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STRUCTURAL THEORY

Structural Theory Application to Model
Structure to Predict Its Behavior

S
tructure design is the application of
structural theory to ensure that buildings
and other structures are built to support
all loads and resist all constraining forces

that may be reasonably expected to be imposed on
them during their expected service life, without
hazard to occupants or users and preferably
without dangerous deformations, excessive side-
sway (drift), or annoying vibrations. In addition,
good design requires that this objective be achieved
economically.

Applying structural theory to mathematic
models is an essential and important tool in
structural engineering. Over the past 200 years,
many of the most significant contributions to the
understanding of the structures have beenmade by
scientist engineers while working on mathematical
models, which were used for real structures.

Application of mathematical models of any sort
to any real structural system must be idealized in
some fashion; that is, an analytical model must be
developed. There has never been an analytical
model which is a precise representation of the
physical system. While the performance of the
structure is the result of natural effects, the devel-
opment and thus the performance of the model is
entirely under the control of the analyst. The
validity of the results obtained from applying
mathematical theory to the study of the model
therefore rests on the accuracy of the model.
While this is true, it does not mean that all
analytical models must be elaborate, conceptually

sophisticated devices. In some cases very simple
models give surprisingly accurate results. While
in some other cases they may yield answers,
which deviate markedly from the true physical
behavior of the model, yet be completely satis-
factory for the problem at hand.

Provision should be made in the application of
structural theory to design for abnormal as well as
normal service conditions. Abnormal conditions
may arise as a result of accidents, fire, explosions,
tornadoes, severer-than-anticipated earthquakes,
floods, and inadvertent or even deliberate over-
loading of building components. Under such
conditions, parts of a building may be damaged.
The structural system, however, should be so
designed that the damage will be limited in extent
and undamaged portions of the building will
remain stable. For the purpose, structural elements
should be proportioned and arranged to form a
stable system under normal service conditions.
In addition, the system should have sufficient
continuity and ductility, or energy-absorption
capacity, so that if any small portion of it should
sustain damage, other parts will transfer loads (at
least until repairs can be made) to remaining
structural components capable of transmitting the
loads to the ground.

(“Steel Design Handbook, LRFD Method”,
Akbar R. Tamboli Ed., McGraw-Hill 1997. “Design
Methods for Reducing the Risk of Progressive
Collapse in Buildings”, NBS Buildings Science
Series 98, National Institute of Standards and
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Technology, 1977. “Handbook of Structural Steel
Connection Design and Details,” Akbar R. Tamboli
Ed., McGraw-Hill 1999.)

6.1 Structural Integrity

Provision should be made in application of
structural theory to design for abnormal as well
as normal service conditions. Abnormal conditions
may arise as a result of accidents, fire, explosions,
tornadoes, severer-than-anticipated earthquakes,
floods, and inadvertent or even deliberate over-
loading of building components. Under such
conditions, parts of a building may be damaged.
The structural system, however, should be so
designed that the damage will be limited in extent
and undamaged portions of the building will
remain stable. For the purpose, structural elements
should be proportioned and arranged to form a
stable system under normal service conditions. In
addition, the system should have sufficient
continuity, redundancy and ductility, or energy-
absorption capacity, so that if any small portion of it
should sustain damage, other parts will transfer
loads (at least until repairs can be made) to
remaining structural components capable of trans-
mitting the loads to the ground.

If a structure does not possess this capability,
failure of a single component can lead, through
progressive collapse of adjoining components, to
collapse of a major part or all of the structure. For
example, if the corner column of a multistory
building should be removed in a mishap and the
floor it supports should drop to the floor below, the
lower floor and the column supporting it may
collapse, throwing the debris to the next lower
floor. This action may progress all the way to the
ground. One way of avoiding this catastrophe is to
design the structure so that when a column fails all
components that had been supported by it will can-
tilever from other parts of the building, although
perhaps with deformations normally considered
unacceptable.

This example indicates that resistance to pro-
gressive collapse may be provided by inclusion in
design of alternate load paths capable of absorbing
the load from damaged or failed components. An
alternative is to provide, in design, reserve strength
against mishaps. In both methods, connections of
components should provide continuity, redun-
dancy and ductility.

(D. M. Schultz, F. F. P. Burnett, and M. Fintel, “A
Design Approach to General Structural Integrity,”
in “Design and Construction of Large-Panel Con-
crete Structures,” U.S. Department of Housing and
Urban Development, 1977; E. V. Leyendecker and
B. R. Ellingwood, “Design Methods for Reducing
the Risk of Progressive Collapse in Buildings,” NBS
Buildings Science Series 98, National Institute of
Standards and Technology, 1977.)

Equilibrium

6.2 Types of Load

Loads are the external forces acting on a structure.
Stresses are the internal forces that resist the loads.

Tensile forces tend to stretch a component,
compressive forces tend to shorten it, and shearing
forces tend to slide parts of it past each other.

Loads also may be classified as static or
dynamic. Static loads are forces that are applied
slowly and then remain nearly constant, such as the
weight, or dead load, of a floor system. Dynamic
loads vary with time. They include repeated loads,
such as alternating forces from oscillating machin-
ery; moving loads, such as trucks or trains on
bridges; impact loads, such as that from a falling
weight striking a floor or the shock wave from an
explosion impinging on a wall; and seismic loads
or other forces created in a structure by rapid
movements of supports.

Loads may be considered distributed or
concentrated. Uniformly distributed loads are
forces that are, or for practical purposes may be
considered, constant over a surface of the sup-
porting member; dead weight of a rolled-steel
beam is a good example. Concentrated loads are
forces that have such a small contact area as to be
negligible compared with the entire surface area
of the supporting member. For example, a beam
supported on a girder, may, for all practical
purposes, be considered a concentrated load on
the girder.

In addition, loads may be axial, eccentric, or
torsional. An axial load is a force whose resultant
passes through the centroid of a section under
consideration and is perpendicular to the plane of
the section. An eccentric load is a force perpen-
dicular to the plane of the section under consider-
ation but not passing through the centroid of the
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section, thus bending the supporting member.
Torsional loads are forces that are offset from the
shear center of the section under consideration and
are inclined to or in the plane of the section, thus
twisting the supporting member.

Also, loads are classified according to the nature
of the source. For example: Dead loads include
materials, equipment, constructions, or other
elements of weight supported in, on, or by a
structural element, including its own weight, that
are intended to remain permanently in place. Live
loads include all occupants, materials, equipment,
constructions, or other elements of weight sup-
ported in, on, or by a structural element that will or
are likely to be moved or relocated during the
expected life of the structure. Impact loads are a
fraction of the live loads used to account for
additional stresses and deflections resulting from
movement of the live loads. Wind loads are maxi-
mum forces that may be applied to a structural
element by wind in a mean recurrence interval, or a
set of forces that will produce equivalent stresses.
Mean recurrence intervals generally used are 25
years for structures with no occupants or offering
negligible risk to life, 50 years for ordinary
permanent structures, and 100 years for permanent
structures with a high degree of sensitivity to
wind and an unusually high degree of hazard
to life and property in case of failure. Snow
loads are maximum forces that may be applied
by snow accumulation in a mean recurrence
interval. Seismic loads are forces that produce
maximum stresses or deformations in a structural
element during an earthquake, or equivalent
forces.

Probable maximum loads should be used in
design. For buildings, minimum design load
should be that specified for expected conditions
in the local building code or, in the absence of
an applicable local code, in “Minimum Design
Loads for Buildings and Other Structures,” ASCE
7-93, American Society of Civil Engineers, Reston,
VA, (www.asce.org). For highways and highway
bridges, minimum design loads should be those
given in “Standard Specifications for Highway
Bridges,” American Association of State Highway
and Transportation Officials, Washington, D.C.
(www.transportation.org). For railways and rail-
road bridges, minimum design loads should be
those given in “Manual for Railway Engineering,”
American Railway Engineering and Maintenance-
of-Way Association, Chicago (www.arema.org).

6.3 Static Equilibrium

If a structure and its components are so supported
that after a small deformation occurs no further
motion is possible, they are said to be in equi-
librium. Under such circumstances, external forces
are in balance and internal forces, or stresses,
exactly counteract the loads.

Since there is no translatory motion, the vector
sum of the external forces must be zero. Since there
is no rotation, the sum of the moments of the
external forces about any point must be zero. For
the same reason, if we consider any portion of the
structure and the loads on it, the sum of the
external and internal forces on the boundaries of
that section must be zero. Also, the sum of the
moments of these forces must be zero.

In Fig. 6.1, for example, the sum of the forces
RL and RR needed to support the truss is equal
to the 20-kip load on the truss (1 kip ¼ 1 kilo-
pound ¼ 1000 lb ¼ 0.5 ton). Also, the sum of the
moments of the external forces is zero about any
point; about the right end, for instance, it is
40 � 15 2 30 � 20 ¼ 600 2 600.

Figure 6.2 shows the portion of the truss to the
left of section AA. The internal forces at the cut
members balance the external load and hold this
piece of the truss in equilibrium.

When the forces act in several directions, it
generally is convenient to resolve them into com-
ponents parallel to a set of perpendicular axes that
will simplify computations. For example, for forces
in a single plane, the most useful technique
is to resolve them into horizontal and vertical
components. Then, for a structure in equilibrium,
if H represents the horizontal components, V the

Fig. 6.1 Truss in equilibrium under load.
Upward-acting forces, or reactions, RL and RR ,
equal the 20-kip downward-acting force.

Structural Theory n 6.3

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

STRUCTURAL THEORY



vertical components, and M the moments of the
components about any point in the plane,

SH ¼ 0 SV ¼ 0 and SM ¼ 0 (6:1)

These three equations may be used to determine
three unknowns in any nonconcurrent coplanar
force system, such as the truss in Figs. 6.1 and 6.2.
They may determine the magnitude of three forces
for which the direction and point of application
already are known, or the magnitude, direction,
and point of application of a single force. Suppose,
for the truss in Fig. 6.1, the reactions at the supports
are to be computed. Take the sum of the moments
about the right support and equate them to zero
to find the left reaction: 40RL 2 30 � 20 ¼ 0, from
which RL ¼ 600/40 ¼ 15 kips. To find the right
reaction, take moments about the left support and
equate the sum to zero: 10 � 20 2 40RR ¼ 0, from
which RR ¼ 5 kips. As an alternative, equate the
sum of the vertical forces to zero to obtain RR

after finding RL: 20 2 15 2 RR ¼ 0, from which
RR ¼ 5 kips.

Stress and Strain

6.4 Unit Stress and Strain

It is customary to give the strength of a material in
terms of unit stress, or internal force per unit of
area. Also, the point at which yielding starts
generally is expressed as a unit stress. Then, in some
design methods, a safety factor is applied to either
of these stresses to determine a unit stress that
should not be exceeded when the member carries
design loads. That unit stress is known as the
allowable stress, or working stress.

In working-stress design, to determine whether
a structural member has adequate load-carrying
capacity, the designer generally has to compute the
maximum unit stress produced by design loads in
the member for each type of internal force—tensile,
compressive, or shearing—and compare it with the
corresponding allowable unit stress.

When the loading is such that the unit stress is
constant over a section under consideration, the
stress may be computed by dividing the force by
the area of the section. But, generally, the unit stress
varies from point to point. In those cases, the unit
stress at any point in the section is the limiting
value of the ratio of the internal force on any small
area to that area, as the area is taken smaller and
smaller.

Unit Strain n Sometimes in the design of a
structure, the designer may be more concerned
with limiting deformation or strain than with
strength. Deformation in any direction is the total
change in the dimension of a member in that
direction. Unit strain in any direction is the defor-
mation per unit of length in that direction.

When the loading is such that the unit strain is
constant over the length of a member, it may be
computed by dividing the deformation by the
original length of the member. In general, however,
unit strain varies from point to point in a member.
Like a varying unit stress, it represents the limiting
value of a ratio.

6.5 Stress-Strain Relations

When a material is subjected to external forces, it
develops one or more of the following types of
strain: linear elastic, nonlinear elastic, viscoelastic,
plastic, and anelastic. Many structural materials
exhibit linear elastic strains under design loads.
For these materials, unit strain is proportional to
unit stress until a certain stress, the proportional
limit, is exceeded (point A in Fig. 6.3a to c). This
relationship is known as Hooke’s law.

For axial tensile or compressive loading, this
relationship may be written

f ¼ E1 or 1 ¼ f

E
(6:2)

where f ¼ unit stress

e ¼ unit strain

E ¼ Young’s modulus of elasticity

Fig. 6.2 Section of the truss shown in Fig. 6.1 is
kept in equilibrium by stresses in the components.
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Within the elastic limit, there is no permanent
residual deformation when the load is removed.
Structural steels have this property.

In nonlinear elastic behavior, stress is not
proportional to strain, but there is no permanent
residual deformation when the load is removed.
The relation between stress and strain may take the
form

1 ¼ f

K

� �n

(6:3)

where K ¼ pseudoelastic modulus determined by
test

n ¼ constant determined by test

Viscoelastic behavior resembles linear elasticity.
The major difference is that in linear elastic
behavior, the strain stops increasing if the load
does; but in viscoelastic behavior, the strain
continues to increase although the load becomes
constant and a residual strain remains when the
load is removed. This is characteristic of many
plastics.

Anelastic deformation is time-dependent and
completely recoverable. Strain at any time is
proportional to change in stress. Behavior at any
given instant depends on all prior stress changes.
The combined effect of several stress changes is the
sum of the effects of the several stress changes
taken individually.

Plastic strain is not proportional to stress, and
a permanent deformation remains on removal of
the load. In contrast with anelastic behavior,
plastic deformation depends primarily on the
stress and is largely independent of prior stress
changes.

When materials are tested in axial tension and
corresponding stresses and strains are plotted,
stress-strain curves similar to those in Fig. 6.3
result. Figure 6.3a is typical of a brittle material,
which deforms in accordance with Hooke’s law up
to fracture. The other curves in Fig. 6.3 are
characteristic of ductile materials; because strains
increase rapidly near fracture with little increase in
stress, they warn of imminent failure, whereas
brittle materials fail suddenly.

Figure 6.3b is typical of materials with a
marked proportional limit A. When this is
exceeded, there is a sudden drop in stress, then
gradual stress increase with large increases in
strain to a maximum before fracture. Figure 6.3c
is characteristic of materials that are linearly
elastic over a substantial range but have no defi-
nite proportional limit. And Fig. 6.3d is a repre-
sentative curve for materials that do not behave
linearly at all.

Modulus of Elasticity n E is given by the
slope of the straight-line portion of the curves in
Fig. 6.3a to c. It is a measure of the inherent rigidity
or stiffness of a material. For a given geometric
configuration, a material with a larger E deforms
less under the same stress.

At the termination of the linear portion of the
stress-strain curve, some materials, such as low-
carbon steel, develop an upper and lower yield
point (A and B in Fig. 6.3b). These points mark a
range in which there appears to be an increase in
strain with no increase or a small decrease in stress.
This behavior may be a consequence of inertia
effects in the testing machine and the deformation
characteristics of the test specimen. Because of the

Fig. 6.3 Relationship of unit stress and unit strain for various materials. (a) Brittle. (b) Linear elastic
with distinct proportional limit. (c) Linear elastic with an indistinct proportional limit. (d) Nonlinear.
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location of the yield points, the yield stress some-
times is used erroneously as a synonym for pro-
portional limit and elastic limit.

The proportional limit is the maximum unit
stress for which Hooke’s law is valid. The elastic
limit is the largest unit stress that can be developed
without a permanent set remaining after removal
of the load (C in Fig. 6.3). Since the elastic limit is
always difficult to determine and many materials
do not have a well-defined proportional limit, or
even have one at all, the offset yield strength is
used as a measure of the beginning of plastic
deformation.

The offset yield strength is defined as the stress
corresponding to a permanent deformation, usually
0.01% (0.0001 in/in) or 0.20% (0.002 in/in). In Fig.
6.3c the yield strength is the stress at D, the
intersection of the stress-strain curve and a line GD
parallel to the straight-line portion and starting at
the given unit strain. This stress sometimes is called
the proof stress.

For materials with a stress-strain curve similar
to that in Fig. 6.3d, with no linear portion, a
secant modulus, represented by the slope of a
line, such as OF, from the origin to a specified
point on the curve, may be used as a measure of
stiffness. An alternative measure is the tangent
modulus, the slope of the stress-strain curve at a
specified point.

Ultimate tensile strength is the maximum axial
load observed in a tension test divided by the
original cross-sectional area. Characterized by the
beginning of necking down, a decrease in cross-
sectional area of the specimen, or local instability,
this stress is indicated by H in Fig. 6.3.

Ductility is the ability of a material to undergo
large deformations without fracture. It is measured
by elongation and reduction of area in a tension test
and expressed as a percentage. Ductility depends
on temperature and internal stresses as well as the
characteristics of the material; a material that may
be ductile under one set of conditions may have a
brittle failure at lower temperatures or under
tensile stresses in two or three perpendicular direc-
tions.

Modulus of rigidity, or shearing modulus of
elasticity, is defined by

G ¼ n

g
(6:4)

where G ¼ modulus of rigidity

n ¼ unit shearing stress

g ¼ unit shearing strain

It is related to the modulus of elasticity in tension
and compression E by the equation

G ¼ E

2(1þ m)
(6:5)

where m is a constant known as Poisson’s ratio
(Art. 6.7).

Toughness is the ability of a material to absorb
large amounts of energy. Related to the area
under the stress-strain curve, it depends on both
strength and ductility. Because of the difficulty of
determining toughness analytically, often tough-
ness is measured by the energy required to fracture
a specimen, usually notched and sometimes at low
temperatures, in impact tests. Charpy and Izod,
both applying a dynamic load by pendulum, are
the tests most commonly used.

Hardness is ameasure of the resistance amaterial
offers to scratching and indention. A relative
numerical value usually is determined for this
property in such tests as Brinell, Rockwell, and
Vickers. The numbers depend on the size of an
indentation made under a standard load. Scratch
resistance is measured on the Mohs scale by com-
parison with the scratch resistance of 10 minerals
arranged in order of increasing hardness from talc to
diamond.

Creep is a property of certain materials like
concrete that deforms with time under constant
load. Shrinkage for concrete is the volume reduc-
tion with time. It is unrelated to load application.
Relaxation is a decrease in load or stress under a
sustained constant deformation.

If stresses and strains are plotted in an axial
tension test as a specimen enters the inelastic range
and then is unloaded, the curve during unloading,
if the material was elastic, descends parallel to the
straight portion of the curve (for example, DG in
Fig. 6.3c). Completely unloaded, the specimen has
a permanent set (OG). This also will occur in
compression tests.

If the specimen now is reloaded, strains are
proportional to stresses (the curve will practically
followDG) until the curve rejoins the original curve
at D. Under increasing load, the reloading curve
coincides with that for a single loading. Thus,
loading the specimen into the inelastic range, but
not to ultimate strength, increases the apparent
elastic range. The phenomenon, called strain
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hardening, or work hardening, appears to increase
the yield strength. Usually, when the yield strength
of a material is increased through strain hardening,
the ductility of the material is reduced.

But if the reloading is reversed in compression,
the compressive yield strength is decreased, which
is called the Bauschinger effect.

6.6 Constant Unit Stress

The simplest cases of stress and strain are those in
which the unit stress and strain are constant.
Stresses caused by an axial tension or compression
load, a centrally applied shear, or a bearing load
are examples. These conditions are illustrated in
Figs. 6.4 to 6.7.

For constant unit stress, the equation of equi-
librium may be written

P ¼ Af (6:6)

where P ¼ load, lb

A ¼ cross-sectional area (normal to load) for
tensile or compressive forces, or area on
which sliding may occur for shearing
forces, or contact area for bearing
loads, in2

f ¼ tensile, compressive, shearing, or bear-
ing unit stress, psi

For torsional stresses, see Art. 6.18.
Unit strain for the axial tensile and compressive

loads is given by

1 ¼ e

L
(6:7)

where 1 ¼ unit strain, in/in

e ¼ total lengthening or shortening of mem-
ber, in

L ¼ original length of the member, in

Application of Hooke’s law and Eq. (6.6) to Eq. (6.7)
yields a convenient formula for the deformation:

e ¼ PL

AE
(6:8)

where P ¼ load on member, lb

A ¼ its cross-sectional area, in2

E ¼ modulus of elasticity of material, psi

[Since long compression members tend to buckle,
Eqs. (6.6) to (6.8) are applicable only to short mem-
bers. See Arts. 6.39 to 6.41.]

Although tension and compression strains
represent a simple stretching or shortening of a
member, shearing strain is a distortion due to a
small rotation. The load on the small rectangular
portion of the member in Fig. 6.6 tends to distort it
into a parallelogram. The unit shearing strain is the
change in the right angle, measured in radians.
(See also Art. 6.5.)

6.7 Poisson’s Ratio

When a material is subjected to axial tensile or
compressive loads, it deforms not only in the

Fig. 6.4
Tension member axially
loaded.

Fig. 6.6
Bracket in shear.

Fig. 6.7
Bearing load.

Fig. 6.5
Compression member
axially loaded.
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direction of the loads but normal to them. Under
tension, the cross section of a member decreases,
and under compression, it increases. The ratio of
the unit lateral strain to the unit longitudinal strain
is called Poisson’s ratio.

Within the elastic range, Poisson’s ratio is a
constant for a material. For materials such as con-
crete, glass, and ceramics, it may be taken as 0.25;
for structural steel, 0.3. It gradually increases
beyond the proportional limit and tends to ap-
proach a value of 0.5.

Assume, for example, that a steel hanger with an
area of 2 in2 carries a 40-kip (40,000-lb) load. The
unit stress is 40/2, or 20 ksi. The unit tensile strain,
with modulus of elasticity of steel E ¼ 30,000 ksi, is
20/30,000, or 0.00067 in/in. With Poisson’s ratio as
0.3, the unit lateral strain is 20.3 � 0.00067, or a
shortening of 0.00020 in/in.

6.8 Thermal Stresses

When the temperature of a body changes, its
dimensions also change. Forces are required to
prevent such dimensional changes, and stresses are
set up in the body by these forces.

If a is the coefficient of expansion of the material
and T the change in temperature, the unit strain in
a bar restrained by external forces from expanding
or contracting is

1 ¼ aT (6:9)

According to Hooke’s law, the stress f in the
bar is

f ¼ EaT (6:10)

where E ¼ modulus of elasticity.

When a circular ring, or hoop, is heated and
then slipped over a cylinder of slightly larger
diameter d than dr, the original hoop diameter, the
hoop will develop a tensile stress on cooling. If the
diameter is very large compared with the hoop
thickness, so that radial stresses can be neglected,
the unit tensile stresses may be assumed constant.
The unit strain will be

1 ¼ pd� pd1
pd1

¼ d� d1
d1

and the hoop stress will be

f ¼ (d� d1)E

d1
(6:11)

6.9 Axial Stresses in
Composite Members

In a homogeneous material, the centroid of a cross
section lies at the intersection of two perpendicular
axes so located that the moments of the areas on
opposite sides of an axis about that axis are zero. To
find the centroid of a cross section containing two
or more materials, the moments of the products of
the area A of each material and its modulus of
elasticity E should be used, in the elastic range.

Consider now a prism composed of two ma-
terials, with modulus of elasticity E1 and E2, ex-
tending the length of the prism. If the prism is
subjected to a load acting along the centroidal axis,
then the unit strain 1 in each material will be the
same. From the equation of equilibrium and Eq.
(6.8), noting that the length L is the same for both
materials,

1 ¼ P

A1E1 þ A2E2
¼ P

SAE
(6:12)

where A1 and A2 are the cross-sectional areas of
each material and P the axial load. The unit stresses
in each material are the products of the unit strain
and its modulus of elasticity:

f1 ¼ PE1

SAE
f2 ¼ PE2

SAE
(6:13)

6.10 Stresses in Pipes and
Pressure Vessels

In a cylindrical pipe under internal radial pressure,
the circumferential unit stresses may be assumed
constant over the pipe thickness t, in, if the
diameter is relatively large compared with the
thickness (at least 15 times as large). Then, the
circumferential unit stress, in pounds per square
inch, is given by

f ¼ pR

t
(6:14)

where p ¼ internal pressure, psi

R ¼ average radius of pipe, in (see also
Art. 21.14)
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In a closed cylinder, the pressure against the
ends will be resisted by longitudinal stresses in the
cylinder. If the cylinder is thin, these stresses, psi,
are given by

f2 ¼ pR

2t
(6:15)

Equation (6.15) also holds for the stress in a thin
spherical tank under internal pressure p with R the
average radius.

In a thick-walled cylinder, the effect of radial
stresses fr becomes important. Both radial and
circumferential stresses may be computed from
Lamé’s formulas:

fr ¼ p
r2i

r2o � r2i
1� r2o

r2

� �
(6:16)

f ¼ p
r2i

r2o � r2o
1þ r2o

r2

� �
(6:17)

where ri ¼ internal radius of cylinder, in

ro ¼ outside radius of cylinder, in

r ¼ radius to point where stress is to be
determined, in

The equations show that if the pressure p acts
outward, the circumferential stress f will be ten-
sile (positive) and the radial stress compressive
(negative). The greatest stresses occur at the inner
surface of the cylinder (r ¼ ri):

Max fr ¼ �p (6:18)

Max f ¼ k2 þ 1

k2 � 1
p (6:19)

where k ¼ ro/ri. Maximum shear stress is given by

Max fv ¼ k2

k2 � 1
p (6:20)

For a closed cylinder with thick walls, the longi-
tudinal stress is approximately

fz ¼ p

ri(k2 � 1)
(6:21)

But because of end restraints, this stress will not be
correct near the ends.

(S. Timoshenko and J. N. Goodier, “Theory of
Elasticity,” McGraw-Hill Book Company, New
York.)

6.11 Strain Energy

Stressing a bar stores energy in it. For an axial load
P and a deformation e, the energy stored called
strain energy is

U ¼ 1

2
Pe (6:22a)

assuming the load is applied gradually and the bar
is not stressed beyond the proportional limit. The
equation represents the area under the load-
deformation curve up to the load P. Application
of Eqs. (6.2) and (6.6) to Eq. (6.22a) yields another
useful equation for energy, in-lb:

U ¼ f 2

2E
AL (6:22b)

where f ¼ unit stress, psi

E ¼ modulus of elasticity of material, psi

A ¼ cross-sectional area, in2

L ¼ length of bar, in

Since AL is the volume of the bar, the term f 2/2E
gives the energy stored per unit of volume. It
represents the area under the stress-strain curve up
to the stress f.

Modulus of resilience is the energy stored per
unit of volume in a bar stressed by a gradually
applied axial load up to the proportional limit. This
modulus is a measure of the capacity of the
material to absorb energy without danger of being
permanently deformed. It is important in design-
ing members to resist energy loads.

Equation (6.22a) is a general equation that holds
true when the principle of superposition applies
(the total deformation produced at a point by a
system of forces is equal to the sum of the defor-
mations produced by each force). In the general
sense, P in Eq. (6.22a) represents any group of
statically interdependent forces that can be com-
pletely defined by one symbol, and e is the
corresponding deformation.

The strain-energy equation can be written as a
function of either the load or the deformation. For
axial tension or compression, strain energy, in inch-
pounds, is given by

U ¼ P2L

2AE
U ¼ AEe2

2L
(6:23a)

where P ¼ axial load, lb

e ¼ total elongation or shortening, in
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L ¼ length of member, in

A ¼ cross-sectional area, in2

E ¼ modulus of elasticity, psi

For pure shear:

U ¼ V2L

2AG
U ¼ AGe2

2L
(6:23b)

where V ¼ shearing load, lb

e ¼ shearing deformation, in

L ¼ length over which deformation takes
place, in

A ¼ shearing area, in2

G ¼ shearing modulus, psi

For torsion:

U ¼ T2L

2JG
U ¼ JGf2

2L
(6:23c)

where T ¼ torque, in-lb

f ¼ angle of twist, rad

L ¼ length of shaft, in

J ¼ polar moment of inertia of cross section,
in4

G ¼ shearing modulus, psi

For pure bending (constant moment):

U ¼ M2L

2EI
U ¼ EIu 2

2L
(6:23d)

where M ¼ bending moment, in-lb

u ¼ angle of rotation of one end of beam
with respect to other, rad

L ¼ length of beam, in

I ¼ moment of inertia of cross section, in4

E ¼ modulus of elasticity, psi

For beams carrying transverse loads, the total
strain energy is the sum of the energy for bending
and that for shear. (See also Art. 6.54.)

Stresses at a Point

Tensile and compressive stresses sometimes are
referred to as normal stresses because they act
normal to the cross section. Under this concept,
tensile stresses are considered positive normal
stresses and compressive stresses negative.

6.12 Stress Notation

Consider a small cube extracted from a stressed
member and placed with three edges along a set of
x, y, z coordinate axes. The notations used for the
components of stress acting on the sides of this
element and the direction assumed as positive are
shown in Fig. 6.8.

For example, for the sides of the element per-
pendicular to the z axis, the normal component of
stress is denoted by fz. The shearing stress n is
resolved into two components and requires two
subscript letters for a complete description. The
first letter indicates the direction of the normal to
the plane under consideration; the second letter
gives the direction of the component of stress.
Thus, for the sides perpendicular to the z axis, the
shear component in the x direction is labeled nzx
and that in the y direction nzy .

6.13 Stress Components

If, for the small cube in Fig. 6.8, moments of the
forces acting on it are taken about the x axis, and
assuming the lengths of the edges as dx, dy, and dz,
the equation of equilibrium requires that

(nzy dx dy) dz ¼ (nyz dx dz) dy

(Forces are taken equal to the product of the area of
the face and the stress at the center.) Two similar
equations can be written for moments taken about
the y and z axes. These equations show that

nxy ¼ nyx nzx ¼ nxz nzy ¼ nyz (6:24)

Fig. 6.8 Stresses at a point in a rectangular co-
ordinate system.
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Thus, components of shearing stress on two per-
pendicular planes and acting normal to the inter-
section of the planes are equal. Consequently, to
describe the stresses acting on the coordinate planes
through a point, only six quantities need be known:
the three normal stresses fx, fy, fz and three shearing
components nxy ¼ nyx, nzx ¼ nxz, and nzy ¼ nyz.

If only the normal stresses are acting, the unit
strains in the x, y, and z directions are

1x ¼ 1

E
[ fx � m( fy þ fz)]

1y ¼ 1

E
[ fy � m( fx þ fz)]

1z ¼ 1

E
[ fz � m( fx þ fy)]

(6:25)

where m ¼ Poisson’s ratio. If only shearing stresses
are acting, the distortion of the angle between edges
parallel to any two coordinate axes depends only on
shearing-stress components parallel to those axes.
Thus, the unit shearing strains are (see Art. 6.5)

gxy ¼
1

G
nxy gyz ¼

1

G
nyz gzx ¼

1

G
nzx (6:26)

6.14 Two-Dimensional Stress

When the six components of stress necessary to
describe the stresses at a point are known (Art.
6.13), the stresses on any inclined plane through
the same point can be determined. For two-
dimensional stress, only three stress components
need be known.

Assume, for example, that at a point O in a
stressed plate, the components fx, fy, and nxy are
known (Fig. 6.9). To find the stresses on any other
plane through the z axis, take a plane parallel to it
close to O, so that this plane and the coordinate
planes form a tiny triangular prism. Then, if a is the
angle the normal to the plane makes with the x axis,
the normal and shearing stresses on the inclined
plane, to maintain equilibrium, are

f ¼ fx cos
2 aþ fy sin

2 aþ 2nxy sina cosa (6:27)

n ¼ nxy( cos
2 a� sin2 a)þ ( fy � fx) sina cosa (6:28)

(See also Art. 6.17.)

Note: All structural members are three-
dimensional. While two-dimensional stress calcu-
lations may be sufficiently accurate for most
practical purposes, this is not always the case. For

example, although loads may create normal
stresses on two perpendicular planes, a third
normal stress also exists, as computed with
Poisson’s ratio. [See Eq. (6.25).]

6.15 Principal Stresses

If a plane at a point O in a stressed plate is rotated,
it reaches a position for which the normal stress on
it is a maximum or a minimum. The directions of
maximum andminimum normal stress are perpen-
dicular to each other, and on the planes in those
directions, there are no shearing stresses.

The directions in which the normal stresses
become maximum or minimum are called principal
directions, and the corresponding normal stresses
are called principal stresses. To find the principal
directions, set the value of n given by Eq. (6.28)
equal to zero. Then, the normals to the principal
planes make an angle with the x axis given by

tan 2a ¼ 2nxy

fx � fy
(6:29)

If the x and y axes are taken in the principal
directions, nxy ¼ 0. In that case, Eqs. (6.27) and
(6.28) simplify to

f ¼ fx cos
2 aþ fy sin

2a (6:30)

n ¼ 1

2
( fy � fx) sin 2a (6:31)

where fx and fy are the principal stresses at the
point, and f and n are, respectively, the normal and

Fig. 6.9 Stresses at a point on a plane inclined to
the axes.
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shearing stress on a plane whose normal makes an
angle a with the x axis.

If only shearing stresses act on any two per-
pendicular planes, the state of stress at the point is
said to be one of pure shear or simple shear. Under
such conditions, the principal directions bisect the
angles between the planes on which these shearing
stresses act. The principal stresses are equal in
magnitude to the pure shears.

6.16 Maximum Shearing
Stress at a Point

The maximum unit shearing stress occurs on each
of two planes that bisect the angles between the
planes on which the principal stresses at a point
act. The maximum shear equals half the algebraic
difference of the principal stresses:

Max n ¼ f1 � f2
2

(6:32)

where f1 is the maximum principal stress and f2 the
minimum.

6.17 Mohr’s Circle

As explained in Art. 6.14, if the stresses on any plane
through a point in a stressed plate are known, the
stresses on any other plane through the point can be
computed. This relationship between the stresses
may be represented conveniently on Mohr’s circle
(Fig. 6.10). In this diagram, normal stress f and shear
stress n are taken as rectangular coordinates. Then,
for each plane through the point there will cor-
respond a point on the circle, the coordinates of
which are the values of f and n for the plane.

Given the principal stresses f1 and f2 (Art. 6.15),
to find the stresses on a plane making an angle a
with the plane on which f1 acts: Mark off the
principal stresses on the f axis (points A and B in
Fig. 6.10). Measure tensile stresses to the right of
the n axis and compressive stresses to the left.
Construct a circle passing through A and B and
having its center on the f axis. This is the Mohr’s
circle for the given stresses at the point under
consideration. Draw a radius making an angle 2a
with the f axis, as indicated in Fig. 6.10. The
coordinates of the intersection with the circle
represent the normal and shearing stresses f and n
acting on the plane.

Given the stresses on any two perpendicular
planes fx, fy, and nxy, but not the principal stresses
f1 and f2, to draw the Mohr’s circle: Plot the
two points representing the known stresses
with respect to the f and n axes (points C and D
in Fig. 6.11). The line joining these points is a

Fig. 6.10 Mohr’s circle for stresses at a point—
constructed from known principal stresses f1 and f2
in a plane.

Fig. 6.11 Stress circle constructed from two
known normal positive stresses fx and fy and a
known shear nxy.
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diameter of the circle, so bisect CD to find the
center of the circle and draw the circle. Its inter-
sections with the f axis determine f1 and f2.

(S. Timoshenko and J. N. Goodier, “Theory of
Elasticity,” McGraw-Hill Book Company, New
York, books.mcgraw-hill.com.)

6.18 Torsion

Forces that cause a member to twist about a
longitudinal axis are called torsional loads. Simple
torsion is produced only by a couple, or moment, in
a plane perpendicular to the axis.

If a couple lies in a nonperpendicular plane, it
can be resolved into a torsional moment, in a plane
perpendicular to the axis, and bending moments,
in planes through the axis.

Shear Center n The point in each normal
section of a member through which the axis passes
and about which the section twists is called the
shear center. If the loads on a beam, for example, do
not pass through the shear center, they cause the
beam to twist. See also Art. 6.36.

If a beam has an axis of symmetry, the shear
center lies on it. In doubly symmetrical beams, the
shear center lies at the intersection of two axes of
symmetry and hence coincides with the centroid.

For any section composed of two narrow
rectangles, such as a T beam or an angle, the shear
center may be taken as the intersection of the
longitudinal center lines of the rectangles.

For a channel section with one axis of symmetry,
the shear center is outside the section at a distance
from the centroid equal to e(1 þ h2A/4I), where e is
the distance from the centroid to the center of the
web, h is the depth of the channel, A the cross-
sectional area, and I the moment of inertia about
the axis of symmetry. (The web lies between the
centroid and the shear center.)

Locations of shear centers for several other
sections are given in Freidrich Bleich, “Buckling
Strength of Metal Structures,” chap. 3, McGraw-
Hill Publishing Company, New York, 1952, books.
mcgraw-hill.com.

Stresses Due to Torsion n Simple torsion is
resisted by internal shearing stresses. These can be
resolved into radial and tangential shearing
stresses, which being normal to each other also are
equal (see Art. 6.13). Furthermore, on planes that
bisect the angles between the planes on which the

shearing stresses act, there also occur compressive
and tensile stresses. Themagnitude of these normal
stresses is equal to that of the shear. Therefore,
when torsional loading is combined with other
types of loading, the maximum stresses occur on
inclined planes and can be computed by the
methods of Arts. 6.14 and 6.17.

Circular Sections n If a circular shaft (hollow
or solid) is twisted, a section that is plane before
twisting remains plane after twisting. Within
the proportional limit, the shearing stress at any
point in a transverse section varies with the
distance from the center of the section. The
maximum shear, psi, occurs at the circumference
and is given by

n ¼ Tr

J
(6:33)

where T ¼ torsional moment, in-lb

r ¼ radius of section, in

J ¼ polar moment of inertia, in4

Polar moment of inertia of a cross section is
defined by

J ¼
ð
r2dA (6:34)

where r ¼ radius from shear center to any point in
section

dA ¼ differential area at point

In general, J equals the sum of the moments of
inertia about any two perpendicular axes through
the shear center. For a solid circular section,
J ¼ pr4/2. For a hollow circular section with
diameters D and d, J ¼ p(D4 2 d4)/32.

Within the proportional limit, the angular twist
between two points L inches apart along the axis of
a circular bar is, in radians (1 rad ¼ 57.38):

u ¼ TL

GJ
(6:35)

where G is the shearing modulus of elasticity
(see Art. 6.5).

Noncircular Sections n If a shaft is not
circular, a plane transverse section before twisting
does not remain plane after twisting. The resulting
warping increases the shearing stresses in some
parts of the section and decreases them in others,
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compared with the shearing stresses that would
occur if the section remained plane. Consequently,
shearing stresses in a noncircular section are not
proportional to distances from the shear center. In
elliptical and rectangular sections, for example,
maximum shear occurs on the circumference at a
point nearest the shear center.

For a solid rectangular section, this maximum
shear stress may be expressed in the following form:

n ¼ T

kb2d
(6:36)

where b ¼ short side of rectangle, in

d ¼ long side, in

k ¼ constant depending on ratio of these
sides:

d/b ¼ 1.0 1.5 2.0 2.5 3 4 5 10 1
k ¼ 0.208 0.231 0.246 0.258 0.267

0.282 0.291 0.312 0.333

(S. Timoshenko and J. N. Goodier, “Theory of
Elasticity,” McGraw-Hill Publishing Company,
New York, books.mcgraw-hill.com.)

Hollow Tubes n If a thin-shell hollow tube
is twisted, the shearing force per unit of length on
a cross section (shear flow) is givenapproximately by

H ¼ T

2A
(6:37)

where A is the area enclosed by the mean perimeter
of the tube, in2. And the unit shearing stress is given
approximately by

n ¼ H

t
¼ T

2At
(6:38)

where t is the thickness of the tube, in. For a rec-
tangular tube with sides of unequal thickness, the
total shear flow can be computed from Eq. (6.37) and
the shearing stress along each side from Eq. (6.38),
except at the corners,where theremay be appreciable
stress concentration.

Channels and I Beams n For a narrow
rectangular section, the maximum shear is very
nearly equal to

n ¼ T

1=3b2d
(6:39)

This formula also can be used to find the maxi-
mum shearing stress due to torsion in members,

such as I beams and channels, made up of thin
rectangular components. Let J ¼ 1=3Sb3d, where b
is the thickness of each rectangular component and
d the corresponding length. Then, the maximum
shear is given approximately by

n ¼ Tb0

J
(6:40)

where b0 is the thickness of the web or the flange of
the member. Maximum shear will occur at the
center of one of the long sides of the rectangular
part that has the greatest thickness.

(A. P. Boresi, O. Sidebottom, F. B. Seely, and
J. O. Smith, “Advanced Mechanics of Materials,”
JohnWiley&Sons, Inc.,NewYork,www.wiley.com.)

Straight Beams

6.19 Types of Beams

Bridge decks and building floors and roofs fre-
quently are supported on a rectangular grid of
flexural members. Different names often are given
to the components of the grid, depending on the
type of structure and the part of the structure
supported on the grid. In general, though, the
members spanning between main supports are
called girders and those they support are called
beams (Fig. 6.12). Hence, this type of framing is
known as beam-and-girder framing.

In bridges, the smaller structural members
parallel to the direction in which traffic moves may
be called stringers and the transverse members
floor beams. In building roofs, the grid components
may be referred to as purlins and rafters; and in
floors, they may be called joists and girders.

Fig. 6.12 Beam-and-girder framing.
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Beam-and-girder framing usually is used for
relatively short spans and where shallow members
are desired to provide ample headroomunderneath.

Beams and trusses are similar in behavior as
flexural members. The term beam, however, usu-
ally is applied to members with top continuously
connected to bottom throughout their length, while
those with top and bottom connected at intervals
are called trusses.

There are many ways in which beams may be
supported. Some of the most common methods are
shown in Figs. 6.13 to 6.19. The beam in Fig. 6.13 is
called a simply supported beam, or simple beam. It
has supports near its ends that restrain it only
against vertical movement. The ends of the beam
are free to rotate. When the loads have a horizontal
component, or when change in length of the beam
due to temperature may be important, the supports
may also have to prevent horizontal motion, in
which case horizontal restraint at one support
generally is sufficient. The distance between the
supports is called the span. The load carried by
each support is called a reaction.

The beam in Fig. 6.14 is a cantilever. It has a
support only at one end. The support provides
restraint against rotation and horizontal and ver-
tical movement. Such support is called a fixed end.
Placing a support under the free end of the
cantilever produces the beam in Fig. 6.15. Fixing
the free end yields a fixed-end beam (Fig. 6.16); no
rotation or vertical movement can occur at either

end. In actual practice, however, a fully fixed end
can seldom be obtained. Most support conditions
are intermediate between those for a simple beam
and those for a fixed-end beam.

Figure 6.17 shows a beam that overhangs both
its simple supports. The overhangs have a free end,
like a cantilever, but the supports permit rotation.

Two types of beams that extend over several
supports are illustrated in Figs. 6.18 and 6.19.
Figure 6.18 shows a continuous beam. The one in
Fig. 6.19 has one or two hinges in certain spans; it is
called hung-span, or suspended-span, construc-
tion. In effect, it is a combination of simple beams
and beams with overhangs.

Reactions for the beams in Figs. 6.13, 6.14, and
6.17 and the type of beam in Fig. 6.19 with hinges
suitably located may be found from the equations
of equilibrium, which is why they are classified as
statically determinate beams.

The equations of equilibrium, however, are not
sufficient to determine the reactions of the beams in
Figs. 6.15, 6.16, and 6.18. For those beams, there are
more unknowns than equations. Additional equa-
tionsmust be obtained based on a knowledge of the
deformations, for example, that a fixed end permits
no rotation. Such beams are classified as statically
indeterminate. Methods for finding the stresses in
that type of beam are given in Arts. 6.51 to 6.63.

6.20 Reactions

As pointed out in Art. 6.19, the loads imposed by a
simple beam on its supports can be found by appli-
cation of the equations of equilibrium [Eq. (6.1)].
Consider, for example, the 60-ft-long beam with
overhangs in Fig. 6.20. This beam carries a uniform

Fig. 6.13 Simple beam, both
ends free to rotate.

Fig. 6.14 Cantilever beam. Fig. 6.15 Beam with one
end fixed.

Fig. 6.16 Fixed-end beam. Fig. 6.17 Beam with over-
hangs.

Fig. 6.18 Continuous beam.

Fig. 6.19 Hung-span (suspended-span) con-
struction.
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load of 200 lb/lin ft over its entire length and
several concentrated loads. The span is 36 ft.

To find reaction R1, take moments about R2 and
equate the sum of the moments to zero (assume
clockwise rotation to be positive, counterclockwise,
negative):

�2000� 48þ 36R1 � 4000� 30� 6000

� 18þ 3000� 12� 200� 60� 18 ¼ 0

R1 ¼ 14,000 lb

In this calculation, the moment of the uniform load
was found by taking the moment of its resultant,
200 � 60, which acts at the center of the beam.

To find R2, proceed in a similar manner by
taking moments about R1 and equating the sum
to zero, or equate the sum of the vertical forces
to zero. Generally it is preferable to use the
moment equation and apply the other equation
as a check.

As an alternative procedure, find the reactions
caused by uniform and concentrated loads separ-
ately and sum the results. Use the fact that the
reactions due to symmetrical loading are equal, to
simplify the calculation. To find R2 by this pro-
cedure, take half the total uniform load

0:5� 200� 60 ¼ 6000 lb

and add it to the reaction caused by the concen-
trated loads, found by taking moments about R1,
dividing by the span, and summing:

�2000� 12

36
þ 4000� 6

36
þ 6000� 18

36
þ 3000

� 48

36
¼ 7000 lb

R2 ¼ 6000þ 7000 ¼ 13,000 lb

Check to see that the sum of the reactions equals
the total applied load:

14,000þ 13,000 ¼ 2000þ 4000þ 6000

þ 3000þ 200� 60

27,000 ¼ 27,000

Reactions for simple beams with various loads are
given in Figs. 6.33 to 6.38.

To find the reactions of a continuous beam, first
determine the end moments and shears (Arts. 6.58
to 6.63); then if the continuous beam is considered
as a series of simple beams with these applied as
external loads, the beam will be statically determi-
nate and the reactions can be determined from
the equations of equilibrium. (For an alternative
method, see Art. 6.57.)

6.21 Internal Forces

At every section of a beam in equilibrium, internal
forces act to prevent motion. For example, assume
the beam in Fig. 6.20 cut vertically just to the right
of its center. Adding the external forces, including
the reaction, to the left of this cut (see Fig. 6.21a)
yields an unbalanced downward load of 4000 lb.
Evidently, at the cut section, an upward-acting
internal force of 4000 lb must be present to
maintain equilibrium. Also, taking moments of the
external forces about the section yields an
unbalanced moment of 54,000 ft-lb. To maintain

Fig. 6.20 Beam with overhangs loaded with
both uniform and concentrated loads.

Fig. 6.21 Sections of beam kept in equilibrium
by internal stresses.
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equilibrium, there must be an internal moment of
54,000 ft-lb resisting it.

This internal, or resisting, moment is produced
by a couple consisting of a force C acting on the top
part of the beam and an equal but opposite force T
acting on the bottom part (Fig. 6.21b). For this type
of beam and loading, the top force is the resultant
of compressive stresses acting over the upper
portion of the beam, and the bottom force is the
resultant of tensile stresses acting over the bottom
part. The surface at which the stresses change from
compression to tension—where the stress is zero—
is called the neutral surface.

6.22 Shear Diagrams

As explained in Art. 6.21, at a vertical section
through a beam in equilibrium, external forces on
one side of the section are balanced by internal
forces. The unbalanced external vertical force at the
section is called the shear. It equals the algebraic
sum of the forces that lie on either side of the
section. For forces on the left of the section, those
acting upward are considered positive and those
acting downward negative. For forces on the right
of the section, signs are reversed.

A shear diagram represents graphically the
shear at every point along the length of a beam. The
shear diagram for the beam in Fig. 6.20 is shown in
Fig. 6.22b. The beam is drawn to scale and the loads
and reactions are located at the points at which
they act. Then, a convenient zero axis is drawn
horizontally from which to plot the shears to scale.
Start at the left end of the beam, and directly under
the 2000-lb load there, scale off 22000 from the
zero axis. Next, determine the shear just to the left
of the next concentrated load, the left support:
22000 2 200 � 12 ¼ 24400 lb. Plot this down-
ward under R1. Note that in passing from just to
the left of the support to just to the right, the shear
changes by the magnitude of the reaction, from
24400 to 24400 þ 14,000 or 9600 lb, so plot this
value also under R1. Under the 4000-lb load, plot
the shear just to the left of it, 9600 2 200 � 6, or
8400 lb, and the shear just to the right, 8400 2 4000,
or 4400 lb. Proceed in this manner to the right end,
where the shear is 3000 lb, equal to the load on the
free end.

To complete the diagram, the points must be
connected. Straight lines can be used because shear
varies uniformly for a uniform load (see Fig. 6.24b)

6.23 Bending-Moment
Diagrams

About a vertical section through a beam in
equilibrium, there is an unbalanced moment due
to external forces, called bending moment. For for-
ces on the left of the section, clockwise moments
are considered positive and counterclockwise
moments negative. For forces on the right of the
section, the signs are reversed. Thus, when the
bending moment is positive, the bottom of a simple
beam is in tension and the top is in compression.

A bending-moment diagram represents graphi-
cally the bending moment of every point along the
length of the beam. Figure 6.23c is the bending-
moment diagram for the beam with concentrated
loads in Fig. 6.23a. The beam is drawn to scale, and
the loads and reactions are located at the points at
which they act. Then, a horizontal line is drawn to
represent the zero axis from which to plot the
bending moments to scale. Note that the bending
moment at both supports for this simple beam is
zero. Between the supports and the first load, the
bending moment is proportional to the distance
from the support since the bending moment in that
region equals the reaction times the distance from
the support. Hence, the bending-moment diagram
for this portion of the beam is a sloping straight line.

Fig. 6.22 Shear diagram for beam in Fig. 6.20.
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To find the bending moment under the 6000-lb
load, consider only the forces to the left of it, in this
case only the reaction R1. Its moment about the
6000-lb load is 7000 � 10, or 70,000 ft-lb. The bend-
ing-moment diagram, then, between the left
support and the first concentrated load is a straight
line rising from zero at the left end of the beam to
70,000, plotted, to a convenient scale, under the
6000-lb load.

To find the bending moment under the 9000-lb
load, add algebraically the moments of the forces to
its left: 7000 � 20 2 6000 � 10 ¼ 80,000 ft-lb. (This
result could have been obtainedmore easily by con-
sidering only the portion of the beam on the right,
where the only force present is R2, and reversing
the sign convention: 8000 � 10 ¼ 80,000 ft-lb.) Since
there are no other loads between the 6000- and
9000-lb loads, the bending-moment diagram be-
tween them is a straight line.

If the bending moment and shear are known
at any section, the bending moment at any
other section can be computed if there are no

un-known forces between the sections. The rule
is:

The bending moment at any section of a beam
equals the bending moment at any section to the
left, plus the shear at that section times the
distance between sections, minus the moments of
intervening loads. If the section with known
moment and shear is on the right, the sign
convention must be reversed.

For example, the bending moment under the
9000-lb load in Fig. 6.23a also could have been
determined from the moment under the 6000-lb
load and the shear just to the right of that load. As
indicated in the shear diagram (Fig. 6.23b), that
shear is 1000 lb. Thus, the moment is given by
70,000 þ 1000 � 10 ¼ 80,000 ft-lb.

Bending-moment diagrams for simple beams
with various loadings are shown in Figs. 6.33 to
6.38. To obtain bending-moment diagrams for
loading conditions that can be represented as a
sum of the loadings shown, sum the bending
moments at corresponding locations on the beam
as given on the diagram for the component loads.

Fig. 6.23 Shear and moment diagrams for beam
with concentrated loads.

Fig. 6.24 Shear and moment diagrams for
uniformly loaded beam.
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For a simple beam carrying a uniform load, the
bending-moment diagram is a parabola (Fig. 6.24c).
The maximum moment occurs at the center and
equals wL2/8 or WL/8, where w is the load per
linear foot and W ¼ wL is the total load on the
beam.

The bending moment at any section of a
simply supported, uniformly loaded beam equals
one-half the product of the load per linear foot and
the distances to the section from both supports:

M ¼ w

2
x(L� x) (6:41)

6.24 Shear-Moment
Relationship

The slope of the bending-moment curve at any
point on a beam equals the shear at that point. If V
is the shear, M the moment, and x the distance
along the beam,

V ¼ dM

dx
(6:42)

Since maximum bending moment occurs when the
slope changes sign, or passes through zero, maxi-
mum moment (positive or negative) occurs at the
point of zero shear.

Integration of Eq. (6.42) yields

M1 �M2 ¼
ðx1
x2

Vdx (6:43)

Thus, the change in bending moment between any
two sections of a beam equals the area of the shear
diagram between ordinates at the two sections.

6.25 Moving Loads and
Influence Lines

Influence lines are a useful device for solving
problems involving moving loads. An influence
line indicates the effect at a given section of a unit
load placed at any point on the structure.

For example, to plot the influence line for
bending moment at a point on a beam, compute the
moments produced at that point as a unit load
moves along the beam and plot these moments
under the corresponding positions of the unit load.
Actually, the unit load need not be placed at every
point along the beam. The equation of the influence
line can be determined in many cases by placing

the load at an arbitrary point and computing the
bending moment in general terms. (See also
Art. 6.55.)

To draw the influence line for reaction at A for a
simple beam AB (Fig. 6.25a), place a unit load at an
arbitrary distance xL from B. The reaction at A due
to this load is 1 xL/L ¼ x. Then, RA ¼ x is the
equation of the influence line. It represents a
straight line sloping downward from unity at A,
when the unit load is at that end of the beam, to
zero at B, when the load is at B (Fig. 6.25a).

Figure 6.25b shows the influence line for bend-
ing moment at the center of a beam. It resembles
in appearance the bending-moment diagram for
a load at the center of the beam, but its significance
is entirely different. Each ordinate gives the
moment at midspan for a load at the location of
the ordinate. The diagram indicates that if a unit
load is placed at a distance xL from one end, it
produces a bendingmoment of xL/2 at the center of
the span.

Figure 6.25c shows the influence line for shear
at the quarter point of a beam. When the load is
to the right of the quarter point, the shear is
positive and equal to the left reaction. When the
load is to the left, the shear is negative and equals
the right reaction. Thus, to produce maximum
shear at the quarter point, loads should be placed
only to the right of the quarter point, with the
largest load at the quarter point, if possible. For a
uniform load, maximum shear results when the
load extends from the right end of the beam to
the quarter point.

Suppose, for example, that a 60-ft crane girder is
to carry wheel loads of 20 and 10 kips, 5 ft apart. For
maximum shear at the quarter point, place the 20-kip
wheel there and the 10-kip wheel 5 ft to the right.
The corresponding ordinates of the influence
line (Fig. 6.25c) are 3

4 and 40=45� 3
4 : Hence, the

maximum shear is 20� 3
4 þ 10� 40=45� 3

4 ¼ 21:7
kips.

Figure 6.25d shows influence lines for bending
moment at several points on a beam. The apexes of
the triangular diagrams fall on a parabola, as
indicated by the dashed line. From the diagram, it
can be concluded that the maximum moment
produced at any section by a single concentrated
load moving along a beam occurs when the load is
at that section. And the magnitude of the maxi-
mummoment increases when the section is moved
toward midspan, in accordance with the equation
for the parabola given in Fig. 6.25d.
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6.26 Maximum Bending
Moment

When a span is to carry several moving con-
centrated loads, an influence line is useful when
determining the position of the loads for which
bending moment is a maximum at a given section
(see Art. 6.25). For a simple beam, maximum
bending moment will occur at a section C as
loads move across the beam when one of the
loads is at C. The load to place at C is the one for
which the expression Wa/a 2 Wb/b (Fig. 6.26)

changes sign as that load passes from one side of
C to the other. (Wa is the sum of the loads on one
side of C and Wb the sum of the loads on the
other side of C.)

When several concentrated loads move along
a simple beam, the maximum moment they
produce in the beam may be near but not
necessarily at midspan. To find the maximum
moment, first determine the position of the loads
for maximum moment at midspan. Then, shift the
loads until the load P2 (Fig. 6.27) that was at
the center of the beam is as far from midspan as

Fig. 6.25 Influence lines for (a) reaction at A, (b) midspan bending moment, (c) quarter-point shear,
and (d) bending moments at several points in a beam.

Fig. 6.26 Moving loads on simple beam AB
placed for maximum moment at C.

Fig. 6.27 Moving loads placed for maximum
moment in a simple beam.
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the resultant of all the loads on the span is on
the other side of midspan. Maximum moment
will occur under P2. When other loads move on
or off the span during the shift of P2 away
from midspan, it may be necessary to investigate
the moment under one of the other loads when it
and the new resultant are equidistant from
midspan.

6.27 Bending Stresses in a
Beam

The commonly used flexure formula for computing
bending stresses in a beam is based on the fol-
lowing assumptions:

1. The unit stress parallel to the bending axis at any
point of a beam is proportional to the unit strain
in the same direction at the point. Hence, the
formula holds onlywithin the proportional limit.

2. The modulus of elasticity in tension is the same
as that in compression.

3. The total and unit axial strain at any point are
both proportional to the distance of that point
from the neutral surface. (Cross sections that are
plane before bending remain plane after bending.
This requires that all fibers have the same length
before bending, thus that the beam be straight.)

4. The loads act in a plane containing the cen-
troidal axis of the beam and are perpendicular
to that axis. Furthermore, the neutral surface is
perpendicular to the plane of the loads. Thus,
the plane of the loads must contain an axis of
symmetry of each cross section of the beam.
(The flexure formula does not apply to a beam
with cross sections loaded unsymmetrically.)

5. The beam is proportioned to preclude prior
failure or serious deformation by torsion, local
buckling, shear, or any cause other than bending.

Equating the bending moment to the resisting
moment due to the internal stresses at any section
of a beam yields the flexure formula:

M ¼ fI

c
(6:44)

where M ¼ bending moment at section, in-lb

f ¼ normal unit stress at distance c, in,
from the neutral axis (Fig. 6.28), psi

I ¼ moment of inertia of cross section with
respect to neutral axis, in4

Generally, c is taken as the distance to the outer-
most fiber to determine maximum f.

6.28 Moment of Inertia

The neutral axis in a symmetrical beam coincides
with the centroidal axis; that is, at any section the
neutral axis is so located thatð

y dA ¼ 0 (6:45)

where dA is a differential area parallel to the axis
(Fig. 6.28), y is its distance from the axis, and the
summation is taken over the entire cross section.

Moment of inertia with respect to the neutral
axis is given by

I ¼
ð
y2 dA (6:46)

Values for I for several common cross sections
are given in Fig. 6.29. Values for standard
structural-steel sections are listed in manuals of
the American Institute of Steel Construction.
When the moments of inertia of other types of
sections are needed, they can be computed directly
by applying Eq. (6.46) or by breaking the section
up into components for which the moment of
inertia is known.

With the following formula, the moment of
inertia of a section can be determined from that of
its components:

I0 ¼ I þ Ad2 (6:47)

where I ¼ moment of inertia of component about
its centroidal axis, in4

Fig. 6.28 Unit stresses on a beam section pro-
duced by bending.
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Fig. 6.29 Geometric properties of sections.
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I0 ¼ moment of inertia of component about
parallel axis, in4

A ¼ cross-sectional area of component, in2

d ¼ distance between centroidal and parallel
axes, in

The formula enables computation of the moment of
inertia of a component about the centroidal axis of
a section from the moment of inertia about the
component’s centroidal axis, usually obtainable
from Fig. 6.29 or the AISC manual. By summing up
the transferred moments of inertia for all the
components, the moment of inertia of the section is
obtained.

When the moments of inertia of an area with
respect to any two perpendicular axes are known,
the moment of inertia with respect to any other axis
passing through the point of intersection of the two
axes may be obtained by using Mohr’s circle as for
stresses (Fig. 6.11). In this analog, Ix corresponds
with fx, Iywith fy, and the product of inertia Ixywith
nxy (Art. 6.17)

Ixy ¼
ð
xy dA (6:48)

The two perpendicular axes through a point
about which themoments of inertia are amaximum
or a minimum are called the principal axes. The
product of inertia is zero for the principal axes.

6.29 Section Modulus

The ratio S ¼ I/c, relating bending moment and
maximum bending stresses within the elastic range
in a beam [Eq. (6.44)], is called the sectionmodulus. I is
the moment of inertia of the cross section about the
neutral axis and c the distance from the neutral axis
to the outermost fiber. Values of S for common types
of sections are given in Fig. 6.29. Values for standard
structural-steel sections are listed in manuals of the
American Institute of Steel Construction.

6.30 Shearing Stresses in a
Beam

Vertical shear at any section in a beam is resisted by
nonuniformly distributed, vertical unit stresses
(Fig. 6.30). At every point in the section, there also
is a horizontal unit stress, which is equal in mag-
nitude to the vertical unit shearing stress there [see
Eq. (6.24)].

At any distance y0 from the neutral axis, both the
horizontal and vertical shearing unit stresses are
equal to

n ¼ V

It
A0 �yy (6:49)

where V ¼ vertical shear at cross section, lb

t ¼ thickness of beam at distance y0 from
neutral axis, in

I ¼ moment of inertia of section about
neutral axis, in4

A0 ¼ area between outermost surface and
surface for which shearing stress is
being computed, in2

ȳ ¼ distance of center of gravity of this area
from neutral axis, in

For a rectangular beam, with width t ¼ b and
depth d, the maximum shearing stress occurs at
middepth. Its magnitude is

n ¼ V

(bd3=12)b

bd

2

d

4
¼ 3

2

V

bd

That is, themaximumshear stress is 50%greater than
the average shear stress on the section. Similarly, for a
circular beam, themaximum is one-third greater than
the average. For an I or wide-flange beam, however,
the maximum shear stress in the web is not appre-
ciably greater than the average for the web section
alone, assuming that the flanges take no shear.

6.31 Combined Shear and
Bending Stress

For deep beams on short spans and beams with
low tensile strength, it sometimes is necessary to

Fig. 6.30 Unit shearing stresses on a beam
section.
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determine the maximum normal stress f 0 due to a
combination of shear stress n and bending stress f.
This maximum or principal stress (Art. 6.15) occurs
on a plane inclined to that of n and of f. From
Mohr’s circle (Fig. 6.11) with f ¼ fx, fy ¼ 0, and
n ¼ nxy,

f 0 ¼ f

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ f

2

� �2
s

(6:50)

6.32 Beam Deflections

The elastic curve is the position taken by the
longitudinal centroidal axis of a beam when it
deflects under load. The radius of curvature at any
point of this curve is

R ¼ EI

M
(6:51)

where M ¼ bending moment at point

E ¼ modulus of elasticity

I ¼ moment of inertia of cross section
about neutral axis

Since the slope of the elastic curve is very small,
1/R is approximately d2y/dx2, where y is the
deflection of the beam at a distance x from the
origin of coordinates. Hence, Eq. (6.51) may be
rewritten

M ¼ EI
d2y

dx2
(6:52)

To obtain the slope and deflection of a beam, this
equation may be integrated, with M expressed as a
function of x. Constants introduced during the
integration must be evaluated in terms of known
points and slopes of the elastic curve.

After integration, Eq. (6.52) yields

uB � uA ¼
ðB
A

M

EI
dx (6:53)

in which uA and uB are the slopes of the elastic
curve at any two points A and B. If the slope is zero
at one of the points, the integral in Eq. (6.53) gives
the slope of the elastic curve at the other. The
integral represents the area of the bending-moment
diagram between A and B with each ordinate
divided by EI.

The tangential deviation t of a point on the
elastic curve is the distance of this point, measured

in a direction perpendicular to the original position
of the beam, from a tangent drawn at some other
point on the curve.

tB � tA ¼
ðB
A

Mx

EI
dx (6:54)

Equation (6.54) indicates that the tangential
deviation of any point with respect to a second
point on the elastic curve equals the moment about
the first point of the area of the M/EI diagram
between the two points. The moment-area method
for determining beam deflections is a technique
employing Eqs. (6.53) and (6.54).

Moment-Area Method n Suppose, for ex-
ample, the deflection at midspan is to be computed
for a beam of uniform cross section with a con-
centrated load at the center (Fig. 6.31). Since the
deflection at midspan for this loading is the maxi-
mum for the span, the slope of the elastic curve at
midspan is zero; that is, the tangent is parallel to
the undeflected position of the beam. Hence, the
deviation of either support from the midspan
tangent equals the deflection at the center of the
beam. Then, by the moment-area theorem [Eq.
(6.54)], the deflection yc is given by the moment
about either support of the area of the M/EI
diagram included between an ordinate at the
center of the beam and that support

yc ¼ 1

2

PL

4EI

L

2

� �
L

3
¼ PL3

48EI

Suppose now that the deflection y at any pointD
at a distance xL from the left support (Fig. 6.31) is to
be determined. Note that from similar triangles, xL/
L ¼ DE/tAB, where DE is the distance from the
undeflected position of D to the tangent to the
elastic curve at support A, and tAB is the tangential
deviation of B from that tangent. ButDE also equals
y þ tAD, where tAD is the tangential deviation of D
from the tangent at A. Hence,

yþ tAD ¼ xtAB

This equation is perfectly general for the
deflection of any point of a simple beam, no matter
how loaded. It may be rewritten to give the
deflection directly:

y ¼ xtAB � tAD (6:55)

But tAB is the moment of the area of the M/EI
diagram for the whole beam about support B, and
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tAD is the moment about D of the area of the M/EI
diagram included between ordinates at A and D.
So at any point x of the beam in Fig. 6.31, the
deflection is

y ¼ x
1

2

PL

4EI

L

2

L

3
þ 2L

3

� �� �

� 1

2

PLx

2EI
(xL)

xL

3
¼ PL3

48EI
x(3� 4x2)

It also is noteworthy that, since the tangential
deviations are very small distances, the slope of the
elastic curve at A is given by

uA ¼ tAB
L

(6:56)

This holds, in general, for all simple beams regard-
less of the type of loading.

Conjugate-Beam Method n The procedure
followed in applying Eq. (6.55) to the deflection of
the loaded beam in Fig. 6.31 is equivalent to finding
the bending moment at D with the M/EI diagram
serving as the load diagram. The technique of
applying the M/EI diagram as a load and deter-
mining the deflection as a bending moment is
known as the conjugate-beam method.

The conjugate beam must have the same length
as the given beam; it must be in equilibriumwith the
M/EI load and the reactions produced by the load;
and the bending moment at any section must be
equal to the deflection of the given beam at the
corresponding section. The last requirement is
equivalent to specifying that the shear at any section
of the conjugate beamwith theM/EI load be equal to
the slope of the elastic curve at the corresponding
section of the given beam. Figure 6.32 shows the
conjugates for various types of beams.

Deflection Computations n Deflections for
several types of loading on simple beams are given
in Figs. 6.33 and 6.35 to 6.38 and for cantilevers and
beams with overhangs in Figs. 6.39 to 6.44.

When a beam carries several different types of
loading, the most convenient method of computing
its deflection usually is to find the deflections
separately for the uniform and concentrated loads
and add them.

For several concentrated loads, the easiest
method of obtaining the deflection at a point on a
beam is to apply the reciprocal theorem (Art. 6.55).
According to this theorem, if a concentrated load is
applied to a beam at a point A, the deflection the
load produces at point B equals the deflection at A
for the same load applied at B (dAB ¼ dBA). So place
the loads one at a time at the point for which the
deflection is to be found, and from the equation of
the elastic curve determine the deflections at the
actual location of the loads. Then, sum these de-
flections.

Fig. 6.31 Elastic curve for a simple beam and
tangential deviations at ends.
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Suppose, for example, the midspan deflection is
to be computed. Assume each load in turn applied
at the center of the beam and compute the
deflection at the point where it originally was
applied from the equation of the elastic curve given

in Fig. 6.36. The sum of these deflections is the total
midspan deflection.

Another method for computing deflections is
presented inArt. 6.54. Thismethod alsomay be used
to determine the deflection of a beam due to shear.

Fig. 6.32 Conjugate beams.
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Fig. 6.33 Shears, moments, and deflections for
full uniform load on a simply supported, prismatic
beam.

Fig. 6.34 Shears and moments for a uniformly
distributed load over part of a simply supported
beam.

Fig. 6.35 Shears, moments, and deflections for a
concentrated load at any point of a simply
supported, prismatic beam.

Fig. 6.36 Shears, moments, and deflections
for a concentrated load at midspan of a simply
supported, prismatic beam.
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Fig. 6.37 Shears, moments, and deflections for
two equal concentrated loads on a simply sup-
ported, prismatic beam.

Fig. 6.38 Shears, moments, and deflections for
several equal loads equally spaced on a simply
supported, prismatic beam.

Fig. 6.39 Shears, moments, and deflections for
a concentrated load on a beam overhang.

Fig. 6.40 Shears, moments, and deflections for
a concentrated load on the end of a prismatic
cantilever.
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Fig. 6.41 Shears, moments, and deflections for
a uniform load over a beam with overhang.

Fig. 6.42 Shears, moments, and deflections for
a uniform load over the length of a cantilever.

Fig. 6.43 Shears, moments, and deflections for
a uniform load on a beam overhang.

Fig. 6.44 Shears, moments, and deflections for
a triangular loading on a prismatic cantilever.
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6.33 Unsymmetrical Bending

When a beam is subjected to loads that do not
lie in a plane containing a principal axis of each
cross section, unsymmetrical bending occurs. As-
suming that the bending axis of the beam lies in
the plane of the loads, to preclude torsion (see
Art. 6.36), and that the loads are perpendicular to
the bending axis, to preclude axial components,
the stress, psi, at any point in a cross section is

f ¼ Mxy

Ix
+

Myx

Iy
(6:57)

where Mx ¼ bending moment about principal axis
XX, in-lb

My ¼ bending moment about principal axis
YY, in-lb

x ¼ distance from point where stress is to
be computed to YY axis, in

y ¼ distance from point to XX, in

Ix ¼ moment of inertia of cross section
about XX, in4

Iy ¼ moment of inertia about YY, in4

If the plane of the loads makes an angle uwith a
principal plane, the neutral surface will form an
angle a with the other principal plane such that

tana ¼ Ix
Iy
tan u

6.34 Combined Axial and
Bending Loads

For short beams, subjected to both transverse and
axial loads, the stresses are given by the principle of
superposition if the deflection due to bending may
be neglected without serious error. That is, the total
stress is given with sufficient accuracy at any
section by the sum of the axial stress and the
bending stresses. The maximum stress, psi, equals

f ¼ P

A
þMc

I
(6:58a)

where P ¼ axial load, lb

A ¼ cross-sectional area, in2

M ¼ maximum bending moment, in-lb

c ¼ distance from neutral axis to outermost
fiber at section where maximum mo-
ment occurs, in

I ¼ moment of inertia about neutral axis at
that section, in4

When the deflection due to bending is large and
the axial load produces bending stresses that cannot
be neglected, the maximum stress is given by

f ¼ P

A
þ (Mþ Pd)

c

I
(6:58b)

where d is the deflection of the beam. For axial
compression, the moment Pd should be given the
same sign as M, and for tension, the opposite sign,
but the minimum value of M þ Pd is zero. The
deflection d for axial compression and bending can
be obtained by applying Eq. (6.52).

(S. Timoshenko and J. M. Gere, “Theory of
Elastic Stability,” McGraw-Hill Book Company,
New York, books.mcgraw-hill.com; Friedrich
Bleich, “Buckling Strength of Metal Structures,”
McGraw-Hill Book Company, New York, books.
mcgraw-hill.com.) But it may be closely approxi-
mated by

d ¼ do
1� (P=Pc)

(6:59)

where do ¼ deflection for transverse loading alone,
in

Pc ¼ critical buckling load, p2EI/L2 (see Art.
6.39), lb

6.35 Eccentric Loading

If an eccentric longitudinal load is applied to a bar
in the plane of symmetry, it produces a bending
moment Pe, where e is the distance, in, of the load P
from the centroidal axis. The total unit stress is the
sum of the stress due to this moment and the stress
due to P applied as an axial load:

f ¼ P

A
+

Pec

I
¼ P

A
1+

ec

r2

� �
(6:60)

where A ¼ cross-sectional area, in2

c ¼ distance from neutral axis to outermost
fiber, in

I ¼ moment of inertia of cross section about
neutral axis, in4

r ¼ radius of gyration ¼ ffiffiffiffiffiffiffiffi
I=A

p
, in
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Figure 6.29 gives values of the radius of gyration
for several cross sections.

If there is to be no tension on the cross section
under a compressive load, e should not exceed
r2/c. For a rectangular section with width b and
depth d, the eccentricity, therefore, should be less
than b/6 and d/6; i.e., the load should not be
applied outside the middle third. For a circular
cross section with diameter D, the eccentricity
should not exceed D/8.

When the eccentric longitudinal load produces a
deflection too large to be neglected in computing
the bending stress, account must be taken of the
additional bending moment Pd, where d is the
deflection, in. This deflection may be computed by
using Eq. (6.52) or closely approximated by

d ¼ 4eP=Pc

p(1� P=Pc)
(6:61)

Pc is the critical buckling load p2EI/L2 (see Art.
6.39), lb.

If the load P does not lie in a plane containing an
axis of symmetry, it produces bending about the
two principal axes through the centroid of the
section. The stresses, psi, are given by

f ¼ P

A
+

Pexcx
Iy

+
Peycy

Ix
(6:62)

where A ¼ cross-sectional area in2

ex ¼ eccentricity with respect to principal
axis YY, in

ey ¼ eccentricity with respect to principal
axis XX, in

cx ¼ distance from YY to outermost fiber, in

cy ¼ distance from XX to outermost fiber, in

Ix ¼ moment of inertia about XX, in4

Iy ¼ moment of inertia about YY, in4

The principal axes are the two perpendicular
axes through the centroid for which the moments
of inertia are a maximum or a minimum and for
which the products of inertia are zero.

6.36 Beams with
Unsymmetrical Sections

The derivation of the flexure formula f ¼ Mc/I
(Art. 6.27) assumes that a beam bends, without
twisting, in the plane of the loads and that the

neutral surface is perpendicular to the plane of the
loads. These assumptions are correct for beams
with cross sections symmetrical about two axes
when the plane of the loads contains one of these
axes. They are not necessarily true for beams that
are not doubly symmetrical because in beams
that are doubly symmetrical, the bending axis
coincides with the centroidal axis, whereas in
unsymmetrical sections the two axes may be
separate. In the latter case, if the plane of the loads
contains the centroidal axis but not the bending
axis, the beam will be subjected to both bending
and torsion.

The bending axis is the longitudinal line in a
beam through which transverse loads must pass
to preclude the beam’s twisting as it bends. The
point in each section through which the bending
axis passes is called the shear center, or center of
twist. The shear center also is the center of rotation
of the section in pure torsion (Art. 6.18). Its location
depends on the dimensions of the section.

Computation of stresses and strains in members
subjected to both bending and torsion is compli-
cated, because warping of the cross section and
buckling may occur and should be taken into
account. Such computations may not be necessary
if twisting is prevented by use of bracing or
avoided by selecting appropriate shapes for the
members and by locating and directing loads to
pass through the bending axis.

(F. Bleich, “Buckling Strength of Metal Struc-
tures,” McGraw-Hill Book Company, New York,
books.mcgraw-hill.com.)

Curved Beams

Structural members, such as arches, crane hooks,
chain links, and frames of some machines, that
have considerable initial curvature in the plane of
loading are called curved beams. The flexure
formula of Art. 6.27, f ¼ Mc/I, cannot be applied to
them with any reasonable degree of accuracy
unless the depth of the beam is small compared
with the radius of curvature.

Unlike the condition in straight beams, unit
strains in curved beams are not proportional to
the distance from the neutral surface, and the
centroidal axis does not coincide with the neutral
axis. Hence the stress distribution on a section is
not linear but more like the distribution shown in
Fig. 6.45c.
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6.37 Stresses in Curved
Beams

Just as for straight beams, the assumption that
plane sections before bending remain plane after
bending generally holds for curved beams. So the
total strains are proportional to the distance from
the neutral axis. But since the fibers are initially of
unequal length, the unit strains are a more complex
function of this distance. In Fig. 6.45a, for example,
the bending couples have rotated section AB of the
curved beam into section A0B0 through an angle
Ddu. If 1o is the unit strain at the centroidal axis and
v is the angular unit strain Ddu/du, then if M is the
bending moment:

1o ¼ M

ARE
and v ¼ M

ARE
1þ AR2

I0

� �
(6:63)

where A is the cross-sectional area, E the modulus
of elasticity, and

I0 ¼
ð

y2 dA

1� y=R
¼
ð
y2 1þ y

R
þ y2

R2
þ � � �

� �
dA (6:64)

It should be noted that I0 is very nearly equal to the
moment of inertia I about the centroidal axis when
the depth of the section is small compared with R,
so that the maximum ratio of y to R is small com-
pared with unity. M is positive when it decreases
the radius of curvature.

The stresses in the curved beam can be obtained
from Fig. 6.45a with the use of 1o and v from Eq.
(6.63):

f ¼ M

A R
�My

I0
1

1� y=R
(6:65)

Equation (6.65) for bending stresses in curved
beams subjected to end moments in the plane of
curvature can be expressed for the inside and
outside beam faces in the form:

f ¼ Mc

I
K (6:66)

where c ¼ distance from the centroidal axis to the
inner or outer surface. Table 6.1 gives values of K
calculated from Eq. (6.66) for circular, elliptical, and
rectangular cross sections.

Fig. 6.45 Bending stresses in a curved beam.
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If Eq. (6.65) is applied to I or T beams or tubular
members, it may indicate circumferential flange
stresses that are much lower than will actually
occur. The error is due to the fact that the outer
edges of the flanges deflect radially. The effect is
equivalent to having only part of the flanges active
in resisting bending stresses. Also, accompanying
the flange deflections, there are transverse bending
stresses in the flanges. At the junction with the web,
these reach a maximum, which may be greater

than the maximum circumferential stress. Further-
more, there are radial stresses (normal stresses
acting in the direction of the radius of curvature) in
the web that also may have maximum values
greater than the maximum circumferential stress.

If a curved beam carries an axial load P as well
as bending loads, the maximum unit stress is

f ¼ P

A
+

Mc

I
K (6:67)

Table 6.1 Values of K for Curved Beams

Section R/c
K

yo/R
Inside face Outside face

1.2 3.41 0.54 0.224
1.4 2.40 0.60 0.151
1.6 1.96 0.65 0.108
1.8 1.75 0.68 0.084
2.0 1.62 0.71 0.069
3.0 1.33 0.79 0.030
4.0 1.23 0.84 0.016
6.0 1.14 0.89 0.0070
8.0 1.10 0.91 0.0039
10.0 1.08 0.93 0.0025

1.2 3.28 0.58 0.269
1.4 2.31 0.64 0.182
1.6 1.89 0.68 0.134
1.8 1.70 0.71 0.104
2.0 1.57 0.73 0.083
3.0 1.31 0.81 0.038
4.0 1.21 0.85 0.020
6.0 1.13 0.90 0.0087
8.0 1.10 0.92 0.0049
10.0 1.07 0.93 0.0031

1.2 2.89 0.57 0.305
1.4 2.13 0.63 0.204
1.6 1.79 0.67 0.149
1.8 1.63 0.70 0.112
2.0 1.52 0.73 0.090
3.0 1.30 0.81 0.041
4.0 1.20 0.85 0.021
6.0 1.12 0.90 0.0093
8.0 1.09 0.92 0.0052
10.0 1.07 0.94 0.0033
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M is taken positive in this equation when it
increases the curvature, and P is positive when it is
a tensile force, negative when compressive.

6.38 Slope and Deflection of
Curved Beams

If we consider two sections of a curved beam sepa-
rated by a differential distance ds (Fig. 6.45a), the
change in angle Ddu between the sections caused
by a bending moment M and an axial load P
may be obtained from Eq. (6.63), noting that du ¼
ds/R.

Ddu ¼ M ds

EI0
1þ I0

A R2

� �
þ P ds

A RE
(6:68)

where E is the modulus of elasticity, A the cross-
sectional area, R the radius of curvature of the
centroidal axis, and I0 is defined by Eq. (6.64).

If P is a tensile force, the length of the centroidal
axis increases by

Dds ¼ P ds

A E
þ M ds

A RE
(6:69)

The effect of curvature on shearing deformations
for most practical applications is negligible.

For shallow sections (depth of section less than
about one-tenth the span), the effect of axial forces
on deformations may be neglected. Also, unless the
radius of curvature is very small compared with
the depth, the effect of curvature may be ignored.
Hence, for most practical applications, Eq. (6.68)
may be used in the simplified form:

Ddu ¼ M ds

EI
(6:70)

For deeper beams, the action of axial forces, as well
as bending moments, should be taken into account;
but unless the curvature is sharp, its effect on
deformations may be neglected. So only Eq. (6.70)
and the first term in Eq. (6.69) need be used.

(S. Timoshenko and D. H. Young, “Theory of
Structures,” McGraw-Hill Publishing Company,
New York, books.mcgraw-hill.com.) See also Arts.
6.69 and 6.70.

Buckling of Columns

Columns are compression members whose cross-
sectional dimensions are small compared with

their length in the direction of the compressive
force. Failure of such members occurs because of
instability when a certain load (called the critical or
Euler load) is equaled or exceeded. The member
may bend, or buckle, suddenly and collapse.

Hence, the strength of a column is determined
not by the unit stress in Eq. (6.6) (P ¼Af ) but by the
maximum load it can carry without becoming
unstable. The condition of instability is character-
ized by disproportionately large increases in lateral
deformation with slight increase in load. It may
occur in slender columns before the unit stress
reaches the elastic limit.

6.39 Equilibrium of Columns

Figure 6.46 represents an axially loaded column
with ends unrestrained against rotation. If the
member is initially perfectly straight, it will remain
straight as long as the load P is less than the critical
load Pc (also called Euler load). If a small transverse
force is applied, it will deflect, but it will return to

Fig. 6.46 Buckling of a column.
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the straight position when this force is removed.
Thus, when P is less than Pc, internal and external
forces are in stable equilibrium.

If P ¼ Pc and a small transverse force is applied,
the column again will deflect, but this time, when
the force is removed, the column will remain in the
bent position (dashed line in Fig. 6.46).

The equation of this elastic curve can be ob-
tained from Eq. (6.52):

EI
d2y

dx2
¼ �Pcy (6:71)

in which E ¼ modulus of elasticity, psi

I ¼ least moment of inertia of cross
section, in4

y ¼ deflection of bent member from
straight position at distance x from
one end, in

This assumes that the stresses are within the elastic
limit.

Solution of Eq. (6.71) gives the smallest value of
the Euler load as

Pc ¼ p 2EI

L2
(6:72)

Equation (6.72) indicates that there is adefinitemag-
nitude of an axial load that will hold a column in
equilibrium in the bent position when the stresses
are below the elastic limit. Repeated application
and removal of small transverse forces or small
increases in axial load above this critical load
will cause the member to fail by buckling. Internal
and external forces are in a state of unstable
equilibrium.

It is noteworthy that the Euler load, which
determines the load-carrying capacity of a column,
depends on the stiffness of the member, as
expressed by the modulus of elasticity, rather than
on the strength of the material of which it is made.

By dividing both sides of Eq. (6.72) by the cross-
sectional areaA, in2, and substituting r2 for I/A (r is
the radius of gyration of the section), we can write
the solution of Eq. (6.71) in terms of the average
unit stress on the cross section:

Pc

A
¼ p2E

(L=r)2
(6:73)

This holds only for the elastic range of buckling,
that is, for values of the slenderness ratio L/r

above a certain limiting value that depends on the
properties of the material.

Effects of End Conditions n Equation (6.73)
was derived on the assumption that the ends of the
columns are free to rotate. It can be generalized,
however, to take into account the effect of end
conditions:

Pc

A
¼ p2E

(kL=r)2
(6:74)

where k is a factor that depends on the end
conditions. For a pin-ended column, k ¼ 1; for a
column with both ends fixed, k ¼ 1

2; for a column
with one end fixed and one end pinned, k is about
0.7; and for a column with one end fixed and one
end free from all restraint, k ¼ 2. When a column
has different restraints or different radii of gyration
about its principal axes, the largest value of kL/r for
a principal axis should be used in Eq. (6.74).

Inelastic Buckling n Equations (6.72) to
(6.74), having been derived from Eq. (6.71), the
differential equation for the elastic curve, are based
on the assumption that the critical average stress is
below the elastic limit when the state of unstable
equilibrium is reached. In members with slender-
ness ratio L/r below a certain limiting value,
however, the elastic limit is exceeded before the
column buckles. As the axial load approaches the
critical load, the modulus of elasticity varies with
the stress. Hence, Eqs. (6.72) to (6.74), based on the
assumption that E is a constant, do not hold for
these short columns.

After extensive testing and analysis, prevalent
engineering opinion favors the Engesser equation
for metals in the inelastic range:

Pt

A
¼ p 2Et

(kL=r)2
(6:75)

This differs from Eq. (6.74) only in that the tangent
modulus Et (the actual slope of the stress-strain
curve for the stress Pt/A) replaces E, the modulus
of elasticity in the elastic range. Pt is the smallest
axial load for which two equilibrium positions
are possible, the straight position and a deflected
position.

Another solution to the inelastic-buckling prob-
lem is called the double modulus method, in which
the bending stiffness of the cross section is ex-
pressed in terms of Et and E, representing the
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loading and unloading portions of materials on the
cross section respectively. The critical stress
obtained is higher than that of the Engesser
equation.

Eccentric Loading n Under eccentric load-
ing, the maximum unit stress in short compression
members is given by Eqs. (6.60) and (6.62), with the
eccentricity e increased by the deflection given by
Eq. (6.61). For columns, the stress within the elastic
range is given by the secant formula:

f ¼ P

A
1þ ec

r2
sec

kL

2r

ffiffiffiffiffiffiffi
P

AE

r !
(6:76)

When the slenderness ratio L/r is small, the for-
mula approximates Eq. (6.60).

6.40 Column Curves

The result of plotting the critical stress in columns
for various values of slenderness ratios (Art. 6.39) is
called a column curve. For axially loaded, initially
straight columns, it consists of two parts: the Euler
critical values [Eq. (6.73)] and the Engresser, or
tangent-modulus, critical values [Eq. (6.75)], with
k ¼ 1.

The second part of the curve is greatly affected
by the shape of the stress-strain curve for the
material of which the column is made, as indicated
in Fig. 6.47. The stress-strain curve for a material,
such as an aluminum alloy or high-strength steel,
which does not have a sharply defined yield point,
is shown in Fig. 6.47a. The corresponding column
curve is plotted in Fig. 6.47b. In contrast, Fig. 6.47c
presents the stress-strain curve for structural steel,

Fig. 6.47 Column curves: (a) Stress-strain curve for a material without a sharply defined yield point;
(b) column curve for the material in (a); (c) stress-strain curve for a material with a sharply defined yield
point; (d) column curve for the material in (c).
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with a sharply defined yield point, and Fig. 6.47d
the related column curve. This curve becomes
horizontal as the critical stress approaches the yield
strength of the material and the tangent modulus
becomes zero, whereas the column curve in Fig.
6.47b continues to rise with decreasing values of the
slenderness ratio.

Examination of Fig. 6.47d also indicates that
slender columns, which fall in the elastic range,
where the column curve has a large slope, are very
sensitive to variations in the factor k, which rep-
resents the effect of end conditions. On the other
hand, in the inelastic range, where the column
curve is relatively flat, the critical stress is relatively
insensitive to changes in k. Hence, the effect of end
conditions is of much greater significance for long
columns than for short columns.

6.41 Behavior of Actual
Columns

For many reasons, columns in structures behave
differently from the ideal column assumed in
deriving Eqs. (6.72) to (6.76). A major consideration
is the effect of accidental imperfections, such as
nonhomogeneity of materials, initial crookedness,
and unintentional eccentricities of the axial load.
These effects can be taken into account by a proper
choice of safety factor.

There are, however, other significant conditions
that must be considered in any design procedure:
continuity in framed structures and eccentricity of
the load. Continuity affects column action two
ways: The restraint and sidesway at column ends
determine the value of k, and bending moments are
transmitted to the columns by adjoining structural
members.

Because of the deviation of the behavior of
actual columns from the ideal, columns generally
are designed by empirical formulas. Separate
equations usually are given for short columns,
intermediate columns, and long columns, and still
other equations for combinations of axial load and
bending moment.

Furthermore, a column may fail not by buckling
of the member as a whole but, as an alternative, by
buckling of one of its components. Hence, when
members like I beams, channels, and angles are
used as columns, or when sections are built up of
plates, the possibility that the critical load on a
component (leg, half flange, web, lattice bar) will be

less than the critical load on the column as a whole
should be investigated.

Similarly, the possibility of buckling of the
compression flange or the web of a beam should be
investigated.

Local buckling, however, does not always result
in a reduction in the load-carrying capacity of a
column; sometimes it results in a redistribution of
the stresses, which enables the member to carry
additional load.

For more details on column action, see
S. Timoshenko and J. M. Gere, “Theory of Elastic
Stability,” McGraw-Hill Book Company, New York,
books.mcgraw-hill.com; B. G. Johnston, “Guide to
Stability Design Criteria for Metal Structures,” John
Wiley & Sons, Inc., New Jersey, www.wiley.com;
F. Bleich, “Buckling Strength of Metal Structures,”
McGraw-Hill Book Company, New York, books.
mcgraw-hill.com; and T. V. Galambos, “Guide to
Stability Design Criteria for Metal Structures,” John
Wiley & Sons, Inc., Hoboken, N.J., 1988, www.
wiley.com.

Graphic-Statics Fundamentals

Since a force is completely determined when it is
known in magnitude, direction, and point of
application, any force may be represented by the
length, direction, and position of a straight line.
The length of line to a given scale represents the
magnitude of the force. The position of the line
parallels the line of action of the force, and an
arrowhead on the line indicates the direction in
which the force acts.

6.42 Force Polygons

Graphically represented, a force may be designated
by a letter, sometimes followed by a subscript, such
as P1 and P2 in Fig. 6.48. Or each extremity of the
line may be indicated by a letter and the force
referred to by means of these letters (Fig. 6.48a).
The order of the letters indicates the direction of
the force; in Fig. 6.48a, referring to P1 as OA
indicates it acts from O toward A.

Forces are concurrent when their lines of action
meet. If they lie in the same plane, they are co-
planar.

Parallelogram of Forces n The resultant of
several forces is a single force that would produce
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the same effect on a rigid body. The resultant of two
concurrent forces is determined by the parallelo-
gram law:

If a parallelogram is constructed with two forces
as sides, the diagonal represents the resultant of the
forces (Fig. 6.48a).

The resultant is said to be equal to the sum of
the forces, sum here meaning vectorial sum, or
addition by the parallelogram law. Subtraction is
carried out in the same manner as addition, but the
direction of the force to be subtracted is reversed.

If the direction of the resultant is reversed, it
becomes the equilibrant, a single force that will
hold the two given forces in equilibrium.

Resolution of Forces n Any force may be
resolved into two components acting in any given
direction. To resolve a force into two components,
draw a parallelogram with the force as a diagonal
and sides parallel to the given directions. The sides
then represent the components.

The procedure is: (1) Draw the given force. (2)
Fromboth ends of the force draw lines parallel to the
directions inwhich the components act. (3) Draw the
components along the parallels through the origin of
the given force to the intersections with the parallels
through the other end. Thus, in Fig. 6.48a, P1 and P2

are the components in directions OA and OB of the
force represented by OC.

Force Triangles and Polygons n Examin-
ation of Fig. 6.48a indicates that a step can be saved
in adding forces P1 and P2. The same resultant
could be obtained by drawing only the upper half
of the parallelogram. Hence, to add two forces,
draw the first force; then draw the second force at
the end of the first one. The resultant is the force
drawn from the origin of the first force to the end of
the second force, as shown in Fig. 6.48b.

This diagram is called a force triangle. Again,
the equilibrant is the resultant with direction
reversed. If it is drawn instead of the resultant,
the arrows representing the direction of the forces
will all point in the same direction around the
triangle. From the force triangle, an important
conclusion can be drawn:

If three forces meeting at a point are in
equilibrium, they form a closed force triangle.

To add several forces P1, P2, P3,. . ., Pn, draw P2

from the end of P1, P3 from the end of P2, and so on.
The force required to complete the force polygon is
the resultant (Fig. 6.48c).

If a group of concurrent forces is in equili-
brium, they form a closed force polygon.

6.43 Equilibrium Polygons

When forces are coplanar but not concurrent, the
force polygonwill yield themagnitude anddirection
of the resultant but not its point of application. To
complete the solution, the easiest method generally
is to employ an auxiliary force polygon, called an
equilibrium, or funicular (string), polygon. Sides of
this polygon represent the lines of action of certain
components of the given forces; more specifically,
they take the configuration of a weightless string
holding the forces in equilibrium.

In Fig. 6.49a, the forces P1, P2, P3, and P4 acting
on the given body are not in equilibrium. The
magnitude and direction of their resultant R are
obtained from the force polygon abcde (Fig. 6.49b).
The line of action may be obtained as follows:

From any point O in the force polygon, draw a
line to each vertex of the polygon. Since the linesOa
and Ob form a closed triangle with force P1, they
represent two forces S5 and S1 that hold P1 in
equilibrium—two forces that may replace P1 in a
force diagram. So, as in Fig. 6.49a, at any pointm on
the line of action of P1, draw lines mn and mv
parallel to S1 and S5, respectively, to represent the
lines of action of these forces. Similarly, S1 and S2
represent two forces that may replace P2. The line
of action of S1 already is indicated by the line mn,
and it intersects P2 at n. So through n draw a line
parallel to S2, intersecting P3 at r. Through r, draw rs
parallel to S3, and through s, draw st parallel to S4.
Lines mv and st, parallel to S5 and S4, respectively,
represent the lines of action of S5 and S4. But
these two forces form a closed force triangle with
the resultant ae (Fig. 6.49b), and therefore the three

Fig. 6.48 Addition of forces by (a) parallelo-
gram law, (b) triangle construction, and (c) polygon
construction.
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forces must be concurrent. Hence, the line of action
of the resultant must pass through the intersection
w of the lines mv and st. The resultant of the four
given forces is thus fully determined. A force of
equal magnitude but acting in the opposite di-
rection, from e to a, will hold P1, P2, P3, and P4 in
equilibrium.

The polygon mnrsw is called an equilibrium
polygon. Point O is called the pole, and S1 . . . S5 are
called the rays of the force polygon.

Stresses in Trusses

A truss is a coplanar system of structural members
joined at their ends to form a stable framework.
Usually, analysis of a truss is based on the
assumption that the joints are hinged. Neglecting
small changes in the lengths of the members due to
loads, the relative positions of the joints cannot
change. Stresses due to joint rigidity or defor-
mations of the members are called secondary
stresses.

6.44 Truss Characteristics

Three bars pinned together to form a triangle
represent the simplest type of truss. Some of the

more common types of trusses are shown in
Fig. 6.50.

The top members are called the upper chord,
the bottom members the lower chord, and the
verticals and diagonals web members.

Trusses act like long, deep girders with cutout
webs. Roof trusses have to carry not only their own
weight and the weight of roof framing but wind
loads, snow loads, suspended ceilings and equip-
ment, and a live load to take care of construction,
maintenance, and repair loading. Bridge trusses
have to support their own weight and that of deck
framing and deck, live loads imposed by traffic
(automobiles, trucks, railroad trains, pedestrians,
and so on) and impact caused by live load, plus
wind on structural members and vehicles. Deck
trusses carry the live load on the upper chord and
through trusses on the lower chord.

Loads generally are applied at the intersection
of members, or panel points, so that the members
will be subjected principally to direct stresses—
tension or compression. To simplify stress an-
alysis, the weight of the truss members is
apportioned to upper- and lower-chord panel
points. The members are assumed to be pinned at
their ends, even though this may actually not be
the case. However, if the joints are of such nature
as to restrict relative rotation substantially, then

Fig. 6.49 Force and equilibrium polygons for a system of forces in equilibrium.
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Fig. 6.50 Common types of trusses.
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the “secondary” stresses set up as a result should
be computed and superimposed on the stresses
obtained with the assumption of pin ends.

6.45 Bow’s Notation

In analysis of trusses, especially in graphical
analysis, Bow’s notation is useful for identifying
truss members, loads, and stresses. Capital letters
are placed in the spaces between truss members
and between forces; each member and load is then
designated by the letters on opposite sides of it. For
example, in Fig. 6.51a, the upper-chord members
are AF, BH, CJ, and DL. The loads are AB, BC, and
CD, and the reactions are EA and DE. Stresses in
the members generally are designated by the same
letters but in lowercase.

6.46 Method of Sections for
Truss Stresses

A convenient method of computing the stresses in
truss members is to isolate a portion of the truss by
a section so chosen as to cut only as many members
with unknown stresses as can be evaluated by
the laws of equilibrium applied to that portion of
the truss. The stresses in the members cut by the
section are treated as external forces and must hold
the loads on that portion of the truss in equili-
brium. Compressive forces act toward each joint or
panel point, and tensile forces away from the joint.

Joint Isolation n A choice of section that often
is convenient is one that isolates a joint with only
two unknown stresses. Since the stresses and load
at the joint must be in equilibrium, the sum of the

Fig. 6.51 Graphical determination of stresses at each joint of the truss in (a) may be expedited by
constructing the single Maxwell diagram in ( f ).
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horizontal components of the forces must be zero,
and so must be the sum of the vertical components.
Since the lines of action of all the forces are known
(the stresses act along the longitudinal axes of the
truss members), we can therefore compute two
unknown magnitudes of stresses at each joint by
this method.

To apply it to joint 1 of the truss in Fig. 6.51a, first
equate the sum of the vertical components to zero.
This equation shows that the vertical component af
of the top chord must be equal and opposite to the
reaction, 12 kips (see Fig. 6.51b and Bow’s notation,
Art. 6.45). The stress in the top chord ea at this joint,
then, must be a compression equal to 12 � 30/
18 ¼ 20 kips. Next, equate the sum of the horizon-
tal components to zero. This equation indicates that
the stress in the bottom chord fe at the joint must be
equal and opposite to the horizontal component of
the top chord. Hence, the stress in the bottom chord
must be a tension equal to 20 � 24/30 ¼ 16 kips.

Taking a section around joint 2 in Fig. 6.51a
reveals that the stress in the vertical fg is zero since
there are no loads at the joint and the bottom chord
is perpendicular to the vertical. Also, the stress
must be the same in both bottom-chordmembers at
the joint since the sum of the horizontal com-
ponents must be zero.

After joints 1 and 2 have been solved, a section
around joint 3 cuts only two unknown stresses:
SBH in top chord BH and SHG in diagonal HG.
Application of the laws of equilibrium to this joint
yields the following two equations, one for the ver-
tical components and the second for the horizontal
components:

SV ¼ 0:6SFA � 8� 0:6SBH

þ 0:6SHG ¼ 0 (6:77)

SH ¼ 0:8SFA � 0:8SBH

� 0:8SHG ¼ 0 (6:78)

Both unknown stresses are assumed to be com-
pressive, i.e., acting toward the joint. The stress in
the vertical does not appear in these equations
because it already was determined to be zero. The
stress in FA, SFA, was found from analysis of joint 1
to be 20 kips. Simultaneous solution of the two
equations yields SHG ¼ 6.7 kips and SBH ¼ 13.3
kips. (If these stresses had come out with a negative
sign, it would have indicated that the original
assumption of their directions was incorrect; they

would, in that case, be tensile forces instead of
compressive forces.)

Examination of the force polygons in Fig. 6.51
indicates that each stress occurs in two force
polygons. Hence, the graphical solution can be
shortened by combining the polygons. The combi-
nation of the various polygons for all the joints into
one stress diagram is known as aMaxwell diagram
(Fig. 6.51f ).

Wind loads on a roof truss with a sloping top
chord are assumed to act normal to the roof, in
which case the load polygon will be an inclined line
or a true polygon. The reactions are computed
generally on the assumption either that both are
parallel to the resultant of the wind loads or that
one end of the truss is free to move horizontally
and therefore will not resist the horizontal com-
ponents of the loads. The stress diagram is plotted
in the same manner as for vertical loads after the
reactions have been found.

Some trusses are complex and require special
methods of analysis. (C. H. Norris et al., “Elemen-
tary Structural Analysis,” McGraw-Hill Book
Company, New York, 1976, books.mcgraw-hill.
com.)

Parallel-Chord Trusses n A convenient
section for determining the stresses in diagonals
of parallel-chord trusses is a vertical one, such asN-
N in Fig. 6.52a. The sum of the forces acting on that
portion of the truss to the left of N-N equals the
vertical component of the stress in diagonal cD (see
Fig. 6.52b). Thus, if u is the acute angle between cD
and the vertical,

R1 � P1 � P2 þ S cos u ¼ 0 (6:79)

But R1 2 P1 2 P2 is the algebraic sum of all the
external vertical forces on the left of the section and
is the vertical shear in the section. It may be
designated as V. Therefore,

V þ S cos u ¼ 0 or S ¼ �V sec u (6:80)

From this it follows that for trusses with horizontal
chords and single-web systems, the stress in any
web member, other than the subverticals, equals
the vertical shear in the member multiplied by the
secant of the angle that the member makes with the
vertical.

Nonparallel Chords n A vertical section also
can be used to determine the stress in diagonals
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when the chords are not parallel, but the previously
described procedure must be modified. Suppose,
for example, that the stress in the diagonal Bc of the
Parker truss in Fig. 6.53 is to be found. Take a
vertical section to the left of joint c. This section cuts
BC, the top chord, and Bc, both of which have
vertical components, as well as the horizontal
bottom chord bc. Now, extend BC and bc until they
intersect, at O. If O is used as the center for taking
moments of all the forces, the moments of the
stresses in BC and bc will be zero since the lines of
action pass through O. Since Bc remains the only
stress with a moment about O, Bc can be computed
from the fact that the sum of the moments about O
must equal zero, for equilibrium.

Generally, the calculation can be simplified by
determining first the vertical component of the

diagonal and from it the stress. So resolve Bc into its
horizontal and vertical components BcH and BcV, at
c, so that the line of action of the horizontal
component passes through O. Taking moments
about O yields

(Bcv �Oc)� (R�Oa)þ (P1 �Ob) ¼ 0 (6:81)

from which BcV may be determined. The actual
stress in Bc is Bcv multiplied by the secant of the
angle that Bc makes with the vertical.

The stress in verticals, such as Cc, can be found
in a similar manner. But take the section on a slope
so as not to cut the diagonal but only the vertical
and the chords. The moment equation about the
intersection of the chords yields the stress in the
vertical directly since it has no horizontal compo-
nent.

Subdivided Panels n In a truss with parallel
chords and subdivided panels, such as the one in
Fig. 6.54a, the subdiagonals may be either tension
or compression. In Fig. 6.54a, the subdiagonal Bc is
in compression and d0E is in tension. The vertical
component of the stress in any subdiagonal, such
as d0E, equals half the stress in the vertical d0d at the
intersection of the subdiagonal and main diagonal.
See Fig. 6.54b.

For a truss with inclined chords and subdivided
panels, this is not the case. For example, the
stress in d0E for a truss with nonparallel chords is
d0d � l/h, where l is the length of d0E and h is the
length of Ee.

Fig. 6.53 Stress in a truss diagonal is deter-
mined by taking a vertical section and computing
moments about the intersection of top and bottom
chords.

Fig. 6.52 Vertical section through the truss in (a) enables determination of stress in the diagonal (b).
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6.47 Moving Loads on Trusses
and Girders

To minimize bending stresses in truss members,
framing is arranged to transmit loads to panel
points. Usually, in bridges, loads are transmitted
from a slab to stringers parallel to the trusses, and
the stringers carry the load to transverse floor
beams, which bring it to truss panel points. Similar
framing generally is used for bridge girders.

In many respects, analysis of trusses and girders
is similar to that for beams—determination of
maximum end reaction for moving loads, for
example, and use of influence lines (Art. 6.25). For
girders, maximum bending moments and shears at
various sections must be determined for moving
loads, as for beams; and as indicated in Art. 6.46,
stresses in truss members may be determined by
taking moments about convenient points or from
the shear in a panel. But girders and trusses differ
from beams in that analysis must take into account
the effect at critical sections of loads between panel
points since such loads are distributed to the near-
est panel points; hence, in some cases, influence
lines differ from those for beams.

Stresses in Verticals n The maximum total
stress in a load-bearing stiffener of a girder or in a
truss vertical, such as Bb in Fig. 6.55a, equals the
maximum reaction of the floor beam at the panel
point. The influence line for the reaction at b is
shown in Fig. 6.55b and indicates that for maxi-

mum reaction, a uniform load of w lb/lin ft should
extend a distance of 2p, from a to c, where p is the
length of a panel. In that case, the stress in Bb
equals wp.

Maximum floor beam reaction for concentrated
moving loads occurs when the total load between a
and c,W1 (Fig. 6.55c), equals twice the load between
a and b. Then, the maximum live-load stress in Bb is

rb ¼ W1g� 2Pg0

p
¼ W1(g� g0)

p
(6:82)

where g is the distance of W1 from c, and g0 is the
distance of P from b.

Stresses in Diagonals n For a truss with
parallel chords and single-web system, stress in a
diagonal, such as Bc in Fig. 6.55a, equals the shear
in the panel multiplied by the secant of the angle u
the diagonal makes with the vertical. The influence
diagram for stresses in Bc, then, is the shear
influence diagram for the panel multiplied by sec u,
as indicated in Fig. 6.55d. For maximum tension in
Bc, loads should be placed only in the portion of the
span for which the influence diagram is positive
(crosshatched in Fig. 6.55d). For maximum com-
pression, the loads should be placed where the
diagram is negative (minimum shear).

A uniform load, however, cannot be placed over
the full positive or negative portions of the span to
get a true maximum or minimum. Any load in the
panel is transmitted to the panel points at both

Fig. 6.54 Sections taken through truss with subdivided panels for finding stresses in web members.
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Fig. 6.55 Stresses produced in a truss by moving loads are determined with influence lines.
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ends of the panel and decreases the shear. True
maximum shear occurs for Bc when the uniform
load extends into the panel a distance x from c
equal to (n 2 k)p/(n 2 1), where n is the number of
panels in the truss and k the number of panels from
the left end of the truss to c.

For maximum stress in Bc caused by moving
concentrated loads, the loads must be placed to
produce maximum shear in the panel, and this may
require several trials with different wheels placed
at c (or, for minimum shear, at b). When the wheel
producing maximum shear is at c, the loading will
satisfy the following criterion: When the wheel is
just to the right of c, W/n is greater than P1, where
W is the total load on the span and P1 the load in the
panel (Fig. 6.55a); when the wheel is just to the left
of c, W/n is less than P1.

Stresses in Chords n Stresses in truss
chords, in general, can be determined from the
bending moment at a panel point, so the influence
diagram for chord stress has the same shape as
that for bending moment at an appropriate
panel point. For example, Fig. 6.55e shows the
influence line for stress in upper chord CD (minus
signifies compression). The ordinates are pro-
portional to the bending moment at d since the
stress in CD can be computed by considering the

portion of the truss just to the left of d and
taking moments about d. Figure 6.55f similarly
shows the influence line for stress in bottom
chord cd.

For maximum stress in a truss chord under
uniform load, the load should extend the full
length of the truss.

For maximum chord stress caused by moving
concentrated loads, the loads must be placed to
produce maximum bending moment at the appro-
priate panel point, and this may require several
trials with different wheels placed at the panel
point. Usually, maximum moment will be pro-
duced with the heaviest grouping of wheels about
the panel point.

In all trusses with verticals, the loading produ-
cing maximum chord stress will satisfy the
following criterion: When the critical wheel is just
to the right of the panel point,Wm/n is greater than
P, where mp is the distance of the panel point from
the left end of the truss with span np and P is the
sum of the loads to the left of the panel point; when
the wheel is just to the left of the panel point,Wm/n
is less than P.

In a truss without verticals, the maximum stress
in the loaded chord is determined by a different
criterion. For example, the moment center for the
lower chord bc (Fig. 6.56) is panel point C, at a

Fig. 6.56 Moving loads on a truss without verticals.
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distance c from b.When the critical load is at b or c,
the following criterion will be satisfied: When the
wheel is just to the right of b or c, Wk/L is greater
than P þ Qc/p; when the wheel is just to the left of b
or c, Wk/L is less than P þ Qc/p, where W is the
total load on the span, Q the load in panel bc, P the
load to the left of bc, and k the distance of the center
of moments C from the left support. The moment at
C isWgk/L 2 Pg1 2 Qcg2/p, where g is the distance
of the center of gravity of the loadsW from the right
support, g1 the distance of the center of gravity of
the loads P from C, and g2 the distance of the center
of gravity of the loadsQ from c, the right end of the
panel.

6.48 Counters

For long-span bridges, it often is economical to
design the diagonals of trusses for tension only.
But in the panels near the center of a truss,
maximum shear due to live loads plus impact
may exceed and be opposite in sign to the dead-
load shear, thus inducing compression in the di-
agonal. If the tension diagonal is flexible, it will
buckle. Hence, it becomes necessary to place in
such panels another diagonal crossing the main
diagonal (Fig. 6.57). Such diagonals are called
counters.

Designed only for tension, a counter is assumed
to carry no stress under dead load because it would
buckle slightly. It comes into action only when the
main diagonal is subjected to compression. Hence,
the two diagonals never act together.

Although the maximum stresses in the main
members of a truss are the same whether or not
counters are used, the minimum stresses in the
verticals are affected by the presence of counters. In
most trusses, however, the minimum stresses in the
verticals where counters are used are of the same
sign as the maximum stresses and hence have no
significance.

6.49 Stresses in Trusses Due
to Lateral Forces

To resist lateral forces on bridge trusses, trussed
systems are placed in the planes of the top and
bottom chords, and the ends, or portals, also are
braced as low down as possible without impinging
on headroom needed for traffic (Fig. 6.58). In stress
analysis of lateral trusses, wind loads may be
assumed as all applied on the windward chord or
as applied equally on the two chords. In the former
case, the stresses in the lateral struts are one-half
panel load greater than if the latter assumption
were made, but this is of no practical consequence.

Where the diagonals are considered as tension
members only, counter stresses need not be
computed since reversal of wind direction gives
greater stresses in the members concerned than any
partial loading from the opposite direction. When a
rigid system of diagonals is used, the two diagonals
of a panel may be assumed equally stressed.
Stresses in the chords of the lateral truss should be
combined with those in the chords of the main
trusses due to dead and live loads.

In computation of stresses in the lateral system
for the loaded chords of the main trusses, the wind
on the live load should be added to the wind on the
trusses. Hence, the wind on the live load should be
positioned for maximum stress on the lateral truss.
Methods described in Art. 6.46 can be used to
compute the stresses on the assumption that each
diagonal takes half the shear in each panel.

When the main trusses have inclined chords, the
lateral systems between the sloping chords lie in
several planes, and the exact determination of all
the wind stresses is rather difficult. The stresses in
the lateral members, however, may be determined
without significant error by considering the lateral
truss flattened into one plane. Panel lengths will
vary, but the panel loads will be equal and may be
determined from the horizontal panel length.

Since some of the lateral forces are applied
considerably above the horizontal plane of the end
supports of the bridge, these forces tend to overturn
the structure (Fig. 6.58e). The lateral forces of the
upper lateral system (Fig. 6.58a) are carried to the
portal struts, and the horizontal loads at these points
produce an overturning moment about the horizon-
tal plane of the supports. In Fig. 6.58e, P represents
the horizontal load brought to each portal strut by
the upper lateral bracing, h the depth of the truss,Fig. 6.57 Truss with counters.
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Fig. 6.58 Lateral trusses for bracing top and bottom chords of bridge trusses.
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and c the distance between trusses. The overturning
moment produced at each end of the structure is Ph,
which is balanced by a reaction couple Rc. The value
of the reaction R is then Ph/c. An equivalent effect is
achieved on the main trusses if loads equal to Ph/c
are applied at B and F and at B0 and F0, as shown in
Fig. 6.58b and c. These loads produce stresses in the
end posts and in the lower-chord members, but the
web members are not stressed.

The lateral force on the live load also causes an
overturning moment, which may be treated in a
similar manner. But there is a difference as far as
the web members of the main truss are concerned.
Since the lateral force on the live load produces an
effect corresponding to the position of the live load
on the bridge, equivalent panel loads, rather than
equivalent reactions, must be computed. If the
distance from the resultant of the wind force to the
plane of the loaded chord is h0, the equivalent ver-
tical panel load is Ph0=c, where P is the horizontal
panel load due to the lateral force.

6.50 Complex Trusses

The method of sections may not provide a direct
solution for some trusses with inclined chords and
multiple-web systems. But if the truss is stable and
statically determinate, a solution can be obtained
by applying the equations of equilibrium to a
section taken around each joint. The stresses in the
truss members are obtained by solution of the
simultaneous equations.

Since two equations of equilibrium can be
written for the forces acting at a joint (Art. 6.46), the
total number of equations available for a truss is 2n,
where n is the number of joints. If r is the number of
horizontal and vertical components of the reac-
tions, and s the number of stresses, rþ s is the
number of unknowns.

If rþ s ¼ 2n, the unknowns can be obtained
from solution of the simultaneous equations. If rþ s
is less than 2n, the structure is unstable (but the
structure may be unstable even if rþ s exceeds 2n).
If rþ s is greater than 2n, there are too many
unknowns; the structure is statically indeterminate.

General Tools for Structural
Analysis

For some types of structures, the equilibrium equa-
tions are not sufficient to determine the reactions or

the internal stresses. These structures are called
statically indeterminate.

For the analysis of such structures, additional
equations must be written based on a knowledge of
the elastic deformations. Hence, methods of
analysis that enable deformations to be evaluated
for unknown forces or stresses are important for
the solution of problems involving statically in-
determinate structures. Some of these methods,
like the method of virtual work, also are useful in
solving complicated problems involving statically
determinate systems.

6.51 Virtual Work

A virtual displacement is an imaginary, small
displacement of a particle consistent with the
constraints upon it. Thus, at one support of a
simply supported beam, the virtual displacement
could be an infinitesimal rotation du of that end, but
not a vertical movement. However, if the support
is replaced by a force, then a vertical virtual dis-
placement may be applied to the beam at that end.

Virtual work is the product of the distance a
particle moves during a virtual displacement and
the component in the direction of the displacement
of a force acting on the particle. If the displacement
and the force are in opposite directions, the virtual
work is negative. When the displacement is normal
to the force, no work is done.

Suppose a rigid body is acted on by a system of
forces with a resultant R. Given a virtual displace-
ment ds at an angle a with R, the body will have
virtual work done on it equal to R cosa ds. (No
work is done by internal forces. They act in pairs of
equal magnitude but opposite direction, and the
virtual work done by one force of a pair is equal
and opposite in sign to the work done by the other
force.) If the body is in equilibrium under the action
of the forces, then R ¼ 0, and the virtual work also
is zero.

Thus, the principle of virtual work may be
stated:

If a rigid body in equilibrium is given a virtual
displacement, the sum of the virtual work of the
forces acting on it must be zero.

As an example of how the principle may be
used, let us apply it to the determination of the
reaction R of the simple beam in Fig. 6.59a. First,
replace the support by an unknown force R. Next,
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move the end of the beam upward a small
amount dy as in Fig. 6.59b. The displacement
under the load P will be x dy=L, upward. Then, the
virtual work is Rdy� Px dy=L ¼ 0, from which R ¼
Px=L.

The principle also may be used to find the
reaction R of the more complex beam in Fig.
6.59c. Again, the first step is to replace one
support by an unknown force R. Next, apply a
virtual downward displacement dy at hinge A
(Fig. 6.59d). The displacement under the load P
will be x dy=c and at the reaction R will be
a dy=(aþ b). According to the principle of virtual
work, �Ra dy=(aþ b)þ Px dy=c ¼ 0; thus, R ¼
Px(aþ b)=ac. In this type of problem, the method
has the advantage that only one reaction need be
considered at a time and internal forces are not
involved.

6.52 Strain Energy

When an elastic body is deformed, the virtual work
done by the internal forces equals the correspond-
ing increment of the strain energy dU, in accor-
dance with the principle of virtual work.

Assume a constrained elastic body acted on by
forces P1, P2,. . . , for which the corresponding
deformations are e1, e2,. . . Then, SPnden ¼ dU. The
increment of the strain energy due to the incre-
ments of the deformations is given by

dU ¼ @U

@e1
de1 þ @U

@e2
de2 þ � � �

When solving a specific problem, a virtual
displacement that is most convenient in simplify-
ing the solution should be chosen. Suppose, for
example, a virtual displacement is selected that
affects only the deformation en corresponding to
the load Pn, other deformations being unchanged.
Then, the principle of virtual work requires that

Pnden ¼ @U

@en
den

This is equivalent to

@U

@en
¼ Pn (6:83)

which states that the partial derivative of the strain
energy with respect to a specific deformation gives
the corresponding force.

Suppose, for example, the stress in the vertical
bar in Fig. 6.60 is to be determined. All bars are

Fig. 6.59 Virtual work applied to determination
of a simple-beam reaction (a) and (b) and the reac-
tion of a beam with suspended span (c) and (d).

Fig. 6.60 Indeterminate truss.
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made of the same material and have the same cross
section A. If the vertical bar stretches an amount e
under the load P, the inclined bars will each stretch
an amount e cosa. The strain energy in the system
is [from Eq. (6.23a)]

U ¼ AE

2L
(e2 þ 2e2 cos3 a)

and the partial derivative of this with respect to e
must be equal to P; that is,

P ¼ AE

2L
(2eþ 4e cos3 a) ¼ AEe

L
(1þ 2 cos3 a)

Noting that the force in the vertical bar equals
AEe=L, we find from the above equation that the
required stress equals P=(1þ 2 cos3 a).

Castigliano’s Theorems n If strain energy
is expressed as a function of statically independent
forces, the partial derivative of the strain energy
with respect to a force gives the deformation
corresponding to that force:

@U

@Pn
¼ en (6:84)

This is known as Castigliano’s first theorem.
(His second theorem is the principle of least work.)

6.53 Method of Least Work

Castigliano’s second theorem, also known as the
principle of least work, states:

The strain energy in a statically indetermi-
nate structure is the minimum consistent with
equilibrium.

As an example of the use of the method of least
work, an alternative solution will be given for the
stress in the vertical bar in Fig. 6.60 (see Art. 5.52).
Calling this stress X, we note that the stress in each
of the inclined bars must be (P� X)=2 cosa. Using
Eq. (6.23a), we can express the strain energy in the
system in terms of X:

U ¼ X2L

2AE
þ (P� X)2L

4AE cos3 a

Hence, the internal work in the system will be a
minimum when

@U

@X
¼ XL

AE
� (P� X)L

2AE cos3 a
¼ 0

Solving for X gives the stress in the vertical bar as
P=(1þ 2 cos3 a), as in Art. 5.52.

6.54 Dummy Unit-Load
Method for
Displacements

The strain energy for pure bending isU ¼ M2L=2EI
[see Eq. (6.23d)]. To find the strain energy due to
bending stress in a beam, we can apply this
equation to a differential length dx of the beam and
integrate over the entire span. Thus,

U ¼
ðL
0

M2dx

2EI
(6:85)

If we let M represent the bending moment due
to a generalized force P, the partial derivative of
the strain energy with respect to P is the deforma-
tion d corresponding to P. Differentiating Eq.
(6.85) gives

d ¼
ðL
0

M

EI

@M

@P
dx (6:86)

The partial derivative in this equation is the rate
of change of bending moment with the load P. It
equals the bending moment m produced by a unit
generalized load applied at the point where the
deformation is to be measured and in the direc-
tion of the deformation. Hence, Eq. (6.86) can also
be written as

d ¼
ðL
0

Mm

EI
dx (6:87)

To find the vertical deflection of a beam, we
apply a dummy unit load vertically at the point
where the deflection is to be measured and
substitute the bending moments due to this load
and the actual loading in Eq. (6.87). Similarly, to
compute a rotation, we apply a dummy unit
moment.

Beam Deflections n As a simple example, let
us apply the dummy unit-load method to the
determination of the deflection at the center of a
simply supported, uniformly loaded beam of con-
stant moment of inertia (Fig. 6.61a). As indicated in
Fig. 6.61b, the bending moment at a distance x from
one end is (wL=2)x� (w=2)x2. If we apply a dummy
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unit load vertically at the center of the beam (Fig.
6.61c), where the vertical deflection is to be
determined, the moment at x is x/2, as indicated
in Fig. 6.61d. Substituting in Eq. (6.87) and taking
advantage of symmetry of loading gives

d ¼ 2

ðL=2
0

wL

2
x� w

2
x2

� �
x

2

dx

EI
¼ SwL4

384EI

Beam-End Rotations n As another example,
let us apply the method to finding the end rotation
at one end of a simply supported, prismatic beam
produced by a moment applied at the other end. In
other words, the problem is to find the end rotation
at B, uB in Fig. 6.62a, due toMA. As indicated in Fig.
6.62b, the bending moment at a distance x from B
due to MA is MAx=L. If we apply a dummy unit
moment at B (Fig. 6.62c), it will produce a moment
at x of (L� x)=L (Fig. 6.62d).

Substituting in Eq. (6.87) gives

uB ¼
ðL
0

MA
x

L

L� x

L

dx

EI
¼ MAL

6EI
(6:88)

Shear Deflections n To determine the de-
flection of a beam due to shear, Castigliano’s first

theorem can be applied to the strain energy
in shear:

U ¼
ð ð

n2

2G
dAdx (6:89)

where n ¼ shearing unit stress

G ¼ modulus of rigidity

A ¼ cross-sectional area

Truss Deflections n The dummy unit-load
method also may be adapted to computation of
truss deformations. The strain energy in a truss is
given by

U ¼
X S2L

2AE
(6:90)

which represents the sum of the strain energy
for all the members of the truss. S is the stress
in each member due to the loads, L the length
of each, A the cross-sectional area, and E the
modulus of elasticity. Application of Castiglia-

Fig. 6.61 Dummy unit-load method applied to
a uniformly loaded beam (a) to find the midspan
deflection; (b) moment diagram for the uniform
load; (c) unit load at midspan; (d) moment diagram
for the unit load.

Fig. 6.62 End rotation at B in beam AB (a)
caused by end moment at A is determined
by dummy unit-load method; (b) moment dia-
gram for the end moment; (c) unit moment ap-
plied at beam end; (d) moment diagram for that
moment.
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no’s first theorem (Art. 6.52) and differentiation
inside the summation sign yield the defor-
mation:

d ¼
X SL

AE

@S

@P
(6:91)

where, as in Art. 6.54, P represents a general-
ized load. The partial derivative in this equation
is the rate of change of axial stress with P. It
equals the axial stress u produced in each mem-
ber of the truss by a unit load applied at the
point where the deformation is to be measured
and in the direction of the deformation. Con-
sequently, Eq. (6.91) also can be written

d ¼
X SuL

AE
(6:92)

To find the vertical deflection at any point of
a truss, apply a dummy unit vertical load at the
panel point where the deflection is to be
measured. Substitute in Eq. (6.92) the stresses
in each member of the truss due to this load
and the actual loading. Similarly, to find the
rotation of any joint, apply a dummy unit mo-
ment at the joint, compute the stresses in each
member of the truss, and substitute in Eq. (6.92).

When it is necessary to determine the relative
movement of two panel points in the direction
of a member connecting them, apply dummy
unit loads in opposite directions at those points.

Note that members not stressed by the actual
loads or the dummy loads do not enter into the
calculation of a deformation.

As an example of the application of Eq. (6.92),
let us compute the midspan deflection of the
truss in Fig. 6.63a. The stresses in kips due to the
20-kip load at every lower-chord panel point are
given in Fig. 6.63a and Table 6.2. Also, the ratios
of length of members in inches to their cross-
sectional areas in square inches are given in
Table 6.2. We apply a dummy unit vertical load
at L2, where the deflection is required. Stresses u
due to this load are shown in Fig. 6.63b and
Table 6.2.

Table 6.2 also contains the computations for
the deflection. Members not stressed by the 20-
kip loads or the dummy unit loads are not
included. Taking advantage of the symmetry of
the truss, the values are tabulated for only half
the truss and the sum is doubled. Also, to
reduce the amount of calculation, the modulus of
elasticity E, which is equal to 30,000 is not
included until the very last step since it is the
same for all members.

Fig. 6.63 Dummyunit-loadmethod applied to a loaded truss to find (a) midspan deflection; (b) stresses
produced by a unit load applied at midspan.
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6.55 Reciprocal Theorem and
Influence Lines

Consider a structure loaded by a group of inde-
pendent forces A, and suppose that a second group
of forces B is added. The work done by the forces A

acting over the displacements due to B will be
WAB.

Now, suppose the forces B had been on the
structure first and then load A had been applied.
The work done by the forces B acting over the
displacements due to Awill be WBA.

The reciprocal theorem states that WAB ¼ WBA.
Some very useful conclusions can be drawn

from this equation. For example, there is the re-
ciprocal deflection relationship:

The deflection at a point A due to a load at B
equals the deflection at B due to the same load
applied atA.Also, the rotation atA due to load (or
moment) at B equals the rotation at B due to the
same load (or moment) applied to A.

Another consequence is that deflection curves
also may be influence lines, to some scale, for react-
ions, shears, moments, or deflections (Mueller-
Breslau principle). For example, suppose the
influence line for a reaction is to be found; that is,
we wish to plot the reaction R as a unit load moves
over the structure, which may be statically inde-
terminate. For loading condition A, we analyze the
structure with a unit load on it at a distance x from
some reference point. For loading condition B, we
apply a dummy unit vertical load upward at
the place where the reaction is to be determined,

Table 6.2 Midspan Deflection of Truss of Fig.
6.63

Member L/A S u SuL/A

L0L2 160 þ40 þ 2=3 4,267

L0U1 75 250 � 5=6 3,125

U1U2 60 253.3 � 4=3 4,267

U1L2 150 þ16.7 þ 5=6 2,083

13,742

Division of the summation of the last column by
the modulus of elasticity E ¼ 30,000 ksi yields the
midspan deflection.

d ¼
XSuL

AE
¼ 2� 13,742

30,000
¼ 0:916 in

Fig. 6.64 Influence lines for a continuous beam are obtained from deflection curves. (a) Reaction at R;
(b) shear at V; (c) bending moment at M; (d) deflection at D.
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deflecting the structure off the support. At a
distance x from the reference point, the displace-
ment is dxR, and over the support the displacement
is dRR. Hence, WAB ¼ �1dxR þ RdRR. On the other
hand, WBA is zero since loading condition A
provides no displacement for the dummy unit load
at the support in condition B. Consequently, from
the reciprocal theorem, WAB ¼ WBA ¼ 0; hence

R ¼ dxR
dRR

(6:93)

Since dRR, the deflection at the support due to a unit
load applied there, is a constant, R is proportional
to dXR. So the influence line for a reaction can be
obtained from the deflection curve resulting from a
displacement of the support (Fig. 6.64a). The
magnitude of the reaction is obtained by dividing
each ordinate of the deflection curve by dRR.

Similarly, the influence line for shear can be
obtained from the deflection curve produced by
cutting the structure and shifting the cut ends
vertically at the point for which the influence line is
desired (Fig. 6.64b).

The influence line for bending moment can be
obtained from the deflection curve produced by
cutting the structure and rotating the cut ends at
the point for which the influence line is desired
(Fig. 6.64c).

Finally, it may be noted that the deflection curve
for a load of unity is also the influence line for
deflection at that point (Fig. 6.64d).

6.56 Superposition Methods

The principle of superposition states that, if several
loads are applied to a linearly elastic structure, the
displacement at each point of the structure equals
the sum of the displacements induced at the point
when the loads are applied individually in any
sequence. Furthermore, the bending moment (or
shear) at each point equals the sum of the bending
moments (or shears) induced at the point by the
loads applied individually in any sequence.

The principle holds only when the displacement
(deflection or rotation) at every point of the
structure is directly proportional to applied loads.
Also, it is required that unit stresses be pro-
portional to unit strains and that displacements be
very small so that calculations can be based on the
undeformed configuration of the structure without
significant error.

As a simple example, consider a bar with length
L and cross-sectional area A loaded with n axial
loads P1, P2,. . ., Pn. Let F equal the sum of the
loads. From Eq. (6.8), F causes an elongation
d ¼ FL=AE, where E is the modulus of elasticity of
the bar. According to the principle of super-
position, if e1 is the elongation caused by P1 alone,
e2 by P2 alone, . . . and en by Pn alone, then
regardless of the sequence in which the loads are
applied, when all the loads are on the bar,

d ¼ e1 þ e2 þ � � � þ en

This simple case can be easily verified by
substituting e1 ¼ P1L=AE, e2 ¼ P2L=AE,. . . , and
en ¼ PnL=AE in this equation and noting that
F ¼ P1 þ P2 þ � � � þ Pn:

d ¼ P1L

AE
þ P2L

AE
þ � � � þ PnL

AE

¼ (P1 þ P2 þ � � � þ Pn)
L

AE
¼ FL

AE

In the preceding equations, L=AE represents the
elongation induced by a unit load and is called the
flexibility of the bar.

The reciprocal, AE=L, represents the force that
causes a unit elongation and is called the stiffness
of the bar.

Analogous properties of beams, columns, and
other structural members and the principle of
superposition are useful in analysis of many
types of structures. Calculation of stresses and
displacements of statically indeterminate struc-
tures, for example, often can be simplified by
resolution of bending moments, shears, and dis-
placements into components chosen to supply
sufficient equations for the solution from require-
ments for equilibrium of forces and compatibility
of displacements.

Consider the continuous beamALRBC shown in
Fig. 6.65a. Under the loads shown, member LR is
subjected to end moments ML and MR (Fig. 6.65b)
that are initially unknown. The bending-moment
diagram for LR for these end moments is shown at
the left in Fig. 6.65c. If these end moments were
known, LR would be statically determinate; that is,
LR could be treated as a simply supported beam
subjected to known end moments,ML andMR. The
analysis can be further simplified by resolution of
the bending-moment diagram into the three
components shown to the right of the equals sign
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in Fig. 6.65c. This example leads to the following
conclusion.

The bending moment at any section of a span
LR of a continuous beam or frame equals the
simple-beam moment due to the applied loads,
plus the simple-beam moment due to the end
moment at L, plus the simple-beam moment due
to the end moment at R.

When the moment diagrams for all the spans of
ALRBC in Fig. 6.65 have been resolved into com-
ponents so that the spans may be treated as simple
beams, all the end moments (moments at supports)
can be determined from two basic requirements:

1. The sum of the moments at every support
equals zero.

2. The end rotation (angular change at the sup-
port) of each member rigidly connected at the
support is the same.

6.57 Influence-Coefficient
Matrices

A matrix is a rectangular array of numbers in rows
and columns that obeys certain mathematical rules
known generally as matrix algebra and matrix
calculus. A matrix consisting of only a single
column is called a vector. In this book, matrices and
vectors are represented by boldface letters, and

their elements by lightface symbols, with appro-
priate subscripts. It often is convenient to use
numbers for the subscripts to indicate the position
of an element in the matrix. Generally, the first digit
indicates the row, and the second digit, the column.
Thus, in matrixA, A23 represents the element in the
second row and third column:

A ¼
A11 A12 A13

A21 A22 A23

A31 A32 A33

2
4

3
5 (6:94)

Methods based on matrix representations often
are advantageous for structural analysis and design
of complex structures. One reason is that matrices
provide a compact means of representing and
manipulating large quantities of numbers. Another
reason is that computers can perform matrix
operations automatically and speedily. Computer
programs are widely available for the purpose.

Matrix Equations n Matrix notation is
especially convenient in representing the solution
of simultaneous linear equations, which arise
frequently in structural analysis. For example,
suppose a set of equations is represented in matrix
notation by AX ¼ B, where X is the vector of vari-
ables X1, X2,. . ., Xn, B is the vector of the constants
on the right-hand side of the equations, and A is
a matrix of the coefficients of the variables. Multi-

Fig. 6.65 Any span of a continuous beam (a) can be treated as a simple beam, as shown in (b) and (c). In
(c), the moment diagram is resolved into basic components.
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plication of both sides of the equation by A�1, the
inverse of A, yields A�1AX ¼ A�1B.

Since A�1A ¼ I, the identity matrix, and IX ¼ X,
the solution of the equations is represented by
X ¼ A�1B. The matrix inversion A�1 can be readily
performed by computers. For large matrices,
however, it often is more practical to solve the
equations; for example, by the Gaussian procedure
of eliminating one unknown at a time.

In the application of matrices to structural
analysis, loads and displacements are considered
applied at the intersection of members (joints, or
nodes). The loads may be resolved into moments,
torques, and horizontal and vertical components.
Thesemay be assembled for each node into a vector
and then all the node vectors may be combined into
a force vector P for the whole structure.

P ¼
P1

P2

..

.

Pn

2
664

3
775 (6:95)

Similarly, displacements corresponding to those
forces may be resolved into rotations, twists, and
horizontal and vertical components and assembled
for the whole structure into a vector D:

D ¼
D1

D2

..

.

Dn

2
664

3
775 (6:96)

If the structure meets requirements for application
of the principle of superposition (Art. 6.56) and
forces and displacements are arranged in the
proper sequence, the vectors of forces and dis-
placements are related by

P ¼ KD (6:97a)

D ¼ FP (6:97b)

where K ¼ stiffness matrix of the whole structure

F ¼ flexibility matrix of the whole struc-
ture ¼ K21

The stiffness matrixK transforms displacements
into loads. The flexibility matrix F transforms loads
into displacements. The elements of K and F are
functions of material properties, such as the
modulus of elasticity; geometry of the structure;
and sectional properties of members of the
structure, such as area and moment of inertia. K

and F are square matrices; that is, the number of
rows in each equals the number of columns. In
addition, both matrices are symmetrical; that is, in
each matrix, the columns and rows may be
interchanged without changing the matrix. Thus,
Kij ¼ K ji, and Fij ¼ Fji, where i indicates the row in
which an element is located, and j, the column.

Influence Coefficients n Elements of the
stiffness and flexibility matrices are influence co-
efficients. Each element is derived by computing
the displacements (or forces) occurring at nodes
when a unit displacement (or force) is imposed at
one node, while all other displacements (or forces)
are taken as zero.

Let Di be the ith element of matrix D. Then, a
typical element Fij of F gives the displacement of a
node i in the direction of Di when a unit force acts at
a node j in the direction of force Pj and no other
forces are acting on the structure. The jth column of
F, therefore, contains all the nodal displacements
induced by a unit force acting at node j in the
direction of Pj.

Similarly, let Pi be the ith element of matrix P.
Then, a typical element Kij of K gives the force at a
node i in the direction of Pi when a node j is given a
unit displacement in the direction of displacement
Dj and no other displacements are permitted. The
jth column of K, therefore, contains all the nodal
forces caused by a unit displacement of node j in
the direction of Dj.

Application to a Beam n A general method
for determining the forces and moments in a
continuous beam is as follows: Remove as many
supports or members as necessary to make the
structure statically determinate. (Such supports
and members are often referred to as redundant.)
Compute for the actual loads the deflections or
rotations of the statically determinate structure in
the direction of the unknown forces and couples
exerted by the removed supports or members.
Then, in terms of these forces and couples, treated
as variables, compute the corresponding deflec-
tions or rotations the forces and couples produce in
the statically determinate structure (see Arts. 6.32
and 6.54). Finally, for each redundant support or
member, write equations that give the known
rotations and deflections of the original structure in
terms of the deformations of the statically deter-
minate structure.
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For example, one method of finding the
reactions of the continuous beam AC in Fig. 6.66a
is to remove supports 1, 2, and 3 temporarily. The
beam is now simply supported between A and C.
Hence, the reactions and the bending moments
throughout can be computed from the laws of
equilibrium. Beam AC deflects at points 1, 2, and 3,
whereas we know that the continuous beam is
prevented from deflecting at those points by the
supports there. This information enables us to
write three equations in terms of the three un-
known reactions.

To determine the equations, assume that nodes
exist at the location of the supports 1, 2, and 3. Then,

for the actual loads, compute the vertical deflec-
tions d1, d2, and d3 of simple beam AC at nodes 1, 2,
and 3, respectively (Fig. 6.66b). Next, form two
vectors, d with elements d1, d2, d3, and R with the
unknown reactions R1 at node 1, R2 at node 2, and
R3 at node 3 as elements. Since the beam may be
assumed to be linearly elastic, set d ¼ FR, where F
is the flexibility matrix for simple beam AC. The
elements yij of F are influence coefficients. To
determine them, calculate column 1 of F as the
deflections y11, y21, and y31 at nodes 1, 2, and 3,
respectively, when a unit force is applied at node 1
(Fig. 6.66c). Similarly, compute column 2 of F for a
unit force at node 2 (Fig. 6.66d) and column 3 for a
unit force at node 3 (Fig. 6.66e). The three equations
then are given by

y11 y12 y13
y21 y22 y23
y31 y32 y33

2
4

3
5 R1

R2

R3

2
4

3
5 ¼

d1
d2
d3

2
4

3
5 (6:98)

The solution may be represented by R ¼ F21d and
obtained by matrix or algebraic methods. See also
Art. 6.66.

Continuous Beams and Frames

Continuous beams and frames are statically inde-
terminate. Bending moments in them are functions
of the geometry, moments of inertia, and modulus
of elasticity of individual members as well as of
loads and spans. Although these moments can be
determined by the methods described in Arts. 6.51
to 6.55, there are methods specially developed for
beams and frames that oftenmake analysis simpler.
The following articles describe some of these
methods.

6.58 Carry-Over and Fixed-
End Moments

When a member of a continuous beam or frame is
loaded, bending moments are induced at the ends
of the member as well as between the ends. The
magnitude of the end moments in the member
depends on the magnitude and location of the
loads, the geometry of themember, and the amount
of restraint offered to end rotation of the member
by other members connected to it. Connections are
assumed to be rigid; that is, all members at a joint
rotate through the same angle. As a result, end

Fig. 6.66 Continuous beam (a) is converted into
a simple beam (b) by temporary removal of interior
supports. Reactions are then computed by equating
the deflections due to the actual loads (b) to the sum
of the deflections produced by the unknown reac-
tions and the deflections due to the unit loads (c),
(d), and (e).
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moments are induced in the connecting members,
in addition to end moments that may be induced
by loads on those spans.

Computation of end moments in a continuous
beam or frame requires that the geometry and
elastic properties of the members be known or
assumed. (If these characteristics have to be
assumed, computations may have to be repeated
when they become known.)

Loads on any span, as well as the displacement
of any joint, induce moments at the ends of the
other members of the structure. As a result, an
originating end moment may be considered dis-
tributed to the other members. The ratio of the end
moment in an unloaded span to the originating end
moment in the loaded span is a constant.

Sign Convention n For computation of end
moments, the following sign convention is most
convenient: A moment acting at an end of a
member or at a joint is positive if it tends to rotate
the end or joint clockwise; it is negative, if it tends
to rotate the end or joint counterclockwise.

Similarly, the angular rotation at the end of a
member is positive if in a clockwise direction,
negative if counterclockwise. Thus, a positive end
moment produces a positive end rotation in a
simple beam.

For ease in visualizing the shape of the elastic
curve under the action of loads and end moments,
plot bending-moment diagrams on the tension side
of each member. Hence, if an end moment is
represented by a curved arrow, the arrowwill point
in the direction in which the moment is to be
plotted.

Carry-over Moments n If a span of a
continuous beam is loaded and if the far end of a
connecting member is restrained by support
conditions against rotation, a resisting moment is
induced at the far end. That moment is called a
carry-over moment. The ratio of the carry-over
moment to the other end moment in the span is
called carry-over factor. It is a constant for the
member, independent of the magnitude and sign
of the moments to be carried over. Every beam
has two carry-over factors, one directed toward
each end.

As pointed out in Art. 6.56, analysis of a span of
a continuous beam or frame can be simplified by
treating it as a simple beam subjected to applied

end moments. Thus, it is convenient to express the
equations for carry-over factors in terms of the end
rotations of simple beams: Convert a continuous
member LR to a simple beamwith the same span L.
Apply a unit moment to one end (Fig. 6.67). The
end rotation at the support where the moment is
applied is a, and at the far end, the rotation is b.
By the dummy-load method (Art. 6.54), if x is
measured from the b end,

a ¼ 1

L2

ðL
0

x2

EIx
dx (6:99)

b ¼ 1

L2

ðL
0

x(L� x)

EIx
(6:100)

in which Ix is the moment of inertia at a section a
distance of x from the b end, and E is the modulus
of elasticity. In accordance with the reciprocal
theorem (Art. 6.55), b has the same value regardless
of the beam end to which the unit moment is
applied (Fig. 6.67). For prismatic beams

aL ¼ aR ¼ L

3EI
(6:101)

b ¼ L

6EI
(6:102)

The preceding equations can be used to deter-
mine carry-over factors for any magnitude of end
restraint. The carry-over factors toward ends fixed
against rotation, however, are of special importance

Fig. 6.67 End rotations of simple beam LR pro-
duced by a unit end moment (a) at L; (b) at R.
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for moment distribution by converging approxi-
mations. For a span LRwith ends L and R assumed
to be fixed, the carry-over factor toward R is given
by

CR ¼ b

aR
(6:103)

Similarly, the carry-over factor toward support L is
given by

CL ¼ b

aL
(6:104)

If an end of a beam is free to rotate, the carry-
over factor toward that end is zero.

Since the carry-over factors are positive, the
moment carried over has the same sign as the
applied moment.

Carry-overFactors forPrismaticBeams n

For prismatic beams, b ¼ L/6EI and a ¼ L/3EI.
Hence,

CL ¼ CR ¼ L

6EI
� 3EI
L

¼ 1

2
(6:105)

For beams with variable moment of inertia, b and a
can be determined from Eqs. (6.99) and (6.100) and
the carry-over factors from Eqs. (6.103) and (6.104).

Fixed-End Stiffness n The fixed-end stiffness
of a beam is defined as the moment that is required
to induce a unit rotation at the support where it is
applied while the other end of the beam is fixed
against rotation. Stiffness is important because it
determines the proportion of the total moment
applied at a joint, or intersection of members, that
is distributed to each member of the joint.

In Fig. 6.68a, the fixed-end stiffness of beam LR
at end R is represented by KR. When KR is applied
to beam LR at R, a moment ML ¼ CLKR is carried
over to end L, where CL is the carry-over factor
toward L. KR induces an angle change aR at R,
where aR is given by Eq. (6.99). The carry-over
moment induces at R an angle change 2CLKRb,
where b is given by Eq. (6.100). Since, by the
definition of stiffness, the total angle change at R is
unity, KRaR 2 CLKRb ¼ 1, from which

KR ¼ I=aR

1� CRCL
(6:106)

when CR is substituted for b/aR [see Eq. (6.103)].

In a similar manner, the stiffness at L is found
to be

KL ¼ 1=aL

1� CRCL
(6:107)

Stiffness of Prismatic Beams n With the
use of Eqs. (6.101) and (6.105), the stiffness of a
beam with constant moment of inertia is given by

KL ¼ KR ¼ 3EI=L

1� 1
2 � 1

2

¼ 4EI

L
(6:108)

where L ¼ span of the beam

E ¼ modulus of elasticity

I ¼ moment of inertia of beam cross section

Beam with Hinge n The stiffness of one end of
a beam when the other end is free to rotate can be
obtained from Eq. (6.106) or (6.107) by setting the
carry-over factor toward the hinged end equal to
zero. Thus, for a prismatic beamwith one endhinged,
the stiffness of the beam at the other end is given by

K ¼ 3EI

L
(6:109)

This equation indicates that a prismatic beam hinged
at only one end has three-fourths the stiffness, or
resistance to end rotation, as a beam fixed at both
ends.

Fixed-End Moments n A beam so restrained
at its ends that no rotation is produced there by the
loads is called a fixed-end beam, and the end
moments are called fixed-end moments. Actually,

Fig. 6.68 Fixed-end stiffness.
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it would be very difficult to construct a beam with
ends that are truly fixed. The concept of fixed ends,
however, is useful in determining the moments in
continuous beams and frames.

Fixed-end moments may be expressed as the
product of a coefficient and WL, where W is the
total load on the span L. The coefficient is inde-
pendent of the properties of other members of the
structure. Thus, any member of a continuous beam
or frame can be isolated from the rest of the struc-
ture and its fixed-end moments computed. Then,
the actual moments in the beam can be found by
applying a correction to each fixed-end moment.

Assume, for example, that the fixed-end
moments for the loaded beam in Fig. 6.69a are to
be determined. Let MF

L be the moment at the left
end L, andMF

R the moment at the right end R of the
beam. Based on the condition that no rotation is
permitted at either end and that the reactions at the
supports are in equilibrium with the applied loads,
two equations can be written for the end moments
in terms of the simple-beam end rotations, uL at L
and uR at R for the specific loading.

Let KL be the fixed-end stiffness at L and KR the
fixed-end stiffness at R, as given by Eqs. (6.106) and
(6.107). Then, by resolution of the moment diagram
into simple-beam components, as indicated in Figs.
6.69f to h, and application of the superposition
principle (Art. 6.56), the fixed-end moments are
found to be

MF
L ¼ �KL(uL þ CRuR) (6:110)

MF
R ¼ �KR(uR þ CLuL) (6:111)

where CL and CR are the carry-over factors to L and
R, respectively [Eqs. (6.103) and (6.104)]. The end
rotations uL and uR can be computed by a method
described in Art. 6.32 or 6.54.

Moments for Prismatic Beams n The
fixed-end moments for beams with constant
moment of inertia can be derived from the equa-
tions given above with the use of Eqs. (6.105) and
(6.108):

MR
L ¼ � 4EI

L
uL þ 1

2
uR

� �
(6:112)

MF
R ¼ � 4EI

L
uR þ 1

2
uL

� �
(6:113)

where L ¼ span of the beam

E ¼ modulus of elasticity

I ¼ moment of inertia

For horizontal beams with gravity loads only, uR
is negative. As a result, MF

L is negative and MF
R

positive.
For propped beams (one end fixed, one end

hinged) with variable moment of inertia, the fixed-
end moments are given by

MF
L ¼ � uL

aL
or MF

R ¼ � uR
aR

(6:114)

whereaL andaR are givenbyEq. (6.99). Forprismatic
propped beams, the fixed-end moments are

MF
L ¼ � 3EIuL

L
or MF

R ¼ � 3EIuR
L

(6:115)

Deflection of Supports n Fixed-end mo-
ments for loaded beams when one support is dis-
placed vertically with respect to the other support
may be computed with the use of Eqs. (6.110) to
(6.115) and the principle of superposition: Com-
pute the fixed-end moments induced by the deflec-
tion of the beam when not loaded and add them to
the fixed-end moments for the loaded condition
with immovable supports.

Fig. 6.69 Loads on fixed-end beam LR shown in (a) are resolved into component loads on a simple
beam (b), (c), and (d). The corresponding moment diagrams are shown in (e) to (h).
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The fixed-end moments for the unloaded con-
dition can be determined directly from Eqs. (6.110)
and (6.111). Consider beam LR in Fig. 6.70, with
span L and support R deflected a distance d
vertically below its original position. If the beam
were simply supported, the angle change caused
by the displacement of Rwould be very nearly d/L.
Hence, to obtain the fixed-end moments for the
deflected condition, set uL ¼ uR ¼ d/L and sub-
stitute these simple-beam end rotations in Eqs.
(6.110) and (6.111):

MF
L ¼ �KL(1þ CR)

d

L
(6:116)

MF
R ¼ �KR(1þ CL)

d

L
(6:117)

If end L is displaced downward with respect to R,
d/L would be negative and the fixed-end moments
positive.

For beams with constant moment of inertia, the
fixed-end moments are given by

MF
L ¼ MF

R ¼ � 6EI

L
� d
L

(6:118)

The fixed-end moments for a propped beam,
such as beam LR shown in Fig. 6.71, can be
obtained similarly from Eq. (6.114). For variable
moment of inertia,

MF ¼ � d

L

� �
1

aL

� �
(6:119)

For a prismatic propped beam,

MF ¼ � 3EI

L
� d
L

(6:120)

Reverse signs for downward displacement of end L.

ComputationAids for PrismaticBeams n

Fixed-end moments for several common types of
loading on beams of constant moment of inertia
(prismatic beams) are given in Fig. 6.72. Also, the
curves in Fig. 6.74 enable fixed-end moments to be
computed easily for any type of loading on a
prismatic beam. Before the curves can be entered,
however, certain characteristics of the loading must
be calculated. These include �xxL, the location of the
center of gravity of the loading with respect to one
of the loads; G2 ¼ Sbn

2Pn/W, where bnL is the
distance from each load Pn to the center of gravity
of the loading (taken positive to the right); and
S3 ¼ Sbn

3Pn/W (see case 8, Fig. 6.73). These values
are given in Fig. 6.73 for some common types of
loading.

The curves in Fig. 6.74 are entered at the bottom
with the location a of the center of gravity of the
loading with respect to the left end of the span. At
the intersection with the proper G curve, proceed
horizontally to the left to the intersection with the
proper S line, then vertically to the horizontal scale
indicating the coefficient m by which to multiply
WL to obtain the fixed-end moment. The curves
solve the equations:

mL ¼ MF
L

WL
¼ G2[1� 3(1� a)]þ a(1� a)2 þ S3

(6:121)

mR ¼ MF
R

WL
¼ G2(1� 3a)þ a2(1� a)� S3

(6:122)

where MF
L is the fixed-end moment at the left

support and MF
R at the right support.

Fig. 6.70 End moments caused in a fixed-end
beam by displacement d of one end.

Fig. 6.71 End moment caused in a propped
beam by displacement d of an end.
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As an example of the use of the curves, find the
fixed-end moments in a prismatic beam of 20-ft
span carrying a triangular loading of 100 kips,
similar to the loading shown in case 4, Fig. 6.73,
distributed over the entire span, with the maxi-
mum intensity at the right support.

Case 4 gives the characteristics of the loading:
y ¼ 1; the center of gravity is L/3 from the right
support; so a ¼ 0.67, G2 ¼ 1/18 ¼ 0.056, and S3 ¼
21/135 ¼ 20.007. To findMF

R, we enter Fig. 6.74 at
the bottom with a ¼ 0.67 on the upper scale and
proceed vertically to the estimated location of the
intersection of the coordinate with the G2 ¼ 0.06
curve. Then we move horizontally to the intersec-
tion with the line for S3 ¼ 20.007, as indicated by
the dashed line in Fig. 6.74. Referring to the scale at
the top of the diagram, we find the coefficientmR to
be 0.10. Similarly, with ¼ 0.67 on the lowest scale,
we find the coefficient mL to be 0.07. Hence, the
fixed-end moment at the right support is 0.10 �
100 � 20 ¼ 200 ft-kips, and at the left support
20.07 � 100 � 20 ¼ 2140 ft-kips.

6.59 Slope-Deflection
Equations

In Arts. 6.56 and 6.58, moments and displacements
in a member of a continuous beam or frame are
obtained by addition of their simple-beam com-
ponents. Similarly,moments anddisplacements can
be determined by superposition of fixed-end-beam
components. Thismethod, for example, can be used
to derive relationships between end moments and
end rotations of a beam known as slope-deflection
equations. These equations can be used to compute
end moments in continuous beams.

Consider a member LR of a continuous beam or
frame (Fig. 6.75). LR may have a moment of inertia
that varies along its length. The support R is dis-
placed vertically downward a distance d from its
original position. Because of this and the loads on
the member and adjacent members, LR is subjected
to end momentsML at L andMR at R. The total end
rotation at L is uL, and atR, uR. All displacements are
so small that the member can be considered to

Fig. 6.72 Fixed-end moments for a prismatic beam: (a) for concentrated load; (b) for a uniform load;
(c) for two equal concentrated loads; (d) for three equal concentrated loads.
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rotate clockwise through an angle nearly equal to
d/L, where L is the span of the beam.

Assume that rotation is prevented at ends L and
R by end moments mL at L and mR at R. Then, by
application of the principle of superposition (Art.
6.56) and Eqs. (6.116) and (6.117),

mL ¼ MF
L � KL(1þ CR)

d

L
(6:123)

mR ¼ MF
R � KR(1þ CL)

d

L
(6:124)

where MF
L ¼ fixed-end moment at L due to the

load on LR

MF
R ¼ fixed-endmoment at R due to the load

on LR

KL ¼ fixed-end stiffness at end L

Fig. 6.73 Characteristics of loadings.
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KR ¼ fixed-end stiffness at end R

CL ¼ carry-over factor toward end L

CR ¼ carry-over factor toward end R

Since ends L and R are not fixed but actually
undergo angle changes uL and uR at L and R,
respectively, the joints must now be permitted to
rotate while an end momentM0

L is applied at L and
an end moment M0

R, at R to produce those angle
changes (Fig. 6.76). With the use of the definitions
of carry-over factor and fixed-end stiffness (Art.
6.58), these moments are found to be

M0
L ¼ KL(uL þ CRuR) (6:125)

M0
R ¼ KR(uR þ CLuL) (6:126)

The slope-deflection equations for LR then result
from addition ofM0

L to mL, which yieldsML, and of
M0

R to mR, which yields MR,

ML ¼ KL(uL þ CRuR)þMF
L � KL(1þ CR)

d

L
(6:127)

Fig. 6.74 Chart for fixed-end moments caused by any type of loading.

Fig. 6.75 End moments ML and MR restrain
against rotation the ends of loaded span LR of a
continuous beam when one end is displaced.
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MR ¼ KR(uR þ CLuL)þMF
R � KR(1þ CL)

d

L
(6:128)

For beams with constant moment of inertia, the
slope-deflection equations become

ML ¼ 4EI

L
uL þ 1

2
uR

� �
þMF

L �
6EI

L
� d
L

(6:129)

MR ¼ 4EI

L
uR þ 1

2
uL

� �
þMF

R � 6EI

L

d

L
(6:130)

where E ¼ modulus of elasticity

I ¼ moment of inertia of the cross section

Note that if end L moves downward with
respect to R, the sign for d in the preceding
equations is changed.

If the end moments ML and MR are known and
the end rotations are to be determined, Eqs. (6.125)
to (6.128) can be solved for uL and uR or derived by
superposition of simple-beam components, as is
done in Art. 6.58. For beamswith moment of inertia
varying along the span:

uL ¼ (ML �MF
L)aL� (MR �MF

R)bþ d

L
(6:131)

uR ¼ (MR �MF
R)aR � (ML �MF

L)bþ d

L
(6:132)

where a is given by Eq. (6.99) and b by Eq. (6.100).
For beams with constant moment of inertia:

uL ¼ L

3EI
(ML �MF

L)�
L

6EI
(MR �MF

R)þ
d

L
(6:133)

uR ¼ L

3EI
(MR �MF

R)�
L

6EI
(ML �MF

L)þ
d

L
(6:134)

The slope-deflection equations can be used to
determine end moments and rotations of the spans
of continuous beams by writing compatibility and

equilibrium equations for the conditions at each
support. For example, the sum of the moments at
each support must be zero. Also, because of
continuity, the ends of all members at a support
must rotate through the same angle. Hence, ML for
one span, given by Eq. (6.127) or (6.129), must be
equal to 2MR for the adjoining span, given by Eq.
(6.128) or (6.130), and the end rotation u at that
support must be the same on both sides of the
equation. One such equation, with the end
rotations at the supports as the unknowns can be
written for each support. With the end rotations
determined by solution of the simultaneous
equations, the end moments can be computed
from the slope-deflection equations and the
continuous beam can now be treated as statically
determinate.

See also Arts. 6.60 and 6.66.
(C. H. Norris et al., “Elementary Structural

Analysis,”, McGraw-Hill Book Company, New
York.)

6.60 Moment Distribution

The properties of fixed-end beams presented in
Art. 6.58 enable the computation of end moments
in continuous beams and frames by moment
distribution, in which end moments induced by
loads or displacements of joints are distributed to
all the spans. The distribution is based on the
assumption that translation is prevented at all
joints and supports, rotation of the ends of all
members of a joint is the same, and the sum of the
end moments at every joint is zero.

The frame in Fig. 6.77 consists of four prismatic
members rigidly connected together at O and fixed
at ends A, B, C, and D. If an external moment U is
applied at O, the sum of the end moments in each
member at O must be equal to U. Furthermore, all
members must rotate atO through the same angle u
since they are assumed to be rigidly connected
there. Hence, by the definition of fixed-end stiffness
(Art. 6.58), the proportion of U induced in or
“distributed” to the end of each member at O
equals the ratio of the stiffness of that member to
the sum of the stiffnesses of all the members at O.
This ratio is called the distribution factor at O for
the member.

Suppose a moment of 100 ft-kips is applied atO,
as indicated in Fig. 6.77b. The relative stiffness (or
I/L) is assumed as shown in the circle on each

Fig. 6.76 Moments applied to the ends of a
simple beam produce end rotations there.
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member. The distribution factors for the moment at
O are computed from the stiffnesses and shown in
the boxes. For example, the distribution factor for
OA equals its stiffness divided by the sum of the
stiffnesses of all the members at the joint: 3/
(3 þ 1 þ 4 þ2) ¼ 0.3. Hence, the moment induced
in OA at O is 0.3 � 100 ¼ 30 ft-kips. Similarly, OB
gets 10 ft-kips, OC 40 ft-kips, and OD 20 ft-kips.

Because the far ends of these members are
fixed, one-half of these moments are carried over
to them (Art. 6.58). Thus MAO ¼ 0.5 � 30 ¼ 15;
MBO ¼ 0.5 � 10 ¼ 5; MCO ¼ 0.5 � 40 ¼ 20; and
MDO ¼ 0.5 � 20 ¼ 10.

Most structures consist of frames similar to the
one in Fig. 6.77, or even simpler, joined together.
Although the ends of the members may not be
fixed, the technique employed for the frame in Fig.
6.77 can be applied to find end moments in such
continuous structures.

Span with Simple Support n Before the
general method is presented, one shortcut is worth
noting. Advantage can be taken when a member
has a hinged end to reduce the work in distributing
moments. This is done by using the true stiffness of
the member instead of the fixed-end stiffness.
(For a prismatic beam, the stiffness of a member
with a hinged end is three-fourths the fixed-end
stiffness; for a beam with variable moment of

inertia, it is equal to the fixed-end stiffness times
1 2 CLCR, where CL and CR are the fixed-end carry-
over factors to each end of the beam.) Naturally, the
carry-over factor toward the hinge is zero.

Moment Release and Distribution n

When beam ends are neither fixed nor pinned but
restrained by elastic members, moments can be
distributed by a series of converging approxi-
mations. At first, all joints are locked against
rotation. As a result, the loads will create fixed-end
moments at the ends of every loaded member (Art.
6.58). At each joint, the unbalanced moment, a
moment equal to the algebraic sum of the fixed-end
moments at the joint, is required to hold it fixed.
But if the joint actually is not fixed, the unbalanced
moment does not exist. It must be removed by
applying an equal but opposite moment. One joint
at a time is unlocked by applying a moment equal
but opposite in sign to the unbalanced moment.
The unlocking moment must be distributed to the
members at the joint in proportion to their fixed-
end stiffnesses. As a result, the far end of each
member should receive a “carry-over” moment
equal to the distributed moment times a carry-over
factor (Art. 6.58).

After all joints have been released at least once, it
generally will be necessary to repeat the process—
sometimes several times—before the corrections to

Fig. 6.77 Joint between four members of a simple frame is rotated by an applied moment. (a) Elastic
curve; (b) stiffness and moment distribution factors.
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the fixed-end moments become negligible. To
reduce the number of cycles, start the unlocking
of joints with those having the greatest unbalanced
moments. Also, include carry-over moments with
fixed-end moments in computing unbalanced
moments.

Example n Suppose the end moments are
to be found for the continuous beam ABCD in
Fig. 6.78, given the fixed-end moments on the first
line of the figure. The I/L values for all spans are
given equal; therefore, the relative fixed-end
stiffness for all members is unity. But since A is a
hinged end, the computation can be shortened by
using the actual relative stiffness, which is 3⁄4.
Relative stiffnesses for all members are shown in
the circle on each member. The distribution factors
are shown in the boxes at each joint.

Begin the computation with removal of the
unbalance in fixed-end moments (first line in
Fig. 6.78). The greatest unbalanced moment, by
inspection, occurs at hinged end A and is 2400,
so unlock this joint first. Since there are no other
members at the joint, distribute the full unlock-
ing moment of þ400 to AB at A and carry over
one-half to B. The unbalance at B now is
þ4002480 plus the carry-over of þ200 from A,
or a total of þ120. Hence, a moment of 2120

must be applied and distributed to the members
at B by multiplying by the distribution factors in
the corresponding boxes.

The net moment at B could be found now by
adding the fixed-end and distributed moments at
the joint. But it generally is more convenient to
delay the summation until the last cycle of dis-
tribution has been completed.

After B is unlocked, the moment distributed to
BA need not be carried over to A because the carry-
over factor toward the hinged end is zero. But half
the moment distributed to BC is carried over to C.
Similarly, unlock joint C and carry over half the
distributed moments to B and D, respectively. Joint
D should not be unlocked since it actually is a fixed
end. Thus, the first cycle of moment distribution
has been completed.

Carry out the second cycle in the same manner.
Release joint B, and carry over to C half the
distributed moment in BC. Finally, unlock C to
complete the cycle. Add the fixed-end and distri-
buted moments to obtain the final moments.

6.61 Maximum Moments in
Continuous Frames

In continuous frames, maximum endmoments and
maximum interior moments are produced by

Fig. 6.78 Moment distribution in a beam by converging approximations.
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different combinations of loadings. For maximum
end moment in a beam, live load should be placed
on that beam and on the beam adjoining the end for
which the moment is to be computed. Spans
adjoining these two should be assumed to be
carrying only dead load.

For maximum midspan moments, the beam
under consideration should be fully loaded, but
adjoining spans should be assumed to be carrying
only dead load.

The work involved in distributing moments due
to dead and live loads in continuous frames in
buildings can be greatly simplified by isolating
each floor. The tops of the upper columns and the
bottoms of the lower columns can be assumed
fixed. Furthermore, the computations can be con-
densed considerably by following the procedure
recommended in “Continuity in Concrete Building
Frames,” EB033D Portland Cement Association,
Skokie, III. 60077 (www.portcement.org), and
illustrated in Fig. 6.79.

Figure 6.79 presents the complete calculation for
maximum end and midspan moments in four floor
beams AB, BC, CD, and DE. Columns are assumed
to be fixed at the story above and below. None of
the beam or column sections is known to begin
with; so as a start, all members will be assumed to
have a fixed-end stiffness of unity, as indicated on
the first line of the calculation.

Column Moments n The second line gives
the distribution factors (Art. 6.60) for each end of
the beams; column moments will not be com-
puted until moment distribution to the beams has
been completed. Then, the sum of the column
moments at each joint may be easily computed
since they are the moments needed to make the
sum of the end moments at the joint equal to
zero. The sum of the column moments at each
joint can then be distributed to each column there
in proportion to its stiffness. In this example, each
column will get one-half the sum of the column
moments.

Fixed-end moments at each beam end for dead
load are shown on the third line, just above the
horizontal line, and fixed-end moments for live
plus dead loads on the fourth line. Corresponding
midspan moments for the fixed-end condition also
are shown on the fourth line, and like the end
moments will be corrected to yield actual midspan
moments.

Maximum End Moments n For maximum
end moment at A, beam AB must be fully loaded,
but BC should carry dead load only. Holding A
fixed, we first unlock joint B, which has a total-load
fixed-end moment of þ172 in BA and a dead-load
fixed-end moment of 237 in BC. The releasing

Fig. 6.79 Moment distribution in a continuous frame by converging approximations.
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moment required, therefore, is 2(172 2 37), or
2135. When B is released, a moment of
2135 � 0.25 is distributed to BA. One-half of this
is carried over to A, or 2135 � 0.25 � 0.5 ¼ 217.
This value is entered as the carry-over at A on the
fifth line in Fig. 6.79. Joint B then is relocked.

AtA, for which we are computing themaximum
moment, we have a total-load fixed-end moment of
2172 and a carry-over of 217, making the total
2189, shown on the sixth line. To release A, a
moment of þ189 must be applied to the joint. Of
this, 189 � 0.33, or 63, is distributed to AB, as
indicated on the seventh line. Finally, the maxi-
mummoment atA is found by adding lines 6 and 7:
2189 þ63 ¼ 2126.

For maximum moment at B, both AB and BC
must be fully loaded, but CD should carry only
dead load. We begin the determination of the
maximum moment at B by first releasing joints
A and C, for which the corresponding carry-
over moments at BA and BC are þ29 and
2(þ78 270) � 0.25 � 0.5 ¼ 21, shown on the fifth
line in Fig. 6.79. These bring the total fixed-end
moments in BA and BC to þ201 and 279,
respectively. The releasing moment required is
2(201 279) ¼ 2122. Multiplying this by the
distribution factors for BA and BC when joint B is
released, we find the distributed moments, 230,
entered on line 7. The maximum end moments
finally are obtained by adding lines 6 and 7: þ171
at BA and2109 at BC. Maximummoments at C,D,
and E are computed and entered in Fig. 6.79 in a
similar manner. This procedure is equivalent to two
cycles of moment distribution.

Maximum Midspan Moments n The com-
putation of maximum midspan moments in
Fig. 6.79 is based on the assumption that in each
beam the midspan moment is the sum of the
simple-beam midspan moment and one-half the
algebraic difference of the final end moments
(the span carries full load but adjacent spans only
dead load). Instead of starting with the simple-
beam moment, however, we begin, for conven-
ience, with the midspan moment for the fixed-end
condition and then apply two corrections. In each
span, these corrections equal the carry-over mo-
ments entered on line 5 for the two ends of the
beam multiplied by a factor.

For beams with variable moment of inertia, the
factor is+ 1

2(1/C þ D 2 1), where C is the fixed-end

carry-over factor toward the end for which the
correction factor is being computed and D the
distribution factor for that end. The plus sign is
used for correcting the carry-over at the right end
of a beam and the minus sign for the carry-over at
the left end. For prismatic beams, the correction
factor becomes + 1

2(1 þ D).
For example, to find the corrections to the

midspan moment in AB, we first multiply the
carry-over at A on line 5,217, by� 1

2(1 þ 0.33). The
correction, þ11, also is entered on the fifth line.
Then we multiply the carry-over at B, þ29, by
þ 1

2(1 þ 0.25) and enter the correction, þ18, on line
6. The final midspan moment is the sum of lines 4,
5, and 6: þ99 þ 11 þ 18 ¼ þ128. Other midspan
moments in Fig. 6.79 are obtained in a similar
manner.

Approximate methods for determining wind
and seismic stresses in tall buildings are given in
Arts. 15.4, 15.9, and 15.10.

6.62 Moment-Influence
Factors

For certain types of structures, particularly those for
which different types of loading conditions must be
investigated, it may be more convenient to find
maximum end moments from a table of moment-
influence factors. This table is made up by listing for
the end of each member in a structure the moment
induced in that end when a moment (for conven-
ience, þ1000) is applied to each joint successively.
Once this table has been prepared, no additional
moment distribution is necessary for computing the
end moments due to any loading condition.

For a specific loading pattern, the moment at
any beam end MAB may be obtained from the
moment-influence table by multiplying the entries
under AB for the various joints by the actual

Table 6.3 Moment-Influence Factors for Fig. 6.80

Member þ1,000 at B þ1,000 at C

AB 351 2105
BA 702 2210
BC 298 210
CB 70 579
CD 270 421
DC 235 210
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unbalanced moments at those joints divided
by 1000 and summing. (See also Art. 6.64 and
Tables 6.3 and 6.4.)

6.63 Procedure for Sidesway

For some structures, it is convenient to know the
effect of a movement of a support normal to the
original position. But the moment-distribution
method is based on the assumption that such
movement of a support does not occur. The
method, however, can be modified to evaluate end
moments resulting from a support movement.

The procedure is to distribute moments as
usual, assuming no deflection at the supports. This
implies that additional external forces are exerted
at the supports to prevent movement. These forces
can be computed. Then, equal and opposite forces
are applied to the structure to produce the final
configuration, and the moments that they induce
are distributed as usual. These moments added to
those obtained with undeflected supports yield the
final moments.

Example—Horizontal Axial Load n Sup-
pose the rigid frame in Fig. 6.80 is subjected to a
2000-lb horizontal load acting to the right at the
level of beam BC. The first step is to compute the
moment-influence factors by applying moments of

þ1000 at joints B and C (Art. 6.62), assuming
sidesway is prevented, and enter the distributed
moments in Table 6.3.

Since there are no intermediate loads on the
beam and columns, the only fixed-end moments
that need be considered are those in the columns
due to lateral deflection of the frame.

This deflection, however, is not known initi-
ally. So we assume an arbitrary deflection, which
produces a fixed-end moment of 21000M at the

Table 6.4 Moment Collection Table for Fig. 6.80

Remarks AB BA BC CB CD DC

1. Sidesway FEM 23,000M 23,000M 21,000M 21,000M
2. Distribution for B þ1,053M 22,106M þ894M þ210M 2210M 2105M
3. Distribution for C 2105M 2210M þ210M þ579M þ421M þ210M
4. Final sidesway M 22,052M 21,104M þ1,104M þ789M 2789M 2895M
5. For 2,000-lb

horizontal 217,000 29,100 þ9,100 þ6,500 26,500 27,400

6. 4,000-lb vertical
FEM 212,800 þ3,200

7. Distribution for B þ4,490 þ8,980 þ3,820 þ897 2897 2448
8. Distribution for C þ336 þ672 2672 21,853 21,347 2673
9. Moments with

no sidesway þ4,826 þ9,652 29,652 þ2,244 22,244 21,121
10. Sidesway M 24,710 22,540 þ2,540 þ1,810 21,810 22,060
11. For 4,000-lb

vertical
þ116 þ7,112 27,112 þ4,054 24,054 23,181

Fig. 6.80 Laterally loaded rigid frame.
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top of column CD. M is an unknown constant to
be determined from the fact that the sum of the
shears in the deflected columns must equal the
2000-lb load. The deflection also produces a
moment of 21000M at the bottom of CD [see Eq.
(6.118)].

From the geometry of the structure, we
furthermore note that the deflection of B relative
to A equals the deflection of C relative to D.
Then, according to Eq. 6.118, the fixed-end
moments of the columns of this frame are pro-
portional to the stiffnesses of the columns and
hence are equal in AB to �1000M� 6

2 ¼ �3000M.
The column fixed-end moments are entered in
the first line of Table 6.4, the moment-collection
table for Fig. 6.80.

In the deflected position of the frame, joints B
and C are unlocked in succession. First, we
apply a releasing moment of þ3000M at B. We
distribute it by multiplying by 3 the entries in
the columns marked “þ1000 at B” in Table 6.3.
Similarly, a releasing moment of þ1000M is
applied at C and distributed with the aid of the
moment-influence factors. The distributed mo-
ments are entered in the second and third lines
of the moment-collection table. The final mo-
ments are the sum of the fixed-end moments and
the distributed moments and are given in the
fourth line of Table 6.4, in terms of M.

Isolating each column and taking moments
about one end, we find that the overturning
moment due to the shear equals the sum of the
end moments. We have one such equation for
each column. Adding these equations, noting that
the sum of the shears equals 2000 lb, we obtain

�M(2052þ 1104þ 789þ 895) ¼ �2000� 20

from which we find M ¼ 8.26. This value is
substituted in the sidesway totals (line 4) in the
moment-collection table to yield the end moments
for the 2000-lb horizontal load (line 5).

Example—Vertical Load on Beam n

Suppose a vertical load of 4000 lb is applied to BC
of the rigid frame in Fig. 6.80, 5 ft from B. The same
moment-influence factors and moment-collection
table can again be used to determine the end
moments with a minimum of labor.

The fixed-end moment at B, with sidesway
prevented, is 212,800, and at C þ3200 (Fig. 6.72a).
With the joints still locked, the frame is permitted to

move laterally an arbitrary amount, so that in
addition to the fixed-end moments due to the 4000-
lb load, column fixed-end moments of 23000M at
A and B and 21000M at C and D are induced. The
moment-collection table already indicates in line 4
the effect of relieving these column moments by
unlocking joints B and C. We now have to
superimpose the effect of releasing joints B and C
to relieve the fixed-end moments for the vertical
load. This we can do with the aid of the moment-
influence factors. The distribution is shown in lines
7 and 8 of Table 6.4, the moment-collection table.
The sums of the fixed-end moments and distrib-
uted moments for the 4000-lb load are shown in
line 9.

The unknown M can be evaluated from the fact
that the sum of the horizontal forces acting on the
columns must be zero. This is equivalent to re-
quiring that the sum of the column end moments
equal zero:

�M(2052þ 1104þ 789þ 895)

þ 4826þ 9652� 2244� 1121 ¼ 0

from which M ¼ 2.30. This value is substituted in
line 4 of Table 6.4 to yield the sidesway moments
for the 4000-lb load (line 10). Addition of these
moments to the totals for no sidesway (line 9) gives
the final moments (line 11).

Multistory Frames n This procedure permits
analysis of one-story bents with straight beams by
solution of one equation with one unknown,
regardless of the number of bays. If the frame is
multistory, the procedure can be applied to each
story. Since an arbitrary horizontal deflection is
introduced at each floor or roof level, there are as
many unknowns and equations as there are stories.
(For approximate methods for determining wind
and seismic stresses in tall buildings, see Arts. 15.9
and 15.10.)

Arched Bents n The procedure is more
difficult to apply to bents with curved or poly-
gonal members between the columns. The effect
of the change in the horizontal projection of the
curved or polygonal portion of the bent must be
included in the calculations. In many cases, it
may be easier to analyze the bent as a curved
beam (arch).
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6.64 Load Distribution to
Bents and Shear Walls

Provision should be made for all structures to
transmit lateral loads, such as those from wind,
earthquakes, and traction and braking of vehicles,
to foundations and their supports that have high
resistance to displacement. For the purpose,
various types of bracing may be used, including
struts, tension ties, diaphragms, trusses, and shear
walls.

The various bracing members are usually
designed to interact as a system. Structural ana-
lysis then is necessary to determine the distri-
bution of the lateral loads on the system to the
bracing members. The analysis may be based on
the principles presented in the preceding articles
but it requires a knowledge or assumption of the
structural characteristics of the system compo-
nents. For example, suppose a horizontal dia-
phragm, such as a concrete floor, is to be used to

distribute horizontal forces to several parallel
vertical trusses. In this case, the distribution
would depend not only on the relative resist-
ance of the trusses to the horizontal forces but
also on the rigidity (or flexibility) of the dia-
phragm.

In tall buildings, bents or shear walls, which act
as vertical cantilevers and generally are often also
used to support some of the gravity loads, usually
are spaced at appropriate intervals to transmit
lateral loads to the foundations. A bent consists of
vertical trusses or continuous rigid frames located
in a plane (Fig. 6.81a). The trusses usually are an
assemblage of columns, horizontal girders, and
diagonal bracing (Fig. 6.81b to e). The rigid frames
are composed of girders and columns, with
so-called wind connections between them to
establish continuity (Fig. 6.81f ). Shear walls are
thin cantilevers, usually constructed of concrete but
sometimes of masonry or steel plates (Fig. 6.81g).
They require bracing normal to their plane.

Fig. 6.81 Building frame resists lateral forces with (a) wind bents or (g) shear walls or a combination of
the two. Bents may be braced in any of several ways, including (b) X bracing, (c) K bracing, (d) inverted V
bracing, (e) knee bracing, and ( f ) rigid connections.
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Where bents or shear walls are connected by
rigid diaphragms so that they must deflect
equally under horizontal loads, the proportion
of the total horizontal load at any level carried by
a bent or shear wall that is parallel to the load
depends on the relative rigidity, or stiffness, of
the bent or wall. Rigidity of this bracing is
inversely proportional to its deflection under a
unit horizontal load.

When the line of action of the resultant of the
lateral forces does not pass through the center of
rigidity of the vertical, lateral-force-resisting sys-
tem, distribution of rotational forces must be
considered as well as distribution of the trans-
lational forces. If relatively rigid diaphragms are
used, the torsional forces may be distributed to
the bents or shear walls in proportion to their
relative rigidities and their distance from the
center of rigidity. A flexible diaphragm should
not be considered capable of distributing tor-
sional forces.

Deflections of Bents and Shear Walls n

Horizontal deflections in the planes of bents and
shear walls can be computed on the assumption
that they act as cantilevers. Deflections of braced
bents can be calculated by the dummy-unit-load
method (Art. 6.54) or a matrix method. Deflections
of rigid frames can be computed by adding the
drifts of the stories, as determined by moment
distribution (Art. 6.60) or a matrix method. And
deflections of shear walls can be calculated from
formulas given in Art. 6.32, the dummy-unit-load
method, or a matrix method.

For a shear wall, the deflection in its plane
induced by a load in its plane is the sum of the
flexural deflection as a cantilever and the deflection
due to shear. Thus, for a wall with solid rectangular
cross section, the deflection at the top due to
uniform load is

d ¼ 1:5wH

Et

H

L

� �3

þH

L

" #
(6:135)

where w ¼ uniform lateral load

H ¼ height of the wall

E ¼ modulus of elasticity of the wall
material

t ¼ wall thickness

L ¼ length of wall

For a shear wall with a concentrated load P at the
top, the deflection at the top is

dc ¼ 4P

Et

H

L

� �3

þ0:75
H

L

" #
(6:136)

If the wall is fixed against rotation at the top,
however, the deflection is

df ¼ P

Et

H

L

� �3

þ3
H

L

" #
(6:137)

Where shear walls contain openings, such as
those for doors, corridors, or windows, computa-
tions for deflection and rigidity are more com-
plicated. Approximate methods, however, may be
used.

(F. S. Merritt and Jonathan T. Ricketts, “Building
Design and Construction Handbook,” 5th ed.,
McGraw-Hill Publishing Co., New York, books.
mcgraw-hill.com.)

6.65 Beams Stressed into the
Plastic Range

When an elastic material, such as structural steel, is
loaded with a gradually increasing load, stresses
are proportional to strains nearly to the yield point.
If the material, like steel, also is ductile, then it
continues to carry load beyond the yield point,
although strains increase rapidly with little in-
crease in load (Fig. 6.82a).

Similarly, a beam made of a ductile material
continues to carry more load after the stresses in
the outer surfaces reach the yield point. The
stresses, however, will no longer vary with distance
from the neutral axis; so the flexure formula
[Eq. (6.44)] no longer holds. But if simplifying
assumptions are made, approximating the stress-
strain relationship beyond the elastic limit, the
load-carrying capacity of the beam can be com-
puted with satisfactory accuracy.

Modulus of rupture is defined as the stress
computed from the flexure formula for the maxi-
mum bending moment a beam sustains at failure.
This is not a true stress but it is sometimes used to
compare the strength of beams.

For a ductile material, the idealized stress-strain
relationship in Fig. 6.82b may be assumed. Stress
is proportional to strain until the yield-point stress
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fy is reached, after which strain increases at a
constant stress.

For a beam of this material, it is also assumed
that:

1. Plane sections remain plane, strains thus being
proportional to distance from the neutral axis.

2. Properties of this material in tension are the
same as those in compression.

3. Its fibers behave the same in flexure as in
tension.

4. Deformations remain small.

Strain distribution across the cross section of a
rectangular beam, based on these assumptions, is
shown in Fig. 6.83a. At the yield point, the unit
strain is 1y and the curvature fy, as indicated in (1).
In (2), the strain has increased several times, but the
section still remains plane. Finally, at failure, (3),

the strains are very large and nearly constant across
the lower and upper halves of the section.

Corresponding stress distributions are shown in
Fig. 6.83b. At the yield point (1), stresses vary
linearly and the maximum is fy. With increase in
load, more and more fibers reach the yield point,
and the stress distribution becomes nearly con-
stant, as indicated in (2). Finally, at failure (3), the
stresses are constant across the top and bottom
parts of the section and equal to the yield-point
stress.

The resisting moment at failure for a rectangular
beam can be computed from the stress diagram for
stage 3. If b is the width of the member and d its
depth, then the ultimate moment for a rectangular
beam is

Mp ¼ bd2

4
fy (6:138)

Since the resistingmoment at stage 1 isMy ¼ fybd
2/6,

the beam carries 50% more moment before failure
than when the yield-point stress is first reached in
the outer fibers (MP/My ¼ 1.5).

Fig. 6.82 Stress-strain relationship for a ductile
material generally is similar to the curve in (a). To
simplify plastic analysis, the portion of (a) enclosed
by the dashed lines is approximated by the curve
in (b), which extends to the range where strain
hardening begins.

Fig. 6.83 Strain distribution is shown in (a) and
stress distribution in (b) for a cross section of a
rectangular beam as it is loaded beyond the yield
point, assuming the idealized stress-strain relation-
ship in Fig. 6.82b. Stage (1) shows the conditions at
the yield point of the outer surfaces; (2) after
yielding starts; and (3) at ultimate load.
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A circular section has an MP/My ratio of about
1.7, while a diamond section has a ratio of 2. The
average wide-flange rolled-steel beam has a ratio of
about 1.14.

The relationship between moment and curva-
ture in a beam can be assumed to be similar to the
stress-strain relationship in Fig. 6.82b. Curvature f
varies linearly with moment until My ¼ MP is
reached, after which f increases indefinitely at
constant moment. That is, a plastic hinge forms.

Moment Redistribution n This ability of a
ductile beam to form plastic hinges enables a
fixed-end or continuous beam to carry more load
after MP occurs at a section because a redistribu-
tion of moments takes place. Consider, for
example, a uniformly loaded fixed-end beam. In
the elastic range, the end moments are ML ¼
MR ¼WL/12, while the midspan moment MC is
WL/24. The load when the yield point is reached
in the outer fibers is Wy ¼ 12My/L. Under this
load, the moment capacity of the ends of the
beam is nearly exhausted; plastic hinges form
there when the moment equals MP. As load is
increased, the ends then rotate under constant
moment and the beam deflects as a simply
supported beam. The moment at midspan in-
creases until the moment capacity at that section
is exhausted and a plastic hinge forms. The load
causing that condition is the ultimate load Wu

since, with three hinges in the span, a link
mechanism is formed and the member continues
to deform at constant load. At the time the third
hinge is formed, the moments at ends and center
are all equal to MP. Therefore, for equilibrium,
2MP ¼ WuL/8, from which Wu ¼ 16MP/L. Since,
for the idealized moment-curvature relationship,
MP was assumed equal to My, the carrying
capacity due to redistribution of moments is 33%
greater.

Finite-Element Methods

From the basic principles given in preceding
articles, systematic procedures have been deve-
loped for determining the behavior of a structure
from a knowledge of the behavior under load of its
components. In these methods, called finite-
element methods, a structural system is considered
an assembly of a finite number of finite-size com-
ponents, or elements. These are assumed to be
connected to each other only at discrete points,

called nodes. From the characteristics of the
elements, such as their stiffness or flexibility, the
characteristics of the whole system can be derived.
With these known, internal stresses and strains
throughout can be computed.

Choice of elements to be used depends on the
type of structure. For example, for a truss with
joints considered hinged, a natural choice of
element would be a bar, subjected only to axial
forces. For a rigid frame, the elements might be
beams subjected to bending and axial forces, or to
bending, axial forces, and torsion. For a thin plate
or shell, elements might be triangles or rectangles,
connected at vertices. For three-dimensional struc-
tures, elements might be beams, bars, tetrahedrons,
cubes, or rings.

For many structures, because of the number of
finite elements and nodes, analysis by a finite-
element method requires mathematical treatment
of large amounts of data and solution of numerous
simultaneous equations. For this purpose, use of
computers is advisable. The mathematics of such
analyses is usually simpler and more compact
when the data are handled in matrix form. (See also
Art. 6.57.)

6.66 Force and Displacement
Methods

The methods used for analyzing structures gener-
ally may be classified as force (flexibility) or dis-
placement (stiffness) methods.

In analysis of statically indeterminate structures
by force methods, forces are chosen as redundants,
or unknowns. The choice is made in such a way
that equilibrium is satisfied. These forces are then
determined from the solution of equations that
insure compatibility of all displacements of ele-
ments at each node. After the redundants have been
computed, stresses and strains throughout the
structure can be found from equilibrium equations
and stress-strain relations.

In displacement methods, displacements are
chosen as unknowns. The choice is made in such a
way that geometric compatibility is satisfied. These
displacements are then determined from the solu-
tion of equations that insure that forces acting at
each node are in equilibrium. After the unknowns
have been computed, stresses and strains through-
out the structure can be found from equilibrium
equations and stress-strain relations.
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When choosing a method, the following should
be kept in mind: In force methods, the number of
unknowns equals the degree of indeterminancy. In
displacement methods, the number of unknowns
equals the degrees of freedom of displacement at
nodes. The fewer the unknowns, the fewer the
calculations required.

Both methods are based on the force-displace-
ment relations and utilize the stiffness and
flexibility matrices described in Art. 6.57. In these
methods, displacements and external forces are
resolved into components—usually horizontal,
vertical, and rotational—at nodes, or points of
connection of finite elements. In accordance with
Eq. (6.97a), the stiffness matrix transforms dis-
placements into forces. Similarly, in accordance
with Eq. (6.97b), the flexibility matrix transforms
forces into displacements. To accomplish the
transformation, the nodal forces and displace-
ments must be assembled into correspondingly
positioned elements of force and displacement
vectors. Depending on whether the displacement
or the force method is chosen, stiffness or
flexibility matrices are then established for each
of the finite elements and these matrices are
assembled to form a square matrix, from which
the stiffness or flexibility matrix for the structure
as a whole is derived. With that matrix known
and substituted into equilibrium and compat-
ibility equations for the structure, all nodal forces
and displacements of the finite elements can be
determined from the solution of the equations.
Internal stresses and strains in the elements can
be computed from the now known nodal forces
and displacements.

6.67 Element Flexibility and
Stiffness Matrices

The relationship between independent forces and
displacements at nodes of finite elements in a
structure is determined by flexibility matrices f or
stiffness matrices k of the elements. In some cases,
the components of these matrices can be developed
from the defining equations:

The jth column of a flexibility matrix of a finite
element contains all the nodal displacements of the
element when one force Sj is set equal to unity and
all other independent forces are set equal to zero.

The jth column of a stiffness matrix of a finite
element consists of the forces acting at the nodes of

the element to produce a unit displacement of the
node at which displacement dj occurs and in the
direction of dj but no other nodal displacements of
the element.

Bars with Axial Stress Only n As an
example of the use of the definitions of flexibility
and stiffness, consider the simple case of an elastic
bar under tension applied by axial forces Pi and Pj

at nodes i and j, respectively (Fig. 6.84). The bar
might be the finite element of a truss, such as a
diagonal or a hanger. Connections to other mem-
bers are made at nodes i and j, which can transmit
only forces in the directions i to j or j to i.

For equilibrium, Pi ¼ Pj ¼ P. Displacement of
node j relative to node i is e. From Eq. (6.8), e ¼
PL/AE, where L is the initial length of the bar, A the
bar cross-sectional area, and E the modulus of
elasticity. Setting P ¼ 1 yields the flexibility of
the bar,

f ¼ L

AE
(6:139)

Setting e ¼ 1 gives the stiffness of the bar,

k ¼ AE

L
(6:140)

Beams with Bending Only n As another
example of the use of the definition to determine
element flexibility and stiffness matrices, consider
the simple case of an elastic prismatic beam
in bending applied by moments Mi and Mj at
nodes i and j, respectively (Fig. 6.85). The beam
might be a finite element of a rigid frame. Connec-
ztions to other members are made at nodes i and j,
which can transmit moments and forces normal to
the beam.

Nodal displacements of the element can be
sufficiently described by rotations ui and uj relative
to the straight line between nodes i and j. For
equilibrium, forces Vj ¼ 2Vi normal to the beam
are required at nodes j and i, respectively, and
Vj ¼ (Mi þ Mj)/L, where L is the span of the beam.
Thus, Mi and Mj are the only independent forces

Fig. 6.84 Elastic bar in tension.
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acting. Hence, the force-displacement relationship
can be written for this element as

u ¼ ui

uj

� �
¼ f

Mi

Mj

� �
¼ fM (6:141)

M ¼ Mi

Mj

� �
¼ k

ui

uj

� �
¼ ku (6:142)

Theflexibilitymatrix f thenwill be a 2 � 2matrix.
The first column can be obtained by setting Mi ¼ 1
and Mj ¼ 0 (Fig. 6.85b). The resulting angular
rotations are given by Eqs. (6.101) and (6.102). For
a beam with constant moment of inertia I and
modulus of elasticity E, the rotations are a ¼ L/3EI
and b ¼ 2L/6EI. Similarly, the second column can
be developed by setting Mi ¼ 0 and Mj ¼ 1.

The flexibility matrix for a beam in bending then
is

f ¼
L

3EI
� L

6EI

� L

6EI

L

3EI

2
664

3
775 ¼ L

6EI

2 �1
�1 2

� �
(6:143)

The stiffness matrix, obtained in a similar manner
or by inversion of f, is

k ¼
4EI

L

2EI

L

2EI

L

4EI

L

2
664

3
775 ¼ 2EI

L

2 1
1 2

� �
(6:144)

Beams Subjected to Bending and Axial
Forces n For a beam subjected to nodal moments
Mi andMj and axial forces P, flexibility and stiffness
are represented by 3 � 3 matrices. The load-dis-
placement relations for a beam of span L, constant
moment of inertia I, modulus of elasticity E, and
cross-sectional area A are given by

ui
uj
e

2
4

3
5 ¼ f

Mi

Mj

P

2
4

3
5 Mi

Mj

P

2
4

3
5 ¼ k

ui
uj
e

2
4

3
5 (6:145)

where e ¼ axial displacement. In this case, the
flexibility matrix is

f ¼ L

6EI

2 �1 0
�1 2 0
0 0 h

2
4

3
5 (6:146)

where h ¼ 6I/A, and the stiffness matrix, with
c ¼ A/I, is

k ¼ EI

L

4 2 0
2 4 0
0 0 c

2
4

3
5 (6:147)

6.68 Displacement (Stiffness)
Method

With the stiffness or flexibility matrix of each finite
element of a structure known, the stiffness or
flexibility matrix for the whole structure can be
determined, and with that matrix, forces and
displacements throughout the structure can be
computed (Art. 6.67). To illustrate the procedure,
the steps in the displacement, or stiffness, method
are described in the following. The steps in the
flexibility method are similar. For the stiffness
method:

Step 1. Divide the structure into interconnected
elements and assign a number, for identification
purposes, to every node (intersection and terminal
of elements). It may also be useful to assign an
identifying number to each element.

Step 2.Assume a right-handed cartesian coordi-
nate system, with axes x, y, z. Assume also at each
node of a structure to be analyzed a system of base
unit vectors, e1 in the direction of the x axis, e2 in
the direction of the y axis, and e3 in the direction of
the z axis. Forces and moments acting at a node are
resolved into components in the directions of the
base vectors. Then, the forces and moments at the
node may be represented by the vector Piei, where
Pi is the magnitude of the force or moment acting in
the direction of ei. This vector, in turn, may be
conveniently represented by a column matrix P.
Similarly, the displacements—translations and
rotation—of the node may be represented by the
vector Diei, where Di is the magnitude of the
displacement acting in the direction of ei. This
vector, in turn, may be represented by a column
matrix D.

For compactness, and because, in structural
analysis, similar operations are performed on all

Fig. 6.85 Beam subjected to end moments and
shears.
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nodal forces, all the loads, including moments,
acting on all the nodes may be combined into a
single column matrix P. Similarly, all the nodal
displacements may be represented by a single
column matrix D.

When loads act along a beam, they could be
replaced by equivalent forces at the nodes—
simple-beam reactions and fixed-end moments,
both with signs reversed from those induced by the
loads. The final element forces are then determined
by adding these moments and reactions to those
obtained from the solution with only the nodal
forces.

Step 3. Develop a stiffness matrix ki for each
element i of the structure (see Art. 6.67). By
definition of stiffness matrix, nodal displacements
and forces for the ith element are related by

Si ¼ kidi i ¼ 1, 2, . . . , n (6:148)

where Si ¼ matrix of forces, including moments
and torques acting at the nodes of the
ith element

di ¼ matrix of displacements of the nodes
of the ith element

Step 4. For compactness, combine this relation-
ship between nodal displacements and forces for
each element into a single matrix equation appli-
cable to all the elements:

S ¼ kd (6:149)

where S ¼ matrix of all forces acting at the nodes
of all elements

d ¼ matrix of all nodal displacements for all
elements

k ¼
k1 0 � � � 0
0 k2 � � � 0
� � � � � � � � � � � �
0 0 � � � kn

2
664

3
775 (6:150)

Step 5. Develop a matrix bo that will transform
the displacements D of the nodes of the structure
into the displacement vector d while maintaining
geometric compatibility:

d ¼ boD (6:151)

bo is a matrix of influence coefficients. The jth
column of bo contains the element nodal displace-
ments when the node where Dj occurs is given a
unit displacement in the direction of Dj, and no
other nodes are displaced.

Step 6. Compute the stiffness matrix K for the
whole structure from

K ¼ bTo kbo (6:152)

where bTo ¼ transpose of bo ¼ matrix bo with rows
and columns interchanged.

This equation may be derived as follows:
From energy relationships, P ¼ bTo S. Substitution
of kd for S [Eq. (6.149)] and then substitution of
boD for d [Eq. (6.151)] yields P ¼ bTo kboD. Com-
parison of this with Eq. (6.97a), P ¼ kD, leads to
Eq. (6.152).

Step 7. With the stiffness matrix K now known,
solve the simultaneous equations

D ¼ K�1P (6:153)

for the nodal displacements D. With these deter-
mined, calculate the member forces from

S ¼ kboD (6:154)

(N. M. Baran, “Finite Element Analysis on
Microcomputers,” and H. Kardestuncer and D. H.
Norris, “Finite Element Handbook,” McGraw-Hill
Publishing Company, New York, books.mcgraw-
hill.com; K. Bathe, “Finite Element Procedures in
Engineering Analysis,” T. R. Hughes, “The Finite
Element Method,” and H. T. Y. Yang, “Finite
Element Structural Analysis,” Prentice-Hall, Upper
Saddle River, N.J.; W. Weaver, Jr., and J. M. Gere,
“Matrix Analysis of Framed Structures,” Van
Nostrand Reinhold, New York.)

First- And Second-Order Analysis of
Frames n The deformation of the brace frame
due to the lateral forces is usually small and is
not normally taken into account. Consequently,
moments in the columns are amplified only by
the moment produced by the axial force acting
through the deflections along the member. These
moments are called Pd moments, where P is the
column axial load and d is the lateral deflection
of the member with respect to the chord connec-
ting its end points.

Unbraced frames subjected to unsymmetrical
loads and/or lateral forces undergo lateral dis-
placements. As a result of these displacements,
columns in the frame are subjected to additional
moments PD; where D is the lateral displacement
of one end of a column with respect to the other
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end. In multistory structures, the PD moment for
the columns in any one story is (SP)D, where SP
is the total vertical load on the story and D is the
lateral deflection of the story with respect to the
one below.

Analyses based on the dimensions of an
undeformed frame are called first-order analyses,
while those based on the deformed frame, taking
into account both the Pd and the PD effects, are
called second-order analyses. Second-order ana-
lyses are basically geometrical nonlinear problems
that required the use of computer programs. But
not all programs that are advertised as for second-
order analysis consider the Pd moments. In the
practical design, the PD effect is generally taken
into account in the structural analysis through the
iteration algorithm of computer programs, while
the Pd effect is considered during member de-
sign and only one step approximation is used
through the magnification factor 1=(1� P=Pc), as in
Eq. (6.59).

(E. H. Gaylord, Jr. et al., “Design of Steel
Structures” 3rd edition, McGraw-Hill, books:
mcgraw-hill.com.)

Stresses in Arches

An arch is a curved beam, the radius of curvature
of which is very large relative to the depth of
section. It differs from a straight beam in that: (1)
loads induce both bending and direct compressive
stress in an arch; (2) arch reactions have horizontal
components even though all loads are vertical, and
(3) deflections have horizontal as well as vertical
components. Names of arch parts are given in
Fig. 6.86.

The necessity of resisting the horizontal com-
ponents of the reactions is an important con-

sideration in arch design. Sometimes these forces
are taken by tie rods between the supports,
sometimes by heavy abutments or buttresses.

Arches may be built with fixed ends, as can
straight beams, or with hinges at the supports.
They may also be built with an internal hinge,
usually located at the uppermost point, or
crown.

6.69 Three-Hinged Arches

An arch with an internal hinge and hinges at
both supports (Fig. 6.87) is statically determinate.
There are four unknowns—two horizontal and
two vertical components of the reactions—but
four equations based on the laws of equilibrium
are available: (1) The sum of the horizontal
forces must be zero. (In Fig. 6.87, HL ¼ HR ¼ H.)
(2) The sum of the moments about the left
support must be zero. (VR ¼ Pk). (3) The sum of
the moments about the right support must be
zero. [VL ¼ P(1 2 k).] (4) The bending moment at
the crown hinge must be zero (not to be
confused with the sum of the moments about
the crown, which also must be equal to zero but
which would not lead to an independent
equation for the solution of the reactions).
Hence, for the right half of the arch in Fig. 6.87a,
Hh� VRb ¼ 0, and H ¼ VRb=h. The influence line
for H is a straight line, varying from zero for
loads over the supports to the maximum of Pab/
Lh for a load at C.

Reactions and stresses in three-hinged arches
can be determined graphically by taking advan-
tage of the fact that the bending moment at the
crown hinge is zero. For example, in Fig. 6.87a,
the load P is applied to segment AC of the arch.
Then, since the bending moment at C must be
zero, the line of action of the reaction RR at B
must pass through the crown hinge. It intersects
the line of action of P at X. The line of action of
the reaction RL at A also must pass through X
since P and the two reactions are in equilibrium.
By constructing a force triangle with the load P
and the lines of action of the reactions thus
determined, you can obtain the magnitude of the
reactions (Fig. 6.87b). After the reactions have
been found, the stresses can be computed from
the laws of statics or, in the case of a trussed
arch, determined graphically.Fig. 6.86 Names of parts of a fixed arch.
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6.70 Two-Hinged Arches

When an arch has hinges at the supports only
(Fig. 6.88a), it is statically indeterminate; there is
one more unknown reaction component than
can be determined by the three equations of
equilibrium. Another equation can be written
from knowledge of the elastic behavior of the
arch. One procedure is to assume that one of
the supports is on rollers. The arch then is
statically determinate, and the reactions and
horizontal movement of the support can be
computed for this condition (Fig. 6.88b). Next,
the horizontal force required to return the
movable support to its original position can be
calculated (Fig. 6.88c). Finally, the reactions for
the two-hinged arch (Fig. 6.88d) are obtained by
superimposing the first set of reactions on the
second.

For example, if dx is the horizontal movement
of the support due to the loads on the arch, and
if dx0 is the horizontal movement of the support

due to a unit horizontal force applied to the
support, then

dxþHdx0 ¼ 0 (6:155)

H ¼ � dx

dx0
(6:156)

where H is the unknown horizontal reaction.
(When a tie rod is used to take the thrust, the
right-hand side of Eq. (6.155) is not zero but
the elongation of the rod HL/AsEs, where L is
the length of the rod, As its cross-sectional area,
and Es its modulus of elasticity. To account
for the effect of an increase in temperature t,
add to the left-hand side EctL, where E is the
modulus of elasticity of the arch, c the coefficient of
expansion.)

The dummy-unit-load method can be used to
compute dx and dx0 (Art. 6.54):

dx ¼
ðB
A

My ds

EI
�
ðB
A

N dx

AE
(6:157)

Fig. 6.87 Three-hinged arch.
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where M ¼ bending moment at any section due to
loads

y ¼ ordinate of section measured from
immovable end of arch

I ¼ moment of inertia of arch cross section

A ¼ cross-sectional area of arch

ds ¼ differential length along arch axis

dx ¼ differential length along the horizontal

N ¼ normal thrust on cross section due to
loads

dx0 ¼ �
ðB
A

y2 ds

EI
�
ðB
A

cos2 a dx

AE
(6:158)

where a ¼ the angle the tangent to the axis at the
section makes with the horizontal.

Equations (6.157) and (6.158) do not include the
effects of shear deformation and curvature, which
usually are negligible. Unless the thrust is very
large, the second term on the right-hand side of
Eq. (6.157) also can be dropped.

In most cases, integration is impracticable. The
integrals generally must be evaluated by approxi-
mate methods. The arch axis is divided into a
convenient number of elements of length Ds, and
the functions under the integral sign are evaluated
for each element. The sum of these terms is ap-
proximately equal to the integral. Thus, for the
usual two-hinged arch

H ¼
PB

A (My Ds=EI)PB
(y2 Ds=EI)þPB

( cos2 a Dx=AE)
(6:159)

(S. Timoshenko and D. H. Young, “Theory
of Structures,” McGraw-Hill Book Company,

Fig. 6.88 Two-hinged arch.
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New York, books.mcgraw-hill.com; S. F. Borg and
J. J. Gennaro, “Modern Structural Analysis,” Van
Nostrand Reinhold Company, New York.)

6.71 Stresses in Arch Ribs

When the reactions have been found for an arch
(Arts. 6.69 to 6.70), the principal forces acting on
any cross section can be found by applying the
equations of equilibrium. For example, consider
the portion of an arch in Fig. 6.89, where the forces
acting at an interior section X are to be found. The
load P, HL (or HR), and VL (or VR) may be resolved
into components parallel to the axial thrust N and
the shear S at X, as indicated in Fig. 6.89. Then, by
equating the sum of the forces in each direction to
zero, we get

N ¼ VL sin ux þHL cos ux þ P sin (ux � u)

(6:160)

S ¼ VL cos ux �HL sin ux þ P cos (ux � u)

(6:161)

And the bending moment at X is

M ¼ VLx�HLy� Pa cos u� Pb sin u (6:162)

The shearing unit stress on the arch cross section
at X can be determined from S with the aid of

Eq. (6.49). The normal unit stresses can be calcu-
lated from N and M with the aid of Eq. (6.57).

When designing an arch, it may be necessary to
compute certain secondary stresses, in addition
to those caused by live, dead, wind, and snow
loads. Among the secondary stresses to be con-
sidered are those due to temperature changes, rib
shortening due to thrust or shrinkage, deformation
of tie rods, and unequal settlement of footings. The
procedure is the same as for loads on the arch, with
the deformations producing the secondary stresses
substituted for or treated the same as the defor-
mations due to loads.

Also, the stability of arches should be consi-
dered. According to the mode of failure, there exist
in-plane stability and out-of-plane buckling issues.
(Theodore V. Galambos, “Guide to Stability Design
Criteria for Metal Structures”, 5th edition, John
Wiley & Sons. Inc., www.wiley.com)

Thin-Shell Structures

A structural shell is a curved surface structure.
Usually, it is capable of transmitting loads in more
than two directions to supports. It is highly efficient
structurally when it is so shaped, proportioned,
and supported that it transmits the loads without
bending or twisting.

Fig. 6.89 Stresses in an arch rib.
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A shell is defined by its middle surface, halfway
between its extrados, or outer surface, and intra-
dos, or inner surface. Thus, depending on the geo-
metry of the middle surface, it might be a type of
dome, barrel arch, cone, or hyperbolic paraboloid.
Its thickness is the distance, normal to the middle
surface, between extrados and intrados.

6.72 Thin-Shell Analysis

A thin shell is a shell with a thickness relatively
small compared with its other dimensions. But it
should not be so thin that deformations would be
large compared with the thickness.

The shell should also satisfy the following
conditions: Shearing stresses normal to the middle
surface are negligible. Points on a normal to the
middle surface before it is deformed lie on a
straight line after deformation. And this line is
normal to the deformed middle surface.

Calculation of the stresses in a thin shell
generally is carried out in two major steps, both
usually involving the solution of differential
equations. In the first, bending and torsion are
neglected (membrane theory, Art. 6.73). In the
second step, corrections are made to the previous
solution by superimposing the bending and shear
stresses that are necessary to satisfy boundary
conditions (bending theory, Art. 6.74).

6.73 Membrane Theory for
Thin Shells

Thin shells usually are designed so that normal
shears, bending moments, and torsion are very
small, except in relatively small portions of the
shells. In the membrane theory, these stresses are
ignored.

Despite the neglected stresses, the remaining
stresses are in equilibrium, except possibly at
boundaries, supports, and discontinuities. At any
interior point, the number of equilibrium con-
ditions equals the number of unknowns. Thus, in
the membrane theory, a thin shell is statically
determinate.

The membrane theory does not hold for
concentrated loads normal to the middle surface,
except possibly at a peak or valley. The theory does
not apply where boundary conditions are incom-
patible with equilibrium; and it is inexact where

there is geometric incompatibility at the bound-
aries. The last is a common condition, but the error
is very small if the shell is not very flat. Usually,
disturbances of membrane equilibrium due to
incompatibility with deformations at boundaries,
supports, or discontinuities are appreciable only in
a narrow region about each source of disturbance.
Much larger disturbances result from incompat-
ibility with equilibrium conditions.

To secure the high structural efficiency of a thin
shell, select a shape, proportions, and supports for
the specific design conditions that come as close as
possible to satisfying the membrane theory. Keep
the thickness constant; if it must change, use a
gradual taper. Avoid concentrated and abruptly
changing loads. Change curvature gradually. Keep
discontinuities to a minimum. Provide reactions
that are tangent to the middle surface. At
boundaries, insure, to the extent possible, compat-
ibility of shell deformations with deformations of
adjoining members, or at least keep restraints to a
minimum. Make certain that reactions along
boundaries are equal in magnitude and direction
to the shell forces there.

Means usually adopted to satisfy these require-
ments at boundaries and supports are illustrated in
Fig. 6.90. In Fig. 6.90a, the slope of the support and
provision for movement normal to the middle
surface insure a reaction tangent to the middle
surface. In Fig. 6.90b, a stiff rib, or ring girder,
resists unbalanced shears and transmits normal
forces to columns below. The enlarged view of the
ring girder in Fig. 6.90c shows gradual thickening
of the shell to reduce the abruptness of the change
in section. The stiffening ring at the lantern in Fig.
6.90d, extending around the opening at the crown,
projects above the middle surface, for compatibility
of strains, and connects through a transition curve
with the shell; often, the rim need merely be
thickened when the edge is upturned, and the ring
can be omitted. In Fig. 6.90e, the boundary of the
shell is a thickened edge. In Fig. 6.90f, a scalloped
shell provides gradual tapering for transmitting the
loads to the supports, at the same time providing
access to the shell enclosure. And in Fig. 6.90g, a
column is flared widely at the top to support a thin
shell at an interior point.

Even when the conditions for geometric
compatibility are not satisfactory, the membrane
theory is a useful approximation. Furthermore, it
yields a particular solution to the differential
equations of the bending theory.
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(D. P. Billington, “Thin-Shell Concrete Struc-
tures,” 2nd ed., and S. Timoshenko and
S. Woinowsky-Krieger, “Theory of Plates and
Shells,” McGraw-Hill Publishing Company, New
York, books.mcgraw-hill.com; V. S. Kelkar and R. T.
Sewell, “Fundamentals of the Analysis and Design
of Shell Structures,” Prentice-Hall, Englewood
Cliffs, N.J., www.prenhall.com.)

6.74 Bending Theory for Thin
Shells

When equilibrium conditions are not satisfied or
incompatible deformations exist at boundaries,
bending and torsion stresses arise in the shell.
Sometimes, the design of the shell and its supports
can be modified to reduce or eliminate these stresses
(Art. 6.73). When the design cannot eliminate them,
provision must be made for the shell to resist them.

But even for the simplest types of shells and
loading, the stresses are difficult to compute. In
bending theory, a thin shell is statically indetermi-
nate; deformation conditions must supplement
equilibrium conditions in setting up differential
equations for determining the unknown forces and
moments. Solution of the resulting equations may

be tedious and time-consuming, if indeed solution
is possible.

In practice, therefore, shell design relies heavily
on the designer’s experience and judgment. The
designer should consider the type of shell, material
of which it is made, and support and boundary
conditions, and then decide whether to apply a
bending theory in full, use an approximate bending
theory, or make a rough estimate of the effects of
bending and torsion. (Note that where the effects of
a disturbance are large, these change the normal
forces and shears computed by the membrane
theory.) For domes, for example, the usual pro-
cedure is to use as a support a deep, thick girder or a
heavily reinforced or prestressed tension ring, and
the shell is gradually thickened in the vicinity of this
support (Fig. 6.90c).

Circular barrel arches, with ratio of radius to
distance between supporting arch ribs less than
0.25, may be designed as beams with curved cross
section. Secondary stresses, however, must be
taken into account. These include stresses due to
volume change of rib and shell, rib shortening,
unequal settlement of footings, and temperature
differentials between surfaces.

Bending theory for cylinders and domes is given
in W. Flügge, “Stresses in Shells,” Springer-Verlag,

Fig. 6.90 Special provisions made at supports and boundaries of thin shells to meet requirements of
the membrane theory include (a) a device to ensure a reaction tangent to the middle surface, (b) stiffened
edges, such as the ring girder at the base of a dome, (c) gradually increased shell thickness at a stiffening
member, (d) a transition curve at changes in section, (e) a stiffened edge obtained by thickening the shell,
( f ) scalloped edges, and (g) a flared support.
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New York, www.springer-ny.com; S. Timoshenko
and S. Woinowsky-Krieger, “Theory of Plates
and Shells,” McGraw-Hill Book Company,
New York, books.mcgraw-hill.com; “Design of
Cylindrical Concrete Shell Roofs,” Manual of
Practice no. 31, American Society of Civil Engin-
eers. www.asce.org.

6.75 Stresses in Thin Shells

The results of the membrane and bending theories
are expressed in terms of unit forces and unit
moments, acting per unit of length over the
thickness of the shell. To compute the unit stresses
from these forces and moments, usual practice is to
assume normal forces and shears to be uniformly
distributed over the shell thickness and bending
stresses to be linearly distributed.

Then, normal stresses can be computed from
equations of the form

fx ¼ Nx

t
þ Mx

t3=12
z (6:163)

where z ¼ distance from middle surface

t ¼ shell thickness

Mx ¼ unit bending moment about an axis
parallel to direction of unit normal
force Nx

Similarly, shearing stresses produced by central
shears T and twisting moments D may be calcu-
lated from equations of the form

nxy ¼ T

t
+

D

t3=12
z (6:164)

Normal shearing stresses may be computed on
the assumption of a parabolic stress distribution
over the shell thickness:

nxz ¼ V

t3=6

t2

4
� z2

� �
(6:165)

where V ¼ unit shear force normal to middle
surface.

For axes rotated with respect to those used in the
thin-shell analysis, use Eqs. (6.27) and (6.28) to
transform stresses or unit forces andmoments from
the given to the new axes.

Folded Plates

A folded-plate structure consists of a series of
thin planar elements, or flat plates, connected to

Fig. 6.91 Folded-plate structure.
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one another along their edges. Usually used on
long spans, especially for roofs, folded plates
derive their economy from the girder action of
the plates and the mutual support they give one
another.

Longitudinally, the plates may be continuous
over their supports. Transversely, there may be
several plates in each bay (Fig. 6.91). At the edges,
or folds, they may be capable of transmitting both
moment and shear or only shear.

6.76 Folded-Plate Theory

A folded-plate structure has a two-way action in
transmitting loads to its supports. Transversely, the
elements act as slabs spanning between plates on
either side. The plates then act as girders in
carrying the load from the slabs longitudinally to
supports, which must be capable of resisting both
horizontal and vertical forces.

If the plates are hinged along their edges, the
design of the structure is relatively simple. Some
simplification also is possible if the plates, though
having integral edges, are steeply sloped or if the
span is sufficiently long with respect to other
dimensions that beam theory applies. But there are
no criteria for determining when such simplifica-
tion is possible with acceptable accuracy. In
general, a reasonably accurate analysis of folded-
plate stresses is advisable.

Several goodmethods are available (D. Yitzhaki,
“The Design of Prismatic and Cylindrical Shell
Roofs,” North Holland Publishing Company,
Amsterdam, “Phase I Report on Folded-Plate
Construction,” Proceedings Paper 3741, Journal of
the Structural Division, ASCE, December 1963; and
A. L. Parme and J. A. Sbarounis, “Direct Solution of
Folded Plate Concrete Roofs,” EB021D Portland
Cement Association, Skokie, IL. 60077). They
all take into account the effects of plate deflections
on the slabs and usually make the following
assumptions:

The material is elastic, isotropic, and homo-
geneous. The longitudinal distribution of all loads
on all plates is the same. The plates carry loads
transversely only by bending normal to their
planes and longitudinally only by bending within
their planes. Longitudinal stresses vary linearly
over the depth of each plate. Supporting members,
such as diaphragms, frames, and beams, are
infinitely stiff in their own planes and completely

flexible normal to their own planes. Plates have
no torsional stiffness normal to their own planes.
Displacements due to forces other than bending
moments are negligible.

Regardless of the method selected, the compu-
tations are rather involved; so it is wise to carry out
the work in a well-organized table. The Yitzhaki
method (Art. 6.77) offers some advantages over
others in that the calculations can be tabulated, it is
relatively simple, it requires the solution of nomore
simultaneous equations than one for each edge for
simply supported plates, it is flexible, and it can
easily be generalized to cover a variety of
conditions.

6.77 Yitzhaki Method for
Folded Plates

Based on the assumptions and general procedure
given in Art. 6.76, the Yitzhaki method deals in
two ways with the slab and plate systems that
comprise a folded-plate structure. In the first, a
unit width of slab is considered continuous over
supports immovable in the direction of the load
(Fig. 6.92b). The strip usually is taken where the
longitudinal plate stresses are a maximum.
Secondly, the slab reactions are taken as loads
on the plates, which now are assumed to be
hinged along the edges (Fig. 6.92c). Thus, the slab
reactions cause angle changes in the plates at
each fold. Continuity is restored by applying an
unknown moment to the plates at each edge. The
moments can be determined from the fact that at
each edge the sum of the angle changes due to
the loads and to the unknown moments must
equal zero.

The angle changes due to the unknownmoments
have two components. One is the angle change
at each slab end, now hinged to an adjoining slab,
in the transverse strip of unit width. The second is
the angle change due to deflection of the plates.
The method assumes that the angle change at each
fold varies in the same way longitudinally as the
angle changes along the other folds.

For more details, see D. Yitzhaki and Max Reiss,
“Analysis of Folded Plates,” Proceedings Paper 3303,
Journal of the Structural Division, ASCE, October
1962; F. S. Merritt and Jonathan T. Ricketts,
“Building Design and Construction Handbook,”
5th ed., McGraw-Hill Book Company, New York.
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Cable-Supported Structures*

A cable is a linear structural member, like a bar
of a truss. The cross-sectional dimensions of a
cable relative to its length, however, are so
small that it cannot withstand bending or com-
pression. Consequently, under loads at an angle
to its longitudinal axis, a cable sags and assumes
a shape that enables it to develop tensile stresses
that resist the loads.

Structural efficiency results from two cable
characteristics: (1) Uniformity of tensile stresses
over the cable cross section, and (2) usually, small
variation of tension along the longitudinal axis.
Hence, it is economical to use materials with very
high tensile strength for cables.

Cables sometimes are used in building construc-
tion as an alternative to such tension members as
hangers, ties, or tension chords of trusses. For
example, cables are used in a form of long-span
cantilever-truss construction in which a horizontal
roof girder is supported at one end by a column and
near the other end by a cable that extends diagonally
upward to the top of a verticalmast above the column
support (cable-stayed-girder construction, Fig. 6.93).

*Reprinted with permission from F. S. Merritt, “Structural
Steel Designers Handbook,” McGraw-Hill Book Company,
New York.

Fig. 6.92 Folded-plate structure is analyzed by first considering a transverse strip (a) as a continuous
slab on supports that do not deflect (b). Then, the slabs are assumed hinged (c) and acted upon by the
reactions computed in the first step and unknown moments to correct for this assumption. In the
longitudinal direction, the plates act as deep girders (e) with shears along the edges, positive directions
shown in ( f ). Slab reactions are resolved into plate forces, parallel to the planes of the plates (d).
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Cable stress can be computed for this case from the
laws of equilibrium. Similarly, cable-stayed girders
are used to support bridge decks.

Cables also may be used instead of or with
girders, trusses, or membranes to support roofs or
bridge decks. For the purpose, cables may be
arranged in numerous ways. It is consequently
impractical to treat in detail in this book any but the
simplest types of such applications of cables.
Instead, general procedures for analyzing cable-
supported structures are presented in the follow-
ing. (See also Arts. 17.15 and 17.17).

6.78 Simple Cables

An ideal cable has no resistance to bending. Thus,
in analysis of a cable in equilibrium, not only is the
sum of the moments about any point equal to zero,
but so is the bending moment at any point. Con-
sequently, the equilibrium shape of the cable
corresponds to the funicular, or bending-moment,
diagram for the loading (Fig. 6.94a). As a result, the
tensile force at any point of the cable is tangent
there to the cable curve.

The point of maximum sag of a cable coincides
with thepoint of zero shear. (Sag in this case shouldbe
measured parallel to the direction of the shear forces.)

Stresses in a cable are a function of the deformed
shape. Equations needed for analysis, therefore,
usually are nonlinear. Also, in general, stresses and
deformations cannot be obtained accurately by
superimposition of loads. A common procedure in
analysis is to obtain a solution in steps by using
linear equations to approximate the nonlinear ones
and by starting with the initial geometry to obtain
better estimates of the final geometry.

For convenience in analysis, the cable tension,
directed along the cable curve, usually is resolved
into two components. Often, it is advantageous to
resolve the tension T into a horizontal component H
and a vertical component V (Fig. 6.94b). Under
vertical loading then, the horizontal component is
constant along the cable.Maximumtension occurs at
the support. V is zero at the point of maximum sag.

For a general, distributed vertical load q, the
cable must satisfy the second-order linear differ-
ential equation

Hy00 ¼ q (6:166)

where y ¼ rise of cable at distance x from low
point (Fig. 6.94b)

y00 ¼ d2y/dx2

Fig. 6.93 Types of stayed girders: (a) Bundles (converging); (b) harp; (c) fan; (d) star.

Fig. 6.94 Simple cables: (a) Shape of cable with a concentrated load; (b) shape of cable with supports at
different levels.
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6.78.1 Catenary

Weight of a cable of constant cross section repre-
sents a vertical loading that is uniformly distrib-
uted along the length of cable. Under such a
loading, a cable takes the shape of a catenary.

Take the origin of coordinates at the low point C
and measure distance s along the cable from C
(Fig. 6.94b). If qo is the load per unit length of cable,
Eq. (6.166) becomes

Hy00 ¼ qo ds

dx
¼ qo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
(6:167)

where y0 ¼ dy/dx. Solving for y0 gives the slope at
any point of the cable

y0 ¼ sinh
qox

H
¼ qox

H
þ 1

3!

qox

H

� �3
þ � � � (6:168)

A second integration then yields the equation for
the cable shape, which is called a catenary.

y ¼ H

qo
cosh

qox

H
� 1

� �

¼ qo
H

x2

2!
þ qo

H

� �3
þ x4

4!
þ � � �

(6:169)

If only the first term of the series expansion is used,
the cable equation represents a parabola. Because
the parabolic equation usually is easier to handle,
a catenary often is approximated by a parabola.

For a catenary, length of arc measured from the
low point is

s ¼ H

qo
sinh

qox

H
¼ xþ 1

3!

qo
H

� �2
x3 þ� � � (6:170)

Tension at any point is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ q2os

2

q
¼ H þ qoy (6:171)

The distance from the low point C to the left
support L is

a ¼ H

qo
cosh�1 qo

H
fL þ 1

� �
(6:172)

where fL ¼ vertical distance from C to L. The
distance from C to the right support R is

b ¼ H

qo
cosh�1 qo

H
fR þ 1

� �
(6:173)

where fR ¼ vertical distance from C to R.

Given the sags of a catenary fL and fR under a
distributed vertical load qo, the horizontal com-
ponent of cable tension H may be computed from

qol

H
¼ cosh�1 qofL

H
þ 1

� �

þ cosh�1 qofR
H

þ 1

� �
(6:174)

where l ¼ span, or horizontal distance between
supports L and R ¼ a þ b. This equation usually
is solved by trial. A first estimate of H for substi-
tution in the right-hand side of the equation may be
obtained by approximating the catenary by a
parabola. Vertical components of the reactions at
the supports can be computed from

RL ¼ H sinh
qoa

H
RR ¼ H sinh

qob

H
(6:175)

6.78.2 Parabola

Uniform vertical live loads and uniform vertical
dead loads other than cable weight generally may
be treated as distributed uniformly over the hori-
zontal projection of the cable. Under such loadings,
a cable takes the shape of a parabola.

Take the origin of coordinates at the low point C
(Fig. 6.94b). If wo is the load per foot horizontally,
Eq. (6.166) becomes

Hy00 ¼ wo (6:176)

Integration gives the slope at any point of the cable

y0 ¼ wox

H
(6:177)

A second integration then yields the parabolic
equation for the cable shape

y ¼ wox
2

2H
(6:178)

The distance from the low point C to the left
support L is

a ¼ 1

2
� Hh

wol
(6:179)

where l ¼ span, or horizontal distance between
supports L and R ¼ a þ b

h ¼ vertical distance between supports
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The distance from the low point C to the right
support R is

b ¼ 1

2
þ Hh

wol
(6:180)

Supports at Different Levels n The hori-
zontal component of cable tension H may be
computed from

H ¼ wol
2

h2
fR � h

2
+

ffiffiffiffiffiffiffiffiffi
fL fR

p� �
¼ wol

2

8f
(6:181)

where fL ¼ vertical distance from C to L

fR ¼ vertical distance from C to R

f ¼ sag of cable measured vertically from
chord LR midway between supports
(at x ¼ Hh/wol)

As indicated in Fig. 6.94b,

f ¼ fL þ h

2
� yM (6:182)

where yM ¼ Hh2/2wol
2. The minus sign should be

used in Eq. (6.181) when low point C is between
supports. If the vertex of the parabola is not
between L and R, the plus sign should be used.

The vertical components of the reactions at the
supports can be computed from

VL ¼ woa ¼ wol

2
�Hh

l

Vr ¼ wob ¼ wol

2
þHh

l

(6:183)

Tension at any point is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ w2

ox
2

q
(6:184)

Length of parabolic arc RC is

LRC ¼ b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wob

H

� �2
s

þ H

2wo
sinh

wob

H

¼ bþ 1

6

wo

H

� �2
b3 þ � � �

(6:185)

Length of parabolic arc LC is

LLC ¼ a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ woa

H

� �2r
þ H

2wo
sinh

woa

H

¼ aþ 1

6

wo

H

� �2
a3 þ � � �

(6:186)

Supports at Same Level n In this case,
fL ¼ fR ¼ f, h ¼ 0, and a ¼ b ¼ l/2. The horizontal
component of cable tension H may be computed
from

H ¼ wol
2

8f
(6:187)

The vertical components of the reactions at the
supports are

VL ¼ VR ¼ wol

2
(6:188)

Maximum tension occurs at the supports and equals

TL ¼ TR ¼ wol

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

16f 2

s
(6:189)

Length of cable between supports is

L ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wol

2H

� �2
s

þ H

wo
sinh

wol

2H

¼ l 1þ 8

3

f 2

l2
� 32

5

f 4

l4
þ 256

7

f 6

l6
þ � � �

� � (6:190)

If additional uniformly distributed load is applied to
a parabolic cable, the change in sag is approximately

Df ¼ 15

16

l

f

DL

5� 24f 2=l2
(6:191)

For a rise in temperature t, the change in sag is about

Df ¼ 15

16

l2ct

f (5� 24 f 2=l2)
1þ 8

3

f 2

l2

� �
(6:192)

where c ¼ coefficient of thermal expansion.
Elastic elongation of a parabolic cable is approxi-

mately

DL ¼ Hl

AE
1þ 16

3

f 2

l2

� �
(6:193)

where A ¼ cross-sectional area of cable

E ¼ modulus of elasticity of cable steel

H ¼ horizontal component of tension in cable

If the corresponding change in sag is small, so that
the effect on H is negligible, this change may be
computed from

Df ¼ 15

16

Hl2

AEf

1þ 16f 2=3l2

5� 24f 2=l2
(6:194)
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For the general case of vertical dead load on a
cable, the initial shape of the cable is given by

yD ¼ MD

HD
(6:195)

where MD ¼ dead-load bending moment that
would be produced by load in a
simple beam

HD ¼ horizontal component of tension due
to dead load

For the general case of vertical live load on the
cable, the final shape of the cable is given by

yD þ d ¼ MD þML

HD þHL
(6:196)

where d ¼ vertical deflection of cable due to live
load

ML ¼ live-load bending moment that would
be produced by live load in simple beam

HL ¼ increment in horizontal component of
tension due to live load

Subtraction of Eq. (6.195) from Eq. (6.196) yields

d ¼ ML �HLyD
HD þHL

(6:197)

If the cable is assumed to take a parabolic shape,
a close approximation to HL may be obtained from

HL

AE
K ¼ wD

HD

ðl
0

d dx� 1

2

ðl
0

d 00d dx (6:198)

K ¼ l
1

4

5

2
þ 16f 2

l2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16f 2

l2

r"

þ 3l

32f
loge

4f

l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16f 2

l2

r !# (6:199)

where d00 ¼ d2d=dx2.
If elastic elongation and d00 can be ignored, Eq.

(6.198) simplifies to

HL ¼
Ð l
0 ML dxÐ l
0 yD dx

¼ 3

2fl

ðl
0

ML dx (6:200)

Thus, for a load uniformly distributed horizon-
tally wL 0 ðl

0

ML dx ¼ wLl
3

12
(6:201)

and the increase in the horizontal component of
tension due to live load is

HL ¼ 3

2fl

wLl
3

12
¼ wLl

2

8f
¼ wLl

2

8

8HD

wDl2

¼ wL

wD
HD (6:202)

When amore accurate solution is desired, the value
of HL that is obtained from Eq. (6.202) can be used
for an initial trial in solving Eqs. (6.197) and (6.198).

(S. P. Timoshenko and D. H. Young, “Theory of
Structures,” McGraw-Hill Book Company, New
York, books.mcgraw-hill.com; W. T. O’Brien and
A. J. Francis, “Cable Movements under Two-
Dimensional Loads,” Journal of the Structural
Division, ASCE, vol. 90, no. ST3, Proceedings Paper
3929, June 1964, pp. 98–123; W. T. O’Brien,
“General Solution of Suspended Cable Problems,”
Journal of the Structural Division, ASCE, vol. 93,
no. ST1, Proceedings Paper 5085, February 1967,
pp. 1–26, www.asce.org; W. T. O’Brien, “Behavior
of Loaded Cable Systems,” Journal of the Structural
Division, ASCE, vol. 94, no. ST10, Proceedings Paper
6162, October 1968, pp. 2281–2302, www.asce.org;
G. R. Buchanan, “Two-Dimensional Cable Anal-
ysis,” Journal of the Structural Division, ASCE, vol.
96, no. ST7, Proceedings Paper 7436, July 1970, pp.
1581–1587, www.asce.org.)

6.79 Cable Systems

Analysis of simple cables is described in Art. 6.77.
Cables, however, may be assembled intomany types
of systems. One important reason for such systems
is that roofs to be supported are two-or three-dim-
ensional. Consequently, three-dimensional cable
arrangements often are advantageous. Another im-
portant reason is that cable systems can be designed
to offer much higher resistance to vibrations than
simple cables do.

Like simple cables, cable systems behave non-
linearly. Thus, accurate analysis is difficult, tedious,
and time-consuming. As a result, many designers
use approximate methods that appear to have
successfully withstood the test of time. Because of
the numerous types of cable systems and the
complexity of analysis, only general procedures are
outlined here.

Cable systems may be stiffened or unstiffened.
Stiffened systems are usually used for suspension
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bridges. Our discussion here deals only with
unstiffened systems, that is, systems where loads
are carried to supports only by cables. Stiffened
cable systems are discussed in Art. 17.15.

Often, unstiffened systems may be classified as
a network or as a cable truss, or double-layered
plane system.

Networks consist of two or three sets of parallel
cables intersecting at an angle (Fig. 6.95). The cables
are fastened together at their intersections.

Cable trusses consist of pairs of cables, generally
in a vertical plane. One cable of each pair is concave
downward, the other concave upward (Fig. 6.96).

Cable Trusses n Both cables of a cable truss
are initially tensioned, or prestressed, to a pre-
determined shape, usually parabolic. The prestress
is made large enough that any compression that
may be induced in a cable by loads only reduces
the tension in the cable; thus, compressive stresses

cannot occur. The relative vertical position of the
cables is maintained by verticals, or spreaders, or
by diagonals. Diagonals in the truss plane do not
appear to increase significantly the stiffness of a
cable truss.

Figure 6.96 shows four different arrangements
of the cables, with spreaders, in a cable truss. The
intersecting types (Fig. 6.96b and c) usually are
stiffer than the others, for a given size of cables and
given sag and rise.

For supporting roofs, cable trusses often are
placed radially at regular intervals. Around the
perimeter of the roof, the horizontal component of
the tension usually is resisted by a circular or
elliptical compression ring. To avoid a joint with a
jumble of cables at the center, the cables usually are
also connected to a tension ring circumscribing the
center.

Properly prestressed, such double-layer cable
systems offer high resistance to vibrations. Wind or
other dynamic forces difficult or impossible to
anticipate may cause resonance to occur in a single
cable, unless damping is provided. The probabi-
lity of resonance occurring may be reduced by
increasing the dead load on a single cable. But
this is not economical because the size of cable
and supports usually must be increased as well.
Besides, the tactic may not succeed, because future
loads may be outside the design range. Damping,
however, may be achieved economically with
interconnected cables under different tensions, for
example, with cable trusses or networks.

The cable that is concave downward (Fig. 6.96)
usually is considered the load-carrying cable. If the
prestress in that cable exceeds that in the other
cable, the natural frequencies of vibration of both
cables will always differ for any value of live load.
To avoid resonance, the difference between the
frequencies of the cables should increase with
increase in load. Thus, the two cables will tend to
assume different shapes under specific dynamic
loads. As a consequence, the resulting flow of
energy from one cable to the other will dampen the
vibrations of both cables.

Natural frequency, cycles per second, of each
cable may be estimated from

vn ¼ np

l

ffiffiffiffiffiffi
Tg

w

r
(6:203)

where n ¼ integer, 1 for fundamental mode of
vibration, 2 for second mode, . . .

Fig. 6.95 Cable networks: (a) Cables forming a
dish-shaped surface; (b) cables forming a saddle-
shaped surface.
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l ¼ span of cable, ft

w ¼ load on cable, kips/ft

g ¼ acceleration due to gravity ¼ 32.2 ft/s2

T ¼ cable tension, kips

The spreaders of a cable truss impose the
condition that under a given load the change in sag
of the cables must be equal. But the changes in
tension of the two cables may not be equal. If the
ratio of sag to span f/l is small (less than about 0.1),
Eq. (6.194) indicates that, for a parabolic cable, the
change in tension is given approximately by

DH ¼ 16

3

AEf

l2
Df (6:204)

where Df ¼ change in sag

A ¼ cross-sectional area of cable

E ¼ modulus of elasticity of cable steel

Double cables interconnected with struts may
be analyzed as discrete or continuous systems. For
a discrete system, the spreaders are treated as
individual members. For a continuous system, the
spreaders are replaced by a continuous diaphragm
that insures that the changes in sag and rise of
cables remain equal under changes in load. Simi-
larly, for analysis of a cable network, the cables,
when treated as a continuous system, may be re-
placed by a continuous membrane.

(H. Mollman, “Analysis of Plane Prestressed
Cable Structures,” Journal of the Structural Division,
ASCE, vol. 96, no. ST10, Proceedings Paper 7598,
October 1970, pp. 2059–2082; D. P. Greenberg,
“Inelastic Analysis of Suspension Roof Structures,”
Journal of the Structural Division, ASCE, vol. 96, no.
ST5, Proceedings Paper 7284, May 1970, pp. 905–930;
H. Tottenham and P. G. Williams, “Cable Net:
Continuous System Analysis,” Journal of the
Engineering Mechanics Division, ASCE, vol. 96,

no. EM3, Proceedings Paper 7347, June 1970,
pp. 277–293, www.asce.org; A. Siev, “A General
Analysis of Prestressed Nets,” Publications, Inter-
national Association for Bridge and Structural Engin-
eering, vol. 23, pp. 283–292, Zurich, Switzerland,
1963; A. Siev, “Stress Analysis of Prestressed
Suspended Roofs,” Journal of the Structural Division,
ASCE, vol. 90, no. ST4, Proceedings Paper 4008,
August 1964, pp. 103–121; C. H. Thornton and
C. Birnstiel, “Three-Dimensional Suspension
Structures,” Journal of the Structural Division, ASCE,
vol. 93, no. ST2, Proceedings Paper 5196, April 1967,
pp. 247–270, www.asce.org.)

Structural Dynamics

Article 6.2 noted that loads can be classified as
static or dynamic and that the distinguishing
characteristic is the rate of application of load.
If a load is applied slowly, it may be considered
static. Since dynamic loads may produce stresses
and deformations considerably larger than those
caused by static loads of the same magnitude, it is
important to know reasonably accurately what is
meant by slowly.

A useful definition can be given in terms of the
natural period of vibration of the structure or
member to which the load is applied. If the time in
which a load rises from zero to its maximum value
is more than double the natural period, the load
may be treated as static. Loads applied more
rapidly may be dynamic. Structural analysis and
design for such loads are considerably different
from and more complex than those for static loads.

In general, exact dynamic analysis is possible
only for relatively simple structures, and only
when both the variation of load and resistance with
time are a convenient mathematical function.
Therefore, in practice, adoption of approximate

Fig. 6.96 Planar cable systems: (a) Completely separated cables; (b) cables intersecting at midspan;
(c) crossing cables; (d) cables meeting at supports.
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methods that permit rapid analysis and design is
advisable. And usually, because of uncertainties in
loads and structural resistance, computations need
not be carried out with more than a few significant
figures, to be consistent with known conditions.

6.80 Material Properties
Under Dynamic Loading

In general, mechanical properties of structural
materials improve with increasing rate of load
application. For low-carbon steel, for example, yield
strength, ultimate strength, and ductility rise with
increasing rate of strain. Modulus of elasticity in the
elastic range, however, is unchanged. For concrete,
the dynamic ultimate strength in compression may
be much greater than the static strength.

Since the improvement depends on the material
and the rate of strain, values to use in dynamic
analysis and design should be determined by tests
approximating the loading conditions anticipated.

Under many repetitions of loading, though, a
member or connection between members may fail
because of “fatigue” at a stress smaller than the
yield point of the material. In general, there is little
apparent deformation at the start of a fatigue
failure. A crack forms at a point of high stress
concentration. As the stress is repeated, the crack
slowly spreads, until the member ruptures without
measurable yielding. Although thematerial may be
ductile, the fracture looks brittle.

Endurance Limit n Some materials (generally
those with a well-defined yield point) have what is
known as an endurance limit. This is the maximum
unit stress that can be repeated, through a definite
range, an indefinite number of times without
causing structural damage. Generally, when no
range is specified, the endurance limit is intended
for a cycle in which the stress is varied between
tension and compression stresses of equal value.

A range of stress may be resolved into two
components: a steady, or mean, stress and an
alternating stress. The endurance limit sometimes
is defined as the maximum value of the alternating
stress that can be superimposed on the steady
stress an indefinitely large number of times with-
out causing fracture.

Improvement of Fatigue Strength n

Design of members to resist repeated loading cannot

be executed with the certainty with which members
can be designed to resist static loading. Stress
concentrations may be present for a wide variety of
reasons, and it is not practicable to calculate their
intensities. But sometimes it is possible to improve
the fatigue strength of a material or to reduce the
magnitude of a stress concentration below the
minimum value that will cause fatigue failure.

In general, avoid design details that cause
severe stress concentrations or poor stress distri-
bution. Provide gradual changes in section.
Eliminate sharp corners and notches. Do not use
details that create high localized constraint. Locate
unavoidable stress raisers at points where fatigue
conditions are the least severe. Place connections at
points where stress is low and fatigue conditions
are not severe. Provide structures with multiple
load paths or redundant members, so that a fatigue
crack in any one of the several primary members is
not likely to cause collapse of the entire structure.

Fatigue strength of a material may be improved
by cold working the material in the region of stress
concentration, by thermal processes, or by pre-
stressing it in such a way as to introduce favorable
internal stresses. Where fatigue stresses are un-
usually severe, special materials may have to be
selected with high energy absorption and notch
toughness.

(C. H. Norris et al., “Structural Design for
Dynamic Loads,” McGraw-Hill Book Company,
New York, books.mcgraw-hill.com; W. H. Munse,
“Fatigue of Welded Steel Structures,” Welding
Research Council, 3 Park Avenue 27th floor,
New York, NY 10016.)

6.81 Natural Period of
Vibration

A preliminary step in dynamic analysis and design
is determination of this period. It can be computed
in many ways, including application of the laws
of conservation of energy and momentum or
Newton’s second law of motion, F ¼ M(dv/dt),
where F is force,Mmass, v velocity, and t time. But
in general, an exact solution is possible only for
simple structures. Therefore, it is general practice
to seek an approximate—but not necessarily
inexact—solution by analyzing an idealized rep-
resentation of the actual member or structure.
Setting up this model and interpreting the solution
requires judgment of a high order.
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Natural period of vibration is the time required
for a structure to go through one cycle of free
vibration, that is, vibration after the disturbance
causing the motion has ceased.

To compute the natural period, the actual
structure may be conveniently represented by a
system of masses and massless springs, with addi-
tional resistances provided to account for energy
losses due to friction, hysteresis, and other forms of
damping. In simple cases, the masses may be set
equal to the actual masses; otherwise, equivalent
masses may have to be computed (Art. 6.84). The
spring constants are the ratios of forces to
deflections.

For example, a single mass on a spring
(Fig. 6.97b) may represent a simply supported
beam with mass that may be considered neglig-
ible compared with the load W at midspan (Fig.
6.97a). The spring constant k should be set equal
to the load that produces a unit deflection at
midspan; thus, k ¼ 48EI/L3, where E is the modu-
lus of elasticity, psi; I the moment of inertia, in4;
and L the span, in, of the beam. The idealized
mass equals W/g, where W is the weight of the
load, lb, and g is the acceleration due to gravity,
386 in/s2.

Also, a single mass on a spring (Fig. 6.97d) may
represent the rigid frame in Fig. 6.97c. In that case,
k ¼ 2 � 12EI/h3, where I is the moment of inertia,

in4, of each column and h the column height, in.
The idealizedmass equals the sum of themasses on
the girder and the girder mass. (Weight of columns
and walls is assumed negligible.)

6.81.1 Degree of a System

The spring and mass in Fig. 6.97b and d form a one-
degree system. The degree of freedom of a system
is determined by the least number of coordinates
needed to define the positions of its components. In
Fig. 6.97, only the coordinate y is needed to locate
the mass and determine the state of the spring. In a
two-degree system, such as one comprising two
masses connected to each other and to the ground
by springs and capable of movement in only one
direction, two coordinates are required to locate the
masses.

One-Degree System n If the mass with
weight W, lb, in Fig. 6.97 is isolated, as shown in
Fig. 6.97e, it will be in dynamic equilibrium under
the action of the spring force �ky and the inertia
force (d2y/dt2)(W/g).

Hence, the equation of motion is

W

g

d2y

dt2
þ ky ¼ 0 (6:205)

Fig. 6.97 Mass on weightless spring (b) or (d) may represent the motion of a beam (a) or a rigid frame
(c) in free vibration.
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This may be written in the more convenient form

d2y

dt2
þ kg

W
y ¼ d2y

dt2
þ v2y ¼ 0 (6:206)

The solution is

y ¼ A sinvtþ B cosvt (6:207)

where A and B are constants to be determined from
initial conditions of the system, and

v ¼
ffiffiffiffiffi
kg

W

r
(6:208)

is the natural circular frequency, radians per
second.

The motion defined by Eq. (6.207) is harmonic.
Its natural period in seconds is

T ¼ 2p

v
¼ 2p

ffiffiffiffiffi
W

gk

s
(6:209)

Its natural frequency in cycles per second is

f ¼ 1

T
¼ 1

2p

ffiffiffiffiffi
kg

W

r
(6:210)

If, at time t ¼ 0, the mass has an initial dis-
placement y0 and velocity v0, substitution in Eq.
(6.207) yields A ¼ v0/v and B ¼ y0. Hence, at any
time t, the mass is completely located by

y ¼ n0
v
sinvtþ y0 cosvt (6:211)

The stress in the spring can be computed from the
displacement y, because the spring force equals�ky.

Multidegree Systems n In multiple-degree
systems, an independent differential equation of
motion can be written for each degree of freedom.
Thus, in an N-degree system with N masses,
weighing W1, W2, . . . , WN , lb, and N2 springs with
constants krj (r ¼ 1, 2, . . . , N; j ¼ 1, 2, . . . , N), there
are N equations of the form

Wr

g

d2yr
dt2

þ
XN
j¼1

krjyj ¼ 0 r ¼ 1, 2, . . . , N (6:212)

Simultaneous solution of these equations reveals
that the motion of each mass can be resolved intoN
harmonic components. They are called the funda-
mental, second, third, and so on harmonics. Each
set of harmonics for all the masses is called a
normal mode of vibration.

There are as many normal modes in a system as
degrees of freedom. Under certain circumstances,
the system could vibrate freely in any one of these
modes. During any such vibration, the ratio of
displacement of any two of the masses remains
constant. Hence, the solutions of Eqs. (6.212) take
the form

yr ¼
XN
n¼1

arn sinvn(tþ tn) (6:213)

where arn and tn are constants to be determined
from the initial conditions of the system and vn is
the natural circular frequency for each normal
mode.

6.81.2 Natural Periods

To determine vn set y1 ¼ A1 sin vt; y2 ¼ A2 sin
vt . . . Then, substitute these and their second
derivatives in Eqs. (6.212). After dividing each
equation by sin vt, the following N equations
result:

k11 �W1

g
v2

� �
A1 þ K12A2 þ � � � þ k1NAN ¼ 0

k21A1 þ k22 �W2

g
v2

� �
A2 þ � � � þ k2NAN ¼ 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

kN1A1 þ kN2A2 þ � � � þ kNN �WN

g
v2

� �
AN ¼ 0

(6:214)

If there are to be nontrivial solutions for the am-
plitudes A1, A2, . . . , AN , the determinant of their
co-efficients must be zero. Thus,

k11 �W

g
v2 k12 � � � k1N

k21 k22 �W

g
v2 � � � k2N

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
kN1 kN2 � � � kNN �WN

g
v2

���������������

���������������
¼ 0

(6:215)

Solution of this equation for v yields one real root
for each normal mode. And the natural period
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for each normal mode can be obtained from Eq.
(6.209).

6.81.3 Modal Amplitudes

If v for a normal mode now is substituted in Eqs.
(6.214), the amplitudes A1, A2, . . . , AN for that
mode can be computed in terms of an arbitrary
value, usually unity, assigned to one of them. The
resulting set of modal amplitudes defines the
characteristic shape for that mode.

The normal modes are mutually orthogonal;
that is,

XN
r¼1

WrArnArm ¼ 0 (6:216)

where Wr is the rth mass out of a total of N, A
represents the characteristic amplitude of a normal
mode, and n andm identify any two normal modes.
Also, for a total of S springs

XS
s¼1

ksysnysm ¼ 0 (6:217)

where ks is the constant for the sth spring and y
represents the spring distortion.

6.81.4 Stodola-Vianello
Method

When there are many degrees of freedom, the
preceding procedure for free vibration becomes
very lengthy. In such cases, it may be preferable to
solve Eqs. (6.214) by numerical, trial-and-error
procedures, such as the Stodola-Vianello method,
in which the solution converges first on the highest
or lowest mode. Then, the other modes are
determined by the same procedure after elimin-
ation of one of the equations by use of Eq. (6.216).
The procedure requires assumption of a character-
istic shape, a set of amplitudes Ar1. These are
substituted in one of Eqs. (6.214) to obtain a first
approximation of v2. With this value and with
AN1 ¼ 1, the remaining (N � 1) equations are
solved to obtain a new set of Ar1. Then, the
procedure is repeated until assumed and final
characteristic amplitudes agree.

6.81.5 Rayleigh Method

Because even the Stodola-Vianello method is
lengthy for many degrees of freedom, the Rayleigh
approximate method may be used to compute the
fundamental mode. The frequency obtained by
this method, however, may be a little on the high
side.

The Rayleigh method also starts with an
assumed set of characteristic amplitudes Ar1 and
depends for its success on the small error in natural
frequency produced by a relatively larger error in
the shape assumption. Next, relative inertia forces
acting at each mass are computed: Fr ¼ WrAr1/AN1,
where AN1 is the assumed displacement at one of
the masses. These forces are applied to the system
as a static load and displacements Brl due to them
calculated. Then, the natural frequency can be
obtained from

v2 ¼
g
PN
r¼1

FrBr1

PN
r¼1

WrB
2
r1

(6:218)

where g is the acceleration due to gravity, 386 in/s2.
For greater accuracy, the computation can be
repeated with Br1 as the assumed characteristic
amplitudes.

When the Rayleigh method is applied to beams,
the characteristic shape assumed initially may be
chosen conveniently as the deflection curve for
static loading.

The Rayleigh method may be extended to
determination of higher modes by the Schmidt
orthogonalization procedure, which adjusts assu-
med deflection curves to satisfy Eq. (6.216). The
procedure is to assume a shape, remove com-
ponents associated with lower modes, then use the
Rayleigh method for the residual deflection curve.
The computation will converge on the next higher
mode. The method is shorter than the Stodola-
Vianello procedure when only a few modes are
needed.

For example, suppose the characteristic ampli-
tudes Ar1 for the fundamental mode have been
obtained, and the natural frequency for the second
mode is to be computed. Assume a value for the
relative deflection of the rth mass Ar2. Then the
shape with the fundamental mode removed will be
defined by the displacements

ar2 ¼ Ar2 � c1Ar1 (6:219)

6.98 n Section Six

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

STRUCTURAL THEORY



where c1 is the participation factor for the first
mode.

c1 ¼
PN

r¼1 WrAr2Ar1PN
r¼1 WrA2

r1

(6:220)

Substitute ar2 for Br1 in Eq. (6.218) to find the
second-mode frequency and, from deflections
produced by Fr ¼ Wrar2, an improved shape. (For
more rapid convergence, Ar2 should be selected to
make c1 small.) The procedure should be repeated,
starting with the new shape.

For the third mode, assume deflections Ar3 and
remove the first two modes:

ar3 ¼ Ar3 � c1Ar1 � c2Ar2 (6:221)

The participation factors are determined from

c1 ¼
PN

r¼1 WrAr3Ar1PN
r¼1 WrA2

r1

c2 ¼
PN

r¼1 WrAr3Ar2PN
r¼1 WrA2

r2

(6:222)

Use ar3 to find an improved shape and the third-
mode frequency.

6.81.6 Distributed Mass

For some structures with mass distributed
throughout, it sometimes is easier to solve the
dynamic equations based on distributed mass than
the equations based on equivalent lumped masses.
A distributed mass has an infinite number of
degrees of freedom and normal modes. Every
particle in it can be considered a lumped mass on
springs connected to other particles. Usually, how-
ever, only the fundamental mode is significant,
although sometimes the second and third modes
must be taken into account.

For example, suppose a beam weighs w lb/lin ft
and has a modulus of elasticity E, psi, and moment
of inertia I, in4. Let y be the deflection at a distance
x from one end. Then, the equation of motion is

EI
@4y

@x4
þ w

g

@2y

@t2
¼ 0 (6:223)

(This equation ignores the effects of shear and
rotational inertia.) The deflection yn for each mode,
to satisfy the equation, must be the product of a
harmonic function of time fn(t) and of the char-

acteristic shape Yn(x), a function of x with undeter-
mined amplitude. The solution is

fn(t) ¼ c1 sinvntþ c2 cosvnt (6:224)

where vn is the natural circular frequency and n
indicates the mode, and

Yn(x) ¼An sinbnxþ bn cosbnx

þ Cn sin hbnxþDn cos hbnx
(6:225)

where

bn ¼
ffiffiffiffiffiffiffiffiffi
wv2

n

EIg

4

s
(6:226)

Equations (6.224) to (6.226) apply to spans with
any type of end restraints. Figure 6.98 shows the
characteristic shape and gives constants for
determination of natural circular frequency v and
natural period T for the first four modes of canti-
lever, simply supported, fixed-end, and fixed-
hinged beams. To obtain v, select the appropriate
constant from Fig. 6.98 and multiply it by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=wL4

p
.

To get T, divide the appropriate constant byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=wL4

p
.

6.81.7 Simple Beam

For a simple beam, the boundary (support) condi-
tions for all values of time t are y ¼ 0 and bending
moment M ¼ EI @2y=@x2 ¼ 0. Hence, at x ¼ 0 and
x ¼ L, the span length, Yn(x) ¼ 0 and d2Yn/dx

2 ¼ 0.
These conditions require that Bn ¼ Cn ¼ Dn ¼ 0
and bn ¼ np=L, to satisfy Eq. (6.225). Hence, ac-
cording to Eq. (6.226), the natural circular fre-
quency for a simply supported beam is

vn ¼ n2p2

L2

ffiffiffiffiffiffiffi
EIg

w

r
(6:227)

The characteristic shape is defined by

Yn(x) ¼ sin
npx

L
(6:228)

The constants c1 and c2 in Eq. (6.224) are determined
by the initial conditions of the disturbance. Thus,
the total deflection, by superposition of modes, is

y ¼
X1
n¼1

An(t) sin
npx

L
(6:229)

whereAn(t) is determined by the load (see Art. 6.83).
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To determine the characteristic shapes and
natural periods for beams with variable cross
section and mass, use the Rayleigh method.
Convert the beam into a lumped-mass system by
dividing the span into elements and assuming the
mass of each element to be concentrated at its
center. Also, compute all quantities, such as
deflection and bending moment, at the center of
each element. Start with an assumed characteristic
shape and apply Eq. (6.218).

Methods are available for dynamic analysis of
continuous beams. (R. Clough and J. Penzien,
“Dynamics of Structures,” McGraw-Hill Book
Company, New York, books.mcgraw-hill.com;
D. G. Fertis and E. C. Zobel, “Transverse Vibration
Theory,” The Ronald Press Company). But even for
beams with constant cross section, these pro-
cedures are very lengthy. Generally, approximate
solutions are preferable.

(J. M. Biggs, “Introduction to Structural
Dynamics,” McGraw-Hill Book Company, New
York, books.mcgraw-hill.com; N. M. Newmark and
E. Rosenblueth, “Fundamentals of Earthquake
Engineering,” Prentice-Hall, Inc., Englewood Cliffs,
N.J., www.prenhall.com.)

6.82 Impact and Sudden
Loads

Under impact, there is an abrupt exchange or
absorption of energy and drastic change in velocity.
Stresses caused in the colliding members may be
several times larger than stresses produced by the
same weights applied statically.

An approximation of impact stresses in the
elastic range can be made by neglecting the inertia
of the body struck and the effect of wave

Fig. 6.98 Coefficients for computing natural circular frequencies v and natural periods of vibration T,
seconds, for prismatic beams:w ¼ weight of beam, lb/lin ft; L ¼ beam span, ft;E ¼ modulus of elasticity, psi;
I ¼ moment of inertia, in4.
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propagation and assuming that the kinetic energy
is converted completely into strain energy in that
body. Consider a prismatic bar subjected to an axial
impact load in tension. The energy absorbed per
unit of volume when the bar is stressed to the
proportional limit is called the modulus of
resilience. It is given by f 2y =2E, where fy is the yield
stress and E the modulus of elasticity, both in psi.
Below the proportional limit, the stress, psi, due to
an axial load U, in-lb, is

f ¼
ffiffiffiffiffiffiffiffiffiffi
2UE

AL

r
(6:230)

where A is the cross-sectional area, in2, and L the
length of bar, in.

This equation indicates that energy absorption
of a member may be improved by increasing its
length or area. Sharp changes in cross section
should be avoided, however, because of associated
high stress concentrations. Also, uneven distri-
bution of stress in a member due to changes in
section should be avoided. Energy absorption is
larger with a uniform stress distribution through-
out the length of the member.

If a static axial load W would produce a tensile
stress f 0 in the bar and an elongation e0, in, then
the axial stress produced whenW falls a distance h,
in, is

f ¼ f 0 þ f 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h

e0

r
(6:231)

if f is within the proportional limit. The elongation
due to this impact load is

e ¼ e0 þ e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h

e0

r
(6:232)

These equations indicate that the stress and defor-
mation due to an energy load may be considerably
larger than those produced by the same weight
applied gradually.

The sameequationshold for a beamwith constant
cross section struck by a weight at midspan, except
that f and f 0 represent stresses at midspan and e and
e0, midspan deflections.

According to Eqs. (6.231) and (6.232), a sudden
load (h ¼ 0) causes twice the stress and twice the
deflection as the same load applied gradually.

6.82.1 Impact on Long
Members

For very long members, the effect of wave prop-
agation should be taken into account. Impact is not
transmitted instantly to all parts of the struck body.
At first, remote parts remain undisturbed, while
particles struck accelerate rapidly to the velocity of
the colliding body. The deformations produced
move through the struck body in the form of elastic
waves. The waves travel with a constant velocity,
ft/s,

c ¼ 68:1

ffiffiffi
E

r

s
(6:233)

where E ¼ modulus of elasticity, psi

r ¼ density of the struck body, lb/ft3

6.82.2 Impact Waves

If an impact imparts a velocity n, ft/s, to the par-
ticles at one end of a prismatic bar, the stress, psi, at
that end is

f ¼ 0:0147n
ffiffiffiffiffiffi
Er

p
(6:234)

if f is in the elastic range. In a compression wave,
the velocity of the particles is in the direction of the
wave. In a tensionwave, the velocity of the particles
is in the opposite direction to the wave.

In the plastic range, Eqs. (6.233) and (6.234)
hold, but with E as the tangent modulus of elas-
ticity. Hence, c is not a constant and the shape of
the stress wave changes as it moves. The elastic
portion of the stress wave moves faster than the
wave in the plastic range. Where they overlap,
the stress and irrecoverable strain are constant.

(The impact theory is based on an assumption
difficult to realize in practice—that contact takes
place simultaneously over the entire end of the
bar.)

At a free end of a bar, a compressive stress wave
is reflected as an equal tension wave, and a tension
wave as an equal compression wave. The velocity
of the particles at the free end equals 2n.

At a fixed end of a bar, a stress wave is reflected
unchanged. The velocity of the particles at the fixed
end is zero, but the stress is doubled because of
the superposition of the two equal stresses on
reflection.
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For a bar with a fixed end struck at the other
end by a moving mass weighing Wm lb, the initial
compressive stress, psi, is, from Eq. (6.234),

fo ¼ 0:0147no
ffiffiffiffiffiffi
Er

p
(6:235)

where no is the initial velocity of the particles, ft/s,
at the impacted end of the bar and E and r the
modulus of elasticity, psi, and density, lb/ft3, of
the bar. As the velocity of Wm decreases, so does
the pressure on the bar. Hence, decreasing com-
pressive stresses follow the wave front. At any time
t , 2L/c, where L is the length of the bar, in, the
stress at the struck end is

f ¼ foe
�2at=t (6:236)

where e ¼ 2.71828; a is the ratio ofWb, the weight of
the bar, to Wm; and t ¼ 2L=c.

When t ¼ t, the wave front with stress fo arrives
back at the struck end, assumed still to be in contact
with the mass. Since the velocity of the mass cannot
change suddenly, the wave will be reflected as from
a fixed end. During the second interval, t , t , 2t,
the compressive stress is the sum of two waves
moving away from the struck end and one moving
toward this end.

Maximum stress from impact occurs at the fixed
end. For a greater than 0.2, this stress is

f ¼ 2fo(1þ e�2a) (6:237)

For smaller values of a, it is given approximately
by

f ¼ fo 1þ
ffiffiffi
1

a

r !
(6:238)

Duration of impact, time it takes for the stress at
the struck end to drop to zero, is approximately

T ¼ pL

c
ffiffiffi
a

p (6:239)

for small values of a.
When Wm is the weight of a falling body, velo-

city at impact is
ffiffiffiffiffiffiffiffi
2gh

p
, when it falls a distance h, in.

Substitution in Eq. (6.235) yields

fo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EhWb=AL

p
since Wb ¼ rAL is the weight of the bar. Putting
Wb ¼ aWm; Wm=A ¼ f 0, the stress produced by Wm

when applied gradually, and E ¼ f 0L=e0, where e0 is

the elongation for the static load, gives

fo ¼ f 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ha=e0

p
Then, for values of a smaller than 0.2, the maxi-
mum stress, from Eq. (6.238), is

f ¼ f 0
ffiffiffiffiffiffiffiffi
2ha

e0

r
þ

ffiffiffiffiffi
2h

e0

r !
(6:240)

For larger values of a, the stress wave due to
gravity acting on Wm during impact should be
added to Eq. (6.237). Thus, for a larger than 0.2,

f ¼ 2f 0(1� e�2a)þ 2f 0
ffiffiffiffiffiffiffiffi
2ha

e0

r
(1þ e�2a) (6:241)

Equations (6.250) and (6.251) correspond to Eq.
(6.231), which was developed without taking wave
effects into account. For a sudden load, h ¼ 0, Eq.
(6.241) gives for the maximum stress 2f 0(1� e�2a),
not quite double the static stress, the result indi-
cated by Eq. (6.231). (See also Art. 6.83.)

(S. Timoshenko and J. N. Goodier, “Theory of
Elasticity,” S. Timoshenko and D. H. Young,
“Engineering Mechanics,” and D. D. Barkan,
“Dynamics of Bases and Foundations,” McGraw-
Hill Book Company, New York, books.mcgraw-
hill.com.)

6.83 Dynamic Analysis of
Simple Structures

Articles 6.81 and 6.82 present a theoretical basis for
analysis of structures under dynamic loads. As
noted in Art. 6.81, an approximate solution based
on an idealized representation of an actual member
or structure is advisable for dynamic analysis and
design. Generally, the actual structure may be
conveniently represented by a system of masses
and massless springs, with additional resistances
to account for damping. In simple cases, the masses
may be set equal to the actual masses; otherwise,
equivalent massesmay be substituted for the actual
masses (Art. 6.85). The spring constants are the
ratios of forces to deflections (see Art. 6.81).

Usually, for structural purposes, the data sought
are the maximum stresses in the springs and their
maximum displacements and the time of occur-
rence of the maximums. This time generally is
computed in terms of the natural period of
vibration of the member or structure or in terms
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of the duration of the load. Maximum displace-
ment may be calculated in terms of the deflection
that would result if the load were applied
gradually.

The term D by which the static deflection e0,
spring forces, and stresses are multiplied to obtain
the dynamic effects is called the dynamic load
factor. Thus, the dynamic displacement is

y ¼ De0 (6:242)

and the maximum displacement ym is determined
by the maximum dynamic load factor Dm, which
occurs at time tm.

6.83.1 One-Degree System

Consider the one-degree-of-freedom system in Fig.
6.99a. It may represent a weightless beam with a
mass weighing W lb applied at midspan and
subjected to a varying force Fo f(t), or a rigid frame
with a mass weighing W lb at girder level and
subjected to this force. The force is represented by
an arbitrarily chosen constant force Fo times f(t),
a function of time.

If the system is not damped, the equation of
motion in the elastic range is

W

g

d2y

dt2
þ ky ¼ Fof (t) (6:243)

where k is the spring constant and g the accelera-
tion due to gravity, 386 in/s2. The solution consists
of two parts. The first, called the complementary
solution, is obtained by setting f(t) ¼ 0. This
solution is given by Eq. (6.211). To it must be

added the second part, the particular solution,
which satisfies Eq. (6.243).

The general solution of Eq. (6.243), arrived at by
treating an element of the force-time curve (Fig.
6.99b) as an impulse, is

y ¼ yo cosvtþ no
v
sinvt

þ e0v
ðt
0

f (t) sinv(t� t) dt

(6:244)

where y ¼ displacement of mass from equilibrium
position, in

yo ¼ initial displacement of mass (t ¼ 0), in

v ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
kg=W

p ¼ natural circular frequency of
free vibration

k ¼ spring constant ¼ force producing unit
deflection, lb/in

no ¼ initial velocity of mass, in/s

e0 ¼ Fo/k ¼ displacement under static load,
in

A closed solution is possible if the integral can be
evaluated.

Assume, for example, the mass is subjected to a
suddenly applied force Fo that remains constant
(Fig. 6.100a). If yo and no are initially zero, the
displacement y of the mass at any time t can be
obtained from the integral in Eq. (6.244) by setting
f(t) ¼ 1:

y ¼ e0v
ðt
0

sinv(t� t) dt ¼ e0(1� cosvt) (6:245)

The dynamic load factor D ¼ 1 2 cos vt. It has a
maximum value Dm ¼ 2 when t ¼ p/v. Figure

Fig. 6.99 One-degree system acted on by a
varying force.

Fig. 6.100 Harmonic vibrations (b) result when
a constant force (a) is applied to an undamped one-
degree system like the one in Fig. 6.99a.
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6.100b shows the variation of displacement with
time.

6.83.2 Multidegree Systems

A multidegree lumped-mass system may be
analyzed by the modal method after the natural
frequencies of the normal modes have been
determined (Art. 6.80). This method is restricted to
linearly elastic systems in which the forces applied
to the masses have the same variation with time.
For other cases, numerical analysis must be used.

In the modal method, each normal mode is
treated as an independent one-degree system. For
each degree of the system, there is one normal
mode. A natural frequency and a characteristic
shape are associated with each mode. In each
mode, the ratio of the displacements of any two
masses is constant with time. These ratios define
the characteristic shape. The modal equation of
motion for each mode is

d2An

dt2
þ v2

nAn ¼ g f (t)
Pj

r¼1 FrfrnPj
r¼1 Wrf

2
rn

(6:246)

where An ¼ displacement in nth mode of arbitra-
rily selected mass

vn ¼ natural frequency of nth mode

Frf(t) ¼ varying force applied to rth mass

Wr ¼ weight of rth mass

j ¼ number of masses in system

frn ¼ ratio of displacement in nth mode of
rth mass to An

g ¼ acceleration due to gravity

We define the modal static deflection as

A0
n ¼ g

Pj
r¼1 Frfrn

v2
n

Pj
r¼1 Wrf

2
rn

(6:247)

Then, the response for each mode is given by

An ¼ DnA
0
n (6:248)

where Dn is the dynamic load factor. Since Dn

depends only on vn and f(t), the variation of
force with time, solutions for Dn obtained for
one-degree systems also apply to multidegree
systems. The total deflection at any point is the
sum of the displacements for each mode, SAnfrn,
at that point.

6.83.3 Response of Beams

The response of beams to dynamic forces can be
determined in a similar way. The modal static
deflection is defined by

A0
n ¼

Ð L
0 p(x)fn(x)dx

v2
n(w=g)

Ð L
0 f2

n(x)dx
(6:249)

where p(x) ¼ load distribution on span [p(x)f(t) is
varying force]

fn(x) ¼ characteristic shape of nth mode (see
Art. 6.81)

L ¼ span length

w ¼ uniformly distributedweight on span

The response of the beam then is given by Eq.
(6.248) and the dynamic deflection is the sum of the
modal components, SAnfn(x).

Nonlinear Responses n When the struc-
ture does not react linearly to loads, the equations
of motion can be solved by numerical analysis if
resistance is a unique function of displacement.
Sometimes, the behavior of the structure can be
represented by an idealized resistance displace-
ment diagram that makes possible a solution in
closed form. Figure 6.101a shows such a diagram.

6.83.4 Elastic-Plastic
Response

Resistance is assumed linear (R ¼ ky) until a
maximum Rm is reached. After that, R remains
equal to Rm for increases in y substantially larger
than the displacement ye at the elastic limit. Thus,
some portions of the structure deform into the
plastic range. Figure 6.101a, therefore, may be used
for ductile structures only rarely subjected to
severe dynamic loads. When this diagram can be
used for designing such structures, more economi-
cal designs can be produced than for structures
limited to the elastic range because of the high
energy-absorption capacity of structures in the
plastic range.

For a one-degree system, Eq. (6.243) can be used
as the equation of motion for the initial sloping part
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of the diagram (elastic range). For the second stage,
ye , y , ym where ym is the maximum displace-
ment, the equation is

W

g

d2y

dt2
þ Rm ¼ Fof (t) (6:250)

For the unloading stage, y , ym, the equation is

W

g

d2y

dt2
þ Rm � k(ym � y) ¼ Fof (t) (6:251)

Suppose, for example, the one-degree un-
damped system in Fig. 6.99a behaves in accordance
with the bilinear resistance function of Fig. 6.101a
and is subjected to a suddenly applied constant
load (Fig. 6.101b). With zero initial displacement
and velocity, the response in the first stage (y , ye),
according to Eq. (6.245), is

y ¼ e0(1� cosvt1)

dy

dt
¼ e0v sinvt1

(6:252)

Fig. 6.101 Response in the elastic range of a one-degree system with resistance characteristics plotted
in (a) to a constant force (b) is shown in (c).
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Equation (6.245) also indicates that the displace-
ment ye will be reached at a time te such that
cos vte ¼ ye/e

0.
For convenience, let t2 ¼ t 2 te be the time in the

second stage; thus, t2 ¼ 0 at the start of that stage.
Since the condition of the system at that time is the
same as the condition at the end of the first stage,
the initial displacement is ye and the initial velocity
e0v sin vte. The equation of motion is

W

g

d2y

dt2
þ Rm ¼ Fo (6:253)

The solution, taking into account initial conditions
after integrating, for ye , y , ym is

y ¼ g

2W
(Fo � Rm)t

2
2 þ e0vt2 sinvte þ ye (6:254)

Maximum displacement occurs at the time

tm ¼ Wve0

g(Rm � Fo)
sinvte (6:255)

and can be obtained by substituting tm in Eq.
(6.254).

The third stage, unloading after ym has been
reached, can be determined from Eq. (6.251) and
conditions at the end of the second stage. The
response, however, is more easily found by noting
that the third stage consists of an elastic, harmonic
residual vibration. In this stage, the amplitude of
vibration is (Rm 2 Fo)/k since this is the distance
between the neutral position and maximum
displacement, and in the neutral position the
spring force equals Fo. Hence, the response,
obtained directly from Eq. (6.245), is ym2
(Rm 2 Fo)/k for e0 because the neutral position,
y ¼ ym 2 (Rm 2 Fo)/k, occurs when vt3 ¼ p/2. The
solution is

y ¼ ym � Rm � Fo
k

þ Rm � Fo
k

cosvt3 (6:256)

where t3 ¼ t 2 te 2 tm.
Response in the three stages is shown in

Fig. 6.101c. In that diagram, however, to represent
a typical case, the coordinates have been made
nondimensional by expressing y in terms of ye and
the time in terms of T, the natural period of
vibration.

(J. M. Biggs, “Introduction to Structural
Dynamics” and R. Clough and J. Penzien,
“Dynamics of Structures,” McGraw-Hill Book
Company, New York, books.mcgraw-hill.com;

D. G. Fertis and E. C. Zobel, “Transverse Vibration
Theory,” The Ronald Press Company, New York;
N. M. Newmark and E. Rosenbleuth, “Fundamen-
tals of Earthquake, Engineering,” Prentice-Hall,
Inc., Englewood Cliffs, N.J., www.prenhall.com.)

6.84 Resonance and Damping

Damping in structures, due to friction and other
causes, resists motion imposed by dynamic loads.
Generally, the effect is to decrease the amplitude
and lengthen the period of vibrations. If damping is
large enough, vibration may be eliminated.

When maximum stress and displacement are
the prime concern, damping may not be of great
significance for short-time loads. These maximums
usually occur under such loads at the first peak of
response, and damping, unless unusually large,
has little effect in a short period of time. But under
conditions close to resonance, damping has con-
siderable effect.

Resonance is the condition of a vibrating system
under a varying load such that the amplitude of
successive vibrations increases. Unless limited by
damping or changes in the condition of the system,
amplitudes may become very large.

Two forms of damping generally are assumed
in structural analysis, viscous and constant
(Coulomb). For viscous damping, the damping
force is taken proportional to the velocity but
opposite in direction. For Coulomb damping, the
damping force is assumed constant and opposed in
direction to the velocity.

6.84.1 Viscous Damping

For a one-degree system (Arts. 6.81 to 6.83), the
equation of motion for a mass weighing W lb and
subjected to a force F varying with time but
opposed by viscous damping is

W

g

d2y

dt2
þ ky ¼ F� c

dy

dt
(6:257)

where y ¼ displacement of mass from equilibrium
position, in

k ¼ spring constant, lb/in

t ¼ time, s

c ¼ coefficient of viscous damping

g ¼ acceleration due to gravity ¼ 386 in/s2

6.106 n Section Six

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

STRUCTURAL THEORY



Let us set b ¼ cg/2W and consider those cases
in which b , v, the natural circular frequency
[Eq. (6.208)], to eliminate unusually high damping
(overdamping). Then, for initial displacement yo and
velocity no, the solution of Eq. (6.257) with F ¼ 0 is

y ¼ e�bt no þ byo
vd

sinvdtþ yo cosvdt

� �
(6:258)

where vd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � b2

p
and e ¼ 2.71828. Equation

(6.258) represents a decaying harmonic motion with
b controlling the rate of decay and vd the natural
frequency of the damped system.

When b ¼ v

y ¼ e�vt[notþ (1þ vt)yo] (6:259)

which indicates that the motion is not vibratory.
Damping producing this condition is called critical,
and the critical coefficient is

cd ¼ 2Wb

g
¼ 2Wv

g
¼ 2

ffiffiffiffiffiffiffi
kW

g

s
(6:260)

Damping sometimes is expressed as a percent of
critical (b as a percent of v).

For small amounts of viscous damping, the
damped natural frequency is approximately equal
to the undamped natural frequency minus 1

2b
2=v.

For example, for 10% critical damping (b ¼ 0.1v),
vd ¼ v[1� 1

2 (0:1)
2] ¼ 0:995v. Hence, the decrease

in natural frequency due to small amount of
damping generally can be ignored.

Damping sometimes is measured by logarith-
mic decrement, the logarithm of the ratio of two
consecutive peak amplitudes during free vibration.

Logarithmic decrement ¼ 2pb

v
(6:261)

For example, for 10% critical damping, the loga-
rithmic decrement equals 0.2p. Hence, the ratio of a
peak to the following peak amplitude is e0.2p ¼
1.87.

The complete solution of Eq. (6.257) with initial
displacement yo and velocity no is

y ¼ e�bt no þ byo
vd

sinvdtþ yo cosvdt

� �

þ e0
v2

vd

ðt
0

f (t)e�b(1�t) sinvd(t� t) dt

(6:262)

where e0 is the deflection that the applied force
would produce under static loading. Equation
(6.262) is identical to Eq. (6.244) when b ¼ 0.

Unbalanced rotating parts of machines produce
pulsating forces that may be represented by
functions of the form Fo sinat. If such a force is
applied to an undamped one-degree system, Eq.
(6.244) indicates that if the system starts at rest the
response will be

y ¼ Fog

W

1=v2

1� a2=v2

� �
sinat� a

v
sinvt

� �
(6:263)

And since the static deflection would be Fo/k ¼
Fog/Wv2, the dynamic load factor is

D ¼ 1

1� a2=v2
sinat� a

v
sinvt

� �
(6:264)

If a is small relative to v, maximum D is nearly
unity; thus, the system is practically statically
loaded. If a is very large compared with v, D is
very small; thus, the mass cannot follow the rapid
fluctuations in load and remains practically
stationary. Therefore, when a differs appreciably
from v, the effects of unbalanced rotating parts are
not too serious. But if a ¼ v, resonance occurs; D
increases with time. Hence, to prevent structural
damage, measures must be taken to correct the
unbalanced parts to change a, or to change the
natural frequency of the vibrating mass, or
damping must be provided.

The response as given by Eq. (6.263) consists
of two parts, the free vibration and the forced
part. When damping is present, the free vibra-
tion is of the form of Eq. (6.268) and is rapidly
damped out. Hence, the free part is called the
transient response, and the forced part, the
steady-state response. The maximum value of
the dynamic load factor for the steady-state
response Dm is called the dynamic magnification
factor. It is given by

Dm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� a2=v2)2 þ (2ba=v2)2

p (6:265)

With damping, then, the peak values of Dm occur
when

a ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

v2

s
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and are approximately equal to v/2b. For example,
for 10% critical damping,

Dm ¼ v

0:2v
¼ 5

So even small amounts of damping significantly
limit the response at resonance.

6.84.2 Coulomb Damping

For a one-degree system with Coulomb damping
the equation of motion for free vibration is

W

g

d2y

dt2
þ ky ¼ +Ff (6:266)

where Ff is the constant friction force and the
positive sign applies when the velocity is negative.
If initial displacement is yo and initial velocity is
zero, the response in the first half cycle, with nega-
tive velocity, is

y ¼ yo �
Ff

k

� �
cosvtþ Ff

k
(6:267)

equivalent to a system with a suddenly applied
constant force. For the second half cycle, with
positive velocity, the response is

y ¼ �yo þ 3
Ff

k

� �
cosv t� p

v

� �
� Ff

k

If the solution is continued with the sign of Ff
changing in each half cycle, the results will indicate
that the amplitude of positive peaks is given by
yo 2 4nFf/k, where n is the number of complete
cycles, and the response will be completely
damped out when t ¼ kyoT/4Ff, where T is the
natural period of vibration, or 2p/v.

Analysis of the steady-state response with
Coulomb damping is complicated by the possi-
bility of frequent cessation of motion.

(S. Timoshenko, D. H. Young, and W. Weaver,
“Vibration Problems in Engineering,” 4th ed., John
Wiley & Sons, Inc., New York, www.wiley.com;
D. D. Barkan, “Dynamics of Bases and Foun-
dations,” McGraw-Hill Book Company, New York;
W. C. Hurty and M. F. Rubinstein, “Dynamics of
Structures,” Prentice-Hall, Inc., Englewood Cliffs,
N.J., www.prenhall.com.)

6.85 Approximate Design for
Dynamic Loading

Complex analysis and design methods seldom are
justified for structures subjected to dynamic
loading because of lack of sufficient information
on loading, damping, resistance to deformation,
and other factors. In general, it is advisable to
represent the actual structure and loading by
idealized systems that permit a solution in closed
form. (See Arts. 6.80 to 6.83.)

Whenever possible, represent the actual struc-
ture by a one-degree system consisting of an
equivalent mass with massless spring. For struc-
tures with distributed mass, simplify the analysis
in the elastic range by computing the response only
for one or a few of the normal modes. In the plastic
range, treat each stage—elastic, elastic-plastic, and
plastic—as completely independent; for example, a
fixed-end beammay be treated, when in the elastic-
plastic stage, as a simply supported beam.

Choose the parameters of the equivalent system
to make the deflection at a critical point, such as the
location of the concentrated mass, the same as it
would be in the actual structure. Stresses in the
actual structure should be computed from the
deflection in the equivalent system.

Compute an assumed shape factor f for the
system from the shape taken by the actual structure
under static application of the loads. For example,
for a simple beam in the elastic range with
concentrated load at midspan, f may be chosen,
for x , L/2, as (Cx/L3)(3L2 2 4x2), the shape under
static loading, and C may be set equal to 1 to make
f equal to 1 when x ¼ L/2. For plastic conditions
(hinge at midspan), f may be taken as Cx/L, and C
set equal to 2, to make f ¼ 1 when x ¼ L/2.

For a structure with concentrated forces, let Wr

be the weight of the rth mass, fr the value of f at
the location of that mass, and Fr the dynamic force
acting on Wr. Then, the equivalent weight of the
idealized system is

We ¼
Xj
r¼1

Wrf
2
r (6:268)

where j is the number of masses. The equivalent
force is

Fe ¼
Xj
r¼1

Frfr (6:269)
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For a structure with continuous mass, the
equivalent weight is

We ¼
ð
wf2 dx (6:270)

where w is the weight in lb/lin ft. The equivalent
force is

Fe ¼
ð
qf dx (6:271)

for a distributed load q, lb/lin ft.
The resistance of a member or structure is the

internal force tending to restore it to its unloaded
static position. For most structures, a bilinear
resistance function, with slope k up to the elastic
limit and zero slope in the plastic range (Fig.
6.101a), may be assumed. For a given distribution
of dynamic load, maximum resistance of the
idealized system may be taken as the total load
with that distribution that the structure can
support statically. Similarly, stiffness is numerically
equal to the total load with the given distribution
that would cause a unit deflection at the point
where the deflections in the actual structure and
idealized system are equal. Hence, the equivalent
resistance and stiffness are in the same ratio to the
actual as the equivalent forces to the actual forces.

Let k be the actual spring constant, g the accel-
eration due to gravity, 386 in/s2, and

W0 ¼ We

Fe
SF (6:272)

where SF represents the actual total load. Then, the
equation of motion of an equivalent one-degree
system is

d2y

dt2
þ v2y ¼ g

SF

W0 (2:273)

and the natural circular frequency is

v ¼
ffiffiffiffiffiffi
kg

W0

r
(6:274)

The natural period of vibration equals 2p/v.
Equations (6.273) and (6.274) have the same form
as Eqs. (6.206), (6.208), and (6.243). Consequently,
the response can be computed as indicated in Arts.
6.80 to 6.82.

Whenever possible, select a load-time function
for SF to permit use of a known solution.

For preliminary design of a one-degree system
loaded into the plastic range by a suddenly

applied force that remains substantially constant
up to the time of maximum response, the
following approximation may be used for that
response:

ym ¼ ye
2(1� Fo=Rm)

(6:275)

where ye is the displacement at the elastic limit, Fo
the average value of the force, and Rm the
maximum resistance of the system. This equation
indicates that for purely elastic response, Rm must
be twice Fo; whereas, if ym is permitted to be
large, Rm may be made nearly equal to Fo, with
greater economy of material.

For preliminary design of a one-degree system
subjected to a sudden load with duration td less
than 20% of the natural period of the system, the
following approximation can be used for the
maximum response:

ym ¼ 1

2
ye

Fo
Rm

vtd

� �2

þ1

" #
(6:276)

where Fo is the maximum value of the load and v
the natural frequency. This equation also indicates
that the larger ym is permitted to be, the smaller Rm

need be.
For a beam, the spring force of the equivalent

system is not the actual force, or reaction, at the
supports. The real reactions should be deter-
mined from the dynamic equilibrium of the
complete beam. This calculation should include
the inertia force, with distribution identical with
the assumed deflected shape of the beam. For
example, for a simply supported beam with uni-
form load, the dynamic reaction in the elastic
range is 0.39R þ 0.11F, where R is the resistance,
which varies with time, and F ¼ qL is the load.
For a concentrated load F at midspan, the
dynamic reaction is 0.78R 2 0.28F. And for con-
centrated loads F/2 at each third point, it is
0.62R 2 0.12F. (Note that the sum of the co-
efficients equals 0.50, since the dynamic-reaction
equations must hold for static loading, when
R ¼ F.) These expressions also can be used for
fixed-end beams without significant error. If high
accuracy is not required, they also can be used
for the plastic range.
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Structures usually are designed to resist the
dynamic forces of earthquakes by use of equivalent
static loads. (See Arts. 15.4 and 17.3.)

6.85.1 Basics of Structural
Dynamics

The basic element in structural dynamics is the
single-degree-of-freedom system. Many of the
available vibration criteria utilize a strategy to sim-
plify a complex floor system into this basic element.
The single-degree-of-freedom system is rep-
resented by a single mass m, spring k, and damper
c, as shown in Fig. 6.102. The governing differential
equation of motion for this system follows.

Equation ofmotion for single degree of freedom:

m€yy(t)þ c_yy(t)þ ky(t) ¼ F(t)

When the mass m is subjected to a time-
dependent input force F(t), the result is a vibration
response which can be described by the displace-
ment y(t), the velocity, _yy(t), and the acceleration,
€yy(t). The equation of motion for a single-degree-
of-freedom system can also be formulated in terms
of the natural frequency of the free vibration and
ratio of critical damping.

€yy(t)þ 2zv0 _yy(t)þ v2
0y(t) ¼

F(t)

m
(6:277)

where v0 ¼ circular natural frequency, radians/s

¼ ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 2pf0

f0 ¼ natural frequency, Hz

z ¼ ratio of critical damping

¼ c=ccr

ccr ¼ critical damping, the value of damping
for which the roots of the characteristic
equation are equal

ccr ¼ 2
ffiffiffiffiffiffi
km

p
(6:278)

Also shown in Fig. 6.102 are two input forces
commonly used to represent different sources of
floor excitations. A sinusoidal force input func-
tion is often used to predict floor response due
to rhythmic excitations. The ramp force input
function is often used to assess the floor system
response to transient excitations such as walking.
The closed-form solutions for the response of a
single-degree-of-freedom system subjected to
these input forces can be found in most
structural dynamics textbooks and will not be
presented here.

Continuous systems, such as beams or plate-
like structures, contain an infinite number of
free vibration modes. Each of these modes can
be characterized by its mode shape and its
associated natural frequency. Figure 6.103 illus-
trates the first three modes of vibration for a
simply supported beam with a uniform mass
distribution. The vibration response at any point
on a beam can be approximated by the sum of
the individual modal contributions, truncated at
some finite mode, at that point in space and
time.

The fundamental natural frequency f1 of a
simply supported beam with a uniform mass
distribution, as shown in Fig. 6.103, can also be
conveniently expressed in terms of the static

Fig. 6.102 Single-degree-of-freedom system and
two common input forces.
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deflection due to distributed weight. The deriva-
tion of this expression is as follows:

f1 ¼ p

2

ffiffiffiffiffiffiffiffiffi
EI

�mmL4

r
¼ p

2

ffiffiffiffiffiffiffiffiffiffiffi
5g

384D

r
¼ 0:18

ffiffiffiffi
g

D

r
(6:279)

D ¼ 5wL4

384EI
¼ 5g

384

�mmL4

EI
(6:280)

EI

�mmL4
¼ 5g

384D
(6:281)

where w ¼ uniformly distributed load on a beam

¼ �mm � g
�mm ¼ uniformly distributed mass on beam

g ¼ acceleration of gravity ¼ 386.4 in/s2 or
9800 mm/s2

L ¼ beam length

E ¼ modulus of elasticity

I ¼ moment of inertia for the beam cross
section

The expression for the fundamental natural
frequency, in terms of static deflection, is often
misused in determining the natural frequency for
other beam configurations. In particular, the
expression f1 above cannot be used for continuous
beams. There is a common misconception that
providing continuity of beams over a support will

Fig. 6.103 Modes of vibration for beams with uniformly distributed mass.
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raise the fundamental frequency of the system.
While it is true that continuity reduces the
maximum static deflection, the fundamental natu-
ral frequency remains the same. This concept is
illustrated in Fig. 6.103.

Platelike structures, such as beam and girder
systems, also possess an infinite number of natural
frequencies and mode shapes. Figure 6.104 illus-
trates the natural frequencies and mode shapes, for
the first four modes, for a one-bay floor system
comprised of a slab, joists, and girders. In addition
to the mass distribution, the frequencies and mode
shapes are affected by the slab, joist (or beam), and
girder properties. This concept is explored in the
following subsection. Close inspection of Fig. 6.104
and some intuition reveals that an activity like
jumping at the center of the floor would cause
dynamic amplitudes consisting of the superposi-

tion of modes 1, 4 and higher-order modes with a
modal amplitude at that point.

One particular phenomenon to carefully con-
sider and, if possible, avoid is that of resonance.
Resonance occurs when a component of a har-
monic excitation corresponds to one of the natural
frequencies of the structure. Vibration amplitudes
are greatly amplified in lightly damped structures
such as steel floor systems.

6.85.2 Evaluation of
Fundamental Natural
Frequency for a Floor
System

As illustrated in Fig. 6.104, the dynamic behavior of
a floor system is very complex. There are, however,

Fig. 6.104 Mode shapes and natural frequencies from a computer analysis.
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commonly accepted procedures to determine
dynamic characteristics of floor systems. The
following discussion provides necessary infor-
mation and a procedure to estimate the frequency
of the first mode of free vibration for a steel floor
system. A close approximation of the fundamental
natural frequency of a floor system can be achieved
by considering the frequencies of the major com-
ponents of the floor system independently and
then combining them as outlined in the procedure
below.

Estimated System Frequency

1

f 2s
¼ 1

f 2b
þ 1

f 2g
þ 1

f 2c
(6:282)

where fs ¼ first natural frequency of the floor
system, Hz

fb ¼ frequency of the beam or joist member,
Hz; see equations below

fg ¼ frequency of the girder members; the
lowest girder frequency should be used
if the girder frequencies differ; the
girder term in the system expression
above can be neglected if the beams or
joists are supported by a rigid support
such as a wall

fc ¼ frequency of the column, Hz; except in
unusual circumstances, this term is
generally neglected; the movement of
the columns is usually insignificant
relative to the beam and girder motion

Beam or Joist Frequency

fb ¼ K

ffiffiffiffiffiffiffiffiffi
gEIt
wL4

r
(6:283)

where K ¼ 1.57 for simply supported beams;
0.56 for cantilevered beams; refer to
Murrary and Hendrick for overhanging
beams

g ¼ acceleration of gravity; 386.4 in/s2 or
9800 mm/s2

E ¼ modulus of elasticity for transformed
section, 29,000 ksi for steel

It ¼ transformed moment of inertia; when
the steel deck supporting the concrete
rests directly on the beam or joist
(connected by welds, screws, mechan-
ical shear connectors, etc.), assume
composite action between the steel
member and the concrete slab; see
Sec. 9.3.4 for more information on the
computation of composite member
properties

w ¼ floor weight per unit length of beam;
value should be the actual expected
service load on the beam; overestimat-
ing this value can result in a non-
conservative prediction of acceptability;
10 percent to 25 percent of the live load
used in strength calculations is
suggested for design

L ¼ beam or joist span

Girder Frequency

fg ¼ K

ffiffiffiffiffiffiffiffiffi
gEIt
wL4

r
(6:284)

where It ¼ transformed moment of inertia

w ¼ floor weight per unit length of girder;
value should be the actual expected
service load on the girder; loads from
the beams or joists framing into the
girder can usually be treated as con-
tinuous regardless of the spacing

Note: All other variables are as defined for the
beam or joist frequency above.

Column Frequency

fc ¼ 1

2p

ffiffiffiffiffiffiffiffiffi
gAE

PL

r
(6:285)

where A ¼ area of the column section

P ¼ load on the column; value should be the
actual expected service load

L ¼ length of column

Note: All other variables are as defined
previously.
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