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Preface

 

The term 

 

model,

 

 as used in this text, is understood to refer to the ensemble of
equations which describe and interrelate the variables and parameters of a physical
system or process. The term 

 

modeling

 

 in turn refers to the derivation of appropriate
equations that are solved for a set of system or process variables and parameters.
These solutions are often referred to as simulations, i.e., they simulate or reproduce
the behavior of physical systems and processes.

Modeling is practiced with uncommon frequency in the engineering disciplines
and indeed in all physical sciences where it is often known as “Applied Mathemat-
ics.” It has made its appearance in other disciplines as well which do not involve
physical processes per se, such as economics, finance, and banking. The reader will
note a chemical engineering slant to the contents of the book, but that discipline
now reaches out, some would say with tentacles, far beyond its immediate narrow
confines to encompass topics of interest to both scientists and engineers. We address
the book in particular to those in the disciplines of chemical, mechanical, civil, and
environmental engineering, to applied chemists and physicists in general, and to
students of applied mathematics.

The text covers a wide range of physical processes and phenomena which
generally call for the use of mass, energy, and momentum or force balances, together
with auxiliary relations drawn from such subdisciplines as thermodynamics and
chemical kinetics. Both static and dynamic systems are covered as well as processes
which are at a steady state. Thus, transport phenomena play an important but not
exclusive role in the subject matter covered. This amalgam of topics is held together
by the common thread of applied mathematics.

A plethora of related specialized tests exist. Mass and energy balances which
arise from their respective conservation laws have been addressed by Reklaitis
(1983), Felder and Rousseau (1986) and Himmelblau (1996). The books by Reklaitis
and Himmelblau in particular are written at a high level. Force and momentum
balances are best studied in texts on fluid mechanics, among many of which are by
Streeter, Wylie, and Bedford (1998) and White (1986) stand out. For a comprehensive
and sophisticated treatment of transport phenomena, the text by Bird, Stewart, and
Lightfoot (1960) remains unsurpassed. Much can be gleaned on dynamic or unsteady
systems from process control texts, foremost among which are those by Stephano-
poulos (1984), Luyben (1990) and Ogunnaike and Ray (1996).

In spite of this wealth of information, students and even professionals often
experience difficulties in setting up and solving even the simplest models. This can
be attributed to the following factors:

• A major stumbling block is the proper choice of model. How complex
should it be? One can always choose to work at the highest and most
rigorous level of partial differential equations (PDE), but this often leads
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to models of unmanageable complexity and dimensionality. Physical
parameters may be unknown and there is a rapid loss of physical insight
caused by the multidimensional nature of the solution. Constraints of time
and resources often make it impossible to embark on elaborate exercises
of this type, or the answer sought may simply not be worth the effort. It
is surprising how often the solution is needed the next day, or not at all.
Still, there are many occasions where PDEs are unavoidable or advantage
may be taken of existing solutions. This is particularly the case with PDEs
of the “classical” type, such as those which describe diffusion or conduc-
tion processes. Solutions to such problems are amply documented in the
definitive monographs by Carslaw and Jaeger (1959) and by Crank (1978).
Even here, however, one often encounters solutions which reduce to PDEs
of lower dimensionality, to ordinary differential equations (ODEs) or even
algebraic equations (AEs). The motto must therefore be “PDEs if neces-
sary, but not necessarily PDEs.”

• The second difficulty lies in the absence of precise solutions, even with
the use of the most sophisticated models and computational tools. Some
systems are simply too complex to yield exact answers. One must resort
here to what we term 

 

bracketing the solution,

 

 i.e., establishing upper or
lower bounds to the answer being sought. This is a perfectly respectable
exercise, much practiced by mathematicians and theoretical scientists and
engineers.

• The third difficulty lies in making suitable simplifying assumptions and
approximations. This requires considerable physical insight and engineer-
ing skill. Not infrequently, a certain boldness and leap in imagination is
called for. These are not easy attributes to satisfy.

Overcoming these three difficulties constitute the core of 

 

The

 

 

 

Art of Modeling.

 

Although we will not make this aspect the exclusive domain of our effort, a large
number of examples and illustrations will be presented to provide the reader with
some practice in this difficult craft.

Our approach will be to proceed slowly and over various stages from the
mathematically simple to the more complex, ultimately looking at some sophisti-
cated models. In other words, we propose to model “from the bottom up” rather
than “from the top down,” which is the normal approach particularly in treatments
of transport phenomena. We found this to be pedagogically more effective although
not necessarily in keeping with academic tradition and rigor.

As an introduction, we establish in Chapter 1 a link between the physical system
and the mathematical expressions that result. This provides the reader with a sense
of the type and degree of mathematical complexity to be expected. Some simple
classical models such as the

 

 stirred tank 

 

and what we term the 

 

one-dimensional pipe

 

and 

 

quenched steel billet

 

 are introduced. We examine as well the types of balances,
i.e., the equations which result from the application of various conservation laws to
different physical entities and the information to be derived from them.

These introductory remarks lead, in Chapter 2, to a first detailed examination
of practical problems and the skills required in the setting up of equations arising
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from the stirred tank and the 1-d pipe models. Although deceptively simple in
retrospect, the application of these models to real problems will lead to a first
encounter with the art of modeling. A first glimpse will also be had of the skills
needed in setting upper and lower bounds to the solutions. We do this even though
more accurate and elaborate solutions may be available. The advantage is that the
bounds can be established quickly and it is surprising how often this is all an engineer
or scientist needs to do. The examples here and throughout the book are drawn from
a variety of disciplines which share a common interest in transport phenomena and
the application of mass, energy, and momentum or force balances. From classical
chemical engineering we have drawn examples dealing with heat and mass transfer,
fluid statics and dynamics, reactor engineering, and the basic unit operations (dis-
tillation, gas absorption, adsorption, filtration, drying, and membrane processes,
among others). These are also of general interest to other engineering disciplines.
Woven into these are illustrations which combine several processes or do not fall
into any rigid category.

These early segments are followed, in Chapter 3, by a more detailed exposition
of mass, energy and momentum transport, illustrated with classical and modern
examples. The reader will find here, as in all other chapters, a rich choice of solved
illustrative examples as well as a large number of practice problems. The latter are
worth the scrutiny of the reader even if no solution is attempted. The mathematics
up to this point is simple, all ODE solutions being obtained by separation of variables.

An intermezzo now occurs in which underlying mathematical topics are taken
up. In Chapter 4, an exposition is given of important analytical and numerical
solutions of ordinary differential equations in which we consider methods applicable
to first and second order ODEs in some detail. Considerable emphasis is given to
deducing the qualitative nature of the solutions from the underlying model equations
and to linking the mathematics to the physical processes involved. Both linear and
nonlinear analysis is applied. Linear systems are examined in more detail in a follow-
up chapter on Laplace transformation.

We return to modeling in Chapter 6 by taking up three specialized topics dealing
with biomedical engineering and biotechnology, environmental engineering, as well
as what we term real-world problems. The purpose here is to apply our modeling
skills to specific subject areas of general usefulness and interest. The real-world
problems are drawn from industrial sources as well as the consulting practices of
the author and his colleagues and require, to a greater degree than before, the skills
of simplification, of seeking out upper and lower bounds and of good physical
insight. The models are at this stage still at the AE and ODE level.

In the final three chapters, we turn to the difficult topic of partial differential
equations. Chapter 7 exposes the reader to a first sight and smell of the beasts and
attempts to allay apprehension by presenting some simple solutions arrived at by
the often overlooked methods of superposition or by locating solutions in the liter-
ature. We term this PDEs PDQ (Pretty Damn Quick). Chapter 8 is more ambitious.
It introduces the reader to the dreaded topic of vector calculus which we apply to
derive generalized formulations of mass, energy, and momentum balance. The unpal-
atable subject of Green’s functions makes its appearance, but here as elsewhere, we
attempt to ease the pain by relating the new concepts to physical reality and by
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providing numerous illustrations. We conclude, in Chapter 9, with a presentation of
the classical solution methods of separation of variables and integral transforms and
introduce the reader to the method of characteristics, a powerful tool for the solution
of quasilinear PDEs.

A good deal of this material has been presented over the past 3 decades in
courses to select fourth year and graduate students in the faculty of Applied Science
and Engineering of the University of Toronto. Student comments have been invalu-
able and several of them were kind enough to share with the author problems from
their industrial experience, among them Dr. K. Adham, Dr. S.T. Hsieh, Dr. G. Norval,
and Professor C. Yip. I am also grateful to my colleagues, Professor M.V. Sefton,
Professor D.E. Cormack, and Professor Emeritus S. Sandler for providing me with
problems from their consulting and teaching practices.

Many former students were instrumental in persuading the author to convert
classroom notes into a text, among them Dr. K. Gregory, Dr. G.M. Martinez, Dr. M.
May, Dr. D. Rosen, and Dr. S. Seyfaie. I owe a special debt of gratitude to S. (VJ)
Vijayakumar who never wavered in his support of this project and from whom I
drew a good measure of inspiration. A strong prod was also provided by Professor
S.A. Baldwin, Professor V.G. Papangelakis, and by Professor Emeritus J. Toguri.

The text is designed for undergraduate and graduate students, as well as prac-
ticing professionals in the sciences and in engineering, with an interest in modeling
based on mass, energy and momentum or force balances. The first six chapters
contain no partial differential equations and are suitable as a basis for a fourth-year
course in Modeling or Applied Mathematics, or, with some boldness and omissions,
at the third-year level. The book in its entirety, with some of the preliminaries and
other extraneous material omitted, can serve as a text in Modeling and Applied
Mathematics at the first-year graduate level. Students in the Engineering Sciences
in particular, will benefit from it.

It remains for me to express my thanks to Arlene Fillatre who undertook the
arduous task of transcribing the hand-written text to readable print, to Linda Staats,
University of Toronto Press, who miraculously converted rough sketches into pro-
fessional drawings, and to Bruce Herrington for his unfailing wit. My wife, Janet,
bore the proceedings, sometimes with dismay, but mostly with pride.
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Nomenclature

 

The quantities listed are expressed in SI Units. Note the equivalence 1 N = 1 kg
m/s

 

2

 

, 1 Pa = 1 kg/ms

 

2

 

, 1 J = 1 kg m

 

2

 

/s

 

2

 

.

A Area, m

 

2

 

A

 

C

 

Cross-sectional area, m

 

2

 

A

 

r

 

Pre-exponential Arrhenius factor, 1/s
a Absorptivity, dimensionless
a Interfacial area, m

 

2

 

/m

 

3

 

B

 

Magnetic field
Bi Biot number = hL/k, dimensionless
C Capacity FC

 

p

 

, J/SK
C Mass or molar concentration, kg/m

 

3

 

 or mole/m

 

3

 

C Speed of light, m/s
c Speed of sound, m/s
C{ } Cosine transform operation
C

 

D

 

Drag coefficient, dimensionless
C

 

p

 

Heat capacity at constant pressure, J/kg K or J/mole K
C

 

v

 

Heat capacity at constant volume, J/kg K or J/mole K
D D-operator = d/dx
D Diffusivity, m

 

2

 

/s
D Dilution Rate, 1/s
D Distillation or evaporation rate, mole/s

D Oxygen deficit = 
D

 

eff

 

Effective diffusivity in porous medium, m

 

2

 

/s
d

 

h

 

Hydraulic diameter = 4 A

 

C

 

/P, m
d Diameter, m

 

E

 

Electrical field
(E) Enzyme concentration, mole/m

 

3

 

E Fin efficiency, dimensionless
E

 

i

 

Isothermal catalyst effectiveness factor, dimensionless
E

 

ni

 

Non-isothermal catalyst effectiveness factor, dimensionless
ETC Effective therapeutic concentration, kg/m

 

3

 

erf(x) Error function = 

F Force, N
F Mass flow rate, kg/s
Fo Fourier number = 

 

α

 

t/L

 

2

 

, dimensionless
f Friction factor, dimensionless

C C kg mO O2 2

3* , /−

( / )2
2

0
π λλe d

X
−∫
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f Self-purification rate = k

 

L

 

a/k

 

r

 

, dimensionless
G Mass velocity, kg/m

 

2

 

s
G* Limiting mass velocity, kg/m

 

2

 

s
G

 

s

 

Carrier or solvent mass velocity, kg/m

 

2

 

s
G(P,Q) Green’s function
Gr Grashof number = 

 

ρ

 

2

 

β

 

gL

 

3

 

∆

 

T/

 

µ

 

2

 

, dimensionless
g Gravitational acceleration = 9.81 m

 

2

 

/s
H Enthalpy, J/kg or J/mole
H

 

′

 

Enthalpy flow rate, J/s

 

∆

 

H

 

f

 

Enthalpy of freezing or solidification, J/kg or J/mole

 

∆

 

H

 

r

 

Enthalpy of reaction, J/mole

 

∆

 

H

 

v

 

Enthalpy of vaporization, J/kg or J/mole
H Height, m
H Henry’s constant, m

 

3

 

/m

 

3

 

HTU Height of a transfer unit, m
H{ } Hankel transform operator
h Heat transfer coefficient, J/m

 

2

 

sK
h

 

f

 

Friction head, J/kg
I

 

k

 

(s) Modified Bessel function of the first kind and order k
i Electrical current, A

 

J

 

Current density, A/m

 

2

 

J

 

k

 

(x) Bessel function of first kind and order k
K Partition coefficient, m

 

3

 

/m

 

3

 

K Permeability, m/s or m

 

2

 

K

 

D

 

Dissociation constant = k

 

r

 

/k

 

f

 

, dimensionless
K

 

k

 

Modified Bessel function of second kind and order k
K

 

m

 

Michaelis-Menten constant, mole/m

 

3

 

K

 

0

 

Overall mass transfer coefficient, various units, see Table 3.6
K

 

s

 

Monod kinetics constant, mole/m

 

3

 

k Thermal conductivity, J/msK
k

 

c

 

, k

 

p

 

, k

 

x

 

, Film mass transfer coefficients, various units
k

 

y

 

, k

 

Y

 

k

 

e

 

Elimination rate constant, 1/s
k

 

r

 

Reaction rate constant, 1/s (first order)
k

 

eff

 

Effective thermal conductivity in porous medium, J/msK
L Length or characteristic length, m
L Ligand concentration, mol/m

 

3

 

L Liquid flow rate, kg/s or mole/s
L Pollutant concentration, kg/m

 

3

 

L{ } Laplace transform operator
LMCD Log-mean concentration difference, kg/m

 

3

 

, mole/m

 

3

 

 or Pa
LMTD Log-mean temperature difference, K
M Molar mass, g/mole

M

 

n

 

nth moment = ( ) ( )−
∞

∫ t F t e dtn st

0
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M

 

t

 

Mass sorbed to time t, kg
M

 

∞

 

Mass sorbed to time 

 

∞

 

, kg
Ma Mach number, dimensionless
m Mass, kg
N Dimensionless distance = K

 

0

 

a z/v
N Mass transfer rate, kg/s or mole/s
N

 

′

 

Mass flux, kg/m

 

2

 

s or mole/m

 

2

 

s
N Pipe number = fL/d, dimensionless
N Ma

 

2

 

N

 

av

 

Avogadro’s number = 6.02 

 

×

 

 10

 

23

 

 1/mole
Np Number of theoretical plates or stages
NTU Number of transfer units, N

 

T

 

Nu Nusselt number = hL/k, dimensionless
n Number of moles
P Perimeter, m
P Power, J/s or W
P

 

0

 

Vapor pressure, Pa
Pr Prandtl number = C

 

p

 

µ

 

/k, dimensionless
P

 

T

 

Total pressure
p Pressure
p dy/dx (p-substitution)
Q Strength of heat source, m

 

3

 

K
Q Volumetric flow rate, m

 

3

 

/s
q Amount adsorbed, kg/kg
q Rate of heat transfer, J/s
q′ Heat flux, J/m2s
q′ Vehicle flux, vehicles/m2s
qC Rate of convective heat transfer, J/s
qm Amount adsorbed in monolayer, kg/kg
qr Rate of radiative heat transfer, J/s
q+, q– Electrical charge, C
R Gas constant = 8.314 J/mole K
R, r0 Radius, m
R Receptor concentration, receptors/cell
R Thermal resistance, ms/J
Re Reynolds number = Lvρ/µ, dimensionless
r Radial variable, m
r Reaction rate, mole/m3s
rMax Maximum reaction rate (Michaelis Menten), mole/m3s
S Energy source, J/m3s
S Shape factor, m
(S) Substrate concentration, mole/m3

S Steam consumption, kg/s
S{ } Sine transform operator
Sc Schmidt number = µ/ρD, dimensionless
Sh Sherwood number = kL/D, dimensionless
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St Stanton number = Nu/RePr or Sh/ReSc, dimensionless
s Arc length, m
s Laplace transform parameter, dimensionless
s Specific gravity, dimensionless
T Dimensionless time = K0a(ρf /ρb)(t/H)
T Temperature, K or °C
t Time, s
U Internal energy, J/kg or J/mole
U Outer field velocity, m/s
U Overall heat transfer coefficient, J/m2sK
V Electrostatic potential, V
V Vapor flow rate, kg/s or mole/s
v Velocity, m/s
V Volume, m3

v∞ Approach velocity, m/s
W Moles remaining in a still
W Width, m
Wm Minimum bed weight (sorption), kg/kg
w Rate of work done on surroundings, J/s
ws Rate of shaft work, J/s
X Mass ratio (liquid or solid), kg/kg
x Liquid mole fraction, dimensionless
x Rectangular coordinate, m
x* Dimensionless distance = xα/vd2 or xD/vd2

Y Mass ratio (gas), kg/kg
y Dimensionless radial distance, r/R
y Rectangular coordinate, m
y Vapor or gas mole fraction, dimensionless
z Rectangular coordinate
Z Flow rate ratio (dialysis) = QB/QD, dimensionless

GREEK SYMBOLS

α Separate factor, dimensionless
α Thermal diffusivity, m2/s
α Filter cake resistance = [K(1 – ε)ρs)–1

β Compressibility = 

β Thermal parameter = (–∆HrDeff/keff Ts)

β Volumetric coefficient of expansion = 

Γ(n) Gamma function = 

γ Activity coefficient, dimensionless
γ Ratio of heat capacities = Cp /Cv, dimensionless

1
1

V
dV
dp

Pa,  /

1
1

V
dV
dT

K,  /

x e dxn x− −
∞

∫ 1

0
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γ Surface tension, N/m

Shear rate, 1/s
∇ Gradient or “del”
∇ · Divergence or “del dot”
∇ × Curl or “del cross”
∇2 Laplacian or “del square”
δ Boundary layer thickness, m
δ Condensate film thickness, m
δ(x – x0) Dirac delta function
ε Emissivity, dimensionless
ε Heat exchanger efficiency, dimensionless
ε Void fraction, dimensionless
η Similarity variable
θ Angle in cylindrical or spherical coordinate, radians
θ Dimensionless temperature
λ Characteristic value, or eigenvalue (linear systems)
λ Damping coefficient, dimensionless
µ Characteristic value or eigenvalue (nonlinear systems)
µ Chemical potential
µ Viscosity, Pas
µMax Maximum monod growth rate, 1/s
ν Frequency, 1/s
ν Kinematic viscosity = µ/ρ, m2/s
ρ Density, kg/m3 or C/m3 (charge)
ρ Reflectivity, dimensionless
σ Stefan-Boltzmann constant = 5.767 × 10–8 J/m2sK
τ Dimensionless time or time constant
τ Residence time, 1/s
τ0 Parameter in Bingham model, Pa
Φ Velocity potential, dimensions depend on coordinate system
Φ Viscous dissipation function, s–2

φ Angle in spherical coordinates, radians
ψ Stream function, dimensions depend on coordinate system
ω Angular velocity, radians/s

OVERLINES

– Average
– Integral transform of a function
~ Molar

SUBSCRIPTS

A,B Species in a binary system

a Ambient

a Adiabatic

γ̇
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B Blood

BM Log-mean partial pressure or concentration of inert component

b Bulk fluid

b Bed

c Cold

D Dialysate

db Dry-bulb

e External

F Feed

F Fish

FW Fish-water

f Fluid

f Forward

g Gas

h Hot

i Inside

i Isothermal

k Order of Bessel function

L Liquid

m Mean

m Measured

OC Organic carbon

OW Octanol-water

o Initial or inlet

o Outside

p Particle

p Projected

r Reverse

S Surface

S Sediment

s Shell

s Solid

t Terminal

t Tube

W Water

wb Wet-bulb

x,y,z Component in x, y, z direction

x,y,z Differentiation with respect to x, y, z

SUPERSCRIPTS

0 Pure component
o Reference state
* Equilibrium
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1

 

Introduction

 

Il est aisé à voir …

 

Pierre Simon Marquis de Laplace
(Preamble to his theorems)

 

When using a mathematical model, careful attention must be
given to the uncertainties in the model.

 

Richard P. Feynman
(On the reliability of the Challenger space shuttle)

 

Our opening remarks in this preamble are intended to acquaint the reader with some
general features of the mathematical models we shall be encountering. In particular,
we wish to address the following questions:

• What are the underlying laws and relations on which the model is based?
• What type of equations result from the application of these laws and

relations?
• What is the role of time, distance, and geometry in the formulation of the

model?
• Is there a relation between the type of physical process considered and

the equations that result?
• What type of information can be derived from their solution?

These seemingly complex and sweeping questions have, in fact, well-defined
and surprisingly simple answers.

The underlying laws for the processes considered here are three in number and
the 

 

principal

 

 additional relations required no more than about two dozen. Equations
are generally limited to three types: algebraic equations (AEs), ordinary differential
equations (ODEs), and partial differential equations (PDEs) in which time and
distance enter as independent variables, geometry as either a differential element,
or an entity of finite size. There is a distinct relation between the type of process
and equation which depends principally on geometry and the nature of transport
(convective or diffusive). Thus, convective processes which take place in and around
a well-mixed tank lead to algebraic or 

 

first order 

 

differential equations; likewise
those which occur in “one-dimensional pipes.” This holds irrespective of whether
the events involve transport of mass, energy, momentum, or indeed chemical reac-
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tions. Diffusive transport, whether of mass, energy, or momentum, yields, with few
exceptions, 

 

second order

 

 differential equations. The information derived from the
solution of these equations generally falls into the following three broad categories:
(1) distributions in time or distance of the state variables (i.e., temperature, concen-
tration, etc.), (2) size of equipment, and (3) values of system parameters. We can,
thus, without setting up the model equations or proceeding with their solution, make
some fairly precise statements about the tools we shall require, the mathematical
nature of the model equations, and the uses to which the solutions can be put.

We now turn to a more detailed consideration of these items.

 

1.1 CONSERVATION LAWS AND AUXILIARY 
RELATIONS

 

The physical relations underlying the models considered here are, as we had indi-
cated, conveniently broken up into two categories, the so-called 

 

basic laws 

 

that
consist of the relevant 

 

conservation laws,

 

 and additional expressions which we term

 

auxiliary relations. 

 

Together these two sets of physical laws and expressions provide
us with the tools for establishing a mathematical model.

 

1.1.1 C

 

ONSERVATION

 

 L

 

AWS

 

For systems that involve transport and chemical reactions, the required conservation
laws are those of mass, energy, and momentum. Use of these laws is widespread
and not confined to chemical engineering systems. Fluid mechanics draws heavily
on the law of conservation of mass (known there as the 

 

continuity equation

 

) and the
law of conservation of momentum which in its most general form leads to the
celebrated Navier-Stokes equations. In nuclear processes, conservation of mass is
applied to neutrons and includes diffusive transport as well as a form of reaction
when these particles are produced by nuclear fission or absorbed in the reactor
matrix. The law of conservation of energy appears in various forms in the description
of mechanical, metallurgical, nuclear, and other systems and in different areas of
applied physics in general.

We note that conservation laws other than those mentioned are invoked in various
engineering disciplines: conservation of charge in electrical engineering (Kirchhoff’s
law) and conservation of moment, momentum and moment of momentum in mechan-
ical and civil engineering.

Application of the laws we have chosen to a system or process under consider-
ation leads to equations which are termed 

 

balances.

 

 Thus, the law of conservation
of mass leads to the mass balance of a species, e.g., a water balance or a neutron
balance. Energy balances arise from the law of conservation of energy and are termed

 

heat balances

 

 when consideration is restricted to thermal energy forms. They are
also referred to as the 

 

first law of thermodynamics,

 

 particularly when dealing with
closed systems (no convective flow). Momentum balances, drawn from the corre-
sponding conservation law, have a dual nature: the rate of change of momentum is
equivalent to a force, hence they may be termed

 

 force balances

 

 or Newton’s law.
We have summarized these concepts for convenience in Table 1.1.
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1.1.2 A

 

UXILIARY

 

 R

 

ELATIONS

 

Once the basic balances have been established, it is necessary to express the primary
quantities they contain in terms of more convenient secondary state variables and
parameters. Thus, an energy term which originally appears as an enthalpy H is usually
converted to temperature T and specific heat C

 

p

 

, reaction rate r to concentration C
and rate constant k

 

r

 

, and so on. This is done by using what we call auxiliary relations
which are drawn from subdisciplines such as thermodynamics, kinetics, transport
theory, and fluid mechanics. Parameters which these relations contain are often
determined experimentally. Thus, for convective interphase mass transfer N

 

A

 

, such
as evaporation of water into flowing air, we use the auxiliary relation N

 

A

 

 = k

 

G

 

A

 

∆

 

p

 

A

 

where 

 

∆

 

p

 

A

 

 is the partial pressure driving force and k

 

G

 

 a measured mass transfer
coefficient. When transport is diffusive, Fick’s law N

 

A

 

 = –DA(dC

 

A

 

/dz) is invoked.
Similar considerations apply to the transport of heat. Individual coefficients h are

usually measured experimentally and can be super-posed to obtain overall coefficients
U, which have their counterpart in the overall mass transfer coefficient K

 

0

 

. When
transport is by conduction, Fourier’s law (q = –kA(dT/dz)) is needed. Chemical
reaction rate constants such as k

 

r

 

 (first and second order) or r

 

Max

 

 and K

 

m

 

 (Michaelis-
Menten kinetics) likewise are determined experimentally (see Table 1.2). We note
that some parameters can be derived from appropriate theory and are themselves
based on conservation laws. For viscous flow around and in various geometries, for
example, drag coefficients C

 

D

 

, friction factors f and various transport coefficients can
be derived directly from appropriate balances. Among other parameters which have
to be obtained by measurement, we mention in particular those pertaining to physical
equilibria such as Henry’s constants H and activity coefficients 

 

γ

 

.
Some of the more commonly encountered auxiliary relations have been grouped

together and are displayed for convenience in Table 1.2.

 

1.2 PROPERTIES AND CATEGORIES OF BALANCES

 

Having outlined the major types of balances and the underlying physical laws, we
now wish to acquaint the reader with some of the mathematical properties of those
balances and draw attention to several important subcategories that arise in the
modeling of processes.

 

TABLE 1.1
Basic Conservation Laws

 

Conservation of Balance Alternative Terms

 

Mass Mass balance Continuity equation
Energy Energy balance First law of thermodynamics

Heat balance (limited to thermal energy forms)
Momentum Momentum balance Force balance

Newton’s law
Navier-Stokes equation
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TABLE 1.2
Important Auxiliary Relations

 

1. Transport Rates

Mass Transport

 

Molecular Convective Interphase
N

 

A

 

 = k

 

C

 

 A(C* – C)
N

 

A

 

 = K

 

OC

 

 A(C* – C)

Fick’s Law

 

Energy Transport

 

q = hA

 

∆

 

T
q = UA

 

∆

 

T

Fourier’s Law

 

Momentum Transport

 

Newton’s Viscosity Law Darcy’s Law Shear Stress at Pipe Wall

 

2. Chemical Reaction Rates

First Order Second Order

 

r = k

 

r

 

C

 

A

 

r = k

 

r

 

C

 

A
2

 

 = k

 

r

 

C

 

A

 

C

 

B

 

3. Drag and Friction in Viscous Flow

Sphere Pipe

4. Equations of State for Gases

Ideal Gas Real Gas

 

pV = nRT pV = z(T

 

r

 

,p

 

r

 

)RT

 

5. Physical Equilibria

Henry’s Law Vapor-Liquid Equilibrium

 

y = Hx yP

 

T

 

 = 

 

γ

 

 

 

×

 

 P

 

o

 

6. Thermodynamics

Enthalpy

 

∆

 

H = Cp

 

∆

 

T

N DA
dC

dzA
A= −

q kA
dT

dz
= −

τ µ= − dv

dz
v

K dp

dz
= −

µ τ ρ
w f

v=
2

2

CD = 24

Re
f = 16

Re

F C A
v

D D C= ρ 2

2
∆p f

v L

D
= 4

2

2

ρ

 

248/ch01/frame  Page 4  Friday, June 15, 2001  6:53 AM

© 1999 By CRC Press LLC



   

1.2.1 D

 

EPENDENT

 

 

 

AND

 

 I

 

NDEPENDENT

 

 V

 

ARIABLES

 

An important mathematical consideration is the dependent and independent variables
associated with various balances.

Dependent variables, often referred to as state variables, arise in a variety of
forms and dimensions dictated by the particular process to be modeled. Thus, if the
system involves reaction terms, molar concentration C is usually the dependent
variable of choice since reaction rates are often expressed in terms of this quantity.
Phase equilibria, on the other hand, call for the use of mole fractions x, y or ratios
X, Y, or partial pressures p, for similar reasons. Humidification operations which
rely on the use of psychrometric concepts will be most conveniently treated using
the absolute humidity Y (kg water/kg air) as the dependent variable. We had already
mentioned temperature as the preferred variable in energy balances over the primary
energy quantity of enthalpy or internal energy. Similarly, shear stress is converted
to its associated velocity components which then enter the momentum balance as
new dependent variables. We remind the reader that it is the dependent variables
which determine the number of equations required. Thus, the aforementioned veloc-
ity components which are three in number — v

 

x

 

, v

 

y

 

, v

 

z

 

 for Cartesian coordinates,
for example — require three equations, represented by force or momentum balances
in each of the three coordinate directions.

Consideration of the independent variable is eased by the common occurrence,
in all balances, of time t and the three coordinate directions as independent variables.
We have summarized these, as well as the relevant dependent variables in Table 1.3.

 

1.2.2 I

 

NTEGRAL

 

 

 

AND

 

 D

 

IFFERENTIAL

 

 B

 

ALANCES

 

: T

 

HE

 

 R

 

OLE

 

 

 

OF

 

 
B

 

ALANCE

 

 S

 

PACE

 

 

 

AND

 

 G

 

EOMETRY

 

Spatial and geometrical considerations arise when deciding whether a balance is to
be made over a differential element that generally results in a differential equation,
or whether to extend it over a finite entity such as a tank or a column in which case
we can obtain algebraic as well as differential equations.

In the former case we speak of “differential,” “microscopic” or “shell” balances
and the underlying model is often termed a 

 

distributed parameter model 

 

(see Table
1.4). Such balances lead, upon solution, to distributions or “profiles” of the state
variables in space, or in time and space. Thus, a one-dimensional energy balance
taken over a differential element of a tube-and-shell heat exchanger will, upon
integration, yield the longitudinal temperature profiles in both the shell and the tubes.

When the balance is taken over a finite entity, we speak of “integral” or “mac-
roscopic” balances, and the underlying models are frequently referred to as “com-
partmental” or “lumped parameter” models (see Table 1.4). Solutions of these
equations usually yield relations between input to the finite space and its output.
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Time considerations arise when the process is time dependent, in which case we
speak of unsteady, unsteady-state, or dynamic systems and balances. Both macro-
scopic and microscopic balances may show time dependence. A further distinction
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is made between processes which are instantaneous in time, leading to differential
equations, and those which are cumulative in time, usually yielding algebraic equa-
tions (Table 1.4). The rate of change of the mass in a tank being filled with water,
for example, is given by the instantaneous rate of inflow and leads to a differential
equation. On the other hand, the actual mass of water in the tank at a given moment
equals the cumulative amount introduced to that point and yields an algebraic

 

TABLE 1.3
Typical Variables for Various Balances

 

Balance Dependent Variable Independent Variable

 

Mass Molar flux N Time t
Mass flux W Coordinate distances
Mole and mass fraction x, y x, y, z Cartesian
Mole and mass ratio X, Y r, 

 

θ

 

, z cylindrical
Molar concentration C r, 

 

θ

 

, 

 

ϕ

 

 spherical
Partial pressure p

Energy Internal energy U Time t
Enthalpy H Coordinate distances
Temperature T x, y, z Cartesian

r, 

 

θ

 

, z cylindrical
r, 

 

θ

 

, 

 

ϕ

 

 spherical
Momentum Velocity Time t

Shear stress Coordinate distances

Pressure p x, y, z Cartesian
r, 

 

θ

 

, z cylindrical
r, 

 

θ

 

, 

 

ϕ

 

 spherical

 

TABLE 1.4
Categories of Balances and Resulting Equations

 

Names and Model Types Equations

 

A. Integral or macroscopic balances
Compartmental or lumped parameter models
1. Steady-state balance AE
2. Unsteady-state or dynamic balance

– Instantaneous in time ODE
– Cumulative in time AE

B. Differential, microscopic, or shell balances
Distributed parameter models
1. Steady-state one-dimensional balance ODE
2. Unsteady-state one-dimensional balance PDE
3. Steady-state multidimensional balance PDE
4. Unsteady-state multidimensional balance PDE

r
v

τ
~
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equation. The difference is a subtle but important one and will be illustrated by
examples throughout the text.
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Both macroscopic and microscopic balances can result in steady-state behavior,
giving rise to either algebraic or differential equations (Table 1.4). A stirred-tank
reactor, for example, which is operating at constant input and output will, after an
initial time-dependent “start-up” period, subside to a constant steady-state in which
incoming and outgoing concentrations are related by algebraic equations. The shell-
and-tube heat exchanger mentioned previously will, if left undisturbed and operating
at constant input and output, produce a steady, time-invariant temperature distribu-
tion which can be derived from the appropriate differential (microscopic) energy
balances. An integral energy balance taken over the entire exchanger on the other
hand will yield a steady-state relation between incoming and outgoing temperatures.

1.2.5 DEPENDENCE ON TIME AND SPACE

Systems which are both time and space dependent yield partial differential equations.
The same applies when the state variables are dependent on more than one dimension
and are either at steady or unsteady state. Diffusion into a thin porous slab, for
example where no significant flux occurs into the edges, is described by a PDE with
time and one dimension as independent variables. When the geometry is that of a
cube, a PDE in three dimensions and time results.

We draw the reader’s attention to both Tables 1.3 and 1.4 as useful tabulations
of basic mathematical properties of the balances. Table 1.4 in particular is designed
to help in assessing the degree of mathematical difficulty to be expected and in
devising strategies for possible simplifications.

1.3 THREE PHYSICAL CONFIGURATIONS

We present in this section three simple physical devices designed to illustrate the
genesis of various types of balances and equations. The stirred tank, frequently
encountered in models, demonstrates the occurrence of integral balances (ODEs and
AEs). Steady-state differential balances arise in what we call the one-dimensional
pipe which is principally concerned with changes in the longitudinal direction
(ODEs). The genesis of PDEs, finally, is considered in the somewhat whimsically
termed quenched steel billet. Figure 1.1 illustrates the three devices.

1.3.1 THE STIRRED TANK (FIGURE 1.1A)

In this configuration, streams generally enter and/or leave a tank, frequently accom-
panied by chemical reactions, phase changes, or by an exchange of mass and energy
with the surroundings. As noted before, the device results in integral unsteady
balances (ODEs), or integral steady-state balances (AEs) and assumes uniform
distributions of the state variables (concentration, temperature, etc.) in the tank.
Uniformity is achieved by thoroughly mixing the contents by means of a stirrer, or
by conceptually deducing from the physical model that distribution of the state
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variable is uniform. The latter situation arises in entities of small dimensions and/or
high transport and reaction rates. A thin cylindrical thermocouple subjected to a
temperature change, for example, will have negligible temperature gradients in the
radial direction due to the high thermal conductivity of the metal, much as if the
metal had been “stirred.” The temperature variation with time can then be deduced
from a simple unsteady energy balance (ODE).

An important subcategory of the stirred tank is the so-called continuous stirred
tank reactor (CSTR). In this device reactants are continuously introduced and prod-
ucts withdrawn while the contents are thoroughly mixed by stirring. In crystallization
processes, the configuration is referred to as a mixed-suspension mixed-product
removal crystallizer (MSMPRC).

1.3.2 THE ONE-DIMENSIONAL PIPE (FIGURE 1.1B)

This term is used to describe a tubular device in which the principal changes in the
state variables take place in the longitudinal direction. Radial variations are either

FIGURE 1.1 Diagrams of three basic physical models: (A) The stirred tank with uniform,
space-independent properties, (B) the one-dimensional pipe with property distribution in the
longitudinal direction and at the wall, (C) the quenched steel billet with variations of tem-
perature in both time and space.
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neglected or lumped into a transport “film resistance” at the tubular wall, termed
exchange with surroundings in Figure 1.1B. Devices which can be treated in this
fashion include the tube-and-shell heat exchanger, packed columns for gas absorp-
tion, distillation and extraction, tubular membranes, and the tubular reactor. The
model has the advantage of yielding ordinary differential or algebraic equations and
avoids the PDEs which would be required to account for variations in more than
one direction.

1.3.3 THE QUENCHED STEEL BILLET (FIGURE 1.1C)

The operation conveyed by this term involves the immersion of a thin, hot steel plate
in a bath of cold liquid. Conduction through the edges of the plate can be neglected
so that temperature variations are limited to one direction, z. This results in a PDE
in two independent variables whose solution yields the time-variant temperature
distributions shown in Figure 1.1C.

1.4 TYPES OF ODE AND AE MASS BALANCES

As a further illustration of the balances and equations used in modeling, we display
in Figure 1.2 four examples of standard processes and equipment which require

FIGURE 1.2 Types of mass balances leading to algebraic and ordinary differential
equations.
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simple mass balances at the ordinary differential and algebraic level. We consider
both steady and unsteady processes and indicate by an “envelope” the domain over
which the balances are to be taken.

Figure 1.2A shows a standard stirred tank which takes a feed of concentration
C° and flow rate F. The concentration undergoes a change to C within the tank
brought about by some process such as dilution by solvent, precipitation or crystal-
lization, evaporation of solvent, or chemical reaction. After an initial unsteady period
which leads to an ODE, such processes often settle down to a steady state leading
to an algebraic equation (AE).

Figures 1.2B and 1.2C consider steady-state mass balances which describe the
operation of a gas scrubber. The balance is an integral one in Figure 1.2B taken over
a finite portion of the column. A liquid stream of concentration X and flow rate Ls

enters the envelope at the top and comes in contact with a gas stream of concentration
Y and flow rate Gs until the bottom of the column is reached where the roles are
reversed. In Figure 1.2C on the other hand, the balance is taken over a differential
element and involves the gas phase only. The mass transfer rate N enters into the
picture and dictates the change in concentration which occurs in the element.

In Figure 1.2D, finally, we show an example which calls for the use of a
cumulative balance. The operation is that of fixed-bed adsorber in which a gas stream
of solute concentration Y and carrier flow rate Gs enters the bed and ultimately
saturates it at time t. If transport resistance is neglected, that time can be calculated
by a cumulative balance in which the total amount of solute introduced up to time
t is equated to the accumulated amount of solute retained by the bed.

1.5 INFORMATION OBTAINED FROM MODEL 
SOLUTIONS

It is of some importance and comfort to know, even prior to setting up the model
equations, the type of information which the solutions will yield. This will depend
on the type of balance performed and the resulting solutions. Thus, unsteady integral
balances lead to time-dependent solutions, or distributions in time, while steady-
state differential balances yield distributions in space. When both time and distance
vary, distributions in time and space are obtained.

Often these distributions are not of direct interest to the analyst and one wishes
instead to extract from them a particular parameter such as flow rate or a transport
coefficient. On other occasions it will be convenient to differentiate or integrate the
primary distributions to arrive at results of greater practical usefulness. We term this
type of information derived information, and its source primary information. The
summary which follows lists the results obtained from various balances.

1.5.1 STEADY-STATE INTEGRAL BALANCES

These balances are taken over a finite entity. Algebraic relations result that provide
the following information:

Primary information: Interrelation between input and output.
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Derived information: Output concentrations, purities, temperatures, etc., for
different inputs and vice versa. Effect of various recycle schemes, stream
splits, number of processing units.

Such balances arise with great frequency in plant design. The large number of
algebraic equations that result are usually solved with special simulation packages.

1.5.2 STEADY-STATE ONE-DIMENSIONAL DIFFERENTIAL BALANCES

Here the balance is taken over the differential element of a “one-dimensional pipe”
and yields the following information:

Primary information: Profiles or distributions of the state variables in one
dimension; temperature, concentration, velocity, or pressure distributions
as a function of distance.

Derived information:
– Design length or height.
– Parameter estimation from experimental distributions (transport coef-

ficients, reaction rate constants).
– Equipment performance for different flow rates, feed conditions,

lengths or heights.
– Differential quantities: Heat flux from temperature gradients, mass flux

from concentration gradients, shear stress from velocity gradients.
– Integral quantities: Flow rate from integrated velocity profiles, energy

content, or cumulative energy flux from integrated temperature profiles.

1.5.3 UNSTEADY INSTANTANEOUS INTEGRAL BALANCES

We have seen that these balances are taken over finite entities in space and yield
ODEs. The solutions provide the following information:

Primary information: Distribution of state variables in time; temperature,
concentration, pressure, etc., as a function of time; transient or dynamic
behavior.

Derived information:
– Design volume or size.
– Parameter estimation from experiment (transport coefficients, reaction

rate constants).
– Equipment performance for different inputs, flow rates, sizes.
– Sensitivity to disturbances.
– Effect of controller modes.
– Choice of controller.

1.5.4 UNSTEADY CUMULATIVE INTEGRAL BALANCES

The algebraic equation which result here provide the following information:
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Primary information: Interrelation between cumulative input or output and
amount accumulated or depleted within the envelope.

Derived information:
– Time required to attain prescribed accumulation/depletion, cumulative

input or output.
– Amount accumulated/depleted in prescribed time interval.

1.5.5 UNSTEADY DIFFERENTIAL BALANCES

We are dealing with more than one independent variable resulting in a PDE which
provides the following information:

Primary information: Distributions of state variables in time and in one-to-
three dimensions; temperature, concentration, velocity, etc., profiles as a
function of time.

Derived information:
– Geometry or size required for a given performance.
– Parameter estimation from measured distributions (transport coeffi-

cients, reaction rate constants).
– Performance for time varying inputs.
– Differential quantities: Time varying heat flux from temperature gra-

dients, mass flux from concentration gradients, shear stress from veloc-
ity gradients.

– Integrated quantities: Accumulated or depleted mass and energy within
a given time interval and geometry; time varying drag on a particle
from shear stress distributions.

1.5.6 STEADY MULTIDIMENSIONAL DIFFERENTIAL BALANCES

Primary information: Steady state distributions of state variables in two or
three dimensions; temperature, concentration, velocity, etc., profiles in two-
or three-dimensional space.

Derived information:
– Geometry or size required for a given performance.
– Differential quantities: Heat flux from temperature distributions, mass

flux from concentration gradients, shear stress from velocity gradients.
– Integrated quantities: Total heat or mass flux over entire surface from

gradient distributions; total flow rate from velocity distributions; drag
force on a particle from shear stress and pressure distributions.

In the illustrations which follow, a number of physical processes are presented,
and an attempt is made to identify the type and number of balances and auxiliary
relations required to arrive at a solution. This is the second major stumbling block
encountered by the analyst, the first one being the task of making some sense of the
physical process under consideration. This may appear to many to be a formidable
undertaking, and our excuse for introducing it at this early stage is the stark fact
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that no modeling can take place unless one has some notion of the balances or
equations involved. To ease the passage over this obstacle, we offer the following
guidelines:

• Sketch the process and identify the known and unknown variables; draw
an “envelope” around the space to be considered.

• Establish whether the process is at steady-state, or can be assumed to be
nearly steady, or whether the variations with time are such that an unsteady
balance is called for.

• Investigate the possibility of modeling the process or parts of it, as a
stirred tank or one-dimensional pipe. These two simple devices, previously
shown in Figure 1.1, must be regarded as mainstays in any early attempts
at modeling.

• Determine whether a differential or integral balance is called for. Stirred
tanks always require integral balances, but in the case of the one-dimen-
sional pipe, both integral and differential balances can be implemented.
Which of the latter two is to be chosen is usually revealed only in the
course of the solution. Several trials may then become necessary, a not
unusual feature of modeling.

• Start with the simplest balance, which is usually the mass balance.
Remember that it is possible to make instantaneous or cumulative balances
in time. Introduce additional balances until the number of equations equals
the number of unknowns, or state variables. The model is then complete.

• Carefully consider whether the stirred tank or one-dimensional pipe have
to be replaced by a PDE model. Avoid PDEs if possible but face up to
them when they become necessary. They are not always the ogres they
are made out to be (see Chapters 7 to 9).

• Use Table 1.2 as an initial guide as to which auxiliary relations may be
required.

• Remember that the primary information often comes in the form of dis-
tributions in time or space of the state variable which may have to be
processed further, for example, by differentiation or integration, to arrive
at the information sought.

Illustration 1.1 Design of a Gas Scrubber

Suppose we wish to establish the height of a packed gas absorber that will reduce
the feed concentration of incoming gas to a prescribed value by countercurrent
scrubbing with a liquid solvent. What are the required relations and the information
derived from them?

Balances Required — This system calls for the use of one-dimensional steady-
state mass balances in a one-dimensional pipe. Since two phases and two concen-
trations X and Y are involved, two such balances are required in principle and two
ODEs result. Alternatively, a differential steady-state balance may be used for the
gas phase (see Figure 1.2C), the second relation being provided by an integral steady-
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state balance over both phases (see Figure 1.2B). These equations are analyzed in
greater detail in Illustration 2.3.

Auxiliary Relations — An expression for the mass transfer rate N has to be
provided which is comprised of a mass transfer coefficient KYa and a linear concen-
tration driving force ∆Y. The latter contains the equilibrium concentration Y* which
is to be obtained from an appropriate equilibrium relation Y* = f(X). We now have
three equations in the three state variables: X, Y, Y*.

Primary Information — Gas and liquid phase concentration profiles arise from
the ODEs. The algebraic integral balance relates concentrations X, Y to concentra-
tions X2, Y2 at the top of the column.

Derived Information — Integration of the ODEs yields the height at which the
concentration of the feed stream Y1 reaches the prescribed value Y2.

Illustration 1.2 Flow Rate to a Heat Exchanger

The flow rate of the heating medium to an existing countercurrent single-pass heat
exchanger is to be established such that a cold fluid of flow rate Fc and inlet
temperature T1 will be heated to a prescribed exit temperature T2.

Balances Required — This calls again for the use of the one-dimensional pipe
model and its application to the two streams entering the heat exchanger. In principle,
two steady-state differential energy balances need to be applied to the tube and shell
side fluids, resulting in two ODEs. These equations will be discussed in greater
detail in Chapter 3, Illustration 3.3.2.

Auxiliary Relations — An expression for the heat transfer rate q between shell
and tube is required. This is customarily expressed as the product of a heat transfer
coefficient U, area A, and the temperature driving force ∆T. In contrast to the
analogous case of the countercurrent gas scrubber, no equilibrium relation needs to
be invoked to establish the driving force. The convective energy terms or enthalpies
H arising from flow into and out of the element are related to the temperature state
variable and specific heat of the fluids by means of an appropriate thermodynamic
relation.

Primary Information — Solution of the ODE energy balances yields the longi-
tudinal temperature distributions for the shell and tube side fluids.

Derived Information — The required flow rate resides as a parameter in the
solution of the model equation.

Illustration 1.3 Fluidization of a Particle

It is required to establish the air velocity necessary to fluidize a solid particle of a
given diameter, i.e., to maintain it in a state of suspension in the air stream.

Balances Required — Fluidization of a particle occurs when the forces acting
on it are in balance. These forces are comprised of buoyancy, gravity, and friction
(drag). A steady state integral force balance, therefore, is called for.

Auxiliary Relations — Buoyancy and gravity need to be expressed as functions
of particle diameter, the drag force as a function of both diameter, and air velocity
using empirical drag coefficients.
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Primary Information — The force balance directly yields a functional relation
between particle diameter and air velocity. No derived information, therefore, needs
to be considered.

Illustration 1.4 Evaporation of Water from an Open Trough

Here the evaporation of water from a shallow trough to flowing air, and the attendant
evaporation rate and loss of mass, is to be considered.

Balances Required — This is a seemingly complex process involving both mass
transfer and the transport of energy required to provide the necessary latent heat of
evaporation. That heat initially comes both from the surrounding air and through
evaporative cooling of the water surface. Ultimately, the water surface reaches the
so-called wet-bulb temperature that signals the fact that the entire energy is supplied
by the surrounding air. At this point, which is reached very quickly, the process can
be modeled by a simple differential mass balance over the flowing air, which leads
to an ODE in the humidity change in the direction of the air flow. See Illustration
2.7 Drying of a nonporous plastic sheet.

Auxiliary Relation — Convective transport of the moisture from the trough to
the bulk air is expressed as the product of a humidity driving force ∆Y, differential
area ∆A (→dA), and a mass transfer coefficient kY obtained from standard correla-
tions (see Illustration 3.2.1). The required saturation humidity at the water surface
Y* is read from psychometric or humidity charts at the appropriate wet-bulb tem-
perature. A discussion of these charts will be given in Illustration 3.5.5.

Primary Information — Solution of the ODE yields the humidity profile in the
air, Y = f(z).

Derived Information — The total amount of water evaporated in a given time
interval t is obtained from a cumulative balance for air humidity, i.e., from the total
quantity of moisture in the effluent air at z = L and over time t.

Illustration 1.5 Sealing of Two Plastic Sheets

Two plastic sheets of equal thickness are to be sealed together by applying two
heated plates of temperature Tp to the surface of each sheet. One wishes to calculate
the time required for the sealing surface to attain a prescribed sealing temperature Ts.

Balances Required — The temperature within and at the surface of the sheets
is related to time via an unsteady differential energy balance. This calls for the use
of the unsteady, one-dimensional conduction equation which leads to a PDE.

Auxiliary Relations — Energy flux in and out of the differential element is
described by Fourier’s law which is composed of the product of the thermal con-
ductivity k, area A, and temperature gradient dT/dz. Accumulation of energy within
the element is initially given by the enthalpy H, which is then converted to temper-
ature T and specific heat by means of an appropriate thermodynamic relation.

Primary Information — Solution of the PDE yields the time-dependent temper-
ature profiles within the plastic sheet. Solutions of this type for various geometries
are given in both analytical and convenient graphical form in standard texts.
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Derived Information — The required time is read from the temperature profiles
at the value T = Ts.

Illustration 1.6 Pressure Drop in a Rectangular Duct

We consider steady laminar flow of a liquid in a rectangular duct and wish to obtain
the pressure drop for a given flow rate and length of conduit.

Balances Required — A force balance will be needed here to relate pressure p
to the viscous forces τ which arise in laminar flow. The situation is not as simple
as the case of a circular duct since shear stress now varies in two directions x and
y rather than a single radial variable r. The force balance is taken over a difference
element ∆x, ∆y, which in the limit yields a PDE in two independent variables x, y.
We recognize that shear stress does not vary in the direction of flow and that pressure
drop is likewise constant so that we can write ∂P/∂z = ∆P/L.

Auxiliary Relations — Since pressure will ultimately have to be related to flow
rate, shear stress must, in the first instance, be expressed in terms of the local velocity.
This is done using Newton’s viscosity law which relates shear stress to viscosity
and velocity gradients.

Primary Information — Integration of the PDE leads to the velocity distributions
in the lateral directions, i.e., v = f(x,y,∆p/L).

Derived Information — The velocity distributions are integrated over the cross-
sectional area of the duct to yield the volumetric flow rate Q. The resulting expression
contains pressure drop ∆P/L as a parameter which can be extracted as a function of Q.

Practice Problems
1.1 Flushing-out of a contaminant — A contained body of water with in- and out-
flow of Fin and Fout (kg/s) has been contaminated with an undesirable impurity.
Indicate the balances required to calculate the time needed to reduce the impurity
concentration to a prescribed level after contamination has ceased. (Hint: assume
the water to be well-stirred.)

1.2 Design of a marker particle — A marker particle is to be designed that has
the property of rising through water with a prescribed velocity v. Both geometry
and density of the particle are to be established. State the balances and auxiliary
relations required. If one assumes that a steady terminal velocity is quickly attained,
what type of balances would result?

1.3 Heating-up of a tank — An internal steam coil is to be used to heat the contents
of a tank from T1 to T2 in a prescribed time interval. The cumulative steam requirement
F(kg) to achieve this is to be calculated. What are the requisite balances and auxiliary
relations, and what is the primary information that results from their solution?

1.4 Batch distillation of a binary mixture — A solution of two volatile liquids is
to be distilled in a batch still. One wishes to calculate the time required to achieve
a prescribed enrichment in the less volatile component. Vapor and liquid are assumed
to be in equilibrium at all times. How many balances are required and what are the
auxiliary relations? (Hint: assume still contents to be well-stirred.)
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1.5 Batch distillation again — Suppose that in the preceding example one were
to monitor the composition and total mass in the distillate receiver. Can one infer
from this information the composition in the boiler at any instant? If so, what
balances are required?

1.6 Moving-bed ore heater — Crushed ore is to be heated in a moving bed where
it is contacted countercurrently with a stream of hot gas. The bed height necessary
for the ore to attain a given exit temperature is to be calculated. Identify a set of
two balances which would provide this information. What are the auxiliary relations
and the primary information obtained from the solution? Identify another operation
which leads to identical balances and auxiliary relations.

1.7 Blood dialysis — Patients suffering from kidney failure have their blood peri-
odically purified by passage through a tubular semi-permeable membrane immersed
in a bath. Toxic and other undesirable substances pass from the blood through the
tubular wall into the bath. Consider the following two cases:

1. Blood in laminar flow, membrane wall thickness: small compared to
tubular diameter.

2. Blood in laminar flow and diameter: small compared to tubular wall
thickness.

What are the balances and auxiliary relations required to model the device for
the two cases? (Hint: consider under what conditions concentration changes in the
radial direction can be neglected or must be taken into account. This determines
the dimensionality of the model.)

1.8 Heat losses from a buried steam pipe — Heat is lost from a buried isothermal
steam pipe to the surrounding soil and ultimately to the ground surface. Discuss in
some detail the balance required to calculate the heat loss sustained by the pipe, the
primary information obtained from the solution as well as the way in which heat
loss is inferred from derived information. (Hint: a PDE in at least two dimensions
is involved.)
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2

 

The Setting Up 
of Balances

 

The study of mathematics is apt to commence in disappointment.

 

Alfred North Whitehead

 

The reader will have noted that the previous chapter, meant to be an introductory
one, nevertheless made some fairly heavy demands. One was asked to extrapolate
the knowledge gained in elementary courses in transport and reaction theory plus
certain skills in applied mathematics to make some fairly sweeping predictions about
the type of balances required in a model and the information to be extracted from
them. We tried to alleviate the severity of the task by a careful listing of the balances
and equations to be expected in a given physical process and to relate them to the
resulting solutions. No actual balances were presented or required.

The aim of the present chapter is to introduce the reader to the craft of setting
up such balances, the art of choosing the correct ones, and to generalize the results
wherever possible into comprehensive tools. The main focus will be on the more
demanding task of setting up ordinary differential equations, although algebraic
equations also frequently will make their appearance. The basic procedures will be
amply supplemented with illustrations drawn from various disciplines. The more
intricate task of setting up partial differential equations is left to later chapters.

We start by considering two simple devices, shown in Figures 2.1 and 2.2, which
typify ODE balances. The surge tank illustrates the genesis of unsteady integral
balances; the steam-heated tube that of steady-state differential balances. These
equations can be generalized to cover more complex situations.

 

Illustration 2.1 The Surge Tank

 

In this simple device time varying flows of water, F

 

1

 

(t) and F

 

2

 

(t) enter and leave a
tank whose contents W(t) also vary with time (Figure 2.1). To ensure proper setting
up of the balance we start by considering a finite time interval 

 

∆

 

t, and then proceed
to the limit, 

 

∆

 

t 

 

→

 

 0. This is a somewhat elaborate procedure which the skilled
practitioner will ultimately be able to dispense with. It pinpoints, however, some
pitfalls whose existence are best illustrated in this way.

Elementary application of the law of conservation of mass leads to the following
relation:

Mass in over 

 

∆

 

t – Mass out over 

 

∆

 

t = Change in contents over 

 

∆

 

t

[F

 

1

 

(t)]

 

avg

 

 

 

∆

 

t – [F

 

2

 

(t)]

 

avg

 

 

 

∆

 

t = 

 

∆

 

W(t) (2.1)
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We note that since we chose a finite time interval 

 

∆

 

t, the flow rates by necessity
have to be average quantities. They can be represented, if one wishes to do so, by

time-averaged integral quantities of the type  Evidently this leads to a

complex integral equation which would be difficult to solve. We circumvent this by
dividing by 

 

∆

 

t and letting 

 

∆

 

t 

 

→

 

 0. The flow rates then become instantaneous values
and we obtain:

Instantaneous mass in – Instantaneous mass out = Rate of change in contents

(2.2)

It is important to note that the flow rates have now become algebraic quantities
which are instantaneous at a point t in time, while the contents are represented by
a rate of change derivative. It is often tempting for the uninitiated to proceed directly
to differential forms of the following type.

dF

 

1

 

 – dF

 

2

 

 = dW (2.3)

or

(2.4)

 

FIGURE 2.1

 

Diagram of a surge tank with time-varying inflow, outflow, and contents.

 

FIGURE 2.2

 

Energy transport in a steam-heated shell and tube heat exchanger.

F t dt t
t
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The differential Form 2.3 can at best be divided by dt, leading to an incorrect
result. The Form 2.4 is incorrect by virtue of the fact that it contains both finite and
infinitesimally small quantities. These are precisely the type of pitfalls we wished
to draw to the reader’s attention by following a more elaborate procedure. Once it
is clearly understood, however, that the flow rates become instantaneous algebraic
quantities while the contents of the tank lead to a derivative, it becomes possible to
proceed to more generalized formulations. To make these easier to set up, we make
a point of putting all algebraic quantities on the left side and the derivative on the
right. In abbreviated form we obtain the following formulation:

Rate in – Rate out = Rate of change in contents (2.5)

it being understood that the terms on the left side are instantaneous algebraic
quantities, the ones on the right derivatives.

Suppose now, that in addition to the flows entering and leaving, we have con-
vective evaporation at a rate N from the tank to the surroundings. One must recognize
that this is a process instantaneous in time, identical in behavior to the outflow of
water, and must therefore be placed in the “rate out” category. We obtain:

(2.6)

or, using a linear driving force mass transfer law:

(2.7)

where = vapor pressure of water

p

 

a

 

 = partial pressure of water in the ambient air
A = surface area of water

What happens when a chemical reaction occurs in the tank? Consider for sim-
plicity a batch reactor with no inflow or outflow, and a first order reaction of rate r
= kC

 

A

 

. Here it must be recognized that the reaction represents an instantaneous
removal of the species A and must therefore be placed in the “rate out” category,
while the change in concentration yields a derivative which is placed on the right
side of the balance. We obtain:

(2.8)

where V = volume of reactor.

Rate of mass in Rate of massout Rate of change in mass contents

F t F t N
dW
dt

− =

− + =1 2( ) [ ( ) ]

F t F t k A p p
dW
dtG H O a1 2 2

( ) ( ) ( * )− − − =

pH O2
*

Rate of A in Rate of A out Rate of change in content of A

kC V
dC
dtA

− =

− =0
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We are now in a position to generalize these results to encompass all forms of
transport and reaction. We do this as follows:

(2.9)

When the right side becomes = 0, steady-state integral balances result which are
algebraic equations. Many processes involving tanks lapse into a steady state after
an initial unsteady period unless disturbances occur in input or output. For the
momentum balance we note a special case which draws on the equivalence of force
and rate of momentum change and results in Newton’s law, where force and velocity
are now vector quantities.

(2.10)

Here the forces or their components are given positive and negative signs depend-
ing on their direction, corresponding to the 

 

in

 

 and 

 

out

 

 terms in Equation 2.9.
We repeat for emphasis that all terms appearing on the left side are of an

instantaneous, algebraic type, while all derivatives appear on the right side as 

(contents). We now turn to the consideration of steady-state differential balances.

 

Illustration 2.2 The Steam-Heated Tube

 

In this device, a cold liquid flows at a flow rate F

 

t

 

 and temperature T

 

t1

 

 into a tube
where it is heated by isothermally condensing steam of temperature T

 

s

 

, exiting at a
higher temperature T

 

t2

 

 (Figure 2.2). It is instructive here, as it was in the case of the
surge tank, to start the balance with an increment 

 

∆

 

z, and then generalize the results.
Flow enters and leaves the difference element with an enthalpy H which increases
in the direction of flow due to the heat q

 

avg

 

 transferred from the steam. We obtain,
in the first instance, the following balance:

(2.11)

where q

 

avg

 

 is the average, or mean integral heat flow from shell to tube over the
increment 

 

∆

 

z. Before going to the limit it will be convenient to express q

 

avg

 

 and H
in terms of the independent and state variables z and T. To do this we draw on
appropriate auxiliary relations. From thermodynamics we obtain (see Table 1.2):

Rate of mass energy
momentum in

Rate of mass energy
momentum out

Rate of change
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by flow
by convective transport
by reaction

by flow
by convective transport
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d
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contents
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d
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∆

 

H

 

′

 

 (J/kg) = C

 

p 

 

(J/kg K) 

 

∆

 

T (K) (2.12)

which is converted to enthalpy flow H(J/s) by multiplication by the flow rate. Thus,

 

∆

 

H (J/s) = F

 

c

 

 (kg/s) C

 

p

 

 (J/kg°C) [T – T°] (°C) (2.13)

For convective heat transfer, we use the usual product of heat transfer coefficient U,
area (here 

 

π

 

D

 

∆

 

z), and the linear temperature driving force 

 

∆

 

T (here T

 

s

 

 – T

 

t

 

). Hence,

q

 

avg

 

 = U

 

π

 

d

 

∆

 

z(T

 

s

 

 – T

 

t

 

)

 

avg

 

(2.14)

where d = diameter of the tube, T

 

t

 

 = tube-side temperature. It is to be noted that the
average heat flow has now been replaced by an average temperature driving force.
Upon dividing by 

 

∆

 

z and letting 

 

∆

 

z 

 

→

 

 0, 

 

∆

 

T becomes a point quantity at the distance
z, much as the average flow rates to the surge tank became, upon going to the limit,
point quantities in time. We obtain:

(2.15)

It is tempting for the uninitiated to proceed directly to the differential form. This
often results in the following formulation:

* (2.16)

This is an incorrect result since it contains both infinitesimally small and finite
quantities and demonstrates the pitfalls in directly proceeding to a differential equa-
tion. For this and other reasons it has become customary to retain the difference
formulation 

 

∆

 

z as a starting point, introduce auxiliary relations when appropriate,
divide by 

 

∆

 

z, and only then proceed to the limit 

 

∆

 

z 

 

→

 

 0. This requirement is not
necessary in the case of unsteady integral balance since the ODE Formulations 2.2
and 2.7 to 2.9 are free of pitfalls provided the relevant terms are recognized as
instantaneous algebraic quantities and placed on the left side of the balance equation.

We are now in a position to provide a general formulation of one-dimensional
steady-state differential balances in much the same way as was done in Equation
2.9 for unsteady integral balances. It takes the following form:

(2.17)
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We note that for the special case 

 

∆

 

z = L (finite length), the differential balance
reverts to a steady-state integral balance.

We now present a number of additional illustrations drawn from various disci-
plines and from industrial practice. Some of these are of an unusual or otherwise
challenging character. The reader may at this stage feel unprepared to meet the
challenge but, hopefully, will ultimately benefit from the experience. The exercise
is at any rate not meant as premature punishment — much of that follows later —
but to provide an early glimpse of the complexities of modeling.

 

Illustration 2.3 Design of a Gas Scrubber Revisited

 

We had used this example in Illustration 1.1 to coach the reader in anticipating the
types of balances required for this process and the information to be derived from
the solutions. It was seen that the height of scrubber required to reduce the feed gas
concentration to a prescribed value required either two steady-state differential
balances or one differential and one integral balance.

The differential balances are taken over each phase and yield the following
results (see Figure 1.2C).

(2.18)

where Y = kg solute/kg carrier
G

 

s

 

= kg carrier/m

 

2

 

s
Carrier units are chosen in order to obtain a constant gas flow rate and, thus, reduce
the number of variables. We now introduce the auxiliary relation for N

 

avg

 

 which
takes the form of the product of a mass transfer coefficient K

 

Y

 

, surface area in the
element, a

 

∆

 

z, and a solute driving force (Y – Y*)

 

avg

 

:

N

 

avg

 

 = K

 

Y

 

a 

 

∆

 

z (Y – Y*)

 

avg

 

(2.19)

Here the surface area “a” is conveniently taken in volumetric units (m

 

2

 

/m

 

3

 

packing) and Y* is the gas phase solute mass ratio in equilibrium with the liquid
phase concentration X at that point. Upon dividing by 

 

∆

 

z and letting 

 

∆

 

z 

 

→

 

 0, we
obtain:

(2.20)

The liquid phase balance is obtained in similar fashion and yields:

(2.21)

Rate of solute in
at z and over z

Rate of solute out
at z z and over z

G Y G Y NS z S z z avg

∆ ∆ ∆

∆

− + =

− + =+

0

0| [ | ]

G
dY
dz

K a Y Ys Y+ − =( *) 0

L
dX
dz

K a Y Ys Y+ − =( *) 0

 

248/ch02/frame  Page 24  Friday, June 15, 2001  6:54 AM

© 1999 By CRC Press LLC



   

We note again that the driving force (Y – Y*) has now become a point quantity at
the position z, i.e., it is not to be differentiated.

Since we now have three state variables X, Y and Y* to deal with, it follows
that a third equation will be required which is given by the equilibrium relation.

Y* = f(X) (2.22)

Thus, the most general model consists of two differential and one algebraic
equation and yields the profiles of X, Y and Y* in the longitudinal direction. It yields
the most general solution that can be used for design, parameter estimation, as well
as performance analysis. For design purposes, it is often more convenient to replace
the liquid phase ODE by an integral algebraic balance (see Figure 1.2B).

(2.23)

This expression is conveniently regrouped to yield the so-called operating line with
slope L

 

s

 

/G

 

s

 

:

(2.24)

To solve the Equations 2.20, 2.22, and 2.23 in the variables X, Y and Y*, we start
by formally integrating Equation 2.20. One obtains by separation of variables,

(2.25)

It has become the convention to separate the integral from its coefficient and
express the right side as the product of the so-called height of a transfer unit = HTU

= and the number of transfer units = NTU =  Thus, the height

H of packed column required to achieve the prescribed purification is given by the
expression:

(2.26)

The Relations 2.24 and 2.26 are conveniently plotted on an “operating diagram”
shown in Figure 2.3. In this diagram, prescribed solvent and carrier gas flow rates L

 

s

 

and G

 

s

 

 are used to establish the slope of the operating line which passes through the
point (X

 

2

 

, Y

 

2

 

), i.e., solute concentration in the solvent entering the top of the column

Rate of solute in Rate of solute out

G Y L X G Y L XS S S S

− =

+ − − =

0

02 2

%

( ) ( )

Y Y

X X

L

G
s

s

−
−

=2

2

H dz
G

K a
dY

Y Y
s

Y Y

Y

z

z

= =
−∫∫ *2

1

1

2

G

K a
s

Y

dY
Y YY

Y

−∫ *
.

2

1

H
G

K a
dY

Y Y
HTU NTUs

y Y

Y

=
−

= ×∫ *2

1

 

248/ch02/frame  Page 25  Friday, June 15, 2001  6:54 AM

© 1999 By CRC Press LLC



 

and the prescribed exit concentration of the gas, Y2. The vertical distance between
operating line and equilibrium curve establishes the driving force Y – Y* which is
used for the graphical or numerical evaluation of the NTU integral. Together with
the value for HTU based on experimental values of KYa, this yields the desired height
of the column, H. The operating diagram can also be used for a quick assessment of
the effect of a change in variables. A reduction in solvent flow rate Ls, for example,
lowers the slope of the operating line, resulting in an increase in the NTU and hence
height H of the column. Ultimately, the operating line intersects the equilibrium curve.
The driving force there converges to zero; thus, NTU and H become infinite. The
value of Ls at which this occurs represents the minimum solvent flow rate that will
achieve the required separation and results in a column of infinite height.

We note in addition that the Relation 2.26 is only suited for design or for
estimation of the parameter KYa from measured values of Y2. Analysis of the per-
formance of an existing column would require a trial and error procedure. This can
be avoided by using the solutions to the two ODEs 2.20 and 2.21 which are quite
general and suited for all tasks.

Illustration 2.4 An Example from Industry: Decontamination 
of a Nuclear Reactor Coolant

Organic coolants of nuclear reactors have to be purified periodically by passage
through an adsorbent bed to remove degradation products and other impurities which
reduce the efficiency of the coolant. Since it is desirable to maintain continuous
operation of the reactor, the coolant cannot be removed to a separate facility for
treatment. It is customary instead to circulate it continuously through a purifier and
return the decontaminated coolant to the reactor (Figure 2.4). Twenty four h are to
be allowed for completion of the operation which requires reduction in impurity
concentration from 2500 ppb to 75 ppb.

To size the required recirculation pump, both flow rate F and head H = ∆p/ρ to
be generated by the pump have to be known. Head is calculated from the pressure
drop through the piping and the adsorbent by means of appropriate correlations for
flow through a packed bed (see Chapter 3, Section 3.4). Flow rate comes from a
mass balance taken over a chosen unit of the loop. It is this latter problem which is
addressed here.

FIGURE 2.3 Operating diagram for an isothermal packed gas scrubber.
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Analysis — We have the choice of performing a contaminant balance over the
tank or the adsorbent bed. If we choose the tank, it has to be assumed to be “well-
stirred,” since the actual flow pattern within it is usually too complex to ascertain the
precise exit concentration of contaminant at a given instant. That concentration will
be lower than that emerging from a well-stirred tank and the model will, therefore,
underestimate or provide a lower bound of the required flow rate and size of pump.
Since centrifugal pumps of the type contemplated are capable of accommodating a
fairly wide range of flow rates for a given head, this is not a serious drawback.

Performing the balance over the purifier poses other problems. Since contami-
nant contents vary with both time and distance, a PDE balance is in principle called
for. If we resort to an integral balance instead, the unsteady term dm/dt, where m
represents the bed loading, has to be established by separate measurement. In
principle this can be achieved in the same experiment used to establish purifier
efficiency, but an escalation in both effort and model complexity results. It is,
therefore, more convenient to perform the balance around the tank.

The Model — The instantaneous and algebraic “in” and “out” terms for the
contaminant balance are indicated in the accompanying diagram, Figure 2.4. For the
unsteady term, the industrial data specify a volume V = 141 m3 and coolant density
of ρ = 1200 kg/m3. We obtain:

(2.27)

Collecting terms and integrating by separation of variables there results:

(2.28)

FIGURE 2.4 Flow diagram for the purification of an organic coolant for a nuclear reactor.
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and

(2.29)

or

F = 27,470 kg/h

Comments:
The process involved is a seemingly highly complex one; in fact, baffling the

engineers assigned to the problem. It is customary in such situations to pass it to a
higher level, for example R&D, with instructions to come up with an immediate
solution. Alternatively, all attempts to obtain an answer by analysis are abandoned
and the required unit is chosen in more or less arbitrary fashion or on what passes
as expert advice in the circles involved. It is not known to the writer which route
was chosen.

We do not minimize the initially baffling complexity of the process. The coolant
contacts the reactor moderator, heavy water, in a heat exchanger whose geometry
is not accurately reflected by the simple tank shown in Figure 2.4. Contaminant
concentrations vary, during recirculation, with both time and distance, often in an
unpredictable fashion. We had already noted that the purifier also has to be modeled
by a PDE in time and distance. An additional difficulty arises from the fact that not
every engineer or scientist will recognize the relation between pump size and system
variables. Setting up an elaborate research program on the other hand is not justified
by the importance of the problem or founders on constraints of time and resources.
Small wonder that the analysis of such problems is quickly relegated to the dustbin.

The example was chosen to serve two purposes. First, it introduces the reader
to the complexity of industrial problems. These are not textbook problems which
adhere to well-defined, often artificially simplified processes and lend themselves
to the direct application of well-defined models. Such “real-life” problems appear,
in fact, to be completely intractable. Second, we hope with this example to provide
the reader with a first introduction to the art of modeling. That deceptively simple
phrase hides a number of hard and harsh requirements. Basic skills in elementary
transport and reactor theory as well as applied mathematics up to perhaps the fourth-
year level are a prerequisite. Added to those are the skills of a seasoned engineer
capable of recognizing the complexities of a process and applying simplifications
that do not lose touch with the realities of the system. As often as not this will
require a leap of faith when the validity of the approach cannot be established with
certainty and instinct as well as experience are thrown in the balance. Physical insight
is an additional ingredient which is indispensable.

Finally, the analyst must be willing to accept and be content with approximate
answers. One is not dealing here with academic questions to be answered with
precision to several significant figures. Lower or upper bounds, or both, are often
the only answers attainable. We have referred to this as “bracketing the solution”
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and note its widespread use in respectable scientific disciplines such as mathematics.
On other occasions one has to content oneself with order of magnitude estimates
without knowing if they represent lower or upper bounds, or with qualitative trends,
i.e., whether a quantity of interest increases or decreases.

The art of modeling comprises all of the above tools, skills, and attributes, and
more. The discerning reader will have noted that this will call for a marked departure
from the tools, skills, and attributes acquired in the usual academic program, and
hence a change in attitude. The above example and those that follow show not only
that this can be done, but also that the solutions are elegant in their simplicity and
Spartan in their use of time and their execution. More problems of this variety will
be given in Chapter 6, Section 6.3: Welcome to the Real World.

Illustration 2.5 Thermal Treatment of Steel Strapping

In this example, also drawn from industry, one is asked to establish the dimensions
of a liquid lead bath used in the annealing of steel strapping (Figure 2.5A). Such
thermal treatments of newly cast or drawn metal forms are designed to relieve
stresses created during the forming process and in general to improve the physical
properties of the material. They often involve a slow, controlled cooling over a
prescribed temperature interval or prolonged exposure to a fixed temperature. Such
procedures are common in the metallurgical industries.

Analysis — The strapping of width 6.4 × 10–3 m (1/4 in.) enters at a flow rate
of 0.189 kg/s and temperature of 540°C and is required to be cooled to a temperature
of 370°C during its passage through the bath. The dimensions of that bath will be
determined by the submerged length or what one might term the residence length
of the strapping, and it is this length that will have to be established.

An examination of the physics of the problem will quickly reveal that one is
here dealing with the heating of a flowing medium by an isothermal fluid, akin to

FIGURE 2.5 Annealing of steel strapping in a molten lead bath.
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the steam-heated exchanger discussed previously, with the steel strapping taking the
place of the tubular fluid, the lead bath that of the condensing steam. The model
will consequently be of the form given by Equation 2.15. The challenge here, in
fact, lies not so much in the setting up of the balance but in the proper choice of a
heat transfer coefficient h for what is clearly an unconventional system with unusual
physical properties. We note that heat transfer here is by free convection from a
moving solid to a molten metal. Correlations for precisely this type of energy
transport do not appear to exist and one is forced instead to draw on expressions
for natural convection heat transfer from a stationary solid (usually an electrically
heated wire). For water and common organic liquids, the heat transfer coefficient is
correlated by the expression:

or

Nu = 0.53 (GrPr)1/4 (2.30)

where Cp, µ, ρ, k, β are the heat capacity, viscosity, density, thermal conductivity,
and coefficient of thermal expansion of the liquid; d the diameter of the wire; Nu,
Gr, Pr the so-called Nusselt, Grashof, and Prandtl numbers respectively. We note in
addition a weak dependence of h (Nu) on the temperature driving force ∆T which
is often approximated by the arithmetic average of the end temperature differences.

For liquid metals, the Prandtl numbers are unusually low, of the order 10–2,
because of the high values of thermal conductivity k. Conduction contributes quite
substantially to the overall transfer of heat, with the result that the Prandtl number
now has a stronger influence than that expressed in Equation 2.30 for conventional
fluids. This is accounted for by the following modification of the correlation:

Nu = 0.53 (GrPr2)1/4 (2.31)

An additional problem which needs to be resolved is the proper determination
of the physical properties of molten lead for use in Equation 2.31. These are not
usually found in conventional science or engineering handbooks and one must
instead draw on the specialized metallurgical literature (see References at end of
chapter). From these sources, one obtains the following values for molten lead:

Density ρ = 10.7 g/cm3

Heat capacity Cp = 0.15 J/gK
Thermal conductivity k = 15.4 J/msK
Viscosity µ = 2.65 mPas

Thermal expansion  = –1.317 mg/cm3K
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From the density and its variation with temperature one obtains the coefficient
of thermal expansion β as follows:

The temperature driving force is taken as the arithmetic average of the end
temperature differences, so that:

With these values in hand and using the definitions of Equation 2.30, one obtains

Hence,

The actual value of the coefficient is likely to be somewhat higher because of
the movement of the strapping.

The Model — The difference element to be used is indicated in the accompanying
diagram, Figure 2.5B. The strapping carries enthalpy H in and out of the element
and releases heat qavg to the lead bath. We obtain, in the first instance:

(2.32)

Introducing the same auxiliary relations used for the steam-heated exchanger, Equa-
tions 2.13 and 2.14, converted to the appropriate transfer area 2d∆z, we obtain, after
division by ∆z and letting ∆z → 0:

(2.33)
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where the derivative can also be written as d(Ts – Tb)/dz. Integrating by separation
of variables between the limits (0, L) and [(Ts — Tb)L, (Ts — Tb)0] and solving for
length L yields:

(2.34)

or

where Cp = 0.545 kJ/kg K = Heat capacity of steel strapping.

Comments:
A number of lessons can be drawn from this example. Setting up the model

equations or obtaining a solution to them need not be the most difficult part of the
task. Often the principal difficulty, as was the case here, resides in obtaining appro-
priate rate constants or other parameters.

One has to know where to look for the required information. Reference to the
metallurgical literature appears to be a natural path to follow but is not one which
is always adopted. On other occasions it may be fruitful to cast a wider net in the
search for information. This often requires considerable background knowledge of
other engineering disciplines. In the case of the example at hand, such knowledge
may lead us to consult texts dealing with nuclear reactors of early vintage, where
the use of molten metals as a heat transfer medium was fairly common (see Refer-
ences). These items, too, are part of the Art of Modeling. Heat transfer by natural
convection is a fairly common occurrence. We shall encounter it again in Illustrations
3.37 and 6.3.6.

Illustration 2.6 Batch Filtration: The Ruth Equations

The example considered in this illustration deals with the batch filtration of a slurry
and aims to relate the time of filtration to the area of the filter, the pressure drop
driving the process, and the physical properties of both filtrate and filter cake. The
accompanying diagram (Figure 2.6) provides some details.

Analysis — The fact that a time dependence is sought leads us naturally to the
choice of unsteady balances around the filter. An initial analysis also reveals two
facts: (1) the cumulative filtrate volume V is a more convenient choice of dependent
variable than the volume or thickness of filter cake, since the latter is not readily
accessible to intermittent measurement. (2) an auxiliary expression will be required
which relates the flow rate Q to the desired pressure drop driving force ∆P/L and
filter area A. This is done by means of what is known as D’Arcy’s law (see Chapter
1, Table 1.2), which here takes the form:

(2.35)
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where K = permeability of the filter cake obtained from experimental measurement.
It is not clear at this stage what the balance envelopes should be but it seems natural
to start with an unsteady integral balance around the filter cake and proceed to
introduce the desired variables by means of additional balances and auxiliary relations.

The Model — The unsteady integral balance about the cake takes the following
form:

(2.36)

where ε and ρs are the porosity and density of the filter cake, respectively.
We now proceed to eliminate the unwanted quantities Q and z. The former is

related to the desired pressure drop and filter area by D’Arcy’s law, Equation 2.35.
To relate z to cumulative volume V, two avenues present themselves: (1) a cumulative
integral balance about the filter cake or (2) an unsteady integral balance about the
receiver. We choose the former, which is algebraic, for convenience, and obtain:

(2.37)

Upon elimination of Q and z, the following expression results, also known as
the Ruth equation:

(2.38)

FIGURE 2.6 Diagram of batch filter and filtrate receiver.
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where the inverse of K(1 – ε)ρs is termed the cake resistance α, a quantity which is
determined experimentally. Thus,

(2.39)

Note that the resistance of the filter medium has been neglected.
It is customary to distinguish between constant rate filtration (dV/dt = constant)

and constant pressure filtration (∆P = constant). In the former case we obtain:

(2.40)

where α can be determined from an experimental plot of cumulative filtrate volume
V vs. the varying pressure drop ∆P. For constant pressure filtration, integration yields
the expression:

(2.41)

where α can now be obtained from the slope of a plot of V2 vs. time. As a point of
practical interest we note that constant rate filtration requires the use of positive
displacement pumps, while in constant pressure filtration one employs centrifugal
pumps capable of providing a near constant head (i.e., pressure drop) over a range
of flow rates.

Comments:
The choice of variables proved to be of some importance and not immediately

obvious to the uninitiated. It was clear, however, that the cake resistance plays a
crucial role in determining time of filtration and had to be brought into the model
in some fashion. This was done through the use of D’Arcy’s law, Equation 2.35
which led to the replacement of the flow rate Q by the pressure driving force ∆P.

The equations obtained, 2.40 and 2.41, known as Ruth’s equations, are quite
general, i.e., can be used for design (filter area A), parameter estimation from
experiment (cake resistance α), or prediction of performance of an existing filter.
The functional relationships displayed by these equations are worth some scrutiny.
We note in particular that the amount filtered in a given time interval, represented
by the cumulative volume V, varies with the square of filter area in constant rate
filtration, but only linearly in constant pressure filtration. This could not have been
immediately anticipated on the basis of the physics of the process and shows the
power of models to reveal the unexpected. It is these unexpected features, not mere
confirmation of conventional wisdom, that the analyst should look for and exploit.

In this illustration, as in the previous ones, it was not always possible to arrive
at an a priori choice of balances, envelopes, or auxiliary relations. A preliminary
analysis is of some help, but in more complex situations it is often not possible to
establish the form and number of equations in advance. In these cases it is best to

A p
C

V
dV
dt

2

0

∆
αµ

=

V t
A p t
C dV dt

( )
( )

/
=

2

0

∆
αµ

V A p
C

t
2 2

02
= ∆

αµ

248/ch02/frame  Page 34  Friday, June 15, 2001  6:54 AM

© 1999 By CRC Press LLC



start with the simplest or most obvious balance and proceed to add, step by step,
further relations until the number of equations equals the number of state variables.
The model then can be said to be complete.

Illustration 2.7 Drying of a Nonporous Plastic Sheet

Moist plastic sheets are to be dried by passing a stream of air over and under them.
It is desired to calculate the time necessary to remove 90% of the initial moisture
(Figure 2.7).

Analysis — The drying of solids in general is a highly complex process involving
both heat and mass transfer. If the solid is porous, the moisture content will ultimately
vary in both the longitudinal and lateral directions as well as with time. Thus, we
could be dealing with two coupled partial differential equations (mass and energy
balances) in time and two dimensions.

Early studies of drying processes had revealed that considerable simplifications
result by recognizing three distinct drying periods, shown in the accompanying
diagram (Figure 2.7C). During an initial adjustment period, the surface moisture

FIGURE 2.7 Drying of a nonporous plastic sheet with air: (A) system and dimensions, (B)
diagram of the differential mass balance, (C) the various drying periods.
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quickly drops to the so-called wet-bulb temperature due to evaporative cooling which
signals the fact that the drying process is now entirely driven by energy supplied
from the air. The drying rate at this stage has become constant and remains so until
the surface moisture has evaporated. During this constant rate period, the process
can be modeled algebraically if we assume negligible change in air humidity, or by
an ODE if the latter varies. Thereafter the process becomes more complex as
moisture removal now has to take place from the 

 

interior

 

 porous structure and a
continually receding water interface. A lengthy drying period results as the moisture
becomes increasingly inaccessible, and it is this period that results in the aforemen-
tioned partial differential equations. By restricting ourselves to nonporous plastic
sheets we eliminate the falling rate period. If, in addition, the initial adjustment
period is neglected and the sheets are assumed to remain uniformly moist, the process
becomes accessible to simple modeling.

An additional point needs to be addressed. Since time of drying is to be deter-
mined, it is tempting to assume that the process is an unsteady one. In fact, the
constant rate period leads to a steady-state humidity profile in the flowing air, with
evaporation being driven by the difference of the constant wet-bulb humidity Y*
and the humidity Y of the air as a particular point. Thus, air leaves the sheets at a
constant humidity Y

 

L

 

 throughout the constant rate drying period (see Figure 2.7).
How, then, is the drying time to be determined? Some reflection will show that this
calls for the use of an integral cumulative balance in which the total amount to be
evaporated (here 90% of the initial moisture) is equated to the cumulative amount
of moisture which has left the sheet at a steady humidity Y

 

L

 

 over a period t. We first
must calculate Y

 

L

 

 from a differential balance over the sheet and then make use of
the integral balance to calculate t.

The mass transfer coefficient k

 

Y

 

 required to express the drying rate N is drawn
from standard correlations for mass transfer from a flat plate parallel to a flowing
fluid. Derivation of its value is discussed in detail in Chapter 3, Illustration 3.2.1:
Drying of Plastic Sheets Revisited. In industrial practice one often dispenses with
the use of a mass transfer coefficient and calculates drying time based on the
assumption that the exiting air is fully saturated at Y*. This evidently represents a
lower bound to the value of time sought. Both the full model and the asymptotic
one are discussed below.

 

The Models

 

 — We start with a steady-state differential balance for the air, see
Figure 2.7B. The data provided are as follows:

Air flow rate G

 

s

 

 = 1 kg dry air/s
Air velocity v = 15 m/s
Inlet air humidity Y

 

0

 

 = 0
Initial moisture content M

 

o

 

 = 6.0 kg/sheet
Wet-bulb temperature T

 

w

 

 = 21°C
Wet-bulb humidity Y* = 0.016 kg H

 

2

 

O/kg air
Mass transfer coefficient k

 

Y

 

 = 0.0313 kg/sm

 

2

 

∆

 

Y

We obtain, in the first instance:
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(2.42)

or, after introduction of the auxiliary relation for N
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Dividing by 
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(2.44)

where dY/dz can also be expressed as d(Y* – Y)/dz. Separation of variables then
results in the expression:

(2.45)

(2.46)

and

Hence,
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 = 0.0122 kg H

 

2

 

O/kg air

We now introduce the cumulative balance, the need for which was established
in the analysis:

(2.47)

Hence,

(2.48)
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For the asymptotic case of saturated air leaving the sheet, we set YL = Y* in Equation
2.48 and obtain:

(2.49)

Comments:
The principal point to emerge from this illustration is that a highly complex

process has been reduced to manageable form. It is somewhat far-fetched to assume
that the three drying periods could have been identified by physical reasoning alone.
They were, in fact, established by experimentation in the early stages of drying
studies. Thus, the importance of experimental measurements should not be under-
estimated and the analyst should be prepared to draw on them and, more importantly,
interpret them so as to arrive at suitable simplifications.

The second point to note is that the required time of drying does not imply that
we are dealing with an unsteady process. It takes experience and steadiness not to
be tempted into reaching for an unsteady balance.

Finally, asymptotic solutions should not be disdained simply because a more
complete model is available and easily solved. Remember that it takes time to obtain
the necessary information (i.e., the mass transfer coefficient kY) and the knowledge
of where to look for it. Neither may be available to the industrial practitioner.

Practice Problems
Note: Most of the problems given here are of a fairly challenging nature and the
reader may wish to defer their solution until after Chapter 3 has been covered. The
author’s own recommendation is that they be studied, nevertheless, and an attempt
be made to address them. The comments added to each problem are designed to
provide some aid in that direction.

2.1 Discharge of a Ladle of Molten Steel — In a continuous vacuum degassing
operation, molten steel is to be discharged from a ladle open to the atmosphere into
a vacuum chamber maintained at essentially zero pressure. The ladle is 2.44 m (8
ft) in height and internal diameter. Attached to the bottom of the tank and extending
into the vacuum chamber is a nozzle, 0.45 m (18 in.) in length and 0.051 m (2 in.)
in inside diameter. Calculate the time of discharge. Data:

Steel density ρ = 7,300 kg/m3

Steel viscosity µ = 0.15 Ns/m2

Friction factor in nozzle f = 0.00094
Entrance and exit losses and friction within the ladle are neglected

Comments:
Since the level and mass of the steel diminishes with time, an unsteady mass

balance over the tank is called for. That mass balance contains the level height z
and exit velocity v as dependent variables. A second equation, therefore, is required
which is given by the mechanical energy balance (see Chapter 3, Illustration 3.4.8).
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Note that in that equation, changes in pressure, velocity, and elevation, as well as
friction in the nozzle, will have to be taken into account. Velocity at the steel surface
itself can be neglected.

Answer: 14.2 min

2.2 A Simplified Leaching Process — A water-soluble material is to be leached
from a mass of solid particles in a well-stirred tank. This is in principle a time
dependent process in which the rate of leaching also varies with distance since the
solute front continually recedes into the interior of the particle and the diffusion
path consequently lengthens. A PDE model of Fick’s law would, therefore, appear
to be called for (see Illustration 8.2.5). A simplification can be effected, however,
by approximating the leaching process in terms of a mass transfer coefficient kL =

 and a driving force (C* – Cext), where Deff = diffusivity in the solid matrix,

∆x can be expressed in terms of the solute mass m remaining in the matrix. Assume
the particles to be rectangular flakes of area A and thickness 2L, with negligible
transport through the edges. Derive an ODE mass balance which upon solution will
yield the time dependence of solute mass m remaining in the solids and hence the
time of leaching required. Do not solve the ODE.

Answer: 

2.3 Isotope Separation Factors by Rayleigh Distillation — Low abundance iso-
topes such as deuterium D and C13 are often separated from their more abundant
partners by distillation of liquid compounds such as HDO/H2O and C13O/C12O.
Vapor–liquid equilibria required for the design of such distillation units are charac-
terized by a separation factor α which is very close to unity, and the relation y =
αx, where y and x are the vapor and liquid mole fractions of the isotope respectively.
The value of α, which is crucial to the design of the units, can be determined in a
variety of ways.

1. Precise measurements of pure component vapor pressures p1
0, p2

0, related
to α through the expression: α – 1 = p1

0/p2
0

2. By column distillation using high efficiency packing.
3. By single stage equilibration of vapor and liquid.
4. By Rayleigh distillation.

Of the four methods, the so-called Rayleigh distillation recommends itself for its
simplicity and the high degree of enrichment attainable which surpasses by far the
separation obtained in single-stage equilibration and avoids the need for high precision
analytical determinations of isotopic content, or those of pure component vapor pres-
sures. It also avoids the uncertainties and complexities inherent in column separations.

Rayleigh distillation consists of the slow, controlled batch distillation of a liquid
solution in which the well-mixed contents are assumed to have attained phase
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equilibrium. Typically in this operation, some 90 to 95% of the initial charge is
boiled off and the residue analyzed for isotopic content that is combined with the
known composition of the initial charge to reflect the enrichment obtained. This
quantity is then related to the separation factor α through an appropriate model.

Identify the balances required and show that by elimination of the time variable
one obtains the following relation between separation factor α, initial to final ratio
of moles nf /ni and mole fractions xf /xi:

(2.50)

(Hint: Make component and total mole balances over the still and divide the
equations to eliminate dt.)

2.4 Response of a Theoretical Tray to Disturbances — The concept of a theoretical
tray is widely used in the design and analysis of plate distillation and absorption
columns. The principal assumption inherent in this concept is that both phases in
contact with the tray are well-mixed, i.e., uniform in concentration, and that the
effluent concentrations are in equilibrium with each other, Y* = f(X) (see Figure 2.8).

Consider a single theoretical plate in a gas absorber which has its gas feed
composition suddenly raised from 0.02 to 0.03 kg solute/kg carrier gas. Calculate
the time necessary for the liquid outlet concentration to attain 95% of the new steady-
state value, indicating type of balance and auxiliary relation used.

Data: Gs = 80 kg carrier gas/h
Ls = 15 kg solvent/h
H = 3 kg solvent hold up on plate
m = Y*/X = 0.125 (Henry’s constant)

(Hint: Prior to setting up the principal unsteady balances, both the initial and
ultimate steady-state liquid effluent concentrations must be established by means of
appropriate integral balances.)

Answer: t = 13.7 min

FIGURE 2.8 Flow diagram for a theoretical plate.
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2.5 Propagation of a Rectangular Pulse in an Adsorber — A column packed with
granular adsorbent is to be used to purify an incoming gas stream of velocity v and
feed concentration YF kg solute/kg carrier. Concentration fronts are known to stabi-
lize ultimately to an S-shaped form when mass transfer effects are taken into account
(Figure 2.9). Much useful information may be gained, however, by assuming the
two phases everywhere to be in equilibrium with each other: Y* = f(q), where q is
in units kg solute/kg bed. This leads to the formation of a rectangular front which
coincides with the mid-point of the actual S-shaped profile (Figure 2.9B). You are
asked to address the following questions:

1. What type of balance and auxiliary relations are needed in principle to
establish the solute profile in the adsorber?

2. How can this model be simplified to treat the case of a rectangular front?
3. Use the simplified approach to establish the time required to saturate a

bed of length L with a rectangular pulse.

(Hint: Use a cumulative balance neglecting fluid phase content of solute.)

Answer: 

2.6 Ground Penetration from Oil Spills — In connection with oil spill studies, it
is desirable to develop a mathematical model which will yield the depth of oil
penetration into the ground as a function of time. The basis for the model is D’Arcy’s
law, which was encountered in connection with the filtration problem (Illustration
2.6) and relates the flow rate Q through a porous medium to the total head h and
other physical parameters:

where h = total height of oil column
A = total cross-sectional area of medium

FIGURE 2.9 Adsorber column and profile.
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z = thickness of medium filled with oil
K = “permeability” of medium

and h

 

ρ

 

g takes the place of 

 

∆

 

p in Equation 2.35.

It is desired to use the model to calculate the time it takes for the oil to penetrate
4 cm into the ground.

Data: Initial height of oil level h

 

o

 

 = 6 cm
Porosity of ground = 0.7 cc/cc
Permeability of ground K = 10

 

–6

 

 cm

 

2

 

Oil viscosity 

 

µ

 

 = 0.02 Ns/m

 

2

 

Oil density = 800 kg/m

 

3

 

(Hint: Use a cumulative balance to express amount of oil remaining on the
surface as a function of time.)

 

Answer:

 

 t = 210 sec

 

2.7 Diffusion Through the Wall of a High-Pressure Hydrogenation Vessel —

 

Hydrogen is capable of dissolving in and diffusing through metals. The rate of
diffusion is represented by Fick’s law.

One is asked to set up an appropriate balance and by simple integration obtain
an expression for the concentration profile of hydrogen in the metal.

(Hint: Consult Chapter 3, Illustration 3.3.6.)

 

Answer:
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3

 

More About Mass, 
Energy, and Momentum 
Balances

 

Ah, but this is not the end. It is not even the beginning of the end. But it may well be
the end of the beginning.

 

Winston Spencer Churchill
(Speech after the Battle of El Alamein, 1942)

 

The purpose of this chapter is to delve in considerably greater detail into the makeup
of mass, energy, and momentum balances then had hitherto been the case. We start
by considering various terms that appear in the balances, and follow this up with
five separate and major sections on the following topics:

1. Mass balances (3.2)
2. Energy balances (3.3)
3. Momentum/force balances (3.4)
4. Simultaneous mass and energy balances (3.5)
5. Simultaneous mass, energy, and momentum balances (3.6)

Sections 1 to 3 start by considering transport and transport coefficients associated
with both convective and diffusive mechanisms. Tabulations of their values and
correlations applicable to the major geometries of interest (flat plate, sphere, cylinder,
tube, packed bed) are presented. This is followed by illustrations and practice
problems usually drawn from a wide variety of subdisciplines and are mostly kept
at the level of single units although many model equations show an enhanced degree
of sophistication. They are typically supplemented with charts and graphs which
allow system variables to be read off with ease and rapidity. References to all six
subsections appear at the end of the chapter.

 

3.1 THE TERMS IN THE VARIOUS BALANCES

 

It is of some use as a guide in modeling to be aware of the types of terms which
may appear in various balances. They are conveniently tabulated for mass and energy
balances in Table 3.1. A distinction is made among terms which arise due to bulk
flow, convective interphase, and diffusive transport, as well as reaction and unsteady
behavior. Both the basic stirred tank and the one-dimensional (steady-state) pipe are
considered. One notes the similarity in terms which are due to a particular mode of
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transport. Thus, interphase heat and mass transfer are both proportional to the product
of transport coefficients and driving force, diffusive transfer to the gradients of
temperature and concentration. Reaction enters the balances through the reaction
rate r. Note that neither r nor the driving forces 

 

∆

 

C and 

 

∆

 

T are differentiated over
the increment A, as was shown in Chapter 2.

For momentum or force balances, not included in Table 3.1, the important
operative terms are

For convective or bulk flow: 

 

ρ

 

Q

 

v

 

(3.1.1)

For diffusive or molecular transport: (3.1.2)

We note that for bulk flow, velocity has to be expressed in vectorial form since
momentum depends on both magnitude and direction of v. The term for molecular
transport, also known as Newton’s viscosity law, is expressed in terms of the shear
stress 

 

τ

 

 (Pa) acting on adjacent fluid lamellae.

 

3.2 MASS BALANCES
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In this Introductory Section we consider expressions for the combined flux due to
bulk and molecular motion. This requirement is unique to mass transfer processes

 

TABLE 3.1
Contributing Terms Used in Mass and Energy Balances

 

Stirred Tank 1-D Pipe

A. Mass Balances

 

1. Bulk or convective flow FC FC|
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∆

 

z

 

2. Convective interphase transport kA(C – C*) k(C – C*)

 

∆
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3. Molecular or diffusive transport —

4. Reaction rV r

 

∆

 

V
5. Unsteady term —

 

B. Energy Balances

 

1. Bulk or convective flow FH FH|
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since diffusive transport may itself give rise to a bulk motion of fluid and, therefore,
must be considered in conjunction with it. Such linked mechanisms do not arise in
either energy or momentum transport and need not be taken up there.

We start with what is commonly known as Fick’s law or Fick’s first law which
relates molar flux of a species N

 

A

 

′

 

 (moles/m

 

2

 

s) to the molar concentration gradient
dC

 

A

 

/dz.

(3.2.1)

and

(3.2.2)

where x

 

A

 

 = mole fraction of A, C = molar density of the fluid (moles/m

 

3

 

).
When bulk flow N

 

A

 

′

 

 + N

 

B

 

′

 

 takes place in conjunction with or superposed on
diffusive flow, a corresponding compensating term must be added to Fickian diffu-
sion. This is done as follows. For fluids in general:

(3.2.3)

and for ideal gases in particular:

(3.2.4)

Two special cases are of particular importance:

1. Equimolar Counterdiffusion — For this case we have:

N

 

A

 

′

 

 = –N

 

B

 

′

 

(3.2.5)

i.e., Equation 3.2.3 is reduced to Fick’s law, Equation 3.2.1. The case
arises with great frequency in the interdiffusion of pure fluids and in
adiabatic distillation processes. Fick’s law also is approximately valid
when dealing with trace quantities of A, i.e., when the bulk flow term is
essentially zero.

2. Diffusion Through a Stagnant Film — Here the flux of the species B is
zero:

N

 

B

 

′

 

 = 0 (3.2.6)

N D
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so that Equation 3.2.3 is reduced to the form:

(3.2.7)

It can be shown that integration of the two segments within Equation 3.2.7 by
separation of variables leads, after some manipulation, to the final expression:

(3.2.8)

where (x

 

B

 

)

 

M

 

 is the designation commonly used for the average, or so-called log-
mean concentration difference of the stagnant component:

(3.2.9)

For ideal gases, the analogous expression is given by:

(3.2.10)

One notes again that for trace quantities of the solute A, Equations 3.2.8 and
3.2.10 reduce to the integrated form of Fick’s law, Equation 3.2.2, since we then
have p

 

BM

 

 = x

 

BM

 

 

 

≈

 

 1. The two expressions appear frequently in the description of the
evaporation of a liquid or dissolution of a solid into a flowing or well-stirred medium.
The reverse processes of condensation and crystallization and other similar events
are described in the same fashion.

The discerning reader will have noted that all three expressions (3.2.2, 3.2.8,
and 3.2.10) relate the flux to a driving force 

 

∆

 

C, 

 

∆

 

x, or 

 

∆

 

p, preceded by a coefficient.
We shall see in the next section how this leads, under certain simplifying assump-
tions, to the formulation of a transport coefficient or its inverse, the transport
resistance.

 

3.2.2 T

 

RANSPORT
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OEFFICIENTS

 

We start this section by considering binary molecular or diffusive coefficients D

 

AB

 

which appear in Fick’s law and the various flux equations presented in the preceding
section. We have displayed typical values for both binary gaseous and liquid mixtures
in Tables 3.2 and 3.3. While experimental measurements are to be preferred, gaseous
diffusivities can be predicted to a fair degree of accuracy, particularly at low pres-
sures, from theoretical expressions. Of note in these relations is the simple depen-
dence on total pressure P

 

T

 

 and temperature T, given by:
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(3.2.11)

For liquid mixtures, particularly those involving dissociating solutes, predictions
are more difficult.

Also listed in Tables 3.2 and 3.3 are values of the dimensionless group known
as the Schmidt number Sc = 

 

µ

 

/

 

ρ

 

 D

 

AB

 

. This parameter is one of the three defining
dimensionless groups that appear in correlations of mass transfer coefficients, to be
taken up below. Some simple statements can be made as to the order of magnitude
of both diffusivities and Schmidt numbers, which are useful for quick engineering
estimates. These are summarized in Table 3.4.

When dealing with transport in a turbulent or well-stirred medium, diffusivities
are no longer applicable since they are restricted to stagnant systems or systems in
laminar flow. Of the many theories which have been proposed, the so-called 

 

film

 

TABLE 3.2
Diffusivities of Gases at 1 atm

 

System Temp., °C Diffusivity, cm

 

2

 

/s Sc

 

O

 

2

 

–N

 

2

 

0 0.181 —
Air–H

 

2

 

0 0.611 0.218
Air–H

 

2

 

O 0 0.220 0.606
Air–NH

 

3

 

0 0.198 0.610
Air–ethanol 0 0.102 1.31
Air–benzene 25 0.0962 1.48

 

TABLE 3.3
Liquid Diffusivities

 

System Temp., °C
Solute Concentration

mol/L
Diffusivity
cm

 

2

 

/s · 10

 

5

 

Sc

 

CO

 

2

 

–H

 

2

 

O 10 ~0 1.46 856
20 ~0 1.77 910

NH

 

3

 

–H

 

2

 

O 5 3.5 1.24 863
15 1.0 1.77 808

NaCl–H

 

2

 

O 18 0.05 1.26 1220
18 5.4 1.54 1000

Ethanol–H

 

2

 

O 10 0.05 0.83 1510
3.75 0.50 2500

CO

 

2

 

–ethanol 17 ~0 3.2 472
Chloroform–ethanol 20 2.0 1.25 1290
Proteins–blood 37 — ~0.01–0.1 ~30,000

–300,000

D
T
PAB

T

∝
1 75.
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theory

 

 remains, because of its simplicity, the most widely used description of trans-
port in these situations. Its genesis is illustrated in Figure 3.1.

Figure 3.1A shows an actual mean concentration profile as well as the one which
evolves from film theory for turbulent flow past an evaporating or dissolving surface.
Mirror images apply to condensing and crystallizing or precipitating solutes. Film
theory proposes that the actual transport mechanism be replaced by diffusion through
a fictitious or effective stagnant film of thickness z

 

F

 

. Fick’s law, Equation 3.2.2, can
then be written in the form:

 

TABLE 3.4
Approximate Values of Diffusivities and Schmidt Numbers

 

System D

 

AB

 

, cm

 

2

 

/s Sc

 

Hydrogen and helium in gases (1 atm) ~1 ~0.1
Binary gaseous mixtures in general (1 atm) ~10

 

–1

 

~1
Gases in porous solids (1 atm) ~10

 

–3

 

 – 10

 

–2

 

—

Simple binary liquid-phase systems ~10

 

–5

 

10

 

3

 

Proteins and polymeric solutes in different solvents ~10

 

–7

 

 – 10

 

–6

 

10

 

4

 

 – 10

 

5

 

Simple binary liquid systems in porous solids ~10

 

–7

 

 – 10

 

–6

 

—

 

FIGURE 3.1

 

Diagram illustrating single and two-film theories.
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N

 

A

 

′

 

 = k

 

C

 

(C

 

A1

 

 – C

 

A2

 

) = Ck

 

C

 

(x

 

A1

 

 – x

 

A2

 

) (3.2.12)

where the mass transfer coefficient k

 

C

 

 is defined by the relation:

(3.2.13)

Similar expressions apply to the flux Equations 3.2.8 and 3.2.10.
When both phases in contact with each other are in turbulent flow, two effective

films or resistances are postulated, as shown in Figure 3.1B. Transport takes place
from a high concentration y

 

A

 

 through the effective film associated with Phase II to
the interface. Here the Phase II concentration y*

 

Ai

 

 is assumed to be in equilibrium
with the Phase I interfacial concentration x

 

Ai

 

 so that:

y*

 

Ai

 

 = m x

 

Ai

 

(3.2.14)

where m is the local slope of the equilibrium curve. Transport then continues from
the interface to the bulk of Phase I of concentration x

 

A

 

.
The entire process can be regarded as proceeding through two resistances in

series represented by the two films. If we define these resistances as 1/k

 

y

 

 and m/k

 

x

 

respectively, addition of the two terms will yield an overall resistance 1/K

 

oy

 

 given by:

(3.2.15)

where K

 

oy

 

 is termed the overall mass transfer coefficient. It can be shown that with
these definitions in hand, the mass transfer flux takes the form:

N

 

A

 

′ = Koy(yA – y*A) (3.2.16)

where y*A is the fictitious concentration in equilibrium with xA:

y*A = m xA (3.2.17)

Overall coefficients are widely used to describe transport between two phases
in contact with each other. They are determined experimentally or computed from
Equation 3.2.15.

To aid in the computation of both film and overall mass transfer coefficients we
have compiled correlations of the former for flow in and around various common
geometries (Table 3.5). The film coefficients appear in the form of dimensionless
Stanton or Sherwood numbers, defined in the table. Both of these groups depend
solely on the dimensionless Reynolds and Schmidt numbers, so that one can write:

St, Sh = f(Re, Sc) (3.2.18)

k
D

zC
AB

f

=

1 1
K k

m
koy y x

= +
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We conclude this section by drawing attention to Table 3.6 which lists mass
transfer fluxes in terms of different modes (stagnant film and equimolar counterdif-
fusion), driving forces, as well as conversion factors for the various mass transfer
coefficients. Since correlations in Table 3.5 are given in terms of kc or kL, conversions
become necessary whenever it proves convenient to use driving forces other than
∆C. An example of the use of the correlations and conversion factors is given in
Illustration 3.2.1 below.

Illustration 3.2.1 Drying of Plastic Sheets Revisited:
Estimation of the Mass Transfer Coefficient kY

In Illustration 2.7 (Chapter 2) we had considered the problem of drying nonporous
plastic sheets to 10% of their original moisture content by passing air at 44°C over
the sheets at a velocity of 15 m/s. We now wish to calculate the mass transfer
coefficient kY which was given there without mention of its origin. To do this, we
draw on Table 3.5 for correlations of kc (m/s) and on Table 3.6 for conversion of kc

to kY. For flow over a flat plate, the suggested correlations are

TABLE 3.5
Correlations for Mass Transfer Coefficients

Range Equation

(1) Flat Plate
Re < 105 St = 0.66 (Re)–1/2 (Sc)–2/3

Re > 106 St = 0.036 (Re)–0.2 (Sc)–2/3

(2) Sphere
Unlimited Sh = 2.0 + 0.60 (Re)1/2 (Sc)1/3

(3) Cylinder
1 < Re < 4000 Sh = 0.43 + 0.53 Re0.5 (Sc)0.31

(4) Inside pipes (µ = const.)
Re < 2100 Sh = 1.86 (ReSc d/L)1/3

Re > 20,000 Sh = 0.026 (Re)0.8 (Sc)1/3

(5) Packed Bed of Spheres
Re < 50 St = 0.91 (Re)–0.51 (Sc)–2/3

Re > 50 St = 0.61 (Re)–0.41 (Sc)–2/3

Note: Re = Reynolds number =  Sh = Sherwood number = 

St = Stanton number =  Sc = Schmidt number = 

L = Length of plate, diameter of sphere, cylinder, or pipe

Lvρ
µ

,
k L

D
c,1

k

v
c, ,1 µ

ρD
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For Re < 105 St = 0.66 (Re)–1/2 (Sc)–2/3

For Re > 106 St = 0.036 (Re)–0.2 (Sc)–2/3

We establish the proper choice by first computing the Reynolds number. Using
Table 3.8 of the properties of air, interpolated for a temperature of 44°C, we obtain:

TABLE 3.6
Relations Among Mass Transfer Coefficients

Rate Equation

Units of Mass
Transfer Coefficient

Equimolar
Counterdiffusion

Diffusion of A
Through Stagnant B

Gases
NA′ = kG′∆pA NA′ = kG∆pA Moles/time area pressure
NA′ = ky′∆yA NA′ = ky∆yA Moles/time area mole fraction
NA′ = kC′∆CA NA′ = kC∆CA Moles/time area (moles/vol.)

WA = kY∆YA Mass/time area (mass A/mass B)

Liquids
NA′ = kL′∆CA NA′ = kL∆CA Moles/time area (moles/vol.)
NA′ = kx′∆xA NA′ = kx∆xA Moles/time area mole fraction

Conversion for Gases

Conversion for Liquids
kLxBMC = kxxBM = kL′C = kx′

TABLE 3.7
Properties of Liquid Water

T°C ρρρρ (kg/m3) Cp (kJ/kg K)
µµµµ(Pas ×××× 103) or
(kg/ms ×××× 103) k (W/mK) Pr

0 1000 4.23 1.79 0.569 13.7
25 997 4.18 0.89 0.590 6.10

100 958 4.21 0.28 0.681 1.75

Note: Latent heat of vaporization (100°C) ∆Hv = 2446.9 kJ/kg. Latent heat of fusion
(0°C) ∆Hf = 334.1 kJ/kg.

k p k
p

P
k

p

RT

k

M
k P k k CG BM y

BM

T
C

BM Y

B
G T Y C= = = = ′ = ′ = ′

Re
( . )( . )( . )

.
.= =

×
= ×−

Lvρ
µ

15 2 1 5 1 12
1 93 10

1 32 105
7
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leading to the choice of the second correlation. Thus, we use the expression:

For the Schmidt number µ/ρD, we draw on Table 3.2 for diffusivities in gases
and use the value of Sc = 0.606 given there for T = 0°C. This is justified since the
necessary temperature corrections to compute physical properties at 44°C are minor
and very nearly cancel out. This yields:

or

kC = 0.0284 m/s

Conversion to kY requires the following relation given in Table 3.6:

For the computation of

we note that the vapor pressure of water at the interface temperature Twb = 21°C is
pA = 2487 Pa so that pB1 = 101300 – 2487 = 98813 Pa and pB2 = 101300 Pa. We obtain

which is the value used in Chapter 2’s Illustration 2.7.

TABLE 3.8
Properties of Air

T°C ρρρρ (kg/m3) Cp (kJ/kg K)
µµµµ(Pas ×××× 105) or
(kg/ms ×××× 105) k (W/mK) 102 Pr

0 1.29 1.005 1.72 2.42 0.715
25 1.18 1.005 1.84 2.60 0.709

100 0.94 1.01 2.19 3.20 0.691

k

v
Lv

D
c =













− −

0 036
0 2 2 3

.
. /

ρ
µ

µ
ρ

kC

15
0 036

1 32 10
1 93 10

0 606
7

3

0 2

2 3= ×
×





−

−
−.

( . )
.

( . )
.

/

k k
M p

RT
pY C

B BM
BM= = × −

0 0445
29 10
8 31 317

3

.
( . )( )

p
p p

p

p

BM
B B

B

B

=
−1 2

1

2

ln

k 0.0 kg H O / s m YY 2
2= × − =

−

0 0284
29 10
8 31 317

98813 101300
98813

101300
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3

.
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∆
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Comments:
We note here that this exercise assumes some knowledge of appropriate sources

of information. In this case the information is conveniently tabulated in the text (see
Tables 3.5, 3.6, and 3.8). This will evidently not be possible for all parameter values
one has to deal with, and the analyst must therefore be prepared at an early stage
to accumulate a storehouse of source material and to draw on it when necessary.
Alternatively, one can consult colleagues with expertise in a particular area. This is
perfectly respectable and widely practiced.

We note again the wide diversity of mass transfer coefficients that exist and the
necessity to interconvert them. kY was needed here because the humidity driving
force ∆Y was a convenient quantity to use. The correlations given in Table 3.5, on
the other hand, are as already mentioned expressed in terms of kc (m/s) and must
be converted to kY via the relations listed in Table 3.6.

Illustration 3.2.2 Measurement of Diffusivities by the
Two-Bulb Method: The Quasi-Steady State

Diffusion coefficients in gases and liquids can be measured in a variety of ways, an
important one being the so-called two-bulb method. We draw attention to the details
of the experimental configuration, shown in Figure 3.2. The two bulbs containing
the species A and B at the same total pressure and temperature are connected by a
long capillary of small cross-sectional area A. The purpose of the arrangement is to
ensure that transport through the capillary becomes the rate-determining step and
that consequently the contents of the bulbs may at any instant be assumed to have
a uniform composition as if stirred. This is referred to as the quasi steady-state
assumption and allows us to express the transport of A in terms of an instantaneous
driving force CA1 – CA2. We apply a mass balance for A around the reservoir 2 and
obtain the following expression:

(3.2.19)

Since we have two state variables CA1 and CA2, an additional relation is required.
We can use a second unsteady balance around reservoir 1 which leads to an ODE,
or more conveniently, an algebraic cumulative balance to time t. Thus,

FIGURE 3.2 Measurement of diffusivities by the two-bulb method.

Rate of A in Rate of A out Change in
A content

D A
C C

L
V

dC

dtAB
A A A

− =

−
− =1 2

2
20
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(3.2.20)

Substitution of CA1 from this equation into Equation 3.2.19 yields after rear-
rangement:

(3.2.21)

We note that the fraction in the bracket equals the average concentration (CA)avg

in the two bulbs:

(3.2.22)

so that upon integration by separation of variables one obtains:

(3.2.23)

Values for DAB are then obtained from the slope of a semilogarithmic plot of measures
values of C2 as a function of time t.

Comments:
The experimental apparatus deserves some attention. A first point to note is that

the capillary has to be uniform and its cross-sectional area known to a high degree
of accuracy to ensure precision in the value of DAB obtained. Second, while the ratio
of bulb to capillary diameter must be kept large to ensure validity of the quasi-steady
state assumption, the volume of the bulbs must on the other hand, be kept reasonably
small so that noticeable concentration changes can be brought about in a reasonable
time period. For the same reason, capillary length should not be excessive. Proper
values for these parameters can be established from Equation 3.2.23 using order of
magnitude estimates for DAB (see Table 3.4).

The quasi-steady state assumption introduced in this example is widely used to
simplify model equations. Note that without it, the “stirred tank” assumption could
not be made and one would have to resort to partial differential equations for a
description of the process. These equations would be quite complex because of the
mixed geometry of the apparatus.

It follows that successful experimentation requires an understanding of the
underlying physics of the process as well as considerable skill in modeling. The
reader is invited to add these items to the arsenal that comprises the Art of Modeling.
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3.2.3 CHEMICAL REACTION MASS BALANCE

The following three illustrations deal with classical problems which arise in chemical
reactor engineering practice. All three assume isothermal operation so that no energy
balances need to be invoked. In the first example the model mass balance for a
continuous flow stirred tank reactor under transient conditions is addressed. The
steady-state mass balance for a tubular reactor is taken up next and leads, as expected,
to a first order ODE in the independent distance variable. Finally, we consider the
mass balance which applies to diffusion and reaction in a catalyst pellet. We show
that the primary result, which consists of the concentration profiles within the pellet
can be integrated to obtain the so-called effectiveness factor E, which is a measure
of the reaction efficiency of the pellet. This factor can be directly incorporated in a
mass balance which describes the behavior of a tubular fixed-bed catalytic reactor.

The rate of reaction r in these and subsequent examples is defined as

(3.2.24)

where A and P are the designations for a typical reactant and product respectively,
V is volume, and NA, NP are the moles consumed and produced. These definitions
are to be distinguished from experimentally determined rate laws which are
expressed in terms of molar concentrations C and involve the order of a reaction
and the reaction rate constant k. Thus,

rA = k CA First order reaction

rA = k CA
2 Second order reaction (3.2.25)

rA = kCA
a CB

b … CK
k a + b + … + k = n

The latter is quite general and is of order a with respect to A, of order b with respect
to B, and nth order overall.

Illustration 3.2.3 CSTR With Second Order Homogeneous 
Reaction A + B →→→→ P

The simple example considered here and shown in Figure 3.3A involves a second
order reaction taking place in a continuous flow stirred tank reactor operating at
constant hold-up (V = constant). Reactant A enters at a volumetric flow rate Q and
molar concentration CAf. A component balance for the species A then leads to:

(3.2.26)

r
V

dN

dt V

dN

dt
A P≡ − ≡1 1

Rate of A in Rate of A out Rate of change
in A content

Q C
Q C

k C C V V
dC

dtAf
A

r A B

A

− =

− +






=
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Similar balances for the B and P species yields:

(3.2.27)

(3.2.28)

We note again that production and consumption rates of the various species by
reaction are grouped under input and output terms respectively and represent instan-

FIGURE 3.3 Diagrams of various isothermal reactor models: (A) the continuous stirred
tank reactor (CSTR), (B) the tubular plug flow reactor, (C) reaction within a catalyst pellet.

Rate of Bin Rate of Bout Rate of change
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taneous algebraic quantities. The transient or rate of change terms do not contain
reaction rate expressions and are placed on the right side of the equations.

The system of Equations 3.2.25 to 3.2.28 is composed of a set of simultaneous
coupled ODEs and would ordinarily have to be solved numerically. This can be
circumvented by introducing a new variable, the conversion X, which is defined as
follows:

(3.2.29)

Thus, for the reactant species A, since V = constant, we have:

(3.2.30)

and in similar fashion for the other species,

CB = CBf (1 – X) (3.2.31)

Cp = CAf X (3.2.32)

The advantage of this procedure is that the set of three equations is reduced to
a single ODE which can, if desired, be integrated analytically by separation of
variables. Thus, the species A balance becomes, upon substitution of Equations
3.2.30 to 3.2.32, and simplification

(3.2.33)

where τ = V/Q is the so-called residence time.

Illustration 3.2.4 Isothermal Tubular Reactor with First Order 
Homogeneous Reaction

The mass balance is in this case taken over a difference element ∆z and yields, upon
going to the limit ∆z → 0, a first order differential equation in the reactant concen-
tration CA (see Figure 3.3B). For a first order reaction with no volume changes, i.e.,
at constant flow velocity v and steady state, we obtain:

(3.2.34)

X
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and after division by A∆z and letting ∆z → 0,

(3.2.35)

Note that here again, as in the case of the gas absorber, (CA)avg → CA in the
limit so that this quantity does not get to be differentiated. Integration by separation
of variables yields

CA = CAf exp (–krτ) (3.2.36a)

where τ = zA/vA = V/Q = residence time, as in the previous case of the CSTR.
Alternatively, we can use conversion X in lieu of CA (see Equation 3.2.30), and obtain

X = 1 – exp (–krτ) (3.2.36b)

One notes that conversion increases with residence time, as would be expected
on physical grounds.

Illustration 3.2.5 Isothermal Diffusion and First Order Reaction 
in a Spherical, Porous Catalyst Pellet: The Effectiveness Factor E

In this classical problem we demonstrate the combined use of Fick’s law and
chemical reaction rate in setting up a steady-state differential mass balance (Figure
3.3C). Because of the form of Fick’s law which contains a derivative as well as an
area term that varies with distance, a second order ODE with variable coefficients
is obtained. This yields, in the first instance,

(3.2.37)

or in the limit

dNA – (rA)avg dV = 0 (3.2.38)

Note that NA equals the previously used flux NA′ times the area A.
The auxiliary Fick’s law is now introduced but since flux is in the negative r-

direction, it takes a double negative sign, i.e., becomes positive. Thus,
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(3.2.39)

Using expressions for area and differential volume of a sphere and a first order
reaction, we obtain:

(3.2.40)

Note that the diffusion term is a product of two functions of r and has to be
differentiated accordingly. Subsequent division by 4πr2 dr finally yields:

(3.2.41)

Comments:
The first two terms of Equation 3.2.41 are characteristic of diffusive transport

in spherical geometries and, therefore, can be expected to arise in conduction,
diffusion, and viscous flow in and around spheres. For radial flux in cylindrical
geometries, the coefficient of the first derivative is halved, while in rectangular or
planar configurations (slab) that quantity is unity. The characteristic terms for dif-
fusive transport are thus,

The solution methods for second order ODEs with constant coefficients differ,
as will be discussed in Chapter 4, from those with coefficients which are functions
of the independent variable. In the former case, the classical D-operator method or
equivalent matrix operations can be applied to arrive at a solution which generally
leads to exponential or trigonometric forms. Second order ODEs with variable
coefficients which arise whenever the diffusive flux area varies with distance usually
require series solutions that lead to a different class of functions (Bessel functions,
Legendre functions).

The solution of Equation 3.2.41 and the corresponding expressions for reactions
of arbitrary order yield, as primary information, the concentration profiles of the
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reactants within the catalyst pellet. The question then arises as to how this initial
result can be used to describe the behavior of a tubular catalytic reactor packed with
catalyst pellets. To do this, use is made of the so-called (isothermal) effectiveness
factor Ei of the pellet, defined as the ratio of the overall reaction rate within the
pellet with and without diffusional hindrance. Thus,

(3.2.42)

where V is the pellet volume and rp is evaluated from the concentration profile
previously obtained from Equation 3.2.41. rp′ on the other hand represents the
intrinsic reaction rate on the catalyst material and can be obtained in principle from
experimental conversion measurements on finely powdered catalysts in which dif-
fusional resistance can be considered negligible. We note that the effectiveness factor
is in essence a measure of the extent to which rp′ is reduced due to the effect of
diffusional resistance. Thus, E can be regarded as a correction factor to the intrinsic
rate rp′ and can as such be directly incorporated in the appropriate model. Thus, for
a first order reaction the equation applicable to a tubular reactor with an intrinsic
rate constant kr′ is simply replaced by the corresponding expression incorporating
the correction factor E:

(3.2.43)

Extensive tabulations of Ei can be found in the literature and are usually given
as plots of effectiveness factor vs. the so-called Thiele modulus mL = (L2kr/Deff)1/2.
The latter is a measure of the relative effect of diffusional resistance (Deff), reaction
rate (kr), and pellet dimension (L). A typical plot, applicable to first order reactions
in various geometries, and for different reaction volume changes is shown in Figure
3.4. Low values of Ei occur at high values of mL, i.e., in large pellets or at high
reaction rates and low diffusivities. Under these conditions the reactant is consumed
rapidly and this, together with low diffusion rates and a substantial particle size,
makes for a high transport resistance. As mL is reduced, an increase in Ei occurs
which ultimately converges to unity. At this value of Ei, the reactant concentration
within the pellet has become uniform and equals that prevailing at the surface. The
catalyst is then at its maximum effectiveness.

3.2.4 TANK MASS BALANCES

In this section we present further examples of mass balances taken around a stirred
tank which we had seen lead to first order ODEs in the unsteady state and algebraic
equations when the system has attained a steady state. Illustration 3.2.3 considered
a stirred-tank reactor under transient conditions. Here, we limit ourselves to nonre-
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acting systems in which the amount of the species in the tank increases, decreases,
or remains constant due solely to the influence of the inflow and outflow terms. Such
models arise routinely in problems involving a dilution or concentration of tank
contents, evaporation, distillation, extraction, and crystallization processes carried
out in tanks and a host of natural systems which can be approximated by a stirred-
tank configuration. The classical example of a surge tank given in Section 2.1 also
falls in this category.

Illustration 3.2.6 Waste-Disposal Holding Tank

A holding tank containing solid waste suspended in water or in settled form is to
be flushed with a constant inflow of water at Q = 100 m3/h. Volume of tank contents
is constant at V = 200 m3 and initial solids content 1000 kg. It is desired to calculate
the remaining solids contents S after 4 h of flushing. The volume of solids is
negligible compared to the tank volume V.

We compose a mass balance with respect to the solids and obtain

(3.2.44)

where X = kg solids/m3 water.
Integrating by separation of variables yields:

FIGURE 3.4 Isothermal catalyst pellet effectiveness factor Ei as a function of the Thiele
modulus mL for various geometries and reaction volume changes. (R. Aris. Chem. Eng. Sci.,
6:262, 1957. With permission.)
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(3.2.45)

or

X2 = X1 exp (-t/τ)

where τ = V/Q = residence time or “holding time.”
Substituting numerical values we obtain:

and

S = (0.677)(200) = 135 kg solids

Illustration 3.2.7 Holding-Tank with Variable Holdup

Here we consider, without injecting numerical values, the general case of a holding
tank with variable holdup, i.e., with different in- and outflow terms, Q1 and Q2. Since
two dependent variables are now involved, volume of the tank contents V and the
solids concentration X, we have to use two mass balances, one for the solids and
one for the water.

Water mass balance:

(3.2.46)

Solids mass balance:

(3.2.47)

The system can be solved by first integrating Equation 3.2.46, substituting the
solution V = f(t) into Equation 3.2.47, and performing a second integration to obtain
X = g(t). Another approach, which is used extensively when the independent variable
t is not required, is to divide the two equations, thus eliminating dt and integrating
the result to obtain a relation between the two dependent variables, X = f(V) (see
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in this connection Practice Problem 2.3: Rayleigh Distillation). This is a useful
intermediate result, but we shall go a step further and solve for S = F(t). The
procedure is demonstrated below.

Dividing Equation 3.2.47 by Equation 3.2.46, we obtain:

(3.2.48)

Collecting variables and integrating by separation of variables yields:

(3.2.49)

or, equivalently,

where S = kg solids. This is the intermediate relation between solid content X or S
and water volume in the tank V.

To obtain an expression for S = F(t), we first integrate Equation 3.2.46, again
by separation of variables, obtaining:

V2 – V1 = (Q1 – Q2)t (3.2.50)

Substituting V2 into Equation 3.2.49 and solving for S2 finally yields:

(3.2.51)

This expression allows the calculation of the solids remaining, S2, after a water
purge of duration t. Alternatively it can be used to calculate the time required to
achieve a desired reduction in solids content or to set incoming flow rate Q1 to
achieve that result in a prescribed time interval.

3.2.5 TUBULAR MASS BALANCES

We have previously seen, in the section on chemical reaction mass balances, that
tubular mass balances arise in models of various types of tubular reactors (homo-
geneous, heterogeneous, or catalytic, etc.). In this section we limit ourselves to mass
transport in a tubular device devoid of chemical reactions and present as examples
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the column distillation of a binary mixture and the release of a solute from a tubular
wall into a flowing medium.

Illustration 3.2.8 Distillation in a Packed Column:
The Case of Total Reflux and Constant αααα

This example again requires some background knowledge in chemical processing
or unit operations and is primarily addressed to chemical engineers.

The mass balance here takes a form similar to that obtained in the case of the
gas scrubber; the balance is taken with respect to the more volatile component in
one phase and over a difference element which yields, upon going to the limit, a first
order differential equation in distance z. Since the conventional distillation analysis
assumes constant molar flow rates above and below the feed point (molar evaporation
rate L and molar condensation rate V are each constant), mole fraction concentration
units can be used without the attendant complications of a variable flow rate. This
leads to the use of mass transfer coefficients Kx, Ky based on a mole fraction driving
force which shows greater constancy than the mole ratio based coefficients KX, KY

employed for the scrubber to ensure constant (carrier) flow rates. We obtain, for a
component balance over the vapor phase of the element (see Figure 3.5A) —

Differential component balance:

(3.2.52)

which yields upon dividing by ∆z and going to the limit:

FIGURE 3.5 Column variables and operating diagram for a packed distillation of column
at total reflux.
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(3.2.53)

Separating variables and integrating results in

(3.2.54)

in complete analogy to the Expression 2.26 obtained for the gas scrubber. As was
done there, the expression has to be supplemented by an integral component balance
(which leads to the so-called operating line) and an appropriate equilibrium relation.
Thus,

Integral component balance:

(3.2.55)

Equilibrium relation:

y* = f(x) (3.2.56)

The Relations 3.2.55 and 3.2.56 are then conveniently plotted on the so-called
operating diagram (Figure 3.5B) and the NTU Integral 3.2.54 evaluated by graphical
or numerical integration as was done in the case of the scrubber.

The special case of total reflux and constant relative volatility α (Raoult’s law)
— A particular simple evaluation of the NTU integral becomes possible when the
column is at total reflux and one is dealing with ideal solutions (Raoult’s law). The
equilibrium relation then takes the simple form:

(3.2.57)

where α is the so-called relative volatility. Furthermore, at total reflux liquid and
vapor compositions are equal: y = x, i.e., the operating line becomes the diagonal
in the operating diagram (Figure 3.5B). Substituting these relations into the NTU
integral, one obtains:

(3.2.58)

Using the integration formula
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evaluation of the integral yields:

(3.2.59)

This expression is frequently used in the experimental evaluation of HTU or
Kya values for packed columns that are for this purpose operated at total reflux.

Illustration 3.2.9 Tubular Flow with Solute Release
from the Wall

In the device considered here, solute is released from the tubular wall into a fluid
in turbulent flow which is usually a liquid. Applications of this configuration occur
in medicine as controlled release devices, in the determination of mass transfer
coefficients, and in other areas. The reverse process in which solute is transported
to the wall and is deposited there and/or undergoes reaction is also of interest, e.g.,
in the fouling of tubes and in reactors in which the tubular wall is coated with a
catalyst.

We examine two cases, one in which the solute is released at a constant rate
N′(kg/sm2), while the other considers the tubular wall to be at the saturation con-
centration C* so that transport is driven by the driving force C* – Cbulk.

In the former case we obtain by mass balance over a difference element:

(3.2.60)

where P = perimeter.
Dividing by ∆z and going to the limit as usual yields:

(3.2.61)

whence by separation of variables and integration:

C = N′Pz/Q (3.2.62)

i.e., the concentration profile is a linear one.
In the second case, a similar procedure leads to
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(3.2.63)

which, after going through the same procedures as before, yields as the end result:

(3.2.64)

This expression was frequently used in the past for the experimental determination
of mass transfer coefficients. In these experiments, a pipe coated with, or cast from
a solute such as sugar, benzoic acid, etc., would be exposed to a flow of solvent
and the concentrations monitored at various distance z. kL could then be extracted
from a semilog plot of Equation 3.2.64. We underline that the simple expressions
derived here apply to release into turbulent flow. Release to a fluid in laminar flow
is a more complex problem that is taken up in Chapter 6, Illustration 6.1.6, and in
Chapter 8.

Practice Problems
3.2.1 Diffusion Through a Stagnant Spherical Gas Film — Diffusion is taking
place from the surface of a sphere, radius r1, into a stagnant gas film with outer
radius r2. Corresponding partial pressures of the diffusing solute at these locations
are pA1 and pA2, with total pressure Ptot invariant. Derive an expression for the flux
NA of the diffusing species.

(Hint: Convert Equation 3.2.7 to partial pressure units, make a mass balance
over a spherical shell, and integrate.)

Answer: 

3.2.2 Evaporation of Water — Water evaporates from a 1 m2 shallow square trough
into air flowing at v = 10 m/s. The water is at its wet bulb temperature of 32°C with
a vapor pressure of 0.0475 atm. Air is at 60°C and has a partial water vapor pressure
of 0.0315 atm. Calculate the rate of evaporation of water using the correlation given
in Table 3.5. The properties of air may be estimated from Table 3.8.

3.2.3 Irreversible Second Order Reaction — Show that for a constant volume
batch reactor and the irreversible bimolecular reaction

A + B → Products

r = k CACB

integration of the rate expression leads to the result
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where X = conversion and M = ratio of initial concentrations = C
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3.2.4 Tubular Reactor with Axial Diffusion
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 Derive the ODE which will yield
the concentration profile C

 

A

 

 = f(z) for a reactant A with arbitrary reaction kinetics
in a reactor with diffusion superimposed on bulk flow. Note that because of the

additional diffusional process, expressed through Fick’s law  the

model now consists of a second order ODE. Integration of the ODE will be addressed
in Practice Problem 4.2.

 

3.2.5 Half-Life for a nth Order Reaction — 

 

Show that for an nth order reaction
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carried out in a constant volume batch reactor, the half-life t

 

1/2

 

, i.e., the time needed
for the concentration of reactant to drop to one-half the original value, is given by

 

3.2.6 Diffusion and Reaction in a Flat Plate Catalyst — 

 

(a) Set up the model
equation (but do not solve) for diffusion and reaction with arbitrary kinetics in a flat
plate with the dimensions L 
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 0. (b) For the first order reaction in the same
geometry, the reactant concentration profile is given by

where k = rate constant, D
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Derive an expression for the effectiveness factor E for this pellet.
(Hint: Use Table 4.6.)
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at a flow rate Q1 and leaves with a flow rate of Q2. Derive an expression for the exit
concentration as a function of time.

(Hint: Study Illustration 3.2.7.)

3.2.8 Surge Tank Revisited — Flow into a surge tank undergoes a step increase in
inflow. Derive an expression that gives the time dependence of the level in the tank.
Assume outflow varies with the square root of tank level.

3.2.9 Evaporation of Solvent Vapor in a Factory Enclosure — A drum of trichlo-
roethylene with the bung off is left in a factory room of dimension 4 m × 4 m ×
2.55 m. Over a period of a week, the weight of the drum has decreased by 1 kg.
The ventilation rate is about 0.5 air volume changes per hour.

(a) Estimate the steady-state concentration, assuming perfect mixing.
(b) What is the instantaneous exposure of a worker who enters the room two

and one-half days after the drum was placed there?

Answers: (a) 292 mg/m3

3.2.10 Tubular Reactor with Catalyst-Coated Wall — Derive the model equation
that would yield the concentration profile of reactant in the longitudinal direction
of a tubular reactor coated with a thin layer of catalyst. Assume arbitrary kinetics
at the wall and turbulent flow.

3.3 ENERGY BALANCES

3.3.1 ENERGY FLUX

The complications we had encountered in the case of mass flux where bulk flow
could be triggered by diffusive transport do not arise here. No distinction needs to
be made between transport through a stagnant film and equimolar counter diffusion,
and single expressions are sufficient for either molecular or convective transfer. Thus,
conductive heat flux is described simply by Fourier’s law:

(3.3.1)

and convective heat transport in turbulent flow by the linear driving force law

q = hA ∆T (3.3.2)

We had indicated this to some extent in Table 3.1. A further simplification arises
from the fact that we need not deal with various definitions and units of the state
variable as was the case in mass transport where different forms of concentration
(molar concentration, mass and mole fractions, mass and mole ratios, partial pres-
sures) had to be considered. A single state variable, temperature, suffices here. As

q kA
dT
dz

= −
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a consequence, only a single form of the heat transfer coefficient which is taken up
below applies, and the various forms of transport coefficients that had to be invoked
in the case of mass transport (see Table 3.6) can be dispensed with.

3.3.2 TRANSPORT COEFFICIENTS

We start this section, as we did in the case of mass transport, with the consideration
of the molecular transport coefficients, i.e., the thermal conductivities, k. Values of
k for representative gases, liquid, metals, and other solids are compiled in Table 3.9.
Not much variation is seen in the values for liquids and nonmetallic solids. They lie
in the range 10–1 to 1 J/msK. Values, for gases are an order of magnitude lower, ~
10–2 J/m2sK. The latter are at low densities independent of pressure and vary with
the square root of temperature:

(3.3.3)

Thermal conductivities of metals are, as expected, much higher, in the range 10
to 400 J/m sK. Silver, copper, and, somewhat surprisingly, aluminum stand out as
the metals with the highest conductivities.

The dimensionless group that corresponds to the Schmidt number Sc = µ/ρD
and appears in correlation for heat transfer coefficients is the so-called Prandtl
number Pr = Cpµ/k. Values for Pr for air and liquid water appear in Tables 3.6 and
3.7 in Section 3.2 and for other subtances in Table 3.9. For gases at low densities
in general, the Prandtl number is of the order 1, those for nonviscous, nonmetallic
liquids, of the order 10. For liquid metals, the Prandtl numbers are quite low, of the
order 10–2, because of the much higher thermal conductivity.

When dealing with transport in a turbulent or well-stirred medium, the thermal
conductivities are replaced by heat transfer coefficients U which are based on the
same film or linear driving force concept as in the case of mass transfer. The
resistance additivity rule for films in series also applies. Thus, for the frequently
encountered case where two films, outside (o) and inside (i) are separated by a solid
wall (w); additivity of resistances leads to the relation:

(3.3.4)

where U is the overall heat transfer coefficient and kw, and L is the thermal conduc-
tivity and thickness of the wall, respectively.

Correlations of heat transfer coefficients are given in terms of the dimensionless
Nusselt number Nu = hL/k as a function of Reynolds and Prandtl numbers. Thus,

Nu = f(Re, Pr) (3.3.5)
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Table 3.10 lists a compilation of heat transfer coefficient correlations which
corresponds to that compiled for mass transfer coefficients in Table 3.5. One notes
a direct correspondence between the two sets of correlations that arises from the
analogous mechanisms that apply to heat and mass transfer. Thus, by replacing
Sherwood number Sh by Nusselt number Nu, and Schmidt number Sc by Prandtl
number Pr, the two sets of correlations become identical.

We have supplemented this table by two additional compilations, Tables 3.11
and 3.12, that list ranges and typical values of heat transfer coefficients encountered
in various applications. These are film coefficients which allow an immediate esti-
mate to be made of h values likely to be encountered in practice. One notes in
particular the high values of condensing steam, 5700 to 28,000 J/m2sK, compared
to those of other substances. As a consequence, the film resistance on the steam side
can, for most practical cases, be neglected. Low values apply to gases, typically of

TABLE 3.9
Thermal Conductivities and Prandtl Numbers at 25°C

Substance Thermal Conductivity J/sm°C Prandtl Number

Metals
Silver 430
Copper 390
Aluminum 240
Brass 110
Steel 46
Lead 35

Gases
Water vapor (373 K) 2.5 × 10–2 1.96
Nitrogen 2.6 × 10–2 0.715
Hydrogen 1.8 × 10–1 0.706
Oxygen 2.7 × 10–2 0.709

Liquids
Water 5.9 × 10–1 11.4
Ethyl alcohol 1.8 × 10–1 16.3
Benzene 1.6 × 10–1 6.5
Glycerol 2.8 × 10–1 104

Sulfuric acid 3.6 × 10–1 —
Mercury 9.0 2.5 × 10–2

Others
Asbestos 0.15
Concrete 0.13
Cork 0.04
Glass 0.5–1
Ice 2.2
Wood 0.15–0.20
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TABLE 3.10
Correlations for Heat Transfer Coefficients

Range Equations

(1) Flat plate
Re < 105 St = 0.66 (Re)–1/2 (Pr)–2/3

Re > 106 St = 0.036 (Re)–0.2 (Pr)–2/3

(2) Sphere
Unlimited Nu = 2.0 + 0.60 (Re)1/2 (Pr)1/3

(3) Cylinder
1 < Re < 4000 Nu = 0.43 + 0.53 Re0.5 Pr0.31

(4) Inside pipes (µ = const.)
Re < 2100 Nu = 1.86 (Re · Pr · d/L)1/3

Re > 20,000 Nu = 0.026 (Re)0.8 (Pr)1/3

(5) Packed beds of spheres
Re < 50 St = 0.91 (Re)–0.51 (Pr)–2/3

Re > 50 St = 0.61 (Re)–0.41 (Pr)–2/3

Note: Re = Reynolds number =  Nu = Nusselt number = 

St = Stanton number =  Pr = Prandtl number = 

L = Length of plate, diameter of sphere, cylinder, or pipe =
volume of bed/surface area of spheres

TABLE 3.11
Approximate Values of Some Heat Transfer 
Coefficients

Mechanism Range of Values of h, J/m2sK

Condensing steam 5700–28,000
Condensing organics 1100–2800
Boiling liquids 1700–28,000
Moving water 280–17,000
Moving hydrocarbons 55–1700
Still air 2.8–23
Moving air 11.3–55

Source: From C.J. Geankoplis. Transport Processes and
Unit Operations, Allyn and Bacon, Boston, 1978. With
permission.

Lνρ
µ

,
hL
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Cp νρ
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the order 10 when in movement, while h values for moving liquids range from about
100 to several thousand J/m2sK. In steam-heated vessels, the overall coefficients U
are all of the order 103 J/m2sK, with the exception of particularly viscous media.

Illustration 3.3.1 Heat Transfer Coefficient in a Packed Bed of 
Metallic Particles

A bed packed with irregular metallic particles with an equivalent diameter of 2.0
cm is to be heated with air at 100°C and a velocity of 10 m/s. We wish to estimate
the heat transfer coefficient. Since the particles have a thermal conductivity roughly
two to three orders of magnitudes larger than that of air (see Table 3.9) and are
relatively small in size, it will be assumed that the heat transfer resistance resides
entirely in the air. To use the correlations for film coefficients given in Table 3.10,
we first compute the Reynolds number using air properties from Table 3.7:

Thus, the correlation applicable to Re > 50 applies, and we obtain:

h = Cpνρ 0.61 (Re)–0.41 (Pr)–2/3 = 1.01 × 103 (10)(0.94)(0.61)(8585)–0.41(0.69)–2/3

h = 181 J/sm2K

We now demonstrate the setting up of energy balances with a number of illus-
trations. We start with what have by now become three classical examples. The first

TABLE 3.12
Typical Overall Heat Transfer 
Coefficients in Steam-Heated 
Jacketed Vessels

Fluid in Vessel Agitation U, J/m2sK

Water None 852
Water Simple stirring 1420
Boiling water None 1420
Paste Double scrapers 710
Milk None 1135
Milk Stirring 1700
Tomato purée Stirring 170

Source: From C.J. Geankoplis. Transport Pro-
cesses and Unit Operations, Allyn and Bacon, Bos-
ton, 1978. With permission.

Re
( . )( )( . )

.
= =

×
=−

Dνρ
µ

0 02 10 0 94
2 19 10

85855
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one deals with the single-pass countercurrent shell-and-tube heat exchanger. We had
already, in Chapter 2, Section 2.2, dealt with a similar device, the steam-heated tube,
in which the shell-side medium was isothermal. Here we allow the shell-side tem-
perature to vary which leads to a more complete model of the exchanger. The resulting
model may be viewed as consisting of two coupled “one-dimensional pipes.”

In the second illustration, we examine the case of a thermocouple which is
exposed to a temperature disturbance. This may be considered an example of a
“well-stirred” tank with constant or time varying “inflow” but no “outflow.”

The third example considers heat transfer by convection and conduction in a
finned heat exchanger. Finned exchangers, also known as extended surface heat
exchangers, use attachments to the tubes and similar devices to enhance the heat
transfer area. The reader is introduced to the concept of fin efficiency E, which, like
the catalyst effectiveness factor defines the degree to which conduction in the fin is
effective in transferring heat in the exchangers.

Several additional problems follow which are drawn from various applications.
Systems which involve 

 

simultaneous

 

 heat and mass balances, such as nonisothermal
reactors and packed columns, humidification and dehumidification, and the like are
deferred to Section 3.5.

 

Illustration 3.3.2 The Counter-Current Single Pass Shell and 
Tube Heat Exchanger

 

A sketch of the device with its pertinent variables is shown in Figure 3.6. We note
that since two state variables are involved, the shell and tube side temperatures, at
least two balances will be required. We choose to make two differential balances,
one over each of the two phases. This not only yields the most general solution, but
can also, by various combinations and manipulations, be reduced to yield solutions
obtained from integral balances. We assume that the heating medium is located in
the shell, and obtain the following.

 

Tube Side Balance:

 

Rate of energy in – Rate of energy out = 0

H

 

t

 

|

 

z

 

 + q

 

avg

 

 – H

 

t

 

|

 

z+

 

∆

 

z

 

 = 0

or, replacing the total enthalpies by flow rate F x specific enthalpy H:

F

 

t

 

∆

 

H

 

t

 

 – q

 

avg

 

 = 0 (3.3.6)

Expressing H in terms of temperature and heat capacity and introducing the
auxiliary relation for overall convective heat transfer, we obtain:

F

 

t

 

C

 

pt

 

∆

 

T

 

t

 

 – U

 

π

 

d
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z(T

 

s

 

 – T

 

t

 

)

 

avg

 

 = 0 (3.3.7)
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Dividing by 

 

∆

 

z and letting 

 

∆

 

z 

 

→

 

 0 yields:

(3.3.8)

where the subscripts 

 

t

 

 and 

 

s

 

 refer to tube and shell side variables, respectively.

 

Shell Side Balance:

 

Using the same procedure, we obtain the result

(3.3.9)

 

FIGURE 3.6

 

The countercurrent single-pass shell-and-tube heat exchanger: (A) flow dia-
gram showing difference element for the energy balance, (B) plot of exchanger effectiveness

 

ε

 

 vs. number of transfer units NTU. (Figure 3.6B: F. Kreith and M.S. Bohn, 

 

Heat Transfer,
4th ed.,

 

 Harper and Row, New York, 1986. With permission.)
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which is of 

 

exactly

 

 the same form as the tube side balance. This may at first be
surprising, but is due to the fact that both the flow and heat transfer change direction
so that no changes in sign occurs.

We now proceed to manipulate these differential balances to arrive at various
results of interest.

1. Subtracting the two balances leads to cancellation of the heat transfer
terms as well as dz, and yields:

F

 

s

 

C

 

ps

 

 dT

 

s

 

 – F

 

t

 

C

 

pt

 

dT

 

t

 

 = 0 (3.3.10)

which upon integration over 

 

part

 

 of the exchanger yields:

F

 

s

 

C

 

ps

 

 (T

 

s

 

 – T

 

s out

 

) = F

 

t

 

C

 

pt

 

 (T

 

t

 

 – T

 

t in

 

) (3.3.11)

and over the 

 

entire

 

 exchanger

q

 

Total

 

 = F

 

s

 

C

 

ps

 

 (T

 

s in

 

 – T

 

s out

 

) = F

 

t

 

C

 

pt

 

 (T

 

t out

 

 – T

 

t in

 

) (3.3.12)

It is immediately seen that the same results could have been obtained by
algebraic integral energy balances taken over both phases. Since z disap-
peared, they tell us nothing about the 

 

profiles

 

 or the size of the heat
exchanger required but are, as we shall see, used to supplement other
model equations.

2. In a second manipulation, we first divide each differential balance by FC

 

p

 

and 

 

then

 

 subtract. This is a clever device to reduce T

 

s

 

 and T

 

t

 

 to a 

 

single

 

variable (T

 

s

 

 – T

 

t

 

). We obtain

(3.3.13)

which when integrated by separation of variables over the entire exchanger
yields:

(3.3.14)

with 

 

π

 

dL = A = total heat transfer area.
The equation does not provide us with individual temperature profiles,

but, if one replaces L with z (integration over part of the exchanger), it
yields the profile of the temperature 

 

difference

 

. This turns out to be
sufficient for design purposes. It is conventional in this case to replace

d T T

dz
U d

F C F C
s t

s ps t pt

( )− = −












π 1 1

ln
( )

( )

T T

T T
U dL

F C F C
s t L

s t s ps t pt

−
−

= −










0

1 1π

 

248/ch03/frame  Page 78  Monday, December 3, 2001  8:15 AM

© 1999 By CRC Press LLC



   

the FC

 

p

 

 terms by corresponding temperature differences using Equation
3.3.9 which after rearrangement yields the expression:

(3.3.15)

The fraction in this expression is commonly known as the 

 

log mean
temperature difference

 

 (LMTD):

(3.3.16)

Equation 3.3.12 then becomes in abbreviated form:

q = UA(LMTD) (3.3.17)

This is a frequently used design equation. It is a design equation because
knowing the inlet temperatures T

 

t in

 

 and T

 

s in

 

, and 

 

specifying

 

 the desired
outlet temperature T

 

t out

 

, the fourth end temperature can be calculated from
the integral balance (Equation 3.3.12). Both q and LMTD can then be
evaluated, thus allowing the design area A to be obtained. U is assumed
to have been estimated 

 

a priori 

 

from Equation 3.3.4 and the relevant film
coefficient correlations. The equation cannot be used in problems where
only the inlet temperatures are known and the third temperature remains
unspecified. This occurs, for example, if for an 

 

existing

 

 heat exchanger
(A known), one wishes to calculate the effect of a change in inlet conditions
on the outlet temperatures. Similarly, one cannot predict the effect of
changes in heat exchanger length or area on outlet conditions.

3. To handle problems not amenable to solution by Equation 3.3.17, one has
to solve the differential balances (Equations 3.3.8 and 3.3.9) to obtain full
profiles.

The complete solution is posed as a Practice Problem in Chapter 4 and
we give here an outline of the method and the final result obtained. We
note that the equations are coupled so that a simultaneous solution seems
to be indicated. This can, however, be avoided by the use of a small “trick.”
We solve Equation 3.3.8 

 

algebraically

 

 for T

 

s

 

 and substitute the result in
Equation 3.3.9. The penalty we pay is that the result is a 

 

second order

 

ODE which is of the form:

(3.3.18)
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This equation can then be solved by simple separation of variables by
first making the substitution u = dT/dz.

One would, at this point, expect to have obtained the full tube-side
temperature profile. This is, however, not the case: One of the two required
boundary conditions is given in terms of T

 

s in

 

, which cannot be applied in
the evaluation of the integration constant since the solution is in terms of
T

 

t

 

, not T

 

s

 

. Evaluation can only be obtained by solving the second differ-
ential balance in T

 

s

 

. We are now in a position to do this by substituting
the solution to Equation 3.3.18 into the differential balance (Equation
3.3.9) and integrating. The final result is given by:

(3.3.19)

A similar expression applies to the shell side profile T

 

s

 

 = f(z).

These are fairly formidable equations but they carry the advantage of having
much greater versatility than the previous LMTD expression, Equation 3.3.17. Thus,
to calculate the outlet temperature for an existing heat exchanger taking flow rates
F

 

s

 

 and F

 

t

 

, one simply sets z equal to tube length L and solves for T

 

t

 

. The equation
can also be used to obtain a “profile” of the parameter U by measuring tube side
temperatures T

 

t

 

 at various positions. Design problems are accommodated by setting
T

 

t

 

 equal to the desired or specified outlet temperature and z equal to L, and solving
for length L or heat exchanger area U

 

π

 

dL = A.
To make these equations easier to use, plots of them have been constructed in

terms of convenient nondimensional quantities that encompass temperature flow
parameters, transport resistance, and exchanger area. These quantities are

 

Capacity Ratio C
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/C
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 —

 

 This is the ratio of flow rate times heat capacity,
C = FC

 

p

 

, of the two streams being considered. C

 

Min

 

 is the smaller of the two products,
C

 

Max

 

 the larger.

 

Number of Transfer Units NTU —

 

(3.3.20)

This is a measure of the exchanger performance; high performance being
associated with large transfer areas A and high heat transfer coefficients. The
quantity has similarities to the corresponding quantity encountered in packed col-
umn mass transfer operations (Equations 2.26 and 3.2.54). These equations are all
of the form:
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(3.3.21)

Thus, for the three cases in question,

Gas absorption (3.3.22)

Distillation (3.3.23)

Heat exchanger (3.3.24)

This correspondence was, of course, to be expected because of the similarities
in the operations involved. Each of the variables in one operation has a direct
counterpart in the other. A minor exception is the flow rate term of the heat exchanger
which has to be multiplied by the heat capacity C

 

p

 

. Note that G

 

s

 

 and V are the
superficial gas flow rates in kg (or moles)/m

 

2

 

s which upon inversion and multipli-
cation by H yield the total column volume. Further multiplication by the specific
area a (m

 

2

 

/m

 

3

 

) finally gives the total transfer area.

 

Exchanger Effectiveness εεεε

 

 —

 

(3.3.25)

is the third quantity where the subscripts c and h correspond to the cold and hot
streams, respectively. 

 

ε

 

, like NTU, is a measure of the performance of the exchanger
which is here expressed in terms of the temperature changes effected, a large 

 

∆

 

T
between inlet and outlet corresponding to high performance. Two alternative expres-
sions are given which allow calculation of either the hot stream temperature T

 

h

 

 or
the cold stream temperature T

 

c

 

. A representative plot of 

 

ε

 

 vs. NTU, with the capacity
ratio as parameter, is shown in Figure 3.6B. Extensive compilations of such charts,
applicable to co-current, countercurrent, cross flow, and extended surface exchangers
are available in the open literature (see the references at the end of this chapter).

The plots can be used for a variety of computations. For design purposes, for
example, 

 

ε

 

 for the desired (design) outlet temperature (T

 

c

 

)

 

out

 

 is first calculated, a
horizontal line drawn to intersect the curve with the prescribed C

 

Min

 

/C

 

Max

 

 values, a
vertical line dropped from the intersection to the abscissa, and the NTU value read
off. From its value, and the known or previously calculated values of C

 

Min

 

 and U,
the design area A is then calculated. Similarly, for a heat exchanger of given area
A, NTU and C

 

Min

 

/C

 

Max

 

 are established after first having calculated the heat transfer
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coefficient U from appropriate film coefficient correlations. The corresponding ε
value is then read off on the ordinate from which the desired outlet temperature
(usually (Tc)out) can be immediately calculated.

A point to be noted is that these plots also can be used for other operations,
including co-current and countercurrent packed-bed mass transfer operations with
linear isotherms, moving bed processes (see in this connection Illustration 3.3.5),
dialysis, permeation, and ultrafiltration, and similar processes. The only requirement
is that the operation involve streams separated by a wall or barrier across which an
exchange of mass or energy takes place.

Illustration 3.3.3 Response of a Thermocouple to a 
Temperature Change

We consider here a thermocouple suspended in flowing air which undergoes a step
change in temperature from an initial value Ti to a new value Ta. It is composed of
two cylindrical wires of two different materials whose heat capacities differ slightly
but can for the purposes of the problem be averaged to a value of Cp. = 0.419 kJ/kgK.
For density, we similarly use an average value of ρ = 8800 kg/m3. The film heat
transfer coefficient for the flowing air is estimated at 0.455 kJ/m2sK (see correlation
for flow around a cylinder, Table 3.10). We wish to use a thermocouple whose
response time is such that a 15°C change in the air temperature will be registered
within 0.5°C of the final value in no more than 4 sec.

This can be considered as a design problem in which the desired dimension, the
diameter of the thermocouple, is extracted from the primary information consisting
of the time dependence of the thermocouple temperature, or its “response.”

Since the conductivity of the metal wires is several orders of magnitude higher
than that of air and the wires are very thin, resistance to heat transfer within the
wires can be neglected. Thus, the thermocouple becomes in a sense a “well-stirred
tank” of uniform temperature.

The model equation consists of an energy balance around the thermocouple. Thus,

(3.3.26)

which, after introduction of the relevant auxiliary relations becomes:

(3.3.27)

Integration by separation of variables yields, in the first instance:

(3.3.28)
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from which

(3.3.26)

d = 5.8 × 10–4 m = 0.58 mm

Comments:
The particular simplicity of the model was due to the fact that we were able to

assume uniform temperature within the system at any given moment. Had this not
been the case, we would have been forced to solve a time-variant PDE in at least
one dimension. Similarly, the thinness of the wires enabled us to neglect heat losses
along them which would have complicated the model further and which would at
any rate have been difficult to estimate. Radiation losses were similarly and for the
same reasons also neglected.

The step change considered here is a special case of a more general, time varying
input, also termed forcing functions. Such forcing functions give rise to some inter-
esting responses. In the case of a sinusoidal input, for example, the response shows
an attenuation in the amplitude as well as a lag, or phase shift in the oscillation.
Frequency remains unchanged. No such unusual features arise in the step response
which shows a smooth asymptotic rise to the new temperatures. Both these responses
are typical of so-called first order systems, i.e., those arising from first order differ-
ential equation. Second order systems, i.e., those arising from second order ODEs,
show still more diverse behavior. The whole intriguing topic of system responses,
which is cardinal to process control, is best treated — in the case of linear systems
— by the method of Laplace transformation. Detailed consideration of such
responses is, therefore, left to the section dealing with this technique (see Chapter 5).

Some readers may feel uncomfortable with the notion that the internal resistance
to heat transfer can be neglected based on what are essentially qualitative arguments.
A more quantitative criterion is available. It stipulates that for internal resistance to
be negligible, the dimensionless group known as the Biot number Bi = hL/k must
be less than 0.1. Let us see whether this criterion is satisfied in the present case. We
set the thermal conductivity k = 390 J/m2sK (copper, see Table 3.9) and the linear
dimension L equal to the diameter of the thermocouple wire. This yields Bi =
(455)(5.8 × 10–3/390 = 6.8 × 10–4 < 0.1. We were consequently justified in assuming
that the thermocouple can be treated as a well-stirred tank.

Illustration 3.3.4 The Longitudinal, Rectangular Heat 
Exchanger Fin

Finned tubular heat exchangers are used extensively for the purpose of enhancing
the heat transfer area. The fins are usually attached externally to the exchanger tubes
and are typically mounted in a longitudinal, rectangular, or circular radial mode.
Transport of heat is, in the first instance, from the external (and assumed hot) fluid
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to the fin by convection, radially through the fin to the fin base and tube wall, from
which the heat is transferred by further convective transport to the internal (and
colder) tubular fluid.

The question which arises in the design and analysis of these devices is the
extent to which the heat transfer area is enhanced. If conduction within the fin was
infinitely fast, the effective transfer area would be simply the sum of the fin and
tubular areas: Aeff = Afin + Atube, and temperature throughout the fin would be equal
that of the tubular wall. This corresponds to a catalyst pellet effectiveness factor E
= 1 which arises when there is no diffusional resistance and concentration throughout
the pellet is equal to the external concentration. Because of the finite conduction
rate, however, a temperature gradient develops within the fin, reducing the local heat
transfer driving force associated with the external fluid. To assess its effect, one must
first derive the temperature profile within the fin and compute the total heat transfer
rate from the external fluid by integration of the local rates over the entire fin. This
is the actual rate that can then be compared with the ideal rate that prevails if the
entire fin were at the tube wall temperature. From the ratio of the two then springs
the concept of the fin efficiency E which is completely analogous to that of the
catalyst pellet effectiveness factor E and is a measure of the degree to which one is
able to approach the ideal case. A value of E = 0.8, or 80%, for example, means
that the effective heat transfer area now becomes Aeff = 0.8 Afin + Atube. Thus, E can
be incorporated in simple fashion into heat exchanger model equations or their
solutions as a mere correction factor. The fact that we are able to do this constitutes
a major simplification of a system of considerable complexity. Note that temperatures
vary in both radial and axial directions. Even if one were to invoke a PDE model,
the discontinuous nature of the geometry and the associated boundary conditions
would make this a difficult problem to solve. The reader will note that we avoided
this by cleverly decoupling the effect of the fin from the remainder of the heat
exchange process. Not only is this simple and elegant, but it is also legitimate and
completely rigorous within the constraints of film theory.

The fin we consider here is a rectangular, longitudinal one which extends along
the entire external length of the tube. To avoid the complication of varying external
and internal fluid temperatures, we limit consideration to a small finite length ∆z
along which the temperature variations can be neglected. This is a legitimate pro-
cedure since the final result, the fin efficiency, is independent of the temperature
driving force.

The model fin we use is depicted in Figure 3.7A. The energy balance is taken
over the vertical increment ∆x. Convective transport enters the element over ∆z,
while conductive heat enters and leaves at positions x and x + ∆x. We obtain:

(3.3.30)
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Dividing by kW∆x∆z and going to the limit yields:

(3.3.31)

This is a second order linear ODE with constant coefficients in the fin temper-
ature Tf and can be solved by standard methods, to be taken up in Chapter 4 (see
Illustration 4.3.3). The two boundary conditions (BCs) we need require some con-
sideration. Formulation at one end, x = L, is straight-forward: fin temperature equals
the tubular wall temperature Tf/L = Tt. At the other end, the formulation is somewhat
more uncertain. It is best to argue that, because of the small thickness of the wedge,

FIGURE 3.7 Extended surface heat exchangers: (A) diagram of a longitudinal fin with
difference element for the energy balance, (B) efficiency plot for a radial fin. (Figure 3.7B:
F. Kreith and M.S. Bohn, Heat Transfer, 4th ed., Harper and Row, New York, 1986. With
permission.)
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heat transfer from the hot fluid at this point is negligible, i.e., the fin is effectively

insulated at this position so that  These two boundary conditions are used

in the evaluation of the two integration constants of Equation 3.3.31.
The fin efficiency E is computed by evaluating the ratio:

(3.3.32)

Alternatively, one can use the fact that the total actual heat transfer must equal
the rate at which heat leaves the base of the fin. Thus,

(3.3.33)

With E evaluated by either formulation, it can be inserted directly into appro-
priate model equations. Thus, insertion into the tubular energy balance (Equation
3.3.7) yields:

(3.3.34)

and into the design Equation 3.3.17:

q = U(EAfin + Atube) LMTD (3.3.35)

Extensive compilations of fin efficiencies as a function of system parameters are
available in the literature (see References). A representative plot appears in Figure 3.7B.

Illustration 3.3.5 A Moving Bed Solid-Gas Heat Exchanger

In the metallurgical industry it is a frequent practice to preheat the primary raw
materials, such as ores, prior to further processing. We consider here the preheating
of scrap steel with nitrogen gas entering at 1500°F (816°C) in a countercurrent
moving bed shaft in preparation for melting in an electric arc furnace. The steel is
to be heated from 70°C to 1200°F (21.1°C to 646°C). The novelty here is that the
nitrogen flow rate cannot be fixed a priori and is instead specified as G = 1.2 Gmin.
This is common practice in countercurrent operations when the flow rate of one
stream cannot be specified. In gas absorption, for example, one usually sets the
unknown solvent flow rate at (1.2 to 1.5) LMin; LMin being the flow rate required for
an infinitely long column, i.e., under conditions where entering solvent and exiting
gas are in equilibrium. Similarly, GMin corresponds to an infinitely long shaft with
an exiting nitrogen temperature equal that of the entering steel (21°C). The factors
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1.2 or 1.2 to 1.5 ensure that there is a near optimum balance between increased
solvent or gas costs and the saving which comes about from the reduction in column
height. In distillation similar considerations lead us to specify the initially unknown
reflux ratio R at R = (1.2 to 1.5)Rmin.

Gmin can be established from an algebraic integral energy balance over an
infinitely long shaft, with the appropriate temperatures inserted. Having thus
obtained the actual gas flow rate, we can then proceed to set up the energy balances
for the finite length exchanger. This is shown below. Additional data required are
as follows:

Steel flow rate S = 6.78 kg/m2s
Nitrogen heat capacity Cpg = 1 kJ/kg K
Steel heat capacity Cps = 0.69 kJ/kg K
Gas-solid heat transfer coefficient h = 114 J/m2sK
Interfacial area a = 65.6 m2/m3

We are required to calculate the height of the shaft.

Integral steady-state energy balance for infinitely long shaft:

(3.3.36)

or

and

Since this is a design problem, we can follow the procedure given for this case
in Illustration 3.3.2 for the shell-and-tube heat exchanger, i.e., after division by the
flow terms we subtract the two differential energy balances and invoke an integral
balance over the shaft to calculate Tg out.

Differential energy balance over solid phase:

(3.3.37)

Differential energy balance over gas phase:

(3.3.38)
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Dividing by the flow terms and subtracting yields:

(3.3.39)

and after integration by separation of variables:

(3.3.40)

Integral energy balance over finite shaft:

(3.3.41)

whence,

(3.3.42)

Hence, from Equation 3.3.40,

Evaluation from generalized plot, Figure 3.6B:
Capacity Ratio
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Cg = GCpg = (4.4)(1) = 4.4 = CMin = Ch

where subscripts h and c denote hot and cold fluids. We obtain:

CMin/CMax = 4.4/4.68 = 0.94

Effectiveness εεεε

NTU
This is read off the abscissa of Figure 3.6B and yields:

Solving for L, we obtain:

L = NTU(CMin)/(ha) = (4.5)(4.4)/(0.114)(65.6)

L = 2.65 m

in close agreement with the analytical value of 2.60 m.

Comments:
We note that use of the charts does not entirely dispense with the use of model

equations. Integral balances over the shaft are still required to calculate the fourth
end temperature and the actual nitrogen flow rate.

The calculated height L = 2.65 m seems somewhat short for an industrial
application. It could easily be doubled for a marginally lower nitrogen flow rate.
Remember that part of the purpose of the exercise is to ensure that one does not
require an unduly high shaft (say 100 m).

Estimation of the heat transfer coefficient causes some difficulty because of the
varying and irregular size of the scrap iron and the possibility of a dual heat transfer
resistance. If we assume negligible solid phase resistance because of the much higher
thermal conductivity of the metal and define an equivalent spherical diameter, use
can be made of the correlation listed in Table 3.10, which is, however, for stationary
beds. Alternatively, an experimental determination could be carried out on a short
bed, and h values obtained from measured gas outlet temperatures and the use of
Equation 3.3.15.

Illustration 3.3.6 Conduction Through a Hollow Cylinder: 
Optimum Insulation Thickness

Temperature profiles and conductive heat fluxes in a thick-walled hollow cylinder,
either metallic or of some other material, is of importance in assessing the conductive
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resistance of such configurations. In the case of insulating materials, the question
arises as to what the optimum thickness is, since the larger external surface and
accompanying heat losses ultimately overtake the benefits of increased insulation
thickness.

Heat flux q:
We start by first deriving the heat flux in terms of known temperatures Ti and

To and cylinder radii ri and ro since the temperature distribution is best derived from
that quantity. This is done by direct integration of Fourier’s law, q = –k2πrL dT/dr,
so that no energy balance is required. We obtain, by integrating by separation of
variables:

(3.3.43)

where o and i denote outer and inner conditions.
By multiplying numerator and denominator by (ro – ri) this can be cast into the

frequently used alternate form:

(3.3.44)

where Am is the log mean of the outer and inner areas:

(3.3.45)

and

Resistance R = (ro – ri)/kAm (3.3.46)

The introduction of the resistance has the advantage that one can, in the case of
a composite cylinder made up of different materials, simply add the resistances. For
a cylinder composed of three different materials, for example, one obtains:

(3.3.47)

where the resistances can be expressed respectively as:

(3.3.48)
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For a film resistance, the heat flux is given by q = 2πrLh ∆T, with a corresponding
resistance of R = 1/2πrLh. Using the concept expressed in Equations 3.3.47 and
3.3.48, the heat flux for a cylindrical wall with internal and external resistances
becomes:

(3.3.49)

Temperature profile:
With the heat flux expression (Equation 3.3.43) in hand, we can now proceed

to derive the temperature profile. This is done by again integrating Fourier’s equation,
but this time only up to an arbitrary radius r and the temperature T at that position.

We obtain:

(3.3.50)

or, since q is a constant given by Equation 3.3.43,

(3.3.51)

Critical radius; optimum insulation thickness:
Optimum insulation thickness is equivalent to minimum heat flux which in turn

leads to the definition of a critical radius. We draw for this purpose on Equation
3.3.49, neglect for simplicity the internal film resistance which is usually minor, and
differentiate the heat flux q with respect to the outer radius ro. We obtain:

(3.3.52)

This yields, for the critical radius,

rc = k/ho (3.3.53)

which is seen to equal the ratio of thermal conductivity to external film coefficient.

Comments:
Of the various Equations 3.3.43 to 3.3.51, the ones most frequently used in

engineering applications are the Equation 3.3.43 and its extension, Equation 3.3.47.
They allow the direct calculation of the heat flux q which is the quantity of greatest
practical interest. The temperature profile (Equation 3.3.51) is not of immediate use,
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but reveals the surprising fact that T(r) is independent of thermal conductivity. It is
these unexpected results that are the most rewarding feature of modeling. One should
never set a model aside without scrutinizing it first for unusual features of this type.

Equation 3.3.53 for the critical radius, rc, is as it turns out largely of academic
interest. We show this by substituting some typical numerical values for ho and k,
h ≅ 10 J/m2sK (air) and k ≅ 10–1 J/msK (asbestos). We obtain rc = 10–2 m, i.e., the
critical radius is far too small to be used in practical applications and one is forced
to accept suboptimal insulation thicknesses. This is yet another example of an
unexpected feature revealed by the model.

Illustration 3.3.7 Heat-Up Time of an Unstirred Tank

We turn next to the problem of calculating the time required to heat a steam-jacketed,
unstirred tank containing water to its (normal) boiling point prior to further opera-
tions. (The development evidently holds for other liquids as well, but water was
chosen because of the easy availability of physical property data.)

The heat transfer process is one of free or natural convection from the tank
bottom and walls to the water. Although an approximate value of the overall heat
transfer coefficient for such a system appears in Table 3.11, we wish to undertake
a more detailed analysis. The results of the two approaches differ considerably, in
large part because the dependence of the free convection heat transfer coefficient hc

on the temperature driving force itself is neglected in the tabulated value.
Natural convection heat transfer occurs because of the volumetric expansion of

the heated fluid and its consequent movement in the upward direction. Upon cooling,
the liquid packet contracts and reverses direction, thus setting in motion a circulatory
transfer of thermal energy. As we had seen in Chapter 2, Illustration 2.5, correlations
take this mechanism into account by introducing the volumetric coefficient of expan-
sion β(1/K) and incorporating it in the relevant dimensionless group termed the
Grashof number Gr:

(3.3.54)

where g = gravitational constant = 9.81 m2/s.
The complete correlation of hc is in terms of Nusselt, Grashof, and Prandtl

numbers and takes the form:

Nu = a(GrPr)n (3.3.55)

For convection from vertical cylinders and horizontal plates, applicable to the
system under consideration, a = 0.13, and n = 1/3, provided GrPr > ~ 106. This is,
as we shall see, the case here.

To evaluate the heat-up time, an integral unsteady energy balance about the tank
contents is required. Thus,

Gr
L g T=

3 2

2

ρ β
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∆
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(3.3.56)

which upon integration by separation of variable yields:

(3.3.57)

where hc has been placed under the integral sign to account for the (Ts – T)1/3 factor
and the variation with temperature of the physical properties, in particular viscosity.
We do not wish to attempt a graphical or numerical evaluation of the full expression
(Equation 3.3.57) and will instead use physical properties at a temperature of 60°C
which is the average of the initial and final water temperatures set at 20°C and
100°C, respectively. The factor (Ts – T)1/3 is retained under the integral since its
analytical evaluation poses no problem. Steam temperature Ts is at 120°C.

We now turn to the evaluation of hc using the following average physical prop-
erties:

Cp = 4.2 kJ/kgK, ρ = 984 kg/m3, µ = 0.50 × 10–3 kg/ms,
β = 4.8 × 10–4 K–1, k = 0.65 J/msK, Pr = 3.0

The dimensions of the tank are

Height: L = 3 m, Diameter: D = 1.5 m

Using the expression for hc, Equation 3.3.51, we obtain:

The Grashof number is seen to be of the order 1011, thus satisfying the condition
for the use of the correlation. We obtain:

hc = 321 ∆T1/3 J/m2sK

Surface area and volume of the tank are, from the given dimensions:

A = 14.1 m2, V = 5.30 m3
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Introducing these values into Equation 3.3.57 and noting that

we obtain:

Comments:
The effect of the dependence of the heat transfer coefficient on (Ts – T)1/3,

seemingly a weak one, is in fact not trivial. During the initial heat-up period, with
∆T ~ 100°C, its inclusion increases the heat transfer rate by 1001/3, i.e. a factor of
nearly 5. Even near the termination of the heat-up process the increase is by a factor
of 201/3 to 2.7. This evidently brings about a fairly radical change in the results of
the model.

The effect of the temperature dependence of the physical properties on the other
hand, is considerably milder if we choose values midway between the initial and
final process temperatures. Choosing µ2 as the most severe case, we have for the
ratio (µ20/µ60)2/3 ~ (0.95/0.50)2/3 ≅ 1.5 (see Table 3.7). This is, however, nearly
compensated at the high temperature end where the relevant ratio is (0.28/0.50)2/3

≅ 0.68, whence 1.5 × 0.68 = 1.01. This compensating effect evidently does not exist
in the case of the factor (Ts – T)1/3 which causes an increase in heat transfer during
the entire heat-up period.

Illustration 3.3.8 The Boiling Pot

We use this simple example of a pot boiling on a stove or hot plate to introduce the
reader to what is termed boiling heat transfer, i.e. the heat transfer rate, flux, and
coefficients that are associated with boiling. Imagine, then, a pot brought to a boil
on a hot element whose power input can be adjusted so that the pot bottom assumes
various surface temperatures Ts. The boiling heat transfer is then driven by the
temperature difference ∆Tb = Ts – Tb, where Tb is the (constant) temperature of the
boiling liquid. Let us examine what happens when this driving force is changed by
adjusting the power input to the element. It turns out that the boiling mechanism
undergoes various complex transitions as ∆Tb is increased, and that the heat transfer
coefficient hb not only depends on ∆Tb, as was the case in convective heat transfer
(considered in Illustration 3.3.7), but does so in a complex manner.

At low values of ∆Tb of less than ~ 5°C, the mechanism is one of natural
convection with very few bubbles formed to disturb the normal natural convection.
The dependence of hb on ∆Tb is then roughly with the power 1/3, i.e., hb ∝ (∆Tb)1/3,
and we speak of convective boiling.
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When ∆Tb is raised to the range 5 to 25°C, bubble production increases and
with it there is an increase in the degree of turbulence and liquid circulation. This
causes a dramatic increase in the temperature dependence of hb to hb ∝ (∆Tb)2 –
(∆Tb)3. We speak of the process being in the nucleate boiling range.

This trend does not continue indefinitely, however. A stage is reached where
evaporation is so fast that there is insufficient time for the bubbles to detach them-
selves. The pot bottom is then blanketed with a layer of steam which causes a sharp
decline in the dependence of hb on ∆Tb and the associated heat transfer because of
the lower conductivity of the gas.

This situation persists until a driving force of ∆Tb ~ 100°C is reached. The steam
bubbles are now able to detach themselves as fast as they are formed so that heat
transfer takes place through a thin liquid film adjacent to the metal surface to a
region that is well mixed and of uniform temperature because of the action of the
bubbles. This stage is referred to as the region of film boiling. Further increases in
∆T bring an additional contribution due to radiation heat transfer.

The values of h for boiling are quite high. At the beginning of the nucleate
boiling region it ranges from 6000 to approximately 11,000 J/m2sK (for water). At
the peak of nucleate boiling, before the decline due to blanketing sets in, it reaches
a maximum value of approximately 60,000 J/m2sK.

Let us next examine, by actual numerical example, how this affects the evapo-
ration rate of water. Extensive analysis of boiling rate data have led to the following
two correlations for convective and nucleate boiling, respectively.

Convective Boiling: h = 1043 (∆T, K)1/3; q/A < 16 kJ/m2 (3.3.58)

Nucleate Boiling: h = 5.56 (∆T, K)3; 16 < q/A < 240 (3.3.59)

We first choose a ∆T = 5, characteristic of the convective boiling region. Thus,

h = 1043 (5)1/3 = 1.78 kJ/m2sK; q/A = (1.78)(5) = 8.99 kJ/m2

which places it within the range of validity of the correlation, Equation 3.3.58.
Using a latent heat of evaporation at the boiling point of ∆H = 2460 kJ/kg (Table

3.7), and assuming a pot surface A = 0.02 m2, we obtain:

Choosing next a ∆T = 12, the rounder figures of ∆T = 15 or ∆T = 20 being out of
reach of the correlation, Equation 3.3.59, we obtain:

h = 5.56 (12)3 = 9.61 kJ/m2sK; q/A = (9.61)(12) = 115 kJ/m2

which is within the range of the correlation, Equation 3.3.59. The corresponding
evaporation rate becomes:
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These startling results indicate that by raising the pot bottom temperature by
only 7°C, i.e., from a ∆Tb of 5 to a ∆Tb of 12, a nearly 18-fold increase in evaporation
rate is achieved. This is an indication of the powerful influence of the cubic depen-
dence of h on ∆T.

Illustration 3.3.9 Melting of a Silver Sample: Radiation

We use this example of the melting of a silver sample in a high temperature furnace
to introduce the reader to some simple concepts of radiation.

Thermal radiation is an important mode of heat transfer, especially so when
large temperature differences occur as, for example in furnaces, driers, metallurgical
processes, and other high-temperature operations. It is a form of electromagnetic
radiation and its rate of transfer depends on the temperature of the emitting and
receiving objects. Part of the radiation transmitted is absorbed by the receiving body
and part of it reflected, so that:

α + ρ = 1 (3.3.60)

where α = absorptivity, the fraction absorbed
and ρ = reflectivity, the fraction reflected.

Bodies, whether they are the source or the receiver of radiation, emit radiation
of their own, which depends on the temperature of the body. To provide a measure
of emission radiation in general, we use that of a so-called black body as a reference,
and define:

(3.3.61)

where the black body refers to an entity with an absorptivity α = 1, i.e., one which
reflects none of the incident radiation. It can be approximated by blackening the
surface of an object with charcoal. All real bodies have an emissivity ε < 1 and are
referred to as gray bodies.

Emissivity is high for dull surfaces, ε ≈ 0.6 to 0.95, low for highly reflective or
polished surfaces, ε ≈ 0.01 to 0.2. Water and oil paints of all colors, for example,
have emissivities ε = 0.92 to 0.96. For highly polished iron, ε rises to 0.74, but if
dulled by oxidation, dramatically drops to a value of ε = 0.052.

The rate of radiation heat emission is given by the Stefan-Boltzmann law:

qr = εσAT4 (3.3.62)
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where σ = Stefan-Boltzmann constant = 5.767 × 10–8 J/m2sK and T is in K. Note
the strong fourth power dependence on temperature compared to the linear depen-
dence on the driving force in the case of convective and conductive heat transfer.

To derive the radiative heat transmission rate between two bodies, one argues
that the radiative emission from the hot body, T2, reaching the colder body, T1 and
area A, is given by

q21 = εσAT2
4 (3.3.63)

This amount has to be diminished by the amount emitted by the cold body, again
with area A and absorbed by the hot body:

q12 = ασAT1
4 (3.3.64)

Since absorptivity is usually very nearly equal to emissivity, α ≈ ε, the net heat
flow received by the cold body is the difference of the two, i.e.,

qr = εσA(T2
4 – T1

4) (3.3.65)

To calculate the time required to melt the silver sample under consideration, we
neglect for the time being the heat-up time and use the following data:

Latent heat of fusion of silver ∆Hs = 89 J/g
Specific heat of silver Cp = 0.24 J/gK
Melting point of silver T1 = 1230 K
Furnace temperature T2 = 1500 K
Crucible charge m = 1000 g silver
Crucible surface area A = 10–2 m2

Furnace emissivity ε = 0.6

We then have, for the time of melting:

The process is seen to be extremely fast, about a minute and a half in duration
after the melting point is reached. This is due to the extremely low heat of fusion
of silver which is about one-quarter that of ice.

t
H m

q

H m

A T T

t

t

s

r

s= =
−

=
× −

=

− −

∆ ∆
εσ( )

( )( )
( )( . )( . )( )

sec

2
4

1
4

2 8 4 4

89 1000
10 0 6 5 8 10 1500 1230

93

248/ch03/frame  Page 97  Friday, June 15, 2001  6:55 AM

© 1999 By CRC Press LLC



An estimate of the heat-up time can be arrived at by first neglecting the T1
4 term.

This is valid up to temperatures of about 800 K. We have, for the energy balance
about the crucible:

(3.3.66)

Integrating by separation of variables and solving the result for time t we obtain:

t = 63 sec

which is of the same order as the time of melting. The total heat-up time to roughly
double the temperature of 800 K is likely to be of the order of 6 to 7 min., much
longer than the time required to melt the charge. This makes immediate sense since
the sensible heat requirements mCp∆T = (1000)(0.24)(1200) exceed the latent heat
requirement m∆Hs = (1000)(89) by a factor of about 5.

Comments:
It is of some interest to examine at what point radiative heat transfer becomes

significant. This occurs at much lower temperatures than one might think. It certainly
need not be as high as the temperatures usually associated with furnaces. To show
this, we consider both still air and circulating air within the furnace, with convective
heat transfer coefficients set at 10 and 100 J/m2sK, respectively, and compare heat
transfer to a body at 300 K by both convection and radiation. For parity to be reached
between the two mechanisms, we must have, assuming an emissivity of unity,

(3.3.67)

Solving for T2 for the two cases, we obtain:

For still air: T2 ~ 400 K = 127°C
For moving air: T2 ~ 650 K = 377°C

Though respectably high, these temperatures are a far cry from the levels usually
seen in high temperature operations. The numbers also show that radiation need not
be considered in the steam heating of moving air but does become the predominant
mode of heat transfer when electrical heating is used.
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Illustration 3.3.10 Adiabatic Compression of an Ideal Gas: 
Energy Balance for Closed Systems First Law of Thermodynamics

In this example we consider an ideal gas in a closed system, i.e., under conditions
of no flow which undergoes a compression or expansion process. The system is
considered to be perfectly insulated and no heat exchange takes place between it
and the surroundings.

Given the initial conditions temperature T1, pressure p1 and molar volume V1,
and a change by compression of expansion to V2, we wish to establish the relations
among the final values of these variables, T2, p2, and V2.

For a closed system with only thermal energy q and work w exchanged with
the surroundings, the energy balance is expressed as the first law of thermodynamics:

∆U = ± q ± w (3.3.68)

where U = internal energy of the system. The positive signs signify energy transfer
to the system, the negative sign transfer to the surroundings. To avoid the cumber-
some dual notation, it is customary to choose the special case of heat transfer to the
system and work done by the system, so that:

∆U = q – w (3.3.69)

or in differential form:

dU = dq – dw (3.3.70)

We now make use of two further relations. We first note that for compressive
work,

–dw = –pdV (3.3.71)

We next introduce the definition of enthalpy H in differential form:

dH = dU + d(pV) (3.3.72)

which for one mole of an ideal gas becomes:

(3.3.73)

We note that dH is associated with heat transfer at constant pressure, dU with
heat transfer at constant volume, so that the respective temperature derivatives in
Equation 3.3.73 become the corresponding heat capacities at constant pressure and
volume: dqp/dT = dH/dT = Cp, and dqv/dT = dU/dT = Cv. Introducing these relations
into Equation 3.3.69 we finally obtain:

dH
dT

dU
dT

d RT
dT

= + ( )
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Cp = Cv – R (3.3.74)

where the heat capacities are in units of J/mol K. With these expressions in hand,
we return to Equations 3.3.70 and 3.3.71, and obtain, for dq = 0 (adiabatic case),

(3.3.75)

or

(3.3.76)

Integration of Equation 3.3.76 between initial and final states yields:

(3.3.77)

where γ = Heat capacity ratio = Cp/Cv which has a value of 1.4 for air.
This expression is cast in the alternative form:

Adiabatic:

p1V1
γ = p2V2

γ = pVγ = constant (3.3.78)

which can be compared with the corresponding isothermal P-V relation (Boyle’s
law).

Isothermal:

p1V1 = p2V2 = pV = constant (3.3.79)

The work associated with adiabatic compression can be evaluated from the
expressions of Equation 3.3.75, i.e.,

(3.3.80)

If V2 is not known, which is usually the case, it can be eliminated using Equation
3.3.78 and we obtain:

Adiabatic compression work:

dU C dT dw pdV RT
dV
Vv= = − = − = −
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(3.3.81)

The corresponding expression for isothermal compression, obtained by integration

of the expression W = -pdV =  is given by:

 

Isothermal compression work:

 

(3.3.82)

For a given compression ratio p

 

2

 

/p

 

1

 

, w

 

a

 

 is always greater than w

 

i

 

. In practical
compression processes, cooling is, therefore, provided to bring the process as near
as possible to isothermal conditions and, thus, reduce the work load.

 

Illustration 3.3.11 The Steady-State Energy Balance for 
Flowing (Open) Systems

 

The energy balance for closed systems, enshrined in the first law of thermodynamics,
Equations 3.3.68 to 3.3.70, did not and was not required to consider energy forms
other than work and thermal energy.

When the system is opened up and flow occurs, additional energy terms have
to be included. They comprise kinetic and potential energy changes, 

 

∆

 

E

 

K

 

 and 

 

∆

 

E

 

p

 

,
the so-called shaft work w

 

s

 

, i.e., work done by a pump or on a turbine, and the so-
called flow work w

 

f

 

, which is associated with the energy required to introduce the
fluid at the upstream end and to extract it at the downstream end. We obtain, in the
first instance:

 

∆

 

U + 

 

∆

 

E

 

K

 

 + 

 

∆

 

E

 

P

 

 = q – w

 

s

 

 – w

 

f

 

(3.3.83)

Figure 3.8 shows a diagram of the system under consideration. Kinetic and
potential energy are given by their customary expression E

 

K

 

 = mv

 

2

 

/2 and E

 

P

 

 = mg.z.
For the flow work, we write w

 

f

 

 = Force 

 

×

 

 Distance = Pressure 

 

×

 

 Area (Volume/Area)
= pV. For a unit mass of fluid, Equation 3.3.83 then becomes:

(3.3.84)

or by virtue of Equation 3.3.72:

(3.3.85)

This equation applies quite generally to both compressible and incompressible flow.
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We note that in most heat transfer processes, kinetic and potential energy changes
are negligible. If, in addition, no shaft work is involved, we obtain:

 

∆

 

H = q (3.3.86)

This expression is immediately recognized as the equation which, in differential
or integral form, is used in the analysis of heat exchange processes.

 

Illustration 3.3.12 A Moving Boundary Problem:
Freeze-Drying of Food

 

In a great many physical processes involving two phases, the phase boundary under-
goes a continuous movement caused by energy and mass transport with or without
chemical reaction. Examples of this type of behavior are numerous and important:
evaporation, condensation, freezing and melting phenomena, crystal growth and
dissolution, metal or polymer casting, combustion of solid or liquid fuels, freeze-
drying of foods, and others.

The state variables in these processes, such as temperature or concentration, are
in principle functions of both distance and time, leading to PDEs that are usually
coupled and nonlinear. To reduce the model to a manageable set of ordinary differ-
ential and algebraic equations, the following assumptions are often made.

1. The “core” contained by the moving front, such as a liquid fuel droplet,
has uniform properties and can be treated as an unsteady stirred tank.

2. The movement of the front itself is sufficiently slow so that the transport
gradients outside the core attain a 

 

quasi-steady-state

 

. It will be recalled
that this concept was also encountered in Illustration 3.2.2.

3. The processes involved — transport and reaction — are dominated by a
rate-controlling slow step.

Thus, although both time and distance are retained as variables, distance
(expressed through the changing size or mass of the core) becomes a 

 

dependent

 

variable for the core unsteady balance but is retained as an 

 

independent

 

 variable for

 

FIGURE 3.8

 

Diagram depicting the various terms of the energy balance, Equation 3.3.85.
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the external, quasi steady-state balance. Time is an independent variable as well, but
appears only in the core balance.

A systematic way of modeling these systems is to start with unsteady mass and
energy balances about the core, followed by a consideration of the quasi steady-
state process outside the moving boundary. It is good practice to keep track of the
number of dependent variables that ultimately must be matched by the number of
equations.

In the process to be considered here, we wish to derive a model which would
allow us to obtain relevant heat and mass transport coefficients from freeze-drying
rate data. The food to be dried, e.g., a slab of frozen poultry meat, has an initial
(frozen) water content of m

 

0

 

 kg. It is heated with an electric heater and, in the
experiment in question, provided with thermocouples to measure surface tempera-
ture T

 

g

 

. Sublimation of the ice takes place in a vacuum chamber and water loss is
monitored by means of a spring balance. A sketch of the configuration appears in
Figure 3.9. As sublimation progresses, the core ice front, assumed to be at the wet-
bulb temperature T

 

wb

 

, recedes into the interior, exposing an ice-free matrix which
increases in thickness with time. Heat conduction through this matrix is assumed
to be at a quasi steady-state so that a linear temperature gradient prevails at any
given instant.

We start with a mass balance around the core and add equations as the need
arises.

 

Core mass balance:

 

(3.3.87)

where F equals the rate of sublimation of ice.

 

Core energy balance:

 

FIGURE 3.9

 

Temperature profiles in the freeze-drying of a slab of meat.

Rate of moisture in Rate of moisture out Rate of change of
moisture content

F
d
dt

m

− =

− =0
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(3.3.88)

We choose the reference temperature as that of the ice and its matrix, so that H

 

ice

 

 =
H

 

matrix

 

 = 0 and the right side of Equation 3.3.88 becomes zero. We then obtain, after
introduction of the pertinent auxiliary relation for q,

U2A (T

 

g

 

 – T

 

i

 

) – 

 

∆

 

H

 

s

 

F = 0 (3.3.89)

where 

 

∆

 

H

 

s

 

 = enthalpy of sublimation of ice. We note that the heat transfer coefficient
U depends on the distance of conduction z and is given by the relation:

(3.3.90)

with h and k denoting the external film coefficient and the matrix thermal conduc-
tivity, respectively. Combination of these three equations yields:

(3.3.91)

We note that we still have, at this stage, two dependent variables z and m. An
additional equation, therefore, will be required which relates z to m. Some reflection
will show that this relation can be obtained from a cumulative mass balance on the
core ice. We have

(3.3.92)

from which there results:

(3.3.93)

where f = fraction of ice removed.
The ODE (Equation 3.3.91) now becomes:

(3.3.94)
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which upon integration by separation of variables leads to the expression:

(3.3.95)

Symbolically we can write:

t/f = af + b (3.3.96)

Plots of experimental t/f values vs. f can then be used to evaluate matrix con-
ductivity k from the slope a and the film coefficient h from the intercept b.

Experimental data have shown good agreement with this model up to values
of f 

 

≈

 

 0.85. Beyond that point deviations from the straight-line relation occur
which have been attributed to moisture adsorption on the matrix. This causes an
increase in 

 

∆

 

H

 

s

 

 which is now the enthalpy of desorption and a resultant change
in slope and intercept.

The reader is referred to Chapter 4, Illustration 4.3.2 and Practice Problems 3.3.5
and 4.4 for additional moving boundary problems. A PDE model for a moving
boundary problem appears in Illustration 8.3.2.

 

Comment:

 

We note that this problem was not placed in the category of simultaneous mass
and energy balances, dealt with in Section 3.5. The reason for this is that the balances
here are uncoupled and can be solved independently. Section 3.5 treats the more
general case of coupled equations.

 

Practice Problems

 

3.3.1 Design of a Hot-Wire Anemometer — 

 

A hot-wire anemometer consists of
a thin wire, usually made of platinum, whose electrical resistance varies with tem-
perature. By passing an electrical current through it, its temperature is raised, and
heat transfer occurs to the surrounding medium, thus reducing the temperature of
the wire and bringing about a change in its electrical resistance. The anemometer
is incorporated in an electrical circuit called a Wheatstone Bridge which allows this
change in resistance to be monitored.

The heat loss will depend on the temperature of the surrounding medium as well
as the associated heat transfer coefficient which, in turn, depends on the velocity of
the medium and its physical properties. The higher the velocity, the larger the rate
of heat loss and, hence, the change in the electrical resistance of the wire. Thus, the
anemometer can be used, after appropriate calibration, to measure either the tem-
perature or the velocity of the surrounding medium. We note that a similar device,
known as a thermal conductivity cell or catharometer, is used to monitor 

 

composi-
tional

 

 changes in a gas which affect the thermal conductivity of the medium and,
hence, the rate of heat loss. Such devices are routinely used in gas chromatographs
where advantage is taken of the large difference in the thermal conductivity of the
carrier gas helium and the partitioned solutes. The chromatogram of solute peaks
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one obtains is directly driven by signals from the Wheatstone Bridge caused by
changes in the wire resistance.

The case we wish to consider is the use of the anemometer in the measurement
of air velocities in the range v = 1 to 10 m/s. We choose a surface temperature T

 

s

 

= 125°C — this is arbitrary, other values could be chosen without invalidating the
procedures — and proceed to calculate the electrical current i required to maintain
the wire at this temperature over the velocity range in question. This value of i is
needed for a proper design of the Wheatstone Bridge, i.e., for determining the
magnitude of the resistances to be used in the circuit, given a constant voltage supply
V. A range of required i values corresponding to v = 1 to 10 m/s is established that
provides us, as well, with an indication as to whether the measuring devices used
in the bridge — typically an ammeter or rheostat — have sufficient sensitivity to
meet the desired precision in the measured velocity.

The following data are provided:

Wire diameter d = 10

 

–4

 

 m
Wire surface area A = 10

 

–6

 

 m

 

2

 

Wire resistance R = 0.1 

 

Ω

 

Air temperature T

 

a

 

 = 25°C

Values for the heat transfer coefficient h are obtained from the appropriate
correlation listed in Table 3.10. The required physical properties can be read from
Table 3.8.

(Hint: Calculate the convective heat transfer rate q and set it equal to the power
output of the wire P = i

 

2

 

R. Check for additional radiation heat transfer using an
emissivity for the platinum wire of 

 

ε

 

 = 0.1.)

 

Answer:

 

 i = 0.63 – 1.05 A

 

Comment:

 

The current range is such that a milliammeter accurate to 1 mA would yield the
velocity to three significant figures, one with an accuracy of 0.1 mA to four signif-
icant figures. Frequently one wishes to monitor velocity 

 

fluctuations

 

, such as those
that occur in turbulent flow and those results serve as a guide as to whether the
required precision in v can be met.

 

3.3.2 Conduction in Systems with Heat Sources —

 

(a) Derive the equations which apply to conduction in (1) a slab, (2) a sphere
with uniformly distributed heat sources generating heat at the constant
rate of S

 

s

 

 (J/m

 

3

 

s).
(b) For a slab, consider the faces at x = 0 and x = L to be held at the

temperature T

 

o

 

 by appropriate cooling. Integrate the model equations to
obtain the temperature distribution.

(c) Solve the same problem for a long cylinder of radius R.
(d) Show that if the slab is immersed in a bath of temperature T

 

b

 

, the difference
between the surface and bath temperatures is given by T

 

s

 

 – T

 

b

 

 = S

 

s

 

L/h,
where h = heat transfer coefficient to the bath.
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3.3.3 Maximum Temperature in a Nuclear Reactor Fuel Element — 

 

In a typical
nuclear reactor, heat generated by the fission process in the fuel element is removed
by pressurized water flowing in an annulus surrounding the fuel rod. The maximum
temperature occurs at the center of the rod and can in principle be calculated from
energy balances and temperature distributions in the fuel element and the coolant.
Here we shall assume that the water flow rate and exit temperature are known from
measurements. This provides a value for the enthalpy change in the fluid that can
be equated to the total amount of heat transferred, and the rod average surface
temperature calculated from that expression. T

 

Max

 

 is then obtained from the expres-
sion given in Practice Problem 3.3.2(3). Use arithmetric temperature average in place
of LMTD.

 

Data:

 

Water flow rate F = 2.28 kg/s
Water inlet temperature T

 

1

 

 = 25°C
Water outlet temperature T

 

2

 

 = 150°C
Convective heat transfer coefficient h = 10,000 J/m

 

2

 

sK
Rod radius R = 5.0 

 

×

 

 10

 

–2

 

 m
Rod length L = 10 m
Rod thermal conductivity k = 28.8 J/msK
Rod heat generation S = 2 

 

×

 

 10

 

7

 

 J/m

 

3

 

s

 

Answer:

 

 T

 

Max

 

 = 598°C

 

3.3.4 Hairpin Heat Exchanger — 

 

Derive the equations which apply to a hairpin
heat exchanger. In this device, cold fluid enters a tube in the shape of a hairpin, i.e.,
the tube has a 180° turn at the end of the shell and the tubular fluid exits the exchanger
at the same end as it enters.

 

3.3.5 Freezing of a Liquid — 

 

A liquid is exposed to a fluid medium at T

 

∞

 

 < T

 

f

 

,
where T

 

f

 

 is the freezing point of the liquid. We consider two cases:

1. The liquid is assumed to be at its freezing point and heat transfer takes
place from the freezing liquid to the colder medium with a film coefficient
h

 

1

 

. Show that the thickness z of the liquid at any given time t is given by
the relation:

(3.3.97)
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where z* = dimensionless solid thickness = 

 

τ

 

= dimensionless time = 

 

∆

 

H

 

f

 

= latent heat of freezing (negative)
k = thermal conductivity of solid

(Hint: Use the procedure which was applied in Illustration 3.3.10.)
2. The liquid, here assumed to be water, is initially at the temperature T

 

i

 

 >
T

 

f

 

. It has been shown that in this case the relation between ice thickness
z and time t is given by:

(3.3.98)

where H = ratio of film coefficients = 

h

 

2

 

= film coefficient ice-to-underlying water

 

θ

 

= dimensionless temperature = (T

 

i

 

 – T

 

f

 

)/(T

 

f

 

 – T

 

∞

 

)

 

3.3.6 Production of Flakice — 

 

An old and popular method of making ice flakes is
to use a horizontal rotating cylinder partially submerged in water, with the drum
internally chilled with a cold brine spray. The thin ice layer formed on the exterior
surface is scraped off as the revolving drum surface emerges from the water.

Using the following data, calculate the time required to form an ice layer 1 mm
thick:

Temperature of water T

 

i

 

 = 4°C
Temperature of brine T

 

∞

 

 = –15
Density of ice ρ = 920 kg/m3

Thermal conductivity of ice k = 2.2 J/smK
Latent heat of freezing ∆Hf = –3.34 × 105 J/kg
Film coefficient spray-to-ice h1 = 500 J/m2sK
Film coefficient ice-to-water h2 = 50 J/m2sK

(Hint: Use Equation 3.3.98.)
Answer: 46 s

3.3.7 Heat Losses from Furnace Walls — The heat losses from a rectangular
furnace at 3000 K with a total surface area A = 200 m2 and an estimated average
surface temperature of 250°C are to be estimated. The internal insulation consists
of 10 cm of fire brick which is covered by a retaining wall of dull sheet metal with
an estimated emissivity ε = 0.8. Consider both radiation and convection to still air
at 25° (h = 5 J/m2sK).
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(a) Calculate the heat losses.
(b) Recalculate the losses if the insulation thickness is doubled.

Answer: (a) 822 kJ/s

3.3.8 Pumping Up a Bicycle Tire — A racing bicycle is to be pumped up to a
pressure of p2 = 5 atm. Calculate the adiabatic temperature attained.

Answer: 199°C

Note that in practice this temperature is not reached because of heat loss to the tire
and surroundings.

3.3.9 Temperature Rise Due to a Kinetic Energy Change — 

(a) Air flowing at 10 m/s in a pipe is brought to a sudden stop by closure of
a valve. What is the associated temperature rise?

(b) Water flowing at 1 m/s is similarly brought to a stop. Calculate its tem-
perature rise.

(Hint: Use Equation 3.3.85.)
Answers: (a) 50°C; (b) 0.12°C

Comment:
The high value obtained for air is due to its higher permissible velocity as well

as its low heat capacity. The results indicate that kinetic energy changes may have
to be taken into account in heat transfer operations involving gases with relatively
low heat flux.

3.3.10 Temperature Rise Due to Pumping — The power input into a fluid by a
pump has, as can be seen from Equation 3.3.85, an associated temperature rise
which, if adiabatic, can be directly calculated from ∆H. Pumps are generally char-
acterized by volumetric flow rate Q and the pressure increase they produce, usually
expressed as “head” in meters of water height. Consider a pump taking a water
inflow of Q = 1 m3/s at atmospheric pressure and producing a head of 50 m of water.
Calculate the attendant temperature rise, assuming that there are no heat losses.

(Hint: Work done by the pump per unit time equals the product of volumetric
flow rate times pressure difference generated by the pump.)

Answer: 0.12°C

Comment:
The temperature rise is seen to be trivial in the case of a single pass through

the pump. It does become significant, however, in the case of a recirculating pump.
The temperature rise, again assuming adiabatic operation, would then be 1.2°C after
10 passes, 12°C after 100 passes, etc. These temperature rises are no longer insig-
nificant and can in some instances be a hindrance unless appropriate cooling is
provided.
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3.4 FORCE AND MOMENTUM BALANCES

We turn here to the consideration of models that call for the use of force or
momentum balances. We recall from Newton’s law that force is equivalent to rate
of momentum change, since F = m dv/dt = d(mv)dt, where mv = momentum M.
Depending on circumstances, one can express the terms in these balances either as
a force or as momentum change. For example, the momentum imparted in the
transverse direction by a moving fluid to a pipe wall or to the surface of an immersed
body is most conveniently expressed in terms of a shear stress τ (Pa), a pressure
drop ∆P, or a drag force FD. On the other hand, the momentum carried by a moving
fluid to a turbine blade is best expressed in terms of the momentum flow d mv/dt =
ρQv. Note that v, F and M are all vectors.

3.4.1 MOMENTUM FLUX AND EQUIVALENT FORCES

Here again as in the case of energy flux, the complications due to different driving
forces and distinction between stagnant film and equimolar diffusion seen in the
mass balances do not arise. We make, however, the usual distinction between dif-
fusive transport, associated with viscous or laminar flow, and convective transport
which is associated with turbulent flow. These modes are best expressed in terms of
shear stress τ and take the form:

Laminar flow:

(Newton’s viscosity law) (3.4.1)

Turbulent flow:

Pipes (3.4.2)

Submerged objects (3.4.3)

where f and CD are the friction factor and drag coefficient, respectively, to be
discussed below, and Ac/As is the ratio of cross-sectional to surface area of the object.
Equation 3.4.1 is an empirical law proposed by Newton, while Equations 3.4.2 and
3.4.3 are obtained by equating the shear stress force with frictional or drag forces.
These forces are further discussed below.

3.4.2 TRANSPORT COEFFICIENTS

We start this section in the usual way by considering molecular or diffusive transport.
The relevant parameter here is the viscosity µ, values of which are listed for various
substances in Table 3.13.

τ µ= − dv
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For gases, viscosity is seen to be of the order 10–2 cP = 10–5 Pas. For liquids of
normal fluidity, µ is in the range 10–1 to 1 cP. Exceptions occur in such cases as
sulfuric acid and glycerol, the latter having a viscosity three to four orders of
magnitude higher than “normal.”

Temperature dependence of µ is strong in the case of liquids, decreasing exponen-
tially with absolute temperature. For water, for example, the decrease is by a factor of
6.4 between 0°C and 100°C. Gas viscosities at low densities, on the other hand, vary
only weakly with the square root of absolute temperature and not at all with pressure.

Turning next to turbulent transport, we consider associated friction factors f and
drag coefficients CD. The concept of these factors arises from the assumption that
the friction force Ff is proportional to some form of the exposed area A (pipe or
submerged object) and the kinetic energy EK of the fluid. f and CD act as propor-
tionality constants. Thus,

Ff = fAEK or CDAEK (3.4.4)

Evaluating these expressions for pipes and submerged objects ultimately leads
to the following expressions:

Pipes:

(Fanning equation) (3.4.5)

TABLE 3.13
Viscosities of Gases and Liquids at 20°C

Substance Viscosity (cP = 1 mPas)

Gases Air 1.8 × 10–2

Nitrogen 1.8 × 10–2

Oxygen 2.0 × 10–2

Carbon dioxide 1.5 × 10–2

Steam (100°) 1.3 × 10–2

Methane 1.1 × 10–2

i–Butane 0.76 × 10–2

Liquids Water 1.0
Ethyl alcohol 1.2
Diethyl ether 0.25
Benzene 0.65
Bromine 0.95
Mercury 1.6
Sulfuric acid 19
Sodium (250°C) 0.38
Potassium (250°C) 0.26
Lead (550°C) 1.7
Glycerol 1070

∆p
h f

v L
Dfρ

= = 4
2

2
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Submerged objects:

(3.4.6)

where L and D are the length and diameter of the pipe, ∆p the pressure drop over
the length L, and hf the so-called friction head. For flow around submerged objects,
FD is the drag force, and Ac the exposed cross-sectional area.

Tabulations of CD and f appear in the accompanying Table 3.14. Both coefficients
depend on Reynolds number and, in the case of packed beds, on the void fraction
ε as well. Surface roughness plays an additional role that is not considered in the
Table 3.14, i.e., the tabulations apply to smooth surfaces.

The tabulations include correlations for both laminar and turbulent flow. The
transition from one to the other occurs at fairly precise values of the Reynolds
number. Thus, for spheres, turbulent flow sets in at Re ≈ 0.1, for pipes at Re ≈ 2100.
In the laminar regime, a relatively simple dependence on Re–1 is obtained in most
cases. If the pertinent correlations are substituted in Equations 3.4.5 and 3.4.6, two
celebrated relations result, the Hagen-Poiseuille law for circular pipes, and Stokes’
law for the drag force on a sphere. Thus,

Pipe (Hagen-Poiseuille):

(3.4.7)

Sphere (Stokes):

F = 3πdµv (3.4.8)

Of note in particular is the strong dependence of the pressure drop in pipes on
pipe diameter. Thus, halving it increases ∆p by a factor of 16. The drag force on
spheres on the other hand shows a simple linear dependence on both d and v.

We note that both expressions (Equations 3.4.7 and 3.4.8) were originally derived
by differential force or momentum balances to arrive at velocity distributions as
primary information. These are then integrated over the cross-sectional area of the
pipe to obtain volumetric flow rate Q or, in the case of the sphere, substituted into
Newton’s viscosity law and the result integrated over the surface to obtain the drag
force FD. The latter derivation, first given by Stokes, was based on the well-known
Navier-Stokes equations consisting of three nonlinear PDEs and the continuity
equations as a starting model.

We now present a number of illustrative examples, many of which have by now
become classical problems. We start with static systems that involve no flow, hence,
require force balances. The forces acting on submerged surfaces in the atmosphere
and in pressurized containers are considered. Particle fall, rise, or suspension in a
flowing fluid is taken up next, again requiring a force balance. We then turn our full
attention to flowing fluids and examine the forces due to momentum changes in the

F C A
v

D D c= ρ 2

2

∆ ∆
p

QL
d
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P
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TABLE 3.14
Drag Coefficients and Friction Factors

A. Flat Plate B. Sphere C. Cyclinder

Range CD Range CD Range CD

Re < 5 × 105 Re < 0.1 Re < 10

5 × 105 < Re < 107 2 < Re < 500 3 × 104 < Re < 2 × 105 1.2

Re > 107 500 < Re < 2 × 105 0.44 Re > 105 0.36

D. Inside Smooth Tubes E. Packed Beds

Range f Range f
Re < 2100 Re < 10

2100 < Re < 105 Re > 1000

1 33
1 2

.

Re /

24

Re

0 33.

Re

0 074 1700
1 2

.

Re Re/ − 18 5
3 5

.

Re /

0 072
1 5

.

Re /

16

Re
( )

Re

1 752

3

− ε
ε

0 079
1 4

.

Re / 0 88
1

3.
− ε
ε
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fluid as well as the full panoply of forces which arise in steady flows and lead to the
Bernoulli equation and the mechanical energy balance. A number of additional exam-
ples are provided that complete the survey. We note that many, if not most, problems
in fluid mechanics require, in addition to a force/momentum balance, the use of the
continuity equation, i.e., a mass balance. In a good many cases an energy balance must
be invoked as well. These problems are not considered here, but come under scrutiny
in Section 3.6 devoted to simultaneous mass, energy, and momentum balances.

Illustration 3.4.1 Forces on Submerged Surfaces:
Archimides’ Law

We start by presenting the general formula for the force F acting on submerged
surfaces of arbitrary shape and area A due to the so-called hydrostatic head h of the
fluid. It takes the form:

dF = pdA (3.4.9)

where p = hydrostatic pressure. By means of a force balance it can be established
that p is related to h by the expression:

p = ρgh (3.4.10)

where ρ = density of the fluid. This expression is known as the fundamental equation
of fluid statics. We proceed to apply it to a number of cases of interest.

(1) Flat horizontal surface:
Substitution of Equation 3.4.10 into 3.4.9 yields:

dF = ρghdA (3.4.11)

which upon integration for h = constant leads to the relation:

F = ρghA (3.4.12)

(2) Flat vertical surface:
Equation 3.4.11 is applied again, yielding:

dF = ρghdA (3.4.13)

or

(3.4.14)

where the hydrostatic head h now varies over the surface area and it is recognized
that for a plate of width W, dA = Wdh. We also recognize that ∫hdA = hcgA, where

F g hdA
h

h

= ∫ρ
1

2
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hcg is the centroidal distance, or the distance of the center of gravity of the plate
from the fluid surface. We then obtain for the total force F the abbreviated expression:

F = ρghcgA (3.4.15)

Suppose, for example, that the vertical surface is a rectangular wall of height H
= 10 m and width W = 1 m, with the upper edge 10 m below the water surface. The
centroid of the rectangle will be at mid-height and its distance from the water surface
hcg = 10 + 5 = 15 m. Hence the total (horizontal) force acting on the submerged wall is

F = ρghcgHW = (1000)(9.81)(15)(10)(1) = 1.47 MN

(3) Arbitrary surfaces:
Integration of the Expression 3.4.11 over curved and other surfaces of arbitrary

shape can be cumbersome, even after decomposing the total force F into horizontal
and vertical components Fh and fv. The difficulty can be circumvented by applying
the following two simple rules:

1. The horizontal force component Fh equals the force on the area Ap formed
by projecting the surface onto a vertical plane. Thus,

Fh = ρg(hcg)pAp (3.4.16)

where (hcg)p = distance of the centroid of the projected area to the surface.
2. The vertical force component Fv equals the weight of the entire column

of fluid Wf, both liquid and atmosphere, resting on the submerged surface.
Thus,

Fv = Wf (3.4.17)

The total force is then obtained as the square root of the sum of squares:

F = (Fh
2 + Fv

2) (3.4.18)

Suppose, for example, that the vertical plate considered previously is now
inclined with an angle α = 30° to the water surface. The projected area Ap is then
HW sin α = (10)(1) sin 30° = 5 m2. The centroidal distance (hcg)p is the same as
before and we obtain:

Fh = ρp(hcg)pAp = (1000)(9.81)(15)(5) = 0.74 MN

i.e., one-half the value for the vertical plane.

(4) Archimides’ law:
It is now possible to give a simple explanation of Archimides’ law. For a

submerged body of arbitrary shape, the horizontal component Fh = 0, since the
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projections to the left and right side vertical planes will have the same area Ap and
centroidal distance hcg but with associated forces of opposite sign. We are left with
the vertical component Fv which will be the difference between the fluid weights
resting on the upper and lower surfaces of the body, W1 and W2. We, therefore, obtain:

F = Fv = W2 – W1 =
Weight of fluid contained in the volume of the body (3.4.19)

This in effect confirms Archimides’ law which states that the vertical force, or
buoyancy, equals the weight of the displaced fluid.

Illustration 3.4.2 Forces Acting on a Pressurized Container: 
The Hoop-Stress Formula

In the design of pressure vessels, such as gas cylinders, one wishes to know the
minimum wall thickness required to withstand a given internal pressure. That internal
pressure would have to overcome the tensile strength or stress τt of the material to
rupture the vessel. To prevent rupture, the forces due to the tensile strength and the
pressure must, at a minimum, be in balance. Integration of the forces over the surface
can be avoided by making use of the fact that the net force due to the pressure equals
the force acting on the projected area of the vessel surface. This can be shown, i.e.,
for a cylinder, by integration of the component force pLR sin α so that:

(3.4.20)

where 2RL = dL is seen to be the projection of the cylinder surface onto a plane.
Equating this force to the tensile force holding the vessel together we obtain, for a
cylinder and sphere respectively,

Cylinder (3.4.21)

Sphere (3.4.22)

where ∆d is taken to be the wall thickness. These are the so-called hoop stress
formulae for the cylinder and sphere that are the most commonly encountered
geometries. One notes that the sphere can accommodate a permissible pressure four
times that of the cylinder. This fact is often taken advantage of in the design of
pressure vessels. Note also that the allowable pressure for a particular vessel varies
inversely with diameter. For high pressure applications, therefore, it is preferable to
use small diameter containers in order to avoid excessively thick walls (∆d) with an
attendant increase in weight. Table 3.15 lists some representative values of tensile

F pLR d pRLnet = =∫ sin α α
π

2
0

p
d

dt= τ ∆

p
d

dt= 4τ ∆
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strength for various metals. They range from 17 MPa for the softest metal, lead, to
over 1000 Mpa for beryllium copper.

To obtain an idea of the required wall thickness in pressure vessels, we consider
a standard commercial nitrogen cylinder. Such cylinders and those of other perma-
nent gases (hydrogen, oxygen, argon, helium) are usually made of carbon steel, have
diameters of approximately 0.15 m, and are typically filled to a pressure of 15 Mpa.
Equation 3.4.21 then yields ∆d = pd/τt = (15)(0.15/450) = 0.5 cm. This is the
minimum required thickness. In practice it will be augmented by a safety factor of
at least 2. Aluminum alloys that would meet the tensile strength requirements and
make for much lighter cylinders, have not come into general use for pressure vessels,
in part because of their higher cost.

Illustration 3.4.3 The Effects of Surface Tension:
Laplace’s Equation; Capillary Rise

A liquid being unable to expand freely like a gas will form an interface with a second
liquid or a gas. This arises essentially because within the liquid interior, molecules
are densely packed and repel each other while at the surface; with half the neighbors
missing, the packing is looser and the molecules attract one another. The net effect
is that the surface is under tension, the tensile attractive forces counterbalancing the
repulsive forces which prevail in the interior (Figure 3.10). The quantity which
characterizes this effect is the surface tension γ, with units of N/m or Nm/m2. The
latter unit reveals that surface tension is equivalent to the energy to form or eliminate
a unit area of surface. Values of γ for various liquids are summarized in Table 3.16
and generally range from 2 × 10–2 to 8 × 10–2 N/m, the higher values corresponding
to polar liquids with stronger attractive forces due to hydrogen bonding. For liquid
metals, e.g, mercury, those forces are even larger, leading to surface tensions that
are an order of magnitude higher than normal.

As a consequence of surface tension, a liquid in contact with a solid surface will
have a contact angle θ with that solid, as shown in Figure 3.10C. If θ < 90°, the
internal attractive forces are small and the liquid is said to wet the solid; if θ is in
the range 90 to 180°, the liquid is termed nonwetting. Water and organic solvents

TABLE 3.15
Tensile Strength of Metals and Alloys

Metal/Alloy Tensile Strength ττττt (MPa)

Aluminum alloys 100–325
Aluminum alloy 360 325
Beryllium copper 25 500–1400
Inconel 800
Lead 17
Nickel 460
Steel (carbon) 450
Steel (stainless 304) 550
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are extremely wetting in contact with clean glass, with θ ≈ 0. Mercury, on the other
hand, has a high contact angle of θ = 130° due to its abnormally large surface
tension, i.e., high internal attractive forces. Surface tension and contact angle depend
on the nature of the surface. Thus, water will wet clean glass, but not wax, which
is hydrophobic. In the former case, the strong hydrophilic nature of the glass will
overcome the internal attractive forces of the water and cause spreading. On hydro-
phobic surfaces, water droplets maintain their integrity.

Laplace’s Equation — A second consequence of surface tension is that the
interior pressure caused by the repulsive forces is higher than the exterior (usually

FIGURE 3.10 Aspects of surface tension: (A) balance of forces in a spherical droplet, (B)
balance of forces in an arbitrary surface, (C) contact angle for a nonwetting liquid, (D)
capillary rise of a wetting liquid.

TABLE 3.16
Surface Tension of Various Liquids at 
20°C and in Contact with Air

Liquid Surface Tension γγγγ (N/m)

Benzene 2.9 × 10–2

Carbon tetrachloride 2.7 × 10–2

Ethanol 2.3 × 10–2

Gasoline 2.2 × 10–2

Glycerine 6.3 × 10–2

Mercury 4.8 × 10–1

SAE 10 oil 3.6 × 10–2

Water 7.3 × 10–2

248/ch03/frame  Page 118  Friday, June 15, 2001  6:56 AM

© 1999 By CRC Press LLC



atmospheric) force and is precisely balanced by the surface tensile force. Thus, for
a spherical droplet (see Figure 3.10A):

(3.4.23)

so that

pint – pext = ∆p = 4γ/d (3.4.24)

This equation can be generalized to an arbitrary curved surface in terms of its
principal (and orthogonal) radii of curvature, and is then known as Laplace’s equation
(see Figure 3.10B):

(3.4.25)

Capillary Rise — Yet another consequence of surface tension is that the tendency
to spread in contact with a solid causes liquids with θ < 90° to rise in capillary
tubes. The physical situation is depicted in Figure 3.10D. A vertical force balance
for this configuration leads to the equation:

(3.4.26)

or

(3.4.27)

For θ > 90, cos θ < 0, hence h is negative and a depression results.
Capillary rise is the means by which nutrients dissolved in water are conveyed

to the upper reaches of a plant or tree. Let us calculate the diameter of capillary
required to convey water to the top of a full-grown tree, h = 10 m. The water will
be in contact with hydrophilic cell material so that we can assume, as a first
approximation, θ ≈ 0. We obtain from Equation 3.4.27:
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Thus, a cellular capillary of the order 3 microns in diameter will convey the
water to the required height.

Illustration 3.4.4 The Hypsometric Formulae

The hypsometric formulae are expressions that relate pressure and temperature to
atmospheric altitude. Before precise measurements of T and p became available,
this relation was established by combining the differential form of the fundamental
equation of fluid statics, Equation 3.4.10, with the adiabatic equation of state,
Equation 3.3.77 (see also Practice Problem 3.4.4). Actual measurements of atmo-
spheric temperatures revealed a more complex relation to exist than that obtained
by assuming adiabatic expansion of the air. While pressure declines smoothly and
exponentially with altitude, temperature is less predictable, one might even say
erratic. Its variation can be broken up into the following regions.

In the so-called troposphere, i.e., up to an altitude of 11 km, a simple linear
relation applies:

T(K) = To – Bz (3.4.28)

where To = 288.16 K (15°C) and B = 6.5 × 10–3 K/m.
Between 11 and 20.1 km, the temperature remains constant at -56.5°C, where-

upon a reversal occurs which causes it to rise to ~ –3°C at an altitude of approxi-
mately 48 km. It remains at that level up to 52 km, after which it resumes a rapid
linear decline.

To obtain a relation between pressure and altitude in the troposphere, we intro-
duce the temperature–altitude relation (Equation 3.4.28) into the differential form
of Equation 3.4.10 and obtain:

(3.4.29)

or

which yields, after integrating by separation of variables:

(3.4.30)

where g/RB = 5.26 for air. This is the hypsometric formula for pressure, applicable
up to altitudes of 11 km.
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Let us as an example calculate the conditions which prevail at an altitude of
3000 m. From Equation 3.4.28, we obtain:

T = 288.16 – (6.5 × 10–3)(3000) = 268.66 K

i.e., approximately –5°C, and from Equation 3.4.30:

Similar calculations for the upper end of the troposphere, z = 11 km, yield a
value of p = 22.6 kPa, i.e., the pressure will at this point have dropped to approxi-
mately one-fifth of an atmosphere. Action movies depicting decompression of air-
liners give a graphical description of the effect of this drop.

Illustration 3.4.5 Momentum Changes in a Flowing Fluid: 
Forces on a Stationary Vane

We start by considering the rate at which momentum M is carried by a fluid in
steady flow. That quantity is given by:

(3.4.31)

where F and Q are the usual mass and volumetric flow rate, and F the vectorial
force associated with the momentum flow dM/dt.

Consider a fluid jet of cross-sectional area A = 10–2 m2 flowing at a volumetric
flow rate Q = 10–2 m3/s, impinging on a 90° vane as shown in Figure 3.11. We
decompose F into horizontal and vertical components Fh and Fv and perform an
integral momentum balance on each. Thus,

Horizontal component Fh:

FIGURE 3.11 Fluid forces on stationary vanes of different inclinations.
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(3.4.32)

and we obtain:

Fh = ρQ Q/A = (1000)(10–4)/10–2 = 10 N

Vertical component Fv:

(3.4.33)

so that:

Fv = –ρQ Q/A = (1000) 10–4/10–2 = –10 N

The total force Ft equals the square root of the sum of squares of the components,
which yields:

Consider next a similar vane whose upper part is inclined with an angle θ =
30°. The associated component forces are

Horizontal component Fh:

so that:

Fh = ρQ (Q/A)(1 – cos θ) = 1000 (10–4/10–2) (1 – 0.866) = 1.34 N

Vertical component Fv:

and

Rate of momentum in Rate of momentum out Force

Q v Fh h

− =

− =ρ 0

Rate of momentum in Rate of momentum out Force

Q v Fv v

− =

− =0 ρ

F F F Nt h v= + = + − =2 2 2 210 10 14 1( ) .

Rate of momentum in Rate of momentum out Force

Q v Q v Fh h h

− =

− =ρ ρ θcos

Rate of momentum in Rate of momentum out Force

Q v Fv v

− =

− =0 ρ θsin

F Q Q A Nv = − = − = −− −ρ θ( / )sin ( / )1000 10 10
1
2

54 2

248/ch03/frame  Page 122  Friday, June 15, 2001  6:56 AM

© 1999 By CRC Press LLC



We have:

As expected, this force is considerably less than that experienced by a 90° vane.

Illustration 3.4.6 Particle Movement in a Fluid

The behavior of particles rising or falling through a fluid, or in suspension in a
flowing medium, represents yet another classical example of the application of a
force balance. A distinction is made between the steady-state in which the sum of
forces is zero and the unsteady state which requires inclusion of an acceleration
term. A particle released in a medium of higher density will commence to rise with
a steadily increasing velocity and attendant increase in the drag force. A state is
ultimately reached when that force is exactly in balance with the gravity and buoy-
ancy forces. The particle is then said to have attained its terminal velocity. A body
falling in a medium of higher density undergoes a similar period of acceleration and
ultimate attainment of a steady velocity. In the third case considered, that of a particle
in suspension, the steady-state is assumed to have already been attained and the sum
of forces is equal to zero.

Steady-State — The forces in balance to be considered here are three-fold: gravity
force Fg, buoyancy force Fb, and drag force Fd. We first examine the case of a falling
particle in which the gravity force Fg acts downward, and Fb and Fd act upward. We
obtain:

Σ Forces = 0 (3.4.34)

or

Fg – Fd – Fb = 0

and expanding these terms by appropriate auxiliary relation,

(3.4.35)

Here the subscripts p and f denote properties of the particle and fluid, respectively,
and Ac is the cross-sectional area of the particle at right angles to the direction of
motion. This equation applies to a particle suspended in a flowing fluid as well. For
a rising particle ρf > ρs, and the sign of the drag force is reversed. Grouping together
the terms dependent on terminal velocity vt, Equation 3.4.35 yields the following
expressions for the various cases considered:
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Falling particle and particle in suspension:

(3.4.36)

Rising particle:

(3.4.37)

Equations 3.4.34 to 3.4.37 have general validity irrespective of the flow regime
or the geometry of the particle.

Let us now consider a specific case, that of a falling or suspended sphere, and
introduce the drag coefficients listed in Table 3.14 for the laminar regime, CD =
24/Re and that for the turbulent regime, CD = 0.44. We obtain, taking g = 9.81 m2/s
into account,

Laminar region, Re < 0.1:

(3.4.38)

Turbulent region, 500 < Re < 2 × 105:

(3.4.39)

We first note that in both the laminar and turbulent cases the terminal velocity
or fluid velocity required to keep a particle in suspension is proportional to the
diameter of the sphere, although only weakly so in the turbulent regime. This is in
agreement with the conventional wisdom that “larger bodies fall faster.” Viscosity
plays a role in the laminar region as expected, and the quotient (ρp – ρf)/ρf may be
regarded as a dimensionless “driving force” for the falling particle in both laminar
and turbulent reactions.

A second point to note is that the two variables of greatest interest, D and vt,
appear in combination in the Reynolds number. Thus, with only one of them specified
(which is the usual case), one cannot determine the Reynolds number and, hence,
the flow regime and pertinent drag coefficient CD. In most practical cases it is,
therefore, difficult to decide which of the two equations (3.4.38 or 3.4.39) is appli-
cable, or whether one is located in the transition regime between the two cases.

One can circumvent this difficulty by introducing the lower limits of validity of
the drag coefficients (see Table 3.14) into rearranged forms of Equations 3.4.38 and

C v
V g

AD t
p

c

p f

f

2
2

=
−





ρ ρ

ρ

C v
V g

AD t
p

c

f p

f

2
2

=
−





ρ ρ

ρ

v dt
f p f

f

=
−





0 545 2.

ρ
µ

ρ ρ
ρ

v dt
p f

f

=
−

















5 45

1 2

.

/
ρ ρ

ρ

248/ch03/frame  Page 124  Friday, June 15, 2001  6:56 AM

© 1999 By CRC Press LLC



3.4.39, and using the result to establish upper and lower bounds on the terminal
velocities or diameters in each regime. For example, to establish the upper bound
for the diameter of a sphere falling in water in the laminar region, we obtain, in the
first instance:

(3.4.40)

where vtd has to satisfy the relation Re < 0.1 and, hence, using a kinematic viscosity
for water ν = µ/ρf = 10–6 m2/s, the inequality:

vtd < 10–7 m2/s (3.4.41)

Combining Equations 3.4.40 and 3.4.41, it follows that the diameter has to fulfill
the condition:

(3.4.42)

whence there results:

(3.4.43)

We have done similar calculations for d in the turbulent region and for v in both
the laminar and turbulent regions, and summarize the results in Table 3.17.

For water, one can assume the density ratio  to be of the order of

one. It follows that for the laminar region Equation 3.4.38 to apply, the particle
diameter has to be less than about 0.06 mm; for the turbulent Equation 3.4.39 to
apply, greater than about 2 mm. Similar statements can be made for particles falling
in air and for the bounds on velocity. One notes that the regions inbetween the two
regimes, which is the transition region, encompasses some two orders of magnitude
in both velocity and diameter. Table 3.17 serves the useful purpose of providing a
range of diameters and velocities that span the transition region. If, for example, the
given diameter of a sphere is 10–4 m = 0.1 mm, the table signals that the transition
region applies. One can then substitute the transition relation CD = 18.5/Re3/5 (see
Table 3.14) into Equation 3.4.36 and solve for the desired velocity.

The Unsteady-State and Approach to Steady-State — It is frequently necessary
in problems involving rising or falling particles to calculate distance traveled in a
given time, or conversely, the time necessary to travel a given distance. In problems
involving settling tanks, for example, one may wish to know the time necessary for
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a particle of given size to settle to the bottom, i.e., to fall a given distance (see
Practice Problem 3.4.7). In Practice Problem 1.2, a marker particle to be used by
divers was to be designed which would rise with a given steady velocity. Here again
it would be desirable to know the length of time the particle spends in the unsteady
state, so that deviations from the desired design velocity can be assessed.

To model the unsteady-state, full use must be made of Newton’s law, i.e., an
acceleration term has to be added to the previous steady-state balance. Thus, for
falling particles,

(3.4.44)

Expansion in terms of the usual auxiliary relation then yields:

(3.4.45)

which can be formally integrated to yield the time dependence of the velocity. If
the particle ultimately reaches its terminal velocity in the turbulent region, integration
of C

 

D

 

 would have to take account of the full spectrum of C

 

D

 

 variations with Reynolds
number, i.e., velocity. We circumvent this difficulty by considering the limiting case
of laminar flow. This not only describes the behavior of particles that fall entirely
in the laminar region but also provides an upper bound to the time involved and a
lower bound to the distance traveled.

 

TABLE 3.17
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Integration by separation of variables of Equation 3.4.45 then yields:

(3.4.46)

where

Comparison with the laminar flow Equation 3.4.36 shows that B/A = 1/v

 

t

 

, i.e., the
inverse of the steady-state terminal velocity. Hence, Equation 3.4.46 becomes:

(3.4.47)

To obtain a sense of the order of magnitude of the times involved, consider a
sphere of density 

 

ρ

 

p

 

 = 2000 kg/w

 

3

 

 and diameter just below the upper bound given
in Table 3.17, d = 10

 

–5

 

 m, falling through water. For a 95% approach to the steady-
state terminal velocity, we obtain:

In general calculations for other cases, such as falling through air or when all
three flow regimes are involved, show that the times required to attain the steady-
state terminal velocity are quite short and can often be neglected in calculations
involving falling or rising particles.

 

TABLE 3.18
Representative Ranges of Velocities in Steel Pipes

 

Type of Fluid Type of Flow v, m/s

 

Nonviscous liquid Inlet to pump 0.6–0.9
Process line or pump discharge 1.5–2.5

Viscous liquid Inlet to pump 0.06–0.25
Process line or pump discharge 0.15–0.6

Gas 9–36
Steam 9–23

 

Source:

 

 From C.J. Geankoplis. 

 

Transport Processes and Unit Opera-
tions,

 

 Allyn and Bacon, Boston, 1978. With permission.
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Illustration 3.4.7 The Bernoulli Equation:
Some Simple Applications

 

It is not often realized that the celebrated Bernoulli equation and its extension, the
mechanical energy balance (see Illustration 3.4.8), in fact, are force balances. The
reason they are often viewed as energy balances is due to the fact that the terms
appearing in them have units of energy/mass. Those units arise in the final manip-
ulations of the equation and lead to a form of greater convenience.

The Bernoulli equation can be derived in different ways. One can proceed “from
the top down,” i.e., one can start with the general three-dimensional viscous flow
force balance, the Navier-Stokes equations, and after various simplifications, includ-
ing the imposition of the so-called irrotational flow condition (essentially equivalent
to frictionless flow) arrive at the Bernoulli equation. This approach has the advantage
of resulting in a more general form of the equation which can be applied to any two
points of the flow field and is taken up in Chapter 8. Here we approach the problem
“from the bottom up” by starting with a one-dimensional force balance along a
stream tube, shown in Figure 3.12. The following assumptions are made:

1. Flow is steady, i.e., the variables involved change with distance only.
2. The fluid is inviscid, i.e., friction forces are neglected.
3. No work is done by or on the fluid.

With these assumptions in place the only forces to be considered are those due
to pressure, gravity, and momentum. We take these up in turn.

 

Gravity — 

 

Here the component of the gravity component or weight in the vertical

direction is taken, using an average cross-sectional area of  Thus,

(3.4.48)

or, neglecting the second order differential,

 

FIGURE 3.12

 

Derivation of Bernoulli’s equation.
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dF

 

g

 

 = –A 

 

ρ

 

 g dz (3.4.49)

 

Momentum — 

 

Since the flow is steady and there is no change in direction, no
velocity components need to be considered and one obtains directly, using Equation
3.4.31:

dF

 

m

 

 = –

 

ρ

 

Q dv = –

 

ρ

 

A v dv (3.4.50)

 

Pressure

 

 — A subtlety enters the picture here. In addition to the pressure forces
acting on each cross-sectional area, there is a pressure force along the slanted tube

walls that has a streamwise component  (see Figure 3.12). The net

pressure force is then given by:

(3.4.51)

which, upon neglecting second order differentials becomes:

dF

 

p

 

 = –A dp (3.4.52)

Collecting terms and dividing by A

 

ρ

 

, we obtain the following differential form
of the Bernoulli equation:

(3.4.53)

We note that the equation applies to both incompressible and compressible flow.
For the former, 

 

ρ

 

 = constant, and one obtains by direct integration:

(3.4.54)

For compressible flow, the variation of density with pressure has to be taken
into account using an appropriate equation of state. This is taken up in the Section
3.6 on simultaneous mass, energy, and momentum balances.

Equation 3.4.54 is sometimes cast in the form:

(3.4.55)

which states that the sum of pressure, kinetic and potential energy per unit mass is
constant along a specified stream tube. This has led to the erroneous conclusion that
Bernoulli’s equation is derived from an energy balance.
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An important result of Equation 3.4.55 is that an increase in elevation z (at
constant v) or an increase in velocity v (at constant z) causes a 

 

decrease

 

 in pressure.
This qualitative relation, sometimes referred to as the Bernoulli effect, has many
important practical consequences. Flow around an airfoil or airplane wing increases
in velocity along the upper surface because of its bulging curvature, while velocity
along the lower surface remains essentially constant. As a consequence, pressure
along the top is less than along the bottom surface and it is this difference in pressure
forces that provides the necessary lift for the aircraft. Another example is the velocity
increase that results from a constriction in a conduit. The associated drop in pressure
is used among other things to measure flow rate (Venturi and orifice meter) or to
create a vacuum (jet pump or aspirator, see example below). We now consider some
elementary applications of the Bernoulli equation.

 

The Syphon — 

 

This simple device, known from everyday life, is used to empty
containers which cannot be conveniently moved. The sketch in Figure 3.13 shows
the pertinent elevations and pressures. We apply Bernoulli’s equation to locations 1
and 3, noting that p

 

1

 

 = p

 

3

 

 = p

 

atm

 

, hence, 

 

∆

 

p = 0, and that v

 

1
2

 

/2g 

 

≈

 

 0, i.e., negligible
compared to v

 

2
2

 

/2g. One obtains:

(3.4.56)

This result shows that in order to have a positive flow rate Q > 0, the difference
in elevation must be positive, i.e., z

 

1

 

 > z

 

3

 

. This is, of course, well known to anyone
who has successfully used a syphon. The above provides the scientific explanation
for the phenomenon.

A comment is appropriate regarding conditions at location 2. The pressure here
will be less than 1 atm, but usually not by much since z

 

2

 

 is only marginally above
z

 

1

 

 in most applications. If circumstances force the use of higher values of z

 

2

 

, a point
may be reached where p

 

2

 

 equals the vapor pressure of the liquid. When this occurs,
partial vaporization takes place, resulting in a so-called vapor lock, and flow ceases.

 

FIGURE 3.13

 

Pressures and elevations in a siphon.
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For water, which has a vapor pressure of 3.2 kPa at 25°C, this occurs at an elevation
difference of z

 

1

 

 – z

 

3

 

 ~ 9.7 m. For more volatile liquids with higher vapor pressures,
the height required is much less, and it is here that some caution must be exercised.
We note that a similar phenomenon occurs when a pump inlet is located much higher
than the system inlet. To prevent this from happening, pumps are usually positioned
close to the system inlet.

 

Jet Pumps: Aspirators — 

 

In these devices, a drop in pressure is artificially
induced by constricting the conduit carrying the flowing liquid. We consider the
case where the upstream diameter is 3 cm, and the constriction diameter 0.3 cm,
i.e., a reduction by a factor of 10. Water flow at Q = 10

 

–4

 

 m

 

3

 

/s is used, with an
upstream pressure p

 

1

 

 of 110 kPa. We wish to calculate the resulting pressure at the
constriction, p

 

2

 

. Applying Bernoulli’s equation to the two points we obtain:

(3.4.57)

or, using Q = Av, and solving for p

 

2

 

:

(3.4.58)

i.e., the pressure has been reduced to one-eleventh its original value.
One can, in principle, by increasing flow rate or the diameter ratio d

 

1

 

/d

 

2

 

 reduce
the pressure to zero. A limiting factor intervenes, however, which is the vapor
pressure of the liquid. A water aspirator running with cold water at 6°C could at
best produce a vacuum equal to the water vapor pressure at that temperature, i.e.,
0.94 kPa. This still represents a hundred-fold decrease in ambient pressure. To
circumvent this limitation, devices called diffusion pumps are available which utilize
liquids of low vapor pressure, such as mercury or specialty oils, as the driving fluid.
The liquid is recirculated by first vaporizing it, then condensing the vapor in a vertical
water cooled condenser and allowing the condensate to pass through the constriction
by gravity. A vacuum as low as 10

 

–8

 

 atm can be achieved by this method.

 

Discharge from a Tank — 

 

We consider here the discharge of a liquid through a
nozzle attached to the side of a tank, as shown in Figure 3.14. If the ratio of nozzle
and tank diameters is small, which is usually the case, one can neglect the velocity
term at location 1, as was done in the case of the syphon. Similarly, one can again
set p

 

1

 

 = p

 

2

 

 = p

 

atm

 

, so that the only terms remaining in the Bernoulli equation are
those due to the exit velocity v

 

2

 

 and the change in elevation 

 

∆

 

z. The liquid level is
assumed to be constant. One then obtains:
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 = (2g 
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(3.4.59)
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This formula, discovered by Torricelli in 1644 and expressed by him in a
theorem, states that the discharge velocity equals the speed which a frictionless
particle in free fall would attain. In other words the potential energy of the surface
fluid is entirely converted into kinetic energy at the exit which is consistent with the
absence of friction and pressure work.

 

Illustration 3.4.8 The Mechanical Energy Balance

 

Bernoulli’s equation provides a good deal of important qualitative information, as
well as near quantitative results if the locations in the flow field considered are close
enough, and the fluid has a low viscosity. When this no longer applies, the effect of
friction has to be taken into account by formally incorporating the Fanning equation
(Equation 3.4.5) into the Bernoulli equation and at the same time including so-called
shaft work w

 

s

 

 done by a pump or on a turbine. This leads to the so-called mechanical
energy balance, which from incompressible flow takes the form:

(3.4.60)

where 

 

∆

 

p now includes the effect of friction.
A number of points relevant to the use of Equation 3.4.60 are noted.
First, we encounter again the dilemma we had seen in connection with the drag

coefficient C

 

D

 

. With either one of v or d unknown, the Reynolds number and the
associated friction factor cannot be calculated. Hence, Equation 3.4.60 cannot be
applied to calculate required pressure drop or shaft work. The convenient upper and
lower bounds on d and v we had provided for falling particles (see Table 3.18)
cannot be duplicated easily here, and one must be resorted to a trial and error
procedure. For example, given the velocity v, one starts by assuming a diameter,
calculates the associated friction head h

 

f

 

, and compares the result with the diameter
obtained from the Fanning equation for a known flow rate Q. Thus,

 

FIGURE 3.14

 

Operating variables in the gravitational discharge of a liquid from a tank.
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(3.4.61)

and

(3.4.62)

As a guideline for these calculations, we have provided in Table 3.18, a listing
of typical velocity ranges for flow in steel pipes which eases the work considerably.

A second point that needs to be addressed is the friction loss due to fittings and
valves. These are expressed either as equivalent kinetic energy terms h

 

f

 

 = K 

 

·

 

 v

 

2

 

/2
or equivalent dimensionless pipe lengths L

 

f

 

/d. The two quantities are then added to
the kinetic energy or friction terms in the mechanical energy balance.

Representative values for K and L

 

f

 

/d are given in Table 3.19. It is evident that
the effects are not negligible, ranging from 0.1 m to 100 m and more in the case of
a ball valve. In intricate networks with many valves and fittings they can quickly
become the overriding factor in determining friction losses.

The final point to be considered concerns the friction losses in noncircular ducts
or conduits which are not running full. It is customary in these cases to introduce
an effective or hydraulic diameter d

 

h

 

 and use it in the calculation of Reynolds number
and friction losses. d

 

h

 

 is defined as follows:

(3.4.63)

 

TABLE 3.19
Friction Losses for Turbulent Flow Through 
Valves and Fittings

 

Type of Fittings/Valves Equivalent K Equivalent L

 

f

 

Elbow 90° 0.75 35
Tee 1.0 50
Gate valve

Wide open 0.17 9
Half open 4.5 225

Globe valve
Wide open 6.0 300
Half open 9.5 475

Ball valve 70 3500
Entrance 0.5 25
Exit 1.0 50
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The procedure works well for turbulent flow and for laminar flow in circular
pipes. For other geometries carrying laminar flow, deviations from the results
obtained using Equation 3.4.63 occur. The degree of deviation and the correction to
be applied can be deduced from Figure 3.15.

We conclude this section with a simple example demonstrating the use of the
mechanical energy — oil is to be pumped through a 10 cm diameter horizontal steel
pipe over a distance of 15 km and at a rate of 10

 

–3

 

 m

 

3

 

/s. The kinematic viscosity of
the oil is 

 

ν

 

 = 

 

µ

 

/

 

ρ

 

 = 10

 

–2

 

 m

 

2

 

/s, and its density 750 kg/m

 

3

 

. It is desired to calculate
the pressure drop and the required horsepower of the pump (1 hp = 0.746 kW).

We start by computing the Reynolds number to establish the flow regime. This
yields:

i.e., the flow is in the laminar regime.
Since both kinetic and potential energy changes are zero and there is no shaft

work in the control volume considered, the mechanical energy equation reduces to
the Fanning equation, so that:

where v = Q/A = 4 

 

×

 

 10–3/π 0.12 = 0.127 m/s. We obtain:

FIGURE 3.15 Correction factors to be applied to hydraulic diameter dh for calculation of
pressure drop in laminar duct flow. (F.M. White. Viscous Fluid Flow, McGraw-Hill, New
York, 1974. With permission.)
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The power required is obtained by multiplying the pressure drop by the volu-
metric flow rate so that:

P = 4.57 × 103 kPa × 10–3 m3/s = 4.57 kW = 6.13 hp

Hence, a 6.5 horsepower motor is required as a minimum to drive the pump,
not taking into account motor and pump efficiencies.

Illustration 3.4.9 Viscous Flow in a Parallel Plate Channel: 
Velocity Distribution and Flow Rate — Pressure Drop Relation

The forces operative in viscous or laminar flow can be defined with precision without
recourse to empirical friction factors. They are the forces due to the pressure drop
and that caused by the Newtonian shear stress (Equation 3.4.1).

We consider flow between two parallel plates held apart by two narrow vertical
walls of height T. Because of their small dimension compared to that of the plates,
frictional forces due to these walls are neglected. A force balance over a finite length
L of a slit of height 2x then leads to the expression:

(3.4.64)

where W = width of the channel and x = distance from the center plane.
Integration by separation of variables yields in the first instance:

(3.4.65)

where the integration constant  is obtained from the so-called no-slip

condition which states that the velocity at the wall, i.e., at x = T/2, is zero. The final
result is then given by:

(3.4.66)

This is a parabolic velocity distribution, symmetric about the center line, much
like the profile obtained in viscous flow through a circular pipe, with x replacing
radial distance r. The maximum velocity occurs at the centerline and is given by:
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(3.4.67)

To obtain a flow rate-pressure drop relation which is the quantity of greatest
interest in engineering calculations, the profile (Equation 3.4.66) is integrated over
the cross-sectional area of flow to yield:

(3.4.68)

It follows from this expression that the average velocity, equal to Q/TW, is given by:

(3.4.69)

Similar force balances can be performed for viscous flow in circular and annular
conduits. The results are, for convenience, summarized in Table 3.20. One notes
from these that in all cases pressure drop varies directly with flow rate Q, length of
conduit L, and viscosity µ, but is inversely proportional to the fourth power of a
linear dimension of the conduit or a combination thereof. For the circular pipe that
dimension is the diameter, D1; for the annulus, the outer diameter Do; and for the
parallel plate channel, a combination of channel height T and its width W.

We note that the force balances leading to these expressions are all of the one-
dimensional type and yield simple ODEs which can be integrated by separation of
variables. For flow in more complex geometries, such as rectangular, triangular, and
elliptical channels, force balances in more than one dimension have to be performed,
leading to PDEs. A discussion of these cases is taken up in Chapter 8.

Illustration 3.4.10 Non-Newtonian Fluids

Deviations from Newtonian behavior occur when the simple linear relation between
shear stress τ and shear rate dv/dx expressed by Equation 3.4.1 no longer holds.
Such non-Newtonian fluids are encountered with considerable frequency and include
polymer solutions, molten polymers, suspensions of solids in liquids, and such food
products as tomato paste, apple sauce, and honey. To accommodate such fluids,
Newton’s viscosity law has to be modified, usually to a nonlinear form, and this has
led to the formulation of a number of new shear stress-shear rate relation which we
summarize below:

Bingham Plastic Fluids — These are the simplest non-Newtonian fluids and
differ from linear Newtonian behavior only by the inclusion of a constant yield stress
term τo which is required to initiate flow.

Bingham Model:

(3.4.70)
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Examples of Bingham fluids are drilling muds, paper pulp, sewage sludge,
greases, toothpaste, and a variety of food products such as chocolate and margarine.

 

Power Law Fluids — 

 

These are fluids for which the shear rate dv/dx carries an
exponent n 

 

≠

 

 1. We distinguish two cases:

(a) Pseudoplastic fluids: Here n < 1 and we obtain the following expression, known
as the Ostwald-de Wael equation (Pseudoplastic or Ostwald-de Wael Model):

(3.4.71)

where K is the so-called consistency index in Ns
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/m

 

2

 

 and n the flow behavior
index which is dimensionless.
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Velocities and Flow Rates in Viscous Flow Through Various 
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(b) Dilatant fluids: These are less common than pseudoplastic fluids and
include wet sand and other suspensions containing a high concentration of
suspended particles. The power law takes the form (Dilatant Model):

(3.4.72)

A number of fluids show more complex behavior, they are briefly summarized
below.

Time-Dependent Fluids — These are fluids which exhibit a reversible change
with time of the shear stress at constant rate of shear. One again distinguishes two
cases:

(a) Thixotropic fluids: Here the shear stress undergoes a reversible decrease
with time. Examples include some polymer solution, paints, and some food
products.

(b) Rheopectic fluids: The reverse occurs here, i.e., shear stress increases with
time under conditions of constant shear rate. Examples include certain
suspensions and solutions.

Viscoelastic Fluids — These fluids experience elastic recovery from deformation
during flow, i.e., they show both viscous and elastic properties. Examples are bitu-
mens and certain polymer melts.

The coefficients K and n in power law fluids given under Power Law Fluids are
determined by viscometry and are reported in the following modified form:

(3.4.73)

or

γ = 8n–1 K′ (3.4.74)

where γ is often referred to as a generalized viscosity coefficient. Some typical values
of these coefficients are listed in Table 3.21.

To calculate friction factors f, one uses a modified Reynolds number defined as
follows:

(3.4.75)

That Reynolds number is then used to calculate fmod by the standard Newtonian
relations, e.g., fmod = 16/Remod for laminar flow, and the value thus found substituted
into the Fanning Equation 3.4.5 to obtain the pressure drop.
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Consider the case of a 25% clay suspension in water being pumped through a
pipe of inside diameter d = 0.1 m and length L = 1500 m with a velocity v = 0.1
m/s. It is desired to calculate the associated pressure drop. Flow parameters are taken
from Table 3.21 and density 

 

ρ

 

 = 1500 kg/m

 

3

 

. We obtain:

i.e., the flow is laminar. Substitution into the Fanning Equation 3.4.5 then yields:

 

Practice Problems

 

3.4.1 Force on a Submerged Hinged Gate — 

 

A hinged submerged rectangular
steel gate 1 m long 

 

×

 

 0.5 m wide separates a water reservoir from an underground
cavern connected to the atmosphere. The gate is inclined by 30° to the horizontal
water surface, located 10 m above the upper edge of the gate. Calculate the total
force required to lift the gate.

 

Answer:

 

 5.03 

 

×

 

 10

 

4

 

 N

 

3.4.2 The Barbecue Propane Cylinder — 

 

Propane cylinders contain the gas in
liquified form, hence are subject to a much lower internal pressure which is the
vapor pressure of liquid propane (approximately 0.96 MPa at 25°C). As a conse-
quence, propane cylinders have a characteristically wider diameter, 0.3 to 0.4 m than
those of compressed permanent gases. For a propane cylinder with a diameter d =
0.3 m, calculate the minimum wall thickness 

 

∆

 

d.

 

Answer:

 

 0.64 mm

 

TABLE 3.21
Flow Parameters of Power Law Fluids

 

Fluid n

 

Paper pulp in water (40%) 0.58 9.1
Clay in water (25%) 0.19 0.30
Napalm in kerosene (10%) 0.52 1.8
Applesauce 0.65 0.5
Honey 1.0 5.6
Cream 1.0 0.014

′
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Comment:
In actual practice, a wall thickness of about 3.6 mm is used, i.e., larger by a

factor of more than 6. This is done to impart greater structural strength to the vessel
as well as to guard against vapor pressure increases caused by a rise in temperature.

3.4.3 Power Required to Form a Water Spray — 0.1 kg/s of water is to be passed
through a perforated nozzle to produce a spray with drop diameter d = 1 mm.
Calculate the power requirement and the upstream water pressure needed.

(Hint: Recall that the energy needed to form or destroy a surface is given by the
product of surface tension and area.)

Answer: 4.4 × 10–2 J/s, 440 Pa above atmosphere

3.4.4 Hypsometric Formula Revisited — (a) Derive a hypsometric formula based
on the assumption that the adiabatic relation (Equation 3.3.73) applies. (b) Compare
the result with that obtained by Equation 3.4.30 for an altitude of 3000 m. Use the
value γ = 1.4 for air.

Answer: (a) 

3.4.5 Forces Acting on a Moving Turbine Blade — Consider the case of a jet,
velocity vj, impinging on a blade moving with the velocity vv. Assume that the entire
flow rate Q is deflected by the vane.

(a) Derive expressions for the horizontal and vertical force components.
(b) Show that the optimum blade velocity leading to maximum power output

of the turbine equals one half the jet velocity.

3.4.6 Jet Velocity of a Rocket Motor — Consider a rocket motor with an exit cross-
sectional area of 1 m2 and a discharge temperature of 2000°K. Assume an average
molar mass of the exiting gas of 25.

(a) What must the jet velocity be if the pay load per rocket motor is 10,000 kg?
(b) What information is needed to calculate the rate at which a liquid fuel

using liquid O2 as oxidant is consumed to produce the desired velocity?

Answer: (a) 810 m/s

3.4.7 Solids Removal in a Settling Tank — An aqueous suspension of spherical
particles of density ρ = 2000 kg/m3 and ranging in size from 0.05 to 5 mm is fed
into a settling tank which is filled to a height of 10 m. Calculate the minimum time
required for all particles to settle.

(Hint: Consult Tables 3.14 and 3.17.)
Answer: 7350 s

Comment:
We speak of minimum time since the later stages of the process involve so-

called hindered settling during which the particle velocity will be considerably less
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than the free-fall terminal velocity. In the laminar region, for example, the terminal
velocity becomes, after empirical correction to account for hindered settling:

(3.4.76)

where 

 

ε

 

 = void fraction of the slurry. Since 

 

ε

 

 varies with time, a steady terminal
velocity is never attained and the calculations become correspondingly more complex.

 

3.4.8 Fluidization of a Catalyst Particle — 

 

Catalyst particles of density 

 

ρ

 

p

 

 = 2000
kg/m

 

3

 

 and diameter d = 0.03 mm are to be fluidized, i.e., suspended in a gas stream
of viscosity 

 

µ

 

 = 2 

 

×

 

 10

 

–5

 

 Pas and density 1.3 kg/m

 

3

 

. Calculate the minimum gas
velocity required to achieve this.

 

Answer:

 

 0.049 m/s

 

3.4.9 Pumping of a Solvent: Vapor Lock — 

 

Calculate the maximum height to
which a liquid solvent can be pumped without forming a vapor lock. Data: vapor
pressure at 25°C, 400 mmHg, density 

 

ρ

 

 = 730 kg/m

 

3

 

.

 

Answer: 

 

6.7 m

 

Comment:

 

We speak of 

 

maximum

 

 height since frictional pressure losses will further reduce
the allowable height. Refine your calculations by taking this into account using the
following data: diameter d = 5 cm, flow rate Q = 10

 

–3

 

 m

 

3

 

/s, viscosity 

 

µ

 

 = 0.5 mPas.

 

3.4.10 Design of a Venturi Meter — 

 

Air fed to a small packed gas scrubber at
25°C and 1 atm is to be metered through a Venturi meter. In such meters, the upstream
pipe diameter is gradually and linearly tapered down to a constriction diameter of
d

 

c

 

, and just as gradually and smoothly enlarged again to its original value. The
pressure difference between an upstream location and the constriction serves as a
measure for the flow rate (Equation 3.4.58).

Flow rates are expected to be in the range 10

 

–3

 

 – 10

 

–1

 

 kg/s. The supply line is
made of 5.3 cm I.D. PVC pipe (nominal 2 in.). Pressure drop is to be measured by
means of a U-tube water manometer which should yield “acceptable” readings of 5
and 50 cm water for the extreme values of flow rates.

(a) Show that this expression yields constriction diameters d

 

c

 

 of 1.9 cm for
the lowest flow rate and 3.3 cm for the high end of the range.

(b) Choose a compromise diameter of 2.5 cm and show that the use of two
manometers, one inclined and one vertical, would give acceptable readings
over the stipulated flow rate range.

 

3.4.11 Pumping Costs — 

 

Water is to be pumped from one reservoir to another, the
vertical distance between their surfaces, open to the atmosphere, being 100 m. A
pipe 400 m long and with inside diameter of 0.3 m is to carry the flow at the rate
of 0.1 m

 

3

 

/s. Friction losses include those due to four elbows, a half-open gate valve,
and entrance as well as exit losses. The friction factor for the pipe in question is f
= 0.02. Calculate the pumping cost per 1000 m

 

3

 

 water, if the cost of 1 kW hr is $0.03.

 

Answer: 

 

8.9 cents

v
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3.4.12 Viscous Flow in an Annulus — Derive the velocity profile and the flow
rate–pressure drop relation for Newtonian flow in an annulus given in Table 3.20.

3.4.13 Flow Rate–Pressure Drop Relation for a Bingham Fluid — Derive the Q
– ∆p relation for the flow of a Bingham fluid through a circular pipe.

Answer: 

3.5 COMBINED MASS AND ENERGY BALANCES

Whenever an operation involving a change in mass takes place under nonisothermal
conditions, an energy balance will in general have to be invoked as well. Simulta-
neous mass and energy balances, thus, will be required in cases where the heat of
reaction is significant, or heats of solution play a role in operations involving phase
changes, principally vaporization, condensation, freezing, and melting and, in gen-
eral, in any process in which the temperature variable is linked to a mass balance.
When the mass and energy balances are not coupled, they can be solved indepen-
dently by the methods described in the preceding two sections.

The pertinent flux equations and transport coefficients having been discussed in
Section 3.3 and 3.4, we can in principle proceed with our illustrations. It must be
kept in mind, however, that temperature may affect transport coefficients and on rare
occasions may affect the flux equations as well. The latter is the case for example
in thermal diffusion, in which mass transport affects the energy flux equations. This
will be dealt with when required, but in general we will confine ourselves to cases
where the relations given in the preceding two sections apply directly.

We start by revisiting the three classical cases considered in Section 3.3 on
mass balances, i.e., the CSTR, the tubular reactor, and the catalyst pellet, and extend
the models to nonisothermal processes. We examine humidification, dehumidifica-
tion, and water cooling as well as the important concept of the wet-bulb temperature
that is based on simultaneous mass and energy balances. Several additional topics
are also addressed. As usual, the practice problems provide further examples of
interest.

Illustration 3.5.1 Nonisothermal CSTR with Second Order 
Homogeneous Reaction A + B →→→→ P

This is the same reactor that was considered under isothermal conditions in Illus-
tration 3.2.3 We repeat the relevant mass balance in terms of conversion X for
completeness, noting that kr is now a function of temperature.

(3.2.33)

To this is now added an energy balance which is derived in the usual fashion:

Q
pd

L
do= −π

µ
πτ

µ
∆ 4

3

128 24

− − + =k T C C X C X
dX
dtr Af Bf Af( ) ( )τ τ1 2
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(3.5.1)

where q is the rate of heat transfer due to heating or cooling and Hf – H comprises
the sensible heat change as well as the heat of reaction ∆Hr. Introducing the relevant
auxiliary relation we obtain the following relation:

(3.5.2)

We note that ∆Hr takes a negative sign for exothermic reactions so that the
reaction term represents energy input to the tank contents. The heat transfer term
will be negative for cooling (i.e., for exothermic reactions) and positive for heating
(endothermic reaction).

In terms of conversion X, we obtain:

(3.5.3)

Equations 3.2.32 and 3.5.3 are two coupled ODEs in temperature T and conversion
X which are not easily uncoupled and must in general be solved numerically.
Temperature dependence of kr is given by the usual Arrhenius expression:

kr(T) = Ar exp (–Ea/RT) (3.5.4)

where Ea = activation energy and Ar is the so-called pre-exponential factor.

Illustration 3.5.2 Nonisothermal Tubular Reactors:
The Adiabatic Case

We revisit here the tubular plug or piston flow reactor which was considered under
isothermal conditions and for a first order reaction in Illustration 3.2.4. We shall
assume constant physical properties, i.e, a constant or average density and heat
capacity and, hence, constant flow velocity.

We start by generalizing the mass balance by applying it to an arbitrary reaction
rate r. The previous mass balance (Equation 3.2.34) then becomes:

Rate of energy in Rate of energy out Rate of change of
energy contents

H H q
d
dt

Hf

− =

− ± =( ) ( )

Q C T T

Sensible heat

k T C C V H

Heat of reaction

UA T T

Heat transfer

V C
dT
dt

Sensible heat change

p f r A B r

e
p

ρ

ρ

( )   [ ( ) ]( )( )

( )    

− −

± − =

∆

Q C T T k T C C X V H UA T T V C
dT
dtp f r Af Bf r ext pρ ρ( ) ( ) ( ) ( )− − − ± − =1 2 ∆
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Mass balance:

(3.5.5)

where i denotes the species reacted or produced.
The energy balance, which complements Equation 3.5.5 is derived as follows:

(3.5.6)

where the difference in enthalpies is composed of a sensible heat term

 and a heat of reaction term  The heat

transfer term is expressed as usual in the form ±UπD∆z (Text – T)avg. Upon dividing
by ∆z and going to the limit one obtains:

(3.5.7)

where the negative signs refer to an endothermic reaction and the positive signs to
an exothermic one.

Equations 3.5.5 and 3.5.7 represent the working model equations for noniso-
thermal tubular reactors. More refined models that account for variations in density
and velocity as well as temperature and pressure are taken up in the next section
(Illustration 3.6.8). These equations in temperature and concentrations are coupled
and nonlinear, and are generally solved by means of standard ODE packages. For
q = 0 (adiabatic operation), certain simplifications arise which are taken up below.

The Adiabatic Case — We aim here, in the first instance, to establish a relation
between the dependent variables T and Ci. To do this, we resort to our old trick of
eliminating the independent variable by dividing the two ODEs, (Equations 3.5.5
and 3.5.7), and obtain, after omission of the heat transfer term,

(3.5.8)

or upon integration,

(3.5.9)

where the subscript f denotes inlet or feed conditions. This relation reveals that in
an adiabatic reactor, concentrations, and conversions vary linearly with temperature.
It carries the added advantage that upon substitution into Equation 3.5.5 a set of i

ν
dC

dz
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independent ODEs is obtained. For example for a reaction which is first order in
CA, and endothermic, Equation 3.5.5 becomes:

(3.5.10)

where Ar is the usual Arrhenius pre-exponential factor, Ea the activation energy,
and X the conversion. The equation can be formally integrated by separation of
variables. Thus, the solution of this particularly simple case consists of the evalu-
ation of a single integral in place of the integration of a set of i coupled and generally
nonlinear ODEs.

Illustration 3.5.3 Heat Effects in a Catalyst Pellet:
Maximum Pellet Temperature

In our previous Illustration 3.2.5, dealing with isothermal diffusion and reaction in
a spherical pellet, we had considered the model that yields the concentration profile
of a reactant within the catalyst particle. This primary information was then converted
by integration over the pellet into the so-called catalyst effectiveness factor Ei, which
is a measure of the diffusional resistance within the pellet. Such isothermal effec-
tiveness factors apply to small particles of high thermal conductivity and a relatively
low rate of conversion.

In general, the heat of reaction which is of the order of ± 100 kJ/mol or more,
cannot be ignored and the mass balance must then be complemented by an appro-
priate shell energy balance. That balance has to consider heat conducted into and
out of the shell in the radial direction, as well as heat generated or consumed within
the shell itself.

We assume the same spherical geometry and first order reaction as before and
consider the reaction to be exothermic which is the more common case. The fol-
lowing formulation is then obtained:

(3.5.11)

Dividing by 4π∆r and letting ∆r → 0, noting as we do so that both the area term
4πr2 and the temperature derivative have to be differentiated, we obtain, after can-
cellation of terms and rearrangement,

(3.5.12)

where kr = rate constant, keff = effective thermal conductivity.
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This expression is supplemented by the mass balance given previously in Section
3.2 in which the rate constant kr is now a function of temperature.

(3.2.41)

The two equations which are coupled by the two state variables, CA and T,
generally have to be solved numerically. The resulting concentration profile CA =
f(r) can then be integrated over the pellet volume as was done in the isothermal case
to obtain the nonisothermal effectiveness factor Eni.

(3.5.13)

Here the reference state is taken to be the surface concentration CAs and surface
temperature Ts, i.e., the conditions which would prevail in the absence of transport
resistances.

A plot of Eni vs. the Thiele modulus [kr(Ts)R2/Deff]1/2 is shown in Figure 3.16
where the rate constant kr is evaluated at the surface temperature Ts. Two thermal

FIGURE 3.16 Plot of the nonisothermal effectiveness factor Eni as a function of the Thiele
modulus. Jump changes in Eni occur at T and T1 and hysteresis effect results. (P.B. Weisz and
J.S. Hicks. Chem. Eng. Sci., 17:265, 1962. With permission.)

d C
dr r

dC
dr

k T C Dr A eff

2

2

2
0+ − =( ) /

E
k T C r dV

k T C Vni

r A p

R

r s As p

=
∫ ( ) ( )

( )
0

248/ch03/frame  Page 146  Friday, June 15, 2001  6:56 AM

© 1999 By CRC Press LLC



parameters make their appearance, the Arrhenius number Ea/RTs and the dimension-

less heat of reaction parameter  For β = 0, i.e., infinite thermal

conductivity, keff → ∞, the effectiveness factor reduces to that of the isothermal case.
β > 0 denotes exothermic reactions and here the rise in temperature in the interior
of the pellet is seen to have a significant impact on Eni which may rise above unity
and reach values as high as 100 or more. This is evidently due to the strong
exponential dependence of reaction rate on temperature occasioned by the Arrhenius
relation. As expected, the effect varies directly with the heat generated (∆Hr) and
inversely with the rate of heat removal (keff). Thus, exothermicity, far from being
undesirable, has a beneficial effect on catalytic conversion. One has to guard, how-
ever, against an excessive rise in temperature which might adversely affect catalyst
structure, causing a decrease or even cessation of catalytic activity. Sintering of a
metallic catalyst is an example of what should be avoided.

For endothermic reactions, β < 0 applies, ∆Hr now being positive, and a drop
in Eni occurs to values below those seen in the isothermal case.

So far in our model, no consideration was given to the external film resistance
which may become a significant factor in controlling the rate of heat removal of
exothermic reactions. In fact, it has been found that in gas–solid systems, and if the
reaction is fast enough, temperature gradients will occur primarily in the gas film.
As heat effects become progressively more dominant, the following changes in
mechanism occur.

1. When the reaction is very slow, the pellet acts as a stirred tank, i.e., both
temperature and concentrations are uniform within the particle.

2. For moderate reaction rates, temperature gradients make their first appear-
ance but are still small enough to justify the use of the isothermal Ei.

3. For higher reaction rates, transport resistance within the particle becomes
more important and a good deal of the reaction takes place in a thin shell
near the surface of the particle. The nonisothermal effectiveness factor Eni

now applies.
4. Finally, when the reaction is very fast, reactants are practically consumed

at the hot pellet surface and mass transfer through the gas film becomes
the controlling factor.

An additional important point needs to be noted in nonisothermal systems. As
can be seen from the effectiveness plots, Figures 3.4 and 3.16, the isothermal factor
Ei yields a single-valued function which rises smoothly to Ei = 1 as the Thiele
modulus is decreased. Eni is single-valued at high values of the modulus, but as the
latter is reduced and Eni rises above unity, a point is reached where Eni becomes
multivalued. Three steady-states are obtained of which only the upper and lower
ones are stable. This results in a hysteresis effect which is sketched in Figure 3.16.
As the modulus is decreased, Eni first rises to a maximum value M, then begins to
decline until the tangent point T is reached. Here the effectiveness factor undergoes

β =
−∆H D

k T
r eff

eff s

.
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a sudden jump decrease to the lower value L. Beyond that point, Eni continues a
smooth decline with decreasing modulus values toward the limiting value of unit.
A similar jump increase in Eni to a value H occurs at the tangent point T′ as one
moves in the opposite direction of increasing modulus values. The temperature
associated with T′ is sometimes referred to as the ignition temperature. Similar
multiplicities and jump discontinuities have been observed in other nonisothermal
systems, including exothermic reactions in CSTRs (see Practice Problem 3.5.3). A
more detailed discussion of this type of behavior is in Chapter 4, Section 4.5.

Maximum Temperature — The possible effect of temperature on catalyst activity
and structure make it desirable to have an estimate of its maximum possible value.
That temperature will, for symmetry reasons, be located at the center of the sphere
and can in principle be deduced from Equations 3.2.41 and 3.5.12. A more convenient
way is to proceed as follows. One performs integral mass and energy balances over
the entire pellet, taking account of the fact that whatever mass and energy enters or
leaves through a spherical surface must be balanced by consumption of reactant or
the total production of heat in the interior. We obtain the following two formulations:

(3.5.14)

and

(3.5.15)

Division of the two equations eliminates the (unknown) integral and the inde-
pendent variable dr yielding:

(3.5.16)

Note that the expression holds for arbitrary reaction rates rA.
Integrating from pellet center (c) to its surface (s), one obtains:

(3.5.17)

where Tc = Tmax and corresponds to a concentration at the center of CAc = Cmin. That
minimum concentration is not known a priori but would at worst be zero. The
highest possible temperature in the pellet would then be (∆Ηr < 0):
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(3.5.18)

Comments:
One notes that use was again made of one of our favorite “tricks” (a perfectly

legitimate one) of eliminating unwanted or unknown quantities by division of the
model equations. The procedure was previously seen in modeling the countercurrent
shell-and-tube heat exchanger and was suggested as a solution method in Practice
Problem 2.3 dealing with Rayleigh distillation.

The question arises as to what countermeasures could be taken if Tmax turns out
to exceed permissible limits. ∆Hr itself is a given which cannot be altered, but both
Deff and keff can be modified in the right direction by decreasing porosity; in other
words, compacting the pellet. Diffusivity would then decrease and thermal conduc-
tivity keff increase, while concentration CAc would likely become a non-zero quantity.
Alternatively, keff could be increased and Tmax decreased by choosing a catalyst
support of higher conductivity. Considerable latitude is available to counter unde-
sirable temperature effects.

Illustration 3.5.4 The Wet-Bulb Temperature

When a flowing gas comes in contact with a liquid surface, evaporation takes place
from the liquid to the gas stream. Let us assume that both are at the same temperature
at the start. Initially the energy required for the evaporation process, i.e., the latent
heat ∆Hv, comes from the liquid itself which consequently experiences a drop in
temperature. That drop, once triggered, causes a corresponding amount of heat
transfer to take place from the gas to the liquid. At this intermediate stage, the latent
heat of vaporization is provided both by the liquid itself, as well as by heat transfer
from the warmer gas. As the liquid temperature continues to drop, the rate of heat
transfer increases until a stage is reached where the entire energy load is supplied
by the gas itself. A steady-state is attained in which the rate of evaporation is exactly
balanced by the rate at which heat is transferred from the gas to the liquid. The liquid
is then said to be at its wet-bulb temperature, Twb, as shown in Figure 3.17. The
corresponding air temperature is referred to as the dry-bulb temperature, Tdb. The
wet-bulb temperature and it associated saturation humidity Ywb = Y* plays an impor-
tant role in humidification and dehumidification operations, to be taken up below, in
air conditioning, water cooling operations, and in drying processes (see Illustration
2.5). The relation between Twb, Ywb, and the system parameters is established by
equating the rate of heat transfer from air (Tdb, Ydb) to water, to the rate of evaporation,
i.e., the rate at which moisture is transferred from the water surface to the air. Thus,

(3.5.19)

where Y = absolute humidity (kg moisture/kg dry air) and kY is the associated mass
transfer coefficient in units of (kg/m2s∆Y). (See, in this connection, Table 3.6.)

T T
D H

k
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eff r
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Cancelling terms and rearranging we obtain:

(3.5.20)

where the term (Tdb – Twb) is referred as the wet-bulb depression.

Comments:
One notes from Equation 3.5.20 that the humidity of the air Ydb can, in principle,

be established from measured values of Tdb, Twb, and Ywb, the latter being obtained
from the relation:

(3.5.21)

where  = partial pressure of water, and M = molar mass. Tdb is measured by
exposing a dry thermometer to the flowing air, while Twb is obtained in similar
fashion using a thermometer covered with a moist wick or cloth.

The temperature and concentration changes which arise in air–water contact,
and indeed the air–water system itself, are of such importance in the physical
sciences that they have led to the construction of so-called Psychrometric or Humid-
ity Charts. These charts summarize in convenient fashion the thermal and concen-
tration variables relevant to operations involving the air–water system. Among other
things, they allow the calculation of air humidity Y from measured values of the
wet and dry-bulb temepratures Twb and Tdb.

FIGURE 3.17 Temperature and partial pressure distributions around a liquid droplet
exposed to a flowing gas stream.
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Illustration 3.5.5 Humidity Charts: The Psychrometric Ratio

 

We start by defining and deriving a set of variables which appear implicitly or in
explicit form in the Humidity Charts, shown in Figures 3.18 and 3.19.

 

Absolute Humidity Y — 

 

This quantity was already referred to in connection with
the wet-bulb temperature and is redefined here for convenience:

(3.5.22)

Y appears as the right-hand side ordinate in the humidity charts.

 

Relative Humidity RH — 

 

To obtain a sense of the relative degree of saturation
of the air, one defines:

(3.5.23)

where the pressure ratio in effect expresses the fractional water content of the air,
ranging from 0% (dry air) to 100% (fully saturated air). RH appears in the humidity
charts as a set of parametric curves which rise smoothly from left to right.

 

Percentage Humidity PH — 

 

The relative degree of saturation also can be
expressed in terms of a ratio of absolute humidities rather than partial pressures.
Thus,

(3.5.24)

Some humidity charts use this quantity rather than the relative humidity RH to
express the relative saturation of the air.

 

Dew Point T

 

dp

 

 — 

 

This is the temperature at which an air–water mixture, cooled
at constant total pressure P

 

Tot

 

 and absolute humidity Y, becomes saturated, i.e., attains
a relative humidity of 100%. Its value is established by moving from the initial
defining point of a given air–water mixture on the humidity chart along a 

 

horizontal

 

line to the eventual intersection with the curve of 100% relative humidity.

 

Humid Volume V

 

H

 

 — 

 

The humid volume of an air–water mixture is the volume
in cubic meters per kilogram of dry air measured at P

 

Tot

 

 = 101.3 kPa (1 atm) and
the temperature T of the mixture. Its value is established via the ideal gas laws which
yield the following expressions:

or
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FIGURE 3.18

 

Psychrometric or humidity chart for air–water. Total pressure = 1 atm, reference temperature 0°C, 
low temperature range. (Courtesy of  the Carrier Corporation. With permission.)
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FIGURE 3.19

 

Psychrometric or humidity chart for air–water. Total pressure 1 atm, reference temperature 
0°C, high temperature range. (Courtesy of the Carrier Corporation. With permission.)
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V

 

H

 

 = (2.83 

 

×

 

 10

 

–3

 

 + 4.56 

 

×

 

 10

 

–3

 

 Y) T(K) (3.5.25)

Values of V

 

H

 

 appear in the humidity charts as a set of lines of negative slope.
Alternatively they can be calculated from Equation 3.5.25.

 

Humid Heat C

 

s

 

 — 

 

This quantity represents the heat required to raise the tem-
perature of 1 kg of dry air and the associated water vapor it contains by 1°. The
heat capacities of water and air can be assumed constant and are set at 1.88 kJ/kg
water vapor and 1.0005 kJ/kg dry air. One obtains:

C

 

s

 

 (kJ/kg dry air) = 1.0005 + 1.88 Y (3.5.26)

Humid heat does not usually appear explicitly in the humidity charts but is
contained in the enthalpies shown there.

 

Enthalpy H — 

 

With the humid heat C

 

s

 

 in hand, we are in a position to formulate
the enthalpy of an air–water system. With T

 

0

 

 chosen as the datum temperature for
both components and adding sensible heat of the air–water mixture to the latent heat
of evaporation of water 

 

∆

 

H

 

v
0

 

 at T

 

0

 

, we obtain:

or

H = (1.0005 + 1.88 Y)(T – T

 

0

 

) + Y 

 

∆

 

H

 

v
0

 

(3.5.27)

where the datum temperature T

 

0

 

 is usually set equal to 0°C for both liquid water
and dry air. Values of the enthalpies of various air–water mixtures are read from the
left hand oblique ordinates. Note that H increases with increasing temperature as
well as with increasing humidity.

 

Adiabatic Saturation Temperature T

 

as

 

 — 

 

This special temperature arises when a
flowing stream of air is humidified in contact with constantly recirculated water (see
Figure 3.20). Both the recirculated water and the exiting gas stream attain the so-
called adiabatic saturation temperature T

 

as

 

 which is lower than the “dry-bulb” tem-
perature of the entering air stream because of the evaporative cooling. If care is

 

FIGURE 3.20

 

Flowsheet describing the attainment of the adiabatic saturation temperature
T

 

as

 

.

H kJ kg dry air C T T
Sensible Heat

Y H
Latent Heat

s v( / ) ( )= − +
0 0∆
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taken to introduce the make-up water at the same adiabatic saturation temperature
and the datum temperature is set at T

 

as

 

, a simple energy balance will yield:

(3.5.28)

which upon rearrangement leads to the expression:

(3.5.29)

Plots of this equation appear in the humidity charts as lines of negative slope
extending from the abscissa to the 100% relative humidity curve. The lines are
slightly curved due to the dependence of C

 

s

 

 on Y

 

db

 

.

 

The Psychrometric Ratio and the Lewis Relation — 

 

The striking similarity
between the adiabatic saturation and wet-bulb relations, Equations 3.5.29 and
3.5.20, led to a detailed examination of the ratio of the slopes of the two relations,
h/k

 

Y

 

C

 

s

 

, also known as the Psychrometric Ratio. These studies culminated in the
finding that for the water–air system, and 

 

only for that system

 

, its value is approx-
imately unity. Thus,

Psychrometric Ratio h/k

 

Y

 

C

 

s

 

 

 

≈

 

 1 (3.5.30)

This expression, now known as the

 

 Lewis relation

 

 leads to the conclusion that
the adiabatic saturation and wet-bulb temperatures are essentially identical. It has
other important implications as well, as will be shown in Illustration 3.5.6. The
values read at the intersection of adiabatic saturation and 100% relative humidity
curves are thus both wet-bulb and adiabatic saturation temperatures. These can in
turn be used as model variables in such diverse processes as wet-bulb thermometry,
adiabatic humidification and cooling, as well as in the drying of solids (see Illus-
tration 2.7).

Let us illustrate the various uses to which the humidity charts may be put with
a concrete example. We choose a water–air mixture of 25% relative humidity, 1 atm
total pressure, and a temperature of 50°C (dry bulb), and proceed to calculate various
properties of interest using the chart shown in Figure 3.19.

(a) Absolute humidity: This value is read from the right-side rectangular ordinate
and yields:

Y = 0.0195 kg H

 

2

 

O/kg dry air

(b) Dew point: One follows the horizontal line through the point Y = 0.0195
and T

 

db

 

 = 50°C to its intersection with the 100% relative humidity curve and obtains:

T

 

dp

 

 = 24.5°C

Rate of energy in Rate of energy out
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This corresponds to the temperature at which, upon isobaric cooling of the
mixture, the first condensation of water occurs.

(c) Wet-bulb temperature: Here the procedure is to follow the adiabatic saturation
line to its intersection with the 100% relative humidity curve. One obtains:

T

 

wb

 

 = 30.4°C

Note that the wet-bulb temperature is not identical to the dew point.
(d) Water partial pressure: This quantity can be obtained directly from the

absolute humidity and the Relation 3.5.20. Solving it for  yields:

(e) Water vapor pressures: Here the relative humidity RH is used in conjunction
with the value of  just calculated to obtain:

The humidity chart allows us to dispense with the usual tabulations of water
vapor pressures.

(f) Humid volume: The plots for V

 

H

 

 are shown as steep lines of negative slope.
The point Y = 0.0195 and T

 

db

 

 = 50°C is located between the lines for V

 

H

 

 = 0.90
and 0.95. Linear interpolation of the two values yields:

V

 

H

 

 = 0.945 m

 

3

 

/kg dry gas

(g) Enthalpy: This value is read from the oblique left-hand ordinate of the
humidity chart and comes to

H = 103 kJ/kg dry air

(h) Water removal load: Suppose the air mixture considered here is to be cooled
and dehumidified to T

 

db

 

 = 15°C and relative humidity RH = 20%. The water to be
removed can then be calculated as follows.

Initial absolute humidity Y

 

i

 

 = 0.0195 kg H

 

2

 

O/kg dry air
Final absolute humidity Y

 

f

 

 = 0.0021
(Figure 3.18)
Water to be removed Y

 

i

 

 – Y

 

f

 

 = 0.0195 – 0.0021 = 0.0174 kg H

 

2

 

O/kg dry
air

Alternatively, the result may be expressed in terms of volumetric units by
dividing it by the humid volume of the original mixture: water to be removed = (Y

 

i

 

– Y

 

f

 

)/V

 

H

 

 = 0.0174/0.945 = 0.0184 kg/m

 

3

 

 initial mixture.
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(i) Water removal heat load: In addition to the amount of water to be removed,
an important parameter in the design of a dehumidification unit is the associated
heat load. That quantity is computed from the relevant enthalpies read from the
humidity charts.

Initial enthalpy H

 

i

 

 = 103 kJ/kg dry air
Final enthalpy (Figure 3.19) H

 

f

 

 = 20.3 kJ/kg dry air
Heat load H

 

i

 

 – H

 

f

 

 = 103 – 20.3 = 82.7 kJ/kg dry
air

(Alternatively, using volumetric units)
Heat load (H

 

i

 

 – H

 

f

 

)/V

 

H

 

 = 82.7/0.945 = 87.5
kJ/m

 

3

 

 initial mixture

 

Illustration 3.5.6 Operation of a Water Cooling Tower

 

Process water that has been used in a plant for cooling purposes is generally cycled
through a cooling tower where it is contacted in countercurrent flow with air and
undergoes evaporative cooling. After the addition of make-up water it is returned to
the plant for reuse. Such cooling towers usually contain stacked packings of large
size and voidage to minimize pressure drop. They are employed, among other
installations, in nuclear power generating plants where they are conspicuous by
virtue of their large size and parabolic shape.

As in all packed column operations, the fundamental model equations consist
of differential balances over each phase; the principal difference here being the use
of both mass and energy balances. The pertinent variables and the differential
elements around which the balances are taken are displayed in Figure 3.21A.

 

Water Balance Over Gas Phase (kgH

 

2

 

O/m

 

2

 

s) — 

 

This balance is no different
from similar mass balances used for packed absorption and distillation columns (see
Illustrations 2.3 and 3.2.8) and takes the form:

(3.5.31)

which upon introduction of the auxiliary mass transfer rate equations, division by

 

∆

 

z and letting 

 

∆

 

z 

 

→

 

 0 yields the usual form of ODE applicable to these cases:

(3.5.32)

where Y* – Y is the absolute humidity driving force.

 

Water Balance over Water Phase — 

 

This balance is omitted since the water
losses are usually less than 1% so that L = L

 

s

 

 

 

≈

 

 constant.

 

Gas Phase Energy Balance (kJ/m

 

2

 

s) — 

 

Here we must be careful to include both
sensible heat transfer as well as the latent heat brought into the air by the water
vapor. We obtain:

Rate of water vapor in Rate of water vapor out

G Y G Y Ns z s z z avg
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− + =+
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G
dY
dz
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(3.5.33)

which after applying the same procedure used in “Water Balance Over Gas Phase”
yields:

(3.5.34)

Here T

 

L

 

 and T

 

G

 

 are the water and air temperatures respectively and H = enthalpy
of the water–air mixture. We note that the sensible heat transfer Ua(T

 

L

 

 – T

 

G

 

) equals
the corresponding sensible heat term in Equation 3.5.27.

 

Liquid Phase Energy Balance (kJ/m

 

2

 

s) — 

 

A completely analogous derivation to
the gas phase balance yields:

 

FIGURE 3.21

 

Variables and operating diagram for a packed water cooling tower.
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(3.5.35)

The model is completed by adding the relevant equilibrium expression which
can be read from the 100% relative humidity curves of the Psychrometric Charts
and also is available in analytical form.

Equilibrium Relation — 

Y* = f(T

 

L

 

) (3.5.36)

Equations 3.5.32 and 3.5.34 to 36, together with the previously given expression
for H, Equation 3.5.27, constitute a set of five equations in the five state variables
Y, Y*, T

 

G

 

, T

 

L

 

, and H.
Although a numerical solution of these equations is nowadays easily imple-

mented, early workers in the field were constrained to cast about for alternative ways
of solving the model. To do this, they used the ingenious device of introducing the
Lewis relation into the gas phase balance, Equation 3.5.34, which has the effect of
combining T

 

G

 

 and Y into a single variable, the gas phase enthalpy H. We sketch the
procedure below, using 

 

interfacial

 

 values in place of Y* and T

 

L

 

 to accommodate the
film coefficients h and k

 

Y

 

 used in the Lewis relation. We obtain, in the first instance,

(3.5.37)

where it is seen from Equation 3.5.27 that the bracketed terms ( ) represent enthalpies
of water–air mixtures. We, therefore, can write:

(3.5.38)

where H

 

i

 

 – H can be considered an enthalpy driving force which replaces the previous
temperature and humidity driving forces.

We can now argue that the Two-Film Theory applies to this system as well and
that Equation 3.5.38 can be cast in the form:

(3.5.39)

where K

 

Y

 

 is now the overall mass transfer coefficient and H* the gas enthalpy in
equilibrium with the bulk water temperature T

 

L

 

.
This equation is of the same form as the gas phase differential balances encoun-

tered in absorption and distillation (Equations 2.20 and 3.2.53) so that the graphical
design procedures used there can be replicated (Figure 2.3), provided an appropriate
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operating line can be constructed. That line is obtained from an overall two-phase
integral heat balance and takes the form:

Gs (H1 – H) = LsCL (TL1 – TL) (3.5.40)

and in its overall version

Gs (H1 – H2) = LsCL (TL1 – TL2) (3.5.41)

The gas phase balance (Equation 3.5.39) can in turn be formally integrated to
yield the familiar HTU-NTU relation:

(3.5.42)

The model is then completed with the addition of the equilibrium relation:

H* = f(TL) (3.5.43)

The original set of five equations, three of which were ODEs, have thus been
reduced to the three relations (Equations 3.5.40, 3.5.42, and 3.5.43). What is more,
it has been cast into the familiar form of an HTU-NTU relation, joined to an operating
line and equilibrium relation. The graphical procedure used to solve this set is
outlined in Figure 3.21 and follows the usual route of drawing an operating line of
slope LCL/Gs through the point (H1, TL1) and evaluating the NTU integral using the
enthalpy driving force H* – H read from the graph. Note that it is now GMin, not
LMin which corresponds to an infinitely high tower.

The equilibrium relation H* = f(TL) is constructed from the 100% relative
humidity curve of the Psychrometric Charts, where H* values are established on the
oblique left-hand side ordinate and TL takes the place of the dry-bulb temperature
of the abscissa.

We note that the procedure is primarily used for design purposes or for the
estimation of the parameter Kya from experimental (H, TL) data given by the oper-
ating line. For other calculations, involving, for example, process calculations for a
column of given length Z, the full set of the original five model equations has to be
solved or else a trial-and-error graphical procedure resorted to.

Illustration 3.5.7 Design of a Gas Scrubber Revisited:
The Adiabatic Case

In Illustration 2.3 we had presented the model equations required to calculate the
design height of a gas scrubber. The tacit assumption was made that the operation
is isothermal so that the equilibrium curve could be taken to apply to a single
temperature, that of the incoming feed and solvent. Above solute concentrations of
1 to 5%, heat effects can no longer be ignored and a corresponding shift in the

Z
G
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equilibrium curve to lower solubilities takes place due to the heat of the solution.
In principle a temperature rise occurs in both phases, but due to the low volumetric
heat capacities of the gas phase the enthalpy changes are almost entirely confined
to the liquid, with both phases attaining the same temperature. This has led to the
concept of an adiabatic equilibrium curve which is constructed by using the predicted
temperature rise to calculate local equilibrium gas solubilities as a function of solute
concentrations in the gas phase. The relevant equations for the construction of the
adiabatic operating diagram, Figure 3.22A, are as follows:

• The mass balances and the resulting operating line are unaffected by the
heat effects and remain unchanged (see Equation 2.23). Hence,

(Y – Y2)Gs = (X – X2)Ls (3.5.42)

• To calculate the temperature rise, we draw on an integral enthalpy balance
over both phases (Figure 3.22B). Choosing as a reference state the solute

FIGURE 3.22 Operating diagram (A) and column variables (B) for an adiabatic gas
scrubber.
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at the temperature of the incoming solvent and setting Href = HL2 = 0, we
obtain:

HL (kJ/kg solution) L(kg solution/s) =
Gs (kg carrier/s) ∆Hsoln (kJ/kg solute) [Y – Y2] (3.5.45)

where the enthalpy of the liquid is given by the auxiliary relation:

HL = CL (kJ/kg K) [TL – TL2] – ∆Hsoln (kJ/kg solution) (3.5.46)

We obtain for the local temperature rise:

(3.5.47)

where the factor X/1+X was used to convert total liquid flow rate L to
solvent flow rate Ls.

To construct the adiabatic equilibrium curve, one chooses a pair of values (X,Y)
on the operating line, calculates TL from Equation 3.5.47, and with the values Y, TL

in hand, establishes X from available equilibrium isotherms. X, Y values obtained
determine a point on the adiabatic equilibrium curve.

The remainder of the calculations proceed as outlined in Chapter 2, Illustration 2.1,
i.e., the adiabatic operating diagram, Figure 3.22A, is used to compute NTU, which is
multiplied by HTU to obtain the design height H = (HTU)(NTU) (Equation 2.26).

Comments:
One notes the simplifications which result from confining the heat effects to the

liquid phase. Had this not been done, an additional enthalpy balance for the gas
phase would have been required and the concept of an adiabatic equilibrium curve
would be jeopardized due to the temperature difference in the two phases. Once the
temperature rise has been accounted for, the entire procedure reverts to the familiar
territory of the isothermal case. The comfort of familiarity is not to be underesti-
mated, even when dealing with engineering problems.

Heat effects due to the evaporation of solvent have not been accounted for but
are often minor due to the relatively low vapor pressure of commonly used solvents.
When they can no longer be ignored, both mass and enthalpy balances for the solvent
have to be introduced. The simple HTU-NTU concept is then lost and one usually
has to resort to numerical solutions of the model equations.

Illustration 3.5.8 Flash Vaporization

In flash vaporization, a liquid mixture is partially vaporized, allowed to come to
equilibrium with the residual liquid, and the resulting vapor and liquid phases
separated and withdrawn (Figure 3.23A). Of interest here are the resulting liquid
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and vapor compositions xw and yD and the heat requirement q. Note that this is now
a steady-state operation. We have

Total mole balance:

(3.5.48)

Component mole balance (binary system):

(3.5.49)

Energy balance:

FIGURE 3.23 Flash vaporization of a binary liquid mixture: (A) flow diagram showing
heat exchanger, expansion valve, and separator; (B) equilibrium compositions and boiling
points at 1 atm of n-heptane n-octane mixtures. (R.E. Treybal. Mass Transfer Operations,
McGraw-Hill, New York, 1968. With permission.)
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(3.5.50)

Equilibrium relation:

yD = f(xw) (3.5.51)

In problems of this type, xF, TF, and therefore HF are known, and either D or W
are usually prescribed. Since the equilibrium relation is generally nonlinear, three
of the four model equations will be nonlinear. To avoid a numerical solution which
can be implemented with standard packages, the following graphical procedure
recommends itself:

Upon elimination of F from Equations 3.5.48 and 3.5.49 we obtain:

(3.5.52)

This is the equation of a line of slope W/D passing through the points (yD, xw)
and (xF, xF). The situation is depicted in Figure 3.23B for the system n-heptane/n-
octane. Let us consider a concrete example for this system.

Given F = 100 moles, xF = 0.5, TF = 25°C, and D prescribed at 60 moles, we
wish to calculate xw, yD, and the heat load q. Additional data are:

From Equation 3.5.48 we obtain W = 40 moles and, hence, –W/D = 40/60 =
–0.667. A line with this slope is drawn through the point (xF, xF) and intersects the
equilibrium curve at yD = 0.575, xw = 0.387, and T = 103°C.

Using the feed temperature TF = 25°C as datum, the enthalpies needed for the
calculation of the heat load q are established as follows:

n-heptane n-octane

Liquid heat capacity Cp kJ/mol 0.213 0.242
Latent heat ∆Hc kJ/mol 31.0 35.6
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Hence, the required total heat load is given by:

q = DHD + WHw = (60)(50.6) + (40)(18)
q = 3,760 kJ/100 moles feed

Illustration 3.5.9 Steam Distillation

It frequently occurs, particularly in the food and pharmaceutical industries, that a heat
sensitive and nonvolatile solute has to be separated from a high-boiling organic solvent
in which it is dissolved. Conventional distillation does not recommend itself since the
required high temperatures would decompose or otherwise adversely affect the solute.
Steam distillation is an ingenious procedure designed to avoid this difficulty. In it, live
steam is passed into the solution, which initially condenses in contact with the colder
solution, but thereafter merely acts as carrier vapor, the latent heat of the solvent being
provided by external heating. The crux and the advantage of the procedure is that each
of the two immiscible phases, organic and condensed steam, exerts its own vapor
pressure so that PTot =  + pL where pL = solvent partial pressure in the exiting
vapor. This is in contrast to conventional distillation, where perforce we must have
PTot = pL. Thus, in steam distillation the solvent partial pressure and, hence, the boiling
temperature will be considerably lower than that prevailing in conventional distillation.

Suppose it is desired to calculate the steam consumption in such a process. It
would appear that this would call for simultaneous mass and energy balances, but
as it turns out, mass balances alone are sufficient. This can be shown by making
solvent and steam balances about the still, as follows.

Unsteady, integral solvent balance (mol/s):

(3.5.53)

or in terms of partial pressure:

where nL = moles solvent in still, D = total mol/s leaving the still.

Steady-state steam balance (mol/s):

(3.5.54)
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where S = mol/s incoming steam and is assumed known.
Since we have three dependent variables at this stage, nL, pL, and D, a third

equation is required which is given by an appropriate equilibrium relation. We
assume that Raoult’s law applies over the range of distillation and obtain:

Raoult’s law:

(3.5.55)

where Ns = moles solute in still = constant.
Eliminating D between Equations 3.5.51 and 3.5.52 and integrating we obtain:

(3.5.56)

where  represents the desired steam consumption. If the reasonable assump-

tion is made that the pure component vapor pressure ratio  does not vary

significantly over the range of distillation, we obtain:

(3.5.57)

where the superscripts i and f denote the initial and final states, respectively, and the
pure component vapor pressures are evaluated at an average temperature between
the two states.

Comments:
It is evident in this illustration that a good physical understanding of the process

is a prerequisite for establishing a correct model. A good grasp of phase equilibria
is needed to arrive at the relation pTot =  + pL and to appreciate its consequence,
i.e., a lowering of the boiling point.

It comes as somewhat of a surprise that no energy balance is required. This is
due to the fact that the steam merely acts as a carrier and not as a source of latent
heat of vaporization which is instead supplied by external heating. The heat load of
the heater is easily calculated from the total latent heat of vaporization: qext = (nL

i –
nL

f )∆Hv.
The illustration again highlights the necessity to proceed step-by-step in setting

up a model, starting with the simplest balances that are usually the mass balances
and equilibrium relations. The procedure is terminated when the number of equations
equals the number of unknowns. In this way the introduction of unnecessary equa-
tions, i.e., an energy balance, is avoided.
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Practice Problems
3.5.1 Optimum Temperature for a Reversible Reaction — Consider the reversible

first order reaction  taking place in a continuous flow stirred tank reactor.

It is desired to maximize the yield of the product B.
Two cases present themselves. If the activation energy of the forward reaction Ef

is greater than that of the reverse reaction, which is the usual case for endothermic
reactions, the forward reaction will be favored both kinetically and thermodynamically
(equilibrium) by increasing the temperature and the best temperature will be the highest
possible one. For exothermic reactions, Ef < Er, a low temperature is favored from the
thermodynamic point of view, but a high one from that of the kinetics of the reactions.
An optimum intermediate temperature Topt will then exist which maximizes conversion.

Show that a material balance for the system yields:

where τ is the usual residence time V/Q, and CAF = concentration of reactant in the
feed.

From this expression derive the optimum temperature which is given by:

(3.5.58)

where Ar is the pre-exponential factor of the Arrhenius equation for the reverse
reaction. Note that in this case no energy balance needs to be invoked even though
temperature effects are being considered.

3.5.2 Optimum Temperature for Parallel Reactions — Here we consider three
parallel irreversible first order reactions that lead to three different products of which
only one is the desired one:

For the case E1 > E2, E1 < E3, the first condition requires a high temperature,
for a good yield of R, while the second condition requires a low temperature. Why?
An intermediate optimum temperature then exists which results in the highest yield
of R. Show by a procedure similar to that called for in Problem 3.5.1, that this
temperature is given by:
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(3.5.59)

Note that here again, as in the previous problem, no energy balance arises.

3.5.3 The van Heerden Diagram: Multiple Steady States — The van Heerden
Diagram, shown in Figure 3.24, is a plot of the steady-state heat production and
removal in a nonisothermal CSTR vs. the tank or effluent temperature. The rate of
heat production due to the exothermicity of the reaction shows an inflection, while
the rate of heat removal brought about by a cooling coil or water jacket is a straight
line. An average cooling water temperature is assumed for simplicity. Steady-state
conditions apply at the intersections of heat production and heat removal curves.

The situation which arises here is similar to that seen with a nonisothermal
catalyst pellet (Illustration 3.5.3). At low reactor temperatures a single steady-state
is obtained, with a low conversion to product. As the temperature is increased, i.e.,
the cooling line moves to the right, a region is reached where three steady-states
exist. Of these, only the upper and lower ones are stable, while the intermediate
state is metastable or unstable. With a further increase in reactor temperature, the
region of multiplicities is left behind and we return to a single steady-state. This
state, however, now produces a high reactant conversion and the temperature at
which this occurs is, therefore, termed the ignition temperature.

(a) Give qualitative reasons for the shape of the exotherm.
(b) Derive and analyze the equation for heat removal, assuming a constant

average cooling water temperature.
(c) Sketch the case where the area of the cooling coil is progressively increased.

Is there a jump in temperature similar to that seen in the catalyst pellet and,
if so, at which point does it occur?

FIGURE 3.24 The van Heerden diagram for an exothermic reaction with cooling in a CSTR.
The diagram shows the various possible steady-states at different cooling water temperatures.

T
R

E E

E E A

E E Aopt =
−

−
−











−

3 2

3 1 3

1 2 2

1

ln

248/ch03/frame  Page 168  Friday, June 15, 2001  6:56 AM

© 1999 By CRC Press LLC



(d) By considering small disturbances about the three steady-states, arrive at
a logical argument as to why the upper and lower states should be stable,
while the intermediate state is unstable.

3.5.4 Meteorology —
(a) Using the Humidity Charts and given a daytime temperature and relative

humidity as well as a forecast night-time temperature, predict whether dew
would form.

(b) Again using the Psychrometric Charts and assuming a strong wind is
blowing, indicate under what conditions frost may form even though the
temperature remains above 0°C. What is the maximum temperature which
will allow this to happen?

3.5.5 Adiabatic Saturation of Air — Air at 60°C and relative humidity of 20% is
to be cooled and humidified to a relative humidity of 80% in a spray chamber with
recirculation of water.

Calculate the final absolute humidity Hf and temperature Tf. How much heat is
removed from the air in the process and what is the percentage change in volume?
What is the lowest temperature to which air can be cooled in such a process?

3.5.6 Air Supply to a Drier — An air drier requires 1 kg/min. (dry base) m3/min.
of air at 80°C and RH = 20%. The available air is at 25°C and RH = 50% and is to
be brought to the desired conditions by direct injection of steam. What is the
minimum rate at which steam must be supplied, given that its latent heat is 2450
kJ/kg?

Answer: 0.08 kg/min.

3.5.7 Design of a Cooling Tower — Water is to be cooled from 43.3°C to 29.7°C
in a packed column using air entering countercurrently at 29.5°C and a wet-bulb
temperature of 23.3°C. The water flow rate is 2.71 kg/m2s and air flow is to be set
at 1.5 times the minimum value. The overall mass transfer coefficient for the packing
used is estimated at KGa = 3.1 × 10–4 mol/m3s Pa. Calculate the height of the tower.

(Hint: Use Table 3.6 to express KGa in appropriate units.)
Answer: 6.6 m

3.5.8 Breathing Losses in a Solvent Storage Tank — During a rise in ambient
temperature the solvent-laden air in the head space of storage tanks expands and is
partially expelled into the atmosphere through a vent pipe. When the temperature
drops, the process reverses itself and fresh solvent-free air enters the head space.
Subsequent cycles of rising and falling temperature cause a cumulative loss in
solvent. An accurate calculation of this loss would require a knowledge of the time
and space dependent concentrations and temperatures in the tank and would, thus,
call for the solution of a set of PDEs along with the appropriate equilibrium relation.

The somewhat irregular geometry (tank + vent-pipe) and the possibility of both
conductive and free convective transport, plus uncertainties in the external heat
transfer resistance make this a formidable problem to solve. Fortunately, for envi-
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ronmental assessments and other purposes it is often sufficient to estimate the max-
imum possible emissions rather than the detailed daily and hourly variations. This
can be achieved by assuming that the tank contents are well mixed and in thermal
and phase equilibrium at any instant. In other words, the air-solvent mixture expand-
ing into the atmosphere is taken to be saturated at the ambient temperature of the
moment. Since the temperature variations involved are rarely more than 20 to 25°C,
a linearized version of the vapor pressure ps

o of the solvent may be used: ps
o = aT + b.

Use this expression, together with integral unsteady balances for the solvent
vapor and air to show that the maximum moles solvent lost, ns, during a temperature
rise from T1 to T2 is given by:

where V = volume of head space, R = gas constant, and PT = total pressure.

3.5.9 Design of a Partial Condenser — Partial condensers are used extensively in
distillation processes whenever it is desired or convenient to withdraw part of the
product as vapor while the liquid portion is recycled for further processing or to
provide reflux for distillation columns. The design of such condensers requires a
knowledge of the relevant compositions as well as the cooling requirements.

For the system described in Illustration 3.5.8, calculate (a) the equilibrium vapor
and liquid compositions and (b) the cooling requirements q(J/s) for a vapor feed
composition xF = 0.8 mol fraction n-heptane and a vapor to liquid split V/L (mol/mol)
= 0.5.

Answer: (a) xL = 0.75, yV = 0.86

3.5.10 Cryogenic Liquefaction: Simultaneous Steady-State Algebraic Mass and
Energy Balances — The field of cryogenics is generally associated with tempera-
tures below –150°C and includes as an important application the liquefaction of the
so-called permanent gases, among them He (b.p. 4.2 K), H2 (b.p. 20.3 K), N2 (b.p.
77.4 K), O2 (b.p. 90.1 K), and CH4 (b.p. 111.7 K).

Contemporary industrial liquefaction processes are based on two classical cycles
developed at the turn of the century by C. von Linde and G. Claude. In the Linde
process, cooling and ultimate condensation is achieved by expansion through a valve
utilizing the Joule-Thomson (J-T) effect (Figure 3.25A). The Claude process
removes energy from part of the gas stream by allowing it to do work in an expansion
engine, as well as by utilizing a J-T valve. J-T expansion is irreversible and taken
to be isenthalpic. (Recall that for steady flow systems, ∆H + ∆(K · E) + ∆(P · E) ±
Ws ± q = 0 so that for negligible potential and kinetic energy changes, and heat
transfer, ∆H = 0.) Expansion in an engine, on the other hand, can be considered
isentropic in the limit of reversible (100% efficiency) and adiabatic operation. The
important calculations can then be performed by combining simple mass and energy
balances with the use of so-called Mollier diagrams. These diagrams are plots of
temperature T vs. entropy S, and contain the isobaric and isenthalpic pathways as

n
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parametric curves. In these calculations it is customary initially to neglect all irre-
versibilities except those at the J-T valve, bringing them in at a later stage using
expander and heat exchanger efficiencies. The path for nonideal operations is indi-
cated by primed numbers.

In a typical Linde process, the gas is first compressed isothermally (path 1 →
2), followed by isobaric cooling by cold return vapor from the liquefier (path 2 →
3), Figure 3.25B. It is then allowed to expand through a J-T valve, which leads into
the two phase region (path 3 → 4). Uncondensed vapor is returned to the compressor
after passage through the isobaric heat exchanger. Note that the latter carries a high-
pressure gas stream to the liquefier and a low pressure return to the compressor. The
pathways of the Claude process can be established in similar fashion (see Figure
3.25D), the main difference here being the isentropic expansion step of a part of the
feed stream which is added to the cold return vapor (Figure 3.25C).

(a) What is the significance of the horizontal “tie-line” f-g in the two-phase
region? How would you estimate liquid yield by visual location of points
4 or 6?

FIGURE 3.25 Flow diagrams (a and c) and T-S Mollier diagrams (b and d) for the Linde
and Claude processes used in the cryogenic liquefaction of gases. (R. Barron. Cryogenic
Systems, McGraw-Hill, New York, 1966. With permission.)
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(b) Show that for the Claude cycle, the liquid yield y is given by:

where x = fraction of gas diverted to the expander (subscripts refer to the
streams shown in the diagrams of Figure 3.25). Use this expression to
derive the liquid yield for the Linde process. Which process provides the
higher yield and what are the penalties to achieve this?

(c) Heat exchanger effectiveness ε (see Illustration 3.3.2) can be defined in
terms of the stream enthalpies as follows:

Show that for the Linde process this results in the revised liquid yield:

(d) When confronted with a fraction, one should instinctively look for param-
eter values which reduce the numerator or denominator to zero. Do this
for part (c) and indicate why proper heat exchanger design is particularly
crucial in cryogenic liquefaction processes.

3.6 COMBINED MASS, ENERGY, AND MOMENTUM 
BALANCES

When pressure or viscous forces, or those due to a change in the rate of momentum,
begin to have a significant influence on a process, a momentum or force balance
has to be invoked in addition to the mass and energy balances. This requirement
arises in the important field of compressible flow, tubular reactions involving gas
flow, vaporizers and condensers, as well as a host of other applications. Use of an
additional balance brings about an increase in the number of equations and the
complexity of the model. Numerical methods are used with greater frequency
although many problems can still be solved analytically and the result used for a
more meaningful analysis of the process.

We start our illustrations by considering both isothermal and adiabatic com-
pressible flow in a pipe. We encounter here the concept of the velocity of sound and
an illustration is devoted to the derivation and analysis of this topic. Additional
problems involving compressible flow are addressed after which we examine the
simultaneous conservation laws which apply to vaporization and condensation pro-
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cesses, as well as chemical reactions. Some additional important aspects are left to
the Practice Problems.

The reader should be prepared to face a considerable escalation in the complexity
of the models and in the variety of equations that arise. We shall try to be helpful
in this endeavor.

Illustration 3.6.1 Isothermal Compressible Flow in a Pipe

In deriving the integrated forms of the Bernoulli and Mechanical Energy Equations
3.4.54 and 3.4.60 the assumption had been made that flow was incompressible, i.e.,
that both velocity v and density ρ were constant along the pipe. These conditions
apply to the flow of liquids or in gas flow where the pressure drop does not amount
to more than 5 to 10% of the total pressure. Air flow in large ventilation ducts falls
in this category.

When pressure drop exceeds these limits, compressibility effects can no longer
be disregarded. Not only does pressure decrease significantly, but so does the density,
while velocity experiences a corresponding increase in order to maintain constant
mass flow rate. One must then return to the differential form of the mechanical
energy balance that is obtained by extending the differential Bernoulli Equation
3.5.53. We obtain, for a horizontal pipe,

(3.6.1)

where z is the distance along the pipe. Friction factor f is constant since ρv and,
hence, the Reynolds number are constant by virtue of the steady-state mass balance
or continuity equation:

F (kg/s) = ρ1v1A1 = ρ2v2A2 = ρvA = constant (3.6.2)

or

G (kg/sm2) = ρ1v1 = ρ2v2 = ρv = constant (3.6.3)

Dividing Equation 3.6.1 by v2 and assuming ideal gas behavior, we obtain from
Equation 3.6.3 v2 = G2/(pM/RT)2 and Equation 3.6.1 becomes:

(3.6.4)

Integrating each term in turn yields the relation:
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The logarithmic term is usually small and can be neglected, so that Equation
3.6.5 can be solved for p2, and the pressure drop ∆p = p2 – p1 for a given system
calculated.

Alternatively, an explicit equation in the mass velocity G may be obtained as
follows. We differentiate the continuity equation for a duct of constant cross-section
and obtain dv/v = –dρ/ρ = dp/p. Introducing this relation into Equation 3.6.4,
integrating as before, and solving for G yields:

(3.6.6)

Illustration 3.6.2 Propagation of a Pressure Wave,
Velocity of Sound, Mach Number

Pressure waves, such as those due to sound, explosions, or other disturbances, travel
with a finite speed through a particular medium which may be a gas, liquid, or solid.
Our primary interest here will be in the propagation velocity of such waves through
a gas, although the general case of an arbitrary medium also will be addressed briefly.
These velocities can be explicitly derived by a judicious application of mass (con-
tinuity), energy, and momentum balances. To do this, we consider the pressure
disturbance caused by a piston moving with a velocity v2 in a gas initially at rest,
v1 = 0, and at a pressure p1. Figure 3.26A shows the pressure wave at a particular
time and position moving with the propagation velocity a. In Figure 3.26B we have
brought the wave to a standstill in a fixed control volume by superimposing a velocity
(a) on the disturbance. Experiments have shown that the process of pressure prop-

FIGURE 3.26 Pressure wave generated by a moving piston: (A) shows the variables for a
moving wave at a particular time and position; in (B) the wave is fixed in space by imposing
a negative velocity, –v2.
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agation is both adiabatic and frictionless. Balances taken about the stationary wave
are then as follows:

Continuity equation:

ρ1aA = ρ2(a – v2)A (3.6.7)

Momentum balance:

(p1 – p2)A = ρ1aA[(a – v2) – a] (3.6.8)

Energy balance:

(3.6.9)

This is but one of many versions of the energy equation one encounters in the
literature. It is seen to be a reduced form of the general balance (Equation 3.3.85)
with the right side representing the enthalpy change ∆H. Derivation of Equation
3.6.9 is left to the exercises, see Practice Problem 3.6.4.

Eliminating ρ2 and v2 from these three equations and solving for the propagation
velocity we obtain the expression:

(3.6.10)

This relation is quite general and applies to the propagation of an arbitrary
pressure disturbance in a gas with a heat capacity ratio of γ = Cp/Cv. For explosions,
the pressure ratio p2/p1 > 1, so that pressure propagation velocities of considerable
magnitude may be attained.

Velocity of sound — Consider now the case p2/p1 = 1. This situation arises in
the propagation of sound where upstream and downstream pressures are equal. We
obtain from Equation 3.6.10:

a = c = (γp/ρ)1/2 (3.6.11)

and for an ideal gas

c = (γRT/M)1/2 (3.6.12)

Thus, the velocity of sound c is seen to vary directly with temperature and
inversely with the molar mass of an ideal gas.

For the propagation through both gases as well as liquids and solids, a slightly
modified approach leads to the general relation:
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(3.6.13)

where 

 

∂
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∂
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 is the inverse of the compressibility of the medium.
Note that c varies in the progression c

 

solid
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liquid
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gas

 

 which is in the same
sequence as 

 

∂
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ρ

 

. A listing of the speed of sound in various media is given in the
accompanying Table 3.22.

 

Mach Number — 

 

This is a conveniently defined velocity ratio which is a measure
of the departure of velocity v of a gas from its speed of sound:

Ma = v/c (3.6.14)

For sonic flow, the Mach number Ma = 1.
A distinction is made, particularly by aerodynamicists, among the following

flow regimes:

Ma < 0.3 Incompressible Flow — Density effects are small.
0.3 < Ma < 0.8 Subsonic Flow — Density effects are important.
0.8 < Ma < 1.2 Transonic Flow — This regime straddles sonic gas flow and

is characterized by the appearance of so-called shock waves. These are
comprised of narrow regions across which a sudden transition from sub-
sonic flow (Ma < 1) to supersonic flow (Ma > 1) occurs, with an attendant
jump change in pressure.

1.2 < Ma < 3.0 Supersonic Flow — Existence of shock waves; no subsonic flow,
i.e., shock transitions are from a low to a higher 

 

supersonic

 

 Mach number.

 

TABLE 3.22
Velocity of Sound of Various Materials
at 15.5°C and 1 atm

 

Material Velocity c, m/s

 

(1) Gases
Hydrogen 1294
Helium 1000
Air 340
Carbon dioxide 266

(2) Liquids
Water 1490
Ethyl alcohol 1200
Glycerin 1860
Mercury 1450

(3) Solids
Ice 3200
Aluminum 5150
Steel 5060
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3.0 > Ma Hypersonic Flow — Strong effect of shock waves and other flow
changes.

 

Illustration 3.6.3 Adiabatic Compressible Flow in a Pipe

 

In the case of isothermal pipe flow (Illustration 3.6.1) we were able to arrive at an
expression for flow rate as a function of pressure drop by a simple integration of
the mechanical energy balance, using as adjuncts the ideal gas law and the continuity
equation. In the adiabatic case, temperature is no longer constant and the full
complement of balances, together with auxiliary relations, has to be used.

 

Mass balance:

 

F = 

 

ρ

 

 v A = constant (3.6.2)

or

G = 

 

ρ

 

 v = constant (3.6.3)

or

 

Energy balance (q = 0):

 

(3.6.9)

or

(3.6.15)

 

Mechanical energy balance (force balance):

 

(3.6.1)

 

Ideal gas law:
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The model is then comprised of four equations in the four state variables p, 

 

ρ

 

,
v, and T. Frequently the Mach number is introduced as an additional variable,
requiring a fifth relation:

(3.6.17)

Full solutions of various forms of this formidable set exist, of which a particularly
useful one has been cast into graphical form, to be discussed below. One relation,
that of the pressure drop as a function of Mach number, is of special interest and
can be obtained by differentiating Equation 3.6.15 and using the other two balances
to eliminate dv and d

 

ρ

 

. We obtain:

(3.6.18)

Several features of pipe flow are revealed by this relation. For small Mach
numbers, Ma 

 

→

 

 0, or 

 

∂

 

p/
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ρ

 

 

 

→

 

 0, it reduces to the equation for incompressible flow
in a horizontal pipe. For more substantial Mach numbers, 0.3 < Ma < 1, the pressure
drop is negative in the direction of flow and compressible flow can proceed. As Ma
is increased toward unity, pressure drop and, hence, flow rate increase rapidly until,
at a value of Ma = 1, the pressure gradient becomes infinite, pressure itself is at a
minimum, and the fluid velocity equals the velocity of sound. Beyond that point, at
Ma > 1, the pressure drop becomes positive and flow ceases. We conclude from this
that the maximum velocity attainable in a duct of constant cross-section is the
velocity of sound. Since velocity increases with distance along the pipe, this max-
imum will be reached at the pipe outlet. To obtain supersonic flows in a duct, the
cross-sectional area must increase in the direction of flow. This will be demonstrated
in Illustration 3.6.6.

To provide a physical underpinning to this phenomenon of limiting sonic flow,
we display in Figure 3.27 the pressure profiles that result from a progressive increase
in inlet pressure. Figure 3.27A shows a modest pressure drop obtained at low flow
rates. An increase in inlet pressure propagates downstream, adjusting pressure to a
steeper gradient and, hence, higher flow rates (Figure 3.27B). As pressure is increased
further, a point is ultimately reached where the flow at the outlet reaches sonic
velocity. An additional increase in inlet pressure at this point will no longer be able
to propagate downstream to adjust the pressure gradient since to do so it would have
to exceed the speed of sound. The pressure increase beyond the sonic level will be
held back as a standing discontinuity or pressure shock wave at or near the pipe
inlet (Figure 3.27C).

A consequence of this phenomenon is that a pipe of given length and diameter
cannot accommodate arbitrarily high gas flow rates. Beyond a certain value G* =
G

 

Max

 

, an increase in inlet pressure will not result in increased flow. To accommodate
flow rates higher than G

 

Max

 

, one has to either increase the diameter or reduce the
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effective length of the pipe by recompressing the gas at intervals. The latter method
is standard practice in the operation of long-distance gas transmission lines.

If instead of increasing inlet pressure we progressively 

 

reduce outlet pressure

 

,
a similar sequence of events will take place. Flow will increase until we attain sonic
velocity at the outlet. Further reductions in pressure will result in a standing shock
wave that is now at or near the 

 

outlet

 

, and flow will remain constant at G

 

Max

 

. Another
way of putting this is to say that the flow rate anticipated from an increase in pressure
is “choked” down to the value G

 

Max

 

.
The question arises as to whether such limiting velocities materialize in liquid

flows. In Table 3.18, we indicated that liquid velocities in pipe flow, i.e., those used
in conventional operations with standard pumps and construction materials are of
the order 1 m/s. Sonic velocities in liquids, on the other hand, are three orders of
magnitude higher (Table 3.22). The pressures required to generate sonic flow, there-
fore, would be enormous and beyond the ordinary strength of the containing pipes.
Hence, limiting flow considerations do not in general arise in the case of liquids. 

Illustration 3.6.4 Compressible Flow Charts 

The complexity of the full model for compressible flow, Equations 3.6.2 to 3.6.17
have led to their solution by numerical methods and the compilation of the results
in the form of convenient flow charts. A typical result is shown in Figure 3.28 which
represents a plot of the downstream to upstream pressure ratio p

 

2

 

/p 1  against the 

FIGURE 3.27 Pressure profiles in compressible duct flow with increasing inlet pressure:
(A) low flow rates, (B) intermediate flow rates, (C) sonic velocity at the exit-standing shock
at inlet.
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dimensionless mass velocity G/G* = G/G

 

Max

 

, where G

 

Max

 

 is the flow corresponding
to the sonic velocity in frictionless flow, given by:

(3.6.19)

The parameter  also called the pipe number, represents the piping

configuration with d

 

h

 

 = hydraulic diameter, equal d for a cylindrical pipe, L its
length, and f the friction factor. As noted before, the Reynolds number, of which f
is a function, can be written in the form Re = Gd/

 

µ

 

. Since G is constant for ducts
of constant cross-section, Re and f will likewise be constant along the entire length
of the pipe.

The plots show that for a given pipe configuration N, the mass velocity G through
a pipe of length L and diameter d initially increases as inlet pressure p

 

1

 

 is increased
or p

 

2

 

 is dropped. Flow is subsonic throughout the pipe under these conditions. Further
reductions in the pressure ratio lead to an additional increase in G until a critical
ratio (p

 

2

 

/p

 

1

 

)

 

c

 

 is reached. At this point G has reached a maximum and remains constant
at that value with further decreases in the pressure ratio. We are now in the domain
denoted as “region of choking flow.” Note that the sonic velocity at which this occurs
decreases with increasing friction. For frictionless flow, N = 0, the critical pressure
ratio reaches a maximum and is given by:

 

FIGURE 3.28

 

Chart for the computation of compressible flow in ducts. p

 

2

 

/p

 

1

 

 = downstream
to upstream, pressure ratio, G/G* = dimensionless mass velocity, N = dimensionless pipe
number fL/d. (O. Levenspiel, 

 

AIChE J.,

 

 23:402, 1977. With permission.)
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(3.6.20)

with

(T

 

2

 

/T

 

1

 

)

 

c

 

 = 2/(

 

γ

 

 + 1) (3.6.21)

For air, 

 

γ

 

 = 1.4, so that for frictionless flow of air the critical ratios are given
by (p

 

2

 

/p

 

1

 

)

 

c

 

 = 0.53 and (T

 

2

 

/T

 

1

 

)

 

c

 

 = 0.83. These are useful limiting numbers to remember
for 

 

all

 

 gas flows, since 

 

γ

 

 has only a marginal effect on their values.
Suppose now that we wish to establish whether a pipe of given length L and

diameter d will accommodate a prescribed air flow. Let us set L = 10 m, d = 0.0525
m, G = 7500 kg/m

 

2

 

s, T

 

o

 

 = 20°C, P

 

1

 

 = 1.0 MPA. f is found to be 0.003 for the flow
rate and pipe in question. We obtain from Equation 3.6.19:

where 8314 is the value for R in units of kg m

 

2

 

/kmol s

 

2

 

K.
Thus G/G* > 1, and the prescribed flow does not materialize. Instead it is reduced

or “choked” to a value set by the pipe number N. We have:

N = fL/d = (0.003)(10/0.0525) = 0.57

The corresponding value of G/G* read from the chart is 0.825, so that the actual
flow rate which materializes is

G = 0.825 G* = (0.825)(1970) = 1625 kg/m

 

2

 

s

i.e., 26% of the prescribed value.

 

Illustration 3.6.5 Compressible Flow in Variable Area Ducts 
with Friction and Heat Transfer

 

Removal of the conditions of adiabatic flow and a duct of constant cross-section
brings about a further escalation in model complexity. The terms involving channel
cross-section must be altered in appropriate fashion and a heat transfer term q = ±
h dA (T

 

ext

 

 – T) incorporated in the energy Equations 3.6.9 or 3.6.15. T

 

ext

 

 will either
have to be known as a function of longitudinal distance z or must alternatively be
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established by the addition of a differential energy balance over the external phase.
The manipulations necessary to arrive at a particular set of profiles or some functional
relation among the dependent variables (say Ma = f(p)) now become exceedingly
tedious. Some relief may be obtained through the use of a compilation based on
determinants of the coefficients of the model, shown in Table 3.23. It provides a

 

simple and systematic procedure for arriving at any desired set of differential
interrelations among the variables

 

 which can be integrated numerically or in some
important cases even analytically. Use of the table follows.

The terms in the left-hand column are placed individually on the left side of
each equation. The 

 

sum

 

 of the terms indicated by the top row makes up the right-
hand side of the equations with the coefficients of each term drawn from the
tabulation. Note that these coefficients are a function of Mach number and 

 

γ

 

 only.

dq is the differential heat transfer rate,  the differential frictional head,

and N = Ma

 

2

 

.
For example, the equation for dN/N takes the form:

(3.6.22)

or in terms of axial distance derivatives

 

TABLE 3.23
Coefficients of Compressible Flow Model Equations

 

dq/Cp T dA/A dh

 

f

 

 M/RT

 

Source:

 

 R.C. Binder, 

 

Fluid Mechanics,

 

 4th ed., Prentice Hall, Upper Saddle
River, NJ, 1962. With permission.
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(3.6.23)

Four additional equations in dp/p, dT/T, dρ/ρ, and dv/v, derived in similar fashion,
complete the model in the five state variables N (i.e., Ma2), pressure p, temperature
T, density ρ, and velocity v.

It is not always necessary to solve the entire set which must be done numerically.
Analytical solutions are possible in restricted cases (see Practice Problem 3.6.5),
and single equations may be scanned in simple fashion to establish qualitative trends
with respect to heat addition, friction, or area variation. For example, Equation 3.6.23
shows that in subsonic flow, N < 1, the effect of heat addition, friction, and an area
decrease is to increase the Mach number. As another example, we consider friction-
less compressible flow in a pipe of constant diameter. Application of Table 3.23 then
yields:

(3.6.24)

(3.6.25)

(3.6.26)

These equations show that in subsonic flow, an addition of heat along the pipe
will increase the Mach number and reduce the pressure. When γN < 1 the result of
heat addition is an increase in temperature. However, for γN > 1 and with the flow
still subsonic, heat addition will, paradoxically, cause a decrease in temperature.
The reason for this is that in this narrow range of flow, the expansion and the attendant
cooling of the gas outstrips the heating effect.

Illustration 3.6.6 The Converging-Diverging Nozzle

An interesting use of Table 3.23 is the analysis of flow in a converging-diverging
duct, shown in Figure 3.29. Two cases arise: for adiabatic frictionless flow, the table
yields, after rearrangement, the following relation:

(3.6.27)

This equation shows that for the converging segment and dN/dz > 0, the flow
will be subsonic. At the throat, dA/dz = 0 and, hence, sonic flow prevails, N = 1.
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Beyond that point, the condition dA/dz > 0 requires N > 1, i.e., the flow becomes
supersonic.

In flow with friction and/or heat transfer, smooth transitions do not usually occur
and we see instead the formation of a jump transition in the form of a normal shock
from supersonic to subsonic flow (Figure 3.29B). The relation between upstream
and downstream Mach numbers, known as the Rayleigh line, also can be derived
through the use of Table 3.23 (see Practice Problem 3.6.5). Note that the case of
adiabatic frictionless flow for constant cross-section, seemingly not covered by the
table, can be accommodated by retaining an extra term, say dq, eliminating it
subsequently by division of the resulting equations.

Illustration 3.6.7 Forced Convection Boiling:
Vaporizers and Evaporators

We previously had seen in Illustration 3.3.8 the complexities that can arise when a
liquid is boiled in a tank with no in or outflow, also known as pool boiling. No net
production of vapor was considered there and the principal parameter effect exam-
ined was that of the temperature driving force ∆T = (Text – T). In a flow system,
such as horizontal or vertical vaporizers and evaporators, a net production of vapor
is involved which gives rise to additional phenomena. These phenomena and the
phase changes and heat transfer mechanisms associated with them are illustrated for
a vertical tube in Figure 3.30. The feed which typically enters as a liquid below its
boiling point undergoes convective heating near the inlet until it comes to a boil. A
period of nucleate boiling then ensues, similar to that encountered in pool boiling
in which vapor bubbles formed at the wall pass into the liquid where they ultimately

FIGURE 3.29 Flow in a converging-diverging duct: (A) frictionless, adiabatic flow with no
shock formation, (B) flow with friction and/or heat transfer. Formation of shock.
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coalesce into slugs (“slug flow”). A considerable reduction in liquid volume occurs
until a point is reached where the liquid is confined to an annular film at the wall
and droplets in the vapor core. In this region, the so-called annular flow regime,
evaporation at the surface of the annulus takes place by convective heat transfer
through the liquid film. The entrained droplets also undergo evaporation and a further
reduction in liquid volume occurs. Eventually the annular film completely disappears
and we enter the region of drop or mist flow. This phenomenon which occurs at
vapor fractions of about 0.25 is referred to as “dry-out” or “burn-out” since there is
an immediate increase in wall temperature and an attendant risk of damaging or
“burning” the tubes. This temperature rise is caused by the sudden drop in heat
transfer coefficient from liquid to gas film values, and is to be avoided in practical

FIGURE 3.30 Flow regimes and modes of heat transfer during boiling of a liquid in a
vertical vaporizer.
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operations. One way of doing this is to identify a critical heat flux (q/A)c at which
the transition occurs, but the correlations of this quantity with system parameters
are still somewhat tentative and incomplete. An alternative is to model the process
and identify the distance from the inlet at which vapor fraction exceeds a certain
prescribed value, say 0.2. This fraction is termed the vapor quality x = V/(L + V)
where V and L are the vapor and liquid mass flow rates, respectively. Thus, x ≈ 1
in the mist flow region and x ≅ 0 at the tube inlet (see Figure 3.30).

Several different models have been proposed for this highly complex system of
which we adopt the so-called separated flow model. In it, vapor and liquid are
considered as separate entities moving at constant but not necessarily equal velocities
and in thermodynamic equilibrium with each other.

Let us consider the case of a pure liquid being vaporized. In setting up the model,
all three conservation laws have to be invoked since pressure drop will affect the
boiling point and must be taken into account. This calls for the use of a mechanical
energy balance. Note again that vapor and liquid are everywhere in equilibrium, i.e.,
the vapor is saturated and at the boiling point corresponding to the pressure at a
particular point. We obtain:

Total mass balance:

(3.6.28)

Cancelling terms and going to the limit we obtain:

or equivalently,

dV/dz + dL/dz = 0 (3.6.29)

Energy balance:

(3.6.30)

We use the inlet temperature as reference so that H (J/s) is made up of sensible and
latent heat terms as follows:

HL = L CpL (T – To) (3.6.31)
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Hv = V CpL (T – To) + V∆Hv (3.6.32)

We note that in these expressions, both temperature and flow rates L, V are state
variables and have to be differentiated. Upon introducing the auxiliary relations into
Equation 3.6.30, dividing by ∆z, and going to the limit, we obtain:

(3.6.33)

Mechanical energy balance:
We note at the outset that in this balance three terms will in principle vary with

distance — kinetic energy, potential energy (vertical devices), and friction. To reduce
the complexity of the model we confine ourselves to friction only. Even then,
however, the model is difficult to formulate because of the complexity of the different
flow regimes and their impact on pressure drop. We limit ourselves for the time
being to a general formulation and write:

(3.6.34)

The model then can be completed with an appropriate vapor pressure expression
such as the Clausius-Clapeyron or Antoine Equations.

Equilibrium relation:

p = f(T) (3.6.35)

It consists of the four equations (3.6.29, 3.6.33, 3.6.34, and 3.6.35) in the four-
state variables p, T, V, and L.

The heat transfer coefficient U and the frictional pressure drop (dp/dz)f now need
to be addressed. Both are complex entities and numerous expressions, often related
to a particular flow regime or system, have been suggested. One can avoid general-
izations by fitting test data for a particular system to a simple but logical relation
between film coefficient and vapor quality. One suggested relation has the form:

(3.6.36)

which reflects in simple fashion the decrease in heat transfer coefficient hL, taken
to be the normal liquid film coefficient, with increased vapor quality x.

Complexities also are encountered in the correlations of pressure drop with liquid
and vapor flow rates and physical properties of the system. Here again, as in the
case of heat transfer coefficients, empirical simplification is often used, of which a
preferred version is
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(3.6.37)

The full model need not always be solved. Simpler correlations and simpler
demands can also yield useful information. For example, for nucleation boiling of
water in a vertical tube, the following heat transfer coefficient has been recom-
mended:

h = 2.54 (∆Tb)3 exp (p/1.551) (3.6.38)

where ∆Tb = Tsurface – Tsaturation, p is in units of MPa, and h in units of kJ/m2sK.
Consider now the case of water entering a 1 m-long tube of diameter 2.54 cm

at 5 atm and at its boiling point which is assumed constant, i.e., pressure drop is
neglected. The flow rate F is 10–2 kg/s and it is desired to calculate the fraction
evaporated, i.e., the quality of the steam at the exit, x = V/F. ∆Tb is set at 10°C. We
obtain:

h = 2.54 (10)3 exp (0.507/1.551) = 3.52 kJ/m2sK

and

q = hπDL ∆T = (3.52)(π)(0.0254)(1)(10) = 2.81 kJ/s

With a given latent of evaporation of ∆Hv = 2,100 kJ/kg at 5 atm, vapor exits at a rate:

V = q/∆Hv = 2.81/2100 = 1.34 × 10–3 kg/s

The fraction evaporated is then:

x = V/F = 1.34 × 10–3/10–2 = 0.134

i.e., the quality of the exiting fluid is 13.4%.
We note that the heat transfer coefficient given by Equation 3.6.38 shows the

usual strong dependence on ∆Tb associated with boiling and is quite dissimilar in
form from other proposed relations including Equation 3.6.36. Such seemingly
contradictory expressions are quite commonplace in the formulation of boiling heat
transfer coefficients. This is unfortunate but has to be accepted as an unavoidable
factor in modeling.

Illustration 3.6.8 Film Condensation on a Vertical Plate

Although condensation is, like evaporation, a two phase phenomenon, it has con-
siderably simpler heat transfer characteristics than those seen in boiling. A distinction
is made between dropwise condensation in which the liquid does not wet the cooled
surface, and film condensation in which a smooth continuous film of liquid is formed.

− =dp
dz

K L VK K
1

2 3
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The former process has much higher heat transfer rates than film condensation
because of the direct exposure of the vapor to the cold surface and would, thus, be
the preferred mode of operation. In practice, however, dropwise condensation is
difficult to maintain since the droplets tend to coalesce into a more or less coherent
film before dropping off the surface. Film condensation is the principal mode to be
dealt with and has the advantage of being amenable to a relatively simple treatment.

An elegant analysis of film condensation on a vertical surface was first given
by Nusselt in 1916. The physical process considered is shown in Figure 3.31, and
the aim is to derive an expression for the local heat transfer coefficient which is a
function of film thickness h = k/δ(z).

A preliminary analysis is needed here to establish the variables and the balances
which make up the model. We argue as follows:

• A primary variable will be the flow rate L of the condensate, since it will
determine the thickness of the falling film. That flow rate is derived by a
balance of the shear and gravity forces acting on the descending conden-
sate and yields in the first instance the velocity distribution which can be
integrated to obtain the local flow rate L(z). The expression will contain
δ(z) as a second state variable as a result of the integration and a second
equation, at the very least, will be required.

• We turn to a mass balance, taken over an increment dz, as the logical
source for a second equation. That balance will contain the rate of con-
densation, dN, which is a new state variable since it depends on conduction
through the film thickness δ that is in turn a function of vertical distance.
Therefore, a third relation is required.

• We draw on the last available balance, that of energy, which equates the
liberated heat of condensation of dN to the rate of conduction through
the film thickness δ(z). No new variables are brought in and the model is
consequently complete.

The detailed sequence is as follows.

Force balance:
Here the diagram of Figure 3.31 reveals a subtlety which is not immediately

apparent. In addition to the obvious forces of gravity and the opposing viscous shear,

FIGURE 3.31 Variables and forces in filmwise condensation on a vertical plate.
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a third force, that of the buoyancy of the displaced vapor needs to be taken into
account. We obtain:

(3.6.39)

which upon integration between y = 0 (v = 0) and y leads to the distribution:

(3.6.40)

A second integration of this expression over the cross-sectional area of the film
assuming unit depth yields the local mass flow rate L(δ):

(3.6.41)

L = ρL(ρL – ρv)gδ3/3µ (3.6.42)

Mass balance:

or

dL = d[ρL(ρL – ρv)gδ3/3µ] = dN (3.6.43)

We refrain from integrating this expression since it is dN which will be required
in the energy balance and instead evaluate the differential. We obtain:

d[ρL(ρL – ρv)gδ3/3µ] = [ρL(ρL – ρv)gδ2/µ]dδ = dN (3.6.44)

Energy balance:

Rate of energy in – Rate of energy out = 0
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Upon introducing dN from Equation 3.6.43 and assuming a linear temperature
distribution in the film, there results:

[ρL(ρL – ρv)gδ2/µ]dδ∆Hv = kdz (Tv – Tw)/δ (3.6.45)

When this expression is integrated over z with the film thickness of the inlet δ(0)
set equal to zero, we obtain the desired film thickness distribution and, hence, the
local heat transfer coefficient h(z):

(3.6.46)

(3.6.47)

Nusselt also considered horizontal tubes and reported both results in terms of

mean integral film coefficients 

Vertical plate:

(3.6.48)

Horizontal tube:

(3.6.49)

Because ripples in the vertical film enhance heat transfer by about 20%, the
recommended coefficient for Equation 3.6.48 is 1.13.

Of note here is the dependence in both cases of h on (Tv – Tw)1/4. It is an inverse
dependence, in contrast to the free convection coefficient (see Illustration 3.3.7)
which varied directly with ∆T1/3.

Illustration 3.6.9 The Nonisothermal, Nonisobaric Tubular Gas 
Flow Reactor

Reaction rates of gases usually depend on the partial pressures of the components
and, hence, on their mole fractions yi and on total pressure PT. When this is the case
and pressure drop in the tubular reactor is significant, a mechanical energy balance
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has to be added to the usual mass and thermal energy balances. This balance contains
velocity v and density ρ as additional state variables so that a model of considerable
complexity may be expected. A systematic approach is needed to reduce the model
to more manageable proportions. We illustrate this with the following example.

Consider the reaction 2A → B + C, representative of the thermal cracking of a
hydrocarbon. The reaction rate has been reported as rA = kr(T) yA

2 PT
2 (mol/m3s)

and the reaction itself is endothermic. The model is expected to yield the distribution
in the reactor of reactant mole fraction yA(z). Some useful preliminary work can be
done to reduce the number of variables by using the stoichiometric relations.

Molar flow rates and molar masses:
Let nA(z), nB(z) and nC(z) represent the molar flow rates (mol/s) of the compo-

nents. We have from the stoichiometry of the reaction:

Total molar flow rate nT = nA
0 (feed rate)

and

(3.6.50)

An average molar mass Mavg is required for the mass density ρ contained in the
mechanical energy balance. We obtain:

Mavg = yAMA + yBMB + yCMC (3.6.51)

Since 2MA = MB + MC and yB = yC =  this converts to

Mavg = MA (3.6.52)

The model can now be developed further by setting up the balances, starting
with the mass balances.

Total mass balance:

nA
0MA = ρvA (3.6.53)

or equivalently,
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(3.6.54)

 

Reactant mass balance:

 

(3.6.55)

and upon going to the limit

(3.6.56)

 

Mechanical energy balance:

 

Since we are dealing with compressible flow, we draw on the differential form
of this balance given in Illustration 3.6.1:

(3.6.57)

 

ρ

 

 and v can be expressed in terms of the principal state variables T and P

 

T

 

 by

assuming ideal gas behavior  and using Equation 3.6.64. We obtain:

(3.6.58)

and

(3.6.59)

The mechanical energy balance then takes the form:

(3.6.60)

One notes here the dependence of pressure drop on both T and P

 

T

 

 brought about
by the effect of these variables on local velocity.
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Energy balance:
Here we obtain in the first instance:

(3.6.61)

Instead of making the necessary substitutions into the difference form, we show
the reader a slightly different approach by using the differential form dH – dq = 0,
and then decomposing dH into sensible heat and heat of reaction terms as usual.
Note that the kinetic energy term is omitted here — but not in the mechanical energy
balance — because of its small value relative to the thermal energy terms. We obtain:

(3.6.62)

where both the molar flow rates ni and the component molar enthalpies  are to
be differentiated. This yields:

(3.6.63)

where the molar flow rates are given by Equation 3.6.50 and their differentials by
the expressions:

(3.6.64)

Hence, the heat of reaction term becomes:

(3.6.65)

For the enthalpy differential, we have the usual form:

(3.6.66)

Combining Equations 3.6.62 to 3.6.66 and introducing the result together with
the auxiliary relation for dq into the energy balance (Equation 3.6.61), we obtain
the limit:

(3.6.67)
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In compact form, the total model now consists of the following three equations
in the three state variables: yA, T, and PT.

Mass balance:

(3.6.68)

Energy balance:

(3.6.69)

Mechanical energy balance:

(3.6.70)

with

where Ar is the pre-exponential factor of the Arrhenius equation.
We note that the product distributions yB(z) and yC(z) can, if desired, be recovered

from the relations:

(3.6.71)

and that partial pressures are obtained by multiplication of these quantities by total
pressure PT(z).

Temperature dependence of heat capacities and the heat of reaction can be
incorporated directly into the algebra of these expressions without the need for
differentiation. Friction factor f, on the other hand, can be considered constant since
G is constant and viscosity changes can usually be neglected. Similarly, the heat
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transfer coefficient undergoes only minor variations, since changes in the Prandtl
number with composition are usually small.

Practice Problems
3.6.1 Sonic Velocity in Steam: Discharge of Superheated Steam —

(a) Calculate the velocity of sound of saturated steam at 150°C, 475 kPa,
assuming ideal gas behavior. Cp = 34.8 J/molK under these conditions.

(b) Using the compressible flow chart, Figure 3.28, and assuming frictionless
flow, calculate the initial discharge mass velocity of steam from a tank
through a valve.

Answer: (a) 506 m/s

3.6.2 Propagation of an Explosion Pressure Wave — An explosion known to
generate a pressure of 15 atm creates a pressure shock wave that travels through air
with a given γ = 1.4, ρ = 1.2 kg/m3. Calculate the velocity of the shock.

Comments:
The pressure generated by the explosion, which was given here, can in principle

be derived from gas laws and the change in moles and volume that occur in the
course of the reaction. The resulting temperature, which also is required, is obtained
from an energy balance involving the heat of reaction.

3.6.3 Compressor Stations in Long Distance Natural Gas Transmission Lines
— Natural gas is transmitted through a 1 m diameter pipe at the rate of G = 800
kg/m2s. Pressure at the inlet is 50 atm. Calculate the maximum possible length of
pipe which will accommodate this flow before it has to be recompressed. Friction
factor is estimated at f = 0.002, and γ ≈ 1.4 for methane. What is the pressure at the
outlet?

Answer: LMax = 100 km; p2 ≅ 2.5 atm

3.6.4 Alternative Forms of the Energy Equation — Derive the alternative energy
balance (Equation 3.6.9) for gas flow in a medium of constant cross-section.

(Hint: Show that H = p/ρ + CvT and use the relations ρ = pM/RT, Cp – Cv = R.)

3.6.5 Derivation of the Rayleigh Line — The Rayleigh Line relates upstream and
downstream pressures and Mach numbers across a normal shock and is given by:

(3.6.72)

Derive this expression using Table 3.23. Note that the shock is of constant cross-
section and frictionless as well as adiabatic.

(Hint: Retain dq terms initially and then eliminate by division.)
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3.6.6 The Pitot Tube and Compressible Flow — The pitot tube is a device for
measuring gas velocities and utilizes the difference in pressure at the nose of the
tube (the so-called stagnation pressure ps), and that of the free stream po, see Figure
3.32). For incompressible flow, application of the Bernouilli equation leads to the
relation:

(3.6.73)

When the flow exceeds Ma = 0.2, and while the flow is still subsonic, compress-
ibility effects must be taken into account. Show that under these conditions the
following revised expression applies:

(3.6.74)

3.6.7 Enthalpy Change Across a Normal Shock: The Rankine-Hugoniot Rela-
tion — Show that the enthalpy change ∆H = Cp∆T across a normal shock is given
by the following expression, known as the Rankine-Huguenot relation:

(3.6.75)

3.6.8 Electrical Boiler — Water entering a tube at 105°C and a flow rate of 0.1
kg/s is to be brought to a boil and converted to steam with a quality of x = 10%.
Heat is supplied by an electrical coil wrapped around the tube and powered by 110
V. What is the total resistance of heating wire required? Assume a constant boiling
point of 105°C throughout the tube and ∆Hr = 2100 kJ/kg.

Answer: 0.58 Ω

3.6.9 Estimation of Water Boiler Length — A refined examination of the early
stages of forced convection boiling shows that initial bubble formation occurs when

FIGURE 3.32 The pitot tube for the measurement of gas velocities.
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the bulk fluid is still subcooled, i.e., below the boiling point. Once saturated boiling
conditions are reached in the bulk fluid, fully developed nucleate boiling takes place
which is independent of the flow velocity. Simple correlations of hb then apply that
depend only on the physical properties of the fluid and the temperature driving force.
For low pressure boiling of water up to 6.7 MPa and with constant physical properties
assumed, the suggested expression for heat flux is given by:

q/A = 2.253 (∆Tb)3.86 J/m2s (3.6.76)

Water enters a 2.54 cm tube at a flow rate of 0.1 kg/s, 25°C and 0.12 MPa
pressure. It is desired to estimate the length of tube required to produce steam of
5% quality at the exit, assuming that the subcooled boiling region is short and can
be neglected. Thus, only convective heating and nucleate boiling are to be considered.
∆Tb is set at 10°C and pressure drop is assumed negligible. ∆Hv = 2050 kJ/kg.

(Hint: Use the correlation given in Table 3.10 to calculate the length of the heat-
up section and Equation 3.6.76 for the boiling section.)

3.6.10 Annular Condensation in a Vertical Tube — Use the Nusselt film conden-
sation model to derive the local heat transfer coefficient for condensation inside a
small tube where the film builds up as an annulus.

3.6.11 Condensation on a Bank of Horizontal Tubes — A square array of 10 ×
10 1 m long tubes of 1.27 cm diameter is to be used to condense atmospheric steam
on the exterior surface of the tubes. The wall temperature is 98°C. Calculate the
mass of steam condensed per unit length. Use 10 d in Nusselt equation.

Answer: 100

3.6.12 Cracking of Acetone Vapor — Acetone is cracked in the first stage of acetic
anhydride manufacture forming methane and gaseous ketene.

(CH3)CO = CH4 + CH2 = CO

The reaction is endothermic and is to be carried out in a furnace held at Text. Set up
the appropriate mass and energy balances.
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4

 

Ordinary Differential 
Equations

 

There is no Applied Mathematics, without
Mathematics to Apply.

 

Anonymous

 

Differential equations arise, as we had seen, whenever a state variable such as
temperature, concentration, pressure, or velocity varies in time or space. The state
variables are usually the dependent variables in such systems, while time or distance
become the independent variables. Some exceptions to this rule may occur, e.g.,
when distance is used to describe the time varying mass or volume of an entity (see
Chapter 2, Illustration 2.6 and Chapter 3, Illustration 3.3.12). Or one may eliminate
time or distance by dividing two differential equations so that one of the previously
dependent variables now becomes, in form at least, an independent variable (see
Chapter 3, Illustration 3.3.2). These exceptions are few in number and in general
the original definitions given above apply.

A distinction also is made between ordinary differential equations (ODEs) which
contain only one independent variable, and partial differential equations (PDEs)
which have two or more such variables. The latter are addressed in Chapters 7 to 9.

The present chapter starts with a classification of ODEs as to order, linearity,
homogeneity, and other properties. The boundary and initial conditions that are an
indispensable part of a differential equation are examined next and related to the
underlying physics of the ODEs. We take up some classical analytical solution
methods for both linear and nonlinear ODEs followed by a brief survey of numerical
methods. The important solution method of the Laplace transformation is dealt with
in Chapter 5.

We conclude Chapter 4 by introducing the reader to some important tools of
nonlinear analysis and examine some associated topics such as bifurcations, multiple
solutions, and attractors. As usual each section is amplified with Illustrations and
Practice Problems.

 

4.1 DEFINITIONS AND CLASSIFICATIONS

4.1.1 O

 

RDER

 

 

 

OF

 

 

 

AN

 

 ODE

 

The order of a differential equation is that of its 

 

highest

 

 derivative. Thus, the equation
which arose in connection with isothermal diffusion and reaction in a catalyst pellet:
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(3.2.41)

is a second order ODE in the concentration variable C

 

A

 

.
Our task is considerably eased by the fact that most ODEs which arise in

engineering and the physical sciences are either first or second order. In particular are

• All unsteady integral balances and all steady-state differential balances

 

without

 

 molecular or diffusive transport lead to first order ODEs.
• Steady-state balances 

 

with

 

 molecular transport, i.e., those involving Fick’s
law, Fourier’s law, or Newton’s viscosity law, usually yield second order
ODEs. In general, whenever the auxiliary relations already contain a
derivative, incorporation in a differential balance will increase their order
by one, thus resulting in an ODE of higher order.

• Second and higher order ODEs also arise when combining several first
order ODEs. We had seen this in the case of the countercurrent heat
exchanger where the model initially took the form:

(3.3.7)

and

(3.3.8)

Solving Equation 3.3.7 for the shell-side temperature T

 

s

 

 and substitut-
ing the result into Equation 3.3.8 enabled us to reduce the system to a
single, but higher order ODE of the form:

(3.3.15)

We note in this connection that whenever an 

 

analytical

 

 solution is
being sought, combining lower order ODEs in this fashion is a fruitful
approach. In 

 

numerical

 

 work, on the other hand, the reverse procedure is
often preferred, i.e., one decomposes higher order equations to a set of
equivalent first order equations. This is done in order to take advantage
of Standard ODE Solver Packages (e.g., Runge-Kutta Routines) which
are specifically designed to solve sets of first order ODEs.

• ODEs of order higher than 2, although less common, also arise in certain
areas of fluid and solid mechanics. Some examples of these are taken up
in Chapters 5 and 7.
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4.1.2 L

 

INEAR

 

 

 

AND

 

 N

 

ONLINEAR

 

 ODE

 

S

 

This distinction and categorization is of great importance in determining the method
of solution and indeed the ease of solution of an ODE by analytical means. Thus,
a host of methods exist and can be applied without undue difficulty to solve linear
ODEs. This is primarily due to the fact that one can make use of the important
Superposition Principle which in essence states that the general solution of a linear
ODE can be composed of the sum of all 

 

independent

 

 particular solutions. In systems
of nonlinear ODEs, this important principle is lost and one must resort to ad hoc
methods that lack generality and are relatively few in number.

An 

 

informal

 

 definition of linear ODEs is that all 

 

dependent

 

 variables and their
derivatives must appear in linear form, i.e., they are not multiplied or divided by
each other, or raised to a power other than 1. A more 

 

formal

 

 definition consists of
the requirement that the ODE must satisfy the following two conditions.

Given an ODE f(y

 

(n)

 

 … y

 

1

 

, y, x) = 0 and two particular solutions y

 

1

 

 and y

 

2

 

. Then if

f[y

 

1

 

(x) + y

 

2

 

(x)] = f(y

 

1

 

) + f(y

 

2

 

) (4.1.1)

and

f(ky) = kf(y) (4.1.2)

the ODE is said to be linear.
Note that these definitions do not require the 

 

independent

 

 variable to be linear.
In fact, the latter can be as complex as one likes without violating the Superposition
Principle. Some examples:

In physical systems, nonlinearities are most often brought into the model by
nonlinear auxiliary relations and physical properties. We have summarized those of
most common occurrence and their sources in Table 4.1.
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Two additional points are worth noting. In our previous illustrations, we were
able to arrive at analytical solutions even when the underlying equations were
nonlinear (see, e.g., Chapter 3, Illustration 3.2.8 and Equations 3.2.76 and 3.2.78).
The reason for this was that we were able to integrate the ODEs by separation of
variables which applies quite generally to both linear and nonlinear separable and
first order ODEs. The second point concerns numerical solution methods. These are
usually unaffected by nonlinearities and are capable in principle of solving both
linear and nonlinear ODEs with almost equal ease. They are, however, more prone
in the nonlinear case to instabilities and other aberrations. Modern software packages
are often able to overcome these difficulties.

 

4.1.3 ODE

 

S

 

 

 

WITH

 

 V

 

ARIABLE

 

 C

 

OEFFICIENTS

 

This classification denotes differential equations in which the coefficients of the

 

derivatives

 

 are functions of the 

 

independent

 

 variable, i.e., not constant. The classi-
fication is usually only applied to linear ODEs of order greater than one.

The reason for making a distinction between ODEs with constant and variable
coefficients lies in the difference in analytical solution techniques which have to be
applied. In the former case, the classical D-Operator Method, the Laplace Transfor-
mation or the Method of Eigenvalues are the tools of choice, and the solutions are
usually expressed in terms of simple trigonometric or exponential functions. In the
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case of ODEs with variable coefficients, these methods become inconvenient or
inapplicable. One then resorts to a solution in infinite power series that give rise to
new classes of functions, such as the Bessel and Legendre functions.

Variable coefficient differential equations most commonly arise in mass or
energy balances involving molecular or diffusive transport through a 

 

variable

 

 area,
e.g., radially in a cylinder, sphere, or circle. Both area A and the gradient du/dr have
to be differentiated in this case yielding coefficients which vary with radial distance.
Thus, for diffusion and reaction in a spherical catalyst pellet we had (Chapter 3,
Illustration 3.2.3):

(3.2.41)

Note that this equation is still linear since the nonlinear term 1/r is a function
of the independent, not the dependent variable. However, if the order of the reaction
rate k

 

r

 

C

 

A

 

 is changed, e.g., to k

 

r

 

C

 

A
2

 

, the equation becomes nonlinear.

 

4.1.4 H
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S

 

A 

 

linear

 

 ODE that does not contain an isolated function of the independent variable,
f(x) or an isolated constant, is termed 

 

homogeneous

 

. When this is not the case, the
equation is said to be 

 

nonhomogeneous

 

. Thus,

(4.1.3)

and

(4.1.4)

are homogeneous ODEs.
Examples of nonhomogeneous equations are
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(4.1.6)

and more generally,
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The nonhomogeneous terms appearing on the right side of these equations are
commonly referred to as 

 

forcing functions 

 

and their functional form has a direct
impact on the form of the solution. They are usually associated with time-dependent
models and, hence, appear extensively in Process Control Theory and other areas
dealing with dynamic systems.

The preferred solution method of nonhomogeneous as well as homogeneous
time-dependent equations is the Laplace Transformation. Nonhomogeneous ODEs
also can be solved by adding a particular integral to the solution of the homogeneous
ODE. This latter method is taken up in a subsequent section while the Laplace
Transformation is deferred to Chapter 5.

 

4.1.5 A

 

UTONOMOUS

 

 ODE

 

S

 

These equations can be linear or nonlinear and are characterized by an absence of
terms in the independent variable other than the derivatives themselves. When this
is not the case, they are said to be 

 

nonautonomous

 

. Examples of both classes which
are usually converted to first order systems, appear below:

(4.1.8)

or for a set:

(4.1.9)

(4.1.10)

or for a set:

(4.1.11)

where we use a vector-matrix notation to generalize the classes to sets of simulta-
neous equations.

What prompts this classification is again a marked difference in the form of the
solutions, as well as in the analytical solution methods. Thus, single autonomous
ODEs are immediately integrable by separation of variables and, if linear, by Laplace
Transformation as well. Nonautonomous equations are solved by special analytical
techniques unless separable or by numerical techniques.

 

Illustration 4.1.1 Classification of Model ODEs

 

We undertake here the classification of model ODEs which were encountered in
previous illustrations. We establish their order and distinguish between linear/non-
linear equations, homogeneous and nonhomogeneous forms, second order ODEs
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with constant and variable coefficients, and autonomous/nonautonomous behavior.
From Chapter 2 we have

 

The surge tank:

 

(2.2)

The equation is first order in the tank contents W and is linear with nonhomo-
geneous terms F

 

1

 

(t) and F

 

2

 

(t). F

 

1

 

(t) can be viewed as a forcing function and the
equation is seen to be nonautonomous.

 

The steam-heated tube:

 

(2.15)

This is a linear first order ODE in the tube temperature T

 

t

 

. It is nonhomogeneous
because of the steam-side term U

 

π

 

DT

 

s

 

, but autonomous since no terms in z appear
in it.

From Chapter 3 we have:

 

The isothermal catalyst pellet:

 

(3.2.41)

 

The nonisothermal catalyst pellet:

 

(3.5.12)

Both of these equations are second order ODEs in C
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, homogeneous and with
variable coefficients. The principal difference in the two is that Equation 3.2.41 is
linear, while Equation 3.5.12 is nonlinear by virtue of the exponential dependence
of k
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 on temperature (Arrhenius equation) and because of the term k

 

r

 

(T)C

 

A

 

 which
is the (nonlinear) product of functions of two state variables.

 

4.2 BOUNDARY AND INITIAL CONDITIONS

 

Boundary and initial conditions (BCs and ICs), usually expressed as equations, are needed
to evaluate integration constants and to provide starting values for numerical integration
procedures. The number of such conditions required equals the order of the ODE.

 

For first order ODEs

 

, these conditions are usually identified from the prevailing
values of the state variables at position z = 0 or time t = 0. Some typical examples
of the information used to obtain these conditions are the following:
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• Concentration, pressure, and temperature of the feed to a tubular reactor
• Initial level, concentration, or temperature of a stirred tank
• Initial velocity and position of a falling or rising particle
• Initial velocity and position of an oscillating system (pendulum, mass on

spring)
• Inlet pressure, velocity, and temperature in compressible duct flow

When all the conditions required for a set of first order ODEs are given 

 

at the
same point in time or space

 

, one speaks of the problem as being an initial value
problem, or IVP. All of the examples cited above are related to initial value
problems. Also in this category are multiphase contacting devices in co-current
flow, such as co-current heat exchangers. When flow is counter-current, the bound-
ary conditions are generally given at opposite ends of the device. In these cases,
i.e., when the required boundary conditions are only known at different locations,
one speaks of a 

 

boundary value problem,

 

 or BVP. Such problems arise in a good
many other physical processes. Analytical solution methods do not make a special
distinction between IVPs and BVPs and can be applied with equal ease to either
case. In numerical work, one generally has to know the value of 

 

all

 

 state variables
at z = 0 or t = 0 in order to initiate the integration procedure. Hence, most standard
ODE solver packages are designed to handle IVPs only. To solve BVPs, special
solution methods must be resorted to which are discussed in greater detail in
Section 4.4.

For second order ODEs, one requires two boundary conditions and these are
frequently given at a different location, resulting in a BVP. A typical example is the
ODE which describes diffusion and reaction in a catalyst pellet, Equation 3.2.41.
Figure 4.1A shows the boundary conditions for a spherical pellet with no external
film resistance. A first boundary condition (BC) is immediately obtained at the pellet
surface where C

 

A

 

(R) = C

 

Ab, the prescribed or known surface or bulk fluid concen-
tration, CAb. For the second BC, one argues that since the concentration profile must
be symmetrical about the center, the derivative dCA/dr at that point will be zero.
Alternatively the same condition may be deduced from the fact that the mass flux
at the center is zero, hence (dCA/dr)r=0 = 0.

The type of BCs used has a significant impact on the form of the solution and
this has led to a formal classification of boundary conditions depending on whether
they contain the state variable, its derivative alone, or a combination of the two. The
resulting classes of BCs, their nomenclature, and their occurrence are tabulated in
Table 4.2.

Using this table and the example of the catalyst pellet shown in Figure 4.1A,
we see that it has a Type I boundary condition at the surface and a Type II condition
at the center. For the catalyst pellet with film resistance, shown in Fig 4.1B, the
center boundary condition is retained while the surface BC now becomes a Mixed-
Type or Type III condition. Note that the latter is obtained by equating convective
transport of reactant through the film to diffusive transport away from the surface
and into the interior. Thus,

Type III BC:
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(4.2.1)

4.2.1 SOME USEFUL HINTS ON BOUNDARY CONDITIONS

It is frequently sufficient to formulate a Boundary Condition as “y is finite at z =
L” or “y is bounded at y = L,” rather than specifying actual values of the state
variable or its derivatives at that position. For example, in the frequently encountered
solution for a bounded state variable y:

y = C1 exp (kx) + C2 (exp – kx) (4.2.2)

the integration constant C1 can be easily evaluated by invoking the boundedness
condition:

FIGURE 4.1 Example of a physical system with BCs of Type I, II, and III.

k R C C R D R
dC

drAb A eff
A

r R

4 42 2π π−[ ] =
=

( )

Rate of transport
through film

Rate of diffusion
into interior
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y|x→∞ = finite (4.2.3)

i.e., C1 must perforce be zero.
The boundary condition dy/dx = 0 arises, as we have seen, whenever a profile

is symmetrical or when the diffusive flux is zero. There are numerous physical
situations in which one or the other of these conditions applies including:

• dv/dr|r=0 = 0 in viscous flow of a fluid in a pipe (symmetry)
• dC/dr|r=0 = 0 in a cylindrical or spherical catalyst pellet (symmetry)
• dT/dr|r=0 = 0 in a cylindrical or spherical nonisothermal catalyst pellet

(symmetry)
• dT/dz|z=L = 0 at an insulated surface (zero flux)
• dp/dz|z=L = 0 in a porous duct with one end sealed (zero flux)

Application of boundary conditions of Type III leads to awkward and lengthy
expressions involving both state variables and their derivatives. This can be avoided
by “bracketing” the exact solution with a Type I BC representing zero film resistance
and a Type II condition dy/dx = 0 representative of infinite resistance. The technique
is often invoked when the only solutions available are those for Type I and Type II
conditions.

Boundary conditions involving higher order derivatives arise in certain problems
of Solid Mechanics. An example of these appears in Chapter 5, Illustration 5.2.5.

Illustration 4.2.1 Boundary Conditions in a Conduction 
Problem: Heat Losses from a Metallic Furnace Insert

A cylindrical metallic rod, such as a bolt or a sampling port, extends from the exterior
metal sheet cover of a furnace, well into its interior where it is exposed to high
temperatures. Heat is conducted from the hot end of the insert to the head at the
exterior of the furnace. Some heat is lost from the head itself to the surrounding air,
but a more important cumulative loss occurs due to conduction radially through the
metal sheet cover and from there by convection and radiation to the atmosphere.
The aim here is to set up the model equation and establish the associated boundary
conditions.

We consider a circular difference element r, r+∆r and write:

TABLE 4.2
Types of Boundary Conditions

Type Nomenclature Property Occurrence

I BC of type I Contains y only y specified at a particular location
II BC of type II Contains dy/dx only Profile symmetrical; constant or zero 

diffusional flux
III BC of type III or mixed type Contains dy/dx and y Diffusional flux with film resistance
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(4.2.4)

where L = metal sheet thickness. Upon dividing by 2πkL∆r and going to the limit
∆r → 0, we obtain:

(4.2.5)

Note that in arriving at this result, the product of conductive area and temperature
gradient has to be differentiated.

Consider next the two boundary conditions required to solve the problem. A
first condition is obtained at the rim r = R of the insert head. The exact value of the
temperature at this location is not known but will be set equal to the temperature in
the interior of the furnace. This procedure yields the maximum possible heat loss
and avoids setting up a second energy balance along the bolt with uncertain values
for the heat loss to the surrounding firebrick insulation.

The second boundary condition must be established at a location away from the
insert head, and here we enter somewhat uncertain territory. An attractive argument
is to say that at a sufficiently large distance from the bolt head the cover sheet
temperature will approach that of the ambient air — unless another bolt intervenes!
Alternatively we could content ourselves with the statement that the temperature
remains bounded, i.e., Tr→∞ = finite. Whether this is sufficient information to evaluate
the integration constant can only be established from the actual solution of the
equation.

4.3 ANALYTICAL SOLUTIONS OF ODES

While numerical methods have by now become the standard tool for the solution of
ODEs, particularly of nonlinear sets, analytical techniques are far from being obso-
lete and continue to maintain a strong presence and hold in the field. There are
several reasons for this. Foremost among them is the fact that analytical methods
are unsurpassed in providing a general and precise sense of solution behavior and
in linking it to the physics of a process. An important example is the solution of
second order linear and nonautonomous (i.e., forced) systems. Here the analysis and
solution of a single ODE gives us a clear picture of the transition of exponentially
decaying solutions to oscillatory behavior and provide precise criteria for the occur-
rence, usually undesirable, of exponential growth in the state variable (see Section

Rate of energy in Rate of energy out

q
q q

q

k rL
dT
dr

k rL
dT
dr

h r r T T r r T T

cond r
cond r r conv

rad

r r r
a a

− =

− +
+









 =

−





 − −



 + − + −






 =

+

+

0

0

2 2 2 2 04 4

|

( ) ( )

∆

∆
∆ ∆π π π εσ π

d T
dr r

dT
dr

h
kL

T T
kL

T Ta a

2

2
4 41

0+ − − − − =[( ) ( )]
εσ

248/ch04/frame  Page 213  Friday, June 15, 2001  6:58 AM

© 1999 By CRC Press LLC



4.3.2). Such linear responses, as they are often called, are the logical starting point
for the analysis of more complex nonlinear phenomena. In nonlinear analysis, to be
taken up in Section 4.5, one dispenses with precise solutions of the ODEs and
attempts instead to define domains in which certain types of behavior occur. This
is often of greater interest and benefit than precise numerical response data for a
specific set of initial or boundary conditions.

Analytical solutions and criteria also are indispensable in numerical work. Here
they provide precise and proven expressions against which the numerical solution
to a particular problem can be tested. This is a sound practice, given that numerical
methods can, in spite of all refinements and safeguards, lead to unstable and other
aberrant behavior.

We commence this section by providing the reader with a list, shown in Table
4.3 of the more important classical ODEs which arise in various fields of science
and engineering and are associated with the names of famous mathematicians. They
have been the subject of detailed analyses and a good deal of their general behavior
is well known. In Table 4.4, we have added a summary of classical analytical

TABLE 4.3
Important ODEs

Name Form Occurrence

A. Linear ODEs
1. Airy equation y″ + xy = 0 Quantum mechanics, diffraction 

of waves
2. Cauchy-Euler equation x2y″ + bxy + cy = 0 Solution of PDEs
3. Bessel equation Radial diffusive transport in 

circle or cylinder, vibrations of 
circular membranes

4. Legendre equation (1 – x2)y″ – 2xy′ + n(n + 1)y = 0 Diffusive transport in sphere
5. Laguerre equation xy″ + (1 – x)y′ + cy = 0 Solution of PDEs
6. Hermite equation y″ – 2xy′ + λy = 0 Wave mechanics

B. Nonlinear ODEs
7. Bernoulli equation y′ + f(x)y – g(x)yn = 0 Nonlinear electrical circuits
8. Riccati equation y′ + f(x)y + g(x)y2 = h(x) Intermediate result in various 

engineering problems
9. Duffing equation Electrical oscillations

10. van der Pol equation Electrical and biological 
oscillations

11. Lotka-Volterra (predator-
prey) model

Population growth

12. Lorenz attractor Free convection flow, chaos
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TABLE 4.4

 

 

 

Analytical Solutions of ODEs

 

System Solution

A. Major Methods

 

1. Separable ODEs By separation of variables
y
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constant coefficients
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with constant coefficients
Solution of homogeneous ODE + particular 
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 (see Table 4.7 for listing of y
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4. Linear homogeneous second order ODEs with 

variable coefficients
By power series
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 + c(x)y = 0

5. Sets of linear first order initial value ODEs with 
constant coefficients

By Laplace transformation (see Chapter 5)

 

B. Other Methods

 

6. Linear first order nonhomogeneous ODE with 
variable coefficients

Directly given by formula
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(a) by substitution y = v x If substitution yields ODE in v,x only, the solution 
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(b) ODE is exact, i.e., Directly given by formula

(c) ODE is 
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 exact by multiplication by an 
integrating factor

See Table 4.9 for list of integrating factors

8. Nonlinear second order ODE with first 
derivative and terms in x missing.
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solutions of various types of 

 

single

 

 ODEs. A distinction is made between Major
Methods which are encountered with great frequency in the sciences and in engi-
neering, and Other Methods of somewhat less frequent occurrence. Among the Major
Methods, Laplace transformation has been singled out for separate treatment in
Chapter 5 because of its overriding importance and wide scope in the treatment of
linear first order initial value problems.

 

4.3.1 S

 

EPARATION

 

 

 

OF

 

 V

 

ARIABLES

 

This is a powerful and sometimes underrated method for solving both linear and
nonlinear first order ODEs. It is the only method used so far in this text to solve a
wide range of physical problems, a fact which attests to its power and versatility.
In particular, we were able to solve the following by separation of variables.

• Stirred tank problems of various types, see Illustrations 2.4, 2.6, 3.2.3,
3.2.6, and 3.2.7, among those in early chapters.

• Steady-state differential balances: Thermal Treatment of Steel Strapping
(Illustration 2.5), Drying of Plastic Sheets (Illustration 2.7), Tubular Reac-
tor (Illustration 3.2.4), and Solute Release from a Tubular Wall (Illustra-
tion 3.2.9).

The following points and recommendations are submitted to the attention of the
reader:

• Separation of variables is the preferred method of solving single ODEs
and is always to be tried first.

• Single second order ODEs may be amenable to solution by separation of
variables provided one of the boundary conditions is given in terms of
the first derivative (see Item 1 in Table 4.4).

 

9. Nonlinear second order ODE with missing 
dependent variable
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 and attempt integration by one of 
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integration
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TABLE 4.4
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Analytical Solutions of ODEs
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• ODEs which at first glance appear to defy separation of the variable may
by proper manipulation be reduced to separable form. An example of this
is given in the following illustration.

Illustration 4.3.1 Solution of Complex ODEs by
Separation of Variables

Consider the following first order ODE:

(4.3.1)

This equation is highly nonlinear, not because of the exponential terms which
are in x, but by virtue of the y3 term as well as the expression sin y(dy/dx). The
equation does not at first sight appear to be separable. The situation is improved,
however, by factoring out ex and collecting terms. We obtain:

(4.3.2)

which is clearly separable. Formal integration leads to the result:

(4.3.3)

Analytical evaluation of the left side is easily accomplished; that of the right
side is more problematical. One has to resort to numerical methods and the question
then arises whether these are not better applied at the source, i.e., at the ODE level.
The answer here is no. The integrated form (Equation 4.3.3), although not fully
evaluated, provides a better picture of the solution. In particular, it enables us to
identify conditions on y which leads to a divergence of the integral. These may occur
when y3 + y – y/1 – y goes to zero. In practice it is preferable to deal with integrated
expressions, if attainable, rather than the ODE itself.

In Chapter 6, Illustration 6.1.7, we encounter a nonlinear ODE of the form:

du/dτ = au2 – bu + c (6.1.56)

Literature treatments of this equation identify it as a Riccati equation (Item 8,
Table 4.3) and apply the solution methods pertinent to that form. In fact the equation
is easily integrated by separation of variables. Furthermore, the solution which
involves the roots of the quadratic in Equation 6.1.56 is amenable to simple asymp-
totic analysis. It is, of course, more impressive and fashionable to identify the ODE
(Equation 6.1.56) as a Riccati equation, but in the end less fruitful.
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Illustration 4.3.2 Repeated Separation of Variables:
The Burning Fuel Droplet as a Moving Boundary Problem

In the combustion of liquid fuels, the rate-determining step is frequently taken to
be the rate of heat transfer through the stagnant gas film. Heat is conducted through
this film to the drop surface where it vaporizes the fuel. Fuel vapor in turn diffuses
to the flame front where the actual combustion takes place. The fuel droplet is
assumed to be at its boiling point T1, the flame front at a constant and known
temperature, T2 (see Figure 4.2).

The droplet size variation with time has been established experimentally to be
of the form:

R1
2 = (R1

0)2 – αt (4.3.4)

where R1
0 is the initial droplet radius.

The model solution is to be used to verify this expression and to relate the
constant α to physical parameters of the system.

An outline of the preferred procedure for solving moving boundary problems
was given in Illustration 3.3.12. Typically one starts with a mass or energy balance
about the core which is assumed to have uniform properties and proceeds outward
into the film which is assumed to be at quasi-steady-state conditions. We obtain:

Core mass balance:

(4.3.5)

Core energy balance:

(4.3.6)

FIGURE 4.2 Configuration of a burning liquid fuel droplet.
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where F = rate of vapor formed (kg/s), and HV,L = vapor and liquid fuel enthalpies.
Taking the liquid enthalpy HL as the reference state and using the appropriate

auxiliary relation for q, we obtain from Equation 4.3.6:

(4.3.7)

Quasi-steady-state differential energy balance in gas film:

or equivalently,

dq – dH = 0 (4.3.8)

which upon introduction of the relevant auxiliary relations yields:

(4.3.9)

Note that conduction takes a double negative sign since it takes place in the negative
direction.

This expression can be directly integrated from the surface of the droplet (R1,
T1) to some arbitrary position (r, T). We obtain:

(4.3.10)

A second integration is performed, this time by separation of variables. This
yields the result:

(4.3.11)

and

(4.3.12)

k R
dT
dr

F Hv
R

v4 01
2

1

π 



 − =∆

Rate of energy in Rate of energy out

H q H qr r r r r r

− =

+ − + =+ +

0

0[ | | ] [ | ]∆ ∆

d k r
dT
dr

d FC T TV pV− −



 − − =4 02

0π [ ( )]

k r
dT
dr

k R
dT
dr

FC T TV V
R

pV4 42
1

2
1

1

π π− 



 = −( )

dr
r

dT

K T T R
dT
dr R

T

T

R

R

2

1 1
2

1

1

2

1

2

=
− + 





∫∫
( )

1 1 1
1

1 2

2 1

1
2

1

R R K

T T

R K
dT
dr R

− =
−






+



















ln
( / )

248/ch04/frame  Page 219  Friday, June 15, 2001  6:58 AM

© 1999 By CRC Press LLC



where K = FCpV/4πkV. Note that in this integration both R1 and  are held
constant by virtue of the steady-state assumption.

We pause at this point for a brief inventory. The model equations on hand are
now three in number: the core mass balance (4.3.5), the core energy balance (4.3.7),
and the integrated steady-state gas film energy balance (4.3.12). The associated
unknown state variables are F,  and R1 of which we wish to retain only
R1. Elimination of F and  from these three equations and a formal second
integration by separation of variables leads us to:

(4.3.13)

One notes that in order to satisfy the experimental finding, Equation 4.3.4, the
right-side integral must yield the form R1

2, i.e., the ratio of inner to outer radius
R1/R2 has to be a constant. This is an acceptable assumption, given that the flame
front recedes in proportion to the shrinking fuel core.

We now finalize the result by carrying out the indicated integration and obtain
after rearrangement:

(4.3.14)

where kpV, CpV = thermal conductivity and heat capacity of the vapor, ∆Hv = latent
heat of vaporization, and T1, T2 = boiling point of fuel and temperature of the flame
front, respectively. Most of these physical parameters are readily available. The
unknown flame temperature T2 is arrived at by equating heat of vaporization and
sensible heat of fuel vapor to the heat of combustion, i.e., by performing an integral
energy balance. This leaves the ratio of radii R1/R2 which has to be obtained by fitting
at least one set of experimental data to the Equation 4.3.14. This has in one case
yielded a value of R1/R2 = 0.48, an acceptable number for the geometry in question.

Comments:
We have succeeded in this example in modeling a process that, to the uninitiated

at least, is one of considerable complexity. Let us summarize the features which led
to a successful solution of the problem.

1. The principal simplifying step was the use of the combination of a uniform
shrinking core tied to an external vapor film taken to be at a quasi-steady
state. This resulted in a decoupling of the process into three ODEs, two
of them in time t (Equations 4.3.5 and 4.3.6) and one in distance r1

(Equation 4.3.9).
2. A second step was the recognition that the ODEs could be solved in

succession and independent of each other, and that this could be done by
a double application of the method of separation of variables. Note that
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inner and outer radii R1 and R2 were quasi steady-state variables in this
process and that the initial radius R1

0 was only brought in at the last
integration step, Equation 4.3.13.

3. The solution was aided considerably by adopting a systematic procedure
that started with balances around the core and then moved outward into
the gas film. Along the way we kept a running account of the number of
dependent variables and the number of equations. When the two were
equal, we stopped adding new equations and decided which variables to
eliminate. This process led to the final result, Equation 4.3.14.

4. The solution we obtained, (Equation 4.3.14), can be adapted to other fuel
systems as well, using the relevant physical parameters and flame tem-
perature. Although the ratio R1/R2 may differ among systems, the change
is not expected to be major so that the value of ~0.5 can be used as a
good first approximation.

4.3.2 THE D-OPERATOR METHOD: SOLUTION OF LINEAR NTH 
ORDER ODES WITH CONSTANT COEFFICIENTS

We start this section with an example that we use to introduce the reader to the
concept of characteristic roots or eigenvalues of a linear ODE, and to the important
superposition principle. Consider the equation:

(4.3.15)

A relative novice to the field might attempt a solution by substituting trial
functions into the ODE and seeing whether the ODE is satisfied. It might further be
argued that since the equation is a second order one, two boundary conditions will
have to be satisfied, hence, two integration constants will have to be evaluated. These
integration constants must be associated with two independent functions, for if they
were not, the two constants would coalesce into a single one and we would be unable
to satisfy the two boundary conditions.

Let us attempt a solution with some simple trial functions. Neither sin x nor
cos x satisfy Equation 4.3.15. However, both ex and e–x do, and furthermore they
are independent of each other. One might, therefore, formulate a general solution
of the form:

y = C1 ex + C2 e–x (4.3.16)

This sum also satisfies the ODE. Thus, we have, somewhat inadvertently,
discovered the superposition principle, at least as it applies to this example. That
principle in essence states that the general solution to a nth order linear ODE is
composed of the sum of n independent functions. Uniqueness of the solution is
guaranteed by uniqueness theorems which are described in most texts dealing
with ODEs.

d y
dx

y
2

2 0− =
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If one were to conduct extensive trials of this type, one would discover that the
solution of any linear homogeneous ODE with constant coefficients, of whatever
order, is always composed of the sum of exponential functions with either real or
imaginary arguments. Early workers in the field were well aware of this fact. They
also had noted a precise connection between the (constant) coefficients of the ODE
and those of the arguments of the exponential functions. This led to the development
of a formalism known as the D-Operator Method. In it, the operational part of a
derivative, that is d/dx, is replaced by the operator symbol D, and that symbol treated
as an algebraic entity, subject to the usual rules of algebra. Equation 4.3.15 can then
be written in the form:

(D2 – 1)y = 0 (4.3.17)

Equivalently,

D2 – 1 = 0 (4.3.18)

with the solutions:

D1 = 1, D2 = –1 (4.3.19)

The Equation 4.3.18 is termed the characteristic equation of the ODE and its
solution its characteristic roots. These roots are identical to the coefficients of the
arguments of the exponential functions in Equation 4.3.16.

Table 4.5 lists a compilation of characteristic roots and the corresponding solu-
tions for the most frequently encountered case of a second order ODE. For real and

TABLE 4.5
Solutions of the Second Order ODE ay″″″″ + by′′′′ + cy = 0

Characteristic Roots or Eigenvalues Solution

1. Distinct and real: D1,2

or y = C1′ sinh D1x + C2′ cosh D2x
2. Identical and real: D1 = D2 = D y = C1eDx + C2xeDx

3. Imaginary: C1,2 = ± bi y = C1ebix + C2e–bix

or y = C1′ cos bx + C2′ sin bx
4. Complex conjugate: D1,2 = a ± bi y = C1e(a+bi)x + C2e(a–bi)x

or y = (C1′ cos bx + C2′ sin bx)eax

Euler’s formula

eix = cos x + i sin x

y C e C eD x C x= +1 2
1 2

sinh ( )

cosh ( )

x e e

x e e

x x

x x

= −
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distinct roots, the solution is the sum of the corresponding exponential functions
which also can be expressed in terms of equivalent hyperbolic functions. When the
roots are identical, one of the exponential functions is premultiplied by the indepen-
dent variable. Exponential functions with imaginary arguments that result from
complex conjugate characteristic roots are converted to trigonometric functions with
real arguments using the Euler formula given in the table.

These characteristic roots also can be obtained by matrix methods. To accomplish
this we decompose the nth order equation into an equivalent set of n first order
ODEs and evaluate the eigenvalues λi of the coefficient matrix. For Equation 4.3.15,
we obtain the equivalent set:

(4.3.20)

for which the coefficient matrix is given by:

(4.3.21)

The eigenvalues follow from the relation:

(4.3.22)

or equivalently,

(4.3.23)

Hence, λ2 – 1 = 0 and λ1,2 = ± 1. The eigenvalues of the coefficient matrix of
the set of two first order ODEs (Equation 4.3.21) are thus seen to be identical to the
characteristic roots of the corresponding second order ODE (Equation 4.3.14).

Illustration 4.3.3 The Longitudinal Heat Exchanger
Fin Revisited

We return here to the lengthwise heat exchanger fin we had first considered in
Illustration 3.3.4. The ODE for the temperature distribution we derived there was
given by:

(3.3.31)
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where Th and Tf were the (hot) shell side and the fin temperature, respectively.
This is a linear and homogeneous second order ODE with constant coefficients

that can be solved by the D-operator or eigenvalue methods. We choose the former
and write, in equivalent operator notation,

(D2 – m2)y = 0 (4.3.24)

where m2 = 2hf/kW and the characteristic roots are given by D1,2 = ± m. These are
real and distinct and lead to the general solution (see Table 4.5):

Th – Tf = C1 exp (mx) + C2 exp (–mx) (4.3.25)

The two boundary conditions were discussed in the original illustration and are
given by:

(4.3.26)

We obtain, from BC 1

[–mC1 exp(–mx) + mC2 exp(mx)]x=0 = 0 (4.3.27)

∴ C1 = C2 (4.3.28)

From BC 2, we have

Th – Tf = C1[exp(–mL) + exp(mL)] = 2 C1 cosh mL (4.3.29)

and, hence,

C1 = C2 = (Th – Tt)/2 cosh mL (4.3.30)

Substitution into the general solution (Equation 4.3.25) then yields the fin tem-
perature profile Tf (x):

(4.3.31)

We now proceed to evaluate the fin effectiveness E which was defined in Illus-
tration 3.3.4 as:
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(3.3.32)

qa equals the heat leaving the base of the fin  and can be evaluated

with the aid of the hyperbolic relations given in Table 4.6, Items 12 and 3. We have

(3.3.33)

From this we obtain:

(4.3.34)

or, since 2hf /kW = m2:

(4.3.35)

Illustration 4.3.4 Polymer Sheet Extrusion:
The Uniformity Index

In this example we consider the performance of a simple device used in the extrusion
of polymer sheets. The molten polymer is forced with an inlet pressure p0 into a
pipe with a lateral slit or lip extending some distance away from the pipe wall (Figure
4.3). The polymer flows into the pipe axially and exits radially through the extruder
lip. A problem that arises in these devices is that the pressure driving the melt through
the slit diminishes in the axial direction causing nonuniformity in the thickness of
the extruded sheet. A model is required to relate sheet thickness to the system
parameters and to axial distance so that these can be properly modified to ensure
high uniformity. This is done by considering the ratio of radial flow at the inlet,
Qr(0) and the corresponding flow Qr(Lp) at the pipe end which is sealed off. The
ratio of the two quantities is known as the uniformity index E = Qr(Lp)/Qr(0). Thus,
for complete uniformity, E = 1, and for nonuniform sheets, E < 1. In analyzing the
system, we shall assume that flow is Newtonian, so that standard flow-pressure drop
relations may be applied.

We start by considering a mass balance over the difference element shown in
Figure 4.3B. Axial flow Qa enters and leaves the element at position z and z + ∆z,
while at the same time there is a radial outflow over the distance ∆z. Flow rate Q
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in these terms can be related to pressure drop via the relations given in Table 3.20,
suitably transformed to the conditions and symbols used here:

 

Axial flow:

 

(4.3.36)

 

TABLE 4.6
Table of Hyperbolic Functions

 

1. Hyperbolic sine of u

2. Hyperbolic cosine of u

3. Hyperbolic tangent of u tanh u = (e
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 – e
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)/(e
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 + e

 

–u

 

)
4. Hyperbolic cotangent of u coth u = (e
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–u

 

)

 

Relation to Trigonometric Functions

 

5. sinh iu = i sin u
6. cosh iu = cos u
7. tanh iu = i tan u
8. sinh u = –i sin iu
9. cosh u = cos iu

10. tanh u = i tan iu

 

Derivatives
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Integrals
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 sinh x dx = cosh x
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 tanh x dx = ln(cosh x)
18. 

 

∫

 

 coth x dx = ln(sinh x)

 

Other Relations
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20. sinh (–u) = –sinh u
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22. tanh (–u) = –tanh u
23. coth (–u) = –coth u
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Radial flow:

 

(4.3.37)

Note that for axial flow the pressure derivative rather than 

 

∆

 

p/L is used since p
varies nonlinearly with z. For radial flow, the variation is linear and we can write

We have:

(4.3.38)

Dividing by 

 

∆

 

z and going to the limit yields the second order ODE:

 

FIGURE 4.3

 

(A) Schematic diagram of a polymer sheet extruder, (b) difference element
for the mass balance.
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(4.3.39)

where  and p

 

ext

 

 has been set = 0.

Solution of this equation by the D-operator method yields:

p = C

 

1

 

 sinh mx + C

 

2

 

 cosh mx

where we use the hyperbolic rather than exponential form for later convenience.
Two boundary conditions are required which are as follows:

(4.3.40)

We obtain, from BC 1, using the derivatives of hyperbolic functions listed in
Table 4.6:
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) (4.3.41)

and from BC 2:
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The resulting axial pressure profile is given by the relation:
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) sinh (mx)] (4.3.42)

A quick look at the uniformity index is warranted. We have:

and, hence,

(4.3.43)

Using the hyperbolic relations of Table 4.6, Items 19 and 2, this reduces to the
simple expression:
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(4.3.44)

mL

 

p

 

 is usually much less than one, so that one can use a truncated series
expansion of the hyperbolic secant found in standard mathematical handbooks:

(4.3.45)

To obtain a sense of parameter sensitivity, suppose that for a given configuration,
E was found to be 0.95, i.e., H
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 = 0.05. It is now proposed to double the
sheet thickness H. How will this affect the sheet uniformity? We find H

 

3
new

 

/H

 

3
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 =
8, which translates into a new index value of E

 

new

 

 = 0.60. Thus, E has dropped from
an acceptable value of 95% to a low and usually unacceptable level of 60%.

 

Comments:

 

The first impression one gains from the formulation of the problem is that it calls
for a PDE model. Velocities vary in a complex way both 

 

radially

 

 and 

 

axially

 

, and it is
likely that an 

 

angular

 

 component has to be contended with as well. As in the preceding
example of the finned heat exchanger, the geometry is a discontinuous one, leading to
discontinuous boundary conditions which add to the complexity of the problem. We
are, thus, dealing with a fairly difficult application of the Navier-Stokes and continuity
equations. Non-Newtonian behavior would further aggravate the situation.

The principal tool in side-stepping these difficulties was the tacit assumption
that the opening width of the lip is small in comparison to the circumference of the
pipe and, consequently, the normal parabolic velocity profile remains essentially
undisturbed. This is a reasonable simplification in view of the small thickness of
normal polymer sheets. Its consequences, however are quite considerable since we
can now lump the radial flow into the axial mass balance as a “rate out” term which
is determined solely by the local radial pressure drop and the geometry of the slit.
Thus, we have reduced the number of state variables from 

 

four

 

 (three velocities and
pressure) to only one, i.e., pressure, and the number of independent variables from
three to one, the axial distance. Note that the model can easily accommodate non-
Newtonian flow, but this requires the use of an appropriate non-Newtonian Q – dp/dz
relation to replace Poiseuille’s law, Equation 4.3.36.

There is another parallel to the finned heat exchanger. In both cases the primary
profiles, here given by Equation 4.3.42, are converted to criteria which serve to
compare 

 

actual

 

 performance to an established 

 

ideal

 

. For the heat exchanger, the
criterion was the fin effectiveness which conveyed a sense of the degree of nonuni-
formity in fin temperature. In a similar way, the uniformity index in polymer extru-
sion establishes the degree of nonuniformity of tubular pressure and, hence, sheet
thickness.

The reason for choosing the hyperbolic form of solution of the ODE becomes
apparent when we reach Equation 4.3.44. The uniformity index E can now be

E mL
H L

L Rp
p

s

= =






sech sech( )

/
2

3

3 2

4

1 2

π

E mL
mL H L

L Rp
p p

s

= ≅ − = −sech( )
( )

1
2

1
3

2 3 2

4π

 

248/ch04/frame  Page 229  Friday, June 15, 2001  6:58 AM

© 1999 By CRC Press LLC



   

expressed in compact form as the hyperbolic secant of a single dimensionless group
H

 

3

 

L

 

p
2

 

/3

 

π

 

L

 

s

 

R

 

4

 

. Never content to stop simplifying, we reached back to first year
calculus, an often neglected area, to expand the hyperbolic secant into the simple
truncated algebraic Equation 4.3.45. This equation related the uniformity index in
revealing fashion to the geometry of the system. Of particular note is the dependence
of E on H

 

3

 

/R

 

4

 

 which indicates that any adverse effect on E caused by an increase
in polymer sheet thickness H can be easily compensated for by an increase in pipe
radius R. An increase in slit length L

 

s

 

 can be used to similar good effect. Thus, the
simple Equation 4.3.45 manages to illuminate the entire problem and enables us to
quickly address important design questions.
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C
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OEFFICIENTS

 

We consider here systems of the form

L(y) = ay

 

″

 

 + by

 

′

 

 + cy = f(x) (4.3.46)

where a, b, c are constants, and f(x) is the nonhomogeneous term. It can be shown
by the superposition principle that the solution will in this case be made up of the
sum of the solution of the homogeneous form of Equation 4.3.46, termed the

 

complementary function,

 

 and a particular integral y

 

p

 

 which has the same functional
form as the nonhomogeneous term f(x). Thus,

General solution = Complementary solution + Particular integral (4.3.47)

Methods for the evaluation of the complementary solution were given in Section
4.3.2. Evaluation of the particular integral is by the so-called 

 

method of undetermined
coefficients.

 

 It consists of substituting the known form of y

 

p

 

 which is identical to
that of f(x), into the ODE 4.3.46 and evaluating the undetermined coefficients by
setting the sum of coefficients of a particular function equal to zero. This method,
which also finds use in series solutions taken up in the next section, will be discussed
in more detail there. For our present purposes, we content ourselves with a listing
of the most frequently required particular integrals shown in Table 4.7. These can
be used directly in the Formulation 4.3.47 to arrive at a general solution of the
nonhomogeneous ODE. We demonstrate its application in the example below.

 

Illustration 4.3.5 Vibrating Spring with a Forcing Function

 

Vibrating systems give rise to a host of interesting solutions. We consider only
the simplest of these, that of a mass suspended from a spring and vibrating under
its own weight. A full analysis of such systems is deferred to the next chapter
dealing with the Laplace transformation which is the preferred method of solution
in these cases.

Applying Newton’s law to the system we obtain, in the first instance:
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or

(4.3.48)

where F

 

g

 

 and F

 

s

 

 are the gravity force and the restoring force of the spring, respec-
tively. The latter varies directly with the extension x, and for linear behavior is
expressed by Hooke’s law

F

 

s

 

 = kx (4.3.49)

Equation 4.3.47 then becomes, after substitution and rearrangement:

(4.3.50)

where the gravitational constant g is the nonhomogeneous term.
Although other solution methods for this equation exist, including the Laplace

transformation, we shall use the example to demonstrate the use of the particular
integral and its superposition on the complementary solution. The latter is obtained
by the D-operator method. We write:
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(D

 

2

 

 + k/m)x = 0 (4.3.51)

which has the characteristic roots:

D

 

1,2

 

 = ± i(k/m)

 

1/2

 

 = ± bi (4.3.52)

so that the complementary solution becomes (see Table 4.5):

x

 

c

 

 = C

 

1

 

 sin bt + C

 

2

 

 cos bt (4.3.53)

The particular integral y

 

p

 

 is established with the aid of Table 4.7, yielding:

y

 

p

 

 = g(m/k) (4.3.54)

Hence, the general solution is given by:

x = C

 

1

 

 sin bt + C

 

2

 

 cos bt + g(m/k) (4.3.55)

We now introduce the boundary conditions (initial conditions here) by specifying
that the mass is initially extended to a position x

 

o

 

 and that the velocity at t = 0 is
zero. Note that these conditions have to be applied to the 

 

full

 

 Equation 4.3.55, not
just the complementary solution (Equation 4.3.53). We obtain:

From IC 2 C

 

1

 

 = 0 (4.3.56)

From IC 1 C

 

2

 

 = x

 

o

 

 – g(k/m)

The general solution then takes the form:

x = (x

 

o

 

 – mg/k) cos [(k/m)

 

1/2

 

t] + mg/k (4.3.57)

The equation reveals that the response of the system to the forcing function g
is an oscillatory one with amplitude (x

 

o

 

 – mg/k) and frequency (k/m)

 

1/2

 

 s

 

–1

 

. The
oscillations persist indefinitely without any decay in the amplitude. Time dependent
amplitudes arise when the forcing function is itself time-dependent or when friction
exercises a dampening effect. These cases that arise in the classical analysis of
second order linear systems are taken up in greater detail in Chapter 5.

 

4.3.4 S
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C

 

OEFFICIENTS

 

When the coefficients of a linear ODE themselves become functions of the inde-
pendent variable, the D-operator method can no longer be applied. One must turn
to alternative methods which have led to the development of series solutions. The
series solutions belong to a wider class of solution techniques in which a specific
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form of the solution is guessed or assumed, for example y = a sin x + b cos x. The
unknown coefficients, here a and b, are evaluated by substituting the solution into
the ODE and setting the coefficients of like terms equal to zero. This procedure is
known as the method of undetermined coefficients which was encountered briefly
in connection with particular integrals.

The solution form we shall assume here is a power series in x, i.e.,

y = ao + a1x1+k + a2x2+k + … (4.3.58)

This is not an unreasonable guess to make since the solution to the constant
coefficient case also can be expressed in terms of power series in x, for example:

(4.3.59)

It then can be argued that variable coefficients, particularly those of a polynomial
form, will merely alter the coefficients and the exponents of x but will not otherwise
deviate from the power series forms. To allow for this effect, we have included an
undetermined parameter k in the exponent which will be a function of the variable
coefficients contained in the ODE.

We start by demonstrating these concepts and their validity with a simple example.

Illustration 4.3.6 Solution of a Linear ODE With Constant 
Coefficients by a Power Series Expansion

We consider the first order ODE:

y′ + y = 0 (4.3.60)

and assume a series solution of the form:

y = ao + a1x + a2x2 + a3x3 + … (4.3.61)

Note that a solution also can be arrived at by separation of variables which we
can use to validate the series solution.

Substitution of Equation 4.3.61 into Equation 4.3.60 yields:

 (ao + a1) + (2a2 + a1)x + … = 0 (4.3.62)

We now proceed to evaluate ao, a1, and a2 by the method of undetermined
coefficients, setting the aggregate coefficient of each power of x equal to zero. This
is justified by the fact that the series expansion (Equation 4.3.61) must equal zero
for any arbitrary value of x. We obtain:

e
ax axax = + + + …1
1 2

2

!
( )

!
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(4.3.63)

and the series solution becomes:

(4.3.64)

where ao will evidently play the role of an integration constant.
Let us compare this with the solution obtained by separation of variables which

has the exponential form and associated series expansion:

(4.3.65)

This is proof, at least for the initial three terms, of the validity of the series
solution.

We now turn to the more general case of a second order ODE with variable
coefficients:

a(x)y″ + b(x)y′ + c(x)y = 0 (4.3.66)

where the coefficients are assumed to be of polynomial form:

a(x) = ao + a1x + a2x2 …

b(x) = bo + b1x + b2x2 … (4.3.67)

c(x) = co + c1x + c2x2 …

For this case it can be shown that the solution takes the form:

(4.3.68)

Evaluation of the coefficients is cumbersome, but can be accelerated by the so-
called Method of Frobenius which is described in standard texts on ODEs. We shall
not go into the details of this procedure but will examine instead the functions which
arise in this solution. The following points are of note.
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• The functions which result from the series solution of linear second order
ODEs with polynomial coefficients are either finite polynomials or infinite
power series in x.

• A series of new functions arise as a result which are denoted by the name
of the associated ODEs, in particular: Bessel functions, Legendre poly-
nomials, Laguerre polynomials, and Hermite polynomials.

Other classes of functions include Chebyshev polynomials and Hypergeometric
functions.

• These functions do not differ in their general properties from the classical
exponential, circular, or hyperbolic functions. They are usually exponen-
tial or periodic in behavior, can be differentiated or integrated, and are
either bounded or unbounded at the origin and at infinity.

• Extensive tabulations for most functions appear in various mathematical
handbooks (see References). The reassuring fact emerges that for each value
of x, a corresponding value of the function can be looked up or deduced
from certain relations (recursion formulae). In this and other respects, these
seemingly exotic functions with forbidding German, French, and Russian
names are no different from their more conventional counterparts.

We focus our attention here on Bessel functions which arise in conduction and
diffusion in circular and cylindrical geometries, particularly at the PDE level. In
order to acquaint the reader with their general behavior, we list in Table 4.8 some
of their more important properties, including their integrals and derivatives which
are used to derive expressions for diffusional flux from the primary profiles. The
list of derivatives also contains the so-called recursion formulae, i.e., relations
between Bessel functions of different orders. We note in this connection that the
order of a Bessel function, denoted by a subscript, is related to and determined by
the form of the variable coefficients of the ODE, and resides in the exponent k of
the series expansion (Equation 4.3.68). Both fractional and integer orders can arise,
each order being associated with a distinct function. Thus, a zero order Bessel
function is not identical to a first order Bessel function, but may be similar in form,
i.e., periodic or exponential. The recursion formulae serve to interrelate them.

The four Bessel functions listed in Table 4.8 are infinite power series which give
rise to both periodic and exponential behavior. This is demonstrated for zero order
Bessel functions (k = 0) in the plots shown in Figure 4.4. One notes that the modified
Bessel function K0(x) and Y0(x) are unbounded at the origin. This rules out their
use in domains which include the origin of a radial geometry.

We now present three illustrations involving the derivation and use of such Bessel
functions.

Illustration 4.3.7 Evaluation of a Bessel Function

Let us consider the evaluation of a second order Bessel function of the first kind at
a value of x = 5, i.e., we wish to determine the value of I2(5). We note that tabulations
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TABLE 4.8 
Properties of Bessel Functions

A. Types and Designation
Symbol Designation

Jk(x) Bessel function of the first kind and order k
Yk(x) Bessel function of the second kind and order k
Ik(x) Modified Bessel function of the first kind and order k
Kk(x) Modified Bessel function of the second kind and order k

B. Functional Form
Bessel Function Functional Form

Jk(x) Damped periodic
Yn(x) Damped periodic
Ik(x) Exponential
Kn(x) Exponential

In particular
J1/2(x) (2/πx)1/2 sin x
J–1/2(x) (2/πx)1/2 cos x
I1/2(x) (2/πx)1/2 sinh x
I–1/2(x) (2/πx)1/2 cosh x

C. Values of Various Functions at x = 0 and x = ∞
x = 0 x = ∞

Jk(x) 0* 0
Ik(x) 0* ∞
Yk(x) –∞ 0
Kk(x) ∞ 0
sin (x) 0 —
cos (x) 1 —
sinh (x) 0 ∞
cosh (x) 1 ∞

(Note, however, the special cases J0(0) = I0(0) = 1 and J–k(0) = I–k(0) = ± ∞.)

D. Derivatives of Bessel Functions and Recursion Formula

x
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in handbooks usually list values only for zeroth and first order functions. To obtain
values for higher order Bessel functions, use must be made of the recursion formulae
listed under Table 4.8D. Setting k = 1, we obtain:

(4.3.69)

or

Tabulations for I0(5) and I1(5) give values of 27.24 and 24.34, respectively. There
results:

E. Integrals of Bessel Functions
α ∫ xkJk–1(αx)dx = xkJk(αx) + C

α ∫ xkYk–1(αx)dx = xkYk(αx) + C
α ∫ xkIk–1(αx)dx = xkIk(αx) + C

α ∫ xkKk–1(αx)dx = –xkKk(αx) + C

F. Values of Bessel Functions for Small Arguments

FIGURE 4.4 Graphical representation of zero order Bessel functions. Jo(x) and Yo(x) are
Bessel functions of the first and second type; Io(x) and Ko(x) are modified Bessel functions
of the first and second type.

TABLE 4.8 (continued)
Properties of Bessel Functions

J I
x

n n

n

= ≅ 



2

I x I x
x

I x2 0 1

2
( ) ( ) ( )= −

I I I2 0 15 5
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Illustration 4.3.8 Solution of a Second Order ODE with 
Variable Coefficients by the Generalized Formula

Procedures for obtaining power series solutions of ODEs are fairly lengthy and
cumbersome. Fortunately, these procedures may be avoided in most problems by
making use of the following generalized formula. The accompanying illustration
will demonstrate its use.

The differential equation:

(4.3.70)

has the generalized solution:

y = x(1–a)/2 exp (–bxr/r) [C1Zk(d1/2 xs/s) + C2Z–k(d1/2xs/s)] (4.3.71)

where

Zk denotes one of the Bessel functions. If  is real and k is not zero or an
integer, Zk denotes Jk; if k is zero or an integer n, Zk denotes Jn, Z–k denotes Yn. If

 is imaginary and k is not zero or an integer, Zk denotes Ik, Z–k denotes I-k; I
and K then assume real arguments. If k is zero or an integer n, Zk denotes In, and
Z–k denotes Kn.

Suppose the solution is to be established of the following ODE, using Equations
4.3.70 and 4.3.71:

(4.3.72)

When comparing with the generalized equation given previously, the following will
be observed:

1. 1 – 2β will equal a + 2bxr if b = 0 and a = 1 – 2β.
2. β2x2β will equal c + dx2s – b(1 – a – r)xr + b2x2r if 1 above is granted and

c = 0, d = β2, and s = β.

Consequently, a = 1 – 2β, b = 0, c = 0, d = β2, s = β. Then 

The solution is then:

x
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y = xβ[C1J1(xβ) + C2Y1(xβ)] (4.3.73)

Illustration 4.3.9 Concentration Profile and Effectiveness 
Factor of a Cylindrical Catalyst Pellet

We return here to the problem of diffusion and reaction in a catalyst particle. This
time the process is assumed to take place in a cylindrical pellet of sufficient length
L that only radial diffusion needs to be considered, i.e., the flux through the ends
of the cylinder is neglected. The reaction is assumed to be first order. A mass balance
over a radial difference element then yields the expression:

(4.3.74)

Upon dividing by 2πL∆r and letting ∆r → 0, we obtain:

or equivalently,

(4.3.75)

where α2 = kr/Deff.
Comparison with the generalized Equations 4.3.70 and 4.3.71 yields the follow-

ing parameter values:

a = 1, b = c = 0, d = –α2, s = 1

The solution is then immediately given as

C = A I0(αr) + B K0(αr) (4.3.76)

with BC 1:  (symmetry) or C(0) = finite

BC 2: C(R) = Cs (surface concentration of reactant)
Since K0(0) = ∞ (Table 4.8C), it follows from BC 1 that the integration constant B
must be zero. Together with BC 2 this yields the final result:

(4.3.77)
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The plot in Figure 4.4 shows that I0(r) increases exponentially with r and has a
zero slope at the origin. This is in qualitative agreement with the concentration
profile one would expect to see.

The effectiveness factor E can be determined from the expression:

(4.3.78)

Use of the Table 4.8E of integrals of Bessel functions then yields, with k set = 1:

(4.3.79)

and the final effectiveness factor becomes, after cancellation of terms:

(4.3.80)

Comments:
The appearance of Bessel functions in the final expression (Equation 4.3.80)

need not deter us from evaluating E. As noted previously, convenient tabulations of
zero and first order Bessel functions are available in handbooks of mathematical
functions (see References). Alternatively, use can be made of graphs of E for various
geometries which appear in monographs dealing with porous catalysts (see Refer-
ences at the end of Chapter 3).

For small values of the argument αR, the effectiveness factor E should approach
unity. It can be shown that this is indeed the case. Using the tabulations of Table
4.8 (Item F), we find I1(αR) → (αR/2) and I0(αR) → 1, so that 2I1(αR)/αRI0(αR)
→ 1, as required.

4.3.5 OTHER METHODS

Methods in this category, though less sweeping in scope than those discussed in the
previous sections, nevertheless find their use in the solution of a host of special
problems. These techniques, listed in Table 4.4, are capable of solving both linear
and nonlinear first and second order ODEs. We mention in particular the use of
various transformations, the p-substitution, the solution of exact equations, and the
use of integrating factors to make them exact. A partial listing of such factors appears
in Table 4.9. Techniques for their derivation can be found in standard texts on ODEs
(see References). Our purpose here is confined to the presentation of several illus-
trative examples dealing with physical models which are amenable to solution by
these techniques.

E
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Illustration 4.3.10 Product Distributions in Reactions in Series: 
Use of the Substitution y = vx

The following consecutive reactions give a good representation of many organic
reactions such as the chlorination, nitration, and sulfonation of aromatics:

(4.3.81)

The calculation of the variation of these species with time or distance (stirred
tank or plug flow reactors) is usually achieved numerically but the important product
distributions R/A0 = f(A) and S/A0 = g(A) can, for a batch reactor, be obtained in
easy fashion analytically from the rate laws and the stoichiometry of the reactions.
If the intermediate R is the desired product, the distributions can be used to calculate
optimum conversion of A to achieve a maximum yield in R.

We assume the rate laws to correspond to the stoichiometry of the reaction, the
process to be isothermal, and carried out in a batch reactor. We obtain:

Mass balances or rate laws:

–k1 CACB = dCA/dt (4.3.82)

k1CACB – k2CRCB = dCR/dt (4.3.83)

Division of the two equations eliminates dt (our favorite trick) and we obtain:

(4.3.84)

TABLE 4.9
Short List of Integrating Factors

Equation Integrating Factor

1. y′ – f(y/x) = 0 [y – xf(y/x)]–1

2.
[x2 + y2]–1

3.
Various forms:

(a) (∂p/∂y – ∂q/∂x)/q = f(x) exp ∫ f(x)dx
(b) (∂p/∂y – ∂q/∂x)/p = g(y) exp ∫ –g(y)dy
(c) p = yf(xy); q = xg(xy) [xp –yq]–1

(d) ∂p/∂x = ∂q/∂y; ∂p/∂y = –∂q/∂x [p2 + q2]–1
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We try the substitution C

 

R

 

 = vC

 

A

 

 (Item 7a in Table 4.4) and obtain:

(v + C

 

A

 

(dv/dC

 

A

 

) + (1 –  ) = 0 (4.3.85)

Thus, the substitution has successfully reduced the ODE to one in v, C

 

A

 

 only,
which has the solution (see Table 4.4, Item 7a):

with g = k

 

1

 

 and f = k

 

1
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2

 

 (C
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/C

 

A

 

).
Evaluation of the integral leads to the expression:

(4.3.86)

where C = integration constant. It is evaluated from the initial condition C

 

R

 

(C

 

A0

 

) =
0 and yields:

C = C

 

A0

 

The solution then becomes:

(4.3.87)

Alternatively, solving for C

 

R

 

 one obtains:

(4.3.88)

which is the distribution of the intermediate R.
If R is the desired product, it is useful to know at which point the reaction should

be stopped before C

 

R

 

 begins to decline. We find this by maximizing the yield of C

 

R

 

,
i.e., we write, using Equation 4.3.88
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This means that in order to maximize the yield of CR, the reaction should be
stopped when the conversion X of CA has reached the value:

(4.3.91)

Illustration 4.3.11 Path of Pursuit

We examine here a topic quite removed from our usual concerns. A prey, in the
form of an enemy in warfare or an animal, is moving in a straight line along the y-
axis with a velocity a, and is to be intercepted by a pursuer moving at velocity b
and starting up on the x-axis. A pathway is traced out by the pursuer, the tangent
of which must always pass through the location of the prey. It can be shown that
such a pathway leading to interception is described by the ODE:

(4.3.92)

where k2 = b2/a2 and the boundary conditions are given by y = dy/dx = 0 at x = x0.
We recognize this as a second order nonlinear ODE with missing terms in y,

which calls for the use of the p-substitution (see Item 9 in Table 4.4). We obtain,
after substitution of p and separation of variables,

(4.3.93)

where the integral on the left is found in mathematical tables in the form:

(4.3.94)

A first integration is performed, yielding:

(4.3.95)

followed by a second integration which leads to the result:

(4.3.96)
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The integration constants C1 and C2 are evaluated from the boundary conditions
given at the start which results in:

C1 = x0, C2 = 0 (4.3.97)

Introduction of these constants leads, with some rearrangement, to the final
result:

(4.3.98)

This is the equation for the path of pursuit leading to interception of the prey.

Illustration 4.3.12 Design of a Parabolic Mirror

In yet another unusual problem, we consider the design of a curved mirror such that
the light from a point source at the origin O is reflected as a beam parallel to the x-
axis (see Figure 4.5).

Let the ray of light OP strike the mirror at P and be reflected along PR. If PQ
is the tangent at P and α, β, φ, and θ are the angles indicated, α = β by the optical
law of reflection and α = φ by geometry. Hence, β = φ. The equation:

(4.3.99)

gives

(4.3.100)

since y′ = tan φ. Solution of this quadratic equation for y′ gives:

(4.3.101)

FIGURE 4.5 Geometry of the mirror.
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or

The equation admits an integrating factor (x2 + y2)–1/2 as we see by multiplying
it by that factor into the form:

(4.3.102)

Both sides are now exact differentials and the equation gives, on integrating,

(4.3.103)

or, on squaring, y2 = 2cx + c2. The curves form a family of parabolas with the focus
at the origin.

Comments:
A number of features are of note here. The geometrical construction and the

relations derived from it, require conversion of a double-angle tangent tan 2φ to tan
φ. The formula for this conversion, given above, can be found in standard mathe-
matical tables.

The original ODE 4.3.101 is not exact, nor does the Table 4.9 immediately reveal
an appropriate integrating factor. However, upon rearrangement into the form (Equa-
tion 4.3.102), one recognizes the left-side differential to be exact, since it satisfies

the criterion  Furthermore, there is no need for the integration formula

given in Table 4.9 since the alternative form given in Equation 4.3.96 is immediately
integratable. The curse of this problem lies in the requirement to make an inspired
guess. Although this is usually the realm of mathematicians, ordinary mortals should
not be excluded from trying. A less trying example of the application of integrating
factors is given in Practice Problem 4.7.

4.4 NUMERICAL METHODS

We address this topic only briefly wishing merely to acquaint the reader with the
methodology which underlies the numerical ODE solver packages. A first distinction
to be made is between initial value and boundary value problems. We already saw
that the choice of analytical solutions depended to some extent on which of these
two classes was being addressed. Thus, the Laplace transformation is capable of
handling IVPs but becomes somewhat cumbersome for BVPs, while the D-operator
method can handle both classes with equal ease. Numerical packages are usually
designed for IVPs. BVPs require special techniques which we take up first. This is
followed by a discussion of various numerical techniques available for IVPs.
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4.4.1 BOUNDARY VALUE PROBLEMS

These problems are usually associated with second and higher order ODEs or
equivalent sets of first order ODEs, with boundary conditions specified at different
points in space. Countercurrent heat exchangers are of this type, but the classical
example is that of diffusion and reaction in a catalyst pellet which for the isothermal
case in a sphere was given by:

(3.2.41)

with boundary conditions CA(R) = CS and 

For numerical work, higher order ODEs are usually first decomposed into sets
of first order ODEs since most packages handle just such systems. For the above
equation, this yields the simultaneous set in p and CA:

(4.4.1)

with the BC CA(R) = CAS and p(0) = 0. We are still left with the problem of how to
use the given BCs to initiate the integration procedure. We briefly describe two
methods to achieve this.

1. The Shooting Method. In this procedure one starts the integration at the center
of the pellet, using the given boundary condition p(0) = 0 and an assumed
value of the concentration CA(0). Integration is carried out by “shooting” —
in a stepwise fashion — at the given surface concentration CA(R). If a match
between numerical and given values is obtained, the integration is terminated.
If not, a new value of CA(0) is assumed and the procedure repeated. This is
evidently a rough-and-ready method which does, however, finds its advocates
and users. A more refined technique is the following.

2. Method of Polynomial Approximation. Here the original boundary con-
ditions are retained and the interval (0,R) spanned by a polynomial with
unknown coefficients, usually of the Legendre type. The unknown coef-
ficients are evaluated by substitution into the boundary value ODE. Var-
ious refinements to the method have been developed which are treated in
the references cited at the end of the chapter.

4.4.2 INITIAL VALUE PROBLEMS

A simple sketch of the procedure applicable to these problems is shown in Figure
4.6. The method essentially consists of marching forward in incremental steps ∆x
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starting from the initial values of the ODE. The smaller the step size, the closer the
agreement between numerical and exact solution.

For the purposes of the computation, the ODE is cast in the form:

(4.4.2)

or the equivalent incremental form:

(4.4.3)

The choice of favg(x,y) determines the type of method as well as its quality and
computational efficiency. The more elaborate the form favg(x,y), the closer we will
come to the true solution. The price one pays is in the greater complexity of the
computational procedure. Depending on the form of favg(x,y) chosen, the following
distinction is made among the various integration method.

1. Single Step Method. No y other than that at the previous position xj is
required for the evaluation of favg(x,y), i.e., y and favg(x,y) will always be
known or computable from the immediately preceding step. The simplest
of these is the Euler method which has the form:

yj+1 – yj = f(xj, yj)∆x = favg(x,y)∆x (4.4.4)

Thus, the new value of the dependent variable, yj+1, is calculated from
the value of f(x,y) of the previous step.

2. Multistep Methods. Here y and favg(x,y) values other than those at position
xj are required. One may reach backwards beyond the last step to improve
on y and favg(x,y) obtained in single-step methods, or venture forward into
unknown territory to obtain additional improvement in the values of y
and f(x,y). Multistep methods fall into the following three broad classes:
(a)Open or Explicit Method. Although favg(x,y) and y are required at values

other than xj, these are known from previous steps (except at the start)
and yj+1 therefore can be calculated. A typical formula, due to Adams, is

FIGURE 4.6 Step size and solution generated by the numerical integration of an ODE.
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yj+1 – yj = [3/2 fj – 1/2 fj–1]∆x = favg(x,y)∆x (4.4.5)

Here favg is seen to make up off-values of the two immediately pre-
ceding steps. Note that the method is not self-starting since fj–1 is
unknown at x0; hence, one uses a single step method to initiate the
integration and switches to multistep procedures after the first few
increments.

(b)Closed or Implicit Method. An example of an algorithm of this type,
due to Adams-Moulton, is the expression:

(4.4.6)

Here unknowns occur on both sides of the equation, yj+1 and fj+1;
hence, an iterative process must be resorted to. However, the method
is very accurate because it incorporates features of what has gone
before (fj) as well as what is to come (fj+1). (a) and (b) are rarely used
alone. Instead they are combined into method (c).

(c)Predictor-Corrector Method. In this procedure, the open method is used
to arrive at a first estimate of yj+1 (“predictor”), which is then refined
by using a closed method (“corrector”).

A listing of the more important numerical integration procedures and associated
algorithms appears in Table 4.10.

TABLE 4.10
Numerical Integration Methods

Name and Type Algorithm

A. Single-Step
1. Euler yj+1 – yj = f(xj, yj)∆x
2. Runge-Kutta yj+1 – yj = 1/6[K1 + 2 K2 + 2 K3 + K4]∆x
Various orders available of which the fourth order 
is the most frequently used

K1 = f(xj, yj)

K2 = f[(xj + ∆x/2), yj + K1/2]
K3 = f[(xj + ∆x/2), yj + K2/2]
K4 = f(xj + ∆x, yj + K3)

B. Multistep Methods
1. Adams-Bashforth (second order) yj+1 – yj = [3/2 fj – 1/2 fj–1]∆x
2. Adams-Moulton (second order) yj+1 – yj = 1/2 [fj+1 – fj]∆x
3. Predictor-corrector Combination of 1 and 2.
4. Gear package Uses Adams predictor-corrector; provisions for 

adjusting step-size and order of difference 
formula

y y f f xj j j j+ +− = +



1 1

1
2
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2

∆
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4.4.3 SETS OF SIMULTANEOUS INITIAL VALUE ODES

Here it becomes convenient to express both the ODEs and the integration procedure
in vector form. This merely means that after each integration step ∆x, one stores a
vector array of new values yj+1, rather than a single value. Runge-Kutta and similar
constants also now become vector arrays. None of this involves new types of
computations, but does increase storage requirements. A fourth-order Runge-Kutta
procedure applied to a set of initial value ODEs now looks as follows:

ODEs:

(4.4.7)

Initial conditions:

Runge-Kutta constants:

(4.4.8)

Difference algorithm:

(4.4.9)

An example of the application of these equations appears in Illustration 4.4.2.

4.4.4 POTENTIAL DIFFICULTIES: STABILITY

Difficulties which arise in the numerical integration of ODEs usually come under
the general heading of “stability” which is a joint property of the ODEs and the
solution technique used. The ODEs that are prone to unstable behavior are often
referred to as being “stiff.”

One source of instability which resides mainly in the numerical procedure is
due to round-off errors and truncation errors. One can remedy these relatively easily
by reducing the step size ∆x and/or using higher order integration routines.
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A second and more serious source of difficulty arises in cases where f(x,y) has
multiple values along the x-axis which results in multiple solutions to the difference
equation. Only one of these, the fundamental equation, leads to the proper result.
The other solutions are termed parasitic which feed on errors in the numerical
solution, such as round-off and truncation errors. The growth of parasitic solutions
is usually exponential and often oscillatory as well and soon overwhelms the fun-
damental solution.

A third source of instability or stiffness is due to the form of the ODEs. It arises
principally in systems which contain widely differing functions, e.g., exp (100 t)
and exp (0.1 t). Such disparate functional forms are seen, for example, in reaction
networks involving both fast and very slow reactions.

One remedy is to remove the fast reaction terms or equations and assume that
the slow reactions are rate determining. This is often done. Another remedy is to
use a very small step size initially and increase it further along the solution path to
accommodate the “slow” terms.

The gear package or method cited in Table 4.10 is widely used to overcome
instabilities and stiffness. It does this in part by using predictor-corrector methods,
and making provision for changing step size and the order of the integration routine.

Illustration 4.4.1 Example of a Solution by Euler’s Method

Given the ODE system:

(4.4.10)

with an analytical solution given by

y = 1/(1 + x) (4.4.11)

We solve the same system numerically by Euler’s method:

∆y = f(x,y)avg ∆x, using ∆x = 0.1 (4.4.12)

Agreement is seen to be good initially but becomes less so as the integration
progresses. This is due to the rudimentary nature of the method.

y values

Numerical Analytical

First step
y1 – 1 = –(1)2 0.1 = –0.1 0.9 0.909

Second step
y2 – 0.9 = –(0.9)2 0.1 = –0.081 0.819 0.833

Third step
y3 – 0.819 = –(0.819)2 0.1 = –0.067 0.752 0.769

dy
dx

f x y y y= = − =( , ) ( )2 0 1
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Illustration 4.4.2 Solution of Two Simultaneous ODEs
by the Runge-Kutta Method

 

Consider the two nonlinear Volterra-Lotka predator-prey equations:
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where y

 

2

 

 denotes the predator; y

 

1

 

, the prey. We write the system equations in vector
form obtaining:

(4.4.15)

where

(4.4.16)

Solution is by the second order Runge-Kutta method described in vector form by:

 

R-K constants:

 

(4.4.17)

 

Difference equation:

 

(4.4.18)

We choose a step-size of x = 0.25 and proceed to calculate R-K constants and the
resulting increment in y. 

 

First step

 

 (from x = 0 to x = 0.25):

 

First R-K constant:

 

(4.4.19)

(Note that the first subscript refers to the R-K number, the second subscript to the
step number.)
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Substitution into the difference equation yields the following y values at the end of
the first step:

and for the second step (x = 0.25 

 

→

 

 0.50):

Further steps are handled in similar fashion.

 

4.5 NONLINEAR ANALYSIS

 

The term analysis, as it is applied here, refers to the methodology of obtaining an
understanding of the 

 

qualitative

 

 nature of the solution and identifying regions of
unusual behavior without actually solving the equations, or by solving them only
partially. Thus, we do not seek to derive a solution for a particular set of parameter
values and boundary conditions but instead ask ourselves these equations. Under
what conditions or set of values will the solution be periodic or when will it be
exponentially decaying? When does it become unstable or become unbounded? Can
there be more than one solution?

An analytical tool of sorts for 

 

linear

 

 systems had already been provided by the
so-called characteristic roots of the D-operator method described in Section 4.3.
Although this was not demonstrated explicitly, we were able to predict the 

 

form

 

 of
the solution by a mere inspection of the characteristic roots without actually solving
the ODE. Thus, when the roots were real, exponential solutions would result; when
the roots were imaginary, they were purely oscillatory; and when they were complex,
they became periodic with exponentially rising or decaying amplitudes (see Table
4.5). A more detailed examination of these phenomena and of linear analysis in
general is deferred to Chapter 5 dealing with the Laplace transformation. That
transformation is not only a highly useful solution method for linear initial value
ODEs, but it also provides a convenient vehicle for an analysis of such systems.

What we wish to do in this section is to address systems of 

 

nonlinear

 

 ODEs
and the associated subject of nonlinear analysis. This is a vast topic, of which we
are able to give only a brief synopsis. We hope nevertheless to provide the reader
with an understanding of the principal tools used in nonlinear analysis and to open
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the door for a glimpse of the exotic phenomena which can arise in nonlinear systems.
These include multiplicities giving rise to catastrophe, bifurcations (including the
Hopf bifurcations), period doubling, and chaos. Such phenomena arise only in
nonlinear systems and were addressed early on in the development of mathematical
analysis. Euler’s calculation of the load which will buckle a beam is one of the first
examples of catastrophe theory. The full development of the theories of nonlinear
phenomena had to await the advent of the computer which aided immensely in the
discovery of various forms of exotic nonlinear behavior. We now turn to the con-
sideration of the principal tools for analysis and a description of the various phe-
nomena of nonlinear systems.

 

4.5.1 P
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RITICAL
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Phase plane analysis refers to the examination of the interrelation of the 

 

dependent
variables

 

 of a system. That interrelation is established through a favorite algebraic
trick of ours, the division of two first order ODEs to eliminate the independent
variable, usually time t, resulting in the relation y

 

1

 

 = f(y

 

2

 

). Although extensions to

 

sets

 

 of equations exist — one then speaks of phase 

 

space

 

 analysis — the two-
equation system is best suited for an illustration of the power of the method and the
insight it provides.

We use as an introduction to the method the behavior of a pendulum considered
to consist of a point mass m fixed to a rigid rod of length l. Both gravitational and
frictional forces are involved. The latter is assumed to be proportional to the instan-
taneous velocity of the mass, or equivalently, the rate of change of the angle of
deflection d

 

θ

 

/dt. A force balance then leads to the expression:

(4.5.1)

or equivalently,

This is a second order nonlinear ODE in 

 

θ

 

 which can be decomposed into an
equivalent set of two first order ODEs by defining the velocity d

 

θ

 

/dt as a new variable
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 and designating the angle of deflection as 
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. We obtain the set:

(4.5.2)
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Division of the two equations eliminates dt and yields the result:

(4.5.3)

The solution of this equation, usually done numerically, leads to a family of
curves 

 

θ

 

2

 

 = f(

 

θ

 

1

 

) which can be plotted in the phase plane 

 

θ

 

2

 

 vs. 

 

θ

 

1

 

. The curves, a
typical example of which is shown in Figure 4.7, are “trajectories” or “pathways”
of the pendulum, each point representing its velocity 

 

θ

 

2

 

 at a particular position or
deflection 

 

θ

 

1

 

. Each pair of initial conditions 

 

θ

 

1

 

(0) and 

 

θ

 

2

 

(0) is associated with a
particular curve, leading to an infinite number of trajectories in (

 

θ

 

1

 

, 

 

θ

 

2

 

) space.
The various points to which the trajectories converge are called “critical points,”

“equilibrium points,” or “stationary points.” They correspond to the steady states of
the pendulum attained as t 

 

→

 

 

 

∞

 

 and can be calculated by setting the time derivatives
in Equation 4.5.2 equal to zero. There is an infinite set of such points that occur at
sin 

 

θ

 

1

 

= 0, i.e., at 

 

θ

 

1

 

 = 0, 

 

π

 

, 2

 

π

 

, …, as well as negative values of same.
A first set of critical points are those at ±

 

π

 

, ±3

 

π

 

, …, etc. which are unstable and
are referred to as 

 

saddle points

 

. They correspond to the condition of the pendulum
having come to rest in a vertically upward position. That position is clearly unstable
since a slight deviation of 

 

θ

 

1

 

 from it will cause the pendulum to resume swinging.
The situation is depicted by arrows pointing away from the equilibrium point.

A second set of stationary points are located at 0, ±2

 

π

 

, ±4

 

π

 

, etc. and carry the
designation 

 

focus

 

. They correspond to the condition of the pendulum having come
to rest in a vertically downward position. That state is clearly stable and is indicated
by arrows pointing toward it.

Stationary points are always calculated by setting time derivatives of the ODEs
equal to zero and solving the set of nonlinear algebraic equations, here given by:
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) = 0 (4.5.4)

A host of other interesting critical points may arise, depending on the form of
the ODEs involved. To seek out these points and to characterize them in relation to
the functional form of the model, use is made of the so-called Jacobian J of the set

 

FIGURE 4.7

 

Phase plane representation of the trajectories of a pendulum with friction.
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Equation 4.5.4. J is a matrix whose components here are the four partial derivatives
of the algebraic set Equation 4.5.4. Thus,

(4.5.5)

The order of the Jacobian matrix equals the number of ODEs involved.
Characterization of the critical points is achieved by determining the eigenvalues

 

µ

 

 of that matrix and examining their properties. That is to say we set:

(4.5.6)

and examine the roots 

 

µ

 

1,2

 

 of the resulting quadratic equation in 

 

µ

 

. Using our
pendulum as an example, the entire procedure of critical point analysis is then made
up of the following steps:

(1) Solve the set Equation 4.5.4 to establish the coordinates 

 

θ

 

1
e

 

, 

 

θ

 

2
e

 

 of the
stationary or equilibrium points.

(2) Derive expressions for the partial derivative in Equation 4.5.6 from the
set Equation 4.5.4.

(3) With (2) having been established, expand the determinant Equation 4.5.6
and solve the resulting quadratic in 

 

µ

 

. This yields the roots 
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 as a
function of 
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 and 
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.
(4) Substitute 
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 and 
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 obtained in (1), into the expressions for 

 

µ
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.
(5) Examine the nature of 

 

µ

 

1,2

 

 thus obtained.

It is the nature of these roots, i.e., whether they are positive or negative, real or
complex, which determines the type of critical points involved. We have summarized
the principal characteristic points in Figure 4.8 which reveals the existence of eight
types of such points, depending on the properties of 

 

µ

 

1,2

 

. Thus, when 

 

µ

 

1,2

 

 are complex
with a negative real part Re(

 

µ

 

), the critical point will be a stable focus (Figure 4.8D)
with all trajectories converging to that critical point, but none emerging from it. This
corresponds to a pendulum coming to rest in the bottom position. When one of the
roots is real positive and the other real negative, the critical point will be an unstable
saddle (Figure 4.8C) with trajectories leading into it, as well as away from it. This
corresponds to a pendulum having come to a precarious rest in the top position. We
now proceed to a more complete examination of this device.

 

Illustration 4.5.1 Analysis of the Pendulum

 

The operative equations in the state variables 

 

θ

 

1

 

 (angle of deflection) and 

 

θ2 (time
derivative of θ1) are given by the Expression 4.5.2. We start by establishing the
stationary values of θ1 and θ2. To obtain these, we set:
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f1 (θ1, θ2) = f2 (θ1, θ2) = 0 (4.5.7)

so that

θ2 = 0
sin θ1 = 0 (4.5.8)

with roots θ1 = ± nπ, n = 0, 1, 2, … .
We next evaluate the components of the Jacobian matrix Equation 4.5.5, obtaining:

(4.5.9)

and from Equation 4.5.6:

FIGURE 4.8 Phase plane representation of critical points for various eigenvalues µ1,2.
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(4.5.10)

Let us consider the two cases of the pendulum with and without friction.
Frictionless Pendulum — For this case we set a1 = 0 and obtain from Equation

4.5.10

(4.5.11)

For the stationary points θ1 = 0, ± 2π, ± 4π, … (Equation 4.5.8), we have cos
θ1 = 1 and the eigenvalues are pure imaginary. Thus,

(4.5.12)

This corresponds to Case E in Figure 4.8, i.e., the critical point is a center and
the pendulum swings indefinitely with a constant amplitude given by the abscissa
intercepts.

The remaining stationary points in Equation 4.5.8, i.e., θ1 = ± π, ± 3π, ± 5π, …
lead to real values of µ1,2, since we now have cos θ1 = –1. The characteristic roots
become:

(4.5.13)

that is they are real positive and real negative, respectively. This corresponds to Case
C in Figure 4.8 and leads to an unstable saddle as critical point. We recognize this
as the situation in which the pendulum points vertically upward.

Pendulum with Friction — Here the expansion of the full determinant, Equation
4.5.10, leads to the following quadratic in µ:

(4.5.14)

with roots:

(4.5.15)
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One recognizes immediately that for cos θ1 = –1, one always obtains a real
positive and real negative root respectively, leading to the same unstable saddle point
we had seen previously.

For cos θ1 = 1, we distinguish three cases, depending on the value of the
discriminant (bracketed term in Equation 4.5.15).

(1) 4 a2/a0 > (a1/a0)2. Here the roots become complex, with a real negative part:

(4.5.16)

This corresponds to Case D of Figure 4.8, i.e., the critical point is a
stable focus with the pendulum swinging repeatedly with decreasing
amplitude until the friction brings it to a stop at the bottom of its trajectory.

(2) 4 a2/a0 = (a1/a0)2. For this case, we have:

µ1 = µ2 = –a1/2a0 < 0 (4.5.17)

that is we are dealing with a stable proper node, Case H of Figure 4.8.
The pendulum is critically damped and comes to rest with no oscillations.

(3) 4 a2/a0 < (a1/a0)2. This condition always yields two real negative roots so
that Case A of Figure 4.8 applies. The pendulum is overdamped and comes
to rest with no oscillations.

We shall encounter this type of behavior again in the linear analysis to be
undertaken in Chapter 5.

4.5.2 ANALYSIS IN PARAMETER SPACE: BIFURCATIONS, 
MULTIPLICITIES, AND CATASTROPHE

We turn here to an examination of a second important tool of nonlinear analysis in
which phase space is replaced by parameter space as the domain of study. The topic
is no longer the dependence of the state variables on time or their interdependence.
Rather, we seek out interesting types of solution behavior which come about as a
result of a change in parameter values. Parameters to be considered include various
transport coefficients or reaction rate constants, the load on structures, properties of
the components of electrical circuits, and the like.

We had already seen an example of parameter space analysis in Illustration 3.5.3
dealing with nonisothermal effectiveness factors Eni. Here the parameter in question
was the Thiele Modulus, which is in essence a nondimensionalized ratio of reaction
and transport rate coefficients. An increase in modulus values at first saw a smooth,
single-valued decline in the effectiveness factor Eni (Figure 3.16). Further increases,
however, ultimately led into a region with a multiplicity of three solutions, of which
two were stable, one unstable. The system reacted to this by undergoing a jump
change to higher Eni values when a certain critical value of the modulus was attained.

µ1 2
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2 1 24
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// [ / ( / ) ]
=

− ± −a a i a a a a

248/ch04/frame  Page 258  Friday, June 15, 2001  6:58 AM

© 1999 By CRC Press LLC



Similarly, a jump decline in Eni occurred during the return journey of diminishing
modulus values. The net result was a hysterisis effect resulting in different pathways
of Eni depending on whether one approached the multiplicity region from the high
or low end of modulus values.

The study of multiplicities and the associated system behavior has become the
domain of a number of mathematical subdisciplines, variously known as bifurcation
theory, catastrophe theory, or singularity theory. The term bifurcation arises from
the graphical representation of the transition of single values solutions to multiple
solutions, leading to the formation of a “fork” in solution space. Examples of these
graphs, known as bifurcation diagrams, appear in Figure 4.9. The term catastrophe
refers to the jump changes in a state variable which occur in the region of multi-
plicities. These changes can be detrimental (e.g., buckling of a beam) as well as
beneficial, in which case the term anastrophe would probably be more appropriate.
Singularity is the mathematician’s way of denoting points in space at which the state
variable is not defined. This occurs, for example, when it assumes a value of infinity
or when multiple values arise. All three theories are based on steady-state analyses,
i.e., the systems under scrutiny are all algebraic in form even though they often
originate from differential equations.

Let us consider the bifurcation diagrams of Figure 4.9 in greater detail. The
feature they have in common is the onset of multiplicity at a certain critical parameter
value λ0. Beyond that point their behavior differs in detail. The simplest of them,
aptly termed a turning point, is parabolic in form. A representative equation which
produces this shape is the simple parabola:

y2 = (λ – λ0) (4.5.18)

FIGURE 4.9 Nonlinear behavior in parameter space.
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where the parameter value λ0 is the turning point (Figure 4.9A). The simple bifur-
cation with three intersecting branches shown in Figure 4.9B, arises in systems of
two algebraic equations with one vanishing eigenvalue of the Jacobian, the Hopf
bifurcation in systems with pure imaginary eigenvalues of the same matrix. The
latter have the additional distinctive feature of so-called limit cycles which are
circular in shape and increase in their amplitude of oscillation, in y1, y2 space, as
the value of the parameter λ is increased (Figure 4.9B). Two typical limit cycles are
shown in Figure 4.10. Case A depicts the situations where the trajectories outside
the cycle all converge toward it, while those within the cycle move away from it
and converge to a focus. Both the cycle and the focus are termed regular attractors.
In Case B, only the focus is an attractor, or attractive basin, since trajectories in the
vicinity of the limit cycle all move away from it.

The following theorems give a more complete set of conditions for the genesis
of various bifurcations:

(1) A turning point arises when the following conditions are satisfied:
• The algebraic set  vanishes at the critical point y0, λ0, i.e.,

• The Jacobian of the algebraic set,  has an eigenvalue 0 at the critical

point, i.e.,  has rank n – 1, where n = number of algebraic

equations

FIGURE 4.10 Phase plane representation of limit cycles: (A) stable cycle, (B) unstable
cycle.
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• The augmented Jacobian  has full rank n at (y0, λ0) where 

is an “augmented matrix” obtained by adding the elements  to those

of  The subscripts in these expressions denote partial derivatives.

(2) A simple bifurcation (three intersecting branches) arises when the follow-
ing conditions are satisfied:

•

•  has rank n – 1

•  also has rank n – 1 at y0, λ0

Thus, the only distinction between a turning point and a simple bifurcation point
is that with the former, the augmented matrix has full rank n, while the latter case
falls short with a rank of n – 1.

We recall here for the benefit of the reader that the rank of a matrix refers to
the order of the first nonvanishing determinant. Thus, the matrix:

(4.5.19)

has rank n = 2, or full rank, since the first nonvanishing determinant is given by:

(4.5.20)

On the other hand, the matrix:

(4.5.21)

has rank n < 2 since all second order determinants formed from it vanish. These
features will be demonstrated in the illustration which follows.

(3) A Hopf bifurcation arises when:

•

• fy(y0,λ0) has a pair of imaginary eigenvalues µ1,2 = ± bi (4.5.22)
• d[Re µ(λ0)/dλ] ≠ 0

All these criteria are somewhat tersely stated and it is best to demonstrate their
use by means of some illustrations.
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Illustration 4.5.2 Bifurcation Points in a System of Nonlinear 
Algebraic Equations

We consider the system of equations:

f1 (y1, y2) = λ (y1
2 + y2

2 – 1) + 1 = 0 (4.5.23)

f2 (y1, y2) = 10 y2 – λy2 (1 + 2y1
2 + y2

2) = 0 (4.5.24)

where λ is a variable parameter.
Equation 4.5.24 is satisfied for y2 = 0, and substitution of this value into Equation

4.5.23 yields:

(4.5.25)

A bifurcation can only occur for real values of y1, that is for λ > 1. That
bifurcation will lie in the y2 = 0 plane, as shown in Figure 4.11, and starts at the
critical value λ0 = 1. It will have the coordinates (y1, y2, λ) = (0, 0, 1), as can be
verified by substitution of λ0 = 1 into Equation 4.5.25 and satisfies the first criterion

 We now proceed to show that this point is in fact a turning point as

shown in Figure 4.11 by establishing the rank of the augmented matrix fy|fλ. This
involves evaluating the partial derivatives ∂f1/∂y1, ∂f1/∂y2, ∂f2/∂y1, and ∂f2/∂y2 from
Equations 4.5.23 and 4.5.24 and yields the Jacobian,

and

FIGURE 4.11 Turning points and bifurcation points for a nonlinear system of ODEs. (R.
Seydel, From Equilibrium to Chaos, Elsevier Science Publishing Co., New York, 1988. With
permission.)
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so that

which has full rank n = 2. This is seen from the fact that the second order determinant
0 to 9 (–1) does not vanish. Thus, by the theorems previously stated, we are dealing
with a turning point rather than a simple bifurcation point. The latter would have
produced a rank of n – 1 for the augmented Jacobian.

Additional regions of multiplicity arise when we consider the case y2 ≠ 0. To
show this, we recast Equation 4.5.23 in the form:

(4.5.26)

and substitute it into Equation 4.5.24 to obtain:

λy1
2 + 2λ – 11 = 0 (4.5.27)

Equations 4.5.26 and 4.5.27 together yield values of:

(4.5.28)

and

(4.5.29)

It follows that in order to obtain real values of y1 and y2, the region of multiplicity
will have to be restricted to the range 4 ≤ λ ≤ 5.5. These regions that result are
depicted in Figure 4.11. It will be left to the exercises to show that we obtain a pair
each of bifurcation and turning points at the endpoints of the range.

Illustration 4.5.3 A System with a Hopf Bifurcation

We examine next the following system of nonlinear parametric algebraic equations:

f1(y1, y2) = –y2 + y1(λ – y1
2 + y2

2) = 0 (4.5.30)

f2(y1, y2) = y1 + y2(λ – y1
2 + y2

2) = 0 (4.5.31)

where λ = parameter.
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We start by showing that the only stationary point occurs at y1 = y2 = 0. We do
this by eliminating the bracketed expression, dividing, and solving the result for y2.
This yields:

y2 = y1 i (4.5.32)

which, for real values of y1,2, can only be true if y1 = y2 = 0.
We next establish the eigenvalues of the equations. The partial derivatives

required are as follows:

(4.5.33)

(4.5.34)

(4.5.35)

(4.5.36)

The Jacobian determinant then becomes:

(4.5.37)

which yields the eigenvalues:

µ1,2 = λ ± i (4.5.38)

We distinguish three cases:

(1) λ > 0: The characteristic roots are a complex conjugate pair with Re > 0,
hence an unstable focus results (Case F, Figure 4.8).

(2) λ < 0: The characteristic roots are a complex conjugate pair with Re < 0.
A stable focus is the result (Case D).

(3) λ = 0: Two purely imaginary characteristic roots are obtained. To verify
whether these lead to a center or a Hopf bifurcation, we take the derivative
of d[Re µ (λ0)/dλ] and find that it equals 1, i.e., ≠ 0, so that we have
indeed a Hopf bifurcation. It has its genesis in parameter space at the
point y1 = y2 = λ0 = 0.
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4.5.3 CHAOS

Chaotic behavior arises in systems of nonlinear ODEs whose solutions are highly
sensitive to the initial conditions, or systems of nonlinear algebraic equations with
similar extreme sensitivity to parameter values. ODEs must be at least three in
number, but in the case of algebraic systems, a single equation will suffice. We give
two examples of such unstructured or chaotic behavior.

ODE systems are exemplified by the famous Lorenz equations, given in Table
4.3 and repeated here:

(4.5.39)

They are a description of weather patterns which were being investigated by
Lorenz, and their nonlinearities, resting in the terms xz and xy, are relatively mild.
Yet on solving them numerically, Lorenz found a divergence of solutions for nearly
identical initial conditions which were originally specified to four figures and later
rounded off to two significant figures. This led to the divergent and quite dissimilar
solutions shown in Figure 4.12.

A typical algebraic example is given by the so-called logistic equation which
describes population growth with increments in time:

yn+1 = λyn [1 – yn] (4.5.40)

FIGURE 4.12 Output from the numerical solution of Lorenz’s set of three nonlinear ODEs.
(J. Gleick, Chaos, Viking Penguin Inc., New York, 1987. With permission.)
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One can think of y as the fraction of the population suffering from an epidemic
and λ as the infection rate. The index n denotes an increment in time, say 1 year.
A plot of yn+1 vs. yn leads to the staircase construction shown in Figure 4.13 for
various parameter values of λ. The solutions lie between the straight line y = λx
and the parabola y = λx – λx2. At low infection rates, λ = 0.8, the birth of healthy
individuals overtakes the fraction of infected individuals which soon drops to zero.
At higher rates, the parabola begins to intersect the straight line and the fraction of
infected individuals rises and then stabilizes around the point of intersection in a
mildly oscillatory form (λ = 2.5). An increase in λ to 3.1 leads to more pronounced
oscillations which at λ = 3.8 become completely chaotic.

The subject of chaos has grown enormously over the last 3 decades and it is not
our intention to address it here even in a marginal way. We draw the reader’s attention
to the specialized monographs listed in the References, and summarize the features
which characterize chaotic behavior.

• Sensitivity to initial conditions or parameter values, already mentioned.
• Chaos is not completely random. There is some order within the disorder.

For example, in Figure 4.13 the oscillations, though quite erratic, are
centered on the point of intersection between parabola and straight line.

FIGURE 4.13 Phase plane portrait of the numerical solution of the logistic equation for various
parameter values. (Adapted from J. Gleick, Chaos, Viking Penguin Inc., New York, 1987.)
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• Nonlinearity and some type of feedback are necessary ingredients. In the
logistic equation, feedback takes place through the indexed variables yn,
yn+1.

• All chaos hypotheses stipulate initiation by bifurcation, usually Hopf
bifurcation. The criteria for the latter, Equations 4.5.20, therefore can be
used as a guidepost for possible chaotic behavior. Evidently, the converse
does not hold, i.e., not all bifurcations give rise to chaotic behavior.

• An intermediate stage on the way to chaos is the phenomenon of period
doubling, shown in Figure 4.14C where a particular oscillation is succes-
sively joined by other oscillations of a different frequency and amplitude.

• Chaos may give rise to strange attractors, an example of which appears
in Figure 4.14D as a projection onto the phase plane. One notes their
“fuzziness,” which contrasts with the clear delineation of regular attractors
such as stable nodes or foci, and limit cycles. This has led to the following
definition. An attractor is a strange attractor if the flow lines, i.e., trajec-
tories, depend sensitively on the initial conditions.

We hope with this all-too-brief synopsis to have provided the reader with an
incentive to dig further into this fascinating topic.

Historical Note:
The start of chaos studies is usually identified with Lorenz’ 1963 paper: “Deter-

ministic Non-Periodic Flow,” which went unnoticed for several years. Earlier math-
ematicians seem to have been aware of the possibility of chaos without having
actually discovered it. See in this connection the warning of Poincaré: “… small
errors may produce enormous errors …” at the turn of the century. The flourishing
studies of the 1960s and 1970s are associated with the names of Benoit Mandelbrot,
who discovered Fractals; Mitchell Feigenbaum and Robert May, both of whom
studied the Logistic Equation; and a host of other mathematicians. The interest and
thrust remain undiminished to this day.

FIGURE 4.14 Time domain and phase plan portrait of the progression toward chaos: (A)
stable behavior, (b) periodic behavior, (c) period doubling, (D) chaos. (Adapted from J. Gleick,
Chaos, Viking Penguin Inc., New York, 1987.)
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Practice Problems
4.1 Classification of ODEs: Boundary Conditions —

(a) Classify the following ODEs
• y″ + y′ + (sin x)y = 0
• y″ + y′ + y = sin x
• y″ + y′ + (sin2 x)y = 0
• y″ + y′ + sin y = 0
• y″ + y′ + y = 0

(b) Give an example each of an autonomous ODE, a nonautonomous ODE,
a homogeneous and a nonhomogeneous ODE. Are all autonomous ODEs
homogeneous? Are all homogeneous ODEs autonomous?

(c) Give two physical examples each, other than those cited in the text, which
give rise to Type II and Type III boundary conditions.

4.2 Tubular Reactors with Axial Diffusion. The Danckwerts Boundary
Conditions — 

(a) Show that for a tubular reactor with axial dispersion, conditions at the
inlet and outlet are given by the so-called Danckwerts, or close boundary
conditions:

(4.5.41)

(b) Using the D-operator method and the above boundary condition show that
the outlet concentration for a first order reaction is given by:

(4.5.42)

where  Pe = Peclet Number = vL/D.

4.3 The Countercurrent Heat Exchanger — Derive Equation 3.3.16 for the tube-
side temperature profile of a single pass, shell-and-tube countercurrent heat
exchanger.

4.4 The Shrinking-Core Model — Show by repeated application of the separation
of variables method, that the relation between core radius rC and time of reaction
for a reacting spherical particle is given by:

(4.5.43)
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where b = moles of solid reacting per mole of reactant gas A, Deff = diffusivity
through the ash layer. Assume diffusion through the ash layer is controlling. Use
the systematic approach employed in Illustration 4.3.2.

4.5 The Airy Equation — Use a power series expansion to obtain a solution to the
Airy equation y″ – xy = 0.

(Hint: Show that a2 = 0 and that subsequent terms are given by the recursion
formula.)

4.6 Deflection of a Horizontal Beam — The deflection y of a horizontal beam
subject to a restoring force which is proportional to the deflection is described by
the fourth order ODE:

(4.5.44)

where E = Modulus of Elasticity, I = Moment of Inertia.
Using the D-operator method, show that the solution to this problem is given by:

y = C1 eax cos ax + C2 eax sin ax + C3 e–ax cos ax + C4 e–ax sin ax (4.5.45)

(Hint: Set k/4EI = a4 and derive the characteristic equation D4 + 4a4 = 0 whose roots
are D = ± a ± ai.)

4.7 Use of Integrating Factors — Show that the nonlinear ODE 
y2 = 0 has the integrating factor x and integrate the result.

(Hint: Consult Table 4.9.)

4.8 The Bernoulli Equation — Derive a closed form solution of the Bernoulli
equation:

y′ + f(x)y = g(x)yn (4.5.46)

using the substitution u = y1–n.
(Hint: Use Item 6 of Table 4.4.)

4.9 The Pendulum — The equation of motion for a frictionless pendulum is given
by:

(4.5.47)

where θ = angle of deflection. Show that the closed form solution of this problem
is given:
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(4.5.48)

4.10 The Nonlinear Countercurrent Heat Exchanger — When fluids with a strong
temperature dependence of their viscosity are heated in an exchanger, the heat
transfer coefficient becomes a function of T, resulting in a set of nonlinear model
equations. Indicate how these equations would be solved numerically.

4.11 Path of Pursuit — Derive Equation 4.3.92.
(Hint: Sketch the paths.)

4.12 The Duffing Equation — For a Duffing-type equation of the form:

(4.5.49)

derive the stationary solutions and analyze their character and stability.
Answer: Critical points consist of an unstable saddle and stable focus.

4.13 The van der Pol Equation — Deduce the nature and stability of the stationary
solution of the van der Pol equation:

(4.5.50)

in the parameter range

3 > λ > –3

Partial answer: There is a center at y1 = y2 = λ = 0.

4.14 Identification of Turning and Bifurcation Points — Prove that two of the
critical points in Figure 4.11 are bifurcation points.
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5

 

The Laplace 
Transformation

 

A theory should be as simple as possible, and no simpler.

 

Albert Einstein

 

The Laplace transformation (or Laplace transform, for short) belongs to a broader
class of integral transform operations in which a function f(t) is multiplied by a
“Kernel” K(s,t) and integrated between the limits a and b. Thus,

(5.1)

where T = operational symbol for the transformation and f(s) = transform of F(t).
F(t), the function operated on, is quite arbitrary in form and can be an ordinary

function in t, such as sin at, a derivative d

 

2

 

F/dt

 

2

 

, or even an integral. The kernel and
the integration limits (a,b) define the type of transform. Apart from Laplace trans-
forms, there are Fourier transforms of various types, transforms including Bessel
functions, and several others, all of which have their own special kernels and
integration limits. These are taken up in more detail in Chapter 9. For the Laplace
transform, the kernel K(s,t) is the function e

 

–st

 

 and the integration limits (a,b) are
from zero to infinity. Thus, the Laplace transform of f(t) takes the form:

(5.2)

where L is its operational symbol and L

 

–1

 

 is its inverse, i.e.,

L

 

–1

 

{f(s)} = F(t) (5.3)

This transformation, when applied to each term of an ordinary differential
equation (ODE), has the effect of eliminating the independent variable t, thus
reducing the ODE to an algebraic equation in the transformed state variable f(s).
After solving for f(s), the AE is then translated back into the solution space by means
of appropriate “dictionaries,” the Laplace transform tables. The reader will note that

T F t F t K s t dt f s
a

b

{ ( )} ( ) ( , ) ( )= =∫

L F t F t st dt f s{ ( )} ( ) exp(– ) ( )= =
∞
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this procedure bears a resemblance to the D-operator method which likewise trans-
forms an ODE to an AE, and after solving the latter, translates the result back into
the solution domain by means of an appropriate dictionary, Table 4.4.

The Laplace transform is generally used to solve linear initial value ODEs with
constant coefficients. Although it can in principle be applied to boundary value
problems, the procedure is somewhat cumbersome since the missing initial condi-
tions have to be evaluated by substitution of given boundary conditions into the
solution, much like integration constants (see Illustration 5.2.5). It is also of little
help in solving variable coefficient ODEs and is generally inapplicable to nonlinear
ODEs. Once these limitations are accepted, however, it becomes an extremely
powerful tool both for the solution and the analysis of linear ODEs, as well as PDEs.
It can directly solve many nonhomogeneous initial value problems without first
finding the fundamental solution of the corresponding homogeneous problems. Sec-
ond, it can handle a wide array of nonhomogeneous terms, including the important
class of discontinuous or impulsive forcing functions. Third, the initial conditions
appear automatically in the solution, thus obviating the need to evaluate integration
constants.

Because of these properties, the Laplace transform has become an indispensable
tool in linear control theory which deals extensively with nonhomogeneous initial
value problems. It is there that it finds one of its most fruitful uses and it does this
often by means of analysis rather than an actual solution of the ODEs.

The question then arises whether, given the attractive features of the Laplace
transform, one need to retain the D-operator method. The answer is yes, since the
latter is capable of handling the important class of boundary value problems that
are not easily accessible to the Laplace transformation.

We proceed in this chapter by first discussing some general properties of the
Laplace transform, followed by its application to the solution of some simple ODEs.
This is followed by a survey of the response of first and second order systems to
various types of forcing functions which provides an entry into linear control theory.
We discuss there the use of the transfer function and block diagrams, and provide
a glimpse of what is known as Laplace domain analysis. We conclude by taking up
some of the less common applications of the transform.

 

5.1 GENERAL PROPERTIES OF THE LAPLACE 
TRANSFORM

 

We have tabulated in Table 5.1 some general properties of the Laplace transform
and supplement this, in Table 5.2 and 5.3, with tabulations of transforms of some
common Functions, as well as of some discontinuous functions. The Laplace trans-
form is particularly powerful and unsurpassed in handling the latter. Our comments
here are with respect to Table 5.1.

To begin with, we note that the table is akin to a table of integrals in that one
can move from left to right or from right to left, depending on the information
sought. In this instance, one moves from right to left to obtain the transform f(s) of
a function F(t), and from left to right to obtain what is termed the inverse transform
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TABLE 5.1
General Properties of the Laplace Transform

 

f(s) F(t)

 

1. Laplace transform
F(t)

2. Inverse transform
f(s)

3. Transform of a constant
C/s C

4. Transform of a sum
af(s) + bg(s) aF(t) + bG(t)

5. Transform of derivatives
sf(s) – F(0) F

 

′

 

(t)
s

 

2

 

f(s) – sF(0) – F

 

′

 

(0) F

 

″

 

(t)
s

 

n

 

f(s) – s

 

n–1

 

F(0) – s

 

n–2

 

F

 

′

 

(0) … F

 

(n–1)

 

(0) F

 

(n)

 

(t)
6. Transform of an integral

7. Inverse of a product: the convolution theorem
f(s) g(s)

8. Inverse of a ratio of polynomials (Heaviside expansion)

where a

 

n

 

 = roots of q(s)
9. Inverse of derivatives

f

 

′

 

(s) –t F(t)
f

 

(n)

 

(s) (–1)

 

n

 

t

 

n

 

 F(t)
10. Inverse of an integral

11. Translation or shifting properties
(a) f(s – a) e

 

at

 

 F(t)
(b) e

 

–as

 

 f(s)

12. Initial value theorem
F(0)

13. Final value theorem
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of f(s), i.e., the function F(t) itself. The latter process is commonly referred to as an
inversion. The formula given for the general inversion, Item 2, involves a line integral
in the complex plane and requires some background knowledge of complex variable
theory. It is used only sparingly and we shall here limit ourselves to making use of
more convenient Items.

Item 5, the transform of derivatives requires special mention. Its main feature
is that it converts the derivatives into algebraic expressions in s. In this it resembles
the D-operator method and, as we shall see, also leads to a set of characteristic
values termed 

 

poles. 

 

It has, however, the additional advantage of incorporating the
initial conditions in the resulting algebraic expression. This was not the case in the
D-operator method which required the somewhat cumbersome evaluation of inte-
gration constants.

 

TABLE 5.2
Laplace Transforms of Some Functions
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Two additional items call for special mention. One is the convolution integral,
Item 7, which allows the inversion of the product of two arbitrary function f(s) and
g(s). It is frequently used to carry a general and unspecified function, say F(t), into
the transformation process and return it upon inversion as an integrand of the
convolution integral. The second item of special interest is the Heaviside expansion,
Item 8. To use it in the inversion of a ratio of polynomials, one first has to evaluate
the roots of the denominator q(s) that are then substituted into the inversion formula

 

TABLE 5.3
Laplace Transforms of Discontinuous Functions
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given on the right side. That formula applies only to distinct roots. Extensions to
repeated roots are available (see References). Alternatively, the ratio can be decom-
posed into partial fractions and each fraction thus obtained inverted on an individual
basis. We demonstrate the use of these formula with some sample illustrations.

 

Illustration 5.1.1 Inversion of Various Transforms

 

1. Obtain the inverse 

Since the roots of the denominator are both repeated, one cannot use the Heavi-
side expansion shown in Item 8 of Table 5.1. We note, however, from Table 5.2,
Item 5, that:

(5.1.1)

so that we are in a position to apply the convolution theorem. We obtain:

(5.1.2)

Expanding sin k(t – 

 

τ

 

) gives:

sin (kt – k

 

τ

 

) = sin kt cos (-k

 

τ

 

) + cos kt sin (–k

 

τ

 

) (5.1.3)

and using the following formula obtained from tables of integrals:

(5.1.4)

as well as,

sin 2 kt = 2 sin kt cos kt (5.1.5)
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(5.1.6)

2. Find 

Here some thought will reveal that application of the two shifting properties 11a
and 11b to the polynomial and exponential terms in succession will accomplish the
desired inversion. We first apply 11a, using Item 4 of Table 5.2 and obtain:

(5.1.7)

Knowing the inversion of the polynomial part, we then apply the shifting prop-
erty 11b to the full expression. This yields:

(5.1.8)

3. Invert 

We recognize this as a ratio of polynomials p(s)/q(s) where p(s) = 3s + 1, q(s)
= (s – 1)(s

 

2 

 

+ 1) = s

 

3

 

 – s

 

2

 

 + s – 1, and the roots of q(s) are a

 

1

 

 = 1, a

 

2

 

 = i, a

 

3

 

 = –i.
Since the roots are not repeated and the order of p(s) is less than that of q(s), the
Heaviside expansion, Item 8 of Table 5.1, may be applied.

We have:

q

 

′

 

(s) = 3s

 

2

 

 – 2s + 1 (5.1.9)

Expanding the sum of the Heaviside expression, we obtain:

(5.1.10)

Evaluation of the products reduces Equation 5.1.10 to the expression:

(5.1.11)

The same result also may be obtained by partial fractions. We write:
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(5.1.12)

Equating coefficients of equal powers in I and III, one obtains:

A + B = 0 A – C = 1 C – B = 3 (5.1.13)

and hence,

A = 2, B = –2, C = 1

The problem is then reduced to an inversion of the following sum:

(5.1.14)

for which we use Items 3, 5, and 7 of Table 5.2. The final result is given by:

(5.1.15)

which is identical to the previous result.

 

5.2 APPLICATION TO DIFFERENTIAL EQUATIONS

 

The Laplace transform has certain attractive features, some already noted, which
makes it the preferred tool for solving linear initial value problems.

• It can be applied quite automatically to problems of this type.
• It directly incorporates initial conditions into the transforms of the deriv-

atives of the ODE, thus dispensing with the need to evaluate integration
constants.

• The transform is capable of handling a wide variety of different forcing
functions, including those of a discontinuous nature (Table 5.3), and it
does so with much greater ease then other procedures. We recall that the
D-operator method would in this case require the evaluation of a particular
integral which becomes difficult if not impossible to apply in the case of
discontinuous functions.

• The method often provides qualitative information as to the 

 

nature

 

 of the
solution by a mere inspection of the form and the coefficients of the ODE
without having to proceed to an 

 

actual

 

 solution. In this it resembles the
D-operator method that enables us to forecast the 

 

shape
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curves from the coefficients of the ODE. The process of extracting such
information without actually solving the ODE is sometimes referred to
as 

 

Laplace domain analysis.

 

The details of the procedure for solving ODEs may be summarized as follows:

1. Apply the Laplace transform in turn to each term of the ODE in Y(t). If
that term is a 

 

derivative

 

, one obtains a composite of the transform of the
unknown function, y(s) and its initial values (see Item 5 of Table 5.1).
For example, dY/dt becomes, when transformed, y(s) – Y(0). Terms
directly containing the unknown state function become the transform of
that variable. Thus, L{kY(t)} will become ky(s). Finally, the nonhomo-
geneous terms or forcing functions are directly reduced to explicit func-
tions of s. For example, the forcing function e

 

at

 

 is transformed directly
into the explicit form 1/(s-a).

2. Solve the algebraic equation in y(s) that resulted from Step 1. This yields
expressions of the form:

y(s) = G(s) (5.2.1)

where y(s) is the transformed state variable Y(t) and G(s) is an explicit
function of s containing, among other things, the transforms of the forcing
functions and the initial conditions. An example is

3. Invert the Expression 5.2.1, i.e., apply the operator L

 

–1

 

 to each side. For
y(s), this automatically yields the desired state variable Y(t). Inversion of
the right-side term G(s) is accomplished by means of tables, such as Tables
5.2 and 5.3, and by one or more of the procedures listed in Table 5.1,
such as the use of the convolution integral, the Heaviside expansion, or
partial fractions. Together these two inversions yield the desired solution
in the final form:

Y(t) = f(t, Initial Conditions) (5.2.2)

For simultaneous ODEs, the procedure is similar but requires an additional step.
We proceed as follows:

1. Apply the Laplace transform to each term of each of the n ODEs of the
system. Instead of a single algebraic equation in y(s), we now obtain n
such equations containing n transforms, y

 

1

 

(s), y

 

2

 

(s) … y

 

n

 

(s).
2. Eliminate algebraically n – 1 of the transforms, reducing the system to a

 

single

 

 algebraic equation in y

 

i

 

(s).
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3. Solve the equation which resulted in Step 2 for y

 

i

 

(s).
4. Invert the result from Step 3 to obtain Y

 

i

 

(t).
5. Repeat the procedure for the remaining n – 1 transforms.

In what follows we present two illustrations of the solution of 

 

single

 

 ODEs.
Examples of simultaneous ODEs appear in Practice Problems 5.2 and 6.1.3.

 

Illustration 5.2.1 The Mass-Spring System Revisited: 
Resonance

 

We consider here the system previously seen in Illustration 4.3.5, that of a vibrating
spring with a forcing function. The forcing function used there was the weight of
the mass m attached to the spring so that gravity and the restoring force kx of the
spring were the forces to be considered. We obtained, by application of Newton’s law:

(4.3.46)

where the gravitational constant g represented the forcing function. We now gener-
alize this equation to apply to an arbitrary forcing function F(t) and specify more
general initial conditions, so that:

(5.2.3)

and X(0) = X

 

0

 

 (initial position)
X

 

′

 

(0) = v

 

0

 

 (initial velocity)

 

ω

 

0

 

= (k/m)

 

1/2

 

We carry the forcing function in unspecified form into the Laplace transformation
process and obtain:

s

 

2
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 + 
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0
2

 

x(s) = f(s)/m (5.2.4)

Solving for x(s), we obtain:

(5.2.5)

This is the expression which now has to be inverted. Inversion of the first fraction
is by Items 5 and 7 of Table 5.2, that of the second term by means of the convolution
integral, Item 7 in Table 5.1. We obtain:
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Note the appearance of the initial conditions X

 

0

 

 and v

 

0

 

 in this expression and
that the forcing function F(t) remains unspecified under the convolution integral.
The advantage here of the convolution formulation is its ability to yield closed form
solutions without the need to specify certain terms of the original ODE.

We consider the following two cases for F(t): (1) F(t) = constant = mg, and v

 

o

 

= 0. Under these conditions, the sine term drops out and the integral becomes:

(5.2.7)

We, thus, recover the solution given in Illustration 4.3.5, i.e.;

(4.3.57)

or in equivalent form,

X(t) = (X
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 –g/

 

ω

 

0
2

 

) cos 
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t (5.2.8)

(2) F(t) = F

 

0

 

 sin 

 

ω

 

t. Here the expression to be inverted becomes:

(5.2.9)

The first term on the right is inverted via Items 5 and 7 of Table 5.2, the second
term either by partial fractions or the Heaviside expansion. We obtain:

(5.2.10)

where as before 
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.
Here 
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0

 

 is referred to as the 

 

natural vibration frequency 

 

and 

 

ω

 

 as the 

 

forced
vibration frequency

 

 of the system. Let us now ask ourselves what happens when the
two frequencies are identical. Intuitively one could argue that this superposition of
two vibrations with the same frequency might lead to an 

 

escalation

 

 in the amplitude
of the vibrations of the system. This is indeed the case, as is shown below.
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t; resonance. The expression to be inverted now becomes:

(5.2.11)
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appearance of a term in t as kt cos kt, i.e., a time dependent amplitude. For the case
in hand, we obtain in similar fashion:

(5.2.12)

In view of the last term, the amplitude of the oscillations increases indefinitely
and one speaks of the forcing function F(t) as being in resonance with the system
frequency. In particular, for X0 = 0 and v0 = –F0 /(2mω0),one obtains the expression:

(5.2.13)

That expression clearly shows a linear increase in amplitude with t, as indicated
in Figure 5.1, and would in time lead to a rupture of the mass spring system.

Illustration 5.2.2 Equivalence of Mechanical Systems and 
Electrical Circuits

We wish here to demonstrate the equivalence of the equations that describe mechan-
ical vibrations on the one hand and the oscillations that arise in certain electrical
circuits on the other.

We do this by first deriving a more general equation for forced mechanical
vibrations which now includes a damper or dashpot in the system, as illustrated in
Figure 5.2A. The damper has the effect of producing a countervailing force that is
proportional to the velocity of the vibrating mass. This in turn leads to the appearance
of a first-order derivative k1dX/dt in the constitutive equation. We now obtain:

(5.2.14)

where the forcing function is again kept in a general and unspecified form.
We next turn to the consideration of the simple electrical circuit shown in Figure

5.2B. It is made up of a coil with inductance L, a resistor with resistance R, a

FIGURE 5.1 Solution of a second order nonhomogeneous ODE leading to resonance.
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capacitor with capacitance C, and a voltage supply E(t). From elementary electricity
theory it is known that for the first three items, the voltage drop is given by:

(5.2.15)

where i = current, q = charge.
The sum of three voltage drops must equal the imposed voltage E(t) so that:

(5.2.16)

Since current equals the rate of flow of charge q at any time, we have i = dq/dt.
Introducing this relation into Equation 5.2.16, we obtain the second order ODE:

(5.2.17)

The analogy to the vibrating mass and spring, Equation 5.2.14, is immediately
evident. We note in particular that the inductor corresponds to the acceleration term,

FIGURE 5.2 Two different physical systems which give rise to identical forms of second
order ODEs.
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i.e., accelerates the charge, the resistor has a “damping” effect on charge flow, and
the capacitor, likewise, resists charge flow much like the action of the spring.

The response of these systems to various forcing functions gives rise to some
interesting phenomena. We had already given a partial analysis of this type in
Illustration 5.2.1. In the following two illustrations, we shall first, by way of pre-
amble, address the response of first order systems and ODEs (Illustration 5.2.3), and
follow this up, in Illustration 5.2.4, with a more general analysis of second order
systems of the type given above. We will show in particular, how these responses
are related to the coefficients of the constituent equations, and how they are affected
by the form of the forcing function.

Illustration 5.2.3 Response of First Order Systems

We use here, as an example of a first order system, a thermocouple or a thermometer
which is exposed to a change in the ambient temperature. That change represents
a forcing function F(t). We treated this case in Illustration 3.3.3 where a step change
in the ambient temperature was considered. Here we generalize the treatment to
accommodate arbitrary forcing functions. A number of new features in both the
form of the ODE and its transform are introduced which help in the generalization
of the results.

The ODE was previously written in the form:

(5.2.18)

Note that at steady-state, the relation becomes:

hA(Tas – Ts) = 0 (5.2.18a)

where the subscript s denotes the (previous) steady-state. Subtraction of the two
equations, 5.2.18 and 5.2.18a yields:

(5.2.19)

or

(5.2.20)

where X and Y are so-called deviation variables, defined as:

X = Ta – Tas, the forcing function or input

hA T T VC
dT
dta p( )− = ρ

hA T T T T pVC
d T T

dta as s p
s[( ) ( )]

( )
− − − =

−

[ ]X Y
dY
dt

− = τ
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and

Y = T – Ts, the response function or output

τ = ρVCp/hA is the so-called time constant, with units of time.
Noting that Y(0) = 0, the Laplace transform of Equation 5.2.20 yields the

expression

x(s) – y(s) = τsy(s) (5.2.21)

or in rearranged form,

(5.2.22)

The term on the right is referred to as the transfer function of the system and
denoted by the symbol G(s). It also can be viewed as the ratio of the transforms of
the output to that of the input. Thus,

(5.2.23)

More about G(s) will be given in Section 5.3.
We now consider various inputs X to the system and examine the resulting

response Y.
(I) Step Input A — Here we have, from Item 3 of Table 5.1:

x(s) = A/s (5.2.24)

and the relation to be inverted becomes:

(5.2.25)

Inversion can be accomplished by either the Heaviside expansion or by partial
fractions and yields:

Y(t) = A(1 – e–t/τ) (5.2.26)

This expression depicts a smooth exponential rise to the new steady-state value
A, as shown in Figure 5.3.
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(II) Unit Impulse Input — The input here consists of a pulse of magnitude 1
applied over a infinitesimally small time interval. The transform of such a pulse,
also known as the Dirac delta function, equals 1, see Item 10 of Table 5.3. The
transform of the ODE is then given by:

(5.2.27)

with an inverse (see Item 3 of Table 5.2)

(5.2.28)

This expression is plotted in Figure 5.4.

FIGURE 5.3 Response Y(t)/A of a first order ODE to a step change in input. (D.R. Cough-
anowr, Process Systems Analysis and Control, 2nd ed., McGraw-Hill, New York, 1991. With
permission.)

FIGURE 5.4 Response τY(t) of a first order system to an impulse input. (D.R. Coughanowr,
Process Systems Analysis and Control, 2nd ed., McGraw-Hill, New York, 1991. With permis-
sion.)
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One notices that the response rises immediately to 1.0 and then decays expo-
nentially. Such an abrupt rise is not physically possible but is closely approached
by the response of the thermocouple to a pulse of narrow width.

(III) Sinusoidal Input — This is an interesting case in which the forcing function
or input is of the form:

X(t) = A sin ωt (5.2.29)

The Laplace transform is now given by:

(5.2.30)

which upon inversion by partial fraction or the Heaviside expansion yields:

(5.2.31)

This expression can be further consolidated by combining the two trigonometric
terms using the identity:

p cos A + q sin A = r sin (A + φ) (5.2.32)

r = (p2 + q2)1/2, tan φ = p/q

Application to Equation 5.2.31 leads to the transformed expression:

(5.2.33)

with φ = tan–1 (–ωt).
Several features of this expression are worth noting.

1. The solution is made up of an exponentially decaying term and a periodic
term. This latter term, called the ultimate periodic solution, constitutes
the response as t → ∞, i.e.,

(5.2.34)

2. The output given by Equation 5.2.34 has the same frequency ω as the
forcing function but lags behind it by an angle |φ|.
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3. The ratio of output amplitude to input amplitude of the ultimate periodic
solution is (τ2ω2 + 1)–1/2 which is always smaller than 1. The output signal
is said to be attenuated with respect to the input amplitude.

We note that first order systems do not oscillate on their own and, hence, do not
have a natural frequency ω0 as do second order systems. Thus, resonance does not
arise here. These and other features are discussed in the following illustration.

Illustration 5.2.4 Response of Second Order Systems

The genesis of second order ODEs in oscillating mechanical and electrical systems
that yield to analysis and solution by the Laplace transformation was briefly dis-
cussed in Illustration 5.2.2. The ODEs involved were of the form:

(5.2.35)

For the purpose of analyzing the solution behavior, it is convenient to recast the
expression into the following form:

(5.2.36)

where τ = (K1/K3)1/2 time constant (sec)

λ =  characteristic parameter, dimensionless

X(t) = F(t)/K3

Assuming initial conditions Y(0) = Y′(0) = 0, the transform of Equation 5.2.36
becomes:

(5.2.37)

We now examine this expression and its inverse for various types of forcing
functions or inputs as we did in the case of first order systems. In particular, we
shall make use of the roots of the denominator, s1,2, which are known as the poles
of the transfer function.

Unit Step Input — This input leads to the transform:

(5.2.38)

whose inverse will depend on the magnitude of the characteristic parameter λ. We
distinguish three cases:
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Step Response for λ > 1 — Here the roots are real and distinct, and the Heaviside
expansion yields a sum of exponentials given by:

(5.2.39)

Plots of this relation for λ > 1 appear in Figure 5.5. The response in all cases
is seen to be a smooth exponential rise to the new steady-state at Y(t) = 1. That rise,
however, becomes increasingly sluggish as λ is raised, i.e., it takes increasingly
longer times to reach the new steady state. One speaks of the system as being
overdamped. In a mass and spring system with dashpot, this would correspond to
the displaced mass coming to rest in a single half-swing with no oscillations due to
the strong damping effect of the dashpot.

Step Response for λ < 1 — This case is the one most frequently encountered
in practice and involves oscillations whose amplitude decay with time, corresponding
to a vibrating mass or an oscillating pendulum coming to rest after a few swings.
The roots of the quadratic term in Equation 5.2.38 are now complex conjugate with
a real negative part, the latter accounting for the exponential decay of the amplitude.
Inversion is by partial fractions or by the Heaviside expansion. Using in addition

FIGURE 5.5 Response of a second order system to a step change in input. System is
underdamped for λ > 1, overdamped for λ < 1, and critically damped at λ = 1. (D.R.
Coughanowr, Process Systems Analysis and Control, 2nd ed., McGraw-Hill, New York, 1991.
With permission.)

Y t e t tt( )
( )

sinh( ) / cosh( ) //
/

/ /= −
−

− + −





−1
1

1 12 1 2
2 1 2 2 1 2λ τ λ

λ
λ τ λ τ

248/ch05/frame  Page 291  Monday, October 8, 2001  2:15 PM

© 1999 By CRC Press LLC



the trigonometric transformation expressed by Equation 5.2.32, one obtains, after
some manipulation, the inverted form:

(5.2.40)

where φ = tan–1 (1 – λ2)1/2/λ.
Plots of this oscillatory response also appear in Figure 5.5 for various values of

λ. One notes that the amplitudes of the oscillations increase with decreasing values
of λ, but all curves ultimately converge to a value of Y(t) = 1.

We single out a response curve for a particular value of λ, shown in Figure 5.6,
for more detailed scrutiny. One notes a number of characteristic features of the plot,
including the rise time, the period of oscillation T, and parameters A, B, and C which
are related to the degree of overshoot, and the decay ratio. We define these as follows:

(a) Overshoot is the quantity that expresses the degree by which the response
exceeds the ultimate steady state. It is defined as the ratio A/B (Figure
5.6) which is related to the characteristic parameter λ by the relation:

Overshoot = A/B = exp (–πλ)/(1 – λ2)1/2 (5.2.41)

(b) Decay Ratio C/A is a measure of the relative magnitude of successive
peaks and is related to λ by the expression:

Decay Ratio = C/A = exp [(–2πλ)/(1 – λ2)] = (Overshoot)2 (5.2.42)

(c) Rise Time is the time required for the response to reach its first steady-
state value. There is no explicit expression for it in terms of system
parameters but it can be shown that it increases with the value of λ.

(d) Response Time is the time required for the response to come within a
specified interval, usually taken as ± 5%, of the ultimate steady-state (see
Figure 5.6).

(e) Oscillation Period and Frequency is yet another quantity that can be
directly expressed in terms of the system parameters. The pertinent rela-
tion is given by:

FIGURE 5.6 Characteristic parameters of an underdamped system. (D.R. Coughanowr,
Process Systems Analysis and Control, 2nd ed., McGraw-Hill, New York, 1991. With
permission.)
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(5.2.43)

where ω = circular frequency in radians, ν = frequency in cycles/time,
and the period T in time/cycle.

(f) Natural Frequency ω0. We had seen in Illustration 5.2.1 that an undamped
system has its own natural frequency w0. This frequency is obtained by
removing the first derivative in Equation 5.2.36, i.e., by setting λ = 0. We
obtain from Equation 5.2.43

(5.2.44)

Note that the phenomenon of resonance which we had seen for the undamped
system with sinusoidal forcing does not arise when λ ≠ 0, i.e., when the system is
damped.

The noteworthy feature of the above development is that some important param-
eters of the system response can be directly deduced, and deduced quantitatively,
from the coefficients of the underlying ODE. No solution is required, only the
evaluation of the characteristic parameter λ, and in the case of Equation 5.2.43, that
of the time constant τ as well. This parallels to some extent features we had noted
in connection with the D-operator method discussed in Chapter 4. The connection
there was between the qualitative shape of the solution — periodic, exponential, or
a combination thereof — and the coefficients of the ODE contained in the so-called
characteristic roots. We shall return to this in a subsequent section and establish
complete equivalence between the characteristic equation that arises in the D-operator
method, and a characteristic equation derived from the transfer function of a system.

Step Response for λ = 1 — For this value of the characteristic parameter, the
quadratic term in Equation 5.2.38 yields identical roots. Inversion of the equation
which can be accomplished by partial fractions or by convolution (see Illustration
5.1.1, Item 1) yields the expression:

(5.2.45)

Figure 5.5 shows this to be the border line between overdamped and under-
damped behavior, and the system is consequently referred to as being critically
damped. Physically, it represents the condition of quickest attainment of the new
steady-state, a desirable response but one which is difficult to implement in practice.

Unit Impulse Input — Response of Equation 5.2.36 to a unit dirac pulse, with
a transform of 1, yields:

(5.2.46)
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We refrain from going into the details of the inversion and merely summarize
the resulting responses for the three values of the critical parameter λ. We have

For λ > 1:

(5.2.47)

For λ < 1:

(5.2.48)

For λ = 1:

(5.2.49)

A graphical representation of these curves appears in Figure 5.7. The behavior
is very similar to that seen in Figure 5.5 for the response to a unit step input, except
that the system now returns to its original state. λ > 1 again corresponds to an
overdamped system, λ < 1 to an underdamped system, and λ = 1 is the dividing line
between the two, i.e., corresponds to critical damping.

FIGURE 5.7 Response τY(t) to an impulse input. (D.R. Coughanowr, Process Systems
Analysis and Control, 2nd ed., McGraw-Hill, New York, 1991. With permission.)
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Sinusoidal Input — The input considered here again has the form:

X(t) = A sin ωt

We apply it to the full Equation 5.2.36, i.e., we include damping. The system
consequently has no natural frequency of its own and resonance does not raise.

The transform to be inverted is of the form:

(5.2.50)

which upon application of standard inversion methods yields the response:

(5.2.51)

with the phase angle φ given by:

(5.2.52)

We note the following features of Equation 5.2.51:

• The frequency of the response ω is identical to that of the forcing function.
• The output lags the input by a phase angle |φ|. It can be seen from Equation

5.2.52 that the argument of the inverse tangent approaches zero as ω →
∞, and that |φ| consequently approaches 180° asymptotically. This is in
contrast to the response of first order systems whose phase angle is at
most 90°.

• The ratio of output amplitude to input amplitude is given by:

{[1 – (ωτ)2]2 + (2λωτ)2}–1/2 (5.2.53)

and can be greater or smaller than 1, depending on the magnitude of λ
and ωτ. Both amplification and attenuation, thus, are possible. This is
again in contrast to the behavior of first order systems, whose amplitude
ratio never exceeds 1.

We conclude, for the time being, our consideration of system responses. It will
be resumed in Section 5.5 where we consider Laplace domain analysis. The preced-
ing two illustrations have, however, given us a fairly thorough look at the responses
of first and second order systems to a variety of forcing functions. Most of these
were seen to be stable, i.e., they attained a finite steady state as t → ∞. An exception
occurred in undamped second order systems which could respond to sinusoidal
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forcing with the natural frequency ω0 of the system by producing oscillations of
increasing amplitude, leading to “runaway” or unstable behavior. Such instabilities
arise with greater frequency in systems of order > 2, and it is these instabilities, and
methods for their avoidance, that will be given particular attention.

Illustration 5.2.5 The Horizontal Beam Revisited

In Practice Problem 4.6, the reader was asked to solve, with the methods available
in Chapter 4, a fourth order ODE describing the deflection y of a horizontal beam
subjected to a force. Although this was not mentioned there, such problems are
usually of a boundary value type. Boundary value ODEs are not the natural domain
of application of the Laplace transform, but it can be adapted to such problems by
retaining the missing initial values as unknowns and evaluating them from boundary
values given at the end of the domain.

The equation describing the deflection of a loaded beam is generally of the form:

(5.2.54)

where EI is the product of Young’s modulus E and moment of inertia I, also called
the flexural rigidity, and W(x) is the distributed load. The fourth order derivative
comes about as follows:

• The internal bending moment M(x) exerted between adjacent spans is
proportional to the local curvature with the flexural rigidity as its propor-
tionality constant. Thus,

M(x) = EI Y″ (5.2.55)

• The bending moment M(x) in turn gives rise to a vertical internal shear
force F(x) with a moment F(x)dx = dM so that:

(5.2.56)

• Finally, an increment of the load in the horizontal direction, W(x)dx (kg)
leads to an incremental increase dF(x) of the internal shear force, yielding:

W(x) = EI Y(4) (5.2.57)

The Boundary Conditions, four of which are required, depend on the way in
which the beam is anchored. They are different from the Type I, II, and III BCs we
had described in Chapter 4 since they involve higher order derivatives.

d Y
dx

W x
EI

4

4 = ( )

F x
dM
dx

EI Y( ) = = ′′′

248/ch05/frame  Page 296  Monday, October 8, 2001  2:15 PM

© 1999 By CRC Press LLC



   

• For clamped, built-in or otherwise fixed ends, the deflection at those points
is zero and the beam is horizontal with zero derivatives. Hence,

Y(0) = Y(l) = Y

 

′

 

(0) = Y

 

′

 

(l) = 0 (5.2.58)

These Conditions can still be classified as Type I and II.
• For Hinged or Simply-Supported Ends the deflection is again zero but in

addition the beam ends at points of inflection, so that

Y(0) = Y(l) = Y

 

″

 

(0) = Y

 

″

 

(l) = 0 (5.2.59)

Here only the first two BC’s are of Type I.
• For a Single Free End, the conditions there are

Y

 

″

 

(1) = Y

 

�

 

(1) = 0 (5.2.60)

where the second condition expresses the fact that curvature is at a min-
imum. Both of these conditions fall outside the Type I to III classification.

We consider as our example the simple case of a beam carrying a uniform load
W (kg/m) over the interval 0 

 

≤

 

 x 

 

≤

 

 l. The ends are simply-supported (see Figure
5.8). The system is then described by the equation:

(5.2.61)

with Boundary Conditions

Y(0) = 0 Y

 

″

 

(0) = 0 Y(l) = 0 Y

 

″

 

(l) = 0 (5.2.62)

Laplace transformation of the ODE 5.2.61 yields:

(5.2.63)

The second and fourth terms drop out because of the first two items of Equation
5.2.62. The remaining initial conditions Y

 

″

 

(0) and Y

 

′

 

(0) are carried into the inversion
process as unknowns. We obtain in the first instance:

 

FIGURE 5.8

 

Diagram of a uniformly loaded beam subject to deflection Y(x).
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(5.2.64)

Inversion is by Item 4 of Table 5.2 and yields:

(5.2.65)

The unknown initial condition Y

 

″

 

(0) and Y

 

�

 

(0) are obtained by substitution of
the two remaining boundary conditions of Equation 5.2.59 into the solution Equation
5.2.62. There results:

(5.2.66)

The final deflection profile is then given by the expression:

(5.2.67)

 

5.3 BLOCK DIAGRAMS: A SIMPLE CONTROL SYSTEM

 

Hitherto, the Laplace transform had been applied to simple systems consisting of a

 

single

 

 ODE. When more than one or two equations are involved, it becomes con-
venient to represent the system graphically by means of a so-called block diagram
in which each physical unit of the process is assigned a block with appropriate input
and output leading into and out of the block, and the relevant transfer function G(s),
which is the ratio of transforms of input to output inscribed within the block. Thus,

When more than one input is involved, the representation is by means of a so-
called summing junction, given the following circular symbol:

The symbol may have several inputs but only one output.
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To illustrate the genesis and use of block diagrams, we consider a simple physical
example consisting of a well-stirred water heater with constant in- and outflow shown
in Figure 5.9A. The temperature in the tank is to be maintained at a constant value
TR. This is achieved by means of a controller which is fed a signal representing the
measured temperature Tm and translates it into an Error ε = TR – Tm. To correct this
error, the controller in turn causes the electrical heater to provide the necessary heat
input to reduce the error ε, i.e., to raise the temperature Tm toward the desired level

FIGURE 5.9 Control of a hot water tank with inflow of water: (A) schematic diagram, (B)
initial construction of the block diagram, (C) final block diagram. (D.R. Coughanowr, Process
Systems Analysis and Control, 2nd ed., McGraw-Hill, New York, 1991. With permission.)
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TR. When the controller changes that heat input in proportion to the error read, we
speak of proportional control.

The actions described and the elements of the system are represented in the block
diagram shown in Figure 5.9B. Starting on the left of the diagram, a summing junction
receives input TR (the desired temperature, or set-point) and Tm (the measured
temperature) and composes it into the difference given by the error ε = TR – Tm. The
summing junction here is the comparator, an internal device of the controller which
compares the received measured temperature signal Tm with the desired set-point TR.
The controller then converts the read error ε into a signal to the final control element.
In the system considered here which consists of an electrical heat supply, the final
control element usually consists of a variable transformer which is used to adjust the
current to a resistance heater mounted in or on the tank. When steam is used to heat
the tank, the final control element will typically be an adjustable steam valve.

We next reach a second summing junction in which the heat from the electrical
heater is added to the incoming water with a load represented by its temperature Ti.
The sum of these energy terms is then fed to the process, i.e., the heating tank,
which yields an output, or response temperature T′ that also is the controlled variable.
At this point we compose a return loop which takes the tank temperature T′, feeds
it to a measuring element, usually consisting of a thermocouple or similar device,
which in turn sends its output Tm to the comparator of the control element. We have
what is commonly referred to as a closed-loop system, typical of control systems
of this type. Note that measured temperature Tm does not equal bath temperature T′
because of the attendant heat transfer resistance.

Several additional technical terms arise in connection with this control problem
which we address briefly below.

The term negative feedback is used to describe the fact that the registered
difference ε = TR – Tm is used to adjust the control element so as to reduce the error.
Thus, initially when ε is large, the control element, i.e., the heater, is turned on at
a relatively high setting in order to achieve a quick return to TR. As the registered
error diminishes, the heat load is correspondingly reduced until Tm = TR, at which
point the heater is completely turned off. Such systems are inherently stable. In
positive feedback, on the other hand, Tm is added to TR, with the result that the heat
input to the tank is continually increased leading to unstable or runaway behavior.
Such positive feedback would never be used intentionally but could arise inadvert-
ently and naturally in more complex systems. One must then address the means
available to correct such behavior.

The terms set-point and load lead to a further distinction in the use of control
loops. In the so-called servo-problem, heat load is constant but the set-point TR is
deliberately varied in order to achieve a desired variation in the bath temperature.
This is the less common mode of operation. In the so-called Regulator Problem, on
the other hand, heat load Ti varies, either unintentionally or deliberately, and the
aim is to bring the bath temperature to some desired and prescribed value TR. This
type of requirement arises with much greater frequency.

We now proceed to finalize the block diagram for the water heater by deriving
the model equations and their corresponding transfer function.
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5.3.1 WATER HEATER

By performing an unsteady integral energy balance about the tank, we obtain in the
first instance:

(5.3.1)

which upon introducing deviations from the steady-state can be written in the
following form:

(5.3.2)

where

Q = q – qs

Ti′ = Ti – Tis (5.3.3)

T′ = T – Ts

the subscripts denoting the steady state.
Laplace transformation and subsequent rearrangement into transfer function

form leads to the expression:

(5.3.4)

where τ = residence time = ρV/W.
These terms appear in the summing junction on the right of the final block

diagram, Figure 5.9C; that junction being followed by a block containing the transfer
function for the tank (1/WCp)/(τs + 1).

5.3.2 MEASURING ELEMENT

An unsteady integral energy balance here, similar to the one taken over the tank and
expressed in terms of the deviation variables yields:

(5.3.5)

Rate of energy in Rate of energy out Rate of change of
energy contents

q WC T T WC T T C V
dT
dtp i p p

− =

+ − − − =[ ( )] ( )0 0 ρ

Q WC T T C V
dT
dtp i p+ ′ − ′ = ′

( ) ρ

G s
Output transform
Input transform
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st
p( )

/
= =

+
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1τ

hA T T C T
dT

dtm p
m( )′ − ′ =

′
ρ
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Taking the Laplace transform of this expression and expressing it in terms of
the transfer function of the measuring element yields:

(5.3.6)

where τm = time constant of measuring element = ρCpV/hA. That transfer function
is entered in the block located on the closing loop of the diagram.

5.3.3 CONTROLLER AND CONTROL ELEMENT

For the purpose of describing the controller, we assume that we are dealing with
proportional control. In this mode, the controller acts to provide heat q to the tank
in proportion to the deviation from the desired state TR, i.e., in proportion to ε = TR

– Tm. Other types of control are the derivative control (D) in which the controller
varies the load in proportion to the time derivative of the error, and integral control
(I) in which q is varied in proportion to the time integral of the error. For the present
case of proportional control, we can write:

q = Kcε + qs (5.3.7)

or

Q = q – qs = Kcε

of which the Laplace transform is given by:

Q(s) = Kcε(s) (5.3.8)

and in transfer function form:

(5.3.9)

That transfer function is entered in the block located between the two summing
junctions of Figure 5.9C.

Figure 5.9C is quite typical of control loops. More complex ones evidently arise
when there is more than one controller involved or if there are several process units.
These are taken up in specialized texts on the topic.

5.4 OVERALL TRANSFER FUNCTION; STABILITY 
CRITERION; LAPLACE DOMAIN ANALYSIS

We use this section to generalize the results of the previous section and to arrive at
a criterion for the stability of a control loop. We will be able to carry out the stability

G s
Output transform
Input transform sm

m

( ) = =
+

1
1τ

G s
Output transform
Input transform

Kc c( ) = =
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analysis without having to solve the model, i.e., instead of returning to the time
domain for full examination of the time-dependent solutions, we will be able to remain
in the so-called Laplace domain and carry out the analysis there. In this endeavor we
will be much aided by the concept of the transfer function which we now proceed
to generalize for a single-loop feedback system. The following rules apply:

1. The transfer function relating any pair of variables X and Y in the system
is given by the relation:

(5.4.1)

where πf = product of transfer functions in the path between the locations
of the signals X and Y, πl = product of all transfer functions in the loop.
Typically, for a single-loop feedback system, that ratio takes the form:

(5.4.2)

where H is the transfer function of the closing branch of the loop. For the
block diagram shown in Figure 5.9C, for example, Equation 5.4.2 leads
to the expression:

(5.4.3)

2. The transfer function GH in Equation 5.4.2 is termed the open-loop
transfer function of the system, i.e., it equals the transfer function that
would result if the loop were disconnected by cutting its closing branch.
If we set the denominator of Equation 5.3.11 equal to zero, we obtain the
so-called characteristic equation:

1 + open-loop transfer function = 0

or

1 + GH = 0 (5.4.4)

The characteristic equation contains all the transfer functions of the
loop and through them the coefficients of the constitutive equations. Its
roots, also called poles and obtained by solving Equation 5.4.4, determine
the nature of the response of the system, and, hence, its stability.
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3. The system described by the overall transfer function, Equation 5.4.2, is
unstable if any one of the roots of the characteristic Equation 5.4.4 lies
to the right of the imaginary axis of the complex plane (Figure 5.10). In
particular:
• If there is a root in the right half of the complex plane, the response

will contain a term that grows exponentially with time. This will occur
both when the root is on the real positive axis as well as when it has
conjugate imaginary components.

• Repeated roots on the real positive axis likewise lead to instability, but
those on the real negative axis lead to stable behavior.

• All complex roots appear as conjugates. Those in the left half plane
result in a stable system, those in the right half do not.

• Pure imaginary conjugates on the imaginary axis give rise to limitless
pure oscillations, and are in that sense unstable although not
unbounded.

What we see here, then, is the emergence of yet another characteristic equation
which determines the nature of the solutions of a model. We had encountered such
equations earlier in Chapter 4 in the form of the quadratic D-operator equation whose
roots led to either periodic or exponential solutions (Table 4.5). Alternatively, the
same result could be obtained by solving the characteristic determinant Equation
4.3.22 for the eigenvalues of the coefficient matrix of the model. In nonlinear systems,
the nature of the solutions and particularly that of the so-called critical points was
again determined by a set of characteristic roots which were identical to the eigen-
values of the Jacobian of the steady-state model equations (cf. Equation 4.5.6). In
the present chapter, the behavior of linear second order systems was analyzed via

FIGURE 5.10 Representation in the complex plane (Laplace domain) of system stability.
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the characteristic parameter λ which was in turn related to the roots of the denomi-
nator of the transfer functions, Equation 5.2.37. What we have done in this section
is to generalize these methods to systems of n linear ordinary differential and alge-
braic equations using the concept of transfer functions and the associated block
diagrams (Table 5.4). This culminated in the formulation of yet another characteristic
equation (Equation 5.4.4) whose roots determine the nature of the solutions and,
hence, the stability of the system. These roots are most conveniently located and
analyzed in the complex plane. We demonstrate this in the following illustration.

The reader will have noted that these seemingly disparate characteristic equations
have one feature in common: positive roots, or complex roots with real positive parts
that are “bad,” i.e., lead to instability. Conversely, their negative counterparts imply
stability of the system.

Illustration 5.4.1 Laplace Domain Stability Analysis

We wish to undertake in this example, a partial analysis in the complex (Laplace)
plane of an overall transfer function which leads to a cubic characteristic equation.
We have, in the first instance:

(5.4.5)

TABLE 5.4
Summary of Characteristic Equations

Characteristic Equation Characteristic Roots Application

a0D2 + a1D + a2 = 0 D12 Second order linear ODEs with 
constant coefficients in time or 
distance

Eigenvalues λI Systems of first order linear ODEs 
with constant coefficients

τ2s2 + 2λτs + 1 = 0 Poles s1,2 Second order linear ODEs with 
constant coefficients in time

1+ GH = 0 Poles s1, … sn Systems of linear ODEs/AEs with
constant coefficients in
time

Eigenvalues µ1,2 Nonlinear analysis in phase plane
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and specify,

(5.4.6)

Substitution of Equation 5.4.6 into Equation 5.4.5 leads to the following character-
istic equation

(5.4.7)

We choose time constants τ1 = 1, τ2 = 1/2, and τ3 = 1/3 so that the characteristic
equation to be examined becomes the cubic:

(s + 1)(s + 2)(s + 3) + K = 0 (5.4.8)

with

K = 6 Kc

We use Kc, also known as the controller gain, as the free parameter to be
investigated. In particular we wish to establish for what values of Kc the system
becomes unstable. That information can then be used to help us avoid controller
designs and settings which would lead to system instability.

Figure 5.11 gives a tabulation of a set of roots of Equation 5.4.8, for various Kc

values, together with their graphical representation in the complex Laplace plane.
One notes that up to values of K = 0.39, i.e., a controller gain of Kc = 0.39/6 =
0.065, the roots are all on the real negative axis. This includes the case of Kc = 0
(no control) and indicates an exponential decay in the response curves, i.e., the
system is overdamped for 0 < Kc < 0.065. At values of K > 0.065, pairs of complex
conjugate roots make their appearance, accompanied by one root on the real negative
axis. The system is oscillatory with an exponentially decaying amplitude, i.e., it is
underdamped. A water shed point is reached at a value of Kc = 60/6 = 10 that lies
on the imaginary axis. The combination of a pair of complex conjugate roots together
with a real one still persists beyond that point, but the former now have a real positive
part which gives rise to an exponentially growing amplitude. The value of Kc = 10
thus marks the passage from stable to unstable behavior. At the watershed point
itself, the response is purely oscillatory with no change in amplitude. Although the
response is still bounded, it is nevertheless of an undesirable type since the system
is incapable of reaching a stable steady state.
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Practice Problems
5.1 Transformation and Inversion of Complex Functions —

(a) Show that:

FIGURE 5.11 Roots of a cubic characteristic equation: (A) numerical values, (B) graphical
representation. (D.R. Coughanowr, Process Systems Analysis and Control, 2nd ed., McGraw-
Hill, New York, 1991. With permission.)
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(Hint: Differentiate the transform with respect to s, then apply Item 9 of
Table 5.1.)

(b) Find the inverse of s/(s + 1)3.
Answer: te–t(1 – t/2)
(c) Use a shifting theorem to evaluate L–1 (s e–4πs/5)/(s2 + 25).
(d) Show that L{δ(t – a)} = e–st. Use the fact that L{δ(t)} = 1 {δ(t)} = Dirac

function.

(e) Find 

Answer: 

5.2 Response of Second Order Systems — Derive Equations 5.2.39 and 5.2.40.

5.3 Solution of Simultaneous ODEs — Find the solution to the system of equations:

X′(t) – 2Y′(t) = F(t)

X″(t) – Y″(t) + Y(t) = 0

with X(0) = X′(0) = Y(0) = Y′(0) = 0.
(Hint: Eliminate one of the transforms, say y(s), algebraically and invert. Repeat

the procedure for x(s).)

Answer:

 

5.4 Radioactive Decay Series — The decay of radioactive elements is the classical
example of a reaction which is accurately described by a first order rate law. Consider
the series:

where Ni = number of atoms of element i and the reaction rates are represented by:

(1) dN1/dt = –k1N1 (2) dN2/dt = –k2N2 + k1N1

(3) dN3/dt = –k3N3 + k2N2 (4) dN4/dt = k3N3

Show that the number of atoms of the last and stable species is given by:
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Note that the ODEs are not coupled so that they can in principle be solved in
succession. This could be done by using the D-operator method but the repeated
appearance of nonhomogeneous terms would require the evaluation of a set of
particular integrals. The Laplace transformation avoids this step and is, therefore,
easier to apply.

5.5 Oscillation of an Electrical RLC Circuit — A circuit consisting of an induction
coil with inductance L, a resistor with resistance R, and a capacitor with capacitance
C connected in series and subjected to an alternating voltage E = E0 sin ωt. Derive
an expression for the current i as a function of time.

5.6 Point Load on a Horizontal Beam — A horizontal beam with its ends clamped
is subjected to a concentrated (point) load of F0 at the position x = L/3. Derive an
expression for the resulting deflection.

(Hint: The load can be expressed in terms of a Dirac function F0δ(x-L/3). For
the transformation of such a function, see Practice Problem 5.1d.)

Answer: (for O < x < L/3 only) Y(x) = 2F0x2(3L-5x)/81 EI

5.7 Design of a Thermocouple for Oscillating Temperature Fluctuation — A
thermocouple is to be used to register sinusoidal temperature oscillations given by
the expression:

T(t) – 50 = 100 sin [2t(sec)]

The dimension of the thermocouple, composed of cylindrical wires, should be
such that the maximum temperature is registered within 3% of its actual value. What
is the maximum permissible diameter to achieve this?

Data: h = 1000 J/sm2K, ρ = 9000 kg/m3, Cp = 0.4 kJ/kg K.

(Hint: Use an equation of the form given by Equation 5.2.34.)

5.8 More on the Response of a Second-Order System — A second order system
has a transfer function given by:

Verify that the system is underdamped and determine, without inverting:
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(a) The decay ratio
(b) The overshoot
(c) The period of oscillation

5.9 Calculation of Off-Set — In proportional control of a closed-loop system
subjected to a unit step change, the response never attains the new steady-state but
shows instead an “off-set,” i.e., is displaced from the true value by a relatively small
and constant amount.

Given the transform:

calculate the magnitude of the offset for the system.
(Hint: Use the final value theorem.)

5.10 Use of Laplace Transform to Solve Integral Equations — Show that the
solution of the integral equation:

is given by

(Hint: Apply the convolution theorem.)
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6

 

Special Topics

 

This isn’t right. It’s not even wrong.

 

Wolfgang Pauli

 

(reference to a proposed new theory)

 

When I make a mistake, it’s a beaut.

 

Fiorello La Guardia

 

Hitherto our approach had been to draw on a range of disciplines for illustrations
and practice problems. A division into topics, when it occurred, was with respect to
the type of balance to be used or the mathematical methodology to be applied. No
scientific or engineering subdiscipline was singled out for special scrutiny.

In the present chapter, we invert the procedure. Several subtopics are chosen
with each topic drawing on the tools we had provided in the preceding chapters.
The mathematics are kept, as before, at the level of algebraic and ordinary differential
equations.

Three topics are examined:

1. In 

 

Biomedical Engineering, Biology, and Biotechnology

 

 we study models
of living systems (biomedical engineering and biology) as well as tech-
nical adaptations of bioprocesses (biotechnology, membrane processes).
Stirred tanks, here referred to as 

 

compartmental models,

 

 make frequent
appearances, as well as their counterpart, the distributed model, the latter
under steady-state conditions. Hence, one can expect both algebraic and
ODEs to arise.

2. A 

 

Visit to the Environment

 

 enables us to address a topic of particular
interest to a number of disciplines, including Environmental Science and
Engineering, Civil Engineering, and Chemical Engineering. The topic
permeates our daily lives and thus, is of general interest as well. Here
again we make use of both compartmental and distributed models which
are usually used in the context of mass balances.

3.

 

Welcome to the Real World

 

 is a topic dear to our hearts. In it we draw on
the collective consulting and industrial experience of the author and his
colleagues to address what are best termed real-life or real-world prob-
lems. The tools we use are still the same, but they now have to be used
with much greater skill and imagination. It becomes much easier to
commit a major and costly gaffe, as we tried to indicate with the cited
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sayings at the head of the chapter. The deadly sin here is not so much

 

being wrong

 

 as it is a calculational error, or a misplaced term or wrong
unit, though undesirable, that can be rectified during editing. What can
have much more serious consequences is the use of a wrong concept or
a wrong hypothesis. This is what has to be avoided above all else. If we
are to be flawed, we would rather be 

 

wrong

 

 than 

 

not right.

 

The general approach is the same as that used in previous chapters. After a brief
introduction, we proceed to present the core material by means of a series of
illustrative examples. This is followed up with a selection of practice problems which
are again worth a second look since they are often used to introduce additional new
concepts. References to all three sections appear at the end of the chapter.

 

6.1 BIOMEDICAL ENGINEERING, BIOLOGY AND 
BIOTECHNOLOGY

 

We start the section on biomedical engineering by considering a number of com-
partmental models used particularly in the context of drug administration and the
uptake of toxic substances in various body compartments. These compartments
encompass body fluids (plasma, intercellular fluids) as well as body tissues (fat,
muscle, bone). Experimental data fitted to these models can be used to derive local
flow rates, transport coefficients, tissue permeabilities, partition coefficients, and
other parameters of interest. As always, one should look in the model solutions for
the unusual, e.g., beneficial or pathological behavior. The compartmental models
are followed up by distributed models, also known as local models which are used
to predict steady-state distributions of different state variables, principally concen-
tration, and for parameter estimation. We address as well a number of important
applications of biomedical engineering, such as membrane processes and the release
of drugs into flowing systems.

We next turn to biology, principally in the context of molecular or cell biology
and examine the seminal paper by Turing on morphogenesis. We conclude our
considerations with selected topics, again given as illustrations, from the contem-
porary field of biotechnology. In these deliberations we stay mostly at the AE and
ODE levels. When PDEs arise, we merely use their solutions, leaving their derivation
to later chapters.

 

Illustration 6.1.1 One-Compartment Pharmacokinetics

 

In spite of their often severely limited validity, one-compartment models are still
the most popular device for analyzing body functions or the reaction to external
inputs. Three specific situations arise.

1.

 

Injection or short-term exposure to a substance:

 

 Blood volume and cardiac
output in the adult human are approximately 5 l and 5 l/min respectively.
An instantaneous or short-term input, denoted as “load” in Figure 6.1A,
is thus “turned over” or distributed within the blood approximately once
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every minute. This is the reason for the almost instantaneous effect of
many drug injections and allows us to assume that the distribution of
drugs within the plasma approaches uniformity, i.e., stirred-tank config-
uration, shortly after injection. Note, however, that by contrast the total
volume of body fluid is approximately 50 l so that turnover there occurs
only once every 10 min.

2.

 

Clearance:

 

 Subsequent to injection, the body slowly metabolizes,
excretes, or otherwise disposes of the injected substance. That process is
referred to as “clearance” (Figure 6.1A). The assumption made here is
that the blood, or the totality of body fluids, has reached a near uniform
level, that exposure has ceased and that the concentration starts to decline
in accordance with a simple one-compartment model and linear rate law,
brought about by various body functions.

3.

 

Infusion:

 

 In this situation, a continuous influx and elimination of the drug
(or toxic substance) takes place, ultimately leading to a constant plateau,
referred to as the “effective therapeutic concentration,” or ETC (Figure
6.1B). When that plateau is reached, influx and elimination are exactly in
balance and the system is at steady-state.

We now consider a specific example. In a well-known classical study, a 392 mg
“loading dose” of the stimulant aminophylline was administered to a patient. Blood
samples taken over the next 10 h yielded the following data:

 

FIGURE 6.1

 

One-compartment models: time course of drug concentration during (A) clear-
ance and (B) infusion.

 

t (h) 1 2 5 6 8 10
C (mg/l) 8.53 7.28 4.52 3.85 2.81 2.04
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The following questions are to be addressed:

(a) What is the ETC (briefly attained at the outset, i.e., at t = 0)?
(b) What is the apparent rate constant k

 

e

 

 of elimination?
(c) What is the apparent volume of distribution?
(d) What is the apparent rate of elimination k

 

e

 

C and apparent flow rate Q?
(e) For a required ETC of 10 mg/l, what infusion rate should be used and what

is the time necessary to attain 95% of the ETC under these conditions?

We start with a lead-in model describing the clearing process. After cessation
of the injection, we have:

(6.1.1)

where k

 

e

 

C = rate of elimination.
One obtains by integration by separation of variables:

ln C/C

 

0

 

 = –k

 

e

 

t (6.1.2)

or

A semilog plot of the given data in accordance with Equation 6.1.2 is shown in
Figure 6.2 and yields the following data:

 

Effective Therapeutic Concentration (ETC): 

 

The ETC is obtained by extrapola-
tion of the semilog plot to t = 0 and yields the approximate value ETC 

 

≈

 

 10 mg/l.

 

Apparent Elimination Rate Constant k

 

e

 

: 

 

The value of this parameter is obtained
from the slope of Figure 6.2. Using the value of C = 2.04 mg/l obtained after 10 h,
we have for that slope:

(6.1.3)

Hence,

(6.1.4)

Rate of drug in Rate of drug out Rate of change in
drug content

Vk C V
dC
dte

− =

− =0

log /
.

C C
k

te
0 2 303

= −

− =

− = = −

k
t C C

k

e

e

2 303

2 303
10 2 05 10 0 69

0.
log /

.
log . / .

∆

k hre = = −( . )( . )
.

0 69 2 303
10

0 159 1

 

248/ch06/frame  Page 316  Friday, June 15, 2001  7:00 AM

© 1999 By CRC Press LLC



   

Apparent Distribution Volume V: 

 

We obtain this from the relation:

Note that this value is not too far from the value of approximately 50 l for the
total volume of body fluids (blood and intracellular fluids).

 

Apparent Rate of Elimination and Apparent Flow Rate Q

 

a

 

: 

 

The “out” term k

 

e

 

CV
in Equation 6.1.1 also can be written in the equivalent form QC, so that Q = k

 

e

 

V.
We obtain:

Q

 

a

 

 = k

 

e

 

V = (0.159 hr

 

–1

 

)(39.2 l) = 6.23 l/hr

This term expresses the rate of passage of the drug to the intracellular fluid,
most commonly through cellular membranes. Since the process is diffusive rather
than convective in nature, we must regard Q

 

a

 

 as a fictitious although equivalent flow
rate.

 

Required Infusion Rate Q

 

1

 

C

 

0

 

: 

 

This quantity is obtained directly from the steady-
state condition:

 

FIGURE 6.2

 

Experimental data for the clearance of the drug ammophylline from a patient.
The slope of the semilog plot yields the elimination constant k

 

e

 

, the intercept the ETC.

V
Dose D mg
ETC mg l

l= = =( )
( / )

.  
392
10

39 2
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Rate of Infusion = Rate of Elimination

Q

 

i

 

C

 

0

 

 = k

 

e

 

 C

 

ETC

 

 V (6.1.5)

Q

 

i

 

C

 

0

 

 = (0.159)(10)(39.2) = 62.3 mg/h

 

Time to 95% of ETC: 

 

Here we invoke the mass balance applicable to infusion,
Figure 6.1B. We obtain:

(6.1.6)

Integrating by separation of variables we obtain:

(6.1.7)

or

t = 18.9 h

 

Comments:

 

One notes here the wealth of information obtained from just a single equation
and a set of experimental data. Not only were we able to derive a rate constant and
physiological volumes and flow rates, but these parameters could then be applied to
a different model, that of infusion, to analyze conditions during that process. Single
compartment models, though capable of providing much useful information, are
often refined into two-compartment models or multicompartment models encom-
passing several body organs and fluids. Single sets of data are then no longer
sufficient and one must resort to more sophisticated experimentation and analysis.
Two popular and largely self-explanatory two-compartment models are shown in
Figure 6.3. One of these is addressed in Practice Problem 6.1.3.

We note that in biomedical modeling, body processes such as excretion, are
expressed either as first order 

 

reactions

 

 (kCV) or as equivalent apparent flow terms
Q

 

a

 

C. This duality may lead to some confusion but has become a standard feature
and, therefore, must be accommodated.

Rate of drug in Rate of drug out Rate of change of
drug content
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Illustration 6.1.2 Blood–Tissue Interaction as a
Pseudo One-Compartment Model

 

Here we consider the more complex and realistic model in which flowing blood
containing a dissolved substance is in contact with surrounding tissue. In principle,
there are concentrations variations in both the axial and lateral directions which
would ordinarily lead to a set of coupled PDEs. In simple models the lateral varia-
tions are usually neglected and if one makes the additional assumption that both
phases are well mixed, one reduces what would otherwise have been a distributed
system to a more manageable cne-compartment model (well-stirred). The two phases
are assumed to be in equilibrium, the two concentrations being related by a partition
coefficient K (see Figure 6.4A).

Suppose one wishes to derive a partition coefficient from a set of measurements
in which a tracer substance is injected into a blood vessel at one point and its variation
with time is monitored at some location downstream (or “distal” in medical parlance)
from the point of injection. The model equations that will yield this information are
as follows:

 

Blood phase:

 

(6.1.8)

 

FIGURE 6.3

 

Examples of two-compartment models: (A) compartments in series, (B) com-
partments in parallel.

Rate of tracer in Rate of tracer out Rate of change of
tracer content
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Tissue phase:

 

(6.1.9)

where N = rate of interphase transport.
Since there are three state variables, N, C

 

B

 

, and C

 

T

 

, a third relation is required
that is given by:

 

Equilibrium relation:

 

C

 

B

 

 = K C

 

T

 

(6.1.10)

We add Equations 6.1.8 and 6.1.9 to eliminate the unknown quantity N, substitute
the equlibrium relation into the result, and obtain:

(6.1.11)

Integration by separation of variables yields the result:

(6.1.12)

 

FIGURE 6.4

 

Models of blood–tissue interaction: (A) pseudo one-compartment model with
blood and tissue in equilibrium, (B) nonequilibrium distributed model with radial diffusion.
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or

With flow rate Q known and estimates of the vessel volume V

 

B

 

 and surrounding
tissue volume available, the partition coefficient K can be obtained from the slope
of a semilog plot of experimental distal concentrations (1 – C

 

B

 

/C

 

0

 

) vs. time t.

 

Illustration 6.1.3 A Distributed Model: Transport Between 
Flowing Blood and Muscle Tissue

 

Simple one-dimensional distributed models also can be used for parameter estima-
tion. We consider here experiments in which radioactive rubidium was injected into
muscle tissue and then cleared for brief periods. Rb-concentration in the effluent
blood was monitored in a set of runs conducted at different flow rates Q. The
following data were obtained:

The data are to be used to determine the product of tissue permeability P and
the unknown transfer area A. A knowledge of P 

 

×

 

 A is of importance in assessing
the effect of drugs and other stimuli designed to increase mass transfer through
alteration of either P or A, or both. Because of the brief period of clearance, tissue
concentration is considered constant (and well-stirred) at a level C*. A steady-state
one-dimensional mass balance over a difference element 

 

∆

 

z then yields:

(6.1.13)

Dividing by 

 

∆

 

x and going to the limit, we obtain the ODE:

(6.1.14)

which can be integrated by separation of variables to yield:

or

Q(ml/min) 28.6 17.3 7.4
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ln(1 – C

 

L

 

/C*) = –PA(1/Q) (6.1.15)

Values of PA can then be obtained from the slope of a semilog plot of experi-
mental concentrations C*/(C* – C

 

L

 

) vs. the inverse flow rate 1/Q. The results are
shown in Figure 6.5 and yield a value of PA = 7.95 ml/min.

 

Illustration 6.1.4 Another Distributed System:
The Krogh Cylinder

 

The assumption of uniform concentration within the tissue made in previous illus-
trations holds only, and then approximately, for very thin layers of tissue or tissue
of generally small dimensions. When this no longer holds, concentration distributions
will arise in the lateral direction that must be accounted for in the model. Among
the first studies to address this problem was that by Krogh in 1919 who considered
radial diffusion into the tissue, accompanied by metabolic consumption with a
constant, i.e., zero order, consumption rate. The model may be used to trace the fate,
for example, of oxygen or nutrients diffusing into a muscle. Figure 6.4B gives a
sketch of the geometry of the system examined. Axial concentration variations are
neglected which is a reasonable assumption in view of the high concentration of
oxygen and nutrients and the relatively slow rate of uptake. A mass balance taken
over a cylindrical difference element then leads to the following expression:

(6.1.16)

where k

 

0

 

 is the zero order rate constant. Division by 2

 

π∆

 

rL and going to the limit

 

∆

 

r 

 

→

 

 0 yields:

 

FIGURE 6.5

 

Experimental data for the clearance of radioactive rubidium from muscle
tissue. The slope of the plot yields the tissue permeability as the product PA.
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(6.1.17)

Note that here, as in other diffusional processes through a variable area, the

 

product

 

 of area and gradient has to be differentiated, leading to the usual two
derivatives characteristic of these processes.

Since no terms in C appear in the equation, use of the so-called p-substitution,

 seems appropriate (see Item 9, Table 4.4). We obtain the expression:

(6.1.18)

This is a linear, nonhomogeneous ODE with variable coefficients which can in
principle be solved by the methods given under Item 6 of Table 4.4. We use instead
a clever alternative method that consists of multiplying each side by r dr, thus
reducing these to total differentials or to “exact form.” r dr can be regarded as an
integrating factor, not listed in Table 4.9. We obtain:

r dp + p dr = (k

 

0

 

/D

 

eff

 

) r dr (6.1.19)

or

d(pr) = (k

 

0

 

/2 D

 

eff

 

) d(r

 

2

 

) (6.1.20)

Hence, a first integration yields:

pr = (k

 

0

 

/2 D

 

eff

 

)r

 

2

 

 + C

 

1

 

(6.1.21)

A second integration is arrived at as follows. We have, from Equation 6.1.21:

(6.1.22)

Integrating this expression by separation of variables yields the general solution:

C = (k

 

0

 

/4 D

 

eff

 

)r

 

2

 

 + C

 

1

 

 ln r + C

 

2

 

(6.1.23)

Integration constants are evaluated from the following boundary conditions:

1. At the inner radius r = rc, C = C0 (constant solute concentration in the
blood)

2. At the outer radius r = rt,  (no flux at outer surface)

D
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Together, these two equations yield the following relations for the integration
constants:

C1 = –(k0/2 Deff)rt
2 (6.1.24)

and

C2 = C0 – (k0/4 Deff)rc
2 + (k0/2 Deff)rt

2 ln rc (6.1.25)

We obtain, for the final form of the solution:

(6.1.26)

Comments:
Equations of the form Equation 6.1.17 arise in a number of other disciplines,

among them diffusion with a zero order reaction in a cylindrical catalyst pellet and
conduction out of a cylinder with constant heat generation. Although the boundary
conditions here are somewhat different than those usually encountered in the above
mentioned cases, the general solutions seen there have direct applicability. Thus,
Equation 4.3.76, which is the general solution for diffusion and first order reaction
in a cylindrical catalyst pellet, can be used directly to extend the case of zero order
metabolic consumption in a Krogh cylinder to the more complex case of a first order
reaction. The boundary conditions, of course, are different since the catalyst pellet
is usually solid not hollow and its surface permeable to reactant. These differences,
notwithstanding, it is still useful to look to other disciplines for partial or complete
solutions. It takes a good nose and some persistence to do this, but may help avoid
unnecessary work as well as the stigma of “having reinvented the wheel.”

Illustration 6.1.5 Membrane Processes: Blood Dialysis

Mass transport across natural or artificial membranes arises in a biomedical and
biological context in a number of important ways. In living organisms, passage
through all membranes and through the cellular walls of various conduits such as
blood vessels, the branches of the lung, and the tubular structures of the kidney,
plays an important role in the functioning of those organs. Artificial devices such
as hemodialyzers and heart–lung machines that employ synthetic membranes to
duplicate some of the body functions, are now commonplace. We note that membrane
processes also are well established in industry where they are used in the separation,
enrichment, and purification of liquid and gaseous mixtures.

Hemodialyzers, also popularly known as artificial kidneys, are devices in which
the blood of patients with diseased kidneys is contacted with a so-called dialysate
solution across a semipermeable artificial membrane, or “hollow fiber.” Metabolic
wastes, such as urea and kreatinin, excess electrolytes, and water pass from the blood
and across the membrane to the dialysate that consists of a saline solution similar
in osmotic concentration to that of normal body fluids. The devices resemble, in
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r r r

r reff
c t

c− =
−

−








0 0

2 2 2

4 2
( / ) ln /

248/ch06/frame  Page 324  Friday, June 15, 2001  7:00 AM

© 1999 By CRC Press LLC



   

construction and configuration, the classical shell-and-tube heat exchangers, the
hollow fibers carrying the blood corresponding to heat exchanger tubes, while the
shell side carries the dialysate solution. Operation may be cocurrent or countercur-
rent. Devices also exist in which the dialysate side is “well-stirred,” with no in- or
outflow. These are less frequently encountered.

An additional distinction needs to be made. In the first case (Membrane Resis-
tance Predominant), taken up below, the principal mass transfer resistance resides
in the membrane wall which may be regarded as equivalent to a film resistance. The
model and the analysis of the system may then be expected to resemble those of a
shell-and-tube heat exchanger with no radial temperature variations other than those
across the films at the wall. In the second case (Fluid Resistance on the Blood Side
Predominant), the fluid side resistance predominates. Since flow in the hollow fibers
is usually laminar, concentrations can be expected to vary in both radial and axial
directions. This leads to a PDE on the tube side, while the shell-side, which is usually
in turbulent flow or well stirred, remains at the ODE level. Its contribution to the
overall resistance is generally neglected.

The PDE for the tube side which also is referred to as a “Graetz Problem,” will
be discussed in more detail in Chapter 8 (Illustrations 8.2.3 and 8.3.1). The treatment
here is confined to the use of mass transfer coefficients that are extracted from the
solution of the Graetz problem and will be presented in graphical form for immediate
use in simple model calculations. The actual solution of the PDE is not addressed.

 

Membrane Resistance Predominant — 

 

The model equations, similar in form to
those of the heat exchanger and applied to cocurrent flow, are as follows:

 

Tube-side mass balance:

 

(6.1.27)

 

Shell-side mass balance:

 

(6.1.28)

Upon dividing by 

 

∆

 

z and going to the limit, we obtain the two ODEs:

(6.1.29)

(6.1.30)

where the subscripts 

 

B

 

 and 

 

D

 

 refer to blood and dialysate respectively, and K =
permeability of the membrane (m/s).
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We now reach back and introduce the “trick” we had used there in arriving at
a design equation for the heat exchanger. Each equation is divided by its flow rate
Q and the equations subtracted. This yields an ODE in the state variable (CB – CD)
which can be integrated immediately by separation of variables to obtain:

(6.1.31)

where subscripts i and o denote inlet and outlet conditions respectively.
This expression is then cast into the “log mean” form, as was done in the case

of the heat exchanger, by invoking the integral mass balances:

W = –QB(CBo – CBi) = QD(CDo – CDi) (6.1.32)

Combination of Equations 6.1.31 and 6.1.32 leads, after some rearrangement, to the
final compact design equation:

W = KA(LMCD) (6.1.33)

where W = total amount of solute removed from the blood, and LMCD is the log-
mean concentration difference, given by:

(6.1.34)

The design Equation 6.1.33 corresponds to its heat exchanger counterpart, Equa-
tion 3.3.17. To use it, W is first established for a desired outlet concentration in the
blood, CBo, using the integral balance Equation 6.1.32. Next, CDo is calculated using
the same integral balances and the result substituted into the LMCD expression. The
final step consists of solving Equation 6.1.33 for A, that is the total internal membrane
area required to achieve the desired purification level.

Equations of more general applicability can be derived by solving the ODEs
6.1.29 and 6.1.30. Similar general solutions were seen to arise for the heat exchanger
by solving the corresponding ODE energy balances. We do not give the details here
but present instead the final expressions obtained:

For the cocurrent case:

(6.1.35)

For the counter-current case:

(6.1.36)
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where the parameters Z, NT, and E are defined as follows:

Z = QB/QD = Flow rate ratio

NT = KA/QB – Number of mass transfer units

E = (CBi – CBo)/(CBi – CDo) = Extraction ratio

Since inlet dialysate concentration CDi is usually = 0, the extraction ratio can be
viewed as the fraction of solute removed by the dialyzer (CBi – CBo)/CBi.

These expressions are general purpose equations that can be used not only for
design (A in NT), but also for parameter estimation (K in NT) and the calculation of
effluent concentration CBo for different flow ratios. The reader will note that Z, NT,
and E have their counterparts in the case of the shell-and-tube heat exchanger with
identical respective meanings. We summarize these for convenience in Table 6.1.

Fluid Resistance on the Blood Side Predominant — As previously mentioned,
this is a PDE problem whose solution is represented graphically in Figure 6.6. That
solution is initially obtained in terms of concentration distributions C(r,z) which can
be used to extract an equivalent fluid phase mass transfer coefficient kf by means of
the relation:

(6.1.37)

The coefficient kf has been averaged over the tube length as a log-mean value
kf and is shown in terms of the dimensionless Sherwood number Shf of the ordinate
of the graph. The abscissa values of zD/vd2 represent dimensionless distance. The
parameter Shw = kw d/D is the so-called wall Sherwood number and contains the
wall mass transfer coefficient or membrane permeability in units of length/time. K
is frequently given in units of (length)2/time, in which case it has to be divided by

TABLE 6.1
Heat Exchanger and Dialyzer Parameters

Heat Exchanger Dialyzer

1. Capacity ratio Flow rate ratio
(FCp)min/(FCp)max Z = QB/QD

2. Number of transfer units Number of transfer units
NT = UA/(FCp)Min NT = KA/QB

3. Effectiveness Extraction ratio
E = (CBi – CBo)/(CBi – CDi)
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wall thickness for use in the wall Sherwood number. kf values extracted from the
fluid Sherwood number can then be used directly in ODE models of the dialyzer or
their solutions. We demonstrate this with the following numerical example.

The effluent urea concentration is to be calculated for a dialyzer made up of a
bundle of 100 tubes 17 cm long, with a total area of 1000 cm2 and a permeability K
of 5 × 10–3 cm/s. Total blood flow rate is 1 cm3/s with an inlet urea concentration of
1000 ppm. The value of urea diffusivity in blood is taken as 2 × 10–5 cm2/s. We assume
in addition that the dialysate flow rate is much larger than that of blood QD >> QB, so
that urea concentration there is vanishingly small. Flow pattern need not be specified
under these conditions since the model is reduced to a single tubular mass balance:

(6.1.38)

This expression comes from Equation 6.1.29 for the special case CD = 0 and
integrates by separation of variables to yield:

CBo/CBi = exp(–KA/QB) (6.1.39)

We use the expression to evaluate blood outlet concentration CBo assuming that
either the membrane or the fluid side provides the controlling resistance.

FIGURE 6.6 Plot of log-mean Sherwood number Shf vs. dimensionless distance z* in
tubular flow with radial diffusion. The parameter Shw (wall Sherwood number) is proportional
to the permeability of the tubular wall. (From C.K. Colton, K.A. Smith, P. Stroeve, and E.W.
Merrin. AIChE J., 17:4, 372, 1971. With permission.)
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Membrane resistance predominant: Here we obtain from Equation 6.1.39:

CBo = 1000 exp[(–5 × 10–3)(1000/1)] = 6.74 ppm

Fluid resistance predominant: Figure 6.6 is used to obtain a value for the mean
mass transfer coefficient kf. We have:

The corresponding fluid Sherwood number is read from Figure 6.6 at a wall
Sherwood number Shw = ∞, i.e., for conditions of no membrane resistance. The
value obtained from the ordinate is Shf = 5.6, so that:

kf = 5.6 D/d

Diameter d is obtained from the area of a single tube:

It follows that:

kf = (5.6)(2 × 10–5)/0.187 = 6.0 × 10–4 cm/s

One notes immediately that the fluid-side mass transfer coefficient kf is an order
of magnitude smaller than the membrane permeability K (= 5 × 10–3 cm/s). Urea
extraction, thus, is expected to be considerably less than what was obtained by
neglecting fluid-side resistance. The result for the blood outlet concentration given
by Equation 6.1.39 is

CBo = 1000 exp [(– 6.1 × 10–4)(1000/1)] = 543 ppm

Thus, with the fluid side resistance now accounted for, urea extraction is barely
50%, compared to over 99% when the membrane resistance was assumed to pre-
dominate.

We note that Figure 6.6 allows calculations to be made for the case when both
resistances are significant. Fluid phase coefficients are then read at the appropriate
value of the wall Sherwood number Shw, and the inverse of the two coefficients
added to obtain the overall mass transfer coefficient K0:

(6.1.40)

where K = membrane permeability in units of length/time.
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Illustration 6.1.6 Release or Consumption of Substances
at the Blood Vessel Wall

It is frequently required to calculate the concentrations which arise when a substance
is released at a vessel wall into blood in laminar flow or, conversely, undergoes a
reaction at the wall and is consumed there. A simple example of substance release
into turbulent flow was given in Illustration 3.2.9.

One notes that this situation is not unlike dialysis in which the fluid resistance
predominates, since in both cases one is confronted with concentration changes in
both the radial and axial directions. In fact, the two cases represent Graetz problems
and solutions of the type shown in Figure 6.6 apply to both dialysis, as well as
reactive events of some type at the blood vessel wall. This makes intuitive sense
since dialysis may be regarded as a “reactive event” in which the permeating solute
is the reactant being “consumed” by diffusional outflow through the membrane wall.

Consumption as well as production or release of substances at the blood vessel
wall occur in a number of important contexts. Anticoagulants may be applied to the
surface of artificial implants or imbedded within their porous structure from which
they are slowly released over time to prevent blood clotting. Blood coagulation itself,
whether it results from an injury or from a pathological condition (thrombosis),
consists of a complex series of reactive events at the wall of the blood vessel which
can be natural or an artificial implant. In analyzing these cases, it becomes important
to have a sense of the magnitude of the anticoagulant concentrations involved,
particularly those prevailing at the wall. Solutions of the Graetz problem provide
that information.

In the case of blood vessels and their associated flow rates, certain simplifications
arise. When these vessels have a diameter greater than about 0.1 mm, i.e., are of
the usual size of practical interest, radial concentration changes resulting from a
reactive event are confined to a very thin boundary layer near the wall. Wall con-
centrations vary with axial distance as more substance is produced or consumed,
but concentrations in the fluid core undergo only negligible changes in both the
radial and axial direction. We show this in Figure 6.7 where the domain in which

FIGURE 6.7 Mass transport in flow through a tube with a reactive wall. The left side shows
the concentration profile in the entry region; the right side, the profile for the fully developed
region.
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this occurs is identified as the 

 

entry region

 

. Concentrations begin to penetrate the
fluid core only when d < 0.1 mm, i.e, in the smaller blood vessels or in capillaries.
This ultimately leads to what is termed the 

 

fully developed region

 

 in which the
concentration profile is a parabola extending across the entire vessel diameter.

In the entry region, which is the one of interest here, transport across the
boundary layer can be expressed in terms of the usual mass transfer coefficient:

k

 

f

 

 = D/

 

δ

 

(6.1.41)

where 

 

δ

 

 = effective film thickness and D = diffusivity of the species. The associated
profiles are known as the Lévêque solution of the Graetz problem, from which an
equivalent mass transfer coefficient may be extracted.

For our purposes here, we dispense with the k

 

f

 

 values of Figure 6.6, which are
log-mean values averaged over entire tube length and present instead an expression,
derived from the Lévêque solution, for the 

 

local

 

 mass transfer coefficient k

 

f

 

:

(6.1.42)

where  = shear rate in reciprocal time, z = axial distance from the inlet. Physio-
logical shear rates typically span the range 50 to 1000 s

 

–1

 

. A detailed derivation of
this expression is given in Chapter 8, Illustration 8.2.3.

We now apply these concepts to two simple cases.

 

Constant Release Rate — 

 

Suppose that an anticoagulant, in order to be effective,
has to have a concentration in the blood of 0.5 

 

µ

 

g/ml. A graft coated with the agent
has a measured release rate N = 5 

 

×

 

 10

 

–5

 

 

 

µ

 

g/cm

 

2

 

s. We wish to ascertain whether,
with this release rate, the required protective concentration can be attained at the
wall and at a distance of (a) 10 cm and (b) 0.1 cm from the inlet. The applicable
shear rate is  = 1000 s

 

–1

 

 and diffusivity of the agent is estimated at D = 10

 

–6

 

 cm

 

2

 

/s.
Vessel diameter is 1 cm.

Since the entry region which applies here (d > 0.1 mm) shows negligible
variations in bulk concentration, we can set C

 

bulk

 

 = 0 and obtain for the local flux N:

N = k

 

f

 

 (C

 

wall

 

 – C

 

bulk

 

) = k

 

f

 

 C

 

w

 

(6.1.43)

Solving for C

 

w

 

 and using k

 

f

 

 given by Equation 6.1.42, this becomes:

(6.1.44)

We obtain, at z = 10 cm:

k
D
zf =







0 6
2 1 3

.
˙

/
γ

γ̇

γ̇

C
N
k

N
D zw

f

= =
0 6 2 1 3. ( ˙ / ) /γ

C g mlw = × =
−

−
5 10

0 6 10 10 10
0 18

5

3 12 1 3. ( / )
. // µ

 

248/ch06/frame  Page 331  Tuesday, November 13, 2001  1:00 PM

© 1999 By CRC Press LLC



   

and at z = 0.1 cm

Thus, the required wall concentration C

 

w

 

 of 0.5 

 

µ

 

g/ml is not exceeded in either
case.

 

First Order Reactions at the Wall — 

 

In this second case we consider the situation
where a particular species is either consumed or produced by a first order reaction
as may happen in the process of blood coagulation. The model equations for the
two cases at steady state are given by:

(6.1.45)

(6.1.46)

where the subscripts 

 

b

 

 and 

 

w

 

 again refer to bulk and wall conditions, and k

 

w

 

 is the
first order rate constant. Solving for C

 

w

 

 we obtain the combined relation:

(6.1.47)

where the positive sign refers to consumption, the negative sign to production.
Let us now consider the results predicted by that equation. For first order

consumption (positive sign), the behavior is rather unexceptional. Since k

 

f

 

 varies
inversely with distance (Equation 6.1.42), C

 

w

 

 will gradually diminish as the flow
moves farther into the tube. A high rate of consumption (large k

 

w

 

) also will promote
a decrease in wall concentration. This is as expected.

The case of first order 

 

production

 

 (negative sign) is more interesting. We remind
the reader at the outset that one should always be on the alert when dealing with

 

fractions containing differences

 

, since either the numerator or the denominator (or
both) may go to zero for certain parameter values, leading to zero or unbounded
values of the state variable. In Equation 6.1.47 one expects this kind of behavior to
arise when the ratio of reaction constant to mass transfer coefficient k

 

w

 

/k

 

f

 

 approaches
unity. Let us consider a specific numerical example.

Suppose the production rate constant k

 

w

 

 of a coagulant on a particular synthetic
material has been determined at 10

 

–3

 

 cm/s. We set  at 1000 s

 

–1

 

 and use diffusivity D
= 10

 

–6

 

 cm

 

2

 

/s for the coagulation. Then, in order to have parity of k

 

w

 

 and k

 

f

 

, we must have:

C g mw = × =
−

−
5 10

0 6 10 10 0 1
0 39

4

3 12 1 3. ( / . )
. // µ

k C C k C

Rate of arrival Rate of consumption

f b w w w( )− =

k C C k C

Rate of departure Rate of production

f w b w w( )− =

C
k C

k kw
w b

w f

=
±1 /

γ̇

z
D

kw

1 3
2 1 3 3 12 1 3

3

0 6 0 6 10 10
10

/
/ /. ( ˙ ) . ( )= = × −

−
γ

 

248/ch06/frame  Page 332  Tuesday, November 13, 2001  1:01 PM

© 1999 By CRC Press LLC



or

z = 0.216 cm

Thus, coagulant concentration at the wall, Cw, would become unbounded at about
2 mm from the inlet and coagulation would ensue. If, on the other hand, the
production could be inhibited by a suitable anticoagulant, dropping the rate constant
to, say kw = 10–4 cm/s, we would obtain:

or 

z = 216 cm

Thus, unbounded concentrations would not arise in implants of physiologically
relevant lengths under these conditions.

It must be noted that unbounded coagulant levels would evidently not arise in
practice since natural inhibitors present in the blood would prevent this from hap-
pening. The simple model presented does not take this into account. It does indicate,
however, that abnormally high levels may arise as the rate of coagulant production
approaches that of removal by mass transport. The model also serves the useful
purpose of providing rough numerical values for the “design” of appropriate coag-
ulation inhibitors.

Illustration 6.1.7 A Simple Cellular Process

Cellular processes can assume a variety of forms. In one version, substances within
the cell undergo a reaction, accompanied by diffusional inflow and outflow of
reactants and products through the cell wall. This type of process is considered in
the next example dealing with Turing’s model of morphogenesis (Illustration 6.1.8).
The present example considers events that take place within the membrane of the
cell rather than its interior, and are triggered by so-called receptors embedded within
the cell wall itself. These receptors are large protein molecules capable of “commu-
nicating” with the external, extracellular fluid, as well as the internal cytoplasmic
domain (Figure 6.8). They are involved in four distinct processes:

1. Binding of ligand molecules from the extracellular fluid. This process
enables the receptors to “sense” the environment and to transmit this fact
to the interior of the cell.

2. Signaling involves passing the information inherent in the binding process
on to the cell interior where it may give rise to a variety of secondary
processes such as growth, secretion, contraction, or adhesion. The latter
occurs, for example, during the deposition and subsequent adhesion of
blood platelet to an injured vessel wall or an artificial surface.

z1 3
3 12 1 3

4

0 6 10 10
10

/ 
/. ( )= × −

−
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3. In Trafficking, the receptors themselves may undergo changes which
include a physical displacement into the cytoplasm (termed internaliza-
tion), as well as degradation and synthesis.

4. Finally, in Coupling with Membrane Associated Molecules, the receptors
interact with neighboring molecules in the membrane.

We consider the first item of ligand binding only and examine it in some detail.
The simple kinetic model usually applied to ligand-receptor interactions is of a
reversible form described by:

(6.1.48)

with the rate given by:

where R = number of receptors/cell, C = number of ligand-receptor complexes per
cell, and L = ligand concentration in the extracellular fluid in moles/L. Thus, we

FIGURE 6.8 Diagram of the reactions of a receptor embedded in a cellular wall. (D.A.
Lauffenburger and J.J. Linderman, Receptors: Models for Binding, Trafficking, and Signaling,
Oxford University Press, U.K., 1993. With permission.)
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have the somewhat unusual combination of a second order reaction in the forward
direction and first order in the reverse direction. kf (M–1 Time–1) and kr (Time–1) are
the associated rate constants. Since both R and L as well as C vary with time, two
additional equations are required. These are most conveniently established from the
cumulative receptor and ligand balances. Thus,

RT = R + C (6.1.49)

and

(6.1.50)

where the subscripts T and 0 denote total and initial concentrations, respectively, n
= number of cells and NAv = Avogadro’s number. The ratio n/NAv is used to convert
the units of C to the molar concentration of L. Substitution of these relations into
Equation 6.1.49 yields the following expression in the density C of the ligand-
receptor complex:

(6.1.51)

This is a first order nonlinear ODE in C, and it is of some comfort to note that
it can be integrated by separation of variables.

We consider two cases: (1) constant ligand concentration L = L0. This is tanta-
mount to the assumption that the density C of the complex formed is small compared
to the ligand concentration available, and is equivalent to the limiting case (n/NAv)C
<< L0. For this condition, the ODE 6.1.51 reduces to the form:

(6.1.52)

It is customary to nondimensionalize the variables, setting u = C/RT = fractional
coverage, and τ = krt. Introducing, in addition, the equilibrium dissociation constant
KD = kr/kf, we obtain the compact form:

(6.1.53)

Solution is by separation of variables that leads, after some rearrangement, to
the expression:
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(6.1.54)

where u0 = C0/RT and C0 = initial concentration of complex.
An expression for the equilibrium concentration Ceq can be obtained by letting

τ → ∞ or by setting the derivative in Equation 6.1.53 equal to zero. In either case
the result is given by:

(6.1.55)

We note in this expression that for large values of the dissociation constant KD,
Ceq tends to zero, as expected. Small values of KD (very little dissociation) lead, in
the limit, to the value Ceq = RT, i.e., all receptors are bound to ligands and we have
saturation.

(2) Variable ligand concentration. Here the full Equation 6.1.51 has to be solved.
We rewrite it for this purpose in expanded and nondimensionalized form and obtain:

(6.1.56)

or

Integration can again be accomplished by separation of variables, noting that
this requires the roots u1,2 of the quadratic expression on the right of Equation 6.1.56.
We can then make use of the following integration formula available in mathematical
tables:

(6.1.57)

where, for our case, b = b′ = 1, a = -u1 and a′ = –u2 the two roots of Equation 6.1.56.
This leads to the integrated expression:

(6.1.58)

Solving for the dimensionless complex concentration u, we obtain the final
result:
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(6.1.59)

where u2 is the smaller of the two roots of the quadratic expression in Equation
6.1.56.

The equilibrium concentration of the ligand-receptor complex, ueq = Ceq/RT, can
again be obtained in two ways. We can set the derivative in Equation 6.1.56 equal
to zero, in which case two values are obtained, both of them positive. To resolve
this ambiguity, we turn to the transient Equation 6.1.59 and let τ → ∞. We obtain:

ueq = u2 = Ceq/RT (6.1.60)

i.e., the equilibrium value is equal to the smaller root of the quadratic. Let us examine
that root more closely. We obtain, after cancelling KD in numerator and denominator
of u2 and factoring b out of the square root:

(6.1.61)

which, upon letting KD → ∞, yield u2 = 0 as required.
Equation 6.1.61 is an unwieldy expression but yields useful limiting information.

For the case KD → 0, we write the root in its original form:

(6.1.62)

Since  as KD → 0, we can use a Taylor series expansion of the square

root term to obtain:

(6.1.63)

Hence,
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and

(6.1.64)

Thus, in contrast to the case of constant ligand concentration, Equation 6.1.55,
KD → 0 does not lead to the full saturation value Ceq = RT. Rather that value is

diminished by a factor of  As L0 becomes very large, that

correction factor tends to unity, i.e., we can still approach, if not fully attain, receptor
saturation, provided the initial ligand concentration is large enough.

Comments:
This is a case where the transient solutions, while useful in themselves, also can

be fruitfully employed in obtaining the limiting steady-state solutions. The result
obtained by the alternative method of setting the derivative of the original ODE
equal to zero led, as we have seen, to two solutions. The ambiguity was quickly
resolved by resorting to the full transient solution and allowing τ to go to infinity.
Thus, the transient solution was useful in establishing the important steady-state
solution.

A second point of note is the asymptotic analysis that was applied to the solution.
This is an important part of modeling and serves to verify boundary conditions and
in general to explore the limiting behavior of the solution. Unexpected features are
often discovered in this fashion. Finally, we have here yet another example of a
complex physical process which by shrewd modeling leads to a manageable equation
and its solution.

Illustration 6.1.8 Turing’s Paper on Morphogenesis

In a 1952 paper entitled “The Chemical Basis of Morphogenesis,” Turing laid what
would become the definitive basis for modeling biological growth. The preamble to
the paper states, “In this section a mathematical model of the growing embryo will
be described. This model will be a simplification and idealization, and consequently
a falsification.” This speaks to the honesty and modesty of the author.

The simplification referred to is the initial use of linear equations to describe
the simultaneous diffusion and reaction of migrating cellular species termed mor-
phogens in the paper. These morphogens which could for example be hormones or
other mobile cellular substances undergo changes in concentration as they diffuse
and react. An increase in concentration is deemed tantamount to potential growth,

u
c
b

L K

L K n N R K
D

D Av T D
2

0

0 1
= =

+ +
/

/ ( / ) /

C
K

R
n N R

L

eq

D

T

Av T→ =
+

0
1

0

( / )

1 1
0

/
/

.+






n N R

L
Av T

248/ch06/frame  Page 338  Friday, June 15, 2001  7:00 AM

© 1999 By CRC Press LLC



and it is these concentration changes in time and space that the model is designed
to identify.

Turing examined two cases. In the first, the concentrations arising in a circular
array of N cells in contact with one another are considered. The cell interior is
assumed to be a well-mixed small tank and the migrating species permeate through
the cellular walls into neighboring cells at lower concentration where they undergo
one or more first order reactions. For a pair of morphogens of concentration X and
Y, this leads to a set of 2N first-order linear ODEs which in Turing’s nomenclature
have the form:

(6.1.65)

where µ and ν are the product of area × transport coefficient, the driving force is
given by the concentration differences Xr+1 – Xr, Xr – Xr–1, etc., and f, g are the
reaction terms. Closed form solutions of this model are presented in the paper.

In the second case, diffusion and reaction is assumed to take place in a circular
but homogeneous and continuous medium, i.e., the tissue of the organism under
consideration. Here the relevant equations are the PDEs of unsteady Fickian diffusion
which are coupled but only two in number:

(6.1.66)

where ρ = radius, θ = angular distance, µ1 and ν1 = diffusivities, and h, k =
equilibrium concentrations. Closed form solutions of these equations also are given
and their noteworthy feature is that they can be either sinusoidally oscillating and
underdamped, overdamped, purely oscillatory, or oscillatory with an ever-increasing
amplitude. This is the same type of behavior we had encountered before in second
order ODEs with constant coefficients (see Chapters 4 and 5). The consequence is
that when oscillatory solutions arise, a circular pattern along the angular variable θ
will develop in which morphogen concentrations show maxima at some locations
indicating potential for embryonic growth, and minima or zero values at other
locations implying very little or no growth.

Turing also presented a numerical example involving several morphogens of
which two, X and Y, were tracked. The rates of the reaction, some of which are
nonlinear, are as follows:
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A (a fuel such as glucose) and C1 (a catalyst or enzyme) are set at 103 and 10–3

(1 + γ), respectively, where γ was allowed at first to rise at the rate 2–7 from 

 and then to decrease at the same rate to zero. Diffusivities were set at 5 × 10–8

cm2/s and 2.5 × 10–8 for X and Y, respectively, and cell diameter was assumed to be
0.01 cm, with N = 20 cells arranged in a circular pattern. Evidently this scheme is
an artifact, although not an unreasonable one, and it leads to some interesting results.

Solutions for Y, as a function of cell numbers, are shown in Figure 6.9. Turing
was at that time associated with the University of Manchester which had just acquired
its first computer and although no mention of it appears in the paper, the solution
was presumably carried out numerically on that machine. The system, it will be
noted, consisted of 2 N = 40 coupled and nonlinear ODEs.

The interesting feature of the solution is that in certain cells, the morphogen
concentrations rise considerably above their initial values, while in other cells that

Reaction Rate

Y + K → W

2X → W

A → X

C1 → X + C

Y → B

FIGURE 6.9 The Turing model of morphogenesis. Morphogen distribution in a circular
array of 20 cells as a function of time. (A.M. Turing, Phil. Trans. Roy. Soc., London, 237:
37–72, 1952.)
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appear in pairs, concentration drops to zero. Something of this sort was anticipated
from the solution of the continuous model Equation 6.1.66, although the transition
there was smoothly sinusoidal.

The Turing paper concludes by citing growth pattern observed in nature which
appear to follow the circular patterns of maxima and minima predicted by his models.
One such example is the sea anemone, Hydra. When that organism is deliberately
mutilated, the part cut off from the rest has the shape of an open-ended tube with
essentially circular tissue symmetry. At some stage, that symmetry at the open end
will be disrupted by the appearance of a number of patches. These patches arise at
points where the new tentacles are subsequently to appear. One will note the simi-
larity to the discrete concentration peaks shown in Figure 6.9. Another example is
provided by young root fibers just breaking out from the parent root. Initially these
are almost homogeneous in appearance, but eventually a ring of fairly evenly spaced
spots appear, and these later develop into vascular strands. The genius of Turing lies
not only in tracking down these seemingly disparate phenomena but providing an
elegant and basically simple model for their explanation.

Illustration 6.1.9 Biotechnology: Enzyme Kinetics

Enzymatic reactions are biological processes in which the enzyme E, usually a
protein, acts as a catalyst to convert the so-called substrate S, which is the reacting
species, to a product P. There are close to 2000 known enzymes. They are very
specific in the type of reaction they catalyze, which is seen in the official classification
in common use today (Table 6.2).

A rate expression for enzymatic reactions was proposed as early as 1902 by
Henri, who based it on the following observations:

• The rate of reaction is first order in the substrate concentration (S) at
relatively low concentration levels.

• As the substrate concentration is increased, the reaction order in (S)
diminishes continuously from one to zero.

TABLE 6.2
Enzyme Classification

Name Function

1. Oxido reductases Oxidation-reduction
2. Transferases Transfer of functional groups
3. Hydrolases Hydrolysis
4. Lyases Addition to double bond
5. Isomerases Isomerization
6. Ligases Formation of bonds

(1) C-O
(2) C-S
(3) C-N
(4) C-C
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• The rate of reaction is proportional to the total amount of enzyme present
E0. This includes both the bound and unbound forms.

The proposed rate equation was consequently of the form:

(6.1.67)

where Km was identified as the dissociation constant of the enzyme–substrate complex.
A more thorough analysis was subsequently undertaken by the team of Michae-

lis-Menten, which was based on the following reaction mechanism:

(6.1.68)

In this scheme, it is assumed that the enzyme E and the substrate reversibly
combine to form a complex ES which then dissociates into product P and uncom-
bined enzyme. If the rate is assumed to follow the molecularity of these reactions,
one obtains:

(6.1.69)

(6.1.70)

Since there are three state variables in these equations, i.e., (E), (S), and (ES),
a third expression is required which is given by the following cumulative balance
on the enzyme:

(E) + (ES) = (E)0 (6.1.71)

This is a set of one linear algebraic equation and two nonlinear ODEs in (S),
(E), and (ES) which does not yield an analytical solution and has to be solved
numerically. However, the equations reduce to the Equation 6.1.67, subsequently
called the Michaelis-Menten equation, provided the following relation holds:

(6.1.72)

This is tantamount to a quasi steady-state assumption and implies that the rate
of complex formation is rapid compared to its decomposition or its conversion to
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product P, and that the enzyme-substrate complex, after a brief initial transient period,
quickly reaches a constant concentration. Introducing this relation into Equations
6.1.69 and 6.1.70 leads, after some rearrangement, to the expression:

(6.1.73)

The term Km of the original Expression 6.1.67, which the early workers identified
with the equilibrium constant Km = k–1/k2, is now clearly seen to have a somewhat
more complex dependence on all three rate constants. It is customary to retain the
symbol Km, however, and one obtains as the final expression:

(6.1.74)

where rMax = k2(E0) is the maximum rate attainable. A plot of this equation, showing
the significance of the parameters appears in Figure 6.10A.

The equation is easily integrated by separation of variables and one obtains the
implicit relation in (S):

rMax t = (S0) – (S) + Km ln (S)0/(S) (6.1.75)

FIGURE 6.10 Plots for the analysis of enzyme kinetics.
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To evaluate the coefficients rMax and Km, from experimental rate data, Equation
6.1.74 can be plotted in various ways so as to yield linear plots. Parameter evaluation
results from the respective slopes and intercepts. Two such ways of plotting, given
below, have become famous and are named after the originators:

Lineweaver-Burk:

(6.1.76)

Eadie-Hofstee:

(6.1.77)

An example of the Lineweaver-Burk plot is shown in Figure 6.10B.

Comments:
It is worth noting similarities of the Michaelis-Menten Equation 6.1.74 to other

well-known physical laws. The equation has the same form as the well-known
Langmuir adsorption isotherm:

(6.1.78)

where q = amount adsorbed/mass sorbent and C = concentration of solute in the
fluid (gas or liquid) in contact with the sorbent. qm represents monolayer loading,
i.e., full saturation of the solid and corresponds to rMax of the Michaelis-Menten
equation. b is made up of the kinetic parameters of the adsorption and desorption
steps and resembles in that respect the Michaelis-Menten constant Km.

The enzymatic rate expression is also identical in form to two rate laws developed
by chemists and chemical engineers to describe chemically catalyzed reactions.
These are the Langmuir-Hinshelwood, and the Hougen-Watson rate laws. There are
other similarities as well as differences between the biochemical and chemical or
chemical engineering approaches.

The rate expression for cell growth proposed by Monod and taken up in the next
illustration also is of Michaelis-Menten form with some differences in units of rate
and kinetic parameters.

Illustration 6.1.10 Cell Growth, Monod Kinetics,
Steady-State Analysis of Bioreactors

When a small quantity of living cells is placed in a liquid solution of an essential
nutrient at an appropriate temperature and pH, the cells will undergo growth. In the
process of consuming nutrients (or substrate S) from the environment, the cells
produce metabolic “wastes” which often constitute a desirable product P. Thus, in
fermentation processes such as the production of alcoholic beverages, the cells
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convert carbohydrate substrates into alcohol, while they themselves undergo a growth
in numbers. This is referred to as biomass formation. We examine here, in the first
instance, the pertinent growth kinetics and follow this up by a steady-state analysis
of both cell growth and production in a continuous flow stirred bioreactor.

Growth Kinetics — The most commonly used rate expression is that proposed
by Monod in 1942. It is basically an empiricism and has, as mentioned, the same
form as the Michaelis-Menten equation:

(6.1.79)

µ does not have the conventional units of mass/volume time, but is rather defined
as the specific growth rate, i.e., the rate of growth per unit cell mass, with dimensions
of reciprocal time. Thus,

(6.1.80)

where m = mass of cells.
Although on occasion the Monod equation may have an underlying physical

model which explains its genesis, it is more generally regarded as an empirical law
of engineering usefulness. The tools available for extracting parameters from the
Michaelis-Menten equation such as Lineweaver-Burk plots, apply here as well.

We note that in order to use these rate expressions in conventional mass balances,
µ has to be redimensionalized by multiplication with the cell concentration C
(mass/volume). Thus, for Monod kinetics we write:

(6.1.81)

Steady-State Analysis — A conventional steady-state cell balance around a
CSTR, leads to the expression:

(6.1.82)

which is expanded using Equation 6.1.80 and rewritten in the form:

(6.1.83)

µ
µ

=
+

Max

s

S

K S

( )

( )

r
m

dm
dt

tM = = −1 1µ [ ]

r (massof cells/volume time) =
+

µMax

S

S C

K S

( )

( )

Rate of in Rate of out

C V QC

cells cells

Q Cf

− =

+






− =

0

0( ) [ ]µ

D C
S

K S
D Cf

Max

S

+
+

−








 =

µ ( )

( )
0

248/ch06/frame  Page 345  Friday, June 15, 2001  7:00 AM

© 1999 By CRC Press LLC



where the subscript f refers to feed. Here D = Q/V is the reciprocal of the residence
time τ we had encountered before in connection with the conventional CSTR. It is
the preferred quantity used in biochemical engineering work and is termed the
dilution rate. One notes that it equals the number of tank volumes which pass through
the vessel per unit time.

A similar steady-state balance for the substrate leads to the expression:

(6.1.84)

where YCS = mass of cells produced/mass of substrate consumed. This latter quantity
is a constant for a particular system under consideration. Equations 6.1.83 and 6.1.84
are two coupled algebraic equations in the substrate and cell concentrations (S) and
C. They are collectively known as the Monod chemostat model.

A common case is that of a reactor which initially contains a certain mass of
cells and is then fed continuously with nutrient substrate S free of cells (Cf = 0).
We do not address the initial transient period and solve instead for the steady-state
substrate and cell concentrations. We obtain from the chemostat equations:

(6.1.85)

and

C = YCS[(S)F – (S)] (6.1.86)

or

One notes from these expressions that the cell concentration C at first declines
slowly, and then more rapidly as the dilution rate D increases and approaches µMax.
Simultaneously, the effluent substrate concentration (S) experiences a rise until it
reaches the value of the substrate inlet concentration (S)F (Figure 6.11). At that point,
as seen from Equation 6.1.86, C will have dropped to zero. That condition, termed
washout, is attained at a dilution rate given by:

(6.1.87)

In other words at flow rates corresponding to Dcrit, the cells do not have sufficient
time to grow, and those which existed in the vessel are washed away in the effluent.
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A second quantity of interest is the rate of cell output, given by the product DC
in units of mass of cells per unit volume and time. Since C declines with increasing
D, the product DC will pass through a maximum. Using the product derivative
d(DC)/dD obtained from Equations 6.1.85 and 6.1.86, and setting it equal to zero
one obtains, for maximum cell output, the optimum dilution rate:

(6.1.88)

That maximum turns out to be a sharp one and is located in close proximity to
Dcrit (Figure 6.11). Thus, a small increase in D of a few percent above Dopt will cause
a sudden drop in both C and DC to zero, i.e., washout will ensue. Therefore, it is
advisable to operate at dilution rates well below Dopt to avoid the region of high
sensitivity in its vicinity. This entails some loss in potential cell production but leads
to greater stability and robustness of the system. Identification of such regions is
one of the benefits to be derived from modeling.

The obtain the product concentration (P) in the effluent, we use an appropriate
steady-state mass balance for P and obtain:

(6.1.89)

or alternatively,

D[(P)f – (P)] + YPC µC = 0 (6.1.90)

where YPC = mass of product formed per mass of cells, which is a characteristic
quantity for a particular biochemical reaction. We combine this expression with the

FIGURE 6.11 Concentration and production of cells as a function of dilution rate in a
continuous flow stirred-tank bioreactor at steady-state.
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Monod Equation 6.1.79 and those resulting from the Monod chemostat model,
Equations 6.1.83 and 6.1.84 and obtain, after elimination of µ, C and (S):

(6.1.91)

One notes that production shutdown (i.e., (P) – (P)f = 0) occurs at the same
critical dilution rate as that given by Equation 6.1.87 since the numerator in Equation
6.1.92 then becomes zero. Dopt, representing the best flow rate for product formation,
again lies close to Dcrit which is the worst condition forcing us, reluctantly, to operate
somewhat below optimum dilution rates.

Comments:
The analysis we have presented has been almost entirely algebraic, the exception

being the determination of Dopt. It was nevertheless possible to establish important
features of the operation of biochemical stirred tank reactors and to provide simple
guidelines for their successful and near optimal operation.

The terminology used by biotechnologists requires an adjustment in our thinking.
We had been accustomed to analyzing reactor behavior in terms of residence time
τ = V/Q. Large values of τ were good, giving high yields, small values of τ were
bad. The effect of the inverse quantity, the dilution rate D = 1/τ in a biochemical
context is more complex. High values of D, i.e., small residence times, can be very
good, in fact lead to optimum conversion, but a relatively small increase in D beyond
that point leads to complete shutdown of the reaction, i.e., washout occurs. Thus,
small residence times can be both very good and very bad and these conditions are
in close proximity to each other. This is a novel feature not encountered in conven-
tional reactor engineering and deserves the attention of the analyst.

Practice Problems
6.1.1 Blood Flow Rate to the Heart Muscle — A viable method for measuring
blood uptake by the heart muscle (myocardium) from blood flowing through the
heart chamber (ventricle) is to perfuse the heart with a hdyrogen-saturated solution
of saline and blood. Because of its high mobility, hydrogen is quickly distributed
throughout the heart muscle. Subsequent clearance of the muscle with clear blood,
during which the hydrogen remains almost uniformly distributed in the muscle at
any given instant, yielded the following results:

Assuming a myocardium volume of 100 cc, which is that of the average medium-
sized dog, calculate the rate of blood flow through the myocardium.

Answer: 79.5 cc/min

H2-Concentration 100 50 25 10 2.5
Time, min 0 1 1.8 2.9 4.65
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6.1.2 Flow Rate by Dye Dilution — Flow rates Q to and through an organ may be
determined by adding a dye or other tracer to the ingoing blood stream and moni-
toring the concentrations in the outflow. Type and size of the chosen tracer substance
are such that one can assume it stays strictly in the blood phase and does not permeate
surrounding tissue. Derive an expression for Q in terms of measurable quantities.

6.1.3 Two-Compartment Model — Consider the two-compartment model shown
in Figure 6.2B. Show that the average concentration C of the two mixed effluent
streams is given by:

and identify the parameters.

6.1.4 Analogy Between Dialysis and Heat Exchange — Use Table 6.1 listing
analogous terms for dialysis and heat exchange plus Equation 6.1.36 for counter-
current dialysis to derive the corresponding expression for the countercurrent heat
exchanger (cf. Equation 3.3.19).

6.1.5 Ultrafiltration — Ultrafiltration is a membrane process in which a solution,
containing for example a protein, is concentrated by applying pressure to it and
forcing the solvent across a semipermeable membrane, i.e., a membrane more
permeable to the solvent than it is to the solute. Some of the latter will usually leak
through as well, i.e., the process is not 100% efficient.

In a test run of a batch ultrafiltration unit involving a particular membrane and
protein dissolved in water, it was found that at any given instant the concentration
Cp in the product stream — the so-called permeate — is always one tenth of that
in the solution left behind on the high pressure side, termed the retentate (CR). Thus,
Cp = 0.1 CR.

(a) Calculate the fraction of Retentate that remains, if the process is to double
the concentration Cp.

(b) What is the actual separation achieved, i.e., what is the value of Cp/(CR)avg

at the end of the process? How does this compare with the inherent
separation factor?

(Hint: The model of the process is similar to that of Rayleigh distillation where
the separation factor α takes the place of the inherent separation factor sought here.)

Answers: (a) 0.463; (b) 14.5, 10

6.1.6 Protein Reaction in Large Blood Vessels — A protein contained in blood
flowing in a cylindrical tube with diameter > 0.1 mm undergoes a reaction at the
wall with Michaelis-Menten kinetics. We had seen that for such systems concentra-
tion changes are confined to a thin boundary layer near the wall and Cb = Cb

0 =
constant. Show that the local wall concentration is given by the expression:

C f C e f C ek t k t= +− −
1 1 2 20 01 2( ) ( )
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where kf is given by Equation 6.1.42.
(Hint: Adapt Equation 6.1.45 to Michaelis Menten Kinetics.)

6.1.7 Solute Release in a Small Blood Vessel — In blood vessels with d < 0.1 mm,
concentration changes occasioned by a reaction or other event at the tubular wall,
both wall concentration and in the fluid bulk vary with distance. Consider the case
of a solute released at the tubular wall at the constant rate N (mol/cm2s). Derive
expressions for (a) the wall concentration and (b) the mean bulk concentration as a
function of distance z at steady state.

Answer: (b) (Cb)avg = 4 Nz/vd

6.1.8 Deposition of Cells from a Flowing Medium — Consider the case of cells
or some similar entities in a flowing medium arriving at the vessel wall and adhering
to it. An example would be the deposition of platelets from flowing blood on the
site of an injury or onto an artificial implant.

Show that the fractional surface coverage S as a function of time t and axial
distance from the inlet z is given by:

where Cb
0 = concentration in the bulk fluid, taken to be constant. The rate of

deposition rd is assumed to follow the relation:

rd = kw Cw (1 – S)

where (1 – S) = fraction of uncovered surface.
(Hint: Express S as the time integral of the arrival rate of the cells and eliminate

Cw using an additional algebraic mass balance.)

6.1.9 Ligand Binding to a Solution Receptor — In Illustration 6.1.7, the case was
examined in which a ligand became bound to a receptor embedded in a cell mem-
brane. We now wish to consider the situation in which both the ligand and the
receptor of radius R move freely and interact, in the extracellular fluid. Show that
at steady-state the ligand concentration L(r) around a receptor placed at the origin
of a spherical domain is given by:

where kr = intrinsic first-order association rate constant, D = diffusivity.
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6.1.10 Critical and Optimum Dilution Rate — 

 

Derive the Expressions 6.1.87 and
6.1.88.

 

6.1.11 Tubular Bioreactor — 

 

Consider the case of a tubular reactor taking a feed
of concentration C

 

0

 

 in cells, and (S)

 

0

 

 in substrate. Derive the following implicit
substrate profile for the reactor:

where 

 

τ

 

 = residence time = z/v.
(Hint: Make a differential balance for the substrate and an integral balance for

both cells and substrate.)

 

6.2 A VISIT TO THE ENVIRONMENT

 

We turn here to an examination of models that arise in connection with environmental
problems. Although Environmental Science and Engineering has, like any discipline,
its own definitions, language, and nomenclature, much of what we see there has a
familiar look to it. Thus, we will be, as before, making use of the following tools:

•

 

Phase Equilibria

 

. Because the solutes of environmental concern are fre-
quently encountered at relatively low concentrations, phase equilibrium
relations often fall in the linear range, i.e., one deals with partition or
distribution coefficients or Henry’s constants. We will address these
shortly in some detail.

•

 

Mass Transfer Coefficients

 

. These arise in a natural way when considering
transport between the three principal environmental media, i.e., air, soil,
and water, as well as transport from these media to living organisms.
Extensive use is made of the two-film theory.

•

 

Reaction Rates

 

. Solutes may undergo reaction principally by reactive
interaction with soil or sediment, or by metabolic degradation through
bacterial action or enzymatic processes in general.

•

 

Compartments

 

. Extensive use is made of the stirred tank concepts. A body
of water such as a lake, the local atmosphere, or a living organism are
examples of entities that are, at least as a first approximation, represented
by compartmental models. Much of what one sees here has its counterpart
in biomedical models or more conventional engineering applications.

•

 

Distributed Models

 

. These are brought in primarily when dealing with
flow as in rivers, estuaries, oceans and air currents, and in groundwater
movement.

All of the above are treated in ways similar to those encountered before. Some
special features when dealing with phase equilibria, need to be noted, however.

[ ( )]ln
[( ) ( ) ]

ln
( )
( )

[ ( ) ]C Y C K
C Y S S

C
K Y

S
S

C Y SCS S
CS

S CS Max CS0 0
0 0

0 0
0 0+ +

+ −
− = +µ τ

 

248/ch06/frame  Page 351  Friday, June 15, 2001  7:01 AM

© 1999 By CRC Press LLC



   

It has become the convention in environmental work to make extensive use of
the so-called octanol-water partition coefficient K

 

OW

 

 which describes the distribution
of a solute between octanol and water. Thus,

(C)

 

O

 

 = K

 

OW

 

(C)

 

W

 

(6.2.1)

where (C)

 

O

 

 = solute concentration in octanol, (C)

 

W

 

 = solute concentration in the
water phase and K

 

OW

 

 is in units of m

 

3

 

 water/m

 

3

 

 octanol.
Octanol, or more properly 1-octanol, was chosen as a correlating substance

because it has a similar carbon to oxygen ratio as lipids, and in general mimics
sorption and dissolution of solutes on and in organic matter. It is sparingly soluble
in water and readily available in pure form. K

 

OW

 

 should be viewed as a measure of
hydrophobicity, i.e., the tendency of a chemical to partition out of water, and is
consequently an inverse measure of the solubility of a solute in water.

Table 6.3 lists K

 

OW

 

 values for a range of organic chemicals. Also tabulated are
values of K

 

OC

 

 which is the partition coefficient of a solute between organic carbon
(OC) and water. They are obtained from the empirically established relation:

K

 

OC

 

 = 0.4 K

 

OW

 

(6.2.2)

 

TABLE 6.3
Partition Coefficients

 

Solute Log K

 

OW

 

K

 

OW

 

 (m

 

3

 

/m

 

3

 

) K

 

OC

 

 (m

 

3

 

/m

 

3

 

)

 

Butadiene 1.99 98 39 0.39

 

n

 

-Pentane 3.45 2800 1100 11

 

n

 

-Hexane 4.11 13,000 5200 52
Cyclohexane 3.44 2800 1100 11
Benzene 2.13 135 54 0.54
Toluene 2.69 490 200 2.0
Styrene 2.88 760 300 3.0
Range of alkanes 2.8–6.25 630–1.8 

 

×

 

 10

 

6

 

250–7.1 

 

×

 

 10

 

5

 

2.5–7100
Range of aromatics 2.13–5.52 140–3.3 

 

×

 

 10

 

5

 

54–1.3 

 

×

 

 10

 

5

 

5.4–1300
Methyl chloride 0.91 8.1 3.3 0.033
Methylene chloride 1.25 18 7.1 0.071
Chloroform 1.97 93 37 0.37
Carbon tetrachloride 2.64 440 180 1.8
Chlorobenzene 2.80 630 250 2.5
Range of 
chloroalkanes

0.91–3.93 8.1–8500 3.3–3400 0.033–34

Range of 
chlorobenzenes

2.80–5.50 630–3.2 

 

×

 

 10

 

5

 

250–1.3 

 

×

 

 10

 

5

 

2.5–1300

Range of PCBs 3.90–8.26 7.9 

 

×

 

 10

 

3

 

–1.8 

 

×

 

 10

 

8
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×

 

 10

 

3
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×

 

 10

 

7

 

32–7.3 

 

×

 

 10
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The last column lists values of H, the Henry constants for solutes distributed
between water and soil. The values were obtained by assuming a carbon content in
soil of 2% and a soil density of 2000 kg/m

 

3

 

. Hence,

H = 0.1 K

 

OC

 

(6.2.3)

A special equilibrium relation is worth noting, that of describing solute distri-
bution between fish and water. Here the relevant partition coefficient K

 

FW

 

 can again
be expressed in terms of the octanol-water partition coefficient, and is given by the
simple linear relation:

K

 

FW

 

 = 0.048 K

 

OW

 

(6.2.3a)

This can be viewed as expressing the assumption that a fish is about 5% lipid
or that a fish behaves as if it is about 5% octanol by volume.

In what follows we shall proceed as was done in the case of the biomedical
illustrations by first considering systems described by compartmental models, fol-
lowed by an examination of distributed models. Various media interactions, such as
soil–water, fish–water, and air–water, are taken up. Finally, we delve in some detail
into the topic of wastewater treatment involving several different processes. The
models here are kept as usual at the AE and ODE level. Occasional use is made of
the 

 

results

 

 of PDE models. Actual 

 

solutions

 

 are deferred to Chapter 9.

 

Illustration 6.2.1 Mercury Volatilization from Water

 

Substances with low solubility in water, such as various hydrocarbons, chlorinated
organics such as DDT, and mercury, can still have high partial pressures p or
fugacities because of their exceptionally high activity coefficients 

 

γ

 

. The relevant
relation is given by:

p

 

i

 

 = 

 

γ

 

i

 

 x

 

i

 

 P

 

i
0

 

(6.2.4)

where P

 

i
0

 

 = pure component vapor pressure. The equation can be recast in the form:

(6.2.5)

where the group  can be viewed as an air–water partition coefficient which

is generally high. The loss of even a small amount of solution by evaporation could,
thus, be expected to result in a marked drop of pollutant concentration. This is small
comfort for the environment as a whole, since the toxic substances are merely being
transferred from one medium to another. It is, nevertheless, a quite dramatic effect
exemplified by a 1986 study that an estimated 60 tonnes of PCBs, chloroform, and
chlorobenzenes are released into the atmosphere from the mist over Niagara Falls
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per year. Note in this connection that each tiny droplet acts as a highly efficient
evaporating stirred tank.

We consider here a body of water containing dissolved mercury at or near the
saturation level and wish to calculate the reduction of mercury content that occurs
when a mere 0.01% of the solution is evaporated. We shall view this as a Rayleigh
distillation type of problem, with the evaporated liquid assumed to be in equilibrium
with the “well-stirred” liquid of uniform concentration. The equilibrium relation,
Equation 6.2.5, that will be needed in the model, contains the activity coefficient 

 

γ

 

which is not usually known or easily measured. We circumvent the difficulty by
relating 

 

γ

 

 to solubility, which is a well-established known quantity. This is done by
considering a system consisting of pure mercury in equilibrium with its saturated
aqueous solution. Equating chemical potentials for the two phases, we obtain:

 

µ

 

0

 

(T,p) = 

 

µ

 

0

 

(T,p) + RT ln 

 

γ

 

x

 

sat

 

(6.2.6)

from which it follows that:

 

γ 

 

x

 

sat

 

 = 1 (6.2.7)

or

 

γ

 

 = 1/x

 

sat

 

This result agrees with the intuitive notion that the smaller the solubility x

 

sat

 

,
the higher its “escaping tendency” in terms of partial pressure or fugacity.

We now proceed to derive the usual mass balances:

 

Total mass balance:

 

(6.2.8)

 

Component mass balance:

 

(6.2.9)

where y and x are the vapor and liquid phase mole fractions. These two relations
are supplemented by a statement of phase equilibrium:

Total moles in Total molesout Rate of change in
total content

D
d
dt

W

− =

− =0

Moles mercury in Moles mercury out Rate of change in
mercury content
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Equilibrium relation:

 

(6.2.10)

Note that the partial pressure of air is excluded from this expression, since we are
concerned with equilibrium compositions of the binary mercury–water system.

Equations 6.2.8 and 6.2.9 are divided to eliminate D, and dt and Equation 6.2.10
introduced into the result. We obtain:

(6.2.11)

Integration by separation of variables yields the expression:

(6.2.12)

The data to be introduced at this stage are as follows:

Mercury solubility: 3 
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 mol/fraction (25°C)
Mercury vapor pressure: 0.173 Pa (25°C)
Water vapor pressure: 3.17 

 

×

 

 10

 

3

 

 Pa (25°C)

Substitution of these values into Equation 6.2.12 yields:

where we have substituted 0.01% = 10
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 for the fraction evaporated.
Taylor series expansion of the logarithmic term on the left yields:
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Thus, the fraction of mercury volatilized, 1 – x/x

 

0

 

, equals 

 

≈

 

 0.87, a phenomenal
amount considering that only 0.01% of the solution has been evaporated.

 

Comments:

 

A number of pitfalls were astutely avoided by drawing on background knowledge
from appropriate subdisciplines. The fact that 

 

γ

 

Hg

 

 was unknown and could not be
located in the literature on vapor–liquid equilibria could have brought the proceed-
ings to a halt. Instead we drew on intuitive reasoning that 

 

γ

 

 should be related to
solubility, and knowing that the latter was tabulated, established the relation by
means of elementary thermodynamics.

It would have been tempting to calculate y

 

Hg

 

 from the conventional relation p

 

i

 

= y

 

i

 

 P

 

Tot

 

, with P

 

Tot

 

 = 1 atm. This would have led to a wrong result since the partial
pressure of air would have been included. It required some thought to realize that
y

 

Hg

 

 refers to the mole fraction in the system H

 

2

 

O-Hg, not H

 

2

 

O-Hg-air.
Finally, even though the logarithm of 1 – 10

 

–4

 

 = 0.9999 could have been easily
evaluated by pocket calculator, we prefer drawing on first year calculus to obtain
the same result in a more elegant way.

 

Illustration 6.2.2 Rates of Volatilization of Solutes from 
Aqueous Solutions

 

In the previous illustration we had established the degree of depletion which occurs
when a hydrophobic substance such as mercury evaporates from an aqueous solution.
No mention was made of the 

 

time frame

 

 in which this happens. Indeed we had
eliminated time by division of the two constitutive mass balances. To obtain the full
transient solutions, additional information is required on the evaporation rates and
the associated transport coefficients. Table 6.4 gives a compilation of the relevant
parameters for a number of hydrophobic solutes of environmental interest. These
calculated values show that, with few exceptions, the transport resistance resides
almost entirely in the liquid. The half-life 

 

τ

 

, i.e., the time required to reduce the
original concentration by half, listed in the last column for L = V/A = 1 m, ranges
in values from several hours to several months in the case of large molecules of low
diffusivity such as pesticides. This attests to the dangerously long retention times
that may be exhibited by these substances.

The model equation for the evaporation process takes the following form:

(6.2.13)

where we have assumed that the mass transfer resistance resides entirely in the liquid
phase. If one further sets the surface concentration C

 

S

 

 = 0 (negligible solute in the
air), Equation 6.2.13 immediately integrates to the expression:

C = C

 

0

 

 exp (–k

 

L

 

t/(V/A)) (6.2.14)

Rate of solute in Rate of solute out Rate of change of
solute content

k A C C V
dC
dtL S

− =

− − =0 ( )
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where the half-life τ is given by:

τ = 0.69 (V/A)/kL (6.2.15)

Let us consider the case of the mist over Niagara Falls and track the evaporation
of mercury from a droplet of 1 mm diameter (V/A = 1/6 mm). Converting the half
life of 7.53 h listed in Table 6.4 for V/A = 1 m to 1/6 mm we obtain:

τ = (7.53)(3600)10–3/6

τ = 4.5 s

i.e., the loss of mercury to the atmosphere is nearly instantaneous. For DDT, the
value is about 10 times higher, still fast enough to ensure almost complete DDT
loss to the atmosphere during the life-time of the droplet over the Falls.

Illustration 6.2.3 Bioconcentration in Fish

In Figure 6.12 we display the various mechanisms by which toxic solutes can enter
and leave fish. They are largely self-explanatory and are all expressed in terms of
first order rate laws. The first of these to be quantified in 1979 and used in mea-
surements for parameter estimation was the uptake and return of the solute through
the gills:

TABLE 6.4
Calculated Evaporation Parameters and Rates at 25°C

Compound
Solubility,

mg/L

Vapor
Pressure,
mmHg kL, m/h

Resistance
in Liquid
Phase, %

ττττ for L =
1 m, h

n-Octane 0.66 14.1 0.124 >99.9 5.55
2,2,4-Trimethylpentane 2.44 49.3 0.124 >99.9 5.55
Benzene 1780 95.2 0.144 95.6 4.81
Benzene at 10°C 1750 45.5 0.137 91.3 5.03
Toluene 515 28.4 0.133 96.3 5.18
o-Xylene 175 6.6 0.123 95.4 5.61
Cumene 50 4.6 0.119 98.3 5.79
Naphthalene 33 0.23 0.096 82.2 7.15
Biphenyl 7.48 0.057 0.092 85.5 7.52
DDT 1.2 × 10–3 1 × 10–7 9.34 × 10–3 13.2 73.9
Lindane 7.3 9.4 × 10–6 1.5 × 10–4 0.19 4590
Dieldrin 0.25 1 × 10–7 5.33 × 10–5 0.078 12,940
Aldrin 0.2 6 × 10–6 3.72 × 10–3 5.4 185
Mercury 3 × 10–2 1.3 × 10–3 0.092 97.8 7.53

Source: From D. Mackay and P.J. Leinonen, Environmental Science and Technology, vol. 9,
American Chemical Society, Washington, D.C., 1975.
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(6.2.16)

where the subscript 

 

F

 

 denotes the fish.
If the concentration C

 

W

 

 in the water is assumed constant, integration by sepa-
ration of variables yields the expressions:

 

For uptake:

 

C

 

F

 

/C

 

W

 

 = k

 

1

 

/k

 

2

 

[1 – exp(–k

 

2

 

t)] (6.2.17)

 

For clearance

 

 (k

 

1

 

 = 0):

C

 

F

 

/C

 

Fo

 

 = exp(–k

 

2

 

t) (6.2.18)

We note that as t 

 

→

 

 

 

∞

 

, the uptake concentration ratio C

 

F

 

/C

 

W

 

 approaches k

 

1

 

/k

 

2

 

,
which may be regarded as a partition coefficient of this particular mechanism.
Parameter estimation is usually done by running the uptake to saturation so that
C

 

F

 

/C

 

W

 

 = k

 

1

 

/k

 

2

 

, and follow this up by clearance to establish the value of k

 

2

 

.
When all mechanisms are considered with the exception of growth dilution, a

long-term effect, the rate expression becomes:

(6.2.19)

where it has been assumed that C

 

A

 

 

 

≈

 

 C

 

W

 

, which is often the case.
Integration by separation of variables then leads to the expression:

(6.2.20)

 

FIGURE 6.12

 

Uptake and loss of a toxic substance in fish. (D. Mackay, 

 

Multimedia Envi-
ronmental Models, The Fugacity Approach,

 

 Lewis Publishers, Chelsea, MI, 1991. With per-
mission.)
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The entire process of solute accumulation is referred to as bioconcentration, and
that due to food intake in particular as biomagnification. The effect can be staggering,
particularly in the case of chlorinated aromatics and PCB’s (see Table 6.3). Choosing
the pesticide DDT with an octanol–water partition coefficient KOW = 1.6 × 106, and
applying the simple correlation Equation 6.2.3 we obtain the following magnification:

i.e., an almost 100,000-fold increase in concentration. Since DDT solubility in water
is 1.2 × 10–3 mg/l (see Table 6.4), the concentration in the fish rises to 7.7 × 104 ×
1.2 × 10–3 = 92 mg/l, or approximately 1/10 of a gram in a fish of 1 l volume.

Illustration 6.2.4 Cleansing of a Lake Bottom Sediment

When contaminated water flows into a lake, the contaminant undergoes various
changes, including metabolization, volatilization, and partitioning onto the sediment,
the latter being particularly prevalent. After emissions have ceased, the solute slowly
desorbs into the water and it is this cleansing process we wish to address here.

We start the analysis by considering a full model of concentration changes both
in the lake water and the sediment. We have:

Component balance on lake water:

(6.2.21)

Component balance on sediment:

(6.2.22)

Total volumetric balance:

(6.2.23)

K
C

C
KFW

F

W
W= = = × = ×0 048 0 048 1 6 10 7 7 100

6 4. ( . ) . .

Rate of solute in Rate of solute out Rate of change of
solute content

Q C
K A C C Q C

d
dt

VC
S

− =

+ −






− =1 1

0
2( * ) ( )

Rate of solute in Rate of solute out Rate of change of
solute content

K A C C V
dq
dtS S S

− =

− − =0 0 ( * ) ρ

Rate of volume in Rate of volume out Rate of change
of volume

Q Q
d
dt

V

− =

− =1 2 ( )
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Equilibrium relation:

q = HC* (6.2.24)

These four equations in the four state variables C (kg/m3), C* (kg/m3), q (kg/kg
sediment), and lake volume V constitute a full compartmental model. A solution by
Laplace transforms is feasible but somewhat cumbersome. Fortunately, the model
can be reduced to a single equation by making the reasonable assumption that solute
concentration in the lake is, because of its large volume, negligibly small. We then
obtain, from Equations 6.2.22 and 6.2.24:

(6.2.25)

which integrates to the expression:

(6.2.26)

where the subscript S refers to sediment and VS/AS = hS = depth of active sediment
layer. The challenge here, as has been the case elsewhere, lies not so much in setting
up and solving the model but rather in the proper estimate of the parameter, in
particular the overall mass transfer coefficient K0, which is composed of the sediment
and fluid phase mass transfer coefficients in accordance with Equation 3.2.15. Some
suggestions for its estimation have become available, which we summarize below.

Sediment Phase Mass Transfer Coefficient kS — Reasonable predictions can be
made by setting the effective diffusivity in the sediment Deff = DLε2, where DL is
the solute diffusivity in free water and ε the sediment pore fraction. We then have
for the sediment mass transfer coefficient:

(6.2.27)

Fluid Phase Mass Transfer Coefficient — Here the predictions are more uncertain
since varying degrees of turbulence may prevail at the sediment-lake water interface.
A suggested correlation is given by the expression:

kL = 0.29 [DL (m2/day)]1/2 (m/day) (6.2.28)

with a suggested range for DL values of 0.0086 – 8.6 m2/day. We, thus, have to
accept a possible ~30-fold variation in mass transfer coefficient.

No correlation for the active layer depth hs appear to be available. A value of hs

= 1 cm can be used as a first estimate.

− =
K A

H
q V

dq
dt

S
S S

0 ρ

t
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Illustration 6.2.5 The Streeter-Phelps River Pollution Model: 
The Oxygen Sag Curve

In this classical 1925 study, probably the first attempt to model the fate of a chemical
in the environment, Streeter and Phelps derived an equation that described the oxygen
profile in a river which undergoes a steady influx of pollutant at some point upstream.
Initially, biodegradation of the pollutant causes a decline in dissolved oxygen C or,
viewed slightly differently, an increase in the oxygen deficit D = C* – C where C*
is the equilibrium solubility of oxygen in water. As the pollutant concentration L
decreases through biodegradation, the decline in oxygen concentration slows and
ultimately passes through a minimum, the so-called critical point, as oxygen supply
from the atmosphere replenishes the river. Further “reaeration” ultimately restores
the oxygen concentration to full saturation levels (Figure 6.13).

In their model, Streeter and Phelps did not consider pollutant adsorption on river
sediment, an important removal mechanism which will be addressed in the following
illustration. Also neglected were the effects of runoff and respiration by algae. Thus,
only biodegradation and reaeration rates needed to be considered, both of which were
assumed to be first order in concentration. The model equations are then as follows:

Oxygen mass balance:

(6.2.29)

which becomes, in the limit ∆z → 0:

(6.2.30)

FIGURE 6.13 The Streeter-Phelps model. Dissolved oxygen profiles in a river with a steady
influx of a pollutant.
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where v = Q/A

 

C

 

 = superficial river velocity, k

 

L

 

a = volumetric mass transfer coefficient
m

 

2

 

/m

 

3

 

 river, k

 

r

 

 = reaction rate constant, and L = pollutant concentration.
Alternatively we can write in terms of the oxygen deficit D = C* – C,

(6.2.31)

 

Pollutant mass balance:

 

which yields the ODE:

(6.2.32)

The latter equation can be immediately integrated by separation of variables and
we obtain:

(6.2.33)

This intermediate result gives the pollutant concentration profile in the river.
Substitution of L into Equation 6.2.31 then leads to the ODE in the oxygen deficit:

(6.2.34)

This equation is of the form:

y

 

′

 

 + f(x)y = g(x) (6.2.35)

which has the solution (see Item 6, Table 4.4):

(6.2.36)

Upon evaluation of the integrals we obtain:
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(6.2.37)

Using the boundary condition D = D0 at z = 0 to evaluate the integration constant
K finally yields:

(6.2.38)

This is the Oxygen Deficit Profile in the river, shown in Figure 6.13.

Comments:
Equation 6.2.38 is often cast into the more convenient form:

(6.2.39)

where f = kLa/kr is the so-called self-purification rate (dimensionless). When f = 1,
D is indeterminate (∞ – ∞) and has to be evaluated by L’Hopital’s rule.

The critical point, or minimum shown in Figure 6.13, is evaluated by setting
dD/dz = 0. There results:

Critical distance:

(6.2.40)

and

Critical oxygen deficit:

Dc = (L0/f){f[1 – (f – 1)(D0/L0)]}1/1–f (6.2.41)

Two alternative terms used in environmental work are worth noting.

1. Pollutant concentrations are often expressed in terms of the so-called
biochemical oxygen demand (BOD) which is the oxygen consumed by
the pollutant in mg/L, established in a standard test. Thus, BOD is seen
to be proportional to pollutant concentration L.

2. Distance z from the pollution source is frequently replaced by the quantity
t = z/v, appropriately called flow time. Since z always occurs in the
combination z/v, all previously cited solutions can be expressed in terms
of flow time t.
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Illustration 6.2.6 Contamination of a River Bed (Equilibrium)

 

Contamination of river sediments by a chemical dissolved in the water involves a
complex series of steps. We note at the outset that even in the most complex models,
complete mixing in the vertical direction is usually assumed, thus reducing the
dimensionality of the model. This removes only one difficulty. The following factors
still have to be considered:

1. Mass transport on the water-side of the interface.
2. Mass transport within the sediment.
3. Biochemical degradation within the sediment phase.
4. Sorption onto suspended sediments.

Items 1 and 2 were addressed in Illustration 6.2.4 in the context of lake bottom
sediment clearance, and similar parameter values can be expected to apply to river
sediments although the water-side mass transfer coefficient will usually be higher
because of increased turbulence. Of note is the new fact that concentrations are
distributed in both time and distance so that a PDE results. Even if linear first order
rate laws are assumed, this is still a fairly complex problem. We will address it, at
least in part, in Chapter 9.

In this illustration we address the sorption step onto the river bed only, omitting
consideration of biodegradation and the effect of suspended solids. To avoid the
PDE, we assume phase equilibrium to prevail at any point in time or distance. This
implies that the solute propagates as a rectangular front, rather than the S-shaped
profile which materializes in practice (Figure 6.14A). The equilibrium front bisects
the actual profile at the midpoint so that the predicted arrival times will over estimate
the time of first appearance and underestimate the onset of full saturation. Since the
actual fronts are often quite sharp, particularly for solutes with high Henry constants,
the range separating the two points in time can be quite short. At any rate, the results
obtained from the equilibrium model are a highly useful 

 

first step

 

 in analyzing this
complex problem, particularly in the absence of transport rate data.

To arrive at an appropriate relation for these calculations, we perform a cumu-
lative solute balance on the river bed. It takes the form:

(6.2.42)

where Y

 

F

 

 = kg solute/kg water in the feed, q

 

F

 

 = kg solute/kg sediment in equilibrium
with Y

 

f

 

.
In most practical applications, the product vt is much higher than the length of

the contamination zone z, so that the second term on the right can be neglected.
Cancelling cross-sectional area A

 

c

 

 and rearranging we obtain:

Y v A t A z Y A z

Amount Amount retained Amount in
to time by river water

F f c b s F f cρ ρ ρ= q

introduced
sediment

F +
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(6.2.43)

where (q/Y)F is the loading ratio at the inlet conditions and equals the Henry constant
H at low concentrations. Note that the river bed density ρb has to be based on unit
volume of the river plus the sediment. We, therefore, must use the expression ρb =
ρs[hs/(hs + hr)], where ρs is now the sediment density, hs and hr the effective sediment
and river depth, respectively.

The equation can be used to calculate time of arrival t at a certain position z or,
conversely, the position z of the front after a lapsed time t. We reiterate that the
values thus obtained lie between the points of first arrival and onset of full saturation,
but often are not too far removed from them.

Let us illustrate the use of Equation 6.2.43 with a numerical example. We assume
a river velocity v = 1m/s, sediment specific gravity = 2, hs/(hs + hr) = 10–2, and a
Henry constant H = 103 kg water/kg sediment. We wish to calculate the location of
the rectangular front after 10 days of inflow. One obtains:

z = 43.3 km

FIGURE 6.14 Pollutant profiles in river sediment during: (A) the contamination period, (B)
the recovery period.
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Thus, a minimum of over 40 km have been contaminated after 10 days.

Illustration 6.2.7 Clearance of a Contaminated River Bed 
(Equilibrium)

Here the surprising fact which emerges is that under linear equilibrium conditions,
clearance produces the same rectangular front seen during loading (Figure 6.14B).
Elongation of that front is solely due to transport resistance. The clearance time will
be 10 days, the same as the contamination time.

Comments:
The fact that the same expression, Equation 6.2.43, applies to both adsorption

and desorption, implies that for linear sorption equilibria clearance time always
equals loading time or time of exposure to the contaminant. This may come as a
surprise to environmentalists who are accustomed to dealing with long recovery
times. Such long times do arise, but only as a consequence of long exposure times.
This assumes, of course, that the process is one of linear sorption only, and that
there is no chemical interaction of the contaminant with the river bed.

When the sorption equilibrium is no longer linear, i.e., when it departs from
Henry’s law, marked differences in exposure and recovery times arise. The same
form of expression, Equation 6.2.43 is still retained, but with the subtle difference
that to calculate time or distance of contamination or clearance, Henry’s constant is
replaced by the loading ratio (q/Y)F. Thus,

For exposure/contamination:

(6.2.44)

For clearance/recovery:

Since (q/Y)F << H, the time required to contaminate a given length of river
sediment will be considerably less than that required for clearance, even under
equilibrium conditions. Such departures from linearity do not occur with highly
hydrophobic solutes but do arise with increasing solubility of the chemical. Aliphatic
and aromatic alcohols, sulfonated compounds and similar, more hydrophilic solutes
fall into this category.

Suppose that the river is quite shallow and its depth of the same order as that
of the sediment so that hs/(hs + hr) ≈ 1. It would then take 1000 days, instead of 10,
to contaminate a 43.3 km stretch of river sediment and an equal period of time for
recovery.
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Illustration 6.2.8 Minimum Bed Requirements for Adsorptive 
Water Purification (Equilibrium)

 

Although water purification is not generally taken up within the context of environ-
mental modeling, the discharge of contaminated water has a direct impact on the
environment. Removal of aqueous pollutants is of considerable importance to the
environmental scientist or engineer.

We wish to consider the purification of an aqueous effluent saturated with 

 

n

 

-
hexane, benzene, and toluene using an activated carbon bed. Because of the low
solubility of the hydrocarbons involved, one can assume that operation will be in
the linear, Henry’s law region. Estimates of Henry constants can be obtained from
the corresponding water–soil Henry constants (Table 6.3) by assuming carbon con-
tent in the soil to be 1%. If, in addition, we set the carbon bed specific gravity at
0.5, Henry constants for the adsorbent can be obtained by multiplying the values
for water–soil by a factor of 200. Thus, using Table 6.3, we obtain:

These are clearly only approximate values, since the adsorptive capacity of
commercial carbon will, at least to some extent, differ from that of the organic matter
found in soil. Actual values, however, are usually unavailable, even from the suppliers
who tend to measure capacities at higher loadings outside the Henry law region.
Table 6.3 and similar compilations found in the environmental literature can serve
as useful estimates of these otherwise unavailable parameters. To obtain an expres-
sion for minimum bed weight, we return to Equation 6.2.43 and rearrange it into
the form:

(6.2.45)

Multiplying numerator and denominator of the left side by bed cross-section,
we obtain:

or

 

n

 

-Hexane 52 10,400
Benzene 0.54 108
Toluene 2.0 400
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Wm = 1/H (6.2.46)

Thus, we arrive at the simple and illuminating result that the minimum bed
weight required per unit weight of feed Wm is given by the inverse of the Henry
constant. This agrees with the physical notion that a high value of H will give high
carbon loadings and result in a lower bed requirement.

To apply this expression to the system under consideration, we first note that in
multicomponent adsorption, the solutes propagate through the bed in the sequence
of their affinity for the sorbent, the least strongly held one, i.e., the component with
the lowest Henry constant, moving ahead of the solutes with higher H values. In the
case in hand, benzene with the lowest H will break through first, followed by toluene,
with n-hexane bringing up the rear. The bed requirement thus will have to be based
on the lightest component, i.e., the solute with the lowest Henry constant. We obtain:

i.e., a minimum of approximately 10 grams of carbon will be required for every
kilogram of feed treated. This would seem to be an acceptable value.

Illustration 6.2.9 Actual Bed Requirements for Adsorptive 
Water Purification (Nonequilibrium)

The model for this case, to be described in Chapter 7 under the heading “Chromato-
graphic Equations,” requires the solution of two PDEs consisting of unsteady and
distributed solute balances on the fluid and solid phases, respectively. Though some-
what complex and lengthly, it is within the reach of conventional PDE solution
methods (Laplace transformation) and is briefly taken up under the Practice Problems
of Chapter 9. Fortunately, the results can be cast into a simple form expressed in
terms of two dimensionless parameters.

Dimensionless distance:

(6.2.47)

Dimensionless time:

(6.2.48)

Solutions of the PDEs as function of these parameters are given in Table 6.5 at
effluent concentration levels 1% and 10% of the inlet feed. The following features
are of note.
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The overall mass transfer coefficient is given in the form K0a (time–1) where a
is the exterior surface area of the adsorbent per unit volume of bed. For industrial
adsorbents, K0a typically vary over the interval 10–2 – 10–4 s–1. Values within this
range can be used in estimating actual bed requirements or breakthrough times for
a given size of bed, using the information provided in Table 6.5.

The aforementioned table also reveals two interesting limiting cases. For N >
1000, the difference in breakthrough times at the 1% and 10% levels is less than
5%. This implies that the adsorption front is quite sharp and breakthrough times and
bed lengths approach the values calculated from Equation 6.2.43. Put another way,
at these high values of N, which carry with them high transport rates and long
residence times, the system is close to local equilibrium behavior. At low values of
N, on the other hand, a point is reached where dimensionless time T obtained from
the model solution first drops to zero and then turns negative. The latter values are
invalid, but the value T = 0 has a physical meaning. It implies that no complete
purification of the fluid is possible below the threshold value of N, and that solute
at some fraction of the feed value will break through the instant fluid reaches the
bed outlet. Thus, for N ≤ 4.50, solute at 1% of the feed concentration reaches the
bed exit untreated, for N ≤ 2.30 the breakthrough concentration is 10% of the feed
level. Evidently when this happens, one must increase N by increasing bed height
z or lowering fluid velocity v in order to utilize the bed at all.

TABLE 6.5
Parameters for Nonequilibrium Adsorption

1% Breakthrough 10% Breakthrough

1000 900 950
800 700 740
600 520 550
400 330 360
200 150 170
100 70 85

80 52 65
60 37 48
40 22 30
20 7.8 13
10 2.5 5.0

8 1.2 3.5
6 0.38 2.2
5 0.1 1.6
4.75 0.035 0.85
3 — 0.32

T ≤ 0 for N ≤ 4.50 T ≤ 0 for N ≤ 2.30

T K a
t

H0

f

b

=
ρ

ρ

N K a
z
v0=
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We illustrate the use of Table 6.5 with some calculation for the system n-hexane,
benzene, toluene previously treated under equilibrium conditions in the preceding
illustration. We set the following parameter values:

K0a = 10–2 s–1

z = 2 m
v = 10–3 m/s
H = 108 (see Illustration 6.2.8)
ρb = 500 kg/m3

and obtain

which gives, from Table 6.5, a value of dimensionless time T = 7.8 at the 1% level.
Hence, the breakthrough time t of this level is given by:

t = 4.2 × 104 s = 11.7 hrs

Actual bed requirement Wa is given by the expression:

as can be verified by examining the units of N/T. We obtain, for our case:

Thus, the actual bed requirement is 2.6 times the minimum calculated in the
previous illustration under equilibrium conditions. In industrial applications, it is
common practice to size a bed at 2 to 4 times the minimum requirement to account
for mass transfer resistance. The value we obtained here falls within that range. We
note in closing that better bed utilization and longer breakthrough times can be
achieved by increasing bed height or reducing fluid velocity. Table 6.5 gives us a
quick scan of what can be achieved in this fashion. Thus, if we were to raise N, by
appropriate manipulation of z and v five-fold to a value of N = 100, we would obtain:

N K a
z
v

= = =−
−0

2
310

2
10

20

t T
H

K a
b

f

= = −

ρ
ρ 0

2

7 8 500 108
1000 10

( . )( )( )
( )( )

W
N
T H

N
T

Wa m= =1

W
N
T

W W W

W
kg bed
kg feed

a m m m

a

= = =

= × = ×− −

20
7 8

2 6
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.
.

( . )( . ) .
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i.e., approximately one half of the previous bed requirement.

Practice Problems
6.2.1 Simultaneous Evaporation of Several Solutes — Show that when two chem-
icals evaporate simultaneously under equilibrium conditions, the fraction x/x0 of
each remaining after a fraction f of the solution has been evaporated is in the ratio:

where x* = solubility in mol fraction.

6.2.2 Evaporation of a Chemical from a River Carrying Suspended Solids —
Rivers have the ability to carry considerable amounts of suspended matter. The
Yellow River in China and the Rio Grande in the U.S. may contain as much as 10
g solids/l while a clear mountain stream may contain as little as 1 mg/l. The world
average is about 200 mg/l.

Consider a stream carrying a volatile chemical both dissolved in the water as
well as adsorbed on the suspended solids. Show that under steady-state conditions,
the fraction f of chemical desorbed by release to the atmosphere is given by the
expression:

Identify the various terms.

6.2.3 Evaporation from Water with Suspended Solids — The water supply to a
well-mixed basin is contaminated with a chemical, concentration Cf, and contains,
suspended solids as well carrying a contaminant concentration of the same chemical.
The suspended solids are present at a uniform concentration CS, and volume of the
basin may be assumed constant. While in the basin, the water releases the chemical
to the atmosphere by evaporation, simultaneously receiving additional chemical from
the suspended solids. Both processes are transport controlled.

Derive an expression for the steady-state concentration of the chemical in the
effluent.

6.2.4 Evaporation in Mixed Flow — Consider release of a chemical to the atmo-
sphere from a river in plug flow which flows into two well-mixed basins in series.
Show that the fraction released F after passage through all three units is given by:

W
N
T

W W Wa m m m= = =100
70

1 43.
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and identify the terms.

6.2.5 The Streeter-Phelps Model —
(a) Derive Equations 6.2.40 and 6.2.41.
(b) Consider a stream taking a constant inflow of a chemical with a BOD of L0

= 15 mg/l. The dissolved oxygen deficit at that point is D0 = 3 mg/l. The biodegra-
dation rate constant is estimated at kr = 0.23 day–1, and the self-purification rate f
at 2.0. Calculate the dissolved oxygen deficit one day distant from the point of
pollutant discharge.

(Hint: Use Equation 6.2.39.)
Answer: (b) 4.3 mg/L

6.2.6 Henry’s Constant for Activated Carbon — Estimate the Henry’s constant
for adsorption of carbon tetrachloride from water onto activated carbon.

(Hint: Use Table 6.3.)

6.2.7 Velocity of Propagation of a Sorption Front —
(a) Calculate the velocity of the midpoint of an adsorption front propagating

through soil in contact with contaminated groundwater, using the following
data:

Henry constant H = 103 kg water/kg soil
Flow velocity v = 1 mm/s
Specific gravity of soil s = 2.5

(b) What is the position of the midpoint after 100 days?
Answer: (b) 3.5 m

6.2.8 Transport in Stratified Layers — Lakes and similar water basins often exhibit
departures from well-mixed behavior because of stratification. In one simple model
of this phenomenon, it is assumed that an unmixed layer of thickness ∆h is sand-
wiched between two well-stirred compartments of height h1 and h2, respectively.
Compartment 1 adjoining the bottom has an initial concentration C1

0, while that of
compartment 2 is C2

0. The concentration gradient across the unmixed layer, termed
a pycnocline, can be assumed to be linear.

Derive the following solution for the unsteady behavior of compartment 1 and
identify the parameters K1 and K2.

(Hint: Combine an unsteady balance with a cumulative balance.)
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6.3 WELCOME TO THE REAL WORLD

The illustrations and practice problems considered in this section all arose in an
industrial, commercial, or otherwise “real world” context. Such problems are usually
beset by a lack of pertinent information, or seeming lack thereof, baffling complex-
ities and a tendency to invite the question: Where do I start?

Models are often not required at all. Their place is then taken by the application
of some seemingly unrelated physical principle and the need for good physical
insight. On other occasions the required models are simple or have to be kept simple
in order to arrive at an answer within a reasonable time. In yet another category of
problem, the need to model is craftily hidden and one is led to it only after a long
search for alternative solutions. All of these features place the real world problems
in a special class by themselves. One is no longer confronted with the obvious
application of a particular principle which is the hallmark of textbook problems.
The present monograph has had its share of them. Instead, one has to draw on a
wide range of skills and knowledge and apply them astutely and with a steady eye.
The exercise can be frustrating, but also exhilarating when a solution is finally found.

A deflationary word of caution. Having successfully solved the problem, it is
not uncommon to find that the solution is rejected or the advice not heeded. This
may be due to reluctance to undertake changes, skepticism about the solution offered,
or the intervention of external factors such as market forces. That, too, has to be
accepted as part of the real world.

In the illustrations and practice problems which follow we shall encounter all
of these features, and it will be shown how the various difficulties were ultimately
overcome. We hope that from these examples, a philosophy of approach or even a
methodology unstructured though it may be, will emerge to guide the reader in this
difficult task. At any rate, the attempt will have been made.

Illustration 6.3.1 Production of Heavy Water by
Methane Distillation

Although nuclear power generation is nowadays regarded with suspicion if not
downright hostility, this was not the case in the early 1960s when the author became
involved in a project aimed at developing new methods of heavy water production.

Reactors based on uranium as a fuel fall into two broad categories: those that
use the costlier enriched uranium and those that employ natural uranium at its natural
level of abundance of the fissionable isotope U235. The latter has to be used in
conjunction with a so-called moderator, usually highly purified graphite or heavy
water D2O. These moderators slow down emitted neutrons to the “thermal” speeds
required for an efficient chain reaction to occur. The notorious Chernobyl rector was
based on a graphite — natural uranium combination. Heavy water is used as mod-
erator in the Canadian designed CANDU reactors. Most U.S. installations use
enriched uranium as a fuel; hence, they do not require a moderator.

In the early 1960s almost all the heavy water in use was produced by the so-
called GS Process, in which deuterated water HDO is enriched from its natural
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abundance of about 600 ppm to 1 to 5% by chemical exchange between the source
water and hydrogen sulfide. Final purification is by conventional distillation using
high efficiency packing.

With the cost of D2O at $50/kg and several hundred tonnes of the material being
required per reactor, there was a considerable incentive to search for cheaper pro-
duction methods. One alternative being considered in the early 1960s was that of
methane distillation. This was prompted by the new development of shipping large
tonnages of natural gas in liquefied form (LNG). It was envisaged that facilities
could be erected at ports of trans-shipment that would separate the deuterated
component CH3D by distillation prior to vaporizing and piping the fuel.

To make distillation attractive, a high value of the separation factor

 is crucial. These values are, for isotope mixtures, very close to

1, requiring a disproportionately large number of stages, or theoretical plates Np,
for a successful enrichment process. It is known that at total reflux, the number of
theoretical stages is inversely proportional to α – 1:

(6.3.1)

A consequence of this relation is that small increases of α above unity can
dramatically reduce the required size of the distillation unit. Thus, an increase of α
1.001 to 1.002, a seemingly puny increment, reduces the number of theoretical plates
by half.

Low pressure measurements of α for the system CH3D-CH4 had shown a steady
increase until, at 1 atm, it attains a value of α = 1.0035. Theoretical considerations
indicated that this trend would continue as temperature was increased above the
normal boiling point. Economic evaluations had, for their part, shown that distillation
would become competitive with the GS process at α = 1.025. Thus, the door was
opened to the potential use of high pressure distillation for the enrichment of CH3D.
The cryogenic technology for such a process was well established and posed no
undue difficulty.

A research program, sponsored by a major oil company with large interests in
natural gas, was initiated to determine values of α up to the critical point, PC ≅ 46
atm. Rayleigh distillation was chosen over single stage equilibration since the former
provides a greater degree of enrichment and, hence, lessens the requirement for high
precision in the determination of isotopic content of the phases. α was then deter-
mined from the expression (Chapter 2, Practice Problem 2.3):

(6.3.2)

Here we have replaced moles n in the still by volume V, since the molar density
of the mixture remains essentially unchanged during the course of distillation. A
special high pressure, transparent, and calibrated cell was used to allow determina-
tion of the initial and final volumes Vi and Vf.

α = y xCH D CH D3 3
/

Np ∝
−
1

1α

α − =1
ln /

ln /

x x

V V
f i

f i
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The initial results were disappointing. A separation factor of only 1.007 was
obtained at a pressure P/Pcrit of approximately 0.7, even though theoretical consid-
erations indicated α values as high as 1.05 should be attainable. Considerable time
was spent verifying the validity of the analytical results. To ensure proper equilibra-
tion of the phases during distillation, the vapor withdrawal rate was reduced to a
minimum and a magnetic stirrer provided for both phases. Sample withdrawal was
carried out with extreme care to avoid disturbing the equilibrium. Some 6 months
were spent in revision and verification without any improvement in the results.

It was at some unspecified point that it became apparent that the model itself,
i.e., Equation 6.3.2, may be at fault. Precisely how this came about cannot be recalled,
but it was suspected that the high pressure used, abnormal for a Rayleigh distillation,
might be at the root of the problem. The model equations, when examined in this
light, led to the conclusion that the vapor phase which is routinely neglected in low
pressure mass balances would now have to be included because of its high density.
Below we sketch the revised model equations and the results obtained:

Total mol balance:

(6.3.3)

Component balance:

(6.3.4)

Equilibrium relation:

y = α x (6.3.5)

Since we have one more variable, the vapor volume Vv, than was previously the
case, an additional relation is required. We use the fact that vapor and liquid volumes
must add up to the known still volume Vs, and obtain:

Vv + V� = Vs (6.3.6)

Using this relation to eliminate Vv, the material balances become:

(6.3.7)

Rate in Rate out Rate of change of contents

D
d
dt

V Vv v

− =

− = +0 ( )ρ ρl l

Rate of CH D in Rate of CH D out
Rate of change in

CH D content

yD
d
dt

x V y Vv v

3 3
3

0

− =

− = +( )ρ ρl l

− = −D
d
dt

Vv( )ρ ρl l
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(6.3.8)

We now divide the two equations as usual to eliminate D and dt, separate
variables, and obtain:

or equivalently,

(6.3.9)

where we have nondimensionalized the variables by introducing:

R = 

 

ρ

 

v

 

/

 

ρ

 

�

 

 = Phase density ratio

 

φ

 

 = V

 

�

 

/V

 

s

 

 = Liquid-to-still volume ratio

Integration yields:

(6.3.10)

which converts to a good approximation to the explicit form:

(6.3.11)

where the subscripts 

 

I

 

 and 

 

f

 

 refer to the initial and final states, respectively.
In the limit R 

 

→

 

 0, the expression reduces, as it should, to the classical Rayleigh
Equation 6.3.2.

A numerical example will serve to illustrate the difference in the results obtained
by the two expressions. We set, for this purpose, density ratio R = 0.5, initial liquid-
to-still volume 
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 = 0.5, final liquid-to-still volume 
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 = 0.025, measured liquid phase
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 = 0.98. We are considering conditions where the operation
is carried out a few atmospheres below the critical pressure, 95% of the initial liquid
is boiled off, and a 2% decline in CH
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D content is recorded. We obtain, from
Equations 6.3.2 and 6.3.10 respectively,
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Classical Rayleigh

 

:

 

α

 

 = 1.0067

 

Revised Rayleigh

 

:

 

α

 

 = 1.026

Thus, the crucial factor 

 

α

 

 – 1 is about four times that calculated by the Classical
Rayleigh Equation. This translates into 

 

a four-fold reduction

 

 in the size of distillation
unit required.

 

Postscript:

 

A methane distillation plant for the production of heavy water was never built.
Market forces intervened to negate the promising results. The sponsors acquired a
company specializing in the design of nuclear reactors based on enriched uranium
and their interest in heavy water waned. The CANDU reactor, which had a special
appeal to countries without uranium enrichment facilities, ran into tough competition
when the U.S. design was put on the market. France developed plutonium-based
reactors that also became available for export. Environmental concerns focused
primarily on the safe disposal of spent fuel began to make themselves felt. By the
end of the 1980s this factor and the outcry over the Three-Mile Island and Chernobyl
accidents had brought nuclear reactor construction to a near stand-still in many
countries and led to an outright ban in others. This is the situation at the time of
writing. Thus, the best-laid plans of mice and men … .

 

Illustration 6.3.2 Clumping of Coal Transported in Freight Cars

 

This seemingly mundane problem which developed into a major headache for coal
companies involved the clumping together of coal lumps transported in open freight
cars due to the suspected freezing of surface moisture. The resulting conglomerate
of coal had to be broken up at considerable expense and inconvenience at the point
of destination.

Although ambient temperatures below zero were occasionally encountered dur-
ing transport, the clumping also occurred when, according to the sources, the tem-
peratures were above freezing. As usual, a fast and cheap remedy was desired.
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One often starts such problems by questioning the validity of the supporting
information. Were the temperatures really above zero when the problem arose? How
then could freezing occur? Or was it some organic surface component which gelled
or reacted to cause adhesion?

The freight cars were open at the top and unsealed along the sides with gaps
between members of the enclosing structure. This would cause exposure of the load
to air flowing above and through the contents and possibly result in evaporative
cooling. An examination of the low temperature humidity chart (Chapter 3, Figure
3.18) shows that wet-bulb temperatures at or below zero occur when the dry-bulb
temperature is still above zero. Thus, a T

 

db

 

 of ~ 9°C yields a wet-bulb value of 0°C,
5°C drops it to –3, etc. Thus, the potential exists for freezing of moisture or other
surface components.

The suggestions conveyed to the company was to cover the top of the load with
canvas and if possible seal the sides of the freight cars. This would stop the air flow
which causes evaporative cooling. Stagnant air does not show this effect.

 

Comments:

 

Clearly no modeling was used and physical insight was invoked instead. The
temptation to model nevertheless existed. One could, for example, derive unsteady
temperatures profiles for a moist lump of coal exposed to a change in ambient
temperature. Heat transfer would be by conduction from the interior of the lump to
the surface and from there by convection to the flowing air. Provision could be made
for a latent heat term once freezing commenced. The model would consist of a linear
PDE with a Type III surface boundary condition if a single lump of coal of uniform
surface conditions is considered. A somewhat complex but manageable model.
Inclusion of surface variations, or variations in air temperature, would escalate the
complexity as would a change from a single lump of coal to an array. Numerical
solutions would almost certainly have to be resorted to. This would earn applause
in academic circles but not necessarily from the coal companies.

• Humidity charts are usually available only in the high temperature range
(Chapter 3, Figure 3.18), hence, the conclusions given here may not have
been drawn for lack of information.

• The fate of the recommendations is not known. They may have been
implemented or cast aside for an alternative more palatable to manage-
ment. This is a frequent occurrence but should not deter the practicing
scientist or engineer.

 

Illustration 6.3.3 Pop Goes the Vessel

 

Many industrial problems are diagnosed correctly by plant personnel and appropriate
steps taken to remedy them. They then become part of plant lore and often the
subject of much hilarity. “Boy, how could we have let this one happen?,” etc.

For example, a process vessel (unspecified size, material, or process) was to be
purged of residual liquid solvent left in the vessel from the previous operation. This
was to be accomplished by passing steam into the vessel for a brief period, condensing
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the effluent vapor mixture, and separating the solvent for recycling. Shortly after the
start of the steaming procedure and with the exit valve open, the flange connecting
the vessel to the valve popped off with what appeared to be the force of an explosion.

Initial suspicions centered on the possibility of an air leak having caused the
formation of an explosive air–solvent vapor mixture. When this was ruled out, atten-
tion turned to the possibility of a pressure buildup due to the evaporating solvent
which was deemed to have been given “insufficient time” to flow out. Steam pressure
alone could not have caused the accident since that pressure was, with the valve open,
well within vessel and piping specifications. However, since steam has sufficient latent
heat to vaporize two to four moles or more of solvent per mole steam, it became
evident that the situation may have developed into one of “choking flow.” In other
words, the exit pipe and valve diameters were not large enough to accommodate the
combined flow of uncondensed steam and evaporated solvent, and a “standing pres-
sure wave” of considerable magnitude developed within the vessel (see Chapter 3,
Illustration 3.6.3 and Figure 3.27). A larger valve and exit pipe diameter was called
for and these changes were implemented. No further mishap occurred.

 

Comment:

 

Choking flow or limiting flow conditions are one of the most frequently encoun-
tered causes of system or process malfunction and failure. These conditions, as we
had seen, arise only in the flow of compressible fluids, a topic which is inadequately
covered in many undergraduate curricula. Most fluid mechanics texts make some
mention of limiting compressible flow without, however, outlining all the consequences
of this behavior. The standing wave formation is only given passing notice, and the
attendant effect of possible pressure buildup none at all. It is well worth making
awareness of this phenomenon part of the arsenal of the practicing scientist or engineer.

 

Illustration 6.3.4 Debugging of a Vinyl Chloride Recovery Unit

 

Vinyl chloride monomer (VCM) is a volatile substance (boiling point: 14°C) used
as a starting material for the production of polyvinyl chloride (PVC). It has been
identified as a potential carcinogen and occupational health regulations call for an
upper limit of 1 to 5 ppm VCM in factory air.

A preferred method of air purification is to pass VCM-laden air through beds
of activated carbon. These beds operate on a four-step cycle: (1) saturation with
VCM to 1 ppm breakthrough, (2) stripping of the adsorbed VCM with steam which
is subsequently condensed leaving essentially pure gaseous VCM for drying and
recycling, (3) drying of the carbon bed with hot air, and (4) cooling of the regenerated
bed with cold purified air (Figure 6.15). A dual-bed system is commonly employed
so that while one bed is “on stream” the second bed can be regenerated and prepared
for the adsorption step. The time period allowed for each step is typically as follows:

1. Saturation — 4 h
2. Steaming — 2 h
3. Drying — 1

 

1

 

/

 

2

 

 h
4. Cooling — 

 

1

 

/

 

2

 

 h
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A major producer of PVC experienced difficulties with a newly installed adsorp-
tion system. The unit performed satisfactorily for single test runs, but during cycling
the VCM level in the effluent air rose to unacceptable levels. Inspection of the beds
revealed considerable residual moisture. Inadequate drying during Step 3 was there-
fore considered to be a possible reason for the malfunctioning of the bed.

Additional data provided were as follows:

Bed dimensions: 1.2 m 

 

×

 

 1.4 packed height
Bed charge: 775 kg
Carbon pellet diameter: 1/4 in. = 6.3 

 

×

 

 10

 

–3

 

 m
Bed density: 480 kg/m

 

3

 

Pellet density: 800 kg/m

 

3

 

Drying air temperature: 120°F = 48.9°C
Drying air humidity: Negligible
Air flow rate: ~ 0.1 kg/s

Condensed moisture on the bed is commonly calculated by adding: latent heat
of desorption 

 

≅

 

 2 

 

×

 

 heat of vaporization + sensible heat required to heat carbon bed
and vessel from 20°C to 100°C.

The latent heat of desorption calculation required equilibrium loading data that
were obtained from the adsorbent manufacturer. A value of q = 0.2 kg VCM/kg
carbon was calculated. Specific heats and latent heat of vaporization were obtained

 

FIGURE 6.15

 

Removal of vinyl chloride monomer from air. Operation of the adsorption
purifier.
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from standard sources. These calculations were carried out in-house and yielded an
estimated weight of condensate of 100 kg.

A precise modeling of the drying step is a fairly formidable task. Solute balances
over the gas and solid phases as well an energy balance are required to describe the
system. Three coupled PDEs will result which are nonlinear because of the nonlin-
earity of the equilibrium relation. Estimation of the transport parameters poses an
additional problem. Although a numerical solution is possible in principle, this
method of attack is far too elaborate for an initial appraisal. An asymptotic approach
which avoids the PDEs suggests itself, at least as a starting point.

The situation here is pleasantly different in that the primary source of malfunc-
tion had been identified, and a considerable amount of background information and
data was available. The suspicion had already arisen that the air supply and/or its
temperature may have been inadequate to evaporate the 100 kg of water in the
specified time interval (1

 

1

 

/

 

2

 

 h). Thus, a good deal of groundwork had been done.
When queried about their choice of air blower and its delivery rate (0.1 kg/s)

plant personnel responded that it was based on the assumption that the condensate
was at or near 100°C. This was a major conceptual error. A basic knowledge of the
Psychometric Chart or of humidification operations should have led to the realization
that evaporative cooling would reduce the temperature of the condensate well below
100°C. This in turn would dramatically reduce the evaporation rate since the vapor
pressure driving force is an exponential function of temperature.

If one assumes that the entire bed attains the wet-bulb temperature after an initial
start-up period, the model reduces to a single ODE of the type encountered in Chapter
2, Illustration 2.7 (Drying of a Nonporous Plastic Sheet), i.e., for this case:

(2.50)

Drying time then can be obtained, as was the case there, by a cumulative moisture
balance over the bed.

In Illustration 2.7 a further simplification was proposed which assumed the
effluent air to be fully saturated at the wet-bulb or adiabatic saturation humidity Y

 

wb

 

(= Y

 

as

 

). This approach avoided the necessity to estimate the mass transfer coefficient
k

 

Y

 

a, and provided a lower limit to the required drying t, or if t is specified, the
required air flow rate G

 

s

 

.
Let us proceed along these lines. We first perform a cumulative mass balance

which yields the relations:

(6.3.12)

and with t = 1
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The Psychometric Chart (Chapter 3, Figure 3.19) is now used to establish values
of (G

 

s

 

)

 

Min

 

 for various levels of incoming air temperatures T

 

db

 

. This is done in the
usual fashion by first fixing the point (T = T

 

db

 

, Y

 

db

 

 = 0) and then moving from that
point upward and to the left along the adiabatic saturation line to a point of inter-
section with the 100% relative humidity curve. The ordinate of that latter point yields
the value of Y

 

wb

 

 to be used in Equation 6.3.13. The results obtained are summarized
below.

Examination of Table 6.6 shows that the drying air provided in the plant at T

 

db

 

≅

 

 50°C and G

 

s

 

 = 0.1 kg/s 

 

underestimated

 

 the 

 

minimum

 

 requirement (G

 

s

 

)

 

Min

 

 by a
factor of 14. Even at an air temperature of T

 

db

 

 = 125°C, the minimum flow required
was still 

 

five

 

 times that actually provided. Clearly a combination of both higher air
temperatures and larger blower capacities would be required to meet the drying
specifications. The final recommendation made was for a blower with a capacity of
1 kg/s and an air temperature of 125°C. This provides a safety factor of 2 over the
corresponding (G

 

s

 

)

 

Min

 

 of 0.49 kg/s.

 

Comments:

 

One will note that a series of engineering approximations were made to arrive
at an initial recommendation. The amount of condensate accumulated in the bed
was calculated by adding approximate sensible and latent heat requirements. A more
precise model again leads to three coupled nonlinear PDEs with the added compli-
cation that heat losses to the vessel wall now have to be taken into account. The
approximate method of estimation has proved itself fairly reliable in practice and,
therefore, is widely used.

In providing minimum flow rate values, the tacit assumption was made that the
condensate was present as 

 

free

 

 moisture. Although carbon is generally hydrophobic
and not prone to adsorb much water at 100°C, some penetration of condensate into
the porous structure is highly likely and a falling rate drying period will have to be
added to the evaporation of free moisture, thus raising the air flow requirement. We
have tried to allow for this by providing a safety factor of two in the recommended
value for G

 

s

 

. Whether this is in fact sufficient, will have to be borne out by tests.
Mass transfer resistance was neglected in this first appraisal, but one can easily

return to Equation 2.50 and carry out a more refined analysis along the lines given
in Illustration 2.7.

One will note that for the second time in four illustrations, the Humidity Chart
has come to the fore. That chart, along with the Compressible Flow Chart (Chapter

 

TABLE 6.6
Minimum Drying Air Flow Rates

 

T

 

db

 

 °C 25 50 75 100 125

 

0.006 0.013 0.021 0.028 0.038

(G

 

s

 

)

 

Min

 

 (kg/s) 3.1 1.4 0.88 0.66 0.49

Y
kg H O

kgairdb
2
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3, Figure 3.17), are among the dozen or so most frequently used tools in engineering
practice. We shall have occasion to encounter them again in other applications.

 

Illustration 6.3.5 Pop Goes the Vessel (Again)

 

We consider here a lawsuit in which the relevant facts were as follows. The plaintiff,
a scrap metal dealer, filed suit for damages against an oil company which supplied
him with hydraulic oil. The oil is used in hydraulic presses to crush and compact
scrap metal. The necessity arose to repair the storage tank holding the oil, and the
suppliers offered to store the oil for the duration of the repairs. The oil was hauled
away and returned in a tank truck after the repairs were completed. It was then pumped
back into the storage tank. Subsequently the need for additional welding repairs arose.
Since the location was at the top of the tank separated from the air by ~ 1 m

 

3

 

 head
space, and the oil itself is nonvolatile and nonexplosive, no need was felt to remove
the oil prior to welding. Shortly after welding started, an explosion occurred that
caused considerable material damages, but fortunately no serious injuries.

Plaintiff claimed that the tank-truck had been contaminated with gasoline from
previous deliveries which had caused an explosive gasoline–air mixture to form in
the head space. Defendants responded that the truck had been thoroughly cleaned
and that no more than traces of gasoline could have been left behind in the truck
and the connecting lines. The case then hinged on determining the minimum amount
of gasoline which would cause an explosion. If found small or even minuscule, a
ruling against the defendant might be expected.

Consultants to the scrap dealer and his insurance company located the following
data:

 

Gasoline:

 

Explosive limits in air: 1.3 to 7.5 mol %
Average molar mass: 86
Specific gravity: 0.73
Vapor pressure (25°C): 400 mm Hg

 

Hydraulic oil:

 

Nonexplosive, essentially nonvolatile
Volume: 1165 Imperial gallons
Average molar mass: 425
Specific gravity: 0.88

Two cases were considered.

1. The gasoline did not, or did not have time, to dissolve completely in the
hydraulic oil. A part of it at least floated to the top of the oil because of
its lower specific gravity. This would give a lower bound to the amount
of gasoline required to produce an explosive mixture.

2. The gasoline dissolves completely in the oil where it forms an ideal
solution and exerts a vapor pressure in accordance with Raoult’s law. This
yields an upper bound.
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Case 1 is the more likely scenario. Applying the ideal Gas law and Daltons’
law, one obtains:

(6.3.14)

and

p

 

gasoline

 

 = y

 

gasoline

 

 P

 

T

 

(6.3.15)

where p

 

gasoline

 

 = partial pressure of gasoline; P

 

T

 

 = total pressure, m, M = mass and
molar mass of gasoline respectively, y = mol fraction of gasoline in air, V = volume
of head space, and n = moles of gasoline in air.

Using the lower explosive limit for y

 

gasoline

 

 = 0.013, and solving for m, one
obtains:

(6.3.16)

Thus, a very thin layer of gasoline floating on top of the hydraulic oil would
have been sufficient to cause the explosion.

 

Comments:

 

The small amount of gasoline required placed the defendants in a weak position.
They argued that if gasoline was indeed present, sufficient amounts could have
evaporated to exceed the upper explosive limit (7.5 mol %). The mixture would then
have been too “rich” to produce an explosion. This was countered with the argument
that the gasoline concentration at the top of the tank would be quite uneven and, if
too rich, could be easily diluted by air movement to produce a mixture within the
explosive range.

The reader will note that “modeling” here was at a very low and elementary
level. Nevertheless, an important principle of modeling found its way into the
solution, that of providing upper and lower bounds to the answer, i.e., “bracketing
the solution.” The upper bound yielded a value of approximately 30 l gasoline, a
substantial amount which was unlikely to have been left in the truck after flushing.
Thus, Case 2 was considered too unlikely to have occurred and was not a serious
contender in the deliberations.

 

Postscript:

 

The case did not come to trial. It was settled out of court for a considerable sum
in favor of the plaintiff.
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Illustration 6.3.6 Potential Freezing of a Water Pipeline

 

In this example, again from an industrial source, it was proposed to pump water
from a plant to a supply of exhaust steam 500 m away where the water is heated
and subsequently returned to the plant. A “double jeopardy” situation was to be
considered in which flow is interrupted due to pump failure and the stationary water
simultaneously exposed to an ambient temperature of –5°C for as long as 10 hours.
The question posed was whether this would result in freezing of the water and
ultimate failure of the pipe. The following data were assembled:

 

Pipe:

 

6 in. schedule 40
Internal diameter d

 

i

 

 = 15.7 cm
Wall thickness w = 0.71 cm
Density 

 

ρ

 

s

 

 = 7800 kg/m

 

3

 

Heat capacity C

 

ps

 

 = 0.473 kJ/kg K

 

Water–Ice:

 

Heat capacity of water C

 

pw

 

 = 4.2 kJ/kg K

Compressibility of water 

Density of ice 

 

ρ

 

i

 

 = 920 kg/m

 

3

 

Latent heat of freezing 

 

∆

 

H

 

f

 

 = –335 kJ/kg

 

Heat transfer coefficients:

 

External h

 

0

 

 = average for still air (see Chapter 3, Table 3.11) = 10 W/m

 

2

 

K
Internal: assume natural convection

h

 

i

 

 = 1.32 (

 

∆

 

T/d

 

i

 

t)

 

1/4

 

 = 1.32 (25/0.157)

 

1/4

 

 = 4.69 W/m

 

2

 

K
U = [(1/h

 

i

 

 + 1/h

 

0

 

]

 

–1

 

 = 3.20 W/m

 

2

 

K

To obtain some limiting values for this complex problem it was assumed that
the cooling process takes place in three steps.

1. Relatively fast cooling of the pipe wall to 0°C. The time required to
achieve this is assumed to be much less than that taken up by the water.

2. Cooling of the water to 0°C. The water is taken to be of uniform temper-
ature, not an unreasonable assumption in view of the natural convection
process assumed.

3. Formation of ice. This is a moving-boundary problem with an attendant
removal of latent heat of freezing. The freeze-drying problem, Illustration
3.3.12, may be invoked for guidance.

The model equation for step 2 takes the form:

β = − ≅ × − −1
4 4 10 6 1

V
dV
dp

atm.
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(6.3.17)

The equation is integrated by separation of variables and we obtain:

(6.3.18)

where the subscripts i, f refer to initial and final states respectively. Ta is the ambient
temperature = –5°C. We obtain

t = 8.3 × 104 s = 23 h

Thus, the danger of freezing appears unlikely to arise.

Comments:
The model assumption of a well-stirred liquid phase and heat transfer by natural

convection is generally considered to be a valid one. Supporting experimental evi-
dence has come from cooling studies of stagnant oil in a pipe and other similar
systems.

The full model for both pipe and water which would yield even longer cooling
times takes the form:

Pipe wall:

(6.3.19)

Water:

(6.3.20)

The freezing process, though unlikely to occur here, is worth some scrutiny. We
had previously considered the freezing of water exposed to cold air in Chapter 3,
Practice Problem 3.3.5, but the body of water there was unconfined and open to the
atmosphere. Water enclosed in a vessel filled to capacity will, as is well known,
cause a pressure rise due to the higher specific volume of the ice. This may ultimately
cause the pipe to rupture. The pressure rise is a function of temperature and can be
calculated from the thermodynamic equilibrium relation:

Rate of energy in Rate of energy out Rate of change of
energy content

UA T T V Cp dT dtw a w

− =

− − =0 ( ) ( ) ( / )ρ

t
C V A

U

T T

T T
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(6.3.21)

(Recall that for vapor-liquid equilibrium, one sets ∆V ~ RT/p and obtains the
Clausius-Clapeyron Equation d ln p/dT = ∆Hv/RT2.)

Let us calculate the equilibrium freezing pressure predicted by this equation.
We have:

and with ∆Hf = –335 J/g obtain:

∆p = 55.4 Mpa = 547 atm

“Safe” tensile strengths τ for steel are often set at 500 Mpa, so that one obtains
for the bursting pressure, using the hoop stress formula, Equation 3.4.21:

p = 45.2 Mpa = 446 atm

Thus, with these values, the pipe would burst at a pressure approximately 25%
below the equilibrium pressure of ice–water at –5°C. The solution that suggests
itself is to use higher quality steel (see Chapter 3, Table 3.15) or to increase wall
thickness by ~ 30%. The higher cost involved makes this unpalatable. The need to
do so, however, does not arise since the cooling time is high enough to prevent the
onset of freezing.

The case in question came to the author’s attention several years after its occur-
rence. At the time some deliberations took place in-house which did not lead to any
conclusions. The problem was left in abeyance, and no further action taken. This is
quite commonplace with baffling problems. A quick calculation along the lines
indicated would have provided some assurance that no action was required.

Illustration 6.3.7 Failure of Heat Pipes

The problem considered here involved a cement plant where so-called heat pipes,
to be described below, had been installed on the circumference of an inclined rotary
kiln at the lower (and hotter) end near the entry point of the combustion gases. Some
50 such devices, each made of nominal 2 in. diameter, high-schedule steel pipe, and
some 3 m length had been welded approximately 40 cm apart onto the kiln wall.

dp
dT
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The purpose of these pipes was to cool the kiln shell at the hot end by releasing
heat to the atmosphere and, thus, prevent damage to the kiln shell.

Heat pipes have been defined as “closed structure(s) containing some working
fluid which transfers thermal energy from one part of the structure to another part
by means of vaporization of a liquid, transport, and condensation of the vapor, and
the subsequent return of the condensate from the condenser by capillary action to
the evaporator.” (See references at end of this chapter). The fact that no gravity is
required for the return flow of condensate make this particular configuration an
attractive cooling device in space applications (cooling of electronic devices and of
the spacecraft surface facing the sun). Working fluids range from freons (low tem-
perature application) to water and alcohols for intermediate temperatures and liquid
metals for high temperatures. A sketch of the device is shown in Figure 6.16.

In the particular application considered here, water was used as working fluid
and the wick dispensed with in favor of gravity return flow of the condensate. The
pipes were inclined by some 15°, the upper and colder end acting as condenser.
Heat from the kiln shell would pass to the heat pipes where it would cause evapo-
ration of water. The water vapor would flow to the cold end, condense there, and
return to the hot end by gravity flow. The process would then repeat itself. The pipes
performed satisfactorily for several days to weeks, but their performance declined
thereafter until they became inoperative.

Some preliminary heat transfer calculations were made to verify that the pipe
dimensions were sufficient to provide the necessary flux and this was confirmed.
Some thought was given to the possibility that the critical temperature of water had
been exceeded but this turned out to be unfounded. Since ordinary tap water had
been used, fouling of the surface was a possibility. This line of thought, i.e., the
reduction of the heat transfer coefficient by some internal process, quickly led to
the consideration of a possible reaction of the steel with the water, producing
hydrogen gas and iron oxides. Heat transfer would then become gas–film controlled,
and this together with the formation of low conductivity oxides would bring about
a considerable lowering of the heat transfer rate to the atmosphere.

Sample heat pipes were detached from the kiln (temporarily out of operation)
and holes drilled into them. Even though the pipes were cold, an escape of gas was
noticed which could be ignited, causing a mild explosion. This seemed to confirm
the presence of hydrogen gas.

The solution then rested upon the proper choice of material. A specialized steel,
the type still confidential, was recommended, together with the suggestion that
thoroughly degassed, distilled water be used. Alternative working fluids without the

FIGURE 6.16 Schematic diagram of a heat pipe.
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corrosive properties of water were considered, but rejected principally because of
their lower latent heat and limited temperature range.

Comments:
The pipes were filled with distilled water as suggested, repeatedly evacuated,

sealed, and installed. They performed satisfactorily over a long period of time and
aided in the protection of the kiln nose from overheating and consequent damage
to the kiln shell.

The need to model arose only briefly here, and was quickly abandoned in favor
of what might be termed physical reasoning. Evidently some knowledge of the heat
transfer coefficients of gases and of evaporating and condensing liquids is needed.
Table 3.11 in Chapter 3 served as a handy guide, indicating that still air would have
a coefficient at least three orders of magnitude lower than that of condensing steam
or boiling water. Hydrogen gas would have somewhat higher values because of its
higher thermal conductivity, but would still have h values vastly lower than that of
the working fluid. Thus, a satisfactory solution was found based on a knowledge of
chemistry, metallurgy, and heat transfer. The necessity to draw on several fields of
expertise is a frequent occurrence in troubleshooting problems.

Illustration 6.3.8 Coating of a Pipe

It often comes about that an informal opinion is sought on a particular industrial
problem without going through the formalities of a secrecy agreement. This happens
when the problem is not a particularly serious one and it is merely desired to obtain
a second opinion to confirm the validity of solutions arrived at in-house. In such
cases it is customary not to reveal details of the process involved, and the problem
is outlined only in general terms and often circumlocutory language. We reproduce
the language used in this particular situation verbatim:

“A length of pipe L with possible ID ranging from d1 to d2 and possible thickness
from tp1 to tp2 is to be coated with two layers of dissimilar material A and B (see
Figure 6.17 which is the original drawing provided). The thickness of the two layers
is the same (tc), while the thermal conductivities may be expressed as k1 and k2. The
original temperature of the pipe is T1, and it needs to be cooled down to T2 with
water spray. Now the complications are as follows: material A is applied first,
followed by material B in a continuous process (see diagram). Due to the temperature
of the pipe, the coatings will be molten and need to be solidified by the spray of
water before the pipe can be handled. The question is what line speed (v) can be

FIGURE 6.17 Coating of a steel pipe with a double layer of molten plastics A and B.

248/ch06/frame  Page 389  Friday, June 15, 2001  7:01 AM

© 1999 By CRC Press LLC



used if this process is to be carried out on a continuous (basis), i.e., the pipe enters
one end at T1 (and) must be at T2 before it can be handled again.”

The physical situation here is one frequently encountered in industry but rarely
treated in textbooks, i.e., the movement of solids or solid entities akin to an assembly
line. We had encountered a similar process in Chapter 2, Illustration 2.5 (Thermal
Treatment of Steel Strapping) and an additional example will appear in Illustration
6.3.9. Indeed, Illustration 2.5 provides some immediate guidelines for the possible
modeling of the process under consideration here. We had indicated that the anneal-
ing of the strapping by heat transfer to an isothermal medium (the lead bath) could
be modeled much like the case of a steam-heated pipe, or shell-and-tube heat
exchanger, with solid flow replacing that of conventional fluids. This is the approach
we shall adopt here. In doing so we avoid the more precise but cumbersome model
made up of three coupled PDEs which describe the axial and radial temperature
variations under steady-state conditions.

To apply the simpler model, we make the following assumptions:
Heat transfer to the water spray is controlled by the resistances of the two

coatings, i.e., the steel pipe is taken to have a uniform temperature at any particular
position, and the surface temperature of the coatings approaches that of the water
impinging on the pipe and evaporating. These are reasonable assumptions consid-
ering the high values of boiling heat transfer coefficients (see Chapter 3, Table 3.11)
and the high conductivity of steel compared to that of the coatings.

Latent heats of solidification are either not involved or are small compared to
the sensible heat changes of the steel pipe. Axial conduction in the steel wall and
heat given off to the interior of the pipe are negligible.

With these simplifications in hand, the model reduced to the following energy
balance:

(6.3.22)

where t = thickness and the subscripts s and c refer to steel and coating, respectively.
Note that ρsvs πdts is the pipe “flow rate” in kg steel/s and the heat transfer coefficient
U = [tc(1/k1 + 1/k2)]–1.

Dividing by πd∆z and going to the limit yields the ODE:

(6.3.23)

which can be immediately integrated by separation of variables to yield:
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(6.3.24)

where z = length of cooling section.

Comments:
The line velocity v can be calculated for a specified length of cooling section

z, or conversely, z determined for a prescribed value of v. z is seen to be proportional
to both the line velocity and wall thickness t. This is as expected. Somewhat less
expected is the fact that z does not depend on pipe diameter d which cancels out in
Equation 6.3.22. This is at variance with the results obtained in-house.

The value to be used for Tw is somewhat of a question mark. The principal heat
transfer mechanism will be one of evaporation of water, since latent heat effects
outweigh sensible heating of the water by a factor of at least seven. A first approx-
imation would be to set Tw equal to the water temperature at the source. This will
provide a minimum value of the length of cooling section required, or the maximum
permissible line velocity for a given z.

A first estimate of the required water flow rate Fw can be obtained from an
integral energy balance by setting the sensible heat change of the steel wall equal
to the cumulative latent heat of evaporation. Thus,

ρs vπdtszCps(Ts1 – Ts2) = Fw∆Hw (6.3.25)

where ∆Hw = latent heat of evaporation per unit mass of water. Fw does not include
that portion of water which fails to make contact with the pipe or evaporative losses
in transit, and is thus to be considered a minimum value.

Taking latent heat of solidification into account brings about a considerable
escalation in the complexity of the problem. In the radial direction, one would be
dealing with a moving-boundary problem, akin to that considered in Chapter 3,
Illustration 3.3.12 (Freeze-Drying). In the axial direction one has to track both liquid
and solid phases of the coating which calls for an approach similar to that used in
Illustration 3.6.7 (Forced Convection Boiling). Consideration of both these factors
would require a PDE model. Let us see whether we were justified in neglecting
these latent heat effects by examining the ratio of sensible heat changes in the pipe
wall qs to possible latent heat effects in the coating qc. We have:

(6.3.26)

Conservative estimates of the density and thickness ratios of steel and coating
leads to the value:
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For the thermal ratio Cps ∆T/∆Hc, we assume ∆T = 100°C and ∆Hc = 100 J/g
(approximately one third that of the corresponding value for water). We obtain:

with a total value for the ratio of qs/qc of:

Thus, according to these conservative estimates, latent heat effects account for
about 4% of the total heat load. We feel justified, therefore, in focusing our attention
on the sensible heat changes undergone by the pipe.

It will have been noted that our model only yields minimum values for the length
of cooling section z and water flow rate Fw and an upper limit for the line velocity
v. These are nevertheless useful boundaries to have and can be easily moved by
imposing more severe (though, in our opinion, artificial) conditions. Thus, an external
heat transfer resistance equivalent to a transfer coefficient of 500 or even 100 W/m2K
could be added to the conductive resistance. This is left to the discretion of the reader.

Illustration 6.3.9 Release of Potentially Harmful Chemicals to 
the Atmosphere

In this example, also from an industrial source, a fairly precise description of the
proposed process equipment was made available (see Figure 6.18). The nature of
the chemical involved, however, was disguised as a phantom substance, “benzoic
acid.” The problem was posed as follows:

FIGURE 6.18 Emissions into a fume hood during the cooling of a molten chemical.
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A chemical company is making solid benzoic acid from (its) molten state. This
chemical is heated up to 140°C and then is poured onto a metal belt moving at 4
ft/s to make solid benzoic acid. The thickness of the flake (~1/20 in.) can be changed
by changing the belt velocity. The production rate of the chemical is 10,000 lbs/h.
A hood is placed above the belt in the first 20 ft to remove the chemical vapor
released from the benzoic acid in the course of cooling. The hood flow rate is 1000
SCF/min. The cross-sectional area of the hood is 20 × 5 ft (the width of the belt).
The chemical freezes at 120°C. Since the chemical vapor may cause health or fire
hazard, the upper limit of the vapor concentration is set at 2%. Is the design sufficient
to cool the chemical so that the vapor concentration in the hood is below the upper
limit to prevent the fire or health hazard? The advice solicited was, “What is the
appropriate mass transfer and heat transfer coefficient for this problem?”

We will attempt here to arrive at some numerical results using the phantom
benzoic acid as a test substance. Since the major concern was to keep the concen-
tration in the vented air below a prescribed tolerance level, our focus will be on
mass transfer aspects of the problem.

The flow pattern in the fume hood is evidently a complex one, with air being
drawn in horizontally through the hood clearance (dimension unknown), and then
changing direction by 90° before passing into the vent duct. Mass transfer coeffi-
cients for this particular geometry and flow pattern probably exist but cannot be
easily located. Numerical simulation is another option and would require the simul-
taneous solution of the relevant mass and momentum balances in those dimensions.
We choose instead to examine two simple but meaningful asymptotic cases which
provide upper and lower limits to benzoic acid concentration in the vented air. In
the first and worst case scenario, we assume the air to leave saturated with benzoic
acid at either the inlet temperature of 140°C or the freezing point of 120°C. The
calculation here is straightforward, involving only the vapor pressures of the acid at
those temperatures and provides an upper limit to the expected concentration. In the
second case we include the mass transfer resistance by assuming conditions in the
immediate vicinity of the moving belt to be represented by flow over a flat plate of
length one half that of the fume hood. This is deemed to provide a lower bound to
the benzoic acid concentration in the air.

The data assembled for both these calculations are as follows:

Kinematic viscosity of air: ν = 1.5 × 10–5 m2/s
Schmidt number of air: Sc ≅ 1
Assumed length of flat plate: l = 3 m
Assumed clearance of hood: w = 0.1 m
Air flow rate: Q = 1000 SCF/min = 0.47 m3/s
Flow area through clearance: Af = 1.57 m2

Mass transfer area: Am = 9.3 m2

Horizontal velocity: v = Q/Af = 0.30 m/s

Vapor pressure of benzoic acid: T°C 120 140
p (mm Hg) 7 18
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The following results are obtained for the two cases in question:

(1) No Mass Transfer Resistance (Saturation)
Mole fractiony = vapor pressure/total pressure
At 120°Cy = 7/760 = 0.0092
At 140°Cy = 18/760 = 0.024

Thus, even in this limiting and adverse case, the mole fraction of benzoic acid
is well below the prescribed value of 0.02 at 120°C, and only marginally higher at
the inlet temperature of 140°C. One suspects, however, that the specified limits were
set artificially high to disguise the actual process.

(2) With Mass Transfer Resistance
We use the correlation for mass transfer given in Chapter 3, Table 3.5 which

takes the form

St = kc/v = 0.66 Re–1/2 Sc–2/3 Re < 105

and

St = kc/v = 0.036 Re–0.2 Sc–2/3 Re > 106

For the Reynolds number we have:

and hence,

kc = 0.66 v Re–1/2 Sc–2/3 = (0.66)(0.30)(6 × 104)–1/2(1)

kc = 8.1 × 10–4 m/s

For the saturation concentration C* at the moving belt surface assumed here at
120°C, we have from the Ideal Gas law:

The rate of transfer of benzoic acid to the air is then given by:
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NA ≅ kc Am (C* – 0)

NA ≅ 8.1 × 10–4 (9.3)(0.286)

NA = 2.15 × 10–3 mol/s

One notes that the concentration in the bulk of the air C has been set = 0. Once
that value is known and seen to be significant, the calculations can be further refined
(see below).

To obtain the mol fraction of benzoic acid in the air, we require the total molar
flow rate of air NT, since y = NA/NT. We have:

Hence, we obtain:

or approximately 100 ppm by volume.
In molar concentration units, the corresponding value is given by:

Thus, the concentration C in the bulk of the air is seen to be less than 2% that
of the saturation value C*, justifying our omission of the term in calculating the
evaporation rate NA.

Comments:
It is felt that, if anything, the mass transfer coefficient was considerably overes-

timated resulting in an overestimation of the effluent concentration. No account was
taken of the stagnant zone which must perforce exist around the central area under
the hood where the flows from different inlet segments converge. This factor alone
could result in a considerable lowering of the average benzoic acid concentration in
the effluent. Evaporative cooling could further reduce the rate of evaporation.

It may be counter argued that the average temperature chosen, 120°C, was too
low, resulting in an underestimation of the exiting concentration. Certainly at the
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inlet to the fume hood, the temperature would be closer to that of the feed, 140°C.
Let us consider the extreme case where the entire charge under the hood is at 140°C.
C* would then increase in proportion to the rise in vapor pressure and, consequently,
so would the effluent concentration. We obtain:

Thus, benzoic acid content in the air would rise to 2.9 × 10–4 mol fraction, still
comfortably below the prescribed maximum of 0.02.

It is of some interest to consider the effect of air flow rate Q on y. An increase
in Q should, on the one hand, have a proportional diluting effect through NT, the
molar flow rate of air, but at the same time increase kc in proportion to v/Re1/2, i.e.,

Q1/2. The net effect is an overall dilution with  Thus, doubling flow

rate would decrease effluent concentration by a factor of 21/2 = 1.41.

Illustration 6.3.10 Design of a Marker Particle (Revisited)

A small entrepreneur with an interest in scuba diving had the idea of marketing
marker particles that upon release under water would rise at a velocity of 60 ft/min
= 0.305 m/s, the maximum value recommended for the safe ascent of divers. Too
fast an ascent causes air dissolved in the blood to be released too rapidly leading to
disabling symptoms, such as vomiting, loss of consciousness, etc. It can in severe
instances be fatal.

The particles were to be carried by the diver in a small pouch and be clearly
visible upon release. An optimum size range of 2 to 4 cm was suggested. To facilitate
manufacture, regular shapes such as spheres, disks, and cylinders were preferred,
as were cheap materials. A further stipulation was that the particles had to be
effective in waters of different temperatures, salinity, and viscosity, i.e., in lakes as
well as oceans of different regions. Water density variations of ± 10% have to be
allowed for.

The topic of particle movement in fluids had been addressed in considerable
detail in Chapter 3, Section 3.4. Three relevant facts emerge from that discussion:

• Steady-state values are attained very quickly, within seconds or fractions
of a second, so that transient behavior need not be considered.

• Movement of particles with d = 2 to 4 cm and a velocity of 0.305 m/s
fall entirely in the turbulent region (see Chapter 3, Table 3.14). The drag
coefficient CD will consequently be constant, with values of 0.44 and 1.2
for spheres and disks or short cylinders respectively.

• The steady-state force balance for rising particles takes the form:
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(3.4.35)

where the subscripts f and p denote the fluid and particle respectively.
Equation 3.4.35 can be rearranged to yield:

For spheres:

(6.3.27)

For disks/cylinders:

ρp/ρf = 1 – 1/2(CDv2)/Lg

where L = length of disk or cylinder.
A value of ρp/ρf too close to unity is undesirable, since small water density

variations in that range cause inordinately large changes in the velocity of rise. As
can be seen from Equation 6.3.27 a particle with the correct design velocity at ρs/ρf

= 0.8 would, on encountering a density ratio of 0.9, see its velocity drop by a factor

 For this reason, it is wise to design for density ratios ρp/ρf <

0.8. However, since smaller values of ρp/ρf require small particles to meet the
specified velocity of rise, a point will be quickly reached where the size falls below
the desired range of 2 to 4 cm. The dilemma is illustrated in the following table of
particle dimensions calculated from Equation 6.3.27.

One notes that at ρp/ρf = 0.8, which we consider to be the upper allowable limit,
the sphere has fallen below the acceptable range of 2 to 4 cm, while the cylinder
remains above it. A disk 2.5 cm × 2.5 cm is a possible recommendation. Materials
with a specific gravity in the desired range 0.4 to 0.8 include readily available high
density polyethylene and polypropylene and, hence, pose no problem. The particles,
however, would have to be sealed to exclude water.

TABLE 6.7
Size of Particles with a Velocity of Rise of 0.305 
m/s

Density Ratio ρρρρs/ρρρρf 0.9 0.8 0.5 0.1

Diameter of sphere, cm 3.1 1.6 0.63 0.34
Length of cylinder, cm 5.7 2.9 1.1 0.63
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Comments:
Although only one simple model Equation 6.3.27 was required, it took some

skill to use it in the analysis of the system. The density ratio not only had to be
identified as the crucial parameter determining particle size, but its sensitive impact
on velocity of rise at values near unity recognized and an upper limit to its value
set. We were helped by the groundwork done in Chapter 3, Section 3.4 which led
to a quick identification of the flow regime and, hence, the values of CD.

Postscript:
The initial recommendation of a disk 2.5 × 2.5 cm was not adopted. Trial runs

showed that cylindrical shapes wobbled too much on rising through water and
difficulties were experienced in sealing them effectively. The final design consisted
of hollow plastic spheres of approximately 2.0 cm diameter containing calibrated
amounts of solid ballast to yield the correct velocity of rise. They were brightly
colored for good visibility and easy recovery. A design of this type also had been
under consideration but had been rejected in favor of cheaper shapes. The afore-
mentioned factors, however, made the hollow sphere the final design of choice in
spite of its higher manufacturing cost.

Practice Problems
6.3.1 Explosion of a Refrigerator — Thirty percent by weight of an organic
substance of molar mass 225 dissolved in diethyl ether were stored in loosely corked
flasks in the refrigerator of a chemical laboratory. The refrigerator had not been
provided with an explosion-proof motor and, subsequently, an explosion occurred.
Could it have been caused by ether vapors?

Data: Vapor pressure of ether (3°C): 24.3 kPa
Explosive limits of ether: 1.85 – 36.5 mol %

6.3.2 Another Moving Boundary Problem–Melting of Glycerol — Partially solid-
ified glycerol with an approximate melting point of ~ 18°C contained in a tank is
to be rendered fluid by external steam heating. The time required to achieve this is
to be calculated. Plant engineers had suggested the formula:

(a) Critically analyze this expression.
(b) Show that the moving boundary approach leads to the equation:

(c) Provide your own recommendation for the proper calculation of the time
required.
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6.3.3 Propane Cylinder Fire — In a fire insurance claim, the cause of a propane
fire in an underground tunnel construction site had to be determined. The relevant
events were as follows.

Just prior to their afternoon departure, workers on the site connected a fresh
propane tank to an air heater of a type frequently used on construction sites to speed
up the drying of the concrete and provide warm surroundings. The heater was turned
on and left running. Approximately 31/2 hours later a fire was detected during a
check of the site. The propane cylinder feeding the heater, standing about 1.2 m
from the heater outlet and fully exposed to the air jet, was leaking propane which
had ignited into a substantial fire (Figure 6.19). Extensive damage had been done
to various installations in the tunnel.

Investigators focused on three possible causes:

1. A leaky cylinder valve had caused propane gas to escape from the tank
which subsequently ignited on contact with the heater. The cylinder man-
ufacturers would in this case be liable.

2. A defect in the heater had caused a primary fire that in turn heated the
propane tank to vent temperature. The relief disk on the cylinder was set
to rupture at ~ 25 atm, corresponding to a propane equilibrium temperature
of 66°C. This scenario would make the heater manufacturers liable.

3. The tank, which was inadvertently (or deliberately?) placed in the path
of the air, had been heated to the point where the relief disk ruptured and
the escaping propane vapors subsequently caught fire on contact with the
heater. The insurers of the construction company would in this case have
to pay for the damage caused.

The technical consultants were asked to determine whether 31/2 hours were
sufficient time to heat the tank to venting conditions. Evidently the insurers of the
heater and gas cylinder manufacturers had an interest in proving this to be right, while
insurers of the construction company did not. The following data were assembled.

Heater:
Outlet diameter: 0.203 m
Outlet temperature: 191°C
Outlet velocity: 9.65 m/s

FIGURE 6.19 Air-heater/propane cylinder configuration leading to a propane fire.
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A properly functioning unit provides air at 49°C above ambient temperatures at
a distance of 3.1 m.

Propane tank:
Diameter: 0.382 m
Height: 1.17 m
Total volume: 0.189 m3

Liquid propane content: 45.4 kg
Weight of empty container: 45.4 kg
Initial pressure (10°C): 7 atm
Venting pressure: 25.1 atm (66°C)
Steel density: 7800 kg/m3

Steel heat capacity: 0.473 kJ/kg K

Propane:
Liquid density: 577 kg/m3

Liquid heat capacity: 2.42 kJ/kg K
Heat of vaporization: –353 kJ/kg

Air (150°C):
Density: 0.826 kg/m3

Viscosity: 2.14 × 10–5 Pa s
Thermal conductivity: 0.0351 W/mK
Heat capacity: 1 kJ/kg K

Comments:
To simplify this complex heat transfer problem, one could start by setting a

lower limit to the time required to raise the temperature of the tank from 10°C to
66°C (25.1 atm). This can be done by considering sensible heat requirements only,
neglecting for the time being the heat of vaporization and the pressure loss due to
propane withdrawn as feed to the heater. If this tmin exceeds the specified time period
of 31/2 h, scenario 3 can be safely dismissed. If it falls below it, the calculations will
have to be refined.

Determination of the heat transfer rate from air to tank requires a knowledge of
the overall heat transfer coefficient as well as the air temperature in the vicinity of
the tank. Heat transfer resistance is likely to be entirely on the air side, since the
process inside the tank is one of free convection combined with nucleate boiling
with an attendant high heat transfer coefficient (see Chapter 3, Table 3.11). At any
rate, neglecting the internal resistance tends to further reduce the value of t, which
is a desirable trend, since we wish to establish a lower bound to the time requirement.
To estimate the temperature of the arriving air, one craftily makes use of the man-
ufacturer’s performance guarantee given above. It is left to the reader to apply it to
an appropriate model.

To further minimize time, one can assume the temperature along the entire
circumference to be uniform and identical to that of the arriving air. The jet will
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expand during its passage from the heater and it is suggested that the expansion
ratio be set at 1.5. This conservative value will further reduce the value of t.

Determination of the appropriate heat transfer area poses an additional problem.
One can set its width equal to that of the arriving jet, or to the cylinder area in
contact with the liquid propane, the latter tending to give lower t values.

It should be kept in mind that the sensible heat requirements of both the tank
itself, as well as its contents must be taken into account. The two are of equal weight,
but steel has approximately two and one half times the volumetric heat capacity of
liquid propane. It will, therefore, represent a preponderant portion of the load.

The reader should not be discouraged if no clear-cut answers are obtained. This
is often the case, making it necessary to provide a range of answers. This should,
however, always be accompanied with an indication of one’s own personal preference.

6.3.4 Malfunction of a Dryer — A through-flow dryer consisting of a cylindrical
vessel filled with granular material requires an air flow rate estimated at 5 × 10–2

kg/s for proper drying of the charge. After passage through the bed of granular
material it is vented to the atmosphere through a piping system consisting of 30.5
m of straight 5 cm ID steel pipe, one flow contraction and expansion each, 2 tees,
5 elbows, and 3 globe valves fully open. Frictional losses in the dryer are negligible
and the air is delivered at a pressure of 122 kPa. It was found that drying times
exceeded the specifications.

Identify the reason for malfunction and propose remedies.

6.3.5 More on Freezing Pipes — An inert gas with physical properties similar to
those of air is to be piped through a 1 m diameter pipe 1000 m long at the rate of
25,000 kg/h. The gas enters at 30°C, 100 kPa gauge, and is saturated with water.

The pipe runs above ground and may be exposed to winter temperatures of
–30°C and wind velocities of 30 km/h for as long as 2 weeks. This can cause
undesirable ice formation both in the flowing gas and at the pipe wall.

One is asked whether the installation of an outside insulation which may cost
up to $200,000 is warranted. Illustration 6.3.6 may be of some use as a guide.

6.3.6 Potential Thermal Stress Cracking of a Weld — During erection of a
catalytic cracking unit in an oil refinery, concern arose that thermal gradients in the
steel supports might cause stress cracking of the connecting welds (see Figure 6.20).
The reactor, itself insulated, was known to reach temperatures of about 500°C, and
ambient temperatures as low as –30°C could be anticipated in the winter months.

FIGURE 6.20 Welded support of a catalytic cracking reactor.
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Structural engineers specified a maximum permissible temperature gradient at the
weld of 15°C/cm. A suggested remedy was to cover the supports with insulation,
but it was not known how thick the insulation should be or indeed whether this
would solve the problem.

Data:
Thermal conductivity of steel: 43 W/mK
Thermal conductivity of insulation: 0.12 W/mK
Heat transfer coefficient to air: see Table 3.11
Diameter of support: 0.1 m
Length of support: 0.5 m

(Hint: Attempt an “asymptotic” solution, with the support bare, a temperature
at ground level of –30°C and a gradient at the reactor end of 15°C/cm. Extract a
heat transfer coefficient from the solution. Its value is proportional to the maximum
permissible rate of heat transfer. Calculate the equivalent thickness of insulation
which will match this value.)

6.3.7 Solution Mining of Potash — Underground deposits of potash (KCl or sylvite)
are frequently harvested by a technique called solution mining. The procedure
consists of cracking the deposit open by pumping high pressure water through an
“injection well” drilled to one end of the deposit (“hydrofracturing”). A second well,
the so-called production well, is drilled at the far end of the fracture. Water is then
continuously pumped into the deposit through the injection well, dissolving potash
as it passes through the open fracture and returning to the surface through the
production well as a KCl solution.

It is desirable in these operations to have an a priori estimate of the KCl solution
in the effluent since this will determine the production rate of the mine. Calculations
are complicated by the fact that the dissolution of KCl is a highly endothermic
process, with solubility C* decreasing as the temperature drops. Water entering the
fracture thus will dissolve KCl at a rate proportional to (C* – C), but the driving
force will diminish rapidly as C* drops due to endothermicity and C rises due to
dissolution of KCl. One may expect production concentrations to be considerable
below isothermal values.

It has been argued that the endothermic effects are at least in part counterbalanced
by heat flow from the surrounding deposit. An assessment of this contribution is not
straightforward, since temperature variations in both horizontal and vertical direc-
tions make themselves felt. The reader is nevertheless urged to attempt an analysis
of the problem. The required information is, as stated, the KCl concentration at the
production end.

The following data may be of use:

Average geothermal temperature gradient: 30°C/km
Average heat flux in the Earth: 5.0 × 10–2 J/m2s
Average thermal conductivity of the Earth: 1.7 × 10–3 J/msK
Average heat of solution of KCl: 1.8 × 104 J/mol
Solubility of KCl in water: 20°C 4.66 mol/L; 100°C 7.61 mol/L
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Comments:
Fracture depth and dimensions vary but typical values which can be used in the

analysis are

Depth: 1 km
Fracture height: 50 cm
Fracture width: 50 m
Fracture length: 500 m
Water velocity: 0.1 m/s

It is probably best to start by considering the asymptotic cases of isothermal
and adiabatic operation. These will provide upper and lower bounds to the solution
sought. Contributions of heat flux from the surroundings may then be grafted onto
these results.

Widening of the fracture with time is a complication, but it is not far-fetched to
assume that this can be countered by increasing flow rate to maintain a constant
velocity and transport coefficients. Thus, except for an initial start-up period, the
operation may be assumed to be at a near steady-state.

Flow rate itself is an important parameter which needs to be considered. A
reduction in flow has the effect of raising the effluent concentration (unless saturation
had already been attained), but at the same time reduces the volumetric production
rate. Thus, there exists an optimum flow rate at which the total mass of potash extracted
is at a maximum. It is suggested that this flow rate rather than an arbitrary fixed value
be used as a basis of comparison of the results obtained from various models.

6.3.8 Heat Transfer from a Falling Solder Bead — A consultant in a court case
was required to determine the temperature attained by liquid solder beads which
formed during the soldering of copper pipe and inadvertently dropped a distance of
10 m through still air onto potentially combustible material (straw and paper). It is
considered that a temperature of 180 to 200°C would be sufficient to cause ignition.

The following data for solder are provided:

Diameter: 5 mm
Density: 8460 kg/m3

Melting point: 183°C
Initial temperature: 240°C
Latent heat: 22.9 kJ/kg
Heat capacity: 0.19 kJ/kg K

Comments:
The first item to determine is the time of fall which one would expect to be very

short [0(1 s)]. The terminal velocity, therefore, may not have been attained, and this
should be taken into account.

Since transient conditions may prevail, the heat transfer coefficient could vary
during the fall. Velocity as a function of time would have to be incorporated into
the energy equation for a rigorous treatment. Alternatively, one could “bracket the
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solution” by considering heat transfer at v = 0 and vMax. This would provide upper
and lower bounds for the bead temperature upon arrival on the ground. One notes
the extremely low values of both heat capacity and latent heat. This augurs well for
a rapid cooling of the bead and hence for the construction company. It is particularly
important in this case to obtain quick results, since an actual test could be run with
little inconvenience and provide concrete proof one way or the other. This is more
acceptable to the court than “theoretical calculations.”
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7

 

Partial Differential 
Equations:
Classification, Types, and 
Properties; Some Simple 
Transformations and 
Solutions

 

Give me a (partial) derivative and I will invert the world.

 

Isaac Newton

 

Science is a differential equation. Religion is a boundary condition.

 

Arthur Eddington
(reference to Cosmology and Big-Bang Theory)

 

The reader will have noted our avoidance, up to this point, of any use of Partial
Differential Equations (PDEs). We limited ourselves to ODEs which arose from
unsteady-state “stirred tank” and from steady-state “one-dimensional pipe” models,
and from algebraic integral or cumulative balances. These equations served us well
in a good many cases, yielding close approximations of the exact solutions or, at
the very least, upper or lower bounds to them. Cases do arise, however, where PDEs
can no longer be avoided or circumvented by valid simplifications and assumptions.
In particular, PDEs will have to be addressed in the following situations:

• All “one-dimensional pipe” processes which operate under unsteady or
transient conditions. These include heat exchangers, packed columns, or
tubular reactors with time-varying feed temperatures, concentrations, or
flow rates, and turbulent duct flow with time varying inlet pressures or
velocities. Note that in some instances one can use a quasi-steady-state
assumption, in which case the model reverts to the ODE or AE level.

• Thermal conduction or diffusive processes in which temperature or con-
centration vary with time and distance or, if at steady-state, vary in more
than one dimension. Exceptions occur when transport coefficients are
large or system dimensions small, so that the system may be approximated
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as a stirred tank. This was done in the case of the thermocouple response
given in Illustration 3.3.3, and was valid there by virtue of the high thermal
conductivity and small dimension of the device. When size is more sub-
stantial, as in the quenched steel billet shown in Figure 1.1, internal
temperature gradients can no longer be ignored, and the full PDE model
has to be applied.

• Transport of mass, energy, or momentum in external viscous flow around
submerged objects or in internal duct flow under steady or transient con-
ditions. In duct flow, this leads to the so-called Graetz Problem for heat
and mass transfer, briefly introduced in Chapter 6, Illustration 6.1.5 (Mem-
brane Processes), or to the Navier-Stokes equation for momentum transfer.
The classical example of the use of PDEs in external flows is the derivation
of the drag coefficient for flow around a sphere (Stokes’ law). The reader
will note that we specified viscous or laminar flow for these systems. For
turbulent flow, steady state PDE models are usually replaced by ODEs or
algebraic equations containing lumped transport parameters such as heat
and mass transfer or drag coefficients which are determined experimentally.
Numerous examples of this treatment appear in the preceding chapters.

• Viscous compressible flow in which velocity and pressure vary with
distance and time or, if at steady-state, vary in more than one dimension.
Both internal and external flows, as well as sonic and supersonic condi-
tions, are included. This is a vast and complex field usually treated under
the heading Aerodynamics. We note again that under steady turbulent flow
conditions, one reverts to ODE or algebraic models with empirical friction
factors or drag coefficients. Examples of these cases appeared in Chapter
3, Section 3.5.

• Inviscid, i.e., frictionless flow, in more than one dimension. The slightly
more restrictive case of so-called 

 

irrotational

 

 or 

 

potential flow

 

 is included
here. The one-dimensional case of inviscid flow was taken up at the ODE
level and led to the formulation of Bernoulli’s equation (Chapter 3, Illus-
tration 3.4.7).

• Unsteady, transverse displacements of fluids and solids. This includes
wave propagation and the vibrations of strings or membranes and leads
to the so-called wave equation.

The above summary includes some of the more important sources of partial
differential equations. PDEs evidently arise in many other contexts as well which
were not touched upon. Some of these will become apparent as this chapter and
those that follow evolve.

We now turn to the task of describing various properties, classes, and boundary
conditions of PDEs, and follow this up with some simple transformations and with
a first glimpse of certain elementary solutions and solution methods. Properties and
classes are largely those we had seen in an ODE context but some new subcategories
make their appearance which we present and justify. The solution methods are at
this stage kept at a simple level and make no heavy demands in terms of prior
knowledge or the use of exotic techniques.
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7.1 PROPERTIES AND CLASSES OF PDEs

7.1.1 O

 

RDER

 

 

 

OF

 

 

 

A

 

 PDE

 

The order of a PDE is defined by the order of its highest derivative. This is the same
definition as that used for ODEs. Thus,

 

Fourier’s equation:

 

(7.1.1)

is a second order PDE,

 

Biharmonic equation:

 

(7.1.2)

is a fourth order PDE, and

 

Continuity equation:

 

(7.1.3)

is a first order PDE.
We describe briefly the occurrence of PDEs of various orders, which again

parallels that seen in ODEs.

 

7.1.1.1 First Order PDEs

 

First order PDEs are found in the description of convective transport, i.e., in the
absence of diffusive (second order) transport terms. The continuity Equation 7.1.3,
which represents a convective flow mass balance in three-dimensional Cartesian
space, is an example of a first order PDE. Such equations also arise in a host of
convective “one-dimensional pipe” processes operating under 

 

unsteady

 

 conditions.
A heat exchanger with fluctuating inlet temperature or flow rate is the classical
example in this category. First order PDEs are seen as well in the description of
convective mass and heat transfer between a fluid and a 

 

stationary

 

 solid medium.
Examples of such processes were given, without reference to the underlying equa-
tions, in Chapter 6, Illustration 6.2.9, dealing with riverbed contamination, and in
Illustration 6.2.10 of an adsorptive water purification process.

α ∂
∂

= ∂
∂

2

2

T
x

T
t

∂
∂

+ ∂
∂

∂
∂







+ ∂
∂

=
4

4

2

2

2

2

4

42 0
u

x x
u

y
u

y

∂
∂

+
∂
∂

+
∂
∂

=
v

x

v

y

v

z
x y z 0

 

248/ch07/frame  Page 409  Tuesday, November 13, 2001  1:05 PM

© 1999 By CRC Press LLC



   

7.1.1.2 Second Order PDEs

 

The classical examples of this type are Fourier’s and Fick’s equations. In one-
dimensional rectangular coordinates they take the form:

 

Fourier:

 

(7.1.1)

 

Fick:

 

(7.1.4)

The celebrated Navier-Stokes equation, to be described in more detail later,
consist of three second order PDE Momentum Balances.

 

7.1.1.3 Higher Order PDEs

 

PDEs of order greater than two occur with much lesser frequency. They are seen in
solid mechanics and elasticity theory (cf. the biharmonic Equation 7.1.2). They also
make their appearance in the course of introducing the so-called stream function 

 

ψ

 

which is defined in terms of fluid velocities in the x and y directions, v

 

x

 

 and v

 

y

 

.

(7.1.5)

Introduction of 

 

ψ

 

 serves the purpose of coalescing velocity components in a
mass or momentum balance into a 

 

single

 

 term involving 

 

ψ

 

, thus simplifying the
underlying PDE. The penalty to be paid is an increase in the 

 

order

 

 of the equation
by one.

 

7.1.2 H

 

OMOGENEOUS

 

 PDE

 

S

 

 

 

AND

 

 BC

 

S

 

This definition again parallels that given for ODEs, i.e., it refers to equations which
do not contain 

 

separate

 

 terms in the independent variable or constant. Thus, Fourier’s
Equation 7.1.1 is homogeneous, but if one adds to it a heat source S which is constant
or dependent on time and distance the equation becomes nonhomogeneous. Hence,

(7.1.6)

is a nonhomogeneous PDE. Similarly the following boundary conditions are both
nonhomogeneous:
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T(x,0) = f(x) (7.1.7)

T(0,t) = g(t)

 

7.1.3 PDE

 

S

 

 

 

WITH

 

 V

 

ARIABLE

 

 C

 

OEFFICIENTS

 

As in the case of ODEs, the term 

 

variable

 

 implies changes in the coefficients of the
derivative as a function of the independent, not the dependent variable. Such models
arose as we had seen whenever diffusive transport took place through an area which
varied with distance. Thus, for radial diffusion in a long cylinder, the unsteady Fick’s
diffusion Equation 7.1.4 becomes:

(7.1.8)

where the quotient 1/r is the variable coefficient. It is not unreasonable to expect
that the solutions of this equation will contain the same “exotic” Bessel functions
we had encountered in the steady-state version of this equation.

 

7.1.4 L

 

INEAR

 

 

 

AND

 

 N

 

ONLINEAR

 

 PDE

 

S

 

: A N

 

EW

 

 C

 

ATEGORY

 

 — 
Q

 

UASILINEAR

 

 PDE

 

S

 

The classification here is again very much akin to that we had seen with ODEs —
a PDE is linear if the dependent variable and its derivatives appear in 

 

linear

 

 com-
bination. Thus, the most general version of a second order linear PDE in two
independent variables has the form:

A(x,y)u

 

xx

 

 + B(x,y)u

 

xy

 

 + C(x,y)u

 

yy

 

 + D(x,y)u

 

x

 

+ E(x,y)u

 

y

 

 + F(x,y)u + G(x,y) = 0 (7.1.9)

where the subscripts on the dependent variable u denote differentiation with respect
to x and y. Note that here again the variable coefficients A through G can be arbitrarily
nonlinear without violating the linearity of the PDE itself. According to this defini-
tion, Fourier’s Equation 7.1.1, the biharmonic Equation 7.1.2, the continuity Equa-
tion 7.1.3, and Fick’s Equation 7.1.4 are all 

 

linear

 

.
When the PDE is not linear, a distinction is made between so-called quasilinear

PDEs and Fully Nonlinear PDEs. The former is defined as an equation in which the

 

highest derivative

 

 is still linear, but not necessarily the lower derivatives or the
dependent variable itself. For example:

Linear: x

 

2

 

u

 

xx

 

 + exp(y)u

 

yy

 

 = 0

Quasilinear: u

 

xx

 

 = u

 

yy
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(7.1.10)
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The motivation for introducing this new category of quasilinear PDEs lies in their
behavior which differs from that of fully nonlinear PDEs, and in the fact that a fairly
complete theory for them has been developed (see Chapter 9: Method of Character-
istics). No such comprehensive treatment exists as yet for fully nonlinear PDEs.

What sets linear PDEs apart is that here one can again apply the Superposition
Principle, i.e., if a set of independent solutions is known, their 

 

sum

 

 will also be a
solution. The famous (and much-dreaded) Fourier Series solutions of the linear
Fourier and Fick’s equations are the result of precisely such a superposition procedure.
Details will appear in Chapter 9 under the Separation of Variables Method. Super-
position cannot in general be applied to either quasilinear or fully nonlinear PDEs.

 

7.1.5 A

 

NOTHER

 

 N

 

EW

 

 C

 

ATEGORY

 

: E

 

LLIPTIC

 

, P

 

ARABOLIC

 

, 

 

AND

 

 
H

 

YPERBOLIC

 

 PDE

 

S

 

These categories draw their nomenclature from a similar classification for algebraic
equations in two variables x and y. The reader may recall that for the general
equation:

ax

 

2

 

 + 2bxy + cy

 

2

 

 + d = 0 (7.1.11)

one obtains:

An ellipse if: b

 

2

 

 – ac < 0

A parabola if: b

 

2

 

 – ac = 0

A hyperbola if: b

 

2

 

 – ac > 0

To conform to this classification, the PDE, which is here a second order one
with variable coefficients, is arranged in the form:

A(x,y)u

 

xx

 

 + 2B(x,y)u

 

xy

 

 + C(x,y)u

 

yy

 

 = F(x,y,u

 

x

 

,u

 

y

 

) (7.1.12)

The resulting categories, with properties and examples, are presented in Table
7.1. We note that the classification is not a trivial one since it reflects the nature of
the problem (boundary value BVP or initial value IVP, singly or in combination)
and through it the solution methods to be used. The Laplace transformation, for
example, is usually reserved for IVPs only. A similar motivation for classifying
equations arose at the ODE level where a distinction was made between second
order equations with constant and variable coefficients. The former were solved by
the D-operator method, while the latter required the use of series solutions.

Quasilinear first order PDEs, or rather sets of them, have the same three cate-
gories, but they are arrived at in a slightly different fashion. We write the set in
vector-matrix form:

(7.1.13)A u x y u B u x y u C u x yx y~ ~ ~ ~ ~
~

~ ~
( , , ) ( , , ) ( , , )+ + = 0
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and set the criteria as follows:

Application of this criterion is best studied in the context of the example given
in Illustration 7.1.1.

 

7.1.6 B

 

OUNDARY

 

 

 

AND

 

 I

 

NITIAL

 

 C

 

ONDITIONS

 

Classification of BCs and ICs follows that established for ODEs but now has the
names of mathematicians attached to them. Dimensionality is also increased so that
a more general formulation is called for. We summarize the main features for
convenience.

There are three major types of boundary and initial conditions.

1.

 

Type I (Dirichlet) BCs

 

 contains the dependent variable only. The initial
conditions usually fall into this category and in rectangular coordinates
have the form:

u(0,S) = u

 

0

 

or more generally,

u(0,S) = f(x,y,z) (7.1.14)

 

TABLE 7.1
Elliptic, Parabolic, and Hyperbolic Second Order PDEs

 

Criterion Type of PDE Example Properties

 

B

 

2

 

 – AC < 0 Elliptic Laplace’s equation Boundary value problem

B

 

2

 

 – AC = 0 Parabolic Fourier’s equation Mixed BV and IV problem

B

 

2

 

 – AC > 0 Hyperbolic Wave equation Mixed BV and IV problem 
or IV problem

 

The set is if the eigenvalues of  are
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where S denotes a bounding surface of the system.
The novelty here, compared to the ODE case is that the initial condition

need not be a constant but can have an initial distribution in space f(x,y,z).
Thus, the quenched steel billet shown in Chapter 1, Figure 1.1 could have,
at the start of the operation, a temperature distribution f(0,x) rather than
a constant and uniform value T

 

0

 

.
2.

 

Type II (Neumann) BCs

 

 contain the derivative only, usually taken normal
to a surface S and denoted by 

 

∂

 

u/

 

∂

 

n. The general condition is of the form:

(7.1.14)

and includes the special case:

(7.1.15)

The latter condition applies when u is a maximum or minimum in a
particular location, e.g., the center of symmetry, or when the boundary is
impermeable to mass, energy, or momentum flux.

3.

 

Type III (Robin) or Mixed BC

 

. This condition contains both the derivative

 

∂

 

u/

 

∂

 

n and the dependent variable u and has the general form:

(7.1.16)

It frequently arises at phase boundaries where the rate of convective
transport in one phase (moving fluid) must equal diffusive transport in
the other phase (stationary fluid or solid). For this particular case, Equation
7.1.16 becomes:

(7.1.17)

(Specific forms of Equation 7.1.17 will be presented in Illustration 7.1.2.)

Two additional points need to be noted. The number of BCs required usually
equals the sum of the highest order of the derivatives with respect to a particular
independent variable. Thus, for the one-dimensional Fourier’s Equation 7.1.1, we
require two BCs for the second order derivative and one BC (or rather IC) for the
first order time derivative. A total of three boundary conditions, therefore, are
required to solve this equation. It often happens that additional BCs can be specified
but are not used. They must nevertheless be satisfied by the solution.

Most analytical and numerical methods can easily handle complex initial con-
ditions but have difficulty with complex boundary conditions, particularly those
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occasioned by unusual geometries. There is an incentive to simplify or transform
difficult boundary conditions even if this results in a more complicated initial con-
dition. An example of this type of transformation is taken up in Illustration 7.3.3.

 

Illustration 7.1.1 Classification of PDEs

 

Properties and classifications of the following PDEs is to be established.

(I) (7.1.18)

This PDE, known as Poisson’s equation, is a second order, nonhomogeneous
equation in the two independent variables x and y. It is linear since the derivatives
appear in linear combination. The nonhomogeneous term S(x,y), although arbitrary
in form, is a function of the independent variables only and, therefore, does not
affect linearity.

Comparison with Equation 7.1.12 yields the criterion:

B

 

2

 

 – AC = 0 – (1)(1) = –1 < 0

Hence, according to Table 7.1, Poisson’s equation is elliptic.

(II) (7.1.19)

This PDE is a special case of the so-called Chromatographic Equation which
expresses variations in solute concentration Y of a fluid flowing through a stationary
sorptive medium under equilibrium conditions (see Section 7.2). The term f

 

′

 

(Y) is
the derivative of the equilibrium relation:

q = f(Y) (7.1.20)

and is generally nonlinear in form.
The equation is a first order, homogeneous PDE in the two independent variables,

distance z and time t. It is not linear because of the product f

 

′

 

(Y)(

 

∂

 

Y/

 

∂

 

t), but neither
is it fully nonlinear. Since the highest derivatives, 

 

∂

 

Y/

 

∂

 

z and 

 

∂

 

Y/

 

∂

 

t, appear in linear
form, it is a quasilinear PDE.

(III) Two-dimensional compressible irrotational (i.e., frictionless) flow is
described by:

(7.1.21)
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These are two first order homogeneous PDEs in the two velocity components
vx and vy, with c = velocity of sound. The second equation is linear and the first one
quasilinear by virtue of the fact that its highest derivatives appear in linear form.

To determine whether the set is elliptic, parabolic or hyperbolic, we identify the
coefficient matrices of the partial derivatives as:

(7.1.22)

and

Hence,

(7.1.23)

or

(7.1.24)

This results in the following classification:

Thus, the PDEs can fall into any one of the three categories (elliptic, parabolic,
hyperbolic) depending on whether the flow regime is subsonic, sonic, or supersonic.
Consequently, one can expect changes in both solution methods and solution behav-
ior as the flow regimes change.

Illustration 7.1.2 Derivation of Boundary and Initial Condition

Leaching of a Slurry in a Stirred Tank — A slurry of porous solid particles assumed
to be thin flakes and containing a soluble component is to be leached in a stirred
tank of solvent (Figure 7.1A). We wish to derive BCs and ICs for the full PDE
model in terms of solid and external fluid concentrations Cs and Cf.
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The internal mass transfer is assumed to be Fickian. Equation 7.1.4 applies and
requires three BCs/ICs, two for the second order derivative and one for the first
order time derivative. We obtain:

IC Cs(x,0) = Cs
0 (assumed uniform)

BC I

or

Cs(0,t) = bounded (7.1.25)

BC II

where k is a mass transfer coefficient.

FIGURE 7.1 Examples of physical systems with BCs of Type I, II, and III (Dirichlet,
Neumann, Robin).

∂
=

=

C

dx
symmetrys

x 0

0 ( )

−
∂
∂

= −
=

D
C

x
k C L C ts

x L
s f[ ( ) ( )]

248/ch07/frame  Page 417  Friday, June 15, 2001  7:02 AM

© 1999 By CRC Press LLC



BC I is of type II, BC II of Type III or Mixed Type. The latter expresses equality
of diffusive flux at the surface and convective removal through a film resistance.
Fick’s equation is coupled to an external integral unsteady mass balance, which
leads to a first order ODE in the fluid concentration Cf requiring an initial condition:
IC — Cf(0) = 0, assuming clean solvent at the start of the operation.

Systems of PDEs coupled to ODEs arise frequently in diffusive processes taking
place in a confined, well-stirred medium. In these cases, four boundary and initial
conditions are required for each of the participating species. Solutions of such
systems are taken up in Chapter 8, Illustration 8.2.5.

Diffusion into a Narrow Capillary — A liquid containing a solute at a concen-
tration C0 flows over the opening of a capillary containing pure solvent (Figure
7.1B). The solute diffuses into the capillary which is sealed at the bottom. This type
of arrangement has been used to determine diffusivities from average solute con-
centrations in the capillary measured at various time intervals. Substitution of the
values into the solution of Fick’s Equation 7.1.4 allows the relevant diffusion coef-
ficient D to be extracted (see Practice Problem 9.2.7).

The required boundary and initial conditions that are three in number are as
follows:

IC C(0,x) = 0 (Pure Solvent at t = 0) (7.1.26)

BC I C(t,0) = C0 (Concentration at open end)

Here it is assumed that flow of the liquid is fast enough that there are no
significant changes in external solute concentration. The same effect may be obtained
by contacting the capillary with a large volume of a well-stirred fluid.

BC II (7.1.27)

Alternatively, we have:

C(t,L) – Bounded

7.2 PDEs OF MAJOR IMPORTANCE

The previous section gave the reader a first glimpse of PDEs and their properties.
The reassuring fact emerged that except for one or two new features, these properties
were very much like those we had seen at the ODE level. We now open the door
slightly wider and expose the reader to a listing of PDEs of major importance. These
are presented in scalar Cartesian form to make them easier to decipher. The more
general vectorial representation is deferred to the next chapter.

Although still somewhat intimidating in appearance, the reader will take comfort
from the fact that these equations share some familiar features with ordinary differ-
ential equations. Thus, convective transport is still described by first order derivatives,

∂
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diffusive transport by second order derivatives, and interphase transport, is, as before,
proportional to a linear driving force. These PDEs are for the most part similar in
appearance to ODEs we had seen in previous chapters and may be viewed as
multidimensional extensions of the balances we had encountered at the ODE level.
In fact, we shall see that if we reverse the process by reducing dimensionality we
can, in many instances, recover an ODE balance seen before.

7.2.1 FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

7.2.1.1 Unsteady Tubular Operations (Turbulent Flow)

We noted in the introduction to the chapter that all systems of the one-dimensional
pipe category, which led to first order ODEs under steady-state conditions, become
PDEs when time-dependent inlet conditions are imposed. They will be first order
PDEs since the rate of change term will be a first order derivative. Thus, for the
steam heated pipe described in Illustration 2.2 the relevant energy balance now reads:

(7.2.1)

with inlet temperature in general given by:

T(t,0) = f(t)

Flow rate f(t) and inlet temperature can vary individually or in combination with
time t and affect the heat transfer coefficient U(t) as well.

Similar first order PDEs arise in tubular reactors and in co-current and counter-
current continuous mass and heat transfer operations. Turbulent flow conditions had
been specified since laminar flow leads to radial diffusive processes and results in
second order PDEs. These are described in Section 7.2.2, the Graetz Problem.

One notes that for the steady state, Equation 7.2.1 reduces to the ODE (2.15)
for the steam-heated pipe and we are on familiar ground again. Thus, the two

equations differ only by the single unsteady term  If, on the other hand,

we drop the convective term F(t)Cp(∂T/∂z), we recover an unsteady stirred tank
balance which leads again to familiar territory.

7.2.1.2 The Chromatographic Equations

These equations describe concentration changes that occur when a fluid containing
a solute, or devoid of it, flows through or over a stationary matrix of solid sorptive
material. The latter may be “clean” or loaded with solute. We had considered
problems of this type as an environmental context in Chapter 6, Illustration 6.2.8
without going into the details of the underlying partial differential equations. We
now consider these both under equilibrium and nonequilibrium conditions where
the fluid phase is a gas.
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Equilibrium (No Mass Transfer Resistance) — 

 

We had already seen this case in
Illustration 7.1.1 where the PDE was of the form:

(7.1.19)

where f

 

′

 

(Y) is the derivative of the equilibrium relation:

q = f(Y) (7.1.20)

and 

 

ερ

 

g

 

 can usually be neglected.
A more general formulation for several solutes is given by the two-phase mass

balance:

(7.2.2)

with the equilibrium relation:

q

 

i

 

 = f(Y

 

1

 

, Y

 

2

 

 … Y

 

n

 

) (7.2.3)

and I = 1, 2, … n. Here q = solid phase concentration (kg solute/kg solid) and Y =
gas phase concentration (kg solute/kg carrier). G

 

s

 

 is the carrier mass velocity (kg/s
· m

 

2

 

), 

 

ρ

 

b

 

 and 

 

ρ

 

g

 

 the bed and carrier density (kg/m

 

3

 

), 

 

ε

 

 the bed void fraction.
We, thus, obtain, after substitution of Equation 7.2.3 into Equation 7.2.2, n

coupled first order PDEs in the fluid concentrations Y

 

1

 

, Y

 

2

 

 … Y

 

n

 

.

 

Nonequilibrium (With Mass Transfer Resistance) — 

 

Here the relevant equations
are given by:

 

Gas-phase mass balance:

 

(7.2.4)

 

Solid phase mass balance:

 

(7.2.5)

 

Equilibrium (inverted):

 

Y* = f(q) (7.2.6)
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Here again it is of some comfort to see that omission of the unsteady term in
Equation 7.2.4 yields the familiar steady-state gas phase mass balance, Equation
(2.20), which we had encountered while modeling a countercurrent gas absorber.
The reader should attempt to overcome the initial mistrust of PDEs by reducing
them, whenever possible, to ODEs which are familiar from more conventional
steady-state and one-dimensional situations.

7.2.1.3 Stochastic Processes

Stochastic processes that deal with the probability of an event occurring are fre-
quently described by the Fokker-Planck equation:

(7.2.7)

and its reduced form (D = 0):

(7.2.8)

The latter is a linear, homogeneous first order PDE with variable coefficients.
Physically, the equation expresses the probability that a random variable has the
value x at time t. Thus, in so-called random walk processes, P will be the probability
distribution of the position x of a particle at a given time t. Other stochastic processes
can be described by the same equation.

7.2.1.4 Movement of Traffic

It seems at first sight surprising that movement of traffic which consists of discrete
vehicular entities can be described by a differential equation. This is achieved by
defining a vehicle density C (# per unit distance x) and a vehicle flux q (# crossing
x per unit time), corresponding to concentration C and flux NA in ordinary mass
transport. A simple “mass balance” then yields the expression:

(7.2.9)

where flux q′ is given by the product of density C and velocity v:

q′ = Cv (7.2.10)

v in turn depends on density, since high densities, for example, lead to low velocities.
A simple relation which is often used to express this fact has the form:
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(7.2.11)

Thus, when C 

 

≅

 

 0, traffic moves at its maximum speed. Conversely, when C =
C

 

Max

 

, traffic comes to a halt, i.e., we have a bumper-to-bumper traffic jam.
Substitution of Equations 7.2.10 and 7.2.11 into the mass balance Equation 7.2.9

yields a single PDE in the vehicle density C, as a function of time and position:

(7.2.12)

The equation is first order, quasilinear, and homogeneous. We shall encounter
it again in Chapter 9, Section 9.3 (Method of Characteristics).

 

7.2.1.5 Sedimentation of Particles

 

The treatment of this case is analogous to that of traffic problems, i.e., one performs
in the first instance a mass balance which leads to Equation 7.2.9, where C is now
the number of particles per unit volume and flux q is in terms of number of particles
settling per unit area and time. An auxiliary relation is then introduced, much like
that given by Equations 7.2.10 and 7.2.11 to relate flux to concentration:

(7.2.11)

The final PDE is then identical to that given by Equation 7.2.12.
The auxiliary Relation 7.2.11 holds in simple situation but more complex rela-

tions, both for traffic and sedimentation problems are needed in other cases. These
are described in specialized monographs (see references at end of Chapter 9).
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This equation, which is among the most important relations of mathematical physics,
is given in Cartesian coordinates by the expression:

(7.2.13)

The solution of this equation yields the steady-state distribution of the state
variable u. That variable is often referred to as a 

 

potential

 

 or 

 

potential function,

 

 and
the study of its behavior as 

 

potential theory.
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in many applications of Laplace’s equation, u represents a driving potential for a
particular physical process leading to the movement of mass and heat. In other cases
it serves to generalize force fields which are related to the movement of mass or
electrical charges. We summarize these applications below.

Conduction — Here Laplace’s equation has the specific form in rectangular
coordinates:

(7.2.14)

The solution represents the steady-state temperature distribution in three-dimen-
sional Cartesian space. It can be displayed as a “flow net” (Figure 7.2A) in which
the lines T = constant are the equipotential lines or isotherms which carry no heat,
and the orthogonal set of flux lines q = constant are the pathways along which
conduction takes place with the components of q given by Fourier’s law, i.e.,

(7.2.15)

FIGURE 7.2 Physical systems described by Laplace’s equation.
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It is comforting to note that for the one-dimensional case, Equation 7.2.14
reduces to

(7.2.16)

with the solution:

T = Ax + B (7.2.17)

This is the well-known linear temperature profile which arises in unidirectional
heat conduction between two isothermal plates.

Diffusion — The counterpart of Equation 7.2.14 for mass diffusion is given by:

(7.2.18)

where concentration C is the potential corresponding to temperature T, and the mass

flux  takes the place of conductive flux q.

Flow Through Porous Media — Here the driving potential is the hydrostatic
pressure p, and Laplace’s equation takes the form:

(7.2.19)

p is related to the velocity components vx, vy, vz via the auxiliary D’Arcy’s law
which is the counterpart to Fourier’s and Fick’s law:

(7.2.20)

The Ks in this expression represent permeabilities of the porous medium in the
three directions.

The solution of Equation 7.2.19 represents the pressure distribution in the porous
medium that can in turn be used to derive the velocity distribution by back-substi-
tution into Equation 7.2.20, giving us a complete description of the flow field in a
porous medium. Note that no flow takes place along the equipotential lines p =
constant.

Irrotational or Potential Flow — Although a precise definition of irrotational
flow requires the use of vector calculus (see Chapter 8), it suffices for our present
purposes to identify it with frictionless flow. Some exceptions to this definition do
occur but they are quite rare.
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The flow in question has a potential function associated with it, the so-called
velocity potential φ which is related to the two-dimensional velocity components vx

and vy via the expressions:

(7.2.21)

Alternative formulations using negative gradients also may be used.
The best way to obtain a physical sense of this quantity is to note that for φ =

constant, the velocity components vanish, i.e., there is no flow along equipotential
lines φ = constant. In this respect, φ has the same properties as the potential functions
for conduction (T), diffusion (C), and flow in porous media (p). Orthogonal to this
network of lines is the network of flow that is the streamlines of the flow field. These
lines have the properties that a second function, the so-called stream function ψ, is
invariant along them, ψ = constant (see Figure 7.2B). That function also can be
related to the two-dimensional velocity components, as follows:

(7.2.22)

Both ψ and φ satisfy Laplace’s equation as can be seen by differentiating
Equations 7.2.21 and 7.2.22. Thus,

(7.2.23)

One can solve for either φ or ψ and obtain, by direct substitution into Equations
7.2.21 and 7.2.22, the velocity distribution in the flow field. To obtain a complete
description of the flow, we require in addition the pressure distribution p(x,y). This
is arrived at from Bernoulli’s equation which for the present purposes takes the form
(incompressible flow):

(7.2.24)

Gravitational and Electrostatic Fields — The potential function for gravitational
and electrostatic fields derives from the empirical laws due to Newton (gravity) and
Coulomb (electrostatics) that the attractive forces between two masses or two charges
of opposite sign varies directly with the product of the mass m or charges q, and
inversely with the square of the distance between them:
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(7.2.25)

It can be shown that these empiricism lead to the definition of a potential function
V, which is related to the Cartesian force components as follows:

(7.2.26)

where we have generalized both the potential function and the proportionality con-
stant into single entities (Figure 7.2C). One notes that these “auxiliary relations” are
nearly identical in form to the relations applicable to conduction, diffusion, and flow
through porous media with the exception that the derivatives of the potential function
V take a positive sign, as did the velocity potential. Differentiation along constant
force lines converts Equation 7.2.26 to Laplace’s equation:

(7.2.22)

We have summarized for convenience the relevant potential functions for the
various cases discussed in Table 7.2.

 

7.2.2.2 Poisson’s Equation

 

Poisson’s equation is obtained by adding what may be called a Source Term A to
Laplace’s Equation. This yields the general form:
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(7.2.28)

Such nonhomogeneous terms A(x,y,z) arise in the steady-conduction of heat
through a medium with distributed or uniform heat sources, in gravitational fields
with distributed masses and in electrostatic fields with distributed charges. The exact
form of A(x,y,z) is summarized for the convenience of the reader in Table 7.3.

 

7.2.2.3 Helmholtz Equation

 

Here a linear term in the state variable u is added to Laplace’s equation to yield:

(7.2.29)

Occurrence of this equation is more limited. It arises principally in diffusional
processes accompanied by a first order reaction. For example, diffusion in three
dimensions in a solid matrix, in which the reactants undergo a first order irreversible
reaction is given by the expression:

(7.2.30)

An identical form arises in nuclear processes in which neutron density 

 

φ

 

 takes
the place of concentration C, and the rate term is given by the expression:

where 
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f,a

 

 are the so-called fission and absorption cross-sections, and 

 

ν

 

 = number of
neutrons produced per fission event. The reader will note that upon dropping the
derivatives in y and z, we recover the ODE for diffusion and reaction in a catalyst slab.

 

7.2.2.4 Biharmonic Equation

 

This equation, used as an example of a higher order PDE, has the two-dimensional
rectangular form:
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(7.1.2)

It arises in certain areas of solid mechanics, such as elasticity theory where u
describes the displacement in the solid body. In fluid mechanics, the equation is
encountered in the description of 

 

creeping flow,

 

 i.e., slow viscous flow, in which u
becomes the stream function 

 

ψ

 

 (see Chapter 8, Equation 8.4.15).

 

7.2.2.5 Fourier’s Equation

 

We use the term Fourier’s equation to denote the unsteady version of the expression
for steady-state conduction, Equation 7.2.14. For constant physical properties, it
takes the rectangular form:

(7.2.31)

where 

 

α

 

 = k/

 

ρ

 

Cp = thermal diffusivity. A derivation of the one-dimensional version
of this equation is given in Illustration 7.2.1.

 

7.2.2.6 Fick’s Equation

 

Fick’s equation is the diffusional counterpart to Fourier’s equation and is identical
to it in form, with concentration C replacing temperature, and mass diffusivity D
taking the place of thermal diffusivity 

 

α

 

. We have in Cartesian coordinates:

(7.2.32)

Although many solutions to this equation are identical in form to those of the
conduction equation, there are sufficient differences in the two processes that a
separate treatment of the topic becomes desirable. This is reflected in the existence
of separate monographs devoted to the subject (see References).

 

7.2.2.7 The Wave Equation

 

The Wave equation describes not only, as the name implies, wave propagation
phenomena, but applies quite generally to physical processes which result in the

 

disturbance

 

 or 

 

displacement

 

 of fluid or solid elements. It has the Cartesian form:

(7.2.33)

where c is a constant and a function of the physical process under consideration.
We summarize specific applications below.
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Transverse Vibrations in a String — 

 

The one-dimensional form of Equation
7.2.33 applies here, with u(x,t) describing the displacement of an element of the
string in the transverse direction. The constant c

 

2

 

 equals H/

 

ρ

 

 where H is the horizontal
component of the tension along the string. The derivation of the PDE appears in
Illustration 7.2.1.

 

One-Dimensional Sound Propagation — 

 

Here the constant c represents the
velocity of sound:

and the displacement is related to the local pressure p by the relation:

(7.2.34)

where the subscript o denotes the undisturbed state.

 

Transverse Vibrations in a Membrane — 

 

Vibrations of a thin membrane of width
L are represented by the two-dimensional wave equation, with c

 

2

 

 = TL and u(x,y,t)
the displacement in the transverse direction. T is the uniform tension of the mem-
brane. Other applications include the propagation of tidal and electromagnetic waves,
as well as elastic waves in a solid.

 

7.2.2.8 The Navier-Stokes Equations

 

The Navier-Stokes equation is a vectorial force or momentum balance for viscous
fluid flow. It has three component balances, of which we reproduce one in the
Cartesian z direction:

(7.2.35)

Together with the continuity equation, the Navier-Stokes equations comprise
four PDEs in the state variables v
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, and p. Their solution represents a complete
description of the flow field.

As usual, one can gain a better physical understanding of these formidable
equations by reducing them to simpler and more familiar cases. Thus, for steady
inviscid (
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 = 0), one-dimensional steady flow, Equation 7.2.35 becomes:
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(7.2.35a)

which is the differential form of the Bernoulli equation.
We shall return to the Navier-Stokes equations in Chapter 8, Section 8.4 where

they will be discussed in greater detail and refinement.

 

7.2.2.9 The Prandtl Boundary Layer Equations

 

In boundary layer theory it is assumed that viscous or frictional effects in exterior
flows are confined to a thin layer adjacent to the surface of the submerged body.
Outside this region flow is essentially frictionless or, to be more precise, we are
dealing with potential or irrotational flow (Figure 7.3). An analysis due to Prandtl
established that viscous forces and those due to bulk flow in the y-direction are
negligible compared to those operating in the x-direction. Under these conditions,
the three Navier-Stokes momentum balances will reduce to a single two-dimensional
balance which is supplemented by the corresponding continuity equation. We obtain:

 

Momentum balance:

 

(7.2.36)

 

Continuity equation:

 

(7.2.37)

The pressure gradient which is significant only in the x-direction is established
from the solution of the potential flow equations in conjunction with Bernoulli’s

 

FIGURE 7.3

 

Flow about a submerged body. Division of the flow field into boundary layer
flow and potential flow.
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Equation 7.2.35a. Here again we shall retrace the various steps in greater detail in
Chapter 8, Section 8.4 where we also shall provide a detailed derivation of these
important equations.

 

7.2.2.10 The Graetz Problem

 

The nature of this problem may be deduced from Figure 7.4. It consists essentially
of the derivation of the axial and radial temperature profiles which result when a
fluid in viscous flow and with inlet temperature T

 

0

 

 flows through a duct whose wall
temperature is kept constant at some value T

 

w

 

. T

 

w

 

 is assumed to be higher than T

 

0

 

in the figure, but it can equally well be set lower. A steady-state energy balance in
cylindrical coordinates leads to the PDE (see Illustration 7.2.1):

(7.2.38)

whose solution provides the desired profile T(r,z).
This classical problem has been extended to encompass a variety of wall bound-

ary conditions, duct geometries, axial conduction, as well as non-Newtonian fluids.
It will be evident to the reader that an expression identical in form to Equation 7.2.38
applies to 

 

mass

 

 transport which may arise in membrane processes or when a sub-
stance is either released or reacted at the tubular wall.

Because of the scope and importance of the topic, entire monographs listing
solutions and solution methods have been devoted to the subject (see References at
the end of the Chapter 8). Further details and illustrations dealing with this problem
will appear in Chapter 8, Sections 8.2 and 8.3.

 

Illustration 7.2.1 Derivation of Some Simple PDEs

 

The derivation of PDEs can be accomplished in several ways.

• At the simplest level, one uses an extension of the methodology estab-
lished for algebraic and ordinary differential equations. This consists of
invoking various conservation laws and applying the scheme: Rate in –
Rate out = Rate of change of contents.

 

FIGURE 7.4

 

The Graetz problem in heat transfer. Development of steady axial and radial
temperature distributions.
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For force balances use is also made of Newton’s law. This method can
be applied easily to simple PDEs but becomes increasingly cumbersome
as the geometry and the balances grow in complexity.

• One can use the above approach to derive the PDE for a simple geometry
and generalize the results by means of vector calculus. This is the approach
used in most texts on transport phenomena, but will not be taken up here.

• One can start immediately with a vector/tensor representation of the basic
conservation laws and apply these to various geometries of interest. This
requires considerable background in the basic laws and manipulations of
vector and tensor calculus. Some examples of this approach will be given
in Chapter 8.

For the present, we limit ourselves to the simplest methodology and use it to
derive some elementary PDEs.

 

Fourier’s Equation in One Dimension — 

 

We apply an energy balance to the
differential element shown in Figure 7.5A and obtain

(7.2.39)

and in expanded form:

where it is to be noted that the time derivative is an 
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 over the difference
element.
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(7.2.40)
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For constant thermal conductivity k, this reduces to the form given previously:

(7.1.1)
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Cp = thermal diffusivity.
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and leaves the element axially at z and z+

 

∆

 

z and conductive flux enters and leaves
radially at positions r+

 

∆

 

r and r. The process is at steady-state and we obtain:

(7.2.41)

or in expanded form:

(7.2.42)

Several features are of note here:

• Velocity v varies in general with radial distance r and an average value
v

 

avg

 

(r) has to be specified over the radial increment 

 

∆

 

r. That term becomes
a point quantity v(r) upon going to the limit 

 

∆

 

r 

 

→

 

 0.

 

FIGURE 7.5

 

Difference elements for the derivation of PDEs.
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• Fourier’s law of heat conduction takes a positive sign since the process
takes place in the negative radial direction.

• The radial perimeter 2

 

π

 

r, as well as the temperature gradient 

 

∂

 

T/

 

∂

 

r, have
to be differentiated upon going to the limit 

 

∆

 

r 

 

→

 

 0. Note that the perimeter
in the conduction term has been left as 2

 

π

 

r, not [2

 

π

 

(r + 

 

∆

 

r), 2

 

π

 

r). The
latter formulation, often used by novices, leads to messy and sometimes
incorrect results. Similarly, the area of the radial increment is given as
2

 

π

 

r 

 

∆

 

r rather than 

 

π

 

(r + 

 

∆

 

r)

 

2

 

 – 

 

π

 

r

 

2

 

, to avoid unnecessary complications.
• The axial enthalpy flow F (kg/s) H (J/kg) becomes in expanded form

v

 

ρ

 

AC

 

p

 

(T – T

 

0

 

).

We now proceed to divide Equation 7.2.42 by 2

 

π

 

r

 

∆

 

r

 

∆

 

x and obtain:

(7.2.43)

Letting 

 

∆

 

z and 

 

∆

 

r go to zero and taking care to differentiate the entire product
(r 

 

∂

 

T/

 

∂

 

r), we obtain after rearrangement:

(7.2.44)

where 

 

α

 

 = k/

 

ρ

 

 Cp = thermal diffusivity and v(r) has now become a point quantity.
Graetz originally solved the problem for v = constant, and it was not until 1956 that
a solution to the variable case v(r) became available.

 

The Vibrating String — 

 

This system requires a force balance of which the
principal components and the attendant deflection of the string are depicted in Figure
7.5C. V(x,t) is the restoring vertical force which varies with time and distance x
while the horizontal component H of the tension T is constant over the length of
the string and time invariant. It is further assumed that the angle 

 

α

 

 remains small
so that the incremental length of string is given by its projection 

 

∆

 

x. In other words,
we are limiting ourselves to vibrations of 

 

small amplitude

 

 such as those experienced
by the strings of musical instruments.

With these considerations in place, we obtain the following relation between
horizontal and vertical force components H and V(x,t):

(7.2.45)
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where Y is the vertical displacement of the string. Applying this relation to a
difference element 

 

∆

 

x of the string and invoking Newton’s law to describe its motion,
we obtain:

(7.2.46)

where 

 

ρ

 

 = mass per unit length of string and 

 

∂

 

2

 

Y/

 

∂

 

t

 

2

 

 is the acceleration of the element.
Dividing by 

 

ρ

 

 

 

∆

 

x and letting 

 

∆

 

x 

 

→ 0 we finally obtain:

(7.2.47)

where c2 = H/ρ. Equation 7.2.47 is seen to be the one-dimensional version of the
general wave Equation 7.2.33.

7.3 USEFUL SIMPLIFICATIONS AND 
TRANSFORMATIONS

Since the task of solving PDEs is, in many cases, a considerable undertaking, it is
worthwhile and indeed often mandatory to simplify the PDEs prior to embarking on
a solution. These simplifications may take various forms, which we summarize below.

• Elimination of independent variables or reduction to an ODE
• Elimination of dependent variables or reduction in number of PDEs
• Reduction to homogeneous form
• Change of independent variables and reduction to canonical form
• Simplification of geometry
• Nondimensionalization

Some of these simplifications had already been practiced at the ODE level. Thus,
our favorite track of dividing simultaneous first order ODEs had led to the elimination
of the independent variable, and sometimes of a dependent variable as well (see
Chapter 3, Illustration 3.2.7 and Chapter 6, Illustration 6.3.1). Dependent variables
also could on occasion be eliminated algebraically to reduce the number of ODEs
in a set at the cost of raising the order of the equations (Illustration 3.3.2). Both the
D-operator method and the Laplace transform were, in a sense, simplifying devices
which reduced the ODEs to algebraic forms. These techniques have their counter-
parts at the PDE level. Let us consider these methods in some detail.

7.3.1 ELIMINATION OF INDEPENDENT VARIABLES: REDUCTION

TO ODES

The device of eliminating independent variables or reducing the PDE to lower
dimensionality is used in virtually all major analytical solution methods. This
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includes the method of separation of variables, integral transforms of various types,
similarity transformation, and the method of characteristics. We sketch the principal
steps of some of these procedures below. More detailed coverage is provided in
Chapter 9.

7.3.1.1 Separation of Variables

The basic line of attack here is to assume that the solution is made up of the product
of functions of the independent variables:

u(x,y,z,t) = f(x)g(y)h(z)k(t) (7.3.1)

This assumption has the effect of reducing the PDE to an equivalent set of ODEs.
We demonstrate this for the simple case of the one-dimensional Fourier’s equation.
Introducing the assumed solution form T = f(x)g(t) into the PDE α ∂2T/∂x2 = ∂T/∂t,
we obtain the result:

(7.3.2)

Substitution into Fourier’s equation and some rearrangement leads to the relation:

(7.3.3)

where we have cleverly grouped functions of the same variable together.
Now functions of two different independent variables cannot be equal unless

they are constant. We therefore obtain:

(7.3.4)

and, hence, the equivalent set of ODEs:

(7.3.5)

These equations can be solved independently and subsequently developed into
a general solution of the PDE. This will be demonstrated in Chapter 9.
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7.3.1.2 Laplace Transform

We retain the example of the one-dimensional Fourier’s equation and formally apply
the transformation. One obtains:

(7.3.6)

The left side yields the customary expression for the Laplace transform of a first
order derivative. Thus,

(7.3.7)

where T(s) is the transformed temperature, and T(0) the initial condition.
The right side is evaluated by reversing the order of differentiation and integra-

tion. This procedure is justified under some mild conditions of continuity and
existence. We obtain:

(7.3.8)

Thus, the transform of the derivative has become the derivative of the transform.
Combining the results of Equations 7.3.7 and 7.3.8 we obtain the following ODE
in the transformed variable T:

(7.3.9)

This is a linear second order nonhomogeneous ODE in T(s), which can be solved
by standard techniques. Subsequent inversion of the result T = f(x,s) then yields the
solution of the PDE T(x,t). A more detailed exposition of the method will be given
in Chapter 9.

7.3.1.3 Similarity or Boltzmann Transformation:
Combination of Variables

In this method, two independent variables of the PDE, for example, x and y or x
and t, are combined into a single new independent variable η, termed the similarity
variable. This is achieved by means of the following transformation:

η = y/xn or η = x/tn (7.3.10)
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Although other functional form functions exist and can be applied, the Form
7.3.10 is by far the most extensively used. The first such transformation, proposed
by Boltzmann in 1894 to solve a nonlinear conduction problem had the form:

η = xt–1/2 (7.3.11)

It has been used in a number of other contexts since.
The reason for choosing the particular Form 7.3.10 resides in the requirement

that in combining the two independent variables one must, at the same time, bring
about a coalescence of two boundary conditions into a single BC. Such coalescence
is difficult to achieve in finite geometries, but if one limits oneself to a semi-infinite
or infinite medium, the Transformation 7.3.10 will give us the desired result. Thus,
in the conduction problem considered by Boltzmann, an initial condition at t = 0
would be available, as well as a boundary condition at x → ∞ and the temperatures
for both conditions would be the same. If the Form 7.3.11 is chosen, these conditions
will lead to the same value of the similarity variable, i.e., η = ∞, thus bringing about
the desired merger of initial and boundary conditions.

The view we have presented above is a very limited one, designed to give the
reader a first introduction to the technique of similarity transformation. The underlying
theory is much broader and more profound, and is aimed at deducing general trans-
formations which will lead to a simplification and contraction of partial differential
equations. It is based on concepts of group transformation and invariant groups, and
is the subject of specialized monographs (see References at the end of the chapter).

In the course of performing a similarity transformation, one is required to express
partial derivatives in the old independent variables x and y (x and t) in terms of the
new similarity variable η. This is done by what is known as the chain rule of partial
differentiation which is described in standard calculus texts. The derivation of the
pertinent formulas is somewhat cumbersome, and we therefore have summarized
the more important results for convenience in the accompanying Table 7.4. These
can be used directly to transform “old” derivatives into “new” ones.

Illustration 7.3.1 Heat Transfer in Boundary Layer Flow
over a Flat Plate: Similarity Transformation

To illustrate the use of the similarity transformation and the attendant simplifications
that result, we consider the situation depicted in Figure 7.6. A flat plate maintained
at a constant temperature Tp is exposed to a flow of colder air with an approach
temperature of T0. Heat transfer takes place through the so-called thermal boundary
layer and into the semi-infinite medium of flowing air. That thin layer adjacent to
the surface of the exposed plate contains the temperature variations which result
from the heat transfer process and which range from Tp at the plate to T0 at the outer
edge of the layer. The thermal boundary layer has a counterpart, the so-called
momentum boundary layer that expresses momentum transfer from the air to the
stationary plate and contains the velocity variations in the flowing air. They range
from a value of v = 0 at the surface of the plate to the free stream velocity v = v0

at the edge of the layer and beyond.
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Theoretical analysis of these two boundary layers has revealed that the thermal
layer is much thinner than the momentum boundary layer and lies essentially within
the linear portion of the velocity profile. This brings about a considerable simplifi-
cations of the energy balance required to derive the temperature profile in the
boundary layer. The balance is taken over the element shown in Figure 7.6B, leading
in the first instance to the following expression

(7.3.12)

In expanded form we obtain:

(7.3.13)
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where W = width of the plate and v =  is the shear rate of the air at the plate
and equals the slope v/y of the linear portion of the velocity profile.

Upon dividing by W

 

∆

 

x

 

∆

 

y and letting 

 

∆

 

x, 

 

∆

 

y 

 

→

 

 0, there results:

(7.3.14)

We now introduce the dimensionless temperature 

 

θ

 

 = (T

 

p

 

 – T)/(T

 

p

 

 – T

 

0

 

) and
obtain, after slight rearrangement, the compact form:

(7.3.15)

with  and 

 

α

 

 = k/

 

ρ

 

Cp = thermal diffusivity.
The associated boundary conditions are as follows:

At the plate edge:

 

θ

 

(0,y) = 1 (7.3.15a)

At the plate surface:

 

θ

 

(x,0) = 0 (7.3.15b)

In the free stream:

 

θ

 

(x,

 

∞

 

) = 1 (7.3.15c)

This represents the system to be solved.

 

FIGURE 7.6

 

Heat transfer in boundary layer flow around a flat plate.
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The Conditions 7.3.15a and 7.3.15c, given as they are at values of x = 0 and y
= 

 

∞

 

 indicate that a similarity transformation may be possible. We, therefore, specify
a similarity variable of the form:

 

η

 

 = y/x

 

n

 

(7.3.16)

and proceed to evaluate n. That parameter has to be such that the transformed PDE
7.3.15 becomes an ODE in 

 

η

 

 only and is free of any terms containing the old
independent variables x and y. We use Table 7.4 to transform old derivatives in x
and y to new derivatives with respect to 

 

η

 

. This yields:

(7.3.17)

Substitution of these expressions into the PDE 7.3.14 gives the result:

(7.3.18)

One notes that the terms in the old independent variable x will cancel if we
impose the condition n = 1/3. The resulting ODE is then given by:

(7.3.19)

with the similarity variable 
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 given by:
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(7.3.20)

The boundary conditions are now only two in number with the first one resulting
from the merger of Equations 7.3.15a and 7.3.15c and having the value:
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(7.3.20a)

Added to this is the old BC Equation 7.3.15b which now becomes:
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 = 0 (7.3.20b)
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(7.3.21)

This equation is immediately integrable by separation of variables to yield:

(7.3.22)

A second integration, also by separation of variables, leads to the result:

(7.3.23)

where z is the integration variable.
From the boundary conditions 7.3.20, we obtain:

C2 = 0 (7.3.24)

and

giving as the final result:

(7.3.25)

The integrals in this expression are both convergent. The result can be expressed
in terms of the old coordinates x and y by making use of Equation 7.3.20. An
identical solution arises in the so-called Lévêque solution of the Graetz problem,
which is taken up in Chapter 8, Illustration 8.2.3.

Comments:
The reader may have noted that the first integration constant was formulated in

terms of a pre-exponential coefficient in Equation 7.3.22 rather than as an additive
constant. Both procedures are valid, as long as the boundary conditions are ultimately
satisfied. The additive constant, however, fails to do this and has to be replaced by
the method adopted here. This seemingly trivial change in procedure is indispensable
for the successful solution of the problem.

The temperature profiles in the boundary layer change in the direction of flow
(x), but only in scale, not in shape. They are for this reason termed self-similar and
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the associated solution method is, as we have seen, referred to as a similarity
transformation. Boundary layer profiles of velocity and concentration are likewise
self-similar as are certain profiles which arise in unsteady conduction and diffusion.

One consequence of this behavior is that the wall shear rate  which

is needed in the result of Equation 7.3.25, is a constant which can be extracted from
the drag coeffiicent CD of the relevant drag force. Thus,

(7.3.26)

and

(7.3.27)

where τw = shear stress at the plate.
Hence,

(7.3.28)

Values of CD can be found in Table 3.14.

7.3.2 Elimination of Dependent Variables: Reduction of 
Number of Equations

Dependent variables can on occasion be reduced in number, particularly when they
represent the components of a vector quantity. The classical example is that of the
stream function ψ which serves to combine the velocity components vx and vy of
two-dimensional fluid flow into a single entity via the previously given relation

(7.1.5)

Evidently some skill and imagination is required to formulate a new dependent
variable which will bring about the desired reduction in both number of equations
and dependent variables. We illustrate an example of its application below.

Illustration 7.3.2 Use of the Stream Function in Boundary 
Layer Theory: Velocity Profiles Along a Flat Plate

External Boundary Layer Flow in two dimensions had previously been described
by the Prandtl Boundary Layer Equations 7.2.36 and 7.2.37. For flow over a flat
plate, the pressure term dp/dx vanishes and we obtain
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Momentum balance:

(7.3.29)

Continuity equation:

(7.2.37)

where ν = µ/ρ = kinematic viscosity.
Introduction of the stream function into the momentum balance leads to the

relation

(7.3.30)

A similar substitution into the continuity equation brings about the following
interesting result:

(7.3.31)

i.e., the difference in the derivatives is identically zero. The continuity equation is
eliminated and the desired reduction in the number of equations thus is accomplished.
The price to be paid is that the new Equation 7.3.30 is one order higher than the
previous momentum balance. Such equations, however, are easier to handle than the
previous coupled pair of PDEs.

We note that Equation 7.3.30 is homogeneous and quasilinear since the highest
derivative appears in the linear form. We further note that the geometry and the
boundary conditions are similar to those we had seen in Illustration 7.3.1. Similarity
transformation therefore suggests itself as a possible solution route and this does in
fact turn out to be the case. It leads to a third order ODE, known as the Blasius
equation, which is of the form:

(7.3.32)

where f is a modified nondimensionalized stream function.
The original system of two PDEs, Equations 7.3.26 and 7.2.37, one of which

was quasilinear, thus has been reduced to a single nonlinear ODE of boundary value
type. This represents a considerable simplification even though the order has
increased by one.

−
∂
∂

+
∂
∂









 +

∂
∂

=v
v

x
v

v

y
v

v

xx
x

y
x x

2

2 0

∂
∂

+
∂
∂

=
v

x

v

y
x y 0

− ∂
∂

∂
∂ ∂

− ∂
∂

∂
∂









 + ∂

∂
=ψ ψ ψ ψ ψ

y x y x y
v

y

2 2

2

3

3 0

∂
∂ ∂

− ∂
∂ ∂

≡
2 2

0
ψ ψ

x y y x

′′′ + ″ =f f f( ) ( ) ( )η η η1
2

0

248/ch07/frame  Page 444  Friday, June 15, 2001  7:02 AM

© 1999 By CRC Press LLC



7.3.3 ELIMINATION OF NONHOMOGENEOUS TERMS

Nonhomogeneous terms can complicate the solution of differential equations and in
some instances render a solution method inapplicable. At the ODE level, the presence
of such terms required the evaluation of a particular integral for use in the D-operator
method. The Laplace transform, on the other hand, did not encounter such difficulties
and was capable of handling both homogeneous and nonhomogeneous ODEs with
equal ease although the solution became more complex in form. At the PDE level,
integral transforms again are well suited for handling nonhomogeneous equations,
but the powerful method of separation of variables, previously sketched in Section
7.3.1, requires both the PDE and the boundary conditions to be homogeneous for
its successful application. The presence of nonhomogeneous terms in the PDE
usually renders the assumption of separable variables, expressed by Equation 7.3.1,
invalid, while nonhomogeneous boundary conditions complicate the evaluation of
undefined constants which arise in the course of the solution. Thus, there is consid-
erable incentive to eliminate nonhomogeneous terms. Another prominent example
of the benefits of this procedure is the reduction of the nonhomogeneous Poisson
Equation 7.2.20 to Laplace’s Equation 7.2.13. The latter has been studied more
extensively and has a host of known solutions.

A promising line of attack when dealing with such equations is to introduce a
new dependent variable v of the form:

v = u + g(x,y,z,t) (7.3.33)

where u is the original dependent variable and g(x,y,z,t) is of the same functional
form as the nonhomogeneous term in the original PDE or the boundary condition.
This function g should contain a sufficient number of unknown constants to satisfy
the condition of homogeneity for both the PDE and the BCs. There is no requirement
for the initial condition to be homogeneous which can serve as a convenient repository
for functional forms that take the place of the eliminated nonhomogeneous terms.

The method suggested here is particularly well suited for nonhomogeneous terms
of polynomial form. We illustrate its use in the following example.

Illustration 7.3.3 Conversion of a PDE to Homogeneous Form

We consider the system:

(7.3.34)

with BCs and ICs

u(0,t) = 0 (7.3.35a)

u(1,t) = 0 (7.3.35b)

∂
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(7.3.35c)

u(x,0) = 0 (7.3.35d)

where x has been normalized to the interval (0,1).
Physically, this set of equations can be seen as representing a string which is

clamped at both ends and is initially horizontal, with zero deflection. A force which
is linear in the horizontal distance x is applied to it and results in time dependent
deflections u(x,t). The task is to eliminate the nonhomogeneous term Ax while
maintaining the boundary conditions Equations 7.3.35a to c in homogeneous form.
Since four homogeneity conditions are to be satisfied, a third order polynomial with
four arbitrary constants suggests itself as a trial function g(x). We, therefore, specify:

v = u + a′ + b′x + c′x2 + d′x3 (7.3.36)

Trials with this function, which we omit for brevity, indicate that the quadratic
term has to be dropped for the constants to be independent of x. We consequently
make the new specification:

v = u + a + bx + dx3 (7.3.37)

and obtain the following results:

For the PDE:

(7.3.38)

For BC 7.3.35a:

u(0,t) = v(0,t) – a = 0 → a = 0 (7.3.39)

For BC 7.3.35b:

(7.3.40)

For BC 7.3.35c:

(7.3.41)

i.e., the boundary condition remains homogeneous without the appearance of any
of the coefficients. Three such coefficients therefore will suffice to render the system
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homogeneous, with the exception of the IC 7.3.35d. The final transformed model is
then as follows:

(7.3.42)

with BCs and ICs:

v(0,t) = 0 (7.3.43a)

v(1,t) = 0 (7.3.43b)

(7.3.43c)

(7.3.43d)

and the relation between old and new dependent variable given by:

(7.3.44)

Comments:
The nonhomogeneous term in Equation 7.3.43d is more complex than the term

which was eliminated, Ax. This is nevertheless no disadvantage since a high degree
of nonhomogeneity can be tolerated in the initial condition without seriously affect-
ing the ease of solution.

Application of the method was not totally automatic. Some trial-and-error was
required which is not unusual for the successful application of transformations
involving unknown functions.

7.3.4 CHANGE IN INDEPENDENT VARIABLES:
REDUCTION TO CANONICAL FORM

A change in independent variables can, on occasion, result in a simplification of the
PDE through a reduction in the number of terms that appear in it or by bringing it
into a form more suitable for analysis. A systematic way of achieving possible
simplifications is by the procedure known as reduction to canonical, or “regular”
form. The original purpose of this method was to cast PDEs into the same form as
the classical Laplace, Fourier, and Wave equations and to extend the results obtained
from the study of these relatively simple equations to more complex forms. In the
process of this change in variables one encounters the so-called characteristic equa-
tions which also find a place in the method of characteristics, a solution technique
to be discussed in greater detail in Chapter 9.
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Justification for the steps used in the reduction of PDEs to canonical form can be
found in various sources referenced at the end of the chapter. For our present purposes
we limit ourselves to an outline of these steps without providing either justification
or proof and address only two classes of equations: (1) single second order PDEs in
two independent variables and (2) sets of two quasilinear first order PDEs.

The general form for the first class considered here is

A(x,y)uxx + 2B(x,y)uxy + C(x,y)uyy = F(x,y,ux,uy) (7.3.45)

We note that the equation is identical to that used to arrive at the categories of
elliptic, parabolic, and hyperbolic PDEs. There is, as we shall see, a direct link
between these categories and the number of characteristics which arise in the course
of reduction to canonical form.

The steps in the application of the procedure are as follows:
Step one — Formulate an ODE in the independent variables x and y which has

a quadratic form with coefficients identical to those in the PDE 7.3.45. Thus, we
form:

(7.3.46)

Step two — Solve the quadratic equation to obtain the two roots in dy/dx:

(7.3.47)

These two ODEs are the so-called characteristic equations or characteristic
directions.

Step three — Integrate the two Equations 7.3.47 to obtain:

f1(x,y) = C1 and f2(x,y) = C2 (7.3.48)

where C1 and C2 are the integration constants. These two algebraic equations form
two families of curves which are referred to as characteristics of the PDE 7.3.45.
Physically they may be regarded as propagation pathways in (y,x) or (x,t) space of
a particular physical entity such as the deflection u of a certain magnitude in a
vibrating string, or of a certain wave height v in wave propagation problems. The
reader will note that for hyperbolic PDEs with (B2 – AC) > 0, there are two real
and distinct characteristics equations and characteristics; for parabolic PDEs (B2 =
AC), there is only one of each; and for elliptic PDEs (B2 – AC < 0), none. We
summarize these features for convenience in Table 7.5.

Step four — Set the new independent variables x and y equal to the characteristic
function f1,2. Thus,

x = f1(x,y) y = f2(x,y) (7.3.49)

A
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When the roots of the quadratic are real and equal, there is only one characteristic
function and, hence, only one new independent variable. The second one is then
established by making it as close as possible in form to but independent from the
first variable. An example of this procedure appears in Illustration 7.3.4.

Difficulties also arise when the roots are complex conjugates. A second change
in variables is then performed which takes the form:

(7.3.50)

This procedure serves to eliminate the imaginary part of x and y, and is taken
up in Practice Problem 7.7.

Step five — Reformulate the old PDE in terms of the new independent variables
x and y, or α and β, so that u(x,y) now becomes v(x,y) or v(α,β). This completes
the reduction to canonical form.

Step six — As a final step, the new PDE is solved and the old independent
variables x,y reintroduced into the solution to obtain the solution in the form u =
F(x,y).

The second reduction to canonical form we consider is that of a set of two first
order quasilinear PDEs. We had encountered this system in a general form as
Equation 7.1.13 which is repeated here for convenience:

(7.1.13)

where ux and uy were first order partial derivatives. A characteristic equation,

 was then introduced whose eigenvalues λ determined whether the

set was elliptic, parabolic, or hyperbolic. It turns out that the same eigenvalues also
represent solutions of a quadratic equation in dy/dx which is completely analogous
to Equation 7.3.46 used for second order PDEs. We therefore can obtain the char-
acteristic equation by writing:

(7.3.51)

TABLE 7.5
Characteristics of Second Order PDEs

Type of PDE B2 – AC
Roots of

Equation 7.3.46
Number of

Characteristics

Elliptic < 0 Complex conjugate 0
Parabolic = 0 Real and equal 1
Hyperbolic > 0 Real and distinct 2

α β= + = −1
2

1
2
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and these equations can in turn be integrated to obtain the characteristics:

F1(x,y) = C1 F2(x,y) = C2 (7.3.52)

The new independent variables x and y are then established, again in completely
analogous fashion to the case of second order PDEs, by writing:

x = F1(x,y) and y = F2(x,y) (7.3.53)

We note that the characteristic Equation 7.3.51 can only be integrated if the

coefficients of the PDE,  and hence λ1,2 are independent of  When this

is not the case, other techniques have to be applied.

Illustration 7.3.4 Reduction of PDEs to Canonical Form

As a first example, we consider the reduction to canonical form of the following
second order PDE:

(7.3.54)

Step one — We form the quadratic equation in the characteristic direction dy/dx
and obtain:

(7.3.55)

Step two — Equation 7.3.54 is solved to yield the characteristic directions:

(7.3.56)

These roots are real and identical, and the PDE is therefore parabolic.
Step three — The Equation 7.3.55 is next integrated, resulting in a single char-

acteristic:

f1(x,y) = y + x = C1 (7.3.57)

Step four — The new independent variable x is set equal to f1(x,y). Thus,

x = y + x (7.3.58)

A second new variable y, distinct and independent from x, and close to it in form
is established by writing:
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y = y – x (7.3.59)

 

Step five —

 

 The old PDE is reformulated in terms of the new independent
variables x and y. To aid in this procedure, use is made of the conversion formulas,
given in Table 7.4. This is fairly routine work which is omitted here for brevity. The
final result is given by:

(7.3.60)

 

Step six —

 

 Equation 7.3.60 can be immediately integrated to yield the result:

v = xf

 

1

 

(y) + f

 

2

 

(y) (7.3.61)

Note that since v = F(x,y), the integration “constants” f

 

1

 

 and f

 

2

 

 must in fact be
functions of the second new independent variable y. Reintroduction of the old
variables then leads to the solution:

u = (x + y)f

 

1

 

(y – x) + f

 

2

 

(y – x) (7.3.62)

This expression, referred to as the fundamental solution of the PDE is, of course,
not a final result since f

 

1,2

 

 still needs to be evaluated from the boundary conditions,
which may not be a simple task. Knowing the functional form of the solution,
however, is in itself a very useful result which provides a starting point for analyzing
the physical process underlying the original PDEs. Note that Equation 7.3.62 was
arrived at by a simple transformation of independent variables, carried out in a rather
mechanical fashion. This is no reason to disdain it.

As a second example, we consider the reduction to canonical form of the
chromatographic equations consisting of fluid and solid phase mass balances (Equa-
tions 7.2.4 and 7.2.5), and the equilibrium relation (Equation 7.2.6). For our present
purposes we assume the latter to be linear, so that:

Y* = m q (7.3.63)

We introduce this relation into the two mass balances and rewrite them to
conform to the general formulation of (7.1.13). There results:

(7.3.64)

(7.3.65)
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These are two linear PDEs in the two dependent variables Y and Y* which we
now proceed to reduce to canonical form using the procedure outlined in the previous
section.

 

Step one —

 

 We start by establishing the coefficient matrices  which

appear in the general formulation of the PDEs given in Equation 7.1.13. They are
relatively simple since the coefficients here are constant, and take the form:

(7.3.66)

so that

(7.3.67)

Solution of the quadratic in 

 

λ

 

 resulting from this expression leads to the two
distinct and real roots:

 

λ

 

1

 

 = 0

 

λ

 

2

 

 = G

 

s

 

/

 

ερ

 

g

 

(7.3.68)

The set of PDEs therefore is hyperbolic.

 

Step two —

 

 We now establish the characteristic equations by setting the char-
acteristic directions dy/dx equal to the eigenvalues 

 

λ

 

. Thus,

(7.3.69)

 

Step three —

 

 This step involves the integration of the ODEs 7.3.47 and yields
the following characteristics:

f

 

1
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(7.3.70)

or
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(7.3.71)
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or

 

Step four —

 

 We can now proceed to the formulation of the new independent
variables x and y, which are equal to the characteristic function f

 

1,2

 

. Thus,

x = z or x = t (7.3.72)

and

(7.3.73)

 

Step five —

 

 The new independent variables are introduced into the PDE, and
the new derivatives evaluated by means of the formula of Table 7.4. We chose the
combination:

and obtain:

(7.3.74)

and

 

Step six —

 

 The constant coefficients of this set can be taken into the independent
variables, leading to the following compact form:

(7.3.75)
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In most practical applications, the second term in 

 

β

 

 can be neglected. This simpli-
fication leads to the dimensionless parameters N and T given by Equations 6.2.47
and 6.2.48.

We thus have achieved a considerable simplification of the original set of PDEs
7.3.72 and 7.3.73 with relatively little effort. The solution of these equations is
addressed in Chapter 9, Practice Problem 9.2.8.

One notes from Equations 7.3.72 and 7.3.73 that, while one of the old indepen-
dent variables is retained unchanged, the linear combination (Equation 7.3.72) of z
and t is merged into a single new variable y. This type of merger can in principle
be applied to any model PDEs which contain the following combination of first
order derivatives:

A 

 

∂

 

u/

 

∂

 

x + B 

 

∂

 

u/

 

∂

 

y (7.3.76)

This quantity is sometimes referred to as a 

 

convective derivative

 

 and arises
naturally in all unsteady convective processes. We shall encounter it again in the
context of atmospheric dispersion in Illustration 7.4.5.

 

7.3.5 S

 

IMPLIFICATION

 

 

 

OF

 

 G

 

EOMETRY

 

The geometry of a system and the boundary conditions associated with it have a
major impact on both the ease of solution and its form. Simplifications often appear
to be trivial or self-evident, while on other occasions the changes effected are clearly
of major importance.

Suppose, for example, that one wishes to monitor the penetration into the ground
of the daily temperature variations that occur at the surface of a particular location of
the Earth. Since the depth of penetration is, at most, of the order of meters, it is evident
that the geometry can be considered planar and semi-infinite. The curvature of the
Earth or its spherical shape do not enter into the picture. The effect of these obvious
simplifications, which may at first sight appear to be minor, is in fact quite consider-
able. The solution procedure itself is simplified and the result can be expressed in the
compact form of a single function rather than an infinite series of functions.

Consider next the case of a buried steam line, assumed to be isothermal, which
loses heat to the near-by surface of the ground. Here there is an immediate difficulty
which resides in the mixed nature of the geometry, planar for the surface, and circular
or cylindrical for the pipe. The underlying model itself is simple and adequately
described by Laplace’s equation, but the boundary conditions have to be specified
at z = 0 and r = R and, hence, belong to different coordinate systems. There are
ways of interrelating the two which leads to rather messy solutions. A more elegant
and powerful method is that of 

 

conformal mapping

 

 in which functions of a complex
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variable are used to introduce new independent variables that transform the system
into a simpler geometry. Laplace’s equation remains invariant under the transforma-
tion and is solved by standard techniques once the geometry has been sufficiently
simplified. The method requires some background in complex variable theory and
will not be taken up in detail here. We, however, do present a short list of solutions,
shown in Figure 7.7, which may be deemed of interest to the reader. Additional
solutions in the form of “shape factors” for more complex geometries will be given
in Chapter 8 (Table 8.10). Note that in Figure 7.7, the dependent variable has been

 

FIGURE 7.7

 

Solutions of Laplace’s equation for various geometries and boundary conditions.
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nondimensionalized and represents, for example, dimensionless temperature or elec-
trostatic potential. Thus, any one solution can be applied to several different physical
situations described by Laplace’s equation.

For the remainder of this section we confine ourselves to the description of some
simple transformations applicable to second order PDEs. Most of these are of an
obvious type but are often overlooked in the quest for an easier life.

We start by noting that the difficulties caused by geometrical complexity usually
increase, for various domains of interest, in the following sequence: [doubly infinite]
< semi-infinite< one-dimensional planar < circular or radial cylindrical < radial
spherical < two- and three-dimensional cartesian < angular cylindrical and spherical
< other. The doubly infinite domain sometimes give rise to difficult boundary con-
ditions and therefore is placed in brackets. We present below a number of transfor-
mations designed to move the system toward lesser complexity.

 

7.3.5.1 Reduction of a Radial Spherical Configuration
into a Planar One

 

This simplification can be accomplished by introducing a new dependent variable
v which is related to the old variable by the product ur, where r = radial variable:

v = ur (7.3.77)

The substitution has the effect of bringing about the following transformation:

(7.3.78)

A double simplification is thereby effected. The number of terms is reduced and
the variable coefficient 2/r is eliminated. Note that boundary conditions have to be
altered accordingly. Thus, u(R) becomes v(R) = u(R)R, etc.

 

7.3.5.2 Reduction of a Radial Circular or Cylindrical 
Configuration into a Planar One

 

When a process is confined to a narrow region near the circumference of a circle
or cylinder, and boundary conditions are specified on both sides of the strip, the
geometry can be reduced to a planar one by cutting it open and unfolding it. An
example of the application of this simplification occurs in connection with the
freezing of water in a pipe which we considered in Chapter 6, Illustration 6.3.6
without actually addressing the formation of the ice front. Since the thickness of ice
required to cause rupture is small compared to the diameter of the pipe, we can
unravel it into a planar configuration with boundary conditions set externally by the
subzero ambient temperature and internally by the freezing point of water. Although
we still have to deal with the complexities of a moving boundary, that task is
considerably eased by the fact that the geometry is now planar rather than cylindrical.
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7.3.5.3 Reduction of a Radial Circular or Cylindrical 
Configuration to a Semi-Infinite One

 

The same confinement of the principal events to a narrow surface strip seen in the
previous case occurs here, and is exploited in the same way, by cutting open and
unfolding the surface region. It differs, however, in its internal boundary condition
which is specified at infinity. This results in the reduction of the cylindrical geometry
to a semi-infinite configuration. An example of its application appears in Illustration
8.2.3 dealing with the Lévêque solution of the Graetz Problem. In that example,
concentration changes in the flowing fluid are confined to a thin boundary layer at
the duct wall, while far away at r 

 

→

 

 

 

∞

 

, its value remains constant. The solution is
consequently the same as that given for boundary layer flow over a flat plate
(Illustration 7.3.1).

 

7.3.5.4 Reduction of a Planar Configuration to a
Semi-Infinite One

 

This simplification finds its principal application in time-dependent diffusional pro-
cesses in which the planar surface is exposed to a brief change of the state variable
and the resulting variation of near-surface values are to be monitored only for a brief
interval. The changes will not have had the time to penetrate into the interior of the
planar geometry which can be treated as a semi-infinite domain. An example of this
type of behavior is seen in Illustration 7.4.6 which deals with the response of a
coated sheet of paper to a brief burst of heat and the simultaneous changes in surface
temperature in response to that burst. The surprising fact is that the sheet, which is
only fractions of a millimeter thick, can be treated as a semi-infinite medium for
the interval in question. This results in a considerable reduction in complexity of
both the method of solution and the form of the result.

 

7.3.6 N

 

ONDIMENSIONALIZATION

 

Nondimensionalization can be applied to both independent and dependent variables
and results in a considerable simplification of the model. It is generally achieved by
combining the variables with their boundary or initial values in the form of dimen-
sionless ratios. Let us illustrate the procedure and the resulting benefits by means
of the following example.

 

Illustration 7.3.5 Nondimensionalization of Fourier’s Equation

 

Suppose we wish to non-dimensionalize the one-dimensional Fourier’s equation:

(7.3.79)

with associated boundary and initial conditions:
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T(0,t) = T

 

s

 

(7.3.80a)

T(L,t) = T

 

s

 

(7.3.80b)

T(x,0) = T

 

0

 

(7.3.80c)

The model describes the response of a slab of thickness L and initial temperature
T

 

0

 

 to a step change in surface temperature T

 

s

 

. The reader may recall it as the quenched
steel billet of Chapter 1, Figure 1.1.

We start by nondimensionalizing the distance variable x by dividing it by thick-
ness L, forming the new dimensionless variable X = x/L. X is said to be normalized,
i.e., it has values ranging from zero to one 0 

 

≤

 

 X 

 

≤

 

 1. Fourier’s equation now reads:

(7.3.81)

Next we proceed to nondimensionalize time t by dividing it by L

 

2

 

/

 

α

 

, which also
has the dimension of time. The resulting dimensionless group is known as the Fourier
number Fo = 

 

α

 

t/L

 

2

 

. Note that Fo is 

 

not

 

 normalized since it ranges from zero to
infinity.

Finally we turn to the nondimensionalization of the dependent variable T. After

some thought, we choose  since this combination normalizes, as well

as nondimensionalizes the temperature variable. The model now takes the following
form:

(7.3.82)

with boundary conditions:

 

θ

 

(0,Fo) = 0 (7.3.83a)

 

θ

 

(1,Fo) = 0 (7.3.83b)

 

θ

 

(X,0) = 1 (7.3.83c)

The benefits of this procedure, which may not be immediately obvious, are as
follows:

• Both temperature T and distance x have been normalized, as well as being
nondimensionalized. This makes for much greater convenience in pre-
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senting the solution in both graphical and numerical form (see in this
connection Figure 8.10).

• Time t has been nondimensionalized and merged with the parameters 

 

α

 

and L, making for a more compact solution.
• The boundary conditions (a) and (b) have been rendered homogeneous,

which now makes it possible to solve the problem by the separation of
variables technique. We demonstrate this in Illustration 9.1.3 of Chapter 9.

We note in closing that the various transformations we have presented can all
be applied with relative ease. The benefits to be derived by far exceed the effort
required to implement them. Two among them, the similarity transformation and
the reduction to canonical form have more profound roots since they are linked to
the broad topics of group transformations and of characteristics. We do not enter
into a discussion of the former, but will take up the topic of characteristics again in
Chapter 9 where they are used to arrive at solutions of first order quasi-linear PDEs.

 

7.4 PDEs PDQ: LOCATING SOLUTIONS IN
RELATED DISCIPLINES; SOLUTION BY SIMPLE 
SUPERPOSITION METHODS

 

The purpose of the present section is to remove the aura of overwhelming complexity
which surrounds the solution of partial differential equations. Part of the fear of
PDEs comes from the forbidding appearance of many solutions one glimpses in
advanced textbooks. Bessel functions, which may have been accepted grudgingly at
the ODE level, now make their appearance in the form of 

 

infinite series.

 

 We are
asked not only to accept but more importantly, to use infinite series of infinite series!
New functional forms, such as

 

 error functions,

 

 appear on the scene and have to be
dealt with. The solution methods themselves, analytical or numerical, can be tedious,
lengthy, and fraught with new challenges. Small wonder that we studiously avoided
the use of PDEs in the preceding six chapters. They have, however, got to be faced
sooner or later.

There are a number of steps we can take to ease the pain. The first is to use
existing solutions in the literature which often lurk in unsuspected places. This is
not the demeaning or trivial task it appears to be. It requires a good nose, persistence,
and a broad knowledge of the underlying sciences and the related literature. It is
also a perfectly legitimate way of arriving at solutions and avoids the stigma of
“reinventing the wheel.” A number of illustrations will be devoted to this topic.

A second technique is to “patch together,” or superpose known solutions to

 

simple

 

 problems to solve 

 

more complex

 

 problems or problems with more complex
boundary conditions. Such methods are generally limited to linear PDEs, but once
this limitation is accepted, a host of important problems become amenable to this
technique. Superposition can be implemented by addition, multiplication, or inte-
gration over space or time. We shall demonstrate the use of these methods with
several illustrations. The aim throughout this section will be to solve PDEs PDQ
(pretty damn quick) without sacrificing rigor.
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We already had on a number of occasions pointed out that identical models or identical
differential equations may be used to describe processes which, on the surface at least,
are quite dissimilar. At the ODE level, a host of quite different physical processes
based on the same “stirred tank” concept led to identical forms of first order ODEs.
The performance of dialyzers and heat exchangers, with obvious differences in the
underlying physics of the process, nevertheless led to a pair of similar ordinary
differential equations which differed only in the nature of the coefficients and the state
variables. This striking result was highlighted in the comparisons made in Table 6.1.

At the PDE level, we had seen that Laplace’s equation and other classical partial
differential equations could be used to describe a host of different physical processes
drawn from the fields of solid and fluid mechanics, transport phenomena, electro-
statics, and gravitation. Here again one can expect that we shall be able to “borrow”
from other subdisciplines to solve problems of direct concern to us. Given the
necessary skills and some patience, the desired result may be obtained PDQ.

 

Illustration 7.4.1 Pressure Transients in a
Semi-Infinite Porous Medium

 

In the field of Gas Reservoir Engineering, an important question to be answered is
the life-time of a gas field. To estimate this quantity, one has to derive the variations
with time and distance within the porous medium of the gas pressure p(x,y,z,t). We
consider in this example, the simple case of a semi-infinite medium, initially at a
pressure p

 

0

 

. The well pressure is to be maintained at a constant value of p

 

w

 

 during
the life-time of the reservoir. We start by composing a mass balance for compressible,
one-dimensional flow. Taken over a difference element 

 

∆

 

z, this becomes:

 

Mass balance:

 

(7.4.1)

where 

 

ρ

 

vA = F = mass flow rate and 

 

ε

 

 = porosity of the medium.
Upon dividing by A

 

∆

 

z and going to the limit we obtain the continuity equation
for flow through a porous medium:

(7.4.2)

Velocity of flow is related to pressure via the empirical D’Arcy’s law:

 

D’Arcy’s law:

Rate of gas in Rate of gas out Rate of change
of contents
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(7.4.3)

To complete the model, which contains the three dependent variables 

 

ρ

 

, v, and
p, the density–pressure relation has to be expressed in terms of an appropriate gas
law. We assume isothermal flow and write:

 

Ideal gas law:

 

(7.4.4)

Upon substituting Equations 7.4.3 and 7.4.4 into Equation 7.4.2, the following
quasilinear PDE is obtained:

(7.4.5)

where B = K/

 

εµ

 

.
The boundary conditions to this PDE are as follows:

p(0,t) = p

 

w

 

p(

 

∞

 

,t) = p

 

0

 

 (bounded) (7.4.6)

p(x,0) = p

 

0

 

Success in locating a literature solution hinges on recognizing the equivalence
of the term p(

 

∂

 

p/

 

∂

 

x) and the diffusional flux D(C)(

 

∂

 

C/

 

∂

 

x), where D(C) is a variable,
concentration dependent diffusivity. It further requires the knowledge that the latter
systems exist and have been successfully solved. At any rate, there is no harm in
quickly consulting the pertinent literature and, if need be, locate solutions to the
corresponding conduction problem containing the term k(T)(

 

∂

 

T/

 

∂

 

x).
The case of a temperature dependent thermal conductivity k(T), although rare,

has been addressed but no convenient solutions are immediately available in standard
reference texts (see References at the end of the chapter). Concentration dependent
diffusivities D(C) arise with much greater frequency, for example, in the diffusion
through polymers, and a number of solutions to Fick’s equation with variable
diffusivity are available. One which comes closest to our requirements has the form:

(7.4.7)

with BCs for desorption:

v
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C/C

 

0

 

(0,t) = 0

C/C

 

0

 

(x,0) = 1 (7.4.8)

C/C

 

0

 

(

 

∞

 

,t) bounded

To bring Equation 7.4.5 in line with this formulation, we introduce the dimen-
sionless variable p = (p – p

 

W

 

)/(p

 

0

 

 – p

 

W

 

) and obtain the revised model:

(7.4.9)

with BCs:

p(0,t) = 0

p(x,0) = 1 (7.4.10)

p(

 

∞

 

,t) bounded

Correspondence between the two cases is established via the expressions:

D

 

0

 

 = Bp

 

w

 

α

 

p

 

o

 

 = B(p

 

0

 

 – p

 

w

 

) C/C

 

0

 

 = p (7.4.11)

The literature solutions were obtained numerically and are given as plots of C/C

 

0

 

vs. x/(4D

 

0

 

t)

 

1/2

 

, with 

 

α

 

 as a parameter (see References).

 

Comments:

 

The reader will have noted the skills which were required to arrive at a solution.

They included an awareness of the equivalence of 

the knowledge (or at least an intuitive feeling) that such solutions existed and the
patience to look for them.

The solutions can be used to calculate the time it takes for the reservoir pressure
to drop to a prescribed value. This is often taken to be 25% of the initial pressure
p

 

0

 

 since a further drop makes the recompression costs required at the surface
unattractive. Secondary methods are often used to recover the residue.

One notes the appearance of the group x/t

 

1/2

 

 in the parameters of the solution
which suggests that similarity transformation was used to arrive at a solution. It is
left to the exercises to show that this results in the ODE:

(7.4.12)
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with BCs:

(7.4.13)

Solutions for other, more realistic reservoir geometries are available in the
literature (see References). Among these is the important case of a reservoir of finite
thickness and radius, with 

 

radial

 

 flow into the production well. The solutions are
similar in form to that given here.

 

Illustration 7.4.2 Use of Electrostatic Potentials in the
Solution of Conduction Problems

 

It had been noted in Section 7.2.2 that solutions to Poisson’s equation can be used
to represent both temperature distributions in a region with distributed heat sources,
as well as distributions of electrostatic potential in a domain carrying a distribution
of charges. The following electrostatic problem has been solved in the literature (see
References). The result is fairly complex and is not reproduced here.

(7.4.14)

with BCs:

V(0,y) = 0 V(

 

π

 

,y) = A (y > 0) (7.4.15)

V(x,0) = 0 (

 

α

 

 < x < 

 

π

 

)

The domain in question is thus a semi-infinite strip of width 

 

∆

 

x = 

 

π

 

. We pose
the following question. What, if any, conduction problem is represented by the
solution of the electrostatic problem?

We start by noting that the source term h equals 4

 

πρ

 

, where 

 

ρ

 

 is the charge
density in the domain and is assumed to be constant here. Using Table 7.3 as a
dictionary, one can transform h into a corresponding heat source term. We obtain:

h = S/k (7.4.16)

The electrostatic problem then translates into the following conduction problem:

(7.4.17)

with BCs:
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T(0,y) = 0 T(π,y) = A T(x,0) = 0 (7.4.18)

and S = heat source in units of J/m3s.
The solution of this problem represents the steady-state temperature distribution

in a semi-infinite strip of width π, with the base and left side at T = 0, the right side
at T = A, and uniformly distributed steady heat sources of strength S = hk in the
interior of the domain. Note that the width π of the strip can be transformed into

an arbitrary length l by defining a new length variable 

7.4.2 SIMPLE SOLUTIONS BY SUPERPOSITION

7.4.2.1 Superposition of Simple Flows: Solutions in
Search of a Problem

The technique we apply here starts by defining some simple stream functions ψ
which can be shown to satisfy Laplace’s equation in two Cartesian coordinates (x,y)
or in polar coordinates (r,θ). These stream functions represent certain simple albeit
somewhat artificial flow patterns and are summarized in Figure 7.8.

The stream function ψ = v∞y = constant represents rectilinear flow parallel to
the x-axis, with an orthogonal network of potential functions φ = v∞x = constant
(Figure 7.8A). Both φ and ψ satisfy Laplace’s equation.

The stream function  = constant represents flow emanating from the

origin and proceeding radially outward (Figure 7.8B). The corresponding potential
functions are represented by a set of orthogonal concentric circles. Q is the so-called
strength of the source and physically equals the flow rate per unit depth into the
paper. For a sink, the flow is taken to be radially inward, and both the stream function
and the velocity component change sign. In both cases ψ satisfies Laplace’s equation
in polar coordinates (Table 7.6).

The stream function  = constant represents a clockwise circular flow

pattern around the origin, with φ = constant making up the radial rays which emanate
from the origin and are orthogonal to the circles ψ = constant (Figure 7.8C). This
pattern is merely a reversal of that shown by the source, with the roles of φ and ψ
having been interchanged, and is appropriately termed a vortex. Q represents the
strength of the vortex and is again given in units of flow rate per unit depth into the
paper. For counterclockwise vortices, the signs of both the stream function and the
velocities is reversed.

The doublet, shown in Figure 7.8D, is more of an artifact and is not meant to
represent any real flow pattern. The streamlines are made up of a set of concentric
circles tangent to the x-axis which satisfy Laplace’s equation as required.

Other simple flows, such as point sources and point doublets have been used in
the literature but are not taken up here.

′ =x
x
π

1.

ψ
π

θ= Q
2

ψ
π

= Q
r

2
ln
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Proceeding, we superpose various simple flows by adding the corresponding
stream functions. The linearity of Laplace’s equation guarantees that it is satisfied
for any arbitrary sum of such stream functions. However, what, if any real potential
flow problem has been solved by superposing the simple flows? If no real flow
pattern emerges from a particular superposition, new combinations are tried. Note
that both addition and subtraction can be used resulting in a host of possible
combinations.

FIGURE 7.8 Compilation of some simple flows used in the solution of Laplace’s equation
for irrotational flow by superposition.
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We term this procedure “a solution in search of a problem.” This is evidently
a reversal of the conventional process of first specifying a problem and then seeking
its solution, but the procedure has a legitimate place in mathematical analysis and
has led to many fruitful results. A summary of several classical superpositions
appears in Figure 7.9.

The results of the superpositions displayed in this figure show several recogniz-
able flow patterns.

In Figure 7.8A, a sink and a clockwise vortex have been superposed resulting
in spiral flow into the origin. This resembles the flow pattern in a draining tank or
in a tornado and agrees with the intuitive notion that the combination of circular
and radial flow should result in streamlines of a spiral form converging to the origin.

In Figure 7.9B, uniform flow has been superposed onto a doublet. Here it is
difficult to anticipate the resulting flow pattern and a detailed analysis of the stream
functions has to be undertaken. This is done in Illustration 7.4.1. The result indicates
that the pattern represents potential flow around a circle or cylinder, or around
“humps” which diminish in height as one moves outward. The relations given in
Table 7.6 enable us to calculate velocity distributions around the cylinder which can
then be substituted into the Bernoulli equation to arrive at a pressure distribution.
These are highly useful results to have been obtained by simple manipulations of
the stream function and Bernoulli’s equation.

TABLE 7.6
Stream Functions, Velocity Potentials 
Velocities, and Laplace’s Equation

Cartesian Coordinates Polar Coordinates

(1) ψψψψ and φφφφ

(2) Velocity components
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Figure 7.9C shows the results of the superposition of uniform flow and a source.
Plots of various value of ψ = constant leads to the appearance of a near-elliptical
shape known as the Rankine half-body, with upper and lower streamlines equal to
1/2 Q, where Q is the strength of the source. An increase in Q thus will result in an
increase of the body thickness. The maximum velocity occurs at θ = 63° and is
given by |v|Max = 1.26 v∞.

The streamlines shown in Figure 7.9D cannot be obtained by superposition of
simple flows. They represent rectangular hyperbolas which were deduced to repre-

FIGURE 7.9 Flow fields resulting from the superposition of some simple flows.
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sent flow in a right-angled corner. This example can be truly termed “a solution in
search of a problem.” A similar approach can be used to show that flow around
corners of various angles can be represented by the general streamline:

ψ = Arn sin n θ (7.4.19)

The parameter n is related to the angle α of the corner as follows

The detailed deduction of the flow pattern from an assumed form of the stream
function y is illustrated in the following example.

Illustration 7.4.3 Superposition of Uniform Flow and a 
Doublet: Flow Around an Infinite Cylinder or a Circle

A convenient method of analysis is to start with the simplest possible stream function
ψ = 0, i.e., we set the sum of ψ for uniform flow and a doublet equal to zero:

(7.4.20)

This relation is satisfied for:

θ = 0, –π, –2π, …, any r (7.4.21)

and

r = (K/v∞)1/2, any θ (7.4.22)

These conditions represent the x-axis with an intervening circle (or infinitely
long cylinder) of radius R = (K/v∞)1/2. The size of the cylinder or circle thus can be
manipulated by adjusting the strength K of the doublet. Note also that the stream
functions with values other than zero, i.e., ψ = C1, C2, etc., represent flow around
humps whose height diminishes with an increase in the constant C.

Let us now deduce velocities and pressures at various points of the flow field,
using Table 7.6 as an aid.

Radial Velocity at the Cylinder Surface —

(7.4.23)

At the surface, r = R = (K/v∞)1/2, so that:

n 1/2 2/3 3/2 2 3 4
a 360° 270° 135° 90° 60° 45°
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(7.4.24)

i.e., the radial velocity component vanishes at the surface everywhere, as required.

Tangential Velocity at the Cylinder Surface — Here we obtain from Table 7.6 and
the relation R = (K/v∞)1/2:

(7.4.25)

Thus, at the stagnation points θ = 0, –π, the tangential velocity vanishes, as
required. The maximum velocity is attained at θ = –π/2 and has the value |v|Max =
vθ = 2v∞, i.e., twice the velocity of approach v∞. This is an important result and
applies as well to flow just outside a viscous boundary layer.

Pressure Distribution at the Cylinder Surface — To calculate the pressure distribution
in the flow field, we draw on Bernoulli’s equation which for our present purposes
assumes the form:

(7.4.26)

Substitution of the Expression 7.4.25 into 7.4.26 yields the pressure distribution:

(7.4.27)

For θ = 0, –π one obtains the stagnation pressure ps:

(7.4.28)

Thus, ps equals the pressure far from the cylinder, p∞, augmented by the kinetic
energy of the approaching fluid which is completely converted into what might be
termed a volumetric pressure energy.

The minimum pressure pmin occurs at θ = –π/2 and assumes the value:

(7.4.29)

i.e., the pressure here is diminished over the free stream pressure p∞ by three times
the kinetic energy of approach. The value closely approximates the actual value
found in real flow around a cylinder. In fact, the Expression 7.4.26 is an accurate
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description of the pressure distribution in the upstream third of the cylinder. It is in
the rear half that the relation breaks down due to viscous effects and separation. In
particular, the pressure at θ = 0 no longer equals that at θ = –π, resulting in a net
force or drag being exerted on the cylinder, while potential theory predicts zero drag
due to the symmetry of the body. This is perhaps its most serious flaw, which is
however amply compensated by the successful predictions in the upstream portion
of the body. Considering the simple tools used in arriving at these results, this is no
mean accomplishment.

7.4.2.2 Superposition by Multiplication: Product Solutions

The term superposition by multiplication is not commonly used in the literature
which prefers to regard superposition as an additive process. We adopted it never-
theless since it contains the same features as classical superposition, i.e., the solution
of a complex problem by the process of patching together solutions to simpler
problems. In the application we consider here the “simpler problems” are the solu-
tions of the one-dimensional Fourier’s or Fick’s equation for unsteady conduction
and diffusion, the complex counterpart being the two- and three-dimensional cases.
The method is only applicable to linear PDEs which can be solved by the method
of separation of variables. We provide below two examples which are based on
Fourier’s equation.

First consider the case of rectangular one-dimensional unsteady conduction in
a finite domain x1 < x < x2. The system is described by:

(7.4.30)

with general Type III boundary conditions:

(7.4.31)

and initial condition:

Tx(x,0) = fx(x) (7.4.32)

Its solution will be denoted by:

Tx(x,t) = gx(x,t) (7.4.33)

Extend this case now to three dimensions in the rectangular domain x1 < x <
x2, y1 < y < y2, and z1 < z < z2, and boundary conditions in those three dimensions
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identical in form to those described by Equation 7.4.34. The solution for these three-
dimensional temperature distributions T(x,y,z,t) can then be expressed as the product
of three one-dimensional solutions, i.e.,

T(x,y,z,t) = gx(x,t)gy(y,t)gz(z,t) (7.4.34)

with initial conditions:

T(x,y,z,0) = fx(x)fy(y)fz(z) (7.4.35)

This is a useful and quite general result, except that the three-dimensional initial
condition has to be of the separable form Equation 7.4.35.

Next consider the case of radial unsteady conduction in the domain r1 < r < r2

(infinitely long cylinder):

(7.4.36)

with general Type III boundary conditions:

(7.4.37)

and initial condition:

Tr(r,0) = fr(r) (7.4.38)

The solution is denoted by:

Tr(r,t) = gr(r,t) (7.4.39)

We extend this case now to a finite cylinder in the domain r1 < r < r2 and x1 <
x < x2, i.e., one described by the PDE:

(7.4.40)

and with boundary conditions of Equations 7.4.31 and 7.4.37.
Its solution is then given by the product of the rectangular and radial solution

Equations 7.4.33 and 7.4.39, i.e.,
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T(r,x,t) = gr(r,t)gx(x,t) (7.4.41)

with initial condition:

T(r,x,0) = fr(r)fx(x) (7.4.42)

This is again a quite general result, except for the restriction of separability of
the initial condition 7.4.42.

Validity of these solutions is proved by direct substitution of the solutions into
the full PDEs and boundary conditions. The reader is urged to attempt other super-
positions of this type. The Graetz problem appears to be a suitable candidate. We
shall shortly present an interesting application of product solutions (Illustration
7.4.4).

7.4.2.3 Solution of Source Problems: Superposition
by Integration

Problems involving sources of mass or energy, and the distributions in concentration
and temperature associated with them arise in a wide variety of ways. A host of
environmental problems involve sources of pollutants of one type or another. We
had already encountered heat sources at the ODE, i.e., steady state level (Practice
Problem 3.3.2 in Chapter 3) and in the formulations of the Poisson Equation 7.2.28
for distributed steady sources. The types we wish to consider here initially consist
of instantaneous point sources which give rise to unsteady temperature and concen-
tration distribution in infinite or semi-infinite space. The point source results can be
integrated over space or time to arrive at distributions due to instantaneous line or
area sources or those due to sources which are continuous over certain time intervals.
This is the procedure referred to as superposition by integration.

In many of the solutions to source problems, an important new entity called the
error function makes its appearance and therefore we shall devote a brief preamble
to its description. The error function, denoted as erf(x), is defined as the integral:

(7.4.43)

where the integrand will be recognized as the Gaussian error function  It

has the following properties shown in Table 7.7.
erf(x) cannot be determined analytically and numerical integration is required

for its evaluation. A brief table of values appears in Table 7.8.
The error function also can be well approximated (max. error 8%) by the

exponential expression:

(7.4.44)
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TABLE 7.7
Properties of the Error Function

1. erf(0) = 0
2. erf(∞) = 1
3. erf(–x) = –erf(x)
4. 1 – erf(x) = erfc(x) (Complementary error function)

5.

6.

7. Approximation for small x

8. Approximation for large x

TABLE 7.8
Values of the Error Function

x erf(x)

0 0
0.05 0.05637
0.1 0.11246
0.15 0.16800
0.20 0.22270
0.25 0.27632
0.30 0.32863
0.35 0.37938
0.40 0.42839
0.50 0.52050
0.60 0.60386
0.70 0.67780
0.80 0.74210
0.90 0.79691
1.0 0.84270
1.2 0.91031
1.5 0.96611
2.0 0.99532
∞ 1.00000

d

dx
erf x e x= −2 2

π

erfc x dx e x erfc xx

x
= −−

∞

∫ 1 2

π

erf x x≅ −2 1 2π /

erfc x e
x x

x≅ − + …
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In the following illustrations we consider a number of interesting source prob-
lems in infinite and semi-infinite space which are arrived at by superposition of the
simplex solution, that of an instantaneous source in one-dimensional infinite space.
Both instantaneous and continuous sources are considered and the tools we use are
superposition by multiplication as well as superposition by integration.

Illustration 7.4.4

The Instantaneous Infinite Plane Source — On occasion, simple solutions may be
arrived at by inspired guesswork. The solution to the source problem in one-dimen-
sional infinite space for Fourier’s equation is a case in point. We consider the source
to lie on the infinite y,z plane, with temperature variations taking place in the x-
direction only. The solution then takes the form:

(7.4.45)

where A is an arbitrary constant. It can be shown by direct substitution that this
expression satisfies Fourier’s equation:

(7.4.46)

More importantly, it also satisfies the following initial conditions:

T(x,0) = 0 (7.4.47)

and

T(0,0) = ∞ (7.4.48)

Here Equations 7.4.47 and 7.4.48 express the fact that at time zero, the entire
domain except for the origin is at zero temperature while at the origin it momentarily
rises to infinity due to the instantaneous and concentrated nature of the source. The
integration constant A is evaluated from the total heat released per unit area of an
infinite plane, qTot, i.e.,

(7.4.49)

where the integral is obtained from tables of integrals. Thus, the temperature distri-
bution in the infinite x-domain is given by:

(7.4.50)
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An expression identical in form applies to mass diffusion, i.e., the solution of
Fick’s equation for this case is given by:

(7.4.51)

where MTot = total mass released per unit area.
The nature of the solution curves for Equation 7.4.51 is shown in Figure 7.10A,

where the numbers on the curves indicate values of Dt.
We note that the quantity qTot/ρ Cp is referred to as the strength Q of the heat

source, so that Equation 7.4.50 can be written as:

(7.4.52)

Since Q can also be expressed in the form:

FIGURE 7.10 Configuration of some sources in infinite domains: (A) instantaneous infinite
plane mass source emitting in the x-directions (numbers on the curves denote values of Dt),
(B) a point source emitting into three-dimensional infinite space, (C) a finite plane source
emitting into three-dimensional infinite space. (Figure A from J. Crank, Mathematics of
Diffusion, 2nd ed., Oxford University Press, New York, 1975. With permission.)
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Q = q

 

Tot

 

/

 

ρ

 

 Cp = TV (7.4.53)

a source of unit strength Q = 1 can be viewed as one which raises the temperature
T of a unit volume V = 1 of the medium by one degree. This refinement is not
required in the case of mass sources, where the total amount released per unit area
also equals the strength of the source.

 

The Instantaneous Point Heat Source in Three-Dimensional Infinite Space —

 

This situation is depicted in Figure 7.10B, where a point source of strength Q has
been placed at some arbitrary coordinate point x

 

0

 

, y

 

0

 

, z

 

0

 

. This merely requires a
corresponding shift in the coordinates of the solution.

To solve this three-dimensional case, we invoke the principle of superposition
by multiplication, described in Section 7.4.2.2. This involves extending the solution
for the one-dimensional case, given by Equation 7.4.50 to the three-dimensional
case, by multiplication in the three coordinate directions x, y, z. We obtain:

(7.4.54)

If we shift the source to the origin and introduce the radial variable:

r = (x

 

2

 

 + y

 

2

 

 + z

 

2

 

)

 

1/2

 

(7.4.55)

we obtain the simple alternative formulation:

(7.4.56)

 

The Instantaneous Finite Plane Source in Three-Dimensional Infinite Space —

 

The situation considered here is depicted in Figure 7.10C. Since we already have
in Equation 7.4.54 the solution of the 

 

point

 

 source in three-dimensional space, all
we need to do is to extend that solution over the area of the plane source using
superposition by integration. We obtain:

(7.4.57)

where Q
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.
Note that the integration variables are the coordinates of the point source, x

 

0

 

,
y

 

0

 

, z

 

0

 

, rather than the general space coordinates x, y, z. The plane source thus is
seen to be made up of an infinite number of point sources which are summed or
superposed by integration over the area of the plane.

 

The Continuous Point Source — 

 

Here our starting point is again the instantaneous
point source, Equation 7.4.56, which now has to be integrated over the “life-time”
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t of the source. To do this, we introduce the integration variable t

 

′

 

 and write the
following integral of Equation 7.4.56:

(7.4.58)

Note that the argument of integration is (t – t

 

′

 

) rather than t

 

′

 

. Validation of this
expression can be obtained by taking finite increments 

 

∆

 

(t – t

 

′

 

) for a heat release of

 

∆

 

q

 

Tot

 

, summing the increments, and letting 

 

∆

 

(t – t

 

′

 

) 

 

→

 

 0.
The form of the integral is similar to that of the error function, Equation 7.4.42,

and the simple transformation 

 

τ

 

 = (t – t

 

′

 

)

 

1/2

 

 reduces Equation 7.4.58 to the compact
form:

(7.4.59)

where, as noted before:

The Expression 7.4.59 describes the transient temperature distribution in three-
dimensional infinite space due to a continuous heat source of strength Q

 

″

 

(J/s).

 

The Point or Infinite Plane Source in the Semi-Infinite Domain: The Method of
Images — 

 

With this example we wish to introduce the reader to a graphical technique
termed the 

 

method of images.

 

 It consists of placing physical entities on either side
of a boundary, here set at x = 0 of a semi-infinite domain, and proportion them in
such a way that a prescribed boundary condition, e.g., T = 0, is satisfied. In heat
conduction, this is done with the help of heat sources and heat “sinks.” The latter
can be viewed as “cryogenic” sources leading to temperatures below the datum of
T = 0. In potential flow, a similar procedure applies in which images of the submerged
object are placed on either side of a boundary which is required to have a prescribed
value of the stream function, say 

 

ψ

 

 = 0. The method is most easily applied to a
semi-infinite medium and becomes more complex in bounded geometries such as
slabs, cylinders, or spheres. The latter cases are taken up in the specialized mono-
graphs dealing with heat conduction (see References).

In the problem considered here, a heat source of strength Q is placed at a distance
of x = x

 

0

 

 from the boundary, which is maintained at T = 0 by appropriate cooling.
To solve for the resulting temperature distribution by the method of images, a heat
“sink” of equal but opposite strength Q is placed at a distance x = –x

 

0

 

 from the
boundary. This “sink” gives rise to the temperature profile T(x,t) shown in Figure
7.11A. Superposition of source and sink which is permitted because of the linearity
of Fourier’s equation then leads to the profile depicted in Figure 7.11B. Since the
two entities are of equal but opposite strengths, temperatures at the boundary exactly
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cancel each other to give the required value of T = 0. We note that the resulting
distribution for x > 0 satisfies the posed problem, while the 

 

entire

 

 profile over the
range –

 

∞

 

 < x < 

 

∞

 

 is to be regarded as a solution to the two source problem. The
relevant equations are as follows:

 

For the cryogenic sink alone:

 

(7.4.60)

 

For the heat source and cryogenic sink:

 

(7.4.61)

Equation 7.4.61 represents the temperature distribution for the following two cases:

1. Heat source of strength Q at x = x

 

0

 

 of a one-dimensional semi-infinite
medium, with its surface x = 0 maintained at T = 0.

 

FIGURE 7.11

 

Superposition of sources and sinks by the method of images.
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2. Heat source of strength Q at x = x

 

0

 

 of a one-dimensional infinite domain
and a source of strength –Q at the position x = –x

 

0

 

.

The latter is unlikely to arise in practice but is added for completeness. The
following illustration contains yet another example of superposition by the method
of images.

 

Illustration 7.4.5 Concentration Distributions from
a Finite and Instantaneous Pollutant Source in
Three-Dimensional Semi-Infinite Space

 

Pollution from point, line, and area sources is a frequent occurrence of environmental
concern. The resulting concentration profiles are usually modeled by means of PDEs
that combine convective transport due to air movement caused by wind and a
diffusive mode of transport. A general formulation of the problem then leads to an
extended form of Fick’s equation given below:

(7.4.62)

where D

 

x,y,z

 

 are empirical diffusion coefficients and v the wind velocity. Variations
with time and in direction of v are not taken into account in this first model.
Furthermore, we shall assume the dispersion coefficients in x and y to be equal D.

In the example considered here, an instantaneous plane source of strength
S(kg/m

 

2

 

) and dimensions a,b is assumed located at ground level. This approximates
conditions which arise due to brief periods of pollution from an industrial area.
Material diffuses into the semi-infinite region depicted in Figure 7.12, and is further
dispersed by air movement.

We present a solution that makes use of several of the devices and methods we
described in previous sections.

First, we recognize the combination  as a convective derivative,

Equation 7.3.76 which we were able to transform into a single derivative by iden-

 

FIGURE 7.12

 

A finite plane mass source at ground level emitting into the atmosphere.
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tifying new independent variables, Equations 7.3.70 and 7.3.71, and carrying out a
reduction to canonical form. We choose the combination:

u = x – vt and

 

τ

 

 = t (7.4.63)

and obtain the following relation between old and new derivatives using the formula
of Table 7.5:

(7.4.64)

and

Introduction of these relations into the PDE 7.4.62 yields after cancellation of
terms the following result:

(7.4.65)

We thus have succeeded in reducing the model to Fick’s equation which we can
now proceed to treat by the various superposition techniques established in the
previous section.

Second, we start by writing point source solutions for each coordinate direction.
We obtain by adapting Equation 7.4.52 to the problem:

 

For the x-direction:

 

(7.4.66)

where we have introduced the new independent variable x-vt into the exponential
term.

 

For the y-direction:

 

(7.4.67)
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Here we must recognize that the domain is a semi-infinite one, with a Type II (no
flux) boundary condition at z = 0. The solution to that problem also can be obtained
by the method of images, but this time by the addition of two sources. This results
in a composite concentration distribution with a minimum at the origin (Figure
7.11C), thus satisfying the no flux condition. For mass diffusion this yields:

(7.4.68)

Third, with the three uni-directional solutions on hand, we are in a position to
solve the three-dimensional case using superposition by multiplication for a source
of strengths. We obtain:

(7.4.69)

This is the solution to an instantaneous point source emitting into half-space.
The result still needs to be converted to an area source, which is done in the next step.

Fourth, we adapt the method of superposition by integration applied to area
sources in Illustration 7.4.4. This leads to the result:

(7.4.70)

It is left to the practice problems to show that the integrals can be converted
into error functions. This yields the final result:

(7.4.71)

 

Comments:

 

We have here a fairly impressive success story of the application of various
superposition and reduction techniques. The original PDE, although linear, was
nevertheless a complex expression in four dimensions (x, y, z, t). A numerical
solution would present a fairly formidable task of discretization of four variables.
The output would be copious and would lack the cohesiveness of Equation 7.4.71.

C z t
D t

z D t
z

z( , )
( )

exp[ / ]
/

= −
2

4
4

1 2
2

π

C x y z t
S

D t
z Dt

Dt
x vt x Dt y y Dt

z

( , , , )
( )

exp[ / ]

( )
exp[ ( ) / ]exp[ ( ) / ]

/= −

− − − − −

2
4

4

1
4

4 4

1 2
2

0
2

0
2

π

π

C x y z t
S

D t
z Dt

Dt
x vt x Dt y y Dt dx dy

z

ba

( , , , )
( )

exp[ / ]

( )
exp[ ( ) / ] exp[ ( ) / ]

/
= − ×

− − − − −∫∫

2

4
4

1
4

4 4

1 2
2

0
2

0
2

0 0
00

π

π

C x y z t
S

D t
z Dt

erf
x vt

Dt
erf

x vt a

Dt
erf

y

Dt
erf

y b

Dt

z

( , , , )
( )

exp[ / ]

( ) ( ) ( ) ( )

/

/ / / /

= − ×

−
−

− −







 −

−









π 1 2
2

1 2 1 2 1 2 1 2

4

1
4 4 4 4 4

 

248/ch07/frame  Page 481  Friday, June 15, 2001  7:03 AM

© 1999 By CRC Press LLC



   

An additional advantage of the analytical result is its ability to reveal the depen-
dence of the concentration C on various dimensionless parameters. We note in
particular the incorporation of the wind velocity into the groups (x – vt)/(4Dt)

 

1/2

 

 and
(x – vt – a)/(4Dt)

 

1/2

 

. Numerical solutions, unless properly nondimensionalized as
above, would have to deal with a host of separate parameters.

Further obvious refinements can be added to the model. Continuous sources can
be treated by integration over time as outlined in the previous illustration. Emissions
from a smoke stack of height z

 

0

 

 can be accommodated by the simple change in
variable z 

 

→

 

 z

 

0

 

. Variations in diffusivities, particularly D

 

z

 

, have been expressed in
empirical terms described in specialized monographs. All these features and others
not covered here have led to a substantial literature on the topic of atmospheric
dispersion (see References at the end of the chapter).

 

7.4.2.4 More Superposition by Integration: Duhamel’s Integral 
and the Superposition of Danckwerts

 

Duhamel’s Integral — 

 

As originally conceived, Duhamel’s integral was designed to
express the solution of Fourier’s equation for a time-varying surface temperature in
terms of the solution to the simpler problem with a constant surface temperature.
The formula was subsequently extended to Type II and III boundary conditions and
to other Linear PDEs such as the wave equation with time varying forcing function.
The general approach for Fourier’s equation which applies equally to Fick’s equation
is as follows:

Suppose we wish to solve the following general problem:

(7.4.72)

or equivalent forms in other coordinate systems, and one of the following boundary
conditions applied to the surface S:

Type I v(S) = f(t) (7.4.73)

Type II (7.4.74)

Type III (7.4.75)

where n denotes the direction normal to the surface and f, g, h are arbitrary functions
of t.

Suppose further that we have available the solution u to the reduced problem in
which f, g, h are replaced by 

 

unity

 

. Then the solution v to the general time-varying
problem in the domain V is given by one of the following equivalent integrals:
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(7.4.76)

and

(7.4.77)

where we have used the general symbol F to denote any one of the time varying
surface functions f(t), g(t), or h(t).

In practice, the solution to the reduced problem u(v,t) is located in the literature,
substituted into either Equation 7.4.76 or 7.4.77, whichever appears more convenient,
and the indicated differentiation and integration carried. This certainly requires much
less time than the full solution of one of the systems Equations 7.4.72 to 7.4.73 and
can be applied to time varying surface conditions of arbitrary form. If the resulting
integral cannot be evaluated analytically, a numerical determination is resorted to.

The following illustration demonstrates the application of Duhamel’s integral.

 

Illustration 7.4.6 A Problem with the Design of
Xerox Machines

 

The principle of electrostatic copying or xeroxing involves charging the copying
paper in the image of the original — positive charge for dark areas, negative for
light ones — and contacting the paper with negatively charged particles of carbon
black encapsulated in a polymer film (Figure 7.13A). The particles adhere to the
positive sites and have to be fixed to the paper by raising the temperature to 240°F
(115.5°C). Failure to do so results in smudging of the copies.

An early problem which arose in the design of such copiers was the need to
bring the paper to the required temperature in the short time stipulated by modern
high-speed units. To overcome this difficulty, designers considered exposing the
paper to a very intense and short heat flash of 10

 

–3

 

 s duration produced by a flash
lamp-condenser combination. The power flux from this unit may be regarded as an
isosceles triangle with base width 

 

τ

 

f

 

 = 10

 

–3

 

 s (see Figure 7.13B). For the design of
the flash lamp-condenser unit, it was required to know the maximum heat flux q

 

Max

 

that will give the required maximum surface temperature of 115.5°C. Note that the
maximum lags behind that of the heat flux, and is to be found somewhere between
t

 

1/2

 

 and t

 

f

 

.
To solve this rather intricate problem, we propose to proceed as follows:
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• Calculate the temperature profile that results from the time varying heat
flash. This can be done using the known surface temperature which results
from a constant heat flux of q = 1 and superposing that solution by means
of Duhamel’s integral to arrive at a solution for the variable heat flux case.
Standard references on heat conduction provide the following temperature
distribution T

 

c

 

(x,t) for constant unit flux q = 1 and a semi-infinite medium.

The corresponding temperature at the surface is then given by:

(7.4.78)

where T

 

c

 

(0,t) denotes the surface temperature for constant unit heat flux.
This is the temperature which is used in the superposition integral to arrive
at the solution T

 

v

 

(x,t) for 

 

time varying flux

 

. We choose the Expression
7.4.76 to superpose and obtain:

(7.4.79)

where T

 

v

 

(0,t) is now the result of 

 

variable

 

 heat flux.
• The next step is to calculate 

 

∂

 

q/

 

∂

 

t, using Figure 7.13B as a guide. Two
expressions are obtained, one for the rising and one for the falling portion
of the isosceles triangle.

 

FIGURE 7.13

 

Heat conduction into Xerox paper: (A) composition of the paper, (B) surface
heat flux and temperature as a function of time.
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• Substitute 

 

∂

 

q/

 

∂

 

t and Equation 7.4.78 into the integral of Equation 7.4.79.
Integrate in two steps: from 0 to t

 

1/2

 

 and from t

 

1/2

 

 to t. The result contains
q

 

Max

 

, the parameter to be extracted:

T

 

v

 

(0,t) = f(q

 

Max

 

,t) (7.4.80)

• To obtain q

 

Max

 

 from this expression, we use the prescribed T

 

Max

 

 = 115.5
and the corresponding time t

 

Max

 

 obtained by differentiating Equation
7.4.79 and setting the derivative = 0. This is the time at which the max-
imum temperature shown in Figure 7.13B occurs.

• In the final step we substitute t

 

Max

 

 and T

 

Max

 

 = 115.5°C into the evaluated
Equation 7.4.80 and solve for q

 

Max

 

. This is the desired result.

Let us see how this works out in practice.

 

Data for paper:

 

Thermal conductivity k = 0.1295 J/msK
Thermal diffusivity 

 

α

 

 = 6.65 

 

×

 

 10

 

–8

 

 m

 

2

 

/s
Thickness L = 7.63 

 

×

 

 10

 

–5

 

 m
Initial temperature T(x,0) = 20.1°C = 293.3 K
Absorption of incident heat = 30%

We now proceed with a stepwise solution as outlined above.

• Substitution of Equation 7.4.78 into the Duhamel integral yields:

(7.4.81)

which requires the determination of 

 

∂

 

q/

 

∂

 

t (second step below) and sub-
sequent integration (Step III).

• From the slopes of the triangular heat pulse, Figure 7.13B, we obtain for
the flux derivative:

(7.4.82)

and

• Substitution of Equation 7.4.82 into the integral Equation 7.4.81 and a
two-step integration leads to the sum:
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(7.4.83)

and upon evaluation of the integrals to the expression:

(7.4.84)

• We now evaluate 

 

∂

 

T

 

v

 

/

 

∂

 

t, set it equal to zero, and solve for t

 

Max

 

:

(7.4.85)

This leads to the result:

(7.4.86)

i.e., t

 

Max

 

 lies between t

 

1/2

 

 and t

 

f

 

, as expected.
• t

 

Max

 

 and the desired (Tv)Max = 115.5°C = 388.8 K are substituted into
Equation 7.4.84 and the result solved for qMax. We obtain:

(7.4.87)

or:

Hence,

qMax = 2.47 × 106 J/m2s at 100% efficiency

and

qMax = 8.22 × 106 J/m2s at 30% efficiency

This is the desired peak flux required for the design of the flash lamp-condenser unit.
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Comments:

 

The reader will have noted that the literature solution for a semi-infinite medium
was used in the calculations. This may appear surprising, given the small value of
the thickness L of the paper. A quick calculation of the dimensionless time argument
which appears in Equation 7.4.78, however, shows this to be justified. We obtain:

(7.4.88)

and

For these values of their respective arguments, both the exponential and the erfc
in Equation 7.4.78 become vanishingly small, so that:

T

 

v

 

(L,t) = T(L,0) (7.4.89)

i.e., the bottom of the paper x = L, will, for the duration of the heat pulse, remain
at the initial temperature of 20.1°C. This justifies the seemingly bizarre description
of a sheet of paper as a semi-infinite medium. Had we chosen a finite geometry
instead, the resulting solution would have been considerably more complex. We
made effective use of the suggestions given under “Simplification of Geometry” in
Section 7.3.5.

 

The Superposition of Danckwerts — 

 

Danckwerts considered the problem of
Fickian diffusion with accompanying first order irreversible reaction. In one-dimen-
sional Cartesian coordinates, the system is described by the PDE:

(7.4.90)

His proposal was to express the solution of Equation 7.4.90 in terms of the
solution C of Fick’s equation without a reaction term. He succeeded in developing
the following superposition formula:

(7.4.91)

where C

 

′

 

 is the solution to Fick’s equation:

(7.4.92)
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Expressions of identical form were derived by Danckwerts for spheres and
infinitely long cylinders for boundary conditions of Type I and Type III. For a semi-
infinite medium, the following expression results:

(7.4.93)

It is left to the Practice Problems to derive this expression.

Practice Problems
7.1 Classification of PDEs: Oscillations of a Hanging Chain —

(a) Consider a heavy chain of uniform density suspended vertically from one
end. If one takes the origin at the position of equilibrium of the lower, free end, and
the x-axis along the equilibrium position of the chain, then small oscillations of the
chain in the horizontal direction y are described by the following PDE:

(P7.1)

where g = gravitational constant.
Give a complete classification of this equation as to linearity, homogeneity, type

of coefficients, and whether it is elliptic, parabolic or hyperbolic.
(b) Classify the following PDE:

(kux)x = uy + ku

Consider the cases where (a) k = constant, (b) k = f(x), (c) k = g(u).

7.2 Boundary and Initial Conditions. Physical Interpretations —
(a) Consider the three-dimensional Laplace, Fourier, and Wave equations. How

many boundary and initial conditions does each require?
(b) Classify the boundary and initial conditions and give a physical interpretation

of the following Fourier system:

(P7.2)
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7.3 Derivation of Simple Partial Differential Equations — 
(a) Using the procedures given in Illustration 7.2.1 for deriving the PDE for a

vibrating string, derive Equation P7.1 for the oscillation of a suspended chain.
(b) Show that the temperature distribution in an electrical conductor of specific

resistivity S and carrying an electrical current i is given by:

(P7.3)

where h is the convective heat loss to the surroundings of temperature T and R =
wire radius.

(Hint: q(J/s) = Rei2 where Re = electrical resistance = SL/πR2.)

7.4 Transformation of Independent Variables — 
(a) Starting with Laplace’s equation in Cartesian coordinates (Equation 7.2.14),

show that introduction of the cylindrical coordinates r, ϕ, z, defined by the relations:

x = r cos ϕ, y = r sin ϕ, z = z (P7.4)

leads to the form:

(P7.5)

(b) Show that the three-dimensional polar coordinates r, θ, ϕ are related to the
Cartesian coordinates by the relations:

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ (P7.6)

Using these relations, derive Laplace’s equation for a sphere in three dimensions:

Answer:

(P7.7)

7.5 Similarity Transformation for Non-Fickian Diffusion — Non-Fickian diffu-
sion is the term used to describe diffusional transport in which the diffusion coeffi-
cient depends on concentration, D = f(C). This case arises in the diffusion of solutes
present in high concentrations, particularly in high density gases and in liquids, and
in the gas and liquid phase diffusion of solutes through polymeric substances.

Consider non-Fickian diffusion in a one-dimensional semi-infinite medium with
an initial concentration c(x,0) = C0 and an imposed surface concentration of Cs(0,t)
= Cs at t > 0. Derive a similarity variable η for the system and show that the similarity
transformation reduces the non-Fickian diffusion equation:
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(P7.8)

to the form:

(P7.9)

Describe a physical problem in heat conduction that can be solved by the same
method.

7.6 Transformation of Nonhomogeneous Boundary Conditions to Homogeneous
Form — The constant rate drying of a porous slab 0 < x < L can be described by
the following system of equations:

(P7.10)

where W = rate of drying.
Convert these expressions to a system with homogeneous boundary conditions

without introducing nonhomogeneous terms into the PDE.
(Hint: Since four expressions have to be made or kept homogeneous, a third

order polynomial with four undetermined coefficients suggests itself as a trial func-
tion for a new dependent variable C′. Show that if the polynomial is defined in x
only, incompatible conditions arise. Remedy this by including time t in the trial
function C′ = C + f(x,t).

7.7 Reduction to Canonical Form —
(a) Show that the two-dimensional wave equation is hyperbolic. Identify the

characteristics and reduce the PDE to canonical form.

Answer: 

(b) Reduce the following PDE to canonical form:

(P7.11)
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∂
∂

∂
∂

= ∂
∂x

D C
C
x

C
t

( )

d
d

D C
dC
d

dC
dη η

η
η

( ) + =2 0

D
C

x
C
teff

∂
∂

= ∂
∂

2

2

∂
∂







= − ∂
∂







= ∂
∂







= =C
x

C
x

W
D

C
x

C x C
L eff L0 2

00 0; ; ( , )
/

∂ ′
∂ ∂

=
2

0
u

x y

∂
∂

= ∂
∂

2

2
2

2

2

u
x

x
u

y

∂ ′
∂ ∂

=
−

∂ ′
∂

− ∂ ′
∂







2 1
4

u
x y x y

u
x

u
y( )

248/ch07/frame  Page 490  Friday, June 15, 2001  7:03 AM

© 1999 By CRC Press LLC



Comment:
Although the new PDE is more complex in appearance, it has the virtue of

having the same structure as the canonical form of a generalized wave equation.

7.8 Steady-State Temperature in a Quadrant: Solution of Laplace’s Equation
— Using Item 3 of the solutions to Laplace’s equation shown in Figure 7.7, calculate
the dimensionless temperature along the insulated portion at a position x = 0.5.

Answer: 

7.9 Wind Velocity and Pressure Near the Eye of a Tornado — The flow pattern
in tornadoes is well represented by superposition a vortex and a sink (see Figure
7.9A). Given that at a distance of 1 km from the eye vθ = vr = –0.5 m/s and p = 1
atm, calculate the absolute velocity and pressure at a distance of 15 m from the eye.
Assume a constant density of air ρ = 1.25 kg/m3.

Answers: v = 27.1 m/s; p = 0.986 atm

Comment:
Viscous effects usually start making themselves felt at a distance of 40 m from

the eye. The above answers therefore are to be regarded as maximum values.

7.10 A Moving Source Problem — A moving point contact is pressed against the
plane x = 0 with a constant force F per unit length. It moves with a speed v, producing
a constant coefficient of friction µ (Figure 7.14). Obtain the temperature distribution
T(x,y,z), assuming an initial temperature of zero and neglecting heat losses to the
surroundings. This type of problem arises in milling and lathe operations.

(Hint: The problem is equivalent to a stationary continuous source with emission
Fµv and a medium moving with velocity v. The PDE is then of the form 7.4.62,
Illustration 7.4.5. Reduce it to Fourier’s equation in line with what was done there,
and follow this up with superposition by multiplication and by integration over time.)

FIGURE 7.14 Configuration of a moving point source.

u = 1
3
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Answer:

7.11 The Danckwerts Superposition — Derive the formula of Equation 7.4.93
using the Danckwerts superposition integral, Equation 7.4.91. The result describes
the unsteady concentration distribution for diffusion, accompanied by a first-order
irreversible reaction in a semi-infinite medium. Obtain the required concentration
distribution C′(x,t) for the case of no reaction from the pertinent literature and use
the error function relations given in Table 7.6. Integrate by parts, convert to error
function by differentiation, then integrate by parts again.
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8

 

Vector Calculus: 
Generalized Transport 
Equations

 

Conscription if necessary, but not necessarily conscription.

 

William Lyon Mackenzie King
(speech during World War II Conscription Crisis)

 

PDEs if necessary, but not necessarily PDEs

 

Author’s Adaptation

 

In the preceding chapter (7), we had presented an introduction to multidimensional
models in time or space which took the form of partial differential equations. These
were, for the most part, given in Cartesian coordinates for simplicity and confined
to the classical equations of mathematical physics such as the Laplace and Fourier
equations.

In the present chapter we undertake the derivation of the generalized, multidi-
mensional equations for the transport of mass, energy, and momentum, based on
their respective conservation laws. In other words, we will be dealing with mass,
energy, and momentum balances in a most general way and at the PDE level. As
before, momentum balances also may take the equivalent form of force balances or
extensions of Newton’s law.

The generalized approach we shall be taking calls for the use of vector notation
and vector operations, principally within the framework of vector calculus. There-
fore, we shall start our deliberations with an introduction to this difficult topic which
is often viewed with misgivings by beginning students. We shall attempt to demystify
the subject matter by placing it within the framework of physical reality, and justi-
fying its use by means of illustrations. This is followed by individual sections dealing
with mass, energy, and momentum balances that make use of the tools of vector
calculus provided in the lead-in section. Solutions of PDEs, when they do occur,
will make use only of the limited methods presented in Chapter 7 or those given at
the ODE level. More elaborate and specialized solution methods will be presented
and applied to the conservation laws, in the concluding chapter (9). The present
chapter thus may be regarded as a bridge between introductory treatment of Chapter
7 and the elaborations that follow in Chapter 9.
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8.1 VECTOR NOTATION AND VECTOR CALCULUS 

We start this section by listing the principal features of vector operations and the
uses to which they can be put.

A first point to note is that vector notation is, in essence, a convenient 

 

shorthand

 

for a variety of algebraic, geometric, and differential operations and equations. Thus,
the operational form 

 

∇ 2 u = 0 is a shorthand version of Laplace’s equation which in
Cartesian coordinates has the “longhand” form 

 

∂

 

2

 

u/

 

∂

 

x

 

2

 

 + 

 

∂

 

2

 

u/

 

∂

 

y

 

2

 

 + 

 

∂

 

2

 

u/

 

∂

 

z

 

2

 

 = 0. The
symbol 

 

∇

 

2

 

, the so-called Laplacian, is to be regarded as an operator, symbolically
represented by 

 

∂

 

2

 

/

 

∂

 

x

 

2

 

 + 

 

∂

 

2

 

/

 

∂

 

y

 

2

 

 + 

 

∂

 

2

 

/

 

∂

 

z

 

2

 

 in Cartesian coordinates. It resembles in this
respect the D-operator which was encountered at the ODE level and symbolically
expressed the operation d/dx.

A second important point is that the operational notation or shorthand is 

 

inde-
pendent of geometry . Thus, the expression 

 

∇ 2

 

u = 0 represents Laplace’s equation in
any arbitrary coordinate system, including Cartesian, spherical, and cylindrical coor-
dinates. This shorthand form can be expanded into conventional notation by means
of convenient dictionaries or conversion tables, an example of which appears in
Table 8.1.

Any problem that can be treated vectorially can also, in principle, be solved by
nonvectorial methods. However, the vectorial approach simplifies the manipulations
and renders them less complex and much more elegant. The more complex a system,
the greater the need for operational notation. Viscous flow, both Newtonian and non-
Newtonian, and mechanical systems involving simultaneous translation and rotation
are typical of processes that benefit from vectorial representations. The Maxwell
equations of electromagnetics are invariably expressed and manipulated in vectorial
form (see Practice Problem 8.1.8).

Merely putting a differential equation in vector form does not yield a solution.
The vector equations must still be converted to scalar form using the appropriate
dictionary and solved by scalar methods. However, vector transformations, under-
taken prior to solution, are of considerable aid in simplifying the PDEs.

Some operators, such as the Laplacian mentioned above and the dot product 

 

A
· B

 

 familiar from elementary vector algebra yield, on expansion, 

 

single scalar
equations

 

, in other words they are themselves scalar. Others, such as the cross
product 

 

A 

 

×

 

 B

 

, and the detested curl 

 

∇

 

 

 

×

 

 v

 

, are themselves vectors and, hence,
decompose into an equivalent set of three scalar equations.

We mention these points as part of our endeavor to make vector notation more
palatable to the reader. To further ease the transition, we present by way of an
introduction to vector calculus, a brief summary of the principal relations pertaining
to vector algebra. Most of these will be familiar from one course or another although
they may have been conveniently forgotten.

 

8.1.1 S

 

YNOPSIS

 

 

 

OF

 

 V

 

ECTOR

 

 A

 

LGEBRA

 

Defining relations and some other properties of the important entities and operations
of vector algebra are listed in Table 8.2. We note the following:
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TABLE 8.1

 

 

 

Differential Operators in Various Coordinate Systems

 

A. Gradient 

  

∇∇∇∇

 

u

 

(1) Cartesian

(2) Cylindrical

(3) Spherical

 

B. Divergence 

  

∇∇∇∇

 

 · v

 

(1) Cartesian

(2) Cylindrical

(3) Spherical
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(2) Cylindrical

(3) Spherical

 

E. Convective Operator (v · 
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A Free Vector 

 

A

 

 is defined by its magnitude, i.e., length |

 

A

 

| and its direction,
but not its location in space. An exception is the position vector 

 

R  (Figure 8.1A)
which always starts at the origin, extends to some point P(x,y,z) and, hence, has the
components x, y, z. Thus,

 

R

 

 = x

 

i

 

 + y

 

j

 

 + z

 

k

 

(8.1.1)

Here 

 

i

 

,

 

 j

 

,  k   are unit vectors, i.e., have a length of 1 and are directed along the
coordinate axes. Unit vectors, premultiplied by the components, provide a complete
description of a vector.

 

Free Vectors 

 

are to be distinguished from line vectors which are defined by
magnitude, direction, 

 

and  line of action, i.e., two line vectors can only be equal if,
in addition to having the same magnitude and direction, they lie on the same line.
This type of vector is used mainly in solid mechanics. The presentation here is
confined to free vectors.

 

The Normal Vector 

 

N

 

 

 

(Figure 8.1B) passes through some point P(x,y,z) on the
surface S and is orthogonal to two Vectors 

 

u

 

 and 

 

v

 

 which are themselves tangent to
the surface at the same point P. Thus,

 

N

 

 = 

 

u

 

 

 

×

 

 

 

v 

and

(8.1.2)

where n is the unit normal vector and the vertical bars denote absolute magnitude.
We shall encounter n again in the definition of certain entities which arise in vector
calculus.

(3) Spherical
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Addition and subtraction of vectors

 

 (Figure 8.1C/D) occasionally give rise to
some confusion and it is helpful to remember the following rules — in addition, the
two vectors to be added meet head-to-tail, in subtraction, tail-to-tail. The 

 

direction

 

of the difference vector 

 

B

 

 – 

 

A

 

 must be such that 

 

A

 

 + (

 

B

 

 – 

 

A

 

) = 

 

B

 

.

 

Both dot and cross products

 

 are used extensively in mechanics and in the solution
of problems in geometry and analytical geometry, of which we give some examples
in the next illustration. Both products also make their appearance in vector calculus.

 

TABLE 8.2
Relations of Vector Algebra

 

System/Operation Defining Relation Other Properties

 

Free vector 

 

A A

 

 = A

 

x

 

i

 

 + A

 

y

 

j

 

 + A

 

z

 

k
A

 

 = |

 

A

 

|[cos(

 

A

 

,x)

 

i

 

 + cos(

 

A

 

,y)

 

j

 

 
+ cos(

 

A

 

,z)

 

k
A

 

 = |

 

A

 

|

 

a

 

Magnitude
|

 

A

 

| = (A

 

x
2

 

 + A

 

y
2

 

 + A

 

z
2

 

)

 

1/2

 

Unit vectors

 

i, j, k:

 

 Along x,y,z axes

 

a:

 

 Along vector 

 

A

 

Two vectors 

 

A

 

, 

 

B

 

 are equal if 
they have identical magnitude 
and direction, or A

 

x

 

 = B

 

x

 

, A

 

y

 

 = 
B

 

y

 

, A

 

z

 

 = B

 

z

 

A = –B implies two parallel 
vectors of equal magnitude and 
opposite direction

Addition and substraction (

 

A

 

 ± 

 

B

 

) = (A

 

x

 

 ± B

 

x

 

)

 

i

 

 +
(A

 

y

 

 ± B

 

y

 

)j + (A

 

z

 

 ± B

 

z

 

)

 

k

 

For graphical construction see 
Figure 8.1C/D

Multiplication by scalar m m

 

A

 

 = mA

 

x

 

 + mA

 

y

 

 + mA

 

z

 

m

 

A

 

 = m|

 

A

 

|[cos(

 

A

 

,x)

 

i

 

 +
cos(

 

A

 

,y)

 

j

 

 + cos(

 

A

 

,z)

 

k

 

m

 

A

 

 = m|

 

A

 

|

 

a

 

Dot product 

 

A · B

 

 = a scalar

 

A

 

 · 

 

B

 

 = |

 

A

 

| |

 

B

 

| cos(A,B)

 

A · B

 

 = A

 

x

 

B

 

x

 

 + A

 

y

 

B

 

y

 

 + A

 

z

 

B

 

z

 

A · B

 

 = |

 

A

 

| projection of 

 

B

 

on 

 

A
A · B

 

 = |

 

B

 

| projection of 

 

A

 

on 

 

B
A · B

 

 = 0 if 

 

A, B

 

 orthogonal

 

A · B

 

 = |

 

A

 

| |

 

B

 

| if 

 

A, B

 

 parallel

 

i · j

 

 = 

 

j · k

 

 = 

 

i · k

 

 = 0

 

i · i

 

 = 

 

j · j 

 

= 

 

k · k

 

 = 1

Dot product is:
Distributive

 

A ·

 

 (

 

B

 

 + 

 

C

 

) = 

 

A · B 

 

+ 

 

A · C

 

Commutative

 

A · B

 

 = 

 

B · A

 

Associative
(t

 

A

 

) 

 

· B

 

 = t(

 

A · B

 

)

Cross product A 

 

×

 

 B = a vector

 

A

 

 

 

×
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 = 

 

C

 

 = vector normal to

 

A, B
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×
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B

 

x

 

 – A

 

x

 

B

 

z

 

)

 

j

 

 +
(A

 

x
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Distributive
Associative
It is NOT commutative
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It is helpful to remember the following properties which are often used in applica-
tions of the two vector operations.

The Dot Product A · B is a scalar which is proportional to the projection of a
vector, and is zero when A, B are orthogonal. Hence, it is frequently used to describe
the component of a vector in a particular direction, i.e., its projection on a vector in
a particular direction and when two lines intersect at a right angle (see Illustration
8.1.1 and definition of divergence, Section 8.1.2).

The Cross Product A × B is a vector which is orthogonal to A, B and becomes
zero when A, B are parallel. Hence, it can be used to find the normal to two given
lines (see Practice Problem 8.1.4 and definition of curl, Section 8.1.2).

Illustration 8.1.1 Two Geometry Problems

We consider in the first of these two examples an inscribed quadrilateral formed by
joining the midpoints of any other arbitrary quadrilateral (Figure 8.2A). The task is
to prove that the inscribed figure is always a parallelogram.

We start by noting that the vector sum of the four sides of the external quadri-
lateral equals zero:

FIGURE 8.1 Vectors and simple vector algebra operations.
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A + B + C + D = 0 (8.1.3)

This follows from the law of addition of vectors, which in this case yields (A
+ B) = –(C + D) (see Figure 8.1C as a guide).

Since the sides of the inscribed figure join the midpoints of the external quad-
rilateral, we can write, using again the concepts of vector addition: 

(8.1.4)

(8.1.5)

Substituting Equation 8.1.3 into Equation 8.1.4 and comparing with Equation
8.1.5 we obtain:

F = –H (8.1.6)

This relation implies that the sides F, H are parallel and equal in magnitude (see
statement in Table 8.1). The sides E, G must then perforce also be parallel and of

FIGURE 8.2 Three simple geometry problems expressed in terms of vector operations.

F A B= +1
2 

( )

H C D= +1
2 

( )
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equal length, so that the inscribed figure is proven to be a parallelogram. Note that
this proof required nothing more than concepts of vector equality and addition. The
equivalent and purely geometrical proof is more cumbersome and far less elegant.

In a second example, we wish to prove that any angle inscribed in a semicircle
is a right angle (Figure 8.2B). This is equivalent to proving that the dot product C
· D = 0. This product can be expressed in terms of the constituent vector sum,

C · D = (P + A) · (P – A) (8.1.7)

Since dot products are distributive (see Table 8.1), the right side of Equation
8.1.7 can be “multiplied out” in the conventional algebraic sense to yield:

C · D = P · P – A · A (8.1.8)

As well, since cos(A,A) = cos(P,P) = 1, we obtain, by the defining formula for
dot products (Table 8.1):

C · D = |P|2 – |A|2 = 0 (8.1.9)

P and A have the same length, i.e., the radius of the circle, hence, the right side
vanishes and the proof is complete.

We hope, by this short preamble to have made the reader feel more comfortable
with vectors in preparation for the somewhat more advanced concepts of vector
calculus.

8.1.2 DIFFERENTIAL OPERATORS AND VECTOR CALCULUS

Differential operators represent, as we have noted, a shorthand for certain operations
involving partial derivatives. The four principal ones that we wish to consider in
more detail here are: the gradient, the divergence, the curl, and the Laplacian. Some
operate on vectors or are themselves vectors, others are scalars or operate on scalars.
When the result is a vector, there are three equivalent scalar equations to be consid-
ered. We summarize these features for the reader in Table 8.3.

Expressions for these operators in Cartesian, cylindrical, and spherical coordi-
nates had previously been presented in Table 8.1 which also lists the convective
operator (v · ∇)v and the Laplacian of a vector ∇2v. The latter appear principally in
momentum balances (see Section 8.4).

There are several ways in which operators can be viewed. The simplest and
perhaps most simplistic is to regard them as a shorthand for certain combinations of
partial derivatives which appear in mathematical physics. Thus, the Laplacian ∇2u
(= ∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z in Cartesian coordinates) appears in a host of classical
PDEs, including Laplace’s and Fourier’s equations, as well as those of Poisson and
Helmholtz. The divergence of fluid velocity ∇ · v (= ∂vx/∂x + ∂vy/∂y + ∂vz/∂z), makes
its appearance in the continuity equation of fluid mechanics. Force, or momentum
balances which arise in the same field contain the gradient of pressure ∇p that, being
a force, is also a vector, with Cartesian components ∂p/∂x, ∂p/∂y and ∂p/∂z.
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A somewhat more elevated use of operators comes about by exploiting the prop-
erties of the “del” or ∇ notation. We have seen a variety of such dels in Table 8.2, a
straight “del” which appears in the gradient, a “del dot” which appeared in the diver-
gence, a “del cross” in the curl, and a “del square” associated with the Laplacian. Each
of these operators can be expanded into forms which provide a better understanding
of the mathematical operation involved. We have done this for Cartesian coordinates
and summarize the results in Table 8.4. Some useful applications of this notation will
be shown in Illustration 8.1.3 where we shall use the standard operations of vector
algebra to arrive at the final result. This is another useful feature of the del notation.

A third way of viewing differential operators is to attribute some physical
meaning to them. This is not always easy to accomplish, but we shall do our best.

Finally, we turn to the most important aspect of operational notation, its role as
a powerful and compact tool to express complex physical problems in multidimen-
sional space and to facilitate their solution. Once certain rules of the operational
“game” have been laid down, as we have attempted to do here, manipulation,
simplification, and ultimately solution of such physical problems becomes much
more manageable. A certain sense of uneasiness will usually remain because of the

TABLE 8.3
The Differential Operators

Operator Operates On Is Itself

Gradient A scalar A vector
grad u = ∇u

Divergence A vector A scalar
div v = ∇ · v

Curl A vector A vector
curl v = ∇ × v

Laplacian A scalar A scalar
∇2u

TABLE 8.4
The Del Notation (Cartesian)

Symbol Expanded Form

∇

∇ ·

∇×

∇2

i j k
∂

∂
+ ∂

∂
+ ∂

∂x y z

i j k
∂

∂
+ ∂

∂
+ ∂

∂






⋅
x y z

i j k
∂

∂
+ ∂

∂
+ ∂

∂






×
x y z

i j k
∂

∂
+ ∂

∂
+ ∂

∂

2

2

2

2

2

2x y z
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unfamiliar nature of the symbolism but this is no different than other areas of
mathematics. In time and if one persists, the benefits will outweigh the drawbacks.

8.1.2.1 The Gradient ∇∇∇∇

As seen from Table 8.3, the gradient operates on a scalar, such as pressure or
temperature but it itself a vector. A physical definition of ∇u may be given by
considering surfaces in three-dimensional space which have a constant value of the
scalar u, for example isothermal surfaces in a temperature field (Figure 8.3A). One
may then define the gradient as a vector which points in the direction of maximum
increase in u (i.e., is normal to the isothermal plane) and has a magnitude equal to
the maximum increase per unit distance. In mathematical terms, one obtains:

(8.1.10)

An alternative expression in terms of the vector components of ∇u is obtained
by introducing the position vector R to the isothermal plane, as well as its differential
dR which is tangent to the plane (see Figure 8.3A). We then obtain:

FIGURE 8.3 The three principal operators of differential calculus: (A) the gradient ∇, (B)
the divergence ∇ ·, (C) the curl ∇ ×.

∇ =u 
du
dn

Gradient Magnitude Unit normal

n
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By virtue of orthogonality:

∇u · dR = 0 (8.1.11)

By virtue of constant u:

(8.1.12)

Since dx, dy, dz are the components of dR, it follows from the definition of the

dot product that  must be the components of the gradient. We, thus,

obtain the following “working equation” for the gradient: 

(8.1.13)

Now Fick’s and Fourier’s laws postulate that mass and heat flux, N and q, are
proportional to and in the direction of the largest decrease per unit distance of
concentration and temperature, i.e., they must be proportional to the negative gra-
dient of C and T. These laws, therefore, take the vectorial form

N = –D∇C (8.1.14)

q = –k∇T (8.1.15)

8.1.2.2 The Divergence ∇∇∇∇ ·

Here it is convenient to start with a mathematical definition which we make more
palatable later by giving it some physical meaning. There are several such definitions
available of which we choose the following: 

(8.1.16)

This odd looking expression, sketched in Figure 8.3B, in essence states that the
projection of a vector v onto the unit normal vector to the surface dS yields, upon
integration over the surface, division by volume V and allowing V to shrink to a
point the divergence of that vector. Let us attempt to make some physical sense of
this expression and set v equal to the velocity of a flowing fluid. Its dot product with
the unit normal yields:

n · v = |n| projection of v onto n (8.1.17)

∂
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+ ∂
∂

+ ∂
∂
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∂
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∂
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∂
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0
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so that

n · v = (1)(vn) = normal component of v

We can then write the integral in the form:

(8.1.18)

which shows that the integral represents the net outflow of fluid from the surface S
per unit mass of enclosed fluid. By allowing V to shrink to a point, this becomes
the net outflow per unit mass at a point of the flow field which is the divergence of
the velocity.

Two items need to be noted in connection with the divergence.

1. Although we have arrived at some degree of understanding of the physical
meaning of ∇ · v, we still lack a convenient mathematical representation
of it. This requires evaluation of the awkward Expression 8.1.16 and will
be undertaken in Illustration 8.1.2. Evidently the result will have to be a
scalar, since the integrand n · v is a scalar and we shall find that the
divergence is in fact represented by the sum of a set of first order partial
derivatives.

2. A second point concerns the manipulation of the divergence to arrive at
a general vectorial representation of the conservation of mass. This can
be done by making use of the integral theorems of vector calculus. Spe-
cifically, we shall make use of the so-called divergence theorem to arrive
at a vectorial representation of the continuity equation. This is taken up
in Illustration 8.1.4. We now turn to the more difficult task of making
some sense of the forbidding expression referred to as the curl.

8.1.2.3 The Curl ∇∇∇∇x

The mathematical definition of the curl we have chosen starts innocently enough by
replacing the dot product of the divergence in Equation 8.1.16, by the cross product
n × v. We obtain:

(8.1.19)

To make some physical sense of this expression we note that the magnitude of
the cross product is given by:

|n × v| = (1) |v| sin(n,v) = vt = tangential velocity component (8.1.20)
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With some imagination, the curl ∇ × v therefore can be regarded as a “net”
tangential velocity over the surface of an infinitesimally small domain. If non-zero,
one could consider this to be the result of shear forces and, in fact, almost all viscous
flow turns out to be “rotational,” i.e., obeys ∇ × v ≠ 0, and almost all inviscid flow
(µ = 0) is “irrotational,” characterized by ∇ × v = 0. There are very few exceptions
to these rules, of which three are mentioned.

1. Gas flow, although essentially inviscid because of its low viscosity, is
invariably and strongly rotational in the rear of a submerged bluff body,
as evidenced by the eddies formed there.

2. A rotating cylindrical vessel filled with a viscous fluid nevertheless is
irrotational. This is a minor case which rarely arises in practice.

3. An inviscid fluid subjected to Coriolis forces due to the rotation of the
Earth will be in rotational flow. This is again a highly specialized subject
that will not be dealt with here.

Two further points need to be made.
What precisely is meant, in mathematical terms, by the statement ∇ × v = 0?

The answer is that the components of the curl vector become zero. Inspection of
Table 8.1 shows that this results, for Cartesian coordinates, in the following three
relations: 

(8.1.21)

The second point to be made is, since inviscid and irrotational flow are
essentially identical, why not confine ourselves to the former which is more easily
formulated? The answer to this question is provided in detail in Section 8.4, but
we summarize the results briefly here. The momentum balances for viscous flow
are represented by the three scalar and nonlinear Navier-Stokes equations. By
making the assumption of inviscid flow, the equations are shortened, but still
remain nonlinear and three in number. Assuming irrotational flow, on the other
hand, brings about a drastic reduction from three nonlinear PDEs to a single linear
PDE, Laplace’s equation. This is a dramatic simplification made all the more so
by the fact that Laplace’s equation has been extensively studied and numerous
solutions to it by a variety of methods are known. Some of these were tabulated
in Figure 7.7 of the preceding chapter.

Finally, in our consideration of differential operators, we turn our attention to
the Laplacian operator ∇2.

8.1.2.4 The Laplacian ∇∇∇∇2

Here we dispense with a physical interpretation and confine ourselves to a derivation
in mathematical terms. We had previously in Table 8.3 noted the following equiva-
lence for the gradient operator:
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(8.1.22)

Also noted in that table was the expanded form of the divergence operator:

(8.1.23)

We now proceed to operate on the gradient operator 

 

∇  with the divergence
operator 

 

∇

 

 

 

·

 

. This leads, in the first instance, to the following dot product:

(8.1.24)

If we further apply the rule given in Table 8.2 that a dot product equals the sum
of the products of its components, we obtain formally:

(8.1.25)

The rules of operational notation call for these products of partial derivatives to
be equivalent to second order derivatives. Thus, Equation 8.1.25 becomes:

(8.1.26)

This is no different from what was done with the D-operator at the ODE level
where we postulated the equivalence:

(8.1.27)

Readers may at first balk at these rules, seemingly introduced at a whim and
with no more justification than that they may, well, “look right.” We remind them,
however, that if these rules are established with consistency and in a way which
yields correct results, operator notation becomes an extremely powerful and compact
tool for manipulating differential equations. We repeat that the crux is consistency
and a regard for the results obtained.

A number of useful relations have resulted from these procedures which we
summarize for the convenience of the reader in Table 8.5. Proofs for several of these
expressions are given in the illustrations that follow.  

 

We note that some of these
equations are scalar, others are vectorial PDEs. Thus, the equations involving the
divergence 

 

∇

 

 

 

·

 

 are all scalar PDEs, the remainder are vectorial, equivalent to a set
of three scalar PDEs.
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Illustration 8.1.2 Derivation of the Divergence

The task to be undertaken here is the conversion of the integral of Equation 8.1.16
into an equivalent PDE. To accomplish this, we consider a cube of magnitude
∆x∆y∆z and focus, in the first instance, on the two faces at the positions x and x +
∆x. We obtain for the integrand

At position x:

n · v ∆S = (–1) projection of v on n = –|v|x ∆y∆z

At position x + ∆x:

n · v ∆S = (1) projection of v on n = |v|x+∆x ∆y∆z

Note that at position x, the normal n is pointed in the negative x direction, hence
its magnitude is –1.

Summing the two components and using the full Expression 8.1.16, we obtain:

(8.1.28)

Similar applications of this scheme to the faces in the y and z directions yields, in
the limit, the terms ∂vy/∂y and ∂vz/∂z, and the divergence becomes:

TABLE 8.5
Relations Involving ∇∇∇∇, ∇∇∇∇ ·, and ∇∇∇∇ ××××

1. ∇( u + w) = ∇u + ∇w
2. ∇(uw) = u∇w + w∇u
3. ∇ · (A + B) = ∇ · A + ∇ · B
4. ∇ · (uA) = ∇u · A + u∇ · A
5. ∇u · dR = du
6. ∇ · (∇ × A) = 0
7. ∇ · (∇u × ∇w) = 0
8. ∇ · (A × B) = B · (∇ × A) – (A · ∇ × B)
9. ∇ × (A + B) = ∇ × A + ∇ × B

10. ∇ × (uA) = u∇ × A + ∇u × A
11. ∇ × ∇u = 0
12. ∇ × (A × B) = (B · ∇)A – (A · ∇)B + A(∇ · B) – B(∇ · A)

13. 

14. ∇2A = ∇(∇ · A) – ∇ × (∇ × A)
15. ∇ × R = 0

( ) ( ) ( )A A A A A A⋅ ∇ = ∇ ⋅ − × ∇ ×1
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(8.1.29)

This is the expression we had reported in Table 8.1.

Illustration 8.1.3: Derivation of Some Relations Involving
∇∇∇∇, ∇∇∇∇ ·, and ∇∇∇∇ ××××

In this example, we present the derivation of some of the relations we had previously
given in Table 8.5 without proof. To do this, we use the expressions for the “del”
notation shown in Table 8.3 and apply the usual rules of vector dot and cross
multiplication.

Item 5: ∇u · dR = du — The expansion of ∇ · and dR leads in the first instance
to the following expression:

(8.1.30)

Dot multiplying out, we obtain:

(8.1.31)

where the right side of the equation will be recognized as the total differential du
of the scalar u. Hence,

∇u · dR = du Q.E.D.

Item 6: ∇ · (∇ × A) = 0 — Here the expansion of the component vectors becomes
somewhat lengthier. We obtain in the first instance:

(8.1.32)

We now expand the right side by the rules of dot multiplication, noting that the

resulting component products of the type  are to be regarded as second

derivatives. There results the following scalar sum of mixed derivatives:
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(8.1.33)

Upon inspection these derivatives are found to exactly cancel each other. We,
therefore, obtain:

∇ · (∇ × A) = 0 Q.E.D.

Item 11: ∇ × ∇u = 0 — Proceeding as before we first expand the individual
operators and obtain:

This is followed by cross multiplication of the right side using the rules of vector
algebra. We do this for one vector component only, which yields:

(8.1.34)

Similar expressions result for other vector components. One notes immediately that
the mixed derivatives appearing in each component cancel each other so that the
vector ∇ × ∇u becomes identically zero. This completes the required proof.

8.1.3 INTEGRAL THEOREMS OF VECTOR CALCULUS

We present in this section, a number of so-called integral theorems of vector calculus
which can be proven by fairly elementary applications of the operations of vector
algebra and vector calculus. They are somewhat forbidding in apperance but share
the common feature that they all relate surface and volume integrals of certain vector
entities to each other. They, therefore, provide a link between the interior of a domain
which could, for example, be represented by the solution space, to surface conditions,
for example, the boundary conditions. This is a useful relation to have.

The integral theorem are four in number and take the following form:

(1) Divergence theorem:

(8.1.35)

(2) First form of Green’s theorem (Green’s first identity):

(8.1.36)
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(3) Second form of Green’s theorem (Green’s second identity): 

(8.1.37)

Equation 8.1.37 is derived from the first form of Green’s theorem by writing
the latter twice with the scalars u and w interchanged, and subtracting the result.

(4) Generalized transport theorem: 

(8.1.38)

Here D/Dt is the so-called substantial or convective derivative that records
changes within a flowing parcel of constant mass. It is related to the partial deriv-
atives, fixed in space, via the expression: 

(8.1.39)

where [X] is an arbitrary entity (scalar vector or tensor) and (v · ∇)[X], is the
convective operator tabulated in Table 8.1. The process of recording changes within
a moving entity is referred to as the Lagrangian approach, while the analysis in a
fixed entity is termed Eulerian. Derivations of these expressions appear in standard
texts on transport phenomena (see References). They are best understood by means
of applications. We, therefore, proceed to use the theorems in the derivation of certain
equations in vectorial form and introduce the reader as well to the concept and
application of Green’s functions, a much-dreaded topic. We shall attempt to ease
the task by providing both physical and mathematical interpretations of these func-
tions and demonstrate their use by means of practical illustrations.

Illustration 8.1.4 Derivation of the Continuity Equation

Here we start with the transport theorem and set [X] equal to density ρ. This causes

the convective derivative  to drop out since ρ dV = dm = 0 for a fluid packet

of constant mass. There remains:

(8.1.40)

The surface integral is next converted into a volume integral using the divergence
theorem (Equation 8.1.35) where we set A = ρv. There results:
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or alternatively,

(8.1.41)

Since the volume V can assume any arbitrary value, the integral can only vanish
if the integrand itself becomes zero. We obtain:

(8.1.42)

which is the generalized continuity equation in vector notation. For one-dimensional
incompressible flow, the expression reduces to:

or

v

 

x

 

ρ

 

 = constant (8.1.43)

which is equivalent to the continuity equation given in Chapter 3.

 

Illustration 8.1.5 Derivation of Fick’s Equation

 

Fick’s equation, which was first presented in Chapter 7, Equation 7.2.32, is to be
distinguished from Fick’s 

 

law

 

, Equation 8.1.14. The latter is an 

 

empiricism

 

 which
states that diffusional flux 

 

N

 

 is proportional to the (negative) concentration gradient,
while the former is an equation to be derived here in general vectorial form. It also
can be derived by the traditional “in – out = change” approach, as was done for the
one-dimensional Fourier equation (Illustration 7.2.1), but that procedure is less
general and has to be repeated for each new geometry. We start with Fick’s law,
Equation 8.1.14, and express it in the following dual form:
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 (moles/sm

 

2

 

) = –D

 

∇

 

C = C

 

v

 

(8.1.44)

where C = molar concentration, and 

 

v

 

 = velocity vector of the diffusing species.
This expression is then operated on by the divergence operator 

 

∇

 

 ·. We obtain:
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C (8.1.45)

The left side of the equation is recognized from the continuity Equation 8.1.42
as equaling –
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(8.1.46)

This is the most general form of Fick’s equation which accounts for variable
diffusivities. A more easily recognized version is obtained by setting D = constant.
This yields: 

(8.1.47)

where ∇2C is seen to be the Laplacian of the concentration C. Note that in this
derivation use was made of the continuity equation which itself sprang from two
integral theorems, and of the divergence operator ∇ · which upon application to the
gradient ∇C yielded the Laplacian ∇2C. Thus, considerable use was made of vector
notation and operations.

Illustration 8.1.6 Superposition Revisited:
Green’s Functions and the Solution of PDEs by
Green’s Functions

The purpose of this illustration is to introduce the reader to the concept of Green’s
functions and to their use in solving the classical linear Laplace, Poisson, and Fourier
equations. We place this topic in this particular location since many manipulations
involving Green’s functions call for the use of the integral theorem presented in
Section 8.1.3.

Let us start by defining these functions: Green’s functions, also known as source,
influence, or response functions, are solutions to linear homogeneous PDEs or ODEs
with homogeneous (i.e., zero) boundary and initial conditions in which the under-
lying system has been subjected to a point, line, or plane forcing function or pulse
of unit strength. That point function is typically an instantaneous or continuous heat
or mass source, an instantaneous or continuous load in mechanical systems, or a
point charge in electrical systems. Two applications of Green’s functions are sketched
in Figure 8.4.

Consider the case of an instantaneous heat source shown in Figure 8.4A. Here
the Green’s function is the solution to Fourier’s equation in a two-dimensional
domain with zero initial and boundary conditions (i.e., the BC and IC are homoge-
neous) and an instantaneous point source at P(x0,y0). That Green’s function or
solution to the point source problem is given the symbol:

Green’s function = G(x0,y0,x,y) (8.1.48)

where x0, y0 is the location of the point source in 2-D, and x, y are the general
coordinates of the domain.

In Chapter 7, Section 7.4 we had given the solution to the instantaneous point
source problem in one-dimensional infinite space that took the form:

∂
∂

= ∇ ⋅ ∇C
t

D C

∂
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= ∇ ⋅ ∇ = ∇C
t

D C D C2
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(7.4.52)

with the point source placed at the origin x0 = 0. In Green’s function nomenclature,
the system is converted to an instantaneous point source of unit strength which
releases its heat at time t = τ.

The solution to that problem, i.e., the Green’s function is then given by:

(8.1.49)

with the underlying PDE represented by:

(8.1.50)

Here the Dirac delta functions δ(x – x0)δ(t – τ) are used as a symbolism to
denote the fact that G is zero everywhere except at the point x0 and time τ where it
has instantaneous unit strength 1.

We will not delve into the theory underlying the Dirac point function but merely
use them as a symbolic way to denote the presence of a point source. To aid in the
manipulations which may be needed, we summarize its more important properties
in Table 8.6.

FIGURE 8.4 Physical systems involving: (A) a point source, (B) a point load. Green’s
functions are the solutions to these problems with homogeneous boundary conditions.
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To further expand on the topic of Green’s functions, we list the following
important properties.

All solutions to unit point source problems with Homogeneous BCs and ICs are
to be regarded as Green’s functions. Some of these were presented in Chapter 7, Section
7.4. Additional tabulations of Green’s functions appear in the accompanying Table 8.7.

Green’s functions depend on (1) the underlying PDE which they solve, (2) the
geometry, and (3) the associated boundary conditions. One speaks, for example, of a
Green’s function for Laplace’s equation for a sphere with a Type I (homogeneous)
boundary condition or, alternatively, of a “Green’s function for the Dirichlet problem
of the sphere.”

Green’s functions can be generated by the superposition procedures outlined in
Chapter 7 and by other methods, principally the Laplace transformation. The Refer-
ences on heat conduction contain many examples of this type. The reader also is urged
to reach into the literature on related topics such as electrostatics and potential theory
for additional source material, even though this may appear to be a forbidding prospect.

The Green’s functions carry the immense advantage of allowing us to express
solutions of nonhomogeneous systems in closed form and in terms of integrals of
the Green’s functions and the nonhomogeneous terms of the system. In this they
resemble the Duhamel integral discussed in Chapter 7, Section 7.4. We illustrate
these integral formulations by deriving the solution to Poisson’s equation for heat
conduction in terms of Green’s functions. Poisson’s equation is itself nonhomoge-
neous but we will, in addition, impose nonhomogeneous boundary conditions of a
general and arbitrary form. The task is then to solve the following set:

(8.1.51)

TABLE 8.6
Properties of the Dirac Delta Function
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where Q denotes the coordinates of the domain, S its surface, and k the thermal
conductivity. A solution of this model would yield the steady-state temperature in a
three-dimensional domain containing a distribution of heat sources emitting at a rate
A(J/m

 

3

 

s) and bounded by a surface S maintained at a position-dependent temperature
f(S). The corresponding model for a 

 

single

 

 continuous point source is given by the set:

(8.1.52)

where G is the Green’s function, i.e., the solution of Poisson’s equation for a unit
point source and zero surface temperature.

We start the derivation with Green’s second identity, Equation 8.1.37, which
relates the Laplacian of 

 

two

 

 scalar functions, here u and G, 

 

within

 

 a domain, to
values of u and G prescribed on the surface:

(8.1.53)
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This is a fairly formidable looking vector equation which does, however, simplify
considerably by substitutions from the model equations and certain other relations.
Thus, we have:

Within the domain V:
(From the model) 

(8.1.54)

and from both the model and Item 5 of Table 8.6:

(8.1.55)

The latter expression is of particular significance since it gives us directly the
solution we are seeking, i.e., u(P).

On the Surface S:
(From the model)

u = f(S) (8.1.56)

and

G(S) = 0

(From vector calculus and algebra)

and consequently,

(8.1.57)

With these values in hand, Equation 8.1.53 reduces to the solution:

(8.1.58)

Comments:
The Expression 8.1.58 represents an explicit and general solution to Poisson’s’

equation for an arbitrary distribution of sources A(Q) in the interior of the domain
and an equally arbitrary nonhomogeneous surface condition f(S). The latter can be,

∇ = −2u A k/

u GdV u P Q dV u P
V

∇ = − = −∫∫∫∫∫∫ 2 δ( , ) ( )

∇ = ∂
∂

G
G
n

see definition of gradientn  ( )

∇ ⋅ = ∂
∂

⋅ = ∂
∂

G
G
n

G
n

n n n

u P G A k dV
G
n

f S dS
SV

( ) ( / ) ( )= −
∂
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it will be noted, of a discontinuous nature, a property which is not easily accom-
modated by other solution methods.

The expression also is a solution for Laplace’s equation, as is easily seen by
setting the source term A(Q) = 0. We obtain in this case the reduced formula:

(8.1.59)

where f(S) is, as before, an arbitrary surface distribution of u. We can use this
equation, for example, to calculate the steady-state temperature distribution in a
rectangle whose sides are kept at four different temperature — T(x,0), T(x,a), T(0,y),
and T(b,y).

The normal derivative of the Green’s function, ∂G/∂n, is easily evaluated for
simple geometries. Thus, for the aforementioned rectangle, (∂G/∂n)y=0 = (–∂G/∂y)y=0

since the normal points in the negative y-direction, and (∂G/∂n)y=a = (∂G/∂y)y=a.
Similar expressions apply to the other two sides. For radial configurations, these
expressions are replaced by the simple relation ∂G/∂n = ∂G/∂r.

There are some disadvantages to the method which need to be noted.

1. Green’s functions vary, as we had noted, with the geometry of the system.
This is also evident from the tabulations of Table 8.7. Thus, for a particular
problem under consideration, the appropriate Green’s function has to be
either located in the literature or derived from the basic model.

2. Green’s functions also vary with the type of boundary condition assigned
to the surface of the domain. Thus, for a Type III boundary condition, the
Green’s function is the solution to the homogeneous point source problem
with “radiation” or convective transport from the surface to a medium of
zero value of the scalar function u. The solution then changes accordingly.

3. Green’s functions do not always have the simple forms shown in Table
8.7. For finite geometries, in particular, they often consist of infinite series
of complex functions whose manipulation becomes cumbersome.

Having noted some of the stumbling blocks, we must reiterate that the Green’s
functions remains an attractive and powerful tool for obtaining closed-form explicit
solutions to linear nonhomogeneous PDEs. It is widely used particularly to obtain
solutions to nonhomogeneous forms of Fourier’s equations, of which we give an
example below.

Illustration 8.1.7 The Use of Green’s Functions in
Solving Fourier’s Equation

Green’s functions also can be applied to obtain closed form solutions to Fourier’s
equation with distributed heat sources and with prescribed nonhomogeneous initial
and boundary conditions. That system is described by the following set of equations:

u P
G
n

f S dS
S

( ) ( )= − ∂
∂

⋅∫∫
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(8.1.60)

with surface BC: 

T(S) = g(S,t) (8.1.61)

and IC: 

T(Q,0) = f(Q) (8.1.62)

where Q as before denoted the coordinates of the system, and k,α are the thermal
conductivity and diffusivity respectively. This is clearly the most general form of
Fourier’s equation and poses a challenging problem even though the underlying
equations are all linear.

We present the solution without proof which is fairly straightforward and makes
use, as before, of Green’s identities (see Reference). It takes the form: 

(8.1.63)

Let us try to make some sense of this equation by noting the following points.
G(P,Q,t – τ) is, as usual, a Green’s function and, hence, describes the temperature

distribution which results from an instantaneous heat source of unit strength releasing
heat at t = τ and position P. For our purposes, Green’s functions are obtained from
tabulations such as Table 8.7 and other literature sources, i.e., we shall not attempt
to derive them ourselves.

The three integrals on the right side of Equation 8.1.63 contain, in sequence,
the nonhomogeneous initial condition T(Q,0) = f(Q), a general distributed and time-
dependent heat source A(Q,τ), and the nonhomogeneous surface boundary condition
T(S) = g(s,t). The latter is allowed to vary with position on the surface as well as
in time. These are, then, the most general conditions one can expect to encounter
in linear versions of Fourier’s equation.

To obtain a better grasp of the uses of Equation 8.1.60, we consider the simple
case of conduction in the semi-infinite one-dimensional domain x ≥ 0, devoid of
heat sources and subject to the following general conditions:

IC T(x,0) = f(x) (8.1.64)

BC T(0,t) = g(t) (8.1.65)

For these one-dimensional conditions, Equation 8.1.63 becomes:

α
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(8.1.66)

where the Green’s function, taken from Table 8.6, has the form: 

(8.1.67)

The only manipulation required here is the evaluation of the normal derivative
of the Green’s function ∂G/∂n which is given by:

since the normal is taken in the negative x-direction. Hence,

(8.1.68)

The final solution then has the form:

(8.1.69)

Comments:
The solution is still a fairly intimidating expression but it should be recalled that

it accommodates quite general and arbitrary initial and boundary conditions. Eval-
uation of the integrals, which in most cases has to be done numerically, poses no
problem since convergence of the first integral is quite rapid.

One notes that the integration in space is with respect to x, not x0. The latter
then becomes the new distance variable in the solution.

The Expression 8.1.69, seemingly an incomprehensible glob of mathematics,
does yield to a physical interpretation. We had previously in Chapter 7, Section 7.4
defined strength of a source as the temperature to which the amount of heat liberated
would raise a unit volume of the medium, so that:

Q = TV (7.4.53)
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It follows from this definition that an initial distribution of temperature in a no
source problem, here given by f(x) can be regarded as equivalent to a continuous
distribution of instantaneous point sources of strength.

Q = TV = [f(x)]avg A∆x (8.1.70)

and in the limit:

q = f(x)A dx (8.1.71)

The first integral in our solution thus can be seen as representing the temperature
at time t of a medium with zero surface temperature resulting from initial distribution
of instantaneous heat sources of strength f(x). In other words, we have replaced the
initial temperature distribution by an equivalent set of instantaneous heat sources
which produce the prescribed initial condition. A physical interpretation of the
second integral is a little less straightforward, involving a distribution of sources
and sinks and is described in the literature (see References). This removes to some
extent the sense of incomprehension upon being confronted with Equation 8.1.66.

Practice Problems
8.1.1 Angle Between Two Lines — Find the angle between two lines connecting
the origin to the points A(1,2,-2) and B(2,2,1).

(Hint: Use the dot product.)
Answer: 63° 37′

8.1.2 Proof of Cosine Law — Use the relation A + B + C = 0 valid for the sides
of a triangle to derive the Cosine law: |A|2 = |B|2 + |C|2| + 2|B| |C|cos(B,C).

(Hint: Dot multiply the triangle equation A = –(B + C) by itself.)

8.1.3 Distance of a Point from a Plane — Given a plane through the point A(2,4,1),
B(–1,0,1), and C(–1,4,2). Find the distance of the point P(1,–2,1) from the plane.

(Hint: Find the unit normal to the plane, then project the vector connection P to
one of the points A, B, C onto the unit normal.)

Answer: 14/13

8.1.4 Distance Between Two Lines —
(a) Using Figure 6.2C as a guide, show that the distance d between the two

lines is given by:

(8.1.72)

where R and P are two arbitrary points on the respective lines.

(b) Let  represent the vectors along the centerlines of two pipes,
each 10 cm in outside diameter. The coordinates in feet forming these lines
are given by A(4,0,3), B(0,6,8), C(0,0,9), and D(5,9,4). Find the clearance
between the two pipes.

Answer: 1.5 in.

d = ⋅ ×
×

→
RP A B

A B
( )

| |

AB CD
→ →

  and
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8.1.5 Differential Operators — Prove the relations given by Items 7, 8, and 15 of
the Table 8.5.

(Hint: If proof can be provided for one coordinate system, the relation is valid
for all coordinate systems.)

8.1.6 Derivation of the Divergence Theorem — Give a derivation of the divergence
theorem, Equation 8.1.35.

(Hint: Write  and

let n → ∞.)

8.1.7 Volume of a Cone — Use the divergence theorem to show that the volume

of a cone is 

(Hint: Use a position vector R with the apex of the cone as the origin and start

by showing that  Note: Volumes of other shapes can be deter-

mined in similar but less easy fashion.)

8.1.8 Maxwell’s Equations of Electromagnetic Theory — Maxwell’s equations
relate electric and magnetic fields to the charges and currents which produce them.
They are four in number and are expressed as follows:

∇ · E = 4πρ (8.1.73)

∇ · B = 0 (8.1.74)

(8.1.75)

(8.1.76)

where E = electric field, B = magnetic field, ρ = charge density (charge q per volume),
J = current density (current i per unit cross-sectional area), and C = speed of light.
Recall that by “field” is meant the force exerted on a unit charge q0.

Equations 8.1.72 and 8.1.73 express the fact that time-varying magnetic fields
produce electric fields (i.e., an electric current) while time-varying electric fields in
turn produce magnetic fields. Equation 8.1.71 states that the total “flux” of magnetic
forces over a closed surface is zero, i.e., “what goes in must come out” (recall the
definition of divergence, Equation 8.1.16). Vectors fields with a zero divergence
therefore are often referred to as solenoidal. Equation 8.1.70 finally relates the “flux”
of electric forces to the charge density ρ. The answers sought are as follows.

( )A n A n⋅ ⋅
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1. Which of Maxwell’s equations are scalar, which are vectorial? Choose
one of the latter category and expand it into an equivalent set of three
scalar equations in Cartesian coordinates.

2. Classify the PDEs which result from Maxwell’s equations as to order,
linearity, and homogeneity.

8.1.9 Conservation of Charge: The Continuity Equation of Electricity — Use
the divergence and generalized transport theorems, Equations 8.1.35 and 8.1.38 to
derive the following continuity equation of electricity: 

(8.1.77)

where, as before, ρ and J are charge and current densities. Note the similarity to
the continuity equation of fluid mechanics.

8.1.10 Deflection of a String Under Gravity — The deflection u of a string under
its own weight is described by the ODE:

(8.1.78)

where T = tension of the string.
This is a one-dimensional Poisson equation and can be solved by means of

Green’s functions as well as by direct integration. Use both methods.
(Hint: Consult Table 8.7.)

Answer: (8.1.79)

8.1.11 The Interior Dirichlet Problem for a Circle — When an arbitrary potential
u(R,θ) is imposed on the circumference of a circle or infinitely long cylinder of
radius R, with u held at zero as r → ∞, a steady-state distribution of the potential,
u(r,θ), results both within and outside the circle. Derivation of the former is referred
to as the interior Dirichlet problem for a circle, the latter as the exterior Dirichlet
problem for a circle. The same language is applied to other geometries. Thus, one
speaks of the Dirichlet problem for a half-plane (see problem 8.12) and the Dirichlet
problem for a rectangle.

Using the Green’s functions of Table 8.7 as a guide, show that the steady-state
temperature within a circle which results from a prescribed boundary temperature
distribution T(R,θ) is given by:

(8.1.80)
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8.1.12 Dirichlet’s Problem for a Half-Plane 

 

—

 

 

 

Derive the potential distribution
that results from a distribution u = f(y) imposed along the entire x-axis, with u 

 

→

 

0 as x 

 

→

 

 

 

∞

 

.
(Hint: Use the Green’s Function of Table 8.7.)

 

Answer: 

 

(8.1.80)

Note that in view of the arbitrary form of the imposed boundary condition,
Equations 8.1.80 and 8.1.81 can be regarded as solutions to an infinite set of different
problems. The method of Green’s function allows us to derive these solutions in a
terse, closed form.

 

8.2 TRANSPORT OF MASS

 

We had already, in Illustration 8.1.4, given consideration to the transport of 

 

total
mass

 

 which culminated in the continuity Equation 8.1.42. To arrive at this result,
we started with the generalized transport theorem, Equation 8.1.38, and substituted

density 

 

ρ

 

 for the variable quantity X. This caused the convective term 

to drop out. We then introduced the divergence theorem (Equation 8.1.35) to convert

the surface integral  into a volume integral  which was

combined with the remaining volume integral of the transport theorem into a single
expression. It was then argued that the integrand must vanish for the integral to be
identically zero for any arbitrary volume, as required. This finally led to the conti-
nuity Equation 8.1.42.

We now consider the transport of a particular 

 

species

 

 characterized for example
by its molar concentration C

 

A

 

, and apply the same scheme as before. The difference
here is that the convective term no longer vanishes since the mass of the species A
may change due to a chemical reaction. We have in fact:

(8.2.1)

since by definition dC

 

A

 

/dt = ± r

 

A

 

. The transport theorem for the species A then reads:

(8.2.2)

Introducing the divergence theorem as before and setting the integrand of the
resulting volume integral equal to zero yields:

(8.2.3)
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A number of points need to be noted in connection with this expression. Equation
8.2.3 represents a 

 

single

 

 (scalar) partial differential equation. This is in contrast to
the vector PDE, equivalent to three scalar PDEs which arises in momentum balances
to be taken up in Section 8.4, and which lead the Navier-Stokes equation. Solution
of Equation 8.2.3 yields the distribution of C

 

A

 

 in three dimensions and in time.
The rate term r

 

A

 

 is to be taken as negative for species consumption, positive for
species production. 

 

∇

 

 

 

·

 

 C

 

A

 

 

 

v

 

 expresses concentration changes due to both convective
flow and diffusion. C

 

A

 

 

 

v

 

 will be recognized as the molar flux 

 

N

 

A

 

 (moles A per unit
time and area) and is represented by the auxiliary relation seen in one-dimensional
form in Chapter 3 (Equation 3.2.3). That relation now becomes, in vectorial form:

(8.2.4)

where 

 

N

 

 is a molar flux 

 

vector

 

. Equation 8.2.4 thus consists of three scalar PDEs.
Upon substitution into the mass balance Equation 8.2.3, however, the operation 

 

∇

 

 ·
converts the expression into a single scalar PDE. We further note that for the special
case of diffusion through a stagnant film, 

 

N

 

B

 

 = 0, and for equimolar counter diffusion,

 

N

 

A

 

 = –

 

N

 

B

 

. For the latter case, as well as for trace diffusion, Equation 8.2.4 reduces
to the simple relation:

 

N

 

A

 

 = –CD

 

AB

 

 

 

∇

 

x

 

A

 

(8.2.5)

and for constant molar concentration C:

 

N

 

A

 

 = –D

 

AB

 

 

 

∇

 

C

 

A

 

(8.2.6)

This is the three-dimensional version of Fick’s law which was seen in one-
dimensional form in Chapter 3, Equation 3.2.1.

We now turn to some practical applications of these equations. We consider the
following cases:

• Combined convection, reaction, and diffusion (Illustration 8.2.1)
• Combined reaction and diffusion (Illustration 8.2.2)
• Combined convection and diffusion (Illustration 8.2.3)
• Unsteady diffusion (Illustrations 8.2.4 and 8.2.5)
• Steady-state multidimensional diffusion (Illustration 8.2.6)

 

Illustration 8.2.1 Catalytic Conversion in a Coated Tubular 
Reactor: Locating Equivalent Solutions in the Literature

 

The system under consideration here consists of a tubular reactor whose wall is
coated with a catalyst that could, for example, be an immobilized enzyme (biore-
actor). The purpose of modeling is then usually confined to relating size of the

N N NA A B= + − ∇x CD x

Flux Convection Diffusion

A AB A( )
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reactor to conversion for a given flow and set of kinetic parameters (design problem).
The device also has been occasionally used to investigate the kinetics of a catalytic
reaction without the added complications of heat effects and diffusional resistance
within a catalyst pellet (parameter estimation).

We assume laminar flow conditions and plug flow (v 

 

≠

 

 f(r)) with an irreversible
reaction A 

 

→

 

 B, r

 

A  = k r

 

C A

 

 taking place at the wall. This leads to the development
of radial and axial concentration profiles described by a partial differential mass
balance. The situation is then essentially equivalent to that of the Graetz problem,
given in Chapter 7, Section 7.2.

The mass balance can be derived in classical fashion using the “in – out =
change” scheme or from the generalized conservation Equations 8.2.3 and 8.2.4.
Let us use the latter to gain some practice in vector manipulation. Assuming steady-
state conditions and making the substitution C

 

A

 

v

 

 = 

 

N A , we obtain:

 

∇  · 

 

N A  = 0 (8.2.7)

Note that reaction is not included at this stage since none takes place in the bulk
fluid. It makes its appearance instead as a wall boundary condition (see Equation
8.2.13).

We first proceed to decompose the divergence operator of Equation 8.2.3 using
the “dictionary” provided in Table 8.1. We obtain, for cylindrical coordinates:

(8.2.8)

A first simplification results by noting that N

 

A

 

θ

 

 = 0 (no circumferential flux) and
that the axial component N Az  of the vector 

 

N

 

A

 

 can be written as:

(8.2.9)

where the mole fractions of Equation 8.2.4 have been replaced by concentration.
Here the total molar concentration C is a constant and the expression (N

 

Az  +
N Bz

 

)/C equals fluid velocity v. If in addition we assume diffusion to be principally
in the radial direction, the axial diffusion term in Equation 8.2.9 drops out and we
obtain the simple expression:

N

 

Az

 

 = C

 

A

 

 v (8.2.10)

To evaluate the radial flux N

 

Ar

 

, we note that N

 

Ar

 

 + N

 

Br

 

 = 0 (equimolar counter
diffusion) and from the dictionary of Table 8.1 the radial component (

 

∇
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)

 

r

 

 = 

 

∂

 

N

 

A

 

/

 

∂

 

r,
so that from Equation 8.2.4:

(8.2.11)
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This is simply Fick’s law applied to the radial direction. Substitution of Equations
8.2.10 and 8.2.11 into Equation 8.2.8 then yields the scalar second order linear PDE:

(8.2.12)

Three boundary conditions are required, which are as follows:

At the inlet: C

 

A

 

(r,0) = (C

 

A

 

)

 

0

 

At the axis: (8.2.13)

At the wall:

These equations can be solved by standard analytical techniques, as will be
shown in the next chapter. Our aim here is to avoid this complication and to locate
the solution of an equivalent problem in the literature. The reader may already have
noted the similarity between Equation 8.2.12 and that for unsteady radial conduction
in a cylinder with convective heat loss to a medium at zero temperature. In fact, by
making the following substitutions, one arrives at completely identical models:

C

 

A

 

→

 

Temperature T
z

 

→

 

Time t
D

 

AB

 

/v

 

→

 

Thermal diffusivity 

 

α

 

D

 

AB

 

→

 

Thermal conductivity k
k

 

r

 

→

 

Heat transfer coefficient h
(C

 

A

 

)

 

0

 

→

 

Initial temperature T

 

0

 

The solution to this problem is readily available in the heat transfer literature.
Translated back to the original variables, it assumes the following forbidding form:

(8.2.14)
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This infinite series represents the concentration profiles as they develop in the
axial and radial directions.

The already panic-stricken will be further dismayed to learn that the result has
to be converted to the more useful 

 

average

 

, or mean integral concentration (C

 

A

 

)

 

avg

 

,
i.e., we have to evaluate:

(8.2.16)

where we have nondimensionalized the radial distance by setting y = r/R. In other
words, we have to evaluate the integral of the y-dependent part of Equation 8.2.14,

 This is not as formidable a task as it appears since we have ready-

made formula for just such cases. We reach back to Table 4.8 of Chapter 4 and extract:

(8.2.17)

Some manipulations then result in the following expression:

(8.2.18)

We may at this point be permitted a sigh of relief, since the Bessel functions,
at least, have disappeared, although they do lurk in the roots 

 

λ

 

j

 

 of Equation 8.2.15.
The following may also prove soothing.

 

Comments:

 

The model we have presented is a rather limited one since it does not address
complex reaction mechanism or the effect of the parabolic velocity profile that
prevails under laminar flow conditions. The main purpose of the exercise is to
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practice the art of recognizing the equivalence of models for dissimilar processes
and reaching into the literature for quick convenient solutions.

The Bessel functions J

 

0

 

 and J

 

1  are of a periodic type (see Table 4.8) and, hence,
have an infinite number of roots singly or when they appear in combination as in
Equation 8.2.15. That latter expression is a characteristic transcendental equation
that arises in conduction and diffusion equation with a Type III boundary condition.
Its frequent occurrence has led to numerous tabulations of its roots, of which we
give an abbreviated version in Table 8.8.

The fact that an infinite series has to be evaluated may at first sight appear
discouraging. Closer inspection of Equation 8.2.18 shows, however, that the axial
profile decays rapidly with increasing values of the roots 

 

λ j . Fast convergence of the
series therefore may be expected in all but very slow reactions. To explore this feature,
we consider the following numerical example, taken to apply to a liquid system:

Reactor radius R = 5 cm
Rector length z = 100 cm
Rate constant k

 

r

 

 = 2 

 

×

 

 10

 

–5

 

 s –1

 

Diffusivity D

 

AB

 

 = 10

 

–3

 

 cm 2 /s
Flow velocity v = 20 cm/s

We obtain, for the parameters,

 

β

 

 = k

 

r

 

R/D AB  = (2 × 10–5)(5)/10–3 = 10–1

γ = Rv/DAB = (5)(20)/10–3 = 105

and from Table 8.8:

λ1 = 0.4417, λ2 = 3.8577

The rate constant here is quite low and the fluid velocity high, so that conversions
are expected to be low.

Substitution of these values into Equation 8.2.18 yields, for the first two terms
of the series:

and conversion X = [1 – (CA)avg/(CA)0]100 = 17.8%.
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The second term is seen to be negligibly small compared to the first, due
primarily to the rapid decay of the exponential term caused by the high value of λ2

2

= 14.88. This fast convergence is the norm in many practical applications and enables
us to express the conversion X in terms of the simple expression:

(8.2.19)

The rate constant kr contained in the parameter β is easily extracted from this expres-
sion and experiments run at different reactor lengths z or feed velocity v contained in γ.

Illustration 8.2.2 Diffusion and Reaction in a
Semi-Infinite Medium: Another Literature Solution

We consider in this example the unsteady equimolar or trace diffusion of a species
A into a semi-infinite medium initially free of solute and an imposed concentration
CA

0 at the surface x = 0. The solute undergoes an irreversible first order reaction
within the medium, A → B, with the rate given by r = krC. The partial differential
mass balance for this case becomes:

(8.2.20)

Derivation of this expression is left to the Practice Problems.
The equation can be solved by standard linear techniques, e.g., the Laplace

transform without undue difficulty. We use instead the approach applied in the
previous illustration and seek a literature solution in the related discipline of heat
conduction. This requires some thought and perseverance, as well as a good knowl-
edge of the pertinent literature.

An initial inspection of Equation 8.2.20 does not appear encouraging. The
reaction term krC would have to be matched by a corresponding “heat sink” term
hT which describes heat loss in proportion to the prevailing temperature T at a given
point. This is not a realistic physical process but becomes so if the domain is reduced
to that of a thin rod with a uniform temperature T over its cross-section, subject to
convective heat loss at a rate hT to a medium at zero temperature. This results in
the following two equivalent models.

(8.2.21)
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where β = 

AC = rod cross-sectional area
P = rod perimeter

Note that the heat loss does not enter the model as a surface boundary condition
but resides instead in the PDE itself. This becomes apparent in the derivation of the
PDE which is left to the Practice Problems.

The solution to the temperature problem is available in standard texts on heat
conduction and takes the form: 

(8.2.22)

Translation into the corresponding diffusion problem is easily accomplished by
means of the “dictionary” provided by the Equations 8.2.21.

Illustration 8.2.3 The Graetz–Lévêque Problem in
Mass Transfer: Transport Coefficients in the
Entry Region

We had already, on several occasions, referred to the Graetz problem, and the
Lévêque version of it. In Illustration 8.2.1, we had encountered a modified Graetz
problem in which concentration took the place of temperature and conditions at
the wall were described by a BC of Type III. The solution was given in terms of
an infinite series, Equations 8.2.14 and 8.2.18, which showed fast convergence for
high to moderate diffusivities and small diameters, long conduits, or low velocities.
When this is no longer the case, an alternative method known as the Lévêque
solution is resorted to. We had briefly alluded to it in Chapter 6, Section 6.1,
Illustration 6.1.6, in the context of protein transport in flowing blood. Protein
diffusivities are quite low, or the order 10–6 – 10–5 cm2/s, and development of the
concentration becomes exceedingly slow, leading to slow convergence of the infinite
series solutions.

The Lévêque solution focused on the so-called entry region near the tube inlet
where profile development is still in its initial stage. The following assumption can
then be made.

Temperature or concentration changes are confined entirely to a thin boundary
layer adjacent to the conduit wall. Within the bulk of the fluid, changes in both the
radial and axial directions are negligible. The profiles that result for mass transport
are depicted in Chapter 6, Figure 6.7.

Since the boundary layer typically occupies only a small fraction of the tube
diameter, curvature can be neglected. We can unravel the conduit and treat it as a
flat plate. A corollary of this approach is that the boundary layer and the neighboring
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bulk fluid can be regarded as a semi-finite medium, with C 

 

→

 

 C

 

bulk

 

 as y (or r) 

 

→

 

∞

 

. See in this connection Chapter 7, Section 7.3.5.
The boundary layer lies entirely within the linear portion of the (parabolic)

velocity profile. This is justified by its thinness. We had encountered a similar
situation in Illustration 7.3.1, where the 

 

thermal

 

 boundary layer development along
a flat plate was seen to lag behind the momentum layer development, with the result
that temperature changes along the plate lay entirely within the linear portion of the
velocity profile. We can, with some imagination, anticipate that the underlying
models and their solutions therefore will be identical in form if not in detail. This
is, in fact, the case as we shall see below.

We start by performing a differential mass balance over the element 

 

∆

 

x, 

 

∆

 

y,
where x is the coordinate along what is now a flat plate, y the direction perpendicular
to it. Diffusion in the x-direction is neglected and the concentration at the wall is
assumed to be zero along the entire length of the plate. This can be brought about
by a fast reaction at the wall or rapid permeation through it. We use the in – out =
0 scheme rather than the generalized mass balances Equations 8.2.3 and 8.2.4 and
obtain at steady state:

(8.2.23)

where W = width of the plate, equal to the perimeter of the unraveled tube.
Dividing by 

 

∆

 

x

 

∆

 

yW and letting the increments go to zero, we obtain the fol-
lowing linear second order PDE:

(8.2.24)

We note that for the linear portion of the velocity profile we can write:

(8.2.25)

so that the PDE 8.2.17 becomes:

(8.2.26)
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At the inlet: C(0,y) = C0

At the wall: C(x,0) = 0 (8.2.27)

In the bulk fluid: C(x,∞) = C0

The form of this model is precisely that of the development of the thermal
boundary layer along a flat plate, Equations 7.3.14 and 7.3.15. Its solution was
obtained by similarity transformation which can be applied to the present case as
well. The details are left to the exercises (see Practice Problem 8.2.4). The final
solution is of the same form as Equation 7.3.25 and is given by:

(8.2.28)

where the similarity variable η is given by:

(8.2.29)

We now turn to the task of deriving an effective mass transfer coefficient kf from
the concentration profile Equation 8.2.28. The key to the procedure is the equation:

(8.2.30)

which merely expresses the rate of arrival of solute in two equivalent forms, one
involving Fick’s law, the other an effective mass transfer coefficient kf and its
associated driving force. The crux then is the evaluation of the derivative (∂C/∂y)y=0.

We start the procedure by first evaluating the integral in the denominator of
Equation 8.2.28. To do this, the substitution x = η3 is made, which yields:

(8.2.31)

The integral on the right is known as the Gamma function Γ(n) and has the
general definition:
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(8.2.32)

where n is any positive or negative number. It has to be evaluated numerically and
is tabulated in most mathematical handbooks for the interval 1 ≤ n ≤ 2. Some selected
values are reproduced in Table 8.9. They are seen to be close to unity over the entire
range. Other values of n are obtained from the following recursion formula:

Γ(n) = nΓ(n – 1) = n(n – 1)Γ(n – 2) etc. (8.2.33)

The Gamma function can consequently be regarded as a generalized factorial
n! applicable to any positive or negative number.

For the case in hand, we obtain from Equation 8.2.31 and the recursion formula
Equation 8.2.33

(8.2.34)

where the numerical value is interpolated from Table 8.9.
To evaluate the derivative (∂C/∂y)y=0 we apply the chain rule of partial differen-

tiation (see Table 7.4) and write, using the profile Equation 8.2.28:

(8.2.35)

Substitution of this expression into Equation 8.2.30 finally yields the effective
mass transfer coefficient:

(8.2.36)

For boundary conditions of Type II and Type III, the coefficient on the right is
some 10 to 15% higher. This leads us to propose an average coefficient of 0.6,
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The reader will note that this is the expression we used in Chapter 6, Section
6.1 to analyze protein transport in flowing blood (Equation 6.1.42).

Comments:
Equation 8.2.36 has a number of noteworthy features. Foremost among them is

the weak, one third power dependence of kf on shear rate  and distance x. Since
 = 8v/d for laminar flow in a cylindrical tube, kf will be proportional to v0.33. This

contrasts with the much stronger dependence, kf ∝ v0.8, found in turbulent flow (see
Chapter 3, Table 3.5).

The Graetz-Lévêque problem for mass transfer has its origin and counterpart in
heat transfer which will be discussed in some detail in Section 8.3. From the results
given there, it can be deduced that the Lévêque (Entry) region extends over the
following range:

This relation serves as a quick means of establishing limits of velocity and
tubular diameter and length beyond which the flow ceases to be in the entry region.

TABLE 8.9
Values of the Gamma Function

n ΓΓΓΓ(n)

1.000 1.00000
1.050 0.97350
1.100 0.95135
1.150 0.93304
1.200 0.91816
1.250 0.90640
1.300 0.89747
1.350 0.89115
1.400 0.88726
1.450 0.88566
1.500 0.88623
1.550 0.88887
1.600 0.89352
1.650 0.90011
1.700 0.90864
1.750 0.91906
1.800 0.93138
1.850 0.94561
1.900 0.96177
1.950 0.97988
2.000 1.0000

γ̇
γ̇

0 102
3< < −xD

vd
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In blood flow, for example, with a typical protein diffusivity D = 10–5 cm2/s, average
flow velocity of v = 10 cm/s and near-inlet distance x = 0.1 cm, the critical vessel
diameter which arises from the Condition 8.2.30 is given by:

(8.2.37)

In other words, for the Lévêque solution to be valid in blood flow, the vessel
diameter cannot be less than 0.1 mm. This is the lower limit we had set on d in
calculating coagulant concentrations at the vessel wall (Chapter 6, Illustration 6.1.6).

When the vessel geometry becomes more complex as in the case of branching
conduits or bifurcations, numerical methods have to be resorted to both for entry and
the fully developed regions. An alternative procedure is to measure local shear rates
over a span of 0.1 to 1 mm, and use these values in an integrated version of Equation
6.1.42 to arrive at an average mass transfer coefficient. We obtain in this case:

(8.2.38)

where L is the length or resolution of the measuring device and  the local
shear-rate determined by experimental measurement. One such experimental tech-
nique is the elegant electrochemical method described in Practice Problem 8.2.3.
Interpretation of the primary measurement, an electrical current i, requires the use
of Equation 8.2.35 and thus shows a nice intertwining of modeling and experiment.

Illustration 8.2.4 Unsteady Diffusion in a Sphere:
Sorption and Desorption Curves

In this classical problem which has its exact counterpart in the unsteady conduction
of heat we consider diffusional uptake or release of a solute by a porous sphere.
These processes are often referred to as sorption or desorption, although no actual
sorptive retention on the solid matrix takes place.

We consider the general case of a Type III boundary condition, descriptive of a
film resistance at the surface, and obtain the following model:

(8.2.39)

with boundary conditions:
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At the center: (8.2.40)

Initially: C(0,r) = C0

The PDE 8.2.39 can be obtained by performing a classical mass balance over
the spherical increment ∆r, or by substitution of the vector flux Equation 8.2.4 into
the generalized mass balance Equation 8.2.3 and use of the dictionary Table 8.1.

Solution of the model is accomplished by standard linear techniques of which
we shall give examples in Chapter 9. For our present purposes we note that the
primary information consists of the unsteady concentration profiles C(r,t), which are
usually converted into the more useful fractional uptake or fractional release Mt/M∞.
Here Mt denotes the total amount taken up or released up to time t, M∞ the same
quantity at time infinity. Mt is obtained from the concentration profiles C(r,t) by
applying the relation:

(8.2.41)

Plots of Mt/M∞ as a function of Dt/R2, and the parameter Sh = kfR/D are displayed
in Figure 8.5. Note that the limiting cases of Sh = ∞ and Sh = 0 correspond to the

limiting boundary conditions C|r=R = C0 (Type I) and  = 0 (Type II). The

latter case represents an impermeable sphere.

FIGURE 8.5 Fractional uptake and release as a function of dimensionless time for diffusion
in and out of a sphere (BC Type III). (J. Crank, Mathematics of Diffusion, 2nd ed., Oxford
University Press, New York, 1975. With permission.)
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Let us briefly demonstrate the use of the plots with a numerical example. We
choose:

kf = 10–4 cm/s, D = 10–4 cm2/s, R = 1 cm

representative of a liquid system and obtain Sh = (10–4)(1)/10–4 = 1. We use this
value to calculate the time necessary to deplete a sphere to one half its original
solute content. We obtain from Figure 8.5:

(Dt/R2)1/2 = 0.5 at Mt/M∞ = 0.5, Sh = 1

Hence,

Note that the same time is required to achieve a fractional uptake of the same
magnitude 0.5.

In this example, the exterior medium was assumed to be infinite in extent,
resulting in a constant concentration C0 of the surroundings. Of more frequent
occurrence is the situation in which the surroundings consist of a finite volume of
a well-stirred solution. This case is taken up below.

Illustration 8.2.5 The Sphere in a Well-Stirred Solution: 
Leaching of a Slurry

We assume in this example that a sphere, or an aggregate of spheres of volume
Vsphere, is suspended in a well-stirred medium of limited volume Vsoln. By “well-
stirred” we wish to imply that the concentration in the fluid is uniform and equal to
that at the sphere surface (i.e., film resistance is negligible). The model is similar
to that of the previous illustration, differing from it only in the surface boundary
condition. We have:

(8.2.42)

with boundary conditions:

At the surface:

At the center: (8.2.43)

Initially: C(0,r) = C0
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The concentration profiles initially obtained are again converted into fractional
uptake or release Mt/M∞, with the volume ratio Vsoln/Vspheres now appearing as a
parameter. The results are displayed in Figure 8.6. We use the plots to calculate the
following numerical example.

Suppose it is desired to calculate the time required to extract 90% of the oil
contained in oil-bearing vegetable seeds assumed to be spherical. We set:

R = 0.5 cm, D = 10–4 cm2/s and Vsoln/Vspheres = 1

so that 100 (1 + Vsoln/Vspheres)–1 = 50.
From Figure 8.6 we obtain, for Mt/M∞ = 0.9, (Dt/R2)1/2 = 0.34, and t =

(0.342)(0.52)/10–4 = 289 s ≈ 5 min.

Comments:
One notes from Figure 8.6 that release time diminishes with decreasing solution

volume, which also results in higher extract concentrations. It is advantageous to
minimize solvent volume. One has to keep in mind, however, that efficient stirring
requires a certain minimum ratio of solvent to solids volume. Furthermore, with
decreasing amount of solvent there is a likelihood of a change in solution volume
due to the volume of extracted oil. This would require a modification of the surface
boundary condition that would complicate the model considerably.

A parameter value of zero corresponds to an infinitely large solution volume.
This implies in turn a constant external concentration and the plot becomes identical
to that of Figure 8.1 at Sh = ∞, i.e., under conditions of no film resistance.

FIGURE 8.6 Fractional diffusional uptake and release as a function of dimensionless time
for spheres in a well-stirred solution of limited volume. (J. Crank, Mathematics of Diffusion,
2nd ed., Oxford University Press, New York, 1975. With permission.)
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Illustration 8.2.6 Steady-State Diffusion in
Several Dimensions

In the absence of convective flow and reactions, steady-state diffusional transport is
described by Laplace’s equation ∇2C = 0. Some solutions to this PDE, principally
arrived at by the technique of conformal mapping, has previously been given in
Table 7.7. Additional solutions will be presented in Figure 8.11 of the next section
in connection with steady-state multidimensional conduction which also is described
by Laplace’s equation. The latter are not given as distributions, as was the case in
Table 7.7, but rather in terms of so-called shape factors S which allows the direct
calculations of the rate of heat flow q between two bodies maintained at different
temperatures. The compilations can evidently be used to calculate the analogous
case of steady diffusional mass flow between two surfaces at different concentrations.
The need for this might arise for example in connection with emanations from
underground deposits or in connection with controlled release devices.

Let us then reach forward to Table 8.11 and consider the case of a cylinder (or
circular hole) of length L and diameter d with a surface temperature of T1, buried
deep in a semi-infinite medium with surface temperature T2 < T. The shape factor
for this case, Item 8b, is given by:

S = 2πL ln (2L/d) (8.2.44)

and is used directly in Newton’s law of cooling to obtain the flux q′. Thus,

q′ (J/s) = kS(T1 – T2) (8.2.45)

or

q′ = 2πL ln(2L/d)k(T1 – T2) (8.2.46)

The equivalent case of diffusive mass flow NA is then given by:

N′(moles/s) = 2πL ln(2L/d)D(C1 – C2) (8.2.47)

Suppose the solute is quickly removed from the surface of the semi-infinite
medium, for example, by a flowing fluid, so that C2 ≈ 0. Let us further set L = 100
cm, d = 10 cm, C1 = 10–4 mol/cm3, and D = 10–4 cm2/s. Then the total amount
diffusing will be given by:

N(moles/s) = 2πL ln (2L/d)D C1 = 2π100 ln [(2(100)/10)](10–4)(10–4)

NA = 1.88 10–5 mol/s
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Practice Problems
8.2.1 Mass Balances for Reverse Osmosis and Ultrafiltration — In reverse osmo-
sis (RO) and ultrafiltration (UF), pressure is applied to a flowing solution to force
solvent, usually water, through the permeable wall of the duct, thus separating it
from the dissolved solute. In RO, which is the term usually reserved for the mem-
brane-based desalination of water, the solute molecules are small and the principal
aim is to produce pure solvent. The term UF, on the other hand, is usually applied
to solutions with large solute molecules such as proteins. The primary purpose there
is to achieve a concentration of valuable or objectionable solutes and, less frequently,
to recover solvents other than water.

(a) Show, using both the vectorial formulation and the classical “in – out”
approach, that the total and component mass balances for steady laminar
flow in a cylindrical tube are given by:

(8.2.48)

and

(8.2.49)

What and how many additional balances are needed to complete the
model?

(b) Boundary conditions at the wall are required for both the solute concen-
tration C and the radial fluid velocity vr. Show that these are given by:

(8.2.50)

(8.2.51)

and provide a physical explanation for the parameters.

8.2.2 A Lévêque Problem — Consider steady laminar flow in a tubular “reactor,”
L = 100 cm and d = 1 cm, which releases solute from the wall at an unknown
constant rate N(mol/cm2s). Velocity v of the fluid is 10 cm/s, diffusivity D of the
solute 10–5 cm2/s.

(a) What is the concentration boundary layer thickness δ at the exit?
(Hint: Recall the definition of the mass transfer coefficient kf and that  =

8 v/d.)
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(b) If the average outlet concentration is found to be 10–5 mol/L, what is the
value of N?

(Hint: Use the ratio d/δ to find the wall concentration Cw, then apply N =
kf Cw.)

Answer: (a) 0.38 mm

8.2.3 The Electrochemical Method — Local or “spot” wall shear rates  in
complex tubular geometries can be determined experimentally by measuring the
current which results from an induced electrochemical reaction at electrodes installed
in the wall of the conduit. Typically in this method, an upstream section of a metallic
tube serves as an anode. Tiny electrodes, 0.1 to 1 mm in diameter embedded in the
wall at various locations of the downstream test section act as cathodes. The fluid
carries a dissolved ionic solute, typically a ferric cyanide. A voltage is applied to
the electrodes and the current from the resulting redox reaction (e.g., Fe(CN)6

–3 →
Fe(CN)6

–2) is measured.
Show that the shear rate  at a given anode is related to the measured current

by the expression: 

(8.2.52)

where L,W = length and width of a cathode
F = Faraday number
C0 = solute concentration in the bulk fluid
D = solute diffusivity
i = measured current

(Hint: Obtain the ion flow N (moles/s) by integrating Equation 8.2.35 from 0 to
L, then substitute the result into the electrochemical relation N = i/F.)

Note that because of their cubic dependence, high precision measurements of
cathode dimensions, solute concentration, and current are required.

8.2.4 Derivation of the Lévêque Relation — Apply a similarity transformation to
Equations 8.2.26 and 8.2.27 to derive the Expression 8.2.28.

8.2.5 Diffusion and Reaction in a Semi-Infinite Medium — Make a differential
mass balance to derive Equation 8.2.20.

8.2.6 Unsteady Conduction in a Thin Rod — Derive the set of Equations 8.2.21b
by making an appropriate differential heat balance.

8.2.7 Batch Adsorption of a Trace Substance — When a diffusing solute partitions
or adsorbs onto the solid matrix, one can often use standard solutions for non-sorbing
solids to follow the course of adsorption by suitably modifying one of the solution
parameters. For the case of adsorption by a sphere from a well-stirred solution, for
example, Vsoln/Vspheres in Figure 8.6 is replaced by Vsoln/(KVspheres), where K is the
partition coefficient or Henry’s constant.

γ̇

γ̇

˙ .
( )

γ = 1 9

0
3 2

3L
LWFC D

i
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Assume the following parameter values: K = 10, Vsoln/Vspheres = 10, D = 10–5

cm2/s, R = 1 cm.

(a) Show by making a cumulative mass balance that the modified parameter
100/(1 + Vsoln/K Vspheres) also represents the percentage of solute in the
solution that is ultimately taken up by the solids at t → ∞ (50% here).

(b) What is the fraction of solute content of the solution taken up from the
solution after 1 h?

(Hint: Multiply the ordinate value by the parameter value.)
Answer: 37%

8.2.8 Solutions from Solutions — Suppose all you have available is a standard heat
transfer text which only gives solutions to Fourier’s equation for a plane sheet and
a sphere with Type I boundary conditions. You need to find a solution to Fick’s
equation for a plane sheet with one face impermeable, the other exposed to a
sinusoidally varying concentration. How would you proceed?

8.3 TRANSPORT OF ENERGY

Derivation of the generalized energy equation proceeds along the lines established
for the transport of mass, with one or two extra items added. Briefly, the following
steps are involved.

One starts with the general statement of the First Law of Thermodynamics

(8.3.1)

Here energy includes transfer by conduction, radiation, or induction heating, as
well heat produced by internal sources (e.g., nuclear reaction). Work encompasses
the effects of gravity, buoyancy, electrical, and shear forces, as well as conventional
piston work. Change in energy consists of two terms: internal and kinetic energy.

The resulting equation is combined with the generalized momentum balance
and continuity equation. This results in the cancellation of all work terms due to
body forces and of kinetic energy.

The surface integrals are converted to volume integrals via the divergence the-
orem and the total integrand set equal to zero, as was done in Section 8.2. The
following expression, often referred to as the thermal energy balance, is then
obtained:

(8.3.2)

where µφ is a viscous dissipation term, and qb represents the rate of heat transfer to
the system by radiation, induction, and internal heat sources. This equation is of

Change in energy
of thesystem

Energy added
to thesystem

Work done
on system= +

ρ µφ ρD
Dt

H
DP
Dt

k T qb( ) = + ∇ ⋅ ∇ + +
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general validity and applies to compressible and incompressible flow, as well as
reacting systems. Heat of reaction ∆Hr for the latter is contained in the enthalpy
term DH/Dt but is somewhat cumbersome to extract. It is more convenient, in these
cases, to formulate the model by the classical “in – out = change” approach (see
Practice Problem 8.3.1).

In what follows we confine ourselves to nonreacting systems and address the
following topics:

• Conduction with laminar convection (Illustration 8.3.1)
• Conduction with a moving boundary (Illustration 8.3.2)
• Heat transfer in a packed bed (Illustration 8.3.3)
• Unsteady conduction (Illustration 8.3.4)
• Steady-state multidimensional conduction (Illustration 8.3.5)

Illustration 8.3.1 The Graetz-Lévêque Problem (Yet Again!)

The PDEs pertinent to this problem have previously been derived in Chapter 7,
Illustration 7.2.1 (the Graetz problem) for a cylindrical tube, using the classical in
– out = 0 approach. Here we use the generalized energy balance, Equation 8.3.2, as
a starting point, neglecting pressure and viscous dissipation terms which are insig-
nificant compared to enthalpy and conduction, and omitting ρ qb which does not
apply here. For constant thermal conductivity we then obtain the reduced form:

(8.3.3)

This equation applies to any arbitrary duct geometry. The convective derivative
DH/Dt is next decomposed using the Relation 8.1.39 and we obtain:

(8.3.4)

As a further step, we introduce the auxiliary enthalpy relation:

H = Cp (T – T0) + H0

which reduces Equation 8.3.3 with no loss of generality (except k = const.) to the
form:

(8.3.5)

To apply this equation to a cylindrical tube with steady flow, we drop the time
derivative and draw on our dictionary Table 8.1 to identify components of the

ρ D
Dt

H k T= ∇2

ρ ρ∂
∂

+ ⋅ ∇ = ∇H
t

H k T( )v 2

∂
∂

+ ⋅ ∇ = ∇T
t

T Tv α 2
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differential operators. The final form obtained, neglecting axial conduction, is iden-
tical to that derived by classical means in Illustration 7.2.1: 

(7.2.44)

where the velocity will in general vary with radial distance.
The Graetz problem was previously alluded to on several occasions in the context

of the corresponding mass transfer problem. Here we address it in its original form
which deals with the steady radial and axial temperature profiles in tubular flow for
different boundary conditions. The distributions initially obtained are converted into
equivalent Nusselt numbers Nu = hd/k using the thermal equivalent of Equation
8.2.30. Plots of local Nusselt numbers, i.e., those which prevail at a particular axial
position x are shown in Figure 8.7 for cylindrical and elliptical ducts as a function

of dimensionless distance  Several features are of note.

The functional form of the Nusselt number shows three distinct domains for
ducts of all shapes.

1. The entry region, in which Nu varies with the negative 1/3 power of
dimensionless distance and which prevails for values x* < 10–3. Here the
principal resistance to heat transfer resides in a thin boundary layer near
the wall.

FIGURE 8.7 Local Nusselt numbers as a function of dimensionless distance for steady heat
transfer in tubular flow.
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2. The fully developed region that comes about with the penetration of the
boundary layer to the center line of the duct. This domain starts at an
approximate value of x* ≈ 0.03 and exhibits constant Nusselt numbers.

3. A transition region that falls between the two aforementioned domains
and spans the approximate range 10–3 < x* < 0.03.

A compilation of Nusselt Numbers which apply to the entry and fully developed
regions are given for some common tubular geometries in Table 8.10.

Variations of Nu with the type of wall boundary condition imposed are slight.
The plots shown, which apply to a Type I boundary condition, have the lowest
Nusselt numbers, with those for the other extreme of a Type II BC being generally
10 to 15% higher value for Type III BCs lie inbetween.

For noncircular tubular cross-sections, Nusselt numbers vary along the perimeter
as well and these variations can be quite significant, as shown by the elliptical duct
of Figure 8.7.

Nusselt numbers for laminar tubular flow also are often presented in so-called
log-mean form, (Nu)lm. These are values which have been averaged over the axial
distance as well and cast in a form suitable for direct substitution into the heat
exchanger design equation we had given in Chapter 3, Section 3.2:

q = UA(LMTD) (3.3.17)

where 1/U = 1/hlm + 1/hshell.

TABLE 8.10
Nusselt Numbers for Laminar Tubular Flow and 
Boundary Conditions of Type I

Duct Geometry Entry Region Fully Developed Region

Cylinder Nu = 3.66

Parallel planes Nu = 7.54

Annulus, di/d0 = 0.5 —

Square — Nu = 2.98

Triangular — Nu = 2.47

Nu
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Illustration 8.3.2 A Moving Boundary Problem:
Freezing in a Semi-Infinite Solid

We had previously encountered moving boundary problems on a number of occa-
sions, principally in the context of freeze-drying of food (Chapter 3, Illustration
3.3.12) and burning fuel droplets (Chapter 4, Illustration 4.3.2). Additional examples
were given in Practice Problem 3.3.5. The treatment used there was an approximate
one, based on the assumption that (1) the front moved slowly so that the quasi-
steady-state assumption could be applied to the exterior domain, and (2) that the
interior domain could be considered “well-stirred,” i.e., with a uniform state variable
which changed with time only. This resulted in a reduction of the model to the
ODE/AE level.

We now wish to take up a rigorous formulation of the problem, using freezing
in a semi-infinite medium as an example. The situation is depicted in Figure 8.8,
where x is the coordinate of the medium and X(t) that of the ice front. At time t =
0, a surface temperature T(0,t) = 0 < T0 is imposed upon a liquid initially at T(x,0)
= T0. Conduction in the two phases obeys Fourier’s equation, i.e., we have:

(8.3.6)

with boundary condition:

TL(∞,t) = T0 (8.3.7)

and

(8.3.8)

with boundary condition:

FIGURE 8.8 A moving boundary problem — freezing of water in a semi-infinite medium.
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TS(0,t) = 0 (8.3.9)

where the subscripts S and L refer to solid and liquid respectively.
Solutions of these PDEs take a standard error function form found in the liter-

ature, but since they each have only one BC, the solutions will contain unknown
integration constants. Thus, for Equations 8.3.6 and 8.3.7 we have the solution:

TL = T0 – B erfc[x/2(αLt)1/2] (8.3.10)

and for Equations 8.3.8 and 8.3.9:

TS = A erf [x/2(αSt)1/2] (8.3.11)

The evaluation of A and B require additional BCs which must come from
conditions at the ice front.

The first of these is a statement of temperature equality at the interface. Thus,

TS(X,t) = TL(X,t) = Tmp (8.3.12)

where Tmp is the melting point. Equation 8.3.12 would ordinarily suffice to obtain
A and B, but the new variable X requires an additional relation. This is given by an
energy balance over the moving interface which takes account of the liberated heat
of freezing. We consider in the first instance a finite domain of ± ∆x on either side
of the front and an associated time interval ∆t. This leads to the balance.

(8.3.13)

Note that Fourier’s law takes a double negative sign here since conduction is in
the negative x-direction.

If we now set HL = 0 (for example), then HS is given by:

HS = ∆Hp ρA(–∆X) (8.3.14)

where ∆Hf = heat of freezing (a negative quantity). Dividing by A∆t and going to
the limit then yields:

(8.3.15)

It looks, at this stage, as if Equations 8.3.10 and 8.3.11 will have to be substituted
into Equation 8.3.15 and integrated, and the resulting expression used in Equation
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8.3.12 to evaluate the integration constants A and B. A clever and valid ploy is used
to avoid this messy procedure. We note that substitution of the ice temperature into
the boundary condition 8.3.12 yields:

A erf [X/2(

 

α

 

S t)

 

1/2

 

] = T

 

mp

 

(8.3.16)

and argue that since the melting point is a constant, the error function argument
must also be a constant. This requires:

X = C2(

 

α

 

S ) 1/2 (8.3.17)

where the proportionality constant C is evaluated from the interface BC 8.3.12 and
8.3.15. The resulting nonlinear equation is somewhat unwieldy but its solution
manageable by numerical means. With the value of C in hand, and the integration
constants evaluated from Equation 8.3.12, the solutions become explicit. Thus, for
the solid temperature we obtain the following simple expression: 

(8.3.18)

where C comes from the solution of the aforementioned nonlinear equation.

 

Comments:

 

The novel aspects in this problem are the formulation of the interface boundary
conditions 8.3.12 and 8.3.15 which are characteristic of thermal moving boundary
problems. Both melting and freezing are described in this fashion, as well as vapor-
ization and condensation phenomena. For reacting systems, the heat of reaction 

 

∆ H r 
replaces 

 

∆ H

 

f .
The Relation 8.3.17 which at first sight seems to appear out of nowhere, in fact,

is based on solid arguments. It takes insight and some perseverance, however, to
deduce it from Equation 8.3.16.

The nonlinear equation in the parameter C which results shows, albeit indirectly,
that moving boundary problems are inherently nonlinear and generally require
numerical methods of solution. The procedure outlined above, however, keeps the
numerical work at a minimum and arrives at explicit expression for the state variables
T S  and T L . 

Illustration 8.3.3 Heat Transfer in a Packed Bed:
Heat Regenerators

 

In heat regenerators, also termed heat recuperators, hot and cold fluids are passed
in alternating fashion through a solid matrix which in turn absorbs and then releases
the heat, the process being repeated cyclically. Beds packed with solid particles are
often employed in this application (see Figure 8.9A) and we use this configuration
to derive the equations applicable to the heat uptake step. We consider the heat
regenerator to be initially at a uniform temperature T

 

0

 

, with the inlet gas temperature

T
T

erf C 
erf x tS

mp 
S= [ / ( ) ]/2 1 2α
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at T

 

i

 

. The heat transfer resistance is assumed to reside principally in the fluid because
of its much lower thermal conductivity. Consequently, the solid phase temperature
may be considered uniform at a particular position z in the bed and at time t. Axial
conduction is neglected compared to lateral heat transfer.

This description evidently holds only during the initial step of the recuperative
process which in subsequent cycles will have a nonuniform initial temperature. If,
however, the heat transfer front is sharp, as is frequently the case, the degree of
nonuniformity will not be severe and the solution will be a good first approximation
of the actual process.

To model the process, we use a classical “in – out = change” approach and
obtain for an incremental axial distance 

 

∆

 

z.

 

Gas phase energy balance:

 

(8.3.19)

 

FIGURE 8.9

 

Heat transfer between a flowing medium and aggregates of solids. The
through-flow process (A) is unsteady, the cross-flow process (B) is at steady-state.
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where the subscripts 

 

f

 

 and 

 

s

 

 refer to fluid and solid, A

 

C

 

 is the cross-sectional area of
the regenerator, and a = heat transfer area in m

 

2

 

/m

 

3  bed. Dividing by A

 

C

 

ρ

 

f

 

Cp

 

f

 

∆

 

z and
letting 

 

∆

 

z 

 

→

 

 0 yields:

(8.3.20)

A similar procedure for the solid phase yields: 

Solid phase energy balance:

 

(8.3.21)

where division by 

 

ρ

 

f

 

Cp

 

f  nondimensionalizes the coefficients.
The reader may have noticed the similarity to the chromatographic process

mentioned in Chapter 7 which has an identical configuration, with convective trans-
port of mass replacing the transport of heat being considered here. We reproduce
the pertinent equations in rearranged form for comparison below for the case of a
linear phase equilibrium Y* = q/H. 

(7.2.4)

and 

(7.2.5)

Equivalence of terms for the two processes is presented below in the form of a
“dictionary.” We have:

(Hint to the reader: Table 3.6 on mass transfer coefficients can be used to show
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We now reach back to Chapter 6, Table 6.5, where we had presented values of
two dimensionless parameters, N = K

 

0

 

a z/v and T = K

 

0

 

a(

 

ρ

 

f

 

t/

 

ρ

 

b H) for 1 and 10%
“breakthrough” attained in the adsorption of a solute in a fixed bed of solids. These
solutions can be used directly for the prediction of temperature breakthrough, making
appropriate use of the dictionary given above. Let us see how this works out for a
particular numerical example. We choose the following parameter values, which are
good averages for a typical heat recuperation process.

Inlet temperature T

 

i

 

 = 1000°C
Initial bed temperature T

 

0

 

 = 25°C
Fluid heat capacity Cp

 

f

 

 = 1 kJ/kg K
Solid heat capacity Cp

 

s

 

 = 0.5 kJ/kg K
Fluid density

 

ρ

 

f

 

 = 1.0 kg/m 3

 

Solid density

 

ρ

 

s

 

 = 3000 kg/m 3 

Heat transfer coefficient ha = 50 kJ/sm

 

3 K
Height of bed z = 10 m
Velocity v = 10 m/s

With the use of the dictionary one obtains:

The time to 10% breakthrough is then given by:

or approximately half an hour. This also can be considered as an estimate of the
half cycle time so that the full cycle would run for about an hour. 

Illustration 8.3.4 Unsteady Conduction 

We briefly allude to this case, described by Fourier’s equation, in order to present
two typical solutions, those for conduction in a sphere and radially in a cylinder
with an imposed boundary condition of Type I (Figure 8.10). These solutions are
usually given as temperature profiles, rather than in terms of cumulative uptake or
release as was the case in mass diffusion (Figure 8.5 and 8.6). A host of other
solutions to Fourier’s equation in both graphical and analytical form, running literally
into the hundreds, if not thousands, can be found in the literature (see references at
end of chapter). The plots are given in terms of the fractional approach of the
temperature to steady-state (T – T

 

0

 

)/T

 

s

 

 – T

 

0

 

), where T

 

0

 

 = initial temperature, T

 

s

 

 =
imposed surface temperature, and the dimensionless Fourier number Fo = 

 

α

 

t/R

 

0
2

 

characteristic of unsteady conduction. Dimensionless radial distance r/R is a param-
eter. We note the following points in connection with these plots.
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Uptake or release in a sphere is faster than in a cylinder, since the heat transfer
area per unit volume is larger in the former case. Typically these plots are used to
calculate temperatures attained, usually at the surface or center, after a prescribed
time interval t. Conversely one can calculate the time required to attain a prescribed
temperature. The solutions are not generally used to extract thermal diffusivities from
measured temperature profiles since simpler steady-state methods can be applied.

For boundary conditions of Type II and Type III, additional parameters have to
be inserted into the solutions and solution plots. For Type III BCs the dimensionless

 

FIGURE 8.10

 

Dimensionless temperature as a function of the Fourier number in unsteady
conduction in a cylinder and a sphere.
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Biot number Bi =  is used, where h

 

f

 

 is the external convective film coefficient

and k

 

s

 

 is the conductivity of the solid. That number had previously been alluded to
in Illustration 3.3.3. Note that the Nusselt number Nu = h

 

f

 

d/k

 

f

 

 is similar in appearance
but contains the fluid rather than the solid thermal conductivity.

 

Illustration 8.3.5 Steady-State Temperatures and
Heat Flux in Multidimensional Geometries:
The Shape Factor

 

The topic of steady-state conduction between two isothermal surfaces was briefly
taken up in Illustration 8.1.6 in connection with the corresponding case of steady
mass diffusion between surfaces at constant concentration. Both these cases are
described by Laplace’s equation and both make use of the so-called shape factor S
which is derived from its solution. S can then be used to calculate heat flux from
the convenient linear relation:

q

 

′

 

(J/s) = kS(T

 

1

 

 – T

 

2

 

) (8.2.45)

where S has the dimension of length. Table 8.10 gives a short tabulation of the more
common geometries and their associated shape factors. Note that for items 1, 2, 5,
9, and 10, heat flux is given as q

 

″

 

(J/sm), i.e., per unit length of the “buried” objects
which extend into the paper to infinity.

The simple Expression 8.2.45 hides the fact that the underlying process is one
of considerable complexity. To obtain the shape factor S, one must first solve
Laplace’s equation which for the complex geometries in question is usually done
by conformal mapping. This results in temperature distributions of the type we had
listed in Figure 7.7. To obtain the heat flux, the temperature gradient at the buried
object has to be derived from the primary T-distribution, and that gradient integrated
over the surface of the buried object. The result is then matched to the Expression
8.2.45 to yield the shape factor S which is tabulated in Figure 8.11.

 

Practice Problems

 

8.3.1 Temperature Transients in a Tubular Reactor 

 

—

 

 

 

Consider a nonisothermal
tubular reactor with an irreversible reaction A 

 

→

 

 products taking place in it. Show
that for constant pressure operation, the temperature transients, occasioned for exam-
ple by fluctuations in the feed, is given by:

(8.3.22)

where Cp

 

v

 

 = volumetric heat capacity of the reaction mixture. Use the classical “in
– out = change” approach.

 

8.3.2 Entry Length for Laminar Flow Heat Transfer 

 

—

 

 

 

Entry length refers to
the length of conduit necessary to establish fully developed temperature profiles,

h d

k
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i.e., the distance from the inlet required to allow the thermal boundary layer to
penetrate to the tubular centerline. When that point is reached, the Nusselt number
becomes constant (see Figure 8.7).

(a) Show that for laminar flow heat transfer in a cylindrical tube with a Type
I boundary condition, the thermal entry length L is given by the approx-
imate expression: 

L/d 

 

≅

 

 0.03 Re Pr (8.3.23)

 

FIGURE 8.11

 

Shape factors.
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where the product Re Pr is also known as the Peclet Number Pe = vd/

 

α

 

.
(b) Derive the corresponding expression for laminar flow mass transfer.

 

8.3.3 Steam Heated Tube in the Entry Region (Laminar Flow) 

 

—

 

 

 

Viscous fluids
such as glycerol, which has a Prandtl number of the order 10

 

3

 

 at room temperature,
can have entry lengths of several meters (cf. Equation 8.3.23). Heating of such fluids
in conventional heat exchangers will consequently lie entirely in the entry or Lévêque
region. Consider the case of a viscous fluid being heated by isothermally condensing
steam in a single-pass shell and tube heat exchanger. Show that the fluid temperature
profile T(x) is given by the expression:

(8.3.24)

(Hint: Consult Table 8.10.)

 

8.3.4 Temperature Rise in a Slit Due to Friction 

 

—

 

 

 

The heat generated by laminar
flow friction resides in the viscous dissipation term 

 

µφ

 

 of Equation 8.3.2, where 

 

φ

 

is a function of the velocity components of the laminar flow field. For one-dimen-
sional flow in a parallel plane channel, that dependence is given by the expression:

(8.3.25)

where x is the direction of flow, perpendicular to the coordination directly y.
Consider the case of steady liquid flow in a channel with both plates kept at the

constant temperature T

 

w

 

, with the heat generated by friction being lost by conduction
to the walls. Show that the maximum temperature due to friction occurs at the
centerline and is given by:

(8.3.26)

(Hint: Use Equation 8.3.2 as a starting point and omit inapplicable terms. Use
Equation 8.1.39 and Table 8.1 to convert to scalar form.)

 

Comment:

 

A similar case of conversion of mechanical energy into thermal energy occurs
in Practice Problem 3.3.10 which considers the adiabatic temperature rise in turbulent
flow caused by the pumping of a fluid in a closed loop.

 

8.3.5 Cross-Flow Heating of Solids 

 

—

 

 

 

Loose granular solids can be heated by
passing a hot gas through a perforated moving belt carrying the solids in cross-flow
to the incoming gas (Figure 8.9B). Temperatures at any particular position x, z are
then time-invariant, in contrast to the situation found in fixed-bed through-flow
heating (Figure 8.9A and Illustration 8.3.3), which is an unsteady process.
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Consider the differential element shown in Figure 8.9B and perform steady-state,
“in – out = 0” energy balances in the gas and solid phases, with S kg/s of solids
moving in the x-direction and G kg/s of gas in the z-direction. Show that the resulting
PDEs are of exactly the same form as the through-flow Equations 8.3.20 and 8.3.21,
when the unsteady term in Equation 8.3.20, which is of minor significance, is dropped.
Solutions to the cross-flow problem can then be drawn from the same source as was
used in Illustration 8.3.3, with the horizontal distance x replacing time t, and other
parameters suitably changed. Make a small dictionary of the substitutions that have
to be made.

 

Comments:

 

A similar problem, in which granular solids had to be cooled by air in cross-flow to
the moving solids was encountered before in Chapter 6, Illustration 6.3.9. Because of
the simple asymptotic approach used there, neither horizontal nor vertical temperature
variations were considered. The more detailed treatment considered here does not involve
an excessive amount of additional work since the answers can be obtained quickly from
literature solution of similar problems or tabulations given in this text (Table 6.5).

Cross-flow processes of the type described are also extensively used in the drying
of granular solid with heated air. The reader is invited to consider what additional
terms would be needed in the heat transfer model to represent the drying process. 

8.3.6 Heat Sealing of Plastic Sheets 

 

—

 

 

 

Sheets of plastic and other materials are
frequently bonded together by applying heated elements (platens) to the surfaces of
the sheets. In order to establish the proper heating cycle, it is necessary to know the
time required for the interface to reach a specified sealing temperature. Using
literature solutions, calculate this quantity for the following three cases:

1. Both upper and lower platens are kept at a constant temperature T p .
2. The upper platen is at T

 

p

 

, the lower is “neutral,” i.e., neither heated nor
cooled. The thermal diffusivity of the platen is assumed to be approxi-
mately that of the plastic sheets and their dimensions are large compared
to the thickness of the sheet. This is the most common situation.

3. The upper platen is at T

 

p , the lower platen is cooled to maintain its
temperature at the initial value T i

 

.

Data:
Initial temperature T

 

i  = 25°C
Upper platen temperature T

 

p

 

 = 200°C
Required sealing temperature T s

 

 = 100°C
Thickness of each sheet L = 5 mm
Thermal diffusivity 

 

α

 

 = 1.6 · 10

 

–7

 

 m

 

2

 

/s

Contact resistance is to be neglected. Calculated values are consequently mini-
mum times.

(Hint: Consult both the conduction and diffusion literature.)

 

Answer:

 

 (1) 51 s; (2) 124 s; (3) 141 s
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8.3.7 Heat Losses from a Buried Steam Pipe — A steam pipe conveying 0.05 kg/s
steam superheated to 125°C and a dew-point of 110°C is to be installed underground
at a depth to the pipe centerline of 1 m. The question arises as to whether the pipe
should be insulated to prevent condensation.

(a) Calculate the temperature to which the steam would be cooled without
condensation, using Figure 8.11.

(b) What minimum thickness of insulation is needed to prevent condensation?

Data:
Pipe diameter d = 10 cm
Pipe length L = 50 m
Soil thermal conductivity k = 0.5 W/mK
Ground temperature T2 = 25°C
Steam heat capacity Cp = 2 kJ/kg K

Answer: (a) 105°C

Comment:
Soil conductivities can vary considerably depending on moisture content, poros-

ity, and composition. The cited value is an “average” conductivity and should be
increased by an appropriate safety factor before proceeding to part (b). Note that k
for dry solids is ~ 0.35 W/mK, for wet solid as high as 2.6 W/mK.

8.4 TRANSPORT OF MOMENTUM

We turn, in this last section of the chapter, to the task of establishing a generalized
momentum or force balance to complement the generalized mass and energy bal-
ances of the preceding sections. Here it is convenient to dispense with the generalized
transport theorem and start directly with a general statement of Newton’s law, applied
to a moving “packet” of fluid of fixed mass. The convective derivative then appears
in a natural way and we obtain:

(8.4.1)

Here the body forces include gravitational, thermal, electrical, and magnetic

forces, while the term  deals mainly with forces arising from viscous stresses

on the fluid element. Those stresses depend on the nature of the fluid, i.e., whether
Newtonian or non-Newtonian (Bingham, Viscoelastic, etc. fluids). The stresses for
these various cases consist of nine component tensors which can in turn be related

ρ Dv
Dt

F F

Body forces Surface forces
per unit volume per unit volume

b s

r

= +∑ ∑

                

Fs∑
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to the more convenient velocity gradients. One such relation based on linear or
Hookean deformation, i.e., for so-called Newtonian fluids, was derived by Stokes
and can be used directly in the force balance previously derived by Navier. We
dispense with the details of this part of the development which can be found in
standard texts on transport phenomena (see References) and present instead a first
version of the generalized momentum balance, applicable to Newtonian flow of
constant density and expressed in terms of velocity components. We have: 

(8.4.2)

or alternatively, 

(8.4.3)

where (v · ∇)v is the convective operator, and ∇2v the Laplacian of the velocity
vector, both of which we had tabulated in the “dictionary” Table 8.1. These expres-
sions represent the vectorial formulations of the Navier-Stokes equations. The fol-
lowing points need to be noted.

Equations 8.4.2 and 8.4.3 represent three scalar PDEs that together with the
continuity equation describe the velocity and pressure distributions in a viscous,
Newtonian flow field. To obtain the scalar components, use is made of the “dictio-
nary” shown in Table 8.1. Thus, for the x-component in Cartesian coordinates, the
dictionary yields:

(8.4.4)

Note that the convective term is nonlinear.
The Navier-Stokes equations hold for viscous Newtonian flow with constant

density and viscosity. For compressible and non-Newtonian flow, one has to return
to the tensorial form of the shear stresses and convert them to velocity gradients
through use of appropriate relations.

Consideration of body forces was limited to gravity only. Other body forces,
such as the buoyancy forces which arise in free convection, have to be added to the
Navier-Stokes equations. The gravity force itself is usually taken in the vertical
direction z only and can be expressed by the equivalent terms:
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g = g∇z = gk (8.4.5)

where we have made use of the fact that 

In what follows, we present a number of illustrations, each one of which will
deal with a particular reduced form of the Navier-Stokes equation. We take up in
turn the following topics:

• Duct flow (Illustration 8.4.1)
• Creeping flow (Illustration 8.4.2)
• Boundary layer flow (Illustration 8.4.3)
• Inviscid flow (Illustration 8.4.4)
• Irrotational flow (Illustration 8.4.5)

Illustration 8.4.1 Steady, Fully Developed Incompressible 
Duct Flow

We consider flow in a duct of arbitrary cross-section and place it in a Cartesian
framework. The aim here will be to develop working expressions like the Poiseuille
or Fanning equations which will allow us to calculate pressure drop as a function
of volumetric flow rate Q or average velocity v. The following simplifications apply:

vy = vz = 0 (Impermeable walls) (8.4.6a)

(8.4.6b)

(8.4.6c)

(8.4.6d)

Condition 8.4.6a implies that only one velocity component, vx, needs to be
considered; hence, one component momentum balance, that in the x-direction, suf-
fices. Introducing the simplifications (Equations 8.4.6), that equation becomes:

(8.4.7)

We note that Equation 8.4.7 is of the same form as the classical Poisson equation:

∇2u + f(x,y,z) = 0

∇ = ∂
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+ ∂
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which is linear and can be solved by a variety of standard methods. The fact that
∆P/L is a constant, albeit an unknown one, simplifies the solution, which takes the
form: 

vx = f(y,z,∆p/L) (8.4.8)

Note that solutions also are available from other disciplines which deal with
Poisson’s equation (see Practice Problem 8.4.7).

The question now arises as to how these two-dimensional velocity distributions
are to be translated into expressions for engineering use. Usually one wishes to
retain the form of the Fanning Equation 3.4.5 as a working expression, and this
requires extracting an appropriate friction factor favg, properly averaged over the
perimeter of the duct, from the primary solution Equation 8.4.8. To do this, we reach
back to Chapter 1, Table 1.2, where we had cited a relation between friction factor
f and wall shear stress τw. We obtain for the present case:

(8.4.9)

τw is related to the velocity gradients via extensions of Newton’s viscosity law.
Thus, for a square duct with side b, the average shear stress would be given by:

(8.4.10)

Values for favg have been computed for a large number of duct geometries and
are available in the specialized literature (see References). A short compilation for

rectangular and triangular ducts is given in Table 8.11 in terms of the product 

 is computed for the hydraulic diameter dh = 4 cross-sectional area/wet-

ted perimeter. The changes with b/a and α are seen to be relatively modest. To obtain
a sense of the magnitude of the pressure losses involved, consider the rather academic
example of water flow, v = 1 cm/s, through a square duct of width b = 1 cm and
length L = 1 m. With a kinematic viscosity for water at 25° of ν = 10–6 m2/s, we
obtain:

The Fanning equation then yields the following pressure drop:
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∆p = 11.4 Pa

Illustration 8.4.2 Creeping Flow

The principal difficulty in solving the Navier-Stokes equation, apart from its dimen-
sionality, resides in the nonlinear convective term (v · ∇)v. That term was neatly
eliminated in the previous illustration by virtue of the Conditions 8.4.6, leaving us
with a single linear PDE of the Poisson type. A similar result can be achieved by
assuming the flow to be very slow, so that the convective term becomes small in
comparison to the viscous term. We then refer to the system as being in creeping
flow. This approximation is used in a number of applications of practical importance.

Low Reynolds number external flow around submerged bodies (Rep < 1). The
celebrated Stokes law for the drag on a submerged sphere, Equation 3.4.8 is directly
derived from the velocity and pressure distributions arrived at by the solution of the
linearized Navier-Stokes equation.

Slow viscous flow in narrow passages of varying cross-section. This topic is
usually treated under the heading lubrication theory.

Incompressible flow through porous media, a vast subject with a number of
important subtopics: filtration, reservoir, and petroleum engineering, groundwater
seepage, geohydrology, etc.

In most of these cases, except flow through porous media (see Practice Problem
8.4.3), gravity forces are neglected and one winds up with the following operative
equations:

Continuity equation ∇ · v = 0 (8.4.11)

Reduced Navier-Stokes equation ∇p = ν∇2v (8.4.12)

TABLE 8.11
Friction Factor for Laminar Flow in 
Noncircular Ducts

Rectangular Isosceles Triangular

b/a Apex angle αααα, deg

0.0 96.0 0 48.0
0.1 84.7 10 51.6
0.25 72.9 30 53.3
0.50 62.2 50 52.0
0.75 57.9 70 49.5
1.0 56.9 90 48.0

f Re dh
f Re dh
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This is still a fairly formidable system of four PDEs, albeit linear ones, with
dependent variables pressure p and the three velocity components. We now proceed
to simplify this system and, in doing so, make fruitful use of certain operations of
vector calculus presented in Section 8.1.

We start by noting that one can quickly decouple pressure and velocity by
forming the divergence of Equation 8.4.12, i.e., by dot multiplying both sides with
∇ ·. There results, by virtue of formula 14 of Table 8.5,

∇ · ∇p = µ[∇ · ∇(∇ · v) – ∇ · ∇x(∇xv)] (8.4.13)

The left side is immediately seen to be the Laplacian of p. The first term on the
right vanishes because of the continuity equation 8.4.11, the second term by virtue
of the relation 6 in Table 8.5. We thus obtain:

∇2p = 0 (8.4.14)

i.e., the pressure distribution in creeping flow is described by Laplace’s equation.
We still have the three velocity components of Equation 8.4.12 to contend with

but for the two-dimensional case, at least, a reduction to a single PDE is possible.
To achieve this for the Cartesian case, we first differentiate the equation with the y-
component with respect to x, the x-component with respect to y, and subtract the
result to eliminate p. This gives us a third order PDE in vx and vy. These two
dependent variables are then coalesced into a single variable, the stream function ψ
using the relations given in Chapter 7, Table 7.6. A single fourth order PDE in ψ
results which is the biharmonic equation: 

(8.4.15)

The full creeping flow solution can thus be obtained by solving, independently,
Laplace’s equation in pressure p, and the biharmonic equation in ψ. The latter is
also the governing equation for two-dimensional elasticity problems and solutions
found in that discipline are often applicable to creeping flow problems.

Illustration 8.4.3 The Prandtl Boundary Layer Equations

We had already on a number of occasions, referred to boundary layer theory that
divides the external flow field around submerged bodies into a thin boundary layer
adjacent to the body surface in which viscous effects predominate, while the bulk
fluid further away was essentially in inviscid or irrotational flow (Chapter 7, Illus-
tration 7.4.3 and Figure 7.3). This concept, due to Prandtl, has been particularly
successful in gas flow and aerodynamics. We re-examine the underlying equations
briefly in order to place them on a firmer foundation, limiting ourselves to steady,
incompressible two-dimensional flow. The governing equations for this case are
given by:
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Continuity:

(8.4.16)

x-Momentum (Navier-Stokes):

(8.4.17)

y-Momentum (Navier-Stokes):

(8.4.18)

where x is the direction along the wall and y is normal to it.
Prandtl made two crucial assumptions:

1. The velocity component normal to the wall is much smaller than that
along it:

vy << vx (8.4.19)

2. Changes in the x-direction are much smaller than those in the y-direction,
with the result that:

(8.4.20)

Applying these relations to the y-momentum equation, we find that all velocity
terms disappear and, hence,

(8.4.21)

In other words, Equation 8.4.18 disappears entirely and pressure varies along
the boundary layer only, not through it. This means that the pressure distribution
can be recovered from the solution of the inviscid outer field via Bernoulli’s equation
and Laplace’s Equation. The governing model thus has been reduced to the following
four relations:

Continuity:

(8.4.22)
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x-Momentum (boundary layer):

(8.4.23)

Bernoulli equation (inviscid field):

(8.4.24)

Laplace’s equation: 

(8.4.25)

where the stream function ψ is related to the velocity components vx, vy via the
expressions given in Chapter 7, Table 7.6 and U is the outer field velocity.

The normal solution procedure then consists of the following steps:

1. Solve Laplace’s equation for the outer field and from the stream function
ψ recover the corresponding velocity components vx and vy.

2. Compute the outer field velocity U from its components: U = (vx
2 + vy

2)1/2.
3. Introduce the stream function ψ into Equations 8.4.22 and 8.4.23. This

has the effect of collapsing the two variables and, hence, the two equations
into a single entity. The resulting third order PDE is then reduced to an
ODE by similarity transformation and the ODE usually solved numeri-
cally. For a flat plate, this ODE is the Blasius Equation 7.3.32.

4. The solutions for the inner and outer regions are “patched together” or
matched at the edge of the boundary layer where we typically specify:

v/U = 0.99 (8.4.26)

This admittedly brief sketch is meant to convey the main steps of the solution
procedure which has led to a host of successful solutions. One will note in particular
the ingenious simplifications of Prandtl and the use of various classical tools such
as the use of the stream function and Laplace’s equation to describe the velocity
distributions. Evidently a good deal of detail was left out, for which the reader is
referred to specialized texts (see References).

Illustration 8.4.4 Inviscid Flow: Euler’s Equation of Motion

We describe here briefly the inviscid version of the momentum balance usually
attributed to Euler. It takes the form:

(8.4.27)
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or

(8.4.28)

and is introduced here mainly to provide a stepping stone to the more powerful
Bernoulli equation. It also has important applications in the study of waves and open
channel flows when one can neglect viscous forces, including wind-induced stresses.

Although the Equations 8.4.27 and 8.4.28 seem to have arisen from the Navier-
Stokes Equations 8.4.2 and 8.4.3 valid for incompressible flow, a direct derivation
from the force balance Equation 8.4.1 shows that it applies to compressible flow as
well. Thus, the Bernoulli equation which we derive below from Euler’s equation of
motion is quite generally applicable to both compressible and incompressible flow.

 

Illustration 8.4.5 Irrotational (Potential) Flow:
Bernoulli’s Equation

 

To derive Bernoulli’s equation from Euler’s equation of motion, we start by expand-
ing the convective term (

 

v

 

 · 

 

∇

 

)

 

v

 

 using the vector relation 13 given in Table 8.5. We
obtain, for steady flow:

(8.4.29)

where we also have made use of Equation 8.4.5 to convert the gravity vector 

 

g

 

 to
the gradient of the vertical distance z. We now introduce the irrotational flow
condition 

 

∇

 

x

 

v

 

 = 0 which, as was pointed out in Section 8.1, is in most instances,
equivalent to the inviscid condition. This relatively modest increase in the stringency
of the conditions imposed leads to an enormous simplification of Euler’s equation.
We obtain, in the first instance:

(8.4.30)

where |

 

v

 

| = magnitude of the velocity vector.
This is beginning to look very much like Bernoulli’s equation and a final

operation will lead us to that goal. We dot multiply each term of the equation by
the differential position vector d

 

R

 

 and invoke Relation 5 of Table 8.5: 

 

∇

 

u · d

 

R

 

 =
du. This yields:

(8.4.31)

which is recognized as the differential form of Bernoulli’s equation, applicable to
both compressible and incompressible flow.
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Comments:
One notices here, as in the case of creeping flow, Illustration 8.4.2, the power

of vector notation and the simplicity of the operations, once certain basic tenets have
been accepted. Their absence would make the transformation of Euler’s equation to
Bernoulli’s equation a fairly cumbersome task which would have to be repeated for
each new coordinate system. The result obtained thus is quite general and not
dependent on the geometry of the system.

A careful reading of the present derivation of Bernoulli’s equation will reveal
that it differs from that given in Chapter 3, Illustration 3.4.7. The latter relies on a
force balance performed for inviscid flow on a section of a stream tube and, conse-
quently, required any two positions to which the equation was applied to lie on the
same streamline. No such restriction applies here. One can integrate Equation 8.4.31
between any two points of the flow field without violating its validity. The present
version is for that reason often referred to as the Strong Form of Bernoulli’s equation.
It must be remembered, however, that this greater freedom was bought at the cost
of imposing the somewhat more stringent condition of irrotational flow. In either its
“weak” or “strong” form, Bernoulli’s equation has become, apart perhaps from the
continuity equation, the most frequently used relation in fluid mechanics.

Practice Problems
8.4.1 Radial Velocity Profiles for Small Leakages through a Tubular Wall —
Consider a fluid in steady creeping flow through a cylindrical tube with a permeable

wall. The leakage velocity vw is taken to be small, so that we may assume 

 i.e., axial velocity vx diminishes linearly with distance x.

(a) Show that the profile of axial velocity vx(r) remains parabolic but is
associated with the derivative of pressure dp/dx rather than a constant
pressure drop ∆p/L. (Hint: Integrate the x-momentum balance, having first
dropped the convective term.)

(b) Show that the profile of the radial velocity vr(r) is given by the following
expression:

(8.4.32)

(Hint: Integrate the continuity equation for cylindrical coordinates from 0
to r and from 0 to R to eliminate the pressure gradient. Table 8.1 is of use.)

Comment:
A situation of this type arises in urine flow through the kidney where tubular

Reynolds numbers are of the order 10–2. Water and various solutes pass from the
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blood and through the permeable wall of the tubules into the urine for ultimate
elimination from the body.

Equation 8.4.32 has been used to determine radial solute concentration profiles
and the magnitude of the internal mass transfer resistance 1/kf. What equations would
you draw upon for this task?

8.4.2 Velocity Profiles Near a Moving Boundary — Suppose that one of the
retaining walls of a parallel plane channel is suddenly set in motion with a constant
velocity v0.

(a) Show that the relation describing the resultant time-dependent velocity
profiles is given by the equation: 

(8.4.33)

(b) Indicate what disciplines might provide ready-made solutions to this prob-
lem where ∇2v is the Laplacian of the velocity vector v, and is tabulated
in the dictionary Table 8.5.

8.4.3 Flow in Porous Media — Flow in a porous medium is customarily described
by the empirical D’Arcy’s law which in three dimensions and with gravity included,
becomes:

(8.4.34)

where vs is the superficial velocity vector and K is the permeability of the medium.
Show that for incompressible flow with constant K/µ, D’Arcy’s law leads to Laplace’s
equation in the pressure p. Back-substitution into Equation 8.4.34 then yields the
velocity profiles which can be integrated to yield total volumetric flow rates. Note
that the corresponding case of compressible flow was taken up in Illustration 7.4.1.

8.4.4 Tangential Velocity Distributions Between Rotating Cylinders — 
(a) Show that for two concentric cylinders of radius Ri and R0, with the latter

rotating with an angular velocity ω, the tangential velocity vθ is given by:

(8.4.35)

(Hint: Integrate the equation for θ momentum, using the BCs vθ(Ri) = 0,
vθ(R0) = ωR0.)

(b) Derive the corresponding expression for the case of the inner cylinder
rotating with the outer cylinder held stationary.
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8.4.5 Form Drag on a Sphere in Creeping Flow — The pressure distribution for
creeping flow around a submerged sphere was derived by Stokes. Neglecting gravity
effects (i.e., buoyancy), the relevant expression is given by:

(8.4.36)

Integrate this relation over the surface of the sphere to obtain the so-called form
drag Ff, i.e., the portion of the total drag due to pressure forces.

Answer: Ff = 2πµRv∞

8.4.6 Pressure Drop in Ducts of Different Geometries — Consider three types of
ducts: cylindrical, square, and triangular with θ = 90°, all of equal weight, i.e., equal
thickness and perimeter. Establish the ratio of pressure drop per unit length for these
configurations.

8.4.7 Solutions from Solutions — The steady-state temperature distribution in a
rectangle with constant internal heat generation A (J/m3s) and the surfaces x = ±a
and y = ±b kept at zero temperature is given by the formidable expression:

(8.4.37)

What, if any problem discussed in this section, can be solved by this equation?
What are the difficulties and how would you proceed?
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9

 

Solution Methods for 
Partial Differential 
Equations

 

Never before have we had so little time to do so much.

 

Franklin Delano Roosevelt

 

In this final chapter, we present outlines of three important classical methods for
the solution of partial differential equations. We start with the method of separation
of variables which dates back to the 18th century and finds its principal application
in the solution of second order homogeneous and linear PDEs. A host of solutions
to Fourier’s and Fick’s equations are arrived at by this method, and we present
several illustrations to explain and expand on the procedure. An opening preamble
is devoted to the twin topics of Fourier series and orthogonal functions that play a
key role in the application of the method of separation of variables.

The second section deals with the Laplace and other integral transform methods,
this time in the context of solving partial differential equations. These methods again
apply to linear PDEs only, but are capable of handling nonhomogeneous systems
as well. They can be used to reach a wider range of the classical PDEs of mathe-
matical physics. While the main focus is on the Laplace transformation, some time
is spent in explaining and illustrating the use of the less common integral transforms.
We also present an example of Laplace domain analysis that we had applied in
Chapter 5 in the context of ordinary differential equations.

The final section introduces the reader to the method of characteristics. This
elegant and powerful procedure extends our reach considerably and enables us to
address First Order quasilinear, as well as linear PDEs. We limit ourselves to the
treatment of single equations, but provide sufficient detail for the reader to grasp
the general methodology of the procedure. The solution of systems of quasilinear
PDEs, which is a much wider topic, can be pursued in one of the many excellent
monographs listed at the end of the chapter.

 

9.1 SEPARATION OF VARIABLES

9.1.1 O

 

RTHOGONAL

 

 F

 

UNCTIONS

 

 

 

AND

 

 F

 

OURIER

 

 S

 

ERIES

 

We open this segment of the chapter with a preamble to introduce the reader to the
concepts of orthogonal functions and of Fourier series expansion. Both of these
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topics make their appearance in the course of solving partial differential equations
by separation of variables and it is, therefore, natural to introduce them within the
framework of this important solution method. Both orthogonal functions and Fourier
series have other important applications, such as the representation of arbitrary
functions, but our focus here will be their role in the solution of partial differential
equations. In the course of our narrative, we will present some of their general
properties, thus preparing the ground for their use in other areas as well.

To demonstrate the genesis of these two concepts — or tools, as they become
here — we outline in step-wise fashion the application of the method of separation
of variables. We shall see that near the close of the procedure, we reach a seeming
impasse which cannot be overcome by conventional means. It is at this point that
we introduce the notion of orthogonal functions and Fourier series expansion. In
what follows we develop the various steps that lead us to that point. 

Step 1 —  The essence of the method of separation of variables lies in the
assumption that the solution can be expressed as the product of functions of a single
variable. Thus, for a PDE in the dependent variable u and in Cartesian coordinates,
the solution is assumed to have the general form

u = f(x) g(y) h(z) k(t) (9.1.1)

This assumption, the validity of which has to be ultimately proven, can be applied
to any arbitrary PDE, but is usually successful only in the case of linear second
order homogeneous PDE with constant or variable coefficients. The reasons for the
restrictions will become apparent in the course of the development of the procedure.

At times it is possible to provide a physical rationale for the assumed solution
form. If the reader will cast a glance back at Chapter 1, Figure 1.1 describing the
quenching of a steel billet, it will become apparent that the temperature profiles
which arise in this case can be viewed as 

 

sine half waves with a time-dependent
amplitude

 

. It seems reasonable to assume, therefore, that the solution might have
the form:

(9.1.2)

where A(t) is the time-varying amplitude. We have craftily included a summation
sign since we surmise that a single sine function will not suffice to represent all
profiles, in particular the discontinuous ones which appear at the start of the oper-
ation. This concept of using a 

 

sum

 

 of functions to represent another function will,
as we shall see, ultimately lead to the notion of a Fourier series expansion.

 

Step 2 —

 

 We introduce the assumed form of Solution 9.1.1 into the PDE. We
had previously indicated in Section 7.3 that when this is done for the case of the
one-dimensional conduction (Fourier) equation, with an assumed solution form u =
T(t)X(x), slight rearrangement of the result led to the expression:

(7.3.3)
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It was then argued that the two sides, which are functions of different independent
variables, can only be equal if they are constant. We, therefore, wrote:

(7.3.4)

where the constant is set = –

 

λ

 

2

 

 rather than 

 

λ

 

 to avoid redundant solutions and square
roots.

Note that by this procedure we had reduced the PDE to a set of equivalent ODEs.
For PDEs in more than two independent variables, similar results are obtained. This
is a major simplification which does, however, hinge on the validity of the assumed
solution form. If the PDE had been nonhomogeneous, the product solution would
have yielded:

(9.1.3)

and the felicitous form Equation 7.3.4 would not have been obtained. This is the principal
reason for restricting the method of separation of variables to homogeneous systems.

 

Step 3 —

 

 After this promising start, we turn to the relatively mundane task of
solving the ODEs which can usually be accomplished by standard methods. It is to
be noted, however, that since 

 

λ

 

 is arbitrary and yet to be defined, we must accom-
modate the possibility of 

 

λ

 

 being zero as well as non-zero. This will in general give
rise to two different sets of solutions which we accommodate by invoking the
superposition principle, i.e., we argue that since each set is presumed to be a solution
to the PDE, their sum must also be a solution. Note that if the PDE had been nonlinear
and, thus, ineligible for superposition procedures, the proceedings would have come
to a halt at this point. This explains our restriction of the method of separation of
variables to 

 

linear PDEs

 

.

 

Step 4 —

 

 Solution of the ODEs is followed by an evaluation of the integration
constants and of the eigenvalues 

 

λ

 

. We use for this purpose the available boundary
conditions, leaving the initial condition to the last for reasons which will become
apparent later. After most of the integration constants have been evaluated and with
one BC left over, we may have the following situation:

 

Solution to this point:

 

u = C sin (

 

λ

 

x)exp(–K

 

λ

 

2

 

t) (9.1.4)

 

Remaining BC:

 

u(a,t) = 0 (9.1.5)

where the latter might represent a normalized temperature or concentration at x =
a. One sees immediately that this condition can be used to evaluate 

 

λ

 

, for with u =
0 at x = a, we must have sin (a

 

λ

 

) = 0, and 

 

λ

 

 takes on the infinite set of values 
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n

 

π

 

/a (the so-called eigenvalues of the PDE), with n = 1,2,3,… . This neat result
would not have come about if Equation 9.1.5 had been nonhomogeneous. We have
a second good reason to require homogeneity of both the PDE and the boundary
condition for a successful application of the method.

To accommodate this infinite set of solutions we invoke the superposition prin-
ciple as before so that the solution now becomes:

(9.1.6)

We have here our second glimpse of the dreaded infinite series which crop up
regularly in solutions of PDEs. At least now we know the culprit — it is 

 

superposition

 

.

 

Step 5 —

 

 At this stage we are seemingly left with only one integration constant,
C, to be determined, for which we have the initial condition available. This turns
out to be the most difficult step and leads to an impasse. For suppose the initial
condition were given as:

u(x,0) = f(x) = 1 (9.1.7)

representing, for example, a uniform and normalized initial temperature or concen-
tration. Then substitution into the Solution 9.1.4 yields:

(9.1.8)

which is clearly unacceptable since the right side is a function of x and not a constant.
Suppose that we assigned a different constant to each sine term, hoping that by

properly weighting them, the sine would converge to unity. This is legitimate as
long as the initial condition is satisfied. We would then have:

f(x) = 1 = C

 

1

 

 sin (

 

π

 

x/a) + C

 

2

 

 sin (2

 

π

 

x/a) + … C

 

n

 

 sin (n

 

π

 

x/a) + … (9.1.9)

This may lead to the desired result but compounds our difficulties since an
infinite set of constants will now have to be evaluated. It speaks to the genius of the
early workers in this field that they not only persisted in this line of attack but
ultimately devised a way of evaluating the coefficients. To do this, they drew on two
seemingly unrelated and innocuous expressions which are nowadays routinely found
in all tables of integrals:

(9.1.10)

(9.1.11)
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They then multiplied each term of Equation 9.1.9 by sin(n

 

π

 

x/a)dx and integrated
from 0 to a. This causes all terms on the right side to vanish except the n-th coefficient
which by virtue of Equation 9.1.11 becomes:

(9.1.12)

or, upon evaluation of the last integral

(9.1.13)

Thus, we have obtained a general expression for the n-th integration constant
and are now in a position to write the infinite series (Equation 9.1.6) in explicit form:

(9.1.14)

 

Comments:

 

We note that the sequence in which we used the boundary and initial conditions
is now justified, for it was the earlier evaluation of 

 

λ

 

 which led to the infinite series
and ultimately the determination of its coefficients. Had the initial condition been
introduced prior to that point we would have obtained:

C = [sin(

 

λ

 

x)]

 

–1

 

(9.1.15)

a self-contradictory result with no means of resolution.
The need to have a homogeneous PDE as well as homogeneous BCs was justified

on several occasions. That requirement, however, does not extend to the initial
condition since any nonhomogeneity f(x) can be accommodated easily in the first
integral of Equation 9.1.12. This is in agreement with what was stated in Section
7.3.3 of Chapter 7, dealing with the elimination of nonhomogeneous terms. The
approach taken there was to accept even severe nonhomogeneities in the initial
condition, provided the PDE and remaining BC could be rendered homogeneous.
This has now been justified.

We use this occasion to introduce the reader to the terminology associated with
these proceedings. We had already referred to 

 

λ

 

 as the eigenvalues of the PDE.
Associated with them are the so-called eigenfunctions f(

 

λ

 

), here sin 
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x. The infinite
series (Equation 9.1.9) is referred to as the Fourier series expansion of f(x) = 1, the
associated constants C

 

i

 

 as Fourier coefficients. Sequences of functions like sin(n

 

π

 

x/a)
which obey the type of relations expressed by Equations 9.1.10 and 9.1.11 are
referred to as 

 

orthogonal functions

 

. The latter will be taken up in greater detail below.
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The reader may have wondered whether there are other functions with the
felicitous properties of sin(n

 

π

 

x/a) and, if so, whether they can be used in the solution
of PDEs. The answer to both questions is yes. There are, in fact, a broad range of
such orthogonal functions and what is more they arise as solutions of certain linear
second order ODEs which in turn are generated in the course of applying the method
of separation of variables. The conditions which the ODEs have to satisfy so as to
yield an orthogonal set of functions is enshrined in the Sturm-Liouville theorem.
We shall take a brief leave from PDEs and separation of variables in order to address
these important concepts, as well as Fourier series in general, after which we shall
return with further examples of PDE solutions.

 

9.1.1.1 Orthogonal and Orthonormal Functions

 

We start with a definition. A sequence of continuous functions y

 

1

 

(x), y

 

2

 

(x), …, y

 

n

 

(x),
… are said to be orthogonal with respect to the weight function p(x) in the interval
a 

 

≤

 

 x 

 

≤

 

 b if the following two conditions are met:

(9.1.16a)

(9.1.16b)

where C 
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 0 is the so-called norm or normalizing factor. By dividing each y
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 by the
norm C, we obtain a new set of functions 
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orthonormal:
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j

 

/C (9.1.17)

and with it a modification of the Conditions 9.1.16:
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(9.1.18b)

These new terms are related to the functions of our previous discussion as
follows:

Orthogonal functions: y

 

m

 

(x) 

 

→

 

 sin(m

 

π

 

x/a)
y

 

n

 

(x) 

 

→

 

 sin(n

 

π

 

x/a)
Weight function: p(x) 

 

→

 

 1
(Norm)

 

2

 

: C

 

2

 

 

 

→

 

 a/2
Orthonormal function: 

 

φ

 

j

 

 

 

→

 

 (2/a)

 

1/2

 

 sin(j

 

π

 

x/a)

p x y x y x dxm n
a

b

( ) ( ) ( ) =∫ 0

p x y x dx Cn
a

b

( ) ( )2 2=∫

p x x x dxm n
a

b

( ) ( ) ( )φ φ =∫ 0

p x x dxn
a

b

( ) ( )φ 2 1=∫

 

248/ch09/frame  Page 580  Friday, June 15, 2001  7:08 AM

© 1999 By CRC Press LLC



   

A number of sets of orthogonal functions which are of frequent occurrence in
the solution of PDEs by separation of variables are listed in the accompanying Table
9.1. We note some of the implications of this table and follow this up with an
illustration.

We start by pointing out that the weight function p(x) of Equation 9.1.16 is in
some instances unity, in others a simple function of x. This does not complicate
unduly the evaluation of the Integrals 9.1.16. A second noticeable feature is that the
running index of the sequence, n or 

 

λ

 

, is not necessarily composed of positive
integers. This is so for certain trigonometric functions, Items 1 to 4, but in other
cases, Items 5 to 8, 

 

λ j

 

 are the roots of certain transcendental equations. We had
previously, in Table 8.8, Chapter 8, given a short list of the roots of Item 8. Roots
of the equations contained in Items 5 to 7 can be found in standard texts on diffusion
and conduction, and in mathematical handbooks (see References). Using the table
entries for Item 7, for example, the orthogonality relations 9.1.16 now become:

(9.1.16c)

(9.1.16d)

 

TABLE 9.1
Sets of Orthogonal Functions
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Normalizing

Factor C
Weight
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These somewhat abstract-looking relations have, in fact, their uses. One may
anticipate that Bessel functions of this type will arise in solving PDEs in cylindrical
coordinates, and that the Relations 9.1.16c and 9.1.16d would then be very handy
in evaluating Fourier coefficients in much the same way as the simpler Relations
9.1.10 and 9.1.11. 

Illustration 9.1.1 The Cosine Set 

It will be of further comfort to the uninitiated to have a particular set of entries in
Table 9.1 derived in detail. We choose for this purpose the cosine sequence, Item 2,
and set out to prove orthogonality and to derive the norm C.

m 

 

≠  n 

 

≠

 

 1

We use the trigonometric formula:

(9.1.19)

and obtain from integral tables, using a weight function p(x) = 1 in Equation 9.1.16a:

(9.1.20)

We repeat this for the first term and obtain:

 

m = 1:

 

(9.1.21)

To fulfill the second Condition 9.1.6b and obtain the norm we show, using the
appropriate formula from integral tables: 

m = n 

 

≠  0: 

(9.1.22)

m = n = 0:

(9.1.23)

This shows, as was indicated in Table 9.1 that, for the cosine sequence only, we
have two norms, a general one C1 for the case n ≠ 0, and a special one, C2, for n =

cos cos [cos( ) cos( ) ]mx nx n m x m n x= − + +1
2
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0. This does not, however, invalidate the Condition 9.1.16b and the set can still be
considered orthogonal.

9.1.1.2 The Sturm-Liouville Theorem

We have seen that orthogonal functions are highly useful tools, not only in the solution
of PDEs by the method of separation of variables, but also in the representation of
both continuous and discontinuous functions. To find these functions by choosing
them at random and guessing both the weight function p(x) and the interval of
orthogonality (a,b) is evidently an unrewarding task. Fortunately a theorem is avail-
able which generates these functions and the associated weight functions and inter-
vals from a general linear second order ODE with variable coefficients of the form:

[r(x)y′]1 + [q(x) + λp(x)]y = 0 (9.1.24)

with the following boundary conditions of Type III:

A1y(a) + A2y′(a) = 0 (9.1.25)

B1y(b) + B2y′(b) = 0

Such second order systems arise, as we have seen, in the course of applying the
method of separation of variables. They are referred to as Sturm-Liouville systems.
The theorem may be phrased as follows.

Provided that over the interval a ≤ x ≤ b, p(x), q(x), r(x), and r′(x) are real and
continuous, the solutions of the Sturm-Liouville system will be a set of functions
yn(x) which are orthogonal with respect to the weight function p(x) over the interval
a ≤ x ≤ b. Furthermore, any function f(x) which is sectionally continuous in this
interval (translation: f(x) ≠ ∞) can be expanded in terms of the orthogonal set:

(9.1.26)

The following are to be noted. If p(x) or r(x) should vanish at the end points,
the theorem will still hold provided y(x) remains finite at those points. The theorem
also applies if the interval is replaced by an unbounded one.

This is a powerful statement which will ease our task considerably. It merely
requires an inspection of an ODE and its boundary conditions to establish orthog-
onality and the validity of a series expansion of arbitrary functions. We shall use it
in subsequent illustrations to solve PDEs by the method of separation of variables.

9.1.1.3 Fourier Series

We had seen in Table 9.1 that sequence of both sine and cosine functions form an
orthogonal set. They can be combined into a more general form known as a Fourier series:

f x C y xn n

n

( ) ( )=
=

∞

∑
0
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(9.1.27)

where the Fourier coefficients are given by:

(9.1.28a)

(9.1.28b)

f(x) is an arbitrary function over (–π, π) and π in the denominator is recognized
as the square of the norm C2 (see Table 8.1).

We note the following properties of this series. Any function defined arbitrarily
over the interval (–π,π) and outside it by the equation f(x + 2π) = f(x), and which
has a finite number of discontinuities and extrema over that interval, can be repre-
sented by a Fourier series. Thus, the Fourier series can be used to represent both a
function f(x) over (–π,π) for values of x in that interval, or a periodic function with
period 2π for all values of x.

The Fourier series can be extended to an arbitrary interval (–a,a) and then
becomes:

(9.1.29)

with the Fourier coefficients given by:

(9.1.30a)

(9.1.30b)

If f(x) is an even function f(x) = f(–x), all the sine terms vanish. For odd functions
f(x) = –f(–x), on the other hand, the cosine terms drop out. The coefficient a0(n =

0) carries a factor  designed to accommodate the differences in norms for cos nx

and cos 0 (see Equations 9.1.22 and 9.1.23). With this factor in place, a single norm
C = (π)1/2 can be used for the entire series. Let us illustrate the use of Fourier series
with a particular example.

1
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∞
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Illustration 9.1.2 Fourier Series Expansion of a Function f(x)

We set out to represent the function f(x) = x, i.e., a straight line of slope 1 in the
interval (–π,π) by means of a Fourier series expansion. The form of the function,
and its periodic extension, is shown in Figure 9.1A. Using Equations 9.1.28a/b to
evaluate the Fourier coefficients, and making appropriate use of tables of integrals,
we find:

(9.1.31)

(9.1.32)

Only the sine terms remain, and we obtain:

FIGURE 9.1 Expansion of a saw-tooth function (A) by means of a Fourier sine series (B).
Lower curves in (B) represent individual sine terms, the upper curves their sum.

a x nx dxn = =
−∫

1
0

π π

π

cos

b x nx dx
n

nn = = −
−∫

1 2
π

π
π

π

sin cos

x b nxn

n

=
=

∞

∑ sin
1
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that is

(9.1.33)

or

This is the desired expansion of x over the interval (–

 

π

 

,

 

π

 

).

 

Comments: 
The disappearance of the cosine terms was to be expected since the function in

question is an odd one, with f(x) = –f(–x). Since the series (Equation 9.1.33) has
the period 2

 

π

 

, it also represents the periodic extension of f(x) = x(–

 

π

 

,

 

π ), shown as
a graph of discontinuous parallel lines in Figure 9.1A. Note that at the points of
discontinuity, the series converges to zero which is one half of the sum of the right-
hand and left-hand limits.

Convergence of the Fourier series to f(x) = x over the interval (0,

 

π ) is graphically
depicted in Figure 9.1B. The lower terms represent the individual sine terms, the
upper curves their sum. The degree of convergence is marked but will evidently
require a considerable number of terms to achieve acceptable agreement.

This completes our intermezzo on orthogonal functions and Fourier series. We
return to the topic of separation of variables and illustrate its use in the solution of
linear second order PDEs with a number of examples.

 

Illustration 9.1.3 The Quenched Steel Billet Revisited

 

This example considers the temperature transients which arise when a hot steel billet
is exposed, at time t = 0, to an external temperature T s . We assume a uniform initial
temperature T

 

0

 

 and neglect external heat transfer resistance. The system and its
boundary and initial conditions are depicted in Figure 9.2.

Prior to proceeding to a solution, we nondimensionalize and normalize the
temperature variable by setting:

(9.1.34)

The following set of equations and conditions is obtained:

Fourier’s equation (9.1.35)

x x x= −



 + −
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This eases the representation of the results and as a bonus yields homogeneous
boundary conditions.

At the two surfaces θ(0,t) = 0 (9.1.36a)

θ(2L,t) = 0 (9.1.36b)

Initially θ(x,0) = 1 (9.1.36c)

Although these three conditions are sufficient in principle, two additional con-
ditions are given which are helpful in evaluating integration constants. They must
at any rate also be satisfied by the solution.

Steady-state θ(x,∞) = 0 (9.1.36d)

Symmetry (9.1.36e)

We now introduce the assumption of separation of variables and substitute the
resulting expression into Fourier’s Equation 9.1.35 (Steps 1 and 2 of our preamble).
After some rearrangement there results:

FIGURE 9.2 Geometry, BCs, and IC for a quenched steel billet.

x
L t( , )

∂
∂

=θ
0
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(9.1.37)

The constant value on the right which can be positive, negative, or zero has
already been justified, but squaring it and assigning it a negative sign need to be
explained. Both moves are taken on anticipatory grounds: We expect the temperature

 

θ

 

 = T(t)X(x) to decay exponentially with time, hence the negative sign. To ensure
that this feature is not wiped out by negative values of 

 

λ

 

, the latter is squared. This
also eliminates square roots which we expect will arise in the solution of the ODEs
in X(x).

 

Step 3: Solution of ODEs

 

 — We apply separation of variables to the ODE in t,
and the standard D-operator method to the ODE in x. There results:

For 

 

λ

 

2

 

 

 

≠

 

 0 T

 

1

 

 = C

 

1

 

 exp(–

 

αλ

 

2

 

t) (9.1.38a)

X

 

1

 

 = C

 

2

 

 cos 

 

λ

 

x + C

 

3

 

 sin 

 

λ

 

x

For 

 

λ

 

2 

 

= 0 T

 

2

 

 = C

 

4

 

(9.1.38b)

X

 

2

 

 = C

 

5

 

 + C

 

6

 

 x

We now invoke the superposition principle by adding the two solutions and
obtain:

 

θ

 

 = T

 

1

 

X

 

1

 

 + T

 

2

 

X

 

2

 

 = C

 

7

 

 + C

 

8

 

 x + C

 

9

 

 cos 

 

λ

 

x + C

 

10

 

 sin 

 

λ

 

x)exp(–

 

αλ

 

2

 

t) (9.1.39)

 

Step 4: Evaluation of Constants — 

 

We note that there are five constants to be
evaluated, hence it becomes convenient to draw on the auxiliary boundary condition
(Equation 9.1.36d). The reader also is reminded of the necessity to leave the initial
condition unused for the time being. We obtain the following results:

BC (9.1.36d): 

 

θ

 

(x,

 

∞

 

) = 0 — This results in the exponential term vanishing. The
remaining terms must also vanish and we obtain C

 

7

 

 = C

 

8

 

 = 0.
BC (9.1.36a): 

 

θ

 

(0,t) = 0 — Here the sine terms vanish, hence to obtain 

 

θ

 

 = 0,
the cosine terms must also drop out. This requires C

 

9

 

 = 0.
BC (9.1.36b): 

 

θ

 

(2L,t) = 0 — This condition is used to determine the Eigenvalues

 

λ

 

. At this stage the solution is composed of:

 

θ

 

 = C

 

10

 

 sin 

 

λ

 

x exp(–

 

αλ

 

2

 

t) (9.1.40)

To satisfy to the BC, the sine terms must vanish, which is accomplished by
setting 

 

λ

 

 = n

 

π

 

/2L, n = 1, 2, 3, … . We obtain:
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Linear superposition of this result now gives us the following infinite series:

(9.1.41)

 

Step 5: Evaluation of Fourier Coefficients — 

 

The problem which faces us at this
stage has already been noted. To satisfy the initial condition (Equation 9.1.36c), we
must decompose C

 

10

 

 into an infinite set of coefficients C

 

n

 

 and hope for a valid Fourier
expansion in terms of orthogonal functions. We had previously shown orthogonality
of the sine sequence by making use of certain integrals of that function. We will not
repeat that near-miraculous solution but make use instead of the Sturm-Liouville
theorem which proves orthogonality and guarantees a Fourier expansion. Scrutiny
of our ODEs 9.1.37 shows that the Sturm-Liouville System associated with our
model is given by the ODE in x:

X

 

″

 

 + 

 

λ

 

2

 

X = 0 (9.1.42)

with associated boundary conditions:

X(0) = 0 (9.1.43a)

X(2L) = 0 (9.1.43b)

Comparison of these equations with the general Sturm-Liouville system (Equa-
tions 9.1.24 and 9.1.25) shows that the weighting function here is p(x) = 1, and that
the interval of orthogonality is given by the physical boundaries of the system,
(0,2L). Expansion of some function f(x) (here f(x) = 1) in terms of the eigenfunction
which result from Equation 9.1.42, i.e., sin(n

 

π

 

x/2L), is also guaranteed. We have a
valid representation of the initial condition:

1 = C

 

1

 

 sin(

 

π

 

x/2L) + C

 

2

 

 sin 2

 

π

 

x/2L + … + C

 

n

 

 sin(n

 

π

 

x/L) + … (9.1.44)

The Fourier coefficients are now evaluated by multiplying each term by
p(x)sin(n

 

π

 

x/2L)dx and integrating over the interval (0,2L), where p(x) = 1 here. We
obtain:

(9.1.45)

All terms on the right side except the n-th one drop out by virtue of orthogonality
and we obtain the following result for the n-th Fourier coefficient:
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(9.1.46)

The integral in the denominator is the square of the norm, and tabulated in the
Table 9.1: C2 = 2L/2 = L. The integral in the numerator yields:

(9.1.47)

Our solution then takes the final form of the following infinite series:

(9.1.48)

Comments:
One notes that for even values of n, [1 – (–1)n] = 0 so that only odd terms remain

in Equation 9.1.48. This has led to an alternative formulation, frequently found in
the literature, which takes form:

(9.1.49)

In this formulation, none of the terms vanish.
It is of some interest to verify whether the unused symmetry condition ∂θ/∂x|x=L

= 0 is indeed satisfied. This is done by a term-by-term differentiation of the Fourier
series and yields the result:

(9.1.50)

Thus all terms of the series vanish and the BC is consequently satisfied.
For small times t and low values of thermal diffusivity α, convergence of the

series Equation 9.1.48 is quite slow since representation close to the initial rectan-
gular temperature distribution (Figure 9.2B) requires a considerable number of terms.
In these cases use is made of an alternative solution, arrived at by Laplace transfor-
mation which takes the form of an infinite series of complementary error function.
This solution has fast convergence for low values of α and t. Its derivation is taken
up in Section 9.2, Illustration 9.2.3.

C
n x L dx

n x L dx
n

L

L=
∫
∫

sin( / )

sin ( / )

π

π

2

2

0

2

2

0

2

sin( / ) cos( / ) [ ( ) ]n x L dx
L

n
n x L

n

L

n
L

π
π

π
π

2
2

2
2

1 1
0

2

0

2

= − = − −∫

θ
π

π α π( , ) [ ( ) ]sin( / ) exp( / )x t
n

n x L n t Ln

n

= − − −
=

∞

∑2 1
1 1 2 42 2 2

1

θ
π

α π( , ) sin exp( / )x t
n

n
L

x n t L
n

=
−

−



 −

=

∞

∑4 1
2 1

2 1
2

42 2 2

1

∂
∂

= − − −
= =

∞

∑θ π α π
x L for

even terms

n
for

odd terms

n t L
x L

n

n

1 1 1
0

2
0 42 2 2

1

[ ( ) ] cos( / )
exp( / )

248/ch09/frame  Page 590  Friday, June 15, 2001  7:08 AM

© 1999 By CRC Press LLC



Illustration 9.1.4 Conduction in a Cylinder with
External Resistance: Arbitrary Initial Distribution

In Illustration 8.2.1 of the preceding chapter, the unsuspecting reader was confronted
with an infinite series of Bessel functions which was used to describe concentration
profiles in a tubular reactor undergoing a first order irreversible reaction at the wall.
It was shown there that provided radial velocity gradients were neglected, the under-
lying model was identical to that describing unsteady conduction in an infinitely long
cylinder with an external heat transfer resistance and constant initial temperature.

In the present illustration, we consider the same problem under the somewhat
broader condition of an arbitrary initial temperature distribution T(r,0) = f(r), oth-
erwise retaining the same features as before. The model is then comprised of the
following equations and boundary or initial conditions:

Fourier equation: (9.1.51)

At steady-state: (9.1.52a)

Symmetry: (9.1.52b)

or T|r=0 = finite

At the surface: (9.1.52c)

Initially: T(r,0) = f(r) (9.1.52d)

where Te = temperature of external medium.
The solution proceeds over the same steps as those of the previous illustration.
Step 1: Separate Variables — This is done by assuming the following form of

solution

T = F(r)G(t) (9.1.53)

Step 2: Substitution into the PDE — This step, followed by some rearrangement,
yields the separated expression:

(9.1.54)

Justification of the constant term –λ2 follows along the lines given in the previous
illustration.
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Step 3: Solution of ODEs — We apply separation of variables to the ODE in t,
p-substitution for the ODE in r when λ2 = 0, and for λ2 ≠ 0 the generalized solution
for second order ODEs with variable coefficients, Equation 4.3.66 of Chapter 4.
This yields:

For λ2 ≠ 0 F1 = C1J0(λr) + C2Y0(λr) (9.1.55a)

G1 = C3 exp(–αλ2t)

For λ2 = 0 F2 = C4 + C5 ln r (9.1.55b)

G2 = C6

Superposition of these two solutions leads to the expression:

T = F1G1 + F2G2 = [C7J0(λr) + C8Y0(λr)]exp(–αλ2t) + C9 + C10 ln r (9.1.56)

Step 4: Evaluation of Constants — It is best here to start with the symmetry
condition 9.1.52b and follow this up with the conditions (a) and (c). The initial
condition is as usual left to the last. We obtain the following results:

BC (9.1.52b) T|r=0 = finite (i.e., bounded) — Here we note that the Bessel function
Y0(λr) goes to minus infinity for zero values of the argument (see Figure 4.4) as
does the logarithmic term. For the solution to remain finite we must therefore set
C8 = C10 = 0.

BC (9.1.52a) T(r,∞) = Te — This condition causes the exponential term in
Equation 9.1.56 to vanish so that C9 = Te. At this point the solution has been reduced
to the form: 

T – Te = C7J0(λr)exp(–αλ2t) (9.1.57)

BC (9.1.52c)  = h(T|r=R – Te) — This relation is used to determine the

eigenvalues λ and requires evaluation of the derivative of the Bessel function J0(λr).
This can be done using the formulas given in Table 4.8 of Chapter 4 and yields:

(9.1.58)

Back-substitution into the boundary condition yields the transcendental equation:

λRJ1(λR) = K J0(λR) (9.1.59)

where  This is seen to be identical in form to the expression given in Item

8 of Table 9.1. We can consequently expect J0(λjr) to be an orthogonal set over the
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interval (0,R) with weight function p(r) = r and 

 

λ

 

j

 

 given by the roots of Equation
9.1.59 which we had previously tabulated in Table 8.8. We note that the solution
has now become, by virtue of superposition:

(9.1.60)

The same result also can be obtained by a Sturm-Liouville Analysis.

 

Step 5: Evaluation of Fourier Coefficients — 

 

We follow the procedure outlined
in the previous illustration, i.e., after introducing the initial condition, we multiply
each term of the infinite series by [rJ

 

0

 

(

 

λ

 

m

 

r)dr] and integrate from 0 to R. Dropping
all terms but the n-th, we arrive at the following formula for C

 

n

 

:

(9.1.61)

Using the expression for the norm given in Table 9.1, with k set = 0, we finally
obtain:

(9.1.62)

 

Comments:

 

Before being overwhelmed by the complexity of this expression, the reader is
reminded that such series often converge quite fast, as was seen in Illustration 8.2.1.
The integral will in general have to be evaluated numerically but this poses no great
problem since J

 

0

 

 is a well-behaved periodic function.
Equation 9.1.62 is of the same form as Equation 8.2.14 of Illustration 8.2.1, but

has slightly different boundary and initial conditions.

 

Illustration 9.1.5 Steady-State Conduction in a
Hollow Cylinder

 

So far in our illustrations we were able to apply the method of separation of variables
in a rather mechanical way once the principles of orthogonality had been established.
This is not always the case. Even modest changes in the underlying model may
require rather substantial changes in our approach, although the basic step-wise
procedure we had established previously still applies. We show this with the follow-
ing example.

Consider an infinitely long 

 

hollow

 

 cylinder with the interior and exterior surfaces
maintained at the 

 

angle-dependent

 

 temperature f

 

i

 

(

 

θ

 

) and f

 

0

 

(

 

θ

 

). We wish to establish
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the resultant steady-state temperature distribution T(r,

 

θ

 

) in the interior of the cylinder.
The underlying model is Laplace’s equation: 

(9.1.63)

which we translate with the help of our dictionary Table 8.1 into radial and angular
coordinates. There results: 

(9.1.64)

So far we have merely traded the angular derivative (1/r

 

2

 

)(

 

∂

 

2

 

θ

 

)/

 

∂ r

 

2

 

) for the time
derivative 

 

∂

 

T/

 

∂ t of the previous illustration. The first difficulty arises when we
attempt to formulate boundary conditions. We appear to require at least four BCs,
two for each second derivative, but seem to have only two available:

At the outer surface: T(R

 

0

 

,

 

θ ) = f 0

 

(

 

θ

 

) (9.1.65a)

At the inner surface: T(R

 

i

 

,

 

θ ) = f i

 

(

 

θ

 

) (9.1.65b)

With some imagination one might add a third condition expressing periodicity
of the temperature:

Periodicity: T(r,

 

θ

 

) = T(r,

 

θ

 

+2n

 

π ) (9.1.65c)

or T(r,

 

θ

 

 – 

 

π

 

) = T(r,

 

θ  + 

 

π )

but this exhausts the possible condition. One hopes that a single BC will be capable
of evaluating more than one constant, as was the case with the Fourier coefficients.
Let us proceed with the solution.

 

Steps 1 and 2

 

 — We assume the solution to be of the form:

T = R(r)S(

 

θ ) (9.1.66)

and obtain after substitution into the PDE:

(9.1.67)

Note that we have postulated positive real eigenvalues since we require the
solution of S( 

 

θ ) to be periodic, not exponential. This is the first departure from
convention.

 

Step 3 —

 

 We proceed with the solution of the ODEs for the two cases 

 

λ

 

2

 

 

 

≠

 

 0
and 

 

λ

 

2

 

 = 0 which is accomplished by standard D-operator and p-substitution methods.
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A second departure from the routine occurs in the solution of the ODE r2R″ +
rR′ – λ2R = 0 which is of the Euler-Cauchy type (see Table 4.3) and requires the
substitution r = ez to reduce to D-operator form. We obtain:

For λ2 = 0: S1 = C1′ + C2′ θ (9.1.68a)

R1 = C3′ + C4′ ln r

For λ2 ≠ 0: S2 = C5′ cos λθ + C6′ sin ′λθ (9.1.68b)

R2 = C7′ rλ + C8′ r–λ

Adding the solutions by superposition yields:

T = C1 + C2 ln r + C3θ + C4θ ln r

+ (C5rλ + C6r–λ)cos λθ + (C7rλ + C8r–λ)sin λθ (9.1.69)

Step 4 — To evaluate the integration constants, we start by utilizing the period-
icity condition Equation 8.1.64c, which in the first instance leads to the condition
C3 = C4 = 0 since θ ≠ θ ± π. We then use the same condition to argue that since the
solution, including the surface condition is periodic and has a finite number of
discontinuities and extrema, it can be represented in terms of the Fourier series,
Equation 9.1.27. In other words, we have equivalence of the following expressions:

(9.1.70)

(9.1.71)

where we use Ri,0 to denote either the inner or outer radius. The Fourier coefficients
an, bn are equivalent to four infinite sets of coefficients C5 to C8 and are evaluated from
Equations 9.1.28 and 9.1.29. The anomaly here is that each term in the Series has two
Fourier coefficients associated with it due to the appearance of the sets of two constants
(C5, C6) and (C7, C8) in Equation 9.1.71. This causes no difficulty, however, since we
have two boundary conditions available in Equations 9.1.65a/b. Application of the
Equation 9.1.28 then yields the following set of relations:
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For a0 /2:

(9.1.72a)

(9.1.72b)

For an:

(9.1.72c)

(9.1.72d)

For bn:

(9.1.72e)

(9.1.72f)

with λ = 1, 2, 3, … .
These linear algebraic relation in the constants can be solved to yield explicit

relations for C1 … C8.

Comments:
This is clearly a fairly complex problem of mainly academic interest. Its principal

purpose was to induce the reader to “stretch” known principles and theorems to
accommodate unusual circumstances. Mathematicians would want to provide more
formal proof of the validity of the solution but we prefer to content ourselves with
the somewhat intuitive procedure used here.

Evaluation of the solution does not present overwhelming difficulties. The inte-
grals in Equations 9.1.70 can be determined numerically, and the result substituted
into the final solution which now has the form:

(9.1.73)

This form can be further compressed into Equation 9.1.77 (see Practice Problem
9.1.5).
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Historical Note:
Early steps in the development of the method of separation of variables were

taken in the 18th century and are associated with the names of the English mathe-
matician, Brook Taylor of Taylor Series fame (1685–1731), Daniel Bernoulli
(1700–1782), and Leonhard Euler (1707–1783), in Switzerland, and Jean d’Alembert
(1717–1783) in France. Given the pre-eminence of music in the social life of the
times, these scientists were drawn to the study of the mathematical theory of musical
vibrations. By the 1750s, the wave equation was known and a solution of the
boundary value problem of a vibrating string had been found. The twin notions of
superposition and representation of arbitrary functions by trigonometric series made
their first appearance and somewhat later Euler gave the formulas for the constants,
which are now popularly known as Fourier Coefficients. It was left to Jean Baptiste
Joseph Fourier (1768–1830) to illustrate the basic procedure of separation of vari-
ables and superposition and help popularize trigonometric series representation. His
book, Théorie Analytique de la Chaleur, published in 1822, provides many examples
of expansions in trigonometric series which arise in the conduction of heat. Although
a relative latecomer to the field, his contributions were such that many of the tools
used in separation of variables are now associated with his name.

Practice Problems
9.1.1 A Fourier Series Expansion of a Square Wave — Develop f(x) in Fourier
series in the interval (–2,2) if f(x) = 0 for –2 < x < 0 and f(x) = 1 for 0 < x < 2.

Answer: 

9.1.2 Cosine Expansion of a Sine — Write the cosine series for f(x) = sin x in the
interval (0,π), and sketch the periodic extension of the result.

Answer: 

9.1.3 Drying a Porous Slab — A slab of porous material is to be dried from both
faces at a constant rate W(kg/sm2), (dielectric, microwave, or inducting heating),
i.e., under conditions of constant heat supply. The initial moisture content is C0

(kg/m3) and the movement of moisture is described by Fick’s law N = –Deff A(∂C/∂x).
If the slab is of thickness L, determine the moisture concentration profile C(x,t).

(Hint: Make the boundary conditions homogeneous by the methods outlined in
Illustration 7.3.3.)

Answer:
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Comments:
The solution yields C = –∞ for t → ∞. It thus is valid only for small finite values

of time. This stands to reason since the surface gradient cannot stay constant indef-
initely but must eventually diminish as the slab dries out. The homogeneous problem
also represents a slab with sealed or insulated faces and an initial parabolic concen-
tration or temperature distribution which spreads out through the solid with time.

9.1.4 The Vibrating String — Consider a string fixed at both ends and subjected
to an initial arbitrary displacement u = f(x). The model consists of the following set
of equations:

(9.1.74)

u(0,t) = 0 (9.1.75a)

u(L,t) = 0 (9.1.75b)

ut(x,0) = 0 (9.1.75c)

u(x,0) = f(x) (9.1.75d)

Use the method of separation of variables to show that the variations in amplitude
u(x,t) are given by the expression:

(9.1.76)

9.1.5 Conduction in a Hollow Cylinder Revisited — 
(a) Derive the solutions Equation 9.1.67 to the separated ODEs applicable to

angle-dependent steady-state conduction in a hollow cylinder.
(b) Show that for fo = 0 upon solving for the constants C1 to C8 in Equation

9.1.72, Equation 9.1.73 can be reduced to the form:

(9.1.77)

where the coefficients an, bn are given by the integrals of Equation 9.1.72.

9.1.6 Cooling of a Solid Sphere — Consider a solid insulated sphere of unit radius
and an initial temperature distribution T(r,0) = f(r). Show that this distribution spreads
out with time according to the expression:

(9.1.78)
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and identify the eigenvalues, the Fourier coefficients, and the constant k. Verify that
the steady-state condition is satisfied.

9.1.7 Double Fourier Series: Vibrations of a Membrane — Solve the following
boundary value problem describing the vibrations of a square membrane of length
π subjected to an initial displacement u(x,y,0) = f(x).

(9.1.79)

(9.1.80a)

u(x,y,0) = f(x,y) (9.1.80b)

Procedure: Start by showing that separation of variables leads to three Sturm-
Liouville systems with solutions:

X = sin mx m = 1, 2, 3, …

Y = sin ny n = 1, 2, 3, … (9.1.81)

Combine these results to arrive at the formal solution:

(9.1.82)

and show that a Fourier expansion of the initial condition f(x,y) yields the following
expression for the Fourier coefficients:

(9.1.83)

Note that this problem requires an imaginative use of the principles learned in
this section.

9.2 LAPLACE TRANSFORMATION AND OTHER 
INTEGRAL TRANSFORMS

9.2.1 GENERAL PROPERTIES

We had already pointed out in Chapter 5 that the Laplace transform is an important
but special case of a larger class of operations termed integral transformations. We
formalize this operation in the following expression:
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(9.2.1)

where T is the operational symbol for the transformation, F(x

 

j

 

) is the function to be
transformed, K(s,x

 

j

 

) is the so-called Kernel, f(s) is the transformed function, and s
a free parameter. Let us note a number of features of this operation, some of which
had already been mentioned in Chapter 5.

F(x

 

j

 

) is a general function of the independent variable x

 

j

 

 and can take the form
of an 

 

explicit

 

 function such as sin x

 

j

 

, exp(–x

 

j

 

), 1, or can consist of 

 

implicit

 

 function,
such as the dependent variable itself, y(x

 

j

 

) and its derivatives y

 

′

 

(x

 

j

 

), y

 

″

 

(x

 

j

 

), etc. F(x

 

j

 

)
also can depend on several independent variables, only one of which, x

 

j

 

, is “trans-
formed,” i.e., eliminated by integration. One can then write Equation 9.2.1 in the form:

(9.2.2)

Transformation of 

 

explicit

 

 functions of x

 

j

 

 result in 

 

explicit

 

 functions of s. Thus,
the Laplace transform of 1 is 1/s, and of exp(x

 

j

 

), 1/(s – 1). When implicit functions
are transformed, a different result is obtained. The dependent variable y(x

 

j

 

) becomes
y(s), often written as y(s), i.e., it remains an unknown. Ordinary derivatives become
algebraic expressions which incorporate boundary or initial conditions. Thus, the
Laplace transform of a first derivative becomes, as we had seen:

(9.2.3)

where y(0) is the initial condition. Transforms of 

 

partial

 

 derivatives in two indepen-
dent variables can yield two different results. Let us demonstrate this by applying
the Laplace transform to the derivatives 

 

∂

 

y/

 

∂

 

t and 

 

∂

 

y/

 

∂

 

x of the variable y(x,t). For
the former case we obtain:

(9.2.4)

i.e., the result is the same as for an ordinary derivative, except that the transformed
variable and the initial condition are still functions of x. For 

 

∂

 

y/

 

∂

 

x on the other hand,
we obtain:

(9.2.5)
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i.e., by reversing the order of differentiation and integration we have shown that the
partial derivative with respect to the 

 

untransformed

 

 variable x becomes an ordinary
derivative in x. These results apply to integral transforms in general and can be
summarized as follows:

(A) The transform of a derivative with respect to the independent variable
being eliminated yields an 

 

algebraic

 

 expression which contains boundary
and initial conditions.

(B) The transform of a derivative with respect to the other independent vari-
able which is 

 

not

 

 being eliminated, yields an ordinary derivative. When
there are more than two independent variables, the result (A) still holds,
but the ordinary derivative of (B) is replaced by a new partial derivative:

(9.2.6)

Integral transforms are in essence a tool to reduce the number of independent
variables. In the case of an ODE, the result is an algebraic equation, in the case of
a PDE in two independent variables, the result is an ODE. Finally, when there are
n independent variables, a new PDE in (n – 1) variables is obtained.

 

9.2.2 T

 

HE

 

 R

 

OLE

 

 

 

OF

 

 

 

THE

 

 K

 

ERNEL

 

The 

 

kernel

 

 can assume various functional forms, the more common ones being
exponential, trigonometric, and Bessel functions. Each of these kernels is capable
of transforming a particular derivative, or set of derivatives, to algebraic expressions
that incorporate specific boundary and initial conditions. The Laplace transform, for
example, transforms partial derivatives of any order to algebraic equations in the

 

initial values

 

 of the dependent variables and its derivatives. Thus, it is the preferred
tool for initial value problems. Trigonometric kernels preferentially transform 

 

second
derivatives

 

 to algebraic form, but incorporate boundary values of the dependent
variable and its derivative. They are consequently used in boundary value situations.
Kernels in various types of Bessel functions transform the 

 

group

 

 of derivatives
[

 

∂

 

2

 

y/

 

∂

 

r

 

2

 

 + (1/r)

 

∂

 

y/

 

∂

 

r] into algebraic forms containing boundary values. This group
is associated with radial diffusion or conduction problems and its transform, termed
a 

 

Hankel transform,

 

 finds its principal application in such processes.
We have summarized these and other properties of some common integral

transforms in Table 9.2. To help in deciphering the various expressions we note that
the defining equations for the sine and cosine transforms are identical in form to the
Fourier coefficients given by Equations 9.1.30. The defining equations for the Hankel
transforms likewise are identical in form to the Fourier coefficients which arise in
the corresponding cylinder problems. One may surmise, therefore, that classes of
integral transforms can be generated by examining Fourier coefficients and the
underlying Sturm-Liouville systems from which they arise. This can in fact be done,
as shown in the specialized literature (see References at the end of the chapter).
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TABLE 9.2

 

 

 

Integral Transforms

 

1. Laplace Transform

 

Defining equation

Inversion formula

Transform of derivative L{F

 

′

 

(t)} = sf – F(0)
L{F

 

″

 

(t)} = s

 

2

 

f – sF(0) – F

 

′

 

(0)
Application Initial value problems

 

2. Finite Fourier Sine Transform

 

Defining equation

Inversion formula

Transform of derivative

Application Type I BCs on slab surfaces

 

3. Finite Fourier Cosine Transform

 

Defining equation

Inversion formula

Transform of derivative

Application Type II BCs on slab surfaces

 

4. Finite Hankel Transform

 

Defining equation

where 

 

λ

 

j

 

 = roots of J

 

0

 

(

 

λ

 

) = 0
Inversion formula

Transform of derivative

Application Type I BC on cylinder surface

 

5. Modified Hankel Transform

 

Defining equation

where 

 

λ

 

j

 

 = roots of 

 

λ

 

J

 

1

 

(

 

λ

 

) – 

 

β

 

J

 

0

 

(

 

λ

 

) = 0

L F t F t e dt f sst{ ( )} ( ) ( )= =−
∞

∫0

L f s
i

f s e dsst

c

− = ∫1 1

2
{ ( )} ( )

π

S F x F x n x a dx f ns

a

{ ( )} ( )sin( / ) ( )= =∫ π
0

S f n
a

f n n x as

n

−

=

∞

= ∑1

1

2
{ ( )} ( )sin /π

S F x
n

a
f n

n

a
F F as

n{ ( )} ( ) [ ( ) ( ) ( )]″ = − + − −
2 2

2 0 1
π π

C F x f x n x a dx f nc

a

{ ( )} ( )cos( / ) ( )= =∫ π
0

C f n
a

f
a

f n n x ac c c c

n

−

=

∞

= + ∑1

1

1
0

2
{ ( )} ( ) ( )cos( / )π

C F x
n

a
f n F a Fc

n{ ( )} ( ) ( ) ( ) ( )″ = − + − ′ − ′
2 2

2 1 0
π

H F y F y yJ y dy fj H j{ ( )} ( ) ( ) ( )= =∫ 0
0

1

λ λ

H f
f J y

JH j
H j j

jj

−

=

∞

= ∑1 0

1
2

1

2{ ( )}
( ) ( )

( )
λ

λ λ
λ

H F
y

F f J Fj H j j j″ + ′








= − +1
12

1λ λ λ λ( ) ( ) ( )

H F y F y yJ y dy fM j MH j{ ( )} ( ) ( ) ( )= =∫ 0
0

1

λ λ

 

248/ch09/frame  Page 602  Tuesday, November 13, 2001  1:17 PM

© 1999 By CRC Press LLC



   

The inversion formula for both trigonometric and Hankel transforms are given
in explicit form in terms of an infinite series. These series look suspiciously like the
Fourier series we obtained by separation of variables and in fact are identical to
them in many cases (see Illustrations 9.1.3 and 9.1.4). In the case of the Laplace
transformation, no such simple inversion formula exists, and the general procedure
requires evaluation of the contour integral in the complex plane shown in Table 9.2.
This procedure is rarely followed, however, and use is made instead of the extensive
tabulations of Laplace transforms available in the literature. A condensed version
applicable to PDE problems is shown in Table 9.3, to be used in conjunction with
the previous listings of Table 5.1.

 

Inversion formula

Transform of derivatives

Application Type III BC on cylinder surface

 

TABLE 9.3
Laplace Transforms for PDEs
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The transforms of derivatives given in Table 9.2 dictate the type of transform
appropriate to a particular problem. Suppose, for example, that one wishes to solve
the unsteady conduction problem for an infinitely long cylinder with a prescribed
surface temperature. This is described by the Fourier equation:

(9.2.7)

where the radial variable has been normalized to y = r/R.
If we use separation of variables, a second order ODE with variable coefficients

results which leads to a rather lengthy solution procedure. The use of Hankel
transforms, on the other hand, leads to a simple first order ODE as can be shown
by using Item 4 of Table 9.2 and the rules for transform of derivatives previously
described. We obtain the following ODE in the transformed temperature f

 

H

 

 (= T):

(9.2.8)

where T(1) is the prescribed surface temperature, Equation 9.2.8, although somewhat
complex in appearance, can be immediately integrated by separation of variables to
give a simple-exponential expression for f

 

H

 

(t). That result is then directly substituted
into the inversion formula of Table 9.2 to arrive at the solution of the PDE, i.e.,
T(y,t), where y is, as mentioned, the normalized radial variable. The integral trans-
form thus is quite rapid and straightforward in its application. It has other advantages,
as well as disadvantages, which are taken up below.
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9.2.3.1 Advantages

 

The method is applicable to a large class of linear, nonhomogeneous first and second
order partial differential equations, in particular (using a Cartesian description):

(9.2.9)

which includes the Helmholtz, Poisson, Laplace, Fourier, and Fick’s equations as
subcases:

(9.2.10)

which includes the Wave Equation as a subcase:
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(9.2.11)

which includes the linear chromatographic equations as a subcase. Integral trans-
forms thus are in principle capable of handling nonhomogeneous terms of any
description, in contrast to the method of separation of variables which required
homogeneity in both the PDEs as well as the boundary conditions. The restriction
to linear systems in both cases arises from the need to apply superposition and can
be traced to their common foundation of Strum-Liouville systems.

Application of the method is quite mechanical in many instances, made so by
the use of Tables of transforms and explicit inversion formula. Most boundary and
initial conditions are automatically included in the transforms, thus reducing the
necessity to evaluate integration constants. 

9.2.3.2 Disadvantages 

The Laplace transform is generally restricted to initial value situations and is mainly
applied to the transformation of first order derivatives. The transformed PDE then
is often a second order ODE which has to be solved and the solution inverted. This
can lead to cumbersome procedures. The transforms based on trigonometric and
Bessel functions, on the other hand, are limited to very specific geometries and
boundary conditions. Note that Item 2 in Table 9.2, for example, is restricted to a
slab configuration with Type I BCs. To handle Type III BCs for the same geometry,
a completely new transform has to be developed with the help of the Sturm-Liouville
Theorem.

Nonhomogeneous terms in the PDE cannot be processed unless the relevant
integrals have analytical forms. The Hankel transform of a sine forcing function, for
example, would require evaluation of the integral:

(9.2.12)

which may not easily yield an analytical form. Because of this difficulty, tabulated
expressions of the more unusual transforms, and their uses, are rather limited. The
Laplace transform has remained the most frequently used integral transformation,
exactly because of the extensive tabulations available (about 2000). The reader,
nevertheless is, encouraged to explore the use of other transforms when confronted
with boundary value situations involving nonhomogeneous linear PDEs.
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Our main attention in Section 9.2 will be on applications of the Laplace transform,
although the use of other transforms also will be illustrated. To aid in this task we
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present a short compilation of Laplace transforms which find frequent use in the
solution of PDEs (Table 9.3). Some brief comments will be of help.

• Item 1 may be viewed as an extension of the Heaviside expansion given
in Chapter 5, Table 5.1. p(s) and q(s) are now 

 

arbitrary functions

 

 in lieu
of the more restricted polynomials used in the original definition, with
q(s) having an infinite number of real or imaginary roots. Typically q(s)
is composed of trigonometric, hyperbolic, or Bessel functions. An appli-
cation of this inversion formula will be given in Illustration 9.2.1.

• Items 2 to 5 make their appearance in solutions of Fick’s and Fourier’s
equations, among others, as does Item 1.

• Item 7 is typically encountered in the solution of the first order PDEs
9.2.11 where they lead to convolution integrals.

• Much more extensive tabulations, of course, are available for which the
reader is referred to in the References.

 

Illustration 9.2.1 Inversion of a Ratio of Hyperbolic Functions

 

We illustrate here the inversion of the ratio  by the extended
Heaviside expansion, Item 1b of Table 9.3. This requirement arises in the solution
of certain diffusion and conduction problems.

We start by noting that a direct application of the inversion formula is not possible
since the roots of the denominator are all imaginary. We craftily circumvent this
difficulty by converting the hyperbolic function to a trigonometric one making use
of the relations we had given in Table 4.6. We obtain:

(9.2.13)

which has an infinite number of roots at:

or

s = –n

 

2

 

π

 

2

 

(9.2.14)

n = 1, 2, 3, …

Having obtained these equivalent real roots, we are in a position to apply the
inversion formula. We write:

(9.2.15a)
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(9.2.15b)

(9.2.15c)

and hence,

(9.2.15d)

One notes the similarity to the Fourier series solution (Equation 9.1.48) which
confirms that such inversions arise in conduction and diffusion problems. 

Illustration 9.2.2 Conduction in a Semi-Infinite Medium 

To give a simple illustration of the use of the Laplace transform and its short Table
9.3, we consider a semi-infinite medium initially at T

 

0

 

 with its surface at x = 0
subjected to a lower temperature T

 

s

 

. The model consists of the following equation:

(9.2.16)

with boundary and initial temperatures given by:

At the surface T(0,t) = T

 

s

 

(9.2.17a)

At infinity T(

 

∞

 

,t) = bounded (9.2.17b)

Initially T(x,0) = T

 

0

 

(9.2.17c)

We normalize the temperature using a new variable:

(9.2.18)

and obtain the revised model:
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Θ

 

(0,t) = 0 (9.2.20a)

 

Θ

 

(

 

∞

 

,t) = bounded (9.2.20b)

 

Θ

 

(x,0) = 1 (9.2.20c)

We now Laplace transform with respect to time t, noting that the left side of
Equation 9.2.18 becomes an ordinary derivative in the transformed variable 

 

θ

 

(x,s),
while the right side reduces to an algebraic expression. We obtain:

 

αθ″

 

(x,s) = s

 

θ

 

(x,s) – 1

or equivalently,

 

θ″

 

 – (s/

 

α

 

)

 

θ

 

 = –1/

 

α

 

(9.2.21)

This is a second order linear, nonhomogeneous ODE with constant coefficients
and can be solved by the standard D-operator method and the use of a particular
integral for the nonhomogeneous term. There results:

(9.2.22)

Since 

 

θ

 

(x,s) has to remain finite for x 

 

→

 

 

 

∞

 

, we obtain B = 0, and from the
transformed surface condition Equation 9.2.19a, A = –1/s. Hence, 

(9.2.23)

The first term is inverted by Item 3 of our old Table 5.1, the second term by
Item 3 of the new Table 9.3. We obtain:

(9.2.24)

We have here a particularly simple use of the transform tables as well as a
simple, terse solution that is a characteristic of conduction or diffusion problems in
a semi-infinite medium. The proceedings are somewhat more complex for finite
geometries, as shown in the next illustration.
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9.2.3 Conduction in a Slab: Solution for
Small Time Constants

 

It had previously been pointed out that the classical Fourier series solution of the
type represented by Equation 9.1.48 shows slow convergence for low values of the
time constant appearing in the exponential term. The Laplace transform provides a
means of expressing the solution in terms of an equivalent series of error functions,
which shows 

 

fast

 

 convergence under these same conditions but is conversely less
suitable for 

 

large

 

 values of the time. This equivalent series is obtained by means of
an ingenious expansion of the transformed variable, undertaken midway through the
solution procedure and prior to the inversion. We illustrate this with the following
example.

Consider a slab –a < x < +a initially at T = 0, subjected to a surface temperature
T

 

s

 

 at time zero. The model for the transients is given by:

(9.2.25)

T(a,t) = T

 

s

 

(9.2.26a)

(9.2.26b)

T(x,0) = 0 (9.2.26c)

and in its Laplace transformed form by:

(9.2.27)

T(a,s) = T

 

s

 

/s (9.2.28a)

(9.2.28b)

where q

 

2

 

 = s/

 

α

 

, 

 

α

 

 = thermal diffusivity.
Note that the transform of T

 

s

 

 is T

 

s

 

/s, not T

 

s

 

 as is often erroneously assumed.
Note also that the symmetry condition Equation 9.2.26b is used in place of the
second surface condition T(–a,t) = T

 

s

 

 for greater convenience. This is not a require-
ment but avoids functions with negative arguments.

Solution of Equation 9.2.27 by the D-operator method and evaluation of the
integration constants yields the transformed temperature:
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(9.2.29)

We could at this stage proceed to invert, using the technique of expressing cosh
in terms of equivalent cosines, outlined in the previous illustration. This would yield
a Fourier series similar to Equation 9.2.15d which converged well for large values
of the exponential arguments. To obtain a form suitable for small values, we first
rewrite Equation 9.2.29 in exponential form:

(9.2.30)

and expand the bracketed term by means of the binomial theorem. We obtain:

(9.2.31)

or alternatively, 

(9.2.32)

Since q = (s/

 

α

 

) 1/2 , each term in the two series has the form 
and therefore can be inverted by Item 3 of our Table 9.3. We obtain upon inversion:

(9.2.33)

Had we proceeded directly with the inversion of Equation 9.2.28, the result
would have been:

(9.2.34)

Proof of this is left to the Exercises.
The reader may at this stage conclude that we have merely replaced an already

complex expression by an even more complex one, Equation 9.2.32. A numerical
example may help dispel this notion.
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We choose a low value for the time constant 

 

α

 

t/a

 

2

 

 = 10

 

–2

 

, and evaluate T/T

 

s

 

 from
both Equations 9.2.32 and 9.2.33 for the midpoint of the slab, x = 0. We obtain in
the first case: 

(9.2.35)

Since these small values of erfc are not tabulated, we use the expansion for large
values of the argument given in Table 7.7: 

(9.2.36)

This yields:

(9.2.37)

i.e., the temperature at the midpoint is for all practical purposes still at the initial
temperature of zero. Convergence of the series is very rapid and practically complete
after the first term.

Let us next look at the predictions of Equation 9.2.34. Here the result obtained is

or

(9.2.38)

One sees that convergence is painfully slow. In addition, the terms would have
to be evaluated to at least 

 

14  decimal places to match the result given by the error
function series. This demonstrates the power and convenience of the latter and the
total inadequacy of the exponential series for small values of the time constant. 

Illustration 9.2.4 Conduction in a Cylinder Revisited:
Use of Hankel Transforms

 

We had previously in Illustration 8.2.1 used the solution for unsteady radial con-
duction in a cylinder with surface resistance and zero external temperature to mimic
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radial diffusion in a tubular reactor with a first order reaction at the wall. The solution
given there was taken from the literature and given without proof. We undertake
that solution now, using the modified Hankel transform listed in Table 9.3, and
examine its advantages compared to other methods.

Using a normalized radial variable y = r/R, the model is given by the following
equations:

PDE (9.2.39)

At the centerline T(0,t) = bounded (9.3.40a)

or

At the surface (9.2.40b)

where 

 

β

 

 = hR/k.

Initially T(y,0) = T

 

0

 

(9.2.40c)

Application of the modified Hankel transform implies that each term in the
model is transformed into the integral:

(9.2.41)
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tabulated in Table 8.8. In particular, the left side of the PDE becomes an algebraic
expression:

(9.2.42)

where the bracketed term vanishes because of the boundary condition Equation
9.2.40b. The right side of the PDE 9.2.39 is transformed into the total derivative
dT/dt, where we denote the transformed temperature by T. The entire PDE thus is
reduced to the simple first order ODE in T.
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(9.2.43)

with the solution:

(9.2.44)

Here T

 

0

 

 is the transformed initial condition:

(9.2.45)

in which we have used the tabulations of Bessel function integrals given in Table
4.8 of Chapter 4 to evaluate the integral. The transformed temperature T therefore
is given by:

(9.2.46)

We are now ready to invert and introduce T = f

 

MH

 

 into the inversion formula
given in Table 9.2. The result is

(9.2.47)

This expression is identical in form to Equation 8.2.18 used in the derivation of
concentration profiles in the tubular reactor of Illustration 8.2.1.

 

Comments:

 

The method evidently requires some getting used to given the wealth of new
symbols. Once these are accepted and understood, however, the transform reveals
itself as a compact tool for solving problems in cylindrical coordinates with a Type
III boundary condition. Application becomes quite mechanical, but one still has to
keep a watchful eye on potential pitfalls. There is a temptation for example, to set
the transform of the initial condition equal to the condition itself: T

 

o

 

 = T

 

0

 

 instead of
evaluating the full integral (9.2.45). With some care, such errors can be avoided.

The Hankel transform was shown capable of reducing a second order PDE with
variable coefficients into a simple, separable first order ODE 9.2.43. The Laplace
transform, by contrast, would only succeed in reducing the PDE to a second order
ODE with variable coefficients which has to be solved and, more importantly,
inverted. This is a cumbersome process. The method of separation of variables is
similarly unwieldy, as shown in Illustration 9.1.4. Both methods lead to valid results,
however, and are attractive because of their greater range of applications.
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The reader who is overwhelmed by the appearance of the final result, Equation
6.2.47, is reminded that such series often converge after one term and that convenient
tabulations of both Bessel functions and the eigenvalues λj are available.

Illustration 9.2.5 Analysis in the Laplace Domain:
The Method of Moments

We had seen in Chapter 5 on Laplace transformation that a good deal of information
about system behavior can be obtained from the transformed differential equations
without going through the process of inversion. We termed this procedure Laplace
domain analysis and were able to use it in particular to predict system stability.

We introduce the reader here to a similar analysis applied to PDEs that is
designed specifically for use in parameter estimation from experimental data. The
example we use to illustrate the procedure is that of linear chromatography, previ-
ously described by the fluid and solid mass balances, Equations 7.2.4 and 7.2.5. For
our present purposes, we combine the two equations into a single two-phase mass
balance and retain the solid-phase balance as a second relation. Thus,

Two-phase mass balance:

(9.2.48)

Solid phase mass balance:

(9.2.49)

Equilibrium relation:

q* = HY (9.2.50)

We note that the fluid phase driving force (Y – Y*) of Equation 7.2.5 has been
replaced by a solid driving force (q* – q) which is better suited for the extraction
of parameters of interest.

Let us look at both the experimental and mathematical sides of the procedure.
The experiment consists of introducing a solute pulse Y(0,t) into a chromatographic
column (Figure 9.3A and B). The column is initially clean, i.e., q(z,0) = Y(z,0) =
0. The solute at first becomes adsorbed near the inlet of the column and subsequently
is eluted by continued purge with carrier gas, making its appearance at the outlet as
an attenuated pulse Y(L,t), Figure 9.3C. Attenuation is due to the interphase mass
transfer resistance residing in the transfer coefficient K0S.

On the mathematical side, we introduce the equilibrium Relation 9.2.48 into the
solid-phase mass balance, and then Laplace transform Equations 9.2.46 and 9.2.47
with respect to time t. We obtain:
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(9.2.51)

(9.2.52)

where Y, q denote the transformed fluid and solid phase concentration. Note that no
initial conditions appear in these expressions since the column is clean at time t = 0.

Eliminating q algebraically, we obtain the first order ODE in Y:

(9.2.53)

which is integrated by separation of variables to yield:

(9.2.54)

Here  and Y(0,s) is the transformed input pulse at

z = 0, i.e., the boundary condition for the ODE 9.2.53. When that pulse is instan-

FIGURE 9.3 Parameter estimation from chromatographic data by the method of moments.
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taneous, that is a Dirac function σ(o), its Laplace transform is 1 (see Item 6 in Table
8.6), i.e., we can set Y(0,s) = 1.

The question now arises how we can relate the measured output Y(L,t) to the
parameters contained in our transformed PDE, Equation 9.2.54. An ingenious
method has been developed to achieve this. We reach back to our Table 5.1 of Laplace
transforms and extract Item 9 which relates the derivative of the transformed variable
to the time integral of the variable itself. We have:

(9.2.55)

and in particular: 

(9.2.56)

where the integral on the right is referred to as the n-th moment of Y(t).
The reader will note that this expression establishes the desired link between

experiment and model. The left side can be established by differentiating the trans-
formed PDE Equation 9.2.54 with respect to s and contains the physical parameters
of the system such as the partition coefficient or Henry’s constant H, and the mass
transfer coefficient K0S a. The right side represents various time integrals of the
measured outlet concentration Y(L,t). For n = 0, for example, the integral represents
the area under the curve of Figure 9.3C. For higher order moments, the output
concentration is multiplied by tn and then integrated. The existence of n such
moments gives us the ability in principle, to extract n physical parameters. The
precision of the moments, however, quickly diminishes with increasing n, and in
practice one therefore is confined to two or three such parameter determinations.

Suppose we wish to extract the Henry constant H from experimental output data.
We proceed as follows. We normalize the moments by dividing them by the zero-
th moment. This leads to simpler expressions and a cancellation of errors. We obtain,
for the first normalized moment M1

(9.2.57)

Similar expressions containing additional parameters can be obtained from the
higher moments. Note again that the left side of Equation 9.2.55 represents the
experiment, the right side represents the model. The first term of the latter is usually
small compared to the product Hρb and can be neglected.

In practice it will be desirable to perform a series of experiments to obtain
the best parameter value by a least square fit. This can be done by running the
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column at different carrier flow rates Gs, or by using columns of different length.
In the former case, a plot of the first moment M1 against 1/Gs should yield a
straight line with a slope S ≅ LHρb from which the Henry constant H can be
extracted (Figure 9.3D).

Comments:
We have here an example of the intertwining of imaginative modeling and

experimentation. The accurate determination of Henry’s constant by conventional
equilibration involves a considerable expenditure in time and equipment. The pro-
cedure described here uses standard equipment available in most laboratories and
can be carried out rapidly with relatively little effort. Electronic integrators are
available for the evaluation of moments from the experimental output.

Extraction of the parameters from the data and model in principle can also be
achieved by equating the theoretical transform Y to the Laplace transform integral
of the experimental output, i.e., we write: 

(9.2.58)

and evaluate the integral for various values of the Laplace parameters, using the
results to evaluate the parameters contained in P(s). This is evidently much more
cumbersome than the method of moments which ultimately leads to a simple linear
plot from which the parameters are extracted with ease.

Historical Note:
Early work on matters related to the Laplace transform was undertaken by the

French mathematician Pierre Simon de Laplace (1749–1827) who investigated the

properties of integrals of the form  Its application to the solution of

differential equations had to await the work of the English electrical engineer Oliver
Heaviside (1850–1925). He invented for that purpose what is now known as the
Heaviside Operational Calculus and used it to solve a host of practical problems
related particularly to electrical systems. His work was not immediately accepted,
partly because of the difficult nature of his operational calculus, and also because
of his lack of rigor for which he was much derided by the mathematical community.
It was left to other workers to replace his calculus by the simple procedures which
are now everyday tools used in the solution of differential equations. It was felt
appropriate to name the method after Laplace for his early investigations of the
relevant integral. Heaviside himself died a bitter recluse.

Practice Problems
9.2.1 Inversions from Other Inversions — Once certain inversion formulas are
established, they can often be used to invert similarly structured functions by means
of the convolution integral, Item 7 of Table 5.1. Consider the two related transforms,
Items 2 and 3 of Table 9.3:

Y Y s  P G  Y L t e dtz s  
st= − = −

∞

∫( , ) exp( / ) ( , )0
0

F t e  dtst( ) .−
∞

∫0
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Derive the inverse of the latter by applying the convolution integral and using

the known inverse of 

(Hint: Make the substitution 

9.2.2 Inversion to Fourier Series — Invert the Expression 9.2.29, using the
extended Heaviside expansion, Item 1 of Table 9.3 and converting the hyperbolic
functions to trigonometric functions as shown in Illustration 9.2.1. Show that this
leads to the solution (Equation 9.2.34) which is the alternative to the error function
series (Equation 9.2.33).

9.2.3 Use of the Finite Cosine Transform — Consider a slab with an initial
temperature distribution T(x,0) = f(x) and both faces at x = 0 and x = a insulated.
This is a problem particularly well-suited for the finite Fourier cosine transform
(Item 3, Table 9.2) which has the property of transforming second derivatives to
boundary conditions of Type II. Show that its application yields the solution:

The expression confirms that at steady-state (t → ∞), the temperature in the slab
becomes uniform and equal to the mean integral of the initial distribution f(x).

9.2.4 Fourier Transforms in Infinite Media — Integral transforms also exist for
semi-infinite domains. The definitions and inversions are similar in form to those
for finite domains, with the exception that the summations in the inversion formulas
are replaced by integrals with a continuous integrating variable r taking the place
of the integers n. The Fourier sine transform, for example, is described by the
following relations:

Definition: (9.2.59)

Inversion: (9.2.60)

Transform or derivative: (9.2.61)

Devise a problem suitable for the application of this transform and by making
use of Fourier sine transform tables in the literature, arrive at a solution of the
problem. Compare the result with existing solutions.
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9.2.5 Diffusion and Reaction — Consider the system of equations:

(9.2.62)

u(0,t) = u0 (9.2.63a)

u(∞,t) = 0 (9.2.63b)

u(x,0) = 0 (9.2.63c)

The model describes unsteady diffusion and reaction in a semi-infinite medium
as well as conduction in a thin rod with convective heat exchange with the surround-
ings (see in this connection Illustration 8.2.2). Using Laplace transformation, show
that the solution is given by:

(9.2.64)

Use of special formulas reduces this expression to error function form.

9.2.6 Collision Frequency in the Coagulation of Aerosols — The theory of coag-
ulation by Brownian motion postulates that any collision between two particles of
radius R constitutes a coagulation event, and that the movement of the particles itself
is described by Fick’s equation.

(a) Show that the model for this process in a field with an initially uniform
concentration C0 is given by:

(9.2.65)

C(R,t) = 0 (9.2.66a)

C(∞,t) = C0 (9.2.66b)

C(r,0) = C0 (9.2.66c)

(b) Solve the system by Laplace Transformation to obtain the concentration
distribution.
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(c) Show that the flux at r = R, i.e., the collision frequency, is given by:

(9.2.67)

9.2.7 Determination of Liquid Diffusivities — Liquid diffusivities can be deter-
mined by passing a solvent over the open end of a capillary sealed at the bottom
and containing a solution of the solute whose diffusivity is to be measured (see
Illustration 7.1.2 and the accompanying Figure 7.1B). The average solute concen-
tration in the capillary is determined at various time intervals and the results used
to extract values of D from the solution of an appropriate model. Show that the
model leads to the following expression for the percentage of solute Et remaining
in the capillary:

9.2.8 Integration of the Chromatographic Equation — A particularly simple form
of the linear chromatographic equations is given by their nondimensionalized ver-
sion, Equation 7.3.72. Consider the situation where the column is initially clean and
is subjected at time t = 0 to a step change in concentration Y(0,t) = Y0.

(a) Apply the Laplace transformation to both equations, and eliminate the
transformed concentration Y*.

(b) Repeat, solving for Y*.
(c) Use the relation ∂Y/∂N = –∂Y*/∂t.

The result is given by:

(9.2.68)

The right side is known as the J-Function J(N,T) and is tabulated in the literature
(see References at the end of the chapter). This solution was used to compile the
Table 6.5 in Chapter 6.

9.3 THE METHOD OF CHARACTERISTICS

9.3.1 GENERAL PROPERTIES

Like the two preceding methods of separation of variables and integral transforms,
the method of characteristics achieves its goal of simplification by reducing the PDE
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or system of PDEs to an equivalent set of ODEs. This is the only common feature
of the three methods. In all other respects they differ both in concept as well as
details of applications. In the following, we summarize the principal features and
properties of the method.

The principal area of application of the method of characteristics is the solution of:

• Single first order PDEs of arbitrary form
• Systems of hyperbolic PDEs of otherwise arbitrary form
• Single second order hyperbolic PDEs, e.g., the Wave equation

The term arbitrary form encompasses both linear, quasilinear, and fully nonlinear
PDEs. We note, however, that full theories have been developed only for systems
of quasilinear PDEs and, to a lesser extent, single nonlinear PDEs. Sets of fully
nonlinear PDEs still elude complete treatment, as they do at the ODE level.

A particularly rich area of application is that of certain homogeneous quasilinear
first order PDEs in which one or more partial differential equations are combined
with one or more auxiliary algebraic equations, i.e., those of the form:

(9.3.1)

v = f(u) (9.3.2)

The PDE is in this instance termed reducible since it lacks algebraic terms in
the dependent variables. It is homogeneous because it lacks isolated terms f(x,y)
and quasilinear by virtue of the linear appearance of its highest derivative.

We know from previous examples that the combination (Equation 9.3.1) arises
in a natural way in all unsteady, convective transport processes, i.e., those lacking
second order diffusive terms. We noted its appearance in equilibrium chromatogra-
phy (see Equation 7.1.19):

(9.3.3)

q = f(Y) (9.3.4)

in traffic problems:

(9.3.5)

q′ = vC = g(C) (9.3.6)

and in sedimentation:
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(9.3.7)

v = h(C) (9.3.8)

Note that when a mass transfer resistance is included in Equation 9.3.3, the
equation is no longer reducible and its analysis becomes correspondingly more
complex. The treatment given in this chapter will principally deal with 

 

single

 

 qua-
silinear first order PDEs of the reducible form.

The reduction of the PDEs to ODE form is achieved by adopting a Lagrangian
approach, i.e., instead of using a fixed Eulerian reference framework, we move with
the physical entity such as concentration, temperature, or a vehicle and establish its
trajectory or path of propagation. In other words we replace the previous variables,
e.g., x, y, z, t by a  single  independent variable s, taken along the path of propagation.
This concept, and the consequences which flow from it, require some getting used
to, but provides us with rich benefits.

To provide the reader with a tangible example of the application of the method,
we consider the unidirectional movement of vehicular traffic, depicted in the dia-
grams of Figure 9.4. Both normal traffic as well as conditions leading to rear-end
collision are examined. The Eulerian representation is shown in the Figure (IA, IIA)
as the “velocity profiles” of the cars, i.e., the velocity as a function of distance. The
Lagrangian representation on the other hand, Figure 9.4 (IB, IIB), utilizes the z-t
plane to trace the trajectory of each car, i.e., its position z at a particular time t. The
top figures describe the movement of three cars all traveling at constant but different
velocities, the car with the highest velocity being the farthest advanced. The bottom
diagrams depict the reverse situation in which the slower car 

 

↑  is ahead of the faster
moving vehicle 

 

←

 

. If no evasive action is taken by either car, i.e., if we limit ourselves
to a single coordinate direction z, the slower car will undergo a rear-end collision
with the approaching faster car and the velocity will drop essentially to zero. There
consequently will be a discontinuity in the velocity, a condition which we shall refer
to as a 

 

shock

 

. The Eulerian representation depicts this situation, as well as that for
normal traffic in terms we are accustomed to, i.e., profiles of a state variable, here
the vehicle velocity v. The Lagrangian representation on the other hand utilizes the
velocity as a 

 

parameter  which equals the inverse of the slope of each trajectory,
termed a 

 

characteristic

 

. Slow cars have steep characteristics, fast cars have shallower
trajectories. If the vehicle velocity is constant, these trajectories will be straight lines
of slope v

 

–1

 

.
Let us now examine the mathematical formulation of these characteristics and

present a summary of the various types encountered in practice.

 

9.3.2 T

 

HE

 

 C

 

HARACTERISTICS

 

If we consider two independent variables only, for example, distance z and time t,
and limit ourselves to a single state variable u, a first order quaslinear PDE takes
on the general form:
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(9.3.9)

Since quasilinearity is assumed here, this requires that A, B, and C be free of
derivatives of u, but does permit the presence of nonlinear terms in u in these
coefficients.

The transformation of this PDE into an equivalent set of ODEs is often based
on the notion of a directional derivative, encountered in basic calculus. To arrive at
an expression for this derivative, we start with the total differential of u:

(9.3.10)

and, after dividing by ds, obtain:

(9.3.11)

FIGURE 9.4 Vehicle movement represented in the v-x and the t-x (characterstic) planes.
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where ds may be viewed as the differential arc along a characteristic. Comparing
Equations 9.3.9 and 9.3.11 we see that the two expressions will be equivalent
provided the following ODEs are satisfied: 

(9.3.12a)

(9.3.12b)

(9.3.12c)

Many textbooks use more sophisticated arguments to arrive at these expressions,
but the net result in each case is that the original PDE 9.3.9 has been transformed
into an equivalent system of three ODEs in what are now the dependent variables
x, t, and u. Since the arc length s is ultimately redundant to the solution, we may,
as an alternative, eliminate ds by division, reducing the system to two simultaneous
ODEs in the independent variables x and u:

Velocity of propagation (9.3.13a)

State variable (9.3.13b)

The subscript c is used as a reminder that the derivatives are taken along a
characteristic. Either set Equation 9.3.12 or Equation 9.3.13 may be integrated by
standard ODE solution methods. The numerical procedure used in these cases is
referred to as the method of lines.

When C = 0, the PDE 9.3.9 becomes reducible. If, in addition, the coefficients
A and B are functions of the state variable u only, we obtain as a special case:

Velocity of propagation (9.3.14)

This case arises in many applications of equilibrium chromatography, traffic
theory, sedimentation, and other processes and can be analyzed in a particular fruitful
manner. This will be shown in several of the illustrations which follow.

We end this section by summarizing certain important categories of character-
istics which arise in practice. They are displayed in Figure 9.5.

Figure 9.5A consists of parallel characteristics of equal slope, i.e., of equal
velocities of propagation. This is representative of all vehicles in a traffic problem
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moving at the same speed, or a fixed constant concentration being fed to a chro-
matographic column and is termed a constant state.

In Figure 9.5B, the velocity along a characteristic is constant but varies among
different entities. This state is referred to as a simple wave. An important subcategory
is the so-called centered simple wave, shown in Figure 9.5C. It may be thought of,
for example, as representing a range of concentrations or temperatures emanating
from a particular point in time and space.

Figure 9.5D, finally, represents the most general case of velocities of propagation
which vary among physical entities or with time. This state is referred to as a complex
wave and leads to curved characteristics.

Let us start our illustrations with a simple example which admits a closed form
solution of the state variable.

Illustration 9.3.1 The Heat Exchanger with a
Time-Varying Fluid Velocity

The case considered here is that of a single-pass, steam-heated shell and tube heat
exchanger. The fluid being heated, assumed to be on the tube side, has a time varying
inlet velocity v(t) that also will affect the heat transfer coefficient u(t) as the latter
generally depends on Reynolds number.

The relevant model is given by the following first order linear PDE:

FIGURE 9.5 Types of characteristics.
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(9.3.15a)

or alternatively:

(9.3.15b)

where K(t) = 4U(t)/d

 

ρ

 

Cp.
By casting the PDE in the form of Equation 9.3.9 and applying the Relations

9.3.12, we obtain the following characteristic equations:

(9.3.16a)

(9.3.16b)

(9.3.16c)

These ODEs can be solved numerically to obtain a relation between T, x, and t
at a particular point s along the characteristic. Alternatively, we can arrive at ana-
lytical forms by eliminating ds by division and integrating the result. We obtain in
the first instance:

Velocity of propagation (9.3.17a)

State variable (9.3.17b)

The first equation can be formally integrated by separation of variables. The
solution to the second ODE is given by Item 6 of our listing of ODE solutions, Table
4.4. The result is given by the two expressions:

(9.3.18)
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(9.3.19)

where 

Note that the resultant characteristics form a complex wave, shown in Figure
9.5D, since the slope dt/dx = 1/v(t), i.e., varies with time. A distinction is now made
between the characteristics emanating from the x-axis and those originating on the
t-axis. The former describe the propagation of the temperature distribution T(x,0) =
f(x) initially present in the heat exchanger while the latter represent the pathways
of the incoming feed temperature. For the characteristics emanating from the
abscissa, Equations 9.3.18 and 9.3.19 become:

(9.3.20)

(9.3.21)

It is left to the exercises to derive the corresponding expressions for the char-
acteristics emanating from the 

 

ordinate

 

.

 

Comments:

 

Equation 9.3.21, although somewhat cumbersome, represents a closed form
expression for the unsteady temperature distribution of the fluid initially present in
the exchanger. These solutions therefore are valid only during the initial period of
displacement, t

 

d

 

 = L/v, where L = heat exchanger length, and v = mean integral inlet
velocity over the period t

 

d

 

.
The reader should note that the deviations from the usual steady-state profiles

products by this model are to be viewed as 

 

maximum values

 

. In actual practice, the
temperature peaks and valleys produced by the velocity fluctuations will be attenuated
due to the heat capacity of the tubular wall. To take account of this effect, however,
would require a second energy balance, thus complicating the model considerably.

 

Illustration 9.3.2 Saturation of a Chromatographic Column

 

The present illustration and that which follows deals with the two simplest and most
common chromatographic or sorption operations. We consider, in the first instance,
the saturation of a clean bed with a feed of constant solute concentration, and follow
this up with the purge of a uniformly loaded column with pure carrier fluid or solvent.
The latter process is alternatively termed 

 

elution

 

 or 

 

desorption

 

.
The saturation step which appears to be the simpler of the two does, in fact,

require special treatment when one applies the method of characteristics. We had
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already introduced the reader to the intuitive notion that in the absence of an
interphase transport resistance, instantaneous equilibrium is established between the
fluid and solid phases and the solute penetrates the bed in the form of a rectangular
discontinuity. We now re-examine this phenomenon in more thorough fashion within
the framework of the method of characteristics. The operative model is represented
by Equations 9.3.3 and 9.3.4, which upon elimination of the solid phase concentra-
tion q lead to the single expression:

(9.3.22)

with boundary and initial conditions:

Feed Y(0,t) = Y

 

F

 

(9.3.23a)

Clean bed Y(x,0) = 0 (9.3.23b)

Here f

 

′

 

(Y) is the derivative or slope of the equilibrium relation q = f(Y). Comparison
of this expression with Equation 9.3.13a shows that the bracketed term equals the
inverse of the propagation velocity, i.e.,

(9.3.24)

We note that in practice the fluid phase accumulation term 

 

ρ

 

g

 

 can be neglected
compared to its solid phase counterpart so that:

(9.3.25)

where (dt/dx)

 

c

 

 = slope of the characteristics, shown in Figure 9.6. For Langmuir
type equilibria, also termed Type I isotherms, the slope of the equilibrium curve
f

 

′

 

(Y) decreases with increasing values of Y. Consequently the slopes of the charac-
teristics themselves will be 

 

high

 

 for 

 

low

 

 solute concentrations and decrease with an
increase in concentration. This is reflected in the plots shown in Figure 9.6. Note
that all characteristics are straight lines for a given solute concentration Y, i.e., for
constant values of f

 

′

 

(Y). We termed this situation a 

 

constant state.

 

Let us now examine these diagrams in more detail. Figure 9.6 (AI) shows straight
lines emanating from the abscissa which describe the propagation of the initial
(clean) bed condition. Similarly, the characteristics starting from the ordinate rep-
resent the pathways of the incoming feed concentration Y

 

F

 

. The latter has the lower
slope because of the higher value of Y

 

F

 

 > 0.
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A special situation arises at the origin representing the inlet at time t = 0. Here
characteristics for both Y = Y

 

F

 

 and Y = 0 must perforce emanate, and since the space
between them cannot be left void, we must have a continuous spectrum of concen-
trations between those two limits, propagating at different but constant velocities.
This produces a simple wave centered at the origin.

The structure of these three sets of characteristics leads to anomalies which are
depicted in the initial model of Figure 9.6A. Since the higher concentrations of the
simple centered have the lower slope, they propagate faster then their lower con-
centration cousins. This leads to an “overhanging profile” of the type shown in
Figure 9.6 (IB) and is unacceptable on physical grounds. A second anomaly arises
from the intersection of  three  characteristics at a 

 

single  point P in the single wave
region. This, in turn, implies the co-existence of three distinct concentrations carried
by these characteristics at the same point in time and space. We have represented
this situation by the three concentration levels PO, PP

 

′

 

, and PP

 

″  in Figure 9.6 (IB). 

FIGURE 9.6 Characteristic diagrams and the resulting concentration profiles for the satu-
ration of a clean chromatographic column or adsorber. (H.K. Rhee, R. Aris, and N.R. Amund-
son, 

 

First Order Partial Differential Equations, vol. 1, Theory and Application of Single
Equations,

 

 Prentice-Hall, Upper Saddle River, NJ, 1986. With permission.)
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Clearly, such a multiplicity of solutions is as unacceptable on physical grounds as
the overhanging profile. The only way to overcome these twin anomalies is to
introduce the notion of a discontinuous front which disposes of the overhang and
eliminates the multiplicities at one and the same time. The characteristics through
the origin are then reduced to a single pathway OP termed the 

 

shock path.

 

A consequence of the model revision is that the movement of the discontinuity
is no longer described by the PDE 9.3.22. We must abandon that equation and replace
it instead by a cumulative algebraic mass balance. This had already been done in
Chapter 6, Section 6.2 and we repeat the result which was obtained there:

(6.2.44)

where q

 

F

 

 is the solid phase concentration in equilibrium with the feed Y

 

F

 

.

 

Comments:

 

We start by noting that the development given here benefits considerably from
the fact that the mass transfer resistance was neglected. This enabled us to combine
the two differential balances which would otherwise have arisen (cf. Equations 7.2.4
and 7.2.5) into the single PDE 9.3.22. That equation, furthermore, is of the reducible
type that leads to the immediate conversion into a single ODE, Equation 9.2.24.

The fact that the original PDE had to be abandoned in favor of an algebraic
balance merely confirms that in modeling, as in other endeavors, dogma often has
to yield to physical reality. Acceptance of this fact is part of the 

 

Art of Modeling.

 

Equation 6.2.44 can be applied in a variety of ways. In its most frequently used
application, it allows us to calculate the minimum bed requirement per unit of feed
treatment (cf. Equation 6.2.46). In the present case this becomes:

W

 

m

 

 [kg bed/kg carrier] = Y

 

F

 

/q

 

F

 

(9.3.26)

Conversely, one can use Equation 6.2.46 to calculate the time a column can
remain on stream before breakthrough occurs. That value is perforce a maximum
one since mass transfer resistance will inevitably erode the discontinuity into an S-
shaped front (see Figure 6.14) resulting in shorter breakthrough times.

 

Illustration 9.3.3 Elution of a Chromatographic Column

 

We turn here to the counterpart of the previous illustration and consider the elution
or desorption of a uniformly loaded column with a clean purge. The same PDE as
before, Equation 9.3.22, applies and it reduces to the same characteristic, Equations
9.3.23 or 9.3.24. What has changed are the boundary and initial conditions which
are now reversed, i.e., we have:

Clean purge Y(0,t) = 0 (9.3.27a)

Uniform initial bed Y(x,0) = Y

 

0

 

(9.3.27b)

x
t

v

q Y
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b F

=
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Both of these conditions are again represented by straight line characteristics
emanating from the ordinate and abscissa, respectively. The special case of t = x =
0 likewise leads to the same simple wave centered on the origin that we had seen
before. There is, however, an important difference. None of the characteristics
intersect, since they are either parallel or fan away from each other. This is shown
in Figure 9.7A. As a consequence, no shocks arise and the PDE and its characteristics
are retained as the underlying model.

To derive the corresponding profiles, we intersect the characteristics with con-
stant time lines, for example, t

 

1

 

 and t

 

2

 

. Note that the slope of the characteristics
increases and the propagation velocity of a particular concentration diminishes as
we move from right to left. Low concentrations will consequently lag behind higher
ones, leading to the type of expanding profiles shown in Figure 9.7B.

Suppose now, that we wish to establish the time required to purge a loaded
column 

 

completely

 

 from adsorbed solute. We apply the characteristic (Equation
9.3.25) to the final concentration of the desorption process, i.e., Y = 0. Noting that
the characteristics have a constant slope, we obtain:

(9.3.28a)

 

FIGURE 9.7

 

Characteristic diagram and concentration profiles for the desorption of a
uniformly loaded chromatographic column or adsorber. (H.K. Rhee, R. Aris, and N.R. Amund-
son, 

 

First Order Partial Differential Equations, vol. 1, Theory and Application of Single
Equations,

 

 Prentice-Hall, Upper Saddle River, NJ, 1986. With permission.)
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or

(9.3.28b)

where H = Henry’s constant, L = length of the column.

 

Comments:

 

One notes that the Equations 9.3.28 are identical in form to that describing the
saturation step, Equation 6.2.44, with Henry’s constant H taking the place of the
ratio q

 

F

 

/Y

 

F

 

. A comparison of the two expressions also reveals that desorption is a
slow, drawn out process compared to saturation since the slope at the origin of the
equilibrium, the Henry constant H, is always larger than the ratio q

 

F

 

/Y

 

F

 

. This fact,
long known to practitioners in the field, has led to the use of a hot purge to speed
up the desorption process and bring it in line with the saturation step. This becomes
necessary when operating a dual bed system, with one bed being on stream, while
the other being regenerated.

The reader is reminded that the purge time calculated from Equation 9.3.26b is
a 

 

minimum

 

 value, since the presence of transport resistance which was neglected
here will slow down the desorption process.

 

Illustration 9.3.4 Development of a Chromatographic Pulse

 

Hitherto in our illustrations of chromatographic processes we had confined ourselves
to uniform boundary and initial conditions. We now consider a slightly different
situation in which the initial concentration is still uniform (Y = 0), but the feed is
introduced as a rectangular solute pulse of duration t

 

0

 

, followed by elution with clean
purge. We have, for the BC and IC:

Y(x,0) = 0 (9.3.29a)

(9.3.29b)

The characteristic diagram, shown in Figure 9.8A now consists of 

 

four

 

 sets of
linear characteristics, some of which intersect and others which do not. Let us
examine each set in turn.

The initial bed concentration Y = 0 emanates, as usual, from the abscissa. An
identical set of characteristics also originates from the t-axis for t > t

 

0

 

 since the
concentration in the clean purge is also Y = 0. Between these two sets lies the region
of pulse introduction during 0 

 

≤

 

 t 

 

≤

 

 t

 

0

 

, for which the characteristics also are linear
but of a lower slope, since Y

 

F

 

 > 0. The fourth set, comprising a simple wave centered
at t = t

 

0

 

, was anticipated since our previous deliberations had shown that two constant
states of different velocities will always be separated by a simple wave.
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Let us now examine the interactions of these characteristics. The initial bed
characteristics interact with those of the pulse in much the same way as was seen
in bed saturation (Illustration 9.3.2). The two sets intersect and in fact give rise to
a 

 

fifth set

 

 which is not shown here for clarity, consisting of a simple wave centered
on the origin. The arguments we use in the saturation case lead us to the conclusion
that the three sets merge into a single straight shock path OB, identical to the shock
path OP seen in Figure 9.6 (BI). These shocks propagate, for the time being, with
a constant velocity given by the inverse of the slope of OP. At t

 

1

 

, this gives the
rectangular profile shown in Figure 9.8B.

When t > t

 

0

 

, for example t = t

 

2

 

, the simple wave centered on t

 

0

 

 comes into play.
As we move horizontally we enter a region of diminishing solute concentrations,
with ever-decreasing propagation velocities. This leads to a slow, expanding rear
zone desorption whose concentrations increasingly lag behind the movement of the
shock front. At t = t

 

3

 

, this phase of profile development comes to an end. The plateau

 

FIGURE 9.8

 

Deposition of a chromatographic pulse and subsequent elution with clean
carrier gas. Note erosion of the plateau and diminishing shock strength with the passage of
time. (H.K. Rhee, R. Aris, and N.R. Amundson, 

 

First Order Partial Differential Equations,
vol. 1, Theory and Application of Single Equations,

 

 Prentice-Hall, Upper Saddle River, NJ,
1986. With permission.)
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of Y = Y

 

0

 

 has been completely eaten away and the expanding rear joins up directly
with the shock front.

What happens beyond t = t

 

3

 

? Here we see an intersection of the initial bed
characteristics with those of the centered simple wave. Concentrations in that wave
diminish with increasing values of t and result in a decrease of the height, or strength
of the shock, as shown by the profile for t = t

 

4

 

. Note that the shock path now curves
upward resulting in a lower propagation velocity of the shock front.

We do not derive quantitative relations here which require the use of an actual
equilibrium relation q = f(Y), but note that the construction of the characteristic
diagram is, by itself, capable of revealing all the qualitative features of a chromato-
graphic process.

 

Illustration 9.3.5 A Traffic Problem

 

We turn here to the application of the method of characteristics to traffic movement
as described by Equations 9.3.5 and 9.3.6. We had previously noted (see Section
7.2.1) that the relation between vehicle velocity v and concentration C in its simplest
form is described by the expression:

(9.3.30)

Equation 9.3.30 satisfies the elementary conditions that velocity is at its maxi-
mum v

 

m

 

 on an empty highway where C = 0, and in turn drops to zero when vehicle
density reaches its own maximum value of C

 

m

 

. That maximum is representative of
stalled, bumper-to-bumper traffic.

Substitution of 9.3.30 into Equation 9.3.6 and introduction of the result into
Equation 9.3.5 yields the characteristic:

(9.3.31)

where C is the normalized vehicle concentration C/C

 

m

 

.
Let us consider the situation where traffic has temporarily come to a halt in front

of a red light, represented by the origin of the characteristic diagram shown in Figure
9.9A. Vehicle density to the left of the light is C = 1 (bumper-to-bumper). To the
right of it, C = 0, representative of a road devoid of traffic. We wish to trace the
vehicle movement when the light turns green.

We start by noting that the characteristics for C = 1 all emanate from the negative
x-axis and have a slope of –1, deduced from Equation 9.3.31. Those bearing the
density C = 0 (no traffic), originate on the positive x-axis and all have a slope of
+1. These two constants states must be separated by a simple wave, which is here
centered on the origin and encompasses all vehicle concentration between the two
lines C = 1 and C = 0.

v v
C

Cm
m

= −






1

dt
dx C

=
−
1

1 2
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Movement starts when the light turns green. The resulting vehicle density “pro-
files” can be sketched by intersecting various horizontal lines for t = constant with
the characteristics. The results are shown in Figure 9.9B and indicate that the initial
discontinuous distribution at t = 0 quickly converts into a continuous profile that
becomes increasingly drawn out with the passage of time.

It is important to note that the characteristics shown in Figure 9.9A describe the
propagation pathways of various concentration levels, 

 

not  those of the vehicles
themselves. An exception occurs in the case of the first vehicle which, facing an
empty road, immediately accelerates to the maximum velocity v

 

m

 

 and continues its
trajectory along the characteristic OP. To trace the movement of subsequent vehicles
in the t-x plane, one must eliminate vehicle density C between Equations 9.3.29 and
9.3.30 and integrate the result. An example of a typical pathway which is obtained
in this fashion, is shown in Figure 9.9A. It is left to the Exercises to work out the
details of the solution (see Practice Problem 9.3.6). Note that the vehicle remains
stalled until it reaches the line 0Q and, thereafter, gradually accelerates. 

Comments: 
Once the application of the method of characteristics has been demonstrated by

example, one is inclined to regard its relevance to traffic problems as self-evident.

 

FIGURE 9.9

 

Traffic concentration at a red traffic light and subsequent vehicle movement
when the light turns green. (H.K. Rhee, R. Aris, and N.R. Amundson, 

 

First Order Partial
Differential Equations, vol. 1, Theory and Application of Single Equations,

 

 Prentice-Hall,
Upper Saddle River, NJ, 1986. With permission.)
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This is certainly not the attitude one has on first being confronted with such problems.
Here is a system composed of discrete entities (the vehicles), each entity subject to
the whims of the driver. Traffic lights and other control mechanisms introduce some
order into the proceedings, but the flow is still intermittent and has an air of unpre-
dictability. To describe a system so at odds with our usual transport processes by a
partial differential equation certainly required a leap of imagination and attests to
the genius of the early workers in the field. As we have noted before, such departures
from conventional thinking are one of the ingredients of successful modeling.

 

Practice Problems

 

9.3.1 The Unsteady Heat Exchanger — 

 

Show that the characteristics emanating
from a point t

 

0

 

 of the 

 

τ

 

 axis of the heat exchanger model given in Illustration 6.3.1
are described by the relations:

(9.3.32)

(9.3.33)

 

9.3.2 Linear Chromatography — 

 

Show that for systems with linear equilibria, q
= HY, adsorption and desorption times are identical.

 

9.3.3 Linear Chromatography Again — 

 

Apply the problem discussed in Illustra-
tion 6.3.4 to a system with a linear isotherm, q = HY, and show that:

(a) The rectangular pulse moves through the column unchanged and undimin-
ished.

(b) Its velocity of propagation v

 

p

 

 of the pulse is given by:

(9.3.34)

 

9.3.4 The Type III Isotherm — 

 

Adsorption equilibria are often classified according
to the 

 

shape

 

 of the equilibrium isotherm. The classical Langmuir equilibrium curve,
for example, which is 

 

concave

 

 to the Y-axis, is termed a Type I isotherm. Its inverse,
i.e., a curve which is 

 

convex

 

 to the Y-axis, is referred to as a Type III isotherm. Type
II, IV, and V have inflection points and are generally known as BET isotherms. Show
that the saturation step for a Type III Isotherm yields an elongated adsorption profile,
while desorption leads to a shock front. Sketch the resulting profiles.

 

9.3.5 The Freundlich Isotherm — 

 

Freundlich isotherms are described by the
relation:

q = kY

 

1/n

 

(9.3.35)
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where n is a positive integer 

 

≠

 

 1.
Consider the equilibrium elution of a column uniformly saturated with a solute

obeying Equation 9.3.33. Show that the concentration at the outlet of the column (x
= L) is given by the relation:

(9.3.36)

 

9.3.6 Vehicle Pathway — 

 

Analyze the general vehicle pathway for Illustration 9.3.5.
Show that the vehicle is at first stationary over a time interval 0 < t < t

 

0

 

 and,
subsequently, follows a parabolic path, as shown in Figure 9.9A.
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twin topics of Fourier Series and Orthogonal Functions.

A host of solutions to conduction and diffusion problems, arrived at by the method of
separation of variables are to be found as usual in:
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 Solutions of Fourier’s and
Fick’s equations by various integral transform methods can be found in Carlsaw and
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A text which displays mathematical rigor as well as a host of solutions to practical problems,
presented in eminently readable form, is by:

R.V. Churchill. Operational Mathematics, 3rd ed., McGraw-Hill, New York, 1972.
The book covers all integral transform methods, with emphasis on the Laplace transform,

and contains short tabulations of all major transforms. More extensive listings are to be
found in:

A. Erdelyi (Ed.). Tables of Integral Transforms, vols. 1 & 2, McGraw-Hill, New York, 1954.
Tabulations of the J-function, Equation 9.2.68, can be found in the chapter on Adsorption

and Ion-Exchange of recent editions of Perry’s Handbook of Chemical Engineers.

9.3 Method of Characteristics: Although various developments connected with this method
took place in the 19th and early 20th centuries, it was only in 1948 that it came to the
attention of the scientific and engineering communities with the publication of:

R. Courant and K.A. Friedrichs. Supersonic Flow and Shock Waves, Wiley-Interscience, New
York, 1948.

The text reflects war-time developments in aerodynamics and its focus is on pairs and systems
of quasilinear first order PDEs. A lucid explanation of the method of characteristics
precedes the core material. Various texts on wave phenomena have since made use of
the method and expanded on it, among them:

A. Jeffrey and T. Taniuti. Non-Linear Wave Propagation, Academic Press, New York, 1964.
G.B. Whitman. Linear and Non-Linear Waves, John Wiley & Sons, New York, 1974.
A. Jeffrey. Quasilinear Hyperbolic Systems and Waves, Pitman, Marshall, MA, 1976.
N. Bleistein. Mathematical Methods for Wave Phenomena, Academic Press, New York, 1984.
All these texts make fairly heavy reading. A more readable account displaying both mathe-

matical rigor and numerous interesting practical applications, appears in the two-volume
treatise:

H.K. Rhee, R. Aris, and N.R. Amundson. First Order Partial Differential Equations, vol. 1;
Theory and Application of Single Equations, Vol. 2, Coupled Systems of Equations,
Prentice-Hall, Upper Saddle River, NJ, 1986, 1989.

Volume 1, which is of relevance here, contains many chromatographic and traffic problems
from which the author has drawn.
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