PROPERTIES OF MAGNETIC MATERIALS

H. P. R. Frederikse

Glossary of Symbols

		Units		
Quantity	Symbol	SI	emu	
Magnetic field	Н	A m ⁻¹	Oe (oersted)	
Magnetic induction	В	T (tesla)	G (gauss)	
Magnetization	M	A m ⁻¹	emu cm-3	
Spontaneous magnetization	$M_{_{\rm c}}$	A m ⁻¹	emu cm-3	
Saturation magnetization	$\dot{M_0}$	A m ⁻¹	emu cm ⁻³	
Magnetic flux	Φ	Wb (weber)	maxwell	
Magnetic moment	<i>m</i> , μ	A m ²	erg/G	
Coercive field	H_{c}	A m ⁻¹	Oe	
Remanence	B _r	Т	G	
Saturation magnetic polarization	J	Т	G	
Magnetic susceptibility	X			
Magnetic permeability	μ	H m ⁻¹ (henry/meter)		
Magnetic permeability of free space	μ	$H m^{-1}$		
Saturation magnetostriction	$\lambda (\Delta l/l)$			
Curie temperature	$T_{\rm c}$	К	К	
Néel temperature	$T_{\rm N}$	К	К	

Magnetic moment $\mu = \gamma \hbar J = g \mu_{\rm B} J$ where

 γ = gyromagnetic ratio; *J* = angular momentum; *g* = spectroscopic splitting factor (~2) $\mu_{\rm B}$ = bohr magneton = 9.2741·10⁻²⁴ J/T = 9.2741·10⁻²¹ erg/G

Earth's magnetic field $H = 56 \text{ A m}^{-1} = 0.7 \text{ Oe}$ For iron: $M_0 = 1.7 \cdot 10^6 \text{ A m}^{-1}$; $B_r = 0.8 \cdot 10^6 \text{ A m}^{-1}$ 1 Oe = $(1000/4\pi) \text{ A m}^{-1}$; 1 G = 10^{-4} T; 1 emu cm⁻³ = 10^3 A m^{-1} 1 maxwell = 10^{-8} Wb $\mu_0 = 4\pi \ 10^{-7} \text{ H m}^{-1}$

Relation Between Magnetic Induction and Magnetic Field

FIGURE 1. Typical curve representing the dependence of magnetic induction *B* on magnetic field *H* for a ferromagnetic material. When *H* is first applied, *B* follows curve **a** as the favorably oriented magnetic domains grow. This curve flattens as saturation is approached. When *H* is then reduced, *B* follows curve **b**, but retains a finite value (the remanence B_r) at H = 0. In order to demagnetize the material, a negative field $-H_c$ (where H_c is called the coercive field or coercivity) must be applied. As *H* is further decreased and then increased to complete the cycle (curve **c**), a hysteresis loop is obtained. The area within this loop is a measure of the energy loss per cycle for a unit volume of the material.

FIGURE 2. Schematic curve illustrating the *B* vs. *H* dependence for hard and soft magnetic materials. Hard materials have a larger remanence and coercive field, and a correspondingly large hysteresis loss.

Reference

Ralls, K. M., Courtney, T. H., and Wulff, J., *Introduction to Materials Science and Engineering*, J. Wiley & Sons, New York, 1976, p. 577, 582. With permission.

Magnetic Susceptibility of the Elements

FIGURE 3. Molar susceptibility of the elements at room temperature (cgs units of 10^{-6} cm³/mol). Values are not available for Z = 9, 61, and 84–89; Fe, Co, and Ni (Z = 26–28) are ferromagnetic. Data taken from the table "Magnetic Susceptibility of the Elements and Inorganic Compounds" in Section 4.

Reference

Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972, p. 5–224. With permission.

Ζ	Element	п	S	L	J	Gr. state	$p_{\rm calc}^{\ \ a}$	$p_{\rm calc}^{\ \ b}$	$p_{\rm meas}$
22	Ti ³⁺	1	1/2	2	3/2	${}^{2}D_{_{3/2}}$	1.73	1.55	1.8
23	V^{4+}	1	1/2	2	3/2	${}^{2}D_{_{3/2}}$	1.73	1.55	1.8
23	V^{3+}	2	1	3	2	³ F ₂	2.83	1.63	2.8
23	V^{2+}	3	3/2	3	3/2	${}^{4}F_{_{3/2}}$	3.87	0.77	3.8
24	Cr^{3+}	3	3/2	3	3/2	${}^{4}F_{_{3/2}}$	3.87	0.77	3.7
25	Mn^{4+}	3	3/2	3	3/2	${}^{4}F_{_{3/2}}$	3.87	0.77	4.0
24	Cr^{2+}	4	2	2	0	⁵ D ₀	4.90	0	4.9
25	Mn^{3+}	4	2	2	0	⁵ D ₀	4.90	0	5.0
25	Mn^{2+}	5	5/2	0	5/2	⁶ S _{5/2}	5.92	5.92	5.9
26	Fe ³⁺	5	5/2	0	5/2	⁶ S _{5/2}	5.92	5.92	5.9
26	Fe ²⁺	6	2	2	4	⁵ D ₄	4.90	6.70	5.4
27	Co^{2+}	7	3/2	3	9/2	${}^{4}F_{9/2}$	3.87	6.54	4.8
28	Ni ²⁺	8	1	3	4	${}^{3}F_{4}$	2.83	5.59	3.2
29	Cu^{2+}	9	1/2	2	5/2	${}^{2}D_{5/2}$	1.73	3.55	1.9
							$p_{\rm calc}^{\rm c}$		
58	Ce ³⁺	1	1/2	3	5/2	${}^{2}F_{5/2}$	2.54		2.4
59	Pr ³⁺	2	1	5	4	${}^{3}H_{4}$	3.58		3.5
60	Nd ³⁺	3	3/2	6	9/2	${}^{4}I_{9/2}$	3.62		3.5
61	Pm^{3+}	4	2	6	4	${}^{5}I_{4}$	2.68		
62	Sm ³⁺	5	5/2	5	5/2	⁶ H _{5/2}	0.84		1.5
63	Eu ³⁺	6	3	3	0	⁷ F ₀	0.0		3.4
64	Gd ³⁺	7	7/2	0	7/2	⁸ S _{7/2}	7.94		8.0
65	Tb^{3+}	8	3	3	6	⁷ F ₆	9.72		9.5
66	Dy^{3+}	9	5/2	5	15/2	⁶ H _{15/2}	10.63		10.6
67	Ho ³⁺	10	2	6	8	⁵ I ₈	10.60		10.4
68	Er ³⁺	11	3/2	6	15/2	${}^{4}I_{15/2}$	9.59		9.5
69	Tm^{3+}	12	1	5	6	³ H ₆	7.57		7.3
70	Yb^{3+}	13	1/2	3	7/2	² F _{7/2}	4.54		4.5

Ground	State of Ions	s with Partl	v Filled a	or f Shells

^a $p_{calc} = 2[S(S+1)]^{1/2}$

$$p_{\text{calc}} = 2[J(J+1)]^{1/2}$$

^c $p_{calc} = g[J(J+1)]^{1/2}$

References

 Kittel, C., Introduction to Solid State Physics, 6th Edition, J. Wiley & Sons, New York, 1986, pp. 405–406.

1. Jiles, D., Magnetism and Magnetic Materials, Chapman & Hall, London, 1991, p. 243.

3. Ashcroft, N. W. and Mermin, N. D., *Solid State Physics*, Holt, Rinehart, and Winston, New York, 1976, p. 652.

Ferro- and Antiferromagnetic Elements

 M_0 is the saturation magnetization at T = 0 K $n_{\rm B}$ is the number of Bohr magnetons per atom

 $T_{\rm C}$ is the Curie temperature $T_{\rm N}$ is the Néel temperature

	M _o /gauss	n _R	T_c/K	$T_{\rm N}/{\rm K}$	Comments
Fe	22020	2.22	1043	i i	
Co	18170	1.72	1388		
Ni	6410	0.62	627		
Cr				311	
Mn				100	
Ce				12.5	c-Axis antiferromagnetic
Nd				19.2	Basal plane modulation on hexagonal sites
				7.8	Cubic sites order (periodicity different from high-T phase)
Sm				106	Ordering on hexagonal sites
				13.8	Cubic site order
Eu				90.5	Spiral along cube axis
Gd	24880	7	293		
Tb		9	220		Basal plane ferromagnet
				230.2	Basal plane spiral
Dy		10	87		Basal plane ferromagnet
				176	Basal plane spiral
Ho		10	20		Bunched cone structure
				133	Basal plane spiral
Er		9	32		<i>c</i> -Axis ferrimagnetic cone structure
				80	<i>c</i> -Axis modulated structure
Tm		7	32		c-Axis ferrimagnetic cone structure
				56	<i>c</i> -Axis modulated structure

References

1. Ashcroft, N. W., and Mermin, N. D., *Solid State Physics*, Holt, Rinehart, and Winston, New York, 1976, p.652.

Selected Ferromagnetic Compounds

 M_0 is the saturation magnetization at T = 293 K

 $T_{\rm C}$ is the Curie temperature

Compound	M_0 /gauss	T_c/K	Crystal system
MnB	152	578	orthorh(FeB)
MnAs	670	318	hex(FeB)
MnBi	620	630	hex(FeB)
MnSb	710	587	hex(FeB)
Mn_4N	183	743	
MnSi		34	cub(FeSi)
CrTe	247	339	hex(NiAs)
CrBr ₃	270	37	hex(BiI ₃)
CrI ₃		68	hex(BiI ₃)
CrO_2	515	386	tetr(TiO ₂)
EuO	1910*	77	cub
EuS	1184*	16.5	cub
GdCl ₃	550*	2.2	orthorh
FeB		598	orthorh
Fe ₂ B		1043	tetr (CuAl ₂)
FeBe ₅		75	cub(MgCu ₂)
Fe ₃ C		483	orthorh
FeP		215	orthorh (MnP)
* At $T = 0$ K			

References

- 2. Ashcroft, N. W., and Mermin, N. D., *Solid State Physics*, Holt, Rinehart, and Winston, New York, 1976.
- 1. Kittel, C., Introduction to Solid State Physics, 6th Edition, J. Wiley & Sons, New York, 1986.

- Gschneidner, K. A., and Eyring, L., *Handbook on the Physics and Chemistry of Rare Earths*, North Holland Publishing Co., Amsterdam, 1978.

Magnetic Properties of High-Permeability Metals and Alloys (Soft)

μ_i is the initial permeability	J_{s} is the saturation polarization
μ_m is the maximum permeability	$W_{\rm H}$ is the hysteresis loss per cycle
H_c is the coercive force	$T_{\rm C}$ is the Curie temperature

Material	Composition (mass %)	μ_i/μ_0	μ_m/μ_0	$H_{\rm c}/{ m A}~{ m m}^{-1}$	$J_{\rm s}/{ m T}$	$W_{ m H}/{ m J}~{ m m}^{-3}$	$T_{\rm c}/{ m K}$
Iron	Commercial 99Fe	200	6000	70	2.16	500	1043
Iron	Pure 99.9Fe	25000	350000	0.8	2.16	60	1043
Silicon-iron	96Fe-4Si	500	7000	40	1.95	50 - 150	1008
Silicon-iron (110) [001]	97Fe-3Si	9000	40000	12	2.01	35 - 140	1015
Silicon-iron {100} <100>	97Fe-3Si		100000	6	2.01		1015
Mild steel	Fe-0.1C-0.1Si-0.4Mn	800	1100	200			
Hypernik	50Fe-50Ni	4000	70000	4	1.60	22	753
Deltamax {100} <100>	50Fe-50Ni	500	200000	16	1.55		773
Isoperm {100} <100>	50Fe-50Ni	90	100	480	1.60		
78 Permalloy	78Ni-22Fe	4000	100000	4	1.05	50	651
Supermalloy	79Ni-16Fe-5Mo	100000	1000000	0.15	0.79	2	673
Mumetal	77Ni-16Fe-5Cu-2Cr	20000	100000	4	0.75	20	673
Hyperco	64Fe-35Co-0.5Cr	650	10000	80	2.42	300	1243
Permendur	50Fe-50Co	500	6000	160	2.46	1200	1253
2V-Permendur	49Fe-49Co-2V	800	4000	160	2.45	600	1253
Supermendur	49Fe-49Co-2V		60000	16	2.40	1150	1253
25Perminvar	45Ni-30Fe-25Co	400	2000	100	1.55		
7Perminvar	70Ni-23Fe-7Co	850	4000	50	1.25		
Perminvar (magnet. annealed)	43Ni-34Fe-23Co		400000	2.4	1.50		
Alfenol (or Alperm)	84Fe-16Al	3000	55000	3.2	0.8		723
Alfer	87Fe-13Al	700	3700	53	1.20		673
Aluminum-Iron	96.5Fe-3.5Al	500	19000	24	1.90		
Sendust	85Fe-10Si-5Al	36000	120000	1.6	0.89		753

References

2. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972, p. 5–224.

1. McCurrie, R. A., *Structure and Properties of Ferromagnetic Materials*, Academic Press, London, 1994, p. 42.

Applications of High-Permeability Materials

Applications	Requirements		
Power	applications		
Distribution and power transformers	Low core losses, high permeability, high saturation magnetic polarization		
High-quality motors and generators, stators and armatures, switched- mode power supplies			
Instrume	nt transformers		
Audiofrequency transformers	Low core losses, high permeability, high magnetic polarization		
Pulse transformers	High permeability		
Cores for	inductor coils		
Audiofrequency	Low hysteresis, high permeability		
Carrier frequency	Very low hysteresis and eddy current loss		
Radiofrequency	High permeability at low fields		
Mise	cellaneous		
Relays, switches Earth leakage circuit	High permeability, low remanence, low coercivity		
Magnetic shielding	Low core loss for AC applications		

Applications of High-Permeability Materials

Applications	Requirements
Magnetic recording heads	High initial permeability, low or zero remanence
Magnetic amplifiers Saturable reactors Saturable transformers Transformer cores	Rectangular hysteresis loops, low hysteresis loss
Magnetic shunts for temperature compensation in magnetic circuits	Low Curie temperature, appropriate decrease in permeability with increase in temperature
Electromagnets in indicating instruments, fire detection, quartz watches, electromechanical devices	High permeability, high saturation magnetic polarization
Magnetic yokes in permanent magnet devices, such as lifting and holding magnets, loudspeakers	High permeability, high saturation magnetic polarization

Reference

McCurrie, R. A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994. With permission.

Saturation Magnetostriction of Selected Materials

The tabulated parameter λ_s is related to the fractional change in length $\Delta l/l$ by $\Delta l/l = (3/2)\lambda_s(\cos^2\theta - 1/3)$, where θ is the angle of rotation.

Material	$\lambda_s \times 10$
Iron	-7
Fe - 3.2% Si	+9
Nickel	-33
Cobalt	-62
45 Permalloy, 45% Ni - 55% Fe	+27
Permalloy, 82% Ni - 18% Fe	0
Permendur, 49% Co - 49% Fe - 2% V	+70
Alfer, 87% Fe - 13% Al	+30
Magnetite, Fe ₃ O ₄	+40
Cobalt ferrite, CoFe ₂ O ₄	-110
SmFe ₂	-1560
TbFe ₂	+1753
Tb _{0.3} Dy _{0.7} Fe _{1.93} (Terfenol D)	+2000
Fe ₆₆ Co ₁₈ B ₁₅ Si (amorphous)	+35
Co ₇₂ Fe ₃ B ₆ A ₁₃ (amorphous)	0

Reference

McCurrie, R.A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994, p. 91; additional data provided by A.E. Clark, Adelphi, MD.

Properties of Various Permanent Magnetic Materials (Hard)

$B_{\rm r}$ is the remanence	(<i>BH</i>) _{max} is the maximum energy product
$_{\rm B}H_{\rm c}$ is the flux coercivity	$T_{\rm C}$ is the Curie temperature
$_{\rm i}H_{\rm c}$ is the intrinsic coercivity	$T_{\rm max}$ is the maximum operating temperature

Composition	$B_{\rm r}/{ m T}$	$_{\rm B}H_{\rm c}/10^3~{\rm A}~{\rm m}^{-1}$	$_{\rm i}H_{\rm c}/10^3~{\rm A}~{\rm m}^{-1}$	$(BH)_{\rm max}/{\rm kJ}~{\rm m}^{-3}$	$T_{\rm C}/^{\circ}{\rm C}$	$T_{\rm max}/{\rm °C}$
Alnico1 20Ni;12Al;5Co	0.72		35	25		
Alnico2 17Ni;10Al;12.5Co;6Cu	0.72		40-50	13-14		
Alnico3 24-30Ni;12-14Al;0-3Cu	0.5 - 0.6		40-54	10		
Alnico4 21-28Ni;11-13Al;3-5Co;2-4Cu	0.55 - 0.75		36-56	11-12		
Alnico5 14Ni;8Al;24Co;3Cu	1.25	53	54	40	850	520
Alnico6 16Ni;8Al;24Co;3Cu;2Ti	1.05		75	52		
Alnico8 15Ni;7Al;35Co;4Cu;5Ti	0.83	1.6	160	45		
Alnico9 15Ni;7Al;35Co;4Cu;5Ti	1.10	1.45	1.45	75	850	520
Alnico12 13.5Ni;8Al;24.5Co;2Nb	1.20		64	76.8		

12-106

Properties of Magnetic Materials

Composition	$B_{\rm r}/{\rm T}$	$_{\rm B}H_{\rm c}/10^3~{\rm A}~{\rm m}^{-1}$	$_{\rm i}H_{\rm c}/10^3~{\rm A}~{\rm m}^{-1}$	$(BH)_{max}/kJ m^{-3}$	$T_{\rm c}/^{\circ}{\rm C}$	$T_{\rm max}/{\rm °C}$
BaFe ₁₂ O ₁₉ (Ferroxdur)	0.4	1.6	192	29	450	400
SrFe ₁₂ O ₁₉	0.4	2.95	3.3	30	450	400
LaCo ₅	0.91			164	567	
CeCo ₅	0.77			117	380	
PrCo ₅	1.20			286	620	
NdCo ₅	1.22			295	637	
SmCo ₅	1.00	7.9	696	196	700	250
$Sm(Co_{0.76}Fe_{0.10}Cu_{0.14})_{6.8}$	1.04	4.8	5	212	800	300
$Sm(Co_{0.65}Fe_{0.28}Cu_{0.05}Zr_{0.02})_{7.7}$	1.2	10	16	264	800	300
Nd ₂ Fe ₁₄ B sintered	1.22	8.4	1120	280	300	100
Fe;52Co;14V (Vicalloy II)	1.0	42		28	700	500
Fe;24Cr;15Co;3Mo (anisotropic)	1.54	67		76	630	500
Fe;28Cr;10.5Co (Chromindur II)	0.98	32		16	630	500
Fe;23Cr;15Co;3V;2Ti	1.35	4		44	630	500
Cu;20Ni;20Fe (Cunife)	0.55	4		12	410	350
Cu;21Ni;29Fe (Cunico)	0.34	0.5		8		
Pt;23Co	0.64	4		76	480	350
Mn;29.5Al;0.5C (anisotropic)	0.61	2.16	2.4	56	300	120
Deferences		2. Gr	av. D. E., Ed.,	American Institute o	f Physics	Handbook. Thi

Keferences

ird Gray, D. E., Ed., American Institute of Physics Handbook, Intra Edition, McGraw Hill, New York, 1972, p. 5–165.
 Jiles, D., Magnetism and Magnetic Materials, Chapman & Hall,

1. McCurrie, R. A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994, p. 204.

London, 1991.

Selected Ferrites				
$J_{\rm s}$ is the saturation magne	tic polarization			
ΛH is the line width	ire			
Material	$J_{\rm s}/{ m T}$	$T_{\rm c}/^{\circ}{ m C}$	$\Delta H/kA m^{-1}$	Applications
Spinels				
γ-Fe ₂ O ₃	0.52	575		
Fe ₃ O ₄	0.60	585		
NiFe ₂ O ₄	0.34	575	350	Microwave devices
MgFe ₂ O ₄	0.14	440	70	
NiZnFe ₂ O ₄	0.50	375	120	Transformer cores
MnFe ₂ O ₄	0.50	300	50	Microwave devices
NiCoFe ₂ O ₄	0.31	590	140	Microwave devices
NiCoAlFe ₂ O ₄	0.15	450	330	Microwave devices
NiAl ₀₃₅ Fe ₁₆₅ O ₄	0.12	430	67	Microwave devices
NiAlFe ₂ O ₄	0.05	1860	32	Microwave devices
$Mg_{0.9}Mn_{0.1}Fe_{2}O_{4}$	0.25	290	56	Microwave devices
$Ni_{0.5}Zn_{0.5}Al_{0.8}Fe_{1.2}O_4$	0.14		17	Microwave devices
CuFe ₂ O ₄	0.17	455		Electromechanical transducers
CoFe ₂ O ₄	0.53	520		
LiFe ₅ O ₈	0.39	670		Microwave devices
Garnets				
$Y_3Fe_5O_{12}$	0.178	280	55	Microwave devices
$Y_3Fe_5O_{12}$ (single crys.)	0.178	292	0.5	Microwave devices
$(Y,AI)_{3}Fe_{5}O_{12}$	0.12	250	80	Microwave devices
$(Y,Gd)_{3}Fe_{5}O_{12}$	0.06	250	150	Microwave devices
Sm ₃ Fe ₅ O ₁₂	0.170	305		Microwave devices
Eu ₃ Fe ₅ O ₁₂	0.116	293		Microwave devices
GdFe ₅ O ₁₂	0.017	291		Microwave devices
Hexagonal crystals				
BaFe ₁₂ O ₁₉	0.45	430	1.5	Permanent magnets
Ba ₃ Co ₂ Fe ₂₄ O ₄₁	0.34	470	12	Microwave devices
$Ba_2Zn_2Fe_{12}O_{22}$	0.28	130	25	Microwave devices
$Ba_{3}Co_{1.35}Zn_{0.65}Fe_{24}O_{41}$		390	16	Microwave devices
Ba ₂ Ni ₂ Fe ₁₂ O ₂₂	0.16	500	8	Microwave devices
SrFe ₁₂ O ₁₉	0.4	450		Permanent magnets
		Doforon	60	

Reference

McCurrie, R. A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994.

FIGURE 4. Arrangement of metal ions in the two octants A and B, showing tetrahedrally (A) and octahedrally (B) coordinated sites. (Reprinted from McCurrie, R.A., Ferromagnetic Materials, Academic Press, London, 1994. With permission.)

Selected Antiferromagnetic Solids

 $T_{_{\rm N}}$ is the Néel temperature

Material	Structure	T _N /K	Materia
D' 'I			ZnCr ₂ O
Binary oxides	1(C)	100	ZnFe ₂ O ₄
MinO	cub(fcc)	122	GeFe ₂ O ₄
FeO	cub(fcc)	198	MgV ₂ O ₄
	cub(fcc)	291	MnGa ₂ C
NIU	cub(fcc)	525	NiAs an
α -Mn ₂ O ₃	cub	90	CrAs
CuO	monocl	230	CrSb
UO_2	cub	30.8	CrSe
$\text{Er}_{2}\text{O}_{3}$	cub	3.4	MnTe
Gd_2O_3	cub	1.6	NiS
Perovskites			CrS
LaCrO ₃	orth	282	D
LaMnO ₃	orth	100	Rutile a
LaFeO ₃	orth	750	CoF ₂
NdCrO ₃	orth	224	CrF ₂
NdFeO ₃	orth	760	FeF ₂
YbCrO ₃	orth	118	MnF ₂
CaMnO ₃	cub	110	NiF ₂
EuTiO ₃	cub	5.3	CrCl ₂
YCrO ₃	orth	141	MnO ₂
BiFeO ₃	cub*	673	FeOF
KCoF ₃	cub	125	Corundi
KMnF ₃	cub*	88.3	Cr_2O_3
KFeF ₃	cub	115	α-Fe ₂ O ₂
KNiF ₃	cub	275	FeTiO ₃
NaMnF ₃	cub*	60	MnTiO ₃
NaNiF ₃	orth	149	CoTiO,
RbMnF ₃	cub	82	VE and
Spinels			VF ₃ ana
Co ₃ O ₄	cub	40	
NiCr ₂ O ₄	tetr	65	CrF ₃

Material	Structure	$T_{\rm N}/{ m K}$
ZnCr ₂ O ₄	cub	15
ZnFe ₂ O ₄	cub	9
GeFe ₂ O ₄	cub	10
MgV_2O_4	cub	45
$MnGa_2O_4$	cub	33
NiAs and related structures		
CrAs	orth	300
CrSb	hex	705-723
CrSe	hex	300
MnTe	hex	320-323
NiS	hex	263
CrS	monocl	460
Rutile and related structures		
CoF ₂	tetr	38
CrF ₂	monocl	53
FeF ₂	tetr	79
MnF ₂	tetr	67
NiF ₂	tetr	83
CrCl ₂	orth	20
MnO ₂	tetr	84
FeOF	tetr	315
Corundum and related structures		
Cr ₂ O ₃	rhomb	318
α-Fe ₂ O ₃	rhomb	948
FeTiO ₃	rhomb	68
MnTiO ₃	rhomb	41
CoTiO ₃	rhomb	38
VF ₃ and related structures		
CoF ₃	rhomb	460
CrF ₃	rhomb	80

Spinel Structure (AB₂O₄)

Material	Structure	$T_{\rm N}/{ m K}$
FeF ₃	rhomb	394
MnF ₃	monocl	43
MoF ₃	rhomb	185
Miscellaneous		
K ₂ NiF ₄	tetr	97
MnI ₂	hex	3.4
CoUO ₄	orth	12
CaMn ₂ O ₄	orth	225
CrN	cub*	273
CeC ₂	tetr	33
FeSn	hex	373
Mn ₂ P	hex	103
* Distorted		

Properties of Magnetic Materials

References

- 1. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972, p. 5–168 to 5–183.
- 2. Kittel, C., Introduction to Solid State Physics, 6th Edition, J. Wiley & Sons, New York, 1986.
- 3. Ashcroft, N. W., and Mermin, N. D., *Solid State Physics*, Holt, Rinehart, and Winston, New York, 1976, p. 697.