MOMENT OF INERTIA FOR VARIOUS BODIES OF MASS

Body	Axis	Moment of inertia
Uniform thin rod of length <i>l</i>	Normal to the length, at one end	$m\frac{1}{3}l^2$
Uniform thin rod of length <i>l</i>	Normal to the length, at the center	$m\frac{1}{12}l^2$
Thin rectangular sheet, sides a and b	Through the center parallel to b	$m\frac{1}{12}a^2$
Thin rectangular sheet, sides a and b	Through the center perpendicular to	$m\frac{1}{12}(a^2+b^2)$
	the sheet	
Thin circular sheet of radius <i>r</i>	Normal to the plate through the	$m_{\frac{1}{2}}r^{2}$
	center	
Thin circular sheet of radius <i>r</i>	Along any diameter	$m_{4}^{1}r^{2}$
Thin circular ring. Radii r_1 and r_2	Through center normal to plane of	$m_{\frac{1}{2}}^{1}(r_{1}^{2}+r_{2}^{2})$
	ring	
Thin circular ring. Radii r_1 and r_2	Any diameter	$m_{4}^{1}(r_{1}^{2}+r_{2}^{2})$
Rectangular parallelepiped, edges a , b , and c	Through center perpendicular to	$m\frac{1}{12}(a^2+b^2)$
	face ab , (parallel to edge c)	
Sphere, radius r	Any diameter	$m_{\frac{2}{5}}^2 r^2$
Spherical shell, external radius, r_1 , internal	Any diameter	$m_{\frac{2}{5}}^{\frac{2}{(r_1^5 - r_2^5)}}$
radius r_2		1 2
Spherical shell, very thin, mean radius, r	Any diameter	$m_{\frac{2}{3}}^2 r^2$
Right circular cylinder of radius r , length l	The longitudinal axis of the solid	$m^{\frac{1}{2}}r^{2}$
Right circular cylinder of radius r , length l	Transverse diameter	$m\left(\frac{r^2}{4}+\frac{l^2}{12}\right)$
Hollow circular cylinder, length <i>l</i> ,	The longitudinal axis of the figure	$m_{\frac{1}{2}}(r_1^2 + r_2^2)$
radii r_1 and r_2		
Thin cylindrical shell, length l , mean radius, r	The longitudinal axis of the figure	mr^2
Hollow circular cylinder, length <i>l</i> ,	Transverse diameter	$m\left(\frac{r_1^2+r_2^2}{4}+\frac{l^2}{12}\right)$
radii r_1 and r_2		
Hollow circular cylinder, length <i>l</i> , very thin,	Transverse diameter	$m\left(\frac{r^2}{2}+\frac{l^2}{12}\right)$
mean radius <i>r</i>		
Elliptic cylinder, length <i>l</i> , transverse semiaxes	Longitudinal axis	$m_4^1(a^2+b^2)$
<i>a</i> and <i>b</i>		
Right cone, altitude h , radius of base r	Axis of the figure	$m\frac{3}{10}r^2$
Spheroid of revolution, equatorial radius r	Polar axis	$m^2_{5}r^2$
Ellipsoid, axes 2a, 2b, 2c	Axis 2 <i>a</i>	$m\frac{1}{5}(b^2+c^2)$

The mass of the body is indicated by m