TECHNIQUES FOR MATERIALS CHARACTERIZATION Experimental Techniques Used to Determine the Composition, Structure, and Energy States of Solids and Liquids

H.P.R. Frederikse

The many experimental methods, originally designed to study the chemical and physical behavior of solids and liquids, have grown into a new field known as Materials Characterization (or Materials Analysis). During the past 30 years a host of techniques aimed at the study of surfaces and thin films has been added to the many tools for the analysis of bulk samples. The field has benefitted particularly from the development of computers and microprocessors, which have vastly increased the speed and accuracy of the measuring devices and the recording of their output. Materials characterization was and is a very important tool in the search for new physical and chemical phenomena. It plays an essential role in new applications of solids and liquids in industry, communications, and medicine. Many of its techniques are used in quality control, in safety regulations, and in the fight against pollution.

In most Materials Characterization experiments the sample is subjected to some kind of radiation: electromagnetic, acoustic, thermal, or particles (electrons, ions, neutrons, etc.). The surface analysis techniques usually require a high vacuum. As a result of interactions between the solid (or liquid) and the incoming radiation a beam of a similar (or a different) nature will emerge from the sample. Measurement of the physical and/or chemical attributes of this emerging radiation will yield qualitative, and often quantitative, information about the composition and the properties of the material being probed.

The modern tendency of describing practically everything in this world by a combination of a few letters (acronyms) has also penetrated the field of Materials Characterization. The table below gives the meaning of the acronym for every technique listed, the form and size of the required sample (bulk, surface, film, liquid, powder, etc.), the nature of the incoming and of the emerging radiation, the depth and the lateral spatial resolution that can be probed, and the information obtained from the experiment. The last column lists one or two major references to the technique described.

	Technique	Sample	In	Out	Depth	Lateral resolution	Information obtained	Ref.
Opt	ical and Mass Spectroscopies	s for Chemical Analys	sis					
1.	AAS Atomic Absorption Spectroscopy	Atomize (flame, electro, thermal, etc.)	Light e.g., glow discharge	Absorption spectrum	-	-	Concentration of atomic species (quantitative, using standards)	1,2
2.	ICP-AES Induct. Coupled Plasma – Atomic Emission Spectroscopy	Atomize (flame, electro, thermal, ICP, etc.)	-	Emission spectrum	_	-	Concentration of atomic species (quantitative, using standards)	3
3.	Dynamic SIMS Dynamic Secondary Ion Mass Spectroscopy	Surface	lon beam (1–20 keV)	Secondary ions; analysis with mass spectrometer	2 nm–1 µm (or deeper: ion milling)	0.50 nm	Elemental and isotopic analysis; depth profile (all elements); detection limits: ppb-ppm	4
4.	Static SIMS Static Secondary Ion Mass Spectroscopy	Surface	lon beam (0.5–20 keV)	Secondary ions, analysis with mass spectrometer	0.1–0.5 nm	10 µm	Elemental analysis of surface layers; molecular analysis; detection limits: ppb-ppm	4
5.	SNMS Sputtered Neutral Mass Spectroscopy	Surface, bulk	Plasma discharge; noble gases: 0.5–20 keV	Sputtered atoms ionized by atoms or electrons; then mass analyzed	0.1–0.5 nm (or deeper: ion milling)	1 cm	Elemental analysis $Z \ge 3$; depth profile; detection limit: ppm	4,6
6.	SALI Surface Analysis by Laser Ionization	Surface	e-beam, ion-beam, or laser for sputtering	Sputtered atoms ionized by laser; then mass analyzed	0.1–0.5 nm up to 3 µm in milling mode	60 nm	Surface analysis; depth profiling	7
7.	LIMS Laser Ionization Mass Spectroscopy	Surface, bulk	u.v. laser (ns pulses)	lonized species; analyzed with mass spectrometer	50–150 nm	5 μm—1 mm	Elemental (micro)analysis; detection limits: 1–100 ppm	8
8.	SSMS Spark Source Mass Spectroscopy	Sample in the form of two electrodes	High voltage R.F. spark produces ions	lons – analyzed in mass spectrometer	1–5 µm	-	Survey of trace elements; detection limit: 0.01–0.05 ppm	9
9.	GDMS Glow Discharge Mass Spectroscopy	Sample forms the cathode for a D.C. glow discharge	Sputtered atoms ionized in plasma	lons – analyzed in mass spectrometer	0.1–100 µm	3–4 mm	(Bulk) trace element analysis; detection limit: sub-ppb	9,10
10.	ICPMS Induct. Coupled Plasma Mass Spectroscopy	Liquid-dissolved sample carried by gas stream into R.F. induction coil	lons produced in argon plasma	lons – analyzed in quadrupole mass spectrometer	-	-	High sensitivity analysis of trace elements	11
Pho	otons — Absorption, Reflectio	on and Electron Emiss	sion					
11.	IRS Infrared Spectroscopy	Thin crystal, glass, liquid	I.R. light (W-filament, globar, Hg-arc)	I.R. spectrum	-	-	Electronic transitions (mainly in semiconductors and superconductors); vibrational modes (in crystals and molecules)	12,13,14
12.	FTIR Fourier Transform I.R. Spectroscopy	Solid, liquid; transmission or reflection	White light (all frequencies)	Fourier Transform of spectrum (interferometer)	_	-	Spectra obtained at higher speed and resolution	15
13.	ATR Attenuated Total Reflection	Surface or thin crystal	-	-	µm's	-	Atomic or molecular spectra of surfaces and films	16
14.	(μ)-RS (Micro-) Raman Spectroscopy	Solid, liquid (1 µm–1 cm)	Laser beam, e.g., Ar- line, YAG-line	Raman spectra	0.5 µm	0.5 µm	Molecular and crystal vibrations	12,14,17

12-2

Techniques for Materials Characterization

	Technique	Sample	In	Out	Depth	Lateral resolution	Information obtained	Ref.
15.	CARS	Solid, liquid (50 µm–3	Pump beam (ω ₀)+	Anti-Stokes spectrum		_	High resolution Raman spectra	14
	Coherent Anti-Stokes Raman Spectroscopy	cm)	probe beam (ω_s)					
16.	Ellipsometry	Transparent films, crystals, adsorbed layers	Polarized light	Change in polarization	0.05 nm—5 μm	25 µm (or sample thickness)	Refractive index and absorption	18,19
17.	UPS Ultraviolet Photo-electron Spectroscopy	Surfaces, adsorbed layers	u.v. light, 10–100 eV; 200 eV (synchrotron)	Electrons	0.2–10 nm	0.1–10 nm	Energies of electronic states of surfaces and free molecules	20,21
18.	PSD Photon Stimulated Desorption	Surfaces with adsorbed species	Far u.v. light E > 10 eV	lons – analyzed with mass spectrometer	0.1–2 nm	_	Structure and desorption kinetics of adsorbed atoms and molecules	22
X-R	ays							
19.	XRD X-Ray Diffraction	Single crystals, powders films	X-rays: $\lambda = 0.05-0.2$ nm (6-17 keV)	Diffracted X-ray beam	1–1000 µm	0.1–10 mm	Identification of crystallographic structures; all elements (low Z difficult)	23,24
20.	XRF/EDS X-Ray Fluorescence/Energy Dispersive Spectroscopy	Thin films, single layer	Prim. X-ray beam λ = 0.02–0.1 nm 12–80 keV	Fluorescent X-rays	1–100 µm	10 mm	Elemental analysis; all elements except H, He, Li – (EDS also used in XRD, SEM, TEM and EPMA)	25,26
21.	EXAFS Extended X-Ray Absorption Fine Structure	Films, foils	High intensity X-rays (synchrotron)	Spectrum near absorption edge	nm-µm	-	Local atomic structure: order/ disorder in vicinity of absorbing atom	27
22.	XPS/ESCA X-Ray Photo-electron Spectroscopy/ Electron Spect. for Chemical Analysis	Surfaces, thin films (≈20 atomic layers)	Soft X-rays (1–20 keV)	Core electrons; valence electrons	0.5–10 nm	5 nm–50 μm	(Quantitative) identification of all elements in surface layer or film	28,29
Elea	ctrons							
23.	CL Cathode Luminescence	Insulators, semiconductors	Electrons 5–50 keV	Photons 0.1–5 eV	1 nm–2 µn	1 or 2 µm	Energy levels of impurities and point defects	30
24.	APS Appearance Potential Spectroscopy	Surface (≈20 atomic layers)	Electrons (energy scan) 50–2000 eV	X-rays to pinpoint electron energy threshold	_	-	Identification of surface species	21, see also C
25.	AES Auger Electron Spectroscopy	Thin films, surfaces	Electrons 3-10 keV	Auger electrons 20– 2000 eV	0.3–3 nm	≈30 nm	Elemental composition of surface (except H, He); detection limit 0.1–1%	28,29
26.	EELS Electron Energy Loss Spectroscopy	Very thin samples (<200 nm)	Electrons (100–400 keV)	(Retarded) electrons; minus 1–1000 eV	<200 nm	1–100 nm	Local elemental concentration; electronic structure, chem. bonding: interatomic distances	31
27.	EXELFS Extended Electron Energy Loss Fine Structure	Thin films	Electrons (100–400 keV)	Electrons energies 0–30 eV above edge	<200 nm	1–100 nm	Density of states of valence electrons (above Fermi level)	27,32
28.	ESD Electron Stimulated Desorption	Adsorbed species	Electrons $E > 10 \text{ eV}$	lons – analyzed with mass spectrometer	-	-	Structure and desorption properties of adsorbed atoms and molecules	22
29.	ESDIAD ESD-Ion Angular Distribution	(See ESD)	(See ESD)	Directional dependence of emitted ions	-	-	Geometries of adsorbed species (atoms or molecules)	22
30.	EPMA Electron Probe (X-Ray) Micro Analysis	Solid conductors and insulators <1 cm thick	Electrons 5–30 keV	Characteristic X-ray 0.1–15 keV	100 nm—5 µm	1 µm	Elemental analysis, $Z \le 4$, major, minor and trace amounts	33,34
31.	LEED Low Energy Electron Diffraction	Surface	Mono-energetic electron beam 10– 1000 eV	Diffracted electrons	0.4–2 nm	<5 µm	Crystallographic structure of surface; resolution: 0.01 nm	35
32.	RHEED Reflection High Energy Electron Diffraction	Surface	Electron beam at grazing angle 5–50 keV	Reflected electrons	0.2–10 nm	<5 µm	Surface symmetry	36,37
33.	SEM Scanning Electron Microscopy	Bulk, films (conducting)	High energy electrons usually ~30 keV	Secondary and backscattered electrons	1 nm–5 µm	1–20 nm	Surface image, defect structure; resolution 5–15 nm; magnification 300.000×	33,34
34.	(S)TEM (Scanning) Transmission Electron Microscopy	Thin specimen – <200 nm	High energy electrons typically 300 keV	Transmitted and diffracted electrons	(Sample thickness)	2–20 nm	(Defect) structure of cryst. solids; microchemistry; high resol.: 0.2 nm	33
35.	FEM Field Emission Microscopy	Metals, alloys (sharp point)	_	Electron emission (with appl. electric field – 50 kV)	≈0.5 nm	10–100 nm	Surface image, crystallographic structure	34
36.	STM Scanning Tunneling Microscopy	Polished or cleaved surface (conducting)	Tunneling current contr sample and very sharp	ols distance between tip	1–5 nm	2–10 nm	Atomic-scale relief map of surface; resolution: vert. 0.002 nm. hor. 0.2 nm	39
37.	SPM Scanned Probe Microscopy	Very flat surface	Any field: e.g. mechan. laser probe; same with thermal field	vibration recorded with magnetic, electric or	1–100 nm	1–100 nm	Surface-magnetic field, surface- thermal conductivity, etc.	39a
38.	AFM Atomic Force Microscopy	Very flat surface	Similar to STM; force m spring	neasured with cantilever	0.5–5 nm	0.2–130 nm	Surface topography with atomic resolution; interatomic force	40

Techniques for Materials Characterization

	Technique	Sample	In	Out	Depth	Lateral resolution	Information obtained	Ref
lond	and Noutrana							
39.	ISS (or LEIS) Ion Scattering Spectroscopy (Low	Surface	lon beam He⁺ or Ne⁺ <3 keV	Sputtered ions (energy analysis)	0.1–0.5 nm	1–100 µm	Elemental analysis (better for low Z) detection limits: 0.01–	41
40.	FIM Field Ion Microscony	Surface: metals, alloys;	(He gas above	He ions + high electric	≈0.1 nm	0.1–2 nm	Atomic structure of surface	34,42
41.	RBS Rutherford Back Scattering	Solids, thin films	Mono-energetic ions (H ⁺ or He ⁺⁺) 0.5–3 MeV	Backscattered ions	10 nm–1 µm	1 mm	Element identification (Li to U) detection limit: 0.01–1%	46
42.	NRA Nuclear Reaction Analysis	Solids, thin films	Mono-energetic ions (Li, Be, B, etc.) 200 keV–6 MeV	Protons, deuterons 3 He, α -particles, γ -rays	0.1–5 µm	10 µm—10 mm	Element identification (all) detection limit: 10 ⁻¹² –10 ⁻²	47
43.	PIXE Particle Induced X-ray Emission	Thin films, surface layers	High energy ions (H ⁺ or He ⁺⁺)	Characteristic X-rays	<10 µm	1 µm–2 mm	Trace impurities: Z>3 detection limit: 0.1–100 ppm (depending on sample thickness)	48
44.	INS Ion Neutralization Spectroscopy	Surface	He-ions (≈5 eV)	Electrons	-	-	Energies of valence electrons	49
45.	NAA Neutron Activation Analysis	Bulk, >0.5 g	Thermal neutrons	Characteristic γ-rays, (≈1 MeV)	Bulk	-	Trace concentrations (of isotopes) of elements: trans. metals, Pt-group; detection limit: 10 ⁸ -10 ¹⁴ atoms/cm ³	43
46.	N(P)D Neutron (Powder) Diffraction	Crystalline solids	Thermal neutrons E ≈0.0025 eV	Diffracted neutrons	Bulk	-	Crystallographic structure; porosity, particle size	44
47.	SANS Small Angle Neutron Scattering	Inhomogeneous solids; powders; porous samples	Thermal neutrons 2 θ = 10 ⁻² -10 ⁻⁴	Scattered neutrons	1–25 mm	-	Average size of inhomogeneities; range: 1 nm– 1 mm	45
Aco	ustic							
48.	SLAM Scanning Laser Acoustic Microscopy	Bulk, film	Acoustic wave produced by laser 1 MHz–1 GHz	Reflected acoustic wave	µm–cm	0.1–20 mm	Defect structure; thickness measurement	50
The	rmal							
49.	DTA Differential Thermal Analysis	Specimen and reference sample	Uniform heating	Temperature difference	Bulk	-	Phase transitions, crystallization	51
50.	DSC Differential Scanning Calorimetry	Specimen and ref. sample	Controlled heating	Measure heat required for equal temperature	Bulk	-	Phase transitions, crystallization; activation energies	51
51.	TGA Thermo Gravimetric Analysis	Bulk, 1–100 g	Controlled heating	Weight as function of temperature (and time)	Bulk	_	Decomposition, non- stoichiometry, kinetics of reaction	52
Res	onance							
52.	EPR (ESR) Electron Paramagnetic (Spin) Resonance	Paramagnetic solids or liquids	Microwave radiation in magnetic field 3– 300 GHz; 1–100 kG	Microwave absorption (at resonance)	Bulk	-	Local environment of paramagnetic ion; concentration of paramagnetic, species; detection limit: 101 spins (cm ³	53,54
53.	ECR Electron Cyclotron Resonance	Semiconductors, metals; free electrons (low temperature)	Microwave radiation in magnetic field 10– 30 GHz [,] 5–10 kG	Microwave absorption (at resonance)	Bulk	_	Electronic energy bands, effective masses	55
54.	Mössbauer Effect	Source and absorber	Mono-energetic γ- rays: 5–100 keV	Mössbauer spectrum (Doppler shifted (lines)	50 m	1 cm	Interaction between nucleus and its environment (local electric, magnetic fields; bonds; valency; diffusion etc.)	56
55.	NMR (MRI) Nuclear Magnetic Resonance (Magnetic Resonance Imaging)	Solids, liquids	R.F. radiation + magnetic field; e.g. for protons: 60 MHz, 14 kG	R.F. absorption	<1 cm	1 cm	Quant. analysis; local magnetic environment; diffusion; imaging	58
56.	ENDOR Electron Nuclear Double Resonance	Solids, liquids	R.F. + microwave radiation in magn. field	Microwave absorption	_	-	Hyperfine interaction \rightarrow local atomic structure	54
57.	NQR Nuclear Quadrupole Resonance	Solids	R.F. radiation 0.5– 1000 MHz	R.F. absorption	_	_	Asymmetry of the charge distribution at the nucleus	55,59
Oth	er							
58.	BET Brunauer-Emmett-Teller	(Large) surface area 1–20 m²/g	Adsorbed gas (e.g., N ₂ a of pressure (monolaye	at low temp.) as function r coverage)	-	-	Surface area measurement	60

References

General References

- A. Wachtman, J. B., *Characterization of Materials*, Butterworth-Heinemann, Boston, 1993.
- B. Brundle, C. R., Evans, C. A., and Wilson, S., Eds., *Encyclopedia of Materials*, Butterworth-Heinemann, Boston, 1992.
- C. Woodruff, D. P. and Delchar, T. A., Modern Techniques of Surface Science, Cambridge University Press, Cambridge, 1986.
- D. Metals Handbook, 9th Edition, Vol. 10, Materials Characterization, Whan, R. E., Coordinator, American Society for Metals, Metals Park, OH, 1986.

Specific References

- 1. Slavin, M., Atomic Absorption Spectroscopy, 2nd Edition, John Wiley & Sons, New York, 1978.
- Schrenk, W. G., Analytical Atomic Spectroscopy, Plenum Press, New York, 1975.
- Dean, J. A. and Rains, T. E., *Flame Emission and Atomic Absorption* Spectroscopy, Vols. 1–3, Marcel Dekker, New York, 1969.
- 4. Benninghoven, A., Rudenauer, F. G., and Werner, H. W., Secondary Ion Mass Spectroscopy, John Wiley & Sons, New York, 1987.
- Bird, J. R. and Williams, J. S., Eds., in *Ion Beams for Materials Analysis*, Academic Press, New York, 1989, pp. 515–537.
- 6. Smith, G. C., *Quantitative Surface Analysis for Materials Science*, The Institute of Metals, London, 1991.
- Becker, E. H., in *Ion Spectroscopies for Surface Analysis*, Czanderna, A. W. and Hercules, D. M., Eds., Plenum Press, New York, 1991, p. 273.
- 8. Simons, D. S., Int. J. Mass Spectrometry and Ion Processes, 55, 15, 1983.
- 9. White, F. A. and Wood, G. M., *Mass Spectrometry: Applications in Science and Engineering*, John Wiley & Sons, New York, 1986.
- Harrison, W. W. and Bentz, B. L., Prog. Anal. Spectrometry, 11, 53, 1988.
- 11. Bowmans, P. W. J. M., *Inductively Coupled Plasma Emission* Spectroscopy, Parts I and II, John Wiley & Sons, New York, 1987.
- Brame, Jr., E. G. and Grasselli, J., *Infrared and Raman Spectroscopy*, Practical Spectroscopy Series, Vol. I, Marcel Dekker, New York, 1976.
- Hollas, J. M., Modern Spectroscopy, John Wiley & Sons, New York, 1987.
- 14. Turrell, G., *Infrared and Raman Spectroscopy of Crystals*, Academic Press, New York and London, 1972.
- Griffith, P. R. and Haseth, J. A., Fourier Transform Infrared Spectroscopy, John Wiley & Sons, New York, 1986.
- Barnowski, M. K., Fundamentals of Optical Fiber Communications, Academic Press, New York, 1976.
- 17. Long, D. A., Raman Spectroscopy, McGraw-Hill, New York, 1977.
- 18. Azzam, R. M. A., *Ellipsometry and Polarized Light*, Elsevier-North Holland, Amsterdam, 1977.
- 19. Hecht, E., Optics, 2nd Edition, Addison-Wesley, Reading MA, 1987.
- Brundle, C. R., in *Molecular Spectroscopy*, West, A. R., Ed., Heyden, London, 1976.
- Park, R. L., in *Experimental Methods in Catalytic Research*, Vol. III, Anderson, R. B. and Dawson, P. T., Academic Press, New York, 1976, pp. 1–39.
- Madey, T. E. and Stockbauer, R., in *Solid State Physics: Surfaces*, Vol. 22 of Methods of Experimental Physics, Park, R.L. and Lagally, M. G., Eds., Academic Press, New York, 1985.
- Cullity, B. D., *Elements of X-Ray Diffraction*, 2nd Edition, Addison-Wesley, Reading, MA, 1978.
- Schwartz, L. H. and Cohen, J. B., *Diffraction from Materials*, Springer Verlag, Berlin, 1987.
- deBoer, D. K. G., in *Advances in X-Ray Analysis*, Vol. 34, Barrett, C. S. et. al., Eds., Plenum Press, New York, 1991.
- Birks, L. S., X-Ray Spectrochemical Analysis, 2nd Edition, John Wiley & Sons, New York, 1969.
- 27. Bonnelle, C. and Mande, C., Advances in X-Ray Spectroscopy, Pergamon Press, Oxford, 1982.

- Practical Surface Analysis by Auger and X-Ray Photo-Electric Spectroscopy, Briggs, D. and Seah, M. P., Eds., John Wiley & Sons, New York, 1983.
- 29. Powell, C. J. and Seah, M. P., J. Vac. Sci. Technol. A, Vol. 8, 735, 1990.
- Yacobi, G. G. and Holt, D. B., Cathodeluminescence Microscopy of Inorganic Solids, Plenum Press, New York, 1990.
- Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, 1986.
- 32. Disko, M. M., Krivanek, O. L., and Rez, P., *Phys. Rev.*, B25, 4252, 1982.
- Goldstein, J. I., et. al., Scanning Electron Microscopy and X-Ray Microanalysis, 2nd Edition, Plenum Press, New York, 1986.
- Murr, L. E., *Electron and Ion Microscopy and Microanalysis*, Marcel Dekker, New York, 1982.
- Armstrong, R. A., in *Experimental Methods in Catalytic Research*, Vol. III, Anderson, R. B., and Dawson, P. T., Eds., Academic Press, New York, 1976.
- 36. Dobson, P. J. et. al., Vacuum, 33, 593, 1983.
- 37. Rymer, T. B., *Electron Diffraction*, Methuen, London, 1970.
- Reimer, L., *Transmission Election Microscopy*, Springer-Verlag, Berlin, 1984.
- Scanning Tunneling Microscopy and Related Methods, Behm, R. J., Garcia, N., and Rohrer, H., Eds., Kluwer Academic Publishers, Norwell, MA, 1990.
- 39a. Wikramasinghe, H.K., Scientific American, Vol. 261, No. 4, pp. 98– 105, Oct. 1989.
- 40. Rugar, D. and Hansma, P., Physics Today, 43(10), pp. 23-30, 1990.
- 41. Feldman, C. C. and Mayer, J. W., Fundamentals of Surface and Thin Film Analysis, North-Holland, Amsterdam, 1986.
- Muller, E. W. and Tsong, T. T., Field Ion Microscopy, Elsevier, Amsterdam, 1969.
- Amiel, S., Nondestructive Activation Analysis, Elsevier, Amsterdam, 1981.
- Bacon, G. E., Neutron Diffraction, 3rd Edition, Clarendon Press, Oxford, 1975.
- Neutron Scattering, Part A., in *Methods of Experimental Physics*, Vol. 23, Skold, K. and Price, D. L., Eds., Academic Press, New York, 1986.
- Chu, W. K., Mayer, J. W., and Nicolet, M. A., *Backscattering Spectroscopy*, Academic Press, New York, 1987.
- Rickey, F. A., in *High Energy and Heavy Ion Beams in Materials* Analysis, Tesmer, J. R., et. al., Eds., MRS, 1990, pp. 3–26.
- Johansson, S. A. E. and Campbell, J. L., PIXE: A Novel Technique for Elemental Analysis, John Wiley & Sons, New York, 1988.
- Hagstrum, H. D., in *Inelastic Ion-Surface Collisions*, Tolk, N. H. et. al., Eds., Academic Press, New York, 1977, pp. 1–46.
- Nikoonahad, M., in *Research Techniques in Nondestructive Testing*, Vol. VI, Sharpe, R.S., Ed., Academic Press, New York, 1984, pp. 217– 257.
- Gallagher, P. K., Characterization of Materials by Thermoanalytical Techniques, MRS - Bulletin, Vol. 13, No. 7, pp. 23–27, 1988.
- Earnest, C. M., Compositional Analysis by Thermogravimetry, ASTM Special Technical Publication 997, 1988.
- Poole, C. P., Electron Spin Resonance A Comprehensive Treatise on Experimental Techniques, 2nd Edition, John Wiley & Sons, New York, 1983.
- Atherton, N. M., Principles of Electron Spin Resonance, Ellis Horwood Ltd., Chichester, U.K., 1993.
- Kittel, C., Introduction to Solid State Physics, 6th Edition, John Wiley & Sons, New York, 1986, p. 196.
- Gibb, T. C., Principles of Mössbauer Spectroscopy, Chapman & Hall, London, 1976.
- Slichter, C. P., Principles of Magnetic Resonance, 3rd Edition, Springer-Verlag, Berlin, 1990.
- NMR Spectroscopy Techniques, Dybrowski, C. and Lichter, R. L., Eds., Marcel Dekker, New York, 1987.
- 59. Das, T. P. and Hahn, E. L., *Nuclear Quadrupole Resonance Spectroscopy*, Academic Press, New York, 1958.
- Somorjai, G. A., Principles of Surface Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1972, p. 216

Techniques for Materials Characterization