CHARACTERISTICS OF LASER SOURCES

William F. Krupke

Light Amplification by Stimulated Emission of Radiation was first demonstrated by Maiman in 1960, the result of a population inversion produced between energy levels of chromium ions in a ruby crystal when irradiated with a xenon flashlamp. Since then population inversions and coherent emission have been generated in literally thousands of substances (neutral and ionized gases, liquids, and solids) using a variety of incoherent excitation techniques (optical pumping, electrical discharges, gas-dynamic flow, electron-beams, chemical reactions, nuclear decay).

The extrema of laser output parameters which have been demonstrated to date and the laser media used are summarized in Table 1. Note that the extreme power and energy parameters listed in this table were attained with laser *systems* rather than with simple laser oscillators.

Laser sources are commonly classified in terms of the state-ofmatter of the active medium: gas, liquid, and solid. Each of these classes is further subdivided into one or more types as shown in Table 2. A well-known representative example of each type of laser is also given in Table 2 together with its nominal operation wavelength and the methods by which it is pumped. The various lasers together cover a wide spectral range from the far ultraviolet to the far infrared. The particular wavelength of emission (usually a narrow line) is presented for some six dozen lasers in Figures 1A and 1B.

By suitably designing the excitation source and/or by controlling the laser resonator structure, laser systems can provide continuous or pulsed radiation as shown in Table 3.

Besides the method of excitation and the temporal behavior of a laser, there are many other parameters that characterize its operation and efficiency, as shown in Tables 4 and 5.

Although many lasers only emit in one or more narrow spectral "lines", an increasing number of lasers can be tuned by changing the composition or the pressure of the medium, or by varying the wavelength of the pump bands. The spectral regions in which these tunable lasers operate are presented in Figure 2.

References

Krupke, W. F., in *Handbook of Laser Science and Technology*, Vol. I, Weber, M. J., Ed., CRC Press, Boca Raton, FL, 1986.

TABLE 1. Extrema of Output Parameters of Laser Devices or Systems

Parameter	Value	Laser medium
Peak power	1×10^{14} W(collimated)	Nd:glass
Peak power density	10 ¹⁸ W/cm ² (focused)	Nd:glass
Pulse energy	>10 ⁵ J	CO ₂ , Nd:glass
Average power	$10^5 \mathrm{W}$	CO ₂
Pulse duration	3×10^{-15} s continuous wave (cw)	Rh6G dye; various gases, liquids, solids
Wavelength	$60 \text{ nm} \leftrightarrow 385 \mu \text{m}$	Many required
Efficiency (nonlaser pumped)	70%	CO
Beam quality	Diffraction limited	Various gases, liquids, solids
Spectral linewidth	20 Hz (for 10 ⁻¹ s)	Neon-helium
Spatial coherence	10 m	Ruby

TABLE 2. Classes, Types, and Representative Examples of Laser Sources

			Nominal operating	
Class	Type (characteristic)	Representative example	wavelength (nm)	Method(s) of excitation
Gas	Atom, neutral (electronic transition)	Neon-Helium (Ne-He)	633	Glow discharge
	Atom, ionic (electronic transition)	Argon (Ar ⁺)	488	Arc discharge
	Molecule, neutral (electronic			
	transition)	Krypton fluoride (KrF)	248	Glow discharge; e-beam
	Molecule, neutral (vibrational			
	transition)	Carbon dioxide (CO_2)	10600	Glow discharge; gasdynamic flow
	Molecule, neutral (rotational			
	transition)	Methyl fluoride (CH ₃ F)	496000	Laser pumping
	Molecule, ionic (electronic transition)	Nitrogen ion (N_2^+)	420	E-beam
Liquid	Organic solvent (dye-chromophore)	Rhodamine dye (Rh6G)	580-610	Flashlamp; laser pumping
	Organic solvent (rare earth chelate)	Europium:TTF	612	Flashlamp
	Inorganic solvent (trivalent rare earth			
	ion)	Neodymium:POCl ₄	1060	Flashlamp
Solid	Insulator, crystal (impurity)	Neodymium:YAG	1064	Flashlamp, arc lamp
	Insulator, crystal (stoichiometric)	Neodymium:UP(NdP ₅ O ₁₄)	1052	Flashlamp
	Insulator, crystal (color center)	F ₂ ⁻ :LiF	1120	Laser pumping
	Insulator, amorphous (impurity)	Neodymium:glass	1061	Flashlamp
	Semiconductor (p-n junction)	GaAs	820	Injection current
	Semiconductor (electron-hole plasma)	GaAs	890	E- beam, laser pumping

Form	Technique	Pulse width range (s)
Continuous wave	Excitation is continuous; resonator Q is held constant at some moderate value	∞
Pulsed	Excitation is pulsed; resonator Q is held constant at some moderate value	10-8 - 10-3
Q-Switched	Excitation is continuous or pulsed; resonator Q is switched from a very low value to a moderate value	$10^{-8} - 10^{-6}$
Cavity dumped	Excitation is continuous or pulsed; resonator Q is switched from a very high value to a low value	10-7 - 10-5
Mode locked	Excitation is continuous or pulsed; phase or loss of the resonator modes is modulated at a rate related to the resonator transit time	$10^{-12} - 10^{-9}$

TABLE 4. Properties and Performance of Some Cont	inuous Wave (CW) Lasers

		ABLE 4. Properties and Performance of Some Continuo Gas			Liquid	Solid		
					Rhodamine 6G			
Parameter	Unit	Neon helium	Argon ion	Carbon dioxide	dye	Nd:YAG	GaAs	
Excitation method		DC discharge	DC discharge	DC discharge	Ar ⁺ laser pump	Krypton arc lamp	DC injection	
Gain medium composition		Neon:helium	Argon	CO ₂ :N ₂ :He	$\rm Rh~6G:H_{2}O$	Nd:YAG	p:n:GaAs	
Gain medium density	Torr ions/cm ³	0.1:1.0	0.4	0.4:0.8:5.0	2(18):2(22)	1.5(20):2(22)	2(19):3(18):3(22)	
Wavelength	nm	633	488	10600	590	1064	810	
Laser cross-section	cm ⁻²	3(-13)	1.6(-12)	1.5(-16)	1.8(-16)	7(-19)	~6(-15)	
Radiative lifetime (upper level)	S	~1(-7)	7.5(-9)	4(-3)	6.5(-9)	2.6(-4)	~1(-9)	
Decay lifetime (upper level)	S	~1(-7)	~5.0(-9)	~4(-3)	6.0(-9)	2.3(-4)	~1(-9)	
Gain bandwidth	nm	2(-3)	5(-3)	1.6(-2)	80	0.5	10	
Type, gain saturation		Inhomogeneous	Inhomogeneous	Homogeneous	Homogeneous	Homogeneous	Homogeneous	
Homogeneous saturation flux	W cm ⁻²	C C	Ū.	~20	3(5)	2.3(3)	~2(4)	
Decay lifetime (lower level)	s	~ 1(-8)	~4(-10)	~5(-6)	<1(-12)	< 1(-7)	<1(-12)	
Inversion density	cm ⁻³	~ 1(9)	2(10)	2(15)	2(16)	6(16)	1(16)	
Small signal gain coefficient	cm ⁻¹	~ 1(-3)	~3(-2)	1(-2)	4	5(-2)	40	
Pump power density	W cm ⁻³	3	900	0.15	1(6)	150	7(7)	
Output power density	W cm ⁻³	2.6(-3)	~1	2(-2)	3(5)	95	5(6)	
Laser size (diameter: length)	cm:cm	0.5:100	0.3:100	5.0:600	1(-3):0.3	0.6:10	5(-4):7(-3);2(-2)ª	
Excitation current/ voltage	A/V	3(-2):2(3)	30:300	0.1:1.5(4)		90:125	1.0/1.7	
Excitation current density	A cm ⁻²	0.15	600	6(-3)		140	4.5(3)	
Excitation power	W	60	9(3)	1.5(3)	4	1.1(4)	1.7	
Output power	W	0.06	10	240	0.3	300	0.12	
Efficiency	%	0.1	0.1	13	7	2.6	7	
^a Junction thickness:widt	h·length							

^a Junction thickness:width:length.
^b Pressure dependent.

Characteristics of Laser Sources

TABLE 5. Properties and Performance of Some Pulsed Lasers								
		Gas				Liquid	-	olid
Parameter	Unit		on dixoxide	Krypton fluoride		Rhodamine 6G	Nd:YAG	Nd:glass
Excitation method		TEA- discharge	E- beam/sust.	Glow discharge	E-beam	Xenon flashlamp	Xenon flashlamp	Xenon flashlamp
Gain medium composition		CO ₂ :N ₂ :He	CO ₂ :N ₂ :He	He:Kr:F ₂	Ar:Kr:F ₂	Rh6G:alcohol	Nd:YAG	Nd:Glass
Gain medium density	torr	100:50:600	240:240:320	1070:70:3	1235:52:3			-
	ions/ cm ³					1(18):1.5(22)	1.5(20):1(22)	3(20):2(22)
Wavelength	nm	10600	10600	249	249	590	1064	1061
Laser cross- section	cm ⁻²	2(-18)	2(-18)	2(-16)	2(-16)	1.8(-16)	7(-19)	2.8(-20)
Radiative lifetime (upper level)	S	4(-3)	4(-3)	7(-9)	7(-9)	6.5(-9)	2.6(-4)	4.1(-4)
Decay lifetime (upper level)	S	~1(-4)	5(-5)	2(-9)	3(-9)	6.0(-9)	2.3(-4)	3.7(-4)
Gain bandwidth	nm	1	1	2	2	80	0.5	26
Homogeneous saturation fluence	J/cm ²	0.2	0.2	4(-3)	4(-3)	2(-3)	0.6	~5
Decay lifetime (lower level)	s	5(-8)ª	1(-8)ª	< 1(-12)	<1(-12)	<1(-12)	<1(-7)	<1(-8)
Inversion density	cm ⁻³	3(17)	6(17)	4(14)	2(14)	2(16)	4(17)	3(18)
Small signal gain coefficient	cm ⁻¹	2(-2)	4(-2)	8–92)	4(-2)	4	0.3	8(-2)
Medium excitation energy density	J/cm ³	0.1	0.36	0.15	0.13	2.8	0.15	0.6
Output energy density	J/cm ³	2(-2)	1.8(-2)	1.5(-3)	1.2(-2)	0.85	5(-2)	2(-2)
Laser dimensions	cm: cm: cm	4.5:4.5:87	10:10:100	1.5:4.5:100	8.5:10:100	1.2:25	0.6:7.5	0.6:8.3
Excitation current/voltage	A/V	6(4)/3.3(3)	2.4(4)/4(4)	2.5(4)/1.5(5)	1.2(4)/2.5(5)	2(5)/2.5(4)		
Excitation current density	A cm ²	8.5	22	170	11.5	2.6(3)		
Excitation peak power	W	2(8)	9(8)	4(9)	3(9)	5.4(9)	4(4)	9(4)
Output pulse energy	J	35	180	1	102	32	0.1	1.0
Output pulse length	s	1(-6)	4(-6)	2.5(-8)	6(-7)	3.2(-6)	2(-8)	1(-4)
Output pulse power	W	3.5(7)	4(7)	4(7)	2(8)	1(7)	5(6)	1(4)
Efficiency	%	17	5	1	10 ^b	0.2	1.5	3.7

TABLE 5. Properties and Performance of Some Pulsed Lasers

 $^{\rm a}~$ Pressure dependent. $^{\rm b}~$ Intrinsic efficiency \equiv energy output/energy deposited in gas.

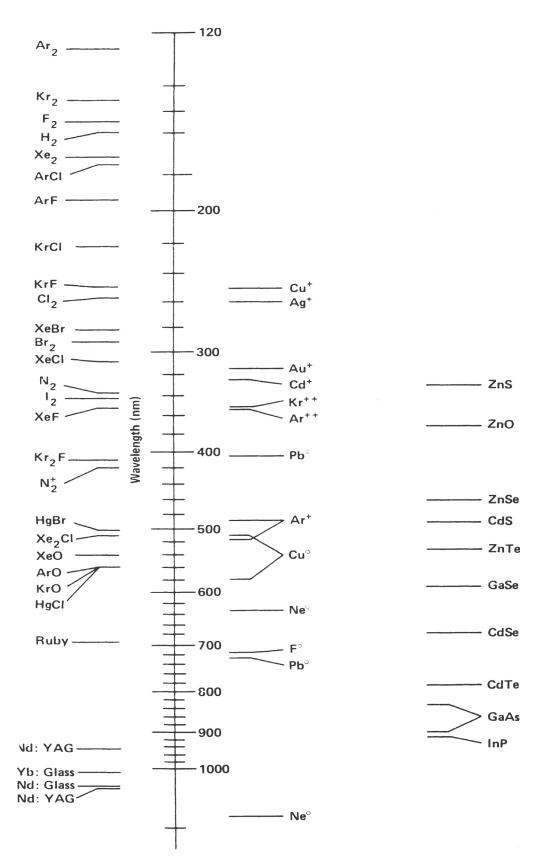


FIGURE 1A. Wavelengths of lasers operating in the 120 to 1200 nm spectral region.

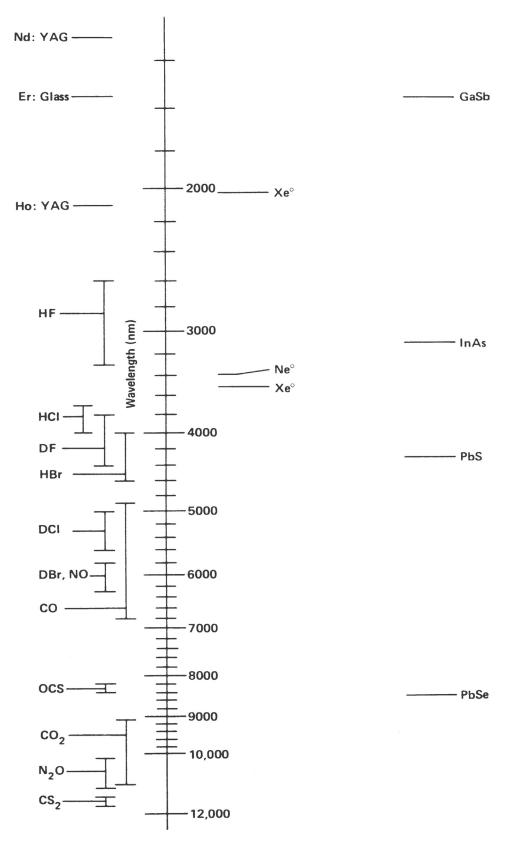


FIGURE 1B. Wavelength of lasers operating in the 1300 to 12,000 nm spectral region.

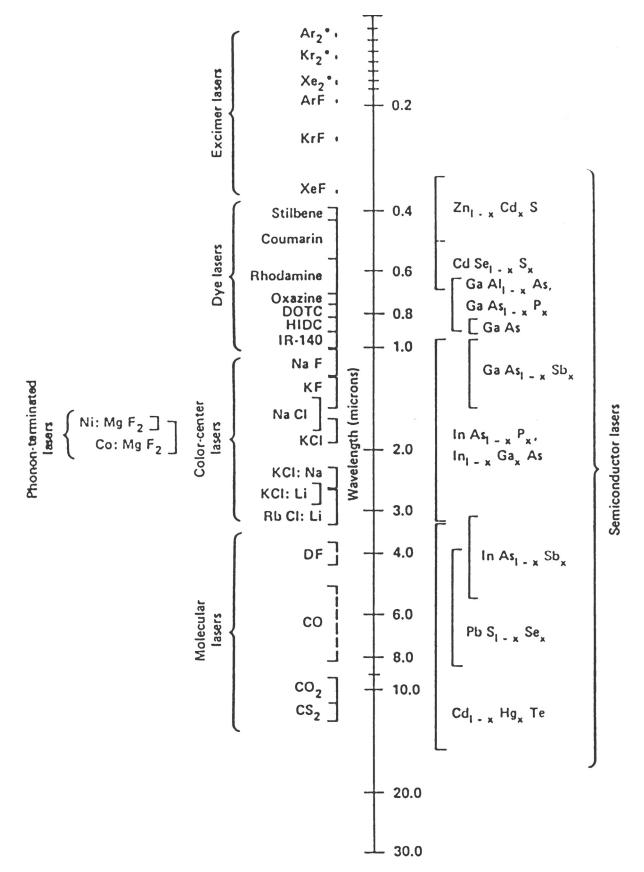


FIGURE 2. Spectral tuning ranges of various types of tunable lasers.