tl	ne NH ₂ and M	NNO_2 planes	•		128.2		
NH ₃	N—H (r_e)		1.012			\angle HNH (θ_{e})	106.7		IR
NH ₄ Cl	N—H	1.22		N—Cl	2.54		(C _{3v})	1.007	ED
NF ₂ CN	$F_2N_b - C \equiv N_a$	1 000		C—N _a	1.158		C-N _b	1.386	MW
	N _b —F	1.399		$\angle N_a C N_b$	174				
	$\angle CN_{b}F$	105.4	1 00 00	∠FN _b F	102.8				1100
NH	N—H (r_e)	1.00	1.0362	N O	1 450		0.11	0.0(2	
NH ₂ OH		1.02		N-O	1.453		U—H	0.962	M W
	∠HNH The biggeter of l	107 11 N L	I amala ia tua	ZHNU	105.5 U b and		ZNOH	101.4	
NO	$N \cap (r)$	11—IN—I	1 1506	ns to the O-	-11 Dolla				ID
NOCI	$N=O(r_e)$ N=Cl	1 975	1.1500	N_0	1 14		/ONCl	113	MW/
NOE	N=CI	1.575		N_F	1.14		ZONCI ZENO	110 1	MW
NO	N-O	1.150	1 193	1, 1	1.012		134.1	110.1	MW
NO ₂	N=Cl		1.175			ZONO N-O	1 202		MW/
	VONO		130.6			(C)	1.202		101 00
NO F	N-O		1 1798			(C_{2v}) N—F	1 467		MW
			136			(C_{1})	1.107		101 00
NS	N=S(r)		1,4940			(\mathcal{O}_{2v})			IR
N	N = N(r)		1.0977						UV
N H	N—H		1.021			N—N	1.449		ED. MW
- '2' '4	/HNH		106.6 (assu	med)		/NNH	112		,
	∠NNH.	106	``	dihedral an	gle of internal	l rotation	91		
	H : the H atom o	closer to t	the C, axis, H	I.: the H ator	n farther from	n the C ₋ axis			
N_O	N = N(r)		1.1284	-р		N = O(r)	1.1841		MW, IR
N _a O _a	O _a O _b			$N_{1}-N_{1}$	1.864	`e'	N_O	1.142	MW
2 3	N—N			$N_{\mu}^{a} - O_{\mu}^{b}$	1.202		$N_{h}^{a} - O_{a}^{a}$	1.217	
	I a I b			∠O.N.N.	105.05		в с		
	O_c			$\angle N_{L}N_{L}O_{L}$	112.72				
				$\angle N_{1}N_{1}O_{2}$	117.47				
N ₂ O ₄	0, 0			N—N	1.782		N—O	1.190	ED
2 4	N-N			∠ONO	135.4		(D _{2b})		
	0 0						211		
NaBr	Na—Br (r_e)		2.5020						MW
NaCl	Na—Cl (r_e)		2.3609						MW
NaF	Na—F (r_e)		1.9260						MW
NaH	Na—H (r_e)		1.8873						UV
NaI	Na—I (r_e)		2.7115						MW
Na ₂	Na—Na (r_e)		3.0789						UV
NbCl ₅	Nb-Cl _{ea}	2.241		Nb-Cl _{ax}	2.338 (D _{3h})		ED		
NbO	Nb $-O(r_e)$		1.691						UV
Ni(CO) ₄	Ni-C	1.838		C—O	1.141		(T_d)		ED
NiH	Ni—H (r_e)		1.476						UV
NpF ₆	Np—F		1.981		(O _h)				ED
OCS	C—O (r_e)		1.1578		C—S (r_e)		1.5601		MW
OCSe	C—O		1.159		C—Se		1.709		MW
OF	$O-F(r_e)$		1.3579						LMR
OF_2	$O-F(r_e)$		1.4053		$\angle \text{FOF} \left(\theta_{e} \right)$		103.07	(C_{2v})	MW
O(SiH ₃) ₂	Si—H		1.486		Si—O		1.634		ED
	∠SiOSi		144.1						
O_2	O—O (r_e)		1.2074						MW
O_2F_2	0-0		1.217		F—O		1.575		MW
	∠OOF		109.5	dihedral an	gle of internal	l rotation	87.5	(C ₂)	

Compound				Structure					Method
O ₃	$O - O(r_{a})$		1.2716			$\angle OOO(\theta)$	117.47	$(C_{2\nu})$	MW
OsF,	Os—F		1.831			(O,)		2.4	ED
OsO,	Os—O		1.712			(T,)			ED
PBr	P—Br		2.220			/BrPBr	101.0		ED
PCl	P-Cl		2.039			$\angle C P C $	100.27		ED
PC1	Cl		2.007	P-Cl	2 1 2 4	2011 01	P-Cl	2 020	ED
1 015	Cl _b			r or _a	2.1.2.1		(D)	21020	22
	Cl _b -P						(12 _{3h})		
	$Cl_a Cl_b$								
PF	$P - F(r_e)$		1.5896						UV
PF ₃	P—F		1.570			∠FPF	97.8		ED, MW
PF ₅	P—F _{ax}	1.577		$P-F_{eq}$	1.534		(D _{3b})		ED
PH	$P - H(r_{a})$		1.4223	cq			511		LMR
PH,	P—H		1.418			∠HPH	91.70		UV
PH	P—H		1.4200			∠HPH	93.345		MW
PN	N-P(r)		1.4909						MW
РО	O - P(r)		1.4759						UV
POCL	P-O		1.449			P-Cl	1.993		ED
3	/CIPCI		103.3						
POF	P-0	1.436		P—F	1.524		/FPF	101.3	ED. MW
P	P = P(r)		1 8931						UV
	P_F		1.5951			PP	2 281		FD
² 2 ⁴ 4			95.4			/FDF	99.1		
	The two DE pla	nos ara ti	ane to oach	othor (the ga	ucha conform	2111)		
D			2 21	outer (the ga	uche comorn	(T)	·)		FD
r ₄	P O	1 6 2 8	2.21		126.4	(1_d)	(T)		ED
	P = O	1.056	1 020	ZFOF	120.4		(1_d)		
PDF	$PD = \Pi(r_e)$		1.0010						
PDO DLC	$PD = O(r_e)$		1.9210						IVI W
PD5	$PD = S(r_e)$		2.2809						IVI W
PDSe DLT-	PD—Se (r_e)		2.4022						IVI W
PDIe	$PD - 1e(r_e)$	2 004	2.5950		110		(C_{1})		M W
PrI ₃	Pr-1	2.904	1 5050	∠IPrI	113		(C _{3v})		ED
PtO	$Pt = O(r_e)$		1./2/3						UV
PuF ₆	Pu—F		1.9/1			(O_h)			ED
KDBr	$\text{KD} - \text{Br}(r_e)$		2.9447						MW
KDCI	$RD - CI(r_e)$		2.7869						MW
KDF	$RD - F(r_e)$		2.2/03						MW
KbH	$Rb-H(r_e)$		2.367						UV
Kbl	$Rb-I(r_e)$	0.001	3.1768	0.11	0.055		1.		MW
REOH	Rb—O	2.301		O—H	0.957		linear		MW
ReCIO ₃	Re—O		1.702			Re—Cl	2.229		MW
	∠CIReO		109.4			(C_{3v})			
ReF ₆	Re—F		1.832			(O _h)			ED
RuO ₄	Ru—O		1.706			(T_d)			ED
SCSe	C—Se		1.693			C—S	1.553		MW
SCTe	C—S		1.557			C—Te	1.904		MW
SCl_2	S—Cl	2.006		∠ClSCl	103.0		(C_{2v})		ED
SF	$S - F(r_e)$		1.6006						MW
SF_2	S—F		1.5921			∠FSF	98.20		MW
SF ₆	S—F		1.561			(O _h)			ED
SO	S—O (r_e)		1.4811						MW
SOCl ₂	S—O		1.44			S—Cl	2.072		MW
	∠ClSCl		97.2			∠OSCl	108.0		
SOF ₂	S—O		1.420			S—F	1.583		ED
-	∠OSF		106.2			∠FSF	92.2		
SOF ₄	F _b F _b			S—O	1.403		S—F _a	1.575	ED
	F-S-F			S-F _b	1.552		∠OSF	90.7	
				∠OSF.	124.9		∠F _. SF _.	89.6	
	0			∠F,SF,	110.2		(C ₂ ,		
SO ₂	S = O(r)		1.4308	ם ט		$\angle \text{OSO} \left(\theta \right)$	119.329		MW
2	· e [,]					` e'			

Compound				Structure					Method
SO ₂ Cl ₂	S—O	1.404		S—Cl	2.011		∠OSO	123.5	ED
	∠ClSCl	100.0		(C_{2v})					
SO_2F_2	S—O	1.397		S—F	1.530		∠OSO	123	ED
	∠FSF	97		(C_{2v})					
SO ₃	S—O		1.4198			(D _{3h})			IR
$S(SiH_3)_2$	Si—H	1.494		Si—S	2.136		∠SiSSi	97.4	ED
S_2	$S = S(r_e)$		1.8892						R
S_2Br_2	S—Br		2.24			S—S	1.98		ED
	∠SSBr		105	dihedral an	gle of internal	rotation	83.5		
S_2Cl_2	S—Cl		2.057			S—S	1.931		ED
	∠SSCl		108.2	dihedral an	gle of internal	rotation	84.1	(C_2)	
S_2O_2	S—O	1.458		S—S	2.025		∠OSS	112.8	MW
							planar <i>cis</i> fo	rm	
S ₈	S S S			S—S	2.07				ED
	\`s´``s´			∠SSS	105				
				(D _{4d})					
	3 3								
SbCl ₃	Sb—Cl		2.333			∠ClSbCl	97.2		ED
SbH ₃	Sb—H		1.704			∠HSbH	91.6		MW
SeF	Se—F		1.742						MW
SeF ₆	Se—F		1.69			(O _h)			ED
SeO	Se—O (r_e)		1.6393						MW
SeOF ₂	Se—O		1.576			Se—F	1.730		MW
	∠OSeF		104.82			∠FSeF	92.22		
SeO ₂	Se—O (r_e)		1.6076			$\angle \text{OSeO}\left(\theta_{e}\right)$	113.83		MW
SeO ₃	Se—O		1.69			(D _{3h})			ED
Se ₂	Se—Se (r_e)		2.1660						UV
Se ₆	Se—Se		2.34			∠SeSeSe	102		ED
			six-membe	red ring with	ı chair conforn	nation			
SiBrF ₃	Si—F		1.560			Si—Br	2.153		MW
	∠FSiBr		108.5			(C _{3v})			
SiBrH ₃	Si—H		1.485			Si—Br	2.210		MW
	∠HSiBr		107.8			(C _{3v})			
SiClH ₃	Si—H		1.482			Si—Cl	2.048		MW
	∠HSiCl		107.9			(C _{3v})			
SiCl ₄	Si—Cl		2.019			(T_4)			ED
SiF	Si—F		1.6008						UV
SiFH ₃	Si—H		1.484			Si—F	1.593		MW, IR
	∠HSiH		110.63			(C _{3v})			
SiF ₂	$Si - F(r_e)$		1.590			\angle FSiF (θ_e)	100.8		MW
SiF ₃ H	Si—H (r_e)		1.4468			Si—F (r_e)	1.5624		MW
	\angle HSiF (θ_{e})		110.64			()			
SiF ₄	Si—F		1.553			(T_d)			ED
SiH	Si—H (r_e)		1.5201						UV
SiH ₃ I	Si—H		1.485			Si—I	2.437		MW
	∠HSH		107.8			<u> </u>			
SiH ₄	Si—H		1.4798			(T_d)			IR
SiN	N—Si (r_e)		1.572						UV
510	$S_1 - O(r_e)$		1.5097						MW
515	$51-5(r_e)$		1.9293						MW
515e	Se—Si (r_e)		2.0583						MW
51 ₂	$51-51(r_e)$		2.246			c: cl	2 000		
51_2CI_6	51-51		2.32			51—CI	2.009		ED
C: F			109.7			C' F	1 5 4		ED.
51 ₂ F ₆	51-51		2.317			51—F	1.564		ED
C: 11	∠FS1F		108.6			c. c.	0.001		ED.
51_2H_6	51—H		1.492			51-51	2.331		ED
	∠SiSiH		110.3			∠HSiH	108.6		
						staggered form (assumed)		

Compound			Structure				Method
SnCl	Sn—Cl	2.280		(T_d)			ED
SnH	$Sn-H(r_e)$	1.7815		u			UV
SnH ₄	Sn—H	1.711		(T_d)			R, IR
SnO	Sn—O	1.8325		u			MW
SnS	$S-Sn(r_e)$	2.2090					MW
SnSe	Se—Sn (r_e)	2.3256					MW
SnTe	Sn—Te (r_e)	2.5228					MW
SrH	$Sr-H(r_e)$	2.1455					UV
SrO	Sr—O (r_e)	1.9198					MW
SrS	$S = Sr(r_e)$	2.4405					UV
TaCl ₅	Ta—Cl _{eq}	2.227		Ta—Cl _{ax}	2.369	(D _{3h})	ED
TaO	Ta—O (r_e)	1.6875					UV
TeF ₆	Te—F	1.815		(O _h)			ED
Te ₂	Te—Te (r_e)	2.5574					UV
$ThCl_4$	Th—Cl	2.58		(T _d)			ED
ThF_4	Th—F	2.14		(T _d)			ED
TlBr	Tl—Br (r_e)	2.6182					MW
TlCl	Tl—Cl (r_e)	2.4848					MW
TlF	Tl—F (r_e)	2.0844					MW
TlH	$Tl-H(r_e)$	1.870					UV
TlI	Tl—I (r_e)	2.8137					MW
$TiBr_4$	Ti—Br	2.339		(T_d)			ED
$TiCl_4$	Ti—Cl	2.170		(T_d)			ED
TiO	Ti—O (r_e)	1.620					UV
TiS	Ti—S (r_e)	2.0825					UV
UF ₆	U—F	1.996		(O _h)			ED
V(CO) ₆	V—C	2.015		C-O	1.138		ED
		(O _h , involvi	ng dynamic Jahn-Teller effe	ect)			
VCl ₃ O	V—O	1.570		V—Cl	2.142		ED, MW
	∠ClVCl	111.3					
VCl_4	V—Cl	2.138		(T _d , involving dyn	amic Jahn-Telle	r effect)	ED
VF ₅	V—F (average)	1.71					ED
VO	V—O (r_e)	1.5893					UV
W(CO) ₆	W—C	2.059	C0	1.149	(O _h)		ED
WCIF ₅	$_{\rm L}^{\rm Cl}$ $_{\rm Fb}$			W-Cl	2.251		MW
	$F_{h} - W - F_{h}$			W—F (average)	1.836		
				$\angle F_{a}WF_{b}$	88.7		
	^r ^b F _a						
WF_4O	W-O	1.666		W—F	1.847		ED
	∠FWF	86.2		(C_{4v})			
WF ₆	W—F	1.832		(O _h)			ED
XeF_2	Xe—F	1.977		linear			IR
XeF ₄	Xe—F	1.94	<i>.</i>	(D _{4h})			ED
XeF ₆	Xe—F	1.890	(large-amplitude bending	vibration around t	he O _h structure)	ED
XeO ₄	Xe–O	1.736		(\mathbf{T}_{d})			ED
ZnH	$Zn-H(r_e)$	1.5949					UV
ZrCl ₄	Zr—Cl	2.32		(T_d)			ED
ZrF_4	Zr—F	1.902		(\mathbf{T}_{d})			ED
ZrO	$Zr - O(r_e)$	1.7116					UV

STRUCTURES OF ORGANIC MOLECULES

Compounds are arranged in alphabetical order by chemical name; cross references are given for common synonyms (lengths in Å and angles in degrees)

Compound		Structure			Method
Acetaldehyde	.0		C0	1.210	ED, MW
	$C_1 H_2 - C''$		с _ь —Н	1.107	
	C _b n, Ca	ł	C_{a} —H	1.128	
	$C_{a} - C_{b}$	1.515	∠C _b C _b O	124.1	
	∠HC.H	109.8	∠C.C H	115.3	
Acetamide	C-O	1.220	C - N	1.380	ED
CH.CONH.	C—C	1.519	N—H	1.022	
- 3 - 2	С—Н	1.124	/NCO	122.0	
	∠CCN	115.1			
Acetic acid	^O a		C—C	1.520	ED
	CH ₃ -C		C-O _a	1.214	
	O _b -	-H	C-O _b	1.364	
	C—H	1.10	∠CCO _a	126.6	
	$\angle CCO_{b}$	110.6			
Acetone	C—C	1.520	C—O	1.213	ED, MW
(CH ₃) ₂ CO	C—H	1.103	∠CCC	116.0	
	∠HCH	108.5	symmetry axis of each methyl g the C—C bond	group is tilted 2° from	
Acetonitrile	C—H	1.107	C—C	1.468	ED, MW
CH_CN	C—N	1.159	∠CCH	109.7	
Acetonitrile oxide	C—C	1.442	C—N	1.169	MW
CH_CNO	N-O	1.217	(C.)		
Acetyl chloride	C—H	1.105	C - O	1.187	ED, MW
CH COCI	C—C	1.506	C—Cl	1.798	
3	/HCH	108.6	/0CC]	121.2	
	∠CCCl	111.6	_000		
Acetyl cyanide \rightarrow Pyruvonitrile					
Acetylene HC≡CH	C—H (r_e)	1.060	C—C (r_e)	1.203	IR
Acrolein \rightarrow Acrylaldehyde					
Acrylaldehyde	н		С.—С	1.484	ED. MW
			C - C	1.345	,
	H C	c = 0	C - O	1.217	
	$C_a = C_b$		C —H	1.10	
	Н́І	Н	C –H	1.13	
		120.3		123.3	
	$\angle C_a C_b C_c$	114	$\Delta C_{\rm b} C_{\rm c} O$	122.0	
	planar <i>s-trans</i>	form	other cerranges (average)	122	
Acrylonitrile		N	$C_{a} - C_{b}$	1.343	ED, MW
	H C	//		1.438	
	$C_{n} = C_{h}$		C_N	1.167	
	Н	r	C_H	1.114	
	п	1	∠C ₂ C _b C	121.7	
	$\angle C_{b}C_{c}N$	178	∠HCC	120	
Acryloyl chloride	C—H	1.086 (assumed)	$C_{h} - C_{c}$	1.48	MW
	$C_c - Cl$	1.82		1.35	
	H.		C _c —O	1.19	
	Č.	Cl	$\angle C_a C_b H$	120 (assumed)	
	H	_/~'	$\angle C_{b}C_{a}H$	121.5 (assumed)	
	···	^c	$\angle C_{b}C_{b}C_{c}$	123	
	Н	`O	∠C,C,C	116	
			∠C,C,O	127	
			J (

Compound		Structure				Method
Allene	C—C	1.3084	С—Н		1.087	IR
$CH_2 = C = CH_2$	∠HCH	118.2				
Allyl chloride	Cl		<i>cis</i> conformer	C—Cl	1.811	MW
	$H_2C_a = C_bH - C_c$	H ₂	2	∠CCCl	115.2	
		-	<i>skew</i> conformer	C—Cl 1	.809	
	∠CCCl	109.6	CCCCl	dihedral ang	le of internal 122.4	
Aniline	C - C	1 392	C_N	otution	1 431	MW/
C H NH	с—с N—H	0.998	∠—N ∕HNH		113.9	101 00
C ₆ H ₅ HH ₂	dihedral angle be	otween the NH_pla	\sim ne and the N—C bond		140.6	
Azetidine	CH-CH-	1000000000000000000000000000000000000	C–N		1.482	ED
			C-C		1.553	20
	CH ₂ —NH		С—Н		1.107	
	N—H	1.03	∠CNC		92.2	
	∠CCC	86.9	∠CCN		85.8	
	dihedral angle be	etween the CCC an	nd CNC planes		147	
Aziridine	H _a		N—H		1.016	MW
			N—C		1.475	
)	C—C		1.481	
			C—H		1.084	
	п _с п _с		∠CNC		60.3	
			$\angle H_{a}NC$		109.3	
	$\angle H_{b}CH_{c}$	115.7	$\angle H_{b}CC$		117.8	
	$\angle H_{b}CN$	118.3	$\angle H_{c}CC$		119.3	
	∠H _c CN	114.3				
Azomethane	C—N	1.482	N—N		1.247	ED
CH ₃ N=NCH ₃	∠CNN	112.3	trans conformer			
Benzene	C—C	1.399	С—Н		1.101	ED, IR
C_6H_6						
<i>p</i> -Benzoquinone	H H H $C = C$		C _a -O		1.225	ED
	O = C	0= 2	$C_{b} - C_{b}$		1.344	
	U Ca	$C_a = 0$	$C_a - C_b$		1.481	
	$C_b = C_b$ H H		$\angle C_b C_a C_b$		118.1	
Biacetyl	C—O	1.215	C—C (average)		1.524	ED
CH ₃ COCOCH ₃	C—H	1.108	∠CCO		119.5	
	∠CCC	116.2	trans conformer			
Bicyclo[1.1.0]butane	H _a		$C_a - C_a$		1.497	MW
			$C_a - C_b$		1.498	
	H_{b}	H _b	$C_a - H_a$		1.071	
		C.	$C_{b} - H_{b}, C_{b} - H_{c}$		1.093	
	Ĭ ^в Н _а		$\angle H_{b}C_{b}H_{c}$		115.6	
	H _c	H _c				
		120.4			(0.0	
	$\angle C_b C_a H_a$	130.4	$\angle C_a C_b C_a$		60.0	
Rissels [2.2.1] bents 2.5 diama	$\angle C_a C_a H_a$	128.4	dinedral angle between the	$e two C_a C_a C_l$	planes 121./	ГD
Bicyclo[2.2.1]nepta-2,5-diene	H_2		$C_a - C_b$		1.535	ED
		TT	$C_{b} = C_{b}$		1.545	
	$HC_{h} - - C$	^a ^H C _H	$C_a = C_c$		1.575	
		C _b II			94	
	пс _b н с	P11	$- \sim_a \sim_c \sim_a$			
		dihedral angle be	etween the two $C_{a}C_{b}C_{b}C_{a}$ plan	nes	115.6	
					(C _{2v})	
Bicyclo[2.2.1]heptane	See the preceding	g molecule for the	labels of the C atoms			ED
$C_7 H_{12}$	$C_a - C_b$	1.54	$C_{b}-C_{b}$		1.56	
	$C_a - C_c$	1.56	C—C (average)		1.549	
	$-C_{a}C_{c}C_{a}$ 93.1	dihedral angle be	etween the two $C_a C_b C_b C_a$ pla	nes	113.1	

Compound		Structure				Method
Bicyclo[2.2.0]hexa-2,5-diene	Н		$C_{b} - C_{b}$	1.345		ED
	$UC < C_a C U$			1.574		
			$C_a - C_b$	1.524		
	$HC_b < C_a C_b H$ H	dihedral angle	between the two $C_a C_b C_b C_a$ planes		117.3	
Bicyclo[2.2.2]octane	$HC_{a}(C_{b}H_{2}C_{b}H_{2})_{3}C_{b}C_{b}C_{b}C_{b}C_{b}C_{b}C_{b}C_{b$	2 H 1.55	$C_a - C_b$	1.54 109.7		ED
	C-C (average)	1.542		10711		
Discuster [1, 1, 1]	large-amplitude t	orsional motion at	Sout the D_{3h} symmetry axis	74.0		гD
C ₅ H ₈	L—L	1.557	2000	/4.2		ED
Bicyclo[2.1.0]pentane	$C_{\rm b}H_2 - C_{\rm a}H$		$C_a - C_a$	1.536		MW
			$C_{b} - C_{b}$	1.565		
	$H_2 H_2$	$C_{c}H_{2}$	$C_a - C_b$	1.528		
	2	0 2		1.507		
	Dihedral angle be	etween the $C_{C_{1}}C_{1}C_{2}$	C_{1} and $C_{2}C_{2}C_{3}$ planes	112.7		
Biphenvl		-\ _	C—C (intra-ring)	1.396		ED
		\rangle	(inter-ring)	1 49		
	$\setminus _ / \land$	//	torsional dibedral angle	1.17		
			between the two rings		$\sim \! 40$	
4,4′-Bipyridyl	C—C, C—N (intr	ra-ring)	1.375			ED
			C—C (inter-ring)	1.465		
	N	N //	torsional dihedral angle between the two rings		~ 37	
Bis (cyclopentadienyl) beryllium	Be_(cvclopentac	lienvl plane)	1 470 1 92			FD
(C H) Be	C = C = 1.423 (C) (The Be stom by	s two equilibrium positions)			
$(C_5 \Pi_5)_2 DC$ Big (suclements disput) in an $C_5 \Pi_5$	$C = C = 1.425 (C_{\rm f})$	$_{\rm v}$ (The De atom is	as two equilibrium posicions)			
Bis (cyclopentadienyl) iron \rightarrow Ferrocene	<i>c</i> . <i>c</i>	1 400		2 70		FD
Bis (cyclopentadienyl) lead	C—C	1.430		2.79		ED
$(C_5H_5)_2PD$	dihedral angle be	tween the two C_5 H	$I_{_5}$ planes 40~50 (The two rings are r	iot parallel.)		
Bis (cyclopentadienyl) manganese $(C_5H_5)_2Mn$	Mn—C 2.383	С—С 1.429	(D_{5h})			ED
Bis (cyclopentadienyl) nickel	Ni-C	2.196	C—C	1.430 (D_)		ED
Ris (cyclopentadienyl) ruthenium	C - C	1 //39	Bu_C	(2_{5h})		FD
$(C_5H_5)_2$ Ru	0-0	1.439	Ku—C	2.190		LD
Bis (cyclopentadienyl) tin	C—C	1.431	Sn—C	2.71		ED
$(C_5H_5)_2Sn$	C—H	1.14	(D_{5h})			
Bis (trifluoromethyl) peroxide	0-0	1.42	C—O	1.399		ED
CF ₃ OOCF ₃	C—F	1.320	∠COO	107		
	∠FCF	109.0	COOC dihedral angle of internal	123		
Borino carbonyl	вп	1 104	B C	1 540		MW
		1.194		1.540		IVI VV
вн ₃ со	C=0	1.151	$\angle HBH$	115.9		
	ZBCO	180	(C_{3v})	1.072		1 (1)V/
Bromobenzene	Br		C—H	1.072		MW
	$\dot{\mathbf{C}}_{a}$		$C_{c} - C_{d}$	1.401		
			$C_{b}-C_{c}$	1.375		
	$HC_b C_bH$		C—Br	1.85		
	HC CH		$C_a - C_b$	1.42		
	C _d H		$\angle C_b C_a C_b$	117.4		
Bromoform	C—Br	1.924	С—Н	1.11		ED, MW
CHBr ₃	∠BrCBr	111.7	(C_{3v})			
Bromoiodoacetylene	C—I	1.972	с—с	1.206		ED
IC≡CBr	C—Br	1.795				

Compound		Structure				Method
1,3-Butadiene	C _a H ₂		$C_{h} - C_{h}$		1.467	ED
			$C - C_{h}$		1.349	
	Сьн—Сьн		C–H (average)		1.108	
	`C	_a H ₂	∠CCC		124.4	
	/ССН	120.9	<i>anti</i> conformer		(C.)	
1 3-Butadivne	E = C = C = C = C	4	C_H		(O_{2h})	FD
1,5 Dutadiyile	$\Pi C_a = C_b = C_b = C_a \Gamma$	1 218			1.09	LD
	$C_a = C_b$	1.210	C _b —C _b		1.304	
Butana	C C	1 5 2 1	illieal C U		1 1 1 7	FD
		1.551	С—п		1.11/	ED
CH ₃ CH ₂ CH ₂ CH ₃	2000	113.8		7	111.0	<i></i>
	trans conformer	54%	dihedral angle for the	e <i>gauche</i> con	former	65
2-Butanone \rightarrow Ethyl methyl ketone						
Butatriene	$H_2C_a = C_b = C_b = C_a I$	H ₂	С—Н	1.08		ED
	$C_a - C_b$	1.32	$C_{b} - C_{b}$	1.28	(D_{2h})	
2-Butene	$C_aH_3 - C_bH = C_bH$	$-C_{a}H_{3}$				ED
	$C_a - C_b$	cis conformer	1.506	trans co	onformer 1.508	
	$C_{b} - C_{b}$	1.346	1.347			
	$\angle C_{a}C_{b}C_{b}$	125.4	123.8			
3-Buten-1-yne \rightarrow Vinylacetylene	a b b					
<i>tert</i> -Butyl chloride	С—Н	1.102	C—C		1.528	ED, MW
(CH_)_CCl	C—Cl	1.828	/CCC]		107.3	
(- 3/3	/ССН	110.8	/		111.6	
tert Butyl gyapida Divalanitrila	20011	11010	2000		1110	
2 Buture	$C \sqcup C = C C$	и си	1 116		FD	
2-Butyne	$C_a \Pi_3 - C_b = C_b - C_a$	11 ₃ C—11	1.110 C C		1 469	
	$C_{b} - C_{b}$	1.214	$C_a - C_b$		1.408	
	$\angle C_b C_a H$	110.7				
Carbon C_2	$C = C(r_e)$	1.3119	14			UV
Carbon C_3	C-C	1.277	linear			UV
Carbon suboxide \rightarrow Tricarbon dioxide						
Carbon tetrabromide	C—Br	1.935	(T_d)			ED
CBr_4						
Carbon tetrachloride	C—Cl	1.767	(T_d)			ED
CCl_4						
Carbon tetrafluoride	C—F	1.323	(T_d)			ED
CF_4						
Carbon tetraiodide	C—I	2.15	(T_d)			ED
CI_4						
Carbonyl cyanide	C—O	1.209	C—C		1.466	ED, MW
$CO(CN)_{2}$	C—N	1.153	∠CCC		115	
-	∠CCN	180				
Chloroacetylene	С—Н	1.0550	C—C		1.2033	MW
HC≡CCI	C—Cl	1.6368				
Chlorobenzene	C-C	1.400	C-Cl		1.737	ED
СНС	С—Н	1.083	/CC(C))C		121.7	
0 ₆ .1 ₅ 01	/CC(H)C	120	200(01)0		1210	
Chlorobromoscatulana	C C	1 6 2 6	C C		1 206	FD
	CI-C	1.030	0-0		1.200	LD
CIC=CBr		1.784	<i>C C</i>		1 205	FD
Chlorocyanoacetylene		1.624			1.205	ED
CICECCN	C-CN	1.362	C-N		1.160	
Chloroethane \rightarrow Ethyl chloride						
2-Chloroethanol	C-O	1.413	C—C		1.519	ED
ClCH ₂ CH ₂ OH	C—Cl	1.801	C—H		1.093	
	O—H	1.033 ∠CCC	110.7	∠C	CO 113.8	
	fraction of the gau	che conformer	at 37°C is 92 \sim 94%,			
	dihedral angle of i	nternal rotation	62.4			
$Chloroethylene \rightarrow Vinyl \ chloride$						
Chloroform	C—H	1.100	C—Cl		1.758	MW
CHCl ₃	∠ClCCl	111.3	(C_{3v})			
Chloroiodoacetylene	C—Cl	1.63	C—I		1.99	MW
ClC≡CI	C—C	1.209 (assumed	l)			
		,	+ · · · · · · · · · · · · · · · · · · ·			

Compound		Structure			Method
$Chloromethane \rightarrow Methyl \ chloride$					
3-Chloropropene \rightarrow Allyl chloride					
Cyanamide	N _a -C	1.346	C-N _b	1.160	MW
H ₂ N ₂ CN _b	Ň—H	1.00	∠HNH	114	
2 4 5	dihedral angle be	tween the NH, pl	ane and the N—C bond	142	
Cyanoacetylene	C _b —H	1.058	$C_{a}-C_{b}$	1.205	MW
$H - C_{\perp} \equiv C_{\perp} - C_{\perp} \equiv N$	C - C	1.378	C_N	1.159	
Cyanocyclopropane	C—C (ring)	1.513	C-C	1.472	MW
C,H,C,N	С—Н	1.107	C_{1} – N^{a}	1.157	
5 C C	∠HCH	114.6	∠C.CH	119.6	
Cvanogen	C—N	1.163	c—c	1.393	ED
(CN).				linear	
Cyclobutane	C—H	1.113	C—C	1.555	ED
(CH ₂),	dihedral angle be	tween the two CC	CC planes 145		
Cyclobutanone	C _k H ₂		$C_{L} - C_{L}$	1.527	MW
	CH	0	$C_{L}^{a} - C_{L}^{b}$	1.556	
	$C_{c}\Pi_{2}$	0	∠C, C C,	93.1	
	C_bH_2		$\angle C C C C$	88.0	
Cvclobutene	H ₂ C,C, H ₂	C. —C.	1.342	С — С 1.566	MW
-,		C - C	1.517	с ^а — Н 1.094	
	HC _b -C _b H	С. —Н	1.083	a	
		/C.C.C. 94.2	/C.C.H	133.5	
		/CCH 114.5	/C.C.C.	85.8	
		$\angle O_a O_a^{(1)} = 111.0$	dihedral angle between th	e CH plane and the	
			C - C bond	135.8	
Cvclohexane	C—C	1.536	C—H	1.119	ED
C.H.,	∠CCC	111.3	chair form		
Cvclohexene	HC.=C.H		С —С	1.334	ED
-,	HaC	C. H.	C - C	1.50	
		, e 6112	C - C	1.52	
	$C_c \Pi_2 = C_c \Pi_2$		C - C	1.54	
	/C.C.C	123.4		112.0	
	$\angle C_a C_a C_b$	110.9	(C)	half-chair form	
Cyclooctatetraene	$\Sigma C_b C_c C_c$	b	C - C	1 476	FD
Cyclobetatetrache	b b	Á	$C_a = C_b$	1.170	LD
	. // \	a		1 340	
	b a	a	$C_a = C_a, C_b = C_b$	126.1	
	aaaa		$\angle c_b c_a c_a, \angle c_a c_b c_b$	120.1	
	dihedral angle be	tween the $C C C$	C and C C C C planes	136.9	
	tub form	(D)	O_a and $O_a O_b O_b O_a$ prantos	1000	
1.3-Cyclopentadiene	СН	(2 ² _{2d})	С —С	1.509	MW
			$C_{a} = C_{b}$	1.342	111 11
	HC _b C _b H		C - C	1.469	
				109.3	
	$\Pi C_{c} C_{c} \Pi$		$\angle O_a O_b O_c$	10710	
	$\angle C_{b}C_{c}C_{c}$	109.4	$\angle C_{b}C_{a}C_{b}$	102.8	
Cyclopentadienylindium	In		In—C	2.621	ED
	HC - CH		C—C	1.426	
	нс		$(C_{_{5v}})$		
	Сн				
	CII				
Cyclopentane	C—H	1.114	C—C	1.546	ED
$(CH_2)_5$	∠CCH	111.7			
	(The out-of-plan	e vibration of the	C atoms is essentially free ps	seudorotation; average value	
	of the displaceme	ents of the C atom	s from the molecular plane (0.43)	
Cyclopentene	C _a H ₂		$C_a - C_b$	1.546	ED
	H ₂ C _b	C _b H ₂	$C_{b}-C_{c}$	1.519	
	С н=с н	/	$C_{c} - C_{c}$	1.342	
			$\angle C_{b}C_{a}C_{b}$	104.0	
	$\angle C_{b}C_{c}C_{c}$	110.0	$\angle C_a C_b C_c$	103.0	
	dihedral angle be	tween the $C_{h}C_{s}C_{h}$	and $C_{b}C_{c}C_{c}C_{b}$ planes	151.2	

dihedral angle between the $C_b C_a C_b$ and $C_b C_c C_c C_b$ planes

Compound		Structure				Method
Cyclopropane	C—C	1.512	С—Н	1.08	33	R
(CH ₂) ₃	∠HCH	114.0				
Cyclopropanone	H_2C_b	C—H	1.086	$C_a - C_b$	1.475	MW
		$C_{b}-C_{b}$	1.575	$C_a - O$	1.191	
	H_2C_b	$\angle C_a C_b C_b$	57.7			
	2 0					
	$\angle HC_{b}H$	114	dihedral angle between	the CH_2 plane		
	~ **		and the $C_{\rm b} - C_{\rm b}$ bond	1.00	151	ED
Cyclopropene	C _a H ₂		$C_{b} - C_{b}$	1.30	04	ED
	$HC_b = C_b I$	H	$C_a - C_b$	1.51	19	
	C U	1 1 1 0	C _b —H	1.07		
	$C_a = \Pi$	1.112	∠C _b C _b ⊓	155		
Docalin	$\angle \Pi C_a \Pi$	1 5 2 0	C = H (avorago)	1.11	3	FD
C H	C = C (average)	1.550	C—II (average)	1.11	15	ΕD
$C_{10}\Pi_{18}$	ZCCC (average)	111.4				
beva-2.5-diene						
Diacotylono 1.3 Butadiyno						
1.4-Diazabicyclo[2.2.2]octane	СН.СН.		C_N	1.45	70	FD
1,4-Diazabicycio[2.2.2]octane			C = C	1.4/	2	LD
	N-CH ₂ CH ₂ -N	N	/NCC	110	2	
	CH ₂ CH ₂		ZINCC /CNC	108	7	
	large-amplitude t	orsional motion al	bout the D symmetry ax	is	• /	
2 3-Diaza-1 3-butadiene \rightarrow Formalde-	large uniplicade t		source D _{3h} symmetry un	15		
hyde azine						
Diazirine	< N		C—H	1.09)	MW
	CH		C—N	1.48	32	
	N N		N—N	1.22	28	
	14		∠HCH	117		
Diazoacetonitrile	Н		$C_{L} - N_{L}$	1.28	30	MW
			N _L -N	1.13	32	
	∠ ^C b		C_N	1.16	55	
	C _a N _b		с ^а —Н ^а	1.08	32	
	Na	N _c	$C_a - C_b$	1.42	24	
	$\angle C_a C_b H$	117	$\angle C_a C_b N_b$	119	.5	
Diazomethane	С—Н	1.075	C—N	1.32	2	MW, IR
CH ₂ N ₂	N—N	1.12	∠HCH	126	.0 linear	
1,2-Dibromoethane	C—C	1.506	C—Br	1.95	50	ED
CH ₂ BrCH ₂ Br	С—Н	1.108	∠CCBr	109	.5	
	∠CCH 110	fraction of the <i>tra</i>	<i>ans</i> conformer at 25°C	95%)	
Dibromomethane	C—H	1.08	C—Br	1.92	24	ED
CH ₂ Br ₂	∠HCBr	109	∠BrCBr	113	.2	
2,2'-Dichlorobiphenyl	C-C	1.398	C—C inter-ring	1.49	95	ED
$C_6H_4Cl-C_6H_4Cl$	C—Cl	1.732	С—Н	1.10)	
		121.4	ZCCH	126		
	dihedral angle be conformer)	tween the two aro	matic rings 74 (defined to	be 0 for that of	the cis	
trans-1,4-Dichlorocvclohexane	с—н	1.102	C—Cl	1.81	0	ED
C _c H _u Cl ₂	C—C	1.530	∠CCC	111	.5	
0 10 2	∠CCCl (ee)	108.6	$\angle \text{CCCl}$ (aa)	110	.6	
	∠HCCl (ee)	111.5	∠HCCl (aa)	107	.6	
	ee 49%	aa 51%	e: equatorial, a: axial			
1,1-Dichloroethane	C—Cl	1.766	C—C	1.54	łO	MW
CHCl ₂ CH ₃	∠ClCCl	112.0	∠CCCl	111	.0	
1,2-Dichloroethane	C—C	1.531	C—Cl	1.79	90	ED
CH ₂ ClCH ₂ Cl	C—H	1.11	∠CCCl	109	.0	
2 2	∠CCH	113				
	fraction of the tra	<i>uns</i> conformer at r	oom temperature 73%, tha	at of the <i>gauche</i>		

fraction of the *trans* conformer at room temperature 73%, that of the *gauche* conformer 27%

Compound		Structure			Method
1,1-Dichloroethylene	C—C	1.32 (assumed)	C—Cl	1.73	MW
$CH_2 = CCl_2$	∠ClCC	123	(C_{2v})		
cis-1,2-Dichloroethylene	C—Cl	1.718	C—C	1.354	ED
CHCl=CHCl	∠ClCC	123.8			
Dichloromethane	C—H (r_e)	1.087	$C-Cl(r_e)$	1.765	MW, IR
CH ₂ Cl ₂	\angle HCH (θ_{e})	111.5	$\angle \text{ClCCl}(\theta)$	112.0	
1,1-Difluoroethane	C-C	1.498	C—H (average)	1.081	ED
CH ₃ CHF ₂	C—F	1.364	∠CCH (average)	111.0	
	∠CCF 110.7	dihedral angle be	tween the two CCF planes	118.9	
1,2-Difluoroethane	C—F	1.389	C—C	1.503	ED
CH,FCH,F	C—H	1.103	∠CCF	110.3	
2 2	∠CCH 111	dihedral angle of	internal rotation	109	
	fraction of the ga	uche conformer at	22°C 94%		
1,1-Difluoroethane	C-C	1.340	C—F	1.315	ED, MW
CH ₂ =CF ₂	C—H	1.091	∠CCF	124.7	
2 2	∠CCH	119.0			
cis-1,2-Difluoroethylene	C—C	1.33	C—F	1.342	ED, MW
CHF=CHF	C—H	1.099	∠CCF	122.0	
	∠CCH	124.1			
Difluoromethane	С—Н	1.093	C—F	1.357	MW
CH_F_	∠HCH	113.7	∠FCF	108.3	
Dimethoxymethane	НО	о н	C O	1.432	ED
	H-C C		С. —О	1.382	
		Ca	C - H (average)	1.108	
	H H H	IH H			
	/COC	114.6	/000	114.3	
	/OCH	110.3			
Dimethylacetylene $\rightarrow 2$ -Butyne					
Dimethylamine	С—Н	1 106	N—H	1.00	ED
(CH) NH	C—N	1.455	/CNC	111.8	
(01)2-112	/CNH	107	/NCH	112	
	/HCH	107		112	
Dimethylberyllium	Be-C	1 698	С—Н	1 127	FD
$(CH) B_{e}$	/BaCH	113.9	CBeC linear	1.12/	LD
Dimethylcadmium	∠been C—Cd	2 112		108 4	P
(CH) Cd	e eu	2.112	ZHEH	100.1	IX.
Dimethyl carbonate	CHO		C O	1 209	FD
Diffective carbonate	C _a H ₃ O _a		$C_{b} = O_{b}$	1.209	LD
	$C_b = 0$	b	$C_{b} = O_{a}$	1.54	
	$C_aH_3O_a$			1.72	
	/0.00	107	/	114.5	
Dimethylcyanamide	C = N	1 161	C - N	1 338	FD
(C H) N - C = N	C - N	1.101	$C_{\rm b}$ $C_{\rm a}$	115.5	LD
$(\mathcal{C}_a^{\dagger} \mathcal{C}_a)_2 \mathcal{C}_a^{\dagger} \mathcal{C}_b^{\dagger} \mathcal{C}_b^{\dagger}$	C_{a} N_{a}	1160		110.0	
1.2-Dimethyldiborane	$2C_a N C_b$	CU	B_B	1 799	FD
1,2-Dimetrykiborane		CH ₃	B-C	1.799	LD
	^B ^B	\mathbf{X}	B—H 1 358 (ci	s) 1 365 (trans)	
	H _t H _b	H _t	D 11 _b 1.550 (cz	<i>s)</i> , 1.505 (<i>trans</i>)	
	B—H	1 24			
	$\angle BBC$	122.6 (cis), 121.8	(trans)		
Dimethyl diselenide	C—H	1 13	C—Se	1 95	ED
(CH) Se	Se—Se	2 326		98.9	
(0113/2002	/HCSe 108	dihedral angle be	tween the CSeSe and SeSeC planes	88	
Dimethyl disulfide	C_S	1 816	S_S	2 029	FD
(CH) S	С <u>-</u> н	1 105	/SSC	103.2	LD
(Sr ₃ / ₂ 0 ₂	С н /SCH 111.2	CSSC dibodral as	agle of internal rotation	85	
S S' Dimethyl dithiogenhangta				1 206	FD
3,3 - Dimentyi utunocarbonate	$c_a \pi_3 s c_b s c_a H_3$			1.200	LD
	ö			1.///	
	/005	124.0		1.602	
	2003	124.9		77.0	
			<i>syn-syn</i> conformer		

Compound		Structure			Method
Dimethyl ether	C—O	1.416	С—Н	1.121	ED
(CH ₂) ₂ O	∠COC	112	∠HCH	108	
Dimethylglyoxal \rightarrow Biacetyl					
<i>N</i> , <i>N</i> ′-Dimethylhydrazine	N—N	1.42	C—N	1.46	ED
CH,NH—NHCH,	N—H	1.03	C—H	1.12	
з з з	∠NNC 112	CNNC dihedral a	angle of internal rotation	90	
Dimethylmercury	C—Hg	2.083	С—Н	1.160 (assumed)	ED
(CH ₂) ₂ Hg	Hg…H	2.71			
Dimethylphosphine	C—P	1.848	P—H	1.419	MW
(CH ₂) ₂ PH	∠CPC	99.7	∠СРН	97.0	
Dimethyl selenide	C—H	1.093	Se—C	1.943	MW
(CH ₂) ₂ Se	∠CSeC	96.2	∠SeCH	108.7	
5' 2	∠HCH	110.3			
Dimethyl sulfide	C—S	1.807	C—H	1.116	ED, MW
(CH ₂) ₂ S	∠CSC	99.05	∠HCH	109.3	
Dimethyl sulfone	C—H	1.114	S—O	1.435	ED
(CH _a) _a SO _a	S—C	1.771	∠CSC	102	
3' 2 2	∠OSO	121			
Dimethyl sulfoxide	C—H	1.081	C—S	1.799	MW
(CH.) SO	S-0	1.485	/CSC	96.6	
3/2	/CSO	106.7	/нсн	110.3	
	dihedral angle be	tween the SCC pla	ne and the S—O bond	115.5	
Dimethylzinc	Zn—C	1.929	/нсн	107.7	R
(CH.) Zn					
1.4-Dioxane	C—C	1.523	C0	1.423	ED
CH-CH-	C—H	1.112	/	112.45	
	/CCO	109.2	chair form		
CH-CH-	2000	10712			
$Ethanal \rightarrow Acetaldehyde$					
Ethane	C—C	1.5351	С—Н	1.0940	MW
C_2H_6	∠CCH	111.17	staggered conformation		
Ethanethiol	C _b H ₃ -C _a H ₂ -SH		C _a —H	1.090	MW
	C_{b} —H	1.093	$C_a - C_b$	1.530	
	C _a -S	1.829	S—H	1.350	
	$\angle C_{b}C_{a}H$	109.6	$\angle C_a C_b H$	109.7	
	$\angle C_{b}C_{s}S$	108.3	∠C _s SH	96.4	
Ethanol	C,H,C,H,OH		C—C	1.512	MW
	C—O	1.431	O—H	0.971	
	C _a —H	1.10	C _b —H	1.09	
	∠CCO	107.8	∠COH	105	
	$\angle C_{b}C_{a}H$	111	$\angle C_{a}C_{b}H$	110	
	staggered conform	mation			
Ethyl chloride	H _b Cl	L	C—C	1.528	ED, MW
	H - C - C - H	I	C—Cl	1.802	
		*a	С—Н	1.103	
	п _b Н	a	$C_a - H_a = C_b - H_b$ (assumed)		
			∠CCCI	110.7	
	∠H,C,H,	109.8	∠H _C H	109.2	
	∠C, C, H	110.6	a a a		
Ethylene	C—H	1.087	C—C	1.339	MW
CH ₂ =CH ₂	∠CCH	121.3			
Ethylenediamine	C—N	1.469	C—C	1.545	ED
H,NCH,CH,NH,	С—Н	1.11	∠CCN	110.2	
<u> </u>	gauche conformer	dihedral angle be	tween the NCC and CCN planes	64	
		-	-		

Ethylene dibromide \rightarrow 1,2-Dibromoethane Ethylene dichloride \rightarrow 1,2-Dichloroethane Ethyleneimine \rightarrow Aziridine

Compound		Structure				Method
Ethylene oxide	C—C	1.466	С—Н	1	.085	MW
CH ₂	C—O	1.431	∠HCH	1	16.6	
	dihedral angle be	tween the NH ₂ pla	ne and the N—C bond	1	58.0	
CH ₂						
Ethylene sulfide \rightarrow Thiirane	()		~ ~			
Ethyl methyl ether	C—O (average)	1.418	С—С	1	.520	ED
$C_2H_5OCH_3$	C—H (average)	1.118	ZCOC	1	11.9	
	ZOCC	109.4	ZHCH	1	09.0	
	fraction of the <i>tra</i> 20°C	<i>ins</i> conformer at	80%			
Ethyl methyl ketone	O		C—C (average)	1	.518	ED
	C_aH_3 C_a		$C_{c} - O$	1	.219	
	C _L H ₂	сп	C—H (average)	1	.102	
	-02	C _d 113	$\angle C_a C_b C_c$	1	13.5	
	$\angle C_{b}C_{c}O, \angle C_{d}C_{c}O$	121.9	trans conformer	9	5%	
Ethyl methyl sulfide	C—S (average)	1.813	C—C	1	.536	ED
$C_2H_5SCH_3$	C—H	1.111	∠CSC	9	7	
	∠SCC	114.0	∠HCH	1	10	
	fraction of the ga	uche conformer at	20°C 75%			
Ferrocene	C—C	1.440	С—Н	1	.104	ED
$(C_5H_5)_5Fe$	Fe—C	2.064	(D _{5b})			
Fluoroform	C—H	1.098	C—F	1	.332	MW
CHF ₃	∠FCF	108.8	(C_{3v})			
Formaldehyde	C—H	1.116	C—O	1	.208	MW
H,CO	∠HCH	116.5				
Formaldehyde azine	H_C=N-N=CH_	N—N	1.418			ED
	C–N 2	1.277	С—Н	1	.094	
	∠CNN	111.4	∠HCN	1	20.7	
	fraction of the tra	<i>ns</i> conformer at –	30°C 91%			
Formaldehyde dimethylacetal \rightarrow Dimethoxymethane						
Formaldoxime	н оч	r	С—Н	1	.085	MW
		c	с—H.	1	.086	
	C-N		C—N	1	.276	
	H _b					
	N—O	1.408	O-H	0	.956	
	∠H, CN	115.6	∠CNO	1	10.2	
	∠H CN	121.8	∠NOH	1	02.7	
Formamide	H. O		С—Н	1	.125	ED, MW
			N—H ^a	1	.027	
	/N-C		C—N	1	.368	
	H _b H _a					
	C—O	1.212	∠NCO	1	25.0	
	∠CNH (average)	119.2				
Formic acid	\mathcal{O}_{a}		C-O _a	1	.202	MW
	н-с″		C-O _b	1	.343	
	Ов-Н					
	O _b —H	0.972	С—Н	1	.097	
	∠HCO.	124.1	∠O,CO,	1	24.9	
	∠CO, H	106.3	planar			
Formic acid dimer	_О,…H—О,		OO,	2	.703	ED
	нс	СН		1	.220	
	0H		C-O,	1	.323	
	Sp II	- a	∠O CO,	1	26.2	
			$\angle CO O$	1	08.5	
Formyl radical	H.	C—H	1.110	С—О	1.1712	MW
,	C=O	∠HCO	127.43			
	•		· · · · -			

Compound		Structure			Method
Fulvene	C_dH_2		$C_{a} - C_{d}$	1.349	MW
			$\tilde{C_a-C_b}$	1.470	
	C _a		$C_{b} - C_{c}$	1.355	
	HC _b C _b H	I	CC	1.476	
			C _b -H	1.078	
	HC _c -C _c H		C_H	1.080	
	C _d —H	1.13	$\angle C_{k}C_{k}C_{k}$	106.6	
	∠C C C	107.7	∠C, C C	109	
	∠C C H	124.7	∠C.CH	126.4	
	/HC H	117	-b-c		
2-Furaldehvde	H H	ł	С-С	1.458	MW
,	$C_{-}C_{L}$	0	C - O	1.250	
	H-C	c - c'	C –H	1.088	
	n cd	Ca Ce		133.9	
	O _a ´	н	$\Sigma = \mathcal{O}_e \mathcal{O}_a \mathcal{O}_b$	1000	
	∠C ₂ C ₄ H	116.9	∠C,C,O	121.6	
	trans conformer	(with respect to th	e O and O atoms)		
Furan	н ,0,	н	$C_{L} - C_{L}$	1.431	MW
			C - C	1.361	
	Ca	Ca	C - O	1.362	
	$C_{\rm b} - C_{\rm b}$		C —H	1.075	
	н.	H.	$\vec{C} - \vec{H}$	1.077	
	ть	11 _b	ЪЪ		
		106.1	/C.0C	106.6	
	$\angle C_a C_b O_b$	110.7	$\angle O_{a} \cup O_{a}$	115.9	
	$\angle C_b C_a C_b$	128.0		1100	
Furfural 2 Furaldobydo	$\angle c_b c_b n_b$	120.0			
$\Delta = 2^{-1}$ uradenyde	шо		C O	1 200	MW/
Grycolaidenyde	H _c U _b		$C_{\rm b} = O_{\rm b}$	1.209	IVI VV
	C _b		$C_a = C_a$	1.437	
				1.499	
	H _b Ca H _i	1	$O_a - H_a$	1.051	
	$H_b O_a$		$C_{b} - \Pi_{c}$	1.102	
		100.7	$C_a = \Pi_b$	1.095	
	$\angle C_a C_b O_b$	122.7	$\angle C_a C_b H_c$	115.3	
	$\angle C_b C_a O_a$	111.5	$\angle C_a O_a H_a$	101.6	
	$\angle C_b C_a H_b$	109.2	$\angle H_b C_a H_b$	107.6	
	$\angle H_b C_a O_a$	109.7			
Glyoxal	C—C	1.526	С—О	1.212	ED, UV
СНОСНО	С—Н	1.132	∠CCO	121.2	
	∠HCO	112	trans conformer	(C _{2h} (assumed))	
Hexachloroethane	C—C	1.56	C—Cl	1.769	ED
Cl ₃ CCCl ₃	∠CCCl	110.0			
2,4-Hexadiyne	$C_aH_3 - C_b \equiv C_c - C_c$	$C_c \equiv C_b - C_a H_3$			ED
	$C_a - C_b$	1.450	$C_{b}-C_{c}$	1.208	
	$C_{c} - C_{c}$	1.377	$C_a - H$	1.09	
Hexafluoroethane	C—C	1.545	C—F	1.326	ED
F ₃ CCF ₃	∠CCF	109.8	staggered conformation		
Hexafluoropropene	average value of	the C=C and C—F	distances	1.329	ED
CF_=CFCF_	C—C	1.513	∠CCC	127.8	
2 5	$\angle FCC (CF_{2})$	124	∠FCC (CF)	120	
	$\angle FCC (CF_3)$	110			
1,3,5-Hexatriene	$H_2C_2 = C_1H - C_1H$	$H = C_{c}H - C_{h}H = C_{H}$	ł,		ED
	$C_{a} - C_{b}$	1.337	C _b -C	1.458	
	CC	1.368	$\angle C_{c}C_{b}C_{c}$	121.7	
	∠C, C C	124.4	а с		
Iminocyanide radical	N—H	1.034	N…N	2.470	UV
HNCN	/HNC	116.5	/NCN	~180	
Indocvanoacetylene		1 985		1 207	MW/
I = C = C = C = N	$\Gamma - C_a$	1 370	C - N	1.207	141 44
$1 - C_a = C_b - C_c = 1$	$c_b - c_c$	1.0/0	~ _c [−] 11	1.100	

ED

			2011 2011 80110		
Compound		Structu	re		Method
Isobutane	C _a —H	1.122	C_{h} —H	1.113	ED, MW
$(C_{b}H_{3})_{3}C_{a}H$	$\tilde{C_a} - C_b$	1.535	$\angle C_{b}C_{a}C_{b}$	110.8	
	∠C _a C _b H	111.4			
Isobutylene \rightarrow 2-Methylpropene					
Ketene	C—C	1.317	C—O	1.161	MW
CH ₂ =C=O	C—H	1.080	∠HCH	123.0	
Malononitrile	C—H	1.091	C—C	1.480	MW
$C_{a}H_{2}(C_{b}N)_{2}$	C—N	1.147	∠CCC	110.4	
	/нсн	108.4	/CCN	176.6	

∠HCH	108.4	∠CCN	176.6	
(The two N a	toms are bent aw	ay from each other in the p	blane of $C_b - C_a - C_b$	
C—H (r_e)	1.0870	(T_d)		MW
C—H	1.09	C—S	1.819	MW
S—H	1.34	∠HSC	96.5	

∠HCH	109.8			
angle betwee	en the CH ₃ symme	etry axis and the C—S bon	d 2.2. (The axis of the CH_3 group	is
tilted away f	rom the H atom w	ith respect to the C—S bo	nd.)	
C—H	1.0936	C—O	1.4246	MW

-				
O—H	0.9451	∠HCH	108.63	
∠COH	108.53			
angle between th (The axis of the C with respect to th	e CH ₃ symmetry az CH ₃ group is tilted a te C—O bond.)	kis and the C—O bond away from the H atom	3.27	
С—Н	1.08	planar		UV

H ₃ C _a C _b -N	H C _c H ₃	$C_a - C_b$ N $- C_c$ C $- H$	1.520 1.469 1.107
C _b −N ∠C _b NC _c	1.386 119.7	C_{b} —O	1.225

63.9

$C_b - N$	1.386	$C_{b} - O$	
$\angle C_{h}NC_{c}$	119.7		
∠NC _b O	121.8		
$\angle C_a C_b N$	114.1		

Methylacetylene \rightarrow Propyne
$Methylal \rightarrow Dimethoxymethane$
Methylamine
CH ₃ NH ₂

∠HNC	110.3	∠HCH	108.0	
C—H	1.099	∠HNH	107.1	
N—H	1.010	C—N	1.471	MW

 $\angle C_{c}C_{b}C_{c}$

dihedral angle between the $\mathrm{CH}_{\scriptscriptstyle 3}$ symmetry axis and the

	C—N bond (T	he axis of the CH ₃ g	group is tilted	away from			
	the NH ₂ group	with respect to the	e C—N bond.)			2.9	
Methyl azide	CH ₃		C—H			1.09	ED
	N —N	—N	C-N _a			1.468	
	i a i b	1 °c	N _a —N _b			1.216	
	N _b -N _c	1.113	$\angle CN_aN_b$			116.8	
	NNN linear		u b				
Methyl bromide	$C - H(r_e)$	1.086	C—Br (r_e)			1.933	MW, IR
CH ₃ Br	\angle HCH (θ_{e})	111.2	(C _{3v})				
Methyl chloride	С—Н	1.090	C—Cl			1.785	MW, IR
CH ₃ Cl	∠HCH	110.8					
Methyldiazirine	/ N	C—N	1.481	C—C		1.501	MW
	CH ₃ CH ∭	N—N	1.235	∠NCN		49.3	
	` N	dihedral angle b	etween the Cl	NN plane an	d the		
		C—C bond		122.3			
Methylene	C—H	1.078	∠HCH		130		LMR
:CH							
Methylenecyclopropane	$C_{c}H_{2}$		$C_{a}-C_{b}$		1.332		MW
		п	C, -C		1.457		
		n ₂	C_C		1.542		
	$C_{c}H_{2}$		с с				

1.09

 $C_{c}-H$

Methane CH_4 Methanethiol CH₃SH

Methanol

 $CH_{3}OH$

Methyl radical

N-Methylacetamide

·CH₃

Compound		Structure			Method
	∠HC H	114.3	∠HC H	113.5	
	dihedral angle	between the C _c H ₂ p	ane and the $C_{-}C_{c}$ bond	150.8	
3-Methyleneoxetane	C.H ₂	¢ 2-	C _b -C	1.52	MW
	0	-CH	C_O	1.45	
	C _c H ₂	$-c_a n_2$	$C_a^c - C_b$	1.33	
	С—Н	1.09 (assumed)	$\angle C_{c}C_{b}C_{c}$	87	
	∠HC H	114 (assumed)	∠HC H	120 (assumed	
Methyl fluoride	$C = H(r_e)$	1.095			MW, IR
CH ₃ F	$C - F(r_e)$	1.382	∠HCH (θ_)	110.45 (C _{3v})	
Methyl formate	C.H ₂)	C_H	1.08	ED
		b	$C_{i}^{a} - O_{i}$	1.206	
	$O_a - C_b$		$\vec{C} = O$ (average)	1.393	
]	H _b	$C_{\rm b}$ -H	1.101 (assumed)	
	$\angle O_a C_b O_b$	127	∠COC	114	
	∠OCH	110			
Methylgermane	C—H	1.083	Ge—H	1.529	MW
CH ₂ GeH ₂	C—Ge	1.945	∠HCH	108.4	
5 5	∕ HGeH	109.3			
Methyl hypochlorite	С—Н	1.103	O-Cl	1.674	MW
CHOC	0-0	1 389	с с. /н <i>С</i> н	109.6	
0113001		112.8	ZHEH	109.0	
Methylidyne radical	$C - H(r_e)$	1.1198			UV
:CH Methylidyne phosphide	H—C (r_e)	1.0692	C—P (r_e)	1.5398	MW
НСР					
Methyl iodide	$C - H(r_e)$	1.084	$C = I(r_e)$	2.132	MW, IR
CH ₃ I	\angle HCH (θ_{e})	111.2	(C _{3v})		
Methyl isocyanide	$C_aH_3 - N \equiv C_b$	C_{a} —H	1.102	C_{a} —N 1.424	MW
	N-C _b	1.166	$\angle NC_{a}H$	109.12	
Methylketene	$C_{c}H_{3}$		O-C _a	1.171	MW
	с —	∩ —∩	$C_{b}-C_{c}$	1.518	
	н Н	$c_a = 0$	C_{c} -H	1.10	
	С —С.	1.306	С. —Н	1.083	
		180.5		122.6	
	/C C H	113.7	/CCH	123.7	
	∠o _a o _b n ∕HCH	109.2	$= O_c O_b \Omega$		
Methylmercury chloride	Ha-Cl	2 282	С_Н	1 15	MW
CH HaCl	Hg C	1.00	(C_{-1})	1.15	NIMP
Mathyl nitrata	Tig—C	1.99		1 10	MW
Wiethyr Intrate	H _a H _a H	a a	$C = \prod_{a}$	1.10	IVI VV
	Č N	J.		1.09	
	ц о		C=0	1.437	
	n _b 0	O_b	0-N	1.402	
	N—O _a	1.205	N-O _b		
	$\angle OCH_a$	110	∠OCH _b	103	
	∠CON	112.7	$\angle ONO_a$	118.1	
	∠ONO _b	112.4			
Methylphosphine CH ₂ PH ₂	С—Р	1.858	С—Н	1.094	ED
2-Methylpropane \rightarrow Isobutane					
2-Methylpropene	C.H.	H.	С —Н	1.119	ED, MW
	~a ~	/c	с [°] —Н	1.10	
	$c_b = c_b$	°	C - C	1 508	
	C _a H ₃	Ъ	$C_{a} = C_{b}$	1 242	
	/HC C	111 4	С _b —С _с /НСН	1.342	
	(average)	111.4		110.0	
	$\angle C_{a}C_{b}C_{a}$	115.6	$\angle C_a C_b C_c$	122.2	
	$\angle HC_{a}H$	107.9	$\angle C_{b}C_{c}H$	121	

Compound		Structure						Method
Methylsilane	C—H	1.093	C—Si			1.867		MW
CH ₃ SiH ₃	Si—H	1.485	∠HCH			107.7		
5 5	∠HSiH	108.3	(C_{3v})					
Methylstannane	C—Sn	2.143	Sn—H			1.700		MW
CH ₃ SnH ₃			(C _{3v})					
Methyl thiocyanate	C ₂ H ₃	S-C _b	1.684		S-C		1.824	MW
	S C N	C _b -N	1.170		С—Н		1.081	
	$3-C_b-N$	-						
	$\angle C_a SC_b$ 99.0	∠HCH	110.6		∠HCS		108.3	
Naphthalene	H H	[$C_a - C_b$			1.37		ED
	H C _a	H	$C_{b} - C_{b}$			1.41		
		Cb	$C_a - C_c$			1.42		
			$C_{c} - C_{c}$			1.42		
	u Cb Cc	1/b	C—C (averag	ge)		1.40		
	$\mathbf{L} \mathbf{L}_{\mathbf{a}}$	a H	$\angle C_a C_c C_c$			119.4		
	Ĥ H	ł						
			~					
Neopentane	C—C	1.537	C—H			1.114		ED
$C(CH_3)_4$	ZCCH	112						
Nickelocene \rightarrow Bis (cyclopentadienyl)								
nickel	a		<i>a</i>					
Nitromethane	С—Н	1.088 (assumed)	C—N			1.489		MW
CH_3NO_2	N—O	1.224	∠NCH			107		
	ZONO	125.3						
<i>N</i> -Nitrosodimethylamine	N-O	1.235	N—N			1.344		ED
$(CH_3)_2$ NNO	C-N	1.461	ZONN			113.6		
NT4 (1	ZCNC	123.2	ZCNN			116.4		1 (1)//
Nitrosometnane	C—N	1.49	N=0			1.22		MW
CH ₃ NO	С—п (NCU	1.084	ZCNO			112.0		
Norhormono Picyclo[2.2.1]hontono	ZNCH	109.0						
Norbornane \rightarrow Bicyclo[2.2.1]heptane								
2.5 diana								
2,5-diene	0	O N	1 390	/NON		110.4		MW
1,2,5 0 Audiazoic		C-N	1 300			105.8		101 00
		C-C	1 421	ZONC ZCCN		109.0		
		с е С—Н	1.076	∠CCH		130.2		
	ne en	/NCH	120.9	planar		10012		
1.3.4-Oxadiazole	0.	0–C	1.348	/COC		102.0		MW
-,-,	СПСН	C—N	1.297	ZOCN		113.4		
		N—N	1.399	/CNN		105.6		
	NN	C—H	1.075	/OCH		118.1		
		∠NCH	128.5	planar				
Oxalic acid	н		C—C	1	1.544			ED
			C0.		1.205			
	O _b O _a		C—O _b		1.336			
	C - C		O _b —H		1.05			
	0		∠CCO		123.1			
	a Ob		∠O CO		125.0			
	H		∠CO,H		104			
Oxalyl dichloride	Cl .0		C—O			1.182		ED
	c-c''		C—C			1.534		
	o Ci		C—Cl			1.744		
	∠CCO	124.2	∠CCCl			111.7		
	fraction of the <i>tra</i>	ans conformer at 0	°C 68%, that of	f the <i>gauche</i>	conforme	r 32%		
Oxetane			C-0			1.448		MW
	H ₂ C CH ₂		C = C	~~)		1.546		
	CH ₂		C—H (averag	ge)		1.090		
			200C			74		

Compound		Structure				Method
-	∠CCC	85	∠OCC		92	
	∠HCH	109.9				
	(average)					
$Oxirane \rightarrow Ethylene oxide$						
Phenol	Н		C—C (average)		1.397	MW
	O O		C _b —H		1.084	
	Ċ		C _c —H		1.076	
	Ca .		C _d —H		1.082	
	HC _b C _b H		C _a —O		1.364	
	НССИ		O—H		0.956	
	ле _с С _с п		∠сон		109.0	
	С _d Н					
Phosphirane	CH ₂	C—P	1.867	P—H	1.43	8 MW
L		C—C	1.502	С—Н	1.09)
	РН	/CPC	47.4	/HCH	114.4	Ļ
	CH ₂					
	∠HPC 95.2	∠CCH	118			
	dihedral angle be	tween the PCC pla	ine and the PH bond	95.7		
Piperazine	CH ₂ -CH	2 \	C—C		1.540	ED
	NH	NH	C—N		1.467	
	СН-СН		C—H		1.110	
	2	2				
	∠CNC	109.0	∠CCN		110.4	
			(C _{2h})			
Pivalonitrile	$C_a - C_b$	1.495	C _a —N		1.159	MW
$(C_{c}H_{3})_{3}C_{b}-C_{a}\equiv N$	$C_{b}-C_{c}$	1.536	$\angle C_{c}C_{b}C_{c}$		110.5	
Propadiene \rightarrow Allene						
Propane	C—C	1.532	С—Н		1.107	ED
$C_{3}H_{8}$	∠CCC	112	∠HCH		107	
$Propenal \rightarrow Acrylaldehyde$						
Propene	H _c		$C_a - H_a$		1.104	ED, MW
	H _d C _b	н.	$C_{a} - C_{b}$		1.341	
		110	$C_{c}-H_{d}$		1.117	
	$H_d - C_c \qquad C$	a	$C_{b}-C_{c}$		1.506	
	H _d H	a	$\angle C_{b}C_{a}H_{a,b,c}$		121.3	
	∠C, C H,	110.7	∠C C, C		124.3	
l-Propenyl chloride	$CH_{-C}^{b}H=CH$	-Cl C -Cl	1.728 c		MW	
£ /	$\angle C.C.C.l$	121.9	trans conformer			
Propiolaldehyde	$HC \equiv C - CHC$)	С — Н		1.085	ED, MW
1 /	C - C	1.211	C - C		1.453	,
	C –H	1.130	C - O		1.214	
	∠C.CO	124.2	∠C.CH		113.7	
	$\angle C C C C$	178.6	planar			
Propylene \rightarrow Propene	арс					
Propylene oxide	C ₂ H ₃ C _b H— <u>C</u> ₂ H	H2	$C_{L} - C_{L}$		1.51	MW
17	-a 3-b	2	$\angle C C, C$		121.0	
	0		dihedral angle between t	the C, C O	plane	
			and the $C_{s}C_{b}$ bond	в с	123.8	
$Propynal \rightarrow Propiolaldehyde$			4 D			
Propyne	$H_3CC_b\equiv C_3H$		C_H		1.105	MW
	$C_{c} - C_{b}$	1.459	$C_{b} - C_{a}$		1.206	
	C_H	1.056	∠HC _c C _b		110.2	
Pyrazine		C—C	1.339	C—N	1.403	ED
	N N	C—H	1.115	∠CCN	115.6	
		∠CCH	123.9			
Pyridazine	н н		N-C		1.341	ED, MW
	$C_b = C_b$		$C_a - C_b$		1.393	
	HC _a C _a	Н	N–N		1.330	
	N-N "		$C_{b} - C_{b}$		1.375	
	∠NCC	123.7	∠NNC		119.3	

Compound		Structure					Method
Pyridine	H _c		N-C			1.340	MW
	H. C. I	L	$C_{b} - C_{c}$			1.394	
		1 _b	$C_{h} - H_{h}$			1.081	
			$C_a - C_b$			1.395	
	C _a C _a		$C_a - H_a$			1.084	
	H _a N	H _a	$C_{c} - H_{c}$			1.077	
	$\angle C_a NC_a$	116.8	$\angle NC_aC_b$			123.9	
	$\angle C_a C_b C_c$	118.5	$\angle C_{b}C_{c}C_{b}$			118.3	
	$\angle NC_aH_a$	115.9	$\angle C_{c}C_{b}H_{b}$			121.3	
Pyrimidine	N	N—C	1.340	(C—C	1.393	ED
	N	\angle NCN (C_{2v} assumed)	127.6	Ĺ	CNC	115.5	
Pyrrole	Н		N—Ca			1.370	MW
	^N		$C_{b}-C_{b}$			1.417	
	$H_a - C_a$	$C_a - H_a$	$C_a - C_b$			1.382	
			N—H			0.996	
		11 _b	$C_a - H_a$			1.076	
	$C_{b} - H_{b}$	1.077	$\angle C_{a}NC_{a}$			109.8	
	$\angle NC_aC_b$	107.7	$\angle C_a C_b C_b$			107.4	
	$\angle NC_{a}H_{a}$	121.5	$\angle C_{b}C_{b}H$			127.1	
Pyruvonitrile	// ⁰		С—Н			1.12	ED, MW
	$C_aH_3-C_b$		C—N			1.17	
	C _c		C-0			1.208	
	1	N	$C_{b} - C_{c}$			1.477	
	$C_a - C_b$	1.518	∠HCH			109.2	
	$\angle C_a C_b O$	124.5	$\angle C_a C_b C_c$			114.2	
	∠CCN	179					
Ruthenocene \rightarrow Bis (cyclopentadienyl)							
ruthenium							
Silacyclobutane	CH2-CH2		Si—C			1.892	ED
	L L L L L L L L L L L L L L L L L L L		C—C			1.600	
			Si—H			1.47	
	C—H	1.14	∠CSiC			80.7	
	∠SiCC	84.8	∠CCC			99.8	
	dihedral angle be	tween the CCC an	d CSiC planes			146	
Spiropentane	H_2C_b C_bH_2		$C_{b}-C_{b}$			1.52	ED
			$C_a - C_b$			1.47	
	H_2C_b		С—Н			1.09	
	6 2	110	$\angle C_b C_a C_b$			62	
	ZHCH	118	(D_{2d})			1.465	FD
Succinonitrile	CH ₂ CN	CC	1.561	C = C(N)		1.465	ED
	ĊH ₂ CN	C−N ∕CCC	1.161 110.4	С—п		1.09	
	fraction of the an	<i>ti</i> conformer at 17	0°C 74%,				
	dihedral angle o	f CCCC for the ga	uche conforme	r		75	
Tetrachloroethylene	C—Cl	1.718	C—C			1.354	ED
CCl ₂ =CCl ₂	∠ClCCl	115.7					
Tetracyanoethylene	C—N	1.162	C—C			1.435	ED
$(CN)_2C=C(CN)_2$	C=C	1.357	∠CC=C			121.1	
Tetrafluoro-1,3-dithietane	S		C—S			1.785	ED
	F_2C CF_2		C—F			1.314	
	`s´ ¯		∠CSC			83.2	
	∠FCS	113.7	$(D_{2h} assumed)$	1)			
Tetrafluoroethylene	C—C	1.31	C—F			1.319	ED
$CF_2 = CF_2$	∠CCF	123.8	(D _{2h} assumed	l)			

Tetrahydrofuran CH_2CH_2 CH_2CH_2 C-H $C-C$ 1.115 $C-O$ C-O 1.428 ED ED Tetrahydropyran H_2 $C-C$ H_2C CH_2 C-O $C-C$ 1.420 $C-C$ ED $L120$ Tetrahydropyran H_2 $C-C$ $C-C$ $C-C$ C-O $L120$ 1.420 $C-C$ ED $L120$ Tetrahydropyran H_2 $C-C$ $C+C_2$ $C-C$ C-O $C-C$ $C-C$ 1.531 $L116$ ED $C-C$ H_2C $C-C_1$ $C-C_2$ $C-H$ $C-H$ 1.116 $L116$ ED $C-C$ H_2C $C-C_2$ $C-H$ COC 111.5 COC 111 $L118$ Tetrahydrothiophene $C-S$ $C-C$ $C-S$ $LS36$ CSC $C-H$ CCC 1.120 CSC CH_2CH_2 S $C-C$ $LSCC$ 106.1 CCC CCC CCC 105.0
$\begin{array}{c} C-C & 1.536 \\ The skeletal bending vibration of the molecular plane is essentially free pseudorotation \\ Tetrahydropyran \\ \\ H_2 \\ C-C \\ H_2 \\ H_2 \\ C-C \\ H_2 \\ C-R \\ $
Tetrahydrothiophene C-S 1.839 C-H 1.120 CH ₂ CH ₂ C-C 1.536 \angle CCC (O) 105.0
$\begin{array}{c} \begin{array}{c} H_2 C H_2 \\ \hline C H_2 C H_2 \\ H_2 C C H_2 \\ H_2 C C H_2 \\ H_2 C C H_2 \\ C - H \\ H_2 C C C H_2 \\ C - H \\ C - $
Tetrahydropyran H2 C-O 1.420 ED H_2C CH_2 $C-C$ 1.531 ED H_2C CH_2 $C-H$ 1.116 1.116 H_2C CH_2 $COCC$ 111.5 111.5 H_2C CH_2 $COCC$ 111.5 111.5 $LCCC(C)$ 108 $\angle CCC(O)$ 111 Chair form $C-S$ 1.839 $C-H$ 1.120 CH_2CH_2 $C-C$ 1.536 $\angle CSC$ 93.4 $\angle SCC$ 106.1 $\angle CCC$ 105.0
Indialydropyran Indialydropyran <th< td=""></th<>
$\begin{array}{ccccccc} H_2C & CH_2 & C-H & 1.116 \\ H_2C & CH_2 & & \angle COC & 111.5 \\ & & & \angle COC & 111.5 \\ & & & \angle OCC & 111.8 \end{array}$
$\begin{array}{cccc} & & & & & & \\ H_2C & & CH_2 & & & & & \\ H_2C & & CH_2 & & & & & \\ & & & & & & & \\ & & & & & $
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$
ZCCC (C) 108 ZCCC (O) 111 chair form C—S 1.839 C—H 1.120 CH2CH2 C—C 1.536 ZCSC 93.4 S ZSCC 106.1 ZCCC 105.0
$\begin{array}{c cccc} & 2CCC (C) & 108 & \angle CCC (O) & 111 \\ & \\ chair form & & \\ & \\ Tetrahydrothiophene & C-S & 1.839 & C-H & 1.120 \\ CH_2CH_2 & C-C & 1.536 & \angle CSC & 93.4 \\ & & & \\ & & & \\ S & & & & \\ & & & & \\ & & & &$
chair form Tetrahydrothiophene C—S 1.839 C—H 1.120 CH_2CH_2 C—C 1.536 $\angle CSC$ 93.4 S $\angle SCC$ 106.1 $\angle CCC$ 105.0
Tetrahydrothiophene CS 1.839 CH 1.120 CH_2CH_2 CC 1.536 $\angle CSC$ 93.4 $\angle SCC$ 106.1 $\angle CCC$ 105.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\angle SCC$ 106.1 $\angle CCC$ 105.0
$\begin{array}{cccc} Interactive for the second secon$
$(CH_{3/4}Ge)$ ZGeCH 108 $(I_{d}$ excluding the H atoms)
(CH) Pb
Tetramethylsilane C—H 1.115 C—Si 1.875 ED
$(CH_2)_4$ Si \angle HCH 109.8 $(T_4 \text{ excluding the H atoms})$
Tetramethylstannane C—Sn 2.144 ED
$(CH_3)_4$ Sn $C-H$ 1.12 $(T_d \text{ excluding the H atoms})$
1,2,5-Thiadiazole S S−N 1.631 ∠NSN 99.6 MW
$N \longrightarrow N$ C-N 1.328 \angle CCN 113.8
$HC-CH$ C-C 1.420 \angle CCH 126.2
C—H 1.079 planar
1,3,4-Thiadiazole S S-C 1.721 \angle CSC 86.4 MW
HC CH N-N 1.371 \angle SCN 114.6
$N = N$ C-N 1.302 $\angle CCN$ 112.2
$C-H$ 1.08 \angle SCH 121.9
$\angle NCH 123.5$ planar
Interane $CH_2^-CH_2$ C-S 1.84/ ED, MV
$CH_2 - S$ $C-U$ 1.349 C-H (average) 1.100
/CSC 76.8 /HCH (average) 112
dihedral angle between the CCC and CSC planes 154
Thiirane H_2C C-C 1.484 \angle HCH 116 MW
$C-H$ 1.083 $\angle CSC$ 48.3
$L C - S 1.815 \angle CCS 65.9$
dihedral angle between the CH_2 plane and the
C—C bond 152
Thioformaldehyde C—S 1.611 C—H 1.093 MW
CH_2S $\angle HCH$ 116.9
Thioformamide S H _a N-H _a 1.002 MW
$C-N$ $N-H_b$ 1.007
H_c H_b $L.358$
С—Ѕ 1.626 С—Н 1.10
$\angle H NH,$ 121.7 $\angle H NC$ 117.9
$\angle H_{\rm L} NC$ 120.4 $\angle NCS$ 125.3
$\angle NCH_{c}$ 108 $\angle SCH_{c}$ 127

 $Thiolane \rightarrow Tetrahydrothiophene$

Compound		Structure				Method
Thiophene	H _b , H _b		C_H		1.078	MW
	C'-C'		$C_{L} - H_{L}$		1.081	
			C ^D -S ^D		1.714	
	H _a C _a C _a H _a	1	$C_a^a - C_b$		1.370	
	ัร		$C_{h} - C_{h}$		1.423	
			∠C SC		92.2	
	$\angle SC_{L}C_{L}$	115.5	$\angle C_{L}^{a}C_{L}C_{L}$		112.5	
	∠SC H	119.9	$\angle C, C, H,$		124.3	
Toluene	CH ₃	C—C (ring)	1.399	C-CH	1.524	ED
	\bigwedge	C—H (average)	1.11	3		
		the difference bet and C—H(ring):	tween the C—H(CH ₃) about 0.01			
1,1,1-Tribromoethane	C—Br	1.93	С—Н		1.095 (assumed)	MW
CH ₃ CBr ₃	C—C	1.51 (assumed)	∠CCBr		108	
5 5	∠BrCBr	111	∠CCH		109.0 (assumed)	
$Tribromomethane \rightarrow Bromoform$						
Tri- <i>tert</i> -butyl methane	$C_{L} - C_{L}$	1.611	С—Н		1.111	ED
$HC_{[C_{1}(C_{1}H_{2})_{2}]_{2}}$	$C_{L}^{a} - C_{L}^{b}$	1.548	∠C C, C		113.0	
Tricarbon dioxide	C–O	1.163	C-C		1.289	ED
OCCCO	linear (with a larg	e-amplitude bendi	ing vibration)			
Trichloroacetonitrile	C—N	1.165	Č—C		1.460	ED
CCl_CN	C—Cl	1.763	∠ClCCl		110.0	
1.1.1-Trichloroethane	С—Н	1.090	C-C		1.541	MW
CH_CCl_	C—Cl	1.771	∠HCH		110.0	
- 3 3	/CCH	108.9	/CICCI		109.4	
	/((()	109.6	201001			
Trichloro(methyl)germane	Ge-Cl	2.132	Ge-C		1.89	ED. MW
CH GeCl	С—Н	1.103 (assumed)	/ClGeCl		106.4	,
011 ₃ 0001 ₃	/GeCH	110.5 (assumed)	Zeideei		10011	
Trichloro(methyl)silane	C_Si	1 876	Si - Cl		2 021	MW
CH SiCl	0.91	1.070	(C)		2.021	101 00
Trichloro(methyl)stannane	Sn—Cl	2 304	Sn - C		2 10	ED
CH SnCl	С—Н	1 100	/CSnCl		1139	
	/ClSnCl	104 7	∠conci ∕SnCH		108	
Triethylenediamine \rightarrow 1,4-Diazabicyclo		101.7	201011		100	
Trifluoroacetic acid	0		C—F		1 325	ED
	CE C		C-C		1.546	
	Cr ₃ C		C-0		1.192	
	О _в н		C C _a			
	С—О.	1.35	О—Н		0.96 (assumed)	
	∕ccò	126.8	/CCO.		111.1	
	/CCF ^a	109.5	b			
1.1.1-Trifluoroethane	C-C	1.494	C—F		1.340	ED
CH.CF.	C—H	1.081	/CCF		119.2	
- 3 - 3	/CCH	112				
Trifluoromethane \rightarrow Fluoroform	20011					
1.1.1-Trifluoro-2.2.2-trichloroethane	C-C	1.54	C—F		1.33	мw
CF CCl	C-Cl	1.77	/CCF		110	
	/((()	109.6	staggered conformation		110	
Trimethylaluminium	2000 С_Н	1 113			1 957	FD
(CH) Al	/ AICH	1117			120	
Trimethylamine	C—N	1 458	С—Н		1 100	FD
(CH) N	/CNC	110.9	/нсн		110	
Trimethylarsine	C—As	1.979	/CAsC		98.8	ED
(CH) As	∠ 13 ∠ 4 cC ¹¹	1114	<u>~0/100</u>		20.0	
Trimothylbismuth		111. 1 2.262	СН		1.07	FD
		2.203	C—11		1.07	Ľν
(CII _{3/3} DI Trimathylharana		27.1 1 E70	СЧ		1 114	ED
(CH) B		1.576	C-II /BCH		1.114	Ľν
(C113/3D	∠CDC	120.0			114.0	

Compound		Structure			Method
Trimethylehemine → Azeudine	C D	1 947	СЧ	1 001	ED
	C-P	1.647		1.091	ED
$(CII_3)_3 \mathbf{r}$	ZCPC	98.0	C O	1 422	MMV/
1,5,5-1110xane	_0		(000	1.422	IVI W
	$\begin{array}{ccc} H_2C & CH_2 \\ & \\ O & O \\ C \\ H_1 \end{array}$		∠coc	112.2	
Triphenylamine	п ₂ С—С	1.392	C—N	1.42	ED
$(C_{c}H_{c})_{a}N$	∠CNC	116	(C ₂)		
0 5 5	torsional dihedra is contained in th	l angle of the two p e phenyl planes)	ohenyl rings 47° (defined to be 0 whe	n the symmetry axis	
Tropone	0		C _a -O	1.23	ED
			$C_a - C_b$	1.45	
	C _a		$C_{\rm b} - C_{\rm c}$	1.36	
	HC _b C _b H	I	$C_{c}-C_{d}$	1.46	
			$C_{d} - C_{d}$	1.34	
	HC _c C _c H		$\angle C_b C_a C_b$	122	
	$C_d = C'_d$ H H		$\angle C_a C_b C_c$	133	
	$\angle C_{b}C_{c}C_{d}$	126	$\angle C_{c}C_{d}C_{d}$	130	
				(C _{2v})	
Vinylacetylene	H _a H _c		$C_b - C_c$	1.434	ED, MW
	$C_a = C_b$		$C_a - C_b$	1.344	
	H		$C_{c} - C_{d}$	1.215	
	0 °°c	₩	C _a -H _a	1.11	
		Cd	$C_d - H_d$	1.09	
		H _d	$\angle C_a C_b C_c$	123.1	
	$\angle C_{b}C_{c}C_{d}$	178	$\angle H_a C_a C_b$	119	
	$\angle H_{b}C_{a}C_{b}$	122	$\angle H_{c}C_{b}C_{a}$	122	
	$\angle C_{c}C_{d}H_{d}$	182			
Vinyl chloride	H _c Cl		C-C	1.342	ED, MW
	`c=c´		C—Cl	1.730	
	H _b H _a		С—Н	1.09	
	∠CCCl	122.5	∠CCH,	124	
	$\angle \text{CCH}_{b}$	120	∠CCH _c	121.1	