PROPERTIES OF SUPERCONDUCTORS

L. I. Berger and B. W. Roberts

The following tables include superconductive properties of selected elements, compounds, and alloys. Individual tables are given for thin films, elements at high pressures, superconductors with high critical magnetic fields, and high critical temperature superconductors.

The historically first observed and most distinctive property of a superconductive body is the near total loss of resistance at a critical temperature (T_c) that is characteristic of each material. Figure 1(a) below illustrates schematically two types of possible transitions The sharp vertical discontinuity in resistance is indicative of that found for a single crystal of a very pure element or one of a few well annealed alloy compositions. The broad transition, illustrated by broken lines, suggests the transition shape seen for materials that are not homogeneous and contain unusual strain distributions. Careful testing of the resistivity limit for superconductors shows that it is less than 4×10^{-23} ohm cm, while the lowest resistivity observed in metals is of the order of 10^{-13} ohm cm. If one compares the resistivity of a superconductive body to that of copper at room temperature, the superconductive body is at least 10^{17} times less resistive.

FIGURE 1. Physical properties of superconductors. (a) Resistivity vs. temperature for a pure and perfect lattice (solid line); impure and/or imperfect lattice (broken line). (b) Magnetic-field temperature dependence for Type-I or "soft" superconductors. (c) Schematic magnetization curve for "hard" or Type-II superconductors.

The temperature interval ΔT_c , over which the transition between the normal and superconductive states takes place, may be of the order of as little as 2×10^{-5} K or several K in width, depending on the material state. The narrow transition width was attained in 99.9999% pure gallium single crystals.

A Type-I superconductor below $T_{c'}$ as exemplified by a pure metal, exhibits perfect diamagnetism and excludes a magnetic field up to some critical field H_c , whereupon it reverts to the normal state as shown in the *H*-*T* diagram of Figure 1(b).

The magnetization of a typical high-field superconductor is shown in Figure 1(c). The discovery of the large current-carrying capability of Nb₂Sn and other similar alloys has led to an extensive study of the physical properties of these alloys. In brief, a highfield superconductor, or Type-II superconductor, passes from the perfect diamagnetic state at low magnetic fields to a mixed state and finally to a sheathed state before attaining the normal resistive state of the metal. The magnetic field values separating the four stages are given as H_{c1} , H_{c2} , and H_{c3} . The superconductive state below H_{c1} is perfectly diamagnetic, identical to the state of most pure metals of the "soft" or Type-I superconductor. Between H_{c1} and H_{c2} a "mixed superconductive state" is found in which fluxons (a minimal unit of magnetic flux) create lines of normal flux in a superconductive matrix. The volume of the normal state is proportional to $-4\pi M$ in the "mixed state" region. Thus at H₂, the fluxon density has become so great as to drive the interior volume of the superconductive body completely normal. Between H_{c2} and H_{c3} the superconductor has a sheath of current-carrying superconductive material at the body surface, and above H_{c3} the normal state exists. With several types of careful measurement, it is possible to determine $H_{_{\rm Cl}}$, $H_{_{\rm C2}}$, and $H_{_{\rm C3}}$. Table 6 contains some of the available data on high-field superconductive materials.

High-field superconductive phenomena are also related to specimen dimension and configuration. For example, the Type-I superconductor, Hg, has entirely different magnetization behavior in high magnetic fields when contained in the very fine sets of filamentary tunnels found in an unprocessed Vycor glass. The great majority of superconductive materials are Type-II. The elements in very pure form and a very few precisely stoichiometric and well annealed compounds are Type I with the possible exceptions of vanadium and niobium.

Metallurgical Aspects. The sensitivity of superconductive properties to the material state is most pronounced and has been used in a reverse sense to study and specify the detailed state of alloys. The mechanical state, the homogeneity, and the presence of impurity atoms and other electron-scattering centers are all capable of controlling the critical temperature and the current-carrying capabilities in high-magnetic fields. Well annealed specimens tend to show sharper transitions than those that are strained or inhomogeneous. This sensitivity to mechanical state underlines a general problem in the tabulation of properties for superconductive materials. The occasional divergent values of the critical temperature and of the critical fields quoted for a Type-II superconductor may lie in the variation in sample preparation. Critical temperatures of materials studied early in the history of superconductivity must be evaluated in light of the probable metallurgical state of the material, as well as the availability of less pure starting elements. It has been noted that recent work has given extended consideration to the metallurgical aspects of sample preparation.

Symbols in tables: T_c : Critical temperature; H_o : Critical magnetic field in the T = 0 limit; θ_D : Debye temperature; and γ : Electronic specific heat.

	TABLE 1. Selective	Properties of Superco	nductive Elements	
Element	$T_{\rm c}({\rm K})$	H _o (oersted)	$\theta_{\rm D}({\rm K})$	$\gamma(mJ mol^{-1}K^{-1})$
Al	1.175 ± 0.002	104.9 ± 0.3	420	1.35
Am* (α,?)	0.6			
Am* (β,?)	1.0			
Be	0.026			0.21
Cd	0.517 ± 0.002	28 ± 1	209	0.69
Ga	1.083 ± 0.001	58.3 ± 0.2	325	0.60
Ga (β)	5.9, 6.2	560		
Ga (γ)	7	950, HF ^a		
Ga (Δ)	7.85	815, HF		
Hf	0.128	12.7		2.21
Hg (α)	4.154 ± 0.001	411 ± 2	87, 71.9	1.81
Hg (β)	3.949	339	93	1.37
In	3.408 ± 0.001	281.5 ± 2	109	1.672
Ir	0.1125 ± 0.001	16 ± 0.05	425	3.19
La (α)	4.88 ± 0.02	800 ± 10	151	9.8
La (β)	6.00 ± 0.1	1096, 1600	139	11.3
Lu	0.1 ± 0.03	350 ± 50		
Мо	0.915 ± 0.005	96 ± 3	460	1.83
Nb	9.25 ± 0.02	2060 ± 50, HF	276	7.80
Os	0.66 ± 0.03	70	500	2.35
Ра	1.4			
Pb	7.196 ± 0.006	803 ± 1	96	3.1
Re	1.697 ± 0.006	200 ± 5	4.5	2.35
Ru	0.49 ± 0.015	69 ± 2	580	2.8
Sn	3.722 ± 0.001	305 ± 2	195	1.78
Ta	4.47 ± 0.04	829 ± 6	258	6.15
Tc	7.8 ± 0.1	1410, HF	411	6.28
Th	1.38 ± 0.02	1.60 ± 3	165	4.32
Ti	0.40 ± 0.04	56	415	3.3
Tl	2.38 ± 0.02	178 ± 2	78.5	1.47
U	0.2			
V	5.40 ± 0.05	1408	383	9.82
W	0.0154 ± 0.0005	1.15 ± 0.03	383	0.90
Zn	0.85 ± 0.01	54 ± 0.3	310	0.66
Zr	0.61 ± 0.15	47	290	2.77
Zr (w)	0.65, 0.95			

TABLE 2. Range of Critical Temperatures Observed for Superconductive Elements in Thin Films Condensed Usually at Low Temperatures

Element	T _c Range (K)	Comments	Element	T _c Range (K)	Comments
Al	1.15-5.7	HF ^a	Nb	2.0-10.1	
Be	5-9.75	HF	Pb	1.8-7.5	
Bi	6.17-6.6		Re	1.7-7	
Cd			Sn	3.5-6	
(Disordered)	0.79-0.91		Ta	<1.7-4.51	HFª
(Ordered)	0.53-0.59		Tc	4.6-7.7	
Ga	2.5-8.5	HF	Ti	1.3 Max	
Hg	3.87-4.5		Tl	2.33-2.96	
In	2.2-5.6	HF	V	1.8 - 6.02	
La	3.55-6.74		W	<1.0-4.1	
Mo	3.3-8.0		Zn	0.77-1.9	

^a HF denotes high magnetic field superconductive properties.

Element	T Range (K)	Pressure (kbar)	Element	T Range (K)	Pressure (kbar)
Al	1.98-0.075	0-62	Pb II	3.55	160
As	0.31-0.5	220-140	Re II	2.3 Max.	"Plastic"
	0.2-0.25	140-100			compression
Ba II	1 - 1.8	55-85	Sb (prepared 120	2.6-2.7	
III	1.8 - 5	85-144	kbar, held below		
IV	4.5 - 5.4	144-190	77K)		
Bi II	3.9	25-27	Sb II	3.55 - 3.40	85-150
III	6.55-7.25	28-38	Se II	6.75, 6.95	130
IV	7.0, 8.7-6.0	43, 43–62	Si	6.7-7.1	120-130
V	6.7, 8.3	48-80	Sn II	5.2-4.85	125-160
VI	8.55	90, 92–101	III	5.30	113
VII(?)	8.2	30	Te II	2.4 - 5.1	38-55
Ce (α)	0.020-0.045	20-35		4.1-4.2	53-62
Ce (α′)	1.9-1.3	45-125	IV	4.72-4	63-80
Cs V	1.5	>125	()	3.3-2.8	100-260
Ga II	6.38	≥35	Tl (cubic form)	1.45	35
II'	7.5	≥35 then P	(hexagonal form)	1.95	35
		removed	U	2.4 - 0.4	10-85
Ge	5.35	115	Y	1.7 - 2.5	110-160
Lu	0.022 - 1.0	45-190	Zr (omega form, metastable)	1-1.7	60-130
Р	5.8	170			

TABLE 3. Elements Exhibiting Superconductivity Under or After Application of High Pressure

TABLE 4. Superconductive Compounds and Alloys

All compositions are denoted on an atomic basis, i.e., AB, AB₂, or AB₃ for compounds, unless noted. Solid solutions or odd compositions may be denoted as A_xB_{1-z} or A_zB . A series of three or more alloys is indicated as A_xB_{1-x} or by actual indication of the atomic fraction range, such as $A_{0-0.6}B_{1-0.4}$. The critical temperature of such a series of alloys is denoted by a range of values or possibly the maximum value.

The selection of the critical temperature from a transition in the effective permeability, or the change in resistance, or possibly the incremental changes in frequency observed by certain techniques is not often obvious from the literature. Most authors choose the mid-point of such curves as the probable critical temperature of the idealized material, while others will choose the highest temperature at which a deviation from the normal state property is observed. In view of the previous discussion concerning the variability of the superconductive properties as a function of purity and other metallurgical aspects, it is recommended that appropriate literature be checked to determine the most probable critical temperature or critical field of a given alloy.

A very limited amount of data on critical fields, H_{o} , is available for these compounds and alloys; these values are given at the end of the table.

Substance	<i>Т</i> _с , К	Crystal structure type	Substance	<i>Т</i> _с , К	Crystal structure type
Ag _{3 3} Al	0.34	A12-cI58 (Mn)	Ag ₂ NO ₁₁	1.04	Cubic
$Ag_{x}Al_{v}Zn_{1-x-v}$	0.15	Cubic	Ag _x Pb _{1-x}	7.2 max.	
AgBi ₂	2.87 - 3.0		Ag₄Sn	0.1	h**
$Ag_{7}F_{0.25}N_{0.75}O_{10.25}$	0.85-0.90		$Ag_{x}Sn_{1-x}$	1.5 - 3.7	
Ag ₂ F	0.0.066		$Ag_{x}Sn_{1-x}$ (film)	2.0 - 3.8	
Ag ₇ FO ₈	0.3	Cubic	AgTe ₃	2.6	Cubic
$Ag_{0.8-0.3}Ga_{0.2-0.7}$	6.5-8		AgTh	2.2	C16-tI12 (Al ₂ Cu)
Ag ₄ Ge	0.85	Hex., c.p.	AgTh ₂	2.26	C16
$Ag_{0.438}Hg_{0.562}$	0.64	D8 ₂	Ag _{0.03} Tl _{0.97}	2.67	
AgIn ₂	~2.4	C16	Ag _{0.94} Tl _{0.06}	2.32	
$Ag_{01}In_{02}Te (n = 1.4 \times 10^{22})^*$	1.2 - 1.89	B1	AgY	0.33	B2-cP2 (CsCl)
$Ag_{0.2}In_{0.8}Te (n = 1.07 \times 10^{22})$	0.77-1.00	B1	Ag _x Zn _{1-x}	0.5 - 0.845	
AgLa	0.94	B2-cP2 (CsCl)	AlAu ₄	0.4 - 0.7	Like A13
AgLa (9.5 kbar)	1.2	B2	Al ₂ Au	0.1	C1-cF12 (CaF ₂)
AgLu	0.33	B2-cP2	Al ₂ CMo ₃	9.8-10.2	A13+trace 2nd. phase
AgMo ₄ S ₅	9.1	hR15 (Mo ₆ PbS ₉)	Al ₂ CaSi	5.8	
Ag, Mo Se	5.9	Same	Al _{0.131} Cr _{0.088} V _{0.781}	1.46	Cubic
-1.2 0 0			AlGe ₂	1.75	

A. Superconductors with $T_c < 10$ K

Substance	<i>Т_с,</i> К	Crystal structure type	Substance	<i>Т</i> _с , К	Crystal structure type
Al ₂ Ge ₂ U	1.6	LI ₂ -cP4 (Cu ₃ Au)	AuPb ₂	3.15	
AlLa	5.57	DO	AuPb ₂ (film)	4.3	
Al,La	3.23	C15	AuPb ₃	4.40	
Al,Lu	1.02	C15-cF24 (Cu,Mg)	AuPb ₃ (film)	4.25	
Al ₃ Mg ₂	0.84	F.C.C.	Au,Pb	1.18; 6–7	C15
AlMo ₃	0.58	A15	AuSb,	0.58	C2
AlMo ₆ Pd	2.1		AuSn	1.25	B8,
AlN	1.55	B4	Au _x Sn _{1-x} (film)	2.0 - 3.8	
Al ₂ NNb ₃	1.3	A13	Au ₅ Sn	0.7 - 1.1	A3
Al ₃ Nb	0.64	tI8 (Al ₃ Ti)	AuTa ₄₃	0.55	A15-cP8 (Cr ₃ Si)
AlOs	0.39	B2	Au ₃ Te ₅	1.62	Cubic
Al ₃ Os	5.90		AuTh ₂	3.08	C16
AlPb (film)	1.2 - 7		AuTI	1.92	
Al ₂ Pt	0.48 - 0.55	C1	AuV ₃	0.74	A15
Al ₅ Re ₂₄	3.35	A12	Au _x Zn _{1-x}	0.50 - 0.845	
AlSb	2.8	B4-tI4 (Sn)	AuZn ₃	1.21	Cubic
Al ₂ Sc	1.02	C15-cF24 (Cu ₂ Mg)	Au _x Zr _y	1.7 - 2.8	A3
Al_2Si_2U	1.34	LI ₂ -cP4 (Cu ₃ Au)	AuZr ₃	0.92	A15
AlTh ₂	0.1	C16-tI12 (Al_2Cu)	$B_2Ba_{0.67}Pt_3$	5.60	hP12 (B ₂ BaPt ₃)
Al ₃ Th	0.75	DO ₁₉	BCMo ₂	5.4	Orthorhombic
Al _x Ti _v V _{1-x-v}	2.05 - 3.62	Cubic	BCMo ₂	5.3 - 7.0	Same
Al _{0.108} V _{0.892}	1.82	Cubic	$B_2Ca_{0.67}Pt_3$	1.57	hP12
Al ₂ Y	0.35	C15-cF24 (Cu ₂ Mg)	B ₄ ErIr ₄	2.1	tP18 (B ₄ CeCo ₄)
Al ₃ Yb	0.94	LI ₂ -cP4 (Cu ₃ Au)	B ₄ ErRh ₄	4.3	oC108 (B ₄ LuRh ₄)
Al _x Zn _{1-x}	0.5 - 0.845		B ₄ ErRh ₄	8.7	$tP18 (B_4 CeCo_4)$
AlZr ₃	0.73	LI ₂	BHf	3.1	Cubic
AsBiPb	9.0	-	B ₄ HoIr ₄	2.0	tP18
AsBiPbSb	9.0		B ₄ HoRh ₄	1.4	oC108
AsHfOs	3.2	C22-hP9 (Fe ₂ P)	B ₂ Ir ₃ La	1.65	hP6 (CaCu ₅)
AsHfRu	4.9	same	B ₂ Ir ₃ Th	2.09	Same
$As_{0.33}InTe_{0.67}$ (n = 1.24 ×10 ²²)	0.85 - 1.15	B1	B ₄ Ir ₄ Tm	1.6	tP18
$As_{0.5}InTe_{0.5}$ (n = 0.97 × 10 ²²)	0.44-0.62	B1	B₅La	5.7	
As ₄ La ₃	0.6	$cI28 (Th_3P_4)$	B ₂ LaRh ₃	2.82	hP6
AsNb ₃	0.3	L1 ₂ -tP32	B ₁₂ Lu	0.48	
$As_{0.50}Ni_{0.05}Pd_{0.44}$	1.39	C2	B ₂ LuOs	2.66	oP16 (B ₂ LuRu)
AsNi _{0.25} Pd _{0.75}	1.6	B8 ₁ -hP4 (NiAs)	B ₂ LuOs ₃	4.62	hP6
AsOsZr	8.0	C22-hP9 (Fe ₂ P)	B ₄ LuRh ₄	6.2	oC108
AsPb	8.4	-	B ₂ LuRu	9.86	oP16
AsPd ₂ (low-temp. phase)	0.60	Hexagonal	B_4LuRu_4	2.0	tI72 (B ₄ LuRu ₄)
AsPd ₂ (high-temp. phase)	1.70	C22	BMo	0.5	
AsPd ₅	0.46	Complex		(extrapol.)	-
As ₃ Pd ₅	1.9		BMo ₂	4.74	C16
AsRh	0.58	B31	BNb	8.25	B _f
AsRh _{1.4-1.6}	< 0.03–0.56	Hexagonal	B ₄ NdRh ₄	5.3	tP18
AsSn	4.10		B ₂ OsSc	1.34	oP16
AsSn (n = 2.14×10^{22})	3.41 - 3.65	B1	B ₂ OsY	2.22	oP16
	3.5-3.6;		$B_2 P t_3 S r_{0.67}$	2.78	hP12 (B ₂ BaPt ₃)
$As_{\sim 2}Sn_{\sim 3}$	1.21 - 1.17		BRe ₂	2.80; 4.6	
$As_{3}Sn_{4} (n = 0.56 \times 10^{22})$	1.16 - 1.19	Rhombohedral	$B_4Rh_{3.4}Ru_{0.6}$	8.38	tI72
AsV ₃	0.20	A15-cP8 (Cr ₃ Si)	$B_4 Rh_4 Sm$	2.7	tP18
Au ₅ Ba	0.4 - 0.7	D2 _d	$B_4 Rh_4 Th$	4.3	Same
AuBe	2.64	B20	$B_4 Rh_4 Tm$	9.8	Same
Au ₂ Bi	1.80	C15	$B_4 Rh_4 Tm$	5.4	oC108
Au ₅ Ca	0.34 - 0.38	C15 _b	$B_{0.3}Ru_{0.7}$	2.58	D10 ₂
AuGa ₂	1.6	C1-cF12 (CaF ₂)	B ₄ Ku ₄ Sc	7.2	t1/2
AuGa	1.2	B31	$B_2 K u_3 l h$	1.79	nP6
$Au_{_{0.40-0.92}}Ge_{_{0.60-0.08}}$	< 0.32 - 1.63	Complex	B ₂ Ku ₃ Y	2.85	Same
AuIn ₂	0.2	C1-cF12	B ₂ KU Y	/.80	0110
AuIn	0.4 - 0.6	Complex	B ₄ Ku ₄ Y	1.4	ti/2
AuLu	< 0.35	B2	В ₁₂ 5С РТа	0.39	D
AuNb ₃	1.2	A2	DIa	4.0	D _f

12-60

Substance	<i>Т</i> _с , К	Crystal structure type	Substance	<i>Т</i> _с , К	Crystal structure type
BTa ₂	3.12	C16-tI12 (Al ₂ Cu)	Bi,Pd	1.70	Monoclinic, α-phase
B _e Th	0.74	. 2 .	Bi ₂ Pd	4.25	Tetragonal, β-phase
BW ₂	3.1	C16	BiPdatePtar	3.7	B8,-hP4 (NiAs)
B _c Y ²	6.5-7.1		BiPdSe	1.0	C2
B _. Y	4.7		BiPdTe	1.2	C2
BZr	3.4	Cubic	BiPt	1.21	B8,
B ₁₀ Zr	5.82		Bi, PtSb	2.05; 1.5	B8,-hP4 (NiAs)
BaBi	5.69	Tetragonal	BiPtSe	1.45	C2
Ba, Mo, Se,	2.75	hP15 (Mo _c PbS _o)	BiPtTe	1.15	C2
Ba O_0Sr , Ti (n = 4.2 ×10 ¹⁹)	< 0.1-0.55	. 0 0.	Bi ₂ Pt	0.155	Hexagonal
Ba _{0,12} O ₂ W	1.9	Tetragonal	Bi,Rb	4.25	C15
Ba ₀₁₄ O ₂ W	<1.25-2.2	Hexagonal	BiRe,	1.9 - 2.2	
BaRh	6.0	C15	BiRh	2.06	B8,
Be ₂₂ Mo	2.51	Cubic (Be ₂₂ Re)	Bi₄Rh	3.2	Orthorhombic (NiB ₃)
Be,Nb _z Zr ₂	5.2	22	Bi₄Rh	2.7	Hexagonal
$Be_{0.98-0.97}Re_{0.02-0.08}$ (quenched)	9.5-9.75	Cubic	BiRu	5.7	m**
$Be_{0.957}Re_{0.043}$	9.62	Cubic (Be ₂₂ Re)	Bi ₃ Sn	3.6-3.8	
BeTc	5.21	Cubic	BiSn	3.8	
Be ₂₂ W	4.12	Cubic (Be ₂₂ Re)	Bi _x Sn _y	3.85 - 4.18	
Be ₁₃ W	4.1	Tetragonal	Bi ₃ Sr	5.62	L1 ₂
Bi ₃ Ca	2.0	-	Bi ₃ Te	0.75 - 1.0	-
$Bi_{0.5}Cd_{0.13}Pb_{0.25}Sn_{0.12}$	8.2		Bi ₅ Tl ₃	6.4	
(weight fractions)			Bi _{0.26} Tl _{0.74}	4.4	Cubic, disordered
BiCo	0.42-0.49		Bi _{0.26} Tl _{0.74}	4.15	L1 ₂ , ordered (?)
Bi ₂ Cs	4.75	C15	Bi ₂ Y ₃	2.25	
Bi _x Cu _{1-x} (electrodeposited)	2.2		Bi ₃ Zn	0.8-0.9	
BiCu	1.33 - 1.40		$Bi_{0.3}Zr_{0.7}$	1.51	
Bi ₃ Fe	1.0	m**	BiZr ₃	2.4 - 2.8	
$Bi_{0.019}In_{0.981}$	3.86		BrMo ₆ Se ₇	7.1	hP15 (Mo ₆ PbS ₈)
Bi _{0.05} In _{0.95}	4.65	α-phase	$Br_{3}Mo_{6}Se_{5}$	7.1	Same
Bi _{0.10} In _{0.90}	5.05	Same	CCs _x	0.020 - 0.135	Hexagonal
Bi _{0.15-0.30} In _{0.85-0.70}	5.3 - 5.4	α- and β-phases	CFe ₃	1.30	DO_{11} -oP16 (Fe ₃ C)
Bi _{0.34-0.48} In _{0.66-0.52}	4.0 - 4.1		CGaMo ₂	3.7 - 4.1	Hexagonal
Bi ₃ In ₅	4.1		CHf _{0.5} Mo _{0.5}	3.4	B1
BiIn ₂	5.65	β-phase	CHf _{0.3} Mo _{0.7}	5.5	B1
Bi ₂ Ir	1.7 - 2.3		CHf _{0.25} Mo _{0.75}	6.6	B1
Bi ₂ Ir (quenched)	3.0-3.96		$CHf_{0.7}Nb_{0.3}$	6.1	B1
BiK	3.6		CHf _{0.6} Nb _{0.4}	4.5	B1
Bi ₂ K	3.58	C15	$CHf_{0.5}Nb_{0.5}$	4.8	B1
BiLi	2.47	L1 _o , α-phase	$CHf_{0.4}Nb_{0.6}$	5.6	B1
Bi ₄₋₉ Mg	0.7-~1.0		CHf _{0.25} Nb _{0.75}	7.0	B1
Bi ₃ Mo	3-3.7		$CHf_{0.2}Nb_{0.8}$	7.8	B1
BiNa	2.25	L1 _o	CHf _{0.9-0.1} Ta _{0.1-0.9}	5.0-9.0	B1
BiNb ₃	4.5	A15-cP8 (Cr ₃ Si)	CK (excess K)	0.55	Hexagonal
BiNb ₃ (high pressure and			C ₈ K	0.39	Hexagonal
temperature)	3.05	A15	C_2La	1.66	$tl6 (CaC_2)$
BiNi	4.25	B8 ₁	C ₂ Lu	3.33	Same
Bi ₃ Ni	4.06	Orthorhombic	C _{0.40-0.44} Mo _{0.60-0.56}	9–13	D4 T0
BiNi _{0.5} Rh _{0.5}	3.0	B8 ₁ -hP4 (AsNi)	C ₃ MoRe	3.8	B1-cF8
Bi _{0.5} NiSb _{0.5}	2.0	Same	$C_{0.6}Mo_{4.8}Si_3$	7.6	D8 ₈
Bi ₁₋₀ Pb ₀₋₁	7.26–9.14		$CMo_{0.2} Ta_{0.8}$	7.5	BI
$Bi_{1-0}Pb_{0-1}$ (film)	7.25-8.67		$CMo_{0.5} Ta_{0.5}$	7.7	BI
Bi _{0.05-0.40} Pb _{0.95-0.60}	7.35-8.4	H.C.P. to ε-phase	CM0 _{0.75} 1a _{0.25}	8.5	BI
Bi ₂ Pb	4.25	t**	$CMo_{0.8}Ia_{0.2}$	8.7	BI
BiPbSb	8.9		$CMO_{0.85} Ia_{0.15}$	8.9	DI D1
$B1_{0.5}Pb_{0.31}Sn_{0.19}$ (weight	0.5		$CMO_x V_{1-x}$	2.9-9.3	DI D1
Iractions)	8.5		C_{1}	9.8 0.8	DI D1
$BI_{0.5}PD_{0.25}SN_{0.25}$	8.5		CNIL	9.0 0.1	DI
DIPO	4.0	II	CIND ₂ CNIL T:	9.1 - 1 0 0 0	D1
DI _{0.4} PCI D:D-1	3./-4 2.7	Hexagonal, ordered	$CND_{x} \prod_{1-x}$	<4.2-8.8 1 2 9 1	B1
DILG	3./	Ortnornombic	$C_{1ND}_{0.1-0.9} ZI_{0.9-0.1}$	4.2-0.4	D1

Substance	<i>Т</i> _с , К	Crystal structure type	Substance	<i>Т</i> _с , К	Crystal structure type
$\operatorname{CRb}_{x}(\operatorname{Au})$	0.023 - 0.151	Hexagonal	Co ₄ Sc ₅ Si ₁₀	5.0	tP38 (Co ₄ Sc ₅ Si ₁₀)
CRe _{0.06} W	5.0		CoSi ₂	1.40; 1.22	C1
CRu	2.00	hP2 (CW)	Co _x Sn _y Yb	2.5	cP40
C _{0.98} 7Ta	9.7		Co ₃ Th ₇	1.83	D10 ₂
C _{0.848-0.987}	2.04 - 9.7		Co _x Ti _{1-x}	2.8 (max.)	Co in α-Ti
CTa (film)	5.09	B1	Co _x Ti _{1-x}	3.8 (max.)	Co in β-Ti
CTa ₂	3.26	L' ₃	CoTi ₂	3.44	E9 ₃
CTa _{0.4} Ti _{0.6}	4.8	B1	СоТі	0.71	A2
$Cta_{1-0.4}W_{0-0.6}$	8.5 - 10.5	B1	CoU	1.7	B2, distorted
CTa _{0.2-0.9} Zr _{0.8-0.1}	4.6-8.3	B1	CoU ₆	2.29	D2 _c
CTc (excess C)	3.85	Cubic	Co _{0.28} Y _{0.72}	0.34	
CTi _{0.5-0.7} W _{0.5-0.3}	6.7 - 2.1	B1	CoY ₃	< 0.34	
CW	1.0		CoZr ₂	6.3	C16
CW_2	2.74	L' ₃	$Co_{0.1}Zr_{0.9}$	3.9	A3
CW ₂	5.2	F.C.C.	$Cr_{0.6}Ir_{0.4}$	0.4	H.C.P.
C_2Y	3.88	$tI6 (CaC_2)$	$Cr_{0.65}Ir_{0.35}$	0.59	H.C.P.
$Ca_3Co_4Sn_{13}$	5.9	$cP40 (Pr_{3}Rh_{2}Sn_{13})$	$Cr_{0.7}Ir_{0.3}$	0.76	H.C.P.
$Ca_3Ge_{13}Rh_4$	2.1	Same	$Cr_{0.72}Ir_{0.28}$	0.83	
CaHg	1.6	B2-cP2 (CsCl)	Cr ₃ lr	0.45	A15
CaHg ₃	1.6	hP8 (Ni ₃ Sn)	$Cr_{0-0.1}Nb_{1-0.9}$	4.6-9.2	A2
Calr ₂	6.15	C15	$Cr_{0.80}Os_{0.20}$	2.5	Cubic
$Ca_3 lr_4 Sn_{13}$	7.1	cP40	Cr ₃ Os	4.68	A15-cP8 (Cr_3Si)
$Ca_x O_3 Sr_{1-x} Ii (n = 3.7 - 11 \times 10^{19})$	< 0.1–0.55		$\operatorname{Cr}_{x}\operatorname{Re}_{1-x}$	1.2-5.2	De
10 ¹⁹)	14.04		$Cr_{0.4}Re_{0.6}$	2.15	D8 _b
$Ca_{0.1}O_3W$	1.4–3.4	Hexagonal	$Cr_{0.8-0.6}Rh_{0.2-0.4}$	0.5-1.10	A3
CaPb	7.0	C15	Cr_3Rh	0.3	A15-cP8
CaRh ₂	6.40	C15	$Cr_3 Ru$ (annealed)	3.3	A15
CaRn _{1.2} Sn _{4.5}	8.7	CP40	Cr ₂ Ku	2.02	$D8_{b}$
Call ₃	2.0	D2-CP2	$Cr_{3}Ku_{2}$	2.10	$\Delta \delta_{b}$ -troo (Crre)
CdHa	1.70-1.92	Totragonal	$Cr_{0.1-0.5}$ Cr Ti	0.54 - 1.05	Ab Crin a Ti
Cd In	3.24-3.36	Tetragonal	$Cr_{x} Tr_{1-x}$	4.2 (max.)	Cr in β-Ti
$Cd_{0.0075-0.05}m_{0.9925-0.95}$	3.24-3.30 4.2	Tett agonal	$Cr_{x} Ti_{1-x}$	4.2 (max.)	Ci iii p-11
CdSn	3.65		Cr II	0.75	ß-phase
Cd Tl	2.3		$C_{0.0175} = 0.9825$	1.12	Hexagonal
Cd Tl	2.54		Cu In (film)	3.75	Tionagonai
CeCo.	0.84	C15	CuIn	4.4	
CeCo. Ni.	0.46	C15	CuLa	5.85	
$CeCo_{1.67}$ $c_{1.67}$ $c_{1.67}$ $c_{1.67}$ $c_{1.67}$	0.47	C15	Cu ₂ Mo ₂ O ₂ S ₂	9	hR15 (Mo.PbS.)
Ce Gd, Ru	3.2 - 5.2	C15	Cu ₂ Mo ₂ Se	5.9	Same
CeIr ₃	3.34		Cu_Pb	5.7-7.7	
CeIr ₅	1.82		CuS	1.62	B18
Ce _{0.005} La _{0.995}	4.6		CuS ₂	1.48 - 1.53	C18
Ce _x La _{1-x}	1.3 - 6.3		CuSSe	1.5 - 2.0	C18
$Ce_{x}Pr_{1-x}Ru_{2}$	1.4 - 5.3	C15	CuSe ₂	2.3 - 2.43	C18
Ce _x Pt _{1-x}	0.7 - 1.55		CuSeTe	1.6 - 2.0	C18
CeRu ₂	6.0	C15	Cu_xSn_{1-x}	3.2 - 3.7	
Ce ₃ Mo ₆ Se ₅	5.7	hR15 (Mo ₆ PbS ₈)	Cu _x Sn _{1-x} (film, made at 10K)	3.6-7	
Ce ₂ Mo ₆ Te ₆	1.7	Same	Cu_xSn_{1-x} (film, made at 300K)	2.8 - 3.7	
$\operatorname{Co}_{x}\operatorname{Fe}_{1-x}\operatorname{Si}_{2}$	1.4 (max.)	C1	CuTe ₂	<1.25-1.3	C18
CoHf ₂	0.56	E9 ₃	CuTh ₂	3.49	C16
CoLa ₃	4.28		Cu _{0-0.027} V	3.9–5.3	A2
$Co_4La_3Sn_{13}$	2.8	cP40	CuY	0.33	B2-cP2 (CsCl)
CoLu ₃	~0.35	R 40	$Cu_x Zn_{1-x}$	0.5-0.845	1.045
Co _x LuSn _y	1.5	cP40	DyMo ₆ S ₈	2.1	hK15
$C_{0-0.01}MO_{0.8}Ke_{0.2}$	2-10	A 15	$\operatorname{Er}_{x}\operatorname{La}_{1-x}$	1.4-6.3	L D 1 C
$C_{0.02-0.10}ND_3Kh_{0.98-0.90}$	2.28-1.90	A15	ErNio ₆ S ₈	2.2	NK15
$Co_x NI_{1-x}SI_2$	1.4 (max.)		$Erivio_6 Se_8$	0.2	$\Pi K15$
$C_{0.5}K\Pi_{0.5}SI_2$	2.5 2.65 (m)		$re_3Lu_2OI_5$	0.1	$1240 (re_{3}5C_{2}51_{5})$
C_{x} KII _{1-x} SI ₂	5.05 (max.)		$re_{0-0.04}$ NIO _{0.8} Ke _{0.2}	2.0	
CU _{~0.3} SU _{~0.7}	~0.55		re _{0.05} ¹ NI _{0.05} ∠r _{0.90}	~3.9	

12-62

Substance	<i>Т</i> _с , К	Crystal structure type	Substance	<i>Т</i> _с , К	Crystal structure type
Fe ₃ Re ₂	6.55	D8 _b -tP30 (FeCr)	GeV ₃	6.01	A15
Fe ₃ Sc ₂ Si ₅	4.52	tP40	Ge ₂ Y	3.80	C _c
Fe ₃ Si ₅ Tm	1.3	Same	Ge _{1.62} Y	2.4	
Fe ₃ Si ₅ Y ₂	2.4	Same	Ge ₂ Zr	0.30	oC12 (ZrSi ₂)
Fe ₃ Th ₇	1.86	D10	GeZr ₃	0.4	L1 ₂ -tP32 (Ti ₃ P)
Fe _x Ti _{1-x}	3.2 (max.)	Fe in α-Ti	H _{0.33} Nb _{0.67}	7.28	B.C.C.
Fe _x Ti _{1-x}	3.7 (max.)	Fe in β-Ti	H _{0.1} Nb _{0.9}	7.38	Same
$\mathrm{Fe_{x}Ti_{0.6}V_{1-x}}$	6.8 (max.)		$H_{0.05}Nb_{0.95}$	7.83	Same
FeU ₆	3.86	D2 _c	$H_{0.12}Ta_{0.88}$	2.81	B.C.C.
Fe _{0.1} Zr _{0.9}	1.0	A3	$H_{0.08}Ta_{0.92}$	3.26	Same
$Ga_{0.5}Ge_{0.5}Nb_3$	7.3	A15	$H_{0.04}$ Ta _{0.96}	3.62	Same
Ga_2Ge_2U	0.87	B2-cP2	HfIrSi	3.50	C37-cP12 (Co ₂ Si)
GaHf ₂	0.21	C16-tI12 (Al ₂ Cu)	HfMo ₂	0.05	hP24 (Ni ₂ Mn)
GaLa ₃	5.84		HfN _{0.989}	6.6	B1
Ga₃Lu	2.3	B2-cP2	$Hf_{0-0.5}Nb_{1-0.5}$	8.3–9.5	A2
Ga ₂ Mo	9.5		$Hf_{0.75}Nb_{0.25}$	> 4.2	
GaMo ₃	0.76	A15	HfOs ₂	2.69	C14
GaN (black)	5.85	B4	HfOsP	6.1	C22-hP9 (Fe ₂ P)
Ga _{0.7} Pt _{0.3}	2.9	C1	HfPRu	9.9	Same
GaPt	1.74	B20	HfRe ₂	4.80	C14
GaSb (120kbar, 77K,	4.24	A5	$Hf_{0.14}Re_{0.86}$	5.86	A12
annealed)			$Hf_{0.99-0.96}Rh_{0.01-0.04}$	0.85 - 1.51	
GaSb (unannealed)	~5.9		$Hf_{0-0.55}Ta_{1-0.45}$	4.4 - 6.5	A2
Ga ₀₋₁ Sn ₁₋₀ (quenched)	3.47 - 4.18		HfV_2	8.9–9.6	C15
$Ga_{0-1}Sn_{1-0}$ (annealed)	2.6 - 3.85		Hg _x In _{1-x}	3.14 - 4.55	
GaTe	0.17	mC24 (GaTe)	HgIn	3.81	
Ga_5V_2	3.55	Tetragonal (Mn ₂ Hg ₅)	Hg ₂ K	1.20	Orthorhombic
GaV _{4.5}	9.15		Hg ₃ K	3.18	
Ga ₃ Zr	1.38		Hg ₄ K	3.27	
Ga ₃ Zr ₅	3.8	$D8_{b}-hP16 (Mn_{5}Si_{3})$	Hg ₈ K	3.42	
Gd _x La _{1-x}	< 1.0–5.5		Hg₃Li	1.7	Hexagonal
GdMo ₆ S ₈	3.5	hR15	HgMg ₃	0.17	hP8 (Na ₃ As)
GdMo ₆ Se ₈	5.6	hR15	Hg ₂ Mg	4.0	tI6 (MoSi ₂)
$\mathrm{Gd}_{\mathrm{x}}\mathrm{Os}_{2}\mathrm{Y}_{\mathrm{1-x}}$	1.4 - 4.7		$Hg_{3}Mg_{5}$	0.48	$D8_{b}-hP16 (Mn_{5}Si_{3})$
Gd _x Ru ₂ Th _{1-x}	3.6 (max.)	C15	Hg ₂ Na	1.62	Hexagonal
$Ge_{10}As_4Y_5$	9.06	$tP38 (C0_4 Sc_5 Si_{10})$	Hg_4Na	3.05	
GeIr	4.7	B31	$Hg_{x}Pb_{1-x}$	4.14 - 7.26	
GeIrLa	1.64	tI12 (LaPtSi)	HgSn	4.2	
$Ge_{10}Ir_4Lu_5$	2.60	tP38	$Hg_{x}Tl_{1-x}$	2.30 - 4.19	
$Ge_{10}Ir_4Y_5$	2.62	tP38	Hg_5Tl_2	3.86	
Ge ₂ La	1.49; 2.2	Orthorhombic,	Ho _x La _{1-x}	1.3 - 6.3	
		(Mar Har)	Ho _{1.2} Mo ₆ Se ₈	6.1	D10 ₂ -hR12 (Be ₃ Nb)
C - L - Dt	2.52	(NIn_2Hg_5)	$In_{1-0.86}Mg_{0-0.14}$	3.395-3.363	
GeLart Co. Lu Or	3.53	$t \Pi 2$	In ₂ Mo ₆ Te ₆	2.6	hR15 (Mo ₆ PbS ₈)
$Ge_{13}Lu_3Os_4$	5.0 2.70	$(Pr_3Kn_2Sn_{13})$	InNb ₃ (high pressure and	4-8; 9.2	A15
$Ge_{10}Lu_5Kn_4$	2.79	ur 58 2040	temp.)		
$Ge_{13}Lu_3Ku_4$	2.5	CP40	$\ln_{0.5}Nb_{3}Zr_{0.5}$	6.4	,
CoNh	1.45	AID	$\ln_{0.11}O_{3}W$	< 1.25-2.8	Hexagonal
Gend ₂	1.9	A 15	$\ln_{0.95-0.85}$ Pb _{0.05-0.15}	3.6-5.05	
Ge _{0.29} ND _{0.71}	0 40	A15 D21	$\ln_{0.98-0.91}$ Pb _{0.02-0.09}	3.45-4.2	
Co Ph	0.40	DJI Orthorhombic related		6.65	DO
Ge ₃ MI ₅	2.12	to InNi	INPO	0.7	BZ
GoPh	0.96	$\frac{1011101_2}{R_{21}}$	Insp (quenched from 170	4.8	LIKE A5
Genth Go. Ph.Sc	1.90	c P40	Insh	2.1	B 4
$Ge_{13}MI_4SU_3$	1.7	+D28	(InSh) Sn	2.1 2 Q E 1	Ъд
$Ge_{10}KII_4I_5$	1.33	cD40	$(1115D)_{0.95-0.10} Sn_{0.05-0.90}$	5.8-5.1	
$Ge_{13}Ku_4 I_3$	1./	CI'40	(various neat treatments)	267 274	
Gezou	1.5	A 15 cD8 (C r Si)	(11130) _{0-0.07} 311 _{1-0.93} In Sp	5.07-5.74	
$Ge1a_3$	0.0	Dhomhohodarl	III ₃ 511 In Sn	~0.0 24.79	
$Ge_3 1e_4 (11 = 1.06 \times 10^{20})$	1.55-1.80	Knombonedrai	m _x on _{1-x}	5.4-7.3	
$Ge_x 1e_{1-x} (n = 8.5 - 64 \times 10^{20})$	0.0/-0.41	KI			

Substance	<i>Т</i> _с , К	Crystal structure type	Substance	Т _с , К	Crystal structure type
$In_{0.82-1} Te (n = 0.83 - 1.71 \times 10^{22})$	1.02-3.45	B1	Ir ₂ Y ₃ Ir ₂ Y	1.61 3.50	D10hR13 (Be_Nb)
In, and Te, and	3.5-3.7	B1	Ir Y,	0.3-3.7	2 (3)
In Te $(n = 4.7 \times 10^{21})$	1.15 - 1.25	Rhombohedral	Ir Zr	4.10	C15
In Tl	2.7-3.374		Ir _a ,Zr _a	5.5	A3
In Tl	3.223		K.Mo.S.	3.32	hR15
In T	2.760		K ₂ ,O ₂ W	0.50	Hexagonal
In Tl	3.18-3.32	Tetragonal	K _{0.40} 0.57O ₂ W	1.5	Tetragonal
In Tl	2.98-3.3	E.C.C.	LaLu	2.2	Hexagonal. La type
Ir La	0.48	C15	La. Lu.	3.4	Same
Ir La	2.32	D10	LaMg.	1.05	C15
Ir La	2.32	D10 ₂	LaMo S	7.1	hR15
Ir La	2.13	2102	LaN	1.35	
IrLaSi	2.03	oC16 (CeNiSi)	LaOs.	6.5	C15
IrLaSi	2.7	tI10 (BaNiSn)	LaPt.	0.46	C15
Ir Lu	2.47	C15	La Pt.	0.54	C15
Ir Lu	2.89	C15	LaPtSi	3.48	tI12
Ir Lu Si	3.9	tP38 (Co Sc Si)	LaRh	2.60	
IrMo	< 1.0	A3	LaRh.	1.62	
IrMo	9.6	A15	La_Rh_	2.58	D10.
IrMo	6.8	D8	LaRhSi	3.42	oC16 (CeNiSi.)
IrNb	19	A15	La Rh Si	4.45	oI40 (Co Si U)
Ir Nb	9.8	D8	LaRhSi.	2.7	tl10 (BaNiSn.)
Ir Nb	2 32		LaRh Si	3.90	tl10 (Al Ba)
IrNb	2.02 7 9		LaRu	1.63	C15
Ir Nb	4.6	$_{\rm oP12}$ (IrTa)	LaS	6.5	D7.
Ir Nb Rh	2.43	A15	La Se	8.6	D7
Ir Nb Rb	2.10	A15	LaSi	2.3	C
Ir O Ti	5.5	F9	La Y	1.7-5.4	c
$I_{0.287} O_{0.14} I_{0.573}$ Ir O Ti	2.30	E9	LaZn	1.04	B2
Ir Os	0.3-0.98	273	Li Mo S	4.2	hR15
Ir Os	2.4	C14	LiPb	7.2	
IrOsY	2.1	C15	LuOs	3.49	C14
IrSiY	2.70	C37-oP12 (Co Si)	LuRh	1.27	C15
IrSiZr	2.04	Same	LuRh.	0.49	
Ir Sc	2.07	C15	Lu.Rh.Si	3.95	tP38 (Co.So.Si)
Ir Sc	2.46	C15	LuRu	0.86	C14
Ir Sc Si	8.46	tP38	Mg, Mo _c S	3.5	hR15
Ir Si Th	2.14	tI10	Mg2Nb	5.6	
IrSi Th	1.75	tI10	MgTl	2.75	B2
IrSiTh	6.50	tI12 (LaPtSi)	MgZn	0.9	A3-oP4 (AuCd)
Ir Si Y	2.60	tI10 (Al4Ba)	Mn Ti,	2.3 (max.)	Mn in -Ti
Ir Si Y	3.10	tP38	Mn Ti,	1.1–3.0	Mn in -Ti
Ir.Si.Y.	2.83	oI40	MnU,	2.32	D2_
IrSn _a	0.65-0.78	C1	Mo ₂ N	5.0	F.C.C.
Ir.Sr	5.70	C15	Mo Na S	8.6	hR15
Ir.Ta.	1.2	D8tP30 (FeCr)	Mo Nb,	0.016-9.2	
Ir. Te.	~3	- •b •• • • (• • ••)	$Mo_{r,ar}Nb_{a,rr}Se_{a}$	6.2	hR15
IrTe_	1.18	C2	Mo NdSa	8.2	hR15
IrTh	< 0.37	B.	MooS	7.2	A15
Ir.Th	6.50	C15	Mo	5.65	D8
Ir. Th	4.71		Mo ₂ P	5.31	DO
Ir. Th	1.52	D10.	Mo Pb, Se	6.75	hR15
Ir.Th	3.93	D2.	Mo ₀ Pd ₀	3.52	A3
IrTi.	5.40	A15	Mo PrSe	9.2	hR15
IrV.	1.39	A15	MoRe	7.8	D8,-tP30
IrW ₂	3.82		MoRe ₂	9.25; 9.89	A12
Ir. Wara	4.49		Mo Re,	1.2-12.2	
0.28 0.72 Ir.Y	2.18; 1.38	C15	Mo _a Re _a	6.35	D8,
Ir _e Y _e y	1.98; 1.44	C15	MoRh	1.97	A3 ^b
1.69 0.31 Ir. 70 Yo 20	2.16	C15	Mo Rh	1.5 - 8.2	B.C.C.
0.70 - 0.30			x 1-x		

12-64

Substance	Т _с , К	Crystal structure type	Substance	<i>Т</i> _с , К	Crystal structure type
MoRu	9.5-10.5	A3	Nb ₃ Rh	2.64	A15
$Mo_{0.61}Ru_{0.39}$	7.18	D8 _b	Nb ₀₆ Rh ₀₄₀	4.21	D8, plus other
Mo _{0.2} Ru _{0.8}	1.66	A3	Nb ₀ Rh ₁	3.07	A3-oP4 (AuCd)
Mo ₃ Ru ₂	7.0	D8 _b -tP30	$Nb_{3}Rh_{0.98=0.90}Ru_{0.02=0.10}$	2.42 - 2.44	A15
Mo ₄ Ru ₂ Te ₈	1.7	hR15	Nb _x Ru _{1-x}	1.2 - 4.8	
Mo ₆ S ₈	1.85	hR15	NbRuSi	2.65	oI36
Mo ₆ S ₈ Sc	3.6	hR15	NbS ₂	6.1-6.3	Hexagonal, NbSe ₂ type
$Mo_6S_8Sm_{12}$	2.9	hR15	NbS ₂	5.0 - 5.5	Hexagonal, three-layer
Mo ₆ S ₈ Tb	2.0	hR15			type
Mo ₆ S ₈ Tl	8.7	hR15	Nb ₃ Sb	0.2	L1 ₂ -tP32 (Ti ₃ P)
$Mo_6S_8Tm_{1,2}$	2.1	hR15	$Nb_{3}Sb_{0-0.7}Sn_{1-0.3}$	6.8–18	A15
$Mo_{6}S_{8}Y_{1,2}$	3.0	hR15	NbSe ₂	5.15 - 5.62	Hexagonal
Mo ₆ S ₈ Yb	9.2	hR15	$Nb_{1-1.05}Se_{2}$	2.2 - 7.0	Same
$Mo_{66}S_{8}Zn_{11}$	3.6	hR15	Nb ₃ Se ₄	2.0	hP14
$Mo_{3}Sb_{4}$	2.1		Nb ₃ Si	1.5	L1 ₂
Mo ₆ Se ₈	6.3	hR15	Nb ₃ SiSnV ₃	4.0	
Mo ₆ Se ₈ Sm _{1.2}	6.8	hR15	NbSn ₂	2.60	Orthorhombic
Mo ₆ Se ₈ Sn _{1.2}	6.8	hR15	Nb ₆ Sn ₅	2.8	oI44 (Sn ₅ Ti ₆)
Mo ₆ Se ₈ Tb	5.7	hR15	NbSnTaV	6.2	A15
Mo ₃ Se ₃ Tl	4.0	hP14	NbSnV ₂	5.5	A15
Mo ₆ Se ₈ Tm _{1.2}	6.3	hR15	Nb ₂ SnV	9.8	A15
Mo ₆ Se ₈ Yb	6.2	hR15	Nb _x Ta _{1-x}	4.4-9.2	A2
Mo ₃ Si	1.30	A15	Nb ₃ Te ₄	1.8	hP14
MoSi _{0.7}	1.34		Nb _x Ti _{1-x}	0.6–9.8	
Mo _x SiV _{3-x}	4.54-16.0	A15	Nb _{0.6} Ti _{0.4}	9.8	
Mo _{5.25} Ta _{0.75} Te ₈	1.7	hR15	Nb _x U _{1-x}	1.95 (max.)	
Mo ₆ Te ₈	1.7	hR15	Nb _{0.88} V _{0.12}	5.7	A2
Mo _{0.16} Ti _{0.84}	4.18; 4.25		$Nb_{0.5}V_{1.5}Zr$	4.3	C15-hP12 (MgZn ₂)
Mo _{0.913} Ti _{0.087}	2.95		Ni _{0.3} Th _{0.7}	1.98	D10 ₂
Mo _{0.04} Ti _{0.96}	2.0	Cubic	NiZr ₂	1.52	
Mo _{0.025} Ti _{0.975}	1.8		Ni _{0.1} Zr _{0.9}	1.5	A3
Mo _x U _{1-x}	0.7 - 2.1		$O_{3}Rb_{0.27-0.29}W$	1.98	Hexagonal
Mo _x V _{1-x}	0-~5.3		OSn	3.81	tP4 (PbO)
Mo ₂ Zr	4.25 - 4.75	C15	O_{3} SrTi (n = 1.7–12.0 × 10 ¹⁹)	0.12-0.37	
NNb (film)	6–9	B1	O_{3} SrTi (n = 10 ¹⁸ -10 ²¹)	0.05 - 0.47	
N _x O _y Ti _z	2.9-5.6	Cubic	O_{3} SrTi (n = 10 ²⁰)	0.47	
$N_x O_y V_z$	5.8 - 8.2	Cubic	$O_{3}Sr_{0.08}W$	2-4	Hexagonal
N _{0.34} Re	4–5	F.C.C.	OTi	0.58	
NTa (film)	4.84	B1	$O_{3}Tl_{0.30}W$	2.0 - 2.14	Hexagonal
N _{0.6-0.987} Ti	< 1.17–5.8	B1	OV ₃ Zr ₃	7.5	E9 ₃
N _{0.82-0.99} V	2.9–7.9	B1	OW ₃ (film)	3.35; 1.1	A15
NZr	9.8	B1	OsPti	1.2	C22-hP9 (Fe ₂ P)
N _{0.906-0.984} Zr	3.0-9.5	B1	OsPZr	7.4	Same
Na _{0.28-0.35} O ₃ W	0.56	Tetragonal	OsReY	2.0	C14
Na _{0.28} Pb _{0.72}	7.2		Os ₂ Sc	4.6	C14
NbO	1.25		OsTa	1.95	A12
NbOs ₂	2.52	A12	Os ₃ Th ₇	1.51	D10 ₂
Nb ₃ Os	1.05	A15	$Os_{x}W_{1-x}$	0.9 - 4.1	
$Nb_{0.6}Os_{0.4}$	1.89; 1.78	D8 _b	OsW ₃	~3	
$ND_{3}OS_{0.02-0.10}Kn_{0.98-0.90}$	2.42-2.30	A15	Os ₂ Y	4.7	C14
ND ₃ P	1.8	$L1_2tP32(11_3P)$	Os ₂ Zr	3.0	C14
	4.08	$C_37-OP12$ (CO_2SI)	$Os_x Zr_{1-x}$	1.5-5.6	
ND _{0.6} Pa _{0.4}	1.60			7.8	
$MD_{3}ra_{0.02-0.10}Kn_{0.92-0.90}$	2.49-2.55 4 91	A12	USW ₂	3.81	D8 _b -tP30 (FeCr)
$MD_{0.62}FL_{0.38}$	4.21 2.72		PPd _{3.0-3.2}	<0.35-0.7	
$100_5 r_3$	J.73	Δ15	$P_{3}Pa_{7}$ (nign temperature)	1.0	Knombonedral
$MD_3^{\Gamma}U_{0.02-0.98}^{\Gamma}MU_{0.98-0.02}^{\Gamma}$	2.32-9.0 5.97	$\frac{1}{10}$	$P_{3}Pa_{7}$ (low temperature)	0.70	Complex
Nb Ro	243 070	$\Delta 15$		1.22	<i>C</i> 1
NbRe	2.43-9.70	D8 -tP30	гкл ₂ р.р.	1.5	CI
NbReSi	5.1	0I36 (FeTiSi)	r ₄ nii ₅ DDhta	1.22	$C_{27} \circ C_{27} \circ C$
	<i></i>		1 AII1a	7.71	C_{37} -0r 12 (C_{0_2} 31)

Substance	<i>Т</i> _с , К	Crystal structure type	Substance	<i>Т</i> _с , К	Crystal structure type
PRhZr	1.55	Same	PtV ₃₅	1.26	A15
PRuTi	1.3	C22-hP9 (Fe ₂ P)	Pt ₀₅ W ₀₅	1.45	A1
PRuZr	3.46	C37-oP12	Pt _w	0.4 - 2.7	
PW.	2.26	DO	Pt ₂ Y ₂	0.90	
Pb.Pd	2.95	C16 ^e	Pt ₂ Y	1.57; 1.70	C15
Ph Pt	2.80	Related to C16	Pt.Y	0.82	D10
Ph Ph	2.66	C16	PtZr	3.0	A3
Dhch	2.00	010	ReSc	4.2	C15-hP12 (Mg7n)
P D S D	5.10		Re ₂ Sc	2.2	A 12 c I58 (Mg)
Pbre (plus 0.1 w/o Pb)	5.19		PoSiTo	4.4	ol26 (FoTiSi)
Pble (plus 0.1 w/o le)	5.24-5.27		Do Si V	1.76	tD40 (Eq.Sc.Si.)
PD11 _{0.27}	6.43		$Re_3 3 5_2$	1.70	$D_{2} + D_{2}O(E_{0}C_{n})$
P611 _{0.17}	6.73		$Re_3 Ia_2$	1.4	A 12
PbTl _{0.12}	6.88		$Re_{0.64} Ia_{0.36}$	1.40	A12 $A12 = 159 (Mm)$
PbTl _{0.075}	6.98		$Re_3 Ia$	6.78	A12-CI58 (IVIII)
PbTl _{0.04}	7.06		Re ₂₄ 11 ₅	6.60	A12
Pb _{1-0.26} Tl _{0-0.74}	7.20-3.68		$\operatorname{Ke}_{x} \Pi_{1-x}$	6.6 (max.)	Da
PbTl ₂	3.75 - 4.1		Re _{0.76} V _{0.24}	4.52	D8 _b
Pb ₃ Zr ₅	4.60	D8 ₈	Re ₃ V	6.26	D8 _b -tP30
PbZr ₃	0.76	A15	$Re_{0.92}V_{0.08}$	6.8	A3
Pd ₀ , Pt ₀ , Te ₂	1.65	C6	$Re_{0.6}W_{0.4}$	6.0	
$Pd_{aa}Ru_{aa}Zr_{aa}$	~9		Re _{0.5} W _{0.5}	5.12	D8 _b
Pd_S (quenched)	1.63	Cubic	Re ₁₃ W ₁₂	5.2	D8 _b -tP30
PdSb	1.25	C2	Re ₃ W	9.0	A12-cI58
PdSb	1.20	B8	Re ₂ Y	1.83	C14
DdSbSo	1.5		Re ₂ Zr	5.9	C14
DJChTo	1.0		Re ₃ Zr	7.40	A12-cI58
	1.2		ReZr	7.40	Same
Pa ₄ Se	0.42		Rh ₁₇ S ₁₅	5.8	Cubic
Pd ₆₋₇ Se	0.66	Like Pd ₄ 1e	Rh og Sc ozc	0.88; 0.92	
Pd _{2.8} Se	2.3		~0.24 ~0.76 Rh_Sc_Si	8.54	tP38
$Pd_{x}Se_{1-x}$	2.5 (max.)		Rh Sc Sn	4.5	cP40
PdSi	0.93	B31	Rh Se	6.0 (max.)	
PdSn	0.41	B31	RhSi Th	1.76	tI10
PdSn ₂	3.34		Rh Sc Th	6.45	tI12
Pd ₂ Sn	0.41	C37	Ph Si V	2 1 1	tI12
Pd ₃ Sn	0.47 - 0.64	B8,	$\frac{1}{2} \frac{1}{2} \frac{1}{2}$	2.70	oI40
Pd ₂ SnTm	1.77	DO_3 -cF16 (BiF ₃)	$\frac{1}{2}$	4.2	cP40
Pd ₂ SnY	4.92	Same	$\frac{\text{RH}_{4}\text{SH}_{13}\text{SH}_{3}}{\text{Ph}}$	4.5	
Pd_SnYb	1.79	Same	Rh _x Sh _y Th Dh Sn Tre	1.9	c12 (w)
PdTe	2.3: 3.85	B8		2.5	CP40 D40
PdTe	2.56 - 1.88	B8	$\operatorname{Kn}_4 \operatorname{Sn}_{13} \operatorname{I}_3$	3.2	CP40
PdTe	1.69	C6	Kh ₂ Sr	6.2	C15
PdT _e	1.89	C6	$Rh_{0.4} Ia_{0.6}$	2.35	D8 _b
DdTo	1.05	C0	RhTe ₂	1.51	C2
DI Ta	1.05	C0 P0	$Rh_{0.67}$ Te _{0.33}	0.49	
Pd _{1,1} ie	4.07	BO_1	Rh _x Te _{1-x}	1.51 (max.)	
	0.76		RhTh	0.36	B_{f}
	0.85		Rh ₃ Th ₇	2.15	$D10_2$
$Pd_{0.1}Zr_{0.9}$	7.5	A3	Rh ₅ Th	1.07	
PtSb	2.1	B8 ₁	Rh _x Ti _{1-x}	2.25 - 3.95	
PtSi	0.88	B31	Rh _{0.02} U _{0.98}	0.96	
PtSn	0.37	B8 ₁	RhV ₃	0.38	A15
PtSn ₄	2.38	C16-oC20 (PdSn ₄)	RhW	~3.4	A3
Pt ₃ Ta ₇	1.5	D8 _b -tP30	RhY ₃	0.65	
PtTa ₃	0.4	A15-cP8 (Cr ₃ Si)	Rh ₂ Y ₃	1.48	
PtTe	0.59	Orthorhombic	Rh ₃ Y	1.07	C15
PtTh	0.44	B _f	Rh ₅ Y	0.56	
Pt _a Th _a	0.98	D10	Rh,Y,	0.32	hP20 (Fe, Th,)
Pt_Th	3.13	2	Rhan Zr (annealed)	5.8	· > //
PtTi	0.58	A15	RhZr	2.1 - 10.8	
Pt U	0.87	β-phase	Rh Zr	9.0	H.C.P.
$0.02 \sim 0.98$ PtV	1 36	A 15	Ru Sc	1.67	C14
PtV	2 87_2 20	A15	RuSiTa	3.15	oI36
··· 3	2.07-3.20				

Substance	<i>T_c,</i> K	Crystal structure type	B. Superco	nductors with 7	, > 10K	
Ru ₂ Si ₂ Th	3.98	hP12	Substance	Т.К	Crysta	l structure type
Ru ₂ Si ₂ Y	3.51	hP12	ALCMO	10.0	Δ13	
Ru ₁ Sn ₃ Y	1.3	cP40	Al Ge Nh	12.6	A15	
Ru,Th	3.56	C15	Al Ge Nb	20.7	A15	
RuTi	1.07	B2	AlNb	18.0	A15	(Cr Si)
Ru _{0.05} Ti _{0.05}	2.5		AIND	12.0	1115	(EeCr)
Ru ₀₁ Ti ₀₈	3.5		A1 Nb	<42-135	D8	(reer)
Ru Ti ₀₆ V	6.6 (max.)		A1 Nb	12-17.5	A15	
Ru,U	0.15	L1 ₂ -cP4	A1 Nb V	14 5-17 5	A15	
Ru ₀₄₅ V ₀₅₅	4.0	B2 ²	A1 Nb V	4 4-13 5	1115	
RuW	7.5	A3	A1 Si V	14.05		
Ru ₂ Y	1.52	C14	A1V	11.8	A15	(Cr Si)
Ru ₂ Zr	1.84	C14	AuNb	11.5	A15	(01301)
Ru ₀₁ Zr ₀₈	5.7	A3	Au Nb	11-110	1110	
STh	0.5	B1-cF8 (NaCl)	Au Nh Rh	2 53-10 9	A15	
SbSn	1.30 - 1.42	B1 or distorted	AuNb V	15-110	A15	
SbTa,	0.72	A15-cP8 (Cr ₂ Si)	$\begin{array}{c} \mathbf{B} \mathbf{C} \mathbf{M} \mathbf{O} \\ \mathbf{B} \mathbf{C} \mathbf{M} \mathbf{O} \end{array}$	12.5	1115	
SbTi	5.8	Same	B LuRb	11.7		(B CeCo)
SbaTia	5.2		B LuRu	10		
Sbaal and Vana and	3.76-2.63	A2	B R h Y	11 3		(B CeCo)
SbV ₂	0.80	A15	B_{4} Si V	15.8	A15	
SeTh	1.7	B1-cF8	$B_{0.1}S_{0.9}V_3$ BaBi O Pb	13.0	1115	
SiMo.	1.4	A15-cP8	$B_{0,2}O_{3}I O_{0,8}$	120		
Si.Th	3.2	C, α-phase	$B_{2}C_{1}U_{2}O_{8}U_{2}$	80		
SiaTh	2.4	C32, β-phase	$Ba_2Cu_3LaO_6$	101		
SiVRu_	2.9	A15	$B_2 C_3 O_7 III$	90		
Si.W.	2.8; 2.84		$(B_2 L_3) C_1 O_2$	36	A15	(K Nif)
SiZr.	0.5	L1 -tP32 (Ti P)	$\operatorname{Bi}_{2}\operatorname{CuO}_{4}$	110	AIJ	$(\mathbf{R}_{2}^{\mathbf{I}\mathbf{NII}}_{4})$
Sn	6.5-< 4.2	A15	Br Mo S	13.8		(Mo PbS)
SnTa	8.35	A15, highly ordered	$C I_2$	11.0		$(C P_{11})$
SnTa	6.2	A15, partially ordered	CMo	14.3	B1	$(O_3 P Q_2)$ (NaC1)
SnTaV.	2.8	A15	CMo	12.2	ы	0**
SnTa ₂ V	3.7	A15	C Mo Nb	10.8-12.5	B1	0
Sn Te. $(n = 10.5 - 20 \times 10^{20})$	0.07-0.22	B1	$C_{0.5} Ho_x Ho_{1-x}$	10.2(max)	B1	
Sn.Th	3.33	L1 -cP4	CM_0 Ti	10.2	B1	
SnTi.	5.80	A15-cP8	C N Ta	10.0-11.3	21	
Sn Tl.	2.37-5.2		CNb (whiskers)	7.5-10.5		
SnV	3.8	A15	CNb	11.5	B1	
Sn V	2.87-~1.6	A2	C Nb	6-11	B1	
SnZr	0.92	A15-cP8	CNb Ta	8.2-13.9	21	
TaTi	1.3	Hexagonal	CNb W	12.5-11.6	B1	
Ta Ti	2.9	Hexagonal	C. Si V.	16.4	A15	
Ta V	4.30-2.65	A2	CTa	10.3	B1	
Ta W	1.2-4.4	A2	CTa W	8.5-10.5	B1	
$T_{c_{}}^{0.8-1}$ W	1.25 - 7.18	Cubic	$C_{1-0.4}$ $C_{0-0.6}$ $C_{0-0.6}$ $C_{0-0.6}$	17		(C.Pu.)
Tc	7.52	αplus	$C_{0.66} = C_{0.13} = 0.21$ $C_{-}Y_{-}$	11.5		$(C_{3}Pu_{2})$
Tc W	7.88	plus α	CW	10	B1	(-3 -2)
Tc Zr	9.7	A12	(Ca.La) CuO	18		(K NiF)
TeY	1.02	B1-cF8	$Cu(La,Sr)_{2}O.$	39		(- 2 4)
ThTL	0.87	L1cP4	$Cu_{1}Mo_{2}S_{1}$	10.8		(Mo.PbS.)
Th Y	1.2-1.8		Cr SiV	11.3	A15	(68/
Ti V	6.14	Cubic	GaNb.	14.5	A15	(Cr.Si)
Ti V	0.2-7.5		Ga Nb Sn	14-18.37	A15	(3)
$T_{i} Z_{r}$ (annealed)	1.23		GaV_{-}	16.8	A15	
Ti Zr (quenched)	2.0		GaV	6.3-14.45	A15	
Tl Y	1.52	L1 -cP4	GeNb	23.2	A15	
V ₂ Zr	8.80	C15	GeNb _a (guenched)	6-17	A15	
V Zr	5.9		Ge Nb.Sn	17.6-18.0	A15	
W Zr	2.16	C15	Ge_{x} Nb Sn	11.3		
YZn	0.33	B2-cP2 (CsCl)	Ge. Si. V.	14.0	A15	
 n denotes current carriers conce 	entration in cm ⁻³	012(0001)	GeV.	11	A15	
			InLa.	9.83: 10.4	LJ	(AuCu.)
			3		2	(3/

Substance	<i>Т_с,</i> К	Crystal	structure type	Substance	Т _с ,К	Crystal	structure type
$In_{0.02}Nb_{2}Sn_{1.02}$	18.0-18.19	A15		N ₁₀₀ 42m/sNb ₀ 58m/sTi	15-16.8		
InV ₃	13.9	A15		$N_{100-75w/0}Nb_{0-25w/0}Zr$	12.5-16.35		
Ir ₀₄ Nb ₀₆	10		(FeCr)	NNb _x Zr _{1-x}	9.8-13.8	B1	
LaMo ₆ Se ₈	11.4		(Mo ₆ PbS ₈)	$N_{0.93}Nb_{0.85}Zr_{0.15}$	13.8	B1	
LiO ₄ Ti ₂	13.7		$(A1_MgO_A)$	NTa	12-14	B1	
MgB ₂	39.0±0.5	C32	2 .	NZr	10.7	B1	
MoN	12; 14.8		h*	Nb ₃ Pt	10.9	A15	
Mo ₃ Os	12.7	A15		$Nb_{0.18}Re_{0.82}$	10		(Mn)
Mo ₆ Pb ₀ S ₇₅	15.2		(Mo ₆ PbS ₈)	Nb ₃ Si	19	A15	
Mo ₃ Re	10.0; 15	A15	0 0	Nb ₀₃ SiV ₂₇	12.8	A15	
$Mo_{x}Re_{1-x}$	1.2 - 12.2			Nb ₃ Sn	18.05	A15	
$Mo_{0.52}Re_{0.48}$	11.1			Nb ₀₈ Sn ₀₂	18.18; 18.5	A15	
Mo _{0.57} Re _{0.43}	14.0			$Nb_x Sn_{1-x}$ (film)	2.6 - 18.5		0*
Mo _{~0.60} Re _{0.395}	10.6			Nb ₃ Sn ₂	16.6		t*
MoRu	9.5-10.5	A3		NbSnTa ₂	10.8	A15	
Mo ₃ Ru	10.6	A15		Nb ₂ SnTa	16.4	A15	
Mo ₆ Se ₈ T1	12.2		(Mo ₆ PbS ₈)	Nb _{2.5} SnTa _{0.5}	17.6	A15	
Mo _{0.3} SiV _{2.7}	11.7	A15		Nb _{2.75} SnTa _{0.25}	17.8	A15	
Mn ₃ Si	12.5	A15		Nb _{3x} SnTa _{3(1-x)}	6.0 - 18.0		
Mo ₃ Tc	15	A15		Nb ₂ SnTa _{0.5} V _{0.5}	12.2	A15	
Mo _{0.3} Tc _{0.7}	12.0	A15		NbTc ₃	10.5	A12	
Mo _x Tc _{1-x}	10.8 - 15.8			$Nb_{0.75}Zr_{0.25}$	10.8		
MoTc ₃	15.8			$Nb_{0.66}Zr_{0.33}$	10.8		
NNb (whiskers)	10 - 14.5			PbTa ₃	17	A15	
NNb (diffusion wires)	16.10			RhTa ₃	10	A15	
N _{0.988} Nb	14.9; 17.3	B1		RhZr ₂	10.8; 11.3	C16	(A1 ₂ Cu)
N _{0.824-0.988} Nb	14.4 - 15.3	B1		$Rh_{0-0.45}Zr_{1-0.55}$	2.1 - 10.8		
N _{0.7-0.795} Nb	11.3 - 12.9			SiTi _{0.3} V _{2.7}	10.9	A15	
NNb _x O _y	13.5 - 17.0	B1		SiV ₃	17.1	A15	
NNb _x O _y	6.0–11			SiV _{2.7} Zr _{0.3}	13.2	A15	

TABLE 5. Critical Field Data

Substance	H _o (oersteds)	Substance	H _o (oersteds)
Ag ₂ F	2.5	InSb	1100
Ag ₇ NO ₁₁	57	In _x Tl _{1-x}	252 - 284
Al ₂ CMo ₃	1700	In _{0.8} Tl _{0.2}	252
BaBi ₃	740	$Mg_{0.47}Tl_{0.53}$	220
Bi ₂ Pt	10	Mo _{0.16} Ti _{0.84}	<985
Bi ₃ Sr	530	NbSn ₂	620
Bi ₅ Tl ₃	>400	PbTl _{0.27}	756
CdSn	>266	PbTl _{0.17}	796
CoSi ₂	105	PbTl _{0.12}	849
Cr _{0.1} Ti _{0.3} V _{0.6}	1360	PbTl _{0.075}	880
$In_{1-0.86}Mg_{0-0.14}$	272.4–259.2	PbTl _{0.04}	864

Al ₂ CMo ₃ 9.8–10.2 0.091 156 AlNb ₃ 0.375	1.2
AlÑb ₃ 0.375	
$Ba_{x}O_{3}Sr_{1-x}Ti$ <0.1–0.55 0.0039 max.	
$Bi_{0.5}Cd_{0.1}Pb_{0.27}Sn_{0.13}$ >24	3.06
$B_{1_x}P_{1_{-x}}$ 7.35–8.4 0.122 max. 30 max.	4.2
$Bl_{0.56}PD_{0.44}$ 8.8 15 Bi Db b 2.32	4.2
$B_{7.5w/o}^{1}P_{92.5w/o}^{2}$ 2.32 Bi Pb 0.29 2.8	
Bi Pb 0.46 0.73	
$Bi_{a,cc}Pb_{a,cs}Sn_{a,c}$ >25	3.06
$Bi_{1,002}Sn_{0,007}$ 0-0.032	3.7
Bi ₅ Tl ₃ 6.4 >5.6	3.35
$C_{8}K$ (excess K) 0.55 0.160 (H \perp c)	0.32
0.730 (H c)	0.32
С ₈ К 0.39 0.025 (Н⊥с)	0.32
0.250 (H c)	0.32
$C_{0.44}Mo_{0.56}$ 12.5-13.5 0.087 98.5	1.2
CNb 8–10 0.12 16.9	4.2
$CND_{0.4}Ia_{0.6}$ 10–13.6 0.19 14.1	1.2
C 1a $9-11.4$ 0.22 4.0 C 2 O Sr Ti $-0.1-0.55$ $0.002-0.004$	1.2
$Cd H\sigma$ 0.23 0.34	2.04
(by weight)	2.01
Cd _{ace} Hg _{ace} 0.28 0.31	2.16
$Cr_{0.10}Ti_{0.30}V_{0.60}$ 5.6 0.071 84.4	0
GaN 5.85 0.725	4.2
Ga _x Nb _{1-x} >28	4.2
GaSb (annealed) 4.24 2.64	3.5
GaV _{1.95} 5.3 73 ^e	
GaV _{21-3.5} 6.3–14.45 230–300 ^d	0
GaV ₃ 0.4 350°	0
CoV 0.15 121	0
Gav_{45} 9.10 121 Hf Nb $52-5102$	12
$H_x(b_y) = 28-86$	1.2
$H_{g_{out}}Pb_{out}$ 0.235 2.3	
$H_{g_{0.10}}Pb_{0.999}$ 0.23 4.3	4.2
Hg _{0.15} Pb _{0.85} 6.75 >13	2.93
$In_{0.98}Pb_{0.02}$ 3.45 0.1 0.12	2.76
In _{0.96} Pb _{0.04} 3.68 0.1 0.12 0.25	2.94
In _{0.94} Pb _{0.06} 3.90 0.095 0.18 0.35	3.12
$In_{0.913}Pb_{0.087} 4.2 ~10.17 0.55 2.65$	10
$\ln_{0.316} Pb_{0.684}$ 0.155 3.7	4.2
$II_{0.17}P_{0.83}$ 2.8 5.5	4.2
$In_{1.000}$ $Ic_{1.002}$ $I.2$ In TI 0.263 0.263	33
$I_{0.95} I_{0.05}$ 0.200 0.2	3.25
$I_{0.90} - 0.10$ $I_{0.12} - 0.242$ 0.39	3.21
$In_{0.75} In_{0.75} In_{0.75} 0.216 0.50$	3.16
LaN 1.35 0.45	0.76
La_3S_4 6.5 ≈ 0.15 >25	1.3
La_3Se_4 8.6 ≈ 0.2 >25	1.25
Mo _{0.52} Re _{0.48} 11.1 14–21 22–33	4.2
18-28 37-43	1.3
$Mo_{0.6}Re_{0.395}$ 10.6 14-20 20-37	4.2
19–26 26–37	1.3
$VIO_{0.5} II_{0.5}$ /5 [°] Mo Ti /18 0.028 09.7 [°]	0
1410 _{0.16} 11 _{0.84} 1.10 0.020 70.7 26_38	3.0
Mo Ti 2.95 0.060 15	4.2
$Mo_{n,n}U_{n,n}$ 1.85–2.06 >25	1.2
$Mo_{0.17}Zr_{0.83}$ 30	

TABLE 6. High Critical Magnetic-Field Superconductive Compounds and Alloys

Substance	<i>T</i> _c , K	H _{cl} , kOe	H _{c2} , kOe	H _{c3} , kOe	$T_{ m obs}$, K ^a
N _{(128-m})Nb	15.2		>9.5		13.2
NNb (wires)	16.1		153°		0
			132		4.2
			95		8
			53		12
NNb O	13.5-17.0		38		
NNb Zr	9.8-13.8		4->130		4.2
N Nb Zr	13.8		>130		4.2
Na Pb	1010	0.19	6.0		
Na Pb		0.28	2.05		
Nb	9.15		2.020		1.4
			1.710		4.2
Nb		0.4-1.1	3-5.5		4.2
Nb (unstrained)		1.1-1.8	3.40	6-9.1	4.2
Nb (strained)		1.25-1.92	3.44	6.0-8.7	4.2
Nb (cold-drawn wire)		2.48	4.10	≈10	4.2
Nh (film)		2110	>25		4.2
NbSc			>30		
Nb Sn		0.170	221		4.2
1103011		0127 0	70		14.15
			54		15
			34		16
			17		17
Nh Ta		0.084	0.154		4 195
Nb Ta		0.001	10		4.2
Nb Ta Zr			>70->90		4.2
Nb Ti			148 max.		1.2
1 (0 _x 11 _{1-x}			120 max.		4.2
NB U		1 98	23		1.2
Nb Zr		100	127 max.		1.2
1 (0 _x -1-x			94 max.		4.2
O SrTi	0.43	0.0049°	0.504°		0
O SrTi	0.33	0.00195°	0.420°		0
PbSb (quenched)	0.00	0100170	>1.5		4.2
PbSb (annealed)			>0.7		4.2
PbSb (quenched)			>23		4.2
PbSb (annealed)			>0.7		4.2
Pb Sn		0.45	1.1		
Pb Sn		0.53	0.56		
Pb Tl	7.20-3.68	0.00	2-6.9°		0
PbT1	6.73		4.5°		0
Re W			>30		-
Sb Sn			0.12		3.7
SiV	17.0	0.55	156 ^e		
Sn Te		0.00043-0.00236	0.005-0.0775		0.012-0.079
$Ta^{(99.95\%)}$		0.425	1.850		1.3
		0.325	1.425		2.27
		0.275	1.175		2.66
		0.090	0.375		3.72
Ta, Nb,			3.55		4.2
Ta _{acc} Ti _{acc}	4.4-7.8		>14-138		1.2
Ta, Ti,			138		1.2
Te	3.3	0.25 ^c			0
Tc_W,	5.75-7.88		8-44		4.2
Ti				2.7	4.2
Ti _{0.75} V _{0.25}	5.3	0.029 ^c	199 ^c		0
Ti _{0.75} V _{0.25}	4.7	0.024 ^c	172 ^c		0
Ti _{0.615} V _{0.385}	7.07	0.050	34		4.2
Ti _{0.516} V _{0.484}	7.20	0.062	28		4.2
Ti _{0.415} V _{0.5°5}	7.49	0.078	25		4.2
Ti ₀₁₂ V ₀₈₈			17.3	28.1	4.2
Ti_009V_091			14.3	16.4	4.2
Ti _{0.06} V _{0.94}			8.2	12.7	4.2

Substance	<i>Т</i> _с , К	H _{c1} , kOe	<i>H</i> _{c2} , kOe	H _{c3} , kOe	$T_{ m obs}$, K ^a
Ti _{0.03} V _{0.97}			3.8	6.8	4.2
Ti _x V _{1-x}			108 max.		1.2
V	5.31	0.8	3.4		1.79
		0.75	3.15		2
		0.45	2.2		3
		0.30	1.2		4
$V_{0.26}Zr_{0.74}$	≈ 5.9	0.238			1.05
0.20 0.74		0.227			1.78
		0.185			3.04
		0.165			3.5
W (film)	1.7 - 4.1		>34		1
^a Temperature of critical fi	eld measurement.				

^b w/o denotes weight percent.

- Extrapolated.
- ^d Linear extrapolation.

Parabolic extrapolation

References

- B. W. Roberts, in Superconductive Materials and Some of Their Properties. Progress in Cryogenics, Vol. IV, 1964, pp. 160–231.
- B. W. Roberts, Superconductive Materials and Some of Their Properties, NBS Technical Notes 408 and 482, U.S. Government Printing Office, 1966 and 1969; B. W. Roberts, *J. Phys. Chem. Ref. Data*, 5, 581, 1976.
- B. W. Roberts, Properties of Selected Superconductive Materials, 1978 Supplement, NBS Technical Note 983, 1978.
- 4. T. Claeson, Phys. Rev., 147, 340, 1966.
- 5. C. J. Raub, W. H. Zachariasen, T. H. Geballe, and B. T. Matthias, J. Phys. Chem. Solids, 24, 1093, 1963.
- T. H. Geballe, B. T. Matthias, V. B. Compton, E. Corenzwit, G. W. Hull, Jr., and L. D. Longinotti, *Phys. Rev.*, 1A, 119, 1965.
- C. J. Raub, V. B. Compton, T. H. Geballe, B. T. Matthias, J. P. Maita, and G. W. Hull, Jr., J. Phys. Chem. Solids, 26, 2051, 1965.
- R. D. Blaugher, J. K. Hulm, and P. N. Yocom, J. Phys. Chem. Solids, 26, 2037, 1965.
- 9. T. Claeson and H. L. Luo, J. Phys. Chem. Solids, 27, 1081, 1966.
- 10. S. C. Ng and B. N. Brockhouse, *Solid State Comm.*, 5, 79, 1967.
- O. I. Shulishova and I. A. Shcherbak, *Izv. AN SSSR, Neorg. Materials*, 3, 1495, 1967.
- 12. T. F. Smith and H. L. Luo, J. Phys. Chem. Solids, 28, 569, 1967.
- 13. A. C. Lawson, J. Less-Common Metals, 23, 103, 1971.
- 14. R. Chevrel, M. Sergent, and J. Prigent, J. Solid State Chem., 3, 515, 1971.
- 15. M. Marezio, P. D. Dernier, J. P. Remeika, and B. T. Matthias, *Mat. Res. Bull.*, 8, 657, 1973.
- J. K. Hulm and R. D. Blaugher in *Superconductivity in d- and f-Band* Metals, D. H. Douglass, Ed., American Institute of Physics, 4, 1, 1972.
- 17. R. N. Shelton, A. C. Lawson, and D. C. Johnston, *Mat. Res. Bull.*, 10, 297, 1975.
- 18. H. D. Wiesinger, Phys. Status Sol., 41A, 465, 1977.
- 19. O. Fisher, Applied Phys., 16, 1, 1978.
- 20. D. C. Johnston, Solid State Comm., 24, 699, 1977.
- 21. H. C. Ku and R. H. Shelton, Mat. Res. Bull., 15, 1441, 1980.
- 22. H. Barz, Mat. Res. Bull., 15, 1489, 1980.
- 23. G. P. Espinosa, A. S. Cooper, H. Barz, and J. P. Remeika, *Mat. Res. Bull.*, 15, 1635, 1980.
- E. M. Savitskii, V. V. Baron, Yu. V. Efimov, M. I. Bychkova, and L. F. Myzenkova, in *Superconducting Materials*, Plenum Press, 1981, p. 107.
- R. Fluckiger and R. Baillif, in Topics in *Current Physics*, O. Fischer and M. B. Maple, Eds., Springer Verlag, 34, 113, 1982.
- R. N. Shelton, in *Superconductivity in d- and f-Band Metals*, W. Buckel and W. Weber, Eds., Kernforschungszentrum, Karlsruhe, 1982, p. 123.
- 27. D. C. Johnston and H. F. Braun, Topics in Current Phys., 32, 11, 1982.

- 28. R. Chevrel and M. Sergent, Topics in Current Phys., 32, 25, 1982.
- G. P. Espinosa, A. S. Cooper, and H. Barz, *Mat. Res. Bull.*, 17, 963, 1982.
- R. Muller, R. N. Shelton, J. W. Richardson, Jr., and R. A. Jacobson, J. Less-Comm. Met., 92, 177, 1983.
- 31. You-Xian Zhao and Shou-An He, in *High Pressure in Science and Technology*, North Holland, 22, 51, 1983.
- 32. You-Xian Zhao and Shou-An He, Solid State Comm., 24, 699, 1983.
- 33. G. P. Meisner and H. C. Ku, Appl. Phys., A31, 201, 1983.
- R. J. Cava, D. W. Murphy, and S. M. Zahurak, J. Electrochem. Soc., 130, 2345, 1983.
- 35. R. N. Shelton, J. Less-Comm. Met., 94, 69, 1983.
- B. Chevalier, P. Lejay, B. Lloret, Wang Xian–Zhong, J. Etourneau, and P. Hagenmuller, *Annales de Chemie*, 9, 191, 1984.
- G. Venturini, M. Meot-Meyer, E. McRae, J. F. Mareche, and B. Rogues, Mat. Res. Bull., 19, 1647, 1984.
- J. M. Tarascon, F. G. DiSalvo, D. W. Murphy, G. Hull, and J. V. Waszczak, *Phys. Rev.*, 29B, 172, 1984.
- 39. G. V. Subba and G. Balakrishnan, Bull. Mat. Sci., 6, 283, 1984.
- 40. B. Batlog, *Physica*, 126B, 275, 1984.
- 41. M. J. Johnson, Ames Lab (USA) Report IS-T-1140, 1984.
- 42. I. M. Chapnik, J. Mat. Sci. Lett., 4, 370, 1985.
- W. Rong-Yao, L. Q-Guang, and Z. Xiao, *Phys. Status Sol.*, 90A, 763, 1985.
- W. Xian-Zhong, B. Chevalier, J. Etourneau, and P. Hagenmuller, *Mat. Res. Bull.*, 20, 517, 1985.
- H. R. Ott, F. Hulliger, H. Rudigier, and Z. Fisk, *Phys. Rev.*, 31B, 1329, 1985.
- P. Villars and L. D. Calver, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 1–3, ASM, 1985.
- 47. G. V. Subba Rao, K. Wagner, G. Balakhrishnan, J. Jakani, W. Paulus, and R. Scollhorn, *Bull. Mat. Sci.*, 7, 215, 1985.
- 48. J. G. Bednorz and K. A. Muller, Zs. Physik, B64, 189, 1986.
- 49. W. Rong-Yao, Phys. Status Sol., 94A, 445, 1986.
- 50. H. D. Yang, R. N. Shelton, and H. F. Braun, *Phys. Rev.*, 33B, 5062, 1986.
- 51. G. Venturini, M. Kanta, E. McRae, J. F. Mareche, B. Malaman, and B. Roques, *Mat. Res. Bull.*, 21, 1203, 1986.
- 52. W. Rong-Yao, J. Mat. Sci. Lett., 5, 87, 1986.
- M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, *Phys. Rev. Lett.*, 58, 908, 1987.
- 54. R. J. Cava, R. B. Van Dover, B. Batlog, and E. A. Rietman, *Phys. Rev. Lett.*, 58, 408, 1987.
- L. C. Porter, T. J. Thorn, U. Geiser, A. Umezawa, H. H. Wang, W. K. Kwok, H-C. I. Kao, M. R. Monaghan, G. W. Crabtree, K. D. Carlson, and J. M. Williams, *Inorg. Chem.*, 26, 1645, 1987.
- A. M. Kini, U. Geiser, H-C. I. Kao, K. D. Carlson, H. H. Wang, M. R. Monaghan, and K. M. Williams, *Inorg. Chem.*, 26, 1834, 1987.

- 57. T. Penney, S. von Molnar, D. Kaiser, F. Holtzberg, and A. W. Kleinsasser, *Phys. Rev.*, B38, 2918, 1988.
- Y. K. Tao, J. S. Swinnea, A. Manthiram, J. S. Kim, J. B. Goodenoug, and H. Steinfink, *J. Mat. Res.*, 3, 248, 1988.
- G. G. Peterson, B. R. Weinberger, L. Lynds, and H. A. Krasinski, J. Mat. Res., 3, 605, 1988.
- 60. J. B. Torrance, Y. Tokura, A. Nazzai, and S. S. P. Parkin, *Phys. Rev. Lett.*, 60, 542, 1988.
- 61. K. Kourtakis, M. Robbins, P. K. Gallagher, and T. Teifel, *J. Mat. Res.*, 4, 1289, 1989.
- J. C. Phillips, *Physics of High-T_c Superconductors*, Academic Press, 1989, p. 336.
- 63. Shui Wai Lin and L. I. Berger, Rev. Sci. Instrum., 60, 507, 1989.
- M. Tinkham, Introduction to Superconductivity, McGraw–Hill, New York, 1975.
- O. Fischer and M.B. Maple, Eds., *Topics in Current Physics*, Volume 32: Superconductivity in Ternary Compounds I; Volume 34: Superconductivity in Ternary Compounds II, Springer–Verlag, Berlin, 1982.
- 66. K. J. Dunn and F. P. Bundy, Phys. Rev., B25, 194, 1982.
- 67. A. Barone and G. Paterno, *Physics and Applications of the Josephson Effect*, Wiley, New York, 1982.

- 68. D. H. Douglass, Ed., Superconductivity in d- and f-Band Metals, Plenum Press, New York, 1976.
- D. M. Ginsberg, Ed., *Physical Properties of High Temperature Superconductors*, (Volume II, 1990; Volume III, 1992; Volume V, 1996), World Scientific, Singapore.
- T. Ishiguro and K. Yamji, Organic Superconductors, Springer-Verlag, Berlin, 1990.
- Sh. Okada, K. Shimizu, T. C. Kobayashi, K. Amaya, and Sh. Endo., J. Phys. Soc. Jpn., 65, 1924, 1996.
- 72. A. Bourdillon and N. X. Tan Bourdillon, *High Temperature Superconductors: Processing and Science*, Academic Press, 1994.
- 73. J. M. Williams, J. R. Ferraro, R. J. Thorn, K. Carlson, U. Geiser, H. H. Wang, A. M. Kini, and M.-H. Whangbo, Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties, and Theory, Prentice–Hall, 1992.
- 74. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, *Nature (London)*, 410, 63, 2001.
- Y. Boguslavsky, G. K. Perkins, X. Qi, L. F. Cohen, and A. D. Caplin, *Nature (London)*, 410, 563, 2001.
- B. Q. Fu, Y. Feng, G. Yan, Y. Zhao, A. K. Pradhan, C. H. Cheng, P. Ji, X. H. Liu, C. F. Liu, L. Zhou, and K. F. Yau, *J. Appl. Phys.*, 92, 7341, 2002.