ELECTRON AFFINITIES

Thomas M. Miller

Electron affinity is defined as the energy difference between the lowest (ground) state of the neutral and the lowest state of the corresponding negative ion. The accuracy of electron affinity measurements has been greatly improved since the advent of laser photodetachment experiments with negative ions. Electron affinities can be determined with optical precision, though a detailed understanding of atomic and molecular states and splittings is required to specify the photodetachment threshold corresponding to the electron affinity.

Atomic and molecular electron affinities are discussed in two excellent articles reviewing photodetachment studies which appear in Gas Phase Ion Chemistry, Vol. 3, Bowers, M. T., Ed., Academic Press, Orlando, 1984: Chapter 21 by Drzaic, P. S., Marks, J., and Brauman, J. I., "Electron Photodetachment from Gas Phase Negative Ions," p. 167, and Chapter 22 by Mead, R. D., Stevens, A. E., and Lineberger, W. C., "Photodetachment in Negative Ion Beams," p. 213. Persons interested in photodetachment details should consult these articles and the critical reviews of Andersen, T., Haugen, H. K., and Hotop, H., J. Phys. Chem. Ref. Data, 28, 1511, 1999, Hotop, H. and Lineberger, W. C., J. Phys. Chem. Ref. Data, 14, 731, 1985, and Andersen, T., Haugen, H. K., and Hotop, H., J. Phys. Chem. Ref. Data 28, 1511, 1999. For simplicity in the tables below, any electron affinity which was discussed in the articles by Drzaic et al. or Hotop and Lineberger is referenced to these sources, where original references are given. The development of cluster-ion photodetachment apparatuses has brought an explosion of electron affinity estimates for atomic and molecular clusters. The policy in this tabulation is to list the electron affinities for the atoms, diatoms, and triatoms, if adiabatic electron affinities have been determined, but to refer the reader to original sources for higher-order clusters. Additional data on molecular electron affinities may be found in Lias, S. G., Bartmess, J. E., Liebman, J. F., Holmes, J. L., Levin, R. D., and Mallard, W. G., *Gas Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data*, 17, (Supplement No. 1), 1988 and on the NIST WebBook at the Internet address http://webbook.nist.gov/.

For the present tabulation the 2002 CODATA value $e/hc = 8065.54445 \pm 0.00069$ cm⁻¹ eV⁻¹ (http://physics.nist.gov) has been used to convert electron affinities from the units used in spectroscopic work, cm⁻¹, into eV for these tables. The 86 ppb uncertainty in e/hc is insignificant compared to uncertainties in the electron affinity measurements.

Abbreviations used in the tables: calc = calculated value; PT = photodetachment threshold using a lamp as a light source; LPT = laser photodetachment threshold; LPES = laser photoelectron spectroscopy; DA = dissociative attachment; attach = electron attachment/detachment equilibrium; e-scat = electron scattering; kinetic = dissociation kinetics; Knud=Knudsen cell; CT = charge transfer; CD = collisional detachment; and ZEKE = zero electron kinetic energy spectroscopy.

TABLE 1. Atomic Electron Affinities

number	Atom	Electron affinity in eV	Uncertainty in eV	Method	Ref.	
1	Н	0.754195	0.000019	LPT	89	
		0.75420812	-	calc	205	
	D	0.754593	0.000074	LPT	89	deuterium
	D	0.75465624	-	calc	205	deuterium
	Т	0.75480540	-	calc	205	tritium
2	He	not stable	-	calc	1	
3	Li	0.618049	0.000020	LPT	185	
4	Be	not stable	-	calc	1	
5	В	0.279723	0.000025	LPES	191	
6	С	1.262119	0.000020	LPT	28	
7	Ν	not stable	-	DA	1	
8	0	1.4611096	0.0000007	LPT	4	
9	F	3.4011895	0.0000025	LPT	227	
10	Ne	not stable	-	calc	1	
11	Na	0.547926	0.000025	LPT	1	
12	Mg	not stable	-	e-scat	1	
13	Al	0.43283	0.00005	LPES	208	
14	Si	1.3895220	0.0000024	LPES	227	
15	Р	0.7465	0.0003	LPT	1	
16	S	2.077103	0.000001	LPT	1	
17	Cl	3.612724	0.000027	LPT	52	
18	Ar	not stable	-	calc	1	
19	Κ	0.50147	0.00010	LPT	1	
20	Ca	0.02455	0.00010	LPT	44	
21	Sc	0.188	0.020	LPES	1	
22	Ti	0.079	0.014	LPES	1	
23	V	0.525	0.012	LPES	1	
24	Cr	0.666	0.012	LPES	1	

Atomic

number	Atom	Electron affinity in eV	Uncertainty in eV	Method	Ref.
25	Mn	not stable	-	calc	1
26	Fe	0.151	0.003	LPES	27
27	Co	0.662	0.003	LPES	27
28	Ni	1.156	0.010	LPES	1
29	Cu	1.235	0.005	LPES	37
30	Zn	not stable	-	e-scat	1
31	Ga	0.43	0.03	LPES	183
32	Ge	1.232712	0.000015	LPES	28
33	As	0.814	0.008	LPES	200
34	Se	2.020670	0.000025	LPT	1
35	Br	3.363588	0.000002	LPT	74
36	Kr	not stable	-	calc	1
37	Rb	0.48592	0.00002	LPT	1
38	Sr	0.048	0.006	LPT	122
39	Y	0.307	0.012	LPES	1
40	Zr	0.426	0.014	LPES	1
41	Nb	0.893	0.025	LPES	1
42	Mo	0.748	0.002	LPES	127
43	Tc	0.55	0.20	calc	1
44	Ru	1.05	0.15	calc	1
45	Rh	1.137	0.008	LPES	1
46	Pd	0.562	0.005	LPES	116
47	Ag	1.302	0.007	LPES	1
48	Cd	not stable	-	e-scat	1
49	In	0.3	0.2	PT	1
50	Sn	1.112067	0.000015	LPES	28
51	Sb	1.046	0.005	LPES	108
52	Te	1.970876	0.000007	LPT	261
53	l	3.059037	0.000010	LPT	92
54	Xe	not stable	-	calc	1
55	Cs	0.471626	0.000025	LPT	1
56	Ва	0.14462	0.00006	LPT	195
57	La	0.47	0.02	LPT	184
58	Ce	0.955	0.026	LPES	269
59	Pr F	0.962	0.024	LPES	225
63	Eu	0.864	0.024	LPES	268
69 70	1m Vl	1.029	0.022	LPES	264
70	ID L.	-0.020	-	Calc	196
71	Lu	0.34	0.01		1
72		»U 0.222	-		1
73	Ta W/	0.322	0.012	LPES	1 27
74	w Ro	0.815	0.002	LFE3	57 1
75	Or	1.1	0.15	calc	1
70	Us Ir	1.1	0.2	I DT	1/1
78	Dt	2 128	0.0003	LI I I PT	1
79	A 11	2.120	0.0002	L PT	1
80	Ησ	not stable	-	e-scat	1
81	TI TI		0.2	PT	1
82	Pb	0.364	0.008	LPES	1
83	Bi	0.942362	0.000013	LPT	262
84	Po	1.9	0.3	calc	1
85	At	2.8	0.2	calc	1
86	Rn	not stable	-	calc	1
87	Fr	0.46	-	calc	82
88	Ra	0.10	-	calc	273
89	Ac	0.35	-	calc	207
118	ekaradon	0.056	0.01	calc	140
121	ekaactinium	0.57	-	calc	207

TABLE 2. Electron Affinities for Diatomic Molecules

	Electron	Uncertainty				Electron	Uncertainty		
Molecule	affinity in eV	in eV	Method	Ref.	Molecule	affinity in eV	in eV	Method	Ref.
Ag_2	1.023	0.007	LPES	37	MnH	0.869	0.010	LPES	9
AgO	1.654	0.002	LPES	233	MnO	1.375	0.010	LPES	158
	1.10	0.15	LPES	68 142	MoO	1.290	0.006	LPES	127
AIO	2.60	0.02	LPES I DES	145 218	NH	0.370	0.004		32 73
AIS	2.045	0.020	LPLS LPFS	129	NRh	1.51	0.005	LPLS LPFS	206
As	0.739	0.008	LPES	200	NS	1.194	0.011	LPES	200
AsH	1.0	0.1	PT	2	Na	0.430	0.015	LPES	104
AsO	1.286	0.008	LPES	198	NaBr	0.788	0.010	LPES	30
Au ₂	1.938	0.007	LPES	37	NaCl	0.727	0.010	LPES	30
AuO	2.374	0.007	LPES	282	NaF	0.520	0.010	LPES	30
AuPd	1.88	—	LPES	220	NaI	0.865	0.010	LPES	30
AuS	2.469	0.006	LPES	282	NaK	0.465	0.030	LPES	104
BN	3.160	0.005	LPES	189	NbO	1.29	0.02	LPES	174
BO	2.508	0.008	LPE5	0	NI ₂ NiCu	0.926	0.010	LPES	112
Bi	0.7	0.008		110	Nila	0.889	0.010	LPES IDES	128
Br	2 55	0.008	CT	2	NiD	0.979	0.010	LPLS LPFS	29
Br ₂ BrO	2.353	0.006	LPES	88	NiH	0.481	0.007	LPES	29
C.	3.269	0.006	LPES	87	NiO	1.470	0.003	LPES	146
CH	1.238	0.008	LPES	2	O ₂	0.450	0.002	LPES	222
CN	3.862	0.004	LPES	111	OD	1.825533	0.000037	LPT	142
CRh	1.46	0.02	LPES	206	OH	1.8276487	0.000011	LPT	226
CS	0.205	0.021	LPES	2	ORh	1.58	0.02	LPES	206
СаН	0.93	0.05	PT	2	P_2	0.589	0.025	LPES	42
Cl ₂	2.38	0.10	CT	2	PH	1.027	0.006	LPES	281
CIO	2.275	0.006	LPES	88	PO	1.092	0.010	LPES	2
Co_2	1.110	0.008	LPES	2/	PD ₂	1.366	0.010	LPES	117
CoH	0.680	0.010	LPES	29	PDO	1.049	0.000	LPES IDES	228
Cr	0.505	0.005	LPES	114	Pd	1.685	0.008	LPES	112
CrD	0.568	0.010	LPES	29	PdCO	0.604	0.010	LPES	160
CrH	0.563	0.010	LPES	29	PdO	1.570	0.006	LPES	290
CrO	1.221	0.006	LPES	5	Pt ₂	1.898	0.008	LPES	112
Cs ₂	0.469	0.015	LPES	104	PtÑ	1.240	0.010	LPES	46
CsCl	0.455	0.010	LPES	30	Rb ₂	0.498	0.015	LPES	104
CsO	0.273	0.012	LPES	133	RbCl	0.544	0.010	LPES	30
Cu ₂	0.836	0.006	LPES	37	RbCs	0.478	0.020	LPES	104
E	2.08	0.006	LPES CT	2	s s s	1.571	0.008	LPES	53 53
FO	2.08 2.272	0.006	LPES	88	S_2	2 315	0.013	LPES	10
Fe	0.902	0.008	LPES	27	SE	2.285	0.002	LPES	93
FeD	0.932	0.015	LPES	9	SH	2.314343	0.000004	LPT	47
FeH	0.934	0.011	LPES	9	SO	1.125	0.005	LPES	84
FeO	1.493	0.005	LPES	45	Sb ₂	1.282	0.008	LPES	108
GaAs	1.949	0.020	LPES	218	ScO	1.35	0.02	LPES	171
GaO	2.612	0.008	LPES	279	Se ₂	1.94	0.07	LPES	38
GaP	1.988	0.020	LPES	218	SeH	2.212519	0.000025	LPT	48
Ge ₂	2.035	0.001	LPES	123	SeO	1.456	0.020	LPES	41
I IPn	2.55	0.05	CT	2	SI ₂ SE	2.201	0.010	LPES	100
	2.55	0.10	LDES	88	SIL	1 277	0.02	LPES	270
InP	1.845	0.020	LPES	218	SiN	2.949	0.009	LPES	274
K.	0.497	0.012	LPES	104	Sn.	1.962	0.010	LPES	117
KBr	0.642	0.010	LPES	30	SnÔ	0.598	0.006	LPES	168
KCl	0.582	0.010	LPES	30	SnPb	1.569	0.008	LPES	117
KCs	0.471	0.020	LPES	104	Te ₂	1.92	0.07	LPES	38
KI	0.728	0.010	LPES	30	TeH	2.102	0.015	LPES	39
KRb	0.486	0.020	LPES	104	TeO	1.697	0.022	LPES	40
LICI	0.593	0.010	LPES	30	TIO	1.30	0.03	LPES	172
LID	0.337	0.012	LPES	102	VU VO	1.229	0.008	LPES	170
$M_{\sigma}C^{1}$	0.342	0.012	LFES I DFS	31	7nF	1.55 1.974	0.02	LFES I PFS	170
MgH	1.05	0.06	PT	2	ZnH	< 0.95	_	PT	2.
MgI	1.899	0.018	LPES	31	ZnO	2.087	0.008	LPES	- 179
MgO	1.630	0.025	LPES	178	ZrO	1.3	0.3	LPES	173
MnD	0.866	0.010	LPES	9					
				1					

TABLE 3. Electron Affinities for Triatomic Molecules

	Electron	Uncertainty					Electron	Uncertainty			
Molecule	affinity in eV	in eV	Method	Ref.		Molecule	affinity in eV	in eV	Method	Ref.	
Ag ₃	2.32	0.05	LPES	37		Ge ₃	2.23	0.01	LPES	123	
AgCN	1.588	0.010	LPES	163		GeH_2	1.097	0.015	LPES	28	
Al ₃	1.4	0.15	LPES	68		HCO	0.313	0.005	LPES	35	
AlO ₂	4.23	0.02	LPES	143		HCl_2	4.896	0.005	LPES	69	
AlP ²	1.933	0.007	LPES	217		HNO	0.338	0.015	LPES	14	
Al ₂ P	2.513	0.020	LPES	217			1.078	0.006	LPES	15	
Al ₂ S	0.80	0.12	LPES	129			1.907	0.015	LPES	53	
As ₃	1.45	0.03	LPES	200		I ₃ ImD	4.226	0.013	LPES	162	
AsH ₂	1.27	0.03	PT	2		InP ₂ In D	1.01	0.05	LPES	127	
Au ₃	3.7	0.3	LPES	37		Ш ₂ г К	2.50	0.05	LPES	18	
AuBr ₂	4.46	0.07	LPES	294		MnD	0.465	0.030	LI LS I PES	34	
AuCl ₂	4.60	0.07	LPES	294		MnH ²	0.444	0.011	LPES	34	
AuI ₂	4.18	0.07	LPES	294		MnO	2.06	0.03	LPES	158	
Au ₂ H	3.55	0.03	LPES	276		N.	2.70	0.12	PT	2	
Au ₂ Pd	3.80	_	LPES	220		N.	2.68	0.01	LPT	255	
BO ₂	4.3	0.2		98 102		NCN	2.484	0.006	LPES	154	
B ₂ N	3.098	0.005	LPE5	193		NCO	3.609	0.005	LPES	111	
D ₃ D:	2.82	0.02	LPES	110		NCS	3.537	0.005	LPES	111	
	1.00	0.05	LPES	119		NH ₂	0.771	0.005	LPES	58	
C_3	1.901	0.020	LPES	225		N ₂ Õ	-0.03	0.10	calc	59	
	1.50	0.07	LI LS I PES	235		NO ₂	2.273	0.005	LPES	63	
CD	0.645	0.07	LPES	12		(NO)R	R=Ar,Kr,Xe	_	LPES	90	
	0.535	0.005	LPES	95		Na ₃	1.019	0.060	LPES	18	
CF.	0.180	0.020	LPES	235		$NaCS_2$	0.80	0.05	LPES	278	
CH ₂	0.652	0.006	LPES	12		Na_2CS_2	0.25	0.05	LPES	278	
CHBr	1.454	0.005	LPES	95		Nb_3	1.032	0.010	LPES	175	
CHCl	1.210	0.005	LPES	95		Ni ₃	1.41	0.05	LPES	55	
CHF	0.542	0.005	LPES	95		NiCN	1.771	0.010	LPES	287	
CHI	1.42	0.17	LPES	95		NiCO	0.804	0.012	LPES	2	
CI ₂	2.09	0.07	LPES	235		NID ₂	1.926	0.007	LPES	34	
C_2Cr	2.30	1.617	0.015	271			1.934	0.008	LPES	34 214	ONIO
C_2H	2.969	0.006	LPES	87		NIO ₂	5.05 0.82	0.01	LPES	214	NI(O)
C ₂ Nb	1.380	0.025	LPES	243			0.82	0.03	LPL3 IPT	214	$NI(O_2)$
C ₂ O	2.289	0.018	LPES	180		O_{3}^{3} Ar	0.52	0.0025	IPES	75	
COS	-0.04	_	LPES	272		O_2^{-1}	2 140	0.02	LPES	88	
CS ₂	0.58	0.05	LPES	278		010	2.577	0.008	LPES	88	
$C_2 \Pi$	1.542	0.020	LPES	147		PH_	1.263	0.006	LPES	281	
	1.465	0.013	LPES	34 24		$P_{a}H^{2}$	1.514	0.010	LPES	281	
	1.450	0.014	LPES	24 24		PÔ,	3.42	0.01	LPES	124	
Cr D	>2.5		LPES	34 107		Pd	<1.5	0.1	LPES	55	
Cr H	1.404	0.005	LPL3 IDES	107		PdCN	2.543	0.007	LPES	287	
Cr_{2}^{11}	2 413	0.005	LI LS I PES	144	OCrO	PdCO	0.606	0.010	LPES	293	
CrO ₂	1.5	0.06	LPES	241	$Cr(O_{r})$	Pt ₃	1.87	0.02	LPES	55	
Cs ₂	0.864	0.030	LPES	18		PtCN	3.191	0.003	LPES	287	
Cu,	2.11	0.05	LPES	37		PtCO	1.212	0.010	LPES	293	
CuCN	1.466	0.010	LPES	163		Rb ₃	0.920	0.030	LPES	18	
CuCl ₂	4.35	0.05	LPES	177		ReO ₂	2.5	0.1	LPES	216	
CuBr ₂	4.35	0.05	LPES	177		5 ₃	2.093	0.025	LPES	16	
DCO	0.301	0.005	LPES	35		SO ₂	1.107	0.008	LPES	16	
DNO	0.330	0.015	LPES	14		$S_2 O$	1.877	0.008	LPES	10	
DO_2	1.077	0.005	LPES	15		SeO	1.823	0.050	LPLS IPES	38	
DS_2	1.912	0.015	LPES	53		SiF	0.10	0.050	LPES	278	
Fe ₃	1.43	0.06	LPES	149		Si F	1.99	0.28	LPES	17	
FeC ₂	1.9782	0.0006	LPES	254		SiH	1.124	0.020	LPES	2	
FeCO	1.157	0.005	LPES	103		Si_H	2.31	0.01	LPES	182	
reD ₂	1.038	0.013	LPES	54 24		Si	2.29	0.02	LPES	110	
ren ₂	1.049	0.014	LPES	34 120		Sn,	2.24	0.01	LPES	289	
Fe H	2.556 0.564	0.030	LPES	150 254		SnCN	1.922	0.006	LPES	292	
Fe O	1.60	0.02	LPES	152		Ta ₃	1.36	0.03	LPES	169	
GaAs	1.894	0.033	LPES	192		TiO ₂	1.59	0.03	LPES	172	
GaP.	1.666	0.041	LPES	192		V_3	1.107	0.010	LPES	176	
Ga _a Ås	2.428	0.020	LPES	192		VO ₂	2.3	0.2	CT	101	
Ga2P	2.481	0.015	LPES	192		WO_2	1.958	0.050	LPES	233	
-											

TABLE 4. Electron Affinities for Larger Polyatomic Molecules

	Electron affinity	Uncertainty			
Molecule	in eV	in eV	Method	Ref.	
Ag _n	<i>n</i> =1-60	—	LPES	37	
Al	n=3-32	_	LPES	68	
Al	2.23	0.05	LPES	238	
Al ₂ C ₂	0.64	0.05	LPES	239	acetylide
Al ₃ C	2.56	0.06	LPES	161	
Al ₂ C ₂	2.19	0.03	LPES	244	
Al,Ge	2.43	0.03	LPES	244	
Al_Si	2.36	0.03	LPES	244	
ALO	1.00	0.15	LPES	68	
ALHO	3.10	0.10	LPES	283	
ALO	3.50	0.05	LPES	283	
Al O	n = 1.2	m=1-5	LPES	143	
ALO	n=3-7	m=2-5	LPES	267	
ALP	n = 1 - 4	m = 1 - 4	LPES	217	
AIS	n = 1 - 1	m = 1 - 3	LI ES	129	
$\operatorname{Ar}(H \Omega)$	n = 267		LI ES	77	
$\Delta r Br$	n = 2, 0, 7 n = 2, -9	_	ZEKE	212	
Δr I	$n = 2^{-19}$	_	ZEKE	212	
	<i>n</i> -2-17	_	IDEC	212	
As ₄	<0.8	—	LPE5	200	
As ₅	≈1./ 2.5	_	LPE5	200	
AS ₅	≈3.5	_	LPES	253	
Au _n	n=1-233	— 	LPES	37	
AuF ₆	7.5	estimate		98	
Au ₃ Pd	2.51	—	LPES	220	
Au ₄ Pd	2.69	—	LPES	220	
Au ₆	2.06	0.02	LPES	288	
Au ₆ (CO)	2.04	0.05	LPES	288	
$\operatorname{Au}_{6}(\operatorname{CO})_{2}$	2.03	0.05	LPES	288	
$Au_6(CO)_3$	1.95	0.05	LPES	288	
Au ₁₂ Nb	3.70	0.03	LPES	275	
Au ₁₂ Ta	3.77	0.03	LPES	275	
Au ₁₂ V	3.76	0.03	LPES	275	
B ₅	2.33	0.02	LPES	245	
BD ₃	0.027	0.014	LPES	62	
BH ₃	0.038	0.015	LPES	62	
B ₆ Li	2.3	0.1	LPES	298	
B ₃ N	2.098	0.035	LPES	193	
Bi _n	<i>n</i> =2-9	_	LPES	213	
Bi ₄	1.05	0.010	LPES	119	
Bi ₅	2.87	0.02	LPES	253	
$Br(CO_2)$	3.582	0.017	LPES	131	
$Br(H_2O)_n$	n=1-4	—	LPES	250	
C_n	n = 2 - 84	—	LPES	70	
$C_{n}Cr$	<i>n</i> =2-8	_	LPES	271	
C _" Nb	<i>n</i> =2-7	_	LPES	243	
$(CO_2)_{\mu}$	<i>n</i> =1,2	_	LPES	75	
(CS),	<i>n</i> =2	_	LPES	75	
$(CS_2)_{\mu}$	<i>n</i> =1,2	_	LPES	75	
CAl ₃ Ge	2.70	0.06	LPES	224	
CALSi	2.77	0.06	LPES	224	
CCl₄	≤1.14	_	CT	266	
CCoNO,	1.73	0.03	LPES	199	Co(CO,)NO
CDO,	3.510	0.015	LPES	109	· 2*
CF,	1.82	0.05	LPES	187	
CF_Br	0.91	0.2	CD	2	
CF_I	1.57	0.2	CD	2	
CFO.	4.277	0.030	LPES	131	
CHCL	<0.78	_	CT	266	
СНО	3.498	0.015	LPES	109	
2		0.010		107	

	Electron affinity	Uncertainty			
Molecule	in eV	in eV	Method	Ref.	
CH ₂ O ₄	2.1	0.2	PT	2	$CO_{3}(H_{2}O)$
CH_S	0.465	0.023	LPES	53	3. 2.
CD _a NO _a	0.24	0.08	LPES	211	
CD.O	1.559	0.004	LPES	194	
CD.O.	1.154	0.004	LPES	188	d -methyl peroxyl radical
$CD_{3}C_{2}$	1.856	0.006	LPT	200	u ₃ mentri perentri numen
$CD_3 S$	1.000	0.022	LPFS	53	
	0.09	0.022	LIES		
	0.08	0.03	LPLS	2	
	0.11	0.02	LPES	277	
CH ₃ NO ₂	0.26	0.08	LPES	211	
CH ₃ O	1.572	0.004	LPES	194	
CH ₃ O ₂	1.161	0.005	LPES	188	methyl peroxyl radical
CH ₃ S	1.867	0.004	LPES	166	
CH_3S_2	1.757	0.022	LPES	53	
CH ₃ Si	0.852	0.010	LPES	97	CH ₃ -Si
CH ₃ Si	2.010	0.010	LPES	97	CH ₂ =SiH
CH_4N	0.432	0.015	LPES	215	
CH₅Si	1.19	0.04	LPT	65	CH ₃ SiH ₂
CO ₃	2.69	0.14	LPES	2	
C ₂ F ₂	2.255	0.006	LPES	106	difluorovinylidene
C ₂ DN	2.009	0.020	LPES	219	DCCN
C_DN	1.877	0.010	LPES	219	DCNC
C.DO	2.350	0.020	LPES	13	
C HF	1.718	0.006	LPES	106	monofluorovinvlidene
C HN	2 003	0.014	LPES	219	HCCN
C HN	1.883	0.013	LIES	219	HCNC
$C_2 HO$	1.005	0.015	LIES	100	newe
	2.330	0.008	LPLS	190	
	2.17	0.05	LPE5	291	
	1.98	0.03	LPES	287	
C ₂ HPt	2.650	0.010	LPES	287	
$C_2 D_2$	0.492	0.006	LPES	83	vinylidene-d ₂
C_2HD	0.489	0.006	LPES	83	vinylidene-d ₁
C ₂ HFe	1.4512	0.0025	LPES	254	
C ₂ HNi	1.063	0.019	LPES	254	
C_2H_2	0.490	0.006	LPES	83	vinylidene
C ₂ H ₂ FO	2.22	0.09	PT	2	acetyl fluoride enolate
$C_2 D_2 N$	1.538	0.012	LPES	21	cyanomethyl- d_2 radical
C_2D_2N	1.070	0.024	LPES	21	isocyanomethyl- d_2 radical
C_2H_2Fe	1.328	0.019	LPES	254	
C ₂ H ₂ N	1.543	0.014	LPES	21	cyanomethyl radical
C ₂ H ₂ N	1.059	0.024	LPES	21	isocyanomethyl radical
C,H,Ni	2.531	0.005	LPES	287	HNiC ₂ H
C,H,	0.667	0.024	LPES	90	vinyl
C_H_Fe	1.587	0.019	LPES	254	
C_H_Ni	1.103	0.019	LPES	254	
C.D.O	1.81897	0.00012	LPT	22	acetaldehvde- <i>d</i> , enolate
CHO	1.82476	0.00012	LPT	22	acetaldehyde enolate
CDO	1.699	0.004	LPES	194	ethoxide-d
C H N	0.56	0.01	 РТ	2	ethyl nitrine
CHO	1 712	0.004	IPES	194	ethovide
CHO	1.712	0.004	LIES	194	othyl porovyl radical
$C_2 \Pi_5 O_2$	1.100	0.004	LFL5 LDT	188	athyl gylfida
$C_{2}\Pi_{5}S$	1.955	0.000		2 52	
C_2H_5S	0.868	0.051	LPE5	53	CH ₃ SCH ₂
$C_2 H_7 O_2$	2.26	0.08	P1 1050	50	меономе
C ₃ Fe	1.69	0.08	LPES	132	
C ₃ H	1.858	0.023	LPES	11	
C ₃ HFe	1.58	0.06	LPES	132	
C_3H_2	1.794	0.008	LPES	153	_
$C_3H_2F_3O$	2.625	0.010	LPT	113	1,1,1-trifluoroacetone enolate
$C_{3}H_{3}$	0.893	0.025	LPES	24	propargyl radical

	Electron affinity	Uncertainty			
Molecule	in eV	in eV	Method	Ref.	
C_H_D	0.88	0.15	LPES	24	propargyl-d, radical
C,D,H	0.907	0.023	LPES	24	propargyl- <i>d</i> radical
C H N	1 247	0.012	L DES	21	CH CH-CN
$C_3 \Gamma_3 \Gamma_3$	0.464	0.012	LDEC	120	
C_3D_5	0.404	0.006	LPES	158	ally a_5
C ₃ H ₅	0.481	0.008	LPES	138	allyl
$C_{3}H_{5}$	0.397	0.069	kinetic	155	cyclopropyl
$C_{3}H_{4}D$	0.373	0.019	LPES	25	allyl- d_1
C ₃ H ₅ O	1.758	0.019	LPT	113	acetone enolate
C ₃ H ₅ O	1.621	0.006	LPT	113	propionaldehyde enolate
C_H_O	1.80	0.06	PT	2	methyl acetate enolate
C.H.O	1.789	0.033	LPES	23	propyl oxide
СНО	1.847	0.004	LPES	194	isopropyl oxide
CHS	2.00	0.02	DT DT	2	propyl sulfide
CHC	2.00	0.02		2	isopport sulfide
С ₃ п ₇ 5	2.02	0.02		2	isopropyi suilide
C ₃ O	1.34	0.15	LPES	11	
$C_{3}O_{2}$	0.85	0.15	LPES	11	
C ₃ Ti	1.561	0.015	LPES	147	
$C_4F_4Cl_2$	0.87	0.08	attach	258	1,2-dichlorotetrafluoro-cyclobutene
$C_4F_4O_3$	0.5	0.2	CD	2	tetrafluorosuccinic anhydride
C_4F_8	0.63	0.05	attach	256	octafluorocyclobutane
C,Fe	<2.2	0.2	LPES	132	
C [*] HFe	1.67	0.06	LPES	132	
C H Fe	1 633	0.019	LPES	254	
CHO	1.000	0.10	CT	61	maleic anhydride
$C_4 \Pi_2 O_3$	1.100	0.10	LDEC	254	malele annyende
	1.162	0.019	LPES	254	
C ₄ H ₃ Ni	0.824	0.019	LPES	254	
C_4D_4	0.909	0.015	LPES	125	vinylvinylidene- <i>d</i> ₄
C_4H_4	0.914	0.015	LPES	125	vinylvinylidene
C_4H_4N	2.145	0.010	LPES	265	pyrrolyl
$C_4H_4N_3O$	0.75	—	LPES	285	NO (pyrimidine)
C_4H_5O	1.801	0.008	LPT	113	cyclobutanone enolate
$C_4 H_6$	0.431	0.006	LPES	135	trimethylenemethane
C ₄ H ₂ O ₂	0.69	0.10	CT	61	2,3-butanedione
C,H,D	0.493	0.008	LPES	138	2-methylallyl- d_{-}
с́н	0.505	0.006	LPES	138	2-methylallyl
СНО	1.67	0.05	— РТ	2	butvraldebyde enolate
C H DO	1.67	0.05	PT	2	2-butanone-3-d enolate
	1.07	0.05		2	2-butanone $22d$ anglete
$C_4 \Pi_5 D_2 O$	1.75	0.00	r I LDEC	2	2-butanone-5,5- <i>a</i> ₂ enotate
C ₄ H ₉ O	1.909	0.004	LPES	194	t-Dutoxyi
C ₄ H ₉ S	2.03	0.02	PT	2	<i>n</i> -butyl sulfide
C ₄ H ₉ S	2.07	0.02	PT	2	<i>t</i> -butyl sulfide
C_4O	2.05	0.15	LPES	11	
C_4O_2	2.0	0.2	LPES	11	
C4Ti	1.494	0.020	LPES	147	
C ₅	2.853	0.001	LPT	99	
$C_{E}F_{E}N$	0.70	0.05	attach	259	pentafluoropyridine
C.F.O.	1.5	0.2	CD	2	hexafluoroglutaric anhydride
C HF N	0.40	0.08	attach	259	tetrafluoropyridine
C D	1 790	0.008	LPES	11	cyclopentadienyl-d
С Н	1 804	0.007	L PFS	11	cyclopentadienyl
	1.004	0.007	LILS	205	$O_{\rm c}$
$C_5 \Pi_5 \Pi O_2$	1.39	—	LPES	205	$O_2(\text{pyridile})$
$C_5 \Pi_5 N_2 O$	0.62	_	LPES	285	NO (pyriaine)
C_5H_7	0.91	0.03	PT	2	pentadienyl
$C_5H_7NO_3$	1.87	—	LPES	285	$O_2(pyridine \cdot H_2O)$
C ₅ H ₇ O	1.598	0.007	LPT	113	cyclopentanone enolate
C ₅ H ₉ O	1.69	0.05	PT	2	3-penanone enolate
$C_{5}H_{11}O$	1.93	0.05	LPT	2	neopentoxyl
C ₅ H ₁₁ S	2.09	0.02	PT	2	pentyl sulfide
C ₅ O ₂	1.2	0.2	LPES	11	
C ₅ Ti	1.748	0.050	LPES	147	

	Electron affinity	Uncertainty			
Molecule	in eV	in eV	Method	Ref.	
C,	4.180	0.001	LPT	8	
C Br O	2 44	0.20	СТ	2	tetrabromo-BO
C C C O	2.78	0.10	СТ	61	tetrachloro-BO
$C_6 C_4 O_2$	2.70	0.10	CT	61	tetrafluoro PO
$C_6 F_4 O_2$	2.70	0.10	CT	61	tetraliuoro-bQ
C_6F_5Br	1.15	0.11	CI .	67	pentafluorobromobenzene
C_6F_5CI	0.75	0.05	attach	260	pentafluorochlorobenzene
C_6F_5I	1.41	0.11	CT	67	pentafluoroiodobenzene
$C_6F_5NO_2$	1.52	0.11	CT	67	pentafluoro-NB
C_6F_6	0.53	0.05	attach	257	hexafluorobenzene
$C_6 F_{10}$	>1.4	0.3	СТ	2	perfluorocyclohexane
C ₄ H ₂ Cl ₂ O ₂	2.48	0.10	CT	61	2,6-dichloro-BQ
C.H.F.NO.	1.17	0.10	CT	61	2,4-difluoro-NB
C.D. 2	0.551	0.010	LPES	36	o-benzvne-d
СН	0.560	0.010	LPES	36	<i>a</i> -benzyne
C H BrNO	1 16	0.10	СТ	61	a-bromo-NB
C H BrNO	1.20	0.10	CT	61	m bromo NB
$C_6 H_4 DINO_2$	1.02	0.10	CT	61	m-brome NB
$C_6 \Pi_4 DINO_2$	1.29	0.10	CT	01	
$C_6H_4CINO_2$	1.14	0.10	CI	61	o-chloro-NB
$C_6H_4CINO_2$	1.28	0.10	CT	61	<i>m</i> -chloro-NB
$C_6H_4CINO_2$	1.26	0.10	СТ	61	<i>p</i> -chloro-NB
C ₆ H ₄ ClO	≤2.58	0.08	PT	2	o-chlorophenoxide
$C_6H_4FNO_2$	1.07	0.10	CT	61	<i>o</i> -fluoro-NB
C ₆ H ₄ FNO ₂	1.23	0.10	CT	61	<i>m</i> -fluoro-NB
C ₆ H ₄ FNO ₂	1.12	0.10	СТ	61	<i>p</i> -fluoro-NB
C,H,N,O,	1.65	0.10	CT	61	o-diNB
C.H.N.O.	1.65	0.10	СТ	61	<i>m</i> -diNB
CHNO	2.00	0.10	СТ	61	<i>p</i> -diNB
C H O	1 860	0.005	LPES	284	1 4-benzoquinone (BO)
$C_6 \Gamma_4 O_2$	1.000	0.020	LIES	261	nhenvl-d
$C_6 D_5$	1.052	0.020	IDES	96	phenylnitrono d
$C_6 D_5 N$	1.44	0.02	LPES	90	debeduebeure aufinere
C ₆ H ₂ O ₂	1.859	0.005	LPES	232	denydrobenzoquinone
$C_6H_3O_2$	<2.18	—	LPES	232	benzoquinonide
C_6H_5	1.096	0.006	LPES	26	phenyl
C_6H_5N	1.429	0.011	LPT	115	phenylnitrene
$C_6H_5NO_2$	1.00	0.01	LPES	164	nitrobenzene (NB)
C_6H_5O	2.253	0.006	LPES	26	phenoxyl
C ₆ H ₅ S	<2.47	0.06	PT	2	thiophenoxide
C ₆ H ₅ NH	1.70	0.03	РТ	2	anilide
C ₄ H ₂ NO	0.44	_	LPES	285	NO (benzene)
C.H.O.	1.06	_	LPES	285	O ₂ (benzene)
C.H.	<1.67	0.04	РТ	2	methylchylopentadienyl
СН	0.855	0.010	LPES	203	(CH) C-C(CH)
CHSi	1 435	0.004	I PT	65	C H SiH
С ₆ н ₈ 51	0.654	0.010	IDES	203	$C_{6}^{H} - C(C_{1}^{H}) C(C_{1}^{H})$
	1 526	0.010		112	$c_{1_2} - c_{1_3} - c_{1_2} - c_{1_2}$
$C_{6}\Pi_{9}O$	1.520	0.010		115	t hastal asiardi da a
C ₆ H ₁₀	0.645	0.015	LPES	126	<i>t</i> -butyl vinylidene
$C_6H_{11}O$	1.755	+0.05/-0.005		113	pinacolone enolate
$C_6H_{11}O$	1.82	0.06	PT	2	3,3-dimethylbutananl enolate
C_6N_4	2.3	0.3	PT	2	TCNE
$C_7 F_5 N$	1.11	0.11	CT	67	pentafluorobenzonitrile
C_7F_8	0.86	0.11	CT	67	octafluorotoluene
$C_{7}F_{14}$	1.08	0.10	CT	61	perfluoromethylcyclohexane
C ₇ HF ₅ O	1.10	0.11	CT	67	pentafluorobenzaldehyde
C_H_N_O	2.16	0.10	CT	61	3,5-(NO ₂) ₂ -benzonitrile
C_H_F_NO_	1.41	0.10	СТ	61	<i>m</i> -trifluoromethyl-NB
C_H.N O	1.61	0.10	СТ	61	o-cvano-NB
CHNO	1.56	0.10	CT	61	<i>m</i> -cyno-NB
CHNO	1.00	0.10	CT	61	n-cyano-NB
C H Br	1.72	0.10		147	e bromobonzyl
С ₇ 1 ₆ DI	1.300	0.000		10/	w bromobarry
$C_7 H_6 Br$	1.307	0.008	LPE5	16/	m-bromodenzyl

	Electron affinity	Uncertainty			
Molecule	in eV	in eV	Method	Ref.	
C_H_Br	1.229	0.008	LPES	167	<i>p</i> -bromobenzyl
CHC	1 257	0.008	LPES	167	a-chlorobenzyl
C H C	1.272	0.008	LDES	167	<i>m</i> chlorobonzyl
$C_7 \Pi_6 CI$	1.272	0.000	LILS	167	m-chlorobenzyi
	1.1/4	0.008	LPES	167	<i>p</i> -chlorobenzyl
C_7H_6F	1.091	0.008	LPES	167	o-fluorobenzyl
$C_7 H_6 F$	1.173	0.008	LPES	167	<i>m</i> -fluorobenzyl
C ₇ H ₆ F	0.937	0.008	LPES	167	<i>p</i> -fluorobenzyl
C ₇ H ₆ FO	2.218	0.010	LPT	2	<i>m</i> -fluoroacetophenone enolate
C_H_FO	2.176	0.010	LPT	2	<i>p</i> -fluoroacetophenone enolate
C H FeO	0.990	0.10	СТ	120	n -1.3-butadiene-Fe(CO)
C H N O	1 77	0.05	DT.	60	34-dintrotoluene
$C \downarrow N O$	1.77	0.05	DT	60	2.2 dinitrotoluono
$C_7 \Pi_6 N_2 O_4$	1.77	0.05	P I DT	00	
$C_7 H_6 N_2 O_4$	1.60	0.05	PI	60	2,4-dinitrotoluene
$C_7 H_6 N_2 O_4$	1.55	0.05	PT	60	2,6-dinitrotoluene
$C_7 H_6 O_2$	1.85	0.10	CT	61	o-CH ₃ -BQ
C_7H_7	0.912	0.006	LPES	26	benzyl
C ₇ H ₇	0.868	0.006	LPES	136	1-quadricyclanide
C_H_	0.962	0.006	LPES	136	2-quadricyclanide
с́н	1.286	0.006	LPES	136	norbornadienide
С Н	0.39	0.04	I PES	136	cvclohentatrienide
С ₇ н ₇	3.046	0.006	I DES	136	1 (1.6 hoptadivnida)
	. 1 140	0.000		130	2 (1 (1) + 1) = 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (
	>1.140	0.006	LPES	136	3-(1,6-neptadiynide)
$C_7H_7NO_2$	0.92	0.10	CT	61	o-methyl-NB
$C_7 H_7 NO_2$	0.99	0.10	СТ	61	<i>m</i> -methyl-NB
C ₇ H ₇ NO ₂	0.95	0.10	CT	61	<i>p</i> -methyl-NB
C ₇ H ₇ NO ₃	1.04	0.10	CT	61	<i>m</i> -OCH ₃ -NB
C ₇ H ₇ NO ₃	0.91	0.10	СТ	61	<i>p</i> -OCH ₃ -NB
C_H_O	<2.36	0.06	PT	2	<i>o</i> -methyl phenoxide
сно	2.14	0.02	РТ	50	benzvloxide
C H FO	<3.05	0.06	PT	50	РЬСНОНЕ
$C_7 \Pi_8 \Pi O$	1.07	0.00		50	hantatrianul
C ₇ n ₉	1.27	0.05	P1 DT	2	
C ₇ H ₉ O	1.61	0.05	P1	2	2-norbornanone enolate
C ₇ H ₉ Si	1.33	0.04	LPT	65	$C_6H_5(CH_3)SiH$
$C_{7}H_{11}O$	1.598	0.007	LPT	113	cycloheptanone enolate
$C_{7}H_{11}O$	1.49	0.04	PT	2	2,5-dimethyl-
					cyclopentanone enolate
C_H_O	1.72	0.06	PT	2	4-heptanone enolate
CHO	1.46	0.04	РТ	2	diisopropyl ketone enolate
C = N	1.89	0.10	СТ	51	$1.4_{\text{c}}(\text{CN}) \subset \text{F}$
$C_{8}^{I_{14}I_{2}}$	0.89	0.10	CT	67	$1, \mathbf{T}^{-}(\mathbf{C}, \mathbf{V})_{2} \mathbf{C}_{6}^{-1} 4$
$C_8 \Pi_3 \Pi_5 O$	1.70	0.11	CT	07	
$C_8 H_3 F_6 NO_2$	1.79	0.10	CI	61	$3,5-(CF_3)_2$ -NB
$C_8H_4F_3N$	0.70	0.05	attach	263	o-trifluoromethylbenzonitrile
$C_8H_4F_3N$	0.67	0.05	attach	263	<i>m</i> -trifluoromethylbenzonitrile
$C_8H_4F_3N$	0.83	0.05	attach	263	<i>p</i> -trifluoromethylbenzonitrile
$C_8H_4O_3$	1.21	0.10	CT	61	phthalic anhydride
C _s H ₆	1.044	0.008	LPES	148	
C H.	1.091	0.008	LPES	134	
сно	2.057	0.010	РТ	2	acetophenone enolate
СНО	2.10	0.08	I PT	2	phenylacetaldebyde enolate
C U	0.55	0.00		124	gueloostatatraono
	0.55	0.02		134	cyclooctatetraene
C ₈ H ₈	0.919	0.008	LPES	139	<i>m</i> -xylylene
$C_8H_9NO_2$	1.21	0.05	PT	60	3,5-dimethyl-NB
$C_8H_9NO_2$	2.61	0.05	PT	60	2,6-dimethyl-NB
C ₈ H ₉ NO ₂	0.86	0.10	СТ	61	2,3-dimethyl-NB
$C_8H_{13}O$	1.63	0.06	PT	2	cyclooctanone enolate
C _s S ₂	0.049	0.005	LPES	230	bithiophene
C H FeO	0.76	0.10	СТ	120	η ₄ -1,3-cyclohexadiene-Fe(CO) ₂
CHO	2.030	0.010	LPT	2	m-methylacetophenone enolate
C H SiN	1 43	0.10	 PT	- 2	trimethylsilylnitrene
	0.70	0.10		<i>4</i> <i>6</i> 1	2.4.6 trimothyl ND
$C_9 \Pi_{11} N O_2$	0.70	0.10	CI	01	2,4,0-u iiiieuiyi-iND

	Electron affinity	Uncertainty			
Molecule	in eV	in eV	Method	Ref.	
C.H.O	1.69	0.06	PT	2	cvclononanone enolate
CHCO	2 1 9	0.10	СТ	61	2.3-dichloro-1.4-naphthoquinone
$C_{10} I_4 C_{12} C_2$	1.70	0.10	CT	61	1.2 digituonon hthelene
$C_{10} \Pi_6 N_2 O_4$	1.78	0.10	CI	61	1,5-dimeronaphenalene
$C_{10}H_{6}N_{2}O_{4}$	1.77	0.10	CI	61	1,5-dinitronaphthalene
$C_{10}H_{6}O_{2}$	1.81	0.10	CT	61	1,4-naphthoquinone
$C_{10}H_{7}$	1.403	0.015	LPES	197	1-naphthyl radical
C, H,NO	1.23	0.10	CT	61	1-nitronaphthalene
C H NO	1.18	0.10	СТ	61	2-nitronaphthalene
C H	0.790	0.008	IDES	230	2711ene
C_{10}^{11}	0.790	0.000	CT	120	n = 1.25 evaluation of $Cr(CO)$
$C_{10}H_8CrO_3$	0.95	0.10	CI	120	η_4 -1,5,5-cycloneptatriene Cr(CO) ₃
$C_{10}H_8FeO_3$	0.98	0.10	CI	120	η_4 -1,3,5-cycloheptatriene-Fe(CO) ₃
$C_{10}H_8NO$	0.66	—	LPES	285	NO ⁻ (naphthlene)
$C_{10}H_{8}O_{2}$	1.41	—	LPES	285	O ₂ (naphthlene)
$C_{10}H_{10}O_{2}$	2.09	_	LPES	285	O_{2} (naphthlene \cdot H ₂ O)
СНО	2.72	_	LPES	285	$O(naphthlene \cdot (HO))$
C H O	1.92	0.06	DT	200	$C_2(\operatorname{indepicture}^{(1)}(12^{-2}))$
$C_{10} \Pi_{17} O$	1.05	0.00		120	n 12 hate dans E ₂ (CO)
C ₁₁ H ₈ FeO ₃	1.29	0.10	CI	120	η_4 -1,3-Dutadiene-Fe(CO) ₃
$C_{12}F_{10}$	0.82	0.11	CT	67	decafluorobiphenyl
$C_{12}H_{4}N_{4}$	2.8	0.3	CD	2	TCNQ
$C_{12}H_{9}$	1.07	0.10	PT	2	perinaphthenyl
C ₁₂ H ₁₂ NO	0.79	_	LPES	285	NO (benzene),
C H O	2.032	0.010	LPT	2	<i>t</i> -butylacetophenone enolate
С Н О	1.90	0.07	 РТ	2	cyclododecanone enolate
$C_{12} \Gamma_{21} O$	1.50	0.11		2	deceffuench en zon h en en e
$C_{13}F_{10}O$	1.52	0.11	CI	67	decanuorobenzophenone
$C_{13}H_9FO$	0.64	0.10	CI	61	4-fluorobenzophenone
$C_{13}H_{10}O$	0.62	0.10	СТ	61	benzophenone
$C_{14}H_9NO_2$	1.43	0.10	CT	61	9-nitroanthracene
$C_{14}H_{10}$	0.530	0.005	LPES	286	anthracene
C.H.O	0.770	0.005	LPES	286	anthracene · H.O
(C H)	n = 1 - 16	_	LPES	231	anthracene clusters
C U	0.406	0.010	IDEC	270	
$C_{16} I_{10}$	0.400	0.010	LFE3	270	pyrene
C ₁₈ H ₁₂	1.04	0.10		66	tetracene
$C_{20}H_{12}$	0.79	0.10	CT	66	benz[a]pyrene
$C_{20}H_{12}$	0.973	0.005	LPES	236	perylene
$C_{20}H_{16}NO$	1.06	—	LPES	285	NO (naphthalene) ₂
C ₁₂ H ₁₄	1.35	0.10	CT	66	pentacene
C ²² Cl ¹ FeN	2.59	0.11	СТ	186	FeTPPCl
C C F FeN	3.21	0.03	СТ	186	FeTPPBC1
C C E E E N	3 25	0.03	CT	186	$E_{\alpha}TDDE BCICI$
$C_{44}CI_9F_{20}FeIN_4$	5.55	0.05	CT	100	
$C_{44}H_8F_{20}FeN_4$	2.15	0.15	CI	186	
$C_{44}H_8CIF_{20}FeN_4$	3.14	0.03	CT	186	FeTPPF ₂₀ Cl
$C_{44}H_8Cl_{21}FeN_4$	2.93	0.23	CT	186	FeTPPoCl ₂₀ Cl
C44H12Cl17FeN4	3.14	0.03	CT	186	FeTPPoCl ₈ βCl ₈ Cl
C44H20ClsFeN4	1.86	0.03	CT	186	FeTPPoCl
C.H.Cl.FeN	2.10	0.19	СТ	186	FeTPPoCl_Cl
CH FeN	1.87	0.03	СТ	186	iron tetraphenylporphyrin (FeTPP)
C H NIN	1.57	0.00	CT	186	nickal tatraphonylporphyrin (NiTDD)
$C_{44} I_{28} I I I I I I I I I I I I I I I I I I I$	1.51	0.01	CT	100	
C ₄₄ H ₂₈ CIFeN ₄	2.15	0.15		186	Feippei
$C_{44}H_{30}N_{4}$	1.69	0.01	CT	186	H ₂ tetraphenylporphyrin
$C_{45}H_{29}NiN_4O$	1.74	0.01	CT	186	NiTPPCHO
C ₅₂ H ₃₉ FeN ₇ O	1.97	0.03	CT	186	FeTPP-val
C ₆₀	2.65	0.05	LPT	201	
C F	2.74	0.07	Knud	202	
C H FeN O	2.07	0.03	СТ	186	FeTPP-niv
$C_{64} C_{64} C_{64} C_{8} C_{8} C_{4}$	2.07	0.03	Vnud	200	TOTTE PIN
$C_{70}\Gamma_2$	2.00	0.07	KIIUU L DEC	202	
(benzene) _n	n=53-124	—	LPES	248	
(toluene) _n	n=33-139	—	LPES	248	
CeF ₄	3.8	0.4	CT	98	
$Cl(CO_2)$	3.907	0.010	LPES	131	
Cl(H ₀ O)	n = 1 - 4	_	LPES	250	
· _ /					

	Electron affinity	Uncertainty			
Molecule	in eV	in eV	Method	Ref.	
Co _n	<i>n</i> =1-108	—	LPES	251	
CoBr ₃	4.6	0.1	LPES	249	
CoCl ₃	4.7	0.1	LPES	249	
CoF_4	6.4	0.3	CT	98	
$Cr(CO)_{3}$	1.349	0.006	LPES	94	
CrO ₃	3.66	0.02	LPES	241	
CrO ₄	4.98	0.09	LPES	241	
CrO ₅	4.4	0.1	LPES	241	
CsO_4	2.5	0.2	LPES	252	
Cu _n	n=1-411	-	LPES	37	
$CuBr_2$	4.35	0.05	LPES	237	
$Cu_n(CN)_m$	n=1-6	<i>m</i> =1-6	LPE5	159	
E(U, O)	4.55 w_1 4	0.05	LPES	237	
$F(\Pi_2 O)_n$ $F(\Pi_2 O)$	n = 1 - 4	—	LPES	242	
F_{e}	n = 1 - 4 n = 3 - 34	_	LFLS I DES	149	
Fe(CO)	1 22	0.02	LI LS I PES	2	
$Fe(CO)_2$	1.22	0.2	LPES	2	
$Fe(CO)_3$	2.4	0.3	LPES	2	
FeBr.	4.26	0.06	LPES	249	
FeBr.	5.50	0.08	LPES	249	
FeCl	4.22	0.06	LPES	249	
FeCl	6.00	0.08	LPES	249	
FeF,	3.6	0.1	CT	98	
FeF	6.0	estimate	CT	98	
Fe ₂ H ₂	0.942	0.019	LPES	254	
Fe _n O _m	n=1-4	<i>m</i> =1-6	LPES	152	
Ga ₂ As ₃	2.783	0.024	LPES	192	
$Ga_x As_y$	<i>n</i> =2-50	n=x+y	LPES	229	
Ga ₂ P ₃	2.991	0.026	LPES	192	
Ge	n=3-15	—	LPES	71	
$Ge_x As_y$	n=5-30	n=x+y	LPE5	/2	
Gen ₃	<1.74	0.04		2	
HNO	0.57	0.15	CD	2	
(H O)	n=2-19	_	LPES	2 77	
$I(CO_2)$	3.225	0.001	LPES	131	
I(H ₂ O)	<i>n</i> =1-4	_	LPES	250	
$In_x P_y$	<i>n</i> =2-8	n=x+y	LPES	137	
IrF ₄	4.7	0.3	CT	98	
IrF ₆	6.5	0.4	CT	98	
K _n	<i>n</i> =2-7	—	LPES	18	
KO4	2.8	0.2	LPES	252	
LiO ₄	3.3	0.2	LPES	252	
MnBr ₃	5.03	0.06	LPES	249	
MnCl ₃	5.07	0.06	LPE5	249	
MnC	2 2 2 5	0.2		90 158	
$M_{0}(CO)$	1 337	0.006	LI LS I PES	94	
MoF.	3.5	0.2	CT	98	
MoF.	3.8	0.2	CT	98	
MoO	3.17	0.02	LPES	280	
Mo ₂ O ₂	2.24	0.02	LPES	280	
Mo ₂ O ₃	2.33	0.07	LPES	280	
Mo ₂ O ₄	2.13	0.04	LPES	280	
N ₂ CD	2.622	0.005	LPES	154	NCND
N ₂ CH	2.622	0.005	LPES	154	NCNH
$(NH_3)_n$	<i>n</i> =41-1100	—	LPES	77	
$NH_2(NH_3)_n$	<i>n</i> =1,2	_	LPES	78	
$NO(H_2O)_n$	<i>n</i> =1,2	—	LPES	75	

	Electron affinity	Uncertainty			
Molecule	in eV	in eV	Method	Ref.	
NO ₃	3.937	0.014	LPES	85	
NO ₃ (H ₂ O)	<i>n</i> =0-6	_	LPES	240	
NO(N ₂ O)	<i>n</i> =1,2	_	LPES	79	
(NO), (NO)	>2.1	_	LPES	75	
(N ₀ O)	n = 1, 2	_	LPES	81	
Na	n=2-5	_	LPES	18	
(NaF)	n = 1.7 12	_	LPES	64	
$(NaF)_n$	n = 17,12 n = 57,12	_	LI ES	64	
Na(Ival) _n	2 1	0.2	IDES	252	
NaO ₄	2.1	0.2	LILS	252	
NaO ₅	3.2	0.2		252	
NaSO ₃	2.5	0.2	LPES	252	
ND _n	n=6-1/	_	LPES	181	
Nb ₈	1.513	0.008	LPES	157	
Nb ₃ O	1.393	0.006	LPES	169	
Ni _n	<i>n</i> =1-100	_	LPES	247	
Ni_n (benzene) _m	<i>n</i> =1-3	m = 1, 2	LPES	295	
NiBr ₃	4.94	0.08	LPES	249	
NiCl ₃	5.20	0.08	LPES	249	
$Ni(CO)_2$	0.643	0.014	LPES	2	
Ni(CO) ₃	1.077	0.013	LPES	2	
Ni(CO)H	1.126	0.010	LPES	293	HNiCO
OH(H ₂ O)	<2.95	0.15	PT	2	
OH(NH ₃)	2.35	0.07	LPES	234	
OH(N ₀ O)	2.14	0.02	LPES	209	
OH(N ₀ O)	<i>n</i> =1-5	_	LPES	209	
OsF.	3.9	0.3	СТ	98	
OsF.	6.0	0.3	СТ	98	
P	3.88	0.03	LPES	253	
PBr	1 59	0.15	CD	200	
PBr Cl	1.63	0.20	CD	2	
PCI Br	1.52	0.20	CD	2	
PCI	0.82	0.10	CD	2	
DE	0.32	0.15	CT	121	
PO	4.95	0.15	IDES	121	
	2.02	0.00	CD	150	
POCI ₂	5.05	0.25	CD	2	
POCI ₃	1.41	0.20	CD	2	
	5.5	0.5	CT	98	
	7.0	0.4	CI	98	
ReF ₆	4.7	estimate	CI	98	
ReO ₃	3.6	0.1	LPES	216	
RhF ₄	5.4	0.3	CT	98	
RuF ₄	4.8	0.3	CT	98	
RuF ₅	5.2	0.4	CT	98	
RuF ₆	7.5	0.3	CT	98	
SF_4	1.5	0.2	CT	91	
SF ₅	4.23	0.12	e-scat	204	
SF ₆	1.05	0.10	CT	56	
SO ₃	1.97	0.10	LPES	165	
$(SO_2)_2$	0.6	0.2	LPES	80	
Sb _n	<i>n</i> =2-9	—	LPES	213	
Sb ₅	3.46	0.03	LPES	253	
$ScBr_4$	6.13	0.08	LPES	249	
$ScCl_4$	6.89	0.08	LPES	249	
SeF ₆	2.9	0.2	CD	2	
Si ₄	2.13	0.01	LPES	110	
Si ₅	2.59	0.02	LPES	110	
Si	1.85	0.02	LPES	110	
Si	<i>n</i> =3-20	_	LPES	71	
Si ₂ C ₃	1.766	0.012	LPES	296	linear Si-C ₂ -Si
					3

	Electron affinity	Uncertainty		
Molecule	in eV	in eV	Method	Ref
SiD ₃	1.386	0.022	LPES	43
SiF ₃	2.41	0.22	LPES	17
SiF ₄	≤0	—	LPES	17
SiF ₅	≥4.66	—	LPES	17
Si _n F	<i>n</i> =2-11	—	LPES	17
SiH ₃	1.406	0.014	LPES	43
Si ₃ H	2.53	0.01	LPES	182
Si ₄ H	2.68	0.01	LPES	182
Si _n Na _m	<i>n</i> =4-11	<i>m</i> =1-3	LPES	210
Sn _n	<i>n</i> =1-12	—	LPES	289
SnCH ₂ CN	1.57	0.02	LPES	292
Sn(CN) ₂	2.622	0.004	LPES	292
Sn(CN)(CH ₂ CN)	2.29	0.05	LPES	292
Ta ₃ O	1.583	0.010	LPES	169
TeF ₆	3.34	0.17	CD	2
Ti _n	<i>n</i> =1-130	—	LPES	151
TiO ₃	4.2	—	LPES	172
UF ₅	3.7	0.2	CT	98
UF ₆	5.1	0.2	CT	98
UO ₃	<2.1	—	CT	98
V _n	<i>n</i> =3-65	—	LPES	150
VF_4	3.5	0.2	CT	98
V_2O_n	<i>n</i> =3-7	—	LPES	246
V ₃ O	1.218	0.008	LPES	169
V ₄ O ₁₀	4.2	0.6	CT	101
W(CO) ₃	1.859	0.006	LPES	94
WF ₅	1.25	0.3	CD	18
WF ₆	>3.5	_	СТ	19
WO ₃	3.33	+0.04/-0.15	LPT	86
WO ₃	3.9	0.2	СТ	98

References

- 1. Hotop, H., and Lineberger, W. C., J. Phys. Chem. Ref. Data, 14, 731, 1985.
- Drzaic, P. S., Marks, J., and Brauman, J. I., in *Gas Phase Ion Chemistry*, *Vol. 3*, Bowers, M. T., Ed., Academic Press, Orlando, 1984, p. 167. The reference for C₆H₄ClO should read "Richardson, et al., 1975c".
- Schulz, P. A., Mead, R. D., Jones, P. L., and Lineberger, W. C., J. Chem. Phys., 77, 1153, 1982.
- 4. Neumark, D. M., Lykke, K. R., Anderson, T., and Lineberger, W. C., *Phys. Rev. A*, 32, 1890, 1985. EA(O) = 11,784.645 ± 0.008 cm⁻¹.
- Wenthold, P. G., Gunion, R. F., and Lineberger, W. C., *Chem. Phys. Lett.*, 258, 101, 1996.
- Wenthold, P. G., Kim, J. B., Jonas, K. L., and Lineberger, W. C., J. Phys. Chem. A 101, 4472, 1997.
- Klein, R., McGinnis, R. P., and Leone, S. R., *Chem. Phys. Lett.*, 100, 475, 1983.
- Arnold, D. W., Bradforth, S. E., Kitsopoulos, T. N., and Neumark, D. M., J. Chem. Phys., 95, 8753, 1991; linear C...
- Stevens, A. E., Fiegerle, C. S., and Lineberger, W. C., J. Chem. Phys., 78, 5420, 1983.
- 10. Breyer, F., Frey, P., and Hotop, H., Z. Phys., A 300, 7, 1981.
- 11. Oakes, J. M., and Ellison, G. B., Tetrahedron, 42, 6263, 1986.
- Leopold, D. G., Murray, K. K., Miller, A. E. S., and Lineberger, W. C., J. Chem. Phys., 83, 4849, 1985.
- Oakes, J. M., Jones, M.E., Bierbaum, V. M., and Ellison, G. B., J. Phys. Chem., 87, 4810, 1983.
- 14. Ellis, H. B., Jr. and Ellison, G. B., J. Chem. Phys., 78, 6541, 1983.

- Ramond, T. M., Blanksby, S. J., Kato, S., Bierbaum, V. M., Davico, G. E., Schwartz, R. L., Lineberger, W. C., and Ellison, G. B., *J. Phys. Chem. A* 106, 9641, 2002.
- 16. Nimlos, M. E., and Ellison, G. B., J. Chem. Phys., 90, 2574, 1986.
- 17. Kawamata, H., Negishi, Y., Kishi, R., Iwata, S., Nakajima, A., and Kaya, K., J. Chem. Phys. 105, 5369, 1996.
- McHugh, K. M., Eaton, J. G., Lee, G. H., Sarkas, H. W., Kidder, L. H., Snodgrass, J. T., Manaa, M. R., and Bowen, K. H., *J. Chem. Phys.*, 91, 3792, 1989. See also Ref. 104.
- 19. Viggiano, A. A., Paulson, J. F., Dale, F., Henchman, M., Adams, N. G., and Smith, D., *J. Phys. Chem.*, 89, 2264, 1985. The upper limit given in this paper ($\leq 3.4 \text{ eV}$) was later found to be incorrect when rapid charge transfer from HCO₂⁻ to WF₆ was observed (unpublished).
- Burnett, S. M., Stevens, A. E., Fiegerle, C. S., and Lineberger, W. C., *Chem. Phys. Lett.*, 100, 124, 1983.
- Moran, S., Ellis, H. B., DeFrees, D. J., McLean, A. D., and Ellison, G. B., J. Am. Chem. Soc., 109, 5996, 1987; Moran, S., Ellis, H. B., DeFrees, D. J., McLean, A. D., Paulson, S. E., and Ellison, G. B., J. Am. Chem. Soc., 109, 6004, 1987; see also Lykke, K. R., Neumark, D. M., Andersen, T., Trapa, V. J., and Lineberger, W. C., J. Chem. Phys., 87, 6842, 1987.
- Mead, R. D., Lykke, K. R., Lineberger, W. C., Marks, J., and Brauman, J. I., *J. Chem. Phys.*, 81, 4883, 1984; Lykke, K. R., Mead, R. D., and Lineberger, W. C., *Phys. Rev. Lett.*, 52, 2221, 1984. The EAs are 14,717.7 ± 1.0 cm⁻¹ for acetaldehyde enolate and 14,671.0 ± 1.0 cm⁻¹ for acetaldehyde-d₃ enolate.
- 23. Ellison, G. B., Engelking, P. C., and Lineberger, W. C., *J. Chem. Phys.*, 86, 4873, 1982.
- 24. Oakes, J. M., and Ellison, G. B., J. Am. Chem. Soc., 105, 2969, 1983.
- Ellison, G. B., and Oakes, J. M., J. Am. Chem. Soc., 106, 7734, 1984. EA(allyl) and EA(allyl-d₂) are 0.119 and 0.083 eV too low, respectively,

in this work, according to Ref. 138. Therefore, $EA(allyl-d_1)$ is likely too low by a similar amount.

- Gunion, R. F., Gilles, M. K., Polak, M. L., and Lineberger, W. C., Int. J. Mass Spectrom. Ion Processes, 117, 601, 1992; see also Ref. 136.
- 27. Leopold, D. G., and Lineberger, W. C., J. Chem. Phys., 85, 51, 1986.
- Scheer, M., Bilodeau, R. C., Brodie, C. A., and Haugen, H. K., *Phys. Rev. A*, 58, 2844, 1998.
- 29. Miller, A. E. S., Fiegerle, C. S., and Lineberger, W. C., *J. Chem. Phys.*, 87, 1549, 1987.
- Miller, T. M., Leopold, D. G., Murray, K. K., and Lineberger, W. C., J. Chem. Phys., 85, 2368, 1986.
- Miller, T. M., and Lineberger, W. C., Chem. Phys. Lett., 146, 364, 1988.
- Neumark, D. M., Lykke, K. R., Andersen, T., and Lineberger, W. C., J. Chem. Phys., 83, 4364, 1985.
- Leopold, D. G., Miller, T. M., and Lineberger, W. C., J. Am. Chem. Soc., 108, 178, 1986.
- Miller, A. E. S., Fiegerle, C. S., and Lineberger, W. C., J. Chem. Phys., 84, 4127, 1986.
- Murray, K. K., Miller, T. M., Leopold, D. G., and Lineberger, W. C., J. Chem. Phys., 84, 2520, 1986.
- Leopold, D. G., Miller, A. E. S., and Lineberger, W. C., J. Am. Chem. Soc., 108, 1379, 1986.
- Li, J., Li, X., Zhai, H. J., and Wang, L.-S., Science 299, 864, 2003; Hakkinen, H., Yoon, B., Landman, U., Li, X., Zhai, H. J., and Wang, L.-S., *J. Phys. Chem. A* 107, 6168, 2003; Taylor, K. J., Pettiette-Hall, C. L., Cheshnovsky, O., and Smalley, R. E., *J. Chem. Phys.* 96, 3319, 1992; Handschuh, H., Cha, C.-Y., Bechthold, P. S., Ganteför, G., and Eberhardt, W., *J. Chem. Phys.*, 102, 6406, 1995; Cha, C.-Y., Ganteför, G., and Eberhardt, W. *J. Chem. Phys.*, 99, 6308, 1993; Ho, J., Ervin, K. M., and Lineberger, W. C., *J. Chem. Phys.*, 93, 6987, 1990; Leopold, D. G., Ho, J., and Lineberger, W. C., *J. Chem. Phys.*, 86, 1715, 1987; Pettiette, C. L., Yang, S. H., Craycraft, M. J., Conceicao, J., Laaksonen, R. T., Cheshnovsky, O., and Smalley, R. E., *J. Chem. Phys.*, 88, 5377, 1988.
- Snodgrass, J. T., Coe, J. V., McHugh, K. M., Friedhoff, C. B., and Bowen, K. H., *J. Phys. Chem.*, 93, 1249, 1989.
- Friedhoff, C. B., Snodgrass, J. T., Coe, J. V., McHugh, K. M., and Bowen, K. H., *J. Chem. Phys.*,84, 1051, 1986.
- Friedhoff, C. B., Coe, J. V., Snodgrass, J. T., McHugh, K. M., and Bowen, K. H., *Chem. Phys. Lett.*, 124, 268, 1986.
- 41. Coe, J. V., Snodgrass, J. T., Friedhoff, C. B., McHugh, K. M., and Bowen, K. H., *J. Chem. Phys.*, 84, 619, 1986.
- Snodgrass, J. T., Coe, J. V., Friedhoff, C. B., McHugh, K. M., and Bowen, K. H., *Chem. Phys. Lett.*, 122, 352, 1985.
- 43. Nimlos, M. R., and Ellison, G. B., J. Am. Chem. Soc., 108, 6522, 1986.
- 44. Petrunin, V., Andersen, H., Balling, P., and Andersen, T., *Phys. Rev. Lett.*, 76, 744, 1996.
- Andersen, T., Lykke, K. R., Neumark, D. M., and Lineberger, W. C., J. Chem. Phys., 86, 1858, 1987.
- Murray, K. K., Lykke, K. R., and Lineberger, W. C., *Phys. Rev. A*, 36, 699, 1987.
- 47. Mansour, N. B., and Larson, D. J., Abstracts of the XV Int. Conf. on the Phys. of Electronic and Atomic Collisions, p. 70, 1987. EA(SH) = 18666.44 ± 0.03 cm⁻¹.
- 48. Stonemann, R. C., and Larson, D. J., *Phys. Rev. A*, 35, 2928, 1987. EA(SeH) = 17,845.17 ± 0.20 cm⁻¹.
- 49. Nimlos, M. R., Harding, L. B., and Ellison, G. B., *J. Chem. Phys.*, 87, 5116, 1987.
- 50. Moylan, C. R., Dodd, J. A., Han, C.-C., and Braumann, J. I., *J. Chem. Phys.*, 86, 5350, 1987.
- 51. Chowdhury, S., Grimsrud, E. P., Heinis, T., and Kebarle, P., J. *Am. Chem. Soc.*, 108, 3630, 1986.
- Berzinsh, U., Gustafsson, M., Hanstorp, D., Klinkmueller, A. E., Ljungblad, U., Maartensson-Pendrill, A.-M., *Phys. Rev. A* 51, 231, 1995. EA(Cl) = 29138.59 ± 0.22 cm⁻¹.
- 53. Moran, S., and Ellison, G. B., J. Phys. Chem., 92, 1794, 1988.
- Murray, K. K., Leopold, D. G., Miller, T. M., and Lineberger, W. C., J. Chem. Phys., 89, 5442, 1988.
- Ervin, K. M., Ho, J., and Lineberger, W. C., J. Chem. Phys., 89, 4514, 1988.

- 56. Grimsrud, E. P., Chowdhury, S., and Kebarle, P., *J. Chem. Phys.*, 85, 4989, 1985.
- 57. Fischer, C. F., Phys. Rev. A, 39, 963, 1989.
- Wickham-Jones, C. T., Ervin, K. M., Ellision, G. B., and Lineberger, W. C., *J. Chem. Phys.*, 91, 2762, 1989.
- Kryachko, E. S., Vinckier, C., and Nguyen, M. T., J. Chem. Phys., 114, 7911, 2001.
- 60. Mock, R. S., and Grimsrud, E. P., J. Am. Chem. Soc., 111, 2861, 1989.
- Chowdhury, S., Heinis, T., Grimsrud, E. P., and Kebarle, P., J. Phys. Chem., 90, 2747, 1986. The uncertainty and other results are quoted in Ref. 60.
- Wickham-Jones, C. T., Moran, S., and Ellison, G. B., *J. Chem. Phys.*, 90, 795, 1989.
- 63. Ervin, K. M., Ho, J., and Lineberger, W. C., J. Phys. Chem., 92, 5405, 1988.
- 64. Miller, T. M., and Lineberger, W. C., Int. J. Mass Spectrom. Ion Processes, 102, 239, 1990.
- 65. Wetzel, D. M., Salomon, K. E., Berger, S., and Brauman, J. I., J. Am. Chem. Soc., 111, 3835, 1989.
- Crocker, L., Wang, T., and Kebarle, P., J. Am. Chem. Soc., 115, 7818, 1993.
- 67. Dillow, G. W., and Kebarle, P., J. Am. Chem. Soc., 111, 5592, 1989.
- Gantefor, G., Gausa, M., Meiwes-Broer, K. H., and Lutz, H. O., Z. Phys. D, 9, 253, 1988; Taylor, K. J., Petteitte, C. L., Craycraft, M. J., Chesnovsky, O., and Smalley, R. E., *Chem. Phys. Lett.*, 152, 347, 1988.
- Metz, R. B., Kitsopoulos, T., Weaver, A., and Neumark, D. M., J. Chem. Phys., 88, 1463, 1988.
- Yang, S., Pettiette, C. L., Conceicao, J., Cheshnovsky, O., and Smalley, R. E., *Chem. Phys. Lett.*, 139, 233, 1987; Yang, S., Taylor, K. J., Craycraft, M. J., Conceicao, J., Pettiette, C. L., Cheshnovsky, O., and Smalley, R. E., *Chem. Phys. Lett.*, 144, 431, 1988; Arnold, D. W., Bradforth, S. E., Kitsopoulos, T. N., and Neumark, D. M., *J. Chem. Phys.*, 95, 5479, 1991.
- Cheshnovsky, O., Yang, S., Pettiette, C. L., Craycraft, M. J., Liu, Y., and Smalley, R. E., *Chem. Phys. Lett.*, 138, 119, 1987.
- 73. Travers, M. J., Cowles, D. C., and Ellison, G. B., *Chem. Phys. Lett.*, 164, 449, 1989.
- 74. Blondel, C., Cacciani, P., Delsart, C., and Trainham, R., *Phys. Rev. A*, 40, 3698, 1989. EA(Br) = 27,129.170 \pm 0.015 cm⁻¹ and EA(F) = 27,432.440 \pm 0.025 cm⁻¹.
- 75. Bowen, K. H., and Eaton, J. G., in *The Structure of Small Molecules and Ions*, Naaman, R., and Vager, Z., Eds., Plenum, New York, 1988, pp. 147-169; Arnold, S. T., Eaton, J. G., Patel-Mistra, D., Sarkas, H. W., and Bowen, K. H., in *Ion and Cluster Ion Spectroscopy and Structure*, Maier, J. P., Ed., Elsevier Science, New York, 1989, p. 417.
- Snodgrass, J. T., Coe, J. V., Friedhoff, C. B., McHugh, K. M., and Bowen, K. H., *Faraday Disc. Chem. Soc.*, 88, 1988.
- Lee, G. H., Arnold, S. T., Eaton, J. G., Sarkas, H. W., Bowen, K. H., Ludewigt, C., and Haberland, H., Z. Phys. D Atoms, Mol. and Clusters, 20, 9, 1991; Coe, J. V., Lee, G. H., Eaton, J. G., Arnold, S. T., Sarkas, H. W., Bowen, K. H., Ludewigt, C., Haberland, H., and Worsnop, D. R., J. Chem. Phys., 92, 3980, 1990.
- Snodgrass, J. T., Coe, J. V., Freidhoff, C. B., McHugh, K. M., and Bowen, K. H., to be published, quoted in Ref. 75.
- Coe, J. V., Snodgrass, J. T., Friedhoff, C. B., McHugh, K. M., and Bowen, K. H., *J. Chem. Phys.*, 87, 4302, 1987.
- Friedhoff, C. B., Snodgrass, J. T., and Bowen, K. H., to be published, quoted in Ref. 75.
- 81. Coe, J. V., Snodgrass, J. T., Friedhoff, C. B., McHugh, K. M., and Bowen, K. H., *Chem. Phys. Lett.*, 124, 274, 1986.
- Eliav, E., Vilkas, M. J., Ishikawa, Y., and Kaldor, U., J. Chem. Phys. 123, 224113(5), 2005.
- Ervin, K. M., Ho, J., and Lineberger, W. C., J. Chem. Phys., 91, 5974, 1989.
- Polak, M. L., Fiala, B. L., Ervin, K. M., and Lineberger, W. C., J. Chem. Phys., 94, 6924, 1991.
- Weaver, A., Arnold, D. W., Bradforth, S. E., Neumark, D. M., J. Chem. Phys., 94, 1740, 1991.

- 86. Walter, C. W., Devynck, P., Hertzler, C. F., Bae, Y. K., Smith, G. P., and Peterson, J. R., *Bull. Am. Phys. Soc.*, 35, 1163, 1990.
- 87. Ervin, K. M., and Lineberger, W. C., J. Phys. Chem., 95, 1167, 1991.
- Gilles, M. K., Polak, M. L., and Lineberger, W. C., J. Chem. Phys., 96, 8012, 1992.
- 89. Lykke, K. R., Murray, K. K., and Lineberger, W. C., *Phys. Rev. A*, 43, 6104, 1991. EA(H) = 6082.99 ± 0.15 cm⁻¹ and EA(D) = 6086.2 ± 0.6 cm⁻¹.
- Ervin, K. M., Gronert, S., Barlow, S. E., Gilles, M. K., Harrison, A. G., Bierbaum, V. M., DePuy, C. H., Lineberger, W. C., and Ellison, G. B., *J. Am. Chem. Soc.*, 112, 5750, 1990.
- Viggiano, A. A., Miller, T. M., Miller, A. E. S., Morris, R. A., Van Doren, J. M., and Paulson, J. F., *Int. J. Mass Spectrom. Ion Processes*, 109, 327, 1991.
- Hanstorp, D., and Gustafsson, M., J. Phys. B: At. Mol. Opt. Phys., 25, 1773, 1992. EA(I) = 24,672.7956 ± 0.079 cm⁻¹.
- Polak, M. L., Gilles, M. K., and Lineberger, W. C., J. Chem. Phys., 96, 7191, 1992.
- 94. Bengali, A. A., Casey, S. M., Cheng, C.-L., Dick, J. P., Fenn, P. T., Villalta, P. W., and Leopold, D. G., J. Am. Chem. Soc., 114, 5257, 1992.
- Gilles, M. K., Ervin, K. M., Ho, J., and Lineberger, W. C., J. Phys. Chem., 96, 1130, 1992.
- Travers, M. J., Cowles, D. C., Clifford, E. P., and Ellison, G. B., J. Am. Chem. Soc., 114, 8699, 1992.
- Bengali, A. A., and Leopold, D. G., J. Am. Chem. Soc., 114, 9192, 1992.
- Rudnyi, E. B., Kaibicheva, E. A., and Sidorov, L. N., *Rapid Comm. in Mass Spectrom.*, 6, 356, 1992; Sidorov, L. N., High Temp. Sci., 29, 153, 1990. See also Srivastava, R. D., Uy, O. M., and Farber, M., *Trans. Faraday Soc.*, 67, 2941, 1971.
- Kitsopoulos, T. N., Chick, C. J., Zhao, Y., and Neumark, D. M., J. Chem. Phys., 95, 5479, 1991.
- 100. Arnold, C. C., Kitsopoulos, T. N., and Neumark, D. M., *J. Chem. Phys.*, 99, 766, 1993.
- 101. Rudnyi, E. B., Kaibicheva, E. A., and Sidorov, L. N., J. Chem. Thermodynamics, 25, 929, 1993.
- 102. Sarkas, H. W., Hendricks, J. H., Arnold, S. T., and Bowen, K. H., J. Chem. Phys. 100, 1884, 1994.
- 103. Villalta, P. W., and Leopold, D. G., J. Chem. Phys. 98, 7730, 1993.
- 104. Eaton, J. G., Sarkas, H. W., Arnold, S. T., McHugh, K. M., and Bowen, K. H., *Chem. Phys. Lett.*, 193, 141, 1992. See also Ref. 18.
- 105. Polak, M. L., Gilles, M. K., Gunion, R. F., and Lineberger, W. C., *Chem. Phys. Lett.*, 210, 55, 1993.
- 106. Gilles, M. K., Lineberger, W. C., and Ervin, K. M., J. Am. Chem. Soc., 115, 1031, 1993.
- 107. Casey, S. M., and Leopold, D. G., Chem. Phys. Lett., 201, 205, 1993.
- 108. Polak, M. L., Gerber, G., Ho, J., and Lineberger, W. C., *J. Chem. Phys.*, 97, 8990, 1992.
- 109. Kim, E. H., Bradforth, S. E., Arnold, D.W., Metz, R. B., and Neumark, D. M., *J. Chem. Phys.*, 103, 7801, 1995.
- 110. Xu, C., Taylor, T. R., Burton, G. R., and Neumark, D. M., J. Chem. Phys., 108, 1395, 1998.
- 111. Bradforth, S. E., Kim, E. H., Arnold, D. W., and Neumark, D. M., J. Chem. Phys., 98, 800, 1993.
- 112. Ho, J., Polak, M. L., Ervin, K. M., and Lineberger, W. C., *J. Chem. Phys.*, 99, 8542, 1993.
- 113. Brinkman, E. A., Berger, S., Marks, J., and Brauman, J. I., *J. Chem. Phys.*, 99, 7586, 1993.
- 114. Casey, S. M., and Leopold, D. G., J. Phys. Chem., 97, 816, 1993.
- 115. McDonald, R. N., and Davidson, S. J., J. Am. Chem. Soc., 115, 10857, 1993.
- 116. Ho, J., Ervin, K. M., Polak, M. L., Gilles, M. K., and Lineberger, W. C., J. Chem. Phys., 95, 4845, 1991.
- 117. Ho, J., Polak, M. L., and Lineberger, W. C., *J. Chem. Phys.*, 96, 144, 1992. See also Reference 289.
- 118. Polak, M. L., Gilles, M. K., Ho, J., and Lineberger, W. C., J. Phys. Chem., 95, 3460, 1991.
- 119. Polak, M. L., Ho, J., Gerber, G., and Lineberger, W. C., *J. Chem. Phys.*, 95, 3053, 1991.
- 120. Sharpe, P., and Kebarle, P., J. Am. Chem. Soc., 115, 782, 1993.

- 121. Miller, T. M., Miller, A. E. S., Viggiano, A. A., Morris, R. A., and Paulson, J. F., *J. Chem. Phys.*, 100, 7200, 1994. Accurate calculations have yielded a higher result (0.90 eV); see Lau, J. K.-C. and Li, W.-K., *J. Mol. Struct. (Theochem)* 578, 221, 2002.
- 122. Berkovits, D., Boaretto, E., Gehlberg, S., Heber, O., and Paul, M., *Phys. Rev. Lett.*, 75, 414, 1995.
- 123. Arnold, C. C., Xu, C., Burton, G. R., and Neumark, D. M., *J. Chem. Phys.*, 102, 6982, 1995. Burton, G. R., Xu, C., Arnold, C. C., and Neumark, D. M., *J. Chem. Phys.* 104, 2757 1996.
- 124. Xu, C., de Beer, E., and Neumark, D. M., J. Chem. Phys., 104, 2749, 1996.
- 125. Gunion, R. F., Koppel, H., Leach, G. W., and Lineberger, W. C., J. Chem. Phys., 103, 1250, 1995.
- 126. Gunion, R. F., and Lineberger, W. C., J. Phys. Chem., 100, 4395, 1996.
- 127. Gunion, R. F., Dixon-Warren, St. J., and Lineberger, W. C., J. Chem. Phys., 104, 1765, 1996.
- 128. Dixon-Warren, St. J., Gunion, R. F., and Lineberger, W. C., J. Chem. Phys., 104, 4902, 1996.
- 129. Nakajima, A., Zhang, N., Kawamata, H., Hayase, T., Nakao, K., and Kaya, K., *Chem. Phys. Lett.*, 241, 295, 1995; Nakajima, A., Taguwa, T., Nakao, K., Hoshino, K., Iwata, S., and Kaya, K., *J. Chem. Phys.*, 102, 660, 1995.
- 130. Fan, J., and Wang, L.-S., J. Chem. Phys., 102, 8714, 1995.
- 131. Arnold, D. W., Bradforth, S. E., Kim, E. H., and Neumark, D. M., J. Chem. Phys., 102, 3493, 1995; Zhao, Y., Arnold, C. C., and Neumark, D. M., J. Chem. Soc. Faraday Trans. 2, 89, 1449, 1992.
- 132. Fan, J., Lou, L., and Wang, L.-S., J. Chem. Phys., 102, 2701, 1995.
- 133. Sarkas, H. W., Hendricks, J. H., Arnold, S. T., Slager, V. L., and Bowen, K. H., *J. Chem. Phys.*, 100, 3358, 1994.
- 134. Kato, S., Lee, H. S., Gareyev, R., Wenthold, P. G., Lineberger, W. C., DePuy, C. H., and Bierbaum, V. M., *J. Am. Chem. Soc.*, 119, 7863, 1997. See also Miller, T. M., Viggiano, A. A., and Miller, A. E. S., *J. Phys. Chem. A* 106, 10200, 2002.
- 135. Wenthold, P. G., Hu, J., Squires, R. R., and Lineberger, W. C., J. Am. Chem. Soc., 118, 475, 1996.
- 136. Gunion, R. F., Karney, W., Wenthold, P. G., Borden, W. T., and Lineberger, W. C., J. Am. Chem. Soc., 118, 5074, 1996. The numbers in the abstract for 1,6-heptadiyne were misprinted. EA(cycloheptatrienide) quoted here derives from the LPES data combined with other thermochemical data in Ref. 136.
- 137. Xu, C., de Beer, E., Arnold, D. W., Arnold, C. C., and Neumark, D. M., J. Chem. Phys., 101, 5406, 1996.
- 138. Wenthold, P. G., Polak, M. L., and Lineberger, W. C., *J. Phys. Chem.*, 100, 6920, 1996.
- 139. Wenthold, P. G., Kim, J. B., and Lineberger, W. C., *J. Am. Chem. Soc.*, 119, 1354, 1997.
- 140. Eliav, E., Kaldor, U., Ishikawa, Y., and Pyykko, P., *Phys. Rev. Lett.*, 77, 5350, 1996.
- 141. Davies, B. J., Ingram, C. W., Larson, D. J., and Ljungblad, U., J. Chem. Phys. 106, 5783, 1997. EA(Ir) = 12,613 ± 4 cm⁻¹.
- 142. Smith, J. R., Kim, J. B., and Lineberger, W. C., *Phys. Rev. A.*, 55, 2036, 1997. EA(OH) = 14,741.02 ± 0.03 cm⁻¹. Schulz, P. A., Mead, R. D., Jones, P. L., and Lineberger, W. C., *J. Chem. Phys.* 77, 1153, 1982. EA(OD) = 14,723.92 ± 0.30 cm⁻¹. See also Rudmin, J. D., Ratliff, L. P., Yukich, J. N., and Larson, D. J., *J. Phys. B: At. Mol. Opt. Phys.*, 29 L881, 1996.
- 143. Desai, S. R., Wu, H., Rohlfing, C. M., and Wang, L.-S., Int. J. Chem. Phys., 106, 1309, 1997.
- 144. Wenthold, P. G., Jonas, K.-L., and Lineberger, W. C., J. Chem. Phys., 106, 9961, 1997.
- 145. Wu, H., and Wang, L.-S., J. Chem. Phys., 107, 16, 1997.
- 146. Moravec, V. D., and Jarrold, C. C., J. Chem. Phys. 108, 1804, 1998.
- 147. Wang, X.-B., Ding, C.-F., and Wang, L.-S., J. Phys. Chem. A, 101, 7699, 1997.
- 148. Wenthold, P. G., and Lineberger, W. C., J. Am. Chem. Soc., 19, 7772, 1997.
- 149. Wang, L.-S., Li, X., and Zhang, H.-F., Chem. Phys., 262, 53, 2000; Wang, L.-S., Cheng, H.-S., and Fan, J., *J. Chem. Phys.*, 102, 9480, 1995.

- 150. Wu, H., Desai, S. R., and Wang, L.-S., Phys. Rev. Lett., 77, 2436, 1996.
- 151. Liu, S.-R., Zhai, H.-J., Castro, M., and Wang, L.-S., *J. Chem. Phys.* 118, 2108, 2003.
- 152. Gutsev, G. L., Bauschlicher, C. W., Zhai, H.-J., and Wang, L.-S., *J. Chem. Phys.* 119, 11135, 2003; Wang, L.-S., Wu, H., and Desai, S. R., *Phys. Rev. Lett.*, 76, 4853, 1996.
- 153. Robinson, M. S., Polak, M. L, Bierbaum, V. M., DePuy, C. H., and Lineberger, W. C., *J. Am. Chem. Soc.*, 117, 6766, 1995.
- 154. Clifford, E. P., Wenthold, P. G., Lineberger, W. C., Petersson, G. A., and Ellison, G. B., *J. Phys. Chem.*, 101, 4338, 1997.
- 155. Seburg, R. A., and Squires, R. R., Int. J. Mass Spectrom. Ion Processes, 167/168, 541, 1997.
- 156. Wang, X.-B., and Wang, L.-S., Chem. Phys. Lett., 313, 179, 1999.
- 157. Marcy, T. P., and Leopold, D. G., Int. J. Mass Spectrom., 195/196, 653, 2000.
- 158. Gutsev, G. L., Rao, B. K., Jena, P., Li, X., and Wang, L.-S., *J. Chem. Phys.*, 113, 1473, 2000.
- 159. Negishi, Y., Yasuike, T., Hayakawa, F., Kizawa, M., Yabushita, S., and Nakajima, A., J. Chem. Phys., 113, 1725, 2000.
- 160. Klopcic, S. A., Moravec, V. D., and Jarrold, C. C., J. Chem. Phys., 110, 8986, 1999.
- 161. Boldyrev, A. I., Simons, J., Li, X., Chen, W., and Wang, L.-S., J. Chem. Phys. 110, 8980, 1999.
- 162. Taylor, T. R., Asmis, K. R., Zanni, M. T., and Neumark, D. M., J. Chem. Phys., 110, 7607, 1999.
- 163. Boldyrev, A., Li, X., and Wang, L.-S., J. Chem. Phys., 112, 3627, 2000.
- 164. Defrançois, C., Périquet, V., Lyapustina, S. A., Lippa, T. P., Robinson, D. W., Bowen, K. H., Nonaka, H., and Compton, R. N., *J. Chem. Phys.*, 111, 4569, 1999.
- 165. Dobrin, S., Boo, B. H., Alconcel, L. S., and Continetti, R. E., *J. Phys. Chem. A* 104, 10695, 2000.
- 166. Schwartz, R. L., Davico, G. E., and Lineberger, W. C., J. Electron Spectros. and Related Phenomena, 108, 163, 2000.
- 167. Kim, J. B., Wenthold, P. G., and Lineberger, W. C., J. Phys. Chem. 103, 10833, 1999.
- 168. Davico, G. E., Ramond, T. M., and Lineberger, W. C., J. Chem. Phys., 113, 8852, 2000.
- 169. Green, S. M. E., Alex, S., Fleischer, N. L., Millam, E. L., Marcy, T. P., and Leopold, D. G., *J. Chem. Phys.* 114, 2653, 2001.
- 170. Wu, H., and Wang, L.-S., J. Chem. Phys. 108, 5310, 1998.
- 171. Wu, H., and Wang, L.-S., J. Phys. Chem. A 102, 9129, 1998.
- 172. Wu, H., and Wang, L.-S., J. Chem. Phys. 107, 8221, 1997.
- 173. Thomas, O. C., Xu, S. J., Lippa, T. P., and Bowen, K. H., J. *Cluster Science* 10, 525, 1999.
- 174. Wang, L.-S., private communication quoted in Ref. 169.
- 175. Marcy, T. P., PhD dissertation, quoted in Ref. 169.
- 176. Alex, S., Green, M. E., and Leopold, D. G., unpublished, quoted in Ref. 169.
- 177. Wang, X.-B., Wang, L.-S., Brown, R., Schwerdtfeger, P., Schröder, D., and Schwarz, H., *J. Chem. Phys.* 114, 7388, 2001.
- 178. Kim, J. H., Li, X., Wang, L.-S., de Clercq, H. L., Fancher, C. A., Thomas, O. C., and Bowen, K. H., *J. Phys. Chem. A* 105, 5709, 2001.
- 179. Moravec, V. D., Klopcic, S. A., Chatterjee, B., and Jarrold, C. C., *Chem. Phys. Lett.* 341, 313, 2001.
- 180. Zengin, V., Persson, B. J., Strong, K. M., and Continetti, R. E., J. Chem. Phys. 105, 9740, 1996.
- 181. Kietzmann, H., Morenzin, J., Bechthold, P. S., Ganteför, G., and Eberhardt, W., J. Chem. Phys. 109, 2275, 1998.
- 182. Xu, C., Taylor, T. R., Burton, G. R., and Neumark, D. M., J. Chem. Phys. 108, 7645, 1998.
- 183. Williams, W. W., Carpenter, D. L., Covington, A. M., Koepnick, M. C., Calabrese, D., and Thompson, J. S., *J. Phys. B: At. Mol. Opt. Phys.* 31, L341, 1998.
- 184. Covington, A. M., Calabrese, D., Thompson, J. S., and Kvale, T. J., *J. Phys. B: At. Mol. Opt. Phys.* 31, L855, 1998.
- 185. Haeffler, G., Hanstrorp, D., Kiyan, I., Klinkmueller, A. E., Ljungblad, U., Pegg, D. J., *Phys. Rev. A* 53, 4127, 1996.
- 186. Chen, H. L., Ellis, Jr., P. E., Wijesekera, T., Hagan, T. E., Groh, S. E., Lyons, J. E., and Ridge, D. P., *J. Am. Chem. Soc.* 116, 1086, 1994.
- 187. Deyerl, H.-J., Alconcel, L. S., and Continetti, R. E., *J. Phys. Chem. A* 105, 552, 2001.

- 188. Blanksby, S. J., Ramond, T. M., Davico, G. E., Nimlos, M. R., Kato, S., Bierbaum, V. M., Lineberger, W. C., Ellison, G. B., Okumura, M., J. Am. Chem. Soc. 123, 9585, 2001.
- 189. Asmis, K. R., Taylor, T. R., Xu, C., and Neumark, D. M., Chem. Phys. Lett. 295, 75, 1998.
- 190. Schäfer-Bung, B., Engels, B., Taylor, T. R., Neumark, D. M., Botschwina, P., and Peric, M., *J. Chem. Phys.* 115, 1777, 2001.
- 191. Scheer, M., Bilodeau, R. C., and Haugen, H. K., Phys. Rev. Lett. 80, 2562, 1998.
- 192. Taylor, T. R., Gómez, H., Asmis, K. R., and Neumark, D. M., J. Chem. Phys. 115, 4620, 2001.
- 193. Asmis, K. R., Taylor, T. R., and Neumark, D. M., J. Chem. Phys. 111, 8838, 1999 and 111, 10491, 1999.
- 194. Ramond, T. M., Davico, G. E., Schwartz, R. L., and Lineberger, W. C., *J. Chem. Phys.* 112, 1158, 2000.
- 195. Petrunin, V. V., Voldstad, J. D., Balling, P., Kristensen, P., Andersen, T., and Haugen, H. K., *Phys. Rev. Lett.* 75, 1911, 1995.
- 196. Dzuba, V. A., and Gribakin, G. F., J. Phys. B: At. Mol. Opt. Phys. 31, L483, 1998.
- 197. Ervin, K. M., Ramond, T. M., Davico, G. E., G. E., Schwartz, R. L., Casey, S. M., and Lineberger, W. C., *J. Phys. Chem.* 105, 10822, 2001.
- 198. Lippa, T. P., Xu, S.-J., Lyapustina, S. A., and Bowen, K. H., J. Chem. Phys. 109, 9263, 1998.
- 199. Turner, N. J., Martel, A. A., and Waller, I. M., *J. Phys. Chem.* 98, 474, 1994.
- 200. Lippa, T. P., Xu, S.-J., Lyapustina, S. A., Nilles, J. M., and Bowen, K. H., J. Chem. Phys. 109, 10727, 1998.
- 201. Wang, L.-S., Concericao, J., Changming, C., and Smalley, R. E., *Chem. Phys. Lett.* 182, 5, 1991.
- 202. Boltalina, O. V., Sidorov, L. N., Sukhanova, E. V., and Sorokin, I. D., *Chem. Phys. Lett.* 230, 567, 1994.
- 203. Clifford, E. P., Wenthold, P. G., Lineberger, W. C., Ellison, G. B., Wang, C. X., Grabowski, J. J., Vila, F., and Jordan, K. D., *J. Chem. Soc. Perkin Trans.* 2, 1015, 1998.
- 204. Spanel, P., Matejcik, S., and Smith, D., J. Phys. B: At. Mol. Phys. 28 2941 (1995). See Miller, A. E. S., Miller, T. M., Viggiano, A. A., Morris, R. A., Van Doren, J. M., Arnold, S. T., and Paulson, J. F., *J. Chem. Phys.* 102, 8865, 1995 for interpretation in terms of EA(SF₂).
- 205. Kinghom, D. B., and Adamowicz, L., *J. Chem. Phys.* 106, 4589, 1997. EA(H) = 6083.0994 cm⁻¹, EA(D) = 6086.7137 cm⁻¹, and EA(T) = 6087.9168 cm⁻¹.
- 206. Xi, L., and Wang, L.-S., J. Chem. Phys. 109, 5264, 1998.
- 207. Ephraim, E., Shmulyian, S., Kaldor, U., and Isikawa, Y., J. Chem. Phys. 109, 3954, 1998. Also EA(La) = 0.35 eV.
- 208. Scheer, M., Bilodeau, R. C., Thogersen, J., and Haugen, H. K., *Phys. Rev. A* 57, R1493, 1998.
- 209. Kim, J. B., Wenthold, P. G., and Lineberger, W. C., *J. Chem. Phys.* 108, 830, 1998.
- 210. Kishi, R., Kawamata, H., Negishi, Y., Iwata, S., Nakajima, A., and Kaya, K., *J. Chem. Phys.* 107, 10029, 1997.
- 211. Compton, R. N., Carman, Jr., H. S., Desfrançois, C., Abdoul-Carmine, J., Schermann, J. P., Hendricks, J. H., Lyapustina, S. A., and Bowen, K. H., J. Chem. Phys. 105, 3472, 1996.
- 212. Yourshaw, I., Zhao, Y., and Neumark, D. M., J. Chem. Phys. 105, 351, 1996.
- 213. Gausa, M., Kaschner, R., Seifert, G., Faehrmann, J. H., Lutz, H. O., and Meiwes-Broer, K., *J. Chem. Phys.* 104, 9719, 1996.
- 214. Wu, H., and Wang, L.-S., J. Chem. Phys. 107, 16, 1997; Moravec, V. D., and Jarrold, C. C., J. Chem. Phys. 108, 1804, 1998.
- 215. Radisic, D., Xu, S., and Bowen, K. H., Chem. Phys. Lett. 354, 9, 2002.
- 216. Pramann, A., and Rademann, K., Chem. Phys. Lett. 343, 99, 2001.
- 217. Gómez, H., Taylor, T. R., and Neumark, D. M., J. Phys. Chem. A 105, 6886, 2001.
- 218. Gómez, H., Taylor, T. R., Zhao, Y., and Neumark, D. M., J. Chem. Phys. 117, 8644, 2002.
- 219. Nimlos, M. R., Davico, G., Geise, C. M., Wenthold, P. G., Lineberger, W. C., Blansksby, S. J., Hadad, C. M., Petersson, G. A., Ellison, G. B., *J. Chem. Phys.* 117, 4323, 2002.
- 220. Koyasu, K., Mitsui, M., Nakajima, A., and Kaya, K., *Chem. Phys. Lett.* 358, 224, 2002.

- 221. Zhai, H.-J., Wang, L.-S., Alexandrova, A. N., Boldyrev, A. I., and Zakrzewski, V. G., *J. Phys. Chem. A* 107, 9319, 2003.
- Schiedt, J., and Weinkauf, R., Z. Naturforsch. A 50, 1041, 1995. See also Ervin, K. M., Anusiewicz, I., Skurski, P., Simons, J., and Lineberger, W. C., J. Phys. Chem. A 107, 8521, 2003 [EA(O₂) = 0.448 ± 0.006 eV].
- 223. Davis, V. T., and Thompson, J. S., J. Phys. B: At. Mol. Opt. Phys. 34, L433, 2001.
- 224. Li, X., Zhai, H.-J., and Wang, L.-S., Chem. Phys. Lett. 357, 415, 2002.
- 225. Davis, V. T., and Thompson, J. S., J. Phys. B: At. Mol. Opt. Phys. 35, L11, 2002.
- 226. Goldfarb, F., Drag, C., Chaibi, W., Kröger, S., Blondel, C., and Delsart, C., J. Chem. Phys. 122, 014308, 2005. EA(OH) = 14740.982(7) cm⁻¹.
- 227. Blondel, C., Delsart, C., and Goldfarb, F., *J. Phys. B: At. Mol. Opt. Phys.* 34, L281, 2001. EA(F) = 11207.252(18) cm⁻¹ and EA(Si) = 27432.446(19) cm⁻¹.
- 228. Fancher, C. A., de Clercq, H. L., and Bowen, K. H., *Chem. Phys. Lett.* 366, 197, 2002.
- 229. Jin, C., Taylor, K. J., Conceicao, J., and Smalley, R. E., *Chem. Phys. Lett.* 175, 17, 1990.
- 230. Schiedt, J., Knott, W. J., Le Barbu, K., Schlag, E. W., and Weinkauf, R., J. Chem. Phys. 113, 9470, 2000.
- 231. Song, J. K., Lee, N. K., Kim, J. H., Han, S. Y., and Kim, S. K., *J. Chem. Phys.* 119, 3071, 2003.
- 232. Davico, G. E., Schwartz, R. L., Ramond, T. M., and Lineberger, W. C., J. Amer. Chem. Soc. 121, 6047, 1999.
- 233. Andrews, D. H., Gianola, A. J., and Lineberger, W. C., J. Chem. Phys. 117, 4074, 2002.
- 234. Schwartz, R. L., Davico, G. E., Kim, J. B., and Lineberger, W. C., J. Chem. Phys. 112, 4966, 2000.
- 235. Schwartz, R. L., Davico, G. E., Ramond, T. M., and Lineberger, W. C., *J. Phys. Chem. A* 103, 8213, 1999.
- 236. Schiedt, J., and Weinkauf, R., Chem. Phys. Lett. 274, 18, 1997.
- 237. Wang, X.-B., Wang, L.-S., Brown, R., Schwerdtfeger, P., Schröder, D., and Schwartz, H., J. Chem. Phys. 114, 7388, 2003.
- 238. Geske, G. D., Boldyrev, A. I., Li, X., and Wang, L.-S., *J. Chem. Phys.* 113, 5130, 2000.
- 239. Cannon, N. A., Boldyrev, A. I., Li, X., and Wang, L.-S., J. Chem. Phys. 113, 2671, 2000.
- 240. Wang, X.-B., Yang, X., and Wang, L.-S., J. Chem. Phys. 116, 561, 2002.
- Gutsev, G. L., Jena, P., Zhai, H.-J., and Wang, L.-S., *J. Chem. Phys.* 115, 7935, 2001.
 Yang, X., Wang, X.-B., and Wang, L.-S., *J. Chem. Phys.* 115, 2889,
- 242. тапg, л., wang, л.-ь., and wang, ц.-э., *J. Chem. Phys.* 115, 2889, 2001.
- 243. Zhai, H.-J., Liu, S.-R., Li, X., and Wang, L.-S., J. Chem. Phys. 115, 5170, 2001.
- 244. Li, X., Wang, L.-S., Cannon, N. A., and Boldyrev, A. I., *J. Chem. Phys.* 116, 1330, 2002.
- 245. Zhai, H.-J., Wang, L.-S., Alexandrova, A. N., and Boldyrev, A. I., *J. Chem. Phys.* 117, 7917, 2002.
- 246. Zhai, H.-J., and Wang, L.-S., J. Chem. Phys. 117, 7882, 2002.
- 247. Liu, S.-R., Zhai, H.-J., and Wang, L.-S., J. Chem. Phys. 117, 9758, 2002.
- 248. Mitsui, M., Nakajima, A., and Kaya, K., J. Chem. Phys. 117, 9740, 2002.
- 249. Yang, X., Wang, X.-B., Wang, L.-S., Niu, S., and Ichiye, T., J. Chem. Phys. 119, 8311, 2003.
- 250. Kim, J., Lee, H. M., Suh, S. B., Majumdar, D., and Kim, K. S., *J. Chem. Phys.* 113, 5259, 2000.
- 251. Liu, S. R., Zhai, H. J., and Wang, L.-S., Phys. Rev. B 64, 153402, 2001.
- 252. Zhai, H. J., Yang, X., Wang, X. B., Wang, L.-S., Elliott, B., and Boldyrev, A. I., *J. Am. Chem. Soc.* 124, 6742, 2002.
- 253. Zhai, H. J., Wang, L.-S., Kuznetsov, A. E., and Boldyrev, A. I., *J. Phys. Chem. A* 106, 5600, 2002.
- 254. Drechsler, G., and Boesl, U., Int. J. Mass Spectrom. 228, 1067, 2003.
- 255. Illenberger, E, Comita, P. B., Brauman, J. I., Fenzlaff, H. P., Heni, M., Heinrich, N., Koch, and W., Fenking, G., Ber. Bunsen-Ges. Phys. Chem. 89, 1026, 1985; Jackson, R. L., Pellerite, M. J., and Brauman, J. I., J. Am. Chem. Soc. 103, 1802, 1981.
- 256. Miller, T. M., Friedman, J. F., and Viggiano, A. A., *J. Chem. Phys.* 120, 7024, 2004.

- 257. Miller, T. M., Van Doren, J. M., and Viggiano, A. A., Int. J. Mass Spectrom. 233, 67, 2004.
- 258. Van Doren, J. M., McSweeney, S. A., Hargus, M. D., Kerr, D. M., Miller, T. M., Arnold, S. T., and Viggiano, A. A., *Int. J. Mass Spectrom.* 228, 541, 2003.
- 259. Van Doren, J. M., Miller, T. M., and Viggiano, A. A., *J. Chem. Phys.* 123, 114303, 2005.
- 260. Miller, T. M., and Viggiano, A. A., Phys. Rev. A 71, 012702, 2005.
- 261. Haeffler, G., Klinkmueller, A. E., Rangell, J., Berzinsh, U., and Hanstorp, D., Z. Phys. D 38, 211, 1996.
- 262. Bilodeau, R. C., and Haugen, H. K., Phys. Rev. A 64, 024501, 2001.
- 263. Miller, T. M., Viggiano, A. A., Friedman, J. F., and Van Doren, J. M., *J. Chem. Phys.* 121, 9993, 2004.
- 264. Davis, V. T., and Thompson, J. S., Phys. Rev. A 65, 010501, 2001. Theoretical work implies that the measured EA(Tm) was actually for a long-lived excited anion state, and that Tm does not form a stable anion. See O'Malley, S. M., and Beck, D. R., *Phys. Rev. A* 70, 022502, 2004.
- 265. Gianola, A. J., Ichino, T., Hoenigman, R. L., Kato, S., Bierbaum, V. M., and Lineberger, W. C., *J. Phys. Chem. A* 108, 10326, 2004.
- 266. Staneke, P. O., Groothuis, G., Ingemann, S., and Nibbering, N. M. M., Int. J. Mass Spectrom. Ion Processes 142, 83, 1995. A Gaussian-3 calculation yields EA(CCl₄) = 0.994 eV [Ed.].
- 267. Meloni, G., Ferguson, M. J., and Neumark, D. M., *Phys. Chem. Chem. Phys.* 5, 4073, 2003.
- 268. Davis, V. T., and Thompson, J. S., J. Phys. B: At. Mol. Opt. Phys. 37, 1961, 2004.
- 269. Davis, V. T., and Thompson, J. S., Phys. Rev. Lett. 88, 073003, 2002.
- 270. Ando, N., Kokubo, S., Mitsui, M., and Nakajima, A., *Chem. Phys. Lett.* 389, 279, 2004.
- 271. Zhai, H.-J., and Wang, L.-S., J. Chem. Phys. 120, 8996, 2004.
- 272. Surber, E., and Sanov, A., J. Chem. Phys. 116, 5921, 2002.
- 273. Dzuba, V. A., and Gribakin, G. F., Phys. Rev. A 55, 2443, 1997.
- 274. Meloni, G., Sheehan, S. M., Ferguson, M. J., and Neumark, D. M., J. Phys. Chem. A 108, 9750, 2004.
- 275. Zhai, H.-J., Li, J., and Wang, L.-S., J. Chem. Phys. 121, 8369, 2004.
- 276. Zhai, H.-J., Kiran, B., and Wang, L.-S., J. Chem. Phys. 121, 8231, 2004.
- 277. Kim, J., Kelley, J. A., Ayotte, P., Nielsen, S. B., Weddle, G. H., and Johnson, M. A., *J. Am. Soc. Mass Spectrom.* 10, 810, 1999.
- 278. Misaizu, F., Tsunoyama, H., Yasumura, Y., Ohshimo, K., and Ohno, K., *Chem. Phys. Lett.* 389, 241, 2004. See also Ref. 236 for comments on EA(CS).
- 279. Meloni, G., Sheehan, S. M., and Neumark, D. M., *J. Chem. Phys.* 122, 074317, 2005
- 280. Yoder, B. L., Maze, J. T., Raghavachari, K., and Jarrold, C. C., J. Chem. *Phys.* 122, 094313, 2005.
- 281. Ervin, K. M., and Lineberger, W. C., J. Chem. Phys. 122, 194303, 2005.
- 282. Ichino, T., Gianola, A. J., Andrews, D. H., and Lineberger, W. C., J. Phys. Chem. A 108, 11307, 2004.
- 283. Das, U., Raghavachari, K., and Jarrold, C. C., J. Chem. Phys. 122, 014313, 2005.
- 284. Schiedt, J., and Weinkauf, R., J. Chem. Phys. 110, 304, 1999.
- 285. Le Barbu, K., Schiedt, J., Weinkauf, R., Schlag, E. W., Nilles, J. M., Xu, S.-J., Thomas, O. C., and Bowen, J. H., J. Chem. Phys. 116, 9663, 2002. Uncertainties not stated.
- 286. Schiedt, J., and Weinkauf, R., *Chem. Phys. Lett.* 266, 201, 1997. The uncertainty for EA(anthracene) quoted as ±0.008 eV in a later paper (Ref. 230).
- 287. Chatterjee, B., Akin, F. A., Jarrold, C. C., and Raghavachari, K., *J. Phys. Chem. A* 109, 6880, 2005.
- 288. Zhai, H.-J., Kiran, B., Dai, B., Li, J., and Wang, L.-S., J. Amer. Chem. Soc. 127, 12098, 2005.
- 289. Moravec, V. D., Klopcic, S. A., and Jarrold, C. C., *J. Chem. Phys.* 110, 5079, 1999.
- 290. Klopcic, S. A., Moravec, V. D., and Jarrold, C. C., J. Chem. Phys. 110, 10216, 1999.
- 291. Moravec, V. D., and Jarrold, C. C., J. Chem. Phys., 112, 792, 2000.
- 292. Moravec, V. D., and Jarrold, C. C., J. Chem. Phys. 113, 1035, 2000.
- 293. Chatterjee, B., Akin, F. A., Jarrold, C. C., and Raghavachari, K., *J. Chem. Phys.* 119, 10591, 2003.

- 294. Schröder, D., Brown, R., Schwerdtfeger, P., Wang, X. B., Yang, X., Wang, L. S., and Schwarz, H., Angew. Chem. Int. Ed. 42, 311, 2003.
- 295. Zheng, W., Nilles, J. M., Thomas, O. C., and Bowen, K. H., *J. Chem. Phys.* 122, 044306, 2005.
- 296. Duan, X., Burggraf, L. W., Weeks, D. E., Davico, G. E., Schwartz, R. L., and Lineberger, W. C., *J. Chem. Phys.* 116, 3601, 2002.
- 297. Andrews, D. H., Gianola, A. J., and Lineberger, W. C., J. Chem. Phys.117, 4074, 2002.
- 298. Alexandrova, A. N., Boldyrev, A. I., Zhai, H.-J., and Wang, L.-S., J. Chem. Phys. 122, 054313, 2005.