
sin x = x
(

1 − x2

π2

)(
1 − x2

22π2

)(
1 − x2

32π2

)
· · · (x2 < ∞)

cos x =
(

1 − 4x2

π2

)(
1 − 4x2

32π2

)(
1 − 4x2

52π2

)
· · · (x2 < ∞)

sin−1 x = x + x3

2·3 + 1·3
2·4·5 x5 + 1·3·5

2·4·6·7 x7 + · · ·
(

x2 < 1, − π

2 < sin−1 x < π

2

)
cos−1 x = π

2 −
(

x + x3

2·3 + 1·3
2·4·5 x5 + 1·3·5x7

2·4·6·7 + · · ·
)

(x2 < 1, 0 < cos−1 x < π )

tan−1 x = x − x3

3 + x5

5 − x7

7 + · · · (x2 < 1)
tan−1 x = π

2 − 1
x + 1

3x3 − 1
5x5 + 1

7x7 − · · · (x > 1)
tan−1 x = − π

2 − 1
x + 1

3x3 − 1
5x5 + 1

7x7 − · · · (x < −1)
cot−1 x = π

2 − x + x3

3 − x5

5 + x7

7 − · · · (x2 < 1)

loge sin x = loge x − x2

6 − x4

180 − x6

2835 − · · · (x2 < π2)

loge cos x = − x2

2 − x4

12 − x6

45 − 17x8

2520 − · · ·
(

x2 < π2

4

)
loge tan x = loge x + x2

3 + 7x4

90 + 62x6

2835 + · · ·
(

x2 < π2

4

)
esin x = 1 + x + x2

2! − 3x4

4! − 8x5

5! − 3x6

6! + 56x7

7! + · · ·
ecos x = e

(
1 − x2

2! + 4x4

4! − 31x6

6! + · · ·
)

etan x = 1 + x + x2

2! + 3x3

3! + 9x4

4! + 37x5

5! + · · ·
(

x2 < π2

4

)
sin x = sin a + (x − a) cos a − (x−a)2

2! sin a
− (x−a)3

3! cos a + (x−a)4

4! sin a + · · ·

VECTOR ANALYSIS

Definitions

Any quantity which is completely determined by its magnitude is called a scalar. Examples of such are mass, density, temperature,
etc. Any quantity which is completely determined by its magnitude and direction is called a vector. Examples of such are velocity,
acceleration, force, etc. A vector quantity is represented by a directed line segment, the length of which represents the magnitude
of the vector. A vector quantity is usually represented by a boldfaced letter such as V. Two vectors V1 and V2 are equal to one
another if they have equal magnitudes and are acting in the same directions. A negative vector, written as -V, is one which acts in
the opposite direction to V, but is of equal magnitude to it. If we represent the magnitude of V by v, we write |V| = v. A vector
parallel to V, but equal to the reciprocal of its magnitude is written as V−1 or as 1/V.

The unit vector V/v (when v �= 0) is that vector which has the same direction as V, but has a magnitude of unity (sometimes
represented as V0 or v̂ ).

Vector Algebra

The vector sum of V1 and V2 is represented by V1+V2. The vector sum of V1 and -V2, or the difference of the vector V2 from V1 is
represented by V1 − V2.

If r is a scalar, then rV=Vr , and represents a vector r times the magnitude of V, in the same direction as V if r is positive, and in
the opposite direction if r is negative. If r and s are scalars, V1, V2, V3, vectors, then the following rules of scalars and vectors hold:

V1 + V2 = V2 + V1

(r + s)V1 = rV1 + sV1; r (V1 + V2) = rV1 + rV2

V1 + (V2 + V3) = (V1 + V2) + V3 = V1 + V2 + V3

Vectors in Space

A plane is described by two distinct vectors V1 and V2. Should these vectors not intersect each other, then one is displaced parallel
to itself until they do (Figure 1). Any other vector V lying in this plane is given by

V = rV1 + sV2

A position vector specifies the position in space of a point relative to a fixed origin. If therefore V1 and V2 are the position vectors
of the points A and B, relative to the origin O, then any point P on the line AB has a position vector V given by

V = rV1 + (1 − r )V2

The scalar “r” can be taken as the metric representation of P since r = 0 implies P = B and r = 1 implies P = A (Figure 2). If
P divides the line AB in the ratio r :s then

V =
(

r
r + s

)
V1 +

(
s

r + s

)
V2
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Figure 1. Figure 2.
The vectors V1, V2, V3, . . . ,Vn are said to be linearly dependent if there exist scalars r1, r2, r3, . . . ,rn, not all zero, such that

r1V1 + r2V2 + · · · + rnVn = 0

A vector V is linearly dependent upon the set of vectors V1, V2, V3, . . . ,Vn if

V = r1V1 + r2V2 + r3V3 + · · · + rnVn

Three vectors are linearly dependent if and only if they are co-planar.
All points in space can be uniquely determined by linear dependence upon three base vectors i.e., three vectors any one of which

is linearly independent of the other two. The simplest set of base vectors are the unit vectors along the coordinate Ox, Oy and Oz
axes. These are usually designated by i, j and k respectively.

If V is a vector in space, and a, b and c are the respective magnitudes of the projections of the vector along the axes then

V = ai + bj + ck

and

v =
√

a2 + b2 + c2

and the direction cosines of V are

cos α = a/v, cos β = b/v, cos γ = c/v.

The law of addition yields

V1 + V2 = (a1 + a2)i + (b1 + b2)j + (c1 + c2)k

The Scalar, Dot, or Inner Product of Two Vectors
This product is represented as V1 · V2 and is defined to be equal to v1v2 cos θ , where θ is the angle from V1 to V2, i.e.,

V1 · V2 = v1v2 cos θ

The following rules apply for this product:

V1 · V2 = a1a2 + b1b2 + c1c2 = V2 · V1

It should be noted that this verifies that scalar multiplication is commutative.

(V1 + V2) · V3 = V1 · V3 + V2 · V3

V1 · (V2 + V3) = V1 · V2 + V1 · V3

If V1 is perpendicular to V2 then V1 · V2 = 0, and if V1 is parallel to V2 then V1 · V2 = v1v2 = rw2
1 In particular

i · i = j · j = k · k = 1,

and

i · j = j · k = k · i = 0

The Vector or Cross Product of Two Vectors
This product is represented as V1 × V2 and is defined to be equal to v1v2(sin θ )1, where θ is the angle from V1 to V2 and 1 is a unit
vector perpendicular to the plane of V1 and V2 and so directed that a right-handed screw driven in the direction of 1 would carry
V1 into V2, i.e.,

V1 × V2 = v1v2(sin θ )1

and tan θ = |V1 × V2|
V1 · V2
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The following rules apply for vector products:

V1 × V2 = −V2 × V1

V1 × (V2 + V3) = V1 × V2 + V1 × V3

(V1 + V2) × V3 = V1 × V3 + V2 × V3

V1 × (V2 × V3) = V2(V3 · V1) − V3(V1 · V2)

i × i = j × j = k × k = 0 (the zero vector)

i × j = k, j × k = i, k × i = j

If V1 = a1i + b1j + c1k, V2 = a2i + b2j + c2k, and V3 = a3i + b3j + c3k, then

V1 × V2 =
∣∣∣∣∣∣

i j k
a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣ = (b1c2 − b2c1)i + (c1a2 − c2a1)j + (a1b2 − a2b1)k

It should be noted that, since V1 × V2 = −V2 × V1, the vector product is not commutative.

Scalar Triple Product

There is only one possible interpretation of the expression V1 ·V2 ×V3 and that is V1 · (V2 ×V3) which is obviously a scalar. Further

V1 · (V2 × V3) = (V1 × V2) · V3 = V2 · (V3 × V1)

=
∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
= r1r2r3 cos φ sin θ ,

Where θ is the angle between V2 and V3 and φ is the angle between V1 and the normal to the plane of V2 and V3.
This product is called the scalar triple product and is written as [V1V2V3].
The determinant indicates that it can be considered as the volume of the parallelepiped whose three determining edges are V1,

V2 and V3.
It also follows that cyclic permutation of the subscripts does not change the value of the scalar triple product so that

[V1V2V3] = [V2V3V1] = [V3V1V2]

but [V1V2V3] = −[V2V1V3] etc. and [V1V1V2] ≡ 0 etc.

Given three non-coplanar reference vectors V1, V2 and V3, the reciprocal system is given by V∗
1, V∗

2 and V∗
3, where

1 = v1v∗
1 = v2v∗

2 = v3v∗
3

0 = v1v∗
2 = v1v∗

3 = v2v∗
1 etc.

V∗
1 = V2 × V3

[V1V2V3]
, V∗

2 = V3 × V1

[V1V2V3]
, V∗

3 = V1 × V2

[V1V2V3]

The system i, j, k is its own reciprocal.

Vector Triple Product

The product V1 × (V2 × V3) defines the vector triple product. Obviously, in this case, the brackets are vital to the definition.

V1 × (V2 × V3) = (V1 · V3)V2 − (V1 · V2)V3

=

∣∣∣∣∣∣∣∣
i j k

a1 b1 c1∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ ∣∣∣∣ c2 a2

c3 a3

∣∣∣∣ ∣∣∣∣ a2 b2

a3 b3

∣∣∣∣
∣∣∣∣∣∣∣∣
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i.e. it is a vector, perpendicular to V1, lying in the plane of V2, V3. Similarly

(V1 × V2) × V3 =

∣∣∣∣∣∣∣∣
i j k∣∣∣∣ b1 c1

b2 c2

∣∣∣∣ ∣∣∣∣ c1 a1

c2 a2

∣∣∣∣ ∣∣∣∣ a1 b1

a2 b2

∣∣∣∣
a3 b3 c3

∣∣∣∣∣∣∣∣
V1 × (V2 × V3) + V2 × (V3 × V1) + V3 × (V1 × V2) ≡ 0

If V1 × (V2 × V3) = (V1 × V2) × V3 then V1, V2, V3 form an orthogonal set. Thus i, j, k form an orthogonal set.

Geometry of the Plane, Straight Line and Sphere

The position vectors of the fixed points A, B, C, D relative to O are V1, V2, V3, V4 and the position vector of the variable point
P is V.

The vector form of the equation of the straight line through A parallel to V2 is

V = V1 + rV2

or (V − V1) = rV2

or (V − V1) × V2 = 0

while that of the plane through A perpendicular to V2 is

(V − V1) · V2 = 0

The equation of the line AB is

V = rV1 + (1 − r )V2

and those of the bisectors of the angles between V1 and V2 are

V = r
(

V1

v1
± V2

v2

)
or

V = r (v̂1 ± v̂2)

The perpendicular from C to the line through A parallel to V2 has as its equation

V = V1 − V3 − v̂2 · (V1 − V3)v̂2.

The condition for the intersection of the two lines, V = V1 + rV3 and V = V2 + sV4 is

[(V1 − V2)V3V4] = 0.

The common perpendicular to the above two lines is the line of intersection of the two planes

[(V − V1)V3(V3 × V4)] = 0 and [(V − V2)V4(V3 × V4)] = 0

and the length of this perpendicular is

[(V1 − V2)V3V4]
|V3 × V4| .

The equation of the line perpendicular to the plane ABC is

V = V1 × V2 + V2 × V3 + V3 × V1

and the distance of the plane from the origin is
[V1V2V3]

|(V2 − V1) × (V3 − V1)| .
In general the vector equation

V · V2 = r

defines the plane which is perpendicular to V2, and the perpendicular distance from A to this plane is

r − V1 · V2

v2

The distance from A, measured along a line parallel to V3, is

r − V1 · V2

V2 · v̂3
or

r − V1 · V2

v2 cos θ

where θ is the angle between V2 and V3.
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(If this plane contains the point C then r = V3 · V2 and if it passes through the origin then r = 0.) Given two planes

V · V1 = r
V · V2 = s

then any plane through the line of intersection of these two planes is given by

V · (V1 + λV2) = r + λs

where λ is a scalar parameter. In particular λ = ±v1/v2 yields the equation of the two planes bisecting the angle between the given
planes.

The plane through A parallel to the plane of V2, V3 is

V = V1 + rV2 + sV3

or (V − V1) · V2 × V3 = 0

or [VV2V3] − [V1V2V3] = 0

so that the expansion in rectangular Cartesian coordinates yields (where V ≡ xi + yj + zk):∣∣∣∣∣∣
(x − a1) (y − b1) (z − c1)

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = 0

which is obviously the usual linear equation in x, y, and z.
The plane through AB parallel to V3 is given by

[(V − V1)(V1 − V2)V3] = 0

or [VV2V3] − [VV1V3] − [V1V2V3] = 0

The plane through the three points A, B and C is

V = V1 + s(V2 − V1) + t(V3 − V1)

or V = rV1 + sV2 + tV3 (r + s + t ≡ 1)

or [(V − V1)(V1 − V2)(V2 − V3)] = 0

or [VV1V2] + [VV2V3] + [VV3V1] − [V1V2V3] = 0

For four points A, B, C, D to be coplanar, then

rV1 + sV2 + tV3 + uV4 ≡ 0 ≡ r + s + t + u

The following formulae relate to a sphere when the vectors are taken to lie in three dimensional space and to a circle when the
space is two dimensional. For a circle in three dimensions take the intersection of the sphere with a plane.

The equation of a sphere with center O and radius OA is

V · V = v2
1 (notV = V1)

or (V − V1) · (V + V1) = 0

while that of a sphere with center B radius v1 is

(V − V2) · (V − V2) = v2
1

or V · (V − 2V2) = v2
1 − v2

2

If the above sphere passes through the origin then

V · (V − 2V2) = 0

(note that in two dimensional polar coordinates this is simply)

r = 2a · cos θ

while in three dimensional Cartesian coordinates it is

x2 + y2 + z2 − 2 (a2x + b2 y + c2x) = 0.

The equation of a sphere having the points A and B as the extremities of a diameter is

(V − V1) · (V − V2) = 0.

The square of the length of the tangent from C to the sphere with center B and radius v1 is given by

(V3 − V2) · (V3 − V2) = v2
1
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The condition that the plane V · V3 = s is tangential to the sphere (V − V2) · (V − V2) = v2
1 is

(s − V3 · V2) · (s − V3 · V2) = v2
1v2

3 .

The equation of the tangent plane at D, on the surface of sphere (V − V2) · (V − V2) = v2
1, is

(V − V4) · (V4 − V2) = 0

or V · V4 − V2 · (V + V4) = v2
1 − v2

2

The condition that the two circles (V − V2) · (V − V2) = v2
1 and (V − V4) · (V − V4) = v2

3 intersect orthogonally is clearly

(V2 − V4) · (V2 − V4) = v2
1 + v2

3

The polar plane of D with respect to the circle

(V − V2) · (V − V2) = v2
1 is

V · V4 − V2 · (V + V4) = v2
1 − v2

2

Any sphere through the intersection of the two spheres (V − V2) · (V − V2) = v2
1 and (V − V4) · (V − V4) = v2

3 is given by

(V − V2) · (V − V2) + λ(V − V4) · (V − V4) = v2
1 + λv2

3

while the radical plane of two such spheres is

V · (V2 − V4) = −1
2

(v2
1 − v2

2 − v2
3 + v2

4)

Differentiation of Vectors
If V1 = a1i + b1j + c1k, and V2 = a2i + b2j + c2k, and if V1 and V2 are functions of the scalar t, then

d
dt

(V1 + V2 + · · · ) = dV1

dt
+ dV2

dt
+ · · ·

dV1

dt
= da1

dt
i + db1

dt
j + dc1

dt
k, etc

d
dt

(V1 · V2) = dV1

dt
· V2 + V1 · dV2

dt
d
dt

(V1 × V2) = dV1

dt
× V2 + V1 × dV2

dt

V · dV
dt

= v · dv
dt

In particular, if V is a vector of constant length then the right hand side of the last equation is identically zero showing that V is
perpendicular to its derivative.

The derivatives of the triple products are

d
dt

[V1V2V3] =
[(

dV1

dt

)
V2V3

]
+
[
V1

(
dV2

dt

)
V3

]
+
[
V1V2

(
dV3

dt

)]
and

d
dt

{V1 × (V2 × V3)} =
(

dV1

dt

)
× (V2 × V3) + V1 ×

((
dV2

dt

)
× V3

)
+ V1 ×

(
V2 ×

(
dV3

dt

))
Geometry of Curves in Space

s = the length of arc, measured from some fixed point on the curve (Figure 3).

V1 = the position vector of the point A on the curve

V1 + δV1 = the position vector of the point P in the neighborhood of A

t̂ = the unit tangent to the curve at the point A, measured in the direction of s increasing.

The normal plane is that plane which is perpendicular to the unit tangent. The principal normal is defined as the intersection
of the normal plane with the plane defined by V1 and V1+δV1 in the limit as δV1 − 0.

n̂ = the unit normal (principal) at the point A. The plane defined by t̂ and n̂ is called the osculating plane (alternatively plane
of curvature or local plane).

ρ = the radius of curvature at A.

δθ = the angle subtended at the origin by δV1.

κ = dθ

ds
= 1

ρ
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b̂ = the unit binormal i.e. the unit vector which is parallel to t̂ × n̂ at the point A:

λ = the torsion of the curve at A

Figure 3.
Frenet’s Formulae:

dt̂
ds

= κn̂

dn̂
ds

= −κ t̂ + λb̂

db̂
ds

= −λn̂

The following formulae are also applicable:
Unit tangent t̂ = dV1

ds
Equation of the tangent (V − V1) × t̂ = 0 or V = V1 + qt̂
Unit normal n̂ = 1d2V1

κds2

Equation of the normal plane (V − V1) · t̂ = 0
Equation of the normal (V − V1) × n̂ = 0 or V = V1 + r n̂
Unit binormal b̂ = t̂ × n̂
Equation of the binormal (V − V1) × b̂ = 0

or V = V1 + ub̂
or V = V1 + w dV1

ds × d2V1
ds2

Equation of the osculating plane: [(V − V1)t̂n̂] = 0

or
[
(V − V1)

(
dV1
ds

)(
d2V1
ds2

)]
= 0

Differential Operators—Rectangular Coordinates

dS = ∂S
∂x

· dx + ∂S
∂y

· dy + ∂S
∂z

· dz

By definition

∇ ≡ del ≡ i ∂

∂x + j ∂

∂y + k ∂

∂z

∇2 ≡ Laplacian ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

If S is a scalar function, then ∇S ≡ grad S ≡ ∂S
dx i + ∂S

dy j + ∂S
dz k

Grad S defines both the direction and magnitude of the maximum rate of increase of S at any point. Hence the name gradient
and also its vectorial nature. ∇S is independent of the choice of rectangular coordinates.

Figure 4.

∇S = ∂S
∂n

n̂ (5)
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where n̂ is the unit normal to the surface S =constant, in the direction of S increasing. The total derivative of S at a point having
the position vector V is given by (Figure 4)

dS = ∂S
∂n

n̂ · dV

= dV · ∇S

and the directional derivative of S in the direction of U is

U · ∇S = U · (∇S) = (U · ∇)S

Similarly the directional derivative of the vector V in the direction of U is

(U · ∇)V

The distributive law holds for finding a gradient. Thus if S and T are scalar functions

∇(S + T) = ∇S + ∇T

The associative law becomes the rule for differentiating a product:

∇(ST) = S∇T + T∇S

If V is a vector function with the magnitudes of the components parallel to the three coordinate axes Vx, Vy, Vz, then

∇ · V ≡ div V ≡ ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z

The divergence obeys the distributive law. Thus, if V and U are vector functions, then

∇ · (V + U) = ∇ · V + ∇ · U
∇ · (SV) = (∇S) · V + S(∇ · V)
∇ · (U × V) = V · (∇ × U) − U · (∇ × V)

As with the gradient of a scalar, the divergence of a vector is invariant under a transformation from one set of rectangular
coordinates to another.

∇ × V ≡ curl V (sometimes ∇�V or rot V)

≡
(

∂Vx

∂y
− ∂Vy

∂z

)
i +

(
∂Vx

∂z
− ∂Vz

∂x

)
j +

(
∂Vy

∂x
− ∂Vx

∂y

)
k

=

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z

Vx Vy Vz

∣∣∣∣∣∣∣
The curl (or rotation) of a vector is a vector which is invariant under a transformation from one set of rectangular coordinates

to another.

∇ × (U + V) = ∇ × U + ∇ × V

∇ × (SV) = (∇S) × V + S(∇ × V)

∇ × (U × V) = (V · ∇)U − (U · ∇)V + U(∇ · V) − V(∇ · U)

If V = Vxi + Vyj + Vzk then

∇ · V = ∇Vx · i + ∇Vy · j + ∇Vz · k

and ∇ × V = ∇Vx × i + ∇Vy × j + ∇Vz × k

The operator ∇ can be used more than once. The possibilities where ∇ is used twice are:

∇ · (∇θ ) ≡ div grad θ

∇ × (∇θ ) ≡ curl grad θ

∇(∇ · V) ≡ grad div V

∇ · (∇ × V) ≡ div curl V

∇ × (∇ × V) ≡ curl curl V



Thus, if S is a scalar and V is a vector:

div grad S ≡ ∇ · (∇S) ≡ Laplacian S ≡ ∇2S ≡ ∂2S
∂x2

+ ∂2S
∂y2

+ ∂2S
∂z2

curl grad S ≡ 0

curl curl V ≡ grad div V − ∇2V;
div curl V ≡ 0

Taylor’s expansion in three dimensions can be written

f (V + ε) = eε·∇ f (V) where V = xi + yj + zk

and ε = hi + lj + mk

ORTHOGONAL CURVILINEAR COORDINATES

If at a point P there exist three uniform point functions u, v and w so that the surfaces u =const., v = const., and w = const.,
intersect in three distinct curves through P then the surfaces are called the coordinate surfaces through P. The three lines of
intersection are referred to as the coordinate lines and their tangents a, b, and c as the coordinate axes. When the coordinate axes
form an orthogonal set the system is said to define orthogonal curvilinear coordinates at P.

Consider an infinitesimal volume enclosed by the surfaces u, v, w, u + du, v + dv, and w + dw (Figure 5).

Figure 5.
The surface P RS ≡ u = constant, and the face of the curvilinear figure immediately opposite this is u + du =constant, etc.
In terms of these surface constants

P = P(u, v, w)

Q = Q(u + du, v, w) and P Q = h1 du

R = R(u, v + dv, w) and P R = h2 dv

S = S(u, v, w + dw) and PS = h3 dw

where h1, h2, and h3 are functions of u, v, and w.

• In rectangular Cartesians i, j, k

h1 = 1, h2 = 1, h3 = 1.
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• In cylindrical Cartesians r̂, θ̂ , �̂

h1 = 1, h2 = 1, h3 = 1.
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• In spherical coordinates r̂, θ̂ , �̂

h1 = 1, h2 = r, h3 = r sin θ
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