ELASTO-OPTIC, ELECTRO-OPTIC, AND MAGNETO-OPTIC CONSTANTS

When a crystal is subjected to a stress field, an electric field, or a magnetic field, the resulting optical effects are in general dependent on the orientation of these fields with respect to the crystal axes. It is useful, therefore, to express the optical properties in terms of the refractive index ellipsoid (or indicatrix):

$$\frac{x^2}{n_x^2} + \frac{y^2}{n_y^2} + \frac{z^2}{n_z^2} = 1$$

or

$$\sum_{ii} B_{ij} x_i y_j = 1 (i, j = 1, 2, 3)$$

where

$$B_{ij} = \left[\frac{1}{\varepsilon}\right]_{ij} = \left[\frac{1}{n^2}\right]_{ij}$$

 ε is the dielectric constant or permeability; the quantity B_{ij} has the name impermeability.

A crystal exposed to a *stress* **S** will show a change of its impermeability. The photo-elastic (or elasto-optic) constants, P_{ijkl} are defined by

$$\Delta \left[\frac{1}{\varepsilon}\right]_{ij} = \Delta \left[\frac{1}{n^2}\right]_{ij} = \sum_{kl} P_{ijkl} S_{kl}$$

where *n* is the refractive index and S_{kl} are the strain tensor elements; the P_{ijkl} are the elements of a 4th rank tensor.

When a crystal is subjected to an *electric field* E two possible changes of the refractive index may occur depending on the symmetry of the crystal.

1. All materials, including isotropic solids and polar liquids, show an electro-optic birefringence (Kerr effect) which is proportional to the square of the electric field, *E*:

$$\Delta \left[\frac{1}{n^2}\right]_{ij} = \sum_k K_{ijkl} E_k E_l = \sum_{k,l=1,2,3} g_{ijkl} p_k p_l$$

where E_k and E_l are the components of the electric field and P_k and P_l the electric polarizations. The coefficients, K_{ijkl} are the quadratic electro-optic coefficients, while the constants g_{iikl} are known as the Kerr constants.

2. The other electro-optic effect only occurs in the 20 piezoelectric crystal classes (no center of symmetry). This effect is known as the Pockels effect. The optical impermeability changes linearly with the static field

$$\Delta \left[\frac{1}{n^2}\right]_{ij} = \sum_k r_{ij,k} E_k$$

The coefficients $r_{_{ij,k}}$ have the name (linear) electro-optic coefficients.

The values of the electro-optic coefficients depend on the boundary conditions. If the superscripts T and S denote respectively the conditions of zero stress (free) and zero strain (clamped) one finds:

$$r_{ij}^{\rm T} = r_{ij}^{\rm S} + q_{ik}^{\rm E} e_{jk} = r_{ij}^{\rm S} + P_{ik}^{\rm E} d_{jk}$$

where $e_{jk} = (\partial T_k \partial E_j)_s$ and $d_{jk} = (\partial S_k / \partial E_j)_T$ are the appropriate piezo-electric coefficients.

The interaction between a *magnetic field* and a light wave propagating in a solid or in a liquid gives rise to a rotation of the plane of polarization. This effect is known as *Faraday rotation*. It results from a difference in propagation velocity for left and right circular polarized light.

The Faraday rotation, θ_{F} , is linearly proportional to the magnetic field *H*:

 $\theta_{\rm F} = V l H$

where l is the light path length and V is the *Verdet* constant (minutes/oersted·cm).

For ferromagnetic, ferrimagnetic, and antiferromagnetic materials the magnetic field in the above expression is replaced by the magnetization M and the magneto-optic coefficient in this case is known as the Kund constant K:

Specific Faraday rotation F=KM

In the tables below the *Faraday rotation* is listed at the saturation magnetization per unit length, together with the absorption coefficient α , the temperature *T*, the critical temperature *T*_{*C*} (or *T*_{*N*}), and the wavelength of the measurement.

In the tables that follow, the properties are presented in groups:

- Elasto-optic coefficients (photoelastic constants)
- Linear electro-optic coefficients (Pockels constants)
- Quadratic electro-optic coefficients (Kerr constants)
- Magneto-optic coefficients:
 - Verdet constants
 - Faraday rotation parameters

Within each group, materials are classified by crystal system or physical state. References are given at the end of each group of tables.

ELASTO-OPTIC COEFFICIENTS (PHOTOELASTIC CONSTANTS)

Name									
Cubic (43m, 432,	, m3m) Form	nula	λ/μ m	<i>p</i> ₁₁		p_{12}	$p_{_{44}}$	$p_{_{11}}$ - $p_{_{12}}$	Ref.
Sodium fluoride	NaF		0.633	0.08	;	0.20	-0.03	-0.12	1
Sodium chloride	NaC	1	0.589	0.115	i	0.159	-0.011	-0.042	2
Sodium bromide	NaB	r	0.589	0.148	;	0.184	-0.0036	-0.035	1
Sodium iodide	NaI		0.589	_		-	0.0048	-0.0141	3
Potassium fluoride	KF		0.546	0.26	j.	0.20	-0.029	0.06	1
Potassium chloride	KCl		0.633	0.22	!	0.16	-0.025	0.06	4
Potassium bromide	KBr		0.589	0.212	!	0.165	-0.022	0.047	5
Potassium iodide	KI		0.590	0.212	!	0.171	-	0.041	6
Rubidium chloride	RbC	l	0.589	0.288	;	0.172	-0.041	0.116	7,8
Rubidium bromide	RbBi		0.589	0.293	;	0.185	-0.034	0.108	7,8
Rubidium iodide	RbI		0.589	0.262	!	0.167	-0.023	0.095	7,8
Lithium fluoride	LiF		0.589	0.02	!	0.13	-0.045	-0.11	5
Lithium chloride	LiCl		0.589	_		-	-0.0177	-0.0407	3
Ammonium chlorid	e NH ₄	Cl	0.589	0.142	!	0.245	0.042	-0.103	9
Cadmium telluride	CdT	5	1.06	-0.152	. –	-0.017	-0.057	-0.135	10
Calcium fluoride	CaF		0.55 - 0.65	0.038	6	0.226	0.0254	-0.183	11
Copper chloride	CuC	1	0.633	0.120)	0.250	-0.082	-0.130	12
Copper bromide	CuB	r	0.633	0.072	!	0.195	-0.083	-0.123	12
Copper iodide	CuI		0.633	0.032	!	0.151	-0.068	-0.119	12
Diamond	С		0.540-0.589	-0.278	6	0.123	-0.161	-0.385	13
Germanium	Ge		3.39	-0.151	. –	0.128	-0.072	-0.023	14
Gallium arsenide	GaA	s	1.15	-0.165	i –	-0.140	-0.072	-0.025	15
Gallium phosphide	GaP		0.633	-0.151	. –	-0.082	-0.074	-0.069	15
Strontium fluoride	SrF_2		0.633	0.080)	0.269	0.0185	-0.189	16
Strontium titanate	SrTi	Э ₃	0.633	0.15		0.095	0.072	_	17
KRS-5	Tl(B	r,I)	0.633	-0.140)	0.149	-0.0725	-0.289	18,20
KRS-6	Tl(B	r,Cl)	0.633	-0.451	. –	-0.337	-0.164	-0.114	19,20
Zinc sulfide	Zn		0.633	0.091		-0.01	0.075	0.101	15
Rare Gases	s F	ormula	$\lambda/\mu m$	$p_{_{11}}$		p_{12}	$p_{_{44}}$	p_{11} - p_{12}	Ref.
Neon (<i>T</i> = 24.3 K)	Ne		0.488	0.157	,	0.168	0.004	-0.011	21
Argon (<i>T</i> = 82.3 K)	Ar		0.488	0.256	5	0.302	0.015	-0.046	22
Krypton ($T = 115.6$]	K) Kr		0.488	0.34	ł	0.34	0.037	0	21
Xenon ($T = 160.5$ K)	Xe		0.488	0.284	<u>.</u>	0.370	0.029	-0.086	22
Garnets	F	ormula	λ/u m	n		n	р	n -n	Ref.
GGG	Gd (Fa O	0.514	-0.086	i –	-0.027	-0.078	-0.059	23
YIG	Y Fe	O	1.15	0.025		0.073	0.041	_	15
YGG	Y Ga	0^{50}	0.633	0.091		0.019	0.079	_	17
YAG	Y_Al	O ₁₂	0.633	-0.029	0	0.0091	-0.0615	-0.038	15
C1+:- (02	.) Э) Г	1 -) <i>(</i>						D . f
Cubic (23, m	13) Fo	ormula	λ/μ m	p_{11}		p_{12}	<i>P</i> ₄₄	$p_{_{13}}$	Ker.
Barium nitrate	Ba(N	$(O_3)_2$	0.589	_	p_{11}	$-p_{22} = 0.992$	-0.0205	$p_{11} - p_{13} = 0.713$	13
Lead nitrate	Pb(N	1O,),	0.589	0.162	!	0.24	-0.0198	0.20	24,25
Sodium bromate	NaB	rO	0.589	0.185	i	0.218	-0.0139	0.213	26
Sodium chlorate	NaC	lO	0.589	0.162	!	0.24	-0.0198	0.20	26
Strontium nitrate	Sr(N	$O_3)_2$	0.41	0.178	;	0.362	-0.014	0.316	27
		2.4							D f
Hexagonal	Formula	λ/μ m	$p_{_{11}}$	p_{12}	p_{13}	$p_{_{31}}$	$p_{_{33}}$	$p_{_{44}}$	Ket.
(minc, omin) Boryl	Be ALSO	0 589	0 0000	0.175	0 101	0 212	0.023	_0 152	26
Cadmium sulfida	CdS	0.509	-0.149	-0.066	_0.191	_0.041	0.025 _0.20	-0.152	20 15 0
Zinc oxide	ZnO	0.033	+0.222	+0.000	_0.057	+0.041	-0.20	0.0595	30
Zinc sulfide	ZnS	0.633	-0.115	0.017	0.025	0.0271	-0.13	-0.0627	31
							5.10		<u> </u>

Trigonal (3m, Sapphire Calcite Lithium niobate Lithium tantala Cinnabar Quartz Proustite Sodium nitrite Tellurium	32, 3m) e te	Formuli Al ₂ O ₃ CaCO ₃ LiNbO ₃ LiTaO ₃ HgS SiO ₂ Ag ₃ AsS ₃ NaNO ₂ Te	a 0.6 0.6 0.6 0.6 0.6 0.6 0.6 10	λ/μ m 544 514 533 533 533 533 533 533 .6	p -0.2 0.06: ± 0.0 -0.0 0.16 ± 0.1	7 ₁₁ 3 2 34 81 0 5	p_{12} -0.03 0.147 ±0.072 0.081 0.27 ±0.19 ±0.21 0.130	0 0 ± 0 ± 0 0 ± 1 0	P ₁₃ .02 .186 .0.139 .093 .0.445 .27 .0.22 .0.215	p_1 0.00 -0.01 ± 0.06 -0.02 -0.03 ± 0.02 -	4 1 6 6 7	p_{31} -0.04 0.241 ±0.178 0.089 0.29 ±0.24 ±0.25 -	$\begin{array}{c} \mathbf{p}_{33} \\ -0.20 \\ 0.139 \\ \pm 0.060 \\ -0.040 \\ \pm 0.111 \\ 0.10 \\ \pm 0.20 \end{array}$	0 4 5	P₄ 0.01 -0.03 ±0.15 -0.08 - -0.04 - 0.055 -	1 66 64 85	p ₄₄ -0.10 -0.058 ±0.300 0.028 - -0.079 - -0.06 -		Ref. 15,32 33 15,34 15,35 36 37 38 39 15
Tetragonal (4/	mmm, 42	m, 422)		Formula		λ/μ m	1	9 ₁₁	p_{12}		p_{13}	$p_{_{31}}$	1	7 ₃₃	1	9 ₄₄	p_{6}	6	Ref.
Ammonium dih	ydrogen pl	hosphate	ADF)		0.589	0.31	9	0.277	0.	169	0.197	0.16	57	-0.	058	-0.09	9 1	40
Barium titanate			BaTi	O ₃		0.633	0.42	5	-	-		-	-		-		-		41
Cesium dihydro	gen arsena	te	CDA	1		0.633	0.26	7	0.225	0.3	200	0.195	0.22	27	-		-		42
Magnesium fluo	oride		MgF	2		0.546	-		-	-		-	-		±0.	0776	±0.04	188	43
Calomel			Hg_2	Cl_2		0.633	±0.5	51	±0.440) ±().256	±0.137	±0.0	010	-		±0.04	1 7	44
Potassium dihyd	drogen pho	sphate	KDF)		0.589	0.28	7	0.282	0.	174	0.241	0.12	22	-0.	019	-0.06	54	45
Rubidium dihyd	lrogen arse	nate	RDA	L		0.633	0.22	7	0.239	0.3	200	0.205	0.18	32	-		-		41
Rubidium dihyd	lrogen pho	sphate	RDP			0.633	0.27	3	0.240	0.3	218	0.210	0.20)8	-		-		41
Strontium bariu	m niobate		Sr _{0.75}	Ba _{0.25} Nb ₂	0 ₆	0.633	0.16		0.10	0.0)8	0.11	0.47	7	-		-		46
Strontium bariu	m niobate		Sr _{0.5} 1	Ba _{0.5} Nb ₂ O	6	0.633	0.06		0.08	0.	17	0.09	0.23	3	-		-		46
Tellurium oxide			TeO	2		0.633	0.00	74	0.187	0.3	340	0.090	0.24	40	-0.	17	-0.04	46	47
Rutile			TiO ₂	2		0.633	0.01	7	0.143	-().139	-0.080	-0.0	057	-0.	009	-0.06	50	48
Tetragonal (4, 4 Cadmium molyl Lead molybdate	4, 4/m) bdate	I Cd PbJ	Formu MoO ₄ MoO ₄	lla λ/ 0.63 0.63	μ m 33 (33 (p ₁₁ 0.12 0.24	p ₁₂ 0.10 0.24	0. 0.	p_{13} 13 – 255 0.0	p ₁₆ 017	p ₃₁ 0.11 0.175	p ₃₃ 0.18 0.300	<i>p</i> ₄₄ - 0.067	-0	p ₄₅ .01	<i>p</i> ₆₁ - 0.013	<i>p</i> - 0.05	56] 5 {	Ref. 19 52
Orthorhombic (222, m22, mmm)	Form	ula)	./μ m	p	<i>p</i>	0.243 Ø	0.205	p _{at}	p _m	p	0.21 I	0.29	_ 	_	p	_	– p.,	p,	 Ref.
Ammonium chlorate	NH ₄ ClO ₃	0	.633	- F 11	0.24	0.18	¹³ 8 0.1	23 P 21	- F 22	0.20	0.1	9 0.18	±0.0	33 02	/ 44 <±0.0)2 –	r 55	±0.0	4 51
Ammonium sulfate	$(NH_4)_2SC$	O ₄ 0	.633	0.26	0.19	±0.2	260 ±0	0.230	±0.27	±0.25	4 0.2	0 ±0.2	5 0.26	6	0.015	±0	.0015	0.012	2 52
Rochelle salt	NaKC ₄ H	₄ O ₆ 0	.589	0.35	0.41	0.42	2 0.3	37	0.28	0.34	0.3	6 0.35	0.36	5	-0.03	0.0	046	-0.0	25 53
Iodic acid (α)	HIO3	0	.633	0.302	0.496	0.33	9 0.1	263	0.412	0.304	0.2	51 0.34	5 0.33	36	0.084	-0	.030	0.09	8 54
Sulfur (a)	S	0	.633	0.324	0.307	0.26	68 0.2	272	0.301	0.310	0.2	03 0.232	2 0.27	70	0.143	0.0)19	0.11	8 54
Barite	$BaSO_4$	0	.589	0.21	0.25	0.16	0 .2	34	0.24	0.19	0.2	8 0.22	0.31	L	0.002	-0	.012	0.032	7 55
Topaz	Al ₂ SiO ₄ (O	OH,F) ₂ –		-0.085	0.069	0.05	62 0.	095	-0.120	0.065	0.0	95 0.08	5 –0.0	083	-0.09	5 -0	.031	0.09	8 28
		-																	

Monoclinic (2, m, 2/m)	Formula	λ/μ m			
Taurine	$C_2H_7NO_3S$	0.589	$p_{11} = 0.313$	$p_{25} = -0.0025$	$p_{51} = -0.014$
			$p_{12} = 0.251$	$p_{_{31}} = 0.362$	$p_{52} = 0.006$
			$p_{13} = 0.270$	$p_{_{32}} = 0.275$	$p_{53} = 0.0048$
			$p_{15} = -0.10$	$p_{_{33}} = 0.308$	$p_{55} = 0.047$
			$p_{21} = 0.281$	$p_{35} = -0.003$	$p_{_{64}} = 0.0024$
			$p_{22} = 0.252$	$p_{44} = 0.0025$	$p_{66} = 0.0028$
			$p_{_{23}} = 0.272$	$p_{46} = -0.0056$	

Elasto-Optic, Electro-Optic, and Magneto-Optic Constants

Isotropic	Formula	λ/μ m	p ₁₁	p ₁₂	$p_{_{44}}$	Ref.
Fused silica	SiO ₂	0.633	0.121	0.270	-0.075	15
Water	H ₂ O	0.633	±0.31	±0.31		15
Polystyrene		0.633	±0.30	±0.31		25
Lucite		0.633	±0.30	0.28		25
Orpiment	As ₂ S ₃ -glass	1.15	0.308	0.299	0.0045	15
Tellurium oxide	TeO ₂ -glass	0.633	0.257	0.241	0.0079	56
Laser glasses	LGS-247-2	0.488	±0.168	±0.230		57
	LGS-250-3		±0.135	±0.198		
	LGS-1		±0.214	±0.250		
	KGSS-1621		±0.205	±0.239		
Dense flint glasses	LaSF	0.633	0.088	0.147	-0.030	58
(examples)	SF ₄		0.215	0.243	-0.014	
	U10502		0.172	0.179	-0.004	
	TaFd ₇		0.099	0.138	-0.020	

References

- A. Narasimhamurty, T. S., Photoelastic and Electro-Optic Properties of Crystals, Plenum Press, New York, 1981, pp. 290–293.
- B. Weber, M. J., Ed., CRC Handbook of Laser Science and Technology, Volume IV, Part 2, CRC Press, Boca Raton, FL, 1986, pp. 324–331.
- 1. Petterson, H. E., J. Opt. Soc. Am., 63, 1243, 1973.
- 2. Burstein, E. and Smith, P. L., *Phys. Rev.*, 74, 229, 1948.
- 3. Pakhnev, A. V., et al., Sov. Phys. J. (transl.), 18, 1662, 1975.
- Feldman, A., Horovitz, D., and Waxler, R. M., Appl. Opt., 16, 2925, 1977.
- 5. Iyengar, K. S., Nature (London), 176, 1119, 1955.
- 6. Bansigir, K. G. and Iyengar, K. S., Acta Crystallogr., 14, 727, 1961.
- 7. Pakhev, A. V., et al., Sov. Phys. J. (transl.), 20, 648, 1975.
- 8. Bansigir, K. G., Acta Crystallogr., 23, 505, 1967.
- Krishna Rao, K. V. and Krishna Murty, V. G., Ind. J. Phys., 41, 150, 1967.
- Weil, R. and Sun, M. J., Proc. Int. Symp. CdTe (Detectors), Strasbourg Centre de Rech. Nucl., 1971, XIX-1 to 6, 1972.
- 11. Schmidt, E. D. D. and Vedam, K., J. Phys. Chem. Solids, 27, 1563, 1966.
- 12. Biegelsen, D. K., et al., Phys. Rev. B, 14, 3578, 1976.
- Helwege, K. H., Landolt-Börnstein, New Series Group III, Vol. II, Springer-Verlag, Berlin, 1979.
- 14. Feldman, A., Waxler, R. M., and Horovitz, D., J. Appl. Phys., 49, 2589, 1978.
- 15. Dixon, R. W., J. Appl. Phys., 38, 5149, 1967.
- 16. Shabin, O. V., et al., Sov. Phys. Sol. State (transl.), 13, 3141, 1972.
- 17. Reintjes, J. and Schultz, M. B., J. Appl. Phys., 39, 5254, 1968.
- 18. Rivoallan, L. and Favre, F., Opt. Commun., 8, 404, 1973.
- 19. Rivoallan, L. and Favre, F., Opt. Commun., 11, 296, 1974.
- 20. Afanasev, I. I., et al., Sov. J. Opt. Technol., 46, 663, 1979.
- 21. Rand, S. C., et al., Phys. Rev. B, 19, 4205, 1979.
- 22. Sipe, J. E., Can J. Phys., 56, 199, 1978.
- 23. Christyi, I. L., et al., Sov. Phys. Sol. State (transl.), 17, 922, 1975.
- 24. Narasimhamurty, T. S., Curr. Sci. (India), 23, 149, 1954.
- 25. Smith, T. M. and Korpel, A., *IEEE J. Quant. Electron.*, QE-1, 283, 1965.

- 26. Narasimhamurty, T. S., Proc. Ind. Acad. Sci., A40, 164, 1954.
- Rabman, A., *Bhagarantam Commem. Vol.*, Bangalore Print. and Publ., 173, 1969.
- 28. Eppendahl, R., Ann. Phys. (IV), 61, 591, 1920.
- 29. Laurenti, J. P. and Rouzeyre, M., J. Appl. Phys., 52, 6484, 1981.
- 30. Sasaki, H., et al., J. Appl. Phys., 47, 2046, 1976.
- 31. Uchida, N. and Saito, S., J. Appl. Phys., 43, 971, 1972.
- Waxler, R. M. and Farabaugh, E. M., J. Res. Natl. Bur. Stand., A74, 215, 1970.
- 33. Nelson, D. F., Lazay, P. D., and Lax, M., Phys. Rev., B6, 3109, 1972.
- O'Brien, R. J., Rosasco, G. J., and Weber, A., J. Opt. Soc. Am., 60, 716, 1970.
- 35. Avakyants, L. P., et al., Sov. Phys., 18, 1242, 1976.
- 36. Sapriel, J., Appl. Phys. Litt., 19, 533, 1971.
- 37. Narasimhamurty, T. S., J. Opt. Soc. Am., 59, 682, 1969.
- 38. Zubrinov, I. I., et al., Sov. Phys. Sol. State (transl.), 15, 1921, 1974.
- Kachalov, O. V. and Shpilko, I. O., Sov. Phys. JETP (transl.), 35, 957, 1972.
- 40. Narasimhamurty, T. S., et al., J. Mater. Sci., 8, 577, 1973.
- 41. Tada, K. and Kikuchi, K., Jpn. J. Appl. Phys., 19, 1311, 1980.
- 42. Aleksandrov, K. S., et al., Sov. Phys. Sol. State (transl.), 19, 1090, 1977.
- 43. Afanasev, I. I., et al., Sov. Phys. Sol. State (transl.), 17, 2006, 1975.
- 44. Silvestrova, I. M., et al., Sov. Phys. Cryst. (transl.), 20, 649, 1975.
- 45. Veerabhadra Rao, K. and Narasimhamurty, T. S., J. Mater. Sci., 10, 1019, 1975.
- 46. Venturini, E. L., et al., J. Appl. Phys., 40, 1622, 1969.
- 47. Vehida, N. and Ohmachi, Y., J. Appl. Phys., 40, 4692, 1969.
- 48. Grimsditch, M. H. and Ramdus, A. K., Phys. Rev. B, 22, 4094, 1980.
- 49. Schinke, D. P. and Viehman, W., unpublished data.
- 50. Coquin, G. A., et al., J. Appl. Phys., 42, 2162, 1971.
- 51. Vasquez, F., et al., J. Phys. Chem. Solids, 37, 451, 1976.
- 52. Luspin, Y. and Hauret, G., C.R.Ac. Sci. Paris, B274, 995 1972.
- 53. Narasimhamurty, T. S., Phys. Rev., 186, 945, 1969.
- 54. Haussühl, S. and Weber, H. J., Z. Kristall., 132, 266, 1970.
- 55. Vedam, K., Proc. Ind. Ac. Sci., A34, 161, 1951.
- 56. Yano, T., Fukumoto, A., and Watanabe, A., J. Appl. Phys., 42, 3674, 1971.
- 57. Manenkov, A. A. and Ritus, A. I., Sov. J. Quant. Electr., 8, 78, 1978.
- 58. Eschler, H. and Weidinger, F., J. Appl. Phys., 46, 65, 1975.

LINEAR ELECTRO-OPTIC COEFFICIENTS

Name

			r_{41}
Cubic (43m)	Formula	$\lambda/\mu m$	pm/V
Cuprous bromide	CuBr	0.525	0.85
Cuprous chloride	CuCl	0.633	3.6
Cuprous iodide	CuI	0.55	-5.0
Eulytite (BSO)	Bi ₄ Si ₃ O ₁₂	0.63	0.54
Germanium eulytite (BGO)	Bi ₄ Ge ₃ O ₁₂	0.63	1.0
Gallium arsenide	GaAs	10.6	1.6
Gallium phosphide	GaP	0.56	-1.07
Hexamethylenetetramine	$C_{6}H_{12}N_{4}$	0.633	0.78
Sphalerite	ZnS	0.65	2.1
Zinc selenide	ZnSe	0.546	2.0
Zinc telluride	ZnTe	3.41	4.2
Cadmium telluride	CdTe	3.39	6.8

Cubic (23)	Formula	$\lambda/\mu m$	$r_{_{41}}$ pm/V
Ammonium chloride (77 K)	NH ₄ Cl	_	1.5
Ammonium cadmium langbeinite	$(NH_{a})_{2}Cd_{2}(SO_{a})_{3}$	0.546	0.70
Ammonium manganese langbeinite	$(NH_{a})_{2}Mn_{2}(SO_{a})_{3}$	0.546	0.53
Thallium cadmium langbeinite	$Tl_2Cd_2(SO_4)_3$	0.546	0.37
Potassium magnesium langbeinite	$K_2Mg_2(SO_4)_3$	0.546	0.40
Bismuth monogermanate	Bi ₁₂ GeO ₂₀	_	3.3
Bismuth monosilicate	Bi ₁₂ SiO ₂₀	_	3.3
Sodium chlorate	NaClO ₃	0.589	0.4
Sodium uranyl acetate	NaUO ₂ (CH ₃ COO) ₃	0.546	0.87
Trenhydrobromide	N(CH,CH,NH,), 3HBr	_	1.5
Trenhydrochloride	N(CH,CH,NH,), 3HCl	_	1.7

Tetragonal (42m)	Formula	T _{tran} K	<i>r</i> ₄₁ pm/V	r ₆₃ pm/V
Ammonium dihydrogen phosphate (ADP)	NH ₄ H ₂ PO ₄	148	24.5	-8.5
Ammonium dideuterium phosphate (AD*P)	NH ₄ D ₂ PO ₄	242	-	11.9
Ammonium dihydrogen arsenate (ADA)	NH ₄ H ₂ AsO ₄	-	-	9.2
Cesium dihydrogen arsenate (CsDA)	CsH ₂ AsO ₄	143	-	18.6
Cesium dideuterium arsenate (CsD*A)	CsD ₂ AsO ₄	212	-	36.6
Potassium dihydrogen phosphate (KDP)	KH,PO,	123	8.6	-10.5
Potassium dideuterium phosphate (KD*P)	KD ₂ PO ₄	222	8.8	23.8
Potassium dihydrogen arsenate (KDA)	KH ₂ AsO ₄	97	12.5	10.9
Potassium dideuterium arsenate (KD*A)	KD ₂ AsO ₄	162	-	18.2
Rubidium dihydrogen phosphate (RDP)	RbH,PO4	147	-	15.5
Rubidium dihydrogen arsenate (RDA)	RbH ₂ AsO ₄	110	-	13.0
Rubidium dideuterium arsenate (RD*A)	RbD ₂ AsO ₄	178	-	21.4

		$T_{ m tran}$	<i>r</i> ₁₃	<i>r</i> ₃₃	r_{51}
Tetragonal (4mm)	Formula	К	pm/V	pm/V	pm/V
Barium titanate	BaTiO ₃	406	8	28	-
Potassium lithium niobate	K ₃ Li ₂ Nb ₅ O ₁₅	693	8.9	5.9	-
Lead titanate	PbTiO ₃	765	13.8	5.9	-
Strontium barium niobate (SBN75)	$Sr_{0.75}Ba_{0.25}Nb_2O_6$	330	6.7	1340	42
Strontium barium niobate (SBN46)	$\mathrm{Sr}_{0.46}\mathrm{Ba}_{0.54}\mathrm{Nb}_{2}\mathrm{O}_{6}$	602	~180	35	-

Hexagonal (6mm)	Formula	r ₁₃ pm/V	r ₃₃ pm/V	, p	r_{42} r_{51} m/V pm/V
Greenockite	CdS	3.1	2.9	2.0	3.7
Greenockite (const. strain)	CdS	1.1	2.4	-	_
Wurzite	ZnS	0.9	1.8	-	_
Zincite	ZnO	-1.4	+2.6	-	-
Hexagonal (6)	Formula	<i>r</i> ₁₃ рт/V	r ₃₃ pm/V	r ₄₂ pm/V	<i>r</i> ₅₁ pm/V
Lithium iodate	LiIO ₃	4.1	6.4	1.4	3.3
Lithium potassium sulfa	ate LiKSO ₄	$r_{13} - r_{33} = 1.6$	-	-	-

Trigonal (3m)	Formula	T _{tran} K	r_{13} pm/V	r_{22} pm/V	r ₃₃ pm/V	r_{42} pm/V
Cesium nitrate	CsNO,	425	-	0.43	- -	-
Lithium niobate	LiNbO	1483	8.6	7.0	30.8	28
Lithium tantalate	LiTaO ₃	890	8.4	-	30.5	-
Lithium sodium sulfate	LiNaSO ₄	-	-	< 0.02	-	-
Tourmaline	-	-	-	0.3	-	-
			$T_{\rm tran}$	<i>r</i> ₁₁	$r_{41}^{}$	
Trigonal (32)	For	mula	К	pm/V	pm/V	
Cesium tartrate	Cs ₂	$C_4H_4O_6$	-	1.0	-	
Cinnabar	HgS	5	659	3.1	1.5	
Potassium dithionate	K_2S_2	$_{2}O_{6}$	-	0.26	-	
Strontium dithionate	SrS	$O_6 \cdot 4H_2O$	-	0.1	-	
Quartz	SiO	2	1140	-0.47	0.2	
Selenium	Se		398	2.5		

		$T_{_{ m tran}}$	$r_{41}^{}$	r_{52}^{-1}	r_{63}
Orthorhombic (222)	Formula	K	pm/V	pm/V	pm/V
Ammonium oxalate	$(NH_4)_2C_2O_4\cdot 4H_2O$	-	230	330	250
Rochelle salt	KNaC ₄ H ₄ O ₆ ·4H ₂ O	$T_{u} = 297$ $T_{1} = 255$	-2.0	-1.7	+0.32

		T trans	<i>r</i> ₁₃	r_{23}	<i>r</i> ₃₃	r_{42}	r_{51}
Orthorhombic (mm2)	Formula	К	pm/V	pm/V	pm/V	pm/V	pm/V
Barium sodium niobate (BSN)	Ba ₂ NaNbO ₁₅	833	15	13	48	92	90
Potassium niobate	KNbO ₃	476	28	1.3	64	380	105

Monoclinic (2)	Formula	T _{trans} K	r_{22} pm/V	r ₃₂ pm/V
Calcium pyroniobate	Ca ₂ Nb ₂ O ₇	-	0.33	13.7
Triglycine sulfate (TGS)	(NH ₂ CH ₂ COOH) ₃ ·H ₂ SO ₄	322	7.2	13.6

References

1. Narasimhamurty, T. S., Photoelastic and Electro-Optic Properties of Crystals, Plenum Press, New York, 1981, pp. 405-407.

2. Weber, M. J., Ed., CRC Handbook of Laser Science and Technology, Vol. IV, CRC Press, Boca Raton, FL, 1986, pp. 258–278.

QUADRATIC ELECTRO-OPTIC COEFFICIENTS

Kerr Constants of Ferroelectric Crystals^{1,2}

		$T_{\rm tran}$	λ	g ₁₁	g ₁₂	$g_{11} - g_{12}$	$g_{_{44}}$
Name	Formula	К	μ m	10 ¹⁰ esu	10 ¹⁰ esu	10 ¹⁰ esu	1010 esu
Barium titanate	BaTiO ₃	406	0.633	1.33	-0.11	1.44	
Strontium titanate	SrTiO ₃	_	0.633	-	-	1.56	-
Potassium tantalate niobate	KTa _{0.65} Nb _{0.35} O ₃	330	0.633	1.50	-0.42	1.92	1.63
Potassium tantalate	KTaO ₃	13	0.633	-	-	1.77	1.33
Lithium niobate	LiNbO ₃	1483	-	0.94	0.25	0.7	0.6
Lithium tantalate	LiTaO ₃	938	-	1.0	0.17	0.8	0.7
Barium sodium niobate (BSN)	Ba _{0.8} Na _{0.4} Nb ₂ O ₆	833	-	1.55	0.44	1.11	

Kerr Constants of Selected Liquids²

K is the Kerr constant at a wavelength of 589 nm and at room temperature; ε is the static dielectric constant; $t_{\rm m}$ is the melting point; and $t_{\rm b}$ is the normal boiling point

	Molecular	K	ε	t _m	$t_{\rm b}$
Name	formula	10 ⁻⁷ esu		°C	°C
rbon disulfide	CS_2	+3.23	2.63	-111.5	+46.3
etone	C ₃ H ₆ O	+16.3	21.0	-94.8	+56.1
thyl ethyl ketone	C_4H_8O	+13.6	18.56	-86.67	+79.6
ridine	C_5H_5N	+20.4	13.26	-42	+115.23
yl cyanoacetate	C ₅ H ₇ NO ₂	+38.8	31.6	-22.5	205
Dichlorobenzene	$C_6H_4Cl_2$	+42.6	10.12	-16.7	180
nzenesulfonyl chloride	C ₆ H ₅ ClO ₂ S	+89.9	28.90	+14.5	247
robenzene	C ₆ H ₅ NO ₂	+326	35.6	+5.7	210.8
yl 3-aminocrotonate	$C_6 H_{11} NO_2$	+31.0	-	+33.9	210
aldehyde	$C_{6}H_{12}O_{3}$	-23.0	14.7	+12.6	124
			12.0ª		
nzaldehyde	C ₇ H ₆ O	+80.8	17.85	-26	179.05
			14.1ª		
Chlorotoluene	C ₇ H ₇ Cl	+23.0	6.25	+7.5	162.4
Vitrotoluene	C ₇ H ₇ NO ₂	+174	26.26	-10	222.3
Nitrotoluene	C ₇ H ₇ NO ₂	+177	24.95	+15.5	232
Nitrotoluene	C ₇ H ₇ NO ₂	+222	22.2	+51.6	238.3
nzyl alcohol	C ₇ H ₈ O	-15.4	11.92	-15.3	205.8
			10.8 ^a		
Cresol	C ₇ H ₈ O	+21.2	12.44	+11.8	202.27
			5.0ª		
Chloroacetophenone	C ₈ H ₇ ClO	+69.1			
etophenone	C ₈ H ₈ O	+66.6	17.44	+19.7	202.3
			15.8ª		
inoline	C ₉ H ₇ N	+15.0	9.16	-14.78	237.16
yl salicylate	$C_9H_{10}O_3$	+19.6	8.48	+1.3	231.5
rvone	$C_{10}H_{14}O$	+23.6	11.2	<0	230
yl benzoylacetate	$C_{11}H_{12}O_{3}$	+16.0	13.50	<0	270
iter	H ₂ O	+4.0	80.10	0.00	100.0
lter	$\Pi_2 O$	+4.0	80.10	0.00	

^a Dielectric constant at radio frequencies (108–109 Hz).

References

1. Narasimhamurty, T. S., Photoelastic and Electro-Optic Properties of Crystals, Plenum Press, New York, 1981, p. 408.

2. Gray, D. E., Ed., AIP Handbook of Physics, McGraw Hill, New York, 1972, p. 6-241.

Verdet Constants of Non-Magnetic Crystals¹

V is the Verdet constant; *n* is the refractive index; and λ is the wavelength.

	Т	λ	п	V
Material	К	nm		min/Oe cm
Al ₂ O ₂	300	546.1	1.771	0.0240
2 3	300	589.3	1.768	0.0210
BaTaO ₂	403	427		0.95
2	403	496		0.38
	403	620		0.18
	403	826		0.072
Bi ₄ Ge ₂ O ₁₂	300	442	2.077	0.289
4 3 12	300	632.8	2.048	0.099
	300	1064	2.031	0.026
C (diamond)	300	589.3	2.417	0.0233
CaCO ₃	300	589.3	1.658	0.019
CaF ₂	300	589.3	1.434	0.0088
$Cd_{0.55}Mn_{0.45}Te$	300	632.8		6.87
CuCl	300	546.1	1.93	0.20
GaSe	298	632.8		0.80
KAl(SO ₄) ₂ ·12H ₂ O	300	589.3	1.456	0.0124
KBr	300	546.1	1.564	0.0500
	300	589.3	1.560	0.0425
KCl	300	589.3	1.490	0.0275
KI	300	546.1	1.673	0.083
	300	589.3	1.666	0.070
KTaO ₃	296	352		0.44
	296	413		0.19
	296	496		0.096
	296	620		0.051
	296	826		0.022
LaF ₃	300	325	1.639	0.054
(H c)	300	442	1.615	0.028
	300	632.8	1.601	0.012
	300	1064	1.592	0.006
$MgAl_2O_4$	300	589.3	1.718	0.021
$NH_4AlSO_4 \cdot 12H_2O$	300	589.3	1.459	0.0128
NH_4Br	300	589.3	1.711	0.0504
NH_4Cl	300	546.1		0.0410
	300	589.3	1.643	0.0362
NaBr	300	546.1		0.0621
NaCl	300	546.1		0.0410
	300	589.3	1.544	0.0345
NaClO ₃	300	546.1		0.0105
	300	589.3	1.515	0.0081
NiSO ₄ ·6H ₂ O	297	546.1		0.0256
	297	589.3	1.511	0.0221
SiO ₂	300	546.1	1.546	0.0195
	300	589.3	1.544	0.0166
Sr1iO ₃	298	413	2.627	0.78
	298	496		0.31
	298	620		0.14
	298	826		0.066
Zn5	300	546.1	0.040	0.287
7 - 6 -	300	589.3	2.368	0.226
ZnSe	300	4/6	2.826	1.50
	300	496	2./59	1.04
	300	514	2./21	0.839
	300	58/	2.627	0.529
	300	632.8	2.592	0.406

Verdet Constants of Rare-Earth Aluminum Garnets at Various Wavelengths¹

The absorption coefficient α for these materials ranges from 0.2 to 0.6 $cm^{\scriptscriptstyle -1}$ at 300 K.

<i>V</i> in min/Oe cm								
a = 405 nm 4	450 nm	480 nm	520 nm	546 nm	578 nm	635 nm	670 nm	
2.266 -	-1.565	-1.290	-1.039	-0.912	-0.787	-0.620	-0.542	
-	-102.16	-83.45	-3.425	-3.051	-2.603	-2.008	-1.815	
			-64.80	-58.35	-53.77	48.39	-45.15	
-	-200.95	-172.52	-139.28	-125.07	-111.27	97.47	-93.42	
1.241 -	-0.942	-0.803	-0.667	-0.592	-0.518	-0.411	-0.359	
0.709 -	-0.320	-0.260	-0.335	-0.304	-0.299		-0.206	
0.189 -	-0.240	-0.154	-0.162	-0.157	-0.145	-0.105	-0.089	
0.151 +	+0.103	+0.093	0.076	0.069	+0.059	+0.048		
287 0	0.215	0.186	0.140	0.133	0.116	0.094		
.718 (0.540	0.481	0.393	0.342	0.302	0.239		
	= 405 nm 2.266 1.241 0.709 0.189 0.151 287 (718	$\begin{array}{c cccc} = 405 \text{ nm} & 450 \text{ nm} \\ 2.266 & -1.565 \\ & -102.16 \\ & &$	= 405 nm450 nm480 nm 2.266 -1.565 -1.290 -102.16 -83.45 -200.95 -172.52 1.241 -0.942 -0.803 0.709 -0.320 -0.260 0.189 -0.240 -0.154 0.151 $+0.103$ $+0.093$ 287 0.215 0.186 718 0.540 0.481	Vin min/Oe= 405 nm450 nm480 nm520 nm 2.266 -1.565 -1.290 -1.039 -102.16 -83.45 -3.425 -64.80 -200.95 -172.52 -139.28 1.241 -0.942 -0.803 -0.667 0.709 -0.320 -0.260 -0.335 0.189 -0.240 -0.154 -0.162 0.151 $+0.103$ $+0.093$ 0.076 287 0.215 0.186 0.140 718 0.540 0.481 0.393	V in min/Oe cm= 405 nm450 nm480 nm520 nm546 nm 2.266 -1.565 -1.290 -1.039 -0.912 -102.16 -83.45 -3.425 -3.051 -64.80 -58.35 -200.95 -172.52 -139.28 -125.07 1.241 -0.942 -0.803 -0.667 -0.592 0.709 -0.320 -0.260 -0.335 -0.304 0.189 -0.240 -0.154 -0.162 -0.157 0.151 $+0.103$ $+0.093$ 0.076 0.069 287 0.215 0.186 0.140 0.133 718 0.540 0.481 0.393 0.342	Vin min/Oe cm= 405 nm450 nm480 nm520 nm546 nm578 nm 2.266 -1.565 -1.290 -1.039 -0.912 -0.787 -102.16 -83.45 -3.425 -3.051 -2.603 -64.80 -58.35 -53.77 -200.95 -172.52 -139.28 -125.07 -111.27 1.241 -0.942 -0.803 -0.667 -0.592 -0.518 0.709 -0.320 -0.260 -0.335 -0.304 -0.299 0.189 -0.240 -0.154 -0.162 -0.157 -0.145 0.151 $+0.103$ $+0.093$ 0.076 0.069 $+0.059$ 287 0.215 0.186 0.140 0.133 0.116 718 0.540 0.481 0.393 0.342 0.302	Vin min/Oe cm= 405 nm450 nm480 nm520 nm546 nm578 nm635 nm 2.266 -1.565 -1.290 -1.039 -0.912 -0.787 -0.620 -102.16 -83.45 -3.425 -3.051 -2.603 -2.008 -64.80 -58.35 -53.77 48.39 -200.95 -172.52 -139.28 -125.07 -111.27 97.47 1.241 -0.942 -0.803 -0.667 -0.592 -0.518 -0.411 0.709 -0.320 -0.260 -0.335 -0.304 -0.299 -0.105 0.189 -0.240 -0.154 -0.162 -0.157 -0.145 -0.105 0.151 $+0.103$ $+0.093$ 0.076 0.069 $+0.059$ $+0.048$ 287 0.215 0.186 0.140 0.133 0.116 0.094 718 0.540 0.481 0.393 0.342 0.302 0.239	

Verdet Constants for KDP-Type Crystals¹

Measurements refer to T = 298 K and $\lambda = 632.8$ nm, with $k \parallel [001]$.

	V
Material	min/Oe cm
KH ₂ PO ₄ (KDP)	0.0124
KH _{0.3} D _{1.7} PO ₄ (KD*P)	0.145
NH ₄ H ₂ PO ₄ (ADP)	0.138
KH ₂ AsO ₄ (KDA)	0.238
$KH_{01}D_{19}AsO_4 (KD^*A)$	0.245
NH ₄ H ₂ AsO ₄ (ADH)	0.244

Verdet Constants of Gases²

Values refer to $T = 0^{\circ}$ C and P = 101.325 kPa (760 mmHg); $n_{\rm D}$ is the refractive index at a wavelength of 589 nm.

		$10^{\circ} \times V$
Gas	$(n_{\rm D}^{} - 1) \times 10^3$	min/Oe cm
He	0.036	+0.40
Ar	2.81	+9.36
H ₂		+6.29
N ₂	0.297	+6.46
0,	0.272	+5.69
Air	0.293	+6.27
Cl ₂	0.773	+31.9
HCl	0.447	+21.5
H ₂ S	0.63	+41.5
NH ₃	0.376	+19.0
CO	0.34	+11.0
CO ₂	0.45	+9.39
NO	0.297	-58
CH4	0.444	+17.4
$n-C_4H_{10}$		+44.0

Verdet Constants of Liquids²

 $n_{\rm D}$ is the refractive index at a wavelength of 589 nm and a temperature of 20°C, unless otherwise indicated. V is the Verdet constant.

			$10^2 imes V$	
Liquid	λ/\mathbf{nm}	t/°C	min/Oe cm	n _D
Р	589	33	+13.3	
S	589	114	+8.1	1.929 (110°C)
H ₂ O	589	20	+1.309	1.3328
D ₂ O	589	19.7	+1.257	1.3384
H ₃ PO ₄	578	97.4	+1.35	
CS ₂	589	20	+4.255	1.6255
CCl ₄	578-589	25.1	+1.60	1.463 (15°C)
SbCl ₅	578	18	+7.45	1.601 (14°C)
TiCl ₄	578	17	-1.65	1.61
TiBr ₄	578	46	-5.3	
Methanol	589	18.7	+0.958	1.3289
Acetone	578-589	20.0	+1.116	1.3585
Toluene	578-589	15.0	+2.71	1.4950
Benzene	578-589	15.0	+3.00	1.5005
Chlorobenzene	589	15	+2.92	1.5246
Nitrobenzene	589	15	+2.17	1.5523
Bromoform	589	17.9	+3.13	1.5960

Verdet Constants of Rare Earth Paramagnetic Crystals¹

n is the refractive index, and V is the Verdet constant at the wavelength and temperature indicated.

Rare					V
Earth	Host	T/K	λ/nm	п	min/Oe cm
Ce ³⁺ (30%)	CaF ₂	300	325	1.516	-0.956
	-	300	442	1.502	-0.297
		300	633	1.494	-0.111
		300	1064	1.489	-0.035
Ce ³⁺	CeF ₃	300	442	1.613	-1.05
	5	300	633	1.598	-0.406
		77	633		-1.418
		300	1064	1.589	-0.113
Pr ³⁺ (5%)	CaF	300	266	1.471	-0.172
	-	300	325	1.461	-0.0818
		300	442	1.451	-0.0089
		300	633	1.445	-0.0168
		300	1064	1.441	-0.0045
Nd ³⁺ (2.9%)	CaF ₂	4.2	426		-0.19
Nd ³⁺	NdF ₃	300	442	1.60	-0.553
	-	290	633	1.59	-0.209
		77	633		-0.755
		300	1064	1.58	-0.097
Eu ³⁺ (3%)	CaF ₂	4.2	430		29
		4.2	440		22
Eu ²⁺	EuF ₂	300	450		-4.5
		300	500		-2.6
		300	550		-1.6
		300	600		-1.1
		300	650		-0.8
		300	1064		-0.19
Tb^{3+}	$KTb_{3}F_{10}$	300	325	1.531	-2.174
		300	442	1.518	-0.933
		300	633	1.510	-0.386
		77	633		-1.94
		300	1064	1.505	-0.114
Tb^{3+}	$LiTbF_4$	300	325	1.493	-1.9
		300	442	1.481	-0.98
		300	633	1.473	-0.44
		300	1064	1.469	-0.13
Tb^{3+}	Tb ₃ Ga ₅ O ₁₂	300	500	1.989	-0.749
		300	570	1.981	-0.581
		300	633	1.976	-0.461
		300	830	1.967	-0.21
		300	1060	1.954	-0.12

Verdet Constants of Paramagnetic Glasses¹

The Verdet constant V is given at room temperature for the wavelengths indicated. Rare earth phosphate glasses of composition $R_2O_3 \cdot xP_2O_5$, where x is given in the second column

			- 4	5 2 5	-							
			Verdet constant V in min/Oe cm									
		$\lambda = 405$	$\lambda = 436$	$\lambda = 480$	$\lambda = 500$	$\lambda = 520$	λ= 546	λ= 578	λ= 600	λ= 635	λ= 670	
R	x	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm	
La		0.037	0.030	0.024	0.022	0.020	0.018	0.015	-0.014	0.013	-	
Ce	2.67	-0.672	0.510	-0.366	-0.326	-0.287	-0.253	-0.217	-0.197	-0.173	-0.150	
Pr	3.09	-0.447	-0.332	-0.283	-0.261	-0.236	-0.208	-0.182	-0.170	-0.150	-0.132	
Nd	2.92	-0.250	-0.209	-0.167	-0.155	-0.136	-0.134	-0.094	-0.080	-0.080	-0.071	
Sm	2.87	0.026	0.024	0.020	0.020	0.017	0.015	0.014	0.012	0.011	0.010	
Eu	2.93	-0.025	-0.017	-0.010	-0.006	-0.006	-0.005	-0.004	-0.003	-0.002	-0.002	
Gd	3.01	0.018	0.015	0.014	0.012	0.012	0.011	0.011	0.010	0.009	0.009	
Tb	2.94	-0.560	-0.458	-0.357	-0.323	-0.295	-0.261	-0.226	-0.206	-0.190	-0.164	
Dy	2.51	-0.540	-0.453	-0.359	-0.331	-0.301	0.268	-0.237	-0.217	-0.197	-0.173	
Ho	2.94	-0.299	-0.313	-0.156	-0.153	-0.138	-0.138	-0.119	-0.110	-0.098	-0.084	
Er	3.01	-0.139	-0.121	-0.100	-0.111	-0.095	-0.062	-0.060	-0.057	-0.051	-0.044	
Tm	2.79	0.019	0.013	0.012	0.009	0.008	0.006	0.005	0.004	0.004	0.007	
Yb	3.01	0.087	0.072	0.056	0.050	0.045	0.041	0.036	0.032	0.029	0.024	

The following are rare earth borate glasses with composition:

for La and Pr: R₂O₃:xP₂O₅; for Tb-Pr and Dy-Pr: R₂O₃:xB₂O₃; and for other elements: R₂O₃:0.85La₃O₃:xB₂O₃.

La	3.04	0.043	0.036	0.029	0.026	0.023	0.022	0.019	0.018	0.016	0.014
Pr-La	5.44	-0.380	-0.307	-0.230	-0.220	-0.201	-0.178	-0.153	-0.146	-0.128	-0.110
Nd-La	5.41	-0.180	-0.147	-0.120	-0.111	-0.096	-0.094	-0.100	-0.059	-0.056	-0.046
Sm-La	4.97	0.032	0.030	0.025	0.024	0.022	0.019	0.017	0.016	0.014	0.012
Eu-La	4.69	-0.081	-0.060	-0.038	-0.033	-0.029	-0.024	0.019	-0.016	0.014	-0.012
Gd-La	4.71	0.032	0.026	0.024	0.022	0.021	0.020	0.018	0.017	0.015	0.013
Tb-La	4.73	-0.512	-0.419	-0.319	-0.288	-0.262	-0.234	-0.205	-0.186	-0.167	-0.142
Dy-La	4.88	-0.436	-0.361	-0.299	-0.273	-0.246	-0.220	-0.193	-0.177	-0.159	-0.138
Ho-La	4.36	-0.269	-0.252	-0.123	-0.131	-0.112	-0.128	-0.104	-0.096	-	-0.074
Er-La	4.50	-0.093	-0.078	-0.068	-0.082	-	-0.045	-0.042	-0.040	-0.035	-0.034
Tm-La	4.75	0.060	0.046	0.039	0.034	0.031	0.026	0.023	0.021	0.018	0.016
Yb-La	8.58	0.115	0.094	0.073	0.066	0.060	0.054	0.046	0.043	0.037	0.033
Tb-Pr	4.99	-0.940	-0.786	-0.560	-0.536	-0.489	-0.436	-0.380	-0.348	-0.306	-0.265
Dy-Pr	4.63	-0.850	-	-	-0.497	-0.465	-0.413	-0.358	-0.332	-0.290	-0.252
Pr	2.56	-0.843	-0.646	-0.471	-0.480	-0.432	-0.390	-0.334	-0.317	-0.271	-0.243

Verdet Constants of Diamagnetic Glasses¹

	0	1	0		
Glass					
type	Composition (wt. %)	$\lambda = 325 \text{ nm}$	$\lambda = 442 \text{ nm}$	$\lambda = 633 \text{ nm}$	$\lambda = 1064 \text{ nm}$
SiO ₂	100% SiO ₂			0.013	
B_2O_3	100% B ₂ O ₃			0.010	
CdO	47.5% CdO, 52.5% P ₂ O ₅	0.079	0.033	0.022	
ZnO	36.4% ZnO, 63.6% P ₂ O ₅	0.072	0.044	0.020	
TeO ₂	88.9% TeO ₂ , 11.1% P ₂ O ₅		0.196	0.076	0.022
ZrF_4	63.1% ZrF ₄ , 14.9% BaF ₂ ,			0.011	
	7.2% LaF ₃ , 1.9% AlF ₃ ,				
	9.1% PbF ₂ , 3.8% LiF				

Elasto-Optic, Electro-Optic, and Magneto-Optic Constants

		$\lambda = 700 \text{ nm}$	$\lambda = 853 \text{ nm}$	$\lambda = 1060 \text{ nm}$
Bi ₂ O ₃	95% Bi2O3, 5% B2O3	0.086	0.051	0.033
PbO	95% PbO, 5% B2O3	0.093	0.061	0.031
	82% PbO, 18% SiO2	0.077	0.045	0.027
	50% PbO, 15% K2O, 35% SiO2	0.032	0.020	0.011
Tl ₂ O	95% Tl2O, 5% B2O3	0.092	0.061	0.032
2	82% Tl2O, 18% SiO2	0.100	0.067	0.043
	50% Tl2O, 15% K2O, 35% SiO2	0.036	0.022	0.012
SnO	76% SnO, 13% B2O3, 11% SiO2	0.071	0.046	0.026
TeO ₃	75% TeO2, 25% Sb2O3	0.076	0.052	0.032
5	80% TeO2, 20% ZnCl2	0.073	0.046	0.025
	84% TeO2, 16% BaO	0.056	0.041	0.029
	70% TeO2, 30% WO3	0.052	0.035	0.022
	20% TeO2, 80% PbO	0.128	0.075	0.048
Sb ₂ O ₂	25% Sb2O3, 75% TeO2	0.076	0.050	0.032
2 3	75% Sb2O3, 75% Cs2O, 5% Al2O3	0.074	0.044	0.025
	75% Sb2O3, 10% Cs2O, 10% Rb2O, 5% Al2O3	0.078	0.052	0.030

Verdet Constants of Commercial Glasses¹

This table gives the density, ρ , refractive index at 589 nm, n_{D} , and Verdet constant, V, for the wavelengths indicated; the data refer to room temperature.

Glass	ρ		V in min/Oe cm						
type	g/cm ³	n _D	$\lambda = 365.0 \text{ nm}$	$\lambda = 404.7 \text{ nm}$	$\lambda = 435.8 \text{ nm}$	λ = 546.1 nm	$\lambda = 578.0 \text{ nm}$		
BSC	2.49	1.5096	0.0499	0.0392	0.0333	0.02034	0.01798		
HC	2.53	1.5189	0.0561	0.0440	0.0372	0.0225	0.01995		
LBC	2.87	1.5406	0.0609	0.0477	0.0403	0.0245	0.0216		
LF	3.23	1.5785	0.1143	0.0850	0.0693	0.0394	0.0344		
BLF	3.48	1.6047	0.1112	0.0832	0.0685	0.0393	0.0344		
DBC	3.56	1.6122	0.0662	0.0517	0.0435	0.0261	0.0231		
DF	3.63	1.6203	0.1473	0.1076	0.0872	0.0485	0.0423		
EDF	3.9	1.6533	0.1725	0.1248	0.1007	0.0556	0.0483		

The composition of the glasses in weight percent is:

Glass										
type	SiO ₂	B_2O_3	K ₂ O	CaO	Al ₂ O ₃	As ₂ O ₃	Na ₂ O	BaO	ZnO	РЬО
BSC	69.6	6.7	20.5	2.9	0.3	0.1	_	_	-	-
HC	72.0	-	10.1	11.4	0.3	0.2	6.1	_	-	-
LBC	57.1	1.8	13.7	0.3	0.2	0.1	_	26.9	-	-
LF	52.5	-	9.5	0.3	0.2	0.1	_	_	-	37.6
BLF	45.2	-	7.8	-	_	0.4	_	16.0	8.3	22.2
DBC	36.2	7.7	0.2	0.2	3.5	0.7	_	44.6	6.7	-
DF	46.3	-	1.1	0.3	0.2	0.1	5.0	_	-	47.0
EDF	40.6	-	7.5	0.2	0.2	0.2	0.1	-	-	51.5

References

1. Weber, M. J., *CRC Handbook of Laser Science and Technology*, Vol. IV, Part 2, CRC Press, Boca Raton, FL, 1988, pp. 299–310. 2. Gray, D. E., Ed., *American Institute of Physics Handbook*, Third edition, McGraw Hill, New York, 1972, p. 6–230.

FARADAY ROTATION

Ferro-, Ferri-, and Antiferromagnetic Solids

	$T_{\rm c}$	$4 \pi M_s$	F	α	2 <i>F</i> /α	Т	λ
Material	К	gauss	deg/cm	cm ⁻¹	deg	К	nm
Fe	1043	21.800	4.4×10^{5}	6.5×10^{5}	1.4	300	500
			6.5×10^{5}	5.0×10^{5}	2.6	300	1000
			7×10^{5}	4.2×10^{5}	3.3	300	1500
			7×10^{5}	3.5×10^{5}	4.0	300	2000
Со	1390	18.200	2.9×10^{5}	_	_	300	500
			5.5×10^{5}	6.1×10^{5}	1.8	300	1000
			5.5×10^5	4.5×10^5	2.4	300	1500
			5.5×10^5	3.6×10^5	2.7	300	2000
Ni	633	6 400	0.8×10^{5}	-		300	500
	000	0,100	2.6×10^5	5.8×10^{5}	0.9	300	1000
			1.5×10^5	4.8×10^{5}	0.9	300	1500
			1.5×10^{5} 1×10^{5}	4.0×10^{5}	0.25	300	2000
Dormallov	803	10 700	1×10^{5}	4.1×10^{5}	0.25	300	500
(Ni/Fe = 82/18)	805	10,700	1.2 × 10	0 × 10	0.4	300	500
(NI/10 = 02/10) $NI/E_0 = 100/0$		6 000	1.2×10^{5}	7.05×10^{5}	0.34	300	622.8
Ni/Te = 100/0		10,000	1.2×10 2.2×10^5	7.03×10^{-7}	0.54	200	622.8
Ni/Fe = 60/20		10,000	2.2×10^{-105}	7.10×10^{-7}	0.02	300	622.8
NI/Fe = 60/40		14,900	$2.9 \times 10^{\circ}$	7.54 × 10°	0.77	300	652.8
N1/Fe = 40/60		14,400	2.2×10^{5}	8.17×10^{5}	0.54	300	632.8
$N_1/Fe = 20/80$	(20)	19,400	3.3×10^{5}	8.10×10^{3}	0.81	300	632.8
$N_1/Fe = 0/100$	639	21,600	3.5×10^{5}	8.13×10^{3}	0.86	300	632.8
MnBi		7,700	4.2×10^{5}	6.1×10^{5}	1.4	300	450
	212		7.5×10^{3}	4.2×10^{3}	3.6	300	900
MnAs	313	-	0.44×10^{3}	5.0×10^{5}	0.174	300	500
~			0.62×10^{5}	4.4×10^{3}	0.28	300	900
CrTe	334	1015	0.5×10^{5}	2.0×10^{5}	0.5	300	550
			0.4×10^{5}	1.2×10^{5}	0.7	300	900
FeRh	333	-	0.9×10^{5}	3.3×10^{5}	0.56	348	700
$Y_{3}Fe_{5}O_{12}$ (YIG)	560	2500	2400	1500	3.2	300	555
			1250	1400	1.8	300	625
			750	450	3.3	300	770
			175	<0.06	$>3 \times 10^{3}$	300	5000
							to 1500
Gd ₃ Fe ₅ O ₁₂ (GdIG)	$T_{n} = 564$	7300	-2000	6000	0.6	300	500
	T = 286		-1050	900	2.3	300	600
			-300	100	6.0	300	800
			-80	70	2.3	300	1000
NiFe ₂ O ₄	858	3350	$2.0 imes 10^4$	$5.9 imes 10^4$	0.7	300	286
			$-1.0 imes 10^4$	$10 imes 10^4$	0.2	300	500
			-120	38	6	300	1500
			+75	15	10	300	3000
			+110	32	7	300	5000
CoFe ₂ O ₄	793	4930	2.75×10^4	12×10^4	0.5	300	286
2 4			3.6×10^4	17×10^4	0.4	300	400
			-2.5×10^4	6×10^4	0.8	300	660
MgFe ₂ O ₄	593-713 ^e	1450 ^e	-60	100	1	300	2500
0 2 4			0	12	0	300	4000
			+35	6	11	300	6000
Li Fe O.	863–953°	3240 ^e	-440	150	6	300	1500
0.5 2.5 4		to 3900	+10	85	0.2	300	3000
			+110	44	5	300	5000
			+135	80	3	300	7000
BaFe O	723	_	-50	-38	3	300	2000
2 un C ₁₂ C ₁₉	, 20		+75	20	75	300	3000
			+150	20	, 15	300	5000
			+165	20	15	300	7000
$B_0 T_n E_0 O$			4103	22 120	15 1 <i>E</i>	200	7000 E000
$Da_2 Z II_2 Fe_{12} O_{19}$	-	-	90	120	1.0	200	2000

	T _c	$4 \pi M_s$	F	α	2 <i>F</i> /α	T	λ
Material	K	gauss	deg/cm	cm ⁻¹	deg	К	nm
			75	65	2.0	300	7000
RbNiF,	220	1250	360	35	20	77	450ª
3			70	10	14	77	600ª
			310	70	9	77	800 ^a
			75	25	6	77	1000 ^a
RbNi ₀₇₅ Co ₀₂₅ F ₃	109	_	180	9	40	77	600 ^b
RbFeF ₃	102	_	3400	7	900	82	300 ^c
5			1600	3	1100	82	400 ^c
			620	1.5	830	82	600 ^c
			300	2.5	240	82	800 ^c
FeF ₃	365	40	670	14	95	300	349^{d}
5		at 300 K	180	4.4	82	300	522.5 ^d
CrCl ₃	16.8	3880	2000	200	20	1.5	410
5			-500	300	3	1.5	450
			-1000	70	30	1.5	590
CrBr ₃	32.5	3390	3×10^5	3×10^3	200	1.5	478
-			1.6×10^{5}	$1.4 imes 10^4$	23	1.5	500
CrI ₃	68	2690	1.1×10^{5}	6.3×10^{3}	35	1.5	970
			0.8×10^5	3×10^3	53	1.5	1000
FeBO ₃	348	115	3200	140	45	300	500
		at 300 K	450	38	24	300	700
EuO	69	23700	-1.0×10^{5}	$0.5 imes 10^4$	40	5	1100
			5×10^5	9.7×10^4	10	5	700
			0.5×10^5	$7.8 imes 10^4$	1.3	5	500
			3×10^4	>0.5	~105	20	2500
			660	>1.0	1300	20	10600
EuS	16.3	-	-1.6×10^{5}	0	-	6	825
			-9.6×10^{5}	3.3×10^4	58	6	690
			$+5.5 \times 10^5$	1.2×10^5	9.2	6	563
EuSe	7.0	13,200	1.45×10^5	80	3600	4.2	750
			0.95×10^{5}	60	3170	4.2	800

^a Measured along the C-axis (magnetic hard axis).

^b Measured along the C-axis (magnetic easy axis).

^c Measured along the C-axis ([100]-direction at room temperature).

 $^{\rm d}\,$ Strong natural birefringence interferes with the Faraday effect.

^e Depends on heat treatment.

Reference

1. Weber, M. J., Ed., CRC Handbook of Laser Science and Technology, Vol. IV, Part 2, CRC Press, Boca Raton, FL, 1988, pp. 288-296.