METALS AND ALLOYS WITH LOW MELTING TEMPERATURE

	Composition, % *				
Metal or alloy system	Weight	Atomic	Melting temperature (°C)	Comments	Ref.
Hg	100	100	-38.84		
Cs-K	77.0-23.0	50.0-50.0	-37.5	Eutectic (?)	1
Cs–Na	94.5-5.5	75.0-25.0	-30.0	Eutectic	2
K–Na	76.7–23.3	65.9-34.1	-12.65	Eutectic	3
Na–Rb	8.0-92.0	24.4-75.6	-5	Eutectic	4
Ga–In–Sn	62.5-21.5-16.0	73.6-15.3-11.1	11	Eutectic	5
Ga–Sn–Zn	82.0-12.0-6.0	86.0-7.3-6.7	17	Eutectic	5
Cs	100	100	28.44		
Ga	100	100	29.77		
K–Rb	32.0-68.0	50-50	33	Eutectic	4
Bi-Cd-In-Pb-Sn	44.7-5.3-19.1-22.6-8.3	35.1-8.2-27.3-17.9-11.5	46.7	Eutectic	6
Bi–In–Pb–Sn	49.5-21.3-17.6-11.6	39.2-30.7-14.0-16.2	58.2	Eutectic	6
Bi–In–Sn	32.5-51.0-16.5	21.1-60.1-18.8	60.5	Eutectic	7
K	100	100	63.38		
Bi-Cd-Pb-Sn	50.0-12.5-25.0-12.5	41.5-19.3-21.0-18.2	70	Wood's alloy	6
Bi–In	33.0-67.0	21.3-78.7	72	Eutectic	8
Bi–Cd–Pb	51.6-8.2-40.2	48.1-14.2-37.7	91.5	Eutectic	6
Bi-Pb-Sn	52.5-32.0-15.5	46.8-28.7-24.5	95	Eutectic	6
Na	100	100	97.8		
Bi–Cd–Sn	54.0-20.0-26.0	39.4-27.2-33.4	102.5	Eutectic	6
In–Sn	51.8-48.2	52.6-47.4	119	Eutectic	9
Cd–In	25.3-74.7	25.7-74.3	120	Eutectic	10
Bi–Pb	55.5-44.5	55.3-44.7	124	Eutectic	11
Bi–Sn–Zn	56.0-40.0-4.0	40.2-50.6-9.2	130	Eutectic	6,7
Bi–Sn	70–30	57.0-43.0	138.5	Eutectic	6,12
Bi–Cd	60.3–39.7	45.0-55.0	145.5	Eutectic	13, 14
In	100	100	156.6		
Li	100	100	180.5		
Pb–Sn	38.1-61.9	26.1-73.9	183	Eutectic	6,15
Bi-Tl	48.0-52.0	47.5-52.5	185	Eutectic	13
Sn-Zn	91.0-9.0	85.0-15.0	198	Eutectic	14
Sb–Sn	8.0-92.0	7.8-92.2	199	White Metal	16
Au–Pb	14.6-85.4	15.2-84.8	212	Eutectic	17
Ag–Sn	3.5–96.5	3.8-96.2	221	Eutectic	13,18
Bi–Pb–Sb–Sn	48.0-28.5-9.0-14.5	40.8-24.5-13.1-21.6	226	Matrix Alloy	6
Cu–Sn	0.75-99.25	1.3–98.7	227	Eutectic	13, 19
Sn	100	100	231.9		

L. I. Berger

* The useful expression for correlations between the atomic and weight concentrations of an alloy components are:

$$f(\mathbf{a}, A_k) = \frac{f(\mathbf{w}, A_k)}{M_k \sum_{i=1}^N \frac{f(\mathbf{w}, A_i)}{M_i}} \quad \text{and} \quad f(\mathbf{w}, A_k) = \frac{M_k \cdot f(\mathbf{a}, A_k)}{\sum_{i=1}^N M_i \cdot f(\mathbf{a}, A_i)} \quad (i = 1, \dots, k, \dots, N)$$

where $f(a, A_i)$ and $f(w, A_i)$ are the atomic and weight concentrations of component A_i , respectively, and M_i is the atomic weight of this component.

References

- 1. Zintle, E. and Hauke, W., Z. Electrochem., 44, 104, 1938.
- 2. Rinck, E., Compt. Rend., 199, 1217, 1934.
- 3. Krier, C. A., Craign, R. S., and Wallace, W. E., J. Phys. Chem., 61, 522, 1957.
- 4. Goria, C., Gazz. Chim. Ital., 65, 865, 1935.
- 5. Baker, H., Ed., ASM Handbook, Volume 3: Alloy Phase Diagrams, ASM Intl., Materials Park, OH, 1992.
- 6. Sedlacek, V., Non-Ferrous Metals and Alloys, Elsevier, 1986.
- 7. Villars, P., Prince, A., Okamoto, H., Eds., Handbook of Ternary Alloy Phase Diagrams, ASM Intl., 1994.
- 8. Palatnik, L. S., Kosevich, V. M., and Tyrina, L. V., *Phys. Metals Metallog. (USSR)*, 11, 75, 1961.

- 9. Neumann, T. and Alpout, O., J. Less-Common Metals, 6, 108, 1964.
- 10. Neumann, T. and Predel, B., Z. Metallk., 50, 309, 1959.
- 11. Roy, P., Orr, R. L., and Hultgren, R., J. Phys. Chem., 64, 1034, 1960.
- 12. Dobovicek, B. and Smajic, N., Rudarsko-Met. Zbornik, 4, 353, 1962.
- Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L., Eds., *Binary Alloy Phase Diagrams*, 2nd ed., ASM Intl., 1990.
- 14. Dobovicek, B. and Straus, B., Rudarsko-Met. Zbornik, 3, 273, 1960.
- 15. Schurmann, E. and Gilhaus, F. J., Arch. Eisenhuettenw., 32, 867, 1961.
- 16. Rosenblatt, G. M. and Birchenall, C. E., Trans. AIME, 224, 481, 1962.
- Evans, D. S. and Prince, A., in *Alloy Phase Diagrams*, MRS Simposia Proc., Vol. 19, North–Holland, 1983, p. 383.
- 18. Umanskiy, M. M., Zh. Fiz. Khim., 14, 846, 1940.
- 19. Homer, C. E. and Plummer, H., J. Inst. Met., 64, 169, 1939.