HIGH TEMPERATURE SUPERCONDUCTORS

C. N. R. Rao and A. K. Raychaudhuri

The following tables give properties of a number of high temperature superconductors. Table 1 lists the crystal structure (space group and lattice constants) and the critical transition temperature T_c for the more important high temperature superconductors so far studied. Table 2 gives energy gap, critical current density, and penetration depth in the superconducting state. Table 3 gives electrical and thermal properties of some of these materials in the normal state. The tables were prepared in November 1992 and updated in November 1994.

- Rao, C. N. R., Ed., Chemistry of High-Temperature Superconductors, World Scientific, Singapore, 1991.
- 3. Shackelford, J. F., *The CRC Materials Science and Engineering Handbook*, CRC Press, Boca Raton, 1992, 98–99 and 122–123.
- Kaldis, E., Ed., Materials and Crystallographic Aspects of HT-Superconductivity, Kluwer Academic Publ., Dordrecht, The Netherlands, 1992.
- Malik, S. K. and Shah, S. S., Ed., *Physical and Material Properties of High Temperature Superconductors*, Nova Science Publ., Commack, N.Y., 1994.
- 6. Chmaissem, O. et. al., Physica, C230, 231-238, 1994.
- 7. Antipov, E. V. et. al., *Physica*, C215, 1–10, 1993.

References

 Ginsburg, D. M., Ed., Physical Properties of High-Temperature Superconductors, Vols. I–III, World Scientific, Singapore, 1989–1992.

TABLE 1. Structural Parameters and Approximate T_c Values of High-Temperature Superconductors

Material	Structure	$T_{\rm c}/{ m K}$ (maximum value)
La ₂ CuO _{4.8}	Bmab; <i>a</i> = 5.355, <i>b</i> = 5.401, c = 13.15 Å	39
La_{2}^{2} Sr ₂ (Ba ₂)CuO ₄	I4/mmm; $a = 3.779$, $c = 13.23$ Å	35
La, Ca, Sr, Cu, O	I4/mmm; $a = 3.825$, $c = 19.42$ Å	60
YBa, Cu, O,	Pmmm; <i>a</i> = 3.821, <i>b</i> = 3.885, <i>c</i> = 11.676 Å	93
YBa,Cu,O	Ammm; <i>a</i> = 3.84, <i>b</i> = 3.87, <i>c</i> = 27.24 Å	80
$Y_2Ba_4Cu_7O_{15}$	Ammm; <i>a</i> = 3.851, <i>b</i> = 3.869, <i>c</i> = 50.29 Å	93
Bi_Sr_CuO	Amaa; <i>a</i> = 5.362, <i>b</i> = 5.374, <i>c</i> = 24.622 Å	10
Bi ₂ CaSr ₂ Cu ₂ O ₂	A ₂ aa; $a = 5.409$, $b = 5.420$, $c = 30.93$ Å	92
Bi ₂ Ca ₂ Sr ₂ Cu ₃ O ₁₀	A_{yaa}^{2} aa; $a = 5.39, b = 5.40, c = 37 \text{ Å}$	110
$Bi_{2}Sr_{2}(Ln_{1}, Ce_{y})_{2}Cu_{2}O_{10}$	P4/mmm; a = 3.888, c = 17.28 Å	25
Tl,Ba,CuO	A,aa; <i>a</i> = 5.468, <i>b</i> = 5.472, <i>c</i> = 23.238 Å; I4/mmm; <i>a</i> = 3.866, <i>c</i> = 23.239 Å	92
Tl_CaBa_Cu_O	I4/mmm; a = 3.855, c = 29.318 Å	119
Tl ₂ Ca ₂ Ba ₂ Cu ₂ O ₁₀	I4/mmm; $a = 3.85$, $c = 35.9$ Å	128
Tl(BaLa)CuO ₅	P4/mmm; $a = 3.83$, $c = 9.55$ Å	40
Tl(SrLa)CuO	P4/mmm; $a = 3.7$, $c = 9$ Å	40
$(Tl_{0.5}Pb_{0.5})Sr_{2}CuO_{5}$	P4/mmm; $a = 3.738$, $c = 9.01$ Å	40
TlCaBa,Cu,O,	P4/mmm; <i>a</i> = 3.856, <i>c</i> = 12.754 Å	103
$(Tl_0 Pb_0)CaSr_2Cu_2O_7$	P4/mmm; <i>a</i> = 3.80, <i>c</i> = 12.05 Å	90
TlSr ₂ Y ₀₅ Ca ₀₅ Cu ₂ O ₇	P4/mmm; $a = 3.80$, $c = 12.10$ Å	90
TlCa,Ba,Cu,O	P4/mmm; <i>a</i> = 3.853, <i>c</i> = 15.913 Å	110
$(Tl_0 Pb_0)Sr_2Ca_2Cu_3O_3$	P4/mmm; $a = 3.81$, $c = 15.23$ Å	120
TlBa,(La, Ce,),Cu,O	I4/mmm; $a = 3.8$, $c = 29.5$ Å	40
Pb ₂ Sr ₂ La ₀₅ Ca ₀₅ Cu ₃ O ₈	Cmmm; <i>a</i> = 5.435, <i>b</i> = 5.463, <i>c</i> = 15.817 Å	70
Pb ₂ (Sr,La) ₂ Cu ₂ O ₆	P22 ₁ 2; $a = 5.333$, $b = 5.421$, $c = 12.609$ Å	32
(Pb,Cu)Sr,(La,Ca)Cu ₂ O ₇	P4/mmm; $a = 3.820$, $c = 11.826$ Å	50
(Pb,Cu)(Sr,Eu)(Eu,Ce)Cu ₂ O _x	I4/mmm; $a = 3.837$, $c = 29.01$ Å	25
Nd, Ce CuO	I4/mmm; $a = 3.95$, $c = 12.07$ Å	30
Ca _{1,v} Sr _v CuO ₂	P4/mmm; <i>a</i> = 3.902, <i>c</i> = 3.35 Å	110
Sr, Nd, CuO,	P4/mmm; <i>a</i> = 3.942, <i>c</i> = 3.393 Å	40
Ba _{0.5} K _{0.4} BiO ₃	Pm3m; $a = 4.287$ Å	31
Rb ₂ CsC ₆₀	a = 14.493 Å	31
NdBa,Cu ₃ O ₇	Pmmm; <i>a</i> = 3.878, <i>b</i> = 3.913, <i>c</i> = 11.753	58
SmBaSrCu ₃ O ₇	I4/mmm; <i>a</i> = 3.854, <i>c</i> = 11.62	84
EuBaSrCu ₃ O ₇	I4/mmm; <i>a</i> = 3.845, <i>c</i> = 11.59	88
GdBaSrCu ₃ O ₇	I4/mmm; <i>a</i> = 3.849, <i>c</i> = 11.53	86
DyBaSrCu ₃ O ₇	Pmmm; <i>a</i> = 3.802, <i>b</i> = 3.850, <i>c</i> = 11.56	90
HoBaSrCu ₃ O ₇	Pmmm; <i>a</i> = 3.794, <i>b</i> = 3.849, <i>c</i> = 11.55	87
ErBaSrCu ₃ O ₇ (multiphase)	Pmmm; <i>a</i> = 3.787, <i>b</i> = 3.846, <i>c</i> = 11.54	82
TmBaSrCu ₃ O ₇ (multiphase)	Pmmm; <i>a</i> = 3.784, <i>b</i> = 3.849, <i>c</i> = 11.55	88
YBaSrCu ₃ O ₇	Pmmm; <i>a</i> = 3.803, <i>b</i> = 3.842, <i>c</i> = 11.54	84
HgBa ₂ CuO ₄	I4/mmm; <i>a</i> = 3.878, <i>c</i> = 9.507	94
$HgBa_2CaCu_2O_6$ (annealed in O_2)	I4/mmm; <i>a</i> = 3.862, <i>c</i> = 12.705	127
HgBa ₂ Ca ₂ Cu ₃ O ₈	Pmmm; <i>a</i> = 3.85, <i>c</i> = 15.85	133
HgBa2Ca3Cu4O10	Pmmm; a = 3.854, c = 19.008	126

High Temperature Superconductors

TABLE 2. Superconducting Properties

- $J_{\rm c}$ (0): Critical current density extrapolated to 0 K
- $\lambda_{\scriptscriptstyle ab}\!\!:\!$ Penetration depth in $a{\mathchar`-}b$ plane

 $k_{\rm B}$: Boltzmann constant

		Energy	gap (Δ)	_	
Material	Form	$2\Delta_{\rm pp}/k_{\rm B}T_{\rm c}^*$	$2\Delta_{fit}/k_{ m B}{ m T_c^+}$	$10^{-6} \times J_{c}(0)/A \text{ cm}^{-2}$	$\lambda_{ab}/\text{\AA}$
Y Ba ₂ Cu ₃ O ₇	Single Crystal	5-6	4-5	30 (film)	1400
Bi ₂ Sr ₂ CaCu ₂ O ₈	Single Crystal	8-9	5.5 - 6.5	2	2700
Tl ₂ Ba ₃ CaCu ₂ O ₈	Ceramic	6-7	4-6	10 (film, 80 K)	2000
$La_{2-x}Sr_{x}CuO_{4}, x = 0.15$	Ceramic	7-9	4-6		
Nd _{2-x} Ce _x CuO ₄	Ceramic	8	4-5	0.2 (film)	

* Obtained from peak to peak value.

⁺ Obtained from fit to BCS-type relation.

TABLE 3. Normal State Properties

ρ _{ab} :	Resistivity in the <i>a-b</i> plane
ρ _c :	Resistivity along the <i>c</i> axis
+ve:	ρ_c has positive temperature coefficient of resistivity
-ve:	ρ has negative temperature coefficient of resistivity
<i>п</i> _{н:}	Hall density
<i>k</i> :	Thermal conductivity
in plane:	Along <i>a-b</i> plane
out of plane:	Perpendicular to <i>a-b</i> plane

	1	$\rho_{ab}/\mu\Omega$ cm		$\rho_c/m\Omega cm$		$10^{-21} \times n_{\rm H}^{\rm cm^{-3}}$		<i>k</i> /(mW/cm K) at 300 K	
Material	Form	300 K	100 K	300 K	$d\rho_c/dT$	300 K	100 K	in plane	out of plane
YBa ₂ Cu ₃ O ₇	Single								
2 5 7	crystal	110	35	5	+ve	11–16	4-6	120	3
	Film	200-300	60-100			5-9	2 - 3		
YBa ₂ Cu ₄ O ₈	Single								
2 4 0	crystal	75	20	10	-ve	14			
	Film	100 - 200	20-50			22	17		
Bi ₂ Sr ₂ CuO ₆	Single								
2 2 0	crystal	300	150	5000	-ve	6	5		
Bi ₂ Sr ₂ CaCu ₂ O ₈	Single								
2 2 2 0	crystal	150	50	>1000	-ve	4	3	60	8
Tl ₂ Ba ₂ CuO ₆	Single								
	crystal	300 - 400	50-75	200-300	+ve	3.1	2.5		
Tl ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀	Ceramic	***	**				$pprox 2^*$		
$La_{2x}Sr_{x}CuO_{4}, x = 0.12$	Single				+ve for				
2.4. 4. 1	crystal	900	350	200	T >225 K	2.5			
$La_{2-x}Sr_{x}CuO_{4}, x = 0.20$	Single				+ve for				
	crystal	400	200	80	T >150 K	10		50 (for $x = 0.04$)	20
	Film	400	160			8.4	6.3		
$Nd_{2-x}Ce_{x}CuO_{4}, x = 0.17$	Single								
	crystal	500	275			53	17		
<i>x</i> = 0.15	Film	140 - 180	35			32	11	250 (for $x = 0.15$)	

 $^*~$ At 200 K $^{**}\rho~$ ~0.4 m Ω cm at 120 K $^{***}\rho~$ ~1.5 m Ω cm at 300 K