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Preface

Most reservoir flow analysis books introduce the basic equations, such as
Darcy’s law, single-phase radial flow solutions, simple well test models, and the
usual descriptions of relative permeability and capillary pressure and explain
elementary concepts in finite difference methods and modeling before referring
readers to commercial simulators and industry case studies.  These books, and
the courses that promote them, are useful in introducing students to fundamental
methodologies and company practices.  However, few develop the physical and
mathematical insight needed to create the next generation of models or to
evaluate the limitations behind existing simulation tools.  Many analysis
techniques and computational approaches employed, in fact, are incorrect,
despite their common use in reservoir evaluation.

I earned my Ph.D. at MIT and earlier degrees from Caltech and NYU.  My
major areas were high-speed aerodynamics and wave propagation, which are
synonymous with applied math and nonlinear differential equations – specialties
that focus on rigorous solutions to practical problems.  From MIT, I joined
Boeing’s prestigious computational fluid dynamics group in Seattle and, three
years later, headed up engine flow analysis at United Technologies’ Pratt and
Whitney, the company that develops the world’s most powerful jet engines.

But the thrill of the hunt lost its allure, despite the thrill of being published
in journals and attending high-tech conferences.  Like all of you, I was attracted
to the petroleum industry because of its excitement and the opportunities it
offered.  That was just five years into my career, as I joined a new industry
undergoing rapid change – a transition requiring me to learn anew the fluid
dynamics of flows as far underground as my prior learning was above ground.
Since then, two decades have elapsed, in which I actively engaged in oil field
research and development.  In that time, for example, with leading operating and
service companies like British Petroleum and Halliburton, I was fortunate to
have been continuously challenged by new problems both mathematical and
operational.
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This reservoir flow analysis and simulation book is unique because it
brings two decades of perspectives and experience on the fluid mechanics of
Darcy flows.  Many commonly accepted “recipes” for flow evaluation are
critiqued, and incorrect underlying assumptions are noted.  This volume aims at
a rigorous and scientifically correct approach to reservoir simulation.  In each of
dozens of difficult problems surveyed, the state of the art is examined, and
analytical or numerical solutions are offered, with the exact physical
assumptions always stated precisely.  Industry “common sense” approaches are
avoided: once the correct model is formulated, the entire arsenal of analysis
tools is brought to bear – we then focus on ways to extract formation
information using the new solution or clever means to exploit the physics
uncovered.

Fortunately, this book does not require advanced mathematics or numerical
analysis to understand.  Great care was undertaken to explain and develop very
advanced methods in simple terms that undergraduates can comprehend.  For
example, “conforming mapping” usually requires a background course in
complex variables, and complementary subjects like streamfunctions and
streamline tracing in homogeneous media are typically taught in this framework.
Quite to the contrary, our special derivations require just simple calculus but
apply to anisotropic, heterogeneous media.  This book addresses “difficult”
flows, such as liquid and gas flows from fractures, general flows past shales,
production from multilateral horizontal wells, multiple well interactions,
rigorous approaches to effective properties, and so on, problems not often
treated in the literature but relevant to modern petroleum engineering.  In doing
so, we strive to avoid the simplistic “recipe” approaches our industry often
encourages.

Every effort is made to define and formulate the mathematical problem
precisely and then to solve it as exactly as modern analysis methods will allow.
These include classic differential equation models as well as modern singular
integral equation approaches, all of which were unavailable to Morris Muskat
when he wrote his lasting monographs on Darcy flow analysis.  Our techniques
go beyond purely analytical ones.  For example, the problem of accurately
modeling flow from interacting multilateral drainholes in anisotropic
heterogeneous media – despite the inefficiencies imposed by nonneighboring

grid point connections – is solved in Chapter 15 (the groundwork for this
research won a Chairman’s Innovation Award at BP Exploration in 1991).

Or consider boundary-conforming, curvilinear grids in Chapter 8.  Fast and
accurate mesh generation algorithms are developed in this book, which are
cleverly applied to the solution of complicated reservoir flows.  Suppose a
“Houston well” produces from a “Texas-shaped” reservoir.  This geometry is
associated with an elementary function as unique as the logarithm is to radial
coordinates.  Its “extended log” permits us to instantly write the solution to all
liquid and gas flows for any set of pressure-pressure and pressure-rate boundary
conditions.  This work won a prestigious Small Business Innovation Research
Award from the United States Department of Energy in 2000.



xiii

Other areas addressed include opened fractures, curved shales, fractured
holes, general heterogeneities, formation invasion, and time-lapse well logging
using drilling data.  In terms of techniques, we introduce modern ideas in
singular integral equations, improper integrals, advanced conformal mapping,
perturbation methods, numerical grid generation, artificial viscosity, moving
boundary value problems, ADI and relaxation methods, and so on, developing
these in context with the physics of the problem at hand.  These methods, used
by aerodynamicists and theoretical elasticians, can be intimidating.  However,
the presentation style adopted is far from difficult: while not exactly easy
reading, there is nothing in this book that could not be grasped by a student who
has taken basic freshman calculus.  Whenever possible, Fortran source code is
presented, so that students can test and evaluate ideas old and new without the
trials and tribulations of debugging.

New approaches to old problems are emphasized.  For example, how do
mathematical aerodynamicists turned petroleum engineers view the physical
world?  Stare up the back end of a rocket lifting off: Is that a fuselage with
stabilizer fins, or is it a circular wellbore with radial fractures?   Pry open the
maintenance box of your typical jet engine: Are those cascades of airfoil blades,
or are they distributions of stochastic shales?   Can the solutions that describe
brittle failure be repackaged to model arrays of fractures, say, the natural
fracture systems that spur horizontal drilling?  Very often, the problems
(inaccurately) crunched by our fastest computers can be solved (accurately)
using closed-form analytical solutions found in other scientific disciplines.

I am indebted to my advisor, Professor Marten T. Landahl at MIT, for
teaching me the subtleties and nuances of aerodynamics and fluid mechanics.  I
also thank the faculty at Caltech, where I had learned hands-on applied math
from its most prolific creators, and to the aerodynamics group at Boeing, where
I participated in state-of-the-art research in numerical flow simulation.  Much of
this effort would not be possible without the support of my colleagues and
friends at Halliburton Energy Services, who have enabled me to work freely and
productively in areas of personal interest over the past decade.  And last but not
least, I wish to acknowledge Phil Carmical, acquisitions editor, for his
continuing support and constructive comments and for his willingness to
introduce new and innovative methodologies into the commercial mainstream –
at Phil’s advice, “Problems and Exercises” are now included in each chapter,
unique challenges that further develop the new ideas introduced, and ideally,
develop the interests and curiosities of satisfied readers.

Wilson C. Chin, Ph.D., MIT
Houston, Texas

E-mail:  wilsonchin@aol.com
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1
Motivating Ideas

and Governing Equations

It is no accident that the industry’s first math models for fluid flow in
petroleum reservoirs were developed by analogy to problems in electrostatics
and heat transfer (Muskat, 1937; van Everdingen and Hurst, 1949; Carslaw and
Jaeger, 1959).  These solutions reflect well on the investigators; they did not fall
prey to the maxim that “those who refuse to learn from history are doomed to
repeat it.”  That the equations for single phase flow are identical to the classical
equations of elliptic and parabolic type facilitated the initial progress; these
similarities also assisted with the design and scaling of experiments, particularly,
those based on electrical and temperature analogies.

To practitioners in reservoir engineering and well test analysis, the state-of-
the-art has bifurcated into two divergent paths.  The first searches for simple
closed-form solutions.  These are naturally restricted to simplified geometries
and boundary conditions, but analytical solutions, many employing “method of
images” techniques, nonetheless involve cumbersome infinite series.  More
recent solutions for transient pressure analysis, given in terms of Laplace and
Fourier transforms, tend to be more computational than analytical: they require
complicated numerical inversion, and hence, shed little insight on the physics.

It seems, very often, that all of the analytical solutions that can be derived,
have been derived.  Thus, the second path described above falls largely in the
realm of supercomputers, high-powered workstations, and brute force numerical
analysis: it is the science, or more appropriately the art, that we call reservoir
simulation, requiring industrywide “comparison projects” for validation.  There
has been no middle ground for smart solutions that solve difficult problems, that
is, for solutions that provide physical insight and are in themselves useful,
models that can be used for calibration purposes to keep numerical solutions
“honest.”  This dearth of truly useful real world examples lends credence to the



2   Quantitative Methods in Reservoir Engineering

often-stated belief that high-speed machines, the marvels that they are in this
day and age, only allow engineers to err more quickly and in much greater
volume.

Despite numerous computational researches purporting to model transient
flows from line fractures, say, there is still no analytical solution encompassing
the simpler steady state limit satisfying practical boundary conditions.  Transient
solutions, consequently, are sometimes obtained incorrectly by assuming steady
state asymptotic conditions that are physically inconsistent.  And in spite of
wide interest in reservoir heterogeneities, there are still no closed form solutions
for flows past single-shale lenses or through mineralized faults.  Clearly, there is
a need for more work, deeper thought, and fundamental investigation.

Like the earlier research of Muskat, Hurst, and others, the solutions given
in this book are drawn from related outside disciplines, in particular,
aerodynamics and theoretical elasticity.  A vast library of interesting and
immediately useful analytical solutions can be constructed without difficulty;
these apply to flows past impermeable shales, flows from fractures and through
real-world faults, that, where applicable, satisfy variable flow rate and pressure
boundary conditions.  In the realm of numerical analysis, it is possible to
formulate problems more elegantly, circumventing “brute force” approaches, by
using modern methods in curvilinear grid generation.  The resulting models
provide improved physical resolution where required and minimize computer
storage and data processing requirements; they are especially important, for
example, in numerical well testing, where the exact treatment of fracture and
stratigraphic boundaries is crucial.  These “new” techniques, almost three
decades old, were developed in the aerospace industry, and only recently are
being applied to problems in petroleum engineering.

But the methods produce more than smart numerics.  Computational
methods can be combined with analytical ones to form pseudo-analytical
approaches that increase accuracy while minimizing hardware requirements.
Intelligent PC-based models founded on these techniques can produce solutions
superior to those obtained from existing large scale models, and numerous such
hybrid models are developed here.  We will show, for example, how the classic
log r pressure for radial flow can be generalized to arbitrary reservoirs.  As an
illustration, a “Texas-shaped” oil field is used and its “elementary solution” is
obtained by simple computation.  This in turn is used to solve a super-set of
reservoir engineering problems analytically and in closed form, that is, for
different classes of mixed pressure and flow rate boundary conditions, for
liquids and gases having different thermodynamic profiles, and so on.

This book introduces classes of steady-state solutions that the interested
reader can extend and generalize.  They are particularly meaningful to reservoirs
that produce under near-steady conditions at high rates, typical of many oil
fields outside the United States.  The solutions are useful in studies related to
flow heterogeneities, hydraulic fractures, nonlinear gas flows, horizontal
drilling, infill drilling, and formation evaluation.  The analytical techniques used
are described in detail, applied to nontrivial flow problems, and extensions are
outlined in the “Problems and Exercises” sections at the end of each chapter.
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EXAMPLES OF INCORRECT FORMULATIONS

In this book, mathematical formulations are posed for well-defined
physical problems and solved using rigorous solution methods.  Assumptions
are clearly stated and ad hoc analysis methods are avoided.  In order to
appreciate this philosophy, it is necessary to understand the proliferation of
incorrect models and solutions in existing literature and software.  A review of
these formulations is imperative to teaching sound mathematics.  But it is also
important to petroleum engineers who purchase software responsible for field
development and major financial commitments.  For these reasons, we will
explain common errors and their ramifications.  To be entirely fair, only those
problems that are actually solved in this book are listed and discussed here.

Velocity singularities.  Flows from natural and massive induced hydraulic
fractures are economically important, as are the effects of flow impediments due
to shales and mineralized faults.  Simulators are available to model these effects,
which consume hours of computing time to provide the accuracy needed for
economic projections.  But the velocities at fracture and shale tips are
“singular,” that is, infinite in speed.  Any attempt to model this correctly by fine
mesh discretization will promote numerical instability, originating at points with
the highest flow gradients.  The benefits of excessive computing are illusory and
self-defeating, but accurate fracture and shale flow solutions can be developed
using simple analytical models.

Fracture flows.  In many simulators, fracture flows are modeled using
rows of discrete point sources.  The results are crude at best: incorrect end
singularities, “lumpy” flowfields, and fictitious through-flow between widely
separated source points appear in the results, in many cases worsened by
typically large distances between grid points.  These undesirable effects are
easily eliminated by using continuous line source distributions for fracture
flows.  The resulting formulation can be solved analytically using integral
equation methods that have been available for decades.  Discrete singularity
methods, such as the point sources just described, were originally used in
aerodynamics a century ago and have been obsolete since then.

Mudcake buildup.  During oil well drilling, high-pressure “drilling mud”
is used to contain the formation, safely reducing the risk of dangerous
“blowouts.”  As fluid penetrates the formation, a filter-cake or mudcake is left at
the borehole face that grows with time and continuously reduces flow.  The
invading and reservoir fluids possess different flow and conductive properties.
Accurate electromagnetic log interpretation requires precise knowledge of front
position so that rock properties in the faraway zone can be predicted.  Thus, a
key element in this process is the use of an accurate mudcake filtration model,
because it controls the salient physical features of the flow.  But simulators
typically invoke a √t law which is not universal: it applies only in linear (as
opposed to radial) flow and, then, only to single-phase flows when the formation
is much more permeable than the cake.  Thus, the computations are useless, for
example, in slimhole applications (where cake will not grow indefinitely with
time) and in tight or low-permeability formations which exert a strong back-
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influence on cake evolution.  To correctly model the physics, the Darcy flows
within the growing cake and the invaded reservoir must be dynamically coupled
and solved as an integrated system.

Geometric gridding.  The importance of curvilinear grid systems (using
corner-point methods) that capture geometric details in a reservoir is understood
in reservoir simulation.  These general mappings typically introduce second-
derivative cross-terms in the transformed flow equations, which unfortunately,
are deliberately and completely ignored by many matrix inversion routines
because they introduce numerical inefficiencies and instability.  In many
applications, the ideal structure of the governing coefficient matrix is destroyed
by real-world constraints, but these constraints are disregarded for
computational expediency.  Thus, the reservoir engineering department of one
large oil company issues a warning to its users, noting that corner-point results
are suspect and probably incorrect.  Proper use of boundary-conforming
curvilinear meshes, developed here, avoids these problems.

Averaging methods . Equivalent resistance calculations in simple electric
circuits is based on appropriate use of lumped or averaged properties.  Similar
results are desired in petroleum engineering, but in three widely used simulators
we evaluated, averaging techniques are systematically abused.  Formulas that
are derived for linear (vs. cylindrical or spherical) flow under constant density,
single-phase, identical-block-size assumptions are indiscriminately employed to
process intermediate results in compressible, multiphase, variable grid block
runs, leading to questionable results.

Upscaling techniques .  In electric circuits, equivalent resistance depends
on the arrangement of the resistors and the location of the voltage source.  In
Figure 1-1, the identical resistor arrangements possess different equivalent
resistances depending on the parallel or series nature of the flow.

Figure 1-1.  Electrical resistance.

Similar upscaling techniques, motivated by the need to reduce grid block
number, are important in practice.  But the equivalent permeabilities within any
reservoir will change if the reservoir is produced by different arrangements or
patterns of wells, because the parallel and serial nature of the flow has changed.
Upscaled quantities are not properties of the formation but are also related to the
production method.  However, several simulators compute fixed upscaled
properties and use them in contrasting production scenarios.

Wells in layered media.   Consider a layered reservoir produced by a
general well, for simplicity, neglecting borehole friction and gravity.  Production
is controlled by one physical condition only: the same constant pressure acts at
the sandface along the entire length of the well, whether it is vertical, horizontal,
deviated, or multilateral with arbitrary drainholes.  Pressure itself may be
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prescribed, in which case the well is pressure constrained.  When the well is rate
constrained, the total volume flow rate is specified but subject to the constancy
of a single unknown pressure along the entire wellbore, whose value must be
determined as part of the complete solution for pressure.

This mathematical description is exact, but rate-constrained wells pose
special challenges.  While contributions to flow arise from the Darcy pressure
gradient perpendicular to the sand face, the boundary value problem is not a
standard Neumann formulation, where local normal pressure gradients ∂p/∂n are
prescribed.  Instead, it must be the integral of all ∂p/∂n values that is specified,
taken around the well, then along its entire length, to include all branches if the
well is multilateral, subject to the constancy of an unknown sand face pressure
whose value is sought as part of the solution (obvious changes apply when
friction and gravity cannot be neglected).

Rigorous analysis requires a special algorithm, developed in Chapter 15,
since the general nonneighboring connections relating different portions of a
general well destroy the symmetries required in many fast matrix inversion
algorithms.  Many simulators instead proportion the amount of flow that enters
the well from layers according to their local permeability-thickness, kh,
products.  This appears to be a reasonable start, since it is obviously correct
when k vanishes; however, there is no real mathematical basis for the so-called
kh allocation methods.  Many simulators also rule out interlayer flow at the
outset, an a priori assumption that is untrue except for the most impermeable
layers.  For computational simplicity, these layers are typically assumed to
extend indefinitely from the well, which is rarely the case in practice.

Wellbore models .  Reservoir simulators employ large grid blocks that are
thousands of feet across.  Input properties are based on selected core samples
whose sizes range from inches to several feet.  Single grid blocks may contain
multiple wells, with typical diameters no greater than 1 foot.  Consequently,
special well models are used to mimic real wells, augmented by productivity
indexes that account for skin damage and perforations.  The industry is still
mired in rectangular grid systems that do not provide resolution anywhere, when
curvilinear grids that accommodate multiple wells (i.e., “airfoils”) are readily
available in the aerospace industry.  Local wellbore imperfections can be
modeled with detailed local simulations.  Small- and large-scale flows can be
fully integrated using rigorous “inner and outer matched asymptotic expansions”
as discussed in the classic book by van Dyke (1964).

Formation tester applications .  In reservoir engineering, the effects of
capillary pressure are initially unimportant if flow rates are high in a
dimensionless sense.  This is the well-known Buckley-Leverett limit, which
does not otherwise apply.  In formation evaluation, flow rates are high only
initially when drilling mud invades an oil reservoir, since mudcake buildup
rapidly slows the invading flow, typically within minutes. Thus, capillary
pressure effects are important almost immediately for invasion modeling and
must be considered in any immiscible two-phase model.  In addition, while
mudcake (being much less permeable than the formation) very often controls the
overall filtration rate of the flow, this is not necessarily so in tight zones and
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certain two-phase flows with extremely low permeabilities.  For such problems,
the Darcy flows in the formation and within the mudcake are dynamically
coupled, and a combined boundary value problem formulation with moving
boundaries (that is, the cake-to-mud interface) must be solved.  Capillary
pressure and mudcake coupling are generally ignored because of their
complexity.  However, the general problem is solved in this book, whose
solutions are relevant to formation tester applications.  These so-called testers,
which extract reservoir fluid samples from the well, provide a wealth of new
research topics, including interpretation of pressure transients to predict
pressure, or the use of immiscible flow models to establish pump power
requirements and pumping times needed to reach deeply into the reservoir
beyond the invaded fluids.

Sweep efficiency and streamline tracing.  The saturation equation with
capillary pressure terms removed describes the movement of single-phase fluids
in heterogeneous reservoirs under ideal nondiffusive conditions.  Computed
results are useful in understanding basic ideas on reservoir connectivity and
sweep efficiency.  Within this framework, fluid never mixes: if initial portions
of the fluid are arbitrarily dyed red and blue, mathematical proofs (given later)
require that red fluid stays red, and blue fluid stays blue.  In one commercial
simulator, an entire spectrum of colors emerges that dazzles the user, presenting
color results that are everything but physically meaningful.  Mixing, in the
absence of true diffusion, is the result of truncation error.

Book objectives recapitulated.  This book addresses the inefficiencies
just pointed out, bringing the power of singular integral equations, linear
superposition, conformal mapping, modern curvilinear grid generation, moving
boundary value problems, regular perturbation theory, advanced source and sink
methods, and so on to bear upon issues that have prohibited accurate solution:
real problems are formulated and solved.  But before studying these methods, it
is important to understand the fundamental reservoir flow equations and their
analogies in other branches of the physical sciences.  Only by doing so can we
exploit the wealth of techniques and solutions already available in the
interdisciplinary literature and, then, in a manner that enhances our physical
insight into the physics of petroleum reservoirs.

A broad understanding of the interdisciplinary literature requires
significant time and academic commitment, that is, more courses and homework
than most graduate engineers can afford.  It means the study of advanced
mathematics, not to mention esoteric areas like aerodynamics, differential
geometry, and topology.  Given these obstacles, it might appear that technology
transfer is at best optimistic.  But, it is not so: this book aims at “translating” the
existing state of the art into practical terms relevant to complicated reservoir
flows.  We will consider only physically significant problems, then develop the
basic motivating ideas, taking care to introduce in a simple, readable, down-to-
earth way only those mathematical notions that are absolutely essential.
Wherever possible, Fortran source code is provided to guide the implementation
of key algorithms, so that the models developed here provide immediate value.
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DARCY’S EQUATIONS FOR FLOW IN POROUS MEDIA

Physical phenomena in science and engineering satisfy partial differential
equations (PDEs), which relate changes in measurable quantities, like pressure
or velocity, through partial derivatives taken in space and time.  Unlike ordinary
differential equations (ODEs), whose integration constants are fixed by
specifying values of the function and its derivatives at one or more points, PDEs
require, in addition to functional information on curved boundaries, the
specification of initial conditions for equations of evolution.  Boundaries, we
emphasize, may be external or internal, stationary or moving.  The exact manner
in which auxiliary conditions apply depends on the physical nature of the
problem and is reflected in the “type” classification of the PDE studied.

Differential equations and boundary conditions.  PDEs are classified

accordingly as elliptic (e.g., ∂2U/∂x2 + ∂2U/∂y2 = 0), parabolic (e.g., ∂2U/∂x2 +

∂2U/∂y2 = ∂U/∂t), or hyperbolic (wavelike, as in ∂2U/∂x2 + ∂2U/∂y2 =

∂2U/∂t2).  An equation that is parabolic, for instance, the pressure equation used
in well testing, is sometimes referred to as “the heat equation” for historical
reasons; as noted, well test methods were originally developed by heat transfer
analogy.  The reader is assumed to be familiar with, or at least cognizant of,
these classifications and their auxiliary data requirements (Hildebrand, 1948;
Tychonov and Samarski, 1964, 1967; Garabedian, 1964).

Elliptic equations are solved with boundary conditions related to the
function itself (say, the pressure p  for ∂2p/∂x2 + ∂2p/∂y2 = 0) or its normal
derivative (e.g., ∂p/∂n, which is proportional to the normal flow velocity) along
prescribed curves.  In the former case, we have a pure Dirichlet boundary value
problem, while in the latter, the formulation is of the Neumann type.  Mixed
problems containing combined pressures and flow rates are also possible; for
example, a flow-rate-constrained production well may act under the action of a
nearby injector, in a reservoir partially opened to a large water aquifer modeled
as a prescribed-pressure boundary.  In petroleum engineering, elliptic equations
describe general constant density flows and steady state flows of compressible
gases.  Care must be taken to pose boundary conditions properly: an improper
formulation that does not conserve mass can converge numerically and produce
incorrect, misleading information.

The flow domain is singly connected when there are no “holes” anywhere,
say, the Darcy flow in a heterogeneous sand without wells.  Doubly and
multiply connected domains contain one or more holes such as wells (e.g., a
“donut” is doubly connected).  Boundary conditions must be prescribed along all
exterior and interior boundaries.  Time may appear explicitly in elliptic
problems for constant density fluids through boundary conditions, as in flows
containing free surfaces, in wells with time-varying production rates, or while
drilling under constant pressure with growing mudcake.  The explicit presence
of t does not mean that the problem is parabolic, hyperbolic, or compressible: in
formation invasion, unsteadiness is associated with fronts that move much
slower than the sound speed and the governing equations are often elliptic.
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Parabolic equations describe transient compressible effects, including
modeling well test buildup and drawdown.  These also require boundary
conditions as described previously; in addition, they must be solved together
with initial conditions.  For example, how active is the reservoir at the outset?
Do transients dominate the physics?  Or is it flowing at steady state?  Perhaps it
is static, held at constant uniform pressure?  Boundary conditions may be related
to skin resistance and storage in wells and flowlines.  We will formulate these
auxiliary constraints generally and offer exact solutions later.  

Hyperbolic equations, like parabolic ones, are also equations of evolution.
Although steady flows in aerodynamics, for example, can be both elliptic and
hyperbolic (representing, respectively, subsonic and supersonic flow), the latter
are not as often found in petroleum reservoir simulation except for certain
immiscible two-phase flows dominated by inertia.  They describe seismic wave
propagation in the earth, but this subject, being entirely different, is not
discussed here.  These equation classifications are mathematical ones that apply
to the equation only.  Seismic waves and well test transients excited by periodic
disturbances, such as thumpers and oscillating pistons, which are respectively
hyperbolic and parabolic in the time domain, satisfy elliptic equations when the
governing equations are expressed in the frequency domain.

This book, while it does approach mathematics rigorously, does not treat
PDEs comprehensively.  It does not attempt to catalog the broad range of
solution techniques available for boundary value problem analysis.  Instead, it
describes reservoir flow problems in precise terms when the physics allows and
offers rigorous solutions obtained from advanced analysis without introducing
the ad hoc assumptions common to industry models.  At the same time, we
emphasize that many problems are not solved from scratch.  We will draw upon
physical and mathematical analogies in heat transfer, electrodynamcis, and
aerodynamics, taking advantage of existing solutions and techniques.  Advanced
methods are explained logically, but once discussed, the requisite solutions are
summarized with detailed derivations omitted for brevity.  Because numerous
classes of flow problems are considered, it is impossible to follow one specific
set of typographical conventions.  Upper and lower case letters, and Greek and
italicized letters are used to represent, at various times, different dimensional
and dimensionless quantities, variables of integration, physical parameters in
rectangular or mapped coordinates, and so on.  However, the conventions
applied within particular sections will always be consistent and clear.

Darcy’s laws.  The fundamental equations of motion governing fluid flow
in petroleum reservoirs are given in several books (Muskat, 1937; Collins, 1961;
Aziz and Settari, 1979).  We will not rederive them but instead refer the reader
to the cited publications.  In this section, we will list these equations for
reference, and discuss motivating observations that should be useful to our
subsequent work.  These go beyond mere summary: subtleties related to the
Navier-Stokes equations and important aerodynamic analogies are given.

Let  kx(x,y,z), ky(x,y,z) and kz(x,y,z) denote heterogeneous anisotropic

permeabilities in the x, y and z rectangular directions, respectively.  If a
Newtonian fluid having constant viscosity µ flows under a superimposed
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pressure field p(x,y,z,t), its velocities can be obtained by taking partial
derivatives with respect x, y, and z:

u(x,y,z,t)  =  - (kx/µ) ∂p(x,y,z,t)/ ∂x                                              (1-1)

v(x,y,z,t)  =  - (ky/µ) ∂p(x,y,z,t)/ ∂y                                              (1-2)

w(x,y,z,t)  =  - (kz/µ) ∂p(x,y,z,t)/ ∂z                                              (1-3)

Here, u, v, and w are velocities in the x, y, and z directions, respectively,
and Equations 1-1 to 1-3 are known as Darcy’s equations, after the French
engineer Henri Darcy who discovered them empirically.  They are Eulerian
velocities at fixed points in space and not Lagrangian velocities following fluid
elements.  In a petroleum reservoir, the pressure and motion at each point (x,y,z)
affects every other point, and vice versa.  The dynamics of such flows are
coupled by PDEs for p(x,y,z,t), which must be solved subject to flow-rate,
pressure and auxiliary constraints known as “boundary” and “initial” conditions.

The preceding represent momentum equations only and do not describe the
complete physical picture since mass conservation has not yet entered.  Now let
φ(x,y,z) denote the formation porosity and c(x,y,z) the effective compressibility
of the fluid and underlying rock matrix.  When the fluid is a slightly
compressible liquid, mass conservation requires that the transient flow satisfy
the classical parabolic heat equation given by

∂{kx(x,y,z) ∂p/∂x}/∂x + ∂{ky(x,y,z) ∂p/∂y}/ ∂y

+ ∂{kz(x,y,z) ∂p/∂z}/∂z = φµc ∂p/∂t       (1-4)

If the liquid is incompressible or if the compressible liquid has reached steady
state flow conditions, the time derivative term vanishes.  Then, the governing
equation is elliptic, that is,

∂{kx(x,y,z) ∂p/∂x}/∂x + ∂{ky(x,y,z) ∂p/∂y}/ ∂y

+ ∂{kz(x,y,z) ∂p/∂z}/∂z = 0                   (1-5)

Gases behave differently from liquids and must be characterized by an
equation of state.  Polytropic processes are studied in thermodynamics (Saad,
1966).  Essentially, pνn  = constant, say C, where ν is the specific volume; also
the index n of the process may vary from - ∞ to + ∞.  For constant pressure
processes, n = 0; for isothermal processes assuming perfect gases, n = 1.  For
reversible adiabatic processes, n = Cp/Cv, where Cp is the specific heat at
constant pressure and Cv is the value obtained at constant volume.  Finally, for
constant volume processes, n = ∞.

In Muskat (1937, 1949), the gas density ρ is proportional to the mth power
of pressure, that is, ρ = γ

0
pm, so that p = γ

0
-1/m ρ1/m.   These parameters can be

related to those in the preceding paragraph.  The equations pνn  = C and ν = 1/ρ
imply that p = Cρn .  Thus, C = γ

0
-1/m, while m = 1/n.  Muskat’s m, used

throughout this book in lieu of n, describes both the properties of the gas and the
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thermodynamic process.  The equations for a compressible gas are similar to
those given already.  In this case, Equations 1-4 and 1-5 are replaced by

∂{kx(x,y,z) ∂pm+1/∂x}/∂x + ∂{ky(x,y,z) ∂pm+1/∂y}/∂y

+ ∂{kz(x,y,z) ∂pm+1/∂z}/∂z = φµc* ∂pm+1/∂t       (1-6)

for transient flow and

∂{kx(x,y,z) ∂pm+1/∂x}/∂x + ∂{ky(x,y,z) ∂pm+1/∂y}/∂y

+ ∂{kz(x,y,z) ∂pm+1/∂z}/∂z = 0       (1-7)

for steady flow.  In Equations 1-6 and 1-7, Muskat’s gas exponent m satisfies

m = 1, for isothermal expansion

     = Cv/Cp, for adiabatic expansion

     = 0, for constant volume processes

     = ∞, for constant pressure processes                                          (1-8)

The quantity

c* =  m/p(x,y,z,t)                                                                      (1-9)

in the transient equation denotes a compressibility-like quantity; at least for
numerical purposes, the functional form in Equation 1-6 superficially resembles
a linear equation for pm+1(x,y,z,t), and it does allow algorithms developed for
linear flows to be extended nonlinearly with minimal effort.

Of course, Equation 1-6 is nonlinear; its solutions cannot be superposed,
except approximately, only if small linearized disturbances to a large mean
pressure are considered by linearizing c*(p) about a constant mean pressure.
Writing it in a form similar to Equation 1-4, as we have done, will of course
assist with its numerical integration.  We will consider Equation 1-6 as the most

general equation for single-phase flow in this book, where m = 0, c* = c for

liquids, while nonzero m’s and c* = m/p(x,y,z,t) apply to gases.  Equation 1-6 is
complicated for obvious reasons, and simplifications are usually made to render
the mathematics tractable.  When kx(x,y,z) = ky(x,y,z) = kz(x,y,z) = k(x,y,z),

say, the formation is said to be isotropic, with the consequence that transient
flows satisfy the nonlinear parabolic equation

∂{k(x,y,z) ∂pm+1/∂x}/∂x + ∂{k(x,y,z) ∂pm+1/∂y}/∂y

+ ∂{k(x,y,z) ∂pm+1/∂z}/∂z = φµc* ∂pm+1/∂t   (1-10)

If k(x,y,z) is constant , Equation 1-10 additionally simplifies to

∂2pm+1/∂x2 + ∂2pm+1/∂y2 + ∂2pm+1/∂z2 = (φµc*/k) ∂pm+1/∂t (1-11)

which is still nonlinear.  Only in the liquid m = 0 limit does Equation 1-11
become linear; and then, only when compressibility and porosity are constant
does it become amenable to classical analysis (e.g., using Laplace and Fourier
transforms, separation of variables, or superposition via Duhamel’s integral).
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Steady state flows of gases and constant density flows of liquids are
somewhat less complicated.  In steady flow, these equations become

∂{k(x,y,z) ∂pm+1/∂x}/∂x + ∂{k(x,y,z) ∂pm+1/∂y}/∂y

+ ∂{k(x,y,z) ∂pm+1/∂z}/∂z = 0       (1-12)

∂2pm+1/∂x2 + ∂2pm+1/∂y2 + ∂2pm+1/∂z2 = 0                         (1-13)

These equations are linear in pm+1.  Equation 1-13, the simplest of all the
mathematical models cited, is Laplace’s linear equation for the pressure function

pm+1(x,y,z).  For simplicity, auxiliary conditions on pressure can be written in

terms of pm+1 (as opposed to p ).  Again, the PDEs in this section must be
augmented by appropriate boundary and initial conditions as necessary.

LOGARITHMIC SOLUTIONS AND BEYOND

All of the above pressure equations are complicated; and given that
boundary conditions are typically prescribed on awkward near- and farfield
boundaries, it is no wonder that recourse to numerical models is often made.
Analytical approaches typically stop at the classical logarithmic solution for
pressure, which is restricted to purely radial flows, and progress no further.
However, two simple solutions, introduced here, can be leveraged to produce
large classes of solutions for flows past fractures and shales.  In most books, the
simple radial flow model for liquids in homogeneous, isotropic media is
discussed.  It is based on the parabolic and elliptic equations

∂2p/∂r2 + (1/r) ∂p/∂r = (φµc/k) ∂p/∂t,  for transient flow          (1-14a)
=  0, for steady flow                (1-14b)

For these two classical equations, there is no shortage of solutions (Carslaw and
Jaeger, 1959).  The best known solution is the steady state logarithmic solution

P(r) = A + B log r                                                                    (1-15)
for Equation 1-14b, where A and B are constants, and the r satisfies

r = √{x2 + y2}                                                                           (1-16)

Undoubtably, radial coordinates are “natural” to flows with radial symmetry.  So
it is “unnatural,” at least for now, to reconsider Equation 1-15 in the form

p(x,y) = A + B log √{x2 + y2}                                                 (1-17)

But precisely this unconventional thinking reaps the greatest benefit in dealing
with more general problems.  And just as the logarithm is natural to radial flow,
we can, via Cartesian coordinates as an intermediary vehicle, extend the utility
of this logarithmic solution to general fracture flows.

Coordinate systems, therefore, form a central underlying theme in this
book.  When presented correctly, they help us understand what types of
elementary solutions are available for modeling, what their properties are, and
what their potential uses might be.  In the next section, we will introduce a new
elementary solution, an arc tangent or θ model that is complementary to the
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above logarithm, to Laplace’s equation in polar coordinates; this solution is
important in modeling flows past impermeable shales.  Many authors suggest
that “Laplace’s equation is Laplace’s equation,” point to simple analogies, and
conclude brief discussions with obvious exercises in separation of variables and
linear transforms.  However, the connection between aerodynamics and Darcy
flow – and different solutions to Laplace’s equation – is subtle and deserves
further elaboration.

FUNDAMENTAL AERODYNAMIC ANALOGIES

Aerodynamic theory and Darcy flow modeling in porous media are similar
in one respect only: both derive from the Navier-Stokes equations governing
viscous flows (Milne-Thomson, 1958; Schlichting, 1968; Slattery, 1981).  We
emphasize this because the great majority of our new solutions derive from the
classical aerodynamics literature, but in a subtle manner.  Very often, the
superficial claim is made that, because petroleum pressure potentials satisfy
∂2p/∂x2 + ∂2p/∂y2 = 0, the analogy to aerodynamic flowfields, which satisfy
Laplace’s equation ∂2φ/∂x2 + ∂2 φ/∂y2 = 0 for a similar velocity potential, can be
readily drawn.  This is rarely the case, and let us examine the reasons why.

Navier-Stokes equations.  There are pitfalls in the preceding reasoning:
while true as far as the equation is concerned, the types of elementary solutions
used in applications are different.  To understand why, it is necessary to learn
some aerodynamics.  To be sure, the Navier-Stokes equations for Newtonian
viscous flows do apply to both, but different limit processes are at work.  For
clarity, consider steady, constant density, planar, liquid flows governed by

ρ(u ∂u/∂x + v ∂u/∂y) = -∂p/∂x + µ (∂2u/∂x2 + ∂2u/∂y2)           (1-18)

ρ(u ∂v/∂x + v ∂v/∂y) = -∂p/∂y + µ (∂2v/∂x2 + ∂2v/∂y2)           (1-19)

Here, u and v are Eulerian velocities in the x and y directions; µ and ρ are
constant fluid viscosity and density.  These equations contain three unknowns, u,
v, and the pressure p.  To determine them, the mass continuity equation

∂u/∂x + ∂v/∂y = 0                                                                (1-20)
is required.  These equations appear in dimensional and possibly misleading

form.  The usual practice is to introduce nondimensional variables p’ = p/ρU2,
u’ = u/U, v’ = v/U, x’ = x/L and y’ = y/L, based on a suitable set of reference

parameters: a length L, a flow speed U, and a dynamic head ρU2.  This rescaling
leads to the dimensionless momentum equations

u’ ∂u’/∂x’ + v’ ∂u’/∂y’ = -∂p’/∂x’ + Re-1 (∂2u’/∂x’2 + ∂2u’/∂y’2) (1-21)

u’ ∂v’/∂x’ + v’ ∂v’/∂y’ = -∂p’/∂y’ + Re-1 (∂2v’/∂x’2 + ∂2v’/∂y’2) (1-22)
where a single nondimensional number, the so-called Reynolds number

Re = ρUL/µ                                                                          (1-23)
measures the ratio of inertial to viscous forces (Schlichting, 1968; Slattery,
1981).  We now demonstrate how Laplace’s equation (we emphasize, for
different quantities) arises in different Reynolds number limits.
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The Darcy flow limit.  In reservoir engineering, Equations 1-1 and 1-2,
known as Darcy’s equations, apply (Muskat, 1937).  Historically, they were
determined empirically by the French engineer Henri Darcy, who observed that
the inviscid, high Reynolds number models then in vogue did not describe
hydraulics problems.  Darcy’s laws do not follow immediately from Equations
1-21 and 1-22, but they can be derived through an averaging process taken over
many pore spaces and, then, only in the low Reynolds number limit (Batchelor,
1970).  If Equations 1-1 and 1-2 are substituted in Equation 1-20 and if constant
viscosities and constant isotropic permeabilities are further assumed, Laplace’s
equation ∂2p/∂x2 + ∂2p/∂y2 = 0 for reservoir pressure p(x,y) follows.  Now let us
derive the Laplace’s equation used in aerodynamics.

The aerodynamic limit.  Inviscid aerodynamics, the study of nonviscous
flow, is obtained by contrast in the limit of infinite Reynolds number.  In this
limit, Equations 1-21 and 1-22 become

u’ ∂u’/∂x’ + v’ ∂u’/∂y’ = -∂p’/∂x’                                             (1-24)

u’ ∂v’/∂x’ + v’ ∂v’/∂y’ = -∂p’/∂y’                                             (1-25)

In airfoil theory, the inviscid assumption (with several exceptions in stratified
and compressible flows, e.g., see Yih, 1969) requires that all fluid elements that
are initially “irrotational” will remain irrotational in the absence of viscosity;
that is, they do not rotate about their axes as they would on account of viscous
shearing forces.  This kinematic requirement is expressed by either of

∂u’/∂y’ - ∂v’/∂x’ = 0                                                            (1-26a)

∂u/∂y - ∂v/∂x = 0                                                              (1-26b)
Equations 1-26a and 1-26b apply to Darcy flows, too, for example, substitution
of Equations 1-1 and 1-2 into Equation 1-26b shows how “0 = 0” holds.  Now,

Equations 1-24 and 1-26a combine to give ∂{p’ + ½ (u’2 + v’2)}/∂x = 0, while

Equations 1-25 and 1-26a yield ∂{p’ + ½ (u’2 + v’2)}/∂y = 0.  The first result
implies that the quantity in curly brackets is independent of y, while the second

implies that it is independent of x.   Hence p’ + ½ (u’2 + v’2) must be the same
constant throughout the entire flowfield, one that is in turn determined from
known upstream conditions.  Returning to dimensional variables, we have the
well-known Bernoulli equation relating pressure to velocity,

p(x,y) + ½   ρ  {u(x,y)2 + v(x,y)2 }= constant                          (1-27)

which we emphasize does not apply to Darcy flows (again, the latter satisfy
∂2p/∂x2 + ∂2p/∂y2 = 0 or the generalizations listed earlier).

In so-called “analysis” problems when the airfoil shape is given, pressure
is the quantity of interest used to calculate airfoil lift or turbomachinery torque
once surface velocities are known.  At this point, though, the velocities u and v
are still unknown.  Equation 1-26b suggests that we can write, without loss of
generality,

u(x,y) = ∂φ(x,y)/∂x                                                      (1-28)

v(x,y) = ∂φ(x,y)/∂y                                                      (1-29)
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since the substitution of Equations 1-28 and 1-29 in Equation 1-26b leads to an
acceptable 0 = 0.  When Equations 1-28 and 1-29 are substituted in Equation 1-
20, which describes mass conservation, we obtain the Laplace equation

∂2φ/∂x2 + ∂2φ/∂y2 = 0                                                       (1-30)

for the velocity potential φ(x,y).  Equations 1-28 and 1-29 are not unlike
Equations 1-1 and 1-2, while Equation 1-30 resembles the Darcy equation
∂2p/∂x2 + ∂2p/∂y2 = 0.  One might be inclined to view p(x,y) as a pressure
potential and draw obvious analogies, but the aerodynamics potential possesses
very different properties.  Before discussing them, we cite the results in three
dimensions.  Simple extensions yield u = ∂φ/∂x, v = ∂φ/∂y, w = ∂φ/∂z, and
∂2 φ/∂x2  + ∂2 φ/∂y2 + ∂2 φ/∂z2 = 0, and p + ½ ρ {u2 + v 

2 + w 

2} = constant,
assuming steady, constant density, irrotational flow.  This system and suitable
boundary conditions are used to model the lift and “induced drag” associated
with the nonviscous flow component in low-speed incompressible flows.

Validity of Laplace’s equation.   Since Laplace’s equation, that is,
Equation 1-13 for the Darcy pressure and Equation 1-30 for the inviscid
aerodynamic potential, arise in both problems as a result of different physical
limits, it is of interest to ask when the approximate models apply and why.  This
understanding is crucial to the translation process alluded to earlier, so that
“fixes” used in aerodynamics, which may be inappropriate to Darcy flows, can
be removed if and when they are present.  It is especially important because the
analogies presupposed by nonspecialists are sometimes not analogous at all.

Figure 1-2 shows a typical streamline in the Darcy flow beneath a dam; the
sketch is based on photographs of sand model experiments, with sheet pilings at
“heel alone” and “heel plus toe” (e.g., see Muskat, 1937).  The complete
streamline pattern can be predicted quite well using the planar, liquid limit of
Equation 1-13, so that the solutions apply to all oncoming flow angles up to a
sharp 180o (refer to the book for detailed drawings).  Thus, Equation 1-13
appears to be generally valid for all low Reynolds number flows.  Figure 1-3
shows a flat plate airfoil at a not-so-small “angle of attack” or flow inclination
relative to the oncoming fluid.  The creation of eddies at the trailing edge, which
increase in size with increasing angle, is indicated.

Streamlines
attached

and corners
after bends

Figure 1-2.  Darcy flow streamline beneath dam.
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Figure 1-3.  Inviscid flow streamlines past thin airfoils.

The viscous effects in Figure 1-3 require an analysis using the full unsteady
Navier-Stokes equations; they cannot be modeled using Equation 1-30.  But
Equation 1-30 is meaningful for small flow inclinations, say, less than 10o.
When this is the case, it admits an infinity of solutions, each corresponding to a
different position of the aft stagnation point C.  This position is fixed and the
solution rendered unique by forcing C to coincide with the trailing edge location
D.  This so-called Kutta-Joukowski theorem allows Equation 1-30 to mimic
solutions of the more rigorous Navier-Stokes model.  That solutions to Laplace’s
equation are not unique may not be well known to petroleum engineers, who are
accustomed to dealing with log r solutions.  This nonuniqueness is related to the
existence of θ solutions, usually reserved for advanced math courses.  These
elementary solutions, discussed briefly next and in Chapter 3, are important to
modeling impermeable flow barriers like shale lenses.

Different physical interpretations.  Several important points must be
emphasized when translating aerodynamics results into petroleum solutions.
First, with respect to the preceding comments, the additional “circulatory” flow
associated with the Kutta condition must be subtracted out before airfoil
solutions can be applied to flows past impermeable shales.  Second, not all
aerodynamics solutions contain Kutta conditions; the results for fractures
derived in Chapter 5, for example, are taken from slender body crossflow theory
where circulatory solutions are not needed.  Third, in aerodynamics, the airfoil
surface is a streamline of the flow having a constant value of the streamfunction,
supporting variable pressure; in Darcy fracture flows, the fracture surface is not
a streamline, but pressure is (or may be) constant along it.  On the other hand,
shale surfaces do represent streamlines, although Kutta’s condition does not
apply.  Careful attention to the physics is obviously required.

The Darcy pressure p and the aerodynamic potential φ appear to be similar,
at least superficially, since velocities in both cases are obtained by taking
derivatives; in this sense, they are, mathematically at least, potentials.  But the
key differences are significant: the potential φ is not a physical quantity like
pressure or velocity; it is an abstract, generally multivalued entity, so defined in
order to model the effects of lift.  Second, pressures are obtained from
Bernoulli’s equation (see Equation 1-27), which does not apply to Darcy flows.
Other solutions used in this book contain similar pitfalls; for example,
“analogous” heat transfer solutions with embedded insulators, which allow
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double-valued temperatures through thin surfaces, and bed interfaces in
electrodynamics, which allow double-valued electric fields.  The reader bent on
studying the interdisciplinary literature should be aware that the translation
process is not as straightforward as it may appear and that a detailed
understanding of the physics is crucial.   We now introduce the notion of
double-valued functions in the aerodynamics context.  Properties of the arc tan
singularity, one that plays a role equally important to log r, are developed, which
will be used extensively in Chapter 3 to model flows past shale distributions.

Meaning of multivalued solutions.  We summarize our results thus far.
First, the velocities in aerodynamics are obtained by solving Laplace’s equation
for the velocity potential, subject to kinematic “no flow through the surface”
boundary conditions related to u, v, and φ(x,y), plus Kutta’s condition at the
trailing edge.  Then, pressures are obtained from Equation 1-27, where the
integration constant is evaluated from known ambient conditions at infinity
upstream.  Aerodynamicists work with a dimensionless pressure coefficient

Cp = (p - p∞)/(1/2 ρU∞
2)                                                        (1-31)

where U∞ is the free stream speed; later, x is the coordinate parallel to the
horizontal airfoil chord.  The velocity potential φ(x,y) is usually expanded in a
regular expansion (van Dyke, 1964) about free stream conditions, taking

φ(x,y) = U∞x + φ(0) (x,y) + higher order terms                            (1-32)

where U∞x represents uniform flow effects.  To leading order, for sufficiently
thin airfoils, the disturbance potential and the pressure coefficient satisfy

∂2φ(0) /∂x2 + ∂2φ(0) /∂y2 = 0                                                   (1-33)

Cp = (p - p∞)/ (1/2 ρU∞
2) ≈ - 2{∂φ(0) (x,y)/∂x}/U∞                    (1-34)

Now, the lift, or upward force that raises airplanes off the ground, is
proportional to the line integral of the pressure coefficient taken over both upper
and lower airfoil surfaces.  But ∫ ∂φ(0) (x,y)/ ∂x dx is just φ(0)(x,y).  And since the
integration variable x traverses from left to right and then right to left, returning
to the starting point, the integral must, one might prematurely conclude, vanish
identically – implying incorrectly that lift is impossible!

One way to understand this inconsistency is to rewrite Equation 1-27 in

cylindrical coordinates, take p + ½ ρ{(∂φ/∂r)2 + 1/r2 (∂φ/∂θ )2} = constant and
consider the lifting flow past a circle, which can be conveniently mapped into
any airfoil.  If φ is independent of the angle θ, then φ = φ(r) only: the resulting
flow symmetry implies that no resultant force acts.  Thus, the key to modeling
lift lies in using multivalued θ solutions to Laplace’s equation.  The original
fallacy lies in the fact that the log solution (i.e., φ(0)(x,y)  = log r) as one might
have for Darcy’s radial flow equation, is not the only type of permissible
solution.  If we recognize that Equation 1-33 can be equivalently expressed as

∂2φ(0)/∂r2 + (1/r) ∂φ(0)/∂r + (1/r 
2) ∂2φ(0)/∂θ2 = 0                      (1-35)

in cylindrical coordinates, then it is obvious that another solution for the
potential takes the form
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φ(0) = θ = arc tan (y/x)                                                              (1-36)
This arc tan solution is multivalued: when the required line integral is taken,
with x returning to its starting point, the value of the angle θ goes from 0, say, to
2π, resulting in the desired nonzero lift integral.

In summary, aerodynamicists and mathematicians employ superpositions
using two types of elementary solutions, namely, logarithms and arc tans.  The
correct multiple of the latter function is determined by “Kutta’s condition”
(Milne-Thomson, 1958; Yih, 1969), simulating smooth flow from the trailing
edge, as if the Navier-Stokes equations themselves had been solved.  Thus, to
use the results of so-called aerodynamic “analysis” models in Darcy pressure
formulations, the level of “circulation” (that is, a suitable multiple of θ, which
does not apply to Darcy flows) must be subtracted out.

Analogies from inverse formulations.  In the preceding, the word
“analysis” was added to emphasize aerodynamic analogies where airfoil
geometry is specified and pressures are to be obtained.  In addition to analysis
problems, aerodynamicists work with inverse problems, where surface pressures
are given and geometric shapes are desired.  The governing dependent variable,
the streamfunction Ψ, also satisfies Laplace’s equation in the simplest limit; and
as before, there are log r and arc tan solutions associated with inverse problems.
To take advantage of the complete suite of formulations offered by modern
aerodynamic theory, we need to understand how inverse solutions are
constructed and how they can be undone for petroleum reservoir analysis.

Let us reconsider Equation 1-30, and rewrite it in the conservation form
∂ (∂φ/∂x)/∂x + ∂ (∂φ/∂y)/∂y = 0.  Then, it is clear that we can introduce a
function Ψ satisfying ∂φ/∂x = ∂Ψ/∂y and ∂φ/∂y = -∂Ψ/∂x, since back

substitution implies that ∂2Ψ/∂x∂y = ∂2Ψ/∂y∂x, which is always true.  However,

these definitions also imply that ∂2Ψ/∂x2 + ∂2Ψ/∂y2 = 0; thus, associated with
every potential is a complementary streamfunction.  A streamline is defined by a
simple kinematic requirement: its slope is tangent to the local velocity vector, or
dy/dx = v/u, where the right side can be written as ∂φ/∂y/∂φ/∂x.  This  term is
simply -∂Ψ/∂x/∂Ψ/∂y.  Thus the total derivative satisfies dΨ = ∂Ψ/∂x dx +
∂Ψ/∂y dy = 0, so that Ψ is constant along a streamline.  Now, since the airfoil
surface itself is a streamline, it must be a contour along which Ψ does not vary,
and one might conclude that Ψ must be a log r type of single-valued function.

In many cases, this interpretation is correct, but numerous modeling
advantages are possible by taking Ψ as a double-valued arc tan function.  If this
is pursued, the upper and lower surfaces of any calculated geometry must
represent different streamlines: this is possible only if the trailing edge is opened
and mass issues from it into the downstream flow.  Of course, airfoils do not
open and “spill” flow in practice, not intentionally anyway!  But the mass that
streams from this fictitious source does model the thick viscous wakes left
behind by thick airfoils, or by thin airfoils at high angles of attack, which more
often than not act as physical extensions of the airfoil (Chin, 1979, 1981, 1984;
Chin and Rizzetta, 1979).  Again, inverse aerodynamic solutions also provide a
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source for new petroleum results, but their nonuniquenesses must be carefully
interpreted and exploited if physically meaningful reservoir engineering results
are to be obtained.

PROBLEMS AND EXERCISES

1. Consider Laplace’s equation ∂2F/∂x2 + ∂2F/∂y2 = 0 for F(x,y).  Verify by
differentiation that the following functions are solutions:  (1) log √(x2 + y2),

(2) arc tan (y/x), (3) log √{(x-ξ)2 + (y-η)2}, and (4) arctan {(y-η)/(x-ξ)},
where ξ and η are constants.  What are their mathematical properties?  Why
are these referred to as “elementary singularities”?  Why are arbitrary linear
combinations (or superpositions) of these also solutions?  How are the
Greek constants interpreted?

2. Now consider the double integral ∫∫ f(ξ ,η) log √{(x-ξ)2 + (y-η)2} dξdη,
where constant limits are assumed.  Verify that this integral is also a
solution to Laplace’s equation ∂2F/∂x2 + ∂2F/∂y2 = 0.  How does this
integral behave in the farfield?  What are the implications of this result?
How might this solution be used in modeling 3D flows containing localized

fractures?  Repeat this exercise with ∫∫ g(ξ ,η) arctan {(y-η)/(x-ξ)} d ξ dη .

3. Constant density, one-dimensional liquid flows in linear cores satisfy

d2p/dx2 = 0. Now, consider the in series flow through two linear cores
having unequal lengths and different permeabilities. The left side is held at
pressure pleft, while the far right is held at pressure pright.  The differential
equations break down at the core interface because the first derivative of
pressure is discontinuous.  What matching conditions are required at this
boundary to define a unique solution? What do these conditions mean
physically? Write the solution for the complete boundary value problem,
and explain its significance in reservoir engineering and its relevance to
effective properties analysis. Define the effective permeability of the
system, derive its value in analytical form, and state very clearly all of the
assumptions used in the derivation.  Would this effective value be useful in
transient problems?  Immiscible flow problems?  Gas flows?

4. Rederive the solution in (3) to allow general continuous distributions of the
permeability k(x) and show how the solutions correctly reduce to the
constant permeability result.

5. Suppose, in the preceding problems, that the linear cores are characterized
by two different porosities as well.  What issues are important to effective
properties when modeling production rate is important?  When modeling
tracer arrival times?  What is the difference between the Eulerian velocity at
a point versus the Lagrangian velocity following a particle?

6. Reconsider Exercises 3, 4, and 5 in the context of cylindrical radial flows

satisfying d2p/dr2 + 1/r dp/dr = 0.  Do the solutions and effective properties
defined using them apply in transient compressible flows?  Gas flows?
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2
Fracture Flow Analysis

Several new mathematical techniques are introduced to model flows from
single straight-line fractures, using different boundary conditions.  These
methods are useful in the simulation of flow from massive hydraulic fractures
and from horizontal wells that penetrate natural fracture systems.  Fracture flows
are often treated numerically.  Here, we will use rigorous singular integral
equation methods to obtain closed-form solutions, first for liquids, and next for
gases.  Regular perturbation techniques are then introduced and used to extend
thin fracture solutions to handle the effects of thickness.  Elementary solutions
are obtained, explained in clear terms, and generalized step-by-step.  Flows from
more complicated fracture systems will be discussed in Chapter 5.

Example 2-1.  Single straight-line fracture in an isotropic
circular reservoir containing incompressible fluid.

Given the geometric simplicity, it is surprising that closed-form solutions
have not been available earlier, in view of the problem’s practical significance.
Here, a completely arbitrary specification of pressure along the fracture length is
allowed.  Thus, the results can be used to model less-than-ideal proppant-
induced effects that may arise in stimulation by massive hydraulic fracturing or,
perhaps, to model non-Darcy flows along mineralized fractures penetrated by
horizontal and deviated wells.  The analytical solutions importantly reveal
velocity singularities at the fracture tips.  These edge singularities, well known
in aerodynamics and elasticity, reveal the complex nature of the flow and
suggest caution with numerical schemes.
 Formulation.   We consider the flow of an incompressible liquid from (or
into) a single straight-line fracture of length 2c, centered in a circular reservoir
of radius R >> c, as shown in  Figure 2-1a.  The pressure P(X,Y) assumed along
the fracture -c ≤ X ≤ +c, Y = 0 is the variable function Pref pf 

(X/c), where Pref is a
reference level and p f is dimensionless.  The pressure at the farfield boundary is
a constant PR.  For a uniform isotropic medium, P(X,Y) satisfies the Dirichlet
boundary value problem

∂2P/∂X2 + ∂2P/∂Y2 = 0                                                          (2-1)

P(X,0) = Pref pf (X/c), -c ≤ X ≤ +c                                            (2-2)

P(X,Y) = PR, X2 + Y2 = R2                                                  (2-3)
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for Laplace’s equation.  Since p f 
(X/c) is variable, conformal mapping methods

(see Chapter 5) are not convenient and alternative solutions are sought.  In the
stimulation literature, pf 

(X/c) is often assumed to satisfy Darcy’s law; in one
dimension, for example, Darcy’s governing equation for pressure reduces to

d2pf /dX2 = 0.  This may well be true for certain flows.  But to allow more
general possibilities, we will not restrict the dependence of p f on X/c.

- c                        + c

Y

X

Pref pf (X/c) R

PR / P ref

- 1                        + 1

p f (x)

PR

x

y

R/c

(a) (b)

Figure 2-1.  Centered straight fracture formulations.

The use of infinitesimally thin “slits” for fracture flow modeling, due
originally to Muskat (1937, 1949), describes the physics accurately.  The
aerodynamic analogy is thin airfoil theory, where boundary conditions are
assigned along straight lines (Ashley and Landahl, 1965; Bisplinghoff, Ashley,
and Halfman, 1955).  Slit models are appropriate to fracture analysis since
typical fractures are thin.  The model is actually less useful in airfoil theory,
since local corrections must be used to account for blunt leading edges.

We will consider the effects of nonzero thickness in Example 2-3, where
high-order corrections for thickness (or more precisely, open fracture effects)
are developed.  The basic slit solution is considered here.  For convenience,
introduce the nondimensional variables x, y, and p, defined by

x =X/c                                                                                  (2-4)

y = Y/c                                                                                  (2-5)

P(X,Y) = Pref  p(x,y)                                                                (2-6)

The dimensionless pressure p(x,y) is defined between the circle x2 + y2 = (R/c)2

and the fracture -1 ≤ x ≤ +1, y = 0 in Figure 2-1b.  Equations 2-1 to 2-3 become

∂2p/∂x2 + ∂2p/∂y2 =  0                                                            (2-7)
p(x,0) = p f (x),  -1 ≤ x ≤ +1                                                       (2-8)

p(x,y) = PR/Pref,  x2 + y2 =  (R/c)2                                           (2-9)

Recourse to numerical methods is understandable, given the variability in pf(x)

and the finite size of the reservoir.  Fortunately, this is not necessary.
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Singular integral equation analysis.  A closed form analytical solution
can be obtained.  We use results from thin airfoil theory (e.g., Ashley and
Landahl, 1965) and singular integral equations (Muskhelishvili, 1953; Gakhov,
1966; Carrier, Krook and Pearson, 1966).  Now the standard log r source

solution, centered at the origin r = √(x2 + y2) = 0 solves Equation 2-7.  Thus,

log √{(x-ξ)2 + y2} centered at x = ξ, y = 0 also satisfies Laplace’s equation,
where ξ represents a shift in the choice of origin.

Now, ξ can be viewed as a general point source position over which the
effects of numerous sources can be summed.  But rather than examining
multiple discrete point sources, we examine continuous line source distributions
placed along the fracture to represent it.  This is clearly the situation physically;
many simulators model fractures using point sources, which allow fictitious
flow between points.  We consider the superposition
 +1

p(x,y) = ∫ f(ξ) log √{(x-ξ)2 + y2} d ξ + H                                  (2-10)
-1

This integral satisfies Equation 2-7 for pressure, since the governing equation is
linear.  Physically, Equation 2-10 represents the pressure for a continuously
distributed line source, where H is a crucial integration constant.

The problem reduces to finding solutions for H and the distributed source
strength f(x) that yield pressures satisfying Equations 2-8 and 2-9.  Let us first
combine Equations 2-8 and 2-10 to obtain

+1

∫ f(ξ) log |x-ξ| d ξ =  pf(x) - H                                                (2-11)
-1

and, for the moment, assume that H is known.  Then, when the fracture pressure
is specified, Equation 2-11 provides the desired singular integral equation for the
unknown source strength f(x).  It is important to note that, in the case of discrete
wells with p = A log r + B, it is not possible to evaluate the pressure at r = 0
without having it become singular.  For continuous distributions of sources,
however, the result is finite because of interference effects.

Unlike a partial differential equation such as Equation 2-7, an integral
equation involves unknown functions that fall within the integrand (Garabedian,
1964; Hildebrand, 1965; Mikhlin, 1965).  And since the kernel (the function
multiplying the unknown) in this case contains a logarithmic singularity at x = ξ,
Equation 2-11 is known as a singular integral equation.

The formulations posed by Equations 2-7 and 2-11 are equivalent since
superpositions of elementary solutions, which involve no additional
assumptions, are used without loss of generality.  Integral equation methods
were not available to Muskat and his contemporaries; they were developed in
aerodynamics and elasticity after the publication of his classic textbooks.  The
advantage in using Equation 2-11 is a practical one: its completely analytical
solution is available and is known as Carleman’s formula (Carrier, Krook and
Pearson, 1966; Estrada and Kanwal, 1987).  In fact, for the general equation
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+1

∫ f(ξ) log |x-ξ| d ξ = g(x)                                                       (2-12)
-1

Carleman, using complex variables methods, derives the exact solution
+1

f(x) = [PV∫{g’(ξ)/(ξ-x)}√(1-ξ2) dξ
-1 +1

- (1/ loge2) ∫ g(ξ)/√(1-ξ2) dξ] /{π2√(1-x2)} (2-13)
-1

where g’(ξ) is the derivative of g(ξ) with respect to ξ .
The first integral in Equation 2-13 is known as an improper or singular

integral because it is infinite or singular at ξ = x.  Its interpretation as a Cauchy
principal value (hence, the PV prefix) is given in calculus textbooks (Thomas,
1960); we will illustrate with examples later.  The e subscript is retained in
loge2 for emphasis; all logarithms in this book are natural ones.  The second

integral, somewhat complicated, is a standard look-up integral.
Specializing Carleman’s results to fracture flow.  In our particular

problem, we identify, using Equations 2-11 and 2-12 that

g(x)  =  pf(x) - H                                                                      (2-14)

and immediately obtain the source strength
+1

f(x) = [PV∫ {pf ’(ξ)/(ξ-x)}√(1-ξ2) dξ    (2-15)
-1 +1

       - (1/ loge2) ∫ pf (ξ)/√(1-ξ2) dξ ] /{π2√(1-x2)}+ H/{π loge2√(1-x2)}

-1
This still contains the unknown constant H.  To determine it, return to the

complete expression for pressure in Equation 2-10 and apply the farfield
boundary condition of Equation 2-9.  We therefore have

+1

p(x,y) = ∫ f(ξ) log √{(x-ξ)2 + y2} d ξ + H
 -1

+1

= ∫ f(ξ) log √{x2 + y2 - 2xξ + ξ2} d ξ + H                    (2-16a)
-1

or, at distances large compared to the fracture length 2c, noting that |ξ| ≤ 1 is
bounded, the asymptotic result

+1

p(x,y) = ∫ f(ξ) log √{x2 + y2} d ξ + H
-1
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+1

= ∫ f(ξ) d ξ log r + H                                               (2-16b)
                       -1
where r = √{x2 + y2} is the conventional radial coordinate.

Equation 2-16b states that the flow behaves radially in the farfield as if it
had been produced by a point source with the cumulative strength

+1

∫   f(ξ) dξ (2-16c)
-1

of our distributed line source.  If this collapses to a discrete point, f(ξ) is
proportional to the Dirac delta function δ(ξ).  Since the integral

+1

∫ δ(ξ) dξ (2-16d)
-1

is exactly 1 (e.g., see Garabedian, 1964 or Lighthill, 1958), the integral in
Equation 2-16b is a constant and, in particular, the one familiar from radial flow
theory.  This limit reproduces classical single well results.  Now let us combine
Equations 2-9 and 2-16b.  This leads to

+1

PR/Pref = H + {log R/c} ∫ f(x) dx                                          (2-17)
                                         -1
where we have changed the integration variable from ξ to x.  Next substitute the
expression for f(x) in Equation 2-15 into Equation 2-17.  The result is

PR/Pref = H + {log R/c} ∫  f(x) dx

               = H + {log R/c} [ ∫ PV ∫{pf’(ξ)/(ξ-x)}√(1-ξ2) dξ /{π2√(1-x2)} dx

                        - ∫ (1/ loge2) ∫ pf(ξ)/√(1-ξ2) dξ /{π2√(1-x2)} dx

                        + {H/(π loge2)}∫ dx /√(1-x2)]                      (2-18)

where the limits (-1,+1) are omitted for clarity.  Each of the double integrals in
Equation 2-18 represents a constant.  To simplify our notation, we introduce

I1  =  ∫ PV ∫{pf ’(ξ)/(ξ-x)}√(1-ξ2) d ξ /{π2√(1-x2)} dx              (2-19)

I2  =  ∫ (1/loge2) ∫ pf(ξ) /√(1-ξ2) dξ / {π2√(1-x2)} dx               (2-20)

and evaluate the integral involving H to obtain
PR/Pref   =  H + (log R/c) { I1 - I2 + H/loge2 }                      (2-21)

Hence, it follows that
H  =  {PR/Pref - (I1 - I2 ) log R/c } / {1 + (log R/c)/loge2}        (2-22)

The source strength f(x) and the constant H are now completely fixed.  Note that
H depends on all of the flow parameters, including the dimensionless ratios
PR/Pref and R/c.  Also note from Equation 2-11 that the f(x) cannot be
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determined without H; that is, f(x) depends on the complete geometry of the
reservoir and the pressure levels at its boundaries.  The role of the constant H in
Equation 2-10, as we will show, is no insignificant matter.

Physical meaning of f(x).  We digress to consider several properties of
f(x).  An understanding of f(x) and its relationship to local velocity helps to
improve numerical formulations for more complicated fracture geometries and
assists in posing and solving fracture problems governed by other boundary
conditions.  Let us return to the expression for pressure in Equation 2-10 and
differentiate it with respect to the vertical coordinate y normal to the fracture.

+1

∂p(x,y)/∂y = ∂/∂y { ∫  f(ξ)  log √{(x-ξ)2 + y2} d ξ + H}                  (2-23)
                                   -1
                             +1

                       = y ∫ f(ξ)/{(x-ξ)2 + y2} d ξ (2-24)
                            -1
Following the limit process in Yih (1969), introduce the change of coordinates

η  =  (ξ - x)/y                                                                            (2-25)
so that
                        η+

∂p(x,y)/∂y = ∫   f(ξ)/(1 + η2 ) dη                                                (2-26)

                       η-
Now for small positive y’s, we find that on using Equation 2-25 (written in the
form x = ξ - ηy), the vertical derivative satisfies
                          + ∞

∂p(x,0+)/ ∂y = ∫  f(ξ)/(1 + η2) dη = π f(x)                                 (2-27)

                            - ∞
Similarly, for small negative y’s, we obtain

∂p(x,0-)/ ∂y  =  -π f(x)                                                             (2-28)
Hence,

∂p(x,0+)/ ∂y - ∂p(x,0-)/∂y  =  2π f(x)                                          (2-29)
Equations 2-27 and 2-28 are also easily combined to show that

∂p(x,0+)/ ∂y  =  - ∂p(x,0-)/ ∂y                                                     (2-30)
that is, the vertical Darcy velocities on either side of the slit are antisymmetric.
This antisymmetry is a consequence of the physics: the velocities are equal and
opposite, and the streamline pattern is therefore symmetric about the x axis.
Equation 2-30 shows how, when a distribution of logarithmic singularities is
assumed as in Equation 2-10, the normal derivative of the function “jumps” or is
discontinuous through the slit.  The pressure itself does not jump, because
setting y = 0 in Equation 2-10 provides a single-valued p(x,0) on the x axis.

Since the derivative ∂p(x,0+)/∂y, via Darcy’s law, is proportional to the
vertical velocity into the fracture, it goes without saying that the source strength
f(x) is directly proportional to the y-component of velocity at y = 0.  This allows
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us to write a simple formula connecting the dimensionless source strength f(x) to
the dimensional total volume flow rate Q issuing from (or into) the fracture.  Let
us now introduce the isotropic formation permeability k, the fluid viscosity µ,
and the depth into the page D.  Then, it is clear that

X = + c

Q = D ∫ 2 (-k/µ) ∂P(X,Y=0+)/ ∂Y dX                                         (2-31)
                X = -c

where the factor of two accounts for both sides of the fracture, the integration is
performed over the entire length 2c, and (-k/µ) ∂P(X,Y =  0+)/ ∂Y is the Darcy
velocity normal to the fracture.  Using Equations 2-4 to 2-6, it follows that
∂P/∂Y = (Pref /c) ∂p/∂y, and hence,

                    x = +1

Q = D ∫ 2 (-k/µ)  (Pref/c) ∂p/∂y (x,0+)  c dx  (2-32)

                 x = -1
                                    x = +1 x=+1

  =  -Pref (Dk/µ) ∫ 2 ∂p/∂y (x,0+) dx = - 2Pref (Dkπ/µ) ∫  f(x) dx

                                   x = -1 x=-1
where we have employed Equation 2-27.

An alternative problem might call for a prescribed total volume flow rate Q
subject to constant pressure along the fracture.  In this case, a series of problems
would be initially solved to produce a parametric Q = Q(Pf  

) relationship for later

interpolation.  Equation 2-32 relates the dimensional volumetric flow rate to the
dimensionless integral of source strength f(x) over fracture length, where f(x) is
known from Equation 2-13.  Also, at the fracture, the relationship between the
dimensional vertical Darcy velocity V(X,Y=0+) and the source strength is

V(X,Y=0+) =  (-k/µ) ∂P(X,Y = 0+)/∂Y
                         =  (-k/µ) (Pref /c) ∂p/∂y(x,0+)

                         =  (-πk/µ) (Pref /c) f(x)                                         (2-33)

where we have used Equation 2-27.
Remark on Muskat’s solution.  We have given the closed form solution,

but several subtleties deserve further discussion.  The first concerns volumetric
calculations for Q using Equation 2-32.  We observe that the fracture half-length
c and the farfield reservoir pressure PR do not explicitly appear in that formula,

but their effects do appear implicitly through our solution for the constant of
integration H.  That is, all nearfield and farfield effects are properly accounted
for by using H and f(x) as determined, respectively, by Equations 2-22 and 2-15.

Suppose that we had not allowed for the existence of H in Equation 2-10.
Then it is clear from Equation 2-11 that the source strength f(x) would depend
on the fracture pressure pf(x) only; that is, not on, say, c, since c does not appear

at all in Equation 2-11.  It would follow, using Equation 2-32, that the total flow
rate Q can be obtained independently of the value of c.  This incorrect result
would be a consequence of not accounting for H.  The loss of the required
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second degree of freedom in what is essentially a two-point boundary value
problem, in fact, precludes farfield boundary conditions from being satisfied.

For example, one would not solve radial flow with d2P/dr2 + 1/r dP/dr = 0,
P(rwell) = Pwell and P(r farfield) = Pfarfield using P(r) = A log r only.  The correct

choice is P(r) = A log r + H where A and H are determined from coupled
equations developed from both boundary conditions.  Thus, it is not so much
that one integration constant handles the nearfield, with the other handling
farfield conditions; both are simultaneously required to handle nearfield and
farfield interactions.  The solution of Muskat (1937) is not valid in the foregoing
sense.  His pressure formula, which satisfied constant fracture pressures, was
obtained as the real part of a complex analytic function of z (refer to Discussion
4-6 in Chapter 4).  But farfield conditions were ignored, leading to an
incomplete pressure solution and a volumetric flow rate that was independent of
fracture length.  This incorrect rate was then renormalized in an ad hoc manner
to show some dependence on pressure drop. A pressure solution for large R
must be handled as the limit of a two point boundary value problem; however,
Muskat does correctly model clusters of discrete wells in a circular field.

Velocity singularities at fracture tips.   The  result  in Equation 2-33
demonstrates that the vertical velocity at the fracture is proportional to the local
source strength.  This is important numerically.  Since Equation 2-15 yields a
square root singularity in f(x) at both ends of the fracture, it follows that both tip
velocities are locally infinite.  The integral in Equation 2-32 nevertheless exists
because square root singularities are integrable (Thomas, 1960).  Localized
infinities do not necessarily cause integrals to diverge, e.g., the area under the
curve y = 1/√x (which “blows up” at x = 0) from x = 0 to x = 1 is exactly 2.

To be accurate, any numerical method must be capable of predicting this
infinite pressure gradient (e.g., the computational solutions in Chapter 7); but
this is impossible, since any such prediction is bound to cause numerical
instability.  Thus, one is torn between finely gridding both fracture tips to model
reality, or doing the opposite to preserve stability.  This dilemma means that an
upper bound to accuracy limits the usefulness of computational schemes.  This
is also the case with transient flow simulations from fractures, important in well
testing, where analogous edge singularities exist.  These have not been discussed
in the literature, let alone properly modeled.  This edge singularity is known to
aerodynamicists.  In wing design, it does not really exist because leading edges
are rounded (the radius of curvature is small but not negligible compared with
the chord c).  Local edge corrections, obtained using matched asymptotic
expansions (van Dyke, 1964), are introduced to correct the fictitious singularity.
But in reservoir flow, line fractures do exist and the singularity is real.

Streamline orientation.  We conclude with remarks on local streamline
orientation.  Our asymptotic log r expansion far away from the fracture shows
that the flow behaves radially when R >> c (see Equation 2-16b).  In Chapter 4,
we prove that in a uniform isotropic medium, streamlines and lines of constant
pressure are orthogonal.  Thus, when the fracture pressure is a prescribed
constant, the flow at the fracture is everywhere perpendicular to it, except at the
tips.  However, when p f(x) varies with x, this orthogonality is lost; any scheme
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assuming local orthogonality is incorrect.  Of course, the foregoing solutions can
be used to predict local flow inclinations; such results apply qualitatively even in
the presence of distant wells, fractures, and boundaries, effects considered later.

Example 2-2.  Line fracture in an anisotropic reservoir with
incompressible liquids and compressible gases.

Having demonstrated the power and elegance behind the use of distributed
line sources and the use of singular integral equations, we now consider a
slightly more complicated example involving incompressible liquids and
compressible gases in anisotropic reservoirs under steady-state flow conditions.
This second example will illustrate the flexibility of the thin airfoil technique.
But it will also reveal the weaknesses inherent in analytical approaches and why
a well formulated numerical method is necessary.

General formulation.  Consider the flow from (or into) a straight-line
fracture of length 2c, centered in a circular reservoir of radius R >> c, as in
Figure 2-1.  The pressure P(X,Y) assumed on the fracture -c ≤ X ≤ +c, Y = 0 is
the function Pref  pf(X/c), where Pref is constant and pf is dimensionless.  The

pressure at an assumed elliptical farfield boundary (see Equation 2-36) is a
constant PR.  For an anisotropic medium, P(X,Y) satisfies the Dirichlet problem

∂(kx ∂Pm+1/∂X)/∂X + ∂(ky  ∂Pm+1/∂Y)/∂Y = 0                        (2-34)

P(X,0) = Pref pf(X/c), -c ≤ X ≤ +c                                          (2-35)

P(X,Y) = PR,  X2 + (kx/ky) Y2 = R2                                     (2-36)

where the permeabilities kx and ky parallel and perpendicular to the fracture

depend on (X,Y).  The ellipse is a requirement of the approach; there are more
general techniques – which do not bear this requirement – that we will discuss
later.  Again, m = 0 for liquids, while m takes on nonzero values for real gases.

To make progress, we consider constant permeabilities (a “log r” function
is not available for heterogeneous reservoirs).  This leads to the simpler equation

kx ∂
2Pm+1/∂X2 + ky  ∂2Pm+1/∂Y2 = 0                                     (2-37)

For convenience, we introduce the nondimensional variables x, y, and p defined
by

X = X/c                                                                                (2-38)

Y =  √(kx/ky) Y/c                                                                    (2-39)

P(X,Y) = Pref  p(x,y)                                                               (2-40)

Then, p(x,y) resides in the domain x 

2 + y 

2 < (R/c) 2 external to the assumed
fracture -1 ≤ x ≤ +1, y = 0 in Figure 2-2.  Equations 2-34 to 2-36 become

∂2pm+1/∂x2 + ∂2pm+1/∂y2 = 0                                                 (2-41)

p(x,0) =  pf(x), -1 ≤ x ≤ +1                                                     (2-42)

p(x,y) =  PR/Pref, x 

2 + y  

2 = (R/c) 2                                         (2-43)
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Equations 2-41 to 2-43 resemble Equations 2-7 to 2-9, except that m is
nonzero.  The scaling in Equations 2-38 and 2-39 is chosen so that x remains
between -1 and +1.  This requirement is imposed so that existing results can be
used without renormalization.  This problem, while it involves powers of
pressure, is not nonlinear; our pressure boundary conditions are easily rewritten
in powers of pressure, resulting in a linear Dirichlet problem for p m+1.

Singular integral equation analysis.  A closed-form analytical solution
can be obtained.  Observe that the standard source solution log r, centered at the
origin r = √(x2 +  y2) = 0, solves Equation 2-41 for pm+1.  Similarly, the
expression log √{(x-ξ)2 +  y2} centered at x = ξ, y = 0 satisfies Laplace’s
equation, with ξ being a constant.  Now, ξ can be viewed as a generalized point
source position, and it is of interest to consider line distributions of sources.  In
particular, we examine the superposition integral

+1

pm+1(x,y) = ∫   f(ξ)  log √{(x-ξ)2 + y2} d ξ + H                    (2-44)
                         -1
which also satisfies Equation 2-41, since it is linear.  Physically, Equation 2-44
is viewed as a pressure equation corresponding to a continuously distributed line
source, where f and H are not to be confused with their counterparts in Example
2-1.  We emphasize that their physical dimensions are also different.

The problem reduces to finding the values of H and f(x) that yield pressure
solutions satisfying Equations 2-42 and 2-43.  Following Example 2-1, let us
first combine Equations 2-42 and 2-44 to obtain
     +1

∫  f(ξ) log |x-ξ| d ξ =  pf m+1(x) - H                                          (2-45)
     -1
and for now, assume that H is known.  Thus, when the fracture pressure is
specified, Equation 2-45 provides an integral equation for the strength f(x).  As
before, we apply Carleman’s formulas in Equations 2-12 and 2-13, and set

g(x)  =  pf m+1(x) - H                                                               (2-46)

to obtain
                        +1

f(x) = [ PV ∫ {pf m+1’(ξ)/(ξ-x)}√(1-ξ2) dξ (2-47)
                     -1

+1

      - (1/loge2) ∫ pf m+1(ξ)/√(1-ξ2) dξ ] /{π2√(1-x2)}+H/{π loge2√(1-x2)}
-1

where pf m+1(ξ) here denotes the function obtained by raising the fracture

pressure pf (ξ) to the (m+1) th power.  The (primed) expression pf m+1’(ξ) is the

first derivative of the function defined, equal to (m+1)pf m(ξ) dpf/dξ.
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Equation 2-47 still contains the unknown constant H.  To determine H, we
return to Equation 2-44 and evaluate it for distances that are large compared
with the fracture length.  Thus, the exact expression for pressure

                            +1

pm+1(x,y) = ∫  f(ξ)  log √{(x-ξ)2 + y2} d ξ + H
                            -1
                      +1

   = ∫   f(ξ)  log √{x2 + y2 - 2xξ + ξ2} d ξ + H         (2-48a)
                      -1
can be approximated by

+1 +1

pm+1(x,y) ≈ ∫   f(ξ)  log √{x2+y2} d ξ + H ≈ ∫  f(ξ) dξ log r + H (2-48b)
            -1 -1
far from the fracture since |ξ|  ≤  1 is bounded.  Observe that the dimensionless r
= √{x2 + y2} describes the elliptical locus of points in Equation 2-36.  Now let
us combine Equations 2-43 and 2-48b.  This leads to
                                                      +1

(PR/Pref )m+1 =  H +  {log R/c} ∫  f(x) dx                                  (2-49)

                                                     -1
where we have changed the integration variable from ξ to x.   Next substitute
f(x) from Equation 2-47 into the integral of Equation 2-49.  The result is

(PR/Pref ) m+1 =  H + {log R/c} ∫  f(x) dx

               =  H +{log R/c}[ ∫ PV ∫{ pf m+1’(ξ)/(ξ-x)}√(1-ξ2) dξ /{π2√(1-x2)}dx

                                         - ∫ (1/ loge2) ∫ pf m+1(ξ)/√(1-ξ2)dξ /{π2√(1-x2)}dx

                                         + {H/(π loge2)}∫dx/√(1-x2)]                      (2-50)

where the integration limits (-1,+1) are omitted for clarity.  Each of the double
integrals represents constants.  To simplify the notation, we introduce

I3  =  ∫ PV ∫{pf m+1’(ξ)/(ξ-x)}√(1-ξ2) dξ / {π2√(1-x2)} dx       (2-51)

I4  =  ∫ (1/ loge2) ∫ pf m+1(ξ)/√(1-ξ2) dξ / {π2√(1-x2)} dx     (2-52)

and evaluate the integral involving H to obtain

(PR/Pref ) m+1 =  H + (log R/c) { I3 - I4 + H/loge2}                     (2-53)

Hence, it follows that

H  =  {(PR/Pref ) m+1 - (I3 - I4 ) log R/c}/{1 + (log R/c)/loge2} (2-54)

Now f(x) and H are fixed.  Observe that H depends on all the flow parameters,
including the dimensionless ratios PR/Pref and R/c.  Also, from Equation 2-45,

f(x) cannot be determined without H: f(x) depends on the geometry of the
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reservoir and the pressure at its boundaries.  The role of the integration constant
H in Equation 2-44 is as significant here as in Example 2-1.

The physical meaning of f(x).  We digress to consider several general
properties of the pseudo-source strength f(x).  An understanding of f(x) and its
relationship to local velocity will help to improve numerical formulations for
more complicated fracture geometries, as well as assist in posing and solving
fracture flows problems governed by alternative boundary conditions.  We
return to the general expression for pressure in Equation 2-44 and differentiate it
with respect to the vertical coordinate y normal to the fracture.  This gives

+1

∂pm+1(x,y)/∂y = ∂/∂y { ∫  f(ξ) log √{(x-ξ)2 + y2} d ξ + H}
                              +1 -1

= y ∫ f(ξ) /{(x-ξ)2 + y2} d ξ (2-55)
                                    -1
Following the limiting process in Example 2-1, we again introduce

η  =  (ξ - x)/y                                                                            (2-56)

                        η+

∂pm+1(x,y)/∂y  = ∫  f(ξ)/(1+ η2) dη                                           (2-57)
                         η-

For  small positive y’s, we find on using Equation 2-56  (in the form x = ξ - ηy)
that the vertical derivative satisfies
                                   +∞

∂pm+1(x,0+)/ ∂y  = ∫  f(ξ)/(1+ η2) dη   =  π f(x)                          (2-58)
                                 -∞
Similarly, for small negative y’s, we obtain

∂pm+1(x,0-)/ ∂y  =  - π f(x)                                                       (2-59)
Hence,

∂pm+1(x,0+)/ ∂y  - ∂pm+1(x,0-)/ ∂y  =  2π f(x)                         (2-60)
If we now eliminate f(x) between Equations 2-58 and 2-59, we have

∂pm+1(x,0+)/ ∂y  =  - ∂pm+1(x,0-)/ ∂y                                         (2-61)
Carrying out the differentiation and cancelling like powers of pressure leaves

∂p(x,0+)/ ∂y   =  - ∂p(x,0-)/∂y                                                     (2-62)

The normal derivatives of pressure, as in Example 2-1, are antisymmetric,
meaning that the Darcy velocities perpendicular to the fracture are equal and
opposite.  This antisymmetry is physically the result of having streamlines
symmetric about the x axis.  Again the complete velocity vector is in general not
perpendicular to the slit, if the prescribed fracture pressure is variable; this is due
to the existence of a flow component along the slit.

Only in the case of liquids where m = 0 is the strength f(x) exactly
proportional to the vertical Darcy velocity at the slit (see Example 2-1).  In
general, the differentiation suggested in Equation 2-58 leads to
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∂p(x,0+)/ ∂y  =  π f(x)/{(m+1) pf m(x)}                                        (2-63)

since p(x,0) = pf(x) from Equation 2-42.  The proportionality between

∂p(x,0+)/ ∂y and f(x) depends on the local fracture pressure; this generalizes the
result obtained in Equation 2-27.

We now relate the dimensionless strength f(x) to the dimensional volume
flow rate Q issuing from (or into) the fracture.  First, we introduce the
permeability ky , the viscosity µ, and the depth into the page D.  Even though the

streamlines adjacent to the fracture are not in general perpendicular to it, it is
still the vertical velocity component that contributes to Q.  Thus, it is clear that
                      X = +c

Q  =  D ∫ 2 (-ky/µ) ∂P(X,Y = 0+)/∂Y dX                                         (2-64)

                     X = -c
where 2 accounts for both sides of the fracture, the integration is performed over
2c, and (-ky/µ) ∂P(X,Y = 0+)/ ∂Y is the Darcy velocity normal to the fracture.

Using Equations 2-38 to 2-40, ∂P/∂Y = (Pref /c) √(kx/ky) ∂p/∂y, so

                      x = +1

Q =  D ∫ 2 (-ky/µ)  (Pref /c) √(kx/ky) ∂p/∂y (x,0+) c dx
                     x = -1 x=+1

=  - 2Pref (Dky/µ) √(kx/ky) ∫ ∂p/∂y (x,0+)  dx
                                                  x = -1
                                               x = +1

            =  - 2Pref (D√(kxky) /µ) ∫∂p/∂y(x,0+)  dx
                                               x = -1 x=+1

=  - 2Pref D√(kxky) π /{(m+1)µ} ∫ f(x)/pf m(x) dx              (2-65)
                                                         x = -1
where we used Equation 2-63.  When m = 0 and k x = k y = k, we recover

Equation 2-32 for constant density liquids in isotropic, homogeneous media.  In
Equation 2-65, the p f

m(x) term can be moved across the integral if it is constant;
if so, the boundary value problem prescribing Q subject to constant fracture
pressure, as in Example 2-1, can be easily solved.  Equation 2-65 relates the
dimensional volumetric flow rate to the dimensionless integral of f(x) over
fracture length.  Also, at the fracture, the relationship between the dimensional
vertical Darcy velocity V(X,Y = 0+) and source strength, using Equation 2-63, is

V(X,Y = 0+)= (-ky/µ) ∂P(X,Y = 0+) /∂Y

                         = (-ky/µ) (Pref 
/c) √(kx /ky) ∂p/∂y(x,y = 0+)

                         = - {Pref √(kxky)/(µc)} π f(x)/{(m+1) p f m(x)}          (2-66)

Velocity singularities at fracture tips.  Equation 2-66, which extends
Equation 2-33, demonstrates that the vertical velocity at the fracture is again
proportional to the local source strength.  When the fracture pressure is a
prescribed and bounded analytic function, Equation 2-47 implies a square root



32   Quantitative Methods in Reservoir Engineering

singularity in velocity at both ends of the fracture; the expression √(1-x2)
appears in the denominator, leading to infinite tip velocities.  The integral in
Equation 2-65 nevertheless exists, of course, because weak singularities are
integrable; local infinities do not necessarily cause integrals to diverge.  Again,
such singularities give reason for concern in numerical models.  To be accurate,
one must be able to predict this infinite pressure gradient, but this is impossible
since such predictions will cause numerical instability.  As in Example 2-1, one
is torn between finely gridding both fracture tips to model reality, or doing the
opposite to preserve stability.  This dilemma means that an upper bound to
accuracy limits the usefulness of numerical schemes.  This is particularly the
case with transient simulations of compressible flows from fractures, important
to well test interpretation, where analogous edge singularities do exist and have
not been properly modelled or discussed in the literature.

Example 2-3.  Effect of nonzero fracture thickness.

We will discuss methods for handling real fractures with general nonzero
thickness and curved shapes later.   For now, we demonstrate how fractures with
thickness distributions that are symmetric about y = 0 can be treated by a simple
extension of the previous formalism.  Consider essentially the same boundary
value problem as in Example 2-2, with zero or nonzero m, either isotropic or
anisotropic media, within the framework discussed there.  However, assume that
the pressure is applied along the edges of an open fracture with symmetric

halves characterized by a dimensionless thickness function ε√(ky/kx) T(X/c)

where ε is a positive dimensionless number (see Equation 2-68):

 kx ∂2Pm+1/∂X2  +  ky  ∂2Pm+1/∂Y2 = 0                                     (2-67)

P(X,0)  =  Pref pf(X/c), Y = ± ε√(ky/kx) cT(X/c), -c ≤ X ≤ +c        (2-68)

P(X,Y)  =  PR, X2 + (kx/ky) Y2  =  R2                                     (2-69)

Equation 2-68 is the only change to the problem in Example 2-2.  For
convenience, introduce the nondimensional variables x, y, and p, defined by
Equations 2-38 to 2-40, with the result that

∂2pm+1/∂x2 + ∂2pm+1/∂y2 = 0                                                 (2-70)

pm+1(x,y)  =  pf m+1(x),  y = ± ε T(x),  -1 ≤ x ≤ +1                       (2-71)

pm+1(x,y)  =  (PR/Pref)m+1, x2 + y2 =  (R/c)2                             (2-72)

Now assume that the fracture length greatly exceeds its thickness, that is, ε << 1.
This is the thin airfoil limit in classical aerodynamics, or the thin fracture limit
for fracture modeling.  Then, the results of Example 2-2 apply to leading order.
Our main task is to develop a mathematical formalism that captures this leading
order description when ε vanishes but provides systematic, straightforward
corrections when it is nonvanishing but small.
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For this reason, we introduced ε explicitly in Equation 2-71.  Then the
complete pressure boundary value problem can be represented as a power series
in ε, with component problems defined by collecting coefficients of like powers
of ε (this is plausible mathematically, but convergence to the exact solution must
be rigorously established).  Our approach is taken from perturbation theory, in
particular, the use of regular expansions, e.g., van Dyke (1964) and Ashley and
Landahl (1965).  Rather than considering expansions for p(x,y), it is simpler to
consider pm+1 taken as a whole.  Let us introduce the superscripted series shown
in Equation 2-73, where indexes greater than 0 are high-order corrections to the
zeroth-order solution pm+1(0)(x,y) of Example 2-2, that is,

pm+1(x,y) = pm+1(0)(x,y) + ε pm+1(1)(x,y) + ε2 pm+1(2)(x,y) + ... (2-73)

Each of the superscripted functions, owing to the linearity of Equation 2-70 in
pm+1, satisfies Laplace’s equation.  To each problem, we asign boundary
conditions.  We consider the fracture nearfield first.  We expand the full pm+1

(without superscripts) near the fracture in a Taylor series in y about y = 0,

pm+1(x, ± εT(x)) = pm+1(x,0) ± εT(x) ∂pm+1(x,±0)/∂y  + O(ε2) (2-74)

where the O(ε2) symbolically indicates high-order terms not considered here.
Then, substitute the series in Equation 2-73, retaining only the leading terms:

pm+1(x, ± εT(x)) = pm+1(0)(x,0)

                                 + εpm+1(1)(x,0) ± εT(x) ∂pm+1(0)(x,±0)/∂y       (2-75)

If we compare Equation 2-75 to the boundary condition pm+1(x,y) = pf m+1(x)

in Equation 2-71, we have on equating like powers of ε, the identities

pm+1(0)(x,0) = pf m+1(x)                                                          (2-76)

pm+1(1)(x,0) = -{± εT(x)} ∂pm+1(0)(x,±0)/∂y                          (2-77)

Equation 2-76 corresponds to Equation 2-42 for the zeroth-order problem.
Equation 2-77 may be confusing, but it is readily explained.  Equation 2-61 for
the zeroth-order problem shows that the normal derivatives are antisymmetric;
the ± in Equation 2-77 accordingly renders the left side of Equation 2-77 single-
valued, as required, so that only one value of the pressure pm+1(1) can be
assigned to any particular value of x.

The farfield boundary condition is similarly treated.  The zeroth-order
problem supports the entire pressure level PR/Pref, leaving “0” to the higher

order corrections.  When the coefficients of like powers in ε are collected, the
following sequence of boundary value problems is identified.  The first, that is,

∂2pm+1(0)/∂x2 + ∂2pm+1(0)/∂y2 = 0                                         (2-78)

p(0)(x,y)  =  pf(x),  y = 0,  -1 ≤ x ≤ +1                                        (2-79)

p(0)(x,y)  =  (PR/Pref ),  x2 + y2 =  (R/c)2                                    (2-80)

is the problem treated in Example 2-2, while the second takes the form
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∂2pm+1(1)/∂x2 + ∂2pm+1(1)/∂y2  = 0                                        (2-81)

pm+1(1)(x,0) = - {± ε T(x)} ∂pm+1(0)(x,±0)/∂y, -1 ≤ x ≤ +1     (2-82)

pm+1(1)(x,y)  =  0,  x2 + y2 =  (R/c)2                                         (2-83)

This problem is similar to the first, and the same solution method applies.
Practical algebraic issues.  The formulas here and in Example 2-2 are

intimidating; e.g., source strength requires the evaluation of difficult integrals, as
in Equations 2-15 and 2-47.  This is not to say that simple results are not easily
generated; they have, for instance in van Dyke (1956), and specific solutions
will be given later for several fracture pressures. But we emphasize that
symbolic manipulation methods based on recursive algebras have become
available on different computing platforms, e.g., MathCad, Maple, and
Mathematica .  They can be used to develop formulas analytically and then to
evaluate and plot results.  The primary benefit of analytical results is exactness
and understanding.  No numerical solution will ever uncover a singularity and
its algebraic structure as beautifully as Equation 2-47 does, but then, not all
practical problems are amenable to elegant solution techniques.  To obtain
closed form results, limiting assumptions were invoked along the way; for
instance, (i) circular or elliptical reservoir boundaries with R >> c, (ii) uniform
permeabilities, and (iii) the failure to handle mixed flow rate and pressure
farfield boundary conditions.  One cannot deemphasize the importance of
computational methods, but analytical solutions help us properly formulate
numerical problems and assist in calibrating the computations.

Example 2-4.  Flow rate boundary conditions.

In many production applications, the flow from fractures having prescribed
pressure distributions is realistic; for example, the constant pressure along an
infinitely conductive fracture is identical to that of the wellbore that drains it.
This motivates the formulation in Example 2-2, in which source strength and
flow rate are sought when pressures are prescribed.  For other problems, the
local flow rate normal to the fracture may be specified, as is often the case in
hydraulic fracturing.  This assumes that some control over the form of the
normal velocity is available.  Then, the mathematical problem determines
pressure along the fracture and throughout the physical plane; this problem, too,
is amenable to direct solution.  For simplicity, return to the flow configuration in
Example 2-1.  The dimensionless pressure for the incompressible liquid under
consideration again satisfies Equation 2-7, that is,

∂2p/∂x2 + ∂2p/∂y2 =  0                                                           (2-84)

As before, we assume a distributed line source having a pressure of the form
+1

p(x,y) = ∫   f(ξ) log √{(x-ξ)2 + y2} d ξ + G                                  (2-85)
               -1
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as in Equation 2-10, where G is a constant.  Of course, Equation 2-8 no longer
applies; in fact, we must now determine p(x,y) and pf(x).  To do this, recall from

Equation 2-27 that the normal derivative satisfies ∂p(x,0+)/∂y = π f(x), that is,

f(x) = (1/ π) ∂p(x,0+)/ ∂y                                                            (2-86)

where the right side is known from the prescribed Darcy velocity (e.g., see
Equation 2-33).  Thus, the solution to our problem takes the general form
                          +1

p(x,y)  =  (1/ π) ∫  ∂p(ξ,0+)/∂y log √{(x-ξ)2 + y2} d ξ + G        (2-87)
                          -1
Following Equations 2-16a and 2-16b, we evaluate Equation 2-87 for large
distances away from the fracture, yielding
                       +1

p(x,y) = (1/ π) ∫  ∂p(ξ,0+)/∂y d ξ log r  +  G                            (2-88)
                      -1

where r = √{x2  + y2}, and G is still undetermined.  Applying the farfield
boundary condition in Equation 2-9, we have
                                              +1

PR/Pref  = (1/ π) log (R/c) ∫  ∂p(ξ,0+)/∂y d ξ + G, or    (2-89)
                                             -1 +1

G = PR/Pref - (1/π) log (R/c) ∫  ∂p(ξ,0+)/∂y d ξ (2-90)
                                                  -1

Since the integral in Equation 2-90 is known from inputs, the flow rate problem
is solved.  The net result on combining Equations 2-87 and 2-90 is
                           +1

p(x,y) = (1/ π) ∫  ∂p(ξ,0+)/∂y log √{(x-ξ)2 + y2} d ξ
                           -1 +1

                       + PR/Pref - (1/ π) log (R/c)∫  ∂p(ξ,0+)/∂y d ξ (2-91)
                                                                  -1

Example 2-5.  Uniform vertical velocity along the fracture.

Example 2-4 solved the velocity flux problem for a general liquid inflow
distribution ∂p(x,0+)/∂y.  In the form given, the integral on the first line of
Equation 2-91 describes the spatial variation of pressure, whereas the remainder
of Equation 2-91 supplies an overall pressure level that accounts for near- and
farfield interactions.  How does fracture pressure behave with x for a simple
flow rate distribution?

Evaluation of singular integrals.  In Examples 2-1 and 2-2, we
introduced singular or improper integrals whose integrands contain infinities.
Most calculus books offer satisfactory discussions, e.g., refer to Thomas (1960).

In this example, we evaluate typical integrals by assuming uniform velocity
flux at the fracture, taking ∂p(x,0+)/∂y constant with x, setting

∂p(x,0+)/ ∂y = β                                                                    (2-92)

From Equation 2-91, the solution to this simplified problem is
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                           +1

p(x,y) = (β/π) ∫   log √{(x-ξ)2 + y2} d ξ
                           -1
                                                 + PR/Pref  - (2β/π) log (R/c) (2-93)

Along y = 0, the fracture pressure therefore satisfies

                          +1

p(x,0) = (β/π) ∫  log |x-ξ|  d ξ + PR/Pref  -  (2β/π) log (R/c) (2-94)

                        -1

Then, it is clear from Equation 2-94 that the singular integral of interest is

               +1

I(x) = ∫  log |ξ-x|  d ξ                                                            (2-95)
              -1

Following Thomas (1960), I(x) is evaluated by first considering

                  ξ = x - ε            ξ = +1

I(x; ε) = ∫   log (x -ξ) d ξ + ∫   log (ξ-x) d ξ                                (2-96)

                  ξ = -1           ξ = x + ε

and then taking the limit as ε vanishes (see Figure 2-2).  The logarithmic
functions in Equation 2-96 are available in standard tables.

ξ

-1                       x- ε    x   x+ ε      +1

                           Figure 2-2.  Cauchy principal value limit process.

The subsequent limit process, which requires a single application of
L’Hospital’s Rule to evaluate the expression ε log ε, leads to

I(x) = -2 + log{(1+x)1+x(1-x)1-x}                                               (2-97)

It is seen that Equation 2-97 possesses the correct symmetries about x = 0; for
example, replacing +x with -x leaves the result unchanged.   Also, I(+1)  = I(-1)
= 2(-1 + log 2), which is finite.  Combination of Equations 2-94 and 2-96 yields

p(x,0) = p f(x) = (β/π) [-2 + log{(1+x)1+x (1-x)1-x}]

                     + PR/Pref -  (2β/π) log (R/c) (2-98)

The function I(x) is tabulated in Figure 2-3, where the even symmetry
about x = 0 is apparent.  For uniform velocity boundary conditions, pressure is
therefore “well behaved” in that there are no singularities.
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    x   I(x)

- 0.99 - 0.62
- 0.95 - 0.85
- 0.90 - 1.01
- 0.80 - 1.26
- 0.70 - 1.46
- 0.60 - 1.61
- 0.50 - 1.74
- 0.40 - 1.84
- 0.30 - 1.91
- 0.20 - 1.96
- 0.10 - 1.99
- 0.00 - 2.00
. .
. .

+ 0.90 - 1.01
+ 0.95 - 0.85
+ 0.99 - 0.62

Figure 2-3.  The pressure function I(x).

We have spoken of constant pressure and uniform velocity fracture models.
Where are these used?  When the produced fluid in a fracture is “clean,” its
pressure equalizes almost instantaneously and the former applies.  On the other
hand, the latter describes injection problems in which a filter cake or extremely
low permeability material is left at the sandface, which in turn controls local
volume influx rate.  The subject of formation invasion will be studied starting
with Chapter 16.

Example 2-6.  Uniform pressure along the fracture.

Here, we give a complementary solution to Example 2-5 and consider the
flow of a constant density liquid into a fracture held at a constant pressure pf.

Thus, the derivative pf ’(ξ) vanishes identically, and Equation 2-15 reduces to

                   +1

f(x) = [PV ∫ {pf ’(ξ)/(ξ-x)}√(1-ξ2) dξ
−1 +1

             - (1/ loge2) ∫ pf (ξ)/√(1-ξ2) dξ] /{π2√(1-x2)}+ H/{π loge2√(1-x2)}
                            -1 +1

= - (pf/loge2) { ∫  dξ /√(1-ξ2)}/{π2√(1-x2)}+ H/{π loge2√(1-x2)}
                                  -1
             =  (H - pf)/{πloge2√(1-x2)}                                                  (2-99)

Note that the integral of f(x) over (-1,+1) equals (H – pf )/ loge2, a result
consistent with Equation 2-113 when C0 = pf and C2 =  C4 = 0.   Next, from

Equations 2-19 and 2-20, respectively, we have

I1 =  ∫ PV ∫{pf ’(ξ)/(ξ-x)}√(1-ξ2) dξ /{π2√(1-x2)} dx  =  0         (2-100)

I2 =  ∫ (1/loge2) ∫pf (ξ) /√(1-ξ2) dξ /{π2√(1-x2)}dx  =  pf /loge2 (2-101)

Hence, from Equation 2-22,
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H = {PR/Pref  - (I1 - I2 ) log R/c} / {1 + (log R/c)/loge2 }
    =  {PR/Pref  + (pf /loge2) log R/c} / {1 + (log R/c)/loge2 } (2-102)

The formula for the total volume flow rate Q is given in Equation 2-114,
where  C0 = pf and C2 = C4 = 0.  Since H is now determined, the source strength

in Equation 2-99 is known.  Equation 2-27 shows that the Darcy velocity normal
to the fracture is directly proportional to f(x) at the fracture; it is, as is evident
from Equation 2-99, singular at the tips x = ±1, although the flow rate integral
over (-1,1) itself exists.  The complete pressure solution is obtained by
substituting H and f(x) into Equation 2-10, and that, in turn, in Equation 2-6.
The resulting pressure formula is evaluated numerically.  Note that an
expression for Q can be derived by combining Equations 2-65 and 2-99; a
simple equation relating pf to Q follows, which allows problems that specify Q
(subject to uniform fracture pressure) to be conveniently solved.

Example 2-7.  More general fracture pressure distributions.

It is possible to obtain closed-form results for complicated fracture
pressures pf (x) for the problems in Examples 2-1 and 2-2.  This involves the
tedious evaluation of Cauchy principal value (PV) integrals, as those who have
attempted the operation in Equation 2-96 know.  Fortunately, this is not
required, because the most useful singular integrals have already been identified,
evaluated, and catalogued in the aerospace industry.  These are available in
existing NASA publications; e.g., van Dyke (1956) lists over 30 commonly used
integrals, while Gradshteyn and Ryzhik (1965) provide still more.  From
Equations 2-19, 2-20, 2-51 and 2-52 of Examples 2-1 and 2-2, the integral pairs

I5 =  ∫ pf m+1(ξ) dξ /√(1-ξ2)                                                     (2-103)

I6 =  PV ∫ pf m+1 ’(ξ) √(1-ξ2) dξ /(ξ-x)                                      (2-104)

are always encountered in pressure-pressure problems.  Here, the limits of
integration (-1, +1) are omitted for clarity.  Simple solutions are obtained when
pf m+1(ξ) is taken in the polynomial form

pf m+1(ξ) = C0 ξ0 + C1 ξ1 + C2 ξ2 + C3 ξ3  + C4 ξ4            (2-105)

which provides for simple non-Darcy effects along fractures. It is a
straightforward matter to show, using standard integral tables, that

I5  =  π (C0 + 1/2 C2   + 3/8 C4)                                            (2-106)

The principal value integral in Equation 2-104 requires more labor.  However,
we can easily verify that

PV ∫  ξ0 √(1-ξ2) d ξ /(x-ξ) = π x                                     (2-107)

PV ∫  ξ1 √(1-ξ2) d ξ /(x-ξ) = π (x2 -1/2)                          (2-108)

PV ∫  ξ2 √(1-ξ2) d ξ /(x-ξ) = π x(x2 -1/2)                        (2-109)
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PV ∫  ξ3 √(1-ξ2) d ξ /(x-ξ) = π (x4 - ½ x2 -1/8)              (2-110)

Consequently,
- I6 /π  = - (C2 + ½ C4) + (C1  -3/2 C3) x

                               + 2(C2  -C4) x2  + 3C3 x3 + 4C4 x4                       (2-111)
These results assist in evaluating the more complicated integrals.  Let us

consider, for instance, the expression for the total volume flow rate Q in the case
of constant density liquids in anisotropic media.   From Equation 2-47, we find
                    +1

f(x) = [PV∫ {pf m+1’(ξ)/(ξ-x)}√(1-ξ2) dξ
−1 +1

               - (1/ loge2) ∫ pf m+1(ξ)/√(1-ξ2)dξ]/{π2√(1-x2)}+ H/{π loge2√(1-x2)}
                                -1
               = {-1/(π√(1-x2))}[{(C0 - H) + ½ C2  + 3/8 C4}/log 2 (2-112)

                    - (C2 + ½ C4) + (C1  -3/2 C3)x  + 2(C2 -C4)x2 + 3C3x3  + 4C4x4]

which can be integrated to yield
+1                                                                               

∫ f(x) dx = - {(C0 - H) + ½ C2   + 3/8 C4}/log 2                         (2-113)

-1
Then, using Equation 2-65 with m = 0,
                                                          x = +1

Q = - 2Pref D√(kxky) π /{(m+1)µ)} ∫ f(x)/pf m(x)  dx,
                                                         x = -1

Q = 2Pref D√(kxky) π{(C0 - H) + ½ C2  + 3/8 C4}/{µ log 2)} (2-114)

This provides the required formula.  We emphasize that Equation 2-112, which
assumes pf(ξ) = C0ξ0 + C1ξ1 + C2ξ2 + C3ξ3  + C4ξ4, clearly displays the

square root velocity singularity discussed earlier.

Example 2-8.  Velocity conditions for gas flows.

Here we extend the discussion of Example 2-5 to gases with nonzero
values of m.  We start with Equations 2-44 and 2-63, that is,
                    +1

pm+1(x,y) = ∫   f(ξ)  log √{(x-ξ)2 + y2} d ξ + H                           (2-44)
                     -1
and

∂p(x,0+)/ ∂y   =  π f(x)/{(m+1)pf m(x)}                                        (2-63)

Substitution of Equation 2-63 in 2-44, and evaluation along y = 0, leads to
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                                     +1

pf m+1(x) = {(m+1)/ π} ∫ pf m(ξ) ∂p(ξ,0+)/ ∂y log √{(x-ξ)2 + y2} d ξ + H
                                     -1        (2-115)

The variable function ∂p(ξ,0+)/ ∂y is presumed to be known, since normal
velocity is prescribed.  Then, Equation 2-115 provides the nonlinear integral
equation for the fracture pressure pf(x). If m = 0, Equation 2-115 gives pf

explicitly, and no integral equation needs to be solved.  If nonzero, iterative
solution methods can be used.  The exact details are left as exercises for
interested readers.

Example 2-9.  Determining velocity fields.

Finally, we conclude this chapter with notes on calculating velocity fields
from integral expressions for pressure.   To keep the discussion general, we
consider the arbitrary fluid of Example 2-2 with nonzero m, taking

+1

pm+1(x,y) = ∫   f(ξ)  log √{(x-ξ)2 + y2} d ξ + H                           (2-44)
                       -1
The strength f(x) and the constant of integration H are assumed to be known.
The horizontal velocity parallel to the fracture is obtained by first differentiating
Equation 2-44 with respect to x.  This leads to
                                     +1

∂pm+1(x,y)/∂x = ∂/∂x{ ∫  f(ξ) log √{(x-ξ)2 + y2} d ξ + H}    (2-116)
                                     -1
or, upon differentiation,

+1

∂p(x,y)/∂x = {1/((m+1)pm )} ∫ f(ξ) (x-ξ)/{(x-ξ)2 + y2} d ξ (2-117)
                                                 -1
where pm, appearing on the right side of Equation 2-117, is obtained using
Equation 2-44.  Along the fracture y = 0,
                                                           +1

dpf(x)/dx = {1/[(m+1)pf(x)m]} PV ∫ f(ξ)/(x-ξ) dξ (2-118)

                                                         -1
The integral in Equation 2-118 is a Cauchy principal value integral and can be
evaluated as discussed in Example 2-5.  If the fracture pressure pf is constant,
then dpf /dx = 0 and there is no flow along the fracture.  This is consistent with

the integral obtained by substituting Equation 2-99 into Equation 2-118,
         +1

PV ∫  1/{√(1-ξ2)  (x-ξ)} d ξ  = 0                                      (2-119)
         -1
following van Dyke (1956).  To obtain the vertical Darcy velocity, we consider
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                                                  +1

∂p(x,y)/∂y = {1/((m+1)pm )} ∫ f(ξ) y/{(x-ξ)2 + y2} d ξ (2-120)
                                                 -1
Using Equations 2-24 and 2-27, we find that

∂p(x,0+)/ ∂y   =   π f(x)/{(m+1) p f m(x)}                                        (2-63)

This derivative is used to calculate the normal Darcy velocity at the slit.  The
preceding examples demonstrate the power and elegance of integral equation
methods.  In Chapter 3, similar methods are used to analyze flows about shales.
Chapter 4 introduces modern issues in streamline tracing and the fundamentals
of complex variables; this background is helpful to understanding Chapter 5,
where more complicated shapes are considered.

PROBLEMS AND EXERCISES

1. Review Cauchy principal value and improper integrals in any calculus
reference.  Evaluate the PV integrals in Equations 2-95, and 2-107 to 2-110
“by hand,” or by using algebraic manipulation software, e.g., MathCad,
Maple, or Mathematica (some programs may produce errors! ).

2. Write and validate a general numerical program to evaluate Cauchy
principal value integrals.  What kinds of gridding problems arise?  Compare
results with those previously obtained analytically.  Use this subroutine as
the basis for a general fracture flow simulator you design.

3. Solve for the flow from a straight fracture using any reservoir flow
simulator.  How singular is the velocity obtained at the tips?  How does
volume flow rate compare with analytical results?  What is the effect of tip
error on total flow rate?  Repeat your calculations with different mesh
distributions for different assumed parameters.

4. Formulate the pressure boundary value problem for two parallel fractures
separated by a fixed distance.  Repeat this exercise for an array of parallel
fractures.  How would you use periodic boundary conditions to simplify the
formulation when large numbers of fractures are involved?  Explain how
you would use such a formulation to evaluate the productivity of a naturally
fractured reservoir.

5. The properties of line distributions of logarithmic singularities, such as the
integral and its normal derivative, were considered in this chapter and
shown to useful in modeling fracture flows.  Explore the properties of line
distributions of arc tan or θ solutions, as introduced in Chapter 1.  How can
these properties be exploited to model flows past shales?
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6. In Equation 2-10, we introduced continuous line source distributions, that

is, taking p(x,y) = ∫ f(ξ) log √{(x-ξ)2 + y2} dξ + H over the integration
limits (-1,+1), and later obtained closed form solutions.  Suppose that we
instead model fractures using distributions of discrete point sources, that is,

p(x,y) = H + Σ f n (ξ n ) ∆ξ n log √{(x-ξ n )2 + y2}, where ξ n describes the
source coordinate and the summation is taken over N singularities.  This
avoids the use of singular integral equations and cumbersome Cauchy
principal values, but introduces other difficulties.  Write a computer
program in which you (i) select the number N and the locations ξ n of your
source points and the positions of your observation points (x,y), and then
(ii) solve for your unknown source strengths f n∆ξ n by inverting a suitable
system of coupled linear equations.  How would you define the coefficient
matrix of this linear system?  What is the structure of this matrix?  What
types of problems do you encounter when prescribing pressure along the
fracture y = 0?  [Hint: the logarithm of 0 is singular.]  What numerical fixes
would you suggest?  Run your computer program and compare pressure
solutions with the exact formulas given in this chapter.  How does your
velocity solution behave at nodes between source points?  Select a
numerical reservoir flow simulator that is accessible to you, and design a
similar model for fracture flow using discrete sources and sinks.  How does
that solution compare with yours?  What are the relative advantages and
disadvantages of continuous and discrete source methods in fracture flow
analysis?  How would you modify the previous source formula to handle
curved fractures?
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3
Flows Past Shaly Bodies

In Chapter 2, we started with the well-known log r point source pressure
solution, extended the idea to continuously distributed line sources, and showed
how singular integral equations can be used to solve complicated problems in a
straightforward way.  We also saw how the normal derivative of pressure
“jumps,” showing discontinuous behavior through the fracture.  This is no
surprise:  since the local velocities (proportional to ∂p/∂y via Darcy’s law) on
either side into the fracture are equal and opposite, it is expected.  At the same
time, the pressure itself is continuous and single-valued through the slit.  The
logarithmic solution is one of many elementary singularities of Laplace’s
equation; others commonly used include doublets, vortexes, source rings, and
horseshoe vortexes (Thwaites, 1960).  Chapter 2 demonstrates how practical
solutions are constructed from distributions or superpositions of logarithms.
Another useful singularity is the arc tangent (Yih, 1969).  In this chapter, we
will explore its usefulness in modeling flows about solid shaly bodies.  Once the
basic physical and mathematical notions behind logarithmic and arc tangent
singularities are understood, we will, in Chapters 4 and 5, approach simulation
more generally.  There, we will consider abstractions that allow us to develop
powerful mathematical models of complicated physical flows.  As in Chapter 2,
we develop the ideas step-by-step using simple examples.

Example 3-1.  Straight-line shale segment in uniform flow.

Petroleum engineers in reservoir simulation do not traditionally model
flows using mathematical singularities.  Usually, numerical simulators with fully
heterogeneous permeabilities and porosities are used; shales, for example, might
be modeled by taking “k” or “φ” very small locally.  Producing fractures, on the
other hand, might be simulated by using rows of discrete wells or point sources.
These approaches are sometimes acceptable, but they do not afford the physical
insight that precise mathematical modeling provides.  One example is the
existence of square root velocity singularities at fracture tips; certainly, an
awareness of its ramifications only leads to an improved understanding of the



44   Quantitative Methods in Reservoir Engineering

flow and to more accurate numerical models.  It turns out, interestingly, that
flows past shaly bodies also possess analogous singularities, which can be
uncovered and studied by similar rigorous analysis.

Qualitative problem formulation.  Consider the incompressible flow of a
liquid about a single straight-line shale segment located along -c ≤ X ≤ +c, and
inclined at an angle - α relative to the uniform stream in Figure 3-1.  This shale
segment is centered in an infinite reservoir.  We assume that the shale is
impermeable to flow; this restriction is relaxed later. The pressure P(X,Y) in a
uniform isotropic medium again satisfies Laplace’s equation,

∂2P/∂X2  +  ∂2P/∂Y2 = 0                                                           (3-1)

α
U

Y

X
- c

Straight
impermeable
shale

+ c

∞

Figure 3-1.  Straight impermeable shale.

The arc tan solution.  While Equation 3-1 is correct, it is not the best way
to develop our ideas mathematically.  To bring out the basic ideas naturally, we
transform Equation 3-1 into radial polar coordinates, first setting

X = r cos θ (3-2)

Y = r sin θ                                                                               (3-3)
Next we determine the equation satisfied by

P(X,Y) = P(r,θ)                                                                         (3-4)

where the italicized P indicates that the transformed function will in general be
different from the nonitalicized one.  Now apply the chain rule for
differentiation (Hildebrand, 1948).  Thus, the first and second “X” partial
derivatives, for example, transform according to

PX = Pr  rX + Pθ θX                                                                   (3-5)

PXX = Pr rXX + rX (Prr rX + Prθ θX)

                   +Pθ θXX +  θX (Pθr rX + Pθθ θX)                                        (3-6)

and similarly with “Y” derivatives.  In Equations 3-5 and 3-6, subscripts are
used to indicate partial differentiation.  This leads to

∂2P/∂X2 + ∂2P/∂Y2 =
(rXX + rYY) Pr + (θXX + θYY) Pθ  + 2 (rX θX + rY θY) Pθr

+ (rX2 + rY
2) Prr + ( θX

2 + θY
2)Pθθ                         (3-7)
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Now, Equations 3-2 and 3-3 can be explicitly inverted to give

r = √(X2 + Y2)                                                                           (3-8)
θ = arc tan Y/X                                                                         (3-9)

If we substitute Equations 3-8 and 3-9 in Equation 3-7, and simplify the result
using Equation 3-1, we obtain Laplace’s equation in cylindrical coordinates,

Prr + (1/r) Pr + (1/r2) Pθθ = 0                                                   (3-10)

The elementary vortex solution.  The basic elementary singularities used
in this book can be developed from Equation 3-10.  To show how the
logarithmic solution arises, one might argue that the pressure about a circular
well concentrically situated in a circular reservoir should not depend on θ.  This
being the case, we set the θ derivative term in Equation 3-10 to zero, to obtain
Prr + (1/r) Pr = 0, whose fundamental solution takes the well-known log r form.

On the other hand, one might ask, “What is the flow corresponding to vanishing
r derivatives?”  This limit leads to Pθθ  = 0, which has the solution

P(r,θ) = θ = arc tan Y/X                                                           (3-11)

This solution is not considered in petroleum engineering textbooks, but it has
important physical significance.  In the same way that ∂P/∂X and ∂P/∂Y are
proportional to Darcy velocities in the X and Y directions, respectively, we
understand from vector calculus (Hildebrand, 1948) that ∂P/∂r and (1/r) ∂P/∂θ
are proportional to velocities in the radial r and “azimuthal” θ  directions.  Thus,
Equation 3-11 is associated with vanishing radial velocities and a nonzero
circumferential velocity that decays at infinity: for this reason, it is known as the
point vortex solution in aerodynamics (Ashley and Landahl, 1965).

The significance of Equation 3-11 is often understated since P(r,θ) = θ is,
in the language of mathematics, a double-valued function of space.  That is, at
any physical point (X,Y) in space, the pressure can be represented by some
value θ, and also by θ+2π.  Since the pressure at any point in a continuous sand
possesses but a single uniquely defined value, many petroleum engineers believe
that the solution given by Equation 3-11 is nonphysical.  The key to shale flow
modeling lies in the word continuous.  In a continuous sand, the pressure is
certainly a “single-valued” function.  However, if we introduce a solid obstacle
(e.g., the impermeable shale segment assumed in this example), it is clear that
this flat plate will support a pressure difference between its upper and lower
sides.  At any point along this infinitesimally thin shale, the mathematical
representation for pressure possesses two values: one value just slightly above,
and a completely different value just slightly below.  Hence, the double-
valuedness.  Thus, Equation 3-11 is as relevant to modeling flows past solid line
segments (a.k.a. shales), as our log r is to modeling fracture flows.  Of course,
the point shale described by Equation 3-11 is meaningless: it is a source of local
swirl with no physical application.  Only continuous distributions of such
singularities have practical application in reservoir simulation.

Mathematical formulation.  Together with Equation 3-1, we must supply
boundary conditions.  In the farfield, we assume a uniform horizontal Darcy
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velocity U∞ as shown in Figure 3-1. This velocity field might, for example, be
the result of a distant aquifer or a row of injector wells.  At the shale surface, the
ratio of local vertical to horizontal velocities must be kinematically equal to the
slope -tan α, if our impermeability requirement is to be met.  In mathematics, we
have {-(k/ µ) ∂P/∂Y}/{-(k/µ) ∂P/∂X} = -tan α.  For small inclinations, the
denominator on the left side of this equation can be approximated by U∞, while
the tan α roughly equals α; in this small disturbance limit, our tangency
condition is enforced along the Y = 0 axis.

∂P/∂Y (X,±0) = + (µ/k) U∞α,  -1 ≤ X/c ≤ +1                              (3-12)

∂P/∂X = - (µ/k)U∞ , X2 + Y2 = ∞                                           (3-13)

This, for the time being, completes the thin airfoil mathematical formulation.
The small inclination limit assumed here is taken to explore the role of edge
singularities and the nonuniqueness of an integral equation solution; more
general solutions not bearing this limitation are given in Chapter 5.  At this
point, we introduce nondimensional variables x, y and p(x,y) defined by

x  =  X/c                                                                                (3-14)
y  =  Y/c                                                                                (3-15)
P(X,Y)  =  - (µcU∞ /k) p(x,y)                                                      (3-16)

Then, the boundary value problem for the nondimensional p(x,y) is defined by
Equations 3-17 to 3-19, as follows,

∂2p/∂x2 + ∂2p/∂y2 =  0                                                           (3-17)
∂p(x,±0)/∂y = - α, -1 ≤ x ≤ +1                                               (3-18)
∂p(x,y)/∂x = 1, x2 + y2 = ∞                                                  (3-19)

Recourse to numerical methods is understandable, given the irregular “slit
shape” of the reservoir nearfield.  Fortunately, this is not necessary.

Singular integral equation solution.  An analytical solution for this
problem can be obtained.  To do so, note that the distributed log r solutions in
Chapter 2 do not apply.  This is seen in two ways.  First, we showed in
Equations 2-27 and 2-28 that the normal derivatives of logarithmic distributions
at y = 0 are discontinuous from one side to the next.  This would violate the
kinematic tangency condition at the shale surface; in fact, Equation 3-18 insists
that ∂p/∂y be single-valued through y = 0.  Second, the use of logarithmic
distributions requires that pressure going from one side to the next be
continuous.  In this problem, we expect pressure discontinuities since solid shale
surfaces support nonzero pressure differentials.  Thus, we are motivated to look
for distributions based on singularities other  than  logarithms.   To do this,
examine the possibility of Equation 3-11. Following Chapter 2, we consider this
point vortex singularity, but displace it from (x=0, y=0) to (x=ξ, y=0),

p(x,y) = arc tan y/(x-ξ)                                                              (3-20)

This solution satisfies Laplace’s equation (see Equation 3-17), as does the
distributed continuous line vortex
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               +1

p(x,y) = ∫ g(ξ) tan-1 y/(x- ξ) d ξ + x + H                                (3-21)
              -1
which we anticipate models continuous shales.  Here, the x handles the
boundary condition at infinity (see Equation 3-19), g(ξ) is the so-called vortex
strength, and H is a constant different from the one in Chapter 2.  One can also
verify that Equation 3-21, which involves a linear superposition over the
position coordinate ξ , satisfies Equation 3-17 directly.

Equation 3-21, we will show, is the assumption that solves the boundary
value problem defined by Equations 3-17 to 3-19, with g(ξ) being the unknown
function.  To see that this is so, we attempt next to satisfy Equation 3-18.
Differentiation with respect to y, using standard formulas, yields
                          +1

∂p(x,y)/∂y =∫   g(ξ) {(x-ξ)/{(x-ξ)2 + y2}} d ξ  (3-22)
                         -1
If we evaluate Equation 3-22 at y = 0 and substitute Equation 3-18, we find that
          +1

PV ∫ g(ξ)/(x-ξ) dξ = - α  (3-23)
         -1
This singular integral equation, with the Cauchy kernel 1/(x-ξ), governs the
vortex strength g(ξ).  The PV indicates that the integral is improper and must be
evaluated using the limit process in Example 2-5.

Integral equation solution.  Fortunately, we do not need to understand the
mechanics required to solve integral equations like Equation 3-23.  Indeed, the
general solution to the equation

PV ∫ g(ξ)/(x-ξ)dξ = - h(x)                                                         (3-24)
is

g(x) = - (1/ π2)√{(1-x)/(1+x)} PV ∫ {h(ξ)√(1+ξ)}/{(ξ-x)√(1-ξ)} d ξ
                   + γ /√(1-x2)                  (3-25)

where we have omitted the integration limits (-1,+1) for clarity.  This solution is
derived and discussed in classical math references (Mikhlin, 1965;
Muskhelishvili, 1953; Carrier, Krook, and Pearson, 1966).  Note, specifically,
the second line of Equation 3-25.  The γ /√(1-x2) term represents the
nonuniqueness associated with solutions to Equation 3-24, with the arbitrary
constant γ known in the aerodynamics literature as the circulation of a flow.  We
will discuss various possibilities for circulation later.

Applying the results.  Simple results are possible for constant values of
the angle h = α.  If we observe (van Dyke, 1956) that the resulting singular
integral in Equation 3-25 takes on the form

PV ∫ {√(1+ξ)}/{(ξ-x)√(1-ξ)} d ξ = π                                             (3-26)

and does not depend on x, we obtain the vortex strength
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g(x) = - (α/π)√{(1-x)/(1+x)} + γ /√(1-x2)                                      (3-27)

The circulation γ is still undetermined at this stage, and additional physical
arguments must be considered.  For this purpose, we refer to Equation 3-21.
While pressure, obviously, can take on double-valued behavior in the immediate
vicinity of a shale segment, it is clear that it must remain single-valued from the
viewpoint of a distant observer.  This condition is necessary so that the
singularities generating the local flow do not impart velocity swirl to the
farfield; that is, the farfield does not see a point vortex.  This requirement is
guaranteed provided the net vortex strength vanishes,
    +1

∫ g(x) dx   =  0                                                                         (3-28)
   -1
We now substitute Equation 3-27 into Equation 3-28 and evaluate the resulting
improper integral.  Thus, the circulation takes on the uniquely defined value

γ = α /π                                                                                (3-29)

The corresponding vortex strength

g(x) = (α /π) x/√(1-x2)                                                                (3-30)

solves Equation 3-21.  The constant H in Equation 3-21 may be taken as zero
without loss of generality since the boundary conditions in Equations 3-18 and
3-19 involve derivatives of pressure only.

Physical significance of vortex strength.  Let us take the derivative of
Equation 3-21 with respect to x.  Then, it follows that
                    +1

∂p/∂x =  - ∫ g(ξ) y/{(x-ξ)2 + y2} d ξ                                             (3-31)
                  -1
The above integral was studied in Equations 2-24 to 2-28.  In the limit y = 0, we
have, applying earlier results,

∂p(x,0+)/ ∂x = - π g(x)                                                             (3-32)

∂p(x,0-)/ ∂x = + π g(x)                                                              (3-33)

Since the Darcy velocity parallel to the shale is proportional to ∂p/∂x, the
straight solid shale segment is responsible for a discontinuity in the tangential
velocity, of a magnitude proportional to g(x).  Equations 3-32 and 3-33 show
that the net jump in the tangential derivative (i.e., velocity slip) satisfies

∂p(x,0+)/ ∂x - ∂p(x,0-)/∂x = - 2π g(x)                                          (3-34)

It is also important to observe from Equations 3-30 to 3-33 that the tangential

velocity at the shale tips is singular, that is, infinite, behaving like 1/ √(1-x2).
This velocity singularity indicates that existing numerical models are likely to
yield inaccurate results.  That is, any scheme that properly reproduces this
infinity is likely to diverge; mesh distributions must be sufficiently coarse in
order to achieve numerical stability, placing limits on accuracy.  Equation 3-30
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also shows how the results for g(x) and horizontal velocity are antisymmetric,
that is, g(+x) = -g(-x).  The pressure in Equation 3-21, again, is double-valued
through the slit, while the normal derivative in Equation 3-18 is single-valued.

Example 3-2.  Curved shale segment in uniform flow.

We can generalize the above results to curved shale segments if we replace
α by α(x), following strictly kinematic considerations.  If we compare Equations
3-23 and 3-24, we have

h(x) = α(x)                                                                             (3-35)

Then, direct substitution in Equation 3-25 yields

g(x) = - (1/π2)√{(1-x)/(1+x)} PV ∫ {α(ξ)√(1+ξ)}/{(ξ-x)√(1-ξ)} d ξ

                   + γ /√(1-x2)                  (3-36)

Again, the requirement in Equation 3-28 applies.  This leads to

γ = (1/ π3) ∫√{(1-x)/(1+x)} PV∫{α(ξ)√(1+ξ)}/{(ξ-x)√(1-ξ)}d ξ dx (3-37)

Thus g(x), and hence p(x,y), are completely determined.
Role of circulation in other problems.  The role played by the circulation

γ varies from application to application (see Example 5-9 in Chapter 5), and
indeed, from industry to industry.  In classical aerodynamics, the circulation
(used in the “direct” velocity potential description of lifting flows past airfoils)
is selected to move all aft streamlines to the trailing edge, as discussed in
Chapter 1.  This models the global effects of viscosity and unsteady “starting
vortexes,” which can only be treated by a full analysis of the Navier-Stokes
equations; in essence, this choice of γ mimics the effects of a more complete
physical model.  The inverse problem of aerodynamics determines the airfoil
geometry that induces a prescribed surface pressure.  In a series of papers, this
author (Chin, 1979, 1981, 1984; Chin and Rizzetta, 1979) showed how a
streamfunction formulation transforms the inverse formulation into one that is
mathematically direct.  The resulting circulation in this application controls
trailing edge thickness; that is, numerous airfoils can exist having the same
surface pressures, though with different trailing edge thicknesses and shapes.
The amount of mass ejected from the trailing edge is used to model the effects
of viscous wakes and flow separation.

Example 3-3.  Mineralized faults, anisotropy, and gas flow.

So far, we have considered fractures, which have continuous pressures and
tangential velocities but discontinuous normal velocities.  Shales, by contrast,
have discontinuous pressures and tangential velocities but continuous normal
velocities.  Special flow anomalies can be constructed by superposing linear
combinations of the two.  Sometimes a third class of flow arises, namely, rapid
flows through mineralized faults and streaks which are not open to production.
These are responsible for velocities tangent to the fracture but are different from
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one side of the fracture to the other.  They can be visualized by imagining an
otherwise homogeneous, isotropic continuous sand of permeability k with,
however, a narrow isolated streak whose permeability is k streak >> k. Again
assume a near-horizontal line segment.  If this fault is not open to production,
then equal and opposite normal velocities will not be present; logarithmic
singularity distributions are ruled out, and normal velocities are continuous.  But
fluid will flow along the streak; its macroscopic effect will be a discontinuity in
tangential velocity.  The effect of the streak can be modeled by prescribing the
distribution of g(x) in Equation 3-34 directly, provided that the complete
distribution satisfies Equation 3-28.  The exact behavior of g(x) will depend
upon the results of laboratory experiments.  Finally, we offer comments on
anisotropic problems where the constant permeabilities kx and ky in the x and y
directions are different, with the formation containing liquids or general gases.
As shown in Chapter 2, a simple rescaling of both length dimensions leads to
Laplace’s equation for pressure (to the mth power) in a homogeneous medium;
then, the methods of Examples 3-1 and 3-2 apply with minor modification.
Before considering nontrivial flows past complicated fractures and shales, we
will review some modern issues in streamline tracing and introduce complex
variables methods in Chapter 4.

PROBLEMS AND EXERCISES

1. Derive the integral solution for incompressible liquid flows past straight
shales in an anisotropic medium using the rescaling methods introduced in
Chapter 2.  Repeat this exercise for gas flows with a general “m” exponent.

2. A “streamline” is one whose local slope is tangent to the velocity vector;
that is, dy/dx ≈ - {(k/µ) ∂P(X,Y)/ ∂Y}/U∞ for small inclinations.   At any
point in space, an equation dy/dx = f can be integrated as ynew ≈ yold + fold ∆x
where ∆x is a given mesh width.  For the straight shale in Example 3-1, plot
typical streamlines emerging from the leading and trailing edges using this
integration scheme.  Explain their geometric properties.  Where do you
expect the greatest numerical error?  What is wrong with this streamline
tracing approach?  The starting point (xstart, ystart) in such approaches can
make or break the accuracy of the solution.  Show that starting points far
from the shale which integrate inward lead to more accurate solutions than
those integrating outward from the singularity distribution (the latter contain
large initial errors that destroy the integrity of later integrations).  How
would you design a general streamline tracing utility?  Write and program
such an algorithm for use with the pressure outputs given in Chapter 7.

3. Numerical solutions depend strongly on the choice of grid.  Using any
reservoir simulator, compute the flowfields about stand-alone fractures and
shales, say, centered in a large computational box.  Do your results satisfy
the symmetries and antisymmetries derived here for pressure and normal
velocity?  A single straight shale in an infinite medium has a perfectly
antisymmetric disturbance pressure field.  Show that this antisymmetry is
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broken by using an unsymmetric grid, therefore leading to incorrect flow
results.  Suppose your domain of flow contains both fractures and shales.
What grid generation usage would you recommend?

4. Formulate the boundary value problem for two parallel shales separated by
a fixed distance and inclined relative to the flow.  Repeat this exercise for
an array of parallel shales.  How would you use periodic boundary
conditions to simplify the formulation when large numbers of shales are
involved?  Can arrays of shales be modeled by θ solutions alone?

5. In this chapter, closed-form analytical solutions were obtained using exact
results from singular integral equations, which were in turn developed in the
1940s.  Earlier on, aerodynamicists solved the integral equation using
intuitively designed trigonometric series, principally due to Glauert
(Thwaites, 1960).  These resembled Fourier expansions but accounted for
edge singularities.  Refer to basic aerodynamics textbooks, and develop a
trigonometric series-based solution for simple shale flows.
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4
Streamline Tracing

and Complex Variables

The streamfunction is usually discussed within the limited framework of
two-dimensional, steady, constant density flow of liquids in homogeneous,
isotropic media in petroleum engineering books, for example, Muskat (1937),
Collins (1961), or Bear (1972).  Typically, formal analysis stops with a simple
proof showing how the streamfunction is constant along a streamline, and with
an example displaying radial streamlines penetrating an isolated well in infinite
media.  The streamfunction is a stepsister to pressure and finds few published
applications; even Muskat limits discussion on this crucial function, one that is
potentially just as important as fluid pressure.  In this chapter, we systematically
develop and generalize the idea of the streamfunction.  We demonstrate how,
when properly posed, streamfunction formulations can be powerful weapons in
the reservoir engineer’s arsenal of simulation tools.  The end objective is
ambitious: extend streamfunction theory and streamline tracing methods to
handle arbitrary heterogeneities, anisotropies, and liquids or compressible gases
in real flows with or without wells.  We motivate special mathematical methods
by examining different physical problems.  This chapter explains the elegance
offered by complex variables, but at the same time, shows its limited utility in
analyzing flows with heterogeneities.  We also show how pressure and
streamfunction offer complementary views for flow interpretation, and we
derive certain dualities between the two functions without using high-level
mathematics.  A knowledge of complex variables is not required; however, the
results developed here apply to very broad classes of problems.

Discussion 4-1.  The classical streamfunction.

 In this discussion, we introduce the notion of the streamfunction and
explain its physical properties.  Usually, fluid flow textbooks develop the basic
ideas assuming familiarity with complex variables.  A complex flow potential is
typically introduced, whose real and imaginary parts are identified at the outset
with pressure and streamfunction.  Then, Cauchy-Riemann conditions are
defined and used to show how each function is harmonic.  The mathematical
theory is established elegantly, although in a manner intimidating and lacking of
physical feeling to undergraduate students.
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The reader is referred to Churchill (1960), Hildebrand (1948), and Carrier,
Krook, and Pearson (1966) for advanced discussions on complex variables.
This book is self-contained, however, and enough of the basic mathematics is
presented as is necessary for problem solving.  We deemphasize complex
analysis because it cannot be used to model real-world flows.  First, it cannot be
extended to handle general heterogeneities: the familiar Cauchy-Riemann
conditions assumed in homogeneous isotropic flows do not apply.  Second,
analyses are typically restricted to incompressible liquids; what of compressible
gases in heterogeneous media?  Third, the very important problem of streamline
tracing in reservoirs containing wells cannot be treated.  For these reasons, we
alternatively develop the streamfunction without using complex variables at all.
In our exposition, we assume only an understanding of elementary calculus and
some familiarity with partial derivatives.  This is not to say that our end results
will be limited; quite to the contrary, the results are rigorous and powerful.

Properties of the “simple” streamfunction.  Let us consider first the two-
dimensional, steady, constant density flow of a liquid in homogeneous, isotropic
media.  The Darcy flow, in this case, satisfies Laplace’s equation

∂2P/∂X2 + ∂2P/∂Y2 = 0                                                           (4-1)

where P(X,Y) is pressure, X and Y are Cartesian coordinates, and P, X, and Y
are dimensional.  The Eulerian velocities U and V in the X and Y directions are

U = - (k/µ) ∂P/∂X                                                                      (4-2)

V = - (k/µ) ∂P/∂Y                                                                      (4-3)
where k and µ are constant formation permeability and liquid viscosity,
respectively.  Now rewrite Equation 4-1 in what appears to be a more
cumbersome form,

∂(∂P/∂X)/∂X + ∂(∂P/∂Y)/∂Y = 0                                                (4-4)

Equation 4-4 suggests that we can define a function Ψ(X,Y) such that

∂P/∂X = ∂Ψ/∂Y                                                                        (4-5)

∂P/∂Y = - ∂Ψ/∂X                                                                      (4-6)

Equations 4-5 and 4-6, after all, are simply relationships that introduce no
additional assumptions; for example, substitution in Equation 4-4 yields a trivial
0 = 0.  However, the function Ψ, or streamfunction, possesses interesting
properties.

First, let us consider the kinematic definition of a streamline.  A streamline
is a flow trajectory across which fluid motion is absent; fluid moves tangentially
to it.  Thus, its local slope must be equal to the ratio of the vertical to the
horizontal velocities,

dY/dX = V/U                                                                            (4-7)

If we now substitute, initially Equations 4-2 and 4-3, and then Equations 4-5 and
4-6 into Equation 4-7, we obtain successively

dY/dX = {∂P/∂Y}/{∂P/∂X} = {- ∂Ψ/∂X}/{∂Ψ/∂Y}                (4-8)

that is,
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{∂Ψ/∂X} dX + {∂Ψ/∂Y} dY = 0                                                (4-9)
From calculus, the total differential for any two-variable function is

 dΨ = {∂Ψ/∂X} dX + {∂Ψ/∂Y} dY                                             (4-10)
Comparing Equations 4-9 and 4-10, we find that

dΨ = {∂Ψ/∂X} dX + {∂Ψ/∂Y} dY = 0                                      (4-11)

Hence, the streamfunction Ψ(X,Y) is constant along a streamline.  Since the
streamfunction must take on different constant values along different
streamlines, it is clear that the difference between Ψ(X,Y)’s measured at any
two points in space should provide some measure of the nonzero volume flow
rate streaming between the two points.  We will discuss this relationship later.

Now, what partial differential equation does the streamfunction satisfy?
This is determined by differentiating Equation 4-5 with respect to Y, Equation
4-6 with respect to X, and subtracting the two.  This leads to

∂2Ψ/∂X2 + ∂2Ψ/∂Y2 = 0                                                       (4-12)

This simple proof shows that the streamfunction, like the pressure P(X,Y) in
Equation 4-1, is also “harmonic”; that is, it also satisfies Laplace’s equation.  By
postulating Equations 4-5 and 4-6, we have shown that whenever Equation 4-1
can be written, then so can Equation 4-12.  In complex variables, this is shown
formally; P and Ψ are conjugate harmonic functions because two-dimensional
harmonic functions always occur in conjugate pairs.  Equations 4-5 and 4-6
connecting the two are referred to as Cauchy-Riemann conditions.  We have
rederived classical streamfunction theory without using complex variables; and
significantly, it turns out that our manner of proof is generalizable to
heterogeneous flows!  For now, we point out one more important property:
streamlines are orthogonal, that is, perpendicular, to lines of constant pressure.
This is easily demonstrated.  From vector analysis (e.g., Hildebrand, 1948), the
unit normal to any surface F(X,Y) = constant is proportional to the gradient
function ∂F/∂X i + ∂F/∂Y j, where i and j are unit vectors in the X and Y
directions.   Thus, the unit normals to lines having constant Ψ and P are,
respectively, proportional to ∂Ψ/∂X i + ∂Ψ/∂Y j and ∂P/∂X i + ∂P/∂Y j.  Now,
let us form the dot or scalar product between these two normals and simplify the
result using Equations 4-5 and 4-6.  We obtain

 (∂Ψ/∂X i  + ∂Ψ/∂Y j) • (∂P/∂X i  + ∂P/∂Y j)

                            =  (∂Ψ/∂X) (∂P/∂X)  + (∂Ψ/∂Y)(∂P/∂Y)  =  0          (4-13)
Since the scalar product vanishes, the two normals are perpendicular; if the
normals are perpendicular, then so must be their respective level surfaces.  It is
important to emphasize that we have obtained this result using Equation 4-1,
which is valid only for constant density liquids in isotropic, homogeneous
media.  In this limit, the commonly used approximation that flow from (or into)
a constant pressure fracture is locally perpendicular is, in fact, exact.  The flow
from a producing fracture with variable lengthwise pressure, as seen from this
proof, will not be orthogonal locally (this is clear because flow parallel to the
fracture exists).  These results do not apply to transient compressible liquids,
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even in isotropic, homogeneous media because the total differential in Equation
4-10 would have to include the timewise term (∂Ψ/∂T) dT.  When this is
allowed, it is not possible to obtain analogous results because the total derivative
dΨ does not vanish.  Unsteady streamlines are known as streaklines.

Discussion 4-2.  Streamfunction for general fluids in
heterogeneous and anisotropic formations.

We now repeat the above analysis and extend the notion of the
streamfunction to liquids and compressible gases for steady flow through
heterogeneous, anisotropic formations.  We emphasize that, considering the
various possibilities for flow permitted in this book, the physical dimensions
assumed for Ψ may vary from one application to another; that is, different
definitions are employed throughout that may involve changes by a constant
scale factor.  Consistency, however, is maintained within like applications.  Our
starting point is the pressure equation, again in “conservation form,” that is,

 ∂(kx ∂Pm+1/∂X)/∂X + ∂(ky ∂Pm+1/∂Y)/∂Y = 0                            (4-14)

where k x 
(X,Y) and k y  

(X,Y) are, respectively, different spatially dependent

permeability functions in the X and Y directions.  Again, the constant m is zero
for liquids and nonzero for gases.  If µ represents the viscosity of the fluid, the
Eulerian velocities U and V can be obtained from Darcy’s law as

U = - (kx /µ) ∂P/∂X                                                                  (4-15)

V = - (ky /µ) ∂P/∂Y                                                                  (4-16)

In a manner similar to Discussion 4-1, Equation 4-14 suggests that we can
define a function Ψ(X,Y) such that

kx ∂Pm+1/∂X = ∂Ψ/∂Y                                                            (4-17)

ky ∂Pm+1/∂Y = - ∂Ψ/∂X                                                          (4-18)

Substitution of Equations 4-17 and 4-18 into Equation 4-14 yields a 0 = 0
identity, showing that no additional assumptions have been invoked.  First, let us
determine how Ψ varies, if at all, along a streamline.  Equation 4-7, which
provides the kinematic description for a streamline, still holds.  Thus,

dY/dX = V/U = {ky ∂P/∂Y}/{kx ∂P/∂X}                                    (4-19)

Now, if we carry out the differentiations suggested in Equations 4-17 and 4-18,
the resulting expressions for ∂P/∂X and ∂P/∂Y are

∂P/∂X = {∂Ψ/∂Y}/{kx(m+1) Pm}                                               (4-20)

∂P/∂Y = - {∂Ψ/∂X}/{ky(m+1) Pm}                                            (4-21)

Substitution in Equation 4-19 leads to
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dY/dX = - {∂Ψ/∂X}/{(m+1) Pm}/{∂Ψ/∂Y}/{(m+1) Pm}
= - {∂Ψ/∂X}/{∂Ψ/∂Y}                                             (4-22)

that is, as before,

{∂Ψ/∂X} dX + {∂Ψ/∂Y} dY = 0                                              (4-23)

From calculus, the total differential for any two-variable function is

 dΨ = {∂Ψ/∂X} dX + {∂Ψ/∂Y} dY                                             (4-24)

Comparing Equations 4-23 and 4-24, we find that

dΨ = {∂Ψ/∂X} dX + {∂Ψ/∂Y} dY = 0                                      (4-25)

along a streamline; hence, the streamfunction Ψ(X,Y) defined by Equations 4-17
and 4-18 is constant along a streamline in heterogeneous, anisotropic flow, for
liquids and real gases.

Are such streamlines perpendicular to lines of constant pressure?  The
answer is, “No.”  To see this, note that the unit normals to lines having constant
Ψ’s and P’s are proportional to ∂Ψ/∂X i + ∂Ψ/∂Y j and ∂P/∂X i + ∂P/∂Y j,
respectively.  The inner or scalar dot product formed by these normals is

(∂Ψ/∂X)(∂P/∂X) + (∂Ψ/∂Y)(∂P/∂Y)

= (∂Ψ/∂X){∂Ψ/∂Y}/{kx (m+1)Pm} - (∂Ψ/∂Y){∂Ψ/∂X}/{ky (m+1)Pm}

= (∂Ψ/∂X)(∂Ψ/∂Y)(1/kx - 1/ky ) /{(m+1) Pm}    (4-26)

where we have used Equations 4-20 and 4-21.  Now, orthogonality is only
possible when the dot product in Equation 4-26 vanishes.  This will occur at any
point (X,Y) where kx and ky  are locally equal.  When kx and ky  are equal

everywhere, the product in Equation 4-26 vanishes identically.  Thus,
streamlines and pressure level curves are perpendicular even in a heterogeneous
(but isotropic) flow having spatially varying permeabilities.  As shown in
Discussion 4-1, it is not possible to obtain similar results for transient
compressible flows.  Next, we determine the partial differential equation
satisfied by the streamfunction so defined.  This is accomplished by dividing
Equation 4-17 by kx, and similarly, Equation 4-18 by ky  .  This leads to

∂Pm+1/∂X = {∂Ψ/∂Y}/kx                                                         (4-27)

∂Pm+1/∂Y = - {∂Ψ/∂X}/ky                                                       (4-28)

If we now differentiate Equation 4-27 with respect to Y and Equation 4-28 with
respect to X, and subtract the resulting equations, we obtain

∂{(∂Ψ/∂X)/ky}/∂X + ∂{(∂Ψ/∂Y)/kx}/∂Y  =  0                        (4-29)

as the required differential equation for heterogeneous, anisotropic flow.  In the
limit of homogeneous, isotropic flow, we recover the results of Discussion 4-1.
In general, however, Equation 4-29 applies; it is not, we emphasize, Equation 4-

14 with Pm+1 replaced by Ψ.  And, further, this is not an equation for Ψm+1,
although we might, alternatively, have proceeded along a route leading to such a
result.  The choice is a matter of personal preference.  We do emphasize that
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both Equations 4-14 and 4-29 are elliptic, so that the same elliptic algorithms
can be used to solve for pressures and streamfunctions, bearing in mind several
important subtleties to be discussed next.

Discussion 4-3.  Subtle differences between
pressure and streamfunction formulations.

 In Discussion 4-1, we showed that the pressure P(X,Y) and the
streamfunction Ψ(X,Y) for a constant density liquid in a homogeneous, isotropic
medium both satisfy Laplace’s equation, that is,

∂2P/∂X2 + ∂2P/∂Y2 = 0                                                         (4-30)

∂2Ψ/∂X2 + ∂2Ψ/∂Y2 = 0                                                       (4-31)

Similar results were obtained in Discussion 4-2.  Whereas Equation 4-30
provides a meaningful way to view the effects of pressure gradients, streamline
methods allow ready visualization of the flowfield.  The two offer
complementary and equivalent ways to describe the physics.  One might
conclude that once P(X,Y) has been obtained numerically on some
computational box, then the streamfunction can be straightforwardly obtained by
solving Equation 4-31 subject to normal derivative boundary conditions written
in terms of ∂Ψ/∂X and  ∂Ψ/∂Y at the edges of the box – that is, by using the
Cauchy-Riemann conditions in Equations 4-5 and 4-6, since P(X,Y) is assumed
to be known.  As this Neumann formulation involves derivatives only, the exact
level of Ψ would be pinned down by arbitrarily assigning it the value of zero,
say, at the origin.  This simple procedure turns out to be valid only when the
possibility of injection or production wells is excluded: in the petroleum
industry, this rules out most commercially significant flows.  Thus, while this
recipe may be of interest in groundwater hydrology problems (Cherry and
Freeze, 1979), it is not useful in oilfield applications.  But one can resurrect the
basic procedure, provided certain nontrivial modifications are made in the basic
formulation.  To understand exactly what the problem is, we return to
fundamentals: the end result will be a powerful result useful in streamline
tracing.  The similarities underlying Equations 4-30 and 4-31 are superficial;
there are large differences between P and Ψ that we must consider first.  We
explore these subtleties by reexamining the singularities in Chapters 2 and 3.

More streamfunction properties.  To bring out the subtleties, it is
convenient to transform Equations 4-30 and 4-31 into equivalent forms in radial
polar coordinates.  That is, set

X = r cos θ (4-32)

Y = r sin θ                                                                              (4-33)
in the usual manner, and determine the equations satisfied by

P(X,Y) = P(r,θ)                                                                       (4-34)

Ψ(X,Y) =Ψ (r,θ)                                         (4-35)



58   Quantitative Methods in Reservoir Engineering

where the italics indicate that the transformed functions will in general be
different from the nonitalicized ones.  We apply the chain rule for
differentiation.  Thus, the first and second X derivatives, for example, transform
according to

PX = Pr  rX + Pθ θX                                                                 (4-36)

PXX = Pr rXX + rX (Prr rX + Prθ θX)

              + Pθ θXX + θX (Pθr rX + Pθθ θX)                                      (4-37)

where subscripts, for convenience, are used to indicate partial differentiation.
Carrying through, we obtain

∂2P/∂X2 + ∂2P/∂Y2

= (rXX + rYY) Pr + (θXX + θYY) Pθ  + 2 (rX θX + rY θY) Pθr

+ (rX2 + rY
2) Prr + (θX

2 + θY
2 ) Pθθ                       (4-38)

If we solve Equations 4-32 and 4-33 for r and θ explicitly in terms of X and Y,
and substitute the results into Equation 4-38, we have, on setting the Laplacian
equal to zero,

PXX + PYY = Prr + (1/r) Pr + (1/r 2) Pθθ  = 0                               (4-39)

In radial coordinates, the pressure thus satisfies Laplace’s equation in the form

Prr + (1/r) Pr + (1/r 2) Pθθ  = 0                                                     (4-40)

Similarly, the streamfunction satisfies

Ψrr + (1/r)Ψr + (1/r 2) Ψ θθ  = 0                                                  (4-41)

As we pointed out in Chapter 3, in many elementary treatments, the dependence
of P on θ is not considered.  But we showed that while the log r solution is
useful in modeling flows in continuous sands where pressure does not jump, the
θ is ideal for modeling the effects of solid obstacles placed in the midst of larger
scale flows that do support pressure differences.

The classic streamline tracing problem.   As if our new concepts were
not complicated or confusing enough, the streamfunction Ψ also has log r and θ
solutions.  What do these mean physically, and how do these relate to their
pressure counterparts?  Since our ultimate objective is to determine the
streamfunction distribution once the pressure field is available numerically, we
would like to determine the streamfunction expression that is complementary,
first, to the source (or sink) solution

Psource  = log √{X2 + Y2}                                                        (4-42)
To do this, we return to the Cauchy-Riemann conditions given by Equations 4-5
and 4-6.  Simple integration shows that the corresponding streamfunction is
given by the expression

Ψsource = θ = arc tan Y/X                                                         (4-43)
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Thus, the functions log r and θ provide equivalent descriptions of the point
source, depending upon whether the pressure or streamfunction formulation is
employed.  But there is one crucial difference.  The log r is a single-valued
function of space; that is, given some point (X,Y), the pressure has a single
unique value.  The streamfunction Ψ, however, is double-valued .  What, really,
does this mean?  Earlier we showed that the difference between streamfunction
values at any two points in space must reflect the nonzero net flow between
those points.  Consider a circular well situated concentrically in a circular
reservoir, so that Equation 4-43 applies.  Now, envision two infinitesimally
close radial streamlines with 0o included angle, so that the flow between the two
is negligible.  The alternative view, going 360o about the source point, captures
the entire nonzero flow.  The double-valuedness in Equation 4-43 is
mathematics’ way to describe the increasing capture of produced fluid as θ
increases, with the rays finally returning to touching position.  Point sources
such as the one in Equation 4-42 are always associated with double-valued
streamfunctions because they create mass.  In the language of math, “if one
traverses about a closed circuit enclosing the origin, the streamfunction (in
Equation 4-43) increases from, say, 0 to 2 π. (In a region without wells, the
change in streamfunction about a closed circuit is zero.)  This double-valued
behavior, necessary to describe the mass-conserving nature of source flows, also
contributes to obvious problems in the solution of the streamfunction equation.
Most numerical simulators are developed assuming that the dependent variable
(typically pressure) is uniquely defined and single-valued at any point.  Thus,
the streamfunction cannot  be solved by such straightforward algorithms or
standard numerics.  The exception, of course, are flows without wells, which are
common in the study of groundwater hydrology.  This is the streamline tracing
problem that has made streamfunction analyses of producing oil reservoirs
impractical, but simple changes can be made to overcome this difficulty.  We
will tackle this problem in Discussion 4-4, after we discuss the streamfunction
corresponding to the vortex singularities introduced in Chapter 3.

The vortex solution.  Petroleum engineers have traditionally neglected the
θ solution for pressure, but we have seen how they are important in modeling
flows past shale distributions.  Following the lead of our aerospace colleagues,
we consider the elementary vortex solution

Pvortex  =  θ = arc tan Y/X                                                      (4-44)

Again, use of the Cauchy-Riemann conditions given by Equations 4-5 and 4-6
shows that the complementary streamfunction solution is

Ψvortex = log √{X2 + Y2}                                                        (4-45)

Whereas pressure is double-valued through a solid shale, the corresponding
streamfunction, interestingly, is single-valued: the shale segment is a streamline
of the flow.  This is also obvious because it is not a source (or sink) that creates
(or destroys) fluid.  Thus, numerical methods developed for pressure fields in
continuous sands, or for steady-state temperature fields in heat transfer problems
without embedded insulators, can be “naively” and directly used for shale flow
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modeling.  For such problems, there is no streamline tracing problem.  In
summary, Equations 4-42 and 4-43 are the elementary solutions used to model
source and sinks, that is, production or injection wells.  By contrast, distributed
versions of the singularities in Equations 4-44 and 4-45 are used to model flows
about shaly barriers.  We also reiterate the problem with streamline tracing using
Equation 4-43.  Since wells by necessity are described by double-valued
streamfunctions, reservoir flows containing production and injection wells
cannot be solved by using Equation 4-31 directly.  That is, any attempt to
discretize the governing equation, either by finite differences or finite elements,
is bound to fail: unless special double-valued operators are employed, which are
beyond the scope of this book, such methods implicitly assume that the
discretized function possesses at most a single value of streamfunction per node.

Solution methods for multivalued streamfunctions in aerodynamics have
been developed by the author (Chin, 1979, 1981, 1984; Chin and Rizzetta,
1979), when the airfoil shape is sought that induces a prescribed surface
pressure.  Here the jump in streamfunction is related to the shape (or degree of
closure) of the trailing edge desired.  Similar ideas were recently presented by
the author for three-dimensional electromagnetic modeling in layered media,
where the double-valued finite difference operators are derived and tabulated
(Chin, 2000).  Finite difference schemes handling double-valued properties are
available, of course, in the aerospace industry; for example, recall from Chapter
1 that the velocity potential must be multivalued in order to model lift.
However, we will not need to develop analogous methods for practical reasons.
For one, very good pressure solvers do proliferate in the petroleum industry that
handle wells adequately, so it makes sense to continue with pressure
formulations.  We wish only to solve Equation 4-31 insofar that it is used as a
streamline post-processor, which generates visually meaningful information
augmenting the numerical pressure field.  Of course, the trick is to post-process
correctly an equation that accounts for double-valuedness.  This is discussed
next, where a complementary formulation for a single-valued Ψ is given that
results from subtracting out the two-valued problem via linear superposition.
This formulation is solved using standard finite difference or finite element
methods.

Discussion 4-4.   Streamline tracing in the
presence of multiple wells.

 We demonstrated in Discussion 4-3 that, in the presence of flowing wells
in a reservoir, the known pressure solution, whether it is numerical or analytical,
implicitly contains local source solutions of the form given in Equation 4-42.
Effects representing interactions between wells will also be present.  To each of
these sources, one must associate a complementary double-valued
streamfunction of the form given by Equation 4-43.  Thus, we cannot prescribe
normal boundary conditions on computational box edges (via ∂Ψ/∂X and
∂Ψ/∂Y, as obtained from a known pressure through the Cauchy-Riemann
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conditions of Equation 4-5 and 4-6) and blindly solve Equation 4-31 for Ψ, say,
using the single-valued numerical methods is discussed in Chapter 7.  The actual
procedure requires some modification.  The key to streamline tracing in the
presence of wells, as a preliminary step, requires the elimination of this
troublesome multivaluedness.  Before explaining the details, let us consider a
steady radial liquid flow and examine first the isotropic pressure solution studied
in petroleum engineering.  Assume that a pressure PW  is maintained at the well
radius r = r W  and that a pressure of PR is maintained at the reservoir outer radius

r = rR.  The solution to Equation 4-40, without the θ dependence, is

P = PW  + (PR - PW ) {log (r/r W )}/log (rR/rW )                             (4-46)

It turns out to be more convenient to eliminate the boundary pressure PR and

rewrite Equation 4-46 in terms of the net volume flow rate Q issuing from the
well.  If D is the depth into the page, the flow rate Q is determined by

Q = 2πrD(-k/µ) ∂P/∂r = - 2π(kD/µ)(PR - PW )/log (rR/rW )               (4-47)

so that Equation 4-46 becomes

P = PW  - (Qµ/2πkD) {1/2 log (X2 + Y2)}  - log rW }                  (4-48)

The corresponding expression for the streamfunction, satisfying the Cauchy-
Riemann conditions in Equations 4-5 and 4-6, is

Ψ  =  - (Qµ/2πkD) arc tan Y/X                                                  (4-49)

A simple scheme.    Now suppose that a numerical solution for the pressure
field is available, for example, the finite difference solutions presented later in
Chapter 7.  The solution, for instance, may contain the effects of arbitrary
aquifier and solid wall no-flow boundary conditions; we also suppose that this
pressure solution contains the effects of multiple production and injection wells.
How do we pose the streamline tracing problem using Ψ without dealing with
multivalued functions?  The solution is obvious: subtract out multivalued effects
and treat the remaining single-valued formulation using standard methods.  Let
us assume that there exist N wells located at the coordinates (Xn ,Yn), having
well volume flow rates Qn  known from the pressure solution.  Here the index n

varies from 1 to N.  Then, it is clear from Equation 4-49 that the complete
streamfunction Ψtotal(X,Y) will contain the troublesome part Ψ multivalued(X,Y)
that specifically contains well effects, plus a single-valued trouble-free part that
handles the effects of well interference and farfield interactions.  Following the
hint in Equation 4-49, we can write the former as
                                                N
 Ψmultivalued(X,Y) = - (µ/2πkD) ∑ Qn arc tan (Y-Yn)/(X-Xn)        (4-50)
                                                n=1

where the (Xn ,Yn), Qn  and N are known.  Thus, there remains the single-valued

trouble-free part

Ψsingle-valued(X,Y) = Ψtotal(X,Y) - Ψ multivalued(X,Y)               (4-51)
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which also satisfies Equation 4-31 owing to linearity, that is,

∂2Ψsingle-valued/∂X2 + ∂2Ψsingle-valued/∂Y2 = 0                     (4-52)

The relevant boundary conditions on Ψsingle-valued are likewise found by
superposition.  From the Cauchy-Riemann conditions in Equations 4-5 and 4-6,
we rewrite

∂Ψ/∂Y = ∂P/∂X                                                                     (4-53)

∂Ψ/∂X = - ∂P/∂Y                                                                    (4-54)

where P(X,Y), which again contains all flow effects, is known numerically.
Thus, substituting

Ψtotal  = Ψsingle-valued(X,Y) + Ψ multivalued(X,Y)                      (4-55)

we obtain

 ∂Ψsingle-valued /∂Y = ∂P/∂X  - ∂Ψ multivalued(X,Y)/∂Y               (4-56)

∂Ψsingle-valued /∂X = - ∂P/∂Y - ∂Ψ multivalued(X,Y)/∂X               (4-57)

to be used as appropriate Neumann conditions at the horizontal and vertical
edges of the computational box, respectively.  As indicated earlier, since the
boundary value problem involves derivatives of Ψ only, we arbitrarily fix Ψ at
some point, say 0 at the origin.  This has no effect on the velocity; this choice
simply renders the solution unique.  Ψtotal is then obtained from Equation 4-55.

The final streamline tracing recipe.   In summary, the problem consists of
finding the streamfunction Ψtotal(X,Y) if the pressure P(X,Y) corresponding to N
wells and given farfield boundary conditions is known.  Streamlines are
obtained, again, by connecting lines having like values of Ψtotal .  The solution
method is as follows.  (i) Construct the analytical expression given by Equation
4-50, where the indexed quantities are known (for example, determine Q n by

post-processing the results for pressure). (ii) Since P(X,Y) is known, obtain
∂Ψsingle-valued /∂Y numerically using Equation 4-56, and use this as the normal
derivative (Neumann) boundary condition along the top and bottom sides of the
box.  (iii) Similarly, obtain the derivative ∂Ψsingle-valued/∂X numerically using
Equation 4-57, and use this as the normal derivative (Neumann) boundary
condition along the left and right sides of the box.  Since the problem is of the
Neumann type, (iv) fix the level of Ψsingle-valued arbitrarily at some point.  Now
solve this boundary value problem for the single-valued function Ψsingle-

valued(X,Y) using a standard finite difference scheme (e.g., see Chapter 7).  (v)
Once the converged Ψ(X,Y) single-valued is available, add back the multivalued
part (that is, the expression obtained in (i)) as required by Equation 4-55 to
obtain the total streamfunction Ψtotal(X,Y).  (vi)  Finally, draw lines through
constant values of the complete streamfunction Ψtotal(X,Y) to obtain the flow
streamlines.  The streamlines so obtained will appear from and disappear into
wells as required.  This last step can be performed using commercial contour
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plotting software.  In constructing this algorithm, care must be taken not to
differentiate ∂P/∂X and ∂P/∂Y across well points, since the first derivatives of
pressure are physically discontinuous through the points; appropriate one-sided
difference formulas should be used.  Also, it is important in the final printout of
the streamfunction solution not to list the value of Ψtotal at injection and
production well positions.  Again, it is multivalued, and any single printed
number would likely be subject to misinterpretation.  Instead, at well points,
some alphanumeric name might be more appropriate.

Discussion 4-5.  Streamfunction expressions for
distributed line sources and vortexes.

In Chapters 2 and 3, we introduced distributions of sources and vortexes to
model fractures and shales.  There, we obtained explicit solutions for the
pressure field and its Darcy velocities.  Here we will determine in a general
manner the streamfunctions associated with those pressure solutions.  We will
develop, for simplicity, the formulas for constant density liquids.

Source-like flows.  Again, we return to first principles.  Let us consider the
general form for the pressure corresponding to distributed line sources having
the source strength density f(x), namely,

+1

p(x,y) = ∫ f(ξ) log √{(x-ξ)2 + y2} d ξ + H                                   (4-58)
                  -1
in the dimensionless coordinates (x,y) given in Equation 2-10.  Direct
differentiation shows that
                        +1

∂p(x,y)/∂x =∫  f(ξ) (x-ξ)/{(x-ξ)2 + y2} d ξ                                     (4-59)
                        -1
                        +1

∂p(x,y)/∂y =∫  f(ξ) y/{(x-ξ)2 + y2} d ξ                                         (4-60)
                        -1
The conjugate pair defined by Equations 4-42 and 4-43 suggests that the
streamfunction Ψ(x,y) complementary to the source solution in Equation 4-58
should take the form
                    +1

Ψ(x,y) =∫  f(ξ) arc tan y/(x- ξ) d ξ                                               (4-61)
                   -1
To show that this is the correct solution, we need only differentiate it, and check
that it satisfies the Cauchy-Riemann conditions in Equations 4-4 and 4-5.
Straightforward differentiation shows that
                            +1

∂Ψ(x,y)/∂y = ∫  f(ξ) (x-ξ)/{(x-ξ)2 + y2} d ξ                                     (4-62)
                            -1
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                               +1

∂Ψ(x,y)/∂x = - ∫  f(ξ) y/{(x-ξ)2 + y2} d ξ                                    (4-63)
                              -1

Thus, from Equations 4-59 and 4-62, we have ∂p(x,y)/∂x = ∂Ψ(x,y)/∂y, and
from Equations 4-60 and 4-63, we obtain ∂p(x,y)/∂y = - ∂Ψ(x,y)/∂x, in complete
agreement with Equations 4-5 and 4-6.  This establishes the expression in
Equation 4-61 as the streamfunction for source distributions of strength f(x).

Vortex distributions.  Next, we turn to vortex distributions, which are line
singularities used to model flows past shales that support pressure differentials.
Let us consider the pressure field associated with a line vortex of strength g(x);
from Equation 3-21, the expression for pressure is

                   +1

p(x,y) = ∫ g(ξ)  arc tan y/(x- ξ) d ξ                                               (4-64)
                   -1
Direct differentiation yields

+1

∂p(x,y)/∂y = ∫  g(ξ) (x-ξ)/{(x-ξ)2 + y2} d ξ                          (4-65)
                             -1

                            +1

∂p(x,y)/∂x = - ∫ g(ξ) y/{(x-ξ)2 + y2} d ξ                                       (4-66)
                            -1
Now, we speculate from Equations 4-4 and 4-5 that
                       +1

Ψ(x,y) = - ∫  g(ξ) log √{(x-ξ)2 + y2} d ξ                                     (4-67)
                      -1
and compute the derivatives
                                +1

∂Ψ(x,y)/∂x =  - ∫  g(ξ) (x-ξ)/{(x-ξ)2 + y2} d ξ                          (4-68)
                               -1

                             +1

∂Ψ(x,y)/∂y =  - ∫  g(ξ) y/{(x-ξ)2 + y2} d ξ                                  (4-69)
                             -1
Comparison of Equations 4-66 and 4-69 shows that ∂p(x,y)/∂x = ∂Ψ (x,y)/∂y,
while Equations 4-65 and 4-68 show that ∂p(x,y)/ ∂y = -∂Ψ(x,y)/∂x.  Hence, the
Cauchy-Riemann conditions are identically satisfied, so that the streamfunction
in Equation 4-67 is complementary to the vortex pressure in Equation 4-64.
These results provide expressions for streamline tracing in the presence of
distributed singularities.  In general, as we will show in Chapter 5, the flow past
(or from) an arbitrary entity can be represented by superpositions of line sources
and vortexes, respectively, having strengths f(x) and g(x).  The net pressure field



Streamline Tracing and Complex Variables     65

is obtained by summing Equations 4-58 and 4-64, while the net streamfunction
is obtained by summing Equations 4-61 and 4-67, plus effects due to any farfield
flows present (e.g., the x term in Equation 3-21).

Discussion 4-6.  Streamfunction solution
using complex variables techniques.

Having discussed the properties of both pressure and streamfunction, we
now provide a mathematically elegant rederivation of basic ideas.  Again, the
new methodology does not apply to flows in heterogeneous media, but it does
open up new avenues for easily constructing solutions that in turn can be
extended further, when conformal mapping is developed in Chapter 5.  Toward
this end, let us introduce the complex variable

z = x + i y                                                                              (4-70)

where i denotes the imaginary number √-1.  Also, let w(z) be a complex
“analytic” function of z, e.g., sin z, log z, or exp(z).  In general, w(z) will
contain real and imaginary parts which we denote by p(x,y) and Ψ(x,y),

w(z) = p(x,y) + i Ψ(x,y)                                                            (4-71)

We emphasize that p(x,y) and Ψ(x,y) are real, not imaginary functions.  Now let
us take partial derivatives of Equation 4-71 with respect to x.  Using the chain
rule, we obtain

w’(z) ∂z/∂x = ∂p/∂x + i ∂Ψ/∂x                                                   (4-72a)

or, since ∂z/∂x = 1 from Equation 4-70,

w’(z) = ∂p/∂x + i ∂Ψ/∂x                                                              (4-72b)

If we similarly take y derivatives, we obtain

w’(z) ∂z/∂y = ∂p/∂y + i ∂Ψ/∂y                                                      (4-73a)

Since ∂z/∂y = i from Equation 4-70, Equation 4-73a becomes, on division by i,

w’(z)  = ∂Ψ/∂y - i ∂p/∂y                                                             (4-73b)

Because Equations 4-72b and 4-73b describe the same quantity w’(z), equating
real and imaginary parts leads to

∂p/∂x = ∂Ψ/∂y                                                                       (4-74)

∂p/∂y = - ∂Ψ/∂x                                                                       (4-75)

Observe that Equations 4-74 and 4-75 are identical to Equations 4-5 and 4-6, the
Cauchy-Riemann conditions!  And again, from Discussion 4-1, we have shown
that each of the functions p(x,y) and Ψ(x,y) – namely, pressure and

streamfunction – must be harmonic, satisfying Laplace’s equation.  What do
these results show in practice?  They show that for any given complex function
w(z), we can take real and imaginary parts p and Ψ as suggested in Equation 4-
71.  Each of these real functions will automatically satisfy Laplace’s equation.
Thus, if w(z) can be appropriately chosen so that the streamfunction admits
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streamlines of physical interest, then the functions p(x,y) and Ψ(x,y) obtained in
the process comprise the complete required solution!  Of course, the difficulty
arises in finding the functions w(z) that do generate physically realistic flows in
the (x,y) plane.  Fortunately, over the past century, researchers in aerodynamics,
heat transfer, and electrostatics have developed and catalogued numerous
solutions.  These are reinterpreted in the petroleum context in Chapter 5.

Obtaining velocity components.  Finally, we indicate how the rectangular
components of Darcy velocity are related to the complex derivative w’(z).  From
Equations 4-72b and 4-75, it is clear that

dw(z)/dz= ∂p/∂x + i∂Ψ/∂x = ∂p/∂x - i∂p/∂y                                  (4-76)

                    ∝  u - iv                                                                    (4-77)

where the ∝ in Equation 4-77 denotes proportionality.  The relevant constant is
the mobility k/µ, where k represents permeability and µ the fluid viscosity, for
example, u(x,y) = - k/µ ∂p/∂x where x and y would be dimensional.

Flows of gases in isotropic media.  Although we have considered liquids
(with m = 0) exclusively, complex variables ideas readily extend to steady-state
compressible gases.  Consider the flow of a gas in homogeneous, isotropic
media, following Discussion 4-2.  Equations 4-17 and 4-18 suggest that

w(z) = pm+1 + iΨ (4-78)

There is no typographical error in Equation 4-78; the m+1 applies to pressure
only.  Using an approach similar to that of Equations 4-72 and 4-73, we obtain
Cauchy-Riemann conditions consistent with Discussion 4-2, that is,

∂pm+1/∂x = ∂Ψ/∂y                                                                   (4-79)

∂pm+1/∂y = - ∂Ψ/∂x                                                                 (4-80)
Flows in anisotropic media can be similarly treated; that is, first renormalize x
and y so that the resulting equations take on an isotropic, homogeneous form.
Then, the results of this section apply directly.  The foregoing development for
pressure and streamfunction provides the first of two powerful uses of complex
variables.  The second, introduced in Chapter 5, called conformal mapping,
potentially transforms simple, trivial flows into exact flow solutions past
complicated shapes.  Before focusing on these applications, we present a
powerful tool known as the Circle Theorem, used by aerodynamicists to
transform seemingly artificial flows past circles into real flows past airfoils.

Discussion 4-7.  Circle Theorem:
Exact solutions to Laplace’s equation.

The flow of a nonuniform stream past a circle bears, in itself, little interest
to reservoir simulation.  But the flow of the same stream past a straight or
curved shale or fracture segment, or an array of such segments, does: the effects
of fractures and flow barriers are often paramount.  It turns out that this circle
flow can be conformally mapped into any of the latter, thus yielding exact
closed-form solutions (see Chapter 5).  For this reason, the complex potential for
the flow obtained when a given nonuniform stream is altered by the introduction
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of a circle at the origin is of interest.  The Circle Theorem, due to Milne-
Thomson (1940, 1958, 1968), assumes that the flowfield is irrotational; that is,
the velocity components can be found as derivatives of a potential.  This is
certainly so with Milne-Thomson’s applications, namely, the inviscid airfoil
flows briefly described in Chapter 1.  But the theorem also applies to Darcy
flows because the pressure field is a true potential; for example, velocities are
actually computed as derivatives of the pressure.  Also assumed is the absence
of rigid boundaries.  In practice, this is achieved by restricting one’s analysis to
a smaller subset of space that does not “see” the effects of farfield flow barriers.

Let f(z) denote the complex potential of the original flow without the
circle.  If the circle |z| = c (that is, x2 + y2 = c2) is introduced into the flow, then
provided there are no other singularities within the radius c, Milne-Thomson
shows that the complex potential becomes

w(z) = f(z) + F(c2/z)                                                                 (4-81)

where F denotes the  function obtained by replacing any explicitly appearing i’s

by - i’s, and z by c2/z.  The proof is simple: along the circle |z| = c, the complex
potential so defined in Equation 4-81 is purely real.  Thus, the streamfunction
vanishes, showing that |z| = c is in fact a streamline of the flow; this result for
solid, impermeable bodies is useful in thick shale flow modeling.  The reader is
encouraged to demonstrate this property with various simple choices of complex
potentials.  A similar result known as Butler’s Theorem applies to spheres in
axisymmetric, three-dimensional flows (Milne-Thomson, 1968; Yih, 1969).  It is
not based on complex variables; instead, the transformations are given in terms
of the undisturbed streamfunction.  Butler’s theorem, while used in airship
design, is not relevant to petroleum applications.

Pressure corollary. This author (Chin, 1978) provided a simple extension
of Milne-Thomson’s result, which is applicable to the reservoir flow modeling
of fractures and wells.  Suppose it is desired to introduce, in an existing flow, the
same circle but now having zero (that is, constant) boundary pressure; our
objective is the construction of the complex potential describing the new
combined flow.  To do this, define the augmented complex potential

g(z) = - if(z) = Ψ - i p                                                            (4-82)

Cauchy-Riemann conditions consistent with Equation 4-82 are ∂p/∂x = ∂Ψ/∂y
and ∂p/∂y = - ∂Ψ/∂x, exactly the same as earlier ones given in Equations 4-74
and 4-75.  By an argument similar to that used above, consider the function

w(z) = g(z) + G(c 2/z)                                                                (4-83)

The imaginary part of w(z) in Equation 4-83 vanishes on the boundary |z| = c,
showing that pressure satisfies p = 0, a constant on the circular boundary.  Thus,
this pressure describes a flowing well, and w(z) is the sought complex potential.
This result is useful in infill drilling.  In simulating aquifer-driven reservoirs,
pressures are prescribed along rectangular boundaries and fixed, while various
wells are drilled.  This may be true for large aquifers.  In reality, new wells will
affect preexisting pressures, even those normally held constant along box
boundaries.  The above pressure result allows pressure changes to take place.
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When the initial complex potential for some nontrivial flow is available, the
complex potential for the modified flow with a new well is immediately found
using the construction in Equation 4-83 without any computational effort!  This
process can be repeated indefinitely, with one well added after another, and
continual changes in interference pressure are automatically obtained.  Examples
using Equations 4-81 and 4-82 are given later.

Discussion 4-8.  Generalized streamline
tracing and volume flow rate computations.

We discuss streamline tracing and volume flow rate computations in planar
flow; liquids and gases, however, are both allowed, and a heterogeneous,
anisotropic formation is permitted.  Let us consider the Darcy velocity

- q = (kx/µ) ∂p/∂x i + (ky/µ) ∂p/∂y j                                         (4-84)

where i and j are unit vectors in the x and y directions, respectively.  From
Equations 4-27 and 4-28, we have

kx ∂p/∂x= 1/{(m+1)pm} ∂Ψ/∂y                                                  (4-85)
ky  ∂p/∂y = - 1/{(m+1)pm} ∂Ψ/∂x                                                (4-86)

Substitution of Equations 4-85 and 4-86 in Equation 4-84 leads to

- q = 1/{(m+1)pmµ}{∂Ψ/∂y i - ∂Ψ/∂x j}                                    (4-87)
Now the total volume flow rate for a depth D into the page is given by

QW = - D ∫ q • n dS
                       C

= D/{(m+1)pW mµ}∫ {∂Ψ/∂y i - ∂Ψ/∂x j} • n dS                 (4-88)
                                             C
where p = pW  is assumed to be constant along the well contour C (n is the unit

vector normal to an incremental length dS along C).  First, what is the meaning
of the contour integral in Equation 4-88 which we denote by I?

General curve

Isolated segment

A
B

C

X

Y

Figure 4-1.  General well contour.
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I = ∫ {∂Ψ/∂y i - ∂Ψ/∂x j} • n dS                                                (4-89)
           C

To understand the meaning of I, we recognize that the general curve in
Figure 4-1 can be broken into a sequence of composite curves each of the form
given by AC.  The unit normals along segments AB and BC are shown in Figure
4-1.  If we evaluate the open line integral in this drawing, we obtain

IAC = ∫ AB {∂Ψ/∂y i - ∂Ψ/∂x j} • (-j) dx + ∫ BC {∂Ψ/∂y i - ∂Ψ/∂x j}• i dy

       = ∫ AB ∂Ψ/∂x dx + ∫BC ∂Ψ/∂y dy

      = ΨB - ΨA  + ΨC - ΨB = ΨC - ΨA  = [Ψ]AC      (4-90)

where the square brackets denote the jump in the streamfunction between A and
C.  Thus, the closed contour integral I would, after a closed circuit about a well,
increase by 2π if Ψ, assuming a homogeneous isotropic flow, is solved by a
simple θ.  Equation 4-88, using Equation 4-90, simplifies to

QW  = D[Ψ]/{(m+1) pW mµ}                                                      (4-91)

If the contour C were open and not closed, I would measure the proportional
flow between A and C.  For liquids with m = 0, Equation 4-91 becomes

 QW  = D[Ψ] /µ                                                                        (4-92)

Boundary value problem types.  In a steady-state flow, the total volume
flow rate is a constant of the problem.  Sometimes, rather than pressure-pressure
boundary conditions at well and farfield boundaries, pressure and flow rate
specifications are desired.  Observe that Equation 4-91 represents a functional
relationship connecting QW , PW  and PR, since the pressure-pressure problem
for Ψ invariably contains P R.  Now, the availability of Equation 4-91 allows PW
to be explicitly calculated if QW  and PR are specified; similarly, it allows PR to
be calculated if QW  and PW  are given.  This reduces the pressure and flow rate

specification to the pressure-pressure problem already solved.  This powerful
procedure and capability is explained in Chapter 6 for concentric flows and
Chapter 9 for arbitrary planar flows.

Streamline tracing in the presence of wells.  We saw in Discussion 4-4
how the streamfunction is θ-like, that is, double-valued for producing and
injecting wells, making standard finite difference modeling difficult.  The
solution to the problem was accomplished by introducing a doubled-valued
function used to isolate troublesome well effects and then, to solve for the
remaining single-valued disturbance streamfunction using a straightforward
numerical scheme.  The motivating arguments were given previously.  We now
extend the previous recipe to liquids and gases in anisotropic media.  For our
present purposes, observe that the elementary pressure function for a well

pm+1(x,y) = A log √{x2/kx + y2/ky}                                            (4-93)

satisfying k x ∂2pm+1/∂x2 +  ky  
∂2pm+1/∂y2 = 0, by virtue of the Cauchy-

Riemann conditions in Equations 4-27 and 4-28, possesses the streamfunction
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Ψ(x,y) = A √(kxky) arc tan {√(kx/ky) y/x}                               (4-94)

From Equation 4-91, we have

[Ψ] = (m+1) pW m µ QW /D                                                           (4-95)

Thus, the streamfunction for a production or injection well characterized by the
parameters PW , QW , and gas exponent m (0, for liquids) is

Ψ(x,y) = {(m+1) pW m µQW/(2πD)} arc tan {√(kx/ky) y/x}  (4-96)

When N wells exist, a suitable expression for the troublesome double-valued
part of the total streamfunction is

Ψd.v.(x,y) = {(m+1)µ/(2πD)} ×

                     N
∑ pW m, n QW,n arc tan {√(kx,n/ky,n ) (y-yn)/(x-xn)} (4-97)

                   n = 1
The total streamfunction Ψtotal(x,y) satisfies

Ψtotal(x,y) = Ψs.v.(x,y) + Ψd.v.(x,y)                                           (4-98)

where s.v. refers to the single-valued part amenable to straightforward numerical
solution.  Since total streamfunction satisfies

∂{1/ky  ∂Ψtotal/∂x}/∂x + ∂{1/kx ∂Ψtotal/∂y}/∂y = 0               (4-99)

it is clear that the single-valued disturbance streamfunction satisfies

∂{1/ky  ∂Ψs.v./∂x}/∂x + ∂{1/kx ∂Ψs.v./∂y}/∂y

= - ∂{1/ky  ∂Ψd.v./∂x}/∂x  - ∂{1/kx ∂Ψd.v./∂y}/∂y         (4-100)

where the right side of Equation 4-100 is evaluated using the series in Equation
4-97.  Then, the Cauchy-Riemann conditions given in Equations 4-27 and 4-28
are used to define Neumann boundary conditions on the top and bottom, and left
and right, of the computational box using the available solution for p(x,y), that
is,

∂Ψs.v./∂y = kx ∂pm+1/∂x - ∂Ψd.v./∂y                                   (4-101)

∂Ψs.v./∂x =  - ky  ∂pm+1/∂y - ∂Ψd.v./∂x                                  (4-102)

Since the boundary value problem is of the Neumann type, the solution will not
be unique; without loss of generality, we fix the value of Ψtotal  to zero, say, at

any point not containing a well (refer to Discussion 4-4 for details).

Discussion 4-9.  Streamline tracing in 3D flows.

So far, we have introduced different types of streamfunctions and
explained their applications to streamline tracing.  Unfortunately, these methods
cannot be generalized to three-dimensional problems.  But for such flows, a
another type of 3D streamfunction or vector potential does exist, at least
formally.  This follows from the vector identity div curl ΨΨ  = 0, for any vector ΨΨ .
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Thus, if the mass conservation requirement div q = 0 holds, and it does for
incompressible flows where q is the Darcy velocity, the identity guarantees that
we can represent q = curl ΨΨ  ,  which reduces to our planar Ψ in that limit.  The
use of a three-dimensional ΨΨ , however, does not render path tracing any easier
than dealing with three velocity functions (in two-dimensional problems, a
single streamfunction suffices).  Thus, we will not pursue any further discussion.
But the idea of streamlines or pathlines as tangents locally parallel to the
velocity vector is still attractive, and kinematically, we would expect a definition
along the lines of dx/dt ~ u, dy/dt ~ v, and dz/dt ~ w, where ~ denotes
proportionality.  Let us consider an interface located anywhere within a flow,
that is, any surface marked by red dye, and describe it by the locus of points

f(x,y,z,t) = 0                                                                         (4-103)

The interface is defined by the property that fluid does not cross it.  Hence, the
velocity of the fluid normal to the interface must be equal to the velocity of the
interface normal to itself.  From vector calculus, the normal velocity of a surface

equals -ft /√(fx2 + fy2 + fz2), while the normal velocity of the fluid is given by

(ufx + vfy  + wfz)/{φ√(fx2 + fy2 + fz2)}.  The condition that these be equal is

∂f/∂t + u/φ ∂f/∂x + v/φ ∂f/∂y + w/ φ ∂f/∂z = 0                             (4-104)
But the left side of Equation 4-104 is just the substantive derivative, also known
as the convective or material derivative following a particle.  It is usually
denoted by the df/dt operator, that is,

df/dt = ∂f/∂t + u/φ ∂f/∂x + v/φ ∂f/∂y + w/ φ ∂f/∂z = 0                   (4-105)

Thus, we have proved that particles on a surface remain on it.  To integrate
Equation 4-105, we observe that the total derivative, from calculus, satisfies

df = ∂f/∂t dt + ∂f/∂x dx + ∂f/∂y dy + ∂f/∂z dz                               (4-106)

Division by dt leads to

df/dt = ∂f/∂t  + dx/dt ∂f/∂x + dy/dt ∂f/∂y + dz/dt ∂f/∂z             (4-107)

Comparison of Equations 4-105 and 4-107 shows that

df/dt = 0                                                                                (4-108)

that is, f is constant, provided we follow the trajectories

dx/dt = u(x,y,z,t)/ φ                                                                      (4-109a)

dy/dt = v(x,y,z,t)/ φ (4-109b)

dz/dt = w(x,y,z,t)/ φ                                                     (4-109c)

Hence, when any starting coordinate (x
0
,y

0
,z

0
) is given, its subsequent trajectory

in space can be obtained by timewise integration of Equations 4-109a,b,c with
time steps made arbitrarily small.  This process is performed repeatedly with
different initial starting positions to generate pathlines, also known as
streaklines.  These reduce to streamlines in steady flow.  We also emphasize that
Equations 4-109a,b,c are general and apply to incompressible flows (satisfying
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elliptic equations for pressure) as well as compressible flows (satisfying general
time-dependent heat equations).  While the above recipe is “straightforward,” its
direct use may lead to large numerical error.  For example, when streamline
tracing is initiated near a well, high local velocities may propel the fluid particle
out of the computational box in a single time step!  Even when this is not so,
truncation errors will accumulate rapidly, destroying the integrity of the final
solution. This problem can be rectified by fine-scale interpolation.  Let us
assume that the velocity field for a medium coarse mesh is available from a
converged pressure solution (e.g., refer to Chapter 7), and consider, for example,
the velocity component u(x,y,z).  We denote cell block center values by
asterisks.  Now, the partial derivatives ux* , uy* , uz* , uxx* ,  uxy* ,  uxz* ,  uyx* ,

uyy* , uyz* , uzx* , uzy* , and uzz*  are available from standard difference formulas.
If ∆  represents a typical grid size, and if also ∆x, ∆y , ∆z << ∆ , then second-order

Taylor expansions give

u = u*  + (∆x ∂/∂x + ∆y  ∂/∂y + ∆z ∂/∂z) u*

+1/2! (∆x ∂/∂x + ∆y  ∂/∂y + ∆z ∂/∂z)2 u*   +  ...                     (4-110)

in operator form, where all derivatives are known.  Thus, the value of u internal
to any grid block is easily computed.  If the streamline tracing algorithm above
is applied to this subscale dimension, increased accuracy is obtained.  The
interpolation in Equation 4-110 can be used independently of streamline tracing
and applies also to the pressure p(x,y,z,t) if higher resolution is desired.  A
second approach offering improved accuracy requires initial positions (x0 ,y0,z0)

taken in low-pressure gradient locations, thus deferring the influence of large
cumulative errors.  However, there is no guarantee, for example, that a particular
starting point will lead to a desired well if multiple wells exist in the reservoir.

Relationship to streamfunction.  The pathlines computed in Equations 4-
109a,b,c and the streamlines (trajectories with constant streamfunction)
described earlier are closely related: in steady flows, they are identical.  Direct
path trajectory calculations, of course, give substantially more information, since
they mark individual fluid particles in time as they move.  Thus, such
calculations are useful for tracer, contaminant, and particle tracking analyses.
Streamlines, on the other hand, yield only shape information, but they allow
rapid calculations for mass flux between adjacent streamlines.  The value is
proportional to the differences between the streamfunction values themselves;
also, narrow areas between streamlines imply high speeds.  In all of the above
tracing models, the effects of molecular diffusion have been ignored; this
physical limitation must be considered in applications.  When diffusive effects
are included in any physical model, simple algorithms such as those suggested
by Equations 4-109a,b,c cannot be used.  Differential equation methods with
real diffusion must be employed, which unfortunately raise the possibility of
additional errors due to artificial viscosity effects that arise numerically.  These
subjects will be addressed in Chapter 21 in the context of molecular diffusion in
fluid flows.
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Discussion 4-10.  Tracer movement in 3D reservoirs.

Reservoir connectivity is important to sweep efficiency in all phases of
production.  How efficiently a formation’s pore spaces are connected is
determined through tracer analysis, where chemical or radioactive tracers are
introduced at injection and monitored at production wells.  The idea is simple:
the more tracers obtained at a producer, the better the connectivity between the
injectors and it.  In reservoir simulation, the oilfield’s permeability and porosity
distributions are determined, often by trial and error, and more than likely
nonuniquely, by history matching with production and well test data.  In single-
phase flow reservoirs, steady-state production profiles are completely
determined by the pressure equation and Darcy’s law, neither of which depends
on porosity.  In well testing, pressure buildup and drawdown depend on porosity
and compressibility, factors that do not directly enter in steady-state production.
Empirical tracer tests provide further information: porosity, inferred from tracer
travel times, enters in steady flows where compressibility is unimportant.  These
three flow tests therefore provide good independent check points that are
essential to good reservoir description.

As we have shown, any fluid tag in space can be tracked by the trajectory
equations dx/dt = u/φ, dy/dt = v/φ , and dz/dt = w/ φ.  These equations, valid for
both steady and transient compressible flows, whether they contain liquids or
gases, provide direct travel-time estimates for tracer breakthrough and tracer
history matching.  While the significance of tracer testing and analysis is
appreciated operationally, the modeling of particle trajectories and time histories
is plagued with unneeded numerical confusion.  Very often, investigators infer
streamlines and particle paths from computed two-phase saturation results,
correlating local saturation changes with particle behavior in time.  However,
many such Eulerian-based schemes are contaminated by unnecessary truncation
error and diffusion.  Actually, the problem is simpler than many realize.  If the
Eulerian velocities u, v, and w are known for any constant density or
compressible flow, for any liquid or gas phase, we recognize that the particle
interface described by the surface f(x,y,z,t) = 0 satisfies the first-order equation
∂f/∂t + (u/φ) ∂f/∂x + (v/φ) ∂f/∂y + (w/ φ) ∂f/∂z = 0 where φ is the porosity.  This
equation, obtained by combining Equations 4-107 and 4-108 and derived for
nonporous flows by Lord Kelvin over a century ago (e.g., see Lamb, 1945), is
exact, and its Lagrangian solution contains the complete kinematics of the flow.
Unfortunately, Kelvin’s equation is used in every industry but ours. One
commercial group does, however, “solve” this equation, though incorrectly
labeling it as a simplified saturation equation without capillary pressure for unit
mobility flows.  The company uses explicit IMPES difference schemes, where
pressure is solved implicitly and saturation is solved explicitly.  In particular, it
solves our Lagrangian f function using differencing techniques not unlike

(fi,j,k,n - fi,j,k,n-1)/∆t  = (ui,j,k,n-1/φi,j,k)(fi+1,j,k,n-1 - fi-1,j,k,n-1)/(2∆x) (4-111)

+ (vi,j,k,n-1/φi,j,k)(fi,j+1,k,n-1 - fi,j-1,k,n-1)/(2∆y)

+ (wi,j,k,n-1/φi,j,k)(fi,j,k+1,n-1 - fi,j,k-1,n-1)/(2∆z)
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Since this representation is highly unstable, proprietary damping terms are
introduced to offset numerical errors.  The result is a scheme beset with high
levels of computational diffusion.  In subsequent 3D visualization, saturation
fronts introduced as tracer elements, initially consisting of a single color, evolve
into continuously changing multicolor displays as the saturations change along
trajectories (in clear violation of df(x,y,z,t)/dt = 0), thus giving the illusion of
multiphase flow even in single-phase applications.

Of course, correct solutions to Kelvin’s equation never produce such
results.  Since its trajectory equations require that f move with the particle and
remain unchanged, it is clear that red water must remain red water and blue
water will always be blue water.  Precise methods are available to solve Kelvin’s
equation.  For example, conservation laws of the form Wt + {F(W)}x = 0 where

W is a vector function of x and t are amenable to solution by high-order accurate
Lax-Wendroff schemes and their extensions (e.g., see Ames (1977)).  However,
unless the physical application for W actually requires values for individual
nodes at all instances in time, the following exact, nondiffusive algorithm
developed by this author can be used.  To construct a simple, exact scheme, it is
sufficient to observe that along each trajectory defined by dx/dt =
u(x,y,z,t)/ φ(x,y,z), dy/dt = v(x,y,z,t)/ φ(x,y,z), and dz/dt = w(x,y,z,t)/ φ(x,y,z), the
function f(x,y,z,t) must remain unchanged by virtue of df/dt = 0.  This implies,
as we have suggested, that red water remains red water.  We take advantage of
this property by allowing the trajectory equations to update the path coordinates
x(t), y(t), and z(t).  We initialize f(x,y,z,t) to zero for display purposes, but once
a tracer element enters a particular grid block, its f is forever marked by the
same color and it is henceforth left alone.  This introduces no diffusion beyond
the simple truncation error implied by the resolution of the mesh.  Some Fortran
features offer useful advantages for this scheme.  In Fortran, the on-off   only
nature of the function f can be coded as a logical variable, although in Figure 4-
2, we have chosen instead to use the integer array MARK(I,J,K), whose
elements take on either 0 or 1 values.  The entire flowfield is initially marked by
0s, at least until individual grid blocks are penetrated by particles, at which point
a Fortran switch permanently changes the particular element in MARK(I,J,K) to
1.  New time-dependent indexes are defined by Fortran integer statements such
as I = X/DX + 1, which track the particle to the nearest grid block.  Travel-times
at any point in the particle tracking are stored in the value T, which can be
rewritten as an array if desired.  The numerical engine behind this exact
algorithm is shown in Figure 4-2.

The Fortran engine we have described was recoded as a subroutine for a
discrete input set of tracer particles.  Consecutive subroutine calls repeatedly
mark the array MARK(I,J,K) by 1’s wherever any tracer activity is detected,
leaving as 0’s those grid blocks that remain unaffected.  The complete particle
path description is consequently embodied in the simple integer matrix
MARK(I,J,K), which can then be plotted using off-the-shelf software.
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      .
      .

C     Define maximum dimensions (imax,jmax,kmax) of grid, and block

C     sizes dx, dy, dz.  Also, define Eulerian velocities u(i,j,k),

C     v(i,j,k), and w(i,j,k) from analytic solutions, or calculated

C     single or multiphase results. Then provide the initial tracer

C     particle coordinates, Xstart,Ystart, and Zstart.

.

C     Mark each 3D node by "0", indicating that it has not yet seen

C     tracer activity, using MARK(i,j,k) integer array.

      DO 100  I = 1,IMAX
      DO 100  J = 1,JMAX
      DO 100  K = 1,KMAX
      MARK(I,J,K) = 0
 100  CONTINUE
      .
C     Initialize position vector (x,y,z) and time.
      X = XSTART
      Y = YSTART
      Z = ZSTART
      T = 0.
      .
C     Start marching in time, for NMAX time steps.
      DO 400  N = 1,NMAX
      .
C     Define new initial (i,j,k) indexes.
      I = X/DX +1
      J = Y/DY +1
      K = Z/DZ +1
      .
C     Select time step, e.g., using
      TOP = MIN(DX,DY,DZ)
      BOT = MAX(U(I,J,K),V(I,J,K),W(I,J,K))
      DT  = 0.1 * ABS(TOP/BOT)
      .

C     If particle moves, then (i,j,k) changes.  Mark change at the

C     new coordinate with "1" (if there is no change, marking same

C     (i,j,k) repeatedly with "1s" is harmless.
      MARK(I,J,K) = 1
      .
C     Calculate new position coordinates, and update time.
      X = X + U(I,J,K)*DT
      Y = Y + V(I,J,K)*DT
      Z = Z + W(I,J,K)*DT
      T = T + DT
      .
 400  CONTINUE
      .

C     Store array of "1's" traced by particles  in "MARK.DAT" file.

C     In 3D graphics cube, "color" if "1", but do not color if "0".

C     Include header information for plotting.
      .

Figure 4-2.  Rapid and exact streamline tracer algorithm.
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Figure 4-3.  Tracer trajectories from a spherical source.

Consider a simple but rigorous test.  The right-side cubes of Figure 4-3
display one-eighth of the spherically symmetric pressure field due to an isolated
point source, providing two rotated views, for the side and front.  The left cubes
show purely radial trajectories, obtained for an array of tracer elements initially
positioned on a side plane of the cube, as shown in the upper left plot.  As is
obvious, there is no numerical diffusion; particles are accurately tracked in
seconds on PCs, and not hours on workstations, without concern for numerical
diffusion or instability.  Now, the effects of real diffusion can be important in
practice, for example, environmental problems where contaminants convect and
diffuse with the flow.  A paper showing how Darcy flows couple with
concentration diffusion, entitled “Modeling of Subsurface Biobarrier
Formation,” surveys modern numerical methods and their limitations (Chen-
Charpentier and Kojouharov, 2000).

FLUID FLOW INSTABILITIES

In deriving analytical results and preparing streamline patterns,
mathematicians all-too-frequently search for steady solutions – and find them.
Whether or not these exist in reality, however, is not obvious: the basic
questions that arise form the subject that fluid-dynamicists call stability theory.
Consider, for example, the flow of air past a flag that is aligned with the wind
direction.  The steady flow solution is U

∞
 = constant, where U

∞
 is the constant

wind velocity, assuming that the flag remains perfectly still and aligned with the
streamlines of the straight flow. The corresponding (aerodynamic)
streamfunction is just  Ψ(x,y) = U

∞ y.  In practice, of course, flags in wind

always flap: hence, the well-known “flapping flag instability.”  Flows in
petroleum reservoirs may also be unstable, for example, the viscous fingering
that is possible in enhanced oil recovery when one viscous fluid displaces
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another.  When instability occurs, the streamlines traced on a steady basis do not
exist.  In the simplest cases based on linear stability theory, pathlines and
interfaces oscillate sinusoidally in space and time.  At critical wavelengths,
neutral stability may give way to exponential growth, turbulent transition or
other forms of laminar flow breakdown.  To model the linear stability and
existence of a steady flow, the small disturbances theory is almost always used.

The method is easily illustrated by considering the single-phase plug flow
displacement model of Chapter 17, dealing with the flow of two liquids through
a lineal core without mudcake (e.g., see Figure 17-6).  There, we obtain
Equation 4-112 as the equation describing the invasion front xf,1 (t),

(µ1/µ2 -1)xf,1  + L =  + {{(µ1/µ2 -1)xf,o + L}2

+ {2k (Pl - Pr)/(φµ2)}(µ1/µ2 -1) t}1/2   (4-112)

where we have appended a subscript 1 to x f (t) in Equation 17-13 to facilitate this
discussion.  Thus, depending on the relative values of µ

1 and µ
2
, the

displacement front may accelerate or decelerate.  To address stability, consider
its predecessor equation

dxf /dt = - (k/(φµ1)) (µ1/µ2)(Pr - Pl)/{L + xf (µ1/µ2 -1)}         (4-113)

not yet restricted to solutions satisfying the initial condition x 

f,1 (0) = x 

f,o
.  Using

this less restrictive equation, let us consider the broader class of solutions  x
f  =

x
f,1

 + x
f,2

 where |x 

f,2 | << |x 

f,1 | and x f,1 satisfies both Equations 4-112 and 4-113.

That is, we study the disturbance x
f,2

 to the baseline flow defined by Equation 4-

112.  If we substitute x 

f  = x 

f,1
 + x 

f,2
 into Equation 4-113 and subtract the mean

x
f,1 terms, we obtain the disturbance differential equation

dxf,2/dt ≈ (k/(φµ2))[(Pr - Pl)/{L + xf,1 (µ1/µ2 -1)}2] xf,1 (µ1/µ2 -1) (4-114)

Since P
r
 - P

l
 is negative, and x f,1 is positive, it follows that dx f,2 /dt < 0 when we

have µ
1
 > µ

2 and dx f,2 /dt > 0 when µ
1
 < µ

2
.  This shows that if the displacing

fluid is more mobile than the displaced fluid, small perturbations to the front
give rise to irregularities that rapidly grow.  On the other hand, if the displacing
fluid is less mobile, disturbances to the front tend to decay with time.  In reality,
small-scale viscous fingers arise at unstable flow interfaces.  We have given a
simple example of hydrodynamic stability analysis.  In more complicated
problems, the approach is essentially the same: obtain the simple mean solution,
substitute it plus a general disturbance back into the complete governing system,
equations that will vary from problem to problem, to obtain a differential
equation describing the disturbance flow, and finally, solve for the disturbance
properties and determine the stability envelope.  Different mathematical
formulations are possible.  For example, the stability of laminar, Newtonian pipe
flow leads to a classic engenvalue problem with a critical Reynolds number of
2,000 that separates stable from unstable flows.  Marle (1981) surveys the early
literature on two-phase Darcy flows, while the book by Chin (1994) discusses
general kinematic wave aspects of hydrodynamic stability theory.
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PROBLEMS AND EXERCISES

1. What advantages are gained in streamline tracing using Ψ(x,y), rather than
by direct numerical integration of dy/dx = v/u?  And of dy/dt = v/φ and
dx/dt = u/φ ?  In the latter approaches, where are errors greatest?  Least?
Which starting flow domains for integration are best or worst for accuracy,
that is, near or away from the well?

2. Verify by direct differentiation that Equations 4-42 and 4-43, and 4-44 and
4-45, satisfy the Cauchy-Riemann conditions.  Repeat this exercise for
Equations 4-58 and 4-61, and 4-64 and 4-67.

3. Modify the finite difference solver in Chapter 7 to allow uniform flow past
three wells and compute the corresponding pressure field.  Follow the
procedure given in Discussion 4-4 to construct the streamlines for this flow.

4. Define the complex potential for general gas flows with arbitrary m in
anisotropic media, and verify that your Cauchy-Riemann conditions satisfy
Equations 4-17 and 4-18.

5. Consider two wells in an infinite, isotropic, homogeneous reservoir, with
both having identical volume flow rates.  Sketch the streamline pattern
when (i) both are producers, and (ii) one is a producer while the other is an
injector.  Repeat this exercise when the volume flow rates are different.
Identify all symmetries that you observe.  How would you use this
information to simplify the numerical modeling of petroleum reservoirs?

6. Consider four wells located at the vertices of a square in an infinite,
isotropic, homogeneous reservoir, all having identical flow rates.  Sketch
the streamline pattern when (i) all four are producers, and (ii) two
diametrically opposite wells are producers and the other two are injectors.
Identify all symmetries that you observe.
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5
Flows in Complicated Geometries

In Chapters 2 and 3, we introduced the use of integral equations in
modeling flows past single fractures and shales.  For these simple geometries,
we were successful at developing closed-form solutions for very general
boundary conditions.  However, to obtain similar results for more complicated
shapes, conformal mapping methods must be used.  Conformal mapping is
usually studied in complex variables, a graduate-level mathematics course.  The
transformation generates more complicated solutions once simple ones to
Laplace’s equation, such as those obtained previously, are available.  Most
elementary textbooks  (Churchill, 1960; Hildebrand, 1948) offer the standard
mappings, for example, finite strips to infinite domains, or angular sectors and
polygons to geometrically simpler half planes.  But it is in theoretical
aerodynamics that complex variables and conformal mapping find their greatest
application and accomplishment.  Over the years, airplane designers have
invented numerous ingenious transforms that map simple flows into complicated
ones; these mappings, unfortunately, remain unknown outside the aerospace
community.  In this chapter, we will apply these methods to reservoir flows.
Fortunately, it is not necessary to understand the theory of complex variables, or
related methods in contour integration and residue calculus, in order to obtain
useful results.  We will first explain the rudimentary elements of conformal
mapping using no more than simple undergraduate mathematics, expanding on
the discussion in Chapter 4.  Second, we will apply the new transformation
methods to Darcy flows past complicated geometries and provide useful
formulas for practical use.  And third, we will give general, powerful, and
simple-to-understand recipes for constructing still more general analytical
solutions, and we will also provide more solutions based on integral equation
methods.



80   Quantitative Methods in Reservoir Engineering

WHAT IS CONFORMAL MAPPING?

The theory behind conformal transformations is elegant and simple and it
turns out that the basic notions can be introduced using no more than
undergraduate math.  To keep the ideas elementary, we deal with a simple fluid
model first.  Consider the two-dimensional, planar, steady flow of a constant
density liquid in an isotropic, homogeneous medium, satisfying Laplace’s
equation

∂2P/∂x2 + ∂2P/∂y2 = 0                                                            (5-1)
where P(x,y) is the pressure, and x and y are Cartesian coordinates.  The
Eulerian velocities u and v in the x and y directions, respectively, are

u = - (k/µ) ∂P/∂x                                                                       (5-2)
v = - (k/µ) ∂P/∂y                                                                       (5-3)

where k and µ are permeability and viscosity.  As noted in Chapters 2 and 3,
(x,y) coordinates are useful when flow entities of interest, for example, fractures
or shale lenses, lie roughly along coordinate lines.  This is not the case for most
practical problems.  Thus, we seek general coordinates in the hope for usable
results.

A general transformation.  For this reason, we consider the
transformation pair

ξ = ξ(x,y)                                                                              (5-4)
η= η(x,y)                                                                             (5-5)

and re-express Equation 5-1 in a different but exactly equivalent way.  Using the
chain rule (Thomas, 1960), we differentiate with respect to x to find

P(x,y) = p(ξ,η)                                                                          (5-6)

∂P/∂x = (∂p/∂ξ) (∂ξ/∂x) + (∂p/∂η) (∂η/∂x)                                  (5-7)

∂2P/∂x2 = (∂p/∂ξ) (∂2ξ/∂x2) + (∂p/∂η) (∂2η/∂x2)

   + (∂ξ/∂x) {∂2p/∂ξ2 ∂ξ/∂x + ∂2p/∂ξ∂η  ∂η/∂x}

          + (∂η/∂x) {∂2p/∂η∂ξ ∂ξ/∂x + ∂2p/∂η2 ∂η/∂x}          (5-8)
Similarly, differentiation with respect to y yields

∂P/∂y = (∂p/∂ξ) (∂ξ/∂y) + (∂p/∂η)(∂η/∂y)                                    (5-9)

∂2P/∂y2 = (∂p/∂ξ) (∂2ξ/∂y2) + (∂p/∂η) (∂2η/∂y2)

   + (∂ξ/∂y) {∂2p/∂ξ2 ∂ξ/∂y + ∂2p/∂ξ∂η ∂η/∂y}

+ (∂η/∂y) {∂2p/∂η∂ξ ∂ξ/∂y + ∂2p/∂η2 ∂η/∂y}         (5-10)
Therefore, it follows upon adding Equations 5-8 and 5-10 that

∂2P/∂x2 + ∂2P/∂y2 = (∂p/∂ξ) (∂2ξ/∂x2 + ∂2ξ/∂y2) (5-11)

+ (∂p/∂η)(∂2η/∂x2 + ∂2η/∂y2)

+ 2 (∂2p/∂η∂ξ)(∂ξ/∂x ∂η/∂x + ∂ξ/∂y ∂η/∂y)

+ (∂2p/∂ξ2){(∂ξ/∂x)2 + (∂ξ/∂y)2}

+ (∂2p/∂η2){(∂η/∂x)2 + (∂η/∂y)2}
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The lower case p indicates that its functional dependence on (ξ,η) generally
differs from that of P on (x,y).  So far, Equations 5-4 and 5-5 are quite general,
as demonstrated by the complicated right side of Equation 5-11.

Conformal mapping.  It is possible to make an important simplification to
Equation 5-11 that is also physically useful.  Let us impose the constraint that

∂ξ/∂x =  ∂η/∂y                                                                       (5-12)

∂η/∂x =  - ∂ξ/∂y                                                                     (5-13)

If we differentiate Equation 5-12 with respect to x and Equation 5-13 with

respect to y, and eliminate the resulting ∂2η/∂x∂y term, we obtain

∂2ξ/∂x2 + ∂2ξ/∂y2 = 0                                                             (5-14)
Likewise, if we differentiate Equation 5-12 with respect to y and Equation 5-13

with respect to x, and eliminate the resulting ∂2ξ/∂x∂y term, we obtain

∂2η/∂x2 + ∂2η/∂y2 = 0                                                            (5-15)

Thus, the first two lines of Equation 5-11 vanish identically.  Next, the third line
of Equation 5-11 also vanishes; this is apparent from Equations 5-12 and 5-13,
since direct substitution shows

∂ξ/∂x ∂η/∂x + ∂ξ/∂y ∂η/∂y
= (∂η/∂y)(- ∂ξ/∂y) + ∂ξ/∂y ξ∂η/∂y = 0 (5-16)

Now, the quantity j(x,y), known as the Jacobian of the transformation, is defined
by the expression

j(x,y) = (∂ξ/∂x)(∂η/∂y) - (∂ξ/∂y)(∂η/∂x)                                      (5-17)
Using Equations 5-12 and 5-13, we have the equivalent forms

        j(x,y) = (∂ξ/∂x)2 + (∂ξ/∂y)2  > 0                                              (5-18)

             = (∂η/∂x)2 + (∂η/∂y)2 > 0                                              (5-19)
That is,

(∂ξ/∂x)2 + (∂ξ/∂y)2 = (∂η/∂y)2 + (∂η/∂x)2 = j(x,y)                 (5-20)

Thus, the result of assuming Equations 5-12 and 5-13 in Equation 5-11 is the
remarkable fact that

∂2P/∂x2 + ∂2P/∂y2 = j(x,y) {∂2p/∂ξ2 + ∂2p/∂η2}                     (5-21a)
Since the left side of Equation 5-21 vanishes by virtue of Equation 5-1, it
therefore follows, since j > 0, that

∂2p/∂ξ2 + ∂2p/∂η2 = 0                                                             (5-21b)
which has neither first-order nor second-derivative cross-terms.  Thus, when the
“conformal” constraints in Equations 5-12 and 5-13 are invoked, any harmonic
function P(x,y) that originally satisfies Laplace’s equation in (x,y) coordinates
now satisfies the same equation in (ξ,η) coordinates.

In the language of mathematics, Laplace’s equation remains invariant
under conformal transformation, which is equivalent to saying that “harmonic
functions stay harmonic.”  There are also geometric interpretations associated
with Equations 5-12 and 5-13 discussed elsewhere, for example, Churchill
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(1960).  All of this is elegant, powerful, and practical: when a closed form or
numerical solution for P(x,y) is available, another free solution p(ξ,η) is easily
generated if we can find transforms ξ = ξ(x,y) and η = η(x,y) that satisfy
Equations 5-12 and 5-13.  (When p(ξ,η) is available, a mirror P(x,y) can be
obtained.)

Note that both (ξ,η) and (x,y) are rectangular Cartesian coordinates and
that in any application, either system can represent the physical plane.  In any
event, the idea is to have additionally chosen ξ = ξ(x,y) and η = η(x,y) so that,
say, lines of constant ξ (or η) happen to fall along geometrical boundaries of
interest to the physical problem at hand (e.g., a curved fracture or the irregular
outer boundary of a reservoir).   If so, the solution of a difficult problem in (ξ,η)
coordinates is transformed into one that is purely topological and simpler (again,
the converse is true).  Note that the constant  value of the harmonic function
along a curve carries over to the transformed curve, and similarly, the vanishing
normal derivative of the function.  These two boundary conditions promise
direct applications to wells, fractures or boundaries held at fixed pressures and
to impermeable shales subject to no flow constraints.  When a function is
variable along a curve, the transformed function will take on variable values;
however, the exact variation in the mapped plane will depend on the details of
the mapping.  For variable values of the function, conformal mapping is less
direct; integral equation methods such as those described in Chapters 2 and 5 are
preferable if the problem permits geometrical simplifications like those used.

These conditions, taken collectively, demand much of the engineer.  It
turns out that two powerful methods may be used to solve the topological
problem introduced.  The first uses complex variables, and is discussed next; the
second, newly developed by this author, uses results based on numerical grid
generators, and is discussed in Chapters 9 and 10.  Finally, we discuss second-
derivative cross-terms, for example, ∂2p/∂ξ∂η, mentioned earlier.  These do not
appear in Equation 5-21b because Equations 5-12 and 5-13 introduce
restrictions, fortunately useful ones, as will be shown in this chapter.  More
general nonconformal mappings, however, generally introduce cross-terms into
transformed partial differential equations, which can complicate the solution of
the new equation.  Such general transformations, in the petroleum industry, are
known as corner point methods, but their benefits are lost because cross-terms in
the transformed equation are ignored by many simulators due to numerical
stability problems.  However, stable schemes can be constructed using central
difference representations for ∂2/∂ξ∂η in finite difference relaxation methods.
For example, the author’s recent book (Chin, 2000) on computational rheology
makes use of such algorithms to calculate (nonlinear) non-Newtonian flowfields
in highly clogged noncircular pipes and eccentric annuli.

USING “SIMPLE” COMPLEX VARIABLES

The basic tools needed for conformal mapping can be developed without
advanced background material related to contour integration, residue analysis,
branch cuts, and so on.  It turns out that the key ideas follow from simple
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manipulations using no more than elementary calculus.  Let us employ the usual
notation i = √-1 for “imaginary numbers,” and introduce the complex coordinate

z = x + i y                                                                              (5-22)

Also, consider any function w(z) of the single variable z, for example, sin z,
cosh z, or exp(z).  In general, it is obvious that w(z) must be complex.  Thus, it
should be possible to resolve it into real and imaginary parts ξ(x,y) and η(x,y),

w(z) = ξ(x,y) + i η(x,y)                                                            (5-23)

Now let us differentiate Equation 5-23 with respect to x.  Using the chain rule,

w’(z) ∂z/∂x = ∂ξ(x,y)/∂x + i ∂η (x,y)/∂x                                      (5-24)

where the prime indicates an ordinary derivative taken with respect to z.  But
since ∂z/∂x = 1 from Equation 5-22, Equation 5-24 becomes

 w’(z) = ∂ξ(x,y)/∂x + i ∂η(x,y)/∂x                                              (5-25)

Similarly, if we differentiate Equation 5-23 with respect to y and make use of
the fact that ∂z/∂y = i from Equation 5-22, we have

i w’(z) = ∂ξ(x,y)/∂y + i ∂η(x,y)/ ∂y                                            (5-26)

If next we multiply Equation 5-26 through by -i, we obtain

w’(z)  =  ∂η (x,y)/∂y  - i ∂ξ(x,y)/∂y                                              (5-27)

Observe that Equations 5-25 and 5-27 describe the same derivative w’(z).
Setting the two expressions equal and equating real and imaginary parts lead to

∂ξ/∂x = ∂η/∂y                                                                      (5-28)

∂η/∂x = - ∂ξ/∂y                                                                     (5-29)

But Equations 5-28 and 5-29 are identical to Equations 5-12 and 5-13!  Thus, we
have uncovered a simple, yet powerful, method for generating mappings that
satisfy Equations 5-12 and 5-13: simply write down any analytic function w(z)
of z = x + iy, and take its real and imaginary parts (see Equation 5-23).

The topological problem stated at the end of the previous section is now
reduced to a simpler search for appropriate functions of z, that is, those
functions w(z) whose level curves ξ(x,y) = constant and η(x,y) = constant
happen to coincide with geometric boundaries of interest.  A classic theorem due
to Riemann (e.g., see Carrier, Krook, and Pearson, 1966) guarantees the
existence of most conformal transformations.  That is, the transform taking a
simply-connected domain into a circle, and those taking a doubly connected
(“donut”) annulus into a concentric annular ring are assured.  Unfortunately,
how this is achieved is not addressed.  The Schwarz-Christoffel transformation,
which maps the interior of a general N-sided polygon to a half plane, though,
can be used in many problems.  This requires the approximation of smooth
curves by sequences of straight-line segments; the process, which can lead to
cumbersome integrals and unwieldy algebra when the segments exceed a few,
may produce unphysical results at nonexistent corners.  Finding useful
transformations becomes a matter of experience and insight; fortunately,
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mappings are available in the literature outside of the petroleum industry that we
can take advantage of.   Standard ones are available in Hildebrand (1948), Kober
(1957), and Spiegel (1964); less conventional ones appear in Ashley and
Landahl (1965), Thwaites (1960), Woods (1961), and Carrier, Krook, and
Pearson (1966).

Example 5-1.  The classic radial flow solution.

In this first example, we will reproduce the logarithmic pressure solution
for radial flow starting with a trivial uniform flow in an auxiliary plane.  To do
this, let us consider the  logarithmic mapping

w(z) = log z                                                                            (5-30)

where log denotes the natural logarithm.  From geometry, we have x = r cos θ
and y = r sin θ, where (r,θ) are cylindrical coordinates.  Thus, we can write
Equation 5-22 in the polar form z = x + i y = re iθ so that log z = log r  + i θ .
Applying Equation 5-23, we have

w(z) = ξ(x,y) + i η(x,y) = log r + i θ                                         (5-31)

so that

ξ(x,y) = log r = log √(x2 + y2)                                                 (5-32)

η(x,y) = θ = tan-1 y/x                                                           (5-33)

We now determine the manner in which boundary contours transform under the
mapping given above.   From Equation 5-32, the straight-line ξ = log Rwell =

constant maps into the circle x2 + y2 = Rwell
2 = constant;  the line ξ = log Rff  =

constant maps into x2 + y2 = Rff
2 = constant, where the well and ff subscripts

refer to radii at the borehole and at a prescribed farfield location.  Equation 5-33
shows that lines of constant η map into radial lines having constant θ or y/x
values.  These results are summarized in Figure 5-1, which shows the
correspondence between the x-y plane and the ξ-y plane.

To demonstrate how nontrivial flow results can be obtained from simple
ones,  let us consider the pressure field

p(ξ ,η) = pwell + (pff - pwell) (ξ - log Rwell)/(log Rff - log Rwell) (5-34)

satisfying p(ξ,η) = pff when ξ = log Rff , and p(ξ,η) = pwell when ξ = log Rwell.

In the ξ ,η  plane, Equation 5-34 is associated with a trivial (and uninteresting)
uniform flow having velocity components that are proportional to the pressure
gradients ∂p/∂ξ = (pff - pwell)/(log Rff - log Rwell) and ∂p/∂η = 0.  Note that

Equation 5-34 is a simple function that depends on ξ only.  Now, according to
the results of the previous section, a harmonic pressure function  satisfying
Equation 5-1 is constructed by substituting Equation 5-32 in Equation 5-34,
leading to
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Figure 5-1.  Mapping for concentric reservoir.

P(x,y) = pwell

                    + (pff - pwell) (log √(x2 + y2) - log Rwell)/(log Rff - log Rwell)

                  = pwell

+ {(pff - pwell)/(log Rff/Rwell)} {log √(x2 +y2)/Rwell}      (5-35)

which is the well-known logarithmic solution, that is, the solution for radial flow
usually expressed in the more familiar log r form,

p(r) = pwell + {(pff - pwell)/(log Rff/Rwell)}(log r/Rwell)          (5-36)

This example demonstrates the elegance and power behind simple-looking
transformations such as Equation 5-30.  It is important to emphasize that we
transformed a pressure function solving p ξξ + p ηη = 0 to one solving the
rectangular form Pxx + Pyy  = 0, and not prr + (1/r) pr + (1/r2) pθθ = 0 directly.
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Example 5-2.  Circular borehole
with two symmetric radial fractures.

Let us consider the steady-state flow of a liquid or a gas issuing from (or
into) the straight-line fracture -c ≤ X ≤ +c, Y = 0, centered in an isotropic,
homogeneous circular reservoir of radius R >> c.  We also assume that a
constant pressure Pf is enforced along the fracture, and that a different constant
pressure PR holds at the farfield boundary.  The analytical solution to this

problem appears as a special limit of the PRef 
m+1

p
m+1

(x,y) formula developed in

Example 2-2 of Chapter 2.  Here, as in that chapter, all upper case variables will
be dimensional, and all lower case variables will be dimensionless.

We will, for convenience, denote the limit solution of Example 2-2 by the
function P Ref 

m+1
p

m+1
(X/c,Y/c), where the parametric dependence on the fracture

half-length c is emphasized.  Also observe that this function is harmonic,
satisfying Laplace’s equation

∂2PRef 
m+1pm+1(X/c,Y/c)/ ∂X2 + ∂2PRef 

m+1pm+1(X/c,Y/c)/∂Y2 = 0 (5-37)

in rectangular (X,Y) coordinates, thus rendering conformal mapping applicable.
The scale factor PRef 

m+1 is constant and cancels out, but we intentionally retain
it to emphasize that we will be working in dimensional (X,Y) coordinates.

The problem is simply stated: can we transform this limit solution for a
straight line, available analytically, into one describing the flow from a circular
borehole with two symmetric radial fractures?   The answer is, “Yes.”  To do
this, let us first define a new function

G*(X,Y) = PRef 
m+1p m+1(X/{s + Rw

2/s},Y/{s + Rw
2/s})        (5-38)

obtained by replacing the half-length c in PRef 
m+1pm+1(X/c,Y/c) with the

quantity s + R w
2/s, where R w is to be the radius of the circular well (the

motivation for this will be clear later).  We now show that this solution, with the
fracture length so defined, can be related to a wellbore with intersecting,
symmetric, radial fractures of equal length.  This is done by considering the
Joukowski mapping from aerodynamics (Milne-Thomson, 1958),

Z = ζ + Rw
2/ζ (5-39)

where

Z= X + i Y                                                                            (5-40)

ζ = ξ(X,Y) + i η(X,Y)                                                              (5-41)

If we next substitute Equations 5-40 and 5-41 into Equation 5-39, and equate
real and imaginary parts, we have

X = ξ + Rw
2ξ/(ξ2 + η2)                                                          (5-42)

Y = η - Rw
2η/(ξ2 + η2)                                                           (5-43)
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Figure 5-2.  Circular hole with symmetric radial fractures.

Let us now observe the following transformation results: (i) the circular
well ξ2  + η2 = Rw

2 maps into the straight line (or slit) X = 2ξ, Y = 0; (ii) the line

η = 0 maps into the slit Y = 0 of Chapter 2; and (iii) the tips (ξ = -s, η = 0) and
(ξ = +s, η = 0) transform, respectively, to the points (X = - s - Rw

2/s, Y = 0) and
(X = +s + Rw

2/s, Y = 0).  Note that Equation 5-39 leaves events at infinity

unchanged, since Z = ζ in the farfield.  These results appear in Figure 5-2.  Thus,
the solution G*(X,Y) in Equation 5-38, applying to a straight-line fracture in the
(X,Y) plane spanning (X = - s - Rw

2/s, Y = 0) and  (X = + s + Rw
2/s, Y = 0), can

be used to generate the solution for a circular well of radius Rw having

symmetric radial fractures in (ξ,η) coordinates with a tip-to-tip distance of 2s.
The solution Pm+1(ξ,η) is obtained by substitution of Equations 5-42 and 5-43
into Equation 5-38,

Pm+1(ξ,η) = G*{ξ + Rw
2ξ /(ξ2  + η2),η - Rw

2η/(ξ2 + η2)}     (5-44)

where the italicized P indicates that it is different functionally from p(x,y).  It is

important to emphasize that Pm+1(ξ,η) satisfies the Cartesian form of Laplace’s
equation in (ξ,η) coordinates.

Finally, let Ψ(X/c,Y/c) be the streamfunction associated with
pm+1(X/c,Y/c); methods to obtain streamfunctions from pressure solutions are
given in Chapter 4.  We can similarly introduce a function
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H*(X,Y) = Ψ(X/{s + Rw
2/s},Y/{s + Rw

2/s})                         (5-45)

which has the corresponding italicized streamfunction

Ψ(ξ,η) = H*(ξ + Rw
2ξ /(ξ2 + η2),η - Rw

2η/(ξ2  + η2))            (5-46)

Under conformal transformations, constant values of a function (say, pressure)
transform into the same constant values in the new plane, as indicated
previously; thus, the application to the function pm+1(x,y) is conventional.  But
the application to Ψ(x,y) is not, since Ψ is not constant along the fracture: each
portion of the fracture contributes to the net flow.  Nevertheless, Equation 5-46
is the correct transformed streamfunction, if only because Ψ(X/c,Y/c) is
assumed to be already available.  The mapping in this example was originally
given by Spreiter (1950) to describe the cross-flow about circular missile
fuselages with double fins.  It is also discussed in Ashley and Landahl (1965) for
slender body theory in high-speed aircraft.  Such flows are routinely calculated
by formula in aerodynamics, but the petroleum industry often uses high-speed
computers requiring more resources and offering less accuracy.

Example 5-3.  Circular borehole with two uneven,
opposite, radial fractures; or, a single radial fracture.

Now we consider the same circular borehole but with two uneven, opposite
radial fractures.  Following Example 5-2, we again consider the function
P

Ref

m+1
p

m+1
(X/c,Y/c) of Example 2-2, and recognize that the solution applies to

the line segment -1 ≤ X/c ≤ +1 or -c ≤ X ≤ +c.  But instead of the function in
Equation 5-38, we consider the X-shifted function

G*(X,Y) = PRef 
m+1pm+1((X-δ)/{s + Rw

2/s},Y/{s + Rw
2/s})   (5-47)

which still satisfies Laplace’s equation in (X,Y) coordinates.  The straight-line
fracture for Equation 5-47 is located along -1 ≤ (X-δ)/{s + Rw

2/s} ≤ +1, that is,

along -s - Rw
2/s + δ ≤ X ≤ + s + Rw

2/s + δ.

Again, we consider  the conformal mapping defined by Equations 5-39 to
5-43.   As before, we have the following transformation results: (i) the circular
well ξ2 + η2 = Rw

2 maps into the straight line (or slit) X = 2ξ, Y = 0, and also,

(ii) the line η = 0 maps into the slit Y = 0 of Chapter 2.  But now the fracture tips
located at points (X = - s - Rw

2/s + δ, Y = 0) and (X = + s + Rw
2/s + δ, Y = 0) in

the slit only plane do not map into -s and +s.  To determine the corresponding
tip positions in the (ξ,η) plane, we note from Equation 5-43 that η = 0 still
transforms into Y = 0.  Equation 5-42 evaluated along η = 0 gives the result that
X = ξ + Rw

2/ξ or ξ2 - Xξ + Rw
2 = 0, so that two ξ values, obtained from the

quadratic formula, correspond to any specified X.
When X = - s - Rw

2/s + δ, the solution to ξ2 + (s + Rw
2/s - δ)ξ + Rw

2 = 0
chosen is
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ξ = [ (-s - Rw
2/s + δ) - √{(s + Rw

2/s - δ)2  - 4Rw
2}]/2                    (5-48)

And when X = + s + Rw
2/s + δ, the solution to ξ2 + (-s - Rw

2/s - δ)ξ + Rw
2 = 0

selected is
ξ = [ (s + Rw

2/s + δ) + √{(s + Rw
2/s + δ)2 - 4Rw

2}]/2            (5-49)

The signs were chosen so that in the limit Rw = 0 when the tip-to-tip fracture

length greatly exceeds the wellbore radius, Equations 5-48 and 5-49 reduce to
ξ = [ (-s +δ) - √{(s- δ)2}]/2 = - s + δ                                          (5-50)

ξ = [ (s+δ) + √{(s +δ)2}]/2 = + s + δ                                          (5-51)
The final schematic is given in Figure 5-3.  In the additional limit δ = 0, we
recover single fracture only results: the foregoing abscissa values now become
ξ = -s and + s, leading to “centered fracture” results.  Also, the X-shift δ can be
chosen so that a single radial fracture appears in place of two.

η

ξ

-Rw

AB

-2Rw                    +2R w

-s - R
w

2 /s  + δ s + R
w

2 /s  + δ

X

Y

A'B'

+Rw

Figure 5-3.  Circular hole with nonsymmetric radial fractures.

Example 5-4.  Circular borehole
with multiple radial fractures.

In Examples 5-2 and 5-3, we considered a circular wellbore with double or
single radial fractures.  It is also possible to consider a circular well having any
number of radial fractures of equal length.  Such multiple fractures, sometimes
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observed in hydraulic fracturing, are often encountered in geological studies of
conjugate fracture sets.  Consider the fractured borehole shown in Figure 5-4.
The circle is defined by x2 + y2 = 1, or |z| = 1.  It is drawn with N radial
projections defined by arg z = arg re iθ = θ = (2k+1)π/N, 1 < |z| < a, k = 0, 1, ...,
N-1, with the parameter a > 1.  This representation describes the fracture
orientation of interest.

We emphasize that such boreholes have been observed from time to time.
However, the fracture configuration of Figure 5-4 might also represent the flow
from conjugate sets of intersecting fractures, say defined by N = 4 and  a >> 1.
Let us define an auxiliary quantity

b = (aN + a-N)/2                                                                       (5-52)

a

x

y
D

Fin length, a

1 ξ

η D'

1

Figure 5-4.  Hole with multiple radial fractures.

Then the transformation

ζ = (b+1)-N{zN + z-N + b -1 + [(zN + z-N + 2b)(zN + z-N - 2)]1/2}1/N (5-53)

with 0 < arg z < 2π maps the domain D in the z-plane into the exterior circular
domain D’ given by |ζ| > 1 in the ζ plane.

This mapping is used to study the aerodynamic characteristics of multiple
stabilizer fins on rocket cross-sections; for example, see Ashley and Landahl
(1965).  Next, a host pressure solution in the transformed coordinates is
required.  We start with the classical logarithmic solution for radial flow,
however, expressed in Cartesian (ξ,η) coordinates.  This solution is already
available from Equation 5-35; we use it with the constant Rwell = 1 to be

consistent with the foregoing transformation.  Thus, the host pressure formula is

p(ξ,η) = pwell

+ {(pff - pwell)/(log Rff)} log √(ξ2 + η2)                          (5-54)
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If we now set ζ =  ξ + i η and z = x + i y in Equation 5-53, equate real and
imaginary parts to give expressions for ξ = ξ(x,y) and η = η(x,y), and substitute
the functions into Equation 5-54 to yield the (italicized) pressure P in (x,y)
coordinates, we obtain

P(x,y) = pwell

+ {(pff - pwell)/(log Rff)} log √{ξ(x,y)2  + η(x,y)2}            (5-55)

The complexity of Equation 5-53, of course, means that the foregoing steps will
in general be performed numerically.

Example 5-5.  Straight shale segment at arbitrary angle.

We turn our attention to impermeable shales, that is, to solid line objects
that are impermeable to flow.  In Chapter 3, we developed an analytical
approach limited to small flow inclinations.  The solution here applies more
generally to large angles of attack.
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Figure 5-5.  Flow past straight shale.
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We will again show how conformal mapping can be used to generate flowfields
past complicated structures.  For reasons that will be apparent, we first obtain
the flow past a circular cylinder at an arbitrary angle of attack.  This initial step
can be accomplished two different ways, and we demonstrate both methods.

Method 1.  The traditional undergraduate approach utilizes separation of
variables.  We start with the pressure equation in cylindrical coordinates

prr + (1/r) pr + (1/r2) pθθ = 0                                                   (5-56)

and search for separable solutions of the form
p(r,θ) = G(r) H(θ)                                                                     (5-57)

Substitution in Equation 5-56 shows that

r2G”/G + r G’/G = - H”/H = + σ2 > 0                                       (5-58)
where σ2 is a positive constant.  Equation 5-58 implies two ordinary differential
equations, namely, r2G” + rG’ - σ2G = 0 and H” + σ2H = 0.  For σ = 0, the
solutions are not meaningful physically, since H, being directly proportional to
θ, implies a double-valued pressure field in the continuous sand far away from
the circle.  Thus, we consider a nonvanishing σ2, for which the solutions are
Gσ(r) = Aσr σ + Bσr -σ and Hσ(θ) = Cσ sin σθ + Dσ cos σθ .  Hence, solutions

take the form pσ(r,θ) = Gσ(r)Hσ(θ) = (Aσrσ + Bσr -σ)(Cσ sin σθ + Dσ cos σθ).
The σ = 1 solution solves the problem.  In this simple limit, we find that

p
1
(r,θ) = (Ar + Br -1)(C sin θ + D cos θ), say.  Now choose constants A, B, C

and D so that
p(r,θ) = - (U∞µ/k) (r + c2/r) (cos α cos θ + sin α sin θ)                (5-59a)

It is clear that ∂p/∂r is proportional to the factor (1 - c2/r2); hence, the radial
Darcy velocity vanishes on the circle r = c.  Next, at distances far away where r
approaches infinity, Equation 5-59 behaves like p(r,θ) ≈ - (U∞µ/k) r (cos α cos θ
+ sin α sin θ); that is, in Cartesian (x,y) coordinates, p(x,y) ≈ - (U∞µ/k) (x cos α
+ y sin α).  Thus, the vertical Darcy velocity satisfies - (k/µ) ∂p/∂y = U∞sin α,
while the horizontal velocity satisfies - (k/µ) ∂p/∂x = U∞cos α.   Hence,
Equation 5-59 gives the pressure field that will produce a flow past the circle,
but inclined with angle α at infinity.  This flow is shown in Figure 5-5.

Method 2.  The second method makes elegant use of the Circle Theorem
outlined in Discussion 4-6.  Following the recipe given there, we first write the
complex potential for the uniform flow alone; that is, we consider the simple
function w(z) = - (U∞µ/k) e-iα z, where z = x + iy.  To see that is true, direct
multiplication gives w(z) = - (U∞µ/k){(x cos α + y sin α) + i (y cos α - x sin α)}.
Since the real part of w(z) is just the pressure, we find that it satisfies the
expression p(x,y) = - (U∞µ/k){(x cos α + y sin α), exactly as in Method 1.

Next, following the second part of the recipe, we form the augmented
expression obtained by replacing i by -i and z by c2/z, and add the result to the
original complex potential to give

w(z) = - (U∞µ/k)( e-iα z + eiα c2/z)                                            (5-59b)



Flows in Complicated Geometries     93

This gives the complex potential for the uniform flow with the circle.  To see
that this is true, substitute z = r eiθ in Equation 5-59b and expand the result using
angle summation formulas.  This process leads to Equation 5-59a.  A more
elegant formula can be obtained by leaving Equation 5-59b in complex form.
Since z = r eiθ, it follows that we can write Equation 5-59b in the form

w(z) = - (U∞µ/k) (r ei(θ-α) + c2/r ei(α-θ))                                   (5-59c)

Its real part, the pressure, is exactly the same as Equation 5-59a obtained,
however, by brute force separation of variables.  That is,

p(x,y) = - (U∞µ/k) (r + c2/r) (cos α cos θ + sin α sin θ)
                 = - (U∞µ/k) {1 + c2/(x2 + y2)}(x cos α + y sin α)              (5-60)

Flow past straight shale segment.  To obtain the flow past a straight shale
segment, let us consider the Joukowski mapping

ζ = z + c2/z  (5-61)

where
z = x + i y                                                                              (5-62)
ζ = ξ(x,y) + i η(x,y)                                                                 (5-63)

If we next substitute Equations 5-62 and 5-63 into Equation 5-61, and equate
real and imaginary parts, we have

ξ = x + c2x/(x2 + y2)                                                               (5-64)

η = y - c2y/(x2  + y2)                                                                (5-65)

Now note the following transformation results: (i) the circular well x2 + y2 = c2

maps into the straight line (or slit) ξ = 2x, η = 0; (ii) at infinity, ζ = z, and both
farfield flows are identical.  Before progressing further, we write Equation 5-61
in the form z2 - ζ z + c 2 = 0, and solve for z using the quadratic equation.
Taking the root that preserves ζ = z at infinity, we have

z = {ζ + √(ζ2 - 4c2}/2                                                              (5-66)
or

z = {ξ + i η +√(ξ2 - η2  - 4c2 + i2ξη}/2                                       (5-67)

This yields
2x = ξ + (5-68)

[(ξ2 - η2  - 4c2)2  + 4ξ2η2]1/4 cos{1/2 tan-1 2ξη/(ξ2 - η2 - 4c2)}
2y = η + (5-69)

[(ξ2 - η2  - 4c2)2  + 4ξ2η2]1/4 sin{1/2 tan-1 2ξη/(ξ2 - η2 - 4c2)}
Substitution of Equations 5-68 and 5-69 into Equation 5-60 yields the exact
solution for the flow past a straight shale segment in (ξ,η) coordinates.

More general shale geometries.  The well-known Joukowski mapping
was used to generate a solution for flow past a flat plate shale.  More general
shapes are possible, and flows past shapes that resemble fins, rudders and struts
are available in aerodynamics. For example, the Karman-Trefftz transform can
be used to generate circular arc shales having nonzero thickness, with both circle
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centers on one side or centers taking opposite sides.  The von Mises transform
yields S-shaped lines that model rolling and wavy stratigraphies; and the
Carofoli mapping, instead of cusps and sharpened trailing edges, yields rounded
edges (Milne-Thomson, 1958, 1968).

Example 5-6.  Infinite array of straight-line shales.

An analytical solution for the flow past an infinite array (or cascade) of
stacked periodic shales is obtained next.  For this purpose, we refer to the
nomenclature defined in Figure 5-6.  In this book, we give the recipe for the
mapping only; for details, refer to the turbomachinery reference of Oates (1978).
First, the airfoil chord c, the spacing s, and the stagger angle β are selected; next,
the solidity c/s is computed.  Then, the value of the constant ψ (not to be
confused with the streamfunction Ψ) is obtained by iteration from the nonlinear
transcendental equation

π C/(2S) =cos β log [{√(sinh2ψ + cos2β) + cos β}/sinh ψ]

+ sin  β tan-1 {(sin β)/√(sinh2ψ +cos2β)}              (5-70)
Then, the transformation

z = (S/2π) {e-iβlog[(eψ + ζ)/(eψ - ζ)] + eiβlog[(eψ+1/ζ)/(eψ-1/ζ)]} (5-71)
applies.  This function takes a unit circle in the ζ plane and maps it into the
straight-line cascade in the z-plane shown in Figure 5-6.  The points ζ = +eψ and
- eψ on the real axis map into +∞  and -∞ of the x-axis in the z-plane.
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Figure 5-6.  Flow past shale array.
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Using the Circle Theorem.   First, we consider a uniform flow alone.  In
the z-plane, we would like to have the complex uniform velocity (see Equation
4-77) at angle of attack α,

dw(z)/dz = U∞ e-iα                                                                    (5-72)

To model the flow at upstream and downstream infinity in this plane, a source is
placed at -eψ, while a sink is placed at +eψ in the ζ plane.  Then, the complex
potential is obtained by superposing this flow with the image defined by the
Circle Theorem of Discussion 4-7.  The end result is

w(ζ) = (SU∞/2π) {e-i(β+α) log[(eψ + ζ)/(eψ - ζ)]

                           + ei(β+α) log[(eψ + 1/ζ)/(eψ - 1/ζ)]}                              (5-73)

Again, the Darcy velocities u and v are obtained using

dw/dz = (dw/dζ)(dζ/dz) = u - iv                                                    (5-74)

the first factor obtaining from Equation 5-73, the second from Equation 5-71.
More general shale arrays and oncoming fluids.  The foregoing result,

useful in its own right, also finds application in effective properties calculations,
for instance, determining the single heterogeneity that would replicate the
effects of an entire shale array in the farfield.  Such applications are important
because computational grids must be kept small in order to optimize
convergence speed and reduce memory requirements.  The aircraft turbine and
compressor design literature contains many more complicated mappings
corresponding to airfoils with thickness, curvature, and so on.  The solution
methods include both conformal mapping (as in Example 5-6), as well as dual
singular integral equations, extending the methods of Chapters 2 and 3, which
handle the effects of aerodynamic flow interference.  These solutions and
methods are available in more specialized books and papers, for example,
Scholz (1977), Weinig (1964), Thwaites (1960), Oates (1978), and Lighthill
(1945).

Example 5-7.  Pattern wells under aquifer drive.

We have demonstrated how conformal mapping can be used to produce
flows past fractures, shales, and arrays of complicated shapes.  Of interest to
“infill drilling” is the solution for a group of producing wells, driven by an
injector, in the presence of encroaching water.  This was first treated by Muskat
(1937), who assumed that the wells formed a cluster in the middle of a large
reservoir; this is justified only in the initial stages of production.  Here, we allow
an arbitrarily close circular aquifer; thus, the solution applies to the later stages
of production.  Let us consider the well configuration in Figure 5-7, where the
circular domain |z| < R contains a source of strength Q located at z = 0, and n

sources of strength q located at the points z
k
 = ae

i(2k+1)π/n
, with k = 0, 1, ..., n-1

and 0 < a < R.  The complex potential w(z) = p + i Ψ satisfying p = 0 on the
farfield boundary |z| = R is desired.  We give this solution without proof:
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Figure 5-7.  Pattern wells.

w(z) = Q log z/R + q log {Rn(zn  +an)/(R2n  + znan)}                      (5-75)

Note that in the immediate neighborhoods of the points z = 0 and z = zk, the

lines of level pressure are approximately circles centered on these points.  The
complex potential, therefore, also provides an approximate solution to the
pressure problem for the flow domain defined by |z| < R, |z| > δ, |z-z

k
| > ε, with k

= 0, 1, ..., n-1 where δ << a and  ε << a.  Observe that the constants Q and q in
Equation 5-75 can be chosen to satisfy (approximately) the conditions p = 0 on
|z| = R, p = p1 on |z| = δ, and p = p2 on  |z-zk| = ε, where p1 and p2 are real.  The

preceding transform is used to study heat transfer in rocket nozzle applications.

THREE-DIMENSIONAL FLOWS

So far we have treated two-dimensional planar flows.  However, many
three-dimensional problems are also amenable to analytical solution.  To
proceed, we introduce the notion of the point spherical source.  Actually, the
concept is best taught through global mass conservation considerations.  We
consider two-dimensional flows first.  First, the radial Darcy velocity is
proportional to dp/dr.  This, times the area 2πr in planar problems, must be
constant; hence, in such flows, dp/dr goes like 1/r, which on integration leads to
the expected logarithmic pressure.  In three dimensions, dp/dr × 4 π r 2 must
remain constant; thus, dp/dr goes like 1/r2 , so that p(r) varies like 1/r.  This
describes the point spherical source.  We could also have started more formally
with the spherically symmetric form of Laplace’s equation,

d2p/dR2 + (2/R) dp/dR = 0                                                        (5-76)

to obtain
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p(r) = 1/R                                                                              (5-77)

directly as the relevant elementary solution in three-dimensional flows, where R
refers to the (dimensional) radial coordinate.

Example 5-8.  Point spherical flow.

The simplest, nontrivial flow is that produced by a point spherical well of
radius RW  located in a a spherical reservoir of radius RR.  The pressures PW  and
PR apply, respectively, at these surfaces.  Then, the pressure solution is obtained

by assuming first P = A/R + B, to yield

P(r) = RRPR/R + (RRPR - RW PW )(1 - RR/R)/(RR - RW )        (5-78a)

This represents the pressure due to a spherical drainhole, for example, the end of
a finite length line source; it is the solution for invasion at the bit while drilling.

Example 5-9.  Finite line source with prescribed pressure.

Finite line sources are of interest in horizontal well simulation; the latter
are used both as injectors and producers.  Moreover, their lineal shape renders
them amenable to a distributed source solution, as shown in Chapter 2 for planar
fractures.  Let us consider a line source occupying -c ≤ X ≤ +c, Y = Z = 0, where
X, Y, and Z are dimensional.  Furthermore, let the pressure at the radius R >> c
be P

R
, while the pressure along the source is held at a constant P W

.  Now,

following Chapter 2, introduce the dimensionless coordinates x = X/c, y = Y/c,
and z = Z/c, and the nondimensional pressures pR and p(x,0,0) = pW .  In the

present problem, we recognize that the elementary solution in Equations 5-77
and 5-78a can be rewritten in the equivalent form

p(x,y,z) = 1/√(x2 + y2 + z2)                                                     (5-78b)

satisfying

∂2p/∂x2  + ∂2p/∂y2 + ∂2p/∂z2   =  0                                            (5-79)

The pressure distribution due to a line distribution of sources, that is,

p(x,y,z) = ∫ m(ξ) dξ /√{(x-ξ)2  + y2 + z2}+ H                    (5-80)

will also satisfy Equation 5-79 since it is linear.  As in Chapter 2, the
ξ represents the source coordinate for superposition, and H is a constant.   The
integration limits (-1,+1) are omitted for clarity.  Now, if we assume

p(x,0,0) = pW , -1 ≤ x ≤ +1                                      (5-81)

Equation 5-80 becomes

PV ∫ m(ξ)/(ξ-x) d ξ = pW  - H                                                   (5-82)

Equation 5-82 is the governing singular integral equation of interest, satisfied by
the source strength m(x).
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Integral equation solution.  This integral equation was encountered in
Chapter 3, where we discussed shale flow modeling.  The general solution to

PV ∫ g(ξ)/(x-ξ)dξ = - h(x)                                                         (3-24)

is, in fact,

g(x) = - (1/ π2)√{(1-x)/(1+x)} PV ∫ {h(ξ)√(1+ξ)}/{(ξ-x)√(1-ξ)} d ξ

                  + γ /√(1-x2)                  (3-25)

where we have again omitted the integration limits (-1, +1) for clarity.  This
solution is derived and discussed in several classical mathematical references
(Carrier, Krook, and Pearson, 1966; Mikhlin, 1965; Muskhelishvili, 1953).
Equations 5-82 and 3-25 above imply that

m(x) =- (1/ π2)√{(1-x)/(1+x)}(pW  - H) PV ∫{√(1+ξ)}/{(ξ-x)√(1-ξ)} d ξ

                  + γ /√(1-x2)                  (5-83)

Note, specifically, the second lines of Equations 3-25 and 5-83.  The  term
γ /√(1-x2) represents the nonuniqueness associated with solutions to Equation 3-

24, with the arbitrary constant γ known in the aerodynamics literature as the
circulation characterizing a flow.  How is the circulation chosen here?

We proceed by evaluating Equation 5-83.  The value of the integral on the
first line of Equation 5-83 is given in van Dyke (1956) as π, a value completely
independent of x.  Thus, we have

m(x) = [γ - (pW  - H)/π + (pW  - H)x/ π]/√(1-x2)                       (5-84)

Physically, we expect the source strength m(x) to be symmetrically distributed
about x = 0; that is, we anticipate an even function satisfying

m(x) = m(-x)                                                                           (5-85)

Consider the third term of Equation 5-84.  This is possible only if pW  - H = 0,

implying that H = pW .    Hence, Equations 5-80 and 5-83 lead to

p(x,y,z) = ∫ γ /√(1-ξ2) dξ /√{(x-ξ)2 + y2 + z2} + pW                  (5-86)

If we next evaluate Equation 5-86 at large distances from the line source, we
obtain

{γ/(R/c)} ∫ dξ/√(1-ξ2) + pW  = pR                                                  (5-87)

Now, the definite integral in Equation 5-87 is exactly π, so that the circulation

γ = (pR - pW )(R/c)/ π                                                                 (5-88)

solves the problem.  The end result, combining Equations 5-86 and 5-88, is

p(x,y,z) = ∫{(pR - pW )(R/c)}/{π√(1-ξ2)}d ξ /√{(x-ξ)2 + y2 + z2}

+ pW   (5-89)
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When y = z = 0, it is possible to show that the Cauchy principal value integral
that results from Equation 5-89 vanishes, and is independent of x (van Dyke,
1956).  To determine the net inflow into (or out of) the line source, it is
preferable to integrate the derivative ∂p/∂r over a spherical volume faraway
rather than deal with the complicated details of the nearfield flow.  This
solution, again, applies to a finite line source centered in a spherical radius of
length R/c.  As such, it applies directly to horizontal well analysis.  Of course, it
can also be used for vertical wells.  Since the problem is symmetric about the
plane x = 0, the solution also represents the flow from a hemisphere into a
partially penetrating well.  This latter problem is considered in Muskat (1937),
with slightly different boundary conditions using the method of images.

Example 5-10.  Finite line source with prescribed flow rate.

Next, consider the same problem, except that we impose flow rate
boundary conditions along the length of the source.  As before, Equation 5-80

applies.  For convenience, we introduce the variable σ 
2 =  z 

2 + y 
2; then, for

example, the radial velocity perpendicular to the line source is proportional to
∂p/∂σ.  By the same token, Equation 5-80 can be written in the equaivalent form

p(x,σ) = ∫ m(ξ) dξ /√{(x-ξ)2 + σ2} + H                                        (5-90)

where the limits (-1, +1) are omitted for clarity.  Now, let us form the derivative
∂p/∂σ, and introduce the change of coordinates η = (ξ-x)/ σ.  If we evaluate
Equation 5-90 along σ = 0, and use the limit process in Example 2-1, we obtain

                                         +∞

∂p(x,0)/∂σ = - m(x)/ σ ∫ dη/(η2 + 1)3/2  = - 2m(x)/ σ                   (5-91)
                                       -∞
Thus, we can rewrite Equation 5-90 in the alternative form

+1

p(x,σ) = - σ/2 ∫ ∂p(ξ,0)/∂σ dξ /√{(x-ξ)2 + σ2} + H                    (5-92)
                             -1

At large distances  R >> c from the line source, with x-ξ held fixed, Equation 5-
92 can be approximated by

+1

pR = - ½ ∫ ∂p(ξ,0)/∂σ dξ + H                                                 (5-93)

                -1

where the integral is known, since the Darcy velocity is prescribed along the x-
axis.  Thus, Equation 5-93 fixes H, so that Equation 5-92 becomes
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+1

p(x,σ) = - σ/2 ∫ ∂p(ξ,0)/∂σ dξ /√{(x-ξ)2 + σ2}
                     -1 +1

+ ½ ∫ ∂p(ξ,0)/∂σ dξ + pR                                                (5-94)
                           -1

Example 5-11.  Finite conductivity producing
fracture having limited areal extent.

In Chapter 2, we considered the two-dimensional planar flow for a
producing line fracture that is infinite in the direction into the page.  It is also
possible to repeat the analysis for a producing planar fracture of limited areal
extent, say, located on the z = 0 plane and defined by the region S(x,y).  In this
limit, areal (as opposed to line) sources of strength m(x,y) can be distributed
over S(x,y) on z = 0 to generate the flow, say, corresponding to an imposed
Darcy velocity w(x,y) normal to the fracture plane.  The required extension to
Equation 5-80, taking superpositions of 1/r spherical sources, takes the form

p(x,y,z) = ∫∫ m(ξ,η) dξdη /√{(x-ξ)2 + (y-η)2 + z2} + H                (5-95)

                      S

Because Equation 5-95 assumes sources only, we have ruled out tangential
velocity discontinuities that may result from mineralization effects.

Equation 5-95 provides the multidimensional integral equation for the
source strength m(x,y).  Such equations are used in lifting surface theory by
aerodynamicists to model wing flows, and are discussed in Mikhlin’s (1965)
classic book.  Using a limit process similar to that in Example 2-1, for example,
refer to Bisplinghoff, Ashley, and Halfman (1955), it is possible to show that

∂p(x,y,0+)/ ∂z = + m(x,y)/2                                                        (5-96)

∂p(x,y,0-)/ ∂z = - m(x,y)/2                                                          (5-97)

Thus, the normal derivatives, as in the two-dimensional planar limit, are
antisymmetric, being equal and opposite.  Hence, Equation 5-95 becomes

p(x,y,z) = 2 ∫∫ ∂p(ξ,η ,0+)/∂z d ξ dη /√{(x-ξ)2 + (y-η)2 + z2} + H (5-98)
                        S

At large distances R compared to some diametric length characteristic of S,
Equation 5-98 satisfies the constant pressure constraint p = pR.  Thus,

pR = (2/R)∫∫ ∂p(ξ,η ,0+)/∂z d ξ dη + H                                       (5-99)
                       S

and the constant H, for use in Equation 5-95, is completely determined.



Flows in Complicated Geometries     101

Example 5-12.  Finite conductivity non-producing
fracture having limited areal extent.

In Examples 2-1 and 5-11, the assumption of a producing fracture
motivated the use of logarithms as singularities; these are responsible for equal
and opposite Darcy velocities normal to the fracture plane and simulate
production.  In practice, flow also moves parallel to the fracture, toward the
penetrating well that taps the fluid.  For this motion to be possible, a pressure
gradient must exist along the fracture, and the variable p f (x) considered in
Chapter 2 applies.  Often the fracture contains solids and debris, and the parallel
velocity on one side of the fracture will not be the same as that on the other.  For
this flow, we specify along z = 0 the discontinuous velocity

∂p(x,y,0+)/ ∂x - ∂p(x,y,0-)/∂x = λ(x,y)                                      (5-100)

noting that x is the coordinate tangent to the z = 0 plane, and λ(x,y) must be
chosen subject to zero rotationality, that is,

∫∫ λ(ξ,η) dξ dη = 0                                                                  (5-101)
   S
in the distant farfield.  The solution assuming a unit speed in the farfield is

p(x,y,z) = (1/4π) ∫∫ z λ(ξ,η) /[(y-η)2 + z2]
                               S
                                ×  [1 + (x-ξ) /√{(x-ξ)2  + (y-η)2 + z2}] d ξ dη  (5-102)

For further details, the reader is referred to Bisplinghoff, Ashley, and Halfman
(1955), Ashley and Landahl (1965), and Thwaites (1960).  Equation 5-102 arises
from the “lifting surface theory” well known in aerodynamics, where the
nonzero value of the integral shown in Equation 5-101 is proportional to lift.

BOREHOLE INTERACTIONS

Muskat (1937) gave an exact solution for an infinite line source (“the line
drive”) into a well; his line source was held at fixed uniform pressure, and the
solution was obtained using the method of images.  He also gave a solution for a
finite line source using infinite sets of images, again with pressure uniform over
the distributed source.  Muskat noted that the integral equation approach (being
more difficult) is avoided; he gave a cumbersome infinite series whose
correctness, in light of comments made in Example 2-1, is in doubt.  So far, we
have not considered radial flows in detail, but only simple log r solutions for
constant density liquids.  Radial flows are studied in Chapter 6, where new
results and numerical schemes are developed.  We now draw upon the results
reiterated in Example 6-1 for steady-state (m = 0) liquids, in order to discuss
borehole interactions with complicated fracture and shale flows.  The extension
to gases with nonzero m is straightforward, following the pattern of
generalizations used in earlier examples, and will not be pursued further.
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Example 5-13.  Producing fracture
near multiple wells under aquifer drive.

We again consider the problem in Example 2-1 where the fracture pressure
is specified along a slit but now allow an arbitrary number of injection and
production wells in the neighborhood of the fracture.  These wells are described
by normalized volume flow rates λ n , which we assume to be prescribed positive

or negative quantities.  Combining Equation 2-10 with superpositions of
singularities such as those given in Equation 6-9 yields the extension

                   +1

p(x,y) = ∫ f(ξ) log √{(x-ξ)2 + y2} d ξ + H
                  -1
                  +  ∑ λn  log √{(x-xn)2 + (y-yn)2}                    (5-103)

where the index n refers to the well number, (x
n
,y

n
) represents well locations,

and the summation is taken over all possible wells.  The constant H, as in
Chapter 2, handles farfield boundary conditions in addition to well, fracture, and
farfield interference effects.  This integral expression also satisfies Equation 2-7
for pressure, since each individual contribution is harmonic and the governing
equation is linear.  Now evaluate Equation 5-103 at y = 0 and apply fracture
pressure conditions.  This leads to Equation 2-11, but modified as follows,

+1

∫ f(ξ) log |x-ξ| dξ = pf(x) - ∑ λn  log √{(x-xn)2 + yn
2} - H       (5-104)

         -1
Again, the solution to the equation
  +1

∫ f(ξ) log |x-ξ| dξ = g(x)                                                       (2-12)
   -1
takes the general form

+1

f(x) = [  PV ∫ {g’(ξ)/(ξ-x)}√(1-ξ2) dξ
−1  +1

- (1/ loge2) ∫ g(ξ)/√(1-ξ2) d ξ /{π2√(1-x2)} (2-13)
                                  -1
where g’(ξ) is the derivative of g(ξ) with respect to ξ.  The substitutions

g(x) = p f(x) - ∑ λn  log √{(x-xn)2 + yn
2} - H                               (5-105)

g’(x) = pf 
’ (x) - ∑ λn  (x-xn)/{(x-xn)2 + yn

2}                                 (5-106)

solve the problem.  The constant H is determined by expanding Equation 5-103
for large distances away from the fracture and applying farfield pressure
boundary conditions.  The final result for pressure is
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                   +1

p(x,y) = ∫ f(ξ) log √{(x-ξ)2 + y2} d ξ +  ∑ λn  log √{(x-xn)2 + (y-yn)2}

                  -1     +1

                                -  { ∫  f(ξ) dξ + ∑ λn  } log R/c + PR/Pref          (5-107)
                                -1

where the expressions for g(x) and g’(x) in Equations 5-105 and 5-106 are to be
used in determining the source strength f(x).  An analogous extension applies to
the related streamfunction; the results of Chapter 4 for fractures can be
combined with  superpositions  of solutions such as those in Equation 6-22.

Example 5-14.  Producing fractures
near multiple wells in solid wall reservoirs.

Consider the preceding problem with different farfield conditions.  Instead
of prescribing pressure, which allows flow across the boundary, assume a solid
wall.  In the absence of wells, the fracture would produce no flow.  When wells
are present, the net nonzero injected flow from all the wells appears as produced
flow at the fracture.  We show this analytically.  The assumption underlying
Equation 5-103 applies, and we expand all terms for large radial distances.
Following the procedure in Example 2-1,

         +1

p(x,y) = ∫ f(ξ) log √{(x-ξ)2 + y2} d ξ + H
                  -1

          +  ∑ λn  log √{(x-xn)2 + (y-yn)2}
                      +1

                   ≈ { ∫ f(ξ) d ξ + ∑ λn} log r  + H                                   (5-108)
                        -1

where r is the radial coordinate.  Now form the normal derivative ∂p/∂r at the
farfield boundary and set it to zero so the Darcy velocity vanishes.  This requires

      +1

{ ∫ f(ξ) d ξ + ∑ λn} = 0                                                             (5-109)
       -1

This is consistent with the mass conservation noted earlier.  Now, in the
nearfield, the fracture pressure pf(x) and the well flow rates λ

n are prescribed

arbitrarily.  These inputs are substituted in Equation 5-105 to yield g(x), which
leads to an expression for the distributed source strength f(x) via Equation 2-13
(found just above Equation 5-105).  But H in Equation 5-105 is still free; it must
be chosen so that Equation 5-109, a requirement for mass conservation, holds.
This choice solves the problem and uniquely determines all pressures.
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Example 5-15.  Straight-line shale segment
near multiple wells in uniform flow.

In this problem, we reconsider the flowfield of Example 3-1 and place an
arbitrary number of production and injection wells in the neighborhood of an
impermeable shale.  However, to satisfy the assumption that the same farfield
flow exists at upstream and downstream infinity, we require that the net volume
flow issuing from all wells sums to zero.  This implies that

∑ λn  = 0                                                                              (5-110)

Following Equation 3-21 in Example 3-1, assume a line distribution of arc tan
singularities for the shale, but add to it an x to model a distant uniform flow,
plus a discrete number of sources, giving,

                 +1

p(x,y) = ∫ g(ξ) arc tan y/(x- ξ) dξ + H + x
                -1
                                 +  ∑ λn  log √{(x-xn)2 + (y-yn)2}                    (5-111)

Now consider the nearfield tangency condition and form the vertical derivative

                +1

∂p/∂y  = ∫  g(ξ) (x-ξ)/{(x-ξ)2 + y2} d ξ
                 -1
                          + ∑ λn  (y-yn)/{(x-xn)2 + (y-yn)2}                          (5-112)

If we evaluate Equation 5-112 at y = 0 and apply tangency conditions (see
Equation 3-18), we obtain, instead of Equation 3-23, the equation

+1

∫  g(ξ) /(x-ξ) d ξ - ∑ λn  yn/{(x-xn)2 + yn
2} = - α   (5-113)

 -1

Thus, the singular integral equation for the vortex strength g(x) becomes

   +1

∫  g(ξ) /(x-ξ) d ξ = - α + ∑ λn  yn/{(x-xn )2 + yn
2} (5-114)

  -1

so that the function h(x) in Equation 3-24 takes the form

h(x) = α - ∑ λn  yn/{(x-xn)2 + yn
2} (5-115)

Once this expression is substituted in Equation 3-25 for the vortex strength, the
final expression for g(x) is obtained by choosing the circulation γ consistently
with Equation 3-28, calling for vanishing velocity swirl in the farfield.
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Examples 5-16 and 5-17.  Nonproducing faults
in solid wall and aquifer-driven reservoirs.

In Examples 5-12 and 5-13, we considered pure fractures that did not
support pressure discontinuities but that yielded normal velocity jumps that
produced flow.  By contrast, in Example 5-15, we considered an impermeable
shale that supported pressure differences between upper and lower surfaces, but
that gave continuous normal derivatives of pressure and hence no production.
As we had discussed in Example 3-3, a nonuniform streak (responsible for
changes in the tangent velocity from one side of the fracture to the other) located
in an otherwise homogeneous, isotropic reservoir can be modeled by prescribing
a nonzero vortex strength g(x) along y = 0; that is, by specifying a discontinuity
in the tangential velocity as might be observed from far away.  In the case of an
impermeable shale, the magnitude of g(x) is determined by the geometry of the
barrier; for streaks, g(x) may be prescribed from laboratory results, provided the
net vorticity (see later in this section) is zero.  Again, Equation 5-111 applies
without the x, since there is no uniform flow at infinity.  Now, it is of interest to
expand it for large distances away from the fault.  Far away, arc tan y/(x-ξ) can
be approximated by arc tan y/x or θ , the azimuthal angle from radial polar
coordinates.  Thus,

                   +1

p(x,y) = ∫  g(ξ) arc tan y/(x- ξ) d ξ + H + ∑ λn  log √{(x-xn )2 + (y-yn)2}

                  -1                     

                         +1

                 ≈  θ ∫  g(ξ) dξ  + (∑ λn) log r  + H                                  (5-116)
                         -1

where r is the radial coordinate.  The distribution of tangential velocity
discontinuity must be chosen so that the integral in Equation 5-116 vanishes,
following Equation 3-28, if velocity swirl (proportional to 1/r ∂p/∂θ) is to vanish
in the farfield; this is a physical constraint that must be enforced.

Solid walled aquifer.  If we require solid no flow walls in the farfield, the
normal radial derivative ∂p/∂r there must vanish.  Thus, on differentiating
Equation 5-116, an additional constraint calls for ∑ λ

n
 = 0; that is, the net

production and injection rates from all discrete wells must sum to zero.  This  is
obvious from physical requirements.  Since the boundary value problem
involves derivatives of p only, the pressure solution is nonunique to within a
constant value; its value may be arbitrarily fixed at any one point, without loss
of generality, for the purposes of calculation.

Aquifer drive.  In the limit when the farfield boundary is opened to an
aquifer, the (normalized) reservoir pressure P

R
/P

ref
 is specified at the

nondimensional radial coordinate R/c.  As before, the integral in Equation 5-116
vanishes; since the farfield boundary is opened to an aquifer, the (normalized)
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reservoir pressure is P
R
/P

ref
 = (∑ λ

n
) log R/c + H, so that the integration constant

H satisfies H = P
R
/P

ref
 - (∑ λ

n
) log R/c.  This value completely determines the

pressure distribution in Equation 5-116.

Example 5-18.  Highly curved fractures and shales.

In Chapter 2, we considered straight fractures, whereas in Chapter 3, we
considered shales that were both straight and mildly curved.  These assumptions
were invoked to keep the physical and mathematical ideas simple and to avoid
cumbersome notation.  It turns out that fractures and shales with general
curvature are just as easily handled; instead of distributing singularities along
the approximating line y = 0, as suggested by thin airfoil theory, we simply
consider the line y = h(x), say.  Thus, the natural extension to Equation 2-10 for
a line distribution of sources of strength f(x) is

                  +1

p(x,y) = ∫ f(ξ) log √{(x-ξ)2 + (y-h(ξ))2} d ξ + H                        (5-117)
                 -1

whereas the expression generalizing the integral in Equation 3-21 for a line
distribution of vortexes is

                   +1

p(x,y) = ∫ g(ξ) arc tan (y-h(ξ))/(x-ξ) d ξ + H                            (5-118)
                  -1

In Equations 5-117 and 5-118, the respective singularities are assumed to
lie along the locus of points (ξ  ,  h(ξ)).  The jump properties of the above
distributions remain identical to the ones previously developed.  For curved line
sources, differentiation of Equation 5-117 leads to

                  +1

∂p/∂x = ∫  f(ξ) (x-ξ)/{(x-ξ)2 + (y-h(ξ))2} d ξ  (5-119)
                  -1

                 +1

∂p/∂y = ∫  f(ξ) (y-h(ξ))/{(x-ξ)2 + (y-h(ξ))2} d ξ  (5-120)
                 -1

Along y = h(x), Equation 5-119 becomes

+1

∂p/∂x = ∫  f(ξ)/ (x-ξ) d ξ  (5-121)
-1

whereas Equation 5-120 takes the form given in Equation 2-24, that is,
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                 +1

∂p/∂y = ∫ f(ξ) (y-h(ξ))/{(x-ξ)2 + (y-h(ξ))2} d ξ  (5-122)
                 -1 +1

= y* ∫  f(ξ)/{(x-ξ)2 + y*2} d ξ                                          (5-123)
                          -1
where y* = y - h(ξ) tends to zero.  Equation 5-123 should be compared with
Equation 2-24.  It is clear that the same integral equations, and the same jump
properties, as obtained in Chapter 2 also apply here, and that analogous end
results are achieved.   Similar comments apply to Equation 5-118 for shale flow
modeling, since integrals such as those found in Equations 5-121 and 5-122 are
obtained by direct differentiation of Equation 5-118.

PROBLEMS AND EXERCISES

1. Our conformal mapping examples focused on incompressible liquids in
isotropic formations for simplicity.  Using the formalism of Chapters 1, 2,
and 3, extend these mapping results generally to include the effects of
anisotropic media and of gases with constants m.  Hint: recall that simple
scale transformations map the anisotropic equation into isotropic form,
while gas effects are modeled by considering p

m+1
 as in Chapter 4.

2. Derive the streamfunction for the pressure given in Equation 5-107.  Write a
computer program to calculate pressures and streamfunctions for general
(x,y).  Integrate the output of this program with commercial contour plotting
software to produce capabilities useful in enhanced oil recovery.
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6
Radial Flow Analysis

In many books, radial flow theory is studied superficially and dismissed
after cursory derivation of the log r pressure solution.  Here we will consider
single-phase radial flow in detail.  We will examine analytical formulations that
are possible in various physical limits, for different types of liquids and gases,
and develop efficient models for time and cost-effective solutions.  Steady-state
flows of constant density liquids and compressible gases can be solved
analytically, and these are considered first.  In Examples 6-1 to 6-3, different
formulations are presented, solved, and discussed; the results are useful in
formation evaluation and drilling applications.  Then, we introduce finite
difference methods for steady and transient flows in a natural, informal, hands-
on way, and combine the resulting algorithms with analytical results to provide
the foundation for a powerful write it yourself radial flow simulator.  Concepts
such as explicit versus implicit schemes, von Neumann stability, and truncation
error are discussed in a self-contained exposition.

Example 6-1.  Steady liquids in homogeneous media.

Radial flow problems are generally solved with pressure-pressure
boundary conditions at the well and farfield boundaries.  In steady flow,
however, the total flow rate Q

W
 – holding pressure constant along the wellbore

contour – from (or into) a well is a uniquely defined constant of the problem.
Thus, it is of interest to have this parameter appear as a potential boundary
condition.  The resulting formulations are useful in formation evaluation.  In
Chapter 9, the three boundary value problems addressed here are considered for
arbitrarily shaped reservoirs, where the general extension of log r is given.

Pressure-pressure formulations.  The most common starting point, at
least for elementary analysis, is the pressure equation

d2P/dr2 + (1/r) dP/dr = 0                                                            (6-1)
for P(r), where r is the radial coordinate, which governs Darcy flows of
incompressible liquids in homogeneous, isotropic media.  The usual boundary
conditions assume pressures specified at the wellbore and at some distance away
from the hole.  We have
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P(rW ) = PW                                                                               (6-2)

P(rR) = PR                                                                                (6-3)
where r = rW  and r = rR  refer to well and farfield radii, and PW  and PR are the

assumed pressures.  This formulation has the solution (see Equation 4-46)
P(r) = {(PR  - PW )/(log rR/rW )} log r/rW  + PW                          (6-4)

Now, the radial velocity q(r) is given by Darcy’s law, requiring that
q(r) = - (k/µ) dP(r)/dr = - (k/µ){(PR - PW )/(log rR/rW )} 1/r     (6-5)

where k is the formation permeability and µ is the fluid viscosity.  Hence, the
total volume flow rate QW , assuming a reservoir depth D into the page, is

                   2π

QW  = - D ∫ q(r) rW  dθ, r = rW                                                      (6-6)

                    0
QW  = -2π rW  D q(rW )                                                                 (6-7)

leading to
QW  = - (2πkD/µ) (PR - PW )/(log rR/rW )                                        (6-8)
PW - QW formulations.  In a steady flow, the volume flux through any

closed curve surrounding the well is the same.  Thus, another formulation with a
uniquely defined solution is the problem where Equation 6-2 is prescribed at the
well, along with the total volume flow rate Q

W
.  If the term P

R
 is eliminated

between Equations 6-4 and 6-8, we have
P(r) = - {QW µ/2πkD) log r/rW  + PW                                     (6-9)

for the complete solution, and
PR = PW  - {(µQW /2πkD) log rR/rW }                                        (6-10)

for the pressure at the farfield boundary.
PR - QW formulations.  Still another formulation is the problem where

Equation 6-3 is prescribed in the farfield, along with the total volume flow rate
QW .  If the term P

W
 is eliminated between Equations 6-4 and 6-8, we have

P(r) = {QW µ/2πkD) log rR/r + PR                                               (6-11)

For example, once PR and QW   are given, the well pressure is just

PW  = {QW µ/2πkD) log rR/rW  + PR                                          (6-12)

Example 6-2.  Simple front tracking for liquids
in homogeneous, isotropic media.

Very often, the front of the injecting fluid penetrating the formation is
desired as a function of time.  This application is important in correcting
resistivity readings obtained during drilling, when fresh and saline (“red” versus
“blue”) waters displace each other but otherwise do not mix in a miscible or
diffusive sense.  Here, we consider incompressible liquids in homogeneous,
isotropic flow.  The sign convention of Equation 6-8 assumes that QW  > 0 when

PW  > PR.  Combination of Equations 6-5 and 6-8 leads to
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q(r) = + QW /(2πDr)                                                                  (6-13)

Let us denote the porosity by φ.  Then, the rate of invasion into the reservoir is

dr/dt = q/φ = + QW /(2πφDr)                                                      (6-14)

and, finally, integration gives

r(t) = √{RW
2 + QW  t /πφD}                                                      (6-15)

for the invasion front.  Here, QW  and φ are constant, and the initial front
position is assumed to be r = r W  at t = 0.  By the same token, we could have
considered any other ring  of injected or produced fluid, and obtained

r(t) = √{Rother
2 + QW t/πφD}                                                  (6-16)

if r = Rother > RW  at t = 0.  Let us return to Equation 6-15.  For large times,

r(t) ≈ √{QW t/πφD}                                                                   (6-17)

Thus, in a steady cylindrical radial flow without mudcake effects, √t front
displacement is obtained because of geometric divergence (Equation 6-15
assumes a constant volume flow-rate with constant porosity together with r =
rW  at t = 0).  We emphasize that this √t behavior differs from the √t obtained

when linear flow invasion is controlled by highly impermeable mudcake
growing in time.  This subject is treated rigorously starting with Chapter 16.

Incompressible transient effects.  We continue with our simple cake-free
model.  Very often in drilling, the mud circulation rate varies with time.  For
constant density flows, the fluid feels these changes instantaneously; the front
responds immediately to changes in the pump rate Q

W
(t) at the surface.  In

addition, an initial spurt loss into the rock, which depends on formation texture
and mud rheology flow interaction, may result in our having the initial radius set
as r = Rspurt > r

W
 at t = 0.  The generalization to Equation 6-15 is

t

r(t) = √{Rspurt
2 + ∫ QW (τ) dτ/πφD}                                         (6-18)

                                 0
for constant porosity.  Now, Equations 6-13 and 6-14 hold generally in the
assumed limit; thus, when φ(r) is variable, we must integrate

2πDφ(r) r dr = QW (t) dt  (6-19)

where QW (t) is considered a known (fluid loss) input quantity specified by the

driller.  The corresponding pressure distribution is calculated by integrating

d{r k(r) dP/dr}/dr = 0                                                                   (6-20)

This yields
r

P(r) = - {QW (t)µ/2πD} ∫ dr/r k(r) + PW (t)                                  (6-21)
                                         rW
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One application of Equation 6-21 lies in the area of drilling safety; the computed
pressure can be used to determine if formation fracture and consequent fluid loss
are possible.  Again, we have not considered mudcake buildup, which would
reduce permeabilities at the sandface, effects that are discussed later.

Discontinuous properties.  The preceding formulas assume continuously
varying formation properties.  Problems for discontinuous, but piece-wise
constant properties, are also easily solved.  For such problems, Laplace’s
equation (see Equation 6-1) applies in each separate flow annulus; it is
convenient to append a subscript i or j corresponding to each pressure function.
Each solution then takes the form Pn  = An  + Bn  log r.  The integration constants
are obtained from the conditions P = P

W
 at r = r

W
, P = P

R
 at r = r

R
, plus the

matching conditions Pi = Pj and k i dPi /dr = k j dPj /dr at all adjacent interfaces.

Example calculations are given in Muskat (1937) and Collins (1961).
Radial flow streamfunction.  For completeness, we indicate that the

streamfunction Ψ (see Equations 4-46 to 4-49) corresponding to Equation 6-4 is
Ψ = - (QW µ/2πkD) arc tan y/x = - (QW µ/2πkD) θ (6-22)

Lines of constant y/x or θ form radial flow streamlines, with θ being the usual
angle variable in polar coordinates.  The streamfunction is not too important a
variable in radial flow, as it is in general planar flows, since the total volume
flow rate is adequately described by Q

W
.  But Equation 6-22 is important to

readers new to the double-valued functions in Chapter 4.  Note how θ = 0, say,
initially at some point.  After one complete circuit around the origin, θ returns
with the increased value 2 π ; the streamfunction, at the same time, varies from Ψ
= 0 to Ψ = - (Q

W
µ/kD), taking into account the net nonzero outflow from the

well.  Thus, ignoring the scale factor -µ/kD for now, the streamfunction tracks
increases in volume flow rate ranging from 0 to Q 

W
.  Incremental increases in θ,

for example, lead to proportional incremental increases in flow rate.  This exact
proportionality is not, in general, true of single or multi-well flows in general
heterogeneous, anisotropic media.

Example 6-3.  Steady-state gas flows
in homogeneous, isotropic media.

As in Example 6-1, we consider three boundary value problems for steady
gas flows in homogeneous, isotropic media.  Two are easily posed and solved,
but the third requires nonlinear iteration.

Pressure-pressure formulations.  In general, when arbitrary liquids and
gases are modeled, Equation 6-1 is replaced by

d2Pm+1/dr2 + (1/r) dPm+1/dr = 0                                              (6-23)

for Pm+1(r), where “r” is the radial coordinate.  Here, pressure is specified at the
wellbore r = rW  and some distance away at r = rR .  But the pressure-pressure
boundary value problem is not nonlinear, since we can write

Pm+1(rW ) = PW
m+1                                                                (6-24)
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Pm+1(rR) = PR
m+1                                                                 (6-25)

for the function  P 
m+1(r), where P W  and P R are the respective assumed

pressures.  This formulation has the simple solution

Pm+1(r) = PW
m+1

+ {(PW
m+1 - PR

m+1)/(log rW /rR)} log r/rW      (6-26a)
or

P(r) = {PW
m+1 + {(PW

m+1 - PR
m+1)/

                   (log rW /rR)} log r/rW }1/(m+1)                        (6-26b)

Note that taking the first derivative of Equation 6-26 leads to

dP(r)/dr = {(PW
m+1 - PR

m+1)/((m+1)Pmlog rW /rR)}1/r        (6-27)

Thus, the formula for the radial velocity q(r) corresponding to Equation 6-5 is
q(r) = - (k/µ) dP(r)/dr

= - (k/µ) {(PW
m+1 - PR

m+1)/((m+1)Pmlog rW /rR)}1/r       (6-28)

where k is formation permeability and µ is fluid viscosity.  Using Equation 6-6,
the corresponding total volume flow rate is

QW  = (2πkD/µ) {(PW
m+1 - PR

m+1)/((m+1)PW
mlog rR/rW )} (6-29)

assuming a reservoir depth D into the page.
PW - QW formulations.  In a steady flow, the total volume flow rate

through any closed curve surrounding the well is the same.  Thus, another
formulation with a uniquely defined solution is the problem where the volume
flow rate QW  is prescribed at the well.  If PW  and QW  are given, we can use
Equation 6-29 to rewrite the flow rate boundary condition in terms of

PR
m+1 = PW

m+1 - {QW µ(m+1)PW
m/(2πkD)} log rR/rW               (6-30)

The resulting pressure-pressure boundary value problem can use Equations 6-
26a and 6-26b.
 PR - QW formulations.  Still another useful formulation is the problem

where pressure is prescribed in the farfield, along with some value for the total
volume flow rate Q

W
.  Again, the approach is to eliminate the explicit

appearance of the latter in favor of an equivalent pressure-pressure formulation.
Thus, we rewrite Equation 6-30 in the form

PW
m+1 - {QW µ(m+1)PW

m/(2πkD)} log rR/rW  - PR
m+1 = 0 (6-31)

If m = 0, the resulting expression is consistent with Equation 6-12.  If m = 1, for
isothermal gases, we obtain a quadratic equation for the well pressure.  The
appropriate choice of sign in the quadratic formula is the one that leads to a the
correct solution of the m = 0 problem.

In general, for arbitrary values of m, Equation 6-31 is a nonlinear algebraic
equation for P

W
, which must be solved by iterative numerical methods.  Once

the solution is obtained, the boundary value problem is completely defined by
the pressure-pressure formulas.  A fast and stable solution is possible using
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Newton-Raphson iteration (Carnahan, Luther, and Wilkes, 1969; Dahlquist and
Bjorck, 1974) if we write Equation 6-31 in the form

PW
 - PR

m+1/PW
m - {QW µ(m+1) log rR/ rW }/(2πkD)  =  0    (6-32)

and define

f(PW ) = PW
 - PR

m+1/PW
m - {QW µ(m+1) log rR/rW }/(2πkD)  (6-33)

The variable part of Equation 6-33 is plotted in Figure 6-1.  Then, we can easily
form the derivative

f ’(PW ) = 1 + m(PR/PW )m+1                                                     (6-34)

Successive improvements to an initial guess for PW(n) are given by the formula
PW(n+1) = PW(n) - f(PW(n))/f ’(PW(n))                                      (6-35)

A part of the function f(PW ) defined by Equation 6-33 is plotted in Figure 6-1.
It is clear from the monotonic nature of the curve that the choice  PW(1) = PR
always leads to rapidly convergent solutions.

Linear asymptote

Hyperbola
P
W

P
W

= P
R

P
W

P
R

m+1 mP
W

- /

Figure 6-1.  Function for Newton-Raphson iteration.

TRANSIENT COMPRESSIBLE FLOWS

Here we will introduce the numerical modeling of transient compressible
flows.  We will develop all simulation concepts from first principles.  The roles
of boundary and initial conditions will be discussed.  Also, the differences
between explicit and implicit schemes are given, and the concept of numerical
stability is developed, as are basic ideas – the advantages and disadvantages –
behind variable meshes.  We will also explore intelligent ways to incorporate the
analytical results derived earlier.  This book does not explore the intricacies of
well test interpretation.  We do, however, emphasize that the great majority of
real-world problems (e.g., liquids and gases in irregular reservoir domains) do
not yield to analytically based models.  These are largely limited to m = 0 fluids
(or, liquids) which, owing to their linearity, allow convenient linear
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superposition; published superposition models for nonlinear gas flows are
inherently incorrect.  Even for linear flows, the effects of arbitrary reservoir
geometry cannot be handled by analytical models, which call for drastic
simplification.  Ultimately, numerical well test simulations such as those
described in Chapter 10 provide the best hope for accurate reservoir
characterization.  For the fundamentals behind well test analysis, the reader is
referred to Collins (1961), or Richardson’s exposition in Streeter (1961).
Streltsova (1988) provides a state-of-the-art summary on closed-form solutions
with idealized heterogeneities and complicated reservoir geometries.

i-1     A     i      B   i+1

r

i+1
P

i-1
P

iP

Figure 6-2.  Finite difference formula development.

Example 6-4.  Numerical solution for steady flow.

We motivate the ideas behind numerical modeling by considering steady-
state flows.  The resulting schemes, insofar as grid density and mesh variability
are concerned, can be tested against the analytical solutions in Examples 6-1 to
6-3.  The reader is encouraged to code, compile, and run the algorithms in this
section, and to become to familiar with simulator development.

Finite difference formulation.  Suppose that analytical solutions were not
possible, and that recourse to computational methods was necessary.  Then,
Equation 6-1, for example, would have to be approximated by writing
discretized algebraic equations from node to node, and solving the coupled
equations using a matrix inversion technique.  A simple way to introduce finite
differences follows from Figure 6-2.  First consider constant mesh widths ∆r,
and examine the Point A lying at the midpoint between successive indices i-1
and i.  It is clear that the first derivative dP(A)/dr = (P i -  Pi-1)/∆r.  Similarly,
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Point B requires dP(B)/dr = (Pi+1 - Pi)/∆r.  Then, the second derivative at i,

situated midway between A and B, is, by definition

d2P/dr2 (ri) = (dP(B)/dr - dP(A)/dr)/∆r                                         (6-36)

                         = (Pi+1 - 2Pi + Pi-1)/(∆r)2                             (6-37)

The complementary expression for the first derivative at i is

dP/dr (ri) =  (Pi+1 - Pi-1)/(2∆r)                                                   (6-38)

Because our derivatives are taken using values of P from both left and right of i,
Equations 6-37 and 6-38 are called central difference approximations.
Backward and forward one-sided derivatives are also possible, though less
accurate for the same number of meshes.  Equations 6-37 and 6-38 are second-
order accurate, with errors on the order O(∆r2).

Now, we substitute Equations 6-38 and 6-39 into Equation 6-1, and we
rearrange terms to form the difference equation

(1 -  ∆r/2ri) Pi-1 - 2Pi + (1 +  ∆r/2ri) P i+1 = 0                          (6-39a)

where the radial variable satisfies

ri  = rW  + (i-1) ∆r                                                                   (6-39b)

Suppose the index i varies from 1 to i max
, so that i max -1 meshes exist.  The

procedure is to write Equation 6-39a for i = 2 to i = i max -1 inclusively, and then,
to supplement these equations with the boundary conditions P

1
 = P

W
 at the well

and P
imax

 = P
R
 at the reservoir farfield.  This leads to a system of tridiagonal

linear algebraic equations containing, at most, three unknowns per equation.
The resulting system for i

max = 5, for example, takes the form
P1        = PW

(1 - ∆r/2r2) P1 – 2 P2 + (1 + ∆r/2r2) P3 = 0

(1 - ∆r/2r3) P2     - 2 P3 + (1 + ∆r/2r3) P4 = 0

  P4 = PR

                                                                                                    (6-40)
which is a special instance of the general “tridiagonal matrix”
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In Equation 6-41, the indexed quantities ai,  bi,  ci,  vi and wi are called
column vectors of dimension n; sometimes, they are vectors denoted by the
bold-faced symbols a, b, c, v and w.  The square matrix at the left reveals its
obvious “tridiagonal” structure; it is a special case of a diagonal banded matrix.
We will not deal with matrix inversion in this book.  Suffice it to say that the last
(or the first) equation, which involves two unknowns only, is usually used to
reduce the number of unknowns along each row, right up (or down) the matrix,
thus resulting in a two or bidiagonal system.  Repeating the process in the
opposite direction yields the solution vector v.

When all the tridiagonal matrix coefficients in Equation 6-41 are defined,
the solution vi can be obtained by calling standard tridiagonal solvers found in
most numerical analysis books.  If the programming language used is Fortran, as
is assumed in this book, the subroutine listed in Figure 6-3 can be used.  The
statement CALL TRIDI with the appropriate A, B, C, W, and N arrays defined
will return the desired pressure solution in the vector V.  The linear boundary
value problem for the function pm+1 considered previously is similarly solved.
Darcy velocities are obtained by post-processing computed pressures, using the
difference formula for dP/dr in Equation 6-38 for internal nodes, the  forward
difference formula dP/dr (r

1
)  =  (P

2
 - P

1
)/∆r for i = 1, and the backward

difference formula dP/dr (rimax)  =  (Pimax – Pimax-1)/∆r for i = i
max

.

            SUBROUTINE TRIDI(A,B,C,V,W,N)
      DIMENSION A(5), B(5), C(5), V(5), W(5)
      A(N) = A(N)/B(N)

      W(N) = W(N)/B(N)
      DO 100  I = 2,N
      II = -I+N+2

      BN = 1./(B(II-1)-A(II)*C(II-1))
      A(II-1) = A(II-1)*BN
      W(II-1) = (W(II-1)-C(II-1)*W(II))*BN

 100  CONTINUE
      V(1) = W(1)
      DO 200  I = 2,N

      V(I) = W(I)-A(I)*V(I-1)
 200  CONTINUE
      RETURN

      END

Figure 6-3.  Tridiagonal matrix solver.

Example 6-5.  Explicit and implicit schemes
for transient compressible liquids.

When transient effects are present, as in well test pressure buildup or
drawdown, the effects of compressibility and porosity enter.  The governing
equation for constant properties takes the form

∂2P/∂r2 + 1/r ∂P/∂r = (φµc/k) ∂P/∂t                                           (6-42)                 
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Now, Equations 6-36 to 6-38 apply to the left side of Equation 6-42.  The right
side ∂P/∂t suggests that two time steps, at the very minimum, must be
considered, say t n  and t n+1.  We can certainly write ∂P/∂t at t  = t n+1 in the

form (Pi,n+1 - Pi,n)/∆t, where ∆t is the time step.  However, the question arises

as to which time value the spatial derivatives are to be evaluated at.
Explicit schemes.  The choice t n, of course, allows us to solve the

resulting equation for the new pressure P
i,n+1

 in terms of previously available
values P  i-1,n

 , P i,n
 and P  i+1,n

.  This simple approach means that a pocket calculator

is all that is required; there are no matrixes to invert, and given initial values are
used to start the calculations at n = 1.  This differencing scheme is known as an
explicit scheme.   Such schemes, while convenient, require very small time steps
for both accuracy and numerical stability.  Unstable schemes are those that lead
to unrealistic infinite values after a finite number of time step calculations; thus,
they may not suitable for physical modeling.

Numerical stability.  The stability of a scheme can be determined by a
relatively simple von Neumann stability test (Carnahan, Luther, and Wilkes,
1969; Richtmyer and Morton, 1957).  This test, we emphasize, is only
qualitatively accurate, since it does not account for the detailed effects of
boundary and initial conditions, and for the role of heterogeneities when variable
coefficients are present in the given equation.  Note that a stable finite difference
scheme does not necessarily converge to solutions of the PDE even if ∆r, ∆t are
vanishingly small.  This subject is treated in advanced courses.

Implicit schemes.  If we had instead evaluated the spatial derivatives at the
t n+1 time level, we would have obtained a difference equation that takes the

more complicated form
(Pi-1,n+1 – 2 Pi,n+1 + Pi+1,n+1)/(∆r)2  (6-43)

+ {1/[rW + (i-1)∆r]} (Pi+1,n+1 - Pi-1,n+1)/(2∆r) =(φµc/k) (Pi,n+1 - Pi,n)/∆t

or
{1 - ∆r/[2rW + 2(i-1)∆r]}Pi-1,n+1 - {2 + φµc(∆r)2/(k∆t)}Pi,n+1

+ {1+∆r/[2rW+2(i-1)∆r]}Pi+1,n+1 = - {φµc(∆r)2/(k∆t)}Pi,n       (6-44)

If right-side starting values Pi,n for all values of i are known, then Equation

6-44 can be solved for the subsequent time step using exactly the same
tridiagonal matrix procedure described in Example 6-4.  This scheme is known
as an implicit method; it is inherently more stable and more accurate than the
explicit scheme.  Larger time steps may be taken, but matrix inversion is
required, implying additional programming and computer requirements.

For radial and linear flows, the index i alone appears, but in higher
dimensions, the pressure might be indexed by two space indexes.  For example,
one might have Pi,j,n, where i and j represent x and y, and the resulting
difference equation is integrated one line (e.g., of constant i, with j fixed) at a
time.  This procedure is described in detail in Chapter 10.  The process of taking
i = 1 to imax and j = 1 to jmax in a Fortran do-loop implies that the flow domain
is rectangular; rectangular shapes, in fact, are easily analyzed by implicit
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schemes because, for example, lines of constant i are parallel to a boundary and
permit ready implementation of boundary conditions.  When the boundaries are
irregular, it is difficult to set up systems of lines each having the same numbers
of grids.  This makes implicit approaches difficult to implement, and explicit
schemes, which allow point-by-point calculation, are more popular.  The use of
curvilinear grids, introduced later, overcomes this objection.

Variable grids.  So far, we have considered constant mesh spacings ∆r for
simplicity.  Clearly, given rapid changes in pressure at the well, this does not
provide sufficient near-field resolution.  What is desired is a grid that is fine near
the well and coarse far away.  This is possible using variable grids, which are
easily understood.  Let us examine Point A in Figure 6-2 lying at the midpoint
between indices i-1 and i.  The first derivative satisfies

dP(A)/dr = (P i - Pi-1)/(ri - ri-1)                                                  (6-45a)

Similarly, Point B requires
dP(B)/dr = (Pi+1 - Pi)/(ri+1 - ri)                                                 (6-45b)

The second derivative at i, situated midway between A and B, is

d2P/dr2 (ri) = (dP(B)/dr - dP(A)/dr)/{1/2 (ri+1 - r i-1)} (6-46)

or, after some algebra,

d2P/dr2(ri) = 2Pi+1/{(ri+1- ri-1)(ri+1- ri)} + 2Pi-1/{(ri+1- ri-1)(ri - ri-1)}

- 2Pi [1/{(ri+1 - ri-1)(ri+1 - ri)} + 1/{(ri+1 - ri-1)(ri - ri-1)}]    (6-47)

Then, the transient model analogous to Equation 6-44  becomes
{1 -  (ri - ri-1)/2ri } Pi-1,n+1

 - [{φµc/(2k∆t)}(r i+1 - ri-1)(ri - ri-1) + (ri - ri-1)/(ri+1 - ri)  +1] Pi,n+1
+ {(ri - r i-1)/(ri+1 - r i)  +(ri - ri-1)/(2ri)} Pi+1,n+1 =

- [{φµc/(2k∆t)}(r i+1 - ri-1)(ri - ri-1)] P i,n      (6-48)

Like Equation 6-44, this formula, provided size increases from mesh to mesh are
slow, is second-order accurate in space and first-order accurate in time.  Note
that multi-level time schemes and even higher-order accurate space
discretizations are possible, and are discussed in advanced courses.

Example 6-6.  Transient compressible gas flows.

Here we consider compressible gases, as well as special topics on variable
meshes, superposition, and flow initialization.  This example completes our
treatment of radial flows and sets the stage for general discussions on planar
flows.  The transient behavior characteristic of radial flows is described in
petroleum textbooks and we direct interested readers to these references.  Our
primary concern is the transient modeling of irregular reservoirs in Chapter 10.
Now, transient compressible liquids satisfy Equation 6-42, which is linear.  On
the other hand, gases satisfy Equation 6-49, where c is replaced by m/p (see
Chapter 1). From an analytical viewpoint, Equations 6-42 and 6-49 are vastly
different: linear superposition methods apply to the former but not the latter.
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∂2Pm+1/∂r2 + 1/r ∂Pm+1/∂r = (φµm/kP) ∂Pm+1/∂t                      (6-49)
Linearity vs nonlinearity.  The meaning of linearity and superposition

can be demonstrated by writing Equation 6-42 first for pressure P1 and then for
P2.  The sum P1 + P2, by direct substitution, also satisfies Equation 6-42.  This is
not so with Equation 6-49 because the presence of P in φµm/kP causes P1 + P2 to
satisfy an equation other than Equation 6-49.  Thus, superposition does not hold;
for nonlinear systems like Equation 6-49, classic superposition methods for
liquids do not apply to gases.  On the other hand, Equation 6-49 takes a form
nearly identical to that of Equation 6-42.  For the purposes of numerical
simulation, Equation 6-49 can be treated identically as for linear flows, provided
we regard the m/P as a fictitious compressibility that is updated using the latest
available values at the previous time step.  This allows us to use the linear solver
TRIDI at each time step, and avoids time consuming Newton-Raphson methods.
This solution is numerically stable.

Nonlinear superposition.  Very often in pressure transient testing, the
pressure (or flow rate) is changed in time; for liquids, flow rate (or pressure)
response is obtained by linear superposition of elementary solutions.  For gases,
superposition is not possible because nonlinear solutions are not linearly
additive.  How does one calculate the response when pressure or flow rate at the
well vary, say stepwise, in time?  Fortunately, the governing equations can be
numerically integrated with respect to t.  It remains for us to represent stepwise
changes in any particular variable using convenient mathematical devices.

H(t) = 1, t > 0; 0, t < 0

t

Figure 6-4.  Heaviside step function.

One such device is the Heaviside step function, defined as H(t) = 1, t ≥ 0;
0, t < 0.  Then, a “hump” of constant amplitude A in 0 < tleft < t < tright, that is
zero otherwise, can be represented by A{H(t - t left) - H(t - tright)}.  A sequence of
imposed pressure or flow rate changes at the well is just a linear superposition of
such functions, for example, pwell = ∑ A m{H(t – t left,m) - H(t – tright,m)} where m is
a summation index and Am, tleft,m, and t right,m are input arrays.  This representation

is easily stored in a function statement for ready access.  The computed pressure
response based on Equation 6-49 contains the required nonlinear interactions.
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The term nonlinear superposition is misleading, but it does hint at the
programming method suggested.

Choosing variable meshes.  Modern ideas in mesh generation are treated
later in this book.  For now, it suffices to show how successively magnified
meshes can be generated using simple formulas developed in geometrical series
analyses.  Let us multiply the identity

1 + a + a2 +  a3  + ... + aN-1 =  (1 - aN)/(1 - a)                                (6-50)

by the initial spacing ∆ adjacent to the well to give

∆ + a∆  + a2∆ +  a3∆  + ... + aN-1∆ =  {(1 - aN)/(1 - a)} ∆            (6-51)
Let the mesh index i vary from i  = 1 to i = imax, so that the number of grids N is
equal to N = imax -1.  If the total radial distance L from the edge of the well to the
outer boundary is given, and the mesh amplification rate a is specified, setting
the right-hand side of Equation 6-51 equal to L leads to the initial mesh length

∆ = (1 - a)L/(1 - aN))                                                                     (6-52)
On the other hand, if a, L, and ∆ are specified, the required final i index is given
by rounding (to the nearest integer) the right-hand side of

imax = 1 + log{1 + L(a - 1)/∆}/log a                                              (6-53)
Generally, a > 1, with the choice a = 1 defaulting to uniform constant grids.

Initialization procedures.   Well test field procedures fall into two
varieties, namely, pressure drawdown and pressure buildup.  Very often, an
initially quiescent, pressurized reservoir of uniform pressure Pinit  (typically equal
to the farfield pressure PR in an aquifer-driven flow) is opened to a lower well
pressure PW  and allowed to produce.  The pressure in the neighborhood of the

well declines rapidly, resulting in a drawdown; the large time behavior might be
the steady-state solution obtained in Examples 6-1 to 6-3.  On the other hand, a
reservoir already producing at steady state may be shut in, resulting in a pressure
buildup.  For such problems, the analytical results of Examples 6-1 to 6-3 can be
used to initialize the flow.  Our earlier analytical results should also be used to
calibrate the mesh; numerical solutions always contain some degree of mesh
dependence, and calibration ensures that the numerical model is correct in at
least some limit.  There are, of course, no guarantees in simulation.

Flow rate boundary conditions.  In constant density flow, a producing
well always results in flow across the farfield boundary; a nonproducing well
always implies that the farfield flow is stagnant.  This is not the case when the
fluid is compressible.  Even when a well is shut-in, fluid may continue to
migrate across farfield boundaries because of expansion effects.  Both pressure
and flow rate boundary conditions may be used at the well or at the farfield
radius.  The differencing procedure is straightforward.  For example, if an input
volume flow rate Q(t) is assumed at the well, then,

q = (-k/ µ) dp/dr = Q(t)/(2πDrw)                                                   (6-54)

leads to
dp/dr = (P2,n  - P1,n)/(r2 - r1) =  (-µ/k) Q(tn)/(2πDrw )                 (6-55)
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Thus, this boundary condition affects only one line of the tridiagonal matrix.
Again, the volume flux at the farfield need not equal Q(t), except at steady state.
We will build upon the notions and ideas introduced here in the subsequent
chapters, step by step, in order to introduce state-of-the-art ideas in modeling.  In
Chapter 18, exact solutions for spherical, transient, compressible flow with skin,
storage, and anisotropy are developed for formation tester use.

PROBLEMS AND EXERCISES

1. Write an explicit time-marching program to compute pressure transients in
liquids when the initial and farfield pressures are identical, on a
programmable calculator.  Perform computations for two cases, first when
the well pressure is high and second when it is low, relative to the initial
value.  Can you identify buildup and drawdown behavior?

2. Write a general “implicit” program for transient compressible liquids and
gases, taking constant spatial meshes for simplicity.  For both flows, assume
an initially hydrostatic reservoir, with the sandface suddenly exposed to a
prescribed pressure level different from hydrostatic.  Run the simulations to
steady-state and monitor the flow rate history at the well.  Show that the
asymptotic results agree with the three complementary steady flow
formulations amd solutions given in this chapter.

3. Study the finite difference literature on parabolic equations and transient
modeling, and summarize the von Neumann stability criterion for explicit
and implicit schemes.  What are its strengths and limitations?  What new
stability tests are available to study nonlinearities and heterogeneities?
Comment on group velocity and wave-based stability analysis.

4. Consider a reservoir radius of 1,000 feet and a well that is 6 inches in
diameter.  What ∆r is appropriate in the nearfield?  How many such
constant meshes are required to model the entire reservoir?  How many
variable meshes are required if a grid amplification rate of 10% is assumed?
To obtain accurate solutions, do your answers depend on the physical
properties of the formation and fluid, for example, φ, µ, c, and k?  If so, on
what combinations of these and mesh variables?

5. Generalize the implicit program written in (2) to accept variable meshes,
quiescent and flowing initial conditions, and arbitrary step changes in
pressure or volume flow rate at the well.  Hint: Program the Heaviside step
function in a separate function statement, and write arbitrary step changes in
pressure or rate in terms of this function.  After you validate your program,
write a user-friendly interface using Visual Basic, in order to understand
user-based issues in software design.

6. Steady-state solutions for circular wells in isotropic reservoirs were given at
the beginning of the chapter.  Now consider anisotropic flows of liquids and
general gases.  Starting with the steady anisotropic pressure equation
written in x, y coordinates, show that the simplest well that can be modeled
analytically has an elliptic wellbore shape.  What is the significance of this
result?  How would you model a circular well in anisotropic media?
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7
Finite Difference

Methods for Planar Flows

In this chapter, we will introduce the finite difference method and its
application to solving partial differential equations.  Although this subject is
usually offered only in advanced numerical analysis courses, there is no reason
to impose artificial requirements or prerequisites.  Both basic and sophisticated
ideas can be developed from simple notions in elementary calculus.  The
intuitive how to approach taken is down-to-earth, comprehensive, and,
importantly, rigorous.  But we will discuss only those ideas necessary to
accomplish our objective, that is, solving Laplace’s equation ∂2

P/∂x
2
 + ∂2

P/∂y
2
 =

0 (or, ∂2
P

m+1
/∂x

2
 + ∂2

P
m+1

/∂y
2
 = 0) for steady, planar reservoir flows.  We will

develop the terminology and ideas naturally, and avoid excessive mathematical
formalism.  We will augment the discussions with Fortran examples and source
code to make the ideas clear and the methodologies widely accessible.  This
presentation is no substitute for a truly rigorous and formal study of numerical
methods.  However, like the rest of this book, it is written to be self-contained so
that the development of computational methods in petroleum engineering can
proceed without undue interruption.

FINITE DIFFERENCES:  BASIC CONCEPTS

Before we introduce numerical relaxation schemes and their applications to
partial differential equations, we need to develop the basic ideas and working
vocabulary underlying finite difference discretization methods.

Finite difference approximations.  Let us consider the function F(x) as
shown in Figure 7-1 and examine several representations for its derivatives.
Because F(x) will be approximated at a discrete set of points, we introduce a
grid or mesh of imax points x1, x2, x3 , ..., ximax.  In fact, we will denote any three
consecutive points by xi-1,  xi and xi+1, where i is an index ordered so that it
increases as x increases.  When the distance between successive points in this
discretization process is the same, the grid is constant.  On the other hand, the
grid is variable if the distances vary spatially; it is adaptive in time if it adapts
locally in order to track key physical events like rapid saturation changes.
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i-1     A     i      B   i+1

x

i+1
F

i-1
F

iF

Figure 7-1.  Finite difference formula development.

For simplicity, let us assume constant (or slowly varying meshes) first, and
refer to the points A and B in Figure 7-1.  The first derivative of F(x) at x = xA  is
approximated by evaluating its slope using points to its left and right,

∂F(x
A

)/∂x = (F
i
 - F

i-1
)/(x

i
 - x

i-1
)                                                 (7-1)

At x = x
B

, we likewise have

∂F(x
B

)/∂x = (F
i+1

 - F
i
)/(x

i+1
 - x

i
)                                               (7-2)

Thus, the second derivative at x = x
i
, or simply i, takes the form

∂2F/∂x2 = {∂F(x
B

)/∂x - ∂F(x
A

)/∂x}/{1/2 (x
i+1

 - x
i-1

)} (7-3)

            = {(F
i+1

 - F
i
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i+1
- x

i
) - (F

i 
- F

i-1
)/(x

i
 - x

i-1
)}/{1/2 (x

i+1
 - x

i-1
)}

where the length ½ (x
i+1

 - x
i-1

) in Equation 7-3 applies if the meshes expand or

contract slowly.  The corresponding formula for the first derivative at i is

∂F(x
i
)/∂x = (F

i+1
 - F

i-1
)/(x

i+1
 - x

i-1
)                                      (7-4)

Equations 7-3 and 7-4 are finite difference representations for ∂2F/∂x2 and
∂F/∂x.  Our use of left and right values to define geometric slopes (for both first
and second derivatives) is called central differencing.  Backward and forward
one-sided differencing are also possible, though less accurate for the same
number of points.

A simple differential equation.   We discuss a simple application for finite
differences.  In particular, let us consider the boundary value problem defined by
the second-order linear differential equation and the boundary conditions
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d2y/dx2 = 0                                                                              (7-5)

y(0) = 0                                                                                  (7-6a)

y(2) = 2                                                                                  (7-6b)

This equation set has the simple straight-line solution

y(x) = x                                                                                   (7-7)

The idea, of course, is to replicate this function numerically.  For now, we
specialize the analysis to constant meshes to illustrate the basic procedure.  This
choice of mesh system reduces Equation 7-3 to the simple form

d2y/dx2 = (y
i-1

 – 2 y
i
 + y

i+1
)/(∆x) 2                                         (7-8)

where ∆x is an assumed mesh length, so that Equation 7-5 becomes
y

i-1
 - 2y

i
 + y

i+1
 = 0                                                                  (7-9)

Equation 7-9 is the finite difference model relating different y values at
different positions x i.  It shows that these y’s are coupled and must be
determined simultaneously.  To find the equations that must be solved, write
Equation 7-9 for each of the internal nodes i = 2, 3, ..., (i

max
-1).  This leads to

i=2: y
1
 – 2 y

2
  + y

3
                      = 0                    (7-10b)

i=3:        y
2
  – 2y

3
   + y

4
                 = 0                     (7-10c)

i=4:              y
3
 – 2 y

4
   + y

5
     = 0                     (7-10d)

i=5:                    y
4
  - 2 y

5
 + y

6
= 0                     (7-10e)

.

.
i=i

max
-1:  y

imax-2
 – 2 y

imax-1
 + y

imax
 = 0                     (7-10f)

Observe that there are two more unknowns than there are equations.  The
additional required equations are obtained from Equations 7-6a,b, that is,

y
1
 = 0                                                                                  (7-10a)

y
imax

 = 2                                                                              (7-10g)

which we might introduce at the top and bottom, respectively, of the equation
block.  Note that Equations 7-10a to 7-10g so written assume a tridiagonal
structure; the exact form will be important to the iterative schemes we consider
later.  For now, in our direct single-pass solution to Equations 7-5 and 7-6, we
can rewrite the foregoing equations in the matrix form
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| 1   0                      | | y
1

 |     | 0 |

| 1  - 2  1                  | | y
2
      |     | 0 |

|  1  -2 1              | | y
3
      |     | 0 |

|        1  -2 1          | | y
4
      |     | 0 |

|            1  -2 1      | | y
5
      | = | 0 |              (7-11)

|            .              | | .         | | 0 |
|            .              | | .       |    | 0 |
|                 1  -2 1  | | y

imax-1
|    | 0 |

|                     0 1  | | y
imax

   |    | 2 |

This is a special instance of the more general tridiagonal matrix

| b
1

c
1
                   | | v

1
   |     | w

1
  |

| a
2
 b

2
 c

2
                   | | v

2
   |     | w

2
  |

|    a
3
 b

3
 c

3
              | | v

3
   |     | w

3
  |

|        a
4
 b

4
 c

4
          | | v

4
   |     | w

4
  |

|            a
5
 b

5
c
5
       | | v

5
   | = | w

5
  |           (7-12)

|            .                    | | .    |     | .   |
|            .                    | | .    |     | .   |
|                 a

n-1
b

n-1
c
n-1

| | v
n-1

|     | w
n-1

|

|                             a
n

 b
n

| | v
n

   |     | w
n

  |

The indexed quantities ai, bi, ci, vi and wi are called column vectors of dimension
n, although sometimes, they are simply vectors denoted by the boldfaced
symbols a, b, c, v, and w.  The matrix at the left is a tridiagonal matrix, a special
case of a diagonal banded matrix.  We will not deal with matrix inversion in this
book.  Suffice it to say that the last (or the first) row, which involves two
unknowns only, is usually used to reduce the number of unknowns along each
row, right up (or down) the matrix, thus resulting in a bidiagonal system.  Then,
repeating the process in the opposite direction yields the solution vector v.

When all the coefficients in Equations 7-12 are defined in Equation 7-11,
say, the solution vector vi is obtained by calling standard tridiagonal solvers
found in numerical analysis books.  If the programming language used is
Fortran, as will be assumed in this book, the subroutine in Figure 7-2 can be
used.  The routine as coded destroys all original input coefficients upon
inversion; if it is called successively, as the solution of partial differential
equations requires, the relevant coefficients must be redefined prior to each call
of TRIDI.  Also, we emphasize that A(1) and C(imax) should be defined and set
to dummy values, “99” in our examples, even though they do not play a role in
the solution.  Unless this is done, certain computers will initialize their registers
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improperly and produce incorrect solutions.  The reader should verify that the
solution of Equation 7-11 does agree with the exact solution in Equation 7-7.

      SUBROUTINE TRIDI(A,B,C,V,W,N)

      DIMENSION A(11), B(11), C(11), V(11), W(11)
      A(N) = A(N)/B(N)
      W(N) = W(N)/B(N)

      DO 100  I = 2,N
      II = -I+N+2
      BN = 1./(B(II-1)-A(II)*C(II-1))

      A(II-1) = A(II-1)*BN
      W(II-1) = (W(II-1)-C(II-1)*W(II))*BN
 100  CONTINUE

      V(1) = W(1)
      DO 200  I = 2,N
      V(I) = W(I)-A(I)*V(I-1)

 200  CONTINUE
      RETURN
      END

Figure 7-2.  Tridiagonal matrix solver.

Variable coefficients and grids.  Ordinary differential equations often
contain variable coefficients, for example,

d
2
y/dx

2
  + f

1
(x) dy/dx  + f

2
(x) y  =  f

3
(x)                                    (7-13)

The f1, f2, and f3 might describe spatially dependent properties in the physical
problem being modeled.  If they vary rapidly, the use of constant meshes may be
inappropriate.  If so, Equations 7-3 and 7-4 must be used, and the discretized
values of the arrays x i, f 1 (xi), f 2  (xi) and f 3  (xi) must be additionally stored in
computer memory.  Needless to say, the matrix coefficients in Equation 7-12
now become much more complicated.  We warn against blindly using the
method given.  For example, if the f’s are singular or discontinuous, special
treatment is required, and an understanding of fundamental mathematical theory
is needed.  For well-behaved coefficients, grid selection is straightforward and
follows several rules of thumb.   If a f  coefficient varies rapidly in some region
of space, it is reasonable to increase local mesh density to improve physical
resolution.  However, there is always the danger that, since the value of yi

affects each and all of its neighbors, spurious effects can contaminate the
complete solution.  Otherwise, constant grids may suffice.  In any event, the
typical mesh size should be small compared to the length scale of the problem,
and mesh-to-mesh expansion rates should not exceed 10%.  Detailed testing of
the solution for mesh dependence should accompany program development.

FORMULATING STEADY FLOW PROBLEMS

In this section, we discuss numerical solutions to Laplace’s equation for
the pressure P(x,y), with and without wells and fractures, using both aquifer
boundary conditions specifying pressure, and solid wall conditions assuming
zero normal flow.  We consider, for purposes of exposition, the Cartesian form
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∂2P/∂x2 + ∂2P/∂y2 = 0                                                            (7-14)
to be solved on a rectangular grid, and defer to Chapters 8, 9, and 10 the subject
of curvilinear coordinates and grid generation.  Again, PDEs involve partial
derivatives of the unknown function, and fall into three fundamental
classifications.  Equation 7-14, for example, is elliptic (transient compressible

flows satisfy parabolic equations like ∂2
u/∂x

2
 + ∂2

u/∂y
2
 = ∂u/∂t, while seismic

waves satisfy hyberbolic equations like ∂2
u/∂x

2
 + ∂2

u/∂y
2
 = ∂2

u/∂t
2
).  In this

chapter, we will discuss elliptic equations only.
Equation 7-14 assumes the two-dimensional, constant density flow of a

liquid in an isotropic homogeneous medium.  First consider for simplicity a
singly connected region, for example, a simple pie, square, or triangle.  It is
known that the solution is completely defined whenever pressure is prescribed
over the entire boundary.  For such Dirichlet problems, the solutions, in
mathematical lingo, exist and are uniquely defined.  Now suppose that the flux
of mass or the velocity is given, that is, that the derivative of pressure in a
direction normal to the boundary contour is prescribed.  What can we expect for
the solution?  Since the normal derivative ∂p/∂n is proportional to the Darcy
velocity, we would expect that it cannot be arbitrarily specified.  It must be
given in such a way that just enough flow leaves as enters the flow domain.
Moreover, the value of the p’s obtained will be indeterminate to within a
constant, since we have prescribed only derivatives.  This additive level of
pressure will not affect flow rates, since it differentiates to zero; the exact
pressure level is unimportant and can be conveniently set to any value at a given
point.

Boundary value problems where the normal derivative ∂p/∂n is specified at
the boundaries are known as Neumann problems.  Their solutions are not
unique, but only to the extent just described.  If the flow rate, which is
proportional to ∂p/∂n, is prescribed over part(s) of the boundary, and pressure
itself is given over the remainder, the solution is again completely determined
and unique.  The reason is simple: we have not unreasonably created mass.  The
required mass conservation will manifest itself at the boundaries where pressure
was prescribed, and a net outflow or inflow will be obtained that is physically
sound.  Problems where both ∂p/∂n and p are specified are referred to as mixed
Dirichlet-Neumann problems or mixed problems.

So far, we have restricted our discussion to singly connected domains, that
is, uninteresting reservoir floods without wells.  The presence of a well
effectively punctures a hole in the circular or rectangular region of flow,
creating a donut-like reservoir; such shapes are said to be doubly connected.
Again, common-sense ideas related to mass conservation apply.  If the velocity
(via ∂p/∂n) is prescribed over the complete outer reservoir boundary, then one
cannot arbitarily assign ∂p/∂n at the well; however, specifying the pressure level
itself is completely legitimate and will lead to unique and reasonable solutions.
Similar considerations apply to reservoirs with multiple wells; the corresponding
domains of flow are said to be multiply connected.  Of course, different
considerations apply when compressible transient flow is allowed, for example,
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flow can be produced at a single well even when there is no flow through
farfield boundaries.  An understanding of pressure behavior is essential to good
simulator development.  It turns out that the insight gained in petroleum flow
simulation is also useful in developing robust grid generation algorithms.

STEADY FLOW PROBLEMS:  SEVEN CASE STUDIES

In this section, we obtain numerical solutions to Equation 7-14 for several
different flow problems.  For simplicity, we consider constant meshes, with
lengths ∆x and ∆y in the x and y directions.  The resolution achieved with such
meshes systems near wells is limited.  The programs are given for illustrative
purposes, but the question of resolution will be addressed when we deal with
curvilinear meshes.  Now, the second derivative in Equation 7-3 applies to a
function F(x) at x = x i  , but P(x,y) depends on an additional y, say indexed by j.
At any point (i,j), use of Equation 7-3 in both x and y directions with Equation
7-14 leads to the simple model

(P
i-1,j

 – 2 P
i,j

 + P
i+1,j  

)/(∆x) 2

           + (P
i,j-1

 – 2 P
i,j

 + P
i,j+1

)/(∆y) 2 = 0                                        (7-15)

Note that this seemingly straightforward use of Equation 7-3 is actually subtle.
For our constant density fluid, the pressure at (i,j) must depend on its neighbors
at i-1,j, i+1,j, i,j-1 and i,j+1.  That is, the flow at any point is influenced by every
other point, and each point affects all other points.  The situation is different for
hyperbolic problems; for example, disturbances created by a supersonic aircraft
cannot propagate ahead of the plane, so that a difference approximation that
violates domains of influence and dependence cannot be used.  Similarly, in
unsteady wave propagation, computations cannot depend on future time.  Hence,
there are areas in physics where use of central differencing throughout is
inappropriate, and one-sided models must be used.  However, for Laplace’s
equation, the approximation in Equation 7-15 is perfectly valid.

We now consider the rectangular reservoir domain defined by the index
ranges 1 ≤ i ≤ 11 and 1 ≤ j ≤ 11, and specifically, a Dirichlet formulation where
pressures of 10, 20, 30, and 40 are specified in clockwise fashion along the four
edges of the box.  This no-well formulation, as discussed earlier, is associated
with a unique solution.  If Equation 7-15 is written for each and every node (i,j)
internal to the computational box, and the assigned boundary values are included
into the set of linear equations, we obtain 11 × 11, or 121 unknowns that are
fully determined by 121 linearly independent equations.  Over one hundred
coupled equations are required for this very coarse mesh!

Direct versus iterative solutions.  The mechanics of setting up the
necessary system for direct solvers, that is, for algorithms that obtain pressures
in a single pass using a full matrix solver, have been discussed by Peaceman
(1977), Aziz and Settarri (1979), and Thomas (1982).  Even for the coarse mesh
considered, the resulting 121 × 121 matrix is large and requires monumental
inversion efforts.  Usually, the unknowns are cleverly ordered, and cleaner
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inversion algorithms are used; other methods take advantage of the sparseness
(that is, the large number of 0’s) in the system.  Many matrix solvers,
unfortunately, are company-proprietary.  Instead, we will consider iterative
solvers that require minimal memory resources.  These algorithms work well in
both two and three dimensions; they are robust, stable, and fast.

Iterative methods.  Since an objective of this book is the development of
portable tools, we will not discuss direct solvers.  Suffice it to say that such
solvers, the most notorious being Gaussian elimination, are well documented in
the literature (e.g., see Carnahan, Luther, and Wilkes, 1969).  We will, by
contrast, emphasize iterative techniques, since these require minimal computer
resources and allow the greatest flexibility.  As we will show, they are also very
useful in designing smart and robust algorithms.  For reasons that will become
obvious, let us rewrite Equation 7-15 in the form

P
i,j-1

 -2{1 + (∆y/∆x)
2

} P
i,j

 + P
i,j+1  

= - (∆y/∆x)
2
 (P

i-1,j
 + P

i+1,j  
)     (7-16)

Equation 7-16 contains the tridiagonal form given in our ordinary differential
equations example.  On the left, the index i stands alone.  When i is fixed and “j”
is incremented, a sequence of tridiagonal equations is generated.

Let us assume that some suitable first guess for the pressure field P(i,j) is
available.  If so, the idea is to first freeze i at i = 2, write Equation 7-16 for each
of the internal  nodes j = 2, 3, ..., (jmax - 1), apply boundary conditions at both j =
1 and j = jmax , and solve for updated values of P(2, j) along the column i = 2.
Then, the same process is repeated for i = 3, i = 4, and so on, until the last
column i = (imax 

-1) is completed: one sweep of the box is said to have taken
place.  This sweeping, called column relaxation, is repeated for multiple sweeps
until satisfactory convergence is achieved.  The columns located at i = 1 and imax

are not solved because pressures have been specified along them.
Relaxation is the mathematical name synonymous with the method of

successive approximations.  Line relaxation may proceed by columns, as we
have demonstrated; or, it may proceed by rows, that is, through row relaxation
by freezing j and incrementing i’s.  Special schemes employing combined row
and columnar operations are referred to as alternating direction implicit or ADI
schemes.  In all cases, the basic idea is to disseminate boundary conditions
rapidly and to approach convergence as quickly as possible.  All of these are
improvements on point relaxation, developed by earlier workers; we will give
examples for comparison later.  In Figure 7-3a, we list the Fortran source code
required to implement those iterations, assuming a rectangular box with 10, 20,
30, 40 boundary conditions, without any wells, a formulation corresponding to
an aquifer alone flow.  Figure 7-3b gives computed pressures at various stages in
the sweeping process.  Note from Figure 7-3a that the initial guess for pressure
was taken as “zero” throughout, an arbitrary choice since we knew nothing
about the solution.  In fact, the initial guess might have been anything; by
contrast, the results in Figures 7-4a,b assume an initial Pi,j  = i2 + j2 devoid of
physics, a guess having nothing  to do with the solution or reality.  Both
calculations converge quickly to the same pressures, requiring much less than a
second on modern personal computers.
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C     LAPLACE EQUATION SOLVER, CASE_1.
      PROGRAM MAIN
      DIMENSION P(11,11), A(11), B(11), C(11), V(11), W(11)
      OPEN(UNIT=4,FILE=’CASE_1.DAT’,STATUS=’NEW’)

C     DEFINE GRID PARAMETERS
      DX = 1.
      DY = 1.

      RATIO2 = (DY/DX)**2
C     INITIALIZE P(I,J) TO ZERO EVERYWHERE
      DO 100  I=1,11

      DO 100  J=1,11
      P(I,J) = 0.
 100  CONTINUE

C     SET “10-20-30-40” BOUNDARY CONDITIONS
      DO 150  I=1,10
      P(I,1) =  10.

 150  CONTINUE
      DO 151  J=1,10
      P(11,J) = 20.

 151  CONTINUE
      DO 152  I=2,11
      P(I,11) = 30.

 152  CONTINUE
      DO 153  J=2,11
      P(1,J) = 40.

 153  CONTINUE
C     LINE RELAXATION BEGINS
      DO 400  NSWEEP=1,200

      IF(MOD(NSWEEP,10).NE.0) GO TO 170
C     PRINT OUT “X-Y” RESULTS
      WRITE(*,154)

      WRITE(4,154)
      WRITE(*,155) NSWEEP
      WRITE(4,155) NSWEEP

 154  FORMAT(‘ ‘)
 155  FORMAT(‘ P(I,J) SOLUTION FOR NSWEEP = ‘,I3)
      DO 160  J=1,11

      WRITE(*,157) (P(I,J),I=1,11)
      WRITE(4,157) (P(I,J),I=1,11)
 157  FORMAT(1X,11F6.1)

 160  CONTINUE
C     ITERATE COLUMN BY COLUMN WITHIN BOX
 170  DO 300  I=2,10

C     DEFINE MATRIX COEFS FOR INTERNAL POINTS
      DO 200  J=2,10
      A(J) = 1.

      B(J) = -2.*(1.+RATIO2)
      C(J) = 1.
      W(J) = -RATIO2*(P(I-1,J)+P(I+1,J))

 200  CONTINUE

Figure 7-3a.  Aquifer-alone, solved with 0 guess.
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C     RESTATE UPPER/LOWER BOUNDARY CONDITIONS

C     NOTE “99” DUMMY VALUES
      A(1) = 99.
      B(1) = 1.

      C(1) = 0.
      W(1) = P(I,1)
      A(11) = 0.

      B(11) = 1.
      C(11) = 99.
      W(11) = P(I,11)

C     INVOKE TRIDIAGONAL MATRIX SOLVER
      CALL TRIDI(A,B,C,V,W,11)
C     UPDATE AND STORE COLUMN SOLUTION

      DO 250  J=2,10
      P(I,J) = V(J)
 250  CONTINUE

 300  CONTINUE
 400  CONTINUE
      CLOSE(4,STATUS=’KEEP’)

      STOP
      END

Figure 7-3a.  Continued.

P(I,J) SOLUTION FOR NSWEEP =  10

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  24.1  17.6  14.4  12.7  11.9  11.8  12.1  13.0  15.0  20.0

40.0  29.3  22.1  17.6  15.0  13.7  13.3  13.8  15.0  17.0  20.0

40.0  31.4  24.6  19.8  16.8  15.2  14.7  15.1  16.3  18.0  20.0

40.0  32.4  26.1  21.4  18.3  16.6  16.0  16.4  17.3  18.6  20.0

40.0  33.1  27.2  22.8  19.7  18.0  17.4  17.7  18.3  19.2  20.0

40.0  33.6  28.2  24.1  21.3  19.7  19.1  19.2  19.5  19.9  20.0

40.0  34.1  29.2  25.6  23.2  21.8  21.2  21.1  21.0  20.8  20.0

40.0  34.3  30.1  27.2  25.3  24.3  23.8  23.5  23.1  22.1  20.0

40.0  33.6  30.5  28.7  27.6  27.0  26.7  26.5  26.0  24.5  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

P(I,J) SOLUTION FOR NSWEEP =  20

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  24.9  18.8  16.0  14.5  13.7  13.3  13.3  13.8  15.4  20.0

40.0  30.7  24.5  20.8  18.5  17.1  16.3  16.1  16.5  17.7  20.0

40.0  33.3  28.0  24.2  21.6  19.9  18.9  18.4  18.4  19.0  20.0

40.0  34.7  30.2  26.6  24.0  22.2  21.0  20.2  19.9  19.8  20.0

40.0  35.5  31.6  28.3  25.9  24.0  22.7  21.7  21.1  20.5  20.0

40.0  36.0  32.4  29.5  27.3  25.5  24.2  23.1  22.1  21.1  20.0

40.0  36.1  32.9  30.3  28.3  26.8  25.6  24.5  23.3  21.8  20.0

40.0  35.8  32.8  30.6  29.1  27.9  27.0  26.0  24.7  22.9  20.0

40.0  34.4  31.9  30.5  29.6  29.0  28.4  27.8  26.9  24.9  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

Figure 7-3b.  Aquifer-alone, solved with 0 guess.
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P(I,J) SOLUTION FOR NSWEEP =  50

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.0  19.1  16.3  14.9  14.0  13.6  13.5  13.9  15.4  20.0

40.0  30.9  25.0  21.3  19.1  17.7  16.8  16.5  16.8  17.8  20.0

40.0  33.7  28.6  25.0  22.4  20.7  19.5  18.9  18.8  19.2  20.0

40.0  35.1  30.9  27.6  25.0  23.1  21.8  20.8  20.3  20.0  20.0

40.0  36.0  32.3  29.3  26.9  25.0  23.5  22.4  21.5  20.7  20.0

40.0  36.4  33.2  30.4  28.2  26.5  25.0  23.7  22.5  21.3  20.0

40.0  36.5  33.5  31.1  29.2  27.6  26.3  25.0  23.6  22.0  20.0

40.0  36.1  33.2  31.2  29.7  28.5  27.5  26.4  25.0  23.0  20.0

40.0  34.6  32.2  30.8  30.0  29.3  28.7  28.0  27.0  25.0  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

P(I,J) SOLUTION FOR NSWEEP = 150

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.0  19.1  16.3  14.9  14.0  13.6  13.5  13.9  15.4  20.0

40.0  30.9  25.0  21.3  19.1  17.7  16.8  16.5  16.8  17.8  20.0

40.0  33.7  28.7  25.0  22.4  20.7  19.5  18.9  18.8  19.2  20.0

40.0  35.1  30.9  27.6  25.0  23.1  21.8  20.8  20.3  20.0  20.0

40.0  36.0  32.3  29.3  26.9  25.0  23.5  22.4  21.5  20.7  20.0

40.0  36.4  33.2  30.5  28.2  26.5  25.0  23.7  22.5  21.3  20.0

40.0  36.5  33.5  31.1  29.2  27.6  26.3  25.0  23.6  22.0  20.0

40.0  36.1  33.2  31.2  29.7  28.5  27.5  26.4  25.0  23.0  20.0

40.0  34.6  32.2  30.8  30.0  29.3  28.7  28.0  27.0  25.0  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

P(I,J) SOLUTION FOR NSWEEP = 200

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.0  19.1  16.3  14.9  14.0  13.6  13.5  13.9  15.4  20.0

40.0  30.9  25.0  21.3  19.1  17.7  16.8  16.5  16.8  17.8  20.0

40.0  33.7  28.7  25.0  22.4  20.7  19.5  18.9  18.8  19.2  20.0

40.0  35.1  30.9  27.6  25.0  23.1  21.8  20.8  20.3  20.0  20.0

40.0  36.0  32.3  29.3  26.9  25.0  23.5  22.4  21.5  20.7  20.0
40.0  36.4  33.2  30.5  28.2  26.5  25.0  23.7  22.5  21.3  20.0

40.0  36.5  33.5  31.1  29.2  27.6  26.3  25.0  23.6  22.0  20.0

40.0  36.1  33.2  31.2  29.7  28.5  27.5  26.4  25.0  23.0  20.0

40.0  34.6  32.2  30.8  30.0  29.3  28.7  28.0  27.0  25.0  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

Figure 7-3b.  Continued.

C     LAPLACE EQUATION SOLVER, CASE_2.
      PROGRAM MAIN

      DIMENSION P(11,11), A(11), B(11), C(11), V(11), W(11)
      OPEN(UNIT=4,FILE=’CASE_2.DAT’,STATUS=’NEW’)
C     DEFINE GRID PARAMETERS

      DX = 1.
      DY = 1.
      RATIO2 = (DY/DX)**2

C     INITIALIZE P(I,J) TO SOMETHING ABSURD EVERYWHERE
      DO 100  I=1,11
      DO 100  J=1,11

Figure 7-4a.  Aquifer-alone, with (absurd) P
i,j

 = i 
2
 + j 

2
 guess.
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      P(I,J) = I**2 + J**2

 100 CONTINUE
C     SET “10-20-30-40” BOUNDARY CONDITIONS
      DO 150  I=1,10

      P(I,1) =  10.
 150 CONTINUE
      DO 151  J=1,10

      P(11,J) = 20.
 151 CONTINUE
      DO 152  I=2,11

      P(I,11) = 30.
 152 CONTINUE
      DO 153  J=2,11

      P(1,J) = 40.
 153 CONTINUE
C     LINE RELAXATION BEGINS
      DO 400  NSWEEP=1,200
      IF(MOD(NSWEEP,10).NE.0) GO TO 170
C     PRINT OUT “X-Y” RESULTS

      WRITE(*,154)
      WRITE(4,154)
      WRITE(*,155) NSWEEP

      WRITE(4,155) NSWEEP
 154 FORMAT(‘ ‘)
 155 FORMAT(‘ P(I,J) SOLUTION FOR NSWEEP = ‘,I3)

      DO 160  J=1,11
      WRITE(*,157) (P(I,J),I=1,11)
      WRITE(4,157) (P(I,J),I=1,11)

 157 FORMAT(1X,11F6.1)
 160  CONTINUE
C     ITERATE COLUMN BY COLUMN WITHIN BOX

 170  DO 300  I=2,10
C     DEFINE MATRIX COEFS FOR INTERNAL POINTS
      DO 200  J=2,10

      A(J) = 1.
      B(J) = -2.*(1.+RATIO2)
      C(J) = 1.

      W(J) = -RATIO2*(P(I-1,J)+P(I+1,J))
 200  CONTINUE
C     RESTATE UPPER/LOWER BOUNDARY CONDITIONS

C     NOTE “99” DUMMY VALUES
      A(1) = 99.
      B(1) = 1.

      C(1) = 0.
      W(1) = P(I,1)
      A(11) = 0.

      B(11) = 1.
      C(11) = 99.
      W(11) = P(I,11)

C     INVOKE TRIDIAGONAL MATRIX SOLVER
      CALL TRIDI(A,B,C,V,W,11)

Figure 7-4a.  Continued.
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C     UPDATE AND STORE COLUMN SOLUTION

      DO 250  J=2,10
      P(I,J) = V(J)
 250  CONTINUE

 300  CONTINUE
 400  CONTINUE
      CLOSE(4,STATUS=’KEEP’)

      STOP
      END

Figure 7-4a.  Continued.

P(I,J) SOLUTION FOR NSWEEP =  10

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  27.1  23.0  21.7  21.0  20.3  19.2  18.0  16.9  16.9  20.0

40.0  34.9  32.5  31.6  30.9  29.7  27.7  25.1  22.5  20.6  20.0

40.0  39.3  39.2  39.4  39.0  37.5  34.7  30.9  26.8  23.0  20.0

40.0  41.9  43.7  45.0  45.0  43.3  39.9  35.2  29.9  24.6  20.0

40.0  43.4  46.3  48.3  48.5  46.8  43.0  37.8  31.7  25.6  20.0

40.0  43.9  47.1  49.1  49.5  47.7  44.0  38.7  32.5  26.0  20.0

40.0  43.2  45.8  47.6  47.8  46.2  42.8  38.0  32.2  26.1  20.0

40.0  41.1  42.5  43.6  43.6  42.3  39.7  35.9  31.3  26.0  20.0

40.0  37.3  37.2  37.5  37.4  36.7  35.2  33.1  30.4  26.6  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

P(I,J) SOLUTION FOR NSWEEP =  20

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.4  19.8  17.2  15.8  15.0  14.4  14.1  14.3  15.6  20.0

40.0  31.7  26.4  23.1  21.0  19.5  18.4  17.7  17.6  18.2  20.0

40.0  34.8  30.6  27.4  25.0  23.2  21.7  20.6  19.9  19.7  20.0

40.0  36.5  33.2  30.4  28.1  26.0  24.3  22.8  21.6  20.7  20.0

40.0  37.4  34.8  32.3  30.1  28.1  26.2  24.5  22.8  21.4  20.0

40.0  37.7  35.5  33.3  31.3  29.4  27.5  25.7  23.8  21.9  20.0

40.0  37.6  35.5  33.5  31.8  30.1  28.4  26.7  24.7  22.5  20.0

40.0  36.9  34.7  33.0  31.6  30.3  29.0  27.6  25.8  23.4  20.0

40.0  35.0  32.9  31.8  31.0  30.3  29.5  28.7  27.4  25.2  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

P(I,J) SOLUTION FOR NSWEEP =  50

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.0  19.1  16.3  14.9  14.0  13.6  13.5  13.9  15.4  20.0

40.0  30.9  25.0  21.4  19.1  17.7  16.8  16.5  16.8  17.8  20.0

40.0  33.7  28.7  25.0  22.4  20.7  19.6  18.9  18.8  19.2  20.0

40.0  35.1  30.9  27.6  25.0  23.1  21.8  20.8  20.3  20.0  20.0

40.0  36.0  32.4  29.3  26.9  25.0  23.5  22.4  21.5  20.7  20.0

40.0  36.4  33.2  30.5  28.2  26.5  25.0  23.7  22.5  21.3  20.0

40.0  36.5  33.5  31.1  29.2  27.6  26.3  25.0  23.6  22.0  20.0

40.0  36.1  33.2  31.2  29.7  28.5  27.5  26.4  25.0  23.0  20.0

40.0  34.6  32.2  30.8  30.0  29.3  28.7  28.0  27.0  25.0  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

Figure 7-4b.  Aquifer-alone, with P
i,j

 = i 
2
 + j 

2
 guess.
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P(I,J) SOLUTION FOR NSWEEP = 150

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.0  19.1  16.3  14.9  14.0  13.6  13.5  13.9  15.4  20.0

40.0  30.9  25.0  21.3  19.1  17.7  16.8  16.5  16.8  17.8  20.0

40.0  33.7  28.7  25.0  22.4  20.7  19.5  18.9  18.8  19.2  20.0

40.0  35.1  30.9  27.6  25.0  23.1  21.8  20.8  20.3  20.0  20.0

40.0  36.0  32.3  29.3  26.9  25.0  23.5  22.4  21.5  20.7  20.0

40.0  36.4  33.2  30.5  28.2  26.5  25.0  23.7  22.5  21.3  20.0

40.0  36.5  33.5  31.1  29.2  27.6  26.3  25.0  23.6  22.0  20.0

40.0  36.1  33.2  31.2  29.7  28.5  27.5  26.4  25.0  23.0  20.0

40.0  34.6  32.2  30.8  30.0  29.3  28.7  28.0  27.0  25.0  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

P(I,J) SOLUTION FOR NSWEEP = 200

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.0  19.1  16.3  14.9  14.0  13.6  13.5  13.9  15.4  20.0

40.0  30.9  25.0  21.3  19.1  17.7  16.8  16.5  16.8  17.8  20.0

40.0  33.7  28.7  25.0  22.4  20.7  19.5  18.9  18.8  19.2  20.0

40.0  35.1  30.9  27.6  25.0  23.1  21.8  20.8  20.3  20.0  20.0

40.0  36.0  32.3  29.3  26.9  25.0  23.5  22.4  21.5  20.7  20.0
40.0  36.4  33.2  30.5  28.2  26.5  25.0  23.7  22.5  21.3  20.0

40.0  36.5  33.5  31.1  29.2  27.6  26.3  25.0  23.6  22.0  20.0

40.0  36.1  33.2  31.2  29.7  28.5  27.5  26.4  25.0  23.0  20.0

40.0  34.6  32.2  30.8  30.0  29.3  28.7  28.0  27.0  25.0  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

Figure 7-4b.  Continued.

Convergence acceleration.  The implication here is that an initial guess
close to the final solution will converge more rapidly than one that is not.  This
can be used beneficially when performing a sequence of flow simulations where
single (or multiple) parameter(s), such as well position, rate constraint, or
pressure level, or reservoir heterogeneity size or shape, vary only incrementally
from one run to the next.  The results of each run can be used to intelligently
initialize the next, with each run using close physical information that
accelerates convergence.  Whereas direct methods will solve N problems using
N calls of a (complicated) matrix solver, iterative methods applied in the
foregoing sense solve subsequent problems much more rapidly and make
minimal use of computer memory.  In code development or project work, it is
also conceivable to have libraries of close solutions stored on disk to initialize
solutions.  Such a philosophy should prove productive in infill drilling and
production planning.  That our calculations converge to the same answer
regardless of starting guess is more than fortuitous.  This may surprise beginning
students in numerical analysis, who are forever seeking (unstable) roots to
nonlinear equations.  Unlike the iterative root solvers used for such problems,
where the initial closeness to different multiple roots will cause problems, the
convergence of steady-state flow problems to unique solutions is assured for
several reasons.  For one, mathematical theory guarantees that solutions to
Dirichlet and mixed flow problems – when proper boundary conditions are used

– exist and are unique.  And, as we will later show, the iterative process mimics
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the search for steady solutions to the transient heat equation.  Any homemaker
will explain that the equilibrium steady-state (room) temperature that a loaf of
bread seeks is independent of its origins from the oven or the refrigerator!  Here
again, convergence to a unique solution is independent of the guess.

WELLS AND INTERNAL BOUNDARIES

Cases 1 and 2 deal with uninteresting pressure distributions, corresponding
to flowing reservoirs without wells.  Here we consider uniform boundary
pressures (say, 100 psi) specified at the edges of the computational box, plus the
effect of constant pressure (say, 1 psi) prescribed at the center of the domain of
flow.  This example illustrates doubly connected well effects crudely.

C     LAPLACE EQUATION SOLVER, CASE_3.
      PROGRAM MAIN

      DIMENSION P(11,11), A(11), B(11), C(11), V(11), W(11)
      OPEN(UNIT=4,FILE=’CASE_3.DAT’,STATUS=’NEW’)
C     DEFINE GRID PARAMETERS

      DX = 1.
      DY = 1.
      RATIO2 = (DY/DX)**2

      ONE = 1.
C     INITIALIZE P(I,J) TO ZERO EVERYWHERE
      DO 100  I=1,11

      DO 100  J=1,11
      P(I,J) = 0.
 100  CONTINUE

C     SET “100” BOUNDARY CONDITION AT BOX EDGES
      DO 150  I=1,10
      P(I,1) =  100.

 150  CONTINUE
      DO 151  J=1,10 P(11,J) = 100.
 151  CONTINUE

      DO 152  I=2,11
      P(I,11) = 100.
 152  CONTINUE

      DO 153  J=2,11
      P(1,J) = 100.
 153  CONTINUE

C     LINE RELAXATION BEGINS
      DO 400  NSWEEP=1,200
      IF(MOD(NSWEEP,10).NE.0) GO TO 170

C     PRINT OUT “X-Y” RESULTS
      WRITE(*,154)
      WRITE(4,154)

      WRITE(*,155) NSWEEP
      WRITE(4,155) NSWEEP
 154  FORMAT(‘ ‘)

 155  FORMAT(‘ P(I,J) SOLUTION FOR NSWEEP = ‘,I3)

Figure 7-5a.  Centered well in aquifer-driven reservoir.
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      DO 160  J=1,11

      WRITE(*,157) (P(I,J),I=1,11)
      WRITE(4,157) (P(I,J),I=1,11)
 157  FORMAT(1X,11F6.1)

 160  CONTINUE
C     ITERATE COLUMN BY COLUMN WITHIN BOX
 170  DO 300  I=2,10

C     DEFINE MATRIX COEFS FOR INTERNAL POINTS
      DO 200  J=2,10
      A(J) = 1.

      B(J) = -2.*(1.+RATIO2)
      C(J) = 1.
      W(J) = -RATIO2*(P(I-1,J)+P(I+1,J))

C     SET INTERNAL BOUNDARY CONDITION
      IF(I.EQ.6.AND.J.EQ.6) A(J) = 0.
      IF(I.EQ.6.AND.J.EQ.6) B(J) = 1.

      IF(I.EQ.6.AND.J.EQ.6) C(J) = 0.
      IF(I.EQ.6.AND.J.EQ.6) W(J) = ONE
 200  CONTINUE

C     RESTATE UPPER/LOWER BOUNDARY CONDITIONS
C     NOTE “99” DUMMY VALUES
      A(1) = 99.

      B(1) = 1.
      C(1) = 0.
      W(1) = P(I,1)

      A(11) = 0.
      B(11) = 1.
      C(11) = 99.

      W(11) = P(I,11)
C     INVOKE TRIDIAGONAL MATRIX SOLVER
      CALL TRIDI(A,B,C,V,W,11)

C     UPDATE AND STORE COLUMN SOLUTION
      DO 250  J=2,10
      P(I,J) = V(J)

 250  CONTINUE
 300  CONTINUE
 400  CONTINUE

      CLOSE(4,STATUS=’KEEP’)
      STOP
      END

Figure 7-5a.  Continued.

Peaceman well corrections.  Reference to the converged pressure in
Figure 7-5b shows that results are symmetric about the x and y axes passing
through the box center, where the well pressure is unity.  The solutions are also
symmetric with respect to 45 degree diagonals passing through this origin.  Note
that pressure changes near the well, while rapid, are not quite logarithmic; the
use of Cartesian meshes, in this sense, does not provide enough flow resolution
near producers and injectors.  There are ad hoc numerical procedures used to
repair such solutions after-the-fact, (see, e.g., Peaceman, 1978, 1983;
Williamson and Chappelear, 1981; and Chappelear and Williamson, 1981), but
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these Peaceman corrections are not rigorous and are approximate.  They are
based on radial flow solutions for liquids in steady flow, require effective radius
and productivity index inputs, have been used to model multiphase, multiwell,
compressible flows – and do not apply to deviated wells.  It is known that blind
use of well models can yield flow rates from 50% to 200% in error.  These
problems disappear (and the Peaceman approach is unnecessary) when fine
enough grids are used.  This is impractical with Cartesian meshes but possible
using the boundary-conforming meshes in Chapters 8, 9, and 10.

P(I,J) SOLUTION FOR NSWEEP =  10

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  95.9  92.5  89.8  88.0  87.7  88.9  91.2  94.1  97.1  99.9

99.9  92.2  85.5  80.1  76.2  75.0  77.7  82.6  88.5  94.4  99.9

99.9  89.2  79.7  71.3  64.4  60.9  66.0  74.3  83.3  92.0  99.9

99.9  87.2  75.5  64.1  52.2  41.2  53.5  67.1  79.3  90.2  99.9

99.9  86.5  73.8  60.3  41.4   1.0  42.1  63.0  77.6  89.5  99.9

99.9  87.2  75.5  64.1  52.2  41.2  53.5  67.1  79.3  90.2  99.9

99.9  89.2  79.7  71.3  64.4  60.9  66.0  74.3  83.3  92.0  99.9

99.9  92.2  85.5  80.1  76.2  75.0  77.7  82.6  88.5  94.4  99.9

99.9  95.9  92.5  89.8  88.0  87.7  88.9  91.2  94.1  97.1  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP =  20

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  97.9  95.8  93.8  92.3  91.6  92.3  93.9  95.9  97.9  99.9

99.9  95.7  91.5  87.3  83.7  82.1  83.8  87.5  91.7  95.9  99.9

99.9  93.7  87.2  80.2  73.4  69.1  73.5  80.5  87.5  93.9  99.9

99.9  92.2  83.6  73.3  60.5  47.8  60.7  73.6  83.9  92.4  99.9

99.9  91.5  81.9  69.0  47.8   1.0  47.9  69.3  82.2  91.7  99.9

99.9  92.2  83.6  73.3  60.5  47.8  60.7  73.6  83.9  92.4  99.9

99.9  93.7  87.2  80.2  73.4  69.1  73.5  80.5  87.5  93.9  99.9

99.9  95.7  91.5  87.3  83.7  82.1  83.8  87.5  91.7  95.9  99.9

99.9  97.9  95.8  93.8  92.3  91.6  92.3  93.9  95.9  97.9  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP = 100

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  98.0  96.0  94.0  92.5  91.9  92.5  94.0  96.0  98.0  99.9

99.9  96.0  91.8  87.7  84.1  82.4  84.1  87.7  91.8  96.0  99.9

99.9  94.0  87.7  80.8  73.9  69.6  73.9  80.8  87.7  94.0  99.9

99.9  92.5  84.1  73.9  61.0  48.2  61.0  73.9  84.1  92.5  99.9

99.9  91.9  82.4  69.6  48.2   1.0  48.2  69.6  82.4  91.9  99.9
99.9  92.5  84.1  73.9  61.0  48.2  61.0  73.9  84.1  92.5  99.9

99.9  94.0  87.7  80.8  73.9  69.6  73.9  80.8  87.7  94.0  99.9

99.9  96.0  91.8  87.7  84.1  82.4  84.1  87.7  91.8  96.0  99.9

99.9  98.0  96.0  94.0  92.5  91.9  92.5  94.0  96.0  98.0  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

Figure 7-5b.   Centered well in aquifer-driven reservoir.
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P(I,J) SOLUTION FOR NSWEEP = 200

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  98.0  96.0  94.0  92.5  91.9  92.5  94.0  96.0  98.0  99.9

99.9  96.0  91.8  87.7  84.1  82.4  84.1  87.7  91.8  96.0  99.9

99.9  94.0  87.7  80.8  73.9  69.6  73.9  80.8  87.7  94.0  99.9

99.9  92.5  84.1  73.9  61.0  48.2  61.0  73.9  84.1  92.5  99.9

99.9  91.9  82.4  69.6  48.2   1.0  48.2  69.6  82.4  91.9  99.9
99.9  92.5  84.1  73.9  61.0  48.2  61.0  73.9  84.1  92.5  99.9

99.9  94.0  87.7  80.8  73.9  69.6  73.9  80.8  87.7  94.0  99.9

99.9  96.0  91.8  87.7  84.1  82.4  84.1  87.7  91.8  96.0  99.9

99.9  98.0  96.0  94.0  92.5  91.9  92.5  94.0  96.0  98.0  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

Figure 7-5b.   Continued.

Derivative discontinuities.  Another problem with the computed solution
in Figure 7-5b seems to be the behavior of the derivatives at the well where P =
1.  Just to the left, the pressure decreases; that is, ∂P/∂x is a nonzero negative
number.  And just to the right, ∂P/∂x is a nonzero positive number having the
same magnitude.  The same behavior is seen above and below the well; ∂P/∂y
takes on equal and opposite nonzero values.  Of course, there is nothing wrong
with these results.  Since the Darcy velocities are proportional to the first
derivatives of pressure, the change in sign only indicates that fluid is always
flowing from opposite directions into the well.  We have seen this before: recall
from Chapter 2 that source points are always associated with discontinuities of
the first derivative. This is also clear from radial flow analysis, which shows that
fluids must flow toward a well; however, the discontinuous change or jump in
the first derivative of P(x,y) may be disturbing at first.

This oddity is a consequence of the (x,y) coordinates used.  The derivative
discontinuities do not appear using radial coordinates because the point r is
always greater than zero and there is nothing to the left or right.  We have
uncovered one truism: elliptic equations with internal Dirichlet conditions
always yield jumps in the first derivative (this property is used in grid generation
later). Thus, never blindly differentiate across such a discontinuity because the
derivative does not exist!  This type of jump was demonstrated in the analytical
solution for fracture flow in Chapter 2, where it was shown that ∂P/∂y reverses
sign across the horizontal slit y = 0.  We can replicate that qualitatively by
modifying the above Fortran; we change the single well logic, now allowing unit
pressures to extend horizontally for several gridblocks.  The results are shown in
Figures 7-6a,b (the 100 boundary pressures assumed in the source code, for the
next several examples, were changed to 99.9 after the calculations, for
typesetting and formatting reasons).  Note how, in Figure 7-6b, the vertical
derivative ∂P/∂y at the fracture slit are equal and opposite; also observe that the
fracture singularity in Chapter 2 is captured poorly in the numerics.  As in the
earlier calculations, our solutions were stably and rapidly obtained, requiring
only minor changes to add or delete wells, or to change wells to line fractures.
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POINT RELAXATION METHODS

So far, we have discussed column and row implementations of line
relaxation.  These methods require matrix inversion, but inverting tridiagonal
matrices is a relatively straightforward task.  But this was not so when
computing machines were not widely available.  Historically, point relaxation
methods requiring simple hand calculations only (and no matrix inversion) were
the first ones developed.  This solution is useful for several reasons: (1) it is
easily programmed, (2) it is easily implemented in irregular domains where rows
and columns of constant length are difficult to define, and (3) large-scale
calculations may be divided among different machines in parallel processing.

C     LAPLACE EQUATION SOLVER, CASE_4.
      PROGRAM MAIN
      DIMENSION P(11,11), A(11), B(11), C(11), V(11), W(11)
      OPEN(UNIT=4,FILE=’CASE_4.DAT’,STATUS=’NEW’)

C     DEFINE GRID PARAMETERS
      DX = 1.
      DY = 1.

      RATIO2 = (DY/DX)**2
      ONE = 1.
C     INITIALIZE P(I,J) TO ZERO EVERYWHERE

      DO 100  I=1,11
      DO 100  J=1,11
      P(I,J) = 0.

 100  CONTINUE
C     SET “100” BOUNDARY CONDITION AT BOX EDGES
      DO 150  I=1,10

      P(I,1) =  100.
 150  CONTINUE
      DO 151  J=1,10

      P(11,J) = 100.
 151  CONTINUE
      DO 152  I=2,11

      P(I,11) = 100.
 152  CONTINUE
      DO 153  J=2,11

      P(1,J) = 100.
 153  CONTINUE
C     LINE RELAXATION BEGINS

      DO 400  NSWEEP=1,200
      IF(MOD(NSWEEP,10).NE.0) GO TO 170
C     PRINT OUT “X-Y” RESULTS

      WRITE(*,154)
      WRITE(4,154)
      WRITE(*,155) NSWEEP

      WRITE(4,155) NSWEEP
 154  FORMAT(‘ ‘)
 155  FORMAT(‘ P(I,J) SOLUTION FOR NSWEEP = ‘,I3)

      DO 160  J=1,11

Figure 7-6a.  Centered fracture, aquifer-driven reservoir.
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      WRITE(*,157) (P(I,J),I=1,11)

      WRITE(4,157) (P(I,J),I=1,11)
 157  FORMAT(1X,11F6.1)
 160  CONTINUE

C     ITERATE COLUMN BY COLUMN WITHIN BOX
 170  DO 300  I=2,10
C     DEFINE MATRIX COEFS FOR INTERNAL POINTS

      DO 200  J=2,10
      A(J) = 1.
      B(J) = -2.*(1.+RATIO2)

      C(J) = 1.
      W(J) = -RATIO2*(P(I-1,J)+P(I+1,J))
C     SET INTERNAL BOUNDARY CONDITION

      MODE = 0
      IF(I.GE.4.AND.I.LE.8) MODE = 1
      IF(MODE.EQ.1.AND.J.EQ.6) A(J) = 0.

      IF(MODE.EQ.1.AND.J.EQ.6) B(J) = 1.
      IF(MODE.EQ.1.AND.J.EQ.6) C(J) = 0.
      IF(MODE.EQ.1.AND.J.EQ.6) W(J) = ONE

 200  CONTINUE
C     RESTATE UPPER/LOWER BOUNDARY CONDITIONS
C     NOTE “99” DUMMY VALUES

      A(1) = 99.
      B(1) = 1.
      C(1) = 0.

      W(1) = P(I,1)
      A(11) = 0.
      B(11) = 1.

      C(11) = 99.
      W(11) = P(I,11)
C     INVOKE TRIDIAGONAL MATRIX SOLVER

      CALL TRIDI(A,B,C,V,W,11)
C     UPDATE AND STORE COLUMN SOLUTION
      DO 250  J=2,10

      P(I,J) = V(J)
 250  CONTINUE
 300  CONTINUE

 400  CONTINUE
      CLOSE(4,STATUS=’KEEP’)
      STOP

      END

Figure 7-6a.  Continued.
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P(I,J) SOLUTION FOR NSWEEP =  10

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  94.7  90.0  86.4  84.3  83.7  84.8  87.3  91.0  95.4  99.9

99.9  89.4  79.8  72.2  67.8  66.7  68.6  73.6  81.5  90.6  99.9

99.9  84.2  69.2  56.2  49.5  47.9  50.4  57.7  70.9  85.5  99.9

99.9  79.5  57.9  35.5  27.8  26.0  28.3  36.4  59.2  80.6  99.9

99.9  76.7  48.4   1.0   1.0   1.0   1.0   1.0  49.2  77.6  99.9

99.9  79.5  57.9  35.5  27.8  26.0  28.3  36.4  59.2  80.6  99.9

99.9  84.2  69.2  56.2  49.5  47.9  50.4  57.7  70.9  85.5  99.9

99.9  89.4  79.8  72.2  67.8  66.7  68.6  73.6  81.5  90.6  99.9

99.9  94.7  90.0  86.4  84.3  83.7  84.8  87.3  91.0  95.4  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP =  20
99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  95.6  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.6  99.9

99.9  91.0  82.4  75.2  70.8  69.4  70.8  75.2  82.4  91.0  99.9

99.9  86.0  71.9  59.3  52.6  50.6  52.6  59.3  71.9  86.0  99.9

99.9  81.0  60.0  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  77.9  49.7   1.0   1.0   1.0   1.0   1.0  49.8  77.9  99.9
99.9  81.0  60.0  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  86.0  71.9  59.3  52.6  50.6  52.6  59.3  71.9  86.0  99.9

99.9  91.0  82.4  75.2  70.8  69.4  70.8  75.2  82.4  91.0  99.9

99.9  95.6  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.6  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP = 100
99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  77.9  49.8   1.0   1.0   1.0   1.0   1.0  49.8  77.9  99.9
99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP = 150
99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  77.9  49.8   1.0   1.0   1.0   1.0   1.0  49.8  77.9  99.9
99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

Figure 7-6b.  Centered fracture in aquifer-driven reservoir.
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P(I,J) SOLUTION FOR NSWEEP = 200
99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  77.9  49.8   1.0   1.0   1.0   1.0   1.0  49.8  77.9  99.9
99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

Figure 7-6b.  Continued.

Point relaxation is best explained by assuming equal constant mesh widths
∆x = ∆y.  Then, Equation 7-16 can be rewritten in the form

P
i,j

 = (P
i-1,j

 + P
i+1,j

 + P
i,j-1

 + P
i,j+1

)/4                                  (7-17)

This states that center values equal the arithmetic average of their neighbors to
the left, right, top, and bottom, when the mesh widths are equal.  This
remarkable property holds everywhere in the flowfield; that is, it holds in the
small locally.  And from Figures 7-3b and 7-4b, we find that it holds in the large
also, the center value of 25 being the arithmetic average of the four boundary
values 10, 20, 30 and 40.  This explains why elliptic operators are used to
smooth numerical fields in image processing.  In Figures 7-7a,b, we revisit the
10, 20, 30, 40, no well problem in Figure 7-3a.  However, we solve it using a
simple scheme, taking Equation 7-17 as the recursion formula, again assuming
Pi,j = 0 as the initial guess.  Similarly, we reconsider the fracture flow problem in
Figures 7-6a,b and solve it with point relaxation.  The results are shown in
Figures 7-8a,b.  In both cases, pressures are identical to earlier ones.

For our last example, we treat the implementation of no-flow solid wall
boundary  conditions.   We  have  chosen to rework Case 3 (see Figures 7-5a,b),
and add no-flow conditions along the vertical line i = 1 as well as the horizontal
line j = 1.  Now, Darcy’s law guarantees zero flow in any direction provided two
consecutive pressures along the tangent vector are identical.  This condition is
enforced along j = 1 by choosing B(1) = 1, C(1) = -1 and W(1) = 0.  In other
words, P(I,1) - P(I,2) = 0; P(I,1) and P(I,2) are solved simultaneously along with
other columnar unknowns.  Along i = 1, which falls outside the I = 2,10 range of
the sweeping process, the simple update procedure P(1,J) = P(2,J) suffices.  The
required Fortran is shown in Figure 7-9a, while the corresponding results are
shown in Figure 7-9b.  Note how the top two rows and the left two columns,
respectively, satisfy vanishing values of ∂P/∂y and ∂P/∂x.

OBSERVATIONS ON RELAXATION METHODS

In this section, we summarize important observations and facts about
relaxation methods.  These comments are based on the author’s experience in
developing aerodynamics and reservoir simulation models over two decades.
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Easy to program and maintain.   By modifying the source code in Figure
7-3a to handle problems of increasing difficulty in a sequence of examples, we
have shown how a finite difference model can be easily understood and
extended to describe wells, fractures, aquifers, and solid walls.  Multiple wells
and fractures, and general combinations of aquifer and no-flow boundary
conditions, of course, are just as easily treated: the basic engine driving the
models requires but twenty lines of Fortran.  Importantly, this powerful
methodology requires little programming or numerical analysis experience.

C     LAPLACE EQUATION SOLVER, CASE_5.
      PROGRAM MAIN
      DIMENSION P(11,11)
      OPEN(UNIT=4,FILE=’CASE_5.DAT’,STATUS=’NEW’)

C     DEFINE GRID PARAMETERS
      DX = 1.
      DY = 1.

C     INITIALIZE P(I,J) TO ZERO EVERYWHERE
      DO 100  I=1,11
      DO 100  J=1,11

      P(I,J) = 0.
 100  CONTINUE
C     SET “10-20-30-40” BOUNDARY CONDITION AT BOX EDGES

      DO 150  I=1,10
      P(I,1) =  10.
 150  CONTINUE

      DO 151  J=1,10
      P(11,J) = 20.
 151  CONTINUE

      DO 152  I=2,11
      P(I,11) = 30.
 152  CONTINUE

      DO 153  J=2,11
      P(1,J) = 40.
 153  CONTINUE

C     POINT RELAXATION BEGINS
      DO 400  NSWEEP=1,200
      IF(MOD(NSWEEP,10).NE.0) GO TO 170

C     PRINT OUT “X-Y” RESULTS
      WRITE(*,154)
      WRITE(4,154)

      WRITE(*,155) NSWEEP
      WRITE(4,155) NSWEEP
 154  FORMAT(‘ ‘)

 155  FORMAT(‘ P(I,J) SOLUTION FOR NSWEEP = ‘,I3)
      DO 160  J=1,11
      WRITE(*,157) (P(I,J),I=1,11)

Figure 7-7a.  Aquifer alone, point relaxation.
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      WRITE(4,157) (P(I,J),I=1,11)

 157  FORMAT(1X,11F6.1)
 160  CONTINUE
C     ITERATE POINT BY POINT WITHIN BOX

 170  DO 300  I=2,10
      DO 300  J=2,10
      P(I,J) = (P(I-1,J) +P(I+1,J) +P(I,J-1) +P(I,J+1))/4.
 300  CONTINUE
 400  CONTINUE
      CLOSE(4,STATUS=’KEEP’)

      STOP
      END

Figure 7-7a.  Continued.

P(I,J) SOLUTION FOR NSWEEP =  10

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  23.0  15.6  11.9   9.9   9.0   8.9   9.5  11.1  14.0  20.0

40.0  27.3  18.6  13.1   9.9   8.2   8.0   9.1  11.5  15.2  20.0

40.0  28.8  20.0  13.8   9.8   7.8   7.5   8.8  11.6  15.5  20.0

40.0  29.4  20.7  14.2  10.0   7.7   7.4   8.9  11.8  15.7  20.0

40.0  29.9  21.4  15.0  10.7   8.5   8.2   9.6  12.5  16.2  20.0

40.0  30.5  22.5  16.6  12.6  10.5  10.2  11.5  13.9  17.0  20.0

40.0  31.4  24.3  19.1  15.7  13.9  13.6  14.6  16.4  18.4  20.0

40.0  32.4  26.6  22.6  20.0  18.7  18.5  19.0  19.9  20.4  20.0

40.0  32.7  28.8  26.4  25.0  24.3  24.1  24.3  24.4  23.7  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

P(I,J) SOLUTION FOR NSWEEP =  20

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  24.2  17.6  14.4  12.7  11.8  11.6  11.9  12.8  14.9  20.0

40.0  29.4  22.3  17.8  15.1  13.6  13.1  13.5  14.7  16.8  20.0

40.0  31.7  25.1  20.3  17.1  15.3  14.6  14.9  16.0  17.8  20.0

40.0  32.9  26.8  22.1  18.9  17.0  16.2  16.3  17.1  18.5  20.0

40.0  33.7  28.2  23.8  20.7  18.8  17.9  17.8  18.3  19.1  20.0

40.0  34.3  29.3  25.4  22.6  20.8  19.8  19.5  19.6  19.9  20.0

40.0  34.8  30.3  26.9  24.5  22.9  22.0  21.6  21.3  20.8  20.0

40.0  34.9  31.0  28.3  26.5  25.3  24.5  24.0  23.4  22.2  20.0

40.0  33.9  31.1  29.4  28.3  27.7  27.2  26.8  26.2  24.6  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

P(I,J) SOLUTION FOR NSWEEP = 150

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.0  19.1  16.3  14.9  14.0  13.6  13.5  13.9  15.4  20.0

40.0  30.9  25.0  21.3  19.1  17.7  16.8  16.5  16.8  17.8  20.0

40.0  33.7  28.7  25.0  22.4  20.7  19.5  18.9  18.8  19.2  20.0

40.0  35.1  30.9  27.6  25.0  23.1  21.8  20.8  20.3  20.0  20.0

40.0  36.0  32.3  29.3  26.9  25.0  23.5  22.4  21.5  20.7  20.0

40.0  36.4  33.2  30.5  28.2  26.5  25.0  23.7  22.5  21.3  20.0

40.0  36.5  33.5  31.1  29.2  27.6  26.3  25.0  23.6  22.0  20.0

40.0  36.1  33.2  31.2  29.7  28.5  27.5  26.4  25.0  23.0  20.0

40.0  34.6  32.2  30.8  30.0  29.3  28.7  28.0  27.0  25.0  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

Figure 7-7b.  Aquifer alone, point relaxation.
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P(I,J) SOLUTION FOR NSWEEP = 200

10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  10.0  20.0

40.0  25.0  19.1  16.3  14.9  14.0  13.6  13.5  13.9  15.4  20.0

40.0  30.9  25.0  21.3  19.1  17.7  16.8  16.5  16.8  17.8  20.0

40.0  33.7  28.7  25.0  22.4  20.7  19.5  18.9  18.8  19.2  20.0

40.0  35.1  30.9  27.6  25.0  23.1  21.8  20.8  20.3  20.0  20.0

40.0  36.0  32.3  29.3  26.9  25.0  23.5  22.4  21.5  20.7  20.0
40.0  36.4  33.2  30.5  28.2  26.5  25.0  23.7  22.5  21.3  20.0

40.0  36.5  33.5  31.1  29.2  27.6  26.3  25.0  23.6  22.0  20.0

40.0  36.1  33.2  31.2  29.7  28.5  27.5  26.4  25.0  23.0  20.0

40.0  34.6  32.2  30.8  30.0  29.3  28.7  28.0  27.0  25.0  20.0

40.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0  30.0

Figure 7-7b.  Continued.
C     LAPLACE EQUATION SOLVER, CASE_6.
      DIMENSION P(11,11)
      OPEN(UNIT=4,FILE=’CASE_6.DAT’,STATUS=’NEW’)
C     DEFINE GRID PARAMETERS AND INITIALIZE P(I,J) TO ZERO
      DX = 1.
      DY = 1.
      ONE = 1.
      DO 100  I=1,11
      DO 100  J=1,11
      P(I,J) = 0.
 100  CONTINUE
C     SET “100” BOUNDARY CONDITION AT BOX EDGES
      DO 150  I=1,10
      P(I,1) =  100.
 150  CONTINUE
      DO 151  J=1,10
      P(11,J) = 100.
 151  CONTINUE
      DO 152  I=2,11
      P(I,11) = 100.
 152  CONTINUE
      DO 153  J=2,11
      P(1,J) = 100.
 153  CONTINUE
C     POINT RELAXATION BEGINS
      DO 400  NSWEEP=1,200
      IF(MOD(NSWEEP,10).NE.0) GO TO 170
      WRITE(*,155) NSWEEP
      WRITE(4,155) NSWEEP
 155  FORMAT(‘ P(I,J) SOLUTION FOR NSWEEP = ‘,I3)
      DO 160  J=1,11
      WRITE(*,157) (P(I,J),I=1,11)
      WRITE(4,157) (P(I,J),I=1,11)
 157  FORMAT(1X,11F6.1)
 160  CONTINUE
 170  DO 300  I=2,10
      DO 300  J=2,10
      MODE = 0
      IF(I.GE.4.AND.I.LE.8) MODE = 1
      IF(MODE.EQ.1.AND.J.EQ.6) MODE = 2
      P(I,J) = (P(I-1,J) + P(I+1,J) + P(I,J-1) + P(I,J+1))/4.
      IF(MODE.EQ.2) P(I,J) = ONE
 300  CONTINUE
 400  CONTINUE
      CLOSE(4,STATUS=’KEEP’)
      STOP
      END

Figure 7-8a.  Fracture flow, point relaxation.
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P(I,J) SOLUTION FOR NSWEEP =  10

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  92.1  85.6  80.9  78.1  77.1  78.2  81.4  86.6  93.2  99.9

99.9  85.5  73.4  64.3  58.9  57.2  59.1  65.0  74.9  87.1  99.9

99.9  80.1  62.7  48.9  41.6  39.4  41.8  49.6  64.1  81.8  99.9

99.9  75.6  52.6  31.1  23.4  21.4  23.5  31.4  53.5  77.1  99.9

99.9  72.8  43.8   1.0   1.0   1.0   1.0   1.0  44.4  74.2  99.9

99.9  74.9  50.9  28.3  20.0  17.8  20.2  29.0  52.5  76.8  99.9

99.9  79.5  61.3  46.6  38.7  36.4  39.3  48.0  63.7  81.8  99.9

99.9  85.7  73.5  64.0  58.5  56.9  59.3  65.6  75.8  87.7  99.9

99.9  92.8  86.7  82.1  79.3  78.6  79.9  83.1  88.1  94.0  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP =  20

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  95.2  90.9  87.4  85.2  84.6  85.4  87.6  91.2  95.4  99.9

99.9  90.4  81.4  73.9  69.5  68.2  69.7  74.3  81.8  90.7  99.9

99.9  85.3  70.9  58.1  51.4  49.5  51.6  58.5  71.3  85.7  99.9

99.9  80.4  59.2  36.8  29.0  27.1  29.2  37.0  59.5  80.7  99.9

99.9  77.4  49.1   1.0   1.0   1.0   1.0   1.0  49.4  77.7  99.9

99.9  80.3  59.0  36.6  28.8  26.9  28.9  36.9  59.5  80.7  99.9

99.9  85.3  70.8  58.0  51.3  49.3  51.5  58.4  71.3  85.7  99.9

99.9  90.4  81.5  74.1  69.7  68.3  69.9  74.5  81.9  90.8  99.9

99.9  95.3  91.1  87.6  85.5  84.8  85.6  87.8  91.3  95.5  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP = 150

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  77.9  49.8   1.0   1.0   1.0   1.0   1.0  49.8  77.9  99.9

99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP = 200

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  77.9  49.8   1.0   1.0   1.0   1.0   1.0  49.8  77.9  99.9
99.9  81.0  60.1  37.5  29.7  27.8  29.7  37.5  60.1  81.0  99.9

99.9  86.0  72.0  59.3  52.6  50.6  52.6  59.3  72.0  86.0  99.9

99.9  91.0  82.4  75.2  70.9  69.4  70.9  75.2  82.4  91.0  99.9

99.9  95.7  91.6  88.2  86.1  85.4  86.1  88.2  91.6  95.7  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

Figure 7-8b.  Fracture flow, point relaxation.
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C     LAPLACE EQUATION SOLVER, CASE_7.
      PROGRAM MAIN
      DIMENSION P(11,11), A(11), B(11), C(11), V(11), W(11)
      OPEN(UNIT=4,FILE=’CASE_7.DAT’,STATUS=’NEW’)
C     DEFINE GRID PARAMETERS
      DX = 1.
      DY = 1.
      RATIO2 = (DY/DX)**2
      ONE = 1.
C     INITIALIZE P(I,J) TO ZERO EVERYWHERE
      DO 100  I=1,11
      DO 100  J=1,11
      P(I,J) = 0.
 100  CONTINUE
C     SET “100” BOUNDARY CONDITION AT BOX EDGES
      DO 151  J=1,10
      P(11,J) = 100.
 151  CONTINUE
      DO 152  I=2,11
      P(I,11) = 100.
 152  CONTINUE
C     LINE RELAXATION BEGINS
      DO 400  NSWEEP=1,200
      IF(MOD(NSWEEP,10).NE.0) GO TO 170
C     PRINT OUT “X-Y” RESULTS
      WRITE(*,154)
      WRITE(4,154)
      WRITE(*,155) NSWEEP
      WRITE(4,155) NSWEEP
 154  FORMAT(‘ ‘)
 155  FORMAT(‘ P(I,J) SOLUTION FOR NSWEEP = ‘,I3)
      DO 160  J=1,11
      WRITE(*,157) (P(I,J),I=1,11)
      WRITE(4,157) (P(I,J),I=1,11)
 157  FORMAT(1X,11F6.1)
 160  CONTINUE
C     ITERATE COLUMN BY COLUMN WITHIN BOX
 170  DO 300  I=2,10
C     DEFINE MATRIX COEFS FOR INTERNAL POINTS
      DO 200  J=2,10
      A(J) = 1.
      B(J) = -2.*(1.+RATIO2)
      C(J) = 1.
      W(J) = -RATIO2*(P(I-1,J)+P(I+1,J))
C     SET INTERNAL BOUNDARY CONDITION
      IF(I.EQ.6.AND.J.EQ.6) A(J) = 0.
      IF(I.EQ.6.AND.J.EQ.6) B(J) = 1.
      IF(I.EQ.6.AND.J.EQ.6) C(J) = 0.
      IF(I.EQ.6.AND.J.EQ.6) W(J) = ONE
 200  CONTINUE
C     RESTATE UPPER/LOWER BOUNDARY CONDITIONS
C     NOTE “99” DUMMY VALUES
      A(1) = 99.
      B(1) = 1.
      C(1) = -1.
      W(1) = 0.
      A(11) = 0.
      B(11) = 1.
      C(11) = 99.
      W(11) = P(I,11)
C     INVOKE TRIDIAGONAL MATRIX SOLVER
      CALL TRIDI(A,B,C,V,W,11)
C     UPDATE AND STORE COLUMN SOLUTION

Figure 7-9a.  Implementing no-flow boundary conditions.
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      DO 250  J=1,11
      P(I,J) = V(J)
 250  CONTINUE
 300  CONTINUE
C     SET NO-FLOW CONDITION
      DO 350  J=1,11
      P(1,J) =  P(2,J)
 350  CONTINUE
 400  CONTINUE
      CLOSE(4,STATUS=’KEEP’)
      STOP
      END

Figure 7-9a.  Continued.

Minimal computing resources.   A rectangular grid with IMAX and
JMAX meshes in x and y will have IMAX × JMAX unknowns.  An unoptimized
direct matrix solver that does not account for sparseness and bandedness will
require numerous computations for inversion.  The worst case possibility is
Gaussian elimination, which requires (IMAX × JMAX)3 multiply and divide
operations.  The problem is compounded in three dimensions.  In our scheme,
only a single tridiagonal matrix solver is needed; inverting a JMAX line solution
requires 3 × JMAX operations, although this is repeated NSWEEP × IMAX
times.  This still represents a significant improvement over direct matrix
inversion methods.

Good numerical stability.  Our programs are extremely stable
numerically; that is, they do not lead to 109 pressures often.  The procedures are
conditionally stable on a linear von Neumann stability basis.  This is so because
the coefficient matrixes are diagonally dominant, becoming even more so when
3D problems are solved in a columnar fashion as in our examples.  Often, a
planar problem that does not converge on a 2D basis can be successfully and
quickly solved as the limit of the 3D problem.  An unstable 2D problem can be
artificially embedded in a suitable 3D problem to facilitiate convergence.

P(I,J) SOLUTION FOR NSWEEP =  10

 2.5   2.5   3.9   6.7  11.7  20.0  31.9  47.0  64.1  82.1  99.9

 2.5   2.5   3.9   6.7  11.7  20.0  31.9  47.0  64.1  82.1  99.9

 3.5   3.5   4.9   7.4  12.1  19.9  31.9  47.2  64.4  82.3  99.9

 5.6   5.6   7.1   9.2  12.7  19.1  31.7  47.6  64.9  82.6  99.9

 9.5   9.5  11.0  12.3  13.4  15.5  31.1  48.5  66.1  83.3  99.9

15.8  15.8  17.5  18.1  15.5   1.0  31.2  51.2  68.5  84.7  99.9

25.4  25.4  27.6  28.9  29.4  30.2  43.8  58.5  73.0  86.8  99.9

38.9  38.9  41.3  43.2  45.4  49.1  57.5  67.8  78.8  89.6  99.9

56.4  56.4  58.4  60.3  62.5  65.9  71.3  78.1  85.5  92.9  99.9

77.2  77.2  78.4  79.5  80.8  82.7  85.5  88.9  92.6  96.4  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

Figure 7-9b.  Implementing no-flow boundary conditions.
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P(I,J) SOLUTION FOR NSWEEP =  20

22.1  22.1  24.9  28.7  33.8  40.9  50.4  61.7  74.1  87.0  99.9

22.1  22.1  24.9  28.7  33.8  40.9  50.4  61.7  74.1  87.0  99.9

23.2  23.2  25.7  28.8  33.2  39.6  49.3  61.1  73.8  86.9  99.9

25.7  25.7  27.5  29.3  31.6  36.1  46.9  60.0  73.5  86.9  99.9

29.9  29.9  30.9  30.6  28.8  27.0  42.8  58.9  73.6  87.1  99.9

36.6  36.6  36.8  34.6  26.6   1.0  38.9  59.7  74.9  87.9  99.9

46.0  46.0  46.3  45.0  41.9  38.5  52.3  66.3  78.5  89.6  99.9

57.7  57.7  58.2  58.1  57.8  59.0  66.0  74.8  83.5  91.9  99.9

71.0  71.0  71.5  71.9  72.5  74.2  78.2  83.4  89.0  94.5  99.9

85.3  85.3  85.6  85.9  86.4  87.5  89.3  91.8  94.5  97.3  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP = 150

52.6  52.6  52.6  53.0  54.3  57.6  63.3  71.2  80.2  90.0  99.9

52.6  52.6  52.6  53.0  54.3  57.6  63.3  71.2  80.2  90.0  99.9

52.6  52.6  52.3  52.0  52.4  55.1  61.3  69.9  79.6  89.7  99.9

53.0  53.0  52.0  50.2  48.4  48.9  56.9  67.5  78.5  89.3  99.9

54.3  54.3  52.4  48.4  41.9  35.4  49.9  64.6  77.5  89.1  99.9

57.6  57.6  55.1  48.9  35.4   1.0  42.7  63.7  77.9  89.4  99.9

63.3  63.3  61.3  56.9  49.9  42.7  56.1  69.5  80.9  90.8  99.9

71.2  71.2  69.9  67.5  64.6  63.7  69.5  77.4  85.4  92.8  99.9

80.2  80.2  79.6  78.5  77.5  77.9  80.9  85.4  90.3  95.2  99.9

90.0  90.0  89.7  89.3  89.1  89.4  90.8  92.8  95.2  97.6  99.9

99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

P(I,J) SOLUTION FOR NSWEEP = 200

52.6  52.6  52.6  53.0  54.3  57.6  63.3  71.2  80.2  90.0  99.9
52.6  52.6  52.6  53.0  54.3  57.6  63.3  71.2  80.2  90.0  99.9
52.6  52.6  52.3  52.0  52.4  55.1  61.3  69.9  79.6  89.7  99.9
53.0  53.0  52.0  50.2  48.4  48.9  56.9  67.5  78.5  89.3  99.9
54.3  54.3  52.4  48.4  41.9  35.4  49.9  64.6  77.5  89.1  99.9
57.6  57.6  55.1  48.9  35.4   1.0  42.7  63.7  77.9  89.4  99.9
63.3  63.3  61.3  56.9  49.9  42.7  56.1  69.5  80.9  90.8  99.9
71.2  71.2  69.9  67.5  64.6  63.7  69.5  77.4  85.4  92.8  99.9
80.2  80.2  79.6  78.5  77.5  77.9  80.9  85.4  90.3  95.2  99.9
90.0  90.0  89.7  89.3  89.1  89.4  90.8  92.8  95.2  97.6  99.9
99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9  99.9

Figure 7-9b.  Continued.

Fast convergence.  Relaxation schemes are known to converge rapidly, at
least, initially; then, the rate of convergence slows somewhat, although
computing times are still tolerable.  Various methods are used to accelerate
convergence – for example, over-relaxation (Jameson, 1975), Shanks
extrapolation (van Dyke, 1964), or multigrid methods (Wesseling, 1992) which
use alternating sequences of fine and coarse meshes to host the relaxation.
Perhaps the most important advantage of relaxation methods is the ability to
initialize the solution to an approximate one that is already available, ideally a
solution with nearly the same heterogeneities or well configuration.  This is
important to the study of reservoir description.  Suppose a number of geological
realizations are created, for example, using a geostatistical model, with each
successive model being slightly different from the preceding.  Then, each
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pressure solution should require only minimal incremental effort, when
compared to a direct solution technique that assumes nothing at the outset.  On
this basis, relaxation methods exceed direct solvers in speed.  As we have seen,
the method always seems to converge to the same answer, regardless of the
initial guess.  The proper initialization, of course, reduces computation times
significantly.  This advantage is important in the design of software that offers
instantaneous user response while requiring minimal hardware resources.

Why relaxation methods converge.  We conclude this section by offering
some quantitative insight showing why convergence to a unique solution,
regardless of the initial guess, is expected, assuming of course a stable solution.
Let us multiply Equation 7-17 by 4 and rewrite it with superscripts n and n-1 to
describe the recursion relation used in the iteration below.

4 P
n

i,j
 =  P

n-1

i-1,j
 +  P

n-1

i+1,j
 +  P

n-1

i,j-1
 +  P

n-1

i,j+1
                 (7-18)

We subtract 4 P
n-1

i,j
 from each side of Equation 7-18 to obtain
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n-1

i,j
 +  P

n-1
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 =  4 (P
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i,j
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(7-19)
If we now divide Equation 7-19 throughout by (∆x)2, we have
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n
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 - P
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)/∆t                     (7-20)

where ∆t = (∆x)2/4.  We recognize Equation 7-20 as the explicitly differenced
form of the dimensionless heat equation

∂2P/∂x2 + ∂2P/∂y2 = ∂P/∂t                                                       (7-21)
which governs heat propagation in solids when P(x,y,t) is the transient
temperature.  As is well known (Carslaw and Jaeger, 1959), the final steady-
state solution (satisfying ∂2P/∂x2

 + ∂2P/∂y2
 = 0) is independent of initial

conditions.
Thus, it is not surprising that our solutions for steady-state pressure can be

obtained independently of the initial guess.  This comment applies to Equation
7-14, for a liquid, assuming pressure or flow rate boundary conditions; but it is
also valid for gases, which satisfy a linear equation for P 

m+1.  The usual
analogy comparing relaxation with polynomial root solvers is not strictly
correct, since elliptic problems, at least the ones considered here, have unique
solutions.  In several commercial publications, the claim is made that modern
direct matrix solvers help pressure fields converge much faster than older
relaxation approaches.  This may be true in blind comparisons where nothing is
known about the solution; but as we have seen, iterative models can be quite
flexible when used cleverly.  When direct solvers are used, the selection of
proper matrix conditioning parameters is crucial, which requires some
knowledge of the structure of the coefficient matrix.  This often takes longer
than the pressure solution itself.  The resulting parameters, in fact, may depend
on the physical characteristics of the oilfield, and will vary from problem to
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problem and change as oil and water saturations evolve with time.  But
relaxation methods, very often dummy proof, also allow users to initialize their
solutions with analytical solutions, such as those derived in Chapters 1-5.

Over-relaxation.   Researchers have made great strides in accelerating the
convergence of relaxation methods.  Note from Equation 7-20 that the point
relaxation scheme of Equation 7-17 is associated with a hard-coded value of
heat conductivity, namely unity, in Equation 7-21.  There is nothing sacred
about this value; a higher conductivity will decrease the convergence time
required to achieve steady-state results, while a lower one will increase it.  One
way to increase conductivity is to over-relax.  Previously, we updated the
Fortran solution using P(I,J) = V(J), where V(J) is the latest solution obtained
from the columnar matrix inversion.  Instead, let us update the pressure field
using P(I,J) = RELAX*V(J) + (1-RELAX)*P(I,J).  The choice RELAX = 1
reduces to doing nothing.  However, convergence can be accelerated by over-
relaxing with RELAX  > 1.  At other times when numerical stability is a
problem, under-relaxing with RELAX < 1 may stabilize the calculations.  Other
authors “embed” their Laplace operators within unsteady systems that are more
rapidly convergent than that of Equation 7-21.  After all, the transient phases of
iterative processes are unimportant if only steady results are desired; any fast
artificial time variable will do.  For a discussion on modern relaxation methods,
the reader is referred to the pioneering work of Jameson (1975).

Line and point relaxation.  Line relaxation is used for several reasons.
First, the algorithm is simple to construct and maintain.  Second, the tridiagonal
solver requires only 3N multiplies and divides to invert an N × N system.  Of
course, it is called dozens of times until convergence; still, the cumulative effort
needed to solve a problem is small by comparison to, say, direct solutions via
Gaussian elimination.  If sufficiently close solutions are available for
initialization, large decreases in convergence time can be achieved.  Importantly,
line relaxation handles two-point boundary conditions easily.  Pressure data
from upper and lower boundaries are communicated instantly along columns,
and left and right boundary conditions quickly propagate along rows.  By
contrast, point relaxation methods are sluggish; they require longer computation
times to converge.  However, they are easily adaptable to irregular geometries,
where lines having constant program dimension or vector length are difficult to
define.  (The curvilinear grid methods in Chapters 8-10 are an exception.)  If
irregular geometries must be simulated on rectangular meshes, point relaxation
is recommended because it is easily programmed, with the logic in Equation 7-
17 performed only for points inside the flow domain.  This simplifies
development since constant mesh number lines need not be defined.

Finally, there is the issue of vectorization, also referred to as scalar vs.
parallel computing. Serial computers execute instructions sequentially, in
specific order; parallel machines execute multiple instructions simultaneously.
Often, different flow domains are apportioned to different machines, and
message passing interfaces must be designed so that these domains
communicate with each other in an optimal way that minimizes computation
time.  Point relaxation gave way to line methods when serial computers were
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predominant because they were slower in converging.  However, they are now
used on vector machines because many points can be iterated upon in parallel.
On parallel machines, it is argued that the implicit schemes associated with line
methods require step-by-step matrix inversion, sequential operations that do not
take advantage of computer architecture.  On the other hand, researchers have
vectorized line methods so that large bundles of lines are solved simultaneously.
Whether the reader prefers direct or iterative methods, he is cautioned against
quick and simplifying recommendations.  In either approach, the issues are not
as straightforward as they seem, and there is always room for ingenuity.

In Chapters 8-10, grid generation, generalized elementary solutions,
transient compressible flows, alternating-direction-implicit (or ADI) methods,
and 3D steady and unsteady flow analysis will be studied, building on the ideas
developed here.  Special curvilinear grid methods eliminate the disadvantages
associated with rectangular meshes, providing fine resolution near wells where
detailed solutions are required.  Whatever the meshing model, grid block size
and attendant flow properties are often chosen indiscriminately; for example,
permeabilities obtained from small cores are applied to grid blocks hundreds of
feet across, and the simple averaging methods often used lead to unforeseen
consequences.  In the next section, we demonstrate (using the planar finite
difference methods discussed) how the upscaling process for cross-bedded sands
can be subtle indeed and not-at-all straightforward.  This application shows how
simple numerical models can be used to analyze interesting physical concepts.

ISOTROPY AND ANISOTROPY:
FLUID INVASION IN CROSS-BEDDED SANDS

Much has been written about grid block-averaging, designed to minimize
memory usage and computing times, among them, arithmetic, geometric, and
harmonic averaging methods, and the newer ones, such as geostatistically based
models and pseudos that reservoir engineers use.  Unfortunately, the averaging
process itself is often the sole focus of research, with minimal concern for
physical consequences.  Chapter 11 introduces simple problems with exact
solutions that highlight proper usage of effective properties and that point to
their dangers.  Dangers arise because there is always a loss of information
whenever averages are taken; for example, those chosen to match production
rates will yield incorrect tracer travel-times.  Also, reduced grid block structures
optimized for one scenario may be less applicable when a well constraint is
changed or another well is added or removed.  In this section, we demonstrate
how upscaling can introduce new effects that are not apparent from the original
small-scale description.  In continuum mechanics, isotropy and anisotropy are
often the results of observations on contrasting scales.  For example, different
small wood particles in trees may behave isotropically, but in the aggregate, they
may behave anisotropically as mechanical strength varies differently across the
grain than along.  Here we address anisotropy from computational and well
logging perspectives.  Taken simply, anisotropy occurs whenever k h and k v

differ.  It is not difficult to imagine a homogeneous rock sample satisfying this
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requirement, and indeed, many do.  However, it turns out that sedimentary
layers that are isotropic individually can also behave anisotropically, when they
are stacked in alternating sequences and oriented at dip.  Thus, a log analyst
might falsely conclude that a formation is anisotropic when it is isotropic.  On
the other hand, in simulation studies, isotropic laminated sequences that are not
modeled anisotropically when they should be will yield incorrect large-scale
results.  For the problems considered, when a critical parameter is reached,
streamlines that are nominally straight abruptly turn and change direction,
mimicking the behavior of rocks that are anisotropic over larger scales.  This is
shown for steady Darcy flow through linear cores.

To understand the issues, consider the fluid motion in Figures 7-10a,b.  For
flow incident upon parallel layers, the emerging flow rate is nonuniform
vertically, depending on individual layer resistances; for flow incident upon
perpendicular layers, this rate is uniform vertically.  In both examples, incident
and emerging streamlines do not change direction, and both remain straight.
The usual parallel and series circuit averaging formulas (e.g., for DC electrical
resistance) apply, and indeed suffice for describing the aggregate flow in
isotropic terms.  Anisotropic behavior never arises in Figures 7-10a,b.

Figure 7-10a.  Flow parallel to layers.

Figure 7-10b.   Flow perpendicular to layers.
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Figure 7-11.  Flow through dipping layers.
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Now consider the core sample in Figure 7-11.  It is clear that the entering
uniform flow must become nonuniform at the right; the emerging streamlines
will turn from a horizontal direction, even when the laminates in the core are
purely isotropic.  An observer without knowledge of the test setup would
interpret, from the orientation of the emerging streamlines, that the test sample is
anisotropic over the scale of the fixture.  This anisotropy follows as a
consequence of a purely isotropic formulation, that is, a finite difference
solution of ∂ (k(x,y) ∂P/∂x)/∂x + ∂ (k(x,y) ∂P/∂y)/∂y = 0 for nonuniform but
isotropic media, and not necessarily ∂  (k h  ∂P/∂x)/∂x + ∂ (k v  ∂P/∂y)/∂y = 0 for
anisotropic media.  This observation also suggests that an anisotropic reading
from a logging instrument can be further interrogated to determine if a more
detailed isotropic fine-scale structure exists.

Numerical results.  Several parameters describe our core: its overall size,
the dip angle, layer thicknesses, and properties.  For the simulations, a 45o dip
was taken, and a background permeability of 1 md was assumed for light gray
rocks, which are three times wider than dark ones.  The differential equation
∂ (k(x,y) ∂P/∂x)/∂x + ∂ (k(x,y)∂P/∂y)/∂y = 0 for isotropic but variable
permeabilities k(x,y) was solved for P(x,y), which provided boundary conditions
for the Ψ streamfunction formulation (see Chapter 4) solved.  Streamlines were
accurately traced by drawing level contours of Ψ.  (Streamfunction methods
suppress cumulative errors that normally arise from direct velocity vector
integration.)  For the system described, oblique permeability streaks taking the
form in Figure 7-12 were considered in turn, with 1-1, 1-2, 1-3, 1-4, and 1-5
periodicity.  Note that rapid permeability variations lead to grainy pressure
fields, and thus, to slightly wiggly streamlines, which are expected.  Exact P and
Ψ magnitudes are not given since our emphasis is on streamline patterns.

//////////////////////////////////////////////////////////
1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1
1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1
5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1
1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5
1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1
1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1
5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1
1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5
1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1
1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1
5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1  5  1  1  1
//////////////////////////////////////////////////////////

Figure 7-12.  Typical permeability setup.

Typical second-order accurate results are shown in Figures 7-13 a-f.  For
small permeability variations, computed streamlines are more or less straight.
But at critical values, 1-5 for the present core setup, strong streamline
divergence is seen as fluid moves to the right.  An observer stationed at the
outlet in Figure 7-13f would infer the presence of strong anisotropy in the core
sample.  Whether or not this interpretation is correct is unimportant: fluid does
move in the general direction shown.  However, to determine the structure of the
rock on smaller scales, finer measurement instruments would be needed.  For all
1-1, 1-2, 1-3, 1-4, and 1-5 streaks, total volume flow rate was monitored.  With
our 1-1 uniform core, a normalized 0.56 value was obtained.  Since subsequent
average permeabilities increase, total flow rates must increase; the respective
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numbers are 0.56, 0.69, 0.80, 0.88, and 0.87, this last exception to the trend
arising from finite end effects.  Figure 7-13f shows how initially parallel and
equidistant streamlines all migrate to the upper right, leaving a dead stagnation
zone at the lower right.  This implies poor areal sweep, here obtained as a
consequence of heterogeneities.  The streamline pattern in Figure 7-13f suggests
that additional production is possible from a well placed at the bottom right.

Figure 7-13a.  Uniform 1-1 core, straight streamlines.

Figure 7-13b.   1-3 core, slight streamline deviation.

Figure 7-13c.  1-4 core with minor turning.

Figure 7-13d.   1-4.5, initial turning seen.

Figure 7-13e.  1-4.75, strong turning.
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Figure 7-13f.   1-5, very strong streamline deflection.

As a second example, calculations were repeated with separations between dark
streaks doubled.  Because the overall averaged permeabilities are decreased
relative to the values just considered, lower volume flow rates should result; we
consistently obtained, 0.62 as opposed to 0.69, 0.67 versus 0.80, 0.70 versus
0.88, and 0.67 versus 0.87, but streamline convergence was again observed.
Again, the cumulative effects of locally weak reservoir heterogeneities and
nonuniformities turned out to be important in changing streamline orientation.

The baseline 1-1 uniform medium gave a flow rate of 0.56.  As a check,
this distribution was increased to 5-5, and the expected flow rate of 2.8 (five
times greater than 0.56) was obtained.  Finally, instead of Figure 7-12, the low
and high permeability streaks were altered every-other-diagonal in a simple
checker-board fashion consisting of 1s and 5s only, to create a purely random
permeability distribution with no angular or directional bias, whose arithmetic
average is (1+5)/2 or 3. The calculated flow rate of 1.67 is exactly three times
the 0.56 obtained for unit permeabilities; this three is identical to the arithmetic
average of (1+5)/2, obtained on a naïve basis. Thus, arithmetic averaging
appears to be useful for more or less random distributions of permeability,
whereas sands with crossbeds and formations with bedding planes clearly
require more thoughtful anisotropic or directional consideration.

Electrical analogy.  Again, ∂  (k(x,y) ∂P/∂x)/∂x + ∂ (k(x,y) ∂P/∂y)/∂y = 0
was solved for isotropic but variable k(x,y), and results were obtained that
behaved anisotropically, as if ∂  (k h  ∂P/∂x)/∂x + ∂ (k v  ∂P/∂y)/∂y = 0 had been
solved.  This was the case for high permeability contrasts and dip angles.  Now,
electric currents satisfy “∂ (σ(x,y) ∂V/∂x)/∂x + ∂ (σ(x,y) ∂V/∂y)/∂y = 0 in the
low-frequency limit, where V and σ represent potential and electrical
conductivity in isotropic media.  Because the analogy with fluid flow is exact,
our conclusions on streamline pattern apply to electric pathlines.  Thus, dipping
laminates that are isotropic microscopically can behave anisotropically
macroscopically electrically.  Because fluid and electrical models appear hand-
in-hand, fluid flow anisotropy implies electrical anisotropy, and vice-versa.
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PROBLEMS AND EXERCISES

1. Consider steady-state liquid flow in a homogeneous isotropic medium
satisfying ∂ 

2P/∂x2 + ∂2P/∂y2 + ∂2P/∂z2 = 0.  Finite difference this equation
assuming that ∆x = ∆y = ∆z = ∆, and show that the value of Pi,j,k  at any node
(xi, yj, zk) is given by the arithmetic average of its neighboring values, that
is, Pi,j,k  = 1/6 (Pi-1,j,k  + Pi+1,j,k + Pi,j-1,k  + Pi,j+1,k  + Pi,j,k-1 + Pi,j,k+1 ).  Earlier, the
formula Pi,j = 1/4 (Pi-1,j  + Pi+1,j  + Pi,j-1 + Pi,j+1) was used to design a point
relaxation scheme for a well centered in a plane (e.g., Figure 7-7b).  For the
present 3D problem, set P at all six faces of the computational box to 0, and
place a point well at its center (ctr) having the pressure 100.  Solve for the
three-dimensional pressure field with a point relaxation method.  For
example, your Fortran may look something like,

 C Initialize and set “0” boundary conditions on six faces
do 100  i = 1, imax
do 100  j = 1, jmax
do 100  k = 1, kmax
p(i,j,k) = 0.

100 continue

 C Iterate by point relaxation
do 300  n = 1, nmax

do 200  i = 2, imax-1
do 200  j = 2, jmax-1
do 200  k = 2, kmax-1
p(i,j,k) = (p(i-1,j,k) + p(i+1,j,k) + . . . )/6.
if(i.eq.ictr.and.j.eq.jctr.and.k.eq.kctr)

        1then p(i,j,k) = 100.
200 continue
.
300 continue

In particular, (i) introduce a suitable convergence criterion, (ii) run the
simulator until convergence for several box sizes, and (iii) determine how
pressure decays with distance.  Does this agree with the steady solution for
a spherical source?  Next, (iv) surround the source point using different
closed control surfaces and calculate the total mass flux through the
surfaces.  Are the mass flows identical?  Should they be identical?  If not,
why not?  (v) Repeat this flux calculation for a closed volume that does not
enclose the source point.  What should the result be?  Now, (vi) instead of
specifying P = 100 at the well, modify the program so that total mass flow
rate is prescribed.  Finally, (vii) extend this solver to arbitrary grid block
sizes by removing the restriction that ∆x = ∆y = ∆z = ∆.  Discuss possible
numerical strategies needed that will ensure mass conservation.

2. Write a point relaxation program to solve the planar isotropic equation
∂ (k(x,y) ∂P/∂x)/∂x + ∂ (k(x,y)∂P/∂y)/∂y = 0.  Assume solid walls at top and
bottom, and high and low constant pressures at the left and right.  Initialize
the code with P = 0, and other functions; show that convergence to a unique
solution is independent of the function.  Run this program for uniform
permeabilities and show that pressures decrease linearly with x.
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3. Using the computer code in (2), determine P(x,y) assuming the cross-
bedded permeabilities below and plot the streamlines as follows.  (i) Derive
the streamfunction equation, and solve it by a similar relaxation method.
(ii) Required normal derivative boundary conditions in ∂Ψ/∂Y at top and
bottom may be related to (available) solutions in ∂P/∂x using Cauchy-
Riemann conditions.  (iii) An equidistant distribution of vertical Ψ’s may be
assumed at the left for a starting condition, and the simplification ∂Ψ/∂x = 0
may be taken at the right.  Streamlines are represented by lines of constant
streamfunction; the difference between any two Ψ values represents the
mass flow through the two points.  Show that the streamfunction
distribution takes the following form, and sketch the streamline field.
Import these pressure and streamfunction solutions into contour plotting
software to generate curves that can be interpreted meaningfully, as in
Figures 7-13 a-f.  Repeat these calculations using 1-4 and 1-5
permeabilities.

PERMEABILITY
//////////////////////////////////////////////////////////
1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1
1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1
3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1
1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3
1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1
1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1
3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1
1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3
1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1
1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1
3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1  3  1  1  1
//////////////////////////////////////////////////////////

STREAMFUNCTION
////////////////////////////////////////////////////////////
100100100100100100100100100100100100100100100100100100100100
 90 88 87 91 92 89 87 90 92 89 87 90 92 89 87 90 92 87 82 82
 80 77 80 83 80 77 80 83 80 77 80 82 79 76 79 82 78 73 74 74
 70 71 73 70 67 70 72 70 67 70 72 69 66 69 71 68 64 66 68 68
 60 62 60 57 60 62 60 57 59 62 59 56 59 61 58 55 57 59 56 56
 50 49 47 50 52 50 47 49 52 49 47 49 51 48 45 47 49 45 41 41
 40 37 40 42 40 37 39 42 39 37 39 41 39 36 38 40 37 33 34 34
 30 30 32 30 27 29 32 29 27 29 31 29 26 28 31 28 25 26 28 28
 20 22 20 17 19 22 19 16 19 22 19 16 19 21 18 15 18 20 18 18
 10 10  7  9 12 10  7  8 11 10  7  8 11 10  6  8 11  9  5  5
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 ///////////////////////////////////////////////////////////
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8
Curvilinear Coordinates

and Numerical Grid Generation

Few exact solutions are ever available in reservoir flow analysis, simply
because irregular boundaries and heterogeneities render the mathematics
extremely difficult.  Thus, researchers and practitioners concentrate their efforts
on numerical models.  Great strides have been achieved in petroleum reservoir
simulation using such approximate techniques.  However, most of the
computational literature deals with rectangular and circular grid systems, where
finite difference equations take on particularly simple forms.

Problems with idealized grids.  Cartesian and radial grids produce
notoriously inaccurate results insofar as resolution is concerned.  For example,
farfield boundaries are difficult to describe unless they take rectangular or
circular form.  When ideal geometric conditions are not met, the resulting
matrices contain large numbers of inactive grid blocks that degrade computer
performance, while active blocks are used ineffectively.  Interpolative
techniques are often employed, but again, at the expense of increased
computations and numerical noise.  In general, the problem of fitting
stratigraphic boundaries to computer models is an important one to reservoir
simulation, well test interpretation, and history matching.  And there are other
problems.  Typically, an areal grid block may span hundreds of feet across, and
contain multiple wells, each bearing six-inch-diameter-length scales.  Questions
arise as to how computed grid block pressures relate to flowing pressures at the
wells.  Well known correlations are available which address this problem; see
van Poollen, Breitenbach, and Thurman (1968), Peaceman (1977, 1978, 1983),
Williamson and Chappelear (1981), and Chappelear and Williamson (1981).
These ad hoc approaches apply to vertical wells, but none has been developed
for horizontal wells in layered media.  Even accepted well models yield 50% to
200% of actual flow rates.  Local mesh refinement and embedded grids provide
two alternatives, but depending on how the additional equations are ordered in
the matrix solution, severe performance degradation can result, leading to
requirements for faster and more powerful computers.  Also, for the Cartesian
meshes used, increased nearfield grid density forces portions of the farfield to be
likewise (but inconsistently) gridded.
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Alternative coordinate systems.  We have seen how coordinate systems
can be cleverly exploited to advantage.  For example, consider the elementary
log r and θ solutions for point sources and vortexes obtained in cylindrical polar
coordinates.  In Chapters 2 and 3, they were rewritten in (x,y) coordinates in
order to develop solutions for line fractures and shales.  Or consider the
conformal mappings introduced in Chapter 5; there, the simple solutions in
Chapters 2 and 3 were extended to flows in complicated geometries.  A newer,
more powerful approach involves the use of boundary-conforming grid sytems
that wrap around wells and fractures in the nearfield and at the same time
conform to the external boundaries of the farfield.  The simplest example is
provided by cylindrical coordinates, used to model circular wells concentrically
located in circular reservoirs.  Another is furnished by elliptical coordinates,
used to model flows into straight, finite-length fractures in infinite systems.

The literature on boundary-conforming grid generation is not new.  While
the models are shrouded in mystery and specialized jargon, at least in reservoir
simulation, the techniques are in fact highly developed.  In the aerospace
industry, they are routinely used to model complicated interference effects, for
example, wing and fuselage juncture flows, engine flow blockage near wings,
and so on.  This author, in fact, has used this method extensively to study the
highly eccentric annular borehole flow typically encountered in drilling and
cementing applications, for instance, see Chin (1992a,b; 2001a,b).  Grid
generation techniques will be discussed in this chapter.  We will introduce the
fundamentals of grid generation using simple, readable, algebraic derivations
that avoid the complications of complex variables, differential geometry, and
topology.  Direct arguments and proofs are presented at a level comprehensible
to undergraduate engineers, without delving into profound aspects of an
inherently mathemical subject.  The requisite derivations may not be as elegant
as the mathematician may like; however, they are equally rigorous, providing
the fundamentals in an important new area, and fall in the realm of must reading.

We emphasize that the grid generation discussions in this book are not
exhaustive.  But needless to say, the Thompson-based methods are by far the
most popular, since finite difference flow models are readily implemented on the
resulting structured grids.  In this sense, software and algorithm development are
straightforward.  This is not the case with triangular, hexagonal and similar
unstructured grids; these coordinate systems usually host finite element models
which require (thoughtful) variational formulations, and of course, finite volume
models, which require some manipulation of the integral conservation laws.
The interested reader is referred to the research literature for the state of the art;
the method discussed in this book is, in a sense, mature technology that can be
discussed with confidence.  The grid generation technique is a flexible one, and
importantly, it is used to host a variety of steady and transient flow simulators
designed in the later chapters.
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GENERAL COORDINATE TRANSFORMATIONS

Suppose we wish to express a function f(x,y) in terms of convenient
independent variables ξ and η.  If the transformations x = x(ξ,η) and y = y(ξ,η)
are available, direct substitution allows us to rewrite f(x,y) in the form

f(x,y) = F(ξ,η)                                                                           (8-1)

In Equation 8-1, the functional relation F(ξ,η) between ξ and η is generally
different from the relation f(x,y) connecting x and y.  Derivatives of f(x,y) with
respect to x and y are easily related to derivatives of F(ξ,η) taken with respect to
ξ and η.  By applying the chain rule (Hildebrand, 1948), we have

Fξ = f
x

xξ + f
y 

yξ                                                                      (8-2)

Fη = f
x

xη + f
y 

yη                                                                     (8-3)

where subscripts, along with ∂’s, will be used to indicate partial derivatives.
Equations 8-2 and 8-3 can be algebraically solved for f

x
 and f

y
 to yield

f
x

= (yη Fξ  - yξ Fη ) / J                                                                   (8-4)

f
y

 = (xξ Fη  - xηFξ ) / J                                                                   (8-5)

where
J(ξ,η) = xξ yη - xη yξ                                                                   (8-6)

is known as the Jacobian of the transformation.  For reasons that will be
apparent later, we will refer to this Jacobian as big jay.

Most boundary value problems occurring in mathematical physics involve
second order differential equations (Tychonov and Samarski, 1964).  To express
such equations in (ξ,η) coordinates, transformations similar to those in
Equations 8-4 and 8-5 are therefore needed for fxx, fxy and fyy.  Throughout this
book, f and F are considered to be sufficiently smooth, so that it is possible to
interchange the order of differentiation between any two independent variables.
By smooth, we mean that sudden discontinuities are not expected in physical
solutions.  Application of the chain rule to Equations 8-2 and 8-3 leads to

Fξξ = f
x

x ξξ + xξ (f
xx

xξ + f
xy 

yξ ) + f
y 

y ξξ + yξ (fyx
x ξ + f

yy
y ξ )

          = xξξ fx
 + yξξ fy

 + xξ
2 

f
xx

 + yξ
2 

f
yy

 + 2xξ yξ fxy
                    (8-7)

Similarly,

Fηη = xηη fx
 + yηη fy

 + xη
2 

f
xx

 + yη
2f

yy
 + 2xη yη fxy

                 (8-8)

and
Fηξ = xηξ fx

 + yηξ fy
 + xη xξ fxx

 + yη yξ fyy
 + (xη yξ + xξ yη) f

xy
   (8-9)

Now, let us rewrite Equations 8-7, 8-8 and 8-9, treating the functions f
xx

, f
xy

and f
yy

 as algebraic unknowns on the left-hand side of a three by three system.

That is, we write the foregoing equations in the usual format,
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xξ
2 fxx + 2xξyξ fxy +   yξ

2 fyy = Fξξ - xξξ fx - yξξ fy (8-10)
xη

2 fxx + 2xηyη fxy + yη
2 fyy = Fηη - xηη fx - yηη fy (8-11)

xηxξ fxx +  (xη yξ + xξ yη) fxy + yη yξ fyy = Fηξ - xηξ fx - yηξ fy (8-12)

In this form, the solutions for fxx
 

,  fxy and fyy can be easily obtained using
determinants.  However, we need not write down individual solutions, since we
have no use for them in this book.  We will, however, make use of the Laplace
operator fxx + fyy which takes the form

fxx + fyy = ( αFξξ - 2βFξη + γFηη ) /J
2                                  (8-13)

                      + [(α xξξ - 2βxξη + γxηη )(yξFη - yηFξ )
                      +  ( α yξξ - 2βyξη + γyηη )(xηFξ - xξFη)]/J3

where the Greek letter coefficients represent the nonlinear functions
α = xη

2 + yη
2                                                                    (8-14)

β = xξ xη + yξ yη                                                                     (8-15)
γ = xξ

2 + yξ
2                                                                         (8-16)

THOMPSON’S MAPPING

So far, we have not imposed any constraints on the functions x = x(ξ,η)
and y = y(ξ,η), or their inverses ξ = ξ(x,y) and η = η(x,y).  One well-known
transformation is Thompson’s mapping, discussed in Thompson (1978, 1984),
Thompson, Warsi, and Mastin (1985), White (1982), and Tamamidis and
Assanis (1991).  It was originally developed to solve the Navier-Stokes
equations for viscous flows past planar airfoils, and later extended to three
dimensions to study wing-fuselage effects in aerospace applications (Thomas,
1982).  This method was also used in Chin (1992a,b; 2001A,B) to study non-
Newtonian flows in eccentric annuli and noncircular pipes.  In Thompson’s
approach, ξ(x,y) and η(x,y) are defined as solutions to the elliptic equations

ξ
xx

 + ξ
yy

 = P
*

(ξ,η)                                                               (8-17)

η
xx

 + η
yy

= Q
*

(ξ,η)                                                              (8-18)

where P
*

 and Q
*

 are functions chosen (by very ingenious guess work) to control
local grid density. We will explain the exact motivation behind Thompson’s
choice later. For now, we ask the more immediate question, “What are the
governing equations for x = x(ξ,η) and y = y(ξ,η), given Equations 8-17 and 8-
18?”

At this point, it is helpful to understand that Equation 8-13 holds for any
function f.  That is, for any prescribed set of transformations, Equation 8-13 can
be viewed as a source of useful identities.  Let us take f(x,y) = ξ(x,y), in which
case F(ξ,η) = ξ; then, Fη = 0, and all second derivatives of F with respect to
ξ and η vanish.  Substitution in Equation 8-13 and replacement of the resulting
Laplacian of ξ with respect to x and y using Equation 8-17 lead to
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-yη (α xξξ - 2β xξη + γ xηη) + xη (α yξξ - 2β yξη + γ yηη) = P
*

J
3

 (8-19)

Similarly, consider f(x,y) = η(x,y), so that F(ξ,η) = η .  It follows that Fξ = 0, and
that all second derivatives of F with respect to ξ and η vanish.  Substitution in
Equation 8-13 and replacement of the Laplacian of η with respect to x and y
using Equation 8-18 lead to

+yξ (α xξξ –2β xξη + γ xηη) - xξ (α yξξ – 2β yξη + γ yηη) = Q
*

J
3
  (8-20)

If we now regard (α xξξ – 2β xξη + γ xηη) and (α yξξ –2β yξη + γ yηη) as algebraic
unknowns in a simple two by two system, Equations 8-19 and 8-20 can be
solved, thus yielding Thompson’s well-known elliptic equations

αxξξ – 2βxξη + γ xηη + J
2

(P
*

xξ + Q
*

xη) = 0                               (8-21)

αyξξ – 2βyξη + γ yηη + J
2

(P
*

yξ + Q
*

yη) = 0                                (8-22)

Equations 8-21 and 8-22 are nonlinearly coupled because the coefficients α, β,
and γ in Equations 8-14 to 8-16 depend on both x(ξ,η) and y(ξ,η).  Their
complementary geometric boundary conditions are derived in Chapter 9.

SOME RECIPROCITY RELATIONS

For practical reasons, we need to convert transfer results between physical
and computational planes.  Thus, reciprocity relationships are needed.  Let us
return to general considerations and for now refrain from invoking Thompson’s
assumptions.  In particular, we examine the general transformations

x = x(ξ,η)                                                                               (8-23)

y = y(ξ,η)                                                                               (8-24)

From calculus, the total differentials dx and dy are given by

xηdη + xξdξ = dx                                                                    (8-25)

yηdη + yξdξ = dy                                                                    (8-26)

Equations 8-25 and 8-26 can be solved in terms of d ξ and dη, thus leading to

dη = - yξdx/J + xξdy/J                                                               (8-27)

dξ = + yηdx/J - xηdy/J                                                                (8-28)

where the “big jay” Jacobian is given by Equation 8-6.  Now, we can similarly
consider the inverse transformation.  If we write

η = η(x,y)                                                                              (8-29)
ξ = ξ(x,y)                                                                               (8-30)

it follows that

dη = η
x
dx + η

y
dy                                                                    (8-31)

dξ = ξ
x
dx + ξ

y
dy                                                                     (8-32)

Comparison of Equation 8-27 with Equation 8-31, and Equation 8-28 with
Equation 8-32, leads to



Curvilinear Coordinates and Numerical Grid Generation     165

η
x

= - yξ / J                                                                              (8-33)

η
y

=   xξ / J                                                                              (8-34)

ξ
x

=   yη / J                                                                              (8-35)

ξ
y

= - xη / J                                                                              (8-36)

On the other hand, we might have proceeded from the definitions for the total
differentials d ξ and dη, and reconsidered Equations 8-31 and 8-32 in the form

η
x
dx+ η

y
dy = dη                                                                    (8-37)

ξ
x
dx + ξ

y
dy = dξ                                                                     (8-38)

Equations 8-37 and 8-38 can be solved algebraically for dx and dy to give

dx = - ξ
y

dη / j + η
y

dξ / j                                               (8-39)

dy = +ξ
x
dη / j - η

x
dξ / j                                               (8-40)

where the “little jay” Jacobian satisfies

j(x,y) = ξ
x
η

y
 - ξ

y
η

x
                                                                (8-41)

Comparison of Equation 8-25 with Equation 8-39, and Equation 8-26 with
Equation 8-40, leads to

xη = - ξ
y

/ j                                                                              (8-42)
xξ =   η

y
/ j                                                                              (8-43)

yη =   ξ
x
/ j                                                                              (8-44)

yξ = - η
x
/ j                                                                              (8-45)

Finally, comparison of Equation 8-33 with Equation 8-45, Equation 8-34 and
Equation 8-43, Equation 8-35 and Equation 8-44, and Equation 8-36 and
Equation 8-42, leads to

J(ξ,η) j(x,y) = 1                                                                       (8-46)
or

(xξ yη - xη yξ) (ξx
η

y
 - ξ

y
η

x
) = 1                                                 (8-47)

It is important to understand that the equations obtained in this section are
generally valid, regardless of Thompson’s (or any other) set of transformations.
They allow us to move conveniently between quantities expressed in the
physical (x,y) and computational (ξ,η) planes.  Incidentally, the derivation of the
above reciprocity relations parallels that for the transonic hodograph equations
in classical aerodynamics (Liepmann and Roshko, 1957).

CONFORMAL MAPPING REVISITED

In Chapter 5, conformal mapping was introduced as a vehicle that
transforms simple solutions into those for flows past complicated shapes.  Here,
we explore its general transformation properties, and attempt to understand
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conformal mapping from a mathematical viewpoint.  We now formally
reintroduce the Cauchy-Riemann conditions, that is,

ξ
x

=   η
y

                                                                                (8-48)

η
x

= - ξ
y

                                                                                (8-49)

Let us differentiate Equation 8-48 with respect to x and Equation 8-49 with
respect to y; elimination of the cross-derivative term between the two results
leads to Equation 8-50.  A similar procedure yields Equation 8-51.

ξ x x +  ξ yy = 0                                                                         (8-50)

η x x + η yy = 0                                                                        (8-51)

Equations 8-50 and 8-51 are both elliptic; they are, in fact, exactly Thompson’s
Equations 8-17 and 8-18, however, with P* = Q* = 0. (Equations 8-48 to 8-51 are
identical to Equations 5-12 to 5-15.)  Since ξ(x,y) and η(x,y) satisfy Laplace’s
equation, they are said to be harmonic.  And because harmonic functions are
obtained as real and imaginary parts of complex analytical functions, as we had
demonstrated, Equations 8-50 and 8-51 are usually derived more elegantly using
complex variables methods, as was the case in Equations 5-22 to 5-29.

To understand the implications of Equations 8-48 and 8-49 in transformed
coordinates, it is helpful to use the reciprocity relations developed in the
previous section.  If the ξ x and η y in Equation 8-48 are replaced by their
equivalents using Equations 8-43 and 8-44, and if η x and ξ y in Equation 8-49
are replaced by their equivalents using Equations 8-42 and 8-45, we obtain

yη =  xξ                                                                                 (8-52)

yξ = -xη                                                                                 (8-53)

which imply, using the same procedure we have described, that

xξξ + xηη = 0                                                                       (8-54)

yξξ + yηη = 0                                                                       (8-55)

Thus, x( ξ,η) and y(ξ,η) are likewise harmonic, but in the variables ξ and η.
Equations 8-54 and 8-55 are simpler than Equations 8-21 and 8-22, with P* = Q*

= 0.  The use of our reciprocity relationships shows that there exists a duality
between physical and mapped planes, and vice versa, for conformal
transformations; that is, Equations 8-50 and 8-51 are mirror images of Equations
8-54 and 8-55.  One might have anticipated this type of reversibility, but it is not
directly evident from Equations 8-21 and 8-22.  Equations 8-54 and 8-55 are
consistent with Thompson’s original Equations 8-21 and 8-22.  Use of the
Cauchy-Riemann conditions in the transformed plane, that is, Equations 8-52
and 8-53, in Equations 8-14 to 8-16, leads to α = γ and β = 0.

In this book, our discussions of grid generation include derivations for
results of broad theoretical interest; but due to space constraints and the research
nature of ongoing work, our applications will be restricted to P* = Q* = 0.  For
further information, consult Thomas and Middlecoff (1980), Thompson (1984),
and Thompson, Warsi, and Mastin (1985).  We emphasize that Equations 8-54
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and 8-55 are linear, unlike Equations 8-21 and 8-22.  However, they do not
generally uncouple for true conformal mappings, as they might superficially
suggest, since x and y cannot be arbitrarily specified along boundaries: to be
conformal, x and y must satisfy Equations 8-52 and 8-53 everywhere.

SOLUTION OF MESH GENERATION EQUATIONS

In this section, we show how the geometrical transformations derived
above are actually used to solve boundary value problems (e.g., Laplace’s
equation on an irregular domain).  The numerical solutions to Thompson’s
equations and to the steady-state pressure equation are new.  This research was
supported by the United States Department of Energy under Small Business
Innovation Research Grant DE-FG03-99ER82895, and the algorithms are
presently used in computational rheology work for non-Newtonian pipeline and
annular flows (Chin, 2001a,b).  In order to explain the problems and issues
clearly, we will avoid the formal mathematical approach used in earlier sections.

Commercial reservoir simulators calculate pressures, saturations, and other
flow properties on rectangular grids.  Again, their x-y coordinate lines do not
conform to the irregular curves defining farfield reservoir boundaries; also, high
grid densities imposed near wells require similarly high densities far away,
where such resolution is unnecessary.  This results in large, inefficient
computing domains containing dead flow and extremely large matrices.
Sometimes, coarse meshes are used everywhere, together with high-density
corner point modeling to provide grid refinement close to (possibly fractured)
wells.  However, many companies refrain from their usage because cross-
derivative terms in the transformed flow equations, which increase computing
time, are ignored in the matrix inversion for numerical expediency!

Pw

Cw

Cr

Pr

B2
B1

x

y

Figure 8-1.  Irregular domain with inefficient rectangular meshes.
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B1
B2

Pr

Cw

Cr

Pw

η

ξ

1

1

Figure 8-2.  Irregular domain mapped to rectangular ξ-η computational space.

y

x

Figure 8-3.  Physical domain in boundary-conforming coordinates.

Boundary conditions.  Although the industry focuses on Cartesian
meshes, more effective boundary-conforming, curvilinear grids can be
generated, as discussed in Thompson, Warsi, and Mastin (1985), adapting to
both farfield boundaries and individual wells.  We now reiterate the basic ideas
because they are essential to understanding our research contributions, but we
focus on the boundary conditions needed to supplement Thompson’s equations.
Let us suppose that a transformation ξ = ξ(x,y), η = η(x,y) exists which maps
the irregular domain defined by the general well and farfield reservoir
boundaries of Figure 8-1 into the rectangle of Figure 8-2.

Physically insignificant branch cuts B 1 and B 2 have been introduced, which
will be discussed.  Such a mapping effectively allows calculations to be
performed on more desirable high-resolution grids such as the one in Figure 8-3.
It is clear that more meaningful flow models can be formulated using “ξ, η”
coordinates; improved reservoir description is possible, with fewer grids and
less matrix inversion.  Now, it is known from complex variables that conformal
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transformations satisfy linear Laplace equations in x and y, but Riemann’s
Lemma unfortunately does not explain how the mappings are obtained.

Thompson, again,  developed a novel approach.  Rather than dealing with
ξ = ξ(x,y) and η = η(x,y) directly, he (equivalently) considered the inverse
functions x = x(ξ,η) and y = y(ξ,η) satisfying nonlinear coupled Equations 8-21
and 8-22, for the purposes of this chapter, considered in the form

(xη2 + yη2) xξξ -2 (xξxη  + y ξyη) xξη  + (xξ2 + y ξ2) xηη   = 0 (8-56)

(xη2 + yη2) yξξ -2 (xξxη  + y ξyη) yξη  + (xξ2 + y ξ2) yηη   = 0 (8-57)

where ξ and η are independent variables.  How are these used to create
mappings?  Suppose that contour CW in Figure 8-1 is to map into η = 0 of Figure
8-2.  The user first discretizes CW in Figure 8-1 by penciling along it a sequence
of dots chosen to represent the curve.  If these are selected in an orderly, say,
clockwise fashion, they define the direction in which ξ increases.  Along η = 0,
values of x and y are known (e.g., from measurement on graph paper) as
functions of ξ .  Similarly, x and y values along Cr are known as functions of ξ
on η = 1 of Figure 8-2.  These provide the boundary conditions for Equations 8-
56 and 8-57, which are augmented by single-valuedness constraints at arbitrarily
chosen branch cuts B1 and B2.

In Thompson’s and similar approaches, Equations 8-56 and 8-57 are
discretized by finite differences and solved by point or line relaxation (e.g., see
Chapter 7), starting with guesses for the dependent variables x and y.  The
problem is linearized by approximating all nonlinear coefficients using values
from earlier iterations.  Typically, several updates to Equation 8-56 are taken,
followed by updates to Equation 8-57, with this cycling process, often unstable,
repeated until convergence.  Variations of the approach are known, with 100
× 100 mesh systems in the ξ-η  plane requiring minutes of computing time on
Pentium computers.  Once x = x(ξ,η) and y = y(ξ,η) are solved and tabulated as
functions of ξ and η, physical coordinates are generated.  First, η is fixed; for
each node ξ along this η, computed values of (x,y) pairs are successively plotted
in the x-y plane to produce the required closed contour.  This procedure is
repeated for all values of η, until the entire family of closed curves is obtained,
with limit values η = 0 and η = 1 again describing Cw and Cr.  Orthogonals are
constructed by repeating the procedure, with η and ξ roles reversed.

This process provides the mapping only.  The equation describing the
physics (e.g., the Navier-Stokes equation) must be transformed into (ξ,η)
coordinates and solved.  For instance, in reservoir simulation, Darcy’s pressure
equation must be expressed in terms of ξ ,η and solved.  Thompson’s
simplification lies not in the transformed equation, which may contain mixed
derivatives and variable coefficients, but in the computational domain itself,
because it takes on a rectangular form amenable to simple numerical solution.

Fast iterative solutions.  Existing solution methods solving x( ξ,η) and
y(ξ,η) stagger the solutions for Equations 8-56 and 8-57.  For example, crude
solutions are used to initialize the coefficients of Equation 8-56, and
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improvements to x( ξ,η) are obtained.  These are used to evaluate the coefficients
of Equation 8-57, in order to obtain an improved y(ξ,η); then, attention turns to
Equation 8-56 again, and so on, until convergence is achieved.  Various means
are used to implement these iterations, as noted in the review paper of
Thompson (1984), for example, point SOR, line SLOR, line SOR with explicit
damping, alternating-direction-implicit, and multigrid, with varying degrees of
success.  Often these schemes diverge computationally.  In any event, the
staggering noted earlier introduces different artificial time levels while iterating.
However, classic numerical analysis suggests that faster convergence and
improved stability are possible by reducing their number.

A new approach to rapidly solve Thompson’s equations was proposed by
this author and based on a very simple idea.  This idea has since been validated.
Consider zξξ + zηη = 0, for which zi,j ≈ (zi-1,j + zi+1,j + zi,j-1 + zi,j+1)/4 holds

on constant grid systems (e.g., as derived in Chapter 7 for real functions of two
variables).  This well-known averaging law motivates the recursion formula

zi,j
n = (zi-1,j

n-1 +  zi+1,j
n-1 +  zi,j-1

n-1 +  zi,j+1
n-1)/4 often used to illustrate

and develop multilevel iterative solutions; an approximate, and even trivial
solution, can be used to initialize the calculations, and nonzero solutions are
always produced from nonzero boundary conditions.

But the well-known Gauss-Seidel method is fastest: as soon as a new value
of zi,j is calculated, its previous value is discarded and overwritten by the new

value.  This speed is accompanied by low memory requirements, since there is
no need to store both n and n-1 level solutions: only a single array, zi,j itself, is

required in programming.  Our approach to Equations 8-56 and 8-57 was
motivated by the following idea.  Rather than solving for x(ξ,η) and y(ξ,η) in a
staggered, leap-frog manner, is it possible to simultaneously  update x and y in a
similar once only manner?  Are convergence rates significantly increased?
What formalism permits us to solve in Gauss-Seidel fashion?  What are the
programming implications?

Complex variables are used in harmonic analysis problems; for example,
the real and imaginary parts of an analytical function f(z), where z = x + i y,
provide solutions satisfying Laplace’s equation.  Here we use complex analysis
differently.  We define a dependent variable z by z(ξ,η) = x(ξ,η) + i y (ξ,η), and
then add Equation 8-56 plus i times Equation 8-57, in order to obtain the result
(xη

2 + yη
2) zξξ - 2 (xξxη + yξyη)  zξη + (xξ

2 + yξ
2) zηη  = 0.  Now, the

complex conjugate of z is z*(ξ,η) = x(ξ,η) - i y(ξ,η), from which we find that x

= (z + z*)/2 and y = - i (z - z*)/2.  Substitution produces the simple and
equivalent one equation result

(zη  zη*) zξξ - (zξ zη* + zξ*zη ) zξη  + (zξ zξ*) zηη  = 0 (8-58)

This form yields significant advantages.  First, when z is declared as a complex
variable in a Fortran program, Equation 8-58 represents, for all practical
purposes, a single equation in z(ξ,η).  There is no need to leap-frog between x
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and y solutions now, since a single formula analogous to the classical model zi,j
= (zi-1,j +  zi+1,j + zi,j-1 + zi,j+1)/4 is easily written for the zi,j related to

Equation 8-58 using second-order central differences.  Because both x and y are
simultaneously resident in computer memory, the extra time level present in
staggered schemes is completely eliminated, as in the Gauss-Seidel method.  In
hundreds of test simulations conducted using point and line relaxation,
convergence times are shorter by factors of two to three, with convergence rates
far exceeding those obtained for cyclic solutions between x(ξ,η) and y(ξ,η).
Convergence appears to be unconditional, monotonic, and stable.  Because
Equation 8-58 is nonlinear, von Neumann tests for exponential stability and
traditional estimates for convergence rate do not apply, but the evidence for
stability and convergence, while empirical, remains very strong and convincing.

Fast solutions for reservoir pressure.  The new approach implies very
rapid generation of irregular, boundary-conforming, curvilinear grids that better
accommodate the physics, and is, in itself, significant.  The effects of
complicated well/fracture contours and outer boundaries can now be modeled
very accurately.  But unlike rectangular systems, fewer grids not only provide
better resolution: matrices are smaller, and at the same time, the above Gauss-
Seidel-like scheme accelerates their inversion.  Sophisticated meshes are simple
to create, and refinements to them are no more complicated.

However, the best is yet to come: solutions to several classes of steady-
state problems with different boundary conditions are automatic and free in a
literal sense!  Solutions to numerous practical problems (e.g., flows of liquids
and gases, having general exponent “m”) can be solved in the field, with little
computational power.  In the aerospace industry, the x( ξ,η) and y(ξ,η) define
coordinates that might host solutions to the Navier-Stokes equations.  In
petroleum engineering, the grid in Figure 8-3 supports calculations for
properties like pressure.  To keep the ideas simple, let us consider liquid Darcy
flows satisfying pxx + pyy = 0, which commercial simulators discretize and

solve on variable x-y grids, subject to boundary conditions for pressure and rate.
Conventionally, grid generation is followed by pressure analysis: first create the
(rectangular) grid, then obtain pressure.  But this is unnecessary.  Under the
assumed transformation, our p xx + pyy = 0 becomes pξξ + pηη = 0 for p(ξ,η).

However, we do not need to numerically solve for p(ξ,η), because an analytical
solution is easily obtained in terms of the metrics of the mapping already
available.  If well and farfield reservoir pressures pwell(t) and pres(t) are

prescribed at η = 0 and 1, the required solution is just

p(ξ,η;t) = (pres – pwell ) η(x,y) + pw (8-59)

which is a linear function of η(x,y) alone!  In other words, once x( ξ,η) and
y(ξ,η) are available and inverted (by table) to give ξ = ξ(x,y) and η = η(x,y), the
solution to the pressure-pressure problem is available by rescaling using
Equation 8-59.  There is never a need to solve for pressure since our grid
generation problem is formulated to make steady-state pressure solution
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unnecessary!  Note that the time dependence given in Equation 8-59 does not
refer to compressibility transients, but instead, to possible changes in pwell(t) and
pres(t) during drilling or by injection elsewhere in the reservoir.

In the next chapter, we will show how solutions to pressure and flow rate
boundary value problems, when either well pressure or farfield pressure is
given, are also automatically generated.  That is, a single procedure provides the
complete range of pressure solutions whenever any two of the total flow rate Q,
and the pressures pres and pwell are prescribed, and furthermore, for both liquids
as well as gaseous fluids.  In addition, we will draw on our topological findings
to extend the notion of the elementary logarithmic and arc tan solutions (for
cylindrical coordinates) to arbitrary geometric domains, for example, a reservoir
having the shape of Texas!  Applications to transient compressible flows, in
which curvilinear grids are combined with alternating direction implicit
numerical integration schemes, are given in Chapter 10.

PROBLEMS AND EXERCISES

1. Use central differencing to discretize the grid generation formulation in
Equation 8-58, and develop a recursion formula (based on line or point
relaxation) for the complex variable z, as described in the text.  Following
Chapter 7, develop a Fortran or C program to solve this complex equation
iteratively, assuming the near and farfield boundary conditions discussed.
As a program test, map the annular domain defined by a circular well in a
concentric reservoir to a rectangular box.  Sketch both computed sets of grid
lines.  Are they orthogonal?  Should they be?  What are the advantages of
orthogonality, if any?  Then, use Equation 8-59 to compute steady-state
pressure as a function of the radial distance r, and compare your results with
the logarithmic solution derived analytically in Chapter 6.

2. Using the program developed above, consider a Texas shaped reservoir with
a circular well located in “Houston,” as shown in the text-based sketch
below at the left.  Assuming the boundary points suggested in the figure,
show that a curvilinear grid can be obtained that takes the more attractive
form presented at the right.  Then, solve the general pressure-pressure
boundary value problem by implementing Equation 8-59 in a subroutine.
Output pressure contours can be displayed in different colors using new
features available with the Compaq Digital Fortran 6.5 compiler.
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3. As a comparison, solve for the Texas pressure above with rectangular (x,y)
grids, using the Fortran programs given in Chapter 7.  Describe the nature
of your solution in the vicinity of “Houston.”  Does pressure vary
logarithmically near the well?  How accurate is the curvilinear grid
solution?  How fine must the rectangular grid be in order to approach the
accuracy afforded by curvilinear mesh systems?
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9
Steady-State

Reservoir Applications

In this chapter, we will transform the Darcy equations for transient
compressible liquid and gas flows into curvilinear coordinates.  For simplicity,
the transforms are applied in the horizontal areal plane only, while the vertical
coordinate is left unstretched.  This enables us to keep the exposition simple and
free of unnecessary algebra, at the same time, allowing us to address some
important issues.  Once the equations are obtained, we show how the
fundamental log r and θ elementary solutions obtained for pure radial flow can
be extended to arbitrary wells and fractures in reservoirs with general outer
boundaries . . . a major breakthrough.  Mathematical analogues to these
elementary solutions can be obtained for any particular reservoir geometry, once
and for all, and can then be used to solve large supersets of steady-state
problems, following the ideas developed in Chapter 6 for radial flows.

Three motivating pressure problems.  In developing any new idea, it is
useful to reexamine older, similar, and simpler analogies that directly motivate
the mathematics.  In reservoir simulation, the fundamental governing PDE is
Laplace’s equation for pressure, assuming constant density, single-phase liquids
in homogeneous, isotropic formations.  This takes different forms depending on
the coordinate system used.  Consider, for example, linear Darcy flow.  Here,
the equation d 

2p(x)/dx2 = 0 holds.  If p = pw at the well x = 0, and p = p* at the
reservoir boundary x = x* , the solution is the well-known linear pressure drop

p(x) =  pw + (x/x* )(p* - pw)                                                       (9-1a)

On the other hand, for radial flows with cylindrical symmetry, the pressure p(r)
satisfies d 

2p(r)/dr2 + 1/r dp/dr = 0.  If p = pw at the well r = rw, and p = p* at the
reservoir boundary r = r*, the solution is the logarithmic pressure drop

p(r) =  pw + {(log r/rw)/(log r*/rw)} (p* - pw)                                (9-1b)

For spherically symmetric flows, p(r) satisfies d2p(r)/dr2 + 2/r dp/dr = 0, where r
is the spherical radial coordinate.  If p = pw at the well r = rw, and p = p* at the
reservoir boundary r = r*, the solution is the algebraic pressure drop

p(r) =  pw + {r*(1- rw/r)/(r*- rw)} (p* - pw)                                    (9-1c)
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Reservoir simulation as a topology problem.  If we compare Equations
9-1a, 9-1b, and 9-1c, one might go so far as to speculate that

 p(r) =  pw + GF (p* - pw)                                                          (9-1d)

can represent the general solution of a more complete Dirichlet problem.  Here
GF is a simple geometric factor, whose existence is contingent upon the
availability of a single coordinate variable to represent distances measured from
a suitable origin (this is not the geometric factor used in induction logging).
Such a representation, if possible and practical, has the potential of rendering the
most complicated geometries amenable to simple analysis.  We can, in this
sense, view the pressure problem as the search for an appropriate GF, and fluid
flow analysis literally becomes a topological problem.

The practical benefit one incurs from this line of thinking is twofold.  First,
once the GF is obtained for any particular flow domain (e.g., linear, cylindrical,
spherical, or whatever), the complete superset of flow boundary value problems
(following Chapter 6) should be expressible in terms of GF alone, which is
obtained just once and for all.  Second, the solution for the relevant GF, as
suggested in the foregoing examples, should follow from ordinary, and not
difficult partial differential equations.  So far, we have discussed the pressure
solution only as it depends on GF, but similar considerations apply to streamline
tracing.  For example, the streamfunction in a linear flow is simply y, whereas
that in a cylindrical radial flow is θ; these simple dependences are again the
direct consequence of having available the canonical Cartesian and polar
coordinates natural to the problem.  We will show that general pressure
solutions depend on the function η(x,y) alone, and also that streamfunction
calculations can be considerably simplified.    

A practical problem.   To put these abstractions in down-to-earth form,
consider the following hypothetical Oil Patch example.  Aerial reconnaisance
reveals a large, irregular petroleum reservoir in the size and shape of Texas.  It is
not known whether the formation contains liquid or gaseous hydrocarbons, so
that the exponent m must be left as a what if parameter.  The operating company
decides to drill its exploratory well in “Houston.”  It would like to solve, for the
purposes of production and formation evaluation, the following three boundary
value problems, pressure-pressure, well pressure-flow rate, and farfield
pressure-flow rate, following the discussion in Chapter 6, for all possible values
of m.  Normally, this would require numerous fine grid, rectangular mesh, and
approximate computer simulations, repeated for large ensembles of parameters
varied in nested do-loops.  With the formalism developed in this chapter, the
geometric factor GF is obtained once and for all, in seconds and stored in
computer memory.  Note that the GF is an array of real numbers, just as log r
and θ also are arrays of numbers.   Each of the boundary value problems, then,
can be solved simply by rescaling this array of numbers, just as Equations 9-
1a,b,c also represent simple renormalizations.
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GOVERNING EQUATIONS

To fix ideas, we will formulate the transformed problem for a single-phase,
compressible flow with a constant horizontal permeability kh in the areal (x,y)
coordinates, and a variable permeability kv(z) in the layered, vertical z direction.
The matrix porosity φ(z) may vary with z.  The fluid viscosity µ is assumed to
be constant.  The governing equation then takes the following form,

kh (∂2
p

m+1
/∂x

2
 + ∂2

p
m+1

/∂y
2
) + ∂(kv ∂p

m+1
/∂z)/∂z

                                                                 = φ µ c*  ∂p
m+1

/∂t           (9-2a)
which is a special case of Equation 1-6.  Here p(x,y,z,t) is the pressure in (x,y,z)
Cartesian coordinates, and t is time.  The exponent m is zero for liquids, while
gases are modeled by nonzero values.  For example, m = 1 for isothermal
expansion, while m = Cv/Cp for adiabatic expansion.  (Cv and Cp are specific
heats at constant volume and pressure, respectively.)  The reader should refer to
Equation 1-8 and, for example, to Saad (1966) for details.  When m = 0, c*

represents the net compressibility of the fluid and underlying rock; for nonzero

values of m, c*(p) is variable with

c*(p) = m/p                                                                             (9-2b)
This casts Equation 9-2a in a linear-like form for p m+1, which facilitates
numerical analysis, noting that full nonlinearity is assumed in this book.  Now,
let us consider the function pm+1(x,y,z,t) and its image P m+1(ξ�,η,z,t) in
transformed curvilinear (ξ,η ,z) coordinates.  Such transformed coordinates are
often called corner point geometries in the reservoir simulation literature for
their ability to adapt to stratigraphic boundaries.  In particular, we will examine
the combination ∂2pm+1/ ∂x2 + ∂2pm+1/ ∂y2, keeping the function pm+1 

together as a
whole.  That is, if

P
m+1

(ξ,η ,z,t) = p
m+1

(x,y,z,t)                                                     (9-3)

then the first derivative with respect to ξ transforms according to

P
m+1

ξ = p
m+1

x 
xξ + p

m+1
y 

yξ                                                (9-4)

and
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m+1

ξξ = + xξξ p
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x
 + yξξ p
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xx
 + yξ
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p
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 + 2 xξ yξ p
m+1

xy
     (9-5)

Similarly,

P
m+1

ηη = + xηη p
m+1

x
 + yηη p
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y

                       + xη
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p
m+1

xx
 + yη

2 
p

m+1
yy

 + 2 xη yη p
m+1

xy
      (9-6)
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It is important to emphasize how additional first-order and second-order
mixed cross-derivatives are produced by general transformations (compare
Equations 9-2a and 9-7).  The latter terms are just as important as the unmixed
second derivatives and must be accounted for in numerical analysis.  This is not
so with several widely used simulators.   Quoting from one oil company report,
“The discretization of these terms is neglected in several [commercial reservoir]
simulators because their structure is not amenable to solution by existing direct
matrix solvers.”  For this reason, “finite difference solutions may not converge
to the solution of the flow equations, even with refinement of the grid.”  The
reader should exercise caution in his use of corner point options.  Fortunately,
this is not the case with public domain software available in the aerospace
industry; access to a wide body of literature on grid generation, including
documented Fortran algorithms, is available from government research agencies
for a nominal fee.  Our emphasis is primarily analytical, and we return to the
basic equations.  The addition of Equations 9-5 and 9-6 leads to a complicated
equation, namely,

P
m+1

ξξ + P
m+1

ηη = (xξξ + xηη ) p
m+1

x
 +  (yξξ + yηη ) p

m+1
y

(9-7)

         + (xξ
2
 + xη

2
) p

m+1
xx

 + (yξ
2

 + yη
2

) p
m+1

yy
 + 2(xηyη + xξ yξ ) p

m+1
xy

At this point, we introduce Thompson’s ideas, with P
*

 = Q
*

 = 0, but use the
simplified, equivalent transformations derived in the previous section.
Equations 8-54 and 8-55 require that the first derivative terms disappear.  The
pxy cross-derivative term drops out because the combination xηyη + xξyξ
vanishes identically.  Since Equations 8-52 and 8-53 also imply that

J(ξ�,η) = xξ yη - xη yξ = xη
2
 + xξ

2
 = yη

2
 + yξ

2
  > 0                         (9-8)

it follows that

P
m+1

ξξ + P
m+1

ηη =  J(ξ�,η) (p
m+1

xx
 + p

m+1
yy

)                     (9-9)

Hence, we have, using Equation 9-2a,

kh {(P
m+1

ξξ + P
m+1

ηη )/J(ξ�,η)} + ∂(kv ∂P
m+1

/∂z)/∂z = φµc ∂P
m+1

/∂ t (9-10)
or

kh (P
m+1

ξξ + P
m+1

ηη) + J(ξ�,η) ∂(kv ∂P 
m+1

/∂z)/ ∂z = J(ξ�, η)φµc ∂P
m+1

/∂t    (9-11)

STEADY AREAL FLOW:  GENERALIZED LOG R SOLUTION

Following Chapter 6 for radial flows, we consider three problems relevant
to drilling and formation evaluation: the pressure-pressure and two pressure-
flow rate models.  Again, in steady flows of liquids and gases, total volume flow
rate is a constant of the flow. We consider homogeneous, isotropic systems.
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Pressure-pressure formulations.  In the steady, areal flow limit, both
time and vertical (z) derivatives vanish, leaving a transformed pressure P(ξ,η)
whose (m+1)th power satisfies Laplace’s equation,

P
m+1

ξξ + P
m+1

ηη = 0                                                           (9-12)

We suppose that the reservoir in Figure 9-1a can be mapped into the rectangle of
Figure 9-1b as shown; that is, we assume that Equations 8-54 and 8-55 can be
solved along with suitable boundary conditions to produce the mappings
indicated.  Once the algorithm has generated the transformations ξ = ξ(x,y) and
η = η(x,y), these are stored in memory.  At this point, we have solved a purely
topological problem, without considering physical boundary conditions.  Now,
according to Figures 9-1a,b, the well pressure PW maps into the lower boundary
η = 0, while the farfield pressure PR maps into η = ηmax (ηmax and ξmax can be
arbitrarily chosen).  Since these pressures are constants, the boundary value
problem specified by Equation 9-12 is rendered independent of the coordinate ξ.
The PDE becomes an ordinary differential equation.  In fact, the quantity
Pm+1(η) varies linearly with η since Pm+1

ηη = 0, taking the value

P
 m+1

 (η) = (P
 R

 m+1
 - P

 W

 m+1
) η/η

 max
 + P

 W

 m+1
                       (9-13)

Hence, the solution P(η) is obtained as

P(η) = {(P
 R

 m+1
 - P

 W

 m+1
) η/η

 max
 + P

 W

 m+1
}

 1/ (m+1)
      (9-14)

Let us summarize our results.  When the radial-like function η(x,y) is known for
a given reservoir, the pressure P(η) is available analytically as a function of PW,
PR, m and η(x,y), thus solving  a  family  of  boundary  value  problems.
Equation  9-14  is  the analogy, for general reservoirs, to the well-known x
pressure variation for lineal flow or the log r solution of radial flow.  The
mapping functions ξ(x,y) and η(x,y) are obtained once and for all for a
reservoir, and η(x,y) may be viewed as a composite log radial coordinate. The
solution to Equations 8-54 and 8-55 yields x = x(ξ,η) and y = y(ξ,η), and not ξ =
ξ(x,y) and η = η(x,y).  But the inversion is easily accomplished as follows.
Select in the (ξ,η) plane any point, and record its grid indexes and corresponding
η and ξ values; then look up the computed (x,y) values for this point, and assign
to this set of (x,y)’s the known values of ξ and η.  This is repeated for all (ξ,η)
points in the rectangular computational plane.
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Figure 9-1a.  General reservoir-well in physical coordinates.
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Figure 9-1b.  Thompson-mapped rectangular coordinates.

Pressure-flow rate formulations.  In many applications, PW and PR may
not represent the best way to pose the practical problem.  For example, it may be
more convenient to specify PW and the total volume flow rate QW

 

, or perhaps,
PR and QW.  We will consider these formulations here.  A trial-and-error iterative
solution that guesses at flow rate is possible, but there is an elegant and faster
alternative.  Let us introduce a normalized function satisfying

(P
m+1

)
*

 = 1 + (P
m+1

  - P
R

m+1
)/(P

R

m+1
  - P

W

m+1
)                   (9-15)
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If we solve for P
m+1

 and substitute the result in Equation 9-12, we find that this
function is likewise harmonic, with

(P
m+1

)
*

ξξ + (P
m+1

)
*

ηη = 0                                                    (9-16)

Here (P
m+1

)
*

 equals 1 along the outer reservoir boundary, and 0 at the inner
well or fracture boundary.  It is important to observe that the function (Pm+1)* so
defined is independent of m, PR and PW, depending only on the details of the
prescribed reservoir geometry.  We will also require an expression for flow rate.
Now, the volume flow rate Q can be computed through any closed contour C
using the general line integral

Q = - (khD/µ) ∫ grad P • n dl                                                    (9-17)
                            C
where grad P  = (Px 

i + Py 
j) assumes the usual vector notation, n is the outward

unit normal along C, dl is an incremental length, • is the scalar product, and D is
the depth of the reservoir into the page.   Equation 9-17 can be rewritten in terms
of (Pm+1)* and evaluated along the inner well or fracture boundary CW where the
pressure is a constant P

W
.  The result is

Q
W 

= - (khD/µ)(P
R

m+1
- P

W

m+1
)/{(m+1)P

W

m
} ∫ grad (P

m+1
)
*

• n dl (9-18)

                                                                         C
W

We are ready to define a convenient algorithm.  We observe that the

boundary value problem for (P
m+1

)
*

, which satisfies simple 1 and 0 pressures
at the boundaries, is solved by

(P
m+1

)
*

 = η/η
max

                                                                  (9-19)

following Equation 9-13, where mapping η(x,y) is known.  We therefore use
Equation 9-19 to evaluate the integral in Equation 9-18.  Since the argument

(P
m+1

)
*

 appears behind the gradient operation in (x,y) coordinates, the integral

I = ∫ grad (P
m+1

)
*

 • n dl = ∫ grad (η(x,y)/η
max

) • n dl                (9-20)

           C
W

                             C
W

depends, like (Pm+1)*, only on geometrical details.  With the value of I known,
say calculated as a part of the generic mapping process, Equation 9-18 takes on
the particularly simple form

Q
W

 = - (khD/µ)(P
R

m+1
- P

W

m+1
)/{(m+1)P

W

m
} I                (9-21)

For steady-state areal problems where PW and QW are specified, the value of the
farfield reservoir pressure PR can be immediately obtained from Equation 9-21
since the solution for PR

m+1 can be written down without difficulty.  When PR

and QW are specified, Equation 9-21 leads to a nonlinear algebraic equation for
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PW which can be solved numerically by the fast Newton-Ralphson scheme in
Chapter 6.  And whether PW or PR are specified in conjunction with QW,
Equation 9-21 is always used to transform the boundary value formulation back
to a pressure-pressure problem whose solution is known from Equation 9-14.
The foregoing results are powerful from a practical standpoint since they
collapse several boundary condition models, for the complete range of PW,  PR,
QW and m, into one simple formula whose only unknown is η(x,y).  Again, this
function is obtained once and for all at the outset of any mapping.  Solutions to
all reservoir simulation problems are then obtained by simple rescaling.  Users
interested in Windows software implementing the above ideas should contact
the author directly.

STREAMLINE TRACING IN CURVILINEAR COORDINATES

We have represented all possible pressure solutions through a single
function η(x,y).  It is possible, it turns out, to treat a generalized streamfunction
Ψ in a similar manner.  To motivate the analysis, we will write the steady, areal
form of Equation 9-2a in the conservation form

(∂p
m+1

/∂x)
x
 + (∂p

m+1
/∂y)

y
 = 0                                                (9-22)

This suggests that a function Ψ(x,y) satisfying the derivative relationships

Ψ
y

= ∂p
m+1

/∂x                                                                      (9-23)

Ψ
x

= - ∂p
m+1

/∂y                                                                    (9-24)

exists, since backward substitution in Equation 9-22 yields an exact 0 = 0
identity.  Equations 9-23 and 9-24 are consistent with Equations 4-17 and 4-18.
Differentiation of Equation 9-23 with respect to y, and Equation 9-24 with
respect to x, and addition, lead to

Ψ
xx

 + Ψ
yy

 = 0                                                                      (9-25)

When m = 0, as for liquid flows satisfying the linear pressure equation, our
Ψ(x,y) reduces to the classical streamfunction.  But the concept applies equally
to steady, nonlinear gas flows, and similar properties for Ψ are obtained.  To see
this, let us divide Equation 9-23 by Equation 9-24; that is,

Ψ
y 

/Ψ
x

= - (∂p
m+1

/∂x) / (∂p
m+1

/∂y)

                      = - (∂p/∂x) / (∂p/∂y) on expansion and simplification

                      = - {(-kh/µ ∂p/∂x) / (-kh/µ ∂p/∂y)}

                      = - u/v                                                                     (9-26)

where u(x,y) and v(x,y) are Darcy velocities in the x and y directions.  Along a
streamline, kinematical considerations require that the streamline slope dy/dx
equal the velocity ratio v/u.  Using Equation 9-26, we find that
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dy/dx = v/u = -Ψ
x
/Ψ

y
                                                              (9-27)

Now, the total differential dΨ satisfies, using Equation 9-27,

dΨ = Ψ
x
dx + Ψ

y
dy = 0                                                            (9-28)

Hence, the streamfunction Ψ(x,y) is constant along a streamline, with different
streamlines having different values of streamfunction.  Once the values of an
array for Ψ(x,y) are available, streamlines can be constructed by drawing lines
of constant Ψ elevation (see Chapter 4).

From Equation 9-25, the boundary value problem governing Ψ(x,y) is still
formulated in (x,y) Cartesian coordinates.  However, the same transformation
used for the pressure equation will lead to Laplace’s equation

Ψξξ + Ψηη  = 0                                                                     (9-29)

in the computational coordinates (ξ�,η).  In order to trace streamlines,  Equation
9-29 must be solved subject to appropriate boundary conditions.  To develop
these conditions, we note that the total volume flow rate per unit depth produced
by the well may be written

Q
W

/D = - (kh/µ) ∫ (P
x 

i + P
y 

j) • n dl                                     (9-30)

                                 C
W

                  = - (kh/µ) {1/((m+1)P
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)} ∫ (Ψ
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i - Ψ

x 
j) • n d l

                                                             C
W

where Px and Py were replaced using the differentiated forms of Equations 9-23
and 9-24, and also, setting P = PW.  The last integral in Equation 9-30 represents
the jump or increase in streamfunction obtained by traversing once around the
well or fracture contour.  Physically, this measures the nonzero net volume
outflow from the well.

In the mathematics literature, this jump is denoted by the bracketed
quantity [Ψ].  Since mass is conserved, the same [Ψ] must be obtained for any
closed contour surrounding the well.  We can rewrite Equation 9-30 in a form
that directly relates [Ψ] to the attributes of the reservoir problem at hand, that is,

[Ψ] = - (m+1) µ Q
W

 P
W

m
/kh                                                   (9-31)

where QW and PW are known from the solution of the corresponding pressure
problem.  Unlike the solution for P(ξ,η), which is independent of the variable ξ,
the streamfunction Ψ(ξ,η) must depend on ξ, since Ψ increases on traversing
around the well.  The nonzero difference between Ψ(ξ,η) found at any two
points (ξ,η), of course, is proportional to the flow rate passing through those
points.   The coordinate ξ plays an identical role to the polar coordinate θ of
Chapter 4 in concentric radial flow.

We now formulate the required numerical boundary value problem for
Equation 9-29.  Without loss of generality, we first arbitrarily assign a reference
value of Ψ = 0 at the origin ξ = η = 0.  Second, along the lower boundary η = 0,
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we specify the exact distribution of volume efflux Ψ(0,ξ) at the well, as obtained
from a direct integration based on the known pressure solution.  Third, at the end
ξ = ξmax of each horizontal line of constant elevation η > 0 surrounding the well,
we additionally impose the same net jump [Ψ] given by Equation 9-31 to ensure
mass conservation.  Finally, since Equations 9-16 and 9-29 imply that Ψη and Pξ
are proportional, the vanishing of Pξ at the constant pressure farfield boundary
implies the edge condition Ψη (ξ ,ηmax

 
) = 0.  Note that we have not assigned

values for Ψ(0,η) itself, since this assumes knowledge of the steady flow paths.
Now, the results obtained for the pressure equation indicate that all

possible flows solutions can be reduced to a simple rescaling of the mapping
function η(x,y).  The streamline problem, for a given reservoir configuration, is
in a sense reducible to a single scalable streamfunction: in our modeling, we
obtain the baseline streamfunction Ψ*(ξ,η) corresponding to the unit problem in
Equation 9-16, and rescale Ψ(ξ,η) via Equation 9-31 as necessary to match
particular QW’s obtained with specialized parameters.  Observe that while the
simple result in Equation 9-14 applies to pressure, an equally simple closed-
form analytical function is not available for the streamfunction.  However, the
streamfunction calculations outlined here require but minimal effort.  Aside
from the numerical effort needed to solve Equations 8-21 and 8-22, or Equations
8-54 and 8-55, the only other integrations required are those leading to the
solution of Equation 9-29.  Again, η(x,y) and Ψ*(ξ,η) are each obtained once
and for all, for a given reservoir configuration.  Thereafter, all pressure and
streamfunction solutions are obtained by renormalizing stored arrays.  Because
the mesh systems used are boundary conforming and variable, a high degree of
resolution is possible near the well or the fracture, even with coarse (curvilinear)
grids.  Accuracy is ensured by using second-order accurate central differenced
equations in any numerical scheme.  Because the mesh can be coarse, computing
times required for convergence are small.  Also, the two stored arrays require
only minimal computer memory.

CALCULATED STEADY FLOW EXAMPLES

In this section, we describe results obtained with the new methods.
Although Windows software is available to compute mappings, pressures, and
streamfunctions in seconds, while displaying results in color, a text-based
display will be used in this chapter to facilitate the presentation of quantitative
information since color print is unavailable.  The four gray-scale plots in the
following Examples illustrate the capabilities of the algorithms.  In Figures 9-
2a,b,c,d, the gray bands represent constant-pressure contours corresponding to
producing wells and fractures located in a Texas shaped reservoir.  The
interactive program first displays the internal well-fracture boundary and then
prints the shape of the outer reservoir boundary.  Finally, it shows the
well/fracture superposed on the reservoir and asks the user to verify that the
internal boundary is entirely contained within the exterior one.  Once reservoir
geometry is validated, pressure and streamfunction analysis proceed.  The
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simple program is portable and does not require any investment in graphics
hardware or software.  As with any numerical scheme, computed solutions show
some mesh dependence.  However, this dependence appears to be less than that
obtained on rectangular grids.

Example 9-1.  Well in Houston.

To illustrate the new approach, consider a Texas-shaped reservoir about
1,400’ × 1,400’ in lateral extent as in Figure 9-3a.  A six-inch diameter well is
located in Houston.  The 1 indicates the location of the first η = 1 grid line
conforming to the circular well (see Figure 9-2a for details).  The 11’s indicate
that 11 radial grids are assumed, with the last η = 11 line coinciding with the far
boundary.  Twenty-five ξ grids in the circumferential ξ direction are taken.
Although this 25 × 11 mesh system is coarse by conventional Cartesian (x,y)
standards, it is fully adequate here since the grids are variable and aligned with
all relevant flow boundaries.  Furthermore, the matrix equations are derived
using second-order accurate, central difference formulas.

Once the grid functions x = x(ξ,η) and y = y(ξ,η) have been computed,
Equations 9-13 and 9-14 indicate that the inverse function η = η(x,y) can be
rescaled to provide the solution to any steady-state pressure-pressure problem in
the parameters P

W
, P

R
, Q

W
 and m.  This simple renormalization, representing the

only required calculation, implies almost instantaneous pressure calculation and
display.  In our Texas examples, grid transformations were obtained in less than
one second on Pentium computers.  Data for the calculated η’s are shown in
Figure 9-3b.  By connecting points of constant η elevation, η grid lines are
obtained.  Again, the η = 1 line conforms to the circular well, while the η = 11
line adheres to the Texas boundary.  The intermediate lines η = 2, 3, ..., 10
provide the detailed mesh, and the remaining family of intersecting grid lines is
obtained by similarly tracing lines of constant ξ.

Figure 9-2a.  Well in Houston.
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Figure 9-2b.  Well in Dallas.

Figure 9-2c.  Well in Austin.

Figure 9-2d.  Fracture across Texas.
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Figure 9-3a.  Houston well in Texas.
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Figure 9-3b.  Boundary-conforming Houston-Texas grid.

It is important that high grid density and good physical resolution are obtained
near the well at 1, while lower densities are obtained further away.  The mesh
automatically coarsens up at faraway reservoir boundaries.  This contrasts with
conventional grids, typified by Figures 9-3c and 9-3d.  The grid in Figure 9-3c,
for example, provides little resolution near the well; attempts to refine the mesh
near 1, as shown in Figure 9-3d, lead to unnecessary and inconsistent refinement
in the farfield.  In both rectangular meshes, the corners of the rectangular mesh
system contain inactive gridblocks that imply inefficient computational
overhead.  These problems do not appear in the boundary-conforming grids of
Figure 9-2.  Also note how the grids in Figure 9-2 are polar-coordinate-like, in
the sense that they can be topologically deformed into cylindrical coordinate
systems.  This behavior is essential to the geometrical factor objectives stated in
the introduction.  In contrast, the grid generation method proposed by Sharpe
and Anderson (1991), in contrast, produces meshed square structures not unlike
that in Figure 9-3d.  The farfield mesh is rectangular, with lines evenly spaced,
while in the nearfield at 1, the grid lines are locally clustered using an attraction
algorithm.  The exact differences between the two approaches will be discussed
later.
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To obtain representative numbers, we assumed a steady flow with
pressures given at both well and outer boundary, being 100 psi and 900 psi,
respectively.  The permeability was 1 Darcy, the viscosity was 1 centipoise, and
a liquid with m = 0 was assumed.  The computed volume flow rate per unit
depth is 360.4 cubic feet per hour.  No attempt was made to calibrate the mesh
with exact known solutions, since the results are presented for illustrative
purposes only.  The display program previously described will also overlay the
computed pressures at their exact physical locations within the reservoir,
showing the first two significant digits of the solution, in psi units.  Pressure
results are given in Figure 9-3e.

The streamfunction Ψ(x,y), like the pressure, is obtained by
renormalization only and is again instantaneously available.  The difference
between Ψ at any two points yields the volume flow rate per unit depth in cubic
feet/hour, flowing between the points under consideration.  Figure 9-3f gives the
computed streamfunction, plotted using the display program.  We emphasize
that, alternatively, when P W = 100 psi and Q W = 360.4 cubic feet/hour are
specified, the program immediately yields PR = 900 psi.  Similarly, when we
specify PR = 900 psi and QW = 360.4 cubic feet/hour, the program immediately
yields PW = 100 psi.  Figures 9-3e,f are also immediately provided by
mathematically rigorous rescaling.  This computational consistency behind three
different boundary value problems is desirable because of its high accuracy.
Because their solutions are almost instantaneous, the total time from problem
setup to comprehensive solution with color display is less than one second.
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Figure 9-3c.  Constant rectangular Houston-Texas grid.
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Figure 9-3d.  Variable (refined) rectangular Houston-Texas grid.
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Figure 9-3e.   Houston-Texas pressure (also see Figure 9-2a).
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Figure 9-3f.  Houston-Texas streamfunction.
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Example 9-2.  Well in Dallas.

We repeat our calculations with the same permeability, viscosity, m, grid
parameters, and PW and PR values, but instead locate our well in Dallas.  Figures
9-4a,b display the reservoir geometry and the computed mesh system.  The
volume flow rate increases to 448.8 cubic feet/hour.  The corresponding
pressure and streamfunction solutions are given in Figures 9-4c,d.
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Figure 9-4a.  Dallas well in Texas.
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Figure 9-4b.  Boundary conforming Dallas-Texas grid.
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Figure 9-4c.  Dallas-Texas pressure (also see Figure 9-2b).
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Figure 9-4d.  Dallas-Texas streamfunction.

Example 9-3.  Well in center of Texas.

We repeat our calculations with the same parameters but locate our well in
the center of Texas.  Figures 9-5a,b display the reservoir and the mesh.  Volume
flow rate decreases to a low 1.28 cubic feet/hour.  This is well known: for
pressure-pressure problems, optimal flow rates are obtained, with wells
positioned near outer boundaries, thus maximizing net pressure gradients.
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Figure 9-5a.  Centered well in Texas.

                   11  11    11

                   11  1010  10
                             11
                     10   9 9 910    11      11
                        9         9  10  10        11
                   11       8 8 8 8 9
                      9   8 7 7 7 7 8 8 9    10
                   10 9 8 7 7 6 6 6 7   8 9        11
     11    11    1011   8 7 6 5 4 5 6 7     9  10
               10       8 7 5 4 1 3 5 6 7 8      10    11
                    9   8 7 6 5 2 2 5 6 7 8   9
                 10   9 8 7 7 6 5 3 4 6 7 8 9  10
             11         9 8   7 5 4 5 6 7 8          11
                     1011   9 8 7 6 5 7     910
                   11    10     8 7 6 7 8 9      11
                                9   8 7 8  1011
                             11     9 8 9
                                         10
                                   10   911
                                       10
                                 11
                                         11

Figure 9-5b.  Boundary-conforming Center-Texas grid.
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Figure 9-5c.  Center-Texas pressure (also see Figure 9-2c).
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Figure 9-5d.  Center-Texas streamfunction.

Pressure and streamfunction solutions appear in Figures 9-5c,d.  To infill drillers
and petroleum engineers, the position of the optimal well is crucial to reservoir
economics.  Numerical solutions based on boundary-conforming grids provide a
better estimate of total production than crude rectangular grids.

Example 9-4.  Fracture across Texas.

Management has decided to produce the Texas-shaped reservoir from a
massive hydraulic fracture passing through Texas.  We assumed a slightly
curved fracture with a one-inch width, whose lateral position is given in Figure
9-6a.  Otherwise, all input parameters remain unchanged.  Volume flow rate can
be computed, but here we examine streamfunction differences along the fracture
to find flow rate contributions to total production.
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Figure 9-6a.  Massive fracture in Texas.
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Figure 9-6b.  Boundary-conforming fracture/Texas grid.
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Figure 9-6c.  Fracture/Texas pressure (also see Figure 9-2d).
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Figure 9-6d.  Fracture/Texas streamfunction.

A partial bookkeeping is given below, showing contributions between adjacent
notes; grid, pressures, and streamfunction appear in Figures 9-6b,c,d.
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Computed flow contribution between fracture points:

      O  No.  1 and No.  2  is   .2946E+02 cubic ft/hour
      O  No.  2 and No.  3  is   .3239E+02 cubic ft/hour
      O  No.  3 and No.  4  is   .3801E+02 cubic ft/hour

Example 9-5.  Isothermal and adiabatic gas flows.

We consider fluids other than liquids (for which m = 0).  We choose a
permeability of 0.001 Darcy, a fluid viscosity of 0.1 centipoise, a well pressure
of 100 psi, and a reservoir pressure of 900 psi.  In the first calculation, we
assume an isothermal gas with m = 1.  The flow rate is 0.0639 cubic feet/hour
per unit foot depth.  Pressures and streamfunctions appear in Figures 9-7a,b.
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Figure 9-7a.  Pressure for isothermal gas.
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Figure 9-7b.  Streamfunction for isothermal gas.
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Figure 9-7c.  Pressure for adiabatic gas.

Next we retain the same parameters throughout, but assume an adiabatic
process instead, with the exponent m = 1/1.4 = 0.7 approximately.  The flow rate
is substantially different, at 0.0384 cubic feet/hour.  The corresponding pressure
and streamfunction solutions are shown in Figures 9-7c,d.
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Figure 9-7d.  Streamfunction for adiabatic gas.

We return to our isothermal gas but assume a farfield pressure of 9,000 psi
instead of 900.  All other parameters remain unchanged.  The flow rate increases
to 6.47 cu ft/hr from 0.0639, a 100 × increase for a 10 × pressure increase, a
result of gas nonlinearities.  Pressure and streamfunction solutions are given in
Figures 9-7e,f.  The 90 in Figure 9-7e refers to 9,000 now, and not 900.
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Figure 9-7e.  Pressure for high-gradient run.

As a final study, we reconsider the 9,000 psi problem just treated but set m
= 0.7 to model an adiabatic gas.  The flow rate is 1.97 cubic feet/hour,
contrasting with the 0.0384 cubic feet/hour for the 900 psi adiabatic flow treated
earlier.  Pressure and streamfunction results are shown in Figures 9-7g,h.
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Figure 9-7f.  Streamfunction for high-gradient run.
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Figure 9-7g.  Pressure for high-gradient run.
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Figure 9-7h.  Streamfunction for high-gradient run.

The point served by these steady flow comparisons is not so much that
results can be obtained numerically.  We emphasize, first, that flows on irregular
boundaries can be modeled accurately using boundary-conforming grids.
Second, the complete gamut of boundary value problems in the parameters PW,
PR, QW, and m can be solved almost instantaneously on the slowest computers
by simple renormalization using the analytical approach developed in this
chapter: the η(x,y) function generalizes x for linear, and log r for radial flows.
Third, streamline tracing and particle tracking are just as easily performed as
pressure calculation.  Thus, the availability of natural coordinate systems opens
up more advantages than those purely numerical; it paves the way for smarter,
simpler, faster analytical procedures for daily practical use.

MESH GENERATION:  SEVERAL REMARKS

The “radial, polar-coordinate-like” mesh systems we have studied so far
are typified by Figure 9-2a,b,c,d, computed for a Texas-shaped reservoir.  This
type of mesh offers high resolution in tight spaces.  Other variations are
possible.  Here, we discuss different options available for reservoir simulation;
the ideal mesh depends on the particular application, for example, well position,
boundary condition type, locations of stratigraphic boundaries, and so on.

Figure 9-8.  Lopsided square grid (with dot corners).
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Lopsided square grids.  Consider a conventional square reservoir.  A
rectangular x-y grid might be used in routine applications (e.g., Figures 9-3c,d),
but it is not unnatural to develop a grid, via Thompson’s equations, that
produces corners in the mapped plane that are coincident with the black dots in
Figure 9-8.  The resulting grid bears none of the features that we expect of
square, Cartesian-based systems, but it can be useful if the distribution of
heterogeneities follows the coordinate lines shown.  This would permit
improved reservoir modeling of nonideal flow effects and geological structures.

Square grid for circles.  We appreciate that there is nothing sacred about
the circular grids classically used to model flows in circular reservoirs.  In
Figure 9-9, a rectangular grid, at least in the mapped Thompson plane, is fitted
to a circular boundary and used to host numerical computations.

Figure 9-9.  Circle with square-like grid.
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Figure 9-10.  Triangle with square-like grid.

Grids for odd shapes.  Figure 9-10 shows a rectangular 6 × 6
computational grid fitted to a triangular physical boundary; the black dots
indicate the corners of the mapped rectangle.  Normally, the sharp corners
characteristic of the triangular shape would preclude analytical mappings based
on algebraic formulas.  The Thompson scheme generates smooth grid lines
internal to the triangle, while slope discontinuities are preserved at boundaries.
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Grids for faulted sections.  Faulted cross-sections are easily treated using
Thompson’s mappings.  Figure 9-11 shows a rectangular computational mesh
fitted to both upper and lower stratigraphic bed boundaries, with standard
vertical ones retained at the left and right.  This type of grid is useful in
modeling left-to-right or almost unidirectional flow.  When flows into wells and
fractures are required, the grids used in Figures 9-2a,b,c,d are preferable.

Figure 9-11.  Fault with Cartesian-like rectangular grid.
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Figure 9-12.  Boundary-conforming two-well grid.
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Multiple wells.  So far, we have discussed grid generation for single-well
domains only.  But the treatment of computational flowfields with multiple
wells or holes is, again, well established (Thompson, 1978, 1984; Thompson,
Warsi, and Mastin, 1985).  This area of grid generation is considered in detail in
aerodynamics, where it is used to study flows past multi-element airfoils, wing
flaps, high-lift devices, and so on.  Figure 9-12 displays a grid system that
might be useful for a two-well simulation.  Here, the inner contour does not
completely wrap around each of the wells, although in practice it does.
Interwell branch cuts render the innermost contour dumb-bell-like, with the
outermost contour developing into the obvious circle.  Boundary conditions at
interwell branch cuts preserve continuity of physical quantities such as pressure
and velocity.  The mapped domain is again rectangular and simple; multiple
wells are similarly treated with multiple internal branch cuts.

Figure 9-13.  General functional behavior.

General stratigraphic grids, internal boundaries.  It is often desirable to
design grid systems whose coordinate lines coincide with internal stratigraphic
boundaries, or perhaps with other known boundaries of isolated heterogeneities.
This amounts to solving Equations 8-54 and 8-55, or in the more general case,
Equations 8-21 and 8-22, subject to specifications of the dependent variables x
and y internal to the outer boundary of the flow domain.  Such schemes (e.g.,
Sharpe and Anderson, 1991), are embody some dangers and hidden pitfalls.  As
we have seen from our closed-form fracture solutions of Chapter 2, and in the
numerical well and fracture computations of Chapter 7, solutions to elliptic
partial differential equations where the function is internally specified typically
produce solutions with discontinuities in the first derivative (e.g., see Figure 9-
13).  This means that the usual difference formulas for all second pressure
derivatives must be modified in order to account for internal jumps that will vary
from problem to problem.  Unless this change is carried out, any flow
simulations are likely to be incorrect.  This subject is treated in Chin (2000),
which deals with the subject in the context of Maxwell’s equations in layered
media.  That work presents formulas for differentiating across surfaces bearing
discontinuities in the function or its derivative.
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Because of the existence of first-derivative discontinuities when internal
boundary conditions are specified, flows past multi-element airfoils in the
aerospace industry, as cases in point, are simulated using singly connected
computational domains such as that shown in Figure 9-12 which displace the
source of the discontinuity to a computational boundary.  Whereas the modeling
by Sharpe and Anderson (1991) of wells as internal fixed points produces
undesired discontinuities, aerospace methods produce meshes where all metrics
and derivatives are continuous.  Sharpe and Anderson also embed their elliptic
operators in first-order, time-like systems.  The complete process yields shocks
in some instances, perhaps because the embedded system possesses nonlinear
hyperbolic properties.  Jameson (1975) has shown how various transient
diffusive systems can be derived to host relaxation-based techniques; these
methods are further optimized for computational speed.

The extremely stable scheme for Equation 8-58, used in Chin (2001a,b) for
mesh generation in highly eccentric borehole annuli and noncircular ducts, for
example, can produce 50 × 50 grids systems in approximately one second on
typical Pentium machines.  Figures 9-8 to 9-12 show that alternatives to the
radial-like grid systems typified by Figure 9-2 are possible.  While Thompson’s
scheme is quite flexible, and can be readily adapted to mappings with multiple
branch cuts and lopsided grid structures, it is not the only host formulation
available.  Many other mesh generation schemes are available from public
Internet websites devoted to this very interesting area.

PROBLEMS AND EXERCISES

1. The calculations performed in this chapter mapped the single-well reservoir
in Figure 9-1a to the rectangular computational domain of Figure 9-1b using
two types of boundary conditions, discussed previously.  The first deals
with the physical coordinates of the well/fracture and the reservoir, while
the second focuses on the use of branch cuts drawn in the flow domain.
Review these conditions, and explain in your own words why the latter are
needed.  One possible grid system for two wells in a reservoir is shown in
Figure 9-12.  Draw the computational domain analogous to Figure 9-1b, and
label the requisite branch cut pairs required to render the domain
rectangular.  What functional conditions must be satisfied at these cuts?

2. How would you extend the solution of (1) to three wells?  Four wells?  And
finally, to N number of wells?  What are the minimum numbers of grids in
the computational η and ξ directions needed to ensure good physical
resolution as a function of N?
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10
Transient Compressible Flows:
Numerical Well Test Simulation

In this chapter, we first consider two-dimensional, single-well, planar
reservoir flows with boundary-conforming curvilinear meshes.  The transient
solver is based on the alternating-direction-implicit (ADI) method, which is
introduced for simple systems.  Then, other aspects of steady and unsteady flow
simulation in three-dimensions are discussed, and the basic algorithms are given.

Two-dimensional planar flows.  For planar flows, the vertical z
derivatives in Equation 9-11 vanish, leaving the simpler result

P
m+1

ξξ + P
m+1

ηη  = J(ξ,η) φµc/kh ∂P
m+1

/∂t                           (10-1)

Equation 10-1 must be solved with appropriate boundary and initial conditions
(e.g., see Figures 9-1a and 9-1b).  The well pressure PW or the volume flow rate
QW may be specified along the lower η  = 0 boundary of the computational box.
At the edge of the reservoir where η = ηmax, the pressure PR may be specified,
while a zero flow boundary represents another option.  At the sides ξ = 0 and ξ =
ξmax, the pressure may vary with η, but will be single-valued at any particular η .
Finally, at the initial time t = 0, the pressure P(ξ ,η ,0) may take on some
constant value P0.  Or it may take on any of the steady-state, flowing pressure
distributions obtained in the previous chapter.

Alternating-direction-implicit (ADI) methods.  Let us consider the
classical, dimensionless, two-dimensional heat equation for u(x,y,t),

∂u/∂t = ∂2u/∂x2  + ∂2u/∂y2                                                       (10-2)
A simple finite difference method developed along the lines of Chapter 6 for
radial flows leads to

(ui,j,n+1  -  ui,j,n )/∆t =  δx2 ui,j,n  + δy2 ui,j,n                             (10-3)

Here, i and j are indexes in the x and y directions, δx2 and δy2 represent central
difference operators and not mesh lengths, while n and n+1 represent successive
time steps.  Because the right side of Equation 10-2 has been approximated at
the old time step, Equation 10-3 provides a simple explicit scheme that is
amenable to pocket calculator solution.  It is, however, very unstable and
requires extremely small time steps for convergence.
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On the other hand, if the right side of Equation 10-2 is approximated at the
new time step, we have the implicit scheme

(ui,j,n+1  -  ui,j,n )/∆t =  δx2 ui,j,n+1  + δy2 ui,j,n+1                      (10-4)
This five-point scheme, however, leads to a complicated coefficient matrix that
requires extensive calculation for inversion.  In radial flow, recall that the
implicit scheme was useful only because it led to tridiagonal matrices.
Alternating-direction-methods are based on a clever motivating question.  Is it
possible to write Equation 10-4 in a form that requires two successive passes
using a tridiagonal solver only?  The answer is, “Yes.”  And this implies much
faster, more stable, easier-to-code computations.  The idea is this: add special
high-order terms to the base equation, so that the resulting multipoint formula
can be approximately factorized into two successive tridiagonal operations.  We
will omit the details, which are research oriented.  But it turns out that, if ui,j*  is
an intermediate (nonphysical) variable at the end of the first pass (described by
Equation 10-5), then a second pass (defined by Equation 10-6) yielding ui,j,n+1
completes the calculation for the net time step ∆t.

(ui,j*  - ui,j,n )/(∆t/2) = δx2ui,j*  + δy2ui,j,n                                (10-5)

(ui,j,n+1 - ui,j* )/(∆t/2) = δx2ui,j*  + δy2ui,j,n+1                         (10-6)

Such schemes, also known as ADI and approximate factorization methods, are
found in numerical analysis books, and in texts on reservoir simulation, for
example, Carnahan, Luther, and Wilkes (1969) and Peaceman (1977).

Solving the mapped equation.  Equation 10-1, which governs transient
liquid and gas flows in mapped coordinates, obviously resembles Equation 10-2.
It is similar to the pressure transient equation used in physical (x,y) coordinates,
except for the multiplicative presence of the nondimensional Jacobian J(ξ,η)
given by Equation 8-6.  Thus, existing numerical techniques devised for J = 1
(and Equation 10-2, in particular) are applicable with minor modification.  We
emphasize that conventional boundary value problems in (x,y) space treat all
four sides of the computational rectangle as exterior reservoir boundaries, and
represent wells as internal singularities or delta functions.  In the present
approach, the boundaries η = 0 and η = ηmax represent, respectively, the well
and the farfield; the side boundaries ξ = 0 and ξ = ξmax, however, are branch cuts
where the coordinate function ξ and the streamfunction Ψ(ξ ,η) both jump, while
P(ξ,η,t) is single-valued.  Since there are no internal sources, the carryover from
conventional methods is not only straightforward – it is, in fact, simpler.

Example 10-1.  Transient pressure drawdown.

We reconsider the circular well centered in Texas, but relax our steady
flow requirement by modeling the transient flow of a liquid having m = 0, a
viscosity of 20 centipoise, and a compressibility of 0.000015/psi.  A 20% porous
formation is taken, along with a permeability of 0.001 Darcy.                                                    
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Figure 10-1a.  Pressure distribution (0 hour).
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Figure 10-1b.  Pressure distribution (10 hours).
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Figure 10-1c.  Pressure distribution (5 days).
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Figure 10-1d.  Pressure distribution (1 month).

Our pressure boundary conditions are unchanged, and an initial uniform
pressure of 900 psi is assumed.  Initially, at t = 0 hours, the reservoir pressure is
90 throughout, as shown in Figure 10-1a.  Successive snapshots of the pressure
distribution in time appear in Figures 10-1b to 10-1g.  The wellbore flow rate
increases from zero initially, to an asymptotic steady-state value.
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Figure 10-1e.  Pressure distribution (2 months).
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Figure 10-1f.  Pressure distribution (8 months).
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In the above, variable time step sizes were taken, ranging from 0.1 hour at
the outset to 100 hours near steady-state conditions, for a total of 1000 steps.  At
this point, the computations were terminated, with the results almost unchanging
from one step to the next, the final flow rate being 0.00006487 cubic feet/hour.
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Figure 10-1g.  Pressure distribution (2 years).

We asked how this compares with results from a direct steady flow calculation.
The same fluid and formation parameters, and boundary conditions, were
assumed.  The calculated flow rate was 0.00006393 cubic feet/hour, which is
consistent with the large time solution of the unsteady problem.  The steady
pressure and streamfunction appear in Figures 10-1h,i.
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Figure 10-1h.  Steady-state pressure distribution.
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Figure 10-1i.  Steady-state streamfunction solution.

Finally, because the “η=1 coordinate line is exactly coincident with the
internal well (or fracture) contour, it is possible to compute quite accurately the
incremental volume flow rates per unit (foot) depth entering different portions of
the inner contour.  This capability is important in evaluating the quality of
artificially stimulated fractures.  Figure 10-1j provides (automatically computed)
flow contributions at steady state for selected points, showing that, unlike purely
radial problems, flow rates will vary circumferentially because the farfield
boundary is irregular.

              Breakdown of total volume flow rate
       from well/fracture:  Contribution between points

O  No.  1 and No.  2  is   .1863E-05 cubic ft/hour
O  No.  2 and No.  3  is   .2244E-05 cubic ft/hour
O  No.  3 and No.  4  is   .2860E-05 cubic ft/hour

O  No.  4 and No.  5  is   .3455E-05 cubic ft/hour

Figure 10-1j.   Flow contributions around the well.

Example 10-2.  Transient pressure buildup.

Here we will reconsider the reservoir in Example 9-5.  There, the well was
in a sense newly drilled and was allowed to attain its maximum flow rate in
time, under pressure-pressure boundary conditions.  Here, we will consider the
reverse situation.  The reservoir is assumed to be flowing at steady state initially
in accordance with Figures 10-1h,i.  Suddenly at t = 0+ hours, the well is
completely shut in, so that QW = 0 cubic feet/hour.  Thus, we expect PW to
increase with time, and the reservoir to achieve everywhere the 900 psi set at the
farfield.  But the problems here and in Example 9-5 are not identical, with the
direction of time simply reversed.  Numerically, we have different truncation
and cumulative error histories, and stability issues arising from contrasting
initial-boundary conditions are unlike.
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Figure 10-2a.  Shut-in pressure (50 hours).
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Figure 10-2b.  Shut-in pressure (3 weeks).

Figures 10-2a to 10-2e display the reservoir pressure distribution at various
stages in the shut-in process.  Finally, in Figure 10-2f, selected well shut-in
pressures are tabulated.  The overall time scales for both problems are
comparable in order-of-magnitude, as expected.
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Figure 10-2c.  Shut-in pressure (4 months).
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Figure 10-2d.  Shut-in pressure (10 months).
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Figure 10-2e.  Shut-in pressure (3 years).

TIME SIMULATION RESULTS

           Time    Flowrate   Cum-Vol     Pw-Avg      PR-Avg
           (hr)   (cu ft/hr)  (cu ft)     (psi)        (psi

     1  .1000E+01 .0000E+00 .0000E+00   .1809E+03   .9000E+03

    50  .5000E+02 .0000E+00 .0000E+00   .2357E+03   .9000E+03

   100  .5500E+03 .0000E+00 .0000E+00   .3697E+03   .9000E+03

   150  .1550E+04 .0000E+00 .0000E+00   .4615E+03   .9000E+03

   200  .2550E+04 .0000E+00 .0000E+00   .5141E+03   .9000E+03

   254  .5250E+04 .0000E+00 .0000E+00   .6004E+03   .9000E+03

   300  .7550E+04 .0000E+00 .0000E+00   .6483E+03   .9000E+03

   340  .1555E+05 .0000E+00 .0000E+00   .7512E+03   .9000E+03

   400  .2755E+05 .0000E+00 .0000E+00   .8282E+03   .9000E+03

Figure 10-2f.  Shut-in pressure history.

Steady three-dimensional flow.  While we have addressed two-
dimensional planar flows for simplicity, three-dimensional steady flows are just
as convenient to formulate, code, and solve.  For example, consider

∂2p/∂x2  + ∂2p/∂y2 + ∂2p/∂z2  = 0                                           (10-7)

This can be central differerenced in all of the coordinate directions,
straightforwardly, yielding the seven-point representation
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(pi-1,j,k – 2 pi,j,k + p i+1,j,k )/(∆x)2 + (pi,j-1,k – 2 pi,j,k + p i,j+1,k)/(∆y)2

+ (pi,j,k-1 – 2 pi,j,k + p i,j,k+1)/(∆z)2 = 0                     (10-8)

assuming constant mesh lengths.  This finite difference molecule is, of course,
extremely cumbersome; it leads to a sparse coefficient matrix requiring
significant effort for direct inversion (see Peaceman (1977)).  On the other hand,
we can rearrange Equation 10-8 in such a way that the left side contains an
operator of the form ( ) pi-1,j,k + ( ) pi,j,k + ( ) pi+1,j,k =  ..., where the ...

represents all terms not on the left.  This result is reminiscent of the row
relaxation method developed in Chapter 7, except that the relaxation must be
extended over an extra spatial dimension – a simple procedure easily
implemented by introducing an additional do-loop level (e.g., see Exercise 1 in
Chapter 7).  This line relaxation can be carried in any of the three (x,y,z)
directions.  If the heterogeneous extension of Equation 10-7 (for variable
permeabilities) contains destabilizing terms, alternative columns or lines with
increased diagonal dominance can be selected.  All of the advantages of the
relaxation method cited in Chapter 7 apply to three dimensions.

Transient 3D flow, ADI methods.  Again, for purposes of illustration,
consider the classical, dimensionless, 3D heat equation for u(x,y,t),

∂u/∂t = ∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2                                        (10-9)

A straightforward extension of the two-level scheme for planar 2D flows leads
to the four-level, tridiagonal based scheme

(u*  - un)/ (∆t/2) = δx2u* + δy2un + δz2un                    (10-10)

(u**  - un)/ (∆t/2) = δx2u* + δy2u**+ δz2un                       (10-11)

(u***  - un)/ (∆t/2) = δx2u* + δy2u**+ δz2u***                  (10-12)

(un+1 - un)/ ∆t = δx2u* + δy2u**+ δz2u***            (10-13)

This scheme is discussed in Carnahan, Luther, and Wilkes (1969), and
Peaceman (1977), where von Neumann stability analyses are also given.  As in
the two-dimensional case, it is easily implemented, although it is more memory
intensive.  Its application to Equation 9-2a is direct and straightforward, and is
left to the reader as a exercise.  In Chapter  15, we will show how to implement
horizontal, deviated, and multilateral well logic in three-dimensional
heterogeneous and anisotropic reservoirs.  This chapter is not intended to
“replace” well test interpretation and analysis.  Rather, the methods proposed
can be used to supplement existing methods; available solutions can be used to
calibrate grid-generated solutions, in order to increase their reliability insofar as
extrapolation to newer problems is concerned.
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PROBLEMS AND EXERCISES

1. Consider two-dimensional transient heat transfer in a square, where the
initial temperature T0 is uniform throughout, and the four sides are
subsequently held at constant temperatures T1,  T2,  T3 and T4.  Assume
suitable physical properties as required.  (i) Approximate all spatial
derivatives using central differencing, and write a finite difference program
for T(x,y,t) that is explicit in time.  Perform a von Neumann stability
analysis for your scheme, building its requirements into your program logic.
(ii) Program the ADI method given in Equations 10-5 and 10-6.  (iii) Run
both codes and show that the steady-state solution in each case is
independent of the initial temperature; also show that the steady
temperature at the center of the square equals the arithmetic average of the
given boundary values. (iv) Derive the exact analytical Fourier series
solution for this problem, and determine the time required to achieve steady
state.  (v) Does this time agree with your computations?  (vi)  If steady
solutions are the objective, how much more efficient is the ADI scheme
than your explicit scheme?  Explain and quantify your answers.

2. Repeat Exercise 1 for a cube, satisfying the three-dimensional transient heat
equation.  What is the steady-state value of temperature at the center of the
cube?  You should obtain this value by taking the large time limit of your
exact Fourier series solution.  For your ADI method, program Equations 10-
10, 11, 12, and 13.

3. Now suppose that in (1) and (2), respectively, square and cubic holes are to
be introduced at the centers of the computational domains, respectively.
Temperatures or heat fluxes are to be prescribed internally, allowing these
holes to model heat sources and sinks.  How would you modify the above
programs to include the internal well suggested here?  What programming
difficulties and computational inaccuracies do you anticipate?  Make the
appropriate changes for (2) and run your program.  Compare your solutions
to those obtained using boundary-conforming, curvilinear grids for a square
hole in a square domain.  Which program runs faster?  Which produces
more accurate solutions?

4. Transient, compressible flows of liquids and gases in real reservoirs satisfy
the three-dimensional heat equation for pressure.  Suppose a multilateral
well with several out-of-plane drainholes is drilled into the formation.  The
total volume flow rate is the sum of all Darcy contributions, subject to the
constancy of an unknown wellbore pressure (to be determined as part of the
solution) when friction and gravity are neglected.  How do general non-
neighboring grid blocks imposed by well topology adversely affect the
matrix structure of your ADI method?  Can you save the tridiagonal
scheme?  What solution strategies would you suggest?
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11
Effective Properties in

Single and Multiphase Flows

In this chapter, we consider effective properties in single- and two-phase
flows.  We will explore the pitfalls that workers are likely to encounter and point
out subtleties that are not well known.  We will not give a general theory
applicable to all problems, nor is any claim made to.  Our objectives are, in fact,
quite limited but to the point.  Consistent with the philosophy underlying this
book, we will develop exact, closed-form solutions in order to study their
analytical structure, with a view toward understanding the nuances of these
solutions and their potential (or lack of) for generalization.  Toward this end, we
begin with simple models in order to keep both the mathematics and the physics
comprehensible, and thereafter, we will consider problems of increasing
difficulty.

Example 11-1.  Constant density liquid in steady linear flow.

We consider the steady flow of a constant density liquid through two linear
cores placed in series, as shown in Figure 11-1.  We emphasize the stringent
assumptions enforced in the next paragraphs: liquid (with an exponent of m = 0),
steady-state, one-dimensional, single-phase flow, homogeneous cores in series.

Direction of flow

Core #1 Core #2P
L

P
R

Length L
1

Length L
2

Figure 11-1.  Two linear cores in series.
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In this limit, the governing equations are ∂2P1/∂x2 = 0 and ∂2P2/∂x2 = 0,

where the subscripts refer to the core sample.  The solutions are linear functions
of x taking the form Ax + B, where A and B are constants.  Their values are
found using the left and right conditions P1(0) = PL and P2(L1 +  L2) = PR, and
also pressure and flow rate matching conditions at the core interface, P1(L1) =

P2(L1) and (k1/µ) ∂P1(L1)/∂x = (k2/µ) ∂P2(L1)/∂x.  Here, k1 and k2 represent core

permeabilities, and µ is the fluid viscosity of the single fluid.  The required
solutions are straightforwardly obtained as

P1(x) = PL + k2(PR - PL) x /(k1L2 + k2L1)                                (11-1)

P2(x) = PR + k1(PR - PL) (x - L1 - L2) /(k1L2 + k2L1)                (11-2)

The two corresponding Darcy velocities are obtained from

q1 = - (k1/µ) ∂P1/∂x = - k1k2(PR - PL) /{µ(k1L2 + k2L1)}     (11-3)

q2 = - (k2/µ) ∂P2/∂x = - k2k1(PR - PL) /{µ(k1L2 + k2L1)}     (11-4)

Effective permeability and harmonic averaging.  Very often, it is
desired to visualize these two sequential flows as the equivalent flow through a
single system; that is, the steady flow through a single core of length (L1 + L2).

In this case, we observe from Equations 11-3 and 11-4 that
“q” = q1 = q2 (11-5)

    = - (1/µ){k1k2(L1 + L2)/(k1L2 + k2L1)}{(PR - PL)/(L1 + L2)}

In Equation 11-5, which takes on the familiar Darcy form, it is possible to
interpret (PR - PL)/(L1 + L2) as the effective pressure gradient yielding the

equivalent flow rate q, provided an effective permeability is defined with

keff = k1k2(L1 + L2)/(k1L2 + k2L1)                                        (11-6)

Equation 11-6 contains the well-known definition for the harmonic average.
Our derivation brings out clearly the very stringent set of circumstances under
which the foregoing formula for effective permeability applies.  Thus, one
cannot blindly use Equation 11-6 for constant density radial flows, for transient
compressible linear flows, for two-phase flows, for gaseous flows having
nonzero values of m, and so on.  Each flow limit, in general, must be studied on
its own merits.  Nonetheless, several commercial simulators apply harmonic
averaging outside the scope of its valid derivation.

Cores arranged in parallel.  Only when cores are arranged in parallel, for
example, does the usual arithmetic summing process apply.  Consider two
independent cores open to the same pressure sources; these produce at the flow
rates q1 = - (k1/L1){(PR - PL)/µ} and q2 = - (k2/L2){(PR - PL)/µ}, where we have

rearranged Darcy’s law but otherwise left it unchanged.  The net flow rate from
both cores is qtotal = q1 + q2 = (-1/µ)  keff [(PR -  PL)/{1/2 (L1 +  L2)}] for an
effective core having the average length ½ (L1 + L2) and a permeability of keff  =



214   Quantitative Methods in Reservoir Engineering

{(k1L2 + k2 L1)/(L1L2)}{1/2 (L1 + L2)}.  Here keff is different from Equation 11-6

for flows in series; only when both core lengths are identical do we obtain the
simple recipe keff = k1 + k2.

Effective porosity and front tracking.  We now return to the serial flow
problem in Figure 11-1.  To illustrate the dangers behind the blind use of
effective permeabilities, consider the practical problem of monitoring tracer
breakthrough.  Dyes, salts, and radioactive tracers are conventionally used, of
course, to map reservoir connectivity; the time required for the tracer to traverse
the distance between two wells provides an indicator of reservoir flow
resistance.  Now, we suppose that the initial position of the tracer (dye) is x = 0
at t = 0.  The speed of the front is a constant, taking on the value

dx1/dt = q 1/φ1 = - k1k2(PR - PL) /{µφ1(k1L2 + k2L1)}                (11-7)

where φ1 is the porosity in the first core.  Thus, the time T1 required for the dye
to traverse from x = 0 to x = L1, ignoring molecular diffusion, is

T1 = L1/(dx1/dt) = µφ1L1(k1L2 + k2L1)/{k1k2(PL - PR)}      (11-8)

Similarly, the time T2 required to move from x = L1 to x = L1 + L2 is

T2 = µφ2L2(k1L2 + k2L1)/{k1k2(PL - PR)}                             (11-9)

Hence, the average speed of the tracer front is

(L1 + L2)/(T1 + T2) = - (1/µ) {k1k2(L1 + L2)/(k1L2 + k2L1)} (11-10)

{(L1+L2)/(φ1L1+ φ2L2)} {(PR - PL)/(L1 + L2)}

where the {} indicate three consecutive products.  In Equation 11-10, we
recognize the expression keff on the first line.  However, on the second line, we

observe the presence of a new product 1/ φ eff, that is, an effective porosity

φeff = (φ1L1 + φ2L2)/(L1 + L2)                                                   (11-11)

The averaging process defined by Equation 11-11 is not harmonic; it is the
commonly used length-weighted average.

The lessons learned.  There are several lessons to be learned from these
exact calculations.  First, the notion of keff as obtained here is very restrictive.

Second, an exact calculation performed using such an effective property may be
useful in replicating net flow rates.  However, in extracting tracer arrival time,
for example, using effective permeabilities alone without appropriately
modifying the porosity will lead to error.  This limitation arises because there is
an inherent loss of flow information whenever any kind of averaging is
considered.  Our calculations assumed serial flow.  In any real reservoir flow
simulation containing numerous grid blocks and multiple wells, combinations of
parallel and serial flow will be achieved.  The resulting effective properties for
permeability and porosity will depend on the number and orientation of the grid
blocks selected.  Also, they will apply only to the particular simulations, well
topologies, and relative pressure drops at hand: effective properties are not
absolute properties defined at the microscopic level, since they are process-
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dependent.  Thus the use of effective properties, like the mysterious role played
by pseudos in reservoir simulation, while of interest in practice, may be difficult
to assess academically.

Example 11-2.  Lineal multiphase flow in two serial cores.

The results of Example 11-1 are exact, and we might legitimately ask what
their value or role might be in the study of immiscible two-phase constant
density flow.  Again, we will assume the same geometric flow configuration and
obtain closed-form results.  The entire derivation is given for completeness to
highlight the assumptions.  The reader is referred to standard texts for
discussions of basic equations (e.,g., Collins, 1961 and Peaceman, 1977).

Darcy’s laws.  Let the subscripts w and nw denote wetting and
nonwetting, and let 1 and 2 denote the first and second cores, respectively,
having lengths L1 and L2.  We now consider the first core in detail.  Here, the
relevant Darcy velocities are

q1w = - (k1w/µw) ∂P1w/∂x                                                      (11-12)

q1nw = - (k1nw/µnw) ∂P1nw/∂x                                               (11-13)

where µw and µnw are viscosities.  For simplicity, we assume high flow rates,
that is, zero capillary pressures pc, so that

P1nw - P1w = Pc = 0                                                          (11-14)

This simplification is not used later in this book.  For now, since p1nw = p1w, the

pressure gradient terms in Equations 11-12 and 11-13 are identical.  If we divide
Equation 11-12 by Equation 11-13, these terms cancel, and we obtain

q1nw = (k1nw µw /k1w µnw) q1w                                             (11-15)

Mass conservation.  At this point, we invoke mass conservation, recalling
the assumption of a constant density flow.  Then, it follows that

∂q1w/∂x = - φ1 ∂S1w/∂t                                                        (11-16)

∂q1nw/∂x = - φ1 ∂S1nw/∂t                                                     (11-17)

Since the wetting and nonwetting fluid saturations S1w and S1nw in Equations

11-16 and 11-17 must sum to a constant value of unity, that is,
S1w + S1nw = 1                                                                    (11-18)

it follows from adding Equations 11-16 and 11-17 that
∂(q1w + q1nw)/∂x = 0                                                              (11-19)

Hence, a total speed q can be defined from the integral of Equation 11-19,
q1w + q1nw = q = q(t)                                                             (11-20)

where a dependence on time is allowed.
Fractional flow functions.  Now, it is convenient to define the fractional

flow function f1w for the wetting phase by the quotient
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f1w = q1w /q                                                                        (11-21)

Then, for the nonwetting phase, we obtain
f1nw = q1nw /q = (q - q1w)/q = 1 - f1w                                (11-22)

where we have used Equation 11-20.  The foregoing result can be written in the
form q

1nw
 = q (1 - f

1w
).  Equation 11-21 is similarly recast as q

1w = qf
1w

 .  If these
equations for q

1w
 and q

1nw
 are substituted in Equation 11-15, the q’s cancel, and

we obtain

f1w = 1/{1+ (k1nw µw /k1w µnw)}                                           (11-23)

Saturation equations.  The function f1w = f1w (S1w, µw/µnw) in

Equation 11-23 is a function of the viscosity ratio µw/µnw and the saturation
S1w.  Thus, the left side of Equation 11-16, for example, transforms according to

∂q1w/∂x = q ∂f1w/∂x = q {df1w(S1w)/dS1w} ∂S1w/∂x             (11-24)

Equations 11-16 and 11-24 together imply that the saturation S1w satisfies the

first-order nonlinear partial differential equation

∂S1w/∂t + (q/φ1) {df1w(S1w)/dS1w} ∂S1w/∂x = 0                       (11-25)

A similar derivation for the second core (downstream to the first) leads to

∂S2w/∂t + (q/φ2) {df 2w(S2w)/dS2w} ∂S2w/∂x = 0                       (11-26)

where the q(t)’s in Equations 11-25 and 11-26 are identical, since the fluid
leaving the first core enters the second in its entirety.

Solving the saturation equations.  We now consider a physical
formulation for the two-phase flow boundary-initial value problem that is
complementary to Example 11-1.  We will assume that both core samples are
initially held at the same constant saturation Swi throughout, that is,

S1w(x,0)= Swi                                                                     (11-27a)

S2w(x,0)= Swi                                                                    (11-27b)

Also, we assume that at subsequent times, the left boundary x = 0 at the entrance
to the first core is flooded with a saturation equal to

S1w(0,t) = S1wL                                                                    (11-28)

The resulting boundary value formulations for S1w(x,t) and S2w(x,t) lead to the

so-called Buckley-Leverett problem well known to reservoir engineers.  Their
solutions can contain shockwaves or steep saturation discontinuities, depending
on the form of the fractional flow functions and the initial conditions.  The basic
issues are discussed in Collins (1961) and will not be repeated here.

Various schemes (e.g., Welge’s integration) are used to render the
saturation a single-valued function, which are analogous to the shock-fitting
used in high-speed gasdynamics in aerospace engineering.   The simplest, and
by far the most elegant, is described in the classic nonlinear wave mechanics
book of Whitham (1974).  There, he shows that the well-known signaling
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problem defined by Equations 11-25, 11-27a and 11-28 possesses a shock speed
V1shock  available in exact closed analytical form.  It is

V1shock =  {Q1w(S1wL) - Q1w(Swi)}/{S1wL - Swi}                     (11-29)

where we have denoted, for simplicity,

Q(S1w) = (q/φ1) {df1w(S1w)/dS1w}                                            (11-30)

(refer to Equation 11-25).  Thus, assuming now that q(t) is a constant q, the time
T1 required for the influence of the flood at x = 0 to be felt at the end of the first
core (and hence, the beginning of the second) is

T1 = L1/V1shock = L1{S1wL - Swi}/{Q1w(S1wL) - Q1w(Swi)}  (11-31)

The saturation profile, incidentally, takes the form of a step function having
constant values S1wL and Swi at the left and right sides of the shock.  Once the
shock front reaches the second core, which starts at x = L 1 and ends at the

position x = L1 + L2, the flood saturation S1wL acts, just as it had in the case of
the first core.  Hence, the time T2 required for the shock to traverse the length
L2  can be obtained by inference from Equation 11-31.  That is,

T2 = L2/V2shock = L2{S1wL - Swi}/{Q2w(S1wL) - Q2w(Swi)} (11-31)

The total elapsed travel time is
T1 + T2 = L1{S1wL - Swi}/{Q1w(S1wL) - Q1w(Swi)}

                      + L2{S1wL - Swi}/{Q2w(S1wL) - Q2w(Swi)}

                     = (S1wL - Swi)[ L1/{Q1w(S1wL) - Q1w(Swi)}

                                          + L2/{Q2w(S1wL) - Q2w(Swi)}]             (11-32)

Thus, the average shock speed takes the form
Vavg shk = (L1+L2)/(T1+T2) (11-33)

                   = (L1+L2)/{(S1wL - Swi)[ L1/{Q1w(S1wL) -Q1w(Swi)}

                                                   + L2/{Q2w(S1wL) -Q2w(Swi)}]}

Characteristic speeds in reservoir analysis.  There are several different
measures by which we can characterize spee” in a reservoir.  In the simple case
treated in Example 11-1, consisting of two lineal cores having lengths L 1 and L

2 arranged in series, we first identified a net flow velocity q which motivated

effective permeability.  Then, the tracer problem suggested that the concept of
effective permeability was not enough to describe all aspects of the problem,
and an effective porosity was identified.  Finally, we considered here a simple,
but physically important, two-phase flow problem that yielded to exact analysis.
In this limit, we identified still another speed, the shock velocity, which is given
in Equation 11-33.  This velocity is important because it leads to the time
required for water breakthrough.  It is evident from Equation 11-33 that, given
the nontrivial presence of the Q’s, the value of Vavg shk cannot be easily related
to the effective permeability or the effective porosity defined for single-phase
flows.  These results suggest that each of the effective properties, while
interesting in its own right, has little to do with the other in a strictly rigorous
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sense.  Many commercial simulators use effective properties definitions
indiscriminately.  Often used recipes, for example, the use of effective
permeabilities based on Example 11-1 in three-dimensional, multiphase
applications with different boundary conditions, completely outside the range of
validity of the original derivation, are just that: recipes that, while plausible, are
in fact very incorrect.  This conclusion is all the more true in real reservoirs
containing multiple wells, where numerous grid blocks are used to simulate
combinations of parallel and serial flow.  Calculated effective properties and
breakthrough velocities and times will, in general, depend on relative pressure
drops, well locations, reservoir shape, boundary conditions, and so on.

The multiphase pressure field.  We conclude this example by
demonstrating how a closed-form solution for the transient pressure distribution
can be obtained.  This exercise is important because, to this author’s knowledge,
analytical solutions to similar nontrivial problems have not been given.  For this
purpose, let us substitute Equations 11-12 and 11-13 into Equation 11-20; then,
using Equation 11-14, we obtain

{(k1w(S1w)/µw) + (k1nw(S1w)/µnw)} ∂P1w/∂x = -q(t)    (11-34)

On rearranging, we find that the spatial pressure gradient satisfies

∂P1w/∂x = -q(t)/{(k1w(S1w)/µw) + (k1nw(S1w)/µnw)}      (11-35)

Since the saturation S1w(x,t) (following Whitham’s solution to the signaling

problem) is a step function in the x direction whose hump moves at the shock
velocity, the pressure gradient in Equation 11-35 takes on either of two constant
values, depending on whether S1w equals S1w

L or Sw
i locally.  Thus, on either

side of the shock front, we have different but linear pressure variations when
time is held fixed.  This situation is shown in Figure 11-2.  At the shock front
itself, the requirement that pressure be continuous is sufficient to uniquely
define the time-varying pressure drop across the core sample.  This completes
our general analysis; details are left to the reader.

Pressure is
continuous

P

x

Pressure gradients

Shock front

are piecewise constant

Figure 11-2.  Spatial pressures in two-phase flow.
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Example 11-3.  Effective properties in steady cylindrical flow.

In Example 11-1, we considered two lineal cores in series, assuming
steady, single-phase flow, and derived the harmonic average rule from first
principles.  It is straightforward, extending these results to radial flow.  For
example, concentric annular rings having different permeabilities can be treated
with d2p/dr2 + 1/r dp/dr = 0 as the host model, yielding solutions A + B log r, as
opposed to d2p/dx2 = 0 which produces A + Bx solutions.  The analytical
solution can be found as before, by matching pressures and velocities at the
interface.  A harmonic average rule with logarithm-based weighting functions
can be derived by addressing the following.  What is the effective radius?  The
effective pressure gradient?  How must effective permeability be defined so that
the solution looks like that for a single medium problem?

Example 11-4.  Steady, single-phase, heterogeneous flows.

Here we generalize the harmonic rule for discrete cores having distinctly
different rock properties, to single lineal cores having continuous heterogeneous
properties.  This is accomplished by considering

d{k(x) dp/dx}/dx = 0                                                              (11-36)

where k(x) is variable (a liquid is assumed, noting that pm+1 replaces p for gas
flows).  If the left and right pressure boundary conditions of Figure 11-1 are
assumed for a single core of length L, we obtain on integration

x            L

p(x) = (PR  - PL) ∫ dζ /k(ζ)/ ∫ dζ /k(ζ) + PL                (11-37a)

                                0             0

This solution can be validated by differentiation; it may find use in reducing grid
numbers in reservoir flow simulations.  Also note that the Darcy flow velocity q
= - {k(x)/µ} dp/dx is constant for steady flow.  It can be written as

                              L

q = - (1/µ) {L / ∫ dζ/k(ζ)}[(PR  - PL)/L]                                      (11-37b)
                             0

Therefore, the quantity in the curly { } brackets represents the effective
permeability for heterogeneous flow, reducing to a single constant k in
homogeneous media.

Example 11-5.  Time scale for compressible transients.

So far, we have considered steady flows.  In practice, nonzero
compressibility means that transient effects can be important, and one may be
concerned as to the applicability of steady-state results.  We will not address
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multicore examples, but will treat a single core of length L with constant
properties.  The objective is a simple expression defining the dimensionless time
scale τ over which transient effects can be confidently predicted to have mostly
dissipated.  At that time, steady flow results hold.  The boundary conditions used
in Example 11-3 again apply here, and the governing equation for single-phase,
liquid flows is

∂2p/∂x2  = φµc/k ∂p/∂t                                                         (11-38)

In Equation 11-38, p(x,t) is the transient pressure, and φ, µ, c, and k represent
porosity, viscosity, compressibility, and permeability.  Standard separation of
variables procedures lead to a Fourier series solution of the form

p(x,t) = PL + (x/L)(PR - PL)

                 ∞
+ ∑ An  exp{-n2π2kt/φµcL2 } sin n πx/L                          (11-39)

                n = 1

where the coefficients An  are determined from initial conditions assumed for

p(x,0).  If we set t = 0 in Equation 11-39, we obtain

      ∞
∑ An  sin nπx/L = p(x,0) - PL - (x/L)(PR - PL)                           (11-40)

     n = 1

Formulas for the Fourier coefficients An , once the right side of Equation 11-40

is specified, are available in mathematical references (e.g., Hildebrand (1948)).
The first line of Equation 11-39 displays the steady-state response, while the
second describes transient behaviour.  The strongest temporal response is given
by n = 1, defining the relevant nondimensional time scale as

τ = π2kt/φµcL2                                                                   (11-41)

This combination of terms, and not the rock and fluid properties parameters
individually, controls the asymptotic convergence of our unsteady flow to steady
state.  In this chapter, we have presented several exact closed-form solutions
describing single- and two-phase flow through cores in series.  These solutions,
not unexpectedly, demonstrate that the flowfields are completely different;
hence, any attempt to apply effective properties obtained from simple problems
(e.g., Example 11-1) to more complicated ones will result in error.
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PROBLEMS AND EXERCISES

1. We will derive a harmonic average rule for radial flow.  Consider constant
density liquid flowing into a well of radius R well.  The well is surrounded by
a first concentric ring having permeability k1 and ending at radial position
R1, which is, in turn, surrounded by a second concentric ring having a
permeability k2 and ending at position R2.  The viscosity of the single fluid
is µ.  The well pressure is PW and the farfield reservoir pressure is PR.  Each
pressure distribution satisfies d2p/dr2 + 1/r dp/dr = 0, which yields solutions
A + B log r in each concentric domain.  Obtain the complete two-layer
analytical solution for this problem by matching pressures and velocities at
the interface.  What is the solution if the second outer layer did not exist?
Rearrange the two-layer solution into the form taken by the single-layer
solution, and compare the two solutions.  How would you define effective
permeability for two-layer radial problems?  For N-layer problems?

2. In the above, the equation d2p/dr2 + 1/r dp/dr = 0 was used because
constant density liquids were assumed.  Extend the analysis to steady-state
gas flows satisfying d2pm+1/dr2 + 1/r dpm+1/dr = 0.  Note that this is not a
nonlinear problem, since the governing equation is linear in pm+1.

3. In the text, we considered effective properties for liquids in linear cores
with heterogeneous permeabilities satisfying d{k(x) dp/dx}/dx = 0.  What is
the governing equation for a radial flow with variable properties k(r)?
Derive the expression for effective permeability.  What is the expression
assuming steady-state gas flows with general exponents m?

4. In Example 11-5, compressible transient flow in a single homogeneous
lineal core was studied.  Repeat this exercise for two lineal cores in series.
Also, extend the analysis of Example 11-5 to single and dual radial cores.
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12
Modeling Stochastic Heterogeneities

The appearance of geological patterns bearing somewhat random features,
or complicated, but periodic, well-defined physical structures, very often raises
questions among flow modelers regarding possibilities for quantitative flow
simulation.  The reservoir description process – the ability to describe

geological structures accurately – is certainly not useful unless the ability to
simulate flows is equally well developed.  Thus, a fractal description may not be
meaningful unless a suitable fractal calculus is at hand or unless supercomputers
are used for direct, fine-scale analysis.  Likewise, a good stochastic description
of a petroleum reservoir completes only part of the job: efficient flow
formulations taking advantage of the particular description methodology should
be diligently researched and posed.  We again caution against blind use of
effective properties and upscaling methods, since these methods can be quite
restrictive, as noted in Chapter 11.  However, despite geometric complication,
analytical methods are possible, drawing on literature from other areas of
continuum mechanics.

OBSERVATIONS ON EXISTING MODELS

In this section, comments on several existing models will be made.  Many
models attempt to appear quantitative, giving the impression of scientific rigor
when, instead, crucial flow details and dynamical effects are ignored and lost.

Dual porosity models.  The best known attempts at simple continuum
models are the dual porosity approaches for naturally fractured reservoirs
(Aguilera, 1980; van Golf-Racht, 1982).  These are usually idealized by
considering three-dimensional arrays of stacked sugar cubes.  The cubes
represent oil-bearing matrix rock, which release fluid to the highly permeable
surrounding fractures (i.e., the surfaces between the sugar cubes) for transport to
the well.  But the stochastic nature of the problem is avoided; even the periodic
flow simplification provided by this idealization is ignored, in favor of a less
clearly defined two-continuum description.  The first medium describes the rock
matrix, which satisfies Darcy’s equations, already familiar to engineers.
However, this continuum, in turn, appears as a source-like term to a second
continuum describing macroscopic fractures; the discrete nature of the matrix
rock and the fractures in dual porosity approaches is lost and disappears.
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The end modeling results are coupled immiscible flow equation systems,
containing twice as many input parameters as the more rational single-porosity
model would have: two sets of relative permeability curves, two sets of capillary
pressure curves, and so on.  Consequently, such hopelessly ill-defined
approaches, given the dearth of real-world data, not to mention errors likely to
be found in laboratory measurement, may never see complete validation.
Simpler flow models for periodic shales and fractures, such as those introduced
in Chapter 5, shed greater physical insight.

Geostatistical vs. direct modeling.  Mathematical geostatisticians often
develop their reservoir models by minimizing suitably defined error functions
that are consistent with measured statistics, subject to auxiliary boundary
constraints.  These functions are typically positive definite, so that a solution to
the minimization process exists.  Usually, the particular function used is chosen
only to simplify the mathematics, and its connection to the actual depositional
process, the flow properties, or the physical appearance of the rock is not
considered.  In contrast, many civil engineers, hydrologists, and fluid
dynamicists have designed large-scale computer models that solve sophisticated
formulations that couple the flow equations together with empirical erosion laws
determined in the laboratory.  They have been successful in generating solutions
that, qualitatively anyway, often approach reality.  A case in point is the
numerical simulation of meandering rivers and streams as they develop and
evolve over geological time scales.  Geostatistical research needs to focus on
reality before it can be accepted by the general user community.

Mathematical connections.  The differential equation methods used in
modeling and the optimization approaches used in geostatistics are closely
related.  The similarities are explored in variational calculus, a well-known
mathematical specialty that relates differential equations to global minimization
problems (Garabedian, 1964; Hildebrand, 1965; Stakgold, 1968).  Such
approaches are not new; for instance, structural engineers have employed
differential equation models side by side with equivalent minimum total strain
energy methods for decades.  In the fluid dynamics context, the solution to the
Laplace equation ∂2p/∂x2 + ∂2p/∂y2 + ∂2p/∂z2 = 0, subject to appropriate
boundary conditions, can be exactly translated into a variational problem that
minimizes an energy-like integral, in particular,

Min ∫{(∂p/∂x)2  + (∂p/∂y)2 + (∂p/∂z)2} dx dy dz + constraints

over the flow domain, when augmented by additional conditions.  In fact, most
differential equation formulations can be posed as equivalent variational
problems and solved by techniques not covered in this book.  Minimization
algorithms, Lagrange multipliers, optimization methods, and the like, would
replace the relaxation methods of Chapters 7 and 9, and it can be shown that
identical solutions can be obtained using approaches that are very different.

We are not proposing solutions of the flow equations using optimization
methods, which are a definite possibility.  However, the fact that a one-to-one
correspondence relates the two indicates that every optimization formulation
designed by a geostatician implies an equivalent differential equation model and
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physical process.  Something about the physics is implicitly assumed that must
be subject to external tests.  What is it?  Is it reasonable?  For example, suppose
we have no experience with differential equations and that someone new to the
profession proposes mimimization as a means to determine pressure.  Is it
correct?  Yes, in that we expect pressure gradients to be smooth globally.  But
the fact that the method is related to ∂2p/∂x2 + ∂2p/∂y2 + ∂2p/∂z2  = 0 means that
the variational problem applies to isotropic media only.  And the fact that this is
Laplace’s equation means that mass is conserved.

In closing, we emphasize that geostatistical methods may contain implicit
assumptions about the flow that deserve clarification.  Also, we note that by
rewriting the differential equation formulations in variational form, additional
solution methods, algorithms, and physical interpretations are available.  Having
established the equivalence between differential equation approaches and
optimization or global minimization methods, we next show how the discrete
nature of periodic heterogeneities can be retained and modeled by direct
analysis using exact but conventional mathematical methods.  The simple limits
considered here are designed to motivate further research along these lines; they
have the potential for providing detailed descriptions of flow past stochastic
shales and fractures.

A MATHEMATICAL STRATEGY

For simplicity, let us consider a three-dimensional reservoir having the
isotropic, variable permeability k(x,y,z).  Assuming a constant density, single-
phase, steady liquid flow, we have the partial differential equation

∂(k ∂p/∂x)/∂x + ∂(k ∂p/∂y)/∂y + ∂(k ∂p/∂z)/∂z = 0                     (12-1)

for the pressure p(x,y,z).  The relaxation methods developed in Chapters 7 and
15 can be used to solve Equation 12-1, of course, when k(x,y,z) is specified and
treated as an indexed array.  In this section, we demonstrate how detailed classes
of k(x,y,z) can be defined to both simplify the mathematics and provide highly
detailed solutions throughout the reservoir.

Permeability modeling.  Direct recourse to high-powered numerical
analysis is not often necessary or even desired.  Following Bear (1972), we
introduce an auxiliary function g(x,y,z) defined by

g(x,y,z) = p(x,y,z) √  k(x,y,z)                                                      (12-2)

Then, it is possible to verify that

∂2g/∂x2  + ∂2g/∂y2 + ∂2g/∂z2  + α2g  = 0                                  (12-3a)
if

∂2 √k /∂x2  + ∂2 √k /∂y2 + ∂2 √k /∂z2 + α2 √k = 0                 (12-3b)

where α is a constant.  Equations 12-3a,b describe the so-called Helmholtz
inhomogeneous medium.  If α = 0, direct algebraic manipulations show that

∂2g/∂x2  + ∂2g/∂y2 + ∂2g/∂z2   = 0                                            (12-4a)
if
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∂2 √k /∂x2  + ∂2 √k /∂y2 + ∂2 √k /∂z2 = 0                              (12-4b)
Equations 12-4a,b define the harmonically inhomogeneous medium.  Bear
(1972), however, does not provide flow solutions to these formation models.  It
turns out, though, that simple solutions are possible.  We now explain how these
equations can be solved using methods in heat transfer and structural vibrations.

Physical implications.  As we indicated in our introductory discussion,
differential equation models are associated with equivalent energy minimization
problems.  For Equation 12-3b, the appropriate model is

Min ∫ {(∂√k/∂x)2 + (∂√k/∂y)2 + ( ∂√k/∂z)2 + α2(√k)2} dxdydz (12-3c)
              V

whereas for Equation 12-4b, the minimization

Min ∫ {(∂√k/∂x)2 + (∂√k/∂y)2 + ( ∂√k/∂z)2} dxdydz               (12-4c)
              V

applies; in Equations 12-3c and 12-4c, the integration volume V represents the
domain of flow.  Thus, while Equations 12-3b and 12-4b appear as analytical
conditions proposed for mathematical simplification only, their physical
interpretation following Equations 12-3c and 12-4c suggests that they imply a
certain global smoothness in the permeability distribution – a reasonable basis
for a sound depositional model given the smoothing effects of geological time
(e.g., imposed natural elements like wind and erosion).  Of course, the fact that
Equations 12-3b and 12-4b are differential equations means that infinite classes
of solutions can be generated as test cases against actual reservoir constraints,
such as tracer data, production histories, and seismic tests.  More importantly,
this opens up the possibility of powerful mathematical techniques developed in
recent years in other disciplines.

Mathematical approaches.  In structural mechanics, researchers normally
deal with wave equations of the form ∂2

u/∂x
2
 + ∂2

u/∂y
2
 + ∂2

u/∂z
2 = ∂2

u/∂t
2
,

where t is time.  Steady state oscillations are studied by assuming sinusoidal
Fourier components of the form u(x,y,z,t) = U(x,y,z) e

iωt
, where ω is the

frequency.  Direction substitution leads to a governing equation for U(x,y,z),
namely, ∂2

U/∂x
2
 + ∂2

U/∂y
2
 + ∂2

U/∂z
2 + ω2

U = 0.  This time-independent
equation is often studied from the viewpoint of eigenfunction analysis: its
standing wave vibrating modes are sought.  Now, this equation for U(x,y,z) is
identical to Equation 12-3b for √k; thus, for example, the repeating patterns of
crests and troughs seen on vibrating plates can be interpreted as similar patterns
of periodic heterogeneities in reservoirs.  It goes without saying that the wealth
of vibrations solutions available in structural analysis can be profitably used for
interdisciplinary work in reservoir description.  In the illustrative example that
follows, we adapt a solution from transient heat transfer analysis to solve the
governing permeability equations for a complicated fracture geology.
Interestingly, in the new approach, we need not make use of dual porosity or
direct statistical methods in order to model the flow exactly.
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Example 12-1.  Contractional fractures.

Let us complete this chapter with an illustrative example that describes the
flow through the complicated contractional fracture system in Figure 12-1.  We
will presume that the harmonic permeability assumption applies: again, a
smooth depositional model that globally minimizes the spatial rates of variation
of √k is taken, so that Equation 12-4b holds.

∂2 √k /∂x2  + ∂2 √k /∂y2 + ∂2 √k /∂z2  = 0                              (12-4b)

Figure 12-1.  Contractional fractures.

Using standard separation of variables procedures, we set

√k = √km + F(x,y) G(z)                                                         (12-5a)
where

√km = σ + αx + βy + γz                                                           (12-5b)

can be a constant or variable mean reference, or background average level
assumed for the reservoir (σ, α, β, and γ are free constants).  Actually, even
more general second-degree polynomials can be used provided their Laplacian
vanishes.   This leads straightforwardly to the reduced equation

Fxx(x,y) G + Fyy(x,y) G + FG”(z) = 0                                    (12-6)

If we next divide Equation 12-6 through by G, we find that
Fxx(x,y) + Fyy(x,y) + (G”(z)/G) F = 0                                      (12-7)

Now, let us consider rock formations for which G”(z)/G(z) is a constant, say, a2.
For such problems, the ordinary differential equation

G”(z) - a2 G = 0                                                                     (12-8)

applies.  The assumed vertical permeability varies exponentially, but the
variation can be made as weak as desired.  Then, Equations 12-7 and 12-8 imply

Fxx(x,y) + Fyy(x,y) + a2  F = 0                                                (12-9)

Methods from heat transfer.  The modeling of Benard convection cells in
hydrodynamic stability is relevant to our purposes, since it leads to a modal
equation identical to Equation 12-9 (Yih, 1969).  It turns out interestingly that
Equation 12-9 itself can be solved by separation of variables once more.  For
example, the choice
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F(x,y) = cos mx cos ny,  m2 + n2 = a2                                      (12-10)

leads to rectangular cells, while, for example, the selection

F(x,y) = f 0 [cos {a (√3 x + y)/2} + cos {a (√3 x - y)/2} + cos ay] (12-11)

yields hexagonal patterns (f
0
, along with a

2
, are free parameters available for

geological modeling).  Other patterns are similarly possible.  At this juncture,
we have, in closed form, the permeability function

√k = √km

+ f  0 G(z) [cos {a (√3 x + y)/2} + cos {a (√3 x - y)/2} + cos ay] (12-12)

where f
0
 and a can be tuned to provide the desired level of periodic variation to

the heterogeneous background permeability √km.  This capability permits both

shale and fracture modeling, for the appropriate parameter values.
Pressure solution.  Next, consider the corresponding pressure field.  We

recall from Equations 12-2 and 12-4a that g(x,y,z) = p(x,y,z) √k(x,y,z) satisfies
∂2g/∂x2 + ∂2g/∂y2 + ∂2g/∂z2 = 0.  If we assume that both the permeabilities and
pressures are known at all well positions and boundaries, it follows that g = p√k
can be prescribed as known Dirichlet boundary conditions.  Then, the numerical
methods devised in Chapter 7 for elliptic equations can be applied directly; on
the other hand, analytical separation of variables methods can be employed for
problems with idealized pressure boundary conditions.  The general approach in
this example is desirable for two reasons.  First, the analytical constructions
devised for the permeability function (see Equations 12-5b, 12-10, and 12-11)
allow us to retain full control over the details of small-scale heterogeneity.
Second, the equation for the modified pressure g(x,y,z) (see Equation 12-4a)
does not contain variable, heterogeneity-dependent coefficients.  It is, in fact,
smooth; thus, it can be solved with a coarser mesh distribution than is otherwise
possible.

Alternative solutions for permeability.  We emphasize that we could
have solved Equation 12-4b as a partial differential equation, subject to known
values of √k at prescribed boundaries numerically; this approach would have
been purely “brute force.”  On the other hand, in Equations 12-10 and 12-11, we
chose analytical solutions that unmistakably bring out the pseudo-periodic
structure of many geological entities found in nature.  Other solution approaches
are also possible.  For example, consider a two-dimensional reservoir whose
heterogeneities satisfy ∂2 √k /∂x2 + ∂2 √k /∂y2 = 0; that is, √k is a harmonic
function satisfying Laplace’s equation.  Following the mathematical ideas
developed in complex variables in Chapters 4 and 5, it is clear that the real or
imaginary part of any function f(z) of the complex variable z = x + i y can be
taken as a candidate solution for √k.  For example, f(z) = az + sin bz, or perhaps
f(z) = sin (az + bz2 + cz3 + ...), might do; the trick is to allow enough free
parameters to fit constrained values, in order to define solutions elsewhere.  The
solution to the differential equation for permeability then reduces to the search
for appropriate level contours in f(z).
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PROBLEMS AND EXERCISES

1. The equivalence between ∂2p/∂x2 + ∂2p/∂y2 + ∂2p/∂z2 = 0 and the
formulation Min ∫{(∂p/∂x) 2 + (∂p/∂y) 2 + (∂p/∂z) 2} dx dy dz for isotropic
flow has been noted.   What is the differential equation governing
anisotropic problems with different permeabilities in the three coordinate
directions?  Write down the equivalent variational formulation.  Review the
basic numerical methods used to solve variational problems, and state their
advantages and disadvantages over finite difference or finite element
methods.  What analytical methods, exact and approximate, are available?

2. Review the literature in structural mechanics, vibration theory, acoustics,
heat transfer, and electrical engineering, in particular, with respect to the
key words mode shape, eigenvalue problem, eigenvalue, natural modes,
vibrating mode, waveguide, and related terminology.   Start a pictorial
catalog of one-, two-, and three-dimensional mode shapes, and compare
these with geological heterogeneities having similar periodic or random
patterns.  What types of equations are solved?  How do they compare with
the pressure and permeability equations used in this chapter?

3. Geological  entities with obvious periodicity include rolling sand dunes
with undulating crests and troughs, and meandering streams and rivers that
wind in and out.  Describe their overall physical features, for example,
amplitude, wavenumber, three-dimensional variations, and so on.  What
types of physical correlations can be developed to describe these features?
Can you develop (readily solved) differential equation models whose
solutions can be used to generalize these correlations?
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13
Real and Artificial Viscosity

In Chapter 11, we showed how a first-order nonlinear partial differential
equation arises in modeling immiscible two-phase flows.  In fact, we derived the
saturation equation ∂S1w/∂t + (q/φ1){df1w(S1w)/dS1w} ∂S1w/∂x = 0, which

describes the well-known Buckley-Leverett problem that governs in the absence
of capillary pressure.  Then, we applied Whitham’s (1974) closed-form results
for flows containing shockwaves and developed a formula for the shock speed.
When capillary pressure is accounted for, the shocks predicted on a low-order
basis need not exist.  Depending on the exact value and form of the small higher
derivative term, the flow may, in fact, be smooth.  Actual computations are
complicated by artificial viscosity, incorrect numerical entropy generation, and
other issues that have led to, among other matters, confusion on the purported
benefits of upwind or upstream differencing.  Fortunately, these problems have
been addressed in gasdynamics, plasma physics, and water waves, and the basic
ideas are discussed in the petroleum context.

REAL VISCOSITY AND SHOCKWAVES

Here, we will review basic properties of low-order wave equations that
admit shocks, demonstrate that correct entropy conditions follow as direct
consequences of high-order derivative terms, and show how artificial viscosity
and upstream differencing can lead to errors in modeling important physical
quantities and also in describing shock front speed.

Low-order nonlinear wave model.  Let us consider the first-order,
convective, nonlinear wave equation for a function u(x,t) satisfying

∂u/∂t + u ∂u/∂x = 0                                                               (13-1)

which should be compared with the low-order saturation equation in Chapter 11,

∂S1w/∂t + (q/φ1) {df1w(S1w)/dS1w} ∂S1w/∂x = 0                       (11-25)

Equation 13-1 possesses a simple general solution for arbitrary initial
conditions.  Recall that the total change for any function u(x,t) satisfies

du/dt = ∂u/∂t + dx/dt ∂u/∂x                                                        (13-2)
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If we compare Equations 13-1 and 13-2, we find that du/dt = 0, provided we
identify dx/dt = u, that is, u(x,t) does not change following a ray path dx/dt =
u(x,t).  This is succinctly expressed by the statement

u(x,t) = G(x-ut)                                                                        (13-3)

which emphasizes that u(x,t) must be a function of x-ut.  Here, G can be any
function.  If we must enforce the initial condition

u(x,0) = F(x)                                                                           (13-4)

where F(x) is given, it is clear that the choice G = F solves the problem.  Hence,
we have the general solution

u(x,t) = F{x - u(x,t) t}                                                               (13-5)

Singularities in the low-order model.  Equation 13-5 may or may not
lead to shock formation or singularities in the first derivatives.  To see how these
may arise, differentiate Equation 13-5 with respect to x using the chain rule to
obtain ∂u/∂x  = F’{x-u(x,t)t} {1 - t ∂u/∂x}.  If we solve for ∂u/∂x, we find

∂u/∂x = F’{x - u(x,t)t}/{1 + t F’}                                                (13-6)

If the initial condition F(x) is such that F’ > 0, the denominator 1 + t F’ > 0 is
positive and the gradient ∂u/∂x is well behaved.  If F’ is negative, shockwave
solutions with infinite values of ∂u/∂x form in a finite amount of time.  These
shocks are analogous to the water breakthrough (a.k.a., saturation discontinuity)
phenomena familiar in waterflooding.

Existence of the singularity.  Equation 13-1 embodies a class of solutions
containing shockwaves, but do these exist in reality?  Although shocks can form
as a mathematical consequence of Equation 13-5, it is often the case that
Equation 13-1 arises as a cruder model to a more accurate formulation.
Fortunately, exact solutions to two higher order equations whose low-order
terms are identical to Equation 13-1 are available for study, namely, Burger’s
equation and the Korteweg deVries equation.  The former arises in the modeling
of gasdynamic shocks in high speed aerodynamics, and is given by

∂u/∂t + u ∂u/∂x = ε ∂2u/∂x2                                                         (13-7)
where ε > 0, a small number, is related to the real viscosity of the fluid.  The
exact Cole-Hopf solution, first reported by Cole (1949), is discussed in
Whitham’s book on nonlinear wave mechanics (Whitham, 1974).  It is possible
to show that physical systems that satisfy Equation 13-7 can be modeled by
Equation 13-1, which is much simpler.  That is, shocked solutions of Equation
13-1 are also obtained from the more detailed description in Equation 13-7.
Why is this not obvious?  This issue is subtle because we have not stated what ε
is small with respect to; when spatial gradients (as obtained from Equation 13-1)
become large, the ε ∂2u/∂x2  term in Equation 13-7 may no longer be small by
comparison to the left-hand side.  Thus, Equation 13-1 may or may not apply
near the shock, and direct recourse to the detailed physical model must be made.

Now consider the Korteweg deVries equation, obtained in the study of
long, inviscid, water waves.  Instead of Equation 13-7, we have

∂u/∂t + u ∂u/∂x = δ ∂3u/∂x3                                                         (13-8)
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where δ > 0 is also a small number.  While Equations 13-7 and 13-8 differ only
in the order of the small right-side term, the solution for Equation 13-8 is
completely different.  An exact solution to the general initial value problem,
using methods from inverse scattering, is again available (Whitham, 1974).  It
turns out that Equation 13-8 does not admit any solutions with shocks.  Thus,
even if δ is small, Equation 13-1 is never relevant as a simplified model.  Our
point is this: the high-order terms in Equations 13-7 and 13-8 control the
solution at all scales.  In two-phase reservoir flow analysis, such high-order
terms are related to local details provided by the capillary pressure function.  If
the low-order Buckley Leverett model without capillary pressure is used, sharp
shocks not unlike those uncovered in Equation 13-6 can form, but their extent
and thickness depend on the local effects of capillary and inertial forces.

Entropy conditions.  Once the high-order model is agreed upon, for
example, Equation 13-7 or 13-8, the complete physical description of the
problem is self-contained.  That is, the entropy conditions one pulls from hats in
thermodynamics can be obtained from integration by parts.  Let us consider
Equation 13-7.  For simplicity, we move with the shock speed, so that

u ∂u/∂x = ε ∂2u/∂x2                                                                (13-9)
applies locally, and we rewrite Equation 13-9 in the conservation form

∂{1/2 u2 - ε ∂u/∂x}/∂x = 0                                                    (13-10)

If we integrate from one side of the shock to the other, where each side is
represented by uniform thermodynamic conditions with vanishing ∂u/∂x’s, it is
clear that {1/2 u2 - ε ∂u/∂x}upstream = {1/2 u2 - ε ∂u/∂x}downstream leads to the

global conservation law u2
upstream = u2

downstream , that is,

u2- = u2+                                                                              (13-11)

This jump condition is analogous to the global mass conservation constraint
enforced in the Buckley-Leverett problem (e.g., via “Welge’s construction”).

Exact conservation laws like Equation 13-11 are just one consequence of
complete models like Equation 13-9, with the explicit form of the high-order
derivative term available.  Its algebraic structure controls the form of energy-like
quantities that are dissipated across discontinuities.  For example, multiply
Equation 13-9 by u(x) throughout, so that u2 ∂u/∂x = εu ∂2u/∂x2.  This can be
rewritten as ∂ (1/3 u3)/∂x = ε u ∂2u/∂x2 .  If we now integrate by parts, we have

(1/3 u3)+ - (1/3 u3)-

= ε [{u ∂u/∂x - ∫ (∂u/∂x)2 dx}+ - {u ∂u/∂x - ∫ (∂u/∂x)2  dx}-]    (13-12)

The ∂u/∂x terms on either side of the shock vanish identically, but the positive
definite integral does not.  This leaves

(1/3 u3)+ - (1/3 u3)- = - ε ∫ (∂u/∂x)2  dx < 0                          (13-13)

and hence the entropy condition below

u3-  > u3+                                                                           (13-14)
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Thus, we have shown that entropy conditions need not be arrived at
independently via thermodynamic considerations; they, and indeed all of the
physics, can be obtained naturally once the structure of the high-order derivative
is known.  Additional entropy conditions can be generated by multiplying
Equation 13-9 by other powers or functionals of u(x), and then integrating by
parts.  Indeed, when the correction to ∂u/∂t + u ∂u/∂x = 0 is not ε ∂2u/∂x2, but a
high-order term satisfying rheological models where the viscosity is a given
function of u and ∂u/∂x, the methods just presented are the only rigorous ones to
determine the structure of shock-like flows.  In reservoir flow analysis, the low-
order Equation 11-25 (i.e., ∂S1w/∂t + (q/φ1) {df1w(S1w)/dS1w} ∂S1w/∂x = 0) is

not complete without ∂2S1w/∂x2 second-derivative capillary pressure terms

included (e.g., see Chapter 21 for a full derivation). Whether or not they are
important in the final analysis depends on the relative magnitudes of capillary to
inertial forces, which for oil- and water-producing reservoirs, vary with time.

Related problems are found in high-speed aerodynamics.  For instance, the
high-order parabolic viscous transonic equation derived by Cole (1949) and
Sichel (1966), was solved by this author (Chin, 1977, 1978a,b,c) and shown to
be equivalent to the solutions of low-order, mixed elliptic-hyperbolic equations
when augmented by external jump conditions.  For further analysis on the role
of small high-order terms in continuum mechanics, the reader is referred to
Ashley and Landahl (1965), Cole (1968), and Nayfeh (1973).  Finally, we
emphasize that the standard Rankine-Hugoniot jump conditions connecting
equilibrium thermodynamic states across shock waves, developed over a century
ago from detailed physical arguments, can be derived from the one-dimensional
Navier-Stokes equations in a similar straightforward manner as given here
(Courant and Friedrichs, 1948).  Also, note that the combined high-order
equation ∂u/∂t + u ∂u/∂x = ε ∂2u/∂x2 + δ ∂3u/∂x3 is treated in Whitham (1974).

ARTIFICIAL VISCOSITY AND FICTITIOUS JUMPS

Despite the importance of the present subject in numerical modeling, the
basic ideas developed here are not discussed, to this author’s knowledge, in
industry reservoir engineering books.  This is not to say that these issues have
been completely ignored.  In fact, problems with multivalued saturations and
steep gradients cited here were noted in the 1950s by petroleum mathematicians.
Important contributions were made by Sheldon, Zondek, and Cardwell (1959),
Cardwell (1959), and Lee and Fayers (1959).  These authors (correctly) invoked
an analogy found in nonlinear acoustics, and resolved the low-order problem
using the method of characteristics and shock fitting.  They also speculated that
the inclusion of capillary pressure in the underlying formulation would render
all saturations single-valued, and they compared this to the process by which
viscous diffusion smears gasdynamic shocks in compressible aerodynamics.
Their ideas on the role of capillary pressure were validated by ongoing research.
The numerical investigations of Douglas, Blair, and, Wagner (1958), Douglas,
Peaceman, and Rachford (1959), McEwen (1959), Fayers and Sheldon (1959),
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Hovanessian and Fayers (1961), and others, in fact, pointed out that “small”
capillary effects can and will affect both shock structure and position.  In the
limit of “high flow rates,” computed solutions correctly gave the corresponding
low-order, shock-fitted Buckley-Leverett solutions.

The existence of truncation errors in finite difference approximations to
differential equations is discussed in numerical analysis texts with respect to
round-off error and computational instabilities (Roache, 1972; Richtmyer and
Morton, 1957), but Lantz (1971) was among the first to address the form of the
truncation error as it related to diffusion.  Lantz considered a linear, convective,
parabolic equation similar to ∂u/∂t + U ∂u/∂x = ε ∂2u/∂x2 and differenced it in
several ways.  He showed that the effective diffusion coefficient was not ε, as
one might have suggested analytically, but ε + O(∆x, ∆t) (so that the actual
diffusion term appearing in computed solutions is the modified coefficient times
∂2u/∂x2) where the O(∆x,∆t) truncation errors, being functions of u(x,t), are
comparable in magnitude to ε.  Because this artificial diffusion necessarily
differs from the actual physical model, one would expect that the entropy
conditions characteristic of the computed results could likely be fictitious.

When physical capillary effects are modeled, the low-order equation model
∂S1w/∂t + (q/φ1) {df1w(S1w)/dS1w} ∂S1w/∂x = 0 changes, in that a second-

order derivative term ∂2S1w/∂x2 with physically defined coefficients appear
(Bear, 1972; Collins, 1961; Scheidegger, 1957).  Additional derivations are also
found in Aziz and Settari (1979), Peaceman (1977), and Thomas (1982).  The
effects modeled by the new terms will be altered as discussed when “upwind” or
upstream differencing is used (e.g., see Allen and Pinder (1982)).  Although
such differencing schemes may be successful in particular examples, for
instance, in correctly modeling mass conservation, upwind methods are
numerous and must be evaluated detail in any application.  So much depends on
the mesh system used, for example, five vs. nine point schemes, the details of
the differencing, and so on, that indiscriminate use should be avoided.  Again, to
properly capture saturation shocks and discontinuities, the appropriate upstream
differencing must be used.  There is no single all-purpose scheme, and
identifying the correct one often requires careful mathematical analysis
(Jameson, 1975).

This leads to the following question.  When the second-derivative terms
are available, it is not necessary to use upwind differencing methods: why not
solve an accurate, high-order numerical scheme that captures real viscosity (or
capillary pressure) effects in the leading description?  This idea was successfully
proposed and tested in the 1970s by the author (Chin, 1977, 1978a,b,c) in high
speed aerodynamics.  The same questions were posed by Moretti and Salas
(1972), who suggested the possibility of solving problems containing
gasdynamic shocks with difference schemes, consistent with the high-order
Navier-Stokes model and not artificial viscosity.  Artificial viscosity, in the
historical context, was popularized by von Neumann in an age when numerical
analysis was not mature and computer resources were expensive (Richtmyer and
Morton, 1957).  As recently as 1991, Zarnowski and Hoff (1991) warned against
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artificial viscosity, recommending instead a direct attack on the exact equation,
thus avoiding all the problems of correct entropy production by retaining the
correct physical viscosity in the main formulation.

PROBLEMS AND EXERCISES

1. Research the numerical simulation literature in reservoir engineering and
state the differences between upwind, central, and downwind
approximations.  These were first discussed by Lantz (1971) in a one-
dimensional context.  What are their modern multidimensional extensions?
What are their implications for mass conservation?  Sharpness of the
saturation front discontinuity? Accuracy in predicting water breakthrough
time?  Relative oil and water production?  Effect on numerical stability?

2. Identify a reputable immiscible, two-phase flow simulator for use in this
problem, and select a validated problem set (with available solutions) where
consistent relative permeability and capillary pressure curves have been
successfully tested against field data.  Re-run selected data sets.  How do
your solutions change as the absolute magnitude of capillary pressure
change?  What happens when the capillary pressure vs. saturation curve is
replaced by an approximate straight-line function?  What if the capillary
pressure is set identically to zero?  In all three scenarios, note the position of
the saturation discontinuity, its steepness, and the thickness of the front.  Do
your solutions oscillate in time?  If so, numerical instability is indicated.

3. Various schemes have been proposed to model water breakthrough
accurately in petroleum reservoirs, involving the use of finite difference
molecules contrasting in number and orientation.  It is known that solutions
are highly sensitive to the grid used and to the form of the difference
molecule.  Can you test their correctness without resorting to field data
comparisons, for example, by developing entropy-based criteria?  Also,
describe how moving time-adaptive grids that follow the shock might
resolve the physics better while using fewer grids.
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14
Borehole Flow Invasion,

Lost Circulation, and Time Lapse Logging
This chapter hints at borehole flow invasion, lost circulation, and time

lapse logging, that is, drilling subjects not usually treated in reservoir
engineering.  They are topics important operationally, but they do represent real
problems in Darcy flow analysis near the well, just as traditional reservoir
engineering treats flows away from the well.  During drilling, muds are known
to invade boreholes; they may or may not contain dispersed solid particles that
weight up the borehole fluid, thus providing increased density for improved well
control.  The pressure differential between the borehole fluid column and the
formation then forces mud filtrate into the reservoir, very often damaging the
potential producing zone (hence, the motivation for underbalanced drilling).
When the formation is permeable compared to the mudcake remaining at the
sandface, the flow rate into the formation is controlled by the buildup of
mudcake, that is, the time-dependent increase in filter-cake thickness arising
from the pile-up of separated solid particles left by invading liquids.  In this
transition chapter, we will present crude models of near-well invasion in order to
introduce the ideas physically.  In the next chapter, the far-well perspective is
taken in which the overall effects of large-scale multilateral and horizontal well
systems on reservoir flow are considered.  Then, in the remainder of this book,
we formulate comprehensive models of formation invasion, noting that these are
equally applicable to near and far-well reservoir flooding applications.

BOREHOLE INVASION MODELING

In this chapter, we will present some basic ideas about borehole flow
invasion and lost circulation.  Once the fundamentals are clearly explained, we
will introduce a relatively new concept known as time lapse logging.  We will
begin our discussion with the simplest invasion models and progress to those
that bear increasing sophistication.  Then, we will indicate how these results can
be used to assist in formation evaluation and reservoir description, discuss
possible pitfalls, and direct the reader to more recent literature.
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Example 14-1.  Thin lossy muds (that is, water).

The simplest borehole flow invasion problem can be posed using the radial
flow model of Chapter 6, and, in particular, applying pressure-pressure
boundary conditions at the well and farfield boundaries.  Because our mud is
assumed to be lossy, we can ignore the presence of cake buildup; many shallow
wells are, in fact, circulated with water or brine as the drilling fluid.

Pressure-pressure formulation.  The starting point, at least for this
elementary analysis, is the pressure equation

d2P/dr2 + (1/r) dP/dr = 0                                                           (14-1)

for P(r), where r is the cylindrical radial coordinate, which governs Darcy flows
of incompressible liquids in homogeneous, isotropic media.  The usual boundary
conditions assume pressures specified at the wellbore and at some distance away
from the hole.  We have

P(rW ) = PW                                                                             (14-2)

P(rR) = PR                                                                             (14-3)

where r = rW and r = rR refer to the well and farfield radius, and PW and PR are
the assumed pressures.  This formulation has the solution (see Equation 4-46)

P(r) = {(PR  - PW )/(log rR/rW )} log r/rW  +  PW                        (14-4)

Now, the radial velocity q(r) is given by Darcy’s law, requiring that

q(r) = - (k/µ) dP(r)/dr = - (k/µ) {(PR - PW )/(log rR/rW )} 1/r       (14-5)

where k is the formation permeability and µ is the viscosity of the fluid.  Hence,
the total volume flow rate QW , assuming a reservoir depth D into the page, is

                       2π

QW  = -D ∫ q(r) rW  dθ, r = rW                                                    (14-6)

                    0
or, simply

QW  = -2π rW  D q(rW )                                                               (14-7)

leading to a constant

QW  = - (2πkD/µ) (PR - PW )/(log rR/rW )                                      (14-8)

Simple invasion modeling, and √√ t behavior.  The front of the drilling
fluid penetrating the reservoir or formation is desired as a function of time for
the constant influx rate above.  In fluid mechanics jargon, this requires a
Lagrangian as opposed to an Eulerian description of the flow field.  The
mathematics, however, is straightforward.  Let us denote the (constant) porosity
by φ.  Then, the rate of invasion into the reservoir is

dr/dt = q/φ = + QW /(2πφDr)                                                      (14-9)

Simple integration gives

r(t) = √{RW
2 + QW  t/πφD}                                                     (14-10)
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for the invasion front.  Here, QW  and φ are assumed to be constant, and the
initial front position is taken to be r = rW  at t = 0.  By the same token, we could

have considered any other ring  of invading filtrate, and obtain

r(t) = √{Rother
2 + QWt/πφD}                                                 (14-11)

if r = Rother > RW  at t = 0.  Let us return to Equation 14-10.  For large times,
this formula reduces to

r(t) ≈ √{QW  t /πφD}                                                                 (14-12)

Thus, in a steady radial flow without mudcake, we obtain “√t” behavior for the
invasion front.  If r(t) is known at some time t, say from resistivity log analysis,
then the porosity φ can be calculated from Equation 14-12.

Example 14-2.  Time-dependent pressure differentials.

In Example 14-1, we assumed that the pressure differential between the
mud column and the formation is constant.  In drilling operations, this is often
not the case: mud weights can be increased for improved blowout control or
decreased to prevent formation fracture.  In general, the quantity (PR - PW ) may
be a function of time, that is, {PR - PW (t)}, but in this example we continue to

ignore the mudcake buildup that accompanies this weighting up.  The basic
ideas still apply.  Again, the transient effects here do not arise from fluid
compressibility.  To obtain quantitative results, substitute Equation 14-8 in
Equation 14-9 and carry out the integration.  Let us introduce the notation

∆p(t) = PW (t) - PR                                                                 (14-13)

This leads to the following formula for the invasion front,
                                                            t

r(t) = [Rw
2 + {2k/(µφ log rR/rW )}∫ ∆p(τ) dτ ]1/2                    (14-14)

                                                          0
The corresponding invasion front velocity is obtained by differentiating
Equation 14-14.  This leads to

dr(t)/dt = k∆p(t)/(µφ r log rR/rW )                                              (14-15)

where r is given by Equation 14-14.  This evaluation is straightforward once the
integration in Equation 14-14 is performed.  Note that the √t behavior in
Equation 14-12 no longer applies.

Example 14-3.  Invasion with mudcake effects.

In this example, we provide a simple, approximate approach that is useful
in field application when mudcake controls the flow into the reservoir.  This
model does not apply to tight (i.e., low-permeability) formations.  First,
mudcake filtration properties must be determined.  Rather than postulating
phenomenological models, we apply the results of laboratory measurements
(denoted by asterisks).  Let h*  represent the height of filtrate collected in a time
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t* , under an applied pressure drop of (∆p)*  in a linear flow vessel.  It is known

that h(t) grows like √t (general results appear in Chapter 17).  Thus, we write

h(t) = c ∆p √t                                                                       (14-16)

where ∆p, the pressure differential applying outside the laboratory, is taken to be
constant, and c is a parameter that describes the particular cake and mud type.
Since the asterisked quantities are available from empirical or field data, the
constant c is uniquely determined from Equation 14-16 as

c = h*/{(∆p)*(√t*)}                                                               (14-17)
Thus,

h(t) = [h*/{(∆p)*(√t*)}] ∆p √t                                                 (14-18)

Now we assume that the mudcake is thin, that is, that the thickness of the cake is
small compared to the radius of the hole.  If so, and if the relatively
impermeable cake controls the flow rate into the formation, the net volume of
fluid Vol deposited into the formation after a time t is approximately obtained
by multiplying Equation 14-18 by 2πrWD, the area of the borehole surface,

Vol (t) = [h*/{(∆p)*(√t*)}] ∆p √t (2π rW ) D                               (14-19)

where D is the length of the borehole.  But this must be equal to the volume in
the formation that is available for fluid storage, that is,

Available volume  = (πrf 2 - πrw 2) φD                                       (14-20)
where we have denoted the front position radius as rf.  Setting the expressions in
Equations 14-19 and 14-20 equal leads to

(πrf 2  - πrW  2) φ = [h*/{(∆p)*(√t*)}] ∆p √t (2π rW )                   (14-21a)

or
rf 2 = rW  2 + [h*/{(∆p)*(√t*)}] ∆p √t (2rW  

/φ )              (14-21b)

At early times, a binomial expansion of Equation 14-21b shows that rf 
(t)

behaves like √t.  We emphasize that this lineal flow, cake-dominated process,
while it yields √t behavior, is physically different from the no-cake, radial model
in Example 14-1.  That both possess identical algebraic behavior (but different
proportionality constants) increases the possibility of interpretation error in log
analysis if the details of the flow process are not well understood.  Again, the √t
applicable to drilling with a clean brine differs from that obtained with solids-
containing mud.  In either case, the front location rf can be determined if the
porosity is known; conversely, if the front location is available, say from
resistivity log analysis, the porosity can be calculated.

TIME LAPSE LOGGING

Mudcakes are important because their extremely low permeabilities control
the filtration rate into the formation, which is assumed to be much more
permeable.  This simplifies the modeling of reservoir flow: front motion
becomes a purely kinematic process governed only by mudcake mechanical
properties and geometric divergence within the rock.  This property can be used
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to advantage in formation evaluation.  If the location of the front is known as a
function of time, then for the simplified flow considered here, the porosity
should be available from simple calculation (e.g., Equations 14-21a,b).  Let us
suppose that the front position can be accurately inferred from resistivity log
analysis.  This is often so if salty and fresh waters have mixed only very little, in
which case the assumptions behind the piston models used in tornado chart
development hold.  Then, it should be possible to predict porosity as a function
of time.  If the formation porosity is constant, then nonconstant predicted values
are the result of spurt loss errors and nonuniform initial mudcake growth.  With
time, the porosity should tend to the constant value of the formation.  In this
section, we will discuss basic supporting experiments.

Again, we consider boreholes with significant filter cake formation due to
non-lossy muds.  When this is the case, we solve Equation 14-21 for porosity,

φ = [h*/{(∆p)*(√t*)}] ∆p √t (2rW )/(rf2 - rW 2)                     (14-22)

If all the parameters on the right side are known with confidence, the porosity
can be determined.  This method was applied successfully in some field
applications.  Chin et al. (1986) gave an invasion porosity log that showed both
qualitative and quantitative agreement with conventional neutron and density
porosity logs.  In the paper, the authors determined the asterisked properties of
the mud using API filtration tests and obtained rf 

(t) from standard resistivity
analysis.

Figure 14-1 shows the log results obtained with the method, whereas
Figure 14-2 shows laboratory porosity predictions converging to the correct
(independently measured) 23% value after approximately one hour. It is clear
that understanding the filtration properties of mudcakes and the detailed
dynamics of their growth is important to obtaining accurate invasion porosity
logs (e.g., as in Figure 14-1).  Chin et al. (1986) studied these transient processes
experimentally using the linear flow and radial flow filtration test vessels shown
in Figures 14-3 and 14-4.

Figure 14-1.  Time lapse logging, field results.
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Time (Min) Porosity (%)

  1.2 10
  3.9 14
  9.0 17
 16.1 20
 25.6 21
 36.1 21
 49.1 22
 64.1 22
 81.0 23
100.0 23
121.0 23
144.0 23

Figure 14-2.  Predicted porosities, radial filtration vessel, converging to 23%.

In these laboratory fixtures, water-base muds of varying weights were
allowed to flow in a direction perpendicular to the rock surface (i.e., static
filtration) in order to form mudcake, but erosive shearing flow in directions
tangential to the surface (i.e., dynamic filtration) were not permitted (see
Chapter 17 for recent rheology-dependent models).  These small vessels were
placed in CAT scan units, which recorded in detail the time-dependent positions
of the moving cake surface and the invading filtrate within the rock.  Sample
linear and radial flow CAT scans, which display density contrasts, are given in
Figures 14-5 and 14-6, where mudcakes appear as very dark bands and invading
fluids are lightest in color.

Figure 14-3.  Linear flow filtration vessel.
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Figure 14-4.  Radial flow filtration vessel.

Figure 14-5.  Mudcake growth and filtration CAT scan in linear core.

Figure 14-6.  Mudcake growth and filtration in radial core.
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Figure 14-7.  CAT scan data, mudcake compaction with time.

We emphasize that the parameter c in Equation 14-17, which characterizes
the filtration properties of the mudcake, was assumed to be constant only for
simplicity.  In essence, the mudcake was taken as a rigid medium that does not
respond to imposed pressure.  This idealization is not true.  Figure 14-7, which
illustrates mudcake growth with time, also shows direct evidence that local cake
density increases with time, a result of nonlinear compaction.  The resulting
changes in cake permeability, porosity, and particle packing, which cause c to
vary, must be accounted for in improved models.

Although the reservoir engineering ideas behind invasion porosity may be
obvious in retrospect, the work in Chin et al. (1986) focused on the potential for
obtaining formation characteristics in addition to porosity.  In principle, good
porosity prediction can be determined from a single front position given at a
single point in time.  In order to obtain, for instance, permeability, viscosity,
hydrocarbon mobility, and so on, the number of additional timewise
measurements and the time separations between resistivity readings must be
known.  Plausible time scales are immediate t = 0 values based on MWD
measurements, one-to-two day readings while tripping, and two-weeks to one-
month data.  Data points must not be too closely spaced in time, or else, the
resulting algebraic equations will be ill conditioned and error-prone.

A comprehensive fluid-dynamical solution for single phase flow was given
in the Chin 1986 work.  There, a flow model with coupled cake growth and
filtrate invasion was constructed, comprised of a three-layer Darcy flow: the
mudcake, the rock with filtrate, and the rock with reservoir fluid.  Mass and
pressure continuity were enforced at interfaces.  At the cake surface, where it is
exposed to borehole fluids, the well pressure was specified and a constitutive
model for empirical cake buildup was invoked (e.g., see Collins, 1961).  Cake
thickness was allowed to increase with time in the moving boundary value
problem formulation, thus slowing the rate of formation invasion.  In the third-
layer farfield, the reservoir pressure was assumed to be known.  Once pressures
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for the different layers were available, exact solutions for invasion speed and
cake growth rate were obtained.  The physical ideas noted earlier regarding the
controlling role played by mudcake were confirmed using the solution.  Again,
mudcake properties are all-important.  In any practical model, mudcake
compaction and erosion under dynamic conditions must be well characterized.

This chapter does not close the book on time lapse logging or invasion.
Quite the opposite, many questions are raised.  What time scales are typical for
good repeated resistivity measurements?  How do these depend on the relative
mobility differences between mudcake and formation Darcy flows?  How do our
interpretation techniques change, going from single-phase flows (e.g., the red
water displacing blue water considered here) to the two-phase water-oil or
water-gas flows characteristic of real petroleum reservoirs?  These reservoir
flow issues are studied later, when we expand on the ideas introduced here.
Some tool and resistivity related issues are addressed in early logging
publications, for example, Cobern and Nuckols (1985) and Allen and Jacobsen
(1987).  Unfortunately, there has been minimal industry effort over the past
decade to broaden the theoretical basis for time lapse logging.  Although
progress has been made in simulating different types of reservoir flow,
complementary progress in modeling electromagnetic wave motion is lacking.
As logging tools increase in sophistication, however, we expect electromagnetic
modeling to mature.

LOST CIRCULATION

We close this chapter with a note on lost circulation (e.g., see Messenger,
1981) for a comprehensive discussion) in drilling applications.  This important
subject in rigsite safety is again founded on reservoir engineering principles.
The models derived in this book for reservoir flows can be used to determine
formation pressures while drilling  in order to monitor or retard fracture initiation
or propagation.  For instance, in Chapter 5 we gave closed-form solutions for
circular boreholes with (i) two symmetric radial fractures, (ii) a single fracture,
(iii) symmetric unequal fractures, and (iv) a multiplicity of radial fractures.
(These solutions were derived for use in hydraulic fracturing and horizontal well
analysis.)  Accurate knowledge of borehole-to-reservoir pressure loads can be
used to predict equilibrium fracture configuration, say, the lateral extent of a
fracture arm once other data are available.  In addition, pressure transient models
for the above configurations can be found in the literature, typically obtained for
formation evaluation use.  These open up the possibility of coupling analytical
reservoir flow methods to drilling data, in particular, to real-time MWD
information or rigsite information, in order to provide answers to questions
related to both drilling safety and formation evaluation. 
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PROBLEMS AND EXERCISES

1. Problems in formation invasion involve internal moving boundaries, for
example, the front formed when water displaces oil, and require new
methods for boundary value problem analysis.  In elementary courses, it is
taught that permeability and viscosity enter only through k/µ, but k and µ
effects can be quite different in real petroleum reservoirs.  The example
treated in Figure 11-1 deals with a single fluid flowing through two cores
having different permeabilities, noting that the core interface is fixed with
time.  But it is also possible to have two different fluids in a homogeneous
core, one displacing the other, where now the interface separating two
distinct flow regimes must move.  Consider, for example, a linear core of
fixed length, with water displacing oil.  Does the front accelerate or
decelerate?  What if oil displaces water?  How do your answers change in
cylindrical radial flow, when the effects of geometric divergence compete
with acceleration based on momentum (or viscosity contrast)
considerations?  We have assumed that plug displacement exists in these
flows.  Which flow is physically stable?  Which is not?  Why?

2. Assume that the flows discussed in (1) are stable, that is, they do not break
down to form viscous fingers.  Consider a homogeneous linear core of fixed
length, containing two fluids with different viscosities.  How would you
formulate the general initial-boundary value problem to predict all
subsequent motions?  What matching conditions apply at the moving
interface?  Formulate and solve the problem analytically.  The initial
condition, which describes the proportion of water relative to oil in the core,
controls the acceleration or deceleration of the moving front.  Develop a
formula showing how volume proportions and viscosity contrasts affect this
motion.  What are the relevant dimensionless parameters?



245

15
Horizontal, Deviated, and

Modern Multilateral Well Analysis

So far we have performed detailed studies for flow over isolated bodies,
for example, curved fractures, shale arrays, and fractured boreholes.  Here we
will focus on steady and transient-compressible reservoir-scale flows produced
by multilateral well systems.  Because their topologies are not simple, we turn to
computational methods.  We will highlight problems that arise in reservoir
simulator development, and importantly,  we will describe a recently developed,
three-dimensional algorithm that is very robust, numerically stable,
exceptionally fast, and extremely accurate, and now available to the user
community.  Engineering implementation is an objective of the work: oil
companies want practical solutions that optimize operations, profits, and time
value of money.  The model provides tools that evaluate what if production
scenarios, infill drilling strategies, and waterflood sweep efficiencies.  In
addition to being accurate, the solutions require minimal hardware, software,
and costly human resources.

Formulation errors.  In the author’s experience with many flow
simulators, as many questions arose during calculations as there existed at the
outset.  Many offered black oil, compositional, and dual porosity capabilities,
yet few produced evidence that the p = A + B log r  solution for steady, single-
phase, radial flow could be recovered on a rectangular mesh.  Mass conservation
was presumably enforced in all runs, yet frustrating time step cuts indicated that
many schemes were not robust.  Where intuition suggested that time scales
should be measured in minutes or hours, stability considerations often kept time
steps to thousandths of a second before diverging.  One model applied linear
superposition incorrectly: solutions from several single-well, pressure-
constrained runs were simply added together to generate multi-well field results,
without accounting for interwell interactions.  In several fracture flow models,
source code analysis revealed systematic abuse of harmonic, geometric, and
arithmethic averaging techniques, with formulas applied to fracture and matrix
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continua where they were completely inapplicable.  Not one simulator addressed
the velocity singularities at fracture tips derived in Chapter 2; one validation
cited agreement with Muskat, but unfortunately an incorrect result (noted
earlier) stating that net flow rates were independent of fracture length.

I/O problems.  All of these problems were compounded by input/output
difficulties.  Numerical values for permeabilities and porosities were entered at
the keyboard into eighty column work-sheets, burying the geological feel of the
reservoir.  Well positions were defined by (i,j,k) coordinates that were not easily
visualized.  Checking for typographical errors entailed tedious work.  Few
simulators listed the default assumptions used, so that they could be available
for inspection, confirmation, or change.  In many cases, cryptic commands
replaced engineering decisionmaking and users were forced to memorize
unnatural Unix-like keywords.  Flow analyses were often performed without
knowing underlying assumptions, or the shapes of assumed relative permeability
curves, key steps ignored just to get the simulator to run by quitting time.

Computation-intensive software requires high speed machines and too
many service personnel.  Sometimes this gave way to unexpected problems.  Oil
company data centers often allocate user account memory without informing
clients of arbitrarily chosen byte limits.  For three months, this author was
unable to resolve a simulation problem that turned out to result from new input
data writing over old data, an unthinkable excuse in an age of inexpensive
memory.  Thus, we are led to several blunt but relevant questions, “Are there
smarter, more efficient ways to simulate reservoir flows?”  “Do simulators really
need to be computation intensive?”  “Are there good, robust algorithms that
avoid the difficulties of less optimal approaches?”  To address these questions,
we must consider why expensive hardware, complicated software, and make
work are required in the first place.  And, if need be, we must redesign the
building blocks, methodically from the ground up.

FUNDAMENTAL ISSUES AND PROBLEMS

Many issues confront users of commercial simulators.  Among these are
numerical stability, convergence, matrix size and structure, computational
resolution, physical modeling capabilities, graphical limitations, and, of course,
hardware constraints.  The prevailing opinion supports the adage that good
solutions require more hardware, more grid blocks, more computer time, and
more costly software and graphics.  While million grid block compositional
simulations modeling complex physical phenomena in heterogeneous
formations should be used when they are necessary and justified, the majority of
runs requiring significant computer resources are no more than the result of
inadequately designed software products.  For the great majority of simulation
runs conducted for screening purposes, for example, determining the qualitative
effects of sweep efficiency, heterogeneity assumptions, and multilateral well
design and placement, there is no reason why a simple fluid model won’t suffice
so long as the main engineering options are built in.
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The bottom line is important.  There are smarter ways to simulate, and in
the end, a good, robust, stable algorithm that anticipates and accommodates user
needs, while introducing the fewest number of uncertainties, should provide the
foundation for a simple, multipurpose flow engine that runs efficiently.  It must
run the first time, and every time, without crashing.  It should demand few
numerical and “computerese” user inputs.  It should handle complicated
reservoir heterogeneities and well patterns, and it must operate with a minimum
of hardware and software investment.  Such algorithms, developed over the
years for three-dimensional aerodynamics under government funding, are
widely available and can be readily adapted to modern Darcy flow problems
satisfying similar equations.  We give these general algorithms later but will
take the opportunity now to expand on the ideas introduced in Chapters 6-10.

Numerical stability.  Nothing strikes greater fear in simulation than
instabilities.  Numerical instabilities manifest themselves through unrealistic
oscillations in pressure buildup or drawdown curves, wiggly spatial pressure
distributions that lead to infinities and overflow.  How can they be avoided?
One useful tool is the von Neumann stability test, after John von Neumann, the
computer pioneer who advanced finite difference methods in the 1950s.
Numerical analysts employ these tests to evaluate candidate algorithms before
code development begins.  Consider the heat equation u t = uxx for u = u(x,t).  We
assume that a discretized u can be represented by v(xi,tn), or simply “vi,n ,”
which satisfies the explicit (v i,n+1  - vi,n )/∆t = (vi-1,n - 2 vi,n + vi+1,n )/(∆x)2

model, where ∆t and ∆x are time and spatial increments.
How useful is this obvious difference approximation?  Let us separate

variables, and consider a wave component v i,n = ψ(t) ejβx, where j = √-1, leading

to {ψ(t + ∆t) e jβx - ψ(t) e jβx}/∆t = ψ(t) [e jβ(x-∆x)  - 2e jβx + e jβ(x+∆x) ] /(∆x)2.
Thus, ψ(t + ∆t) = ψ(t)(1 - 4λ sin2  β ∆x/2), where λ = ∆t/(∆x)2.  Since ψ (0) = 1,
we find that ψ(t) = (1 - 4 λ sin2  β ∆x/2)  t/∆t.  For stability, ψ(t) must remain
bounded as ∆t, and thus ∆x, approaches zero.  Thus, |1 - 4 λ sin2 β ∆x/2| < 1,
thereby establishing requirements for ∆x and ∆t.  We need not have solved for
ψ(t).  We could have defined an amplification factor a = | ψ(t + ∆t)/ ψ(t) | and
determined that a =  |1 - 4λsin2 β ∆x/2|  < 1, leading to the same requirement.
Stability tests show that implicit methods are more stable than explicit ones;
they allow larger time steps, reducing computer requirements.  The multilevel
transient ADI scheme in Chapter 10 was motivated by stability and speed.

While we have demonstrated von Neumann’s test for the transient heat
equation, the stability test applies equally to iterative methods for elliptic
equations describing steady flows.  The (artificial) time levels t and t + ∆t would
refer to the approximate solutions obtained at consecutive iterations.  The
pressure solvers in Chapter 7 are examples of simple elliptic solvers that are
stable in von Neumann’s sense.  Recall that the iterative method applied to
single wells as it did to line fractures.  Such a robust algorithm can be used to
model general multilateral well drainhole trajectories where the overall topology
can be arbitrarily defined by the driller or reservoir engineer.
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Inadequacies of the von Neumann test.  Although von Neumann’s test
for an arbitrary wave component seems quite general, there are limitations.  For
example, it does not fully account for initial and boundary conditions; also, it
does not model heterogeneities (i.e., variable coefficients).  Analogies between
von Neumann disturbances and propagating  physical wave motions have been
drawn in recent years by physicists.  Actual wave motions undergo subtle
changes in trajectory and wave-medium interaction as they propagate through
nonuniformities, and similar effects are expected of moving numerical
disturbances.  Classical notions (e.g., group and phase velocity developed in
wave mechanics) have recently been applied to the study of computational
instabilities (such effects are not handled by older von Neumann tests).  Perhaps
the greatest limitation on most tests is the restriction to linear systems.  In
nonlinear problems, as in transient Darcy flows of gases, a single harmonic
disturbance wave component will lead to multiples of the primary frequency.
This phenomenon, well known to vibrations engineers, is not accounted for in
linear theory.  Nonlinear models do exist, but solid, practical, fool-proof recipes
are not yet available.  In summary, stability on a linear von Neumann basis
provides a warm level of comfort, but this is neither necessary nor sufficient for
real stability.  In practice, programming techniques and off-the-cuff coding
decisions including stability, and some experimentation during code
development is encouraged.  Intensive engineering validation may be required
of a simulator before routine use, given the uncertainties and often arbitrary
programming assumptions that are made during development of iterative
methods.

Convergence.   In our differencing of u(x,t), we denoted its numerical
representation by v i,n ;  that u may not, in fact, equal v is often a possibility.  And
as noted in Chapter 13, whether an equation arises as an approximation to one
high-order system or another can completely seal its fate as a valid physical
model.  By the same token, the structure of formally small truncation errors is
important in numerical analysis: without evaluating the role of higher
derivatives in these terms, whose diffusive or dispersive effects always remain
with the computed solution, the extent to which an “obvious” difference scheme
models a differential equation cannot be ascertained.  In advanced courses,
examples are actually constructed showing how ∆x → 0 never yields correct
solutions for certain classes of equations.  Suffice it to say that nothing is
straightforward about numerical analysis.  From an optimistic point of view, this
flexibility can be beneficial; ingenious devices can be created to accelerate the
solution of elliptic equations.  In Chapter 7, we demonstrated the equivalence
between a relaxation scheme solving Laplace’s equation, and the explicit time
integration of the transient heat equation.  Modern researchers realize that
solving elliptic problems as large time asymptotic limits of simple linear heat
equations can be inefficient.  Therefore, invariant embedding techniques are
developed, which embed the basic elliptic system in aritifical time domains that
provide rapid yet stable convergence.  Consider yet another example.
Thompson’s grid generation method, defined by Equations 8-21 and 8-22, poses
certain difficulties.  In the form given, the coupled system of nonlinear elliptic
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equations in the dependent variables x and y leads, at best, to slow convergence
and conditional stability (e.g., Sharpe and Anderson, 1991).  But by
reformulating the problem in somewhat unlikely complex conjugate coordinates
z = x + iy and z* = x - iy, rapid convergence and absolute stability can always be
guaranteed, as noted earlier.  Through this nonlinear transformation, runs
normally requiring minutes on workstations could be accomplished in seconds
on standard personal computers!

Physical resolution.   Good physical resolution is the goal of reservoir
analysis.  Existing simulators provide high-level detail using grid refinement
methods.  One popular approach discretizes near-well grid blocks into even
smaller blocks, effectively creating grid systems within grid systems.  The
resulting Cartesian formulation contains original macroscopic and new
microscopic unknowns.  But now, the governing difference equations are
described by a completely different matrix structure, requiring new equation
solvers and more research.  At the very minimum, this means renaming pressure
indexes and reordering equations.  But by confronting the resolution issue in the
formulation stage, say by using clever grid generation techniques, this needless
work can be avoided and existing linear algebra techniques can be used (the
large matrixes used in grid refinement imply more costly hardware and more
complicated software).  Consider still another problem.  Chapters 8-10 discussed
the ideas behind two-dimensional, areal grid generation, but gridding technology
can be used in cross-sectional planes too.  In Figure 9-11, we introduced a
faulted example of a boundary-conforming stratigraphic grid, whose coordinate
surfaces adhered to the boundaries formed by geological layers.  Simulations on
such rectangular-like grids, it turns out, can be performed conveniently, and we
will give the general theory later.

Direct solvers.   In Chapter 7, we explained why direct solvers impose
severe demands on computational resources, thus limiting the range of problems
amenable to numerical analysis.  The reasons, developed from two-dimensional
examples, are even more pertinent to three-dimensional flows.  Consider, for
instance, Pxx + Pyy + Pzz = 0.  When the lengths ∆x, ∆y, and ∆z are constant, its
finite difference representation takes the form (P
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 - 2 P
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 + P

i+1,j,k
) / ∆x2 

+
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) / ∆y2 + (P
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 - 2 P
i,j,k

 + P
i,j,k+1

) / ∆z2 = 0.  At each node,

therefore, the difference molecule involves seven unknowns.  Imagine a coarse
grid simulation with ten grid blocks in each direction.  This small model
nonetheless contains 10 × 10 × 10, or 1,000 cells, with 1,000 unknown
pressures.  A 1,000 × 1,000 equation set, needless to say, is undesirable.  For
transient gas flows, or flows with nonlinear compaction, the intermediate use of
Newton-Raphson interations worsens these computational demands.  Even if
convergence is possible, truncation errors and cumulative round-offs will
introduce numerous inaccuracies.  Most direct solvers will solve carefully
defined classes of problems efficiently.  However, they do require special matrix
conditioning and cumbersome fine tuning preprocessing that varies from field to
field, and even within the same oil field, as changing multiphase oil production
alters the coefficient structure of the governing equations with time.  Whether
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such solvers are really more efficient than simpler, all-purpose simulators that
function every time without special parameter inputs is a serious question that
should be asked by all involved in reservoir modeling.

Modern simulation requirements.  So far, we have discussed issues that
apply to broad classes of problems.  In petroleum engineering, however, the
technological innovations of the past decade in drilling and production have
brought about new requirements in computer modeling.  Wells are no longer
simple, fully penetrating, vertical sources or sinks that amicably coexist with
rectangular grid structures.  They are deviated, and even when horizontal, often
take on wavy form. Most offshore wells start out vertically, but they will
typically contain numerous out-of-plane horizontal or dipping drainholes whose
induced flowfields interact.  Figure 15-1a illustrates a multilateral well with each
drainhole placed in its own producing layer, while Figure 15-1b shows two
(costly) interfering well systems that cannibalize each other’s flow.  But the
trajectories in Figure 15-1a, which are reasonable ones drilled using real-time
logging data, may not be optimal from a more global perspective.  Are they
really best suited to producing the most in the least amount of time?  The highest
total production over time?  How should well topologies change as field
optimization strategies change?  These questions cannot be answered unless
means exist to describe heterogeneities and complicated wells accurately, and
numerical engines are developed to model the governing equations and
specialized boundary conditions accurately.

Figure 15-1a.  Single multilateral well,
each drainhole following own sedimentary layer.

Figure 15-1b.   Interfering multilateral wells,
cannibalizing each other’s flow.
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Thus, idealized analytical solutions assuming, say, straight, centered,
infinitely long horizontal wells in homogeneous formations sandwiched between
impermeable layers, while elegant, may not be useful in steady-state or transient
flow.  And in reservoir description, classical well test interpretation methods
related to early or late (dimensionless) time may not be relevant in highly
heterogeneous rock produced by multilateral wells.  Forward simulations needed
to interpret well test response must be fast in order to be useful.  But because
solutions require lengthy Laplace transform inversions and unwieldy
transcendental functions, even when crude homogeneous rock assumptions are
made, they are not practical for routine use.  With hardware costs declining,
simulation is clearly becoming attractive.  But there are mathematical issues that
arise because well paths take on arbitrary form in space and time.  To
understand them, we must understand how boundary conditions along well
paths, or simply well constraints, complicate the modern formulations.

Pressure constraints.  When a general wellbore defined along an arbitrary
locus of points in three-dimensional space is pressure constrained, the equations
along the well path are simple.  For example, if gravity and friction are
neglected, all the points satisfy piwell,  jwell,  kwell = Pwell , where Pwell is a specified
constant.  This simple boundary condition can nonetheless lead to inefficiencies
and instabilities.  For example, when the sparse finite difference equation that
normally applies is replaced by direct pressure specification at particular sets of
(i well, j well, k well) arbitrarily defined by the reservoir engineer, problems may or
may not arise depending on the matrix solver used.

Flow rate constraints.  Pressure specification alone, at wells and farfield
boundaries, leads to classical Dirichlet problems with completely deterministic,
unique solutions.  However, they will lead to internal discontinuities in the first
derivatives of pressure, as discussed in Chapter 7.  Specifying total wellbore
volume flow rate Q, in the case of multilateral wells, leads to subtle problems
that have not been discussed in the literature.  In pure radial flows (e.g., see
Chapter 6), any specification of Q can be equivalently re-expressed as a
specification of the normal (radial) derivative dp/dr.  The result is a classical
Neumann problem whose solution, to within an additive constant that does not
affect flow rate, is unique.    But in prescribing the total flow rate Q for a general
multilateral well system, the solution can be obtained in any number of ways,
only one of which yields the correct physical answer.  In the absence of gravity
and friction, the physically correct solution is the one reproducing Q, together
with a borehole pressure that is constant along the entire completely general well
path.  Furthermore, this pressure level is an unknown that must be determined as
part of the solution.  Several flow simulators allocate or apportion Q by
assigning velocity flux contributions to intersected layers based on local
permeability thickness products.  This reasonable method is not correct.  So long
as total mass is conserved, this yields a solution, but the result is incorrect
because the pressure so obtained varies along the path.  Such kh methods, while
plausible, are inherently incorrect and flawed.

For a general well path, point source contributions from all of the cell
blocks making up the multilateral are needed to form the total sum Q.  In other
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words, the flow rate formulation is not a classical Neumann problem because it
involves an integral of pressure taken over all source points.  To solve the
problem correctly, the iterative solution of a large set of coupled finite
difference equations must resolve several integrals, each summed over
numerous nonneighboring connections.  This destroys the idealized matrix
structures (e.g., sparse, banded, or block diagonal) usually assumed in designing
fast inversion routines.  Failure to treat Q specifications correctly, use of flawed
“kh” methods, neglect of cross-derivative terms in corner point modeling, and so
on, are routine in reservoir analysis.  However, physical correctness must never
be compromised for expediency and speed.

Object-oriented geobodies.  Reservoir analysis involves entities like fault
traps, channel sands, stratigraphic boundaries, dome-shaped structures, and so
on.  Often, the exploration geologist is able to render a reliable judgment
regarding the nature of the structural geology, although the exact permeabilites,
the degree of anisotropy, and the distribution of porosity remain unknowns to be
refined via log analysis, seismic testing, and evaluation of production data.  Why
shouldn’t reservoir simulators preserve the geological character of the oil field
and read pictures instead?  Can all of this be performed inexpensively?  Once
the high-level pictures are read in, the software can then interrogate the user
about the values of quantities like permeability and porosity.  Certainly, such an
I/O approach is less prone to keyboard error, since numerical arrays are not
entered; it is “fun,” making simulation available more broadly and frequently.

Plan for remaining sections.  In the following sections, extremely stable,
fast, and robust steady-state and transient compressible flow algorithms for
liquids and gases in anisotropic heterogeneous media are given.  Applications to
deviated and horizontal wells are presented, convergence acceleration methods
are demonstrated, and stratigraphic grid applications are developed.
Importantly, the numerical schemes presented are user-friendly, requiring no
numerical, computerese inputs; they typically lead to simulations that run the
first time and every time.  These algorithms were developed in aerodynamics for
swept wing flows, a.k.a. stratigraphic problems in petroleum engineering.  Our
discussion concludes with difficult examples of real geologies, solved by the
new simulator, embodying all the features discussed next.

GOVERNING EQUATIONS AND NUMERICAL FORMULATION

The equations for three-dimensional, compressible, heterogeneous,
anisotropic, steady and transient, liquid and gas Darcy flows are given, as are
those relating local pressures to total flow rates along arbitrary horizontal,
deviated, and multilateral well paths.  Stable algorithms are presented in all
cases, drawing on the relaxation and ADI methods developed earlier.

Steady flows of liquids.  The fundamental equation describing single-
phase, liquid, Darcy flows in petroleum reservoirs is
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where kx (x,y,z), ky (x,y,z), and kz (x,y,z) denote permeabilities in the x, y and z
directions, respectively, µ is the viscosity, φ(x,y,z) is the porosity, c(x,y,z) is the
effective compressibility characterizing the fluid and rock matrix system, and
p(x,y,z,t) is the pressure field.  Equation 15-1 requires that all permeabilities
vary smoothly, so that they and their corresponding pressure fields are
differentiable; if there exist sudden changes in properties (e.g., as at layer
interfaces), then pressure and velocity matching conditions must be used locally,
as in Example 11-1, as extended to multiple dimensions.

In contrast to Chapter 1, we have explicitly introduced q(x,y,x,t),
representing the local source volume flow rate per unit volume produced by any
infinitesimal element of a general well.  It is a three-dimensional, point
singularity that applies to both injector and producer applications.  For example,
when q is a semi-infinite line, cylindrical radial flow is obtained over most of
the source distribution, while spherical flow effects apply at the tip.  In other
words, partial penetration and spherical flow are modeled exactly.  In this
section, subscripts are used in three different contexts.  First, they represent
partial derivatives; for example, px is the partial derivative of p(x,y,z,t) with
respect to the spatial coordinate x.  Second, they are used as directional markers;
for example, ky (x,y,z) is the anisotropic permeability in the y direction.  Finally,
subscript indexes (i,j,k) in p i,j,k  represent the centers of grid block volumes used
in our finite difference discretizations.  As usual, ∆x, ∆y, ∆z, and ∆t are used to
denote grid sizes for the independent variables x, y, z, and t.

Difference equation formulation.  Let us consider three-dimensional
steady flows first, so that the time derivative in Equation 15-1 vanishes.  Central
differencing leads to
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where harmonic averages are used to represent permeabilities.  We now multiply
throughout by µ ∆x∆y∆z, where ∆x∆y∆z is the grid block volume, to obtain
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This suggests the following definitions for the transmissibilities TX, TY, and
TZ, for convenience defined independently of the viscosity,
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Then, Equation 15-3 takes the more convenient form
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This equation, still very general, applies at all points.  We consider points away
from wells first.  In these cases, the source term q

i,j,k
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which, for reasons that will become obvious, we rewrite in the form
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The iterative scheme.  An iterative three-dimensional solution is
suggested.  If we fix yj in outermost programming loop, consider a given xi
plane, write Equation 15-7 at all internal node points zk, and couple with upper
and lower boundary conditions, the solutions of all left-hand side points can be
obtained if the right side terms of Equation 15-7 were (approximately) known.
Like the planar examples in Chapter 7, Equation 15-7 leads to tridiagonal
matrices, whose inversions require only 3N multiplies or divides for O(N)
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systems.  Equation 15-7 not only retains its diagonal dominance, but in three
dimensions, numerical stability turns out to be significantly enhanced.  When
grid block aspect ratios and anisotropic permeabilities reduce diagonal
dominance, we simply use sister forms of Equation 15-7 written along the
alternative lines i-1, i, i+1 or j-1, j, j+1.  Together with the use of over-relaxation
(e.g., Chapter 7), we have a new variant of SLOR or Successive Line Over
Relaxation.  The above lines are swept along planes, then from plane to plane,
and farfield boundary conditions are used to update all end-plane lines.  The
computational box is treated repeatedly in this manner.  Latest pressure values
are used as they are available to evaluate all coefficient matrices.

The heat equation analogy in Chapter 7, justifying the convergence of this
iterative method to the unique solution guaranteed by Laplace’s equation, again
applies here.  The method is robust because it always converges and requires
little in the way of matrix conditioning and parameter tuning.  And the solution
is, importantly, independent of the initial guess.  Any guess will lead to the
solution, as we have shown in Chapter 7.  Of course, the closer the guess is to
the actual solution, the faster the convergence; analytical solutions such as those
derived in Chapters 2-6 can be used where appropriate.  This property allows us
to run multiple realizations of a physical problem quickly and efficiently.  Thus,
when the topology of a deviated horizontal well is changed, or when an existing
well simply grows longer or adds drainholes, or when fluid and formation
properties are modified, or when well constraints are altered, the iterations need
not begin from scratch.  The algorithm given here uses prior information for
earlier simulations to produce fast solutions with only incremental effort.  In
reservoir description applications where multiple geological (or geostatistical)
realizations are often evaluated, and in infill drilling problems where numerous
production scenarios are often considered, this feature is important.

Modeling well constraints for liquids.  Now we discuss boundary
conditions internal to the computational box.  In reservoir simulation, well
constraints provide the most important class of internal boundary conditions;
other internal conditions may include symmetry and antisymmetry statements
used to model fractures and shales.  Pressure constraints are the simplest to
implement: at the physical location corresponding to a particular well, a simple
equation explicitly enforcing a prescribed level replaces the tridiagonal equation
otherwise written at that point.  Modeling net volume flow rate constraints at
wells, as we have already indicated, is somewhat more complicated.  In many
simulators, the net flow rate is allocated to the layers intercepted by the well
path according to local kh product, often disallowing interlayer flow as well.
Such kh allocation is incorrect because the net production in each layer is also
proportional to the difference between wellbore and grid block pressures, where
both must be determined as part of the solution.  In the absence of gravity and
wellbore friction, the solution process must be enforced in such a way that the
pressure (under a net volume flow rate specification) is a constant along the well
path.  This integral constraint, obtained by integrating Darcy’s velocity formula
over numerous nonneighboring connections, degrades the performance of
equation solvers and encourages the use of incorrect kh fixes.  To be precise, we
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consider a locus of points L defining a general wellbore that may be vertical,
horizontal, deviated, and out-of-plane, or, bifurcated with multiple clustered
drainhole extensions.  Let the symbol Σ  denote summations along L performed
in any order.  We write Equation 15-5 for each well point along L in the form
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and sum the resultant set of algebraic equations over all (i,j,k)’s along L, to give
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or, more conveniently,
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At this point, several physical conditions can be invoked to simplify the algebra.
First, because gravity and friction are neglected in the present formulation, the
pi,j,k  factor can be moved across the summation operator since the pressure at
any point within the well system is a constant.  This constant is prescribed when
the well is pressure-constrained; but when the well is volume flow rate
constrained, the unknown constant pressure level, which is different from well
to well, must be found as part of the solution.

Let us denote this constant pressure, whether it is known or unknown, by
the symbol pw.  Now, the summation on the right-hand side of Equation 15-10 is
the volume flow rate Q

w
 of the producer or injector well.  We denote
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so that
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Thus, it follows that
p

w
 = (Σ{ } - µ Q
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)/ Σ [ ]                                                      (15-13)

The strategy for rate-constrained wells is simple: use this pressure prescription
as the diagonally dominant difference equation at well points.  The result is a
stable algorithm that looks pressure-constrained, but the right side of the above
(evaluated with latest values) is not really known until the iterations converge.
This procedure has the added benefit of conserving mass in the local sense since
the pressure-dependent variable itself is prescribed and not its normal
derivatives; numerical experiments also show that it is highly stabilizing.  Once
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the iterations have converged globally, Equation 15-13 is used to compute well
pressures at rate-constrained wells, while the expression for Q w from Equation
15-12 is used to compute net flow rates at pressure-constrained wells.

Steady and unsteady nonlinear gas flows.  While gas flows also satisfy
Darcy’s laws, the equation of state that connects density and pressure renders
the governing equations somewhat intractable and less amenable to solution.
Mathematically, they become nonlinear.  Thus, linear superposition methods in
conventional well testing, where the solutions corresponding to step-wise
changing rates or pressures are directly summed, do not apply.  Nonetheless,
superposition is often used, assuming that mean reservoir conditions do not
change much, so that nonlinear coefficients can be frozen about nearly static
values.  This is, in general, incorrect; with high-speed computers widely
available, there is really no need to invoke such limiting assumptions.  Because
an unconditionally stable scheme for transient linear liquid flows turns out to be
available and provided below, it makes practical sense to take advantage of it
and to reformulate the general problem for nonlinear gases as closely as
possible.  The complete equation for mass conservation in three dimensions is
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where ρ(x,y,z,t) is the mass density, and q* (x,y,z,t) is the local mass flow rate
per unit volume.  Now, the Cartesian velocity components u, v, and w in the x,
y, and z directions are given by Darcy’s laws,

u(x,y,z,t) = - (k
x
(x,y,z)/µ) p

x                                                 
(15-15a)

v(x,y,z,t) = - (k
y

(x,y,z)/µ) p
y                                                 

(15-15b)

w(x,y,z,t) = - (k
z
(x,y,z)/µ) p

z                                                 
(15-15c)

The pressure p(x,y,z,t) and the density ρ(x,y,z,t), following Muskat (1937), are
assumed to be thermodynamically connected by the polytropic relationship

ρ = γ pm
                                                                                         (15-16)

where m is Muskat’s exponent and γ is determined from reference conditions.
If we now substitute this expression for density into Equation 15-14, we have
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Thus, we are led to rewrite Equation 15-17 in the form
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with
c* = m/p(x,y,z,t)                                                                             (15-19)

where c* is a fictitious compressibility for the pressure-like quantity pm+1.  This
liquid-like formulation for p m+1 is useful because the unconditionally stable time
integration scheme developed for linear liquid transients to be given, satisfying
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the classical parabolic heat equation, applies with little modification.  The
coefficient c* depends on the evolving pressure p(x,y,z,t); however, this
nonlinear dependence turns out to be numerically stabilizing.  Nowhere have we
invoked linear superposition, which does not apply.  We give a unified
presentation applicable to both transient liquids and gases later.  But before
embarking on general gas flows, we consider steady problems first, in order to
understand several crucial physical and mathematical formulation differences.

Steady gas flows.  From a numerical viewpoint, the iterative solution for
gases does not depart significantly from that for liquids; essentially, total mass,
not volume, is conserved.  Volume varies as a function of pressure, which varies
with position; detailed numerical bookkeeping to track mass balances accurately
is critical to error-free results.  By analogy to Equation  15-2, a similar
discretization process leads to the cluster
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or
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Using the transmissibility definitions in Equations 15-4a to 15-4f, we have
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First we write Equation 15-22 for points that do not contain wells, setting q*i, j, k

to zero.  Then we cast this in tridiagonal form to facilitate the iterations, that is,
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Then, all the comments made immediately following Equation 15-7 apply
without change, to the dependent variable pm+1.

Well constraints for gas flows.  Consider a locus of points L defining a
general well path that may be vertical, horizontal, or deviated out-of-plane and
containing multiple drainholes.  Let Σ denote summations performed along L.
Along well paths only, in anticipation of constant pressures in the borehole, we
simplify Equation 15-22 by factoring out p i,j,k

 m+1 so that
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When the foregoing equation is written for each well point along L, and the
resultant equations are summed, we have
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or, more conveniently,
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Because gravity and wellbore friction are neglected in this formulation, the
constant p i,j,k can be moved across the summation since the pressure at any point
within the well system is a constant.  This constant is prescribed when the well
is pressure constrained; when it is mass-flow-rate-constrained, the constant
pressure must be found as part of the solution.  Let us denote this constant
pressure, whether it is known or unknown, as pw.  Now, the summation on the
right-hand side of Equation 15-26 is just the total mass flow rate associated with
the producer or injector well, that is,

M
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 ∆x∆y∆z                                                       (15-27)

In field practice, all measurements are reported at standard surface conditions,
normally 14.7 psi and 60 deg F.  Then, the mass flow rate satisfies

M
w

 = ρ
sc

Q
w,sc                                                                          

(15-28)

where Q
w,sc

(t) is the total volume flow rate at the surface, and ρ
sc

 is the surface

mass density, with the subscript sc denoting standard gas conditions.   Equation
15-26 becomes
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It follows that the wellbore pressure p
w

 satisfies

p
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From this point onward, the treatment of well constraints is identical to that for
Darcy flows of liquids, with minor changes.   It is clear that the liquid scheme is
unchanged so long as we replace p by pm+1, vanishing normal derivatives of p
by those of pm+1 , and the viscosity µ by µ [(m+1)ρsc /γ].  When there exists more
than one multilateral well path L, that is, if there exist more than one multilateral
well cluster in the reservoir, the same computational logic applies to each cluster
individually.  Any number of well clusters is permissible, although it is obvious
that the total number of grid blocks without wells should greatly exceed the
number of grid blocks used to describe wells.

Transient, compressible flows.  Very often, oil companies produce
reservoirs from a virgin static state in which the fluid is quiescent everywhere.
At other times, a steady-state flow (such as that computed from our relaxation
method) may be completely or partially shut-in for well testing or for
economical reasons.  Sometimes nonproductive intervals are sealed off, and
horizontal drainholes may be drilled to enhance local production at other
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locations.  All of these scenarios demand that any time integration scheme be
especially robust, capable of withstanding sudden operational shocks to the
system.  The algorithm given below, like the relaxation method developed for
steady flows of liquids and gases, is very stable.  Without loss of generality, let
us drop the source term q* from the governing equation for non-well points,
understanding that we will replace the particular difference equation with our
internal constraint condition for those points affected by wells.  Thus, we have
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or, after some manipulation,
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Equations 15-31 and 15-32 apply to gases and liquids (that is, m = 0 and c* = c).
A differencing similar to that for steady flow can be used, provided we include
time.  If n and n+1 denote times at tn and tn+1 , we have the  implicit scheme
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Using our definitions for transmissibility, Equation 15-33 becomes

TX
i,j,k

(p
m+1

i+1,j,k,n+1
- p

m+1

i,j,k,n+1
) - TX

i-1,j,k
(p

m+1

i,j,k,n+1
- p

m+1

i-1,j,k,n+1
)

+ TY
i,j,k

(p
m+1

i,j+1,k,n+1
- p

m+1

i,j,k,n+1
) - TY

i,j-1,k
(p

m+1

i,j,k,n+1
- p

m+1

i,j-1,k,n+1
)

+ TZ
i,j,k

(p
m+1

i,j,k+1,n+1
- p

m+1

i,j,k,n+1
) - TZ

i,j,k-1
(p

m+1

i,j,k,n+1
- p

m+1

i,j,k-1,n+1
)

= φ 
i,j,k

 µ c
*

i,j,k,n
 (p

m+1

i,j,k,n+1
 - p

m+1

i,j,k,n 
) ∆x∆y∆z/∆t             (15-34)

If Equation 15-34 is to be written for each (i,j,k) node and solved at the
new time step (n+1), we obtain a complicated system of algebraic equations that
is costly to invert computationally.  When it cannot be locally linearized, the full
but sparse matrix is solved using even more expensive Newton-Raphson
iterations.  Thus, we employ approximate factorization techniques to resolve the
system into three simpler, but sequential banded ones.  In this approach,
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especially popular in the Soviet literature, appropriate high-order terms no larger
than the discretization errors implicit in the derivation of Equation 15-33 are
added to Equation 15-34.  These terms are chosen to facilitate a nested
factorization of the difference operator just given.  The design is structured so
that the three-step process required for the integration of a typical  time step is
unconditionally stable on a linearized von Neumann basis.  Moreover, each
intermediate-time-step level employs efficient tridiagonal matrices only.  The
results of this factorization lead to Equations 15-35, 15-36 and 15-37, defining
predictor Steps 1 and 2, and corrector Step 3, that is,
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Formal von Neumann analysis shows that this three-step process is second-order
accurate in ∆x, ∆y, and ∆z, and first-order accurate in  ∆t.  Well constraints
within each step are handled exactly as in our relaxation approach for steady-
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state flows.  We emphasize that unconditional stability alone does not ensure
convergence to physically correct solutions.  Stability is necessary but not
sufficient for practical solutions; (somewhat) small time steps are nonetheless
required to capture the physics and provide physical resolution where needed.

Compaction, consolidation, and subsidence.   A formal approach to
modeling compaction, consolidation, and subsidence requires the use of well-
defined constitutive equations that describe both fluid and solid phases of
matter.  At the same time, these would be applied to a general Lagrangian
dynamical formulation written to host the deforming meshes, whose exact time
histories must be determined as part of the overall solution.  These nonlinear
deformations are often plastic in nature, and not elastic, as in linear analyses
usually employed in structural mechanics.  This finite deformation approach,
usually adopted in more rigorous academic researches into compressible porous
media, is well known in soil mechanics and civil engineering.  However, it is
computationally intensive and not practical for routine use.  This is particularly
true when order-of-magnitude effects and qualitative trends only are examined.

Despite the apparent rigor in many of the accepted mathematical models,
however, most are nonetheless empirical.  They typically assume a linear
relationship between pore pressure and porosity; that is, they assume that
instantaneous pressure affects the original φ(x,y,z) linearly.  The constants
appearing in the constitutive equations, moreover, can be subject to significant
measurement error.  In the Ekofisk reservoir where subsidence and compaction
drives are important, an overall height decrease of 40 ft, compared to a 400 ft
net reservoir thickness originally, has been observed; this 10% change, however,
occurred over a twenty-year period.  These physical scales suggest that a simpler
engineering model suffices for approximate trend analysis.  In the scheme
adopted here, we define φ(x,y,z) as the baseline porosity function when
compaction is not important.  In the numerical analysis, however, the actual
porosity is φ(x,y,z) pre-multiplied by a {1 + a p(x,y,z,t)} factor, where a is a
user-defined what if parameter; it is a negative constant (or secondary
compressibility), having units of 1/psi.  There are several implicit assumptions.
Consider the mass balance equation (ρu)x + (ρv)y + (ρw)z = - φ ρ t assumed
earlier; there, φ was a prescribed, spatially varying function, independent of
time.  The right-hand side, in the more general case when temporal changes are
allowed, however, would take the form (φ ρ)t where φ now refers to {1+a
p(x,y,z,t)} φ(x,y,z).  Thus, our procedure assumes  φ ρt >> ρ φ t.   The dominant
effect of compaction, in this small disturbance limit, therefore arises from the
porosity reduction enforced by the a p(x,y,z,t) term taken above and not from
direct volume changes.  This may or may not be physically valid.  The
correction, in this sense, plays the role of a secondary compressibility, a
parameter introduced earlier.  In the next correction sequence, pressure-
dependent decreases to permeabilities will appear, and these would be
consistently modeled on a time-varying deforming mesh.

Boundary conforming grids.  The grid generation technology in Chapters
8-10 should be used where possible.  Consider the irregular boundaries seen by
our Houston well in a Texas-shaped reservoir in Chapter 9.  Whereas boundary-
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conforming grids will provide detailed resolution using 200 grid blocks, a
Cartesian mesh would require roughly 2,000 to produce equivalent results!
Such meshes are capable of wrapping around multiple boreholes and fractures,
of course, while conforming to irregular farfield reservoir boundaries.
Thompson’s grid generation technique forms the basis for the powerful
normalization theory developed in Chapter 9.  The theory allows solutions to
supersets of problems (with different boundary condition modes and fluid types)
to be expressible in terms of one set of metrics obtained once and for all.  This is
analogous to the approach of Chapter 6 for more obvious radial flows, which
show how log r similarly solves supersets of like problems.  Besides the
gridding methods presented in Chapters 8-10 for areal problems, others just as
powerful can be used for other reservoir applications.  We will introduce
stratigraphic meshes next, develop the general theory for slowly varying
stratigraphies, and present an illustrative calculation later.

Stratigraphic meshes for layered media.  Most geological boundaries do
not conform to the simple coordinate lines of rectangular mesh systems.
Dipping stratigraphic layers with nonparallel tops and bottoms are a case in
point.  The use of finely gridded (x,y,z) meshes, while not incorrect, results in
awkward stair-step representations of the physical boundaries, plus numerous
inactive simulation grid blocks.  General curvilinear coordinates provide good
physical resolution, but the retention of all of the transformation terms leads to
massive equations with first derivatives, second-derivative cross-terms, and
numerous variable coefficients.  Often, however, such a general approach is not
warranted.  Many layered stratigraphies are somewhat distorted or warped in a
global sense, but so long as local changes in elevation are small, important
simplifications can be made.  Under the circumstances, stratigraphic coordinates
need not be orthogonal.  Thus, we retain x and y as independent variables in the
areal plane, and continue to use constant values of ∆x and ∆y.  In the vertical
direction, however, z is no longer a suitable coordinate, since it does not model
dip and lateral variation well.  Instead, we introduce the height variable

Z = z - f(x,y,t)                                                                                 (15-38)
and associate with it the new capital P pressure function

p(x,y,z,t) = P(x,y,Z,t)                                                                      (15-39)

Instead of rederiving all physical laws in x, y, and Z coordinates, we simply
express Equations 15-1 and 15-18 in these variables via the chain rule, that is,
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                                                                  (15-40c)

If the slopes fx(x,y) and fy(x,y) are small, Equations 15-40a to 15-40c show that
px = Px,  py = Py, and pz 

= Pz approximately. Thus, Equations 15-1 and 15-18
apply with z replaced by Z, p(x,y,z) replaced by P(x,y,Z), and (x,y,z) replaced
by (x,y,Z).  How does this affect our difference equations?  Let us consider, for
example, the representative first term of Equation 15-3, namely,
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) ... (15-41)

which earlier led to the transmissibility definition

TX
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These two equations are now replaced, respectively, by
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and the revised transmissibility definition
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(15-44)
where the index k now refers to our stratigraphic coordinates.

Thus, all the difference formulas for constant rectangular meshes with
fixed ∆x, ∆y, and ∆z apply without modification, provided we calculate our
transmissibilities using {Z(i,j,k+1)-Z(i,j,k)} and replace the volume element
∆x∆y∆z using {Z(i,j,k+1)-Z(i,j,k)}∆x∆y in the equation for transient flow and in
the flow rate summations along wellbore blocks.  Equations 15-13 and 15-30,
used to implement net flow rate constraints at wells, do not change; the sum
over our incremental lengths {Z(i,j,k+1)-Z(i,j,k)} themselves is specified and
requires no additional integration.  These simplifications for slowly varying
stratigraphies yield large savings in computer memory and speed, while drawing
upon the advantages of the highly stable rectangular schemes developed.

Modeling wellbore storage.  Wells are opened and closed at the surface,
and not at the sandface downhole.  When opening a well for a drawdown test
(from the surface), a portion of the flow results from fluid expansion in the
wellbore itself.  Likewise, in a buildup test, fluid influx into the wellbore
continues after shut-in of the well.  Thus, total flow rate constraints cannot be
applied at the sandface directly, without accounting for time delays associated
with the borehole fluid compressibility C bh and the wellbore storage volume
Vbh.  Storage is also important in underbalanced drilling, where lower borehole
pressures may allow free gas to exist, increasing the compressibility in the fluid
column.  How, exactly, is storage modeled?  Imagine a highly pressured
reservoir that is initially static.  When a well is opened to production at a fixed
surface volume flow rate Q prod > 0, note that the well pressure p w(t) must
decrease in time.  That is, dpw/dt < 0 because the wellbore fluid is expanding.
Thus, the desired Qprod is obtained as the sum of -Vol bhCbhdpw/dt (which is
positive) and the usual reservoir flow contribution.  In other words, when
solving the pressure differential equation, the total flow rate (boundary
condition) constraint is taken as Q bc = Q prod + Vol bhCbhdpw/dt.  This states that
on initial production, the rate of flow Qbc through the sandface is actually less
than the Q prod pumped at the surface.  To see that this applies to an injector
pumping fluid into an initially quiescent reservoir, consider Q inj < 0 with a
corresponding dpw/dt > 0.  Now, the initial injection acts first to compress the
borehole fluid, so that the injected fluid does not entirely enter at the sandface.
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Thus, Q bc = Q inj + VolbhCbhdpw/dt is again correct, this time because Q bc is less
negative than Q inj since Vol bhCbhdpw/dt  is positive.  When a producing well
(with Qprod > 0) is shut-in with Qprod = 0 from the surface, the compressibility of
the borehole fluid allows Qbc at the sandface to continue for a limited time with
Q bc > 0.  Thus, the foregoing production formula leads to Qbc = 0 +
VolbhCbhdpw/dt  > 0.  This implies that dpw/dt > 0, so that the well pressure
continues to increase, as expected physically. All of these effects can be
modeled quantitatively.  Because the production model Vol bhCbhdpw/dt is
approximate anyway, with storage effects also arising from free gas bubbles,
surface facilities, and so on, there is no need to attach too much significance to
the exact values of Cbh and Volbh.  For simulation purposes, we introduce the
lumped storage factor F or capacity defined with Qbc = Qdesired prod or inj volume  + F
dpw/dt, and take F as a history-matching parameter that depends on borehole fill-
up, annulus properties, and other effects that may be difficult to characterize.

EXAMPLE CALCULATIONS

The steady and transient algorithms given earlier are extremely stable.  In
numerous simulations with sudden changes to wellbore paths and constraints,
wide variations to rock heterogeneity, fluid type, and gridding parameters,
stability and mass conservation were always maintained.  This core capability
provided the foundation for a robust simulator that did not require unreasonably
small time steps for well test forward analysis and primary production modeling.
It allowed us to focus on another objective, namely, extending ease-of-use and
convenience to inexpensive personal computers.

Figure 15-2.  More multilateral wells and heterogeneous reservoirs.

Simulation capabilities.  Classical solutions to elliptic and parabolic
equations emphasize simple boundary conditions along external box edges.  But
in petroleum engineering, the most significant auxiliary conditions are the
internal constraints applied at injecting or producing wells.  Pressures and net
flow rates, the latter subject to constant pressure along well paths specified at the
user’s discretion, render matrix structures far from ideal.  The challenges are
practical.  Not only are the parameters arbitrary; so are the number, position, and
geometric inclination of the well systems.  The numerical solution for both
steady and transient flows must be stable to any heterogeneities in kx, ky, kz and
φ, to fully and partially penetrating vertical, horizontal, and deviated wells, to
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wells with multiple sidetracked drainhole bifurcations, and to general farfield
aquifer or solid wall boundary conditions.

For transient compressible flows, the new simulator described here allowed
users to change well constraints in mid-stream, to drill horizontal, wiggly
drainhole extensions to existing wells, to shut-in nonproducing intervals and to
perforate new ones, and finally, to drill new wells having complicated wellbore
paths subject to general constraints.  All of these capabilities are accomplished
without exacting any performance penalties from the baseline algorithm.  We
emphasize that these modeling options are by no means exotic, since they permit
simulation of actual drilling processes as they are performed in the field.  At the
time of this writing, the author is not aware of any other simulator possessing
these flexible run-time options.

Data structures and programming.  The computational efficiencies
demanded by our objectives were possible because the numerical algorithm was
designed so that physical complications would not alter the stable tridiagonal
nature of the underlying routines.  The iterative nature of the steady solver
required no additional three-dimensional arrays beyond the obvious ones for
pressure and formation properties.  Similarly, the transient algorithm employed
only the minimum number of time levels dictated by stability considerations.
Good memory management was critical.  Information was always written to disk
when possible, common blocks were used, and built-in analytical solutions and
formulation checks always assured mathematical consistency.

Central to a good simulator is simple, easily modifiable reservoir and well-
bore description.  For example, users need not enter rows and columns of five-
digit permeabilities and porosities, and tabulated (i,j,k) coordinates for multiple
well paths.  The entire approach should, ideally, be visually driven and easily
inputted.  This does not necessarily mean expensive graphics and pixel-level
resolution, requirements that would compete with our algorithm for vital
memory resources – an important consideration when the prototype simulator
was first written in the early 1990s.  A simple ASCII text “picture” file, as we
will observe, more than suffices.  Four examples are described next, which
support the idea that powerful simulation capabilities important to modern
applications can be realized without resorting to workstations and mainframes.

Example 15-1.  Convergence acceleration, two deviated
horizontal gas wells in a channel sand.

We prototyped our ideas by writing a PC program with low cost and ease-
of-use in mind, and preserved the geobod” or object character of the reservoir by
having input routines read layer pictures created by simple text editing.  GEO
and DRL layer file types describe, respectively, the geology of the field and the
trajectories of any drilled wells.  For this example, consider a three-layer
heterogeneous reservoir where all layers are identical to LAYER1.GEO below.
The corresponding DRL files show that (Wells) 1 and 2, which explicitly appear
in the sketches, represent vertical wells containing long horizontal drainholes
drilled into a channel sand.  Layer numbers increase in the downward direction,
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to be consistent with the drilling process.  Thus, additional layers can always be
added to existing data sets without reordering layer numbers.  On scanning the
GEO files, the simulator identifies the number of layers and the size of the areal
grid; it also notes that three lithologies represented by the keyboard symbols +,
&, and # are present (nonalphanumeric symbols are reserved for rock types).  At
this point, information related to grid block size, to the permeabilities and
porosities characteristic of each of the lithology symbols, and to fluid properties,
is entered interactively at the keyboard in response to on-line queries.  Typed
numerical arrays are never necessary; in subsequent simulations, changes in
geological properties are introduced by changing the lithological symbol or
altering its assigned properties.

C>type layer1.geo C>type layer1.drl
+ + + + + + + + + & & & & + + # # # # # + + + + + + + + + & & & & + + # # # # #
+ + + + + + + + & & & & + # # # # # + + + + + + + + + + & & & & + # # # # # + +
+ + + + + + & & & & + + # # # # # + + + + + + + + + & & & & + + # # # # # + + +
+ + + + & & & & + + # # # # + + + + + + + + + + 1 & & & + + # # # # + + + + + +
+ + & & & & + + + + # # # # # + + + + + + + & & & & + + + + # # # # # + + + + +
+ + & & & & + + + + + # # # # # + + + + + + & & & & + + + + + # # # # # + + + +
+ + + & & & & + + + + + # # # # # + + + + + + & & & & + + + + + # # # # # + + +
+ + + + + & & & & & + + + # # # # # + + + + + + + & & & & & + + + # # # # # + +
+ + + + + + + & & & & & + + # # # # # + + + + + + + + & & & & & + + # # # # # +
+ + + + + + + + & & & & & + + # # # # # + + + + + + + + & & & & & + + # # 2 # #
+ + + + + + + + & & & & + + + + # # # # + + + + + + + + & & & & + + + + # # # #
+ + + + + + + & & & & + + + + + + # # # + + + + + + + & & & & + + + + + + # # #
+ + + + + & & & & + + + + + + + + + # # + + + + + & & & & + + + + + + + + + # #
+ + + & & & & + + + + + + + + + + + + + + + + & & & & + + + + + + + + + + + + +
+ & & & & + + + + + + + + + + + + + + + + & & & & + + + + + + + + + + + + + + +

C>type layer2.drl C>type layer3.drl
+ + + + + + + + + & & & & + + # # # # # + + + + + + + + + & & & & + + # # # # #
+ + + + + + + + & & & & + # # # # # + + + + + + + + + + & & & & + # # # # # + +
+ + + + + + & & & & + + # # # # # + + + + + + + + + & & & & + + # # # # # + + +
+ + + + 1 & & & + + # # # # + + + + + + + + + + 1 & & & + + # # # # + + + + + +
+ + & & 1 & + + + + # # # # # + + + + + + + & & & & + + + + # # # # # + + + + +
+ + & & 1 & + + + + + # # # # # + + + + + + & & & & + + + + + # # # # # + + + +
+ + + & 1 & & + + + + + # # # # # + + + + + + & & & & + + + + + # # # # # + + +
+ + + + 1 & & & & & + + + # # # # # + + + + + + + & & & & & + + + # # # # # + +
+ + + + 1 + + & & & & & + + # # # # # + + + + + + + + & & & & & + + # # # # # +
+ + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 # # + + + + + + + + & & & & & + + # # 2 # #
+ + + + + + + + & & & & + + + + # # # # + + + + + + + + & & & & + + + + # # # #
+ + + + + + + & & & & + + + + + + # # # + + + + + + + & & & & + + + + + + # # #
+ + + + + & & & & + + + + + + + + + # # + + + + + & & & & + + + + + + + + + # #
+ + + & & & & + + + + + + + + + + + + + + + + & & & & + + + + + + + + + + + + +
+ & & & & + + + + + + + + + + + + + + + + & & & & + + + + + + + + + + + + + + +

The simulator next scans the DRL files, identifies two wells (numbers are
reserved for well labels), stores their coordinate information, and asks for well
constraint modes and values.  Note that Wells 1 and 2 are vertical wells with
very long horizontal drainhole extensions, and are here oriented perpendicularly
in Layer 2.  However, any oblique out-of-plane orientation is permissible.  Few
simulations on such complicated well paths have been reported in the literature.
Next, information on farfield boundary conditions is entered, and simulation
commences.  In this example, we will demonstrate how accurately the steady
algorithm conserves mass.  We will also show that the solution obtained for the
first run, when used to initialize a second run with different parameters, leads to
much more rapid convergence.  Such initializations provide quick solutions
because only incremental actions are needed.  The reader should examine the
GEO and LAYER files displayed above, and note the likeness to typical channel
sands.  In the following displays, simple Courier font denotes screen activity,
while bold Courier indicates user-entered commands.

Run 1.  In this rectangular grid run, ∆x, ∆y, and ∆z were 100, 200, and 300
ft.  The + lithology was isotropic, with a permeability of 100 md and a porosity



 Horizontal, Deviated, and Modern Multilateral Well Analysis     269

of 20%, while the # lithology, at 800 md, was 30% porous.  Lithotype & was
anisotropic, with kx, ky, and kz equal to 500, 600, and 700 md; it was was 25%
porous.  Well 1 was pressure constrained at 5,000 psi, while Well 2 was flow
rate constrained at 1,000,000 cu ft/hr.  Because the evaluation objective here
was mass conservation, all six sides of the computational box were chosen as
solid no-flow walls in order to provide a severe test.  The degree to which the
computed flow rate at Well 1 equaled -1,000,000 cu ft/hr was to be assessed.  To
complicate matters, the flow of a gas was considered.  This renders the
formulation nonlinear and provides a good test for the algorithm.  The gas
viscosity was 0.018 cp, a surface density of 0.003 lbf sec2 /ft4 at 14.7 psi was
selected, and a gas exponent of m = 0.5 was chosen.  Again, our general m fluid
model allows us to alter gas thermodynamics; it is not restricted to idealized
isothermal solutions.  In this test case, the steady flow solver was initialized to
zero pressure everywhere – a worst case assumption acknowledging that
nothing is known about the reservoir – and allowed to converge.  Screen dumps
showing iteration history and flow rate summaries are as follows.
Iterative solutions starting, please wait ...
Iteration     1 of maximum 99999 completed ...
Iteration     2 of maximum 99999 completed ...
.
Iteration    11, maximum 99999, .1851E+02 % error.
Iteration    12, maximum 99999, .2334E+02 % error.
Iteration    13, maximum 99999, .1178E+02 % error.
Iteration    14, maximum 99999, .2002E+02 % error.
.
Iteration    99, maximum 99999, .3337E+00 % error.
Iteration   100, maximum 99999, .3226E+00 % error.

Iteration   100, (Un)converged volume flow rates
by well cluster:
Cluster 1:  P=  .5000E+04 psi, Q= -.2764E+08 cu ft/hr.
Cluster 2:  P=  .4788E+04 psi, Q=  .1745E+07 cu ft/hr.

Iteration   200, (Un)converged volume flow rates
by well cluster:
Cluster 1:  P=  .5000E+04 psi, Q= -.2864E+07 cu ft/hr.
Cluster 2:  P=  .4977E+04 psi, Q=  .1057E+07 cu ft/hr.

Iteration   300, (Un)converged volume flow rates
by well cluster:
Cluster 1:  P=  .5000E+04 psi, Q= -.1127E+07 cu ft/hr.
Cluster 2:  P=  .4990E+04 psi, Q=  .1003E+07 cu ft/hr.

Iteration   400, (Un)converged volume flow rates
by well cluster:
Cluster 1:  P=  .5000E+04 psi, Q= -.1005E+07 cu ft/hr.
Cluster 2:  P=  .4991E+04 psi, Q=  .1001E+07 cu ft/hr.

Satisfactory results are not obtained until Iteration 400, at which point, Well 1’s
-0.1005E+07 cu ft/hr and Cluster 2’s 0.1001E+07 cu ft/hr are close (on typical
PCs, this requires just seconds).  We have enforced exact mass balance for
heterogeneous reservoirs with nonconventional wells, and we have calculated
nonlinear pressure fields correctly, starting with a trivial zero guess.
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Run 2.  Next we terminate the steady-state simulation, begin another
where we retain that geology (although we need not), and change the shape of
Well 2 and other inputs.  The re-drilled, more deviated well follows.
C>type layer2.drl

+ + + + + + + + + & & & & + + # # # # #
+ + + + + + + + & & & & + # # # # # + +
+ + + + + + & & & & + + # # # # # + + +
+ + + + 1 & & & + + # # # # + + + + + +
+ + & & 1 & + + + + # # # # # + + + + +
+ + & & 1 & + + + + + # # # # # + + + +
+ + + & 1 & & + + + + + # # # # # + + +
+ + + + 1 & & & & & + + + # # # # # + +
+ + + + 1 + + & & & & & + + # # # # # +
+ + + + + 2 2 2 2 2 2 2 2 2 2 2 2 2 # #
+ + + + 2 + + + & & & & + + + + # # # #
+ + 2 + + + + & & & & + + + + + + # # #
+ + 2 + + & & & & + + + + + + + + + # #
+ + + & & & & + + + + + + + + + + + + +
+ & & & & + + + + + + + + + + + + + + +

Well 1 is still pressure constrained at 5,000 psi, but we instead rate-constrain
Well 2 at 1,500,000 cu ft/hr.  We also change our gas viscosity to 0.04 cp, the
surface reference density to 0.004 lbf sec2 /ft4 at 14.7 psi, and reassign m to 0.7.
These changes normally require new simulations, with detailed analysis
beginning anew, but the power of our relaxation approach is seen as follows.
We expect similar convergence histories, but instead of initializing the solver to
0, we use the pressure solution available from the above run.
Iterative solutions starting, please wait ...
Iteration     1 of maximum 99999 completed ...
Iteration     2 of maximum 99999 completed ...
.
Iteration    11, maximum 99999, .2650E-02 % error.
Iteration    12, maximum 99999, .7193E-03 % error.
.
Iteration    99, maximum 99999, .1469E-03 % error.
.
Iteration   100, (Un)converged volume flow rates
by well cluster:
Cluster 1:  P=  .5000E+04 psi, Q= -.1470E+07 cu ft/hr.
Cluster 2:  P=  .4989E+04 psi, Q=  .1500E+07 cu ft/hr.

At Iteration 11, the error measure has decreased to .2650E-02%, compared
with the .1851E+02% in the first run.  The results of Iteration 100 indicate that
injected and produced flow rates are converging, and are much faster than
before.  This acceleration is possible because a close solution was used to start
the iterations.  It suggests that it is possible to perform successive simulations
quickly, because incremental changes to fluid, well configuration, boundary
condition, and geological description inputs require only incremental work.

Example 15-2.  Dual-lateral horizontal completion
in a fractured, dipping, heterogeneous,  layered formation.

In June 1992, Texaco announced the completion of a pioneering dual
lateral horizontal well in a fractured formation in the Gulf of Mexico.  A vertical
well was drilled into the pay zone, at which point the drilling of two horizontal
wells were initiated, heading in opposite directions.  This example shows how
the flow from such a completion is easily simulated.  Fictitious input parameters
are used for illustrative purposes.  For brevity, the GEO files will not be shown,
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but the general idea about the formation can be inferred from the DRL layer
pictures presented.  We have a single (well) 1, headed towards the pay zone %.
Once penetrated, the first horizontal well branch heads north, while the second
heads south.  This bifurcation is readily seen in Layers 3 and 4 below.  The math
model treats the one vertical and two horizontal wells as part of a single well
system (collectively called Well 1) because a single well constraint applies to
the entire group of three wells.  Here, the = symbol represents the highly
permeable and porous fracture plane.

C>type layer1.drl  C>type layer2.drl      C>type layer3.drl

+ + + + + + + + + +   % % % % % % % % % %    % % % % % % % % % %
+ + + + + + + + + +   % % % % % % % % % %    % % % % 1 % % % % %
+ + + + + + + + + +    + + + + + + + + + +    % % % % 1 % % % % %
+ + + + 1 + + + + +   + + + + 1 + + + + +    % = = = 1 = = = = %
+ + + + + + + + + +   + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +   + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +   + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +   + + + + + + + + + +    + + + + + + + + + +

C>type layer4.drl       C>type layer5.drl      C>type layer6.drl

% % % % % % % % % %     % % % % % % % % % %    + + + + + + + + + +
% % % % % % % % % %     % % % % % % % % % %    + + + + + + + + + +
% % % % % % % % % %     % % % % % % % % % %    + + + + + + + + + +
% = = = 1 = = = = %     % % % % % % % % % %    + + + + + + + + + +
% % % % 1 % % % % %     % % % % % % % % % %    + + + + + + + + + +
% % % % 1 % % % % %     % % % % % % % % % %    + + + + + + + + + +
+ + + + + + + + + +     % % % % 1 % % % % %    + + + + + + + + + +
+ + + + + + + + + +     % % % % % % % % % %    + + + + + + + + + +

Observe that storing formation attributes and well location information in
three-dimensional, character-string array format provides special advantages.
For example, by rearranging the print sequences in the Fortran do-loops, it is
possible to print out x-z and y-z lithology cross-sections and display well
trajectories within stratigraphic layers.  This assists with visualization,
interpretation, and error-checking.  The two plots that follow show two different
vertical projections of the well.
 +---- Y/Z: I=  4  ---> Y +---- X/Z: J=  5  ---> X

 | + + + + 1 + + + + +   | + + + 1 + + + +
 | + + + + 1 + + + + +   | % % + 1 + + + +
 | % = = = 1 = = = = %   | % 1 1 1 + + + +
 | % = = = 1 = = = = %   | % % % 1 1 1 + +
 | % % % % % % % % % %   | % % % % % % 1 %
 | + + + + + + + + + +   | + + + + + + + +
 | Z   | Z

Here, we have a six-layer, 8 × 10 rectangular grid, with ∆x, ∆y and ∆z
equal to 300, 200, and 100 ft, respectively.  All of our rock types are isotropic.
Rock + has a permeability of 50 md and a porosity of 20%; rock %, a
permeability of 800 md and a porosity of 30%; while rock type =, our fracture,
has a permeability of 5,000 md and a porosity of 90%.  Our only well, Well 1,
will be pressure constrained at 1,000 psi.  But this constrains the entire system,
both horizontal branches and the vertical, at 1,000 psi.  In practice, the vertical
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section is sealed and nonproducing.  To enforce this, we use a transmissibility
modification option that allows us to modify local transmissibilities everywhere,
well by well, or cell by cell, if need be.  For brevity, we show some of the
interactive screens but modify two cell blocks only.
You may modify TX, TY and TZ transmissibilities for simulation
purposes WITHOUT altering values on disk .... Modify?  Y/N: y

Modify EVERYWHERE?  At WELL(S) ONLY?  E/W: w
Modify transmissibilities in Well 1?  Y/N: y
Modify “cell by cell” ?  Y/N: y

Enter cell block identification number, 1-  9: 1
Existing TX =   .359E-10, TY =   .807E-10, TZ =   .323E-09 ft^3 at
Well 1, Block   1: (i= 4, j= 5, Layer=1) ...

O  Enter cell block TX multiplier:  .01
O  Enter cell block TY multiplier:  .02
O  Enter cell block TZ multiplier:  .03

Change TX, TY and TZ in another cell block within
present Well 1?  Y/N:  y

Enter cell block identification number, 1-  9: 2
Existing TX =   .359E-10, TY =   .807E-10, TZ =   .639E-09 ft^3 at
Well 1, Block   2: (i= 4, j= 5, Layer=2) ...

O  Enter cell block TX multiplier:  .01
O  Enter cell block TY multiplier:  .01
O  Enter cell block TZ multiplier:  .01

Change TX, TY and TZ in another cell block within
present Well 1?  Y/N:  n

We will also assume four aquifer side boundaries, and two solid walls at the top
and bottom of the reservoir.  Note the simplicity of the computer inputs and
outputs; the graphics is crude but serves its purpose.
INPUT FARFIELD BOUNDARY CONDITION SETUP:
                        Z(k)
                      |
                      | j=1       Jmax(10)
                  i=1 |
                      +--------------+  ------  Y(j)
                    / ¦______________¦ \
          Left    /   ¦___  Back  ___¦   \   Right
                /     ¦______________¦     \
              /       +--------------+       \
  Imax( 8)   +-------/  Top, Layer 1  \-------+
          /  ¦________________________________¦
        /    ¦____________  Front ____________¦
      / X(i) ¦________________________________¦
             +-------  Bottom, Layer 6  ------+

                       COORDINATE SYSTEM

O  FRONT ... is aquifer or no flow wall?  A/W: a
O  Pressure at FRONT face (psi): 5000
O  BACK .... is aquifer or no flow wall?  A/W: a
O  Pressure at BACK face  (psi): 5000
O  LEFT .... is aquifer or no flow wall?  A/W: a
O  Pressure at LEFT face  (psi): 5000
O  RIGHT ... is aquifer or no flow wall?  A/W: a
O  Pressure at RIGHT face (psi): 5000
O  TOP ..... is aquifer or no flow wall?  A/W: w
O  BOTTOM .. is aquifer or no flow wall?  A/W: w
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Consider a liquid with a viscosity of 10 cp and a compressibility of
0.00001/psi in a fully transient flow.  The initial pressure everywhere is 5,000
psi, and the assumed time step is 1 hr.  From the well history that follows, it is
clear that the expected rate decline is obtained and computed stably.

C>type well1.sim
    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          1   .100E+01   .100E+01   .100E+04   .756E+06   .756E+06
          2   .100E+01   .200E+01   .100E+04   .555E+06   .131E+07
          3   .100E+01   .300E+01   .100E+04   .464E+06   .178E+07
          4   .100E+01   .400E+01   .100E+04   .412E+06   .219E+07
          5   .100E+01   .500E+01   .100E+04   .379E+06   .257E+07
          6   .100E+01   .600E+01   .100E+04   .356E+06   .292E+07
          7   .100E+01   .700E+01   .100E+04   .339E+06   .326E+07
          8   .100E+01   .800E+01   .100E+04   .325E+06   .359E+07
          9   .100E+01   .900E+01   .100E+04   .313E+06   .390E+07
         10   .100E+01   .100E+02   .100E+04   .303E+06   .420E+07
          .
         20   .100E+01   .200E+02   .100E+04   .245E+06   .686E+07
         50   .100E+01   .500E+02   .100E+04   .200E+06   .133E+08
        100   .100E+01   .100E+03   .100E+04   .188E+06   .229E+08
        150   .100E+01   .150E+03   .100E+04   .186E+06   .322E+08
        199   .100E+01   .199E+03   .100E+04   .185E+06   .413E+08

The objective is threefold.  First, geological object-oriented file inputs with
complicated wellbore trajectories are simple to create; lithological data only
enter, and then conveniently, through a lower level routine (what if studies do
not require retyping of cumbersome numbers into rows and columns).  Second,
very heterogeneous transient problems can be simulated with high stability,
taking relatively large time steps.  And third, the complete at the keyboard work
session, including computing time, required just minutes.

Example 15-3.  Stratigraphic grids, drilling dome-shaped structures.

Here, simulations on stratigraphic grids are performed.  Such grids wrap
around all relevant layers.  The use of standard rectangular grids for the structure
shown here would have produced numerous inactive grid blocks that decrease
convergence rate.  The formation is homogeneous for simplicity, but the
important point here is the choice of extremely flat grids and special dome-like
coordinates.  These are associated with convergence problems in many elliptic
solvers.  (Actually, a dimensionless parameter based on grid block aspect ratio
and anisotropic permeability controls convergence.)  The blocks are assumed to
be 100’ × 100’ × 1’ high, residing in a four-layer, 7 × 7 grid system; the rock,
with a permeability of 500 md, is 20% porous.  Also, two wells are oppositely
placed.  All four DRL layers take the form of the uppermost LAYER1.DRL,
with vertical Wells 1 and 2 positioned as shown.

C>type layer1.drl
+ + + + + + +
+ + + + + + +

+ + 1 + + + +
+ + + + + + +
+ + + + 2 + +
+ + + + + + +
+ + + + + + +
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The elevations of the stratigraphic grid blocks themselves can be defined by
using a text picture of the uppermost surface displaying the z coordinate.
       (i=1,j=1)  85  85  85  85  85  85  85
                  85  90  90  90  90  90  85
                  85  90  95  95  95  90  85
                  85  90  95 100  95  90  85
                  85  90  95  95  95  90  85
                  85  90  90  90  90  90  85
                  85  85  85  85  85  85  85  (i=7,j=7)

This, plus the vertical thickness of the uniformly thick layers (1 ft) and the
number of layers (again, four), completely defines the stratigraphy.  More
general topographies require detailed I/O procedures, which are avoided in this
book.  Next, pressure constrain Well 1 at 1,000 psi, and flow rate constrain Well
2 at 50 cu ft/hr.  Also, model a liquid with a viscosity of 1 cp, and assume that
the six sides of the computational box are solid no-flow walls in order to provide
a severe test for mass conservation.  The steady numerical scheme, in order to
conserve mass, must determine a flow rate at Well 1 that is exactly the negative
of the assumed rate at Well 2.  Can this be achieved?  Calculated results follow.
Iteration   200, (Un)converged volume flow rates
by well cluster:

Cluster 1:  P=  .1000E+04 psi, Q= -.5020E+03 cu ft/hr.
Cluster 2:  P=  .1851E+02 psi, Q=  .5008E+03 cu ft/hr.

At 200 iterations, requiring just seconds, the injector and producer flow rates are
almost identical.  From the results below for the first two layers, the computed
pressures show the anticipated symmetries.  The position of the prescribed 1,000
psi is shown in bold type for reference; observe that there is no reason why the
computed pressure at Well 2 should be -1,000 psi.
Calculated 3D Pressures   (Intermediate Results)

Iteration   200, Pressure (psi) in Layer 1:
BACK
  .850E+03  .850E+03  .850E+03  .701E+03  .573E+03  .509E+03  .509E+03
  .850E+03  .850E+03  .850E+03  .701E+03  .573E+03  .509E+03  .509E+03
  .850E+03  .850E+03  .100E+04  .680E+03  .509E+03  .445E+03  .445E+03
  .701E+03  .701E+03  .680E+03  .509E+03  .338E+03  .317E+03  .317E+03
  .573E+03  .573E+03  .509E+03  .338E+03  .185E+02  .168E+03  .168E+03
  .509E+03  .509E+03  .445E+03  .317E+03  .168E+03  .168E+03  .168E+03
  .509E+03  .509E+03  .445E+03  .317E+03  .168E+03  .168E+03  .168E+03

FRONT

Iteration   200, Pressure (psi) in Layer 2:
BACK
  .850E+03  .850E+03  .850E+03  .701E+03  .573E+03  .509E+03  .509E+03
  .850E+03  .850E+03  .850E+03  .701E+03  .573E+03  .509E+03  .509E+03
  .850E+03  .850E+03  .100E+04  .680E+03  .509E+03  .445E+03  .445E+03
  .701E+03  .701E+03  .680E+03  .509E+03  .338E+03  .317E+03  .317E+03
  .573E+03  .573E+03  .509E+03  .338E+03  .185E+02  .168E+03  .168E+03
  .509E+03  .509E+03  .445E+03  .317E+03  .168E+03  .168E+03  .168E+03
  .509E+03  .509E+03  .445E+03  .317E+03  .168E+03  .168E+03  .168E+03
FRONT

With this steady flow established, now continue with a transient compressible
analysis and shut-in in both wells.  A compressibility of 0.000003/psi is
assumed, along with time steps of 0.005 hr for 500 steps.  For injector Well 1,
we expect a pressure decrease with time because fluid is pulling away, while for
producer Well 2, a pressure buildup is anticipated because fluid is piling up.
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The pressures in the first two layers display smooth, stable trends; also, the
expected pressure histories at both wells are qualitatively correct.
LAYER RESULTS @ Step   499, Time =   .250E+01 hours:

Pressure Distribution (psi) in Layer 1:
BACK
  .837E+03  .837E+03  .837E+03  .695E+03  .573E+03  .512E+03  .512E+03
  .837E+03  .837E+03  .837E+03  .695E+03  .573E+03  .512E+03  .512E+03
  .837E+03  .837E+03  .979E+03  .674E+03  .512E+03  .451E+03  .451E+03
  .695E+03  .695E+03  .674E+03  .512E+03  .349E+03  .329E+03  .329E+03
  .573E+03  .573E+03  .512E+03  .349E+03  .447E+02  .186E+03  .186E+03
  .512E+03  .512E+03  .451E+03  .329E+03  .186E+03  .186E+03  .186E+03
  .512E+03  .512E+03  .451E+03  .329E+03  .186E+03  .186E+03  .186E+03
FRONT

Pressure Distribution (psi) in Layer 2:
BACK
  .837E+03  .837E+03  .837E+03  .695E+03  .573E+03  .512E+03  .512E+03
  .837E+03  .837E+03  .837E+03  .695E+03  .573E+03  .512E+03  .512E+03
  .837E+03  .837E+03  .979E+03  .674E+03  .512E+03  .451E+03  .451E+03
  .695E+03  .695E+03  .674E+03  .512E+03  .349E+03  .329E+03  .329E+03
  .573E+03  .573E+03  .512E+03  .349E+03  .447E+02  .186E+03  .186E+03
  .512E+03  .512E+03  .451E+03  .329E+03  .186E+03  .186E+03  .186E+03
  .512E+03  .512E+03  .451E+03  .329E+03  .186E+03  .186E+03  .186E+03
FRONT

C>type well1.sim
    WELL #1:     Dt        Time     Pressure  Flow Rate
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)
          0   .500E-02   .000E+00   .100E+04  -.502E+03
          1   .500E-02   .500E-02   .100E+04   .000E+00
        100   .500E-02   .500E+00   .996E+03   .000E+00
        200   .500E-02   .100E+01   .991E+03   .000E+00
        300   .500E-02   .150E+01   .987E+03   .000E+00
        400   .500E-02   .200E+01   .983E+03   .000E+00
        499   .500E-02   .250E+01   .979E+03   .000E+00 (i.e., pressure decreases)

C>type well2.sim
    WELL #2:     Dt        Time     Pressure  Flow Rate
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)
          0   .500E-02   .000E+00   .185E+02   .500E+02
          1   .500E-02   .500E-02   .185E+02   .000E+00
        100   .500E-02   .500E+00   .238E+02   .000E+00
        200   .500E-02   .100E+01   .291E+02   .000E+00
        300   .500E-02   .150E+01   .344E+02   .000E+00
        400   .500E-02   .200E+01   .396E+02   .000E+00
        499   .500E-02   .250E+01   .447E+02   .000E+00 (i.e., pressure increases)

Example 15-4.  Simulating-while-drilling horizontal gas
wells through a dome-shaped reservoir.

In this example, a general anisotropic matrix rock hosting a nonlinear gas
flow is modeled.  In particular, the transient effects of newly drilled horizontal
drainholes and deviated wells just brought on stream are studied.  This example
shows how dome shapes can be modeled using rectangular grids.  Also, well
constraints will be changed while simulating, and computational stability is
demonstrated.  The ability to simulate while drilling implies improved formation
evaluation (e.g., permeabilities can be better matched using annular pressure
while drilling data).  The GEO geology files are not listed for brevity; the
heterogeneities can, however, be inferred from the six LAYER#.DRL 10 × 10
text files below, which also contain well placement information.  Only Well 1 is
present initially, but this is joined by a second well system that is later drilled
while simulating.
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C>type layer1.drl      C>type layer2.drl      C>type layer3.drl
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +    + + + + + + + + + +    + + + # # # # + + +
+ + + 1 + + + + + +    + + + 1 * * * + + +    + + + 1 # # # # + +
+ + + + + + + + + +    + + + + * * * + + +    + + + + # # # # # +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + # # # # #
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +

C>type layer4.drl      C>type layer5.drl      C>type layer6.drl
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + $ $ $ $ $ + + +    + + $ $ $ $ $ + + +    + + $ $ $ $ $ + + +
+ $ $ 1 $ $ $ $ + +    + $ $ 1 $ $ $ $ + +    + $ $ ! ! ! $ $ + +
+ + $ $ $ $ $ $ $ +    + + $ $ $ $ $ $ $ +    + + $ ! ! ! ! $ $ +
+ + + $ $ $ $ $ $ $    + + + $ $ $ $ $ $ $    + + + $ $ ! ! ! $ $
+ + + + + $ $ $ $ +    + + + + + $ $ $ $ +    + + + + + $ $ $ $ +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +
+ + + + + + + + + +    + + + + + + + + + +    + + + + + + + + + +

Our grid block sizes ∆x, ∆y and ∆z are 100, 200, and 300 ft.  The properties for
the first four rock types listed are isotropic.  Rock type + has a permeability of
100 md and a porosity of 20%; type * is 200 md and 30% porous; type # is 300
md and 25% porous, while type ! is 100 md and 20% porous.  Next allow the $
pay sand to be complicated; it is anisotropic, with permeabilities of 700 md, 800
md, and 900 md in the x, y, and z directions, with a porosity of 25%.

Now assume that Well 1 is pressure constrained at 500 psi , that the six
sides of the computational box are solid no-flow walls, and that the simulator is
run in a purely transient compressible flow mode for an isothermal gas.  The gas
has a viscosity of 1 cp, a surface density of 0.003 lbf sec2/ft4 at 14.7 psi, and a
gas exponent of m = 1.  Let us initialize our reservoir to 10,000 psi to provide a
significant shock to the system, and let us study the initial history obtained at
Well 1, as extracted from WELL1.SIM.  Recall that Well 1 is initially pressure
constrained at 500 psi.  Note how the flow rate correctly decreases with time and
how the cumulative volume increases in time.  The computed rate behavior
shows no unrealistic oscillations in time.
    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          1   .500E-02   .500E-02   .500E+03   .254E+10   .127E+08
          2   .500E-02   .100E-01   .500E+03   .254E+10   .254E+08
          3   .500E-02   .150E-01   .500E+03   .253E+10   .380E+08
          4   .500E-02   .200E-01   .500E+03   .252E+10   .507E+08
          5   .500E-02   .250E-01   .500E+03   .252E+10   .632E+08
          6   .500E-02   .300E-01   .500E+03   .251E+10   .758E+08
          7   .500E-02   .350E-01   .500E+03   .250E+10   .883E+08
          8   .500E-02   .400E-01   .500E+03   .250E+10   .101E+09
          9   .500E-02   .450E-01   .500E+03   .249E+10   .113E+09
         10   .500E-02   .500E-01   .500E+03   .249E+10   .126E+09
         11   .500E-02   .550E-01   .500E+03   .248E+10   .138E+09
         12   .500E-02   .600E-01   .500E+03   .247E+10   .150E+09
         13   .500E-02   .650E-01   .500E+03   .247E+10   .163E+09
         14   .500E-02   .700E-01   .500E+03   .246E+10   .175E+09
         15   .500E-02   .750E-01   .500E+03   .246E+10   .187E+09
         16   .500E-02   .800E-01   .500E+03   .245E+10   .200E+09
         17   .500E-02   .850E-01   .500E+03   .245E+10   .212E+09
         18   .500E-02   .900E-01   .500E+03   .244E+10   .224E+09
         19   .500E-02   .950E-01   .500E+03   .243E+10   .236E+09
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Next assume that we are dissatisfied with the flow rates.  We refer back to the
LAYER#.DRL pictures, and we decide to drill a horizontal drainhole starting
from Layer 4 in Well 1, which cuts a four grid block path through the $ pay
zone.  Nine blocks define the revised path for Well 1.  The simulator provides
the existing coordinates of well block centers.  In what follows, we also re-
constrain the well at a new 55 psi, shaking it up to test numerical stability!

Existing Well No. 1 defined by following blocks:
Block No.   1:  i= 4, j= 4, Layer=1
Block No.   2:  i= 4, j= 4, Layer=2
Block No.   3:  i= 4, j= 4, Layer=3
Block No.   4:  i= 4, j= 4, Layer=4
Block No.   5:  i= 4, j= 4, Layer=5

Number of active gridblocks defining modified well: 9
Enter blocks in any order, they need not be contiguous -

O  Block   1, New x(i) position index, i:  4
O  Block   1, New y(j) position index, j:  4
O  Block   1, New z(k) position, Layer #:  1
O  Block   2, New x(i) position index, i:  4
O  Block   2, New y(j) position index, j:  4
O  Block   2, New z(k) position, Layer #:  2
O  Block   3, New x(i) position index, i:  4
O  Block   3, New y(j) position index, j:  4
O  Block   3, New z(k) position, Layer #:  3
O  Block   4, New x(i) position index, i:  4
O  Block   4, New y(j) position index, j:  4
O  Block   4, New z(k) position, Layer #:  4
O  Block   5, New x(i) position index, i:  4
O  Block   5, New y(j) position index, j:  4
O  Block   5, New z(k) position, Layer #:  5
O  Block   6, New x(i) position index, i:  5
O  Block   6, New y(j) position index, j:  4
O  Block   6, New z(k) position, Layer #:  4
O  Block   7, New x(i) position index, i:  6
O  Block   7, New y(j) position index, j:  4
O  Block   7, New z(k) position, Layer #:  4
O  Block   8, New x(i) position index, i:  7
O  Block   8, New y(j) position index, j:  4
O  Block   8, New z(k) position, Layer #:  4
O  Block   9, New x(i) position index, i:  8
O  Block   9, New y(j) position index, j:  4
O  Block   9, New z(k) position, Layer #:  4

Modify TX, TY or TZ in present Well 1?  Y/N:  n
New well constraint, pressure or rate?  P/R:  p
New pressure (psi):  55

Incidentally, to ensure that existing and new well paths do not cross each other,
collision sensing background logic was added to the prototype simulator in order
to enhance the drilling-while-simulating option.  Let us review the results in the
WELL1.SIM history file for time steps 20–39.  For reference, all of the
computed Well 1 results starting from Step 1 are listed.  At Step 20, the flow
rate definitely increases but not as much as we had desired.  However, the rate
decline is not as severe as that due to the original vertical well alone.  Again, the
computations are completed stably.
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    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          1   .500E-02   .500E-02   .500E+03   .254E+10   .127E+08
          2   .500E-02   .100E-01   .500E+03   .254E+10   .254E+08
          3   .500E-02   .150E-01   .500E+03   .253E+10   .380E+08
          4   .500E-02   .200E-01   .500E+03   .252E+10   .507E+08
          5   .500E-02   .250E-01   .500E+03   .252E+10   .632E+08
          6   .500E-02   .300E-01   .500E+03   .251E+10   .758E+08
          7   .500E-02   .350E-01   .500E+03   .250E+10   .883E+08
          8   .500E-02   .400E-01   .500E+03   .250E+10   .101E+09
          9   .500E-02   .450E-01   .500E+03   .249E+10   .113E+09
         10   .500E-02   .500E-01   .500E+03   .249E+10   .126E+09
         11   .500E-02   .550E-01   .500E+03   .248E+10   .138E+09
         12   .500E-02   .600E-01   .500E+03   .247E+10   .150E+09
         13   .500E-02   .650E-01   .500E+03   .247E+10   .163E+09
         14   .500E-02   .700E-01   .500E+03   .246E+10   .175E+09
         15   .500E-02   .750E-01   .500E+03   .246E+10   .187E+09
         16   .500E-02   .800E-01   .500E+03   .245E+10   .200E+09
         17   .500E-02   .850E-01   .500E+03   .245E+10   .212E+09
         18   .500E-02   .900E-01   .500E+03   .244E+10   .224E+09
         19   .500E-02   .950E-01   .500E+03   .243E+10   .236E+09

                           Drainhole drilled ...

         20   .500E-02   .100E+00   .550E+02   .269E+10   .250E+09
         21   .500E-02   .105E+00   .550E+02   .268E+10   .263E+09
         22   .500E-02   .110E+00   .550E+02   .268E+10   .277E+09
         23   .500E-02   .115E+00   .550E+02   .267E+10   .290E+09
         24   .500E-02   .120E+00   .550E+02   .267E+10   .303E+09
         25   .500E-02   .125E+00   .550E+02   .266E+10   .317E+09
         26   .500E-02   .130E+00   .550E+02   .266E+10   .330E+09
         27   .500E-02   .135E+00   .550E+02   .265E+10   .343E+09
         28   .500E-02   .140E+00   .550E+02   .265E+10   .356E+09
         29   .500E-02   .145E+00   .550E+02   .264E+10   .370E+09
         30   .500E-02   .150E+00   .550E+02   .264E+10   .383E+09
         31   .500E-02   .155E+00   .550E+02   .263E+10   .396E+09
         32   .500E-02   .160E+00   .550E+02   .263E+10   .409E+09
         33   .500E-02   .165E+00   .550E+02   .262E+10   .422E+09
         34   .500E-02   .170E+00   .550E+02   .262E+10   .435E+09
         35   .500E-02   .175E+00   .550E+02   .261E+10   .448E+09
         36   .500E-02   .180E+00   .550E+02   .261E+10   .461E+09
         37   .500E-02   .185E+00   .550E+02   .260E+10   .474E+09
         38   .500E-02   .190E+00   .550E+02   .260E+10   .487E+09
         39   .500E-02   .195E+00   .550E+02   .260E+10   .500E+09

Now let us leave Well 1 alone and drill a completely new well (Well 2) during
simulation.  Observe from the following keyboard coordinate entries that the
new well is highly deviated.
Continue  transient flow simulation modeling?  Y/N:  y
Well #1,  @ Step #   39, Time  .195E+00  hrs,
is “pressure constrained” at   .550E+02  psi.
Well status or geometry, Change or Unchanged?  C/U:  u
Drill any (more) new wells and well clusters?  Y/N:  y

The simulator informs you that you have brought a new well on stream and that
the number of wells has increased to two.  This drill new wells option always
appears in the runtime menu so long as the total number of well clusters is less
than the maximum allowable of nine.  At this point, you will have separately
determined that six blocks, say, are required to define the deviated well needed
to penetrate the $ pay zone.  Incidentally, the maximum number of grid blocks
supported by the prototype PC simulator is 20 × 20 × 9, or approximately 4,000.
The number of well clusters supported is 9, with a maximum number of 200
blocks defining each cluster.  The total number of character based lithologies
supported is 31.  These numbers are easily increased by redimensioning.
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A new well has just been brought on stream ...
Total well number has increased to 2.
Number of active cell blocks defining new well:  6

O  Block   1, New x(i) position index, i:  4
O  Block   1, New y(j) position index, j:  7
O  Block   1, New z(k) position, Layer #:  1
O  Block   2, New x(i) position index, i:  4
O  Block   2, New y(j) position index, j:  7
O  Block   2, New z(k) position, Layer #:  2
O  Block   3, New x(i) position index, i:  5
O  Block   3, New y(j) position index, j:  7
O  Block   3, New z(k) position, Layer #:  3
O  Block   4, New x(i) position index, i:  6
O  Block   4, New y(j) position index, j:  7
O  Block   4, New z(k) position, Layer #:  4
O  Block   5, New x(i) position index, i:  7
O  Block   5, New y(j) position index, j:  7
O  Block   5, New z(k) position, Layer #:  5
O  Block   6, New x(i) position index, i:  8
O  Block   6, New y(j) position index, j:  7
O  Block   6, New z(k) position, Layer #:  6

New well constraint, pressure or rate?  P/R:  p
New pressure (psi):  1000

There are presently two wells: Well 1, which originated from the start at Step 1,
and Well 2, which was brought on stream at Step 40.  The WELL1.SIM and
WELL2.SIM files reflect this fact.  And both wells, pressure constrained as they
are in Steps 40-59, show the physically expected decline in flow rate with time.
    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          1   .500E-02   .500E-02   .500E+03   .254E+10   .127E+08
          2   .500E-02   .100E-01   .500E+03   .254E+10   .254E+08
          3   .500E-02   .150E-01   .500E+03   .253E+10   .380E+08
          .
         37   .500E-02   .185E+00   .550E+02   .260E+10   .474E+09
         38   .500E-02   .190E+00   .550E+02   .260E+10   .487E+09
         39   .500E-02   .195E+00   .550E+02   .260E+10   .500E+09
         40   .500E-02   .200E+00   .550E+02   .259E+10   .513E+09
         41   .500E-02   .205E+00   .550E+02   .259E+10   .526E+09
         42   .500E-02   .210E+00   .550E+02   .258E+10   .539E+09
         43   .500E-02   .215E+00   .550E+02   .258E+10   .552E+09
         44   .500E-02   .220E+00   .550E+02   .257E+10   .565E+09
         45   .500E-02   .225E+00   .550E+02   .257E+10   .578E+09
         46   .500E-02   .230E+00   .550E+02   .256E+10   .591E+09
         47   .500E-02   .235E+00   .550E+02   .256E+10   .603E+09
         48   .500E-02   .240E+00   .550E+02   .256E+10   .616E+09
         49   .500E-02   .245E+00   .550E+02   .255E+10   .629E+09
         50   .500E-02   .250E+00   .550E+02   .255E+10   .642E+09
         51   .500E-02   .255E+00   .550E+02   .254E+10   .654E+09
         52   .500E-02   .260E+00   .550E+02   .254E+10   .667E+09
         53   .500E-02   .265E+00   .550E+02   .254E+10   .680E+09
         54   .500E-02   .270E+00   .550E+02   .253E+10   .692E+09
         55   .500E-02   .275E+00   .550E+02   .253E+10   .705E+09
         56   .500E-02   .280E+00   .550E+02   .252E+10   .718E+09
         57   .500E-02   .285E+00   .550E+02   .252E+10   .730E+09
         58   .500E-02   .290E+00   .550E+02   .251E+10   .743E+09
         59   .500E-02   .295E+00   .550E+02   .251E+10   .755E+09
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    WELL #2:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
         40   .500E-02   .200E+00   .100E+04   .000E+00   .000E+00
         41   .500E-02   .205E+00   .100E+04   .283E+10   .142E+08
         42   .500E-02   .210E+00   .100E+04   .283E+10   .283E+08
         43   .500E-02   .215E+00   .100E+04   .282E+10   .424E+08
         44   .500E-02   .220E+00   .100E+04   .281E+10   .565E+08
         45   .500E-02   .225E+00   .100E+04   .281E+10   .705E+08
         46   .500E-02   .230E+00   .100E+04   .280E+10   .845E+08
         47   .500E-02   .235E+00   .100E+04   .279E+10   .985E+08
         48   .500E-02   .240E+00   .100E+04   .279E+10   .112E+09
         49   .500E-02   .245E+00   .100E+04   .278E+10   .126E+09
         50   .500E-02   .250E+00   .100E+04   .277E+10   .140E+09
         51   .500E-02   .255E+00   .100E+04   .277E+10   .154E+09
         52   .500E-02   .260E+00   .100E+04   .276E+10   .168E+09
         53   .500E-02   .265E+00   .100E+04   .276E+10   .182E+09
         54   .500E-02   .270E+00   .100E+04   .275E+10   .195E+09
         55   .500E-02   .275E+00   .100E+04   .274E+10   .209E+09
         56   .500E-02   .280E+00   .100E+04   .274E+10   .223E+09
         57   .500E-02   .285E+00   .100E+04   .273E+10   .236E+09
         58   .500E-02   .290E+00   .100E+04   .273E+10   .250E+09
         59   .500E-02   .295E+00   .100E+04   .272E+10   .264E+09

Finally, let us numerically shock our transient compressible simulation once
again, this time shutting in production interactively at both wells for time steps
60-79.  From our WELL1.SIM and WELL2.SIM pressure files, we find that
during Steps 60-79, we have in each case a rapid pressure buildup initially
followed by a more gradual rise.
    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          .
          .
         57   .500E-02   .285E+00   .550E+02   .252E+10   .730E+09
         58   .500E-02   .290E+00   .550E+02   .251E+10   .743E+09
         59   .500E-02   .295E+00   .550E+02   .251E+10   .755E+09
         60   .500E-02   .300E+00   .722E+04   .000E+00   .755E+09
         61   .500E-02   .305E+00   .861E+04   .000E+00   .755E+09
         62   .500E-02   .310E+00   .913E+04   .000E+00   .755E+09
         63   .500E-02   .315E+00   .934E+04   .000E+00   .755E+09
         64   .500E-02   .320E+00   .943E+04   .000E+00   .755E+09
         65   .500E-02   .325E+00   .946E+04   .000E+00   .755E+09
         66   .500E-02   .330E+00   .948E+04   .000E+00   .755E+09
         67   .500E-02   .335E+00   .949E+04   .000E+00   .755E+09
         68   .500E-02   .340E+00   .949E+04   .000E+00   .755E+09
         69   .500E-02   .345E+00   .950E+04   .000E+00   .755E+09
         70   .500E-02   .350E+00   .950E+04   .000E+00   .755E+09
         71   .500E-02   .355E+00   .950E+04   .000E+00   .755E+09
         72   .500E-02   .360E+00   .950E+04   .000E+00   .755E+09
         73   .500E-02   .365E+00   .951E+04   .000E+00   .755E+09
         74   .500E-02   .370E+00   .951E+04   .000E+00   .755E+09
         75   .500E-02   .375E+00   .951E+04   .000E+00   .755E+09
         76   .500E-02   .380E+00   .951E+04   .000E+00   .755E+09
         77   .500E-02   .385E+00   .951E+04   .000E+00   .755E+09
         78   .500E-02   .390E+00   .952E+04   .000E+00   .755E+09
         79   .500E-02   .395E+00   .952E+04   .000E+00   .755E+09

    WELL #2:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          .
          .
         57   .500E-02   .285E+00   .100E+04   .273E+10   .236E+09
         58   .500E-02   .290E+00   .100E+04   .273E+10   .250E+09
         59   .500E-02   .295E+00   .100E+04   .272E+10   .264E+09
         60   .500E-02   .300E+00   .973E+04   .000E+00   .264E+09
         61   .500E-02   .305E+00   .977E+04   .000E+00   .264E+09
         62   .500E-02   .310E+00   .977E+04   .000E+00   .264E+09
         63   .500E-02   .315E+00   .978E+04   .000E+00   .264E+09

continued …
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         64   .500E-02   .320E+00   .978E+04   .000E+00   .264E+09
         65   .500E-02   .325E+00   .978E+04   .000E+00   .264E+09
         66   .500E-02   .330E+00   .978E+04   .000E+00   .264E+09
         67   .500E-02   .335E+00   .978E+04   .000E+00   .264E+09
         68   .500E-02   .340E+00   .978E+04   .000E+00   .264E+09
         69   .500E-02   .345E+00   .978E+04   .000E+00   .264E+09
         70   .500E-02   .350E+00   .978E+04   .000E+00   .264E+09
         71   .500E-02   .355E+00   .979E+04   .000E+00   .264E+09
         72   .500E-02   .360E+00   .979E+04   .000E+00   .264E+09
         73   .500E-02   .365E+00   .979E+04   .000E+00   .264E+09
         74   .500E-02   .370E+00   .979E+04   .000E+00   .264E+09
         75   .500E-02   .375E+00   .979E+04   .000E+00   .264E+09
         76   .500E-02   .380E+00   .979E+04   .000E+00   .264E+09
         77   .500E-02   .385E+00   .979E+04   .000E+00   .264E+09
         78   .500E-02   .390E+00   .979E+04   .000E+00   .264E+09
         79   .500E-02   .395E+00   .979E+04   .000E+00   .264E+09

This completes our simulating while drilling example.  Although we have
used time steps of 0.005 hr, the algorithm will simulate very stably with step
sizes on the order of hours and days.  The key emphasis is the robustness of the
scheme when the reservoir is subjected to actual operational changes.  The
simulation was designed to show how general heterogeneities and well
configurations can be modeled with minimal effort.  And operational changes
can be implemented and studied in real time during interactive simulation,
without requiring extremely small time steps for stability.  Such simulations are
also ideal for real-world history matching applications.  Time step sizes and the
number of integration cycles between runtime menu displays can be altered in
accordance with operational changes, allowing users to replicate oilfield
operations easily and perform what if production tests efficiently.

Example 15-5.  Modeling wellbore storage effects
and compressible borehole flow transients.

Consider a two-layer homogeneous reservoir with a centered vertical well,
that is, the simple 11 × 11 × 2 system in LAYER1.DRL.  The computational box
is surrounded by aquifers on all four sides and held at 1,000 psi, while the tops
and bottoms are solid no-flow walls.  The reservoir is initially pressurized at
1,000 psi, and the well is flow rate constrained at 1,000 cu ft/hr once production
begins.  Wellbore storage effects, specifically the consequences of varying F
from 0.0 ft5/lbf (for zero storage) through a range of values, are desired.

C>type layer1.drl (layer2.drl is identical)

+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + 1 + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
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INPUT LITHOLOGY AND FORMATION PROPERTIES:
O  Enter option, rectangular or stratigraphic grids?  R/S:  r
O  Enter number of reservoir layers (# 1-9):  2
   2 layer(s)  taken in  the  "Z" direction.
   11 grid blocks  counted in "X" direction.
   11 grid blocks  counted in "Y" direction.
O  Enter grid length DX in X direction (ft):  100
O  Enter grid length DY in Y direction (ft):  100
O  Enter "thickness" DZ in Z direction (ft):  100
Reading geological files from disk, please wait ...
Lithology definition begins:

Is rock type + isotropic?  Y/N:  y
   Isotropic permeability (md) of lithology + is:  100
   Porosities are used in "steady state"  flows to solve
   front positions only, and are not needed for pressure
   calculations.   In compressible flow, particularly in
   well test and primary recovery, porosities are needed
   for both pressure and front computations.

   Nonzero porosity  (decimal) of lithology + is:  .20

Rock compressibility forms part of the input: the net compressibility of the fluid
and rock system, not that of the fluid alone, affects transients.  This is critical if
significant variations of rock having different compressibilities exist.  If these
are available during analysis, the opportunity to weight both values by porosity-
averaging is available, and an effective compressibility of ceff = φ(x,y,x) cfluid +
(1-φ) crock is used, with cfluid and crock denoting fluid and rock values, and φ(x,y,z)
being the porosity. (At this writing, this option is available only for liquids.)
Thus, a 99% porous medium would be dominated by liquid effects, while a 1%
porous medium would have its flow dominated by rock effects.
   Rock compressibility is required if averaging of rock
   and liquid values is applied in transient simulation;
   if not, enter dummy values (e.g., "1").

   Rock compressibility (/psi) of lithology + is:  .000008
Number of lithologies identified in reservoir:   1

Lithotype + Formation Properties:
kx = .1000E+03 md, ky = .1000E+03 md, kz = .1000E+03 md,
porosity = .2000E+00, compressibility = .8000E-05 / psi.

Copying files to disk, please wait ...

Total volume of "computational box" is  .242E+09  cu ft,
total pore space volume is  .484E+08 cu ft.

Several simulations designed to illustrate differences between production and
injection wells, and wells with and without wellbore storage, are given.  The
captured screens shown next are self-explanatory.

Run 1.  Production well, no wellbore storage effects.
Reading geological/drilling records, please wait -
One cluster of wells was identified in your reservoir.

Well constraint conventions:  (1)  Pressure levels
must be positive ( >0).  (2) Flow rate constraints
assume "-" for injectors,  and  "+" for producers;
for gases,  enter rates corresponding to "standard
surface conditions" (i.e.,  @ 14.7 psi, 60 deg F).
Additional properties will be required at runtime.

Units available, (1) CuFt/Hr, (2) CuFt/D, (3) B/D.
Enter option (1, 2 or 3):  1
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Is "Well No. 1" pressure or rate constrained?  P/R:  r
O  Enter total cluster volume flow rate:  1000
SIMULATION SETUP, PHYSICAL FLUID MODELING, FARFIELD
AND WELLBORE RUN/TIME BOUNDARY CONDITION DEFINITION:

Reading drilling records, please wait ...

PRESENT RESERVOIR STATUS:

Reservoir  grid parameters:
To continue, type <Return>:
Imax   = 11, Dx = .1000E+03 ft, Imax  *Dx = .1100E+04 ft.
Jmax   = 11, Dy = .1000E+03 ft, Jmax  *Dy = .1100E+04 ft.
Layers =  2, Dz = .1000E+03 ft, Layers*Dz = .2000E+03 ft.

Number of initial well clusters identified: 1

To continue, type <Return>:  <Return>
Reading transmissibility files, please wait ...

You may modify TX, TY and TZ transmissibilities for simulation
purposes WITHOUT altering values on disk .... Modify?  Y/N:  n
Combining geological/drilling information, please wait ...

Well block transmissibility summary (ft^3):

To continue, type <Return>:  <Return>
Well 1, defined by   2 grid blocks, is
flow rate constrained at  .1000E+04  cu ft/hr,
that is,  .427E+04 b/d, or  .240E+05 cu ft/day.
Block   1: (I= 6, J= 6, Layer 1), Tx = .108E-09, Ty = .108E-09, Tz = .108E-09
Block   2: (I= 6, J= 6, Layer 2), Tx = .108E-09, Ty = .108E-09, Tz = .108E-09

INPUT FARFIELD BOUNDARY CONDITION SETUP:

                        Z(k)
                      |
                      | j=1       Jmax(11)
                  i=1 |
                      +--------------+  ------  Y(j)
                    / ¦______________¦ \
          Left    /   ¦___  Back  ___¦   \   Right
                /     ¦______________¦     \
              /       +--------------+       \
  Imax(11)   +-------/  Top, Layer 1  \-------+
          /  ¦________________________________¦
        /    ¦____________  Front ____________¦
      / X(i) ¦________________________________¦
             +-------  Bottom, Layer 2  ------+

                       COORDINATE SYSTEM

O  FRONT ... is aquifer or no flow wall?  A/W:  a
O  Pressure at FRONT face (psi):  1000
O  BACK .... is aquifer or no flow wall?  A/W:  a
O  Pressure at BACK face  (psi):  1000
O  LEFT .... is aquifer or no flow wall?  A/W:  a
O  Pressure at LEFT face  (psi):  1000
O  RIGHT ... is aquifer or no flow wall?  A/W:  a
O  Pressure at RIGHT face (psi):  1000
O  TOP ..... is aquifer or no flow wall?  A/W:  w
O  BOTTOM .. is aquifer or no flow wall?  A/W:  w

PHYSICAL FLUID MODEL SETUP:

O  Fluid viscosity of water and air at room temperature
   and pressure are 1 cp and 0.018 cp, respectively ...

O  Fluid viscosity (centipoise):  1
Is reservoir fluid a liquid or a gas?  L/G:  L
Analyze steady or transient compressible flow?  S/T:  t
TRANSIENT COMPRESSIBLE FLOW SIMULATION MODE SELECTED.
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Transient compressible flow calculation beginning ...

Initialize solution to (A) constant pressure everywhere
or (B) variable pressure field stored in file?  A/B:  a
O  Enter initial uniform pressure (psi):  1000
WELL TEST INPUT PARAMETER SETUP:

Reading porosity array, please wait ...

O  Typical compressibilities: oil @ 0.00001/psi,
   water @ 0.000003/psi, gas @ 0.0005/psi, etc.
O  Liquid compressibility (1/psi):  .000003

The following command allows porosity-averaged rock-fluid compressibility,
per the above discussion (again, option is available for liquid flows only),
Porosity-average this liquid compressibility with
matrix compressibilities  entered previously?  Y/N:  n
Time scale estimate?     Y/N:  n
O  Initial time step (hours):  .1
O  Maximum  number  of steps:  1000

Invoke "small deformation" compaction model?   Y/N:  n
Continue  transient flow simulation modeling?  Y/N:  y
Well #1,  @ Step #    0, Time  .000E+00  hrs,
is "rate constrained" at   .100E+04 cu ft/hr.
Well status or geometry, Change or Unchanged?  C/U:  u
Drill any (more) new wells and well clusters?  Y/N:  n
Time step now  .100E+00 hr, Change/Unchanged?  C/U:  u

Note from the following query that the simulator’s default mode assumes zero
wellbore storage.  However, you may change the value of the capacity factor F
periodically during the transient run and also choose F to be different for
different wells.  At iteration intervals you define, you are informed of all current
F’s and are permitted to alter them as drilling or production conditions change.
Well Cluster 1:
Well storage capacity, now  .000E+00 ft^5/lbf, C/U:  u
Time steps between pressure plots,  now   10,  C/U:  c
......................  Enter new time step number:  200
Time steps between well status changes,   10,  C/U:  c
......................  Enter new time step number:  200
Calculating at time step     1, please wait ...
Calculating at time step     2, please wait ...

On completion, the WELL#.SIM files created during simulation are stored and
available for plotting.  These files contain pressure and flow rate history at each
single well or multilateral well cluster, for example,
C>type well1.sim
    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          1   .100E+00   .100E+00   .969E+03   .100E+04   .100E+03
          2   .100E+00   .200E+00   .954E+03   .100E+04   .200E+03
          3   .100E+00   .300E+00   .946E+03   .100E+04   .300E+03
          4   .100E+00   .400E+00   .940E+03   .100E+04   .400E+03
          5   .100E+00   .500E+00   .936E+03   .100E+04   .500E+03
          6   .100E+00   .600E+00   .932E+03   .100E+04   .600E+03
          7   .100E+00   .700E+00   .929E+03   .100E+04   .700E+03
          8   .100E+00   .800E+00   .927E+03   .100E+04   .800E+03
          9   .100E+00   .900E+00   .925E+03   .100E+04   .900E+03
         10   .100E+00   .100E+01   .923E+03   .100E+04   .100E+04
          .
          .
        199   .100E+00   .199E+02   .902E+03   .100E+04   .199E+05
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Run 2.  Production well, with some wellbore storage effects.

Observe from the preceding table that the well pressure decreases from 969
psi to 902 psi after 200 time steps.  In Run 1, we assumed that F was identically
zero, with 0.0 ft5/lbf.  Now we repeat our calculations with a slightly different
capacity, assuming that F = 0.00000001 ft5/lbf.  All other parameters are
identical to Run 1 for comparison.  The effect of a nonzero (positive) capacity
allows borehole fluid to expand initially.  In this problem, this expansion
supplies part of the produced flow, decreasing the production rate required at the
sandface.  Hence, the pressure decrease should in time be less rapid than in Run
1 which, again, assumed zero storage.  The final results, shown here, are
consistent with the physics, with a final pressure of 932 psi instead of 902 psi.

    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          1   .100E+00   .100E+00   .969E+03   .100E+04   .100E+03
          2   .100E+00   .200E+00   .969E+03   .100E+04   .200E+03
          3   .100E+00   .300E+00   .968E+03   .100E+04   .300E+03
          4   .100E+00   .400E+00   .968E+03   .100E+04   .400E+03
          5   .100E+00   .500E+00   .968E+03   .100E+04   .500E+03
          6   .100E+00   .600E+00   .968E+03   .100E+04   .600E+03
          7   .100E+00   .700E+00   .967E+03   .100E+04   .700E+03
          8   .100E+00   .800E+00   .967E+03   .100E+04   .800E+03
          9   .100E+00   .900E+00   .967E+03   .100E+04   .900E+03
         10   .100E+00   .100E+01   .967E+03   .100E+04   .100E+04
         20   .100E+00   .200E+01   .964E+03   .100E+04   .200E+04
         30   .100E+00   .300E+01   .962E+03   .100E+04   .300E+04
         40   .100E+00   .400E+01   .960E+03   .100E+04   .400E+04
         50   .100E+00   .500E+01   .957E+03   .100E+04   .500E+04
        100   .100E+00   .100E+02   .947E+03   .100E+04   .100E+05
          .
        199   .100E+00   .199E+02   .932E+03   .100E+04   .199E+05

Run 3.  Production well, with more wellbore storage effects.

In this run, we increase the F assumed in Run 2 one-hundred-fold to
0.000001 ft5/lbf.  This represents a case where almost all of the surface
production is assumed by borehole fluid expansion; it simulates underbalanced
drilling when substantial gas is released from solution into the wellbore column.
This simulation was designed to test the stability limits and physical correctness
of the scheme.  The results of this simulation lead to a very nonproductive
reservoir as expected.  For example, the following plot,

Pressure (psi) versus time:

     Hours                   0
                             ______________________________
      .10      .9690E+03     |                            *
      .20      .9690E+03     |                            *
      .30      .9690E+03     |                            *
      .40      .9690E+03     |                            *
      .50      .9690E+03     |                            *
      .60      .9690E+03     |                            *
      .70      .9690E+03     |                            *
      .80      .9690E+03     |                            *
      .90      .9690E+03     |                            *
     1.00      .9690E+03     |                            *
        .
        .
    19.00      .9680E+03     |                           *
        .
    19.90      .9680E+03     |                           *

reveals a constant level of sandface pressure is consistent with the fact that the
reservoir contributes very little to production.
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Run 4.   Injector well, without wellbore storage effects.

We repeat Run 1 (without wellbore storage effects) but allow Well 1 to be
flow rate constrained at -1,000 cu ft/hr, that is, assume a sign change.  Thus,
Well 1 is converted from a producer to an injector.  The edited WELL1.SIM file
that follows displays the physically expected increase in pressure with time.

    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          1   .100E+00   .100E+00   .103E+04  -.100E+04  -.100E+03
          2   .100E+00   .200E+00   .105E+04  -.100E+04  -.200E+03
          3   .100E+00   .300E+00   .105E+04  -.100E+04  -.300E+03
          4   .100E+00   .400E+00   .106E+04  -.100E+04  -.400E+03
          .
          .
        100   .100E+00   .100E+02   .110E+04  -.100E+04  -.100E+05
        199   .100E+00   .199E+02   .110E+04  -.100E+04  -.199E+05

Run 5.  Injector well, with wellbore storage effects.

Here, we will repeat Run 4, except that we set F = 0.00000001 ft5/lbf.  The
effect of this nonzero (positive) storage is easily envisioned.  At t = 0, the
injection will compress the fluid in the borehole first.  Thus, the rate of timewise
pressure increase obtained at the sandface should fall below the levels calculated
in Run 4.  To see that this is in fact the situation calculated, the reader should
examine the WELL1.SIM file shown here.  Whereas in Run 4, the pressure at
200 time steps was 1,100 psi, the final value now is 1,070 psi.

    WELL #1:     Dt        Time     Pressure  Flow Rate    Cum Vol
    Step No.   (Hour)     (Hour)      (Psi)   (Cu Ft/Hr)   (Cu Ft)
          1   .100E+00   .100E+00   .103E+04  -.100E+04  -.100E+03
          2   .100E+00   .200E+00   .103E+04  -.100E+04  -.200E+03
          3   .100E+00   .300E+00   .103E+04  -.100E+04  -.300E+03
          .
          .

         40   .100E+00   .400E+01   .104E+04  -.100E+04  -.400E+04
         50   .100E+00   .500E+01   .104E+04  -.100E+04  -.500E+04
        100   .100E+00   .100E+02   .105E+04  -.100E+04  -.100E+05
        199   .100E+00   .199E+02   .107E+04  -.100E+04  -.199E+05

As with all simulator options, the storage algorithm was very stable.  Also,
spatial results calculated at 200 steps, or 20 hours, show the correct horizontal,
vertical, and diagonal pressure symmetries about the centered well, highlighted
below in bold numerals between asterisks; the pressures in Layer 1 and Layer 2
are identical, as required physically.  Such simple checks are really demanding,
since few algorithms claim stability without losing accuracy.  We have studied a
vertical well; the storage option applies to the general heterogeneities, plus
arbitrary horizontal and multilateral wells.
Pressure Distribution (psi) in Layer 1:
BACK

.100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04

.100E+04 .100E+04 .100E+04 .100E+04 .101E+04 .101E+04 .101E+04 .100E+04 .100E+04 .100E+04 .100E+04

.100E+04 .100E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .100E+04 .100E+04

.100E+04 .100E+04 .101E+04 .101E+04 .102E+04 .102E+04 .102E+04 .101E+04 .101E+04 .100E+04 .100E+04

.100E+04 .101E+04 .101E+04 .102E+04 .103E+04 .104E+04 .103E+04 .102E+04 .101E+04 .101E+04 .100E+04

.100E+04 .101E+04 .101E+04 .102E+04 .104E+04*.107E+04*.104E+04 .102E+04 .101E+04 .101E+04 .100E+04

.100E+04 .101E+04 .101E+04 .102E+04 .103E+04 .104E+04 .103E+04 .102E+04 .101E+04 .101E+04 .100E+04

.100E+04 .100E+04 .101E+04 .101E+04 .102E+04 .102E+04 .102E+04 .101E+04 .101E+04 .100E+04 .100E+04

.100E+04 .100E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .100E+04 .100E+04

.100E+04 .100E+04 .100E+04 .100E+04 .101E+04 .101E+04 .101E+04 .100E+04 .100E+04 .100E+04 .100E+04

.100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04
FRONT
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Pressure Distribution (psi) in Layer 2:
BACK

.100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04

.100E+04 .100E+04 .100E+04 .100E+04 .101E+04 .101E+04 .101E+04 .100E+04 .100E+04 .100E+04 .100E+04

.100E+04 .100E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .100E+04 .100E+04

.100E+04 .100E+04 .101E+04 .101E+04 .102E+04 .102E+04 .102E+04 .101E+04 .101E+04 .100E+04 .100E+04

.100E+04 .101E+04 .101E+04 .102E+04 .103E+04 .104E+04 .103E+04 .102E+04 .101E+04 .101E+04 .100E+04

.100E+04 .101E+04 .101E+04 .102E+04 .104E+04*.107E+04*.104E+04 .102E+04 .101E+04 .101E+04 .100E+04

.100E+04 .101E+04 .101E+04 .102E+04 .103E+04 .104E+04 .103E+04 .102E+04 .101E+04 .101E+04 .100E+04

.100E+04 .100E+04 .101E+04 .101E+04 .102E+04 .102E+04 .102E+04 .101E+04 .101E+04 .100E+04 .100E+04

.100E+04 .100E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .101E+04 .100E+04 .100E+04

.100E+04 .100E+04 .100E+04 .100E+04 .101E+04 .101E+04 .101E+04 .100E+04 .100E+04 .100E+04 .100E+04

.100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04 .100E+04
FRONT

Storage was modeled numerically because general multilateral well
topologies and their placement in heterogeneous formations preclude analytical
solution.  For simpler problems in homogeneous media, closed-form solutions
can be given.  For example, an exact solution is derived in Chapter 18 for a
nonzero radius ellipsoidal source, which includes storage, anisotropy, and skin
effects, in order to demonstrate classic Laplace transform analysis methods.
This model is used in formation tester pressure transient interpretation.  Finally,
we note that deconvolution methods are available to un-do the effects of
wellbore storage, so that the formation response itself is available for analysis.
These methods are strictly applicable to liquid flows without rock compaction,
since they employ Duhamel’s integral, a superposition method restricted to
linear systems.  When gases are modeled, or when liquids with compaction
drives are considered, deconvolution methods cannot be used and direct
simulation is required.

PROBLEMS AND EXERCISES

1. Our wellbore model ignores friction and gravity for simplicity, so that pw

can be moved across the summation operator; for example, see Equations
15-12,13 and 15-29,30.  Extend the finite difference model to include these
effects.

2. Consider an underbalanced drilling situation where low pressures in the
borehole release free gas at the shallower depths.  Formulate a wellbore
storage model for use in such highly compressible two-phase flows.
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16
Fluid Mechanics of Invasion

Few subjects in petroleum engineering have elicited as much interest and
practical concern among a broad spectrum of specialists, for example, workers
in drilling, reservoir simulation, stimulation, and well log analysis, as the study
of formation invasion.  This interest has spanned decades: where hydrocarbon
deposits are likely to be found, the role that invasion plays is as critical to
physical understanding as it is to economics.  Early on, the effects of invasion on
resistivity interpretation dominated industry interest.  Now, with high-data-rate
Measurement-While-Drilling (or, MWD) tools on the horizon, reservoir
engineers believe that formation characteristics can be reliably extracted from
resistivity data, taken at different points in time, possibly using different types of
electromagnetic tools, applied in conjunction with other types of logging data.
This optimism has spawned a new specialty known as time lapse analysis,
introduced briefly in Chapter 14.  As we indicated, formation invasion is of
interest in numerous applications.  For example, invasion modeling is useful to
squeeze cementing operations, designed to plug undesired completion
perforations in well casing.  It is useful in assessing formation damage due to
mud contamination of near-well rock zones, thus contributing to improved
production and stimulation planning.  And it is vital to designing good hydraulic
fracturing programs, insofar as understanding the nature and effects of proppant
transport and buildup is concerned.  Finally, invasion modeling is instrumental
in interpreting real-time MWD measurements.  How does invasion contaminate
early-time data, and what corrections are possible?  What types of information
can be inferred from differences between early MWD and later wireline logs?

Despite wide industry interest, little in the way of scientifically rigorous
flow modeling is available, and a long history of neglect and abuse has plagued
invasion analysis with regard to mathematical description and understanding.
Classic formulas have been systematically misused, and hundreds of papers
have literally appeared, mistakenly applying a universal √t law to areas that are
entirely inappropriate.  Well log analysts understand the physical role of low-to-
medium permeability mudcakes in dominating reservoir invasion and have
qualitatively described the kinds of formation information (e.g., porosity,
permeability, and hydrocarbon saturation), that can be reliably inferred under
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different circumstances.  But additional parameters affect invasion, and these
must be identified and understood before quantitative time lapse analysis is
possible.  The tools needed to pursue this effort have been lacking, perhaps
because the modeling ideas are specialized and not well known to the industry.
Formation invasion analysis can, it turns out, be crafted on firm scientific
ground.  In the end, one need only realize that the invasion process represents
but a Darcy flow, governed by the classic equations of reservoir engineering,
although complicated by the presence of moving boundaries.

Such problems with moving boundaries, that is, the mud-to-mudcake
interface and the filtrate-to-formation-fluid displacement front, or moving
boundary value problems, have been addressed to some extent in the literature
on interface dynamics.  For example, models are available in heat transfer
analysis, where “phase changes” (say, solid-to-liquid, or liquid-to-gas
transitions) are prominent.  Well-known solution methods have been applied to
reservoir flow problems dealing with oil production from permafrost zones,
where moving heat fronts are used to significantly lower fluid viscosities.  And
finally, reservoir engineers have modeled and monitored water breakthrough and
moving saturation fronts in oilfields for decades.  These examples deal with
moving fronts within the rock.  In formation invasion, this reservoir flow is
further coupled to an external front defined by the borehole fluid and mudcake
interface.  Since the cake grows with time as a result of filtration at the sandface,
transient mudcake growth models must be developed that are dynamically
coupled to the single or multiphase flow in the rock.

Despite the complexity, it turns out that the mathematics needed to
understand the complete formation invasion process is simple and easily
explained.  The basic ideas and principles require some calculus and only a
different perspective on Darcy’s equations.  These ideas, all formulations,
analytical solutions, and numerical algorithms with Fortran code, are presented
in the remaining chapters in a readable, self-contained, down-to-earth manner.
We elect to discuss invasion from the fluid-modeling point of view, because
fluid flow is the principal physical mechanism: it drives and controls resistivity
measurement, but is not affected by dielectrics, conductivities, or nuclear
properties.  Logging tool responses depend on the motion of formation fluids
(e.g., resistivities move with the fluid and not vice-versa.  Of course, there are
disciplines where fluids and electromagnetics cannot be considered
independently (e.g., plasma physics), but invasion is not one of them.  Even so,
invasion analysis can be intimidating because the fluid model that applies in any
logging situation is never known with certainty.  And since unsteady front
positions are inferred from resistivity calculations that presuppose some fluid
model, time lapse analysis may be a highly iterative endeavor.

This implies that time lapse logging can be subjective, drawing upon field
experience.  Log interpretation may direct the analyst to some of the fluid
models in this book; it becomes his job to understand how his tool responds with
respect to the model and to interpret his readings based on environmental
variables.  Log analysts who deal with resistivity interpretation and tornado
charts have criticized the deficiencies behind the modeling of resistivity
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variations using multilayer step and even straight-line ramped profiles because
they do not represent reality.  Radii used in the former are arbitrarily selected,
while the latter ramped profiles do not resemble actual ones with smoothed
corners.  The models developed later adapt single- and two-phase methods from
reservoir engineering to make overly simplified models unnecessary.  While the
prior chapters have discussed the forward modeling of fluid flow, we will also
address the inverse problem, in which rock and fluid properties are inferred from
logging tool readings.  Using ideas borrowed from seismic migration, where
physical models are used to image subsurface formations, we show how
complicated flows can be tracked backwards in time to unveil a simpler flow
more easily interrogated for formation properties.  For example, an arbitrarily
smeared, transient concentration profile can be undiffused, or migrated to an
earlier time to reveal the original step discontinuity.  Then, the distinct front
radius so obtained can be interpreted using formulas for piston-like flows.
Alternatively, saturation discontinuities can be unshocked in two-phase
immiscible flow, in order to recover the original smooth flows for study.

QUALITATIVE IDEAS ON FORMATION INVASION

In this section, we qualitatively discuss the mechanics of formation
invasion and describe different physical mechanisms that occur simultaneously,
with a view toward quantitatively modeling these phenomena.  We emphasize
that all of the gross fluid motions within our formation pore spaces, whether
they are miscible, immiscible, compressible, or simple, single-phase,
incompressible flows, acting individually or in combination, are unaffected by
electrical or nuclear properties.  But the reverse is not true.  Measured electrical,
electromagnetic, and nuclear properties obtained by logging tools depend on the
exact distribution of fluids (e.g., mud filtrate, movable and immovable connate
water, oil and gas, miscible and immiscible displacements), while their time-
dependent changes depend on different space and time scales that characterize
each fluid component.  Detailed fluid dynamics analysis takes precedence in
simulation since good electrical modeling (say) is premised on the use of correct
fluid distributions.  True reservoir planning and economic modeling cannot take
place until the uncertainty in measured parameters can be understood.  Thus,
reservoir flow modeling plays crucial roles at two scales: the production level
which is traditionally the domain of reservoir engineers, and the logging tool
level, which forces us to ask what is really being measured.

For any given resistivity logging instrument, say, tool response is complex,
depending on wave frequencies, formation properties, and transmitter and
receiver locations.  Since the response at any point represents some type of
volumetric average based on Maxwell’s equations, what the exact properties are
and where cannot be uniquely determined, even when all fluid motions are
known.  These uncertainties are in addition to those posed by fluid flow.  What
happens near the well?  During oil well drilling, drilling fluids or muds, are
circulated down the drillpipe, through the drill bit nozzles, and finally, up the
borehole annulus to the surface (see Figure 16-1).  Muds serve numerous
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practical purposes, for example, lubricating the drill bit, bringing cuttings to the
surface, delivering ingredients vital to downhole formation chemistry, and
providing increased hydrostatic pressure for well control.  While some wells are
drilled using water and brines as the primary drilling fluid, the great majority
contain solid particles that are suspended in the fluid by viscosifiers.  These
solids (e.g., barite) increase the weight of the fluid column and allow drillers to
drill overbalanced (as opposed to underbalanced), with the excess pressure over
the formation pressure preventing fluid influx and possible blowouts.

During those initial instants when the drill bit exposes the virgin formation
to drilling mud, pore bridging is accomplished by mud particles that migrate into
those pore spaces very close to the rock surface, forming internal mudcake. In
this spurt invasion phase, whole mud enters the formation quite freely, although
the overall motion still satisfies Darcy’s law for low Reynolds number flows.
The rate of spurt invasion and the total volume of mud deposited as spurt loss
depends, of course, on the relative  sizes of the mud solids and the pore throats,
and the geometrical arrangement and connectivity of the latter.  The amount of
spurt lost into the formation is important to early time resistivity interpretation.
Since a relatively large volume of fresh filtrate can combine with saline
formation waters at small radii, the interaction with logging instruments during
this time period can be important.

Figure 16-1.  Annular flow and filtration in the borehole.

Mudcake Virgin rockInvasion

Flushed
zone

Transition
zone

Mud

Dip effects

Figure 16-2.  Fluid invasion in the reservoir.
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Once internal cake forms and pore bridging stabilizes, external mudcake
buildup becomes more pronounced. (Internal cake can be viewed as a separate
layer in a multilayer scheme, but for simplicity, we will bookkeep its effects
together with those of the rock.)  As drilling mud is forced into the formation
under high pressure, its constituent solids are left behind outside the invaded
rock.  This mudcake thickens with time as filtrate continues its penetration into
the rock.  During transient invasion, mudcake thickness increases, providing
ever-growing resistance to flow and thus causing consequent declines in
filtration rate.  This process is known as static filtration, noting that invasion is
ongoing and there is nothing static about it.  In dynamic filtration, the invasion
process acts in the presence of mud flowing parallel to the cake surface.  This
flow gives rise to viscous shear stresses at the surface of the mudcake that act to
erode it, or possibly convect moving solids away in such a way that cake never
forms.  At some critical invasion rate, dynamic equilibrium is achieved and cake
thickness remains constant.  In this limit only does two-layer, concentric, steady
flow modeling apply.  In general, the critical rate will depend on whether the
annular flow is laminar or turbulent, and in either case, the degree to which it
obeys power law, Bingham plastic, Herschel-Bulkley, or other rheological flow
models.  Figure 16-1 shows the basic processes that occur within the borehole
annulus, while Figure 16-2 outlines invasion at various depths.  Note the
possibility of formation dip, bedding, and shoulder effects.  Also, the invaded
zone is broken down into flushed zones dominated by filtrate and transition
zones where invading and displaced fluids are present in comparable quantities.

What happens beyond the borehole is actually more complicated than
Figure 16-2 suggests and is just as problematic as the flow near the borehole.
Initially, an untapped hydrocarbon reservoir may contain large concentrations of
oil and gas, together with smaller proportions of immovable connate water.  As
water-base filtrate invades the water-wet, hydrocarbon-bearing formation, a
saturation front separating invading water from preexisting oil and gas
propagates into the formation.  If permeabilities in the formation greatly exceed
those in the cake, then mudcake and formation flows decouple, and flow rates
are dictated by the cake.  On the other hand, in tight zones where both
permeabilities are comparably small, the flows are dynamically coupled: cake
buildup is controlled by slow flow in the formation, which in turn decreases the
rate at which cake grows in thickness.

 
Figure 16-3.  Detailed displacement process in the reservoir.
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As the oil and gas retreat further into the formation, original connate water
is left behind, which mixes with newer water.  If the two waters have different
salinities, for example, the result of fresh mud filtrate displacing salt-saturated
formation water, ionic diffusion takes place.  The invading bank of water of mud
filtrate salinity displaces water having formation water salinity.  The two banks
of water, each characterized by different electrical properties, are separated by a
moving “salinity front” which typically lags the saturation front.  The process
described so far is diagrammed in Figure 16-3, which shows residual oil and
formation water left behind by moving filtrate.

The filtrate invasion of oil saturated rock, which displaces resident oil and
water, causing displaced formation water to concentrate into a bank advancing
ahead of the filtrate, results in a region sometimes called an annulus (not to be
confused with the borehole annulus) comprising high formation water saturation
at the boundary of an invaded oil- or gas-bearing interval.  If a hydrocarbon-
saturated interval is invaded by filtrate fresher than formation water, the annulus
will have a lower resistivity than either the flushed or the undisturbed formation.
Gravity effects and differences in vertical and horizontal rock permeability will
complicate the interpretation of invaded zone well logs.  A discussion on
interpretation subtleties is given by Broussard (1989).

We have spoken of saturation fronts propagating into oil pools, and
moving salinity fronts that follow saturation fronts.  Such terminology presumes
that some type of rapid motion is ongoing.  If this is the case, then piston-like,
slug, or plug-like descriptions of fluid motion are possible, and these form the
basis of the simple models we will study first.  Under the circumstances, the
displacement of salty formation water by fresh water filtrate, and the
displacement of oil and gas by incoming water, both shown in Figure 16-3, are
amenable to simplified plug modeling.  These two types of flows are quite
different.  The first water-to-water flow is a single-phase flow, augmented by
miscible diffusion processes, that complicates log interpretation because
different salinity distributions lead to different tool responses.  The second is an
immiscible multiphase flow (with possible shock discontinuities) whose
description is characterized by nonlinear relative permeability and capillary
pressure effects.  Each of the foregoing flows possesses its own time, space, and
rate scales.  Whether a flow is rapid, or to the contrary slow, depends on the
parameters particular to a specific problem, and especially on the value of the
relevant dimensionless numbers defining that problem.  The physical
implications arising from having two distinct phenomena simultaneously
present, namely, salinity equilibration through ionic diffusion between filtrate
and irreducible trapped formation waters, and capillary pressure and relative
permeability dominated immiscible flows, must be understood.  In either flow,
idealized discontinuities may in fact be wide, and fronts may crawl and not
propagate.  A sharp salinity front, for example, may coexist with a wide
capillary-pressure-dominated transition zone.

The most frequently cited example encompassing all of these elements has
fresh mud filtrate invading a zone containing both salty formation water and
movable hydrocarbons.  Moving from the wellbore, resistivity at first  decreases
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and then increases: this requires the development of both a salinity front and a
saturation front, which can result only from moved hydrocarbons, creating the
so-called annulus effect described earlier.  Other types of resistivity distributions
are possible, for example, that are due to invasion by oil-base mud filtrates into
water and hydrocarbon bearing zones.  As if these possibilities were not
complex enough, there are always local permeability heterogeneities that speed
up or slow down fronts, effects that are to be distinguished from the viscous
fingering that arises from flow instabilities.  Gravity effects, which are important
when fluids have contrasting densities, result in vertical flows.  Since
hydrocarbons are typically lighter than fresh waters, which are in turn lighter
than saline waters, vertical flow movements can be induced by density
variations.  Fluid flows are further complicated by differences between
horizontal and vertical permeabilities, which can be large.  The survey article by
Allen et al. (1991) provides a qualitative review of invasion.  It cites interesting
logging examples, showing how invasion manifests itself and how information
about permeability and porosity can be inferred from resistivity tool
measurements.

BACKGROUND LITERATURE

By far, the most often cited work is the early paper by Outmans (1963),
which applied differential-equation-based filtration methods developed in
chemical engineering to static and dynamic invasion in the borehole.  In this
single-phase flow study, where lineal flow was assumed and the applied
differential pressure was completely supported by the mudcake, Outmans
derived the well known √t law, subject to the further proviso of cake
incompressibility. (The effects of cake nonlinearity and compaction can be
important over time; e.g., see Figure 14-7.)  Thus, the √t law cannot be used
when the net flow resistance offered by the formation is comparable to that of
the mudcake (e.g., thin muds in permeable formations, or thick muds in very
impermeable rocks).  Also, the law does not apply to slimholes, where the radial
geometry is important.  Finally, the √t law does not generally apply to reservoirs
with two-phase, immiscible flow, or miscible flow, or both.  Only under these
restrictive assumptions does Outmans’ correctly derived law hold.

But the √t law has evolved over the past three decades into the industry
vehicle by which well logs are interpreted, and it is commonly used in situations
that are inappropriate.  Literally hundreds of papers have been written.  It is not
the purpose of this book to survey this vast literature.  To keep our objectives
focused, only those experimental, analytical, and recent review papers deemed
material to the development of the predictive models in this book are referenced
here.  Before we proceed with our analysis, let us consider some approaches
used in the industry.  The study of Phelps, Stewart, and Peden (1984) dealing
with invaded zone characteristics and their influence on wireline log and well
test interpretation, like many investigations on two-phase flow invasion,
assumes that mudcake controls the overall flow rate into the formation and, in
particular, invokes the √t law.  This usage is acceptable for higher permeability
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reservoirs, but there is no real reason why this simplified formulation should
apply generally to reservoirs containing multiple immiscible fluids or, for
example, to problems dealing with flows in tight gas sands.  Thus, this accepted
industry practice is both unnecessary and unwarranted.  In Chapter 21, the
coupled boundary value problem governing cake growth and immiscible
invasion is transformed into a simple reservoir flow formulation with a source-
like boundary condition, which is solved using finite difference methods.

Semmelbeck and Holditch (1988) investigated mud filtrate invasion effects
on induction log interpretation.  In their Abstract, they state that “a rigorous
model of mud-filtrate invasion has been developed with a numerical fluid-flow
simulator.” But cake permeability was simply set to 0.001 md for the first 24
hours, and it was reduced to 0.00001 md thereafter.  Tobola and Holditch (1989)
determined small formation permeabilities by history matching the change in
induction tool response over time, using the immiscible-diffusive finite
difference fluid flow simulator just discussed.  But for small permeabilities, the
interaction between reservoir flow and cake growth cannot be ignored.
Although the authors state that mud filter cake permeability profile with time
must be accurately simulated to properly interpret logging data, they do not
follow that suggestion.  Their claims behind a successful history match were
premised upon ad hoc assumptions (e.g., mudcake permeability was fixed at an
arbitrary 0.001 md for the duration of the thirty-day simulation).  Not only was
the milli-darcy cake permeability level arbitrarily chosen, but the transient
character of the invasion and mudcake growth was neglected.  As noted earlier,
since mudcake develops differently on low-permeability formations than it does
in laboratory filter press tests, precisely the type of low perm rock the authors
targeted with time lapse analysis, it is unclear from their paper how laboratory
mudcake data obtained under idealized conditions is to be used successfully in
any inverse application.

Holditch and Dewan (1991), again dealing with formation permeability
prediction from time lapse analysis measurements during and after drilling,
introduce an additional adhesion fraction deemed to be important to dynamic
filtration.  This parameter characterizes how resilient mudcake responds to the
shear stress imparted by passing annular flow.  Certainly, its relevance is clear
and well accepted, but introducing terminology merely acknowledges a problem
and leaves fundamental issues unresolved.  Their adhesion fraction, analogous to
the critical invasion rate due to Fordham et al. (1991), does not model uncertain
but important erosion.  Dewan and Holditch (1992), again using the limiting
empirical √t law as the basis for analysis, take their work further and calculate
radial response functions for borehole logging tools on this ad hoc basis.  In this
book, the quantitative basis for predictive evaluation is developed for both static
and dynamic filtration from first principles.

Lane (1993) presented a refreshing discussion on numerical filtrate
invasion simulation from the viewpoint of reservoir engineering.  Noting that the
step invasion profile assumed in developing resistivity correction (or tornado)
charts represented more the exception than the rule, he applied the two-phase
flow concepts used in waterflooding to model diffusion processes and capillary
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effects.  The discussion is enlightening from a physical viewpoint, and although
a high-quality simulator was used, only qualitative results were offered.  As is
typical, filtrate invasion rate was specified as an input to the simulator, with
mudcake properties totally controlling the fluid loss rate.  The best references on
invasion are the experimental papers by Doll (1955) and Gondouin and Heim
(1964), pointing to the complications that the real world imposes.  Numerous
nonideal effects are present.  The former paper, for example, notes that mud
filtrate, being less saline than the interstitial water originally located in the pore
spaces, with its density appreciably smaller, will tend to ascend.  This
gravitational effect, due to density differences, acts in concert with radial
pressure gradients that arise from differences between borehole mud and
reservoir pore pressure.  Using radioactive tracers, the latter paper explained
how extensive transition zones between flushed and uncontaminated zones
existed. (The authors carefully used lineal cores cut parallel to bedding planes.)
Physical mechanisms of importance included capillarity, which draws formation
water from the annulus into the uncontaminated zone, and the miscible
displacement of formation water by mud filtrate, together with ionic diffusion.
These features hint at the inadequacy of the simplified models used to model
formation resistivity distributions, namely, step, slope, and ramp profiles, and of
course, the limiting √t law.  Given the profusion of recent papers on invasion,
especially its effect on logging tool response and time lapse analysis, a direct
response to invasion’s role and growing importance to MWD, the need for
rigorous mathematical modeling and clearly stated assumptions and limitations
is critical now more than ever.

Dewan and Chenevert (1993) noted that no method for calculating
transient mudcake buildup and the corresponding invasion rate variation in low
permeability formations was available in the literature.  Actually, the first
solution that did solve for dynamically coupled mudcake growth and filtrate
displacement of a dissimilar fluid in a rock core, was given by Chin et al.
(1986).  In that 1986 paper, it is explained how, assuming incompressibility,
three separate Laplace equations governed mudcake, flushed zone, and virgin
rock, and how they should be coupled using pressure and velocity continuity
matching conditions at common boundaries; exact pressure magnitudes are, of
course, specified at extreme boundaries.  Then, the moving boundary value
problem formulation is completed by introducing differential equations that
describe the Lagrangian kinematics of the interface and the constitutive buildup
properties of the mudcake.  These ordinary differential equations, together with
the standard Darcy pressure equations, form a coupled system whose exact,
closed-form, analytical solution is displayed in Figure 16-4.  While that
published solution was exact, making no assumptions about the relative
mobilities behind cake and rock fluid flows, its extension to radial flows was not
as straightforward because of algebraic difficulties.  To solve the radial problem,
for example, zero spurt was assumed, rendering the unpublished solution of
limited value in studying fresh-to-saline water resistivity averaging.  Also,
numerical integration was employed as a last resort because of overwhelming
algebraic complexities.
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These difficulties have now been removed.  For incompressible mudcakes,
filtrates, and formation fluids, the single-phase radial flow problem allowing
dynamical interaction between cake and reservoir flow, including front
displacement by fluids with dissimilar viscosities, plus nonzero spurt, is solved,
and the exact, closed-form, analytical solution is given.  This general solution
uncovers the dimensionless groups that control mudcake formation and
displacement front motion, and has led us to postulate different flow phenomena
that are obviously possible but not as yet considered.  For example, in a lineal
flow where the right-side outlet boundary is fixed (e.g., see Figure 16-4),
neglecting mudcake for now, the displacement of oil by less viscous water leads
to an accelerating front as oil is forced from the core sample.  By the same
token, the displacement of water by oil produces a decelerating front.  Whether
the same mobility ratios lead to acceleration or deceleration in a radial flow, of
course, will depend on the severity of geometric spreading, which in turn
depends on the hole radius.  Geometric spreading (or lack of it) affects filtration
rate and therefore cake buildup.  The smaller the hole, the more important radial
effects are: hence, slimholes may behave differently from normal holes.

Now, the introduction of mudcake leads to unforeseen, but interesting real
events.  Consider cake buildup where a water filtrate displaces a core saturated
with more viscous oil.  At first, when the mudcake is thin, the usual √t law
governing cake growth applies so long as the flow is geometrically linear and
the formation flow is much more mobile than that in the cake.  Mudcake growth
will initiate rapidly and slow down, as expected.  However, at some critical
time, cake growth may accelerate as the more viscous oil disappears, and rapid
frontal advance draws increased amounts of filtrate flow and hence increased
solids deposition.  Transient effects such as these certainly introduce new twists
in well log interpretation and suggest that parallel problems in well test and
repeat formation testing analyses are likely to be no less subtle.  In this book, we
will discuss the physics of such water-oil-cake flows and extend our discussions
to handle diffusion, compressibility, and immiscible flow effects.

DARCY RESERVOIR FLOW EQUATIONS

Petroleum engineers use partial differential equation models to simulate
reservoir flows, to interpret well tests, to characterize formation heterogeneities,
and to assist in infill drilling planning and secondary recovery.  Many
hierarchies for fluid flow modeling exist, ranging from simple single-phase oil
alone or gas only flows to multiphase descriptions, encompassing both miscible
and immiscible limits, to black oil and compositional models.  In this book, we
will address all but the latter two flow models.  Since invasion modeling
requires a slightly different perspective than that taken in earlier chapters, it is
worthwhile to recapitulate the basic governing equations.

Single-phase flow pressure equations.  Fluid flows are governed by
partial differential equations.  For example, single-phase flows of constant
density liquids in homogeneous, isotropic media satisfy Laplace’s equation for
pressure,
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DYNAMICALLY COUPLED LINEAL FLOW
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Exact:  xf (t)  =  - H + √{H2 + 2(Hxf,o + ½ xf,o
2 + Gt)}

where:
G = - {k1(pm-pr)/(µf φeff )}/

{µok1/µf k3 - k1/k2 - φeff  fs /{(1-φc)(1-fs)}}

H = [xf,oφeff fs /{(1-φc)(1-fs)} -µok1L/µf k3]

/{µok1/µf k3 - k1/k2 - φeff fs /{(1-φc)(1-fs)}}

Nomenclature:

xc ... Transient cake thickness

xf ... Transient invasion front
xf,o ... Initial displacement (i.e., spurt)

L ... Lineal core length
pm ... Constant mud pressure Pmud
pr ... Constant reservoir pressure Pres
φeff ... Effective rock porosity

φc ... Mudcake porosity

k1 ... Mudcake permeability to filtrate

k2 ... Rock permeability to filtrate

k3 ... Rock permeability to “oil”

µf ... Mud filtrate viscosity

µo ... Viscosity of “oil” or formation fluid

fs ... Mud solid fraction

Figure 16-4.  Exact lineal invasion solution (Chin et al., 1986).
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∂2p/∂x2 + ∂2p/∂y2 + ∂2p/∂z2 = 0                                                       (16-1)
an elliptic differential equation, while a slightly compressible liquid in the same
medium satisfies

∂2p/∂x2 + ∂2p/∂y2 + ∂2p/∂z2 = (φµc/k) ∂p/∂t                                   (16-2)
In Equations 16-1 and 16-2, the fluid pressure p(x,y,z,t) is the unknown
dependent variable, and x, y, z, and t represent independent variables.  The
standard symbol ∂ denotes partial derivatives (subscripts will also be used).  The
quantities φ, µ, c, and k denote rock porosity, fluid viscosity, fluid-rock
compressibility, and isotropic formation permeability, respectively.  Equation
16-2 is the classical parabolic or heat equation for pressure, so-called because it
was first derived and solved in the context of heat transfer (Carslaw and Jaeger,
1946).  On the other hand, for gas flows, under the same assumptions,

∂2pm+1/∂x2 + ∂2pm+1/∂y2 + ∂2pm+1/∂z2 =

= (φµc*/k) ∂pm+1(x,y,z,t)/ ∂t                                       (16-3)

where m is a nonzero exponent.  In Equation 16-3, the pressure-dependent,
“compressibility-like” quantity

c* = m/p(x,y,z,t)                                                                      (16-4)

renders the boundary value problem nonlinear.  From a practical viewpoint, this
means, say in well test interpretation, that superposition methods do not apply:
the sum of individual solutions is itself not a solution.  Analytically, nonlinearity
implies that the possibilities for closed-form solutions are rare.  But our solution
methods for compressible flows, even for linear problems, will be numerical
anyway.  The nonlinear equation as shown in Equation 16-3, first given by Chin
(1993a,b), simply recasts Muskat’s exact equation in an analogous form
preferable for numerical analysis (Muskat, 1937).  The resulting equation is
linear-like in appearance and thus allows us to readily adapt working linear
numerical schemes to nonlinear problems.

We observe, from classical heat transfer and fluid mechanics, that the
constant exponent m describes the thermodynamics of the gas motion.  In
particular, it is known that

m = 1, for isothermal expansion                                        (16-5a,b,c,d)
= Cv/Cp, for adiabatic expansion

= 0, for constant volume processes
= ∞, for constant pressure processes

where Cp is the specific heat at constant pressure, and Cv is the specific heat at

constant volume.  In inhomogeneous, anisotropic media, petroleum liquids are
governed by

∂(kx ∂p/∂x)/∂x + ∂(ky ∂p/∂y)/∂y +∂(kz ∂p/∂z)/∂z = φµc ∂p/∂t    (16-6)

where kx, ky, and kz are nonuniform permeabilities in the x, y, and z directions.

Analogous equations for gases are summarized in Chapter 1.
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There is more to formation invasion than Darcy’s law q = - (k/µ) ∂p/∂x.
Equations 16-1 to 16-6 are derived using Darcy’s law, a low Reynolds number
approximation to the Navier-Stokes momentum equations, in conjunction with a
requirement for mass conservation.  It is almost never correct to approach
simulation by setting, say q = - (k/ µ) ∂p/∂x = constant, to solve a problem, since
this does not account for the underlying lineal, radial, or spherical geometry, or
for pressure boundary conditions.  Yet, this is often done: Darcy fluid mechanics
requires the solution of pressure boundary value problems.

Problem formulation.  Partial differential equations such as those in
Equations 16-1 to 16-6 require auxiliary conditions that fix any and all degrees
of freedom.  Just as the ordinary differential equation

d2p(x)/dx2 = 0                                                                                  (16-7a)
whose solution

p(x) = Ax + B                                                                                 (16-7b)

requires two boundary conditions to determine the constants A and B, boundary
value problems require analogous boundary conditions, but specified along
physical curves.  In addition, for problems characterized by obvious time
dependences, initial conditions will also be needed.  For the most part, the
exposition in the remainder of this book, at least for analytical models, requires
the reader only to appreciate the fact that the ordinary differential equation

d2p(r)/dr2 + (1/r) dp/dr = 0                                                              (16-8a)

for cylindrical radial flow has the solution

p(r) = A log r + B                                                                          (16-8b)

(all logarithms in this book are natural logarithms), while the slightly altered
“spherical flow” model

d2p(r)/dr2 + (2/r) dp/dr = 0                                                          (16-9a)

has the exact solution

p(r) = A/r  + B                                                                             (16-9b)

These solutions can be easily validated by back-substitution, but we emphasize
that the arbitrary constants of integration A and B will vary from problem to
problem.  Equations 16-7 to 16-9 play important roles in constant density
invasion problems.  Again, Equations 16-1 to 16-6 model single-phase flows
only, and as indicated, we will also address miscible flows where viscous
diffusion is important and immiscible two-phase flows where capillary pressure
and relative permeability cannot be ignored.  In order to keep our early
discussions elementary, we will defer the development of these models for now.

Eulerian versus Lagrangian description.  Equations such as those just
given predict pressure as a function of x, y, z, and t.  Once pressure solutions are
available, the rectangular Darcy velocities are obtained as

u(x,y,z,t) = - (kx/µ) ∂p/∂x                                                           (16-10)

v(x,y,z,t) = - (ky/µ) ∂p/∂y                                                          (16-11)
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w(x,y,z,t) = - (kz/µ) ∂p/∂z                                                       (16-12)

The Eulerian velocities in Equations 16-10 to 16-12 represent speeds measured
at a point in space (x,y,z).  This description is useful to reservoir engineers
because it provides flow rates at production wells, transient pressures at specific
wells for history matching, and pump rates and pressures needed at injectors,
among other quantities of interest.  If these velocities do not vary with time, the
flow is said to be steady.  Otherwise, it is transient or unsteady.  Thus, a constant
velocity, single fluid flow through a linear core is steady, because it appears
unchanged from one instant of time to the next, recognizing that numerous fluid
elements are actually streaming through the pore spaces.  On  the other hand, the
Eulerian frame of reference is not ideal or convenient for every application.  For
example, radioactive and chemical tracers are often introduced into injection
wells and monitored at production wells in order to study reservoir connectivity
and sweep efficiency.  This usage addresses the question of where a marked
fluid element (or a tagged group of particles) is heading, an objective that
requires us to follow the fluid.  This is also important in environmental
engineering, where the destinations of contaminants, as well as their origins and
travel times, are of interest.  For these purposes, a Lagrangian description is
more suitable.  Formation invasion, which deals with traveling fluid fronts,
requires Lagrangian solutions to the equations of fluid motion.

Constant density versus compressible flow.   A constant density, or
incompressible fluid is a fluid consisting of elements that are not unlike
infinitely rigid balls.  Any disturbance to a single element is, therefore,
instantaneously transmitted throughout the entire field of flow, so that the speed
with which information propagates is infinite.  Compressible fluids are
characterized by elasticity.  A fluid element that is disturbed will respond with
minute volume changes and finite delay, before passing the disturbance to its
neighbors.  In borehole annular flows and drillpipe flows, sudden motions
manifest themselves as sound waves governed by hyperbolic equations.  In
reservoirs supporting Darcy flow, compressibility allows pressure disturbances
to slowly diffuse, similar to temperature diffusion in solids.  Hence, petroleum
engineers often model compressibility using heat equation models.

Steady versus unsteady flow.  In elementary reservoir flow analysis,
simple single-phase flows are considered, that is, flows containing one and only
one fluid species throughout the reservoir medium.  For such constant density,
incompressible flows, whenever applied pressures remain constant in time, the
Eulerian pressure fields are steady and result in steady-state formulations.  Only
when the effects of compressibility are allowed in a single-phase flow can
reservoir transients exist; thus, compressible flows can be both transient and
steady.  Other transients of importance are introduced in the drilling process.
For example, changes in the mud are often accompanied by changes in wellbore
pressure and invading fluid viscosity, effects that can (and will) be modeled both
analytically and numerically.  Not all constant density flows are steady, of
course.  In two-phase flows of immiscible fluids, for example, in the Eulerian
flow obtained by displacing oil with water, the relative saturations of each phase
within any particular pore space will vary with time, and then, with position.
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This type of unsteadiness also exists when the two-phase flow is compressible.
For rapid displacements, piston-like, plug, or slug-like flows will result, and the
displacement process can be modeled by monitoring the progress of two
different single-phase flows separated by a moving interface. (Later we will
explain dimensionlessly what is meant by “rapid” or “slow.”)  When fresh water
displaces saline formation water of like viscosity in a core without mudcake
under constant pressure, the flow is steady; but when water displaces oil, or
conversely, the flow is unsteady because “total viscosity” changes with time.  It
is important to understand that different flow limits exist, which will be modeled
by different boundary value problem formulations and fluid properties.  In
single-phase flows, it suffices to consider viscosity, but in two-phase flows, we
require concepts like relative permeability and capillary pressure.  The flow of a
single fluid, which may be steady within the framework of an Eulerian
description, is generally unsteady in a Lagrangian model because the individual
fluid elements being monitored are always in motion.  For this reason, the
Eulerian relationships given in Equations 16-1 to 16-12 provide only a partial
solution to the Lagrangian problem.  To complete the description, we must turn
to kinematic considerations that treat moving fronts and interfaces as distinct
physical entities.

Incorrect use of Darcy’s law.  Darcy’s law states that the local velocity q
in a direction s is given by the directional derivative q = - (k/µ) ∂p/∂s, where p is
the transient or steady pressure, with k and µ representing permeability and
viscosity.  Thus, in a lineal flow, we have q = - (k/µ) ∂p/∂x, whereas in a
cylindrical or spherical radial flow, we have q = - (k/ µ) ∂p/∂r, r being the radial
variable.  Equations 16-10 to 16-12 apply to 3D flows in rectangular or
Cartesian coordinates.  Darcy’s law, a low Reynolds number approximation to
the Navier-Stokes equations, does not embody the complete physical description
of the invasion process.  For example, it does not describe mass conservation.
Only when the latter requirement is invoked, do we obtain partial differential
equations for pressure such as Equations 16-1, 16-2, 16-3, or 16-6.  These are
solved with pressure (or Dirichlet) or flow rate (or Neumann) boundary
conditions applied to inlet and outlet faces.  Unfortunately, a number of
published invasion models actually take (k/µ) ∂p/∂x = - q(t) as a starting point,
where q(t) is specified, leading to an anticipated (but often incorrect) linear
variation in pressure.  Such approaches do not account for the cylindrical and
spherical radial geometric spreading that Equations 16-8a and 16-9a
automatically embody.  Their results fail to satisfy these equations or their
appropriate extensions, for example, it is clear from substitution that dp/dr = -
µq(t)/k does not satisfy d2p(r)/dr2 + (1/r) dp/dr = 0.  Still other analyses invoke a
universal √t law at the outset, failing to appreciate that this limiting result,
correctly derived three decades ago by Outmans (1963), applies to lineal flows
only, and then only when cake compaction is insignificant, fluid compressibility
is ignored, and formation permeability is high.  Because all of this confusion
proliferates throughout the invasion literature, this book will list all underlying
assumptions used whenever new formulas are derived.  We will state limitations
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and strengths clearly, and attempt to carefully document all the requisite steps
needed to arrive at solutions and numerical algorithms.

MOVING FRONTS AND INTERFACES

The kinematics of moving fronts and interfaces has been studied in
different physical contexts for over two hundred years.  Most notable are the
studies of free surfaces in ocean hydrodynamics and vortex sheets in free space
(e.g., see Lamb, 1945), and more recently, flame propagation dynamics in
combustion analyses.  The following derivation, which applies to fluid fronts in
porous media, is given in Chin (1993a).  Let us consider a moving front or
interface located anywhere within a three-dimensional Darcy flow (e.g., any
surface marked by red dye), and let φ(x,y,z) denote the porosity.  Furthermore,
denote by u, v, and w the Eulerian speed components, and describe our interface
by the surface locus of points

f(x,y,z,t) = 0                                                                           (16-13)

An interface, as in Figure 16-5, is defined by the kinematic property that fluid
does not cross it.  Hence, the velocity of the fluid normal to the interface must be
equal to the velocity of the interface normal to itself.  The velocity perpendicular

to the surface, from vector algebra, is equal to -ft (x,y,z,t)/√(fx
2 + fy

2 +fz
2),

while (ufx + vfy + wfz)/ {φ(x,y,z)√(fx
2 + fy

2 +fz
2)} is the normal velocity of

the fluid.  The condition that these be equal is therefore given by the equality

∂f(x,y,z,t)/∂t + (u/φ) ∂f/∂x + (v/φ) ∂f/∂y + (w/ φ) ∂f/∂z = 0       (16-14)

Figure 16-5.  Any surface f(x,y,z,t) = 0 in a reservoir.

Now, from calculus, the total differential df of any function f(x,y,z,t) is

df = ∂f/∂t dt + ∂f/∂x dx + ∂f/∂y dy + ∂f/∂z dz                            (16-15)

Division by dt yields

df/dt = ∂f/∂t + dx/dt ∂f/∂x + dy/dt ∂f/∂y + dz/dt ∂f/∂z                  (16-16)

Comparison with Equation 16-14 shows that we can set the so-called
substantive, material, or convective derivative df/dt to zero, that is,

df/dt = 0                                                                                      (16-17)

provided we require that
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dx/dt = u(x,y,z,t)/ φ(x,y,z)                                                           (16-18)

dy/dt = v(x,y,z,t)/ φ(x,y,z)                                                            (16-19)

dz/dt = w(x,y,z,t)/ φ(x,y,z)                                                            (16-20)

Thus, along the fluid particle trajectories defined by Equations 16-18 to 16-20,
the function f(x,y,z,t) must be constant, since Equation 16-17 requires df/dt = 0.
This proves that particles on a surface remain on it.  Equations 16-18 to 16-20
define the fluid fronts and interfaces, but f(x,y,z,t) no longer plays an active role.

Now, the Eulerian velocities u, v, and w in these trajectory equations are
determined from a separate and independent host formulation, for example,

∂
2
p/∂x

2
 + ∂

2
p/∂y

2
 + ∂

2
p/∂x

2
 = (φµc/k) ∂p/∂t, or ∂

2
p/∂x

2
 + ∂

2
p/∂y

2
 + ∂

2
p/∂x

2
 = 0,

or still another flow model.  While x, y, and z represent independent variables in
the host Eulerian formulation, in the trajectory equations, the same x, y, and z
become the dependent variables, with time now being independent.  This role
reversal, typically resulting in complicated mathematics, is standard in invasion
modeling.  The trajectory equations form coupled, nonlinear, ordinary (not
partial) differential equations.  When they are integrated analytically or
numerically in time, with all starting positions prescribed, the corresponding
particles can be followed as they travel; final results include positions and travel
times along the pathlines or streamlines.  Also, when u(x,y,z,t), v(x,y,z,t), and
w(x,y,z,t) are available, Equations 16-18 to 16-20 can be integrated backward  in
time, to determine the origin of a particle or a group of particles.

Observe that, while the solution of ∂2p/∂x2 + ∂2p/∂y2 + ∂2p/∂x2 = 0, subject
to pressure boundary conditions, does not involve the porosity φ(x,y,z), the
Lagrangian description for the same flow does, as is clear from Equations 16-18
to 16-20.  That this must be so is intuitively obvious.  If we consider the steady-
state flow through a kitchen sponge, it is clear that individual fluid particles
must travel faster through smaller pore spaces in order to maintain the overall
steady flow.  Similarly, the traffic speed at the narrowed neck of a steady-state
highway flow must exceed that found along multilane stretches. (If it does not,
as is usually the case, it is because the flow is unsteady! )  The changes in
thinking here are critical to invasion modeling, but this philosophy aside, the
algebraic manipulations required to produce sought solutions are relatively
simple, although at times, quite tedious.  For this reason, intermediate steps are
retained.  The primary products of this book are analytical results and
algorithms, plus new philosophies and methodologies.

Use of effective properties.  While the fluid displacement process can be
quite complex, for example, as in immiscible two-phase-flow mixing, very
often, a piston-like, slug, or plug-like description suffices, at least in offering a
qualitative but quantifiable model as the basis for preliminary discussion.  For
such flows, we can simplify the physical picture and formulate the problem as
two idealized single-fluid regions separated by a distinct moving interface or
displacement front such as that described above.  This boundary is known as a
mathematical discontinuity, across which certain physical quantities are
conserved and other kinematic requirements enforced.  Let us specialize our
ideas to the displacement of hydrocarbons by water.  The first region, ahead of
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the front, contains oil or gas together with immobile connate water.  Behind the
front is the second region, consisting of invading mud filtrate, and immobile
residual oil (or gas) left behind the front by displaced hydrocarbons.  The
symbols denoting connate water and residual oil saturations are Sc and Sro (thus,
the initial oil saturation is 1 - S c).  If the geometric rock porosity is denoted by
φ, then an effective porosity φ eff characterizing the invaded rock can be
introduced with the definition φeff  =  φ (1- Sro - Sc ).  This definition can be used
for the front trajectories defined by Equations 16-18 to 16-20.  Again, this
provides an approximate description for a rapid displacement process (later,
immiscible two-phase flow theory will provide more precise simulations).  Note
that different definitions of porosity exist in well logging, depending on the type
of instrument used for measurement.  In this book, by porosity, we mean that
associated with the connected pore spaces available for fluid transport, since
these pore spaces are the ones implied by the equations governing fluid motion.
While the rock under investigation may be uniform and homogeneous,
characterized by a single permeability, we will at times derive our formulas
allowing for two permeabilities, so that the results can be used on an ad hoc
basis in modeling different permeabilities relative to different formation fluids.
This usage is convenient in describing the differences in the flow of water
relative to residual oil, versus the movement of oil relative to immobile connate
water.  This flexibility is consistent with our use of effective porosity and is
again offered for convenience only.  Finally, while we have emphasized the
possibility of two coexisting formation fluids separated by dynamic interfaces,
we stress that our results also apply to the case of a single fluid which we may
envision as red water displacing blue water.  This final example is useful in
modeling the displacement of saline formation waters by invading mud filtrate,
at least for short initial times, before ionic diffusion smears the separation
boundary.  It is important to resistivity interpretation.

PROBLEMS AND EXERCISES

1. Equations 16-18, 19, and 20 represent a system of nonlinearly coupled
ordinary differential equations.  Review available scientific subroutine
libraries and write a program to trace pathlines using available software.

2. Steady liquid flows in homogeneous media satisfy d2p/dr2 + n/r dp/dr = 0
with n = 0, 1, and 2 for linear, cylindrical, and spherical flow, respectively.
Derive this result from mass conservation considerations, taking into
account the geometrical differences between different types of elemental
volumes.  Then verify the general solutions given in this chapter.
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17
Static and Dynamic Filtration

Here we introduce the ideas underlying quantitative formation invasion
modeling, but restrict ourselves to isotropic Darcy flows dealing with piston-
like, slug or plug-like displacements.  Miscible and immiscible multiphase flows
are considered once simpler techniques have been developed and their
limitations are understood.  We start with the simplest problems, tracking fluid
fronts in cores without mudcakes, progress to mudcake-alone formulations, and
finally to problems where the dynamics of the invasion front and the timewise
growth of the mudcake are closely coupled.  In this last class of problems, the
enormous analytical complexities confronting mathematicians are aptly
highlighted, complications that occur despite the simplicity of the fluid model
used.  Hence, we will be motivated to look for numerical methods that provide
greater modeling flexibility, that is, have potential for greater expansion as we
attempt to simulate invasion problems that more closely model reality.
Computational finite difference methods are introduced in Chapter 20, where
they are at first applied to the problems analytically addressed here.  However,
we extend these algorithms to classes of physical problems where the
possibilities for closed-form solution are unlikely.  We emphasize that the
invasion solutions presented in this book also apply when the flow direction is
reversed.  For example, they are useful whether drilling overbalanced or
underbalanced; they model influx into the wellbore from the formation once the
obvious sign change in the pressure differential is made.  Dynamic filtration in
the borehole, when fluid flows parallel to the hole axis, is also discussed, and the
coupling of non-Newtonian annular to Newtowian reservoir flow is developed.

SIMPLE FLOWS WITHOUT MUDCAKE

In this section, we study single-phase flow invasion into rocks, assuming
that the influence of mudcake is negligible; the results model, for example, the
use of brine or water as the drilling fluid.  The formulations for such problems
are simple; they highlight the basic differences between the reservoir flow
problems covered in undergraduate curricula and the Lagrangian models needed
to track moving fronts.  Five problems appear in order of increasing complexity.
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Homogeneous liquid in a uniform linear core.  The pressure partial
differential equation governing transient, compressible, lineal, homogeneous,
liquid flows having constant properties is ∂2p(x,t)/∂x2  = (φµc/k) ∂p/∂t.  Here p
is pressure, while x and t represent space and time; φ, k, µ, and c are rock
porosity, rock permeability, fluid viscosity, and net fluid-rock compressibility,
respectively.  If we assume a constant density, incompressible flow, and ignore
the compressibility of the fluid by setting c = 0, the right side of this equation
identically vanishes.  Then, the model reduces to the ordinary differential
equation d2p(x;t)/dx2 = 0 where t is a parameter as opposed to a variable.

P P
l r

Figure 17-1.  Lineal flow.

The solution to this equation is simply p(x;t) = Ax + B.  In order to
determine the integration constants A and B, boundary conditions for the
pressure p(x;t) are required.  Let us suppose that the left-side pressure at x = 0 is
Pl, while the right-side pressure at x = L is Pr, as shown in Figure 17-1.  That is,

we take p(0;t) = Pl and p(L;t) = Pr, which completely determine A and B.  If Pl
and Pr are constants, then A and B are constants.  However, if either or both are

functions of time, as may be the case in drilling, then A and B may be functions
of time.  In this case, the pressure field p(x;t) = (Pr - Pl ) x/L + Pl responds

immediately to time changes in boundary pressure, since zero compressibility,
implying absolute fluid rigidity, requires the instantaneous transmission of
information.  Henceforth we will omit t in the argument of pressure whenever
we deal with constant density flows, understanding that time dependences are
parametrically allowed when warranted.  The explicit use of t, as in p(x,t), will
be reserved for transient compressible flows only.

Now, the fluid velocity q is given by Darcy’s law q = - (k/µ) dp(x)/dx,
which, in view of our solution, becomes q = - (k/ µ)(Pr - Pl)/L. This describes the

fluid velocity at a fixed point in space.  It is the velocity that an observer fixed to
a particular pore space element measures (in our convention, we assume q > 0 if
P l > Pr).  For invasion modeling, we are interested in the progress of an initial

marked particle(s), and we prefer the alternative Lagrangian description.  If we
now let x denote the tag describing such marked particles, the particle velocity
satisfies dx/dt = q/φ where φ is the porosity, as required in Equation 16-18.  This
is correct physically, since smaller porosities create faster fronts for the same q,
and vice versa.  Using our expression for q, we have for the invasion front the
ordinary differential equation dx/dt = - {k/(µφ)}(Pr - Pl)/L which, for constant

porosity, integrates to
x(t) = xo - {k/(µφ)}(Pr - Pl) t/L                                                     (17-1)
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where x0 is the initial marked position.  For heterogeneous problems, φ = φ(x)
and Pl = Pl(t), and the differential equation for x(t) can be integrated in the form
∫ φ(x) dx = - ∫{(k/ µ)(Pr - Pl(t))/L} dt using table look-up techniques.  Under the
assumptions stated in the preceding paragraph, the displacement front in this
single-fluid, cake-free, lineal liquid flow example varies, as expected, linearly
with time.  It is physically an uninteresting problem.  However, the simplicity of
the math allowed us to illustrate concepts introduced in Chapter 16.  First, the
porosity, which does not appear in Eulerian constant density flow problems,
does appear in Lagrangian models.  Second, the Lagrangian solution cannot be
(easily) obtained without solving the Eulerian formulation first.  Finally, in
progressing from Eulerian to Lagrangian models, the independent variable x
literally becomes the dependent variable for the front position.  These
observations also apply to multidimensional problems.

We can use the solution x(t) = x0  - {k/(µφ)}(Pr - Pl) t/L (assuming x0 = 0)
to illustrate the basic ideas behind time lapse invasion analysis, that is, we will
take as our host model the equation {k/(µφ)}(Pr - Pl)/L = - x(t)/t.  Thus, if the
position front x(t) can be monitored or measured as a function of the time t, say
using resistivity, radioactive tracer, or CAT scan methods, it follows that the
quotient x(t)/t yields information about the quantity {k/(µφ)}(Pr - Pl)/L.  Of
course, the greater the value of x(t) or t, the smaller the experimental error.  This
invasion front measurement will provide, at most, the value of the lumped
physical quantity {k/(µφ)}(Pr -  Pl)/L.  Thus, if any of its single constituent
members k, µ, φ, Pr, Pl, or L are required, values for the remaining quantities
must first be found separately using other means.  For example, if the pressure
gradient (Pr - Pl)/L and the porosity φ is known, then the value of the mobility
k/µ is immediately available (but viscosity cannot be determined).

Homogeneous liquid in a uniform radial flow.  Now we repeat the same
calculation for cylindrical radial flows.  The pressure partial differential
equation governing transient, compressible, radial, homogeneous, liquid flows
having constant properties is ∂2p(r,t)/∂r2 + (1/r) ∂p/∂r = (φµc/k) ∂p/∂t.  All of our
quantities are defined as in the lineal flow, except that the radial coordinate r
replaces the lineal coordinate x.  If we assume an incompressible fluid with
vanishing c, we obtain the differential equation d2p(r)/dr2 + (1/r) dp/dr   =  0,
whose solution is p(r) = A log r + B.   For this radial flow, we impose pressure
boundary conditions at the well and outer reservoir radii (that is, at rwell and rres)
in Figure 17-2, in the form p(rwell) = Pwell and p(rres) = Pres.  We emphasize that
while mudcake effects are not yet included in this formulation, the example
itself is not unimportant to formation invasion in real wells.  In many shallow
wells, muds only slightly thicker than water are used; at other times, wells may
be drilled with watery brines that do not produce mudcakes.
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R
well

Rres

Figure 17-2.  Cylindrical radial flow.

These conditions lead to Pwell = A log rwell + B and Pres = A log rres  + B, and

subtraction yields A = (Pwell  - Pres)/(log rwell/rres).  It is A, and not B, that is

important when dealing with radial invasion.  From p(r) = A log r + B, we find
that the radial pressure gradient satisfies dp(r)/dr = A/r, so that the Eulerian
velocity q satisfies q(r) = - (k/µ) dp(r)/dr = - Ak/(µr).

The invasion front r(t) in the Lagrangian description, as in our first
example, satisfies dr/dt = q/φ, or r dr =  - {Ak/(µφ)}dt.  Now consider an initially
marked circular ring of tracer particles where r(t) = ro at t = 0.  This initial

condition leads to an integral in the form r2 = ro
2 - {2Ak/(µφ)} t  so that

r(t) = √[ro
2 - {2Akt/(µφ)}]                                                         (17-2)

If Pwell > Pres and rwell /rres  < 1, the constant A is negative; for large times t,

our solution for r(t) can be approximated by r(t) ≈ √{-2Akt/(µφ)}.  Thus, radial
front positions will vary like √t, even for a uniform liquid in a homogeneous
rock without the presence of mudcake.  To close this example, we address the
meaning of large times.  To do this, we rewrite the full solution as r(t) = [1 - ro

2

µφ/{2Akt}]½ √{-2Akt/(µφ)}.  Since √(1 + σ) ≈ 1 + ½ σ holds for |σ| << 1, it
follows that r(t) ≈ √{-2Akt/(µφ)} only if  | ro

2 µφ/{2Akt} |  <<  1.  Thus, the

meaning of large times must be interpreted dimensionlessly in the context of the
particular problem itself: it depends on the radial pressure gradient, all
characteristic radii, as well as on rock and fluid properties.

By the same token, the use of the term small times must be similarly
discussed in the dimensionless context.  Here, we rewrite the exact solution for
r(t) as r(t) = ro √[1- {2Ak/(µφro

2)} t].  Using √(1 + σ) ≈ 1 + ½ σ, we obtain the

approximation r(t) ≈ ro [1- {Ak/(µφro
2)} t].  Thus, the front radius varies

linearly with t for small times, where small implies |-{2Ak/(µφro
2)}t |  <<  1.

Needless to say, other time scales will be introduced by the compressibilities
and viscosities of the filtrate, and the displaced reservoir fluid, by the structural
characteristics of the mudcake, and so on, in more complicated problems.

Homogeneous liquid in a uniform spherical domain.  The spherical
displacement front associated with a point source is useful in studying invasion
at the bit.  The flow that would idealize Figure 17-3 possesses spherically
symmetry.  Cylindrical radial invasion away from the bit (around the drill pipe)
is controlled by mudcake buildup.  But at the bit, cake does not form, since it is



310   Quantitative Methods in Reservoir Engineering

drilled and washed away by the nozzle flow.  The equation for compressible,
spherical, homogeneous, liquid flows with constant single-phase properties is
∂2p(r,t)/∂r2 + (2/r) ∂p/∂r = (φµc/k) ∂p/∂t.  This differs from the cylindrical model,
with a 2/r replacing 1/r, r being the spherical distance from the bit center.  For an
incompressible liquid, c = 0, and we have d2p(r)/dr2 + (2/r) dp/dr = 0.

        

Figure 17-3.  Spherical flow at the drillbit.

The pressure distribution is not logarithmic as in cylindrical flows, since
p(r) = A r -1 + B.  The pressures at the bit radius r = rbit and at an effective

radius r = r eff are Pbit and Ppore, denoting the bit nozzle pressure and the

formation pore pressure.  That is, we take p(rbit) = Pbit and p(reff ) = Ppore, so

Pbit = A rbit 
-1 + B and Ppore = A reff 

-1 + B, or A = (Pbit - Ppore)/(rbit
-1 - reff 

-1).

Now substitute dp/dr = - Ar -2 in Darcy’s law q(r) = - k/(µ) dp(r)/dr = {Ak/ µ}r -2.
Since the front velocity satisfies dr/dt = q/φ, we have dr/dt = {Ak/(µφ)}r -2.  If
initially r(t = 0) = ro > 0, this nonlinear equation can be integrated to give

r(t) =[ro
3 + 3Akt/(µφ)]1/3                                                                  (17-3)

If ro = rbit, this models invasion from the bit; in general, ro is the initial radius

of any front tracked.  For overbalanced drilling, A > 0 and the front advances
into the rock.  If underbalanced, A < 0 and the front moves toward the bit.  Note
that r(t) advances linearly with time over short times, but at large times, its
behavior goes like t1/3 and not t1/2.  The dimensionless requirements for short and
large differ for cylindrical versus spherical flows.

Gas flow in a uniform linear core.  In the first example, we considered
single liquid  flow in a lineal core.  Many authors do not distinguish flows of
liquids from those of gases.  To demonstrate the differences, we now consider a
gas (still assuming a single homogeneous fluid without mudcake).  The equation
governing compressible, lineal, homogeneous, gas flows with constant

properties is ∂
2
pm+1(x,t)/∂x

2
 = (φµc*/k) ∂pm+1/∂t where m+1 is an exponent (m

= 0 for liquids).  Here, c* = c for liquids, while c* = m/p(x,t) for gases.  The
constant m refers to thermodynamic limits, for example, m = 1, C v  

/Cp, 0, and ∞

for isothermal, adiabatic, constant volume, and constant pressure processes,
respectively. (Cv and Cp are specific heats at constant volume and pressure.)

If transient effects are unimportant, this formidable equation reduces to a

linear d2pm+1(x)/dx2 = 0 for pm+1(x) whose solution is pm+1(x) = Ax + B.  It is
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pm+1(x), and not p(x), that varies linearly in space; therefore, the Darcy velocity
q = - (k/µ) dp/dx will not be constant in general.  This nonintuitive (but correct)
result follows from solving the pressure equation, properly accounting for mass
conservation, and not simply assuming constant dp/dx in q = - (k/ µ) dp/dx.  To
determine A and B, boundary conditions are required.  As before, the left
pressure at x = 0 is Pl, while P = Pr at x = L, so that p m+1(0) = P l 

m+1 and

pm+1(L) = Pr
m+1, or, pm+1(x) = (Pr

m+1 - Pl
m+1) x/L  + Pl

m+1, yielding

p(x) = {(Pr
m+1 - Pl

m+1) x/L  + Pl
m+1}1/(m+1)  (17-4a)

This does not vary linearly with x, except in the liquid limit where m = 0.  The
isothermal m = 1 case is usually taken in gas well test analysis; other values of
m model different thermodynamic processes that may be relevant in a particular
reservoir.  For the front motion, differentiate pressure to obtain (m+1) pm(x)
dp/dx = (Pr

m+1 - Pl
m+1) /L, so that the pressure gradient satisfies

dp/dx = {(Pr
m+1 - Pl

m+1) /((m+1)L)} p-m(x) (17-4b)

Therefore, q = - (k/µ) dp(x)/dx = - (k/ µ){(Pr
m+1 -  Pl

m+1) /((m+1)L)} p-m(x).

The front displacement x(t) again satisfies dx/dt = q/φ.  Some algebra shows that

{L/(Pr
m+1 - Pl

m+1)}{(Pr
m+1 - Pl

m+1) x/L  + Pl
m+1}(2m+1)/(m+1)

= - (kt/(µφ)){(Pr
m+1 - Pl

m+1)/((m+1)L)} + constant           (17-5)

where the constant is fixed by the initial position of the marker particle.  The
function x(t) can be obtained by raising each side of Equation 17-5 to the
(m+1)/(2m+1) th power, and then solving for x as a function of t.  Unlike the
result for liquids, the front motion is not constant with time.  Its motion must
vary with time because q needs to vary spatially to conserve mass.  The exact
variation depends on m.  Time lapse analysis for gas reservoirs, therefore, must
be handled carefully, taking account of the reservoir’s thermodynamic
environment.  Note that this result does not apply in the presence of multiple
fluids, mudcake, or geometric spreading.  When these effects, cake compaction,
and erosion are important, numerical models are needed.

Flow from a plane fracture.   The flow of liquids and gases into or out of
plane fractures in homogeneous anisotropic media was considered in Chapter 2,
which focused on production rates.  Reservoir engineers are also interested in
where produced fluids originate, while stimulation engineers are interested in
how injected fracture fluids flow.  The previous (proppant-free) fracture solution
remains valid, but it must be interpreted differently for invasion purposes.  It can
be used to trace any marked particle (Xo,Yo) at t = 0 by integrating a

nonlinearly coupled pair of ODEs defining the Lagrangian trajectories.  Again
the flow of liquids in isotropic media is assumed.  From the prior integral
solution for pressure, we can obtain ∂p(x,y)/∂x = ∫ f(ξ)(x-ξ)/{(x-ξ)2 + y2}d ξ and
∂p(x,y)/∂y = y ∫ f(ξ)/{(x-ξ)2 +  y2}  dξ by partial differentiation.  Then, the
definitions dX/dt = - (k/(µφ)) ∂P(X,Y)/ ∂X and dY/dt = - (k/(µφ)) ∂P(X,Y)/∂Y,
where t is dimensional, lead to
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dX/dt = - (kPref /(µφc)) ∫ f(ξ) (x-ξ)/{(x-ξ)2 + y2} d ξ           (17-6a)

dY/dt = - (kPref /(µφc)) y ∫ f(ξ)/{(x-ξ)2 + y2} d ξ                (17-6b)

These pathline equations suggest the timewise integration given by the recursion
formulas in Equations 17-7a,b,c,d.  Suppose the dimensionless (xi,yi)’s

normalized by fracture length c are specified at an initial instant.  These values
can be used to evaluate Equations 17-7a,b to yield the instantaneous particle
velocity.  Then, Equations 17-7c,d are used to update the position to obtain the
final destination (xf ,y f ) at the end of a time step ∆t > 0.

dxi/dt = - (kPref /(µφc2)) ∫ f(ξ) (xi-ξ)/{(xi -ξ)2 + yi
2} d ξ     (17-7a)

dyi/dt = - (kPref /(µφc2)) yi ∫ f(ξ)/{(xi -ξ)2 + yi
2} d ξ           (17-7b)

xf = xi  + (dxi/dt)∆t                                                                 (17-7c)

yf = yi + (dyi/dt)∆t                                                                  (17-7d)

This applies recursively, starting with any initial value of (Xo/c,Yo/c), and may

continue indefinitely; the finer the integration time step, the greater the physical
resolution.  More accurate integration schemes exist in the literature, which
apply to all the fracture solutions in Chapter 2.  Unlike PDE-based finite
difference schemes, where convergence and stability depend on the form of the
truncation error, and notably the sign of ∆t, Equations 17-7a,b,c,d can be
integrated backwards in time taking ∆t < 0.  This provides the capability of
tracing a particle’s origin in addition to its destination, an excellent resource in
environmental applications where the source of contamination is desired.

FLOWS WITH MOVING BOUNDARIES

Here we progress to flows with nontrivial external and internal moving
boundaries.  We first consider lineal cake buildup on filter paper, and then we
examine the plug flow of two dissimilar liquids in a linear core without
mudcake.  These two examples set the stage for problems where mudcake
growth, formation properties, and invasion front motion are dynamically
coupled, which will be treated rigorously in the following section.

Lineal mudcake buildup on filter paper.  In the previous section, we
considered formation invasion without the retarding effects of mudcake.  In
order to understand the physics clearly, we study the problem of isolated
mudcake growth, as would be obtained in the laboratory lineal flow test setup in
Figure 17-5.  We consider a one-dimensional experiment where mud, in essence
a suspension of clay particles in water, is allowed to flow through filter paper.
Initially, the flow rate is rapid.  But as time progresses, solid particles (typically
6% to 40% by volume for light to heavy muds) such as barite are deposited onto
the surface of the paper, forming a mudcake that, in turn, retards the passage of
mud filtrate by virtue of the resistance to flow that the cake provides.
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Figure 17-5.  Simple laboratory mudcake buildup.

We therefore expect filtrate volume flow rate and cake growth rate to decrease
with time, while filtrate volume and cake thickness continue to increase, but
ever more slowly.  These qualitative ideas can be formulated precisely, because
the problem is  based on well-defined physical processes.  For one, the
composition of the homogeneous mud during this filtration does not change: its
solid fraction is always constant.  Second, the flow within the mudcake is a
Darcy flow and is therefore governed by the equations used by reservoir
engineers.  The only problem, though, is the presence of a moving boundary,
namely, the position interface separating the mudcake from the mud that
ultimately passes through it and that continually adds to its thickness.  The
physical problem, therefore, is a transient process that requires somewhat
different mathematics than that taught in partial differential equations courses.

Mudcakes in reality may be compressible, that is, their mechanical
properties may vary with applied pressure differential, e.g., as in Figure 14-7.
We will be able to draw upon reservoir engineering methods for subsidence and
formation compaction later.  For now, a simple constitutive model for
incompressible mudcake buildup, that is, the filtration of a fluid suspension of
solid particles by a porous but rigid mudcake, can be constructed from first
principles.  First, let xc(t) > 0 represent cake thickness as a function of the time,

where xc = 0 indicates zero initial thickness.  Also, let Vs and Vl denote the

volumes of solids and liquids in the mud suspension, and let fs denote the solid

fraction defined by fs = Vs/(Vs + Vl).  Since this does not change throughout the

filtration, its time derivative must vanish.  If we set dfs/dt = (Vs + Vl)
-1 dVs/dt -

Vs (Vs + Vl)
-2 (dVs/dt + dVl/dt) = 0, we can show that dVs = (Vs/Vl) dVl .  But

since, separately, Vs/Vl = fs/(1- fs), it follows that dVs = {fs/(1- fs)} dVl .

This is a conservation of species law for the solid particles making up the
mud suspension and does not as yet embody any assumptions related to
mudcake buildup.  Frequently, we might note, the drilling fluid is thickened or
thinned in the process of making hole; if so, the equations derived here should
be reworked with fs = fs(t) and its corresponding time-dependent pressure drop.
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In order to introduce the mudcake dynamics, we observe that the total
volume of solids dVs deposited on an elemental area dA of filter paper during an

infinitesimal time dt is dVs = (1 - φc) dA dxc  where φc  is the mudcake porosity.

During this time, the volume of the filtrate flowing through our filter paper is
dVl = |vn| dA dt where |vn| is the Darcy velocity of the filtrate through the cake

and past the paper.  We now set our two expressions for dVs equal to form

{fs/(1- fs)} dVl  = (1 - φc) dA dxc , and replace dVl with |vn| dA dt, so that we

obtain {fs/(1- fs)} |vn| dA dt = (1 -φc) dA dxc.  The dA’s cancel, and we are led

to a generic equation governing mudcake growth.  In particular, the cake
thickness xc(t) satisfies the ordinary differential equation

dxc(t)/dt = {fs/{(1- fs)(1 -φc)}} |vn|                                     (17-8a)

Now, as in the first example of the previous section, we assume a one-
dimensional, constant density, single liquid  flow.  For such flows, the constant
Darcy velocity is (k/µ)(∆p/L), where ∆p > 0 is the usual delta p or pressure drop
through the core of length L.  The corresponding velocity for the present
problem is |vn|  = (k/µ)(∆p/xc) where k is the cake permeability, and µ is the

filtrate viscosity.  Substitution in Equation 17-8a leads to
dxc(t)/dt = {kfs∆p/{µ(1- fs)(1 -φc)}}/xc                             (17-8b)

If the mudcake thickness is infinitesimally thin at t = 0, with xc(0) = 0, Equation

17-8b can be integrated, with the result that

xc(t) = √[{2kfs∆p/{µ(1- fs)(1 -φc)}} t] > 0                          (17-9)

This demonstrates that cake thickness in a lineal flow grows with time like √t.
However, it grows ever more slowly, because increasing thickness means
increasing resistance to filtrate throughflow, the source of the solid particulates
required for mudcake buildup.  Consequently, filtrate buildup also slows.

To obtain the filtrate production volume, we combine dVl  = |vn|  dA dt and

|vn|  = (k/µ)(∆p/xc) to form dVl  = (k∆pdA/µ) xc
-1dt.    Using Equation 17-9,

dVl = (k∆pdA/µ) [{2kfs∆p/{µ(1- fs)(1 -φc)}}]-1/2( t)-1/2  dt.  Direct integration,

assuming zero filtrate initially, yields

Vl (t) = 2(k∆pdA/µ) [{2kfs∆p/{µ(1- fs)(1 -φc)}}]-1/2( t)1/2        (17-10)

= √{2k∆p(1- fs)(1 - φc)/(µfs)} √t  dA

Chin et al. (1986) and recent industry papers required detailed, tedious
laboratory measurement of the cake parameters fs, φc , and k.  This could pose

operational difficulties.  It turns out that this procedure is unnecessary: their
values can be inferred from the results of simple field-implementable surface
filtration experiments discussed later in Chapter 19.

So far, we have encountered two types of √t behavior, first for constant
density, radial, single-liquid flows without mudcake, and then for lineal
mudcake buildup and filtrate production without introducing any underlying
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rock, just the opposite problem.  It turns out that there is still another type of √t
behavior, obtained by considering the constant density flows of two sequential
fluids through a lineal core without mudcake (treated next).  Thus, there are at
least three types of √t behavior each governed by different flow parameters or
physical processes, and therefore, at least three different √t time scales!  Log
interpretation, therefore, can be challenging, to say the least.

Plug flow of two liquids in linear core without cake.  Let us consider the
Darcy flow through a single lineal core in which one liquid displaces a second in
a piston-like, plug, or slug-like manner, as in Figure 17-6.  We assume that the
permeability to each fluid is the same, so that a single permeability k suffices.
Pressures Pl and Pr are fixed at the left and right sides, with Pl > Pr , so that the

fluid system flows from left to right.  No cake is present.  For lineal liquid flows,

∂2p(x,t)/∂x2 = (φµc/k) ∂p/∂t describes transient, compressible liquids, with φ, µ,
c, and k denoting rock porosity, fluid viscosity, fluid-rock compressibility, and
permeability.  We address the problem where an invading liquid displaces a pre-
existing formation liquid, the respective viscosities being µ1 and µ2.

P P
l r

Region 1                              Region 2

x = 0 x = x
f

x = L

x axis

Figure 17-6.  Simple linear flow of two dissimilar fluids.

A second objective of this exercise is the development of mathematical
techniques that model internal moving interfaces, for example, the front x = xf
(t) as indicated in Figure 17-6.  For now, though, we may regard the pressure
problem as a purely static one.  For the incompressible fluids assumed here, the
compressibility c vanishes, and the ordinary differential equations for pressure

in Layers 1 and 2 become d2p1(x)/dx2 =  0 and d2p2(x)/dx2 =  0, which have

the respective solutions p1(x) = Ax + B and p2(x) = Cx + D, where A, B, C, and

D are integration constants completely determined by the end pressure boundary
conditions p1(0) = Pl and p2(L) = Pr, and the interfacial matching conditions at

x = xf, p1(xf ) = p2(xf ) and q1(xf ) = q2(xf ). The pressure continuity equation

assumes that interfacial tension effects are negligibly small.  Velocity matching,
on the other hand, is a kinematic statement stating that the local velocity is
single-valued, that is, it takes on one and only one value; the moving interface is
convected with this velocity as demonstrated in Chapter 16.

Now, since the k1 = k2 = k, the Darcy velocities satisfy q1 = - (k1/µ1)

dp1(x)/dx  = - (k/µ1) A and q2 = - (k2/µ2) dp2(x)/dx  = - (k/ µ2) C, so that A/µ1
= C/µ2.  This leads to the pressure solution for 0 < x < xf,
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p1(x) = (µ1/µ2)(Pr - Pl) x /{L + xf (µ1/µ2 -1)} + Pl                  (17-11)

The pressure solution for xf < x < L is determined as

p2(x) = (Pr - Pl)(x-L)/{L + xf (µ1/µ2 -1)} + Pr                     (17-12)

The invasion front can be determined, as in all of our preceding examples, by
setting dxf /dt = q1/φ assuming that porosity is constant.  We now use Equation

17-11 to obtain dxf /dt = - (k/(φµ1)) (µ1/µ2)(Pr - Pl)/{L + xf (µ1/µ2 -1)}.  If we

follow the initial marked particle defined by the initial condition xf (0) = xf,o,

we obtain the exact integral

(µ1/µ2 -1)xf  + L = +{{(µ1/µ2 -1)xf,o + L}2

+ {2k (Pl - Pr)/(φµ2)}(µ1/µ2 -1) t}1/2       (17-13)

Depending on the relative values of the µ1 and µ2, the displacement front may

accelerate or decelerate (detailed calculations will be given in Example 20-1,
where this problem is reformulated and solved using finite difference methods).
The foregoing analysis is easily reworked to handle time-dependencies in the
total differential pressure applied across the core.  If (Pl - Pr) is a prescribed
function of t, the differential equation should be integrated accordingly, for
example, taking ∫ (Pr - Pl) dt = Pr t - ∫ Pl (t)dt.  Similar comments apply to
situations where φ = φ(x).  These changes lead to obvious analytical
complications, which again motivate the need for numerical models.

COUPLED DYNAMICAL PROBLEMS:
MUDCAKE AND FORMATION INTERACTION

Here we derive exact, closed-form, analytical solutions for lineal and radial
flows where the growth of the mudcake and the progress of the invasion front
are strongly coupled.  The first solution was given in Chin et al. (1986), but the
radial solution available at the time did not model spurt, and also required
numerical analysis.  The full solution presented here appears for the first time.

Simultaneous mudcake buildup and filtrate invasion in a linear core
(liquid flows).  We consider a realistic example where liquid mud filtrate
displaces a preexisting formation liquid having a different viscosity.  And while
this process is ongoing, mudcake thickness is ever-increasing, so that filtrate
influx rate is consequently decreasing.  All the time, the filtrate-to-formation
fluid displacement front moves to the right.  In this problem, the dynamics of the
mudcake growth are closely coupled to the invasion front motion.  In our
derivation, there is no assumption that the mudcake is significantly less
permeable than the formation, an assumption usually taken to simplify the
analysis.  The work is exact in this regard, since the relative mobilities between
cake, invaded zone, and virgin formation are left as completely free parameters
for subsequent evaluation.  This important formulation, its solution procedure,
and the exact, closed-form, analytical solution for lineal liquid flow were
presented in Chin et al. (1986).  In the following, we will reconstruct the steps
using the authors’ published recipe and reproduce the earlier exact solution.



Static and Dynamic Filtration     317

"1" "2" "3"

x = 0 x = x
f

x = -x
c

x = L

p p
resmud

x

Figure 17-7.  Three-layer lineal flow.

In Figure 17-7, let Layer 1 denote the mudcake, and Layers 2 and 3, the
filtrate-invaded and virgin oil-bearing formations, respectively. The origin x = 0
is the fixed cake-to-rock interface; also, x c > 0 represents the cake thickness,

while xf > 0 is the displacement front separating invaded from uninvaded rock

zones.  The transient compressible flow equation assuming constant liquid and
rock properties is the classic parabolic partial differential equation, for example,
∂2p1(x,t)/∂x2 = (φ1µ1c1/k1) ∂p1/∂t, for Layer 1. If we ignore all compressibilities,
in effect considering incompressible liquids with c = 0, our layered equations
reduce to the equations d2pi(x)/dx2 = 0, where i = 1, 2, 3.  These are solved

together with the pressure boundary conditions p1(-xc) = pm and p3(L) = pr,

where pm and pr represent mud and reservoir pressures.  We also invoke

interfacial matching conditions for pressure, that is, p1(0) = p2(0) and p2(xf ) =

p3(xf ), plus interfacial matching conditions for velocity, that is, k1/µ1 dp1(0)/dx
= k2/µ2 dp2(0)/dx and k2/µ2 dp2(xf )/dx = k3/µ3 dp3(xf )/dx.

Note that we have retained three separate permeabilities, k1, k2, and k3 in

these equations, as explained in Chapter 16.  The k1 represents, of course, the
mudcake permeability.  However, while we have but a single rock core,
characterized by a single permeability, we will derive our results with two
values k2 and k3.  This flexibility allows us to set k2 = k3 = krock if desired, or

allow them to differ, in order to represent separate permeabilities to filtrate (with
residual oil) and oil (in the presence of immobile connate water).  This ad hoc
modeling permits us to mimic two-phase flow relative permeability effects
within the framework of a simpler slug displacement approach.  We also note
that while three viscosities µ1, µ2, and µ3 were explicitly shown for
completeness, we in fact assume that µ1 = µ2 = µf for the mud filtrate, since the
liquid filtrates present in Layers 1 and 2 are identical.  Also, we will later denote
µ3 = µo to represent oil viscosity, that is, the viscosity of the displaced

formation fluid.  Now, the solutions to our ordinary differential equations for
pressure are pi(x) = αix + βi, i = 1, 2, 3.  The constants can be determined as

α1 =  (pm-pr)/{(µ3k1/µ2k3 - k1/k2)xf  -µ3k1L/µ2k3 -xc}      (17-14a)

β1 =  pm + (p m-pr)xc/{(µ3k1/µ2k3 -k1/k2)xf  -µ3k1L/µ2k3 -xc}   (17-14b)

α2 =  (k1/k2)(pm-pr)/{(µ3k1/µ2k3 -k1/k2)xf  -µ3k1L/µ2k3 -xc}    (17-14c)
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β2 =  pm + (p m-pr)xc/{(µ3k1/µ2k3 -k1/k2)xf  -µ3k1L/µ2k3 -xc}   (17-14d)

α3 =  (µ3k1/µ2k3)(pm -pr)/

{(µ3k1/µ2k3 -k1/k2)xf -µ3k1L/µ2k3 -xc}                      (17-14e)

β3 =  pm + (p m-pr)xc/{(µ3k1/µ2k3 -k1/k2)xf  -µ3k1L/µ2k3 -xc}

+ xf { k1/k2 -µ3k1/µ2k3 }(pm -pr)/

{(µ3k1/µ2k3 -k1/k2)xf -µ3k1L/µ2k3 -xc}                           (17-14f)

Equations 17-14a to 17-14f completely define the spatial pressure
distributions within Layers 1, 2, and 3.  However, the solutions to the invasion
problem are as yet incomplete because the positions xc  and xf are unknown time-
dependent functions that satisfy other constraints.  Consider the mudcake first.
Our previous differential equation for cake growth can be evaluated as

dxc/dt =  {fs/{(1-φc)(1-fs)}} |vn|                                               (17-15)

= - [fs/{(1-φc)(1-fs)}](k1/µ1)(pm-pr) /{(µ3k1/µ2k3 - k1/k2)xf  -µ3k1L/µ2k3 -xc}

But this cannot be integrated since it depends on the front displacement xf (t),

which satisfies its own dynamic equation.  To obtain it, we evaluate the
interfacial kinematic condition using the now known Darcy velocity as

dxf /dt = - φeff 
-1 (k2/µ2) dp2(x)/dx                                               (17-16)

= - (k1/µ2φeff) (pm-pr)/{(µ3k1/µ2k3 -k1/k2)xf  -µ3k1L/µ2k3 -xc}

Here φeff denotes the effective porosity that Layer 2 offers if immobile fluids are

left behind once the filtrate front passes.  This usage provides some degree of
flexibility in modeling two-phase flow relative permeability effects within the
framework of single-phase flow theory.  Still, Equations 17-15 and 17-16 are
coupled; at first, recourse to numerical analysis appears necessary, but this is
fortunately not the case.  It turns out that exact analytical solutions can be
obtained.  If we assume the initial condition xf (t = 0) = xf,o > 0 for the mud

spurt, and xc =  0, until xf  = xf,o > 0 with xc(t) >  0, for xf  > xf,o, we obtain the
solution of Chin et al. (1986),

xf (t) = - H + √{H2 + 2(Hxf,o + ½ xf,o
2 + Gt)}                      (17-17)

where

G = - {k1(pm-pr)/(µf φeff )}/                                                     (17-18)

{µok1/µf k3 - k1/k2 - φeff  fs/{(1-φc)(1-fs)}}

H =    [xf,o φeff fs/{(1-φc)(1-fs)} - µok1L/µf k3]                       (17-19)

 /{µok1/µf k3 - k1/k2 - φeff fs/{(1-φc)(1-fs)}}

Equations 17-17 to 17-19 completely describe the progress of the invasion
front, as it is affected by filtrate and reservoir liquid viscosities, and mudcake
properties and growth.  The corresponding equation for mudcake growth is

xc(t) =  [φeff fs/{(1-φc)(1-fs)}] (xf - xf,o)                                          (17-20)
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for which dxc/dxf =  φeff fs/{(1-φc)(1-fs)} > 0.  This states that xf increases if xc
increases; it is interesting that the proportionality factor depends on geometrical
parameters only, and not on transport variables like viscosity and permeability.
We emphasize that, in general, pure √t behavior is not always obtained, although
it does appear in the limit of very large t.  The reader, following our earlier
Taylor series exercise, should determine the exact dimensionless meaning of
large time when pure √t behavior is found.  Finally, note that

xf (t) - xf,o = φeff
-1√{2k1(1-φc)(1-fs)(pm-pr)t/(µf fs)}             (17-21)

is obtained in the limit when the mobility in the rock core greatly exceeds that of
the mudcake.  This is the restrictive limit typically considered in the literature;
again, our solutions do not invoke any limiting assumptions about relative cake-
to-formation mobilities.  Finally, we emphasize that these results require us to
characterize the mudcake by three independent parameters, namely, the solid
fraction fs, the porosity φc, and the cake permeability k.  The work in Chin et al.

(1986) and in recent industry studies requires such empirical inputs and
elaborate laboratory.  It turns out that all of this is unnecessary, and that a simple
lumped parameter defined by convenient lineal filtrate tests on standard filter
paper is all that is required.  These ideas are pursued in Chapter 19.

Simultaneous mudcake buildup and filtrate invasion in a radial
geometry (liquid flows).  Here, we will reconsider the simultaneous mudcake
buildup and filtrate invasion problem just discussed, but we will use realistic
radial coordinates.  Note that the exact linear flow solution in Chin et al. (1986)
includes the all-important effect of mud spurt.  But while that paper alluded to
progress towards a radial solution, the work at that time could not account for
any spurt at all because of mathematical complexities and, furthermore, turned
to numerical solution as a last resort.  Thus, a useful solution was not available,
and any applications to time lapse analysis would await further progress.  Since
then, the result of some significant efforts have led to a closed-form solution.
The resulting solution and derivation are described in detail here.  This
availability, together with the simple recipe for mudcake properties alluded to,
brings time lapse analysis closer to reality.

r = 0 R (t)R (t) R
1

R
2 3 4

r
"1" "2" "3"

Pmud Pres

Cake Invaded zone Virgin rock

Figure 17-8.  Three-layer radial flow.

We consider a realistic example where an incompressible liquid mud
filtrate displaces a preexisting incompressible formation liquid having a
different viscosity (gas displacement is discussed in Chapter 20).  Such fluids,
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flowing in homogeneous, isotropic media, satisfy Laplace’s equation for
pressure.  And while this process is ongoing, mud-cake thickness is ever-
increasing, so that filtrate influx rate is consequently decreasing; all the time, the
filtrate-to-formation fluid displacement front moves to the right.  In this
problem, as in our lineal one, the dynamics of the mudcake growth are closely
coupled to the invasion front motion.  In our derivation, there is no assumption
that the mudcake is significantly less permeable than the formation, an
assumption usually taken to simplify the analysis.  Also, √t behavior is not
presumed at the outset; doing so would be wrong.  The work is exact in this
regard, since the relative mobilities between cake, invaded zone, and virgin
formation are left as completely free parameters for subsequent evaluation.

In Figure 17-8, let Layer 1 denote the mudcake, and Layers 2 and 3, the
filtrate-invaded and virgin oil-bearing formations, respectively.  In this
axisymmetric problem, the origin r = 0 is the borehole centerline.  Here, r = R2
represents the fixed cake-to-rock interface; R2 is an absolute constant equal to

the borehole radius.  Note that r = R1(t) represents the time-varying radial

position of the mud-to-mudcake interface, while R3(t) denotes the time-

dependent invasion front position.  Finally, r = R4 represents a fixed effective

radius where the reservoir pore pressure Pr is specified.  The driving pressure

differential is (p m - pr), where pm is the pressure in the borehole.  The transient

compressible flow equations for constant liquid and rock properties are of

standard parabolic form, for example, ∂2p1(r,t)/∂r2 + (1/r) ∂p1/∂r = (φ1µ1c1/k1)

∂p1/∂t for Layer 1.  But since we are ignoring all fluid compressibilities, in

effect considering constant density liquids with c = 0, our equations reduce to

the differential equations d2pi(r)/dr2 + (1/r) dpi/dr = 0, i = 1, 2, 3, which have

the solutions pi(r) = αi log r + βi, i = 1, 2, 3.

As in our earlier example, the integration constants can be determined from
the end pressure boundary conditions p1(R1) = pm and p3(R4) = pr.  Also, we

will require the interfacial matching conditions p1(R2) = p2(R2) and p2(R3) =

p3(R3) for pressure, and (k1/µ1) dp1(R2)/dr = (k2/µ2) dp2(R2)/dr and (k2/µ2)

dp2(R3 )/dr = (k3/µ3) dp3(R3 )/dr for velocity.  Note that we have retained three

separate permeabilities, namely, k1,  k2, and k3 in these equations.  The k1
represents, of course, the mudcake permeability.  However, while we have but a
single radial rock core, characterized by a single permeability, we will derive
our results with two values k2 and k3.  This flexibility allows us to set k2 = k3 =

krock  if desired, or allow them to differ, in order to represent separate

permeabilities to filtrate and oil.  Note that we have also retained three
viscosities µ1, µ2, and µ3, even though the same liquid µ1 = µ2 flows through

Layers 1 and 2 (in the previous example, we assumed that µ1 = µ2).  This ad

hoc modeling, consistent with our introduction of φeff  earlier, permits us to
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mimic two-phase flow relative permeability effects within the framework of a
simpler slug displacement approach (see Chapter 16).  The six integration
constants are easily found, using elementary algebra, as

α1 =  (k2/µ2)(pr-pm)/                                                                (17-22a)

log[(R2/R1)k2/µ2 (R3/R2)k1/µ1(R4/R3)k1k2µ3/µ1µ2k3]

β1 =  pm  - α1 log R1                                                                     (17-22b)

α2 =  (k1µ2/µ1k2) α1                                                                     (17-22c)

β2 =  pm  + α1 log (R2/R1) - α2 log R2                                         (17-22d)

α3 =  (µ3k1/µ1k3) α1                                                                     (17-22e)

β3 =  pm + α1log (R2/R1) + α2log (R3/R2) - α3 log R3            (17-22f)

where all logarithms are natural logarithms.  It appears that we have defined the
spatial pressure distributions within Layers 1, 2, and 3.  However, the solutions
to the invasion problem are incomplete because the position fronts R1(t) and

R3(t) are unknown functions of t.  As before, equations for cake growth and

displacement front motion must be postulated.  For mudcake growth, we have

- dR1/dt =  {fs/{(1-φc)(1-fs)}} |vn|

=  [fs/{(1-φc)(1-fs)}] (k1/µ1) dp1/dr

=  [fs/{(1-φc)(1-fs)}] (k1/µ1) α1/r

=  [fs/{(1-φc)(1-fs)}] (k1/µ1) α1(R1,R3)/R1          (17-23)

The analogous equation for displacement front motion is obtained from
dR3/dt =  - {k2/(µ2φeff)} dp2/dr

=  - {k2/(µ2φeff)} α2/r

=  - {k2/(µ2φeff)} α2(R1,R3)/R3                                      (17-24)

These nonlinear ordinary differential equations, as in the lineal case, are
coupled.  But again, it is possible to integrate them in closed, analytical form for
general initial conditions.  If we assume that R3 = Rspurt ≥ R2, when R1 =  R2
(i.e., no cake) at t = 0, we find that the displacement front history R3(t) satisfies

(k1R2
2/µ1)[ ½ (R3/R2)2 log  (R3/R2) - ¼ (R3/R2)2

- ½ (Rspurt/R2)2 log  (Rspurt/R2) + ¼ (Rspurt/R2)2 ]

+ (k1k2µ3R4
2/µ1µ2k3) [ ½ (Rspurt/R4)2 log  (Rspurt/R4) - ¼ (Rspurt/R4)2

                            - ½ (R3/R4)2 log  (R3/R4) + ¼ (R3/R4)2 ]

+ (k2R2
2/4µ2φeff){(1-φc)(1-fs)/fs} ×

[ log {1  + fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}}

- fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}

+ fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)} ×
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log {1  + fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}] =
= {k1k2(pm - pr)/(µ1µ2φeff )} t (17-25)

which does not, we emphasize, in general follow √t behavior (e.g., see Outmans,
1963).  This exact formula is particularly useful in MWD logging applications
where the extent of formation invasion needs to be estimated prior to taking
measurements.  Equation 17-25 can be solved by assuming values for  R3 and

calculating the corresponding times.  The associated cake radius function R1(t)

is then obtained from
R1

2 = R2
2 + (Rspurt

2 - R3
2 )(fsφeff )/{(1-φc)(1-fs)}             (17-26)

It is also possible to show that
dR1

2/dR3
2 = - [fs/{(1-φc)(1-fs)}] φeff  < 0                                (17-27)

This equation indicates that as our filtration front advances, with R3
2 increasing,

the radius (squared) R1
2 decreases.  This decrease, following the schematic

shown in Figure 17-8, indicates that mudcake thickness is consistently growing.
Equation 17-27 is a Lagrangian mass conservation law that is independent of
transport parameters such as permeability and viscosity.

Unlike the lineal cake problem studied earlier where, in principle, the
mudcake can increase indefinitely in thickness over time, the maximum radial
thickness that can be achieved in this radial example is defined by R1(tmax) = 0,

and occurs at t = tmax.  At this time, all fluid motions cease, at least within the

framework of the piston-like displacements studied in this chapter, and
molecular diffusion then becomes the dominant physical player.  In order to
determine the maximal radial displacement R3,max and its corresponding time

scale tmax, we set R1(t) to zero in Equation 17-26, to obtain

R3,max = √[ Rspurt
2 + {(1-φc)(1-fs)/(fsφeff )}R2

2 ]               (17-28)

Then tmax is obtained by substituting R3,max into Equation 17-25, that is,

(k1R2
2/µ1)[ ½ (R3,max/R2)2 log  (R3,max/R2) - ¼ (R3,max/R2)2

- ½ (Rspurt/R2)2 log  (Rspurt/R2) + ¼ (Rspurt/R2)2 ]

+ (k1k2µ3R4
2/µ1µ2k3) [ ½ (Rspurt/R4)2 log  (Rspurt/R4) - ¼ (Rspurt/R4)2

               - ½ (R3,max/R4)2 log  (R3,max/R4) + ¼ (R3,max/R4)2 ]

+ (k2R2
2/4µ2φeff){(1-φc)(1-fs)/fs} ×

[ log {1  + fsφeff {(Rspurt/R2)2 - (R3,max/R2)2}/{(1-φc)(1-fs)}}

- fsφeff {(Rspurt/R2)2 - (R3,max/R2)2}/{(1-φc)(1-fs)}

+ fsφeff {(Rspurt/R2)2 - (R3,max/R2)2}/{(1-φc)(1-fs)} ×

log {1  + fsφeff {(Rspurt/R2)2 - (R3,max/R2)2}/{(1-φc)(1-fs)}] =
= {k1k2(pm - pr)/(µ1µ2φeff )} tmax (17-29)
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In reality, hole plugging is limited by borehole flow erosion, an essential
element of the dynamic filtration process, a process that will be discussed and
modeled in detail shortly.

Fluid compressibility.  Here we examine the effects of fluid
compressibility on invasion.  This should not be confused with mudcake and
rock compressibility, which represent different physical phenomena.  We
consider a simple lineal flow example, which will be followed in Chapter 18 by
an important and sophisticated formation tester solution useful in modern
formation evaluation.  We reconsider the liquid and gaseous lineal flows treated
earlier, but this time, include the transient effects due to fluid compressibility in
a homogeneous core without mudcake.  The pressure P(x,t) now depends on
both x and t.  The relevant geometry is shown in Figure 17-9, where the left- and
right-side pressure boundary conditions are P(0,t) = Pl and P(L,t) = Pr, and L is

the core length.  Let us assume that initially, P(x,0) = Po.  We study liquids first,

and then reformulate and solve the problem for gases.

P P
l r

Figure 17-9.  Lineal flow.

For compressible liquids, the partial differential equation governing
pressure is ∂2P(x,t)/∂x2  = (φµc/k) ∂P/∂t where φ, µ, c, and k are porosity,
viscosity, compressibility, and permeability.  The auxiliary pressure conditions
are P(0,t) = Pl, P(L,t) = Pr, and P(x,0) = Po.  This formulation is identical to that

of the classic initial and boundary value problem in heat transfer for a rod with
prescribed end temperatures and arbitrary initial temperature (Carlsaw and
Jaeger, 1946; Tychonov and Samarski, 1964).  In reservoir applications, we
typically have Po = Pr, but we will leave the formulation general, since the

result may be useful in special experimental situations.  This can be solved in
closed form using separation of variables and Fourier series (Hildebrand, 1948),
but we will not reproduce the standard derivation.  The exact solution is

P(x,t) = (Pr - Pl)x/L + Pl                                                           (17-30)

+ (2/ π) Σ (1/n)[Po - Pl  + (Pr - Po )(-1)n] exp [-π2n2kt/(L2φµc)] sin n πx/L

where a summation from n = 1 to ∞ is understood.  The first line gives the
steady-state response; the second is the transient compressible response.

The largest transient contribution to Equation 17-30 arises from the n = 1
term, which has the amplitude decay factor exp [-π2kt/(L2 φµc)].  Only when
π2kt/(L2 φµc) → ∞, that is, t >> L2 φµc/(π2 k) does the effect of  compressibility

and initial conditions, through the amplitude factor [(Po - Pl + (Pr -  Po )(-1)n]

with n = 1, vanish.  If we consider the steady solution P(x,t) = (Pr - Pl)x/L + Pl
only, the front satisfies dx/dt = - (k/ φµ) ∂p(x,t)/∂x = - (k/ φµ)(Pr - Pl )/L.  Its time
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scale is determined from the quotient L /(dx/dt), that is, L 
2 φµ/{k (Pl -  Pr)}.

Compressibility introduces a time scale proportional to L2 φµc/(π2k).
The partial differential equation governing compressible, lineal,

homogeneous, gaseous flows having constant properties is nonlinear, satisfying
∂2Pm+1(x,t)/∂x2  = (φµc*/k) ∂Pm+1/∂t where the terms have been defined earlier.

While the initial and boundary value problem for the function Pm+1 in

∂2Pm+1(x,t)/∂x2 = {φµm/(Pk)} ∂Pm+1/∂t                              (17-31a)

Pm+1(0,t) = Pl
m+1                                                                         (17-31b)

Pm+1(L,t) = Pr
m+1                                                                        (17-31c)

Pm+1(x,0) = Po
m+1                                                                       (17-31d)

superficially resembles the linear one for compressible liquids, with P replaced

by Pm+1, the two formulations are different because the constant coefficient
φµc/k in the liquid formulation is replaced by the function φµm/(Pk), which
depends on the solution P(x,t).  The liquid problem is linear, with the sum of
individual solutions itself being a solution, rendering superposition using Fourier
series possible (well test procedures similarly use superposition techniques).
But the latter formulation, because of the pressure-dependence, is nonlinear, and
closed-form solution is not possible except for the simplest problems.
Nonetheless, we can develop some idea of the time scales that arise on account
of compressibility if we approximate the nonlinear coefficient by the constant
φµm/(Pavgk), where Pr <  Pavg <  Pl, and if we additionally assume that Po lies

in the same range.  Then, comparison of the two formulations leads us to infer a
formal solution satisfying

Pm+1(x,t) ≈  (Pr
m+1 - Pl

m+1)x/L + Pl
m+1                              (17-32)

+ (2/ π) Σ (1/n)[(Po
m+1 - Pl

m+1 + (Pr
m+1 - Po

m+1 )(-1)n]

×  exp [-π2n2ktPavg/L2φµm] sin nπx/L

which is a very crude approximation to the actual solution.  But this formal
procedure does provide some indication about the time scales governing
transient decay.  If we now raise each side of the above to the 1/(m+1) th power
in order to solve for the transient pressure P(x,t), we would expect a term like

exp [-π2ktPavg/{L2φµm(m+1)}] to emerge from the algebra.  The time scale

suggested by this n = 1 term is quite different from that for linear liquids, and
illustrates, through the constant m, the role of reservoir thermodynamics.
Compressibility can be important for gas flows, but even for liquids, where our
closed-form pressure solutions are relatively simple, the consequences related to
front motion are difficult to determine.

Consider, for example, liquid flows.  Since lineal front trajectories satisfy
dx/dt = - (k/ φµ) ∂P/∂x, we have, using Equation 17-30,

dx/dt = - (k/ φµ) ∂P(x,t)/∂x                                              (17-33)
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= - (k/ φµ) {(Pr - Pl)/L

+ (2/L) Σ [Po  - Pl + (Pr - Po  )(-1)n] exp [-π2n2kt/(L2φµc)] cos nπx/L}

We examine a marked fluid element located at the inlet x = 0 initially.  Then, the
cos nπx/L term in Equation 17-33 becomes unity, and if we retain only the
leading n = 1 contribution, we have the approximation

dx ≈ - (k/ φµ) {(Pr - Pl)/L

+ (2/L) [Po  - Pl - (Pr - Po  )]exp [-π2kt/(L2φµc)]} dt           (17-34)

for which
x ≈ - (k/ φµ) {(Pr - Pl)t/L                                                       (17-35)

   - 2 (2Po  - Pl - Pr)[Lφµc/(π2k)] (-1 + exp [-π2kt/(L2φµc)] )}

This solution satisfies x(0) = 0.  Therefore, for small times, the effect of
compressibility, assuming Pr =  Po , will be large or small accordingly as the

product (Pl - Pr )[Lφµc/(π2k)] is large or small.

We emphasize that the exact, closed-form, analytical results obtained in
this chapter reveal nontrivial dependences of our filtration front and cake growth
formulas on numerous groups of parameters that may have been anticipated
from dimensional analysis or dynamic similitude.  In the mudcake radial flow
analysis, our flagship problem, the derivation did not make any assumptions
regarding the relative mobilities in the three different layered flows, and so, are
completely general within the framework of their formulation.  But the results
are restricted to constant density liquid filtrates and liquid  formation fluids, that
is, not gases, and then, to incompressible mudcakes only.  In general, we have
found that √t behavior is more the exception than the rule; example numerical
calculations will be given later.  Under these restrictions, once R1 and R3 are
known as functions of time, we can evaluate the derived pressure formulas to
provide complete spatial pressure distributions at any desired instant in time.  In
modern MWD and time lapse analysis applications, pressure distributions are of
lesser practical interest than the values of formation porosity, permeability, and
mobility themselves.  Of course, pressures and spatial pressure gradients are
important in fluid production, that is, the reverse problem where the value of
pm(t) necessary to produce at a prescribed flow rate is important.

DYNAMIC FILTRATION AND BOREHOLE FLOW RHEOLOGY

Here, we will introduce dynamic filtration analytically and numerically,
using recently developed methods in borehole and pipeline flow modeling.
These are discussed extensively in the books Borehole Flow Modeling in
Horizontal, Deviated, and Vertical Wells (Chin, 1992a) and Computational
Rheology for Pipeline and Annular Flow (Chin, 2001a).  However, these
references do not develop the reservoir focus needed in coupling borehole flows
to the Darcy flows in the rock formation.  Dynamic filtration is important to
invasion because the erosive effects associated with annular mud flow limit the
plugging of the borehole that was predicted on the basis of radial static filtration
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theory.  This in turn affects the flow rate into or out of the reservoir.  Once the
mudcake thickness reaches equilibrium, the dynamical problem in the borehole
becomes steady state.  Of course, the flow within the reservoir need not be
steady.  For example, invasion may continue at a constant rate; the saturations in
immiscible two-phase flow may continue to redistribute unsteadily in time, and
their dynamically coupled pressures will evolve along with them.

Many drilling muds are formed from mixtures of water or oil and
weighting materials.  These mixtures, unlike the underlying Newtonian water or
oil fluids, are non-Newtonian in character.  When formation invasion occurs,
solids are left behind at the sandface to create mudcake, while the underlying
Newtonian filtrate enters the formation.  Therefore, two fluid flow problems
arise: Newtonian flow in the reservoir, the subject of this book, and non-
Newtonian flow in the borehole annulus, the focus of this section.  When fluid in
a nonflowing well enters the formation, static filtration occurs, while dynamic
filtration occurs when the well is flowing.  In the latter, fluid motion is found
both parallel and perpendicular to the borehole axis.  Borehole annular flows are
challenging to model because the fluid is non-Newtonian, or put differently, the
rheological model involves a nonlinear relationship between the shear stress and
the shear rate.  Rheological models for drilling muds commonly used are power
law, Bingham plastic, and Herschel-Bulkley.  For such nonlinear (as opposed to
linear Newtonian) models, for example, doubling the pressure gradient does not
double the flow rate, thus making non-Newtonian fluids more difficult and less
intuitive to deal with.  These mud models are simple in that they are just non-
Newtonian.  If the base fluid had contained polymers, then both borehole and
reservoir flows would be non-Newtonian, and more specialized analysis
methods would apply.  These are beyond the scope of this book.  For more
discussion on non-Newtonian flow modeling, refer to the author’s book
references cited earlier.

Erosion due to shear stress.  The problem of dynamic filtration, that is,
the limiting of mudcake growth due to annular flow erosion, is well known to
the invasion literature.  But despite its prominence over the decades, no
analytical models have appeared, presumably because the complicated erosion
process is empirically grounded.  And it is becoming more so.  Fordham et al.
(1991), for example, introduce the concept of a critical invasion rate beyond
which mudcakes will not form, while Holditch and Dewan (1991) allude to a
mysterious adhesion fraction that presumably controls the buildup process.
Whatever the terminology, mere definitions only acknowledge the importance of
erosion, but do not contribute to the solution of the physical problem.  However,
key insights are emerging, and apparently converging on a promising line of
research that highlights the importance of viscous shear stress.  For example,
recent service company efforts described in Fordham et al. (1991) indicate that
hydraulic shear stress at the mudcake surface limits cake growth.
Unfortunately, the paper does not construct the needed model.  Interestingly, this
same shear stress principle for bed erosion was first proposed in 1990 in a series
of Offshore Magazine articles by this author, where the principal application was
cuttings bed erosion and hole cleaning in highly deviated wells.  In these
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articles, the correlation parameter of physical significance for bed erosion and
particulate transport was shown to be the viscous stress obtained at the bed
surface. (The work is summarized in Borehole Flow Modeling and
Computational Rheology,  where additional physical and modeling concepts are
developed along with empirical validation.)  Successful correlations were
obtained with data obtained from controlled laboratory tests using water-base
muds, and from field operations using all-oil muds and invert emulsions.  We
will discuss these results in detail later, but for now, we note that the role of bed
(or cake) yield shear stress is clearly important to any predictive model for
equilibrium thickness.  Several analytical models for equilibrium cake thickness
based on this shear stress criterion will be developed.

We will discuss Newtonian flows first, primarily because the simpler
analysis enables us to develop the mathematical concepts with clarity.
Nonrotating annular flows are considered initially; then, the modifications
needed to extend our results to rotating flows and to fluids with increased solids
content are presented.  Two physical asymptotes are noted, namely, an early
time limit where radial filtration into the formation is predominant, and a late
time process where a steady-state annular flow satisfying no-slip velocity
boundary conditions prevails.  Then, we rework our Newtonian flow criteria for
power law fluid models that more accurately characterize real drilling muds,
first using exact numerical methods based on the classic solution of Fredrickson
and Bird (1958), that do not render simplifying geometrical assumptions, and
second, using approximate “narrow annulus” methods that allow us to handle
rotating drillpipes easily.  These approaches apply to concentric annuli only.
Finally, following a review of the principal ideas in Computational Rheology,
special techniques applicable to highly eccentric holes containing fluids having
different types of mud rheology are outlined for further development.

Dynamic filtration in Newtonian fluids.  While borehole annular flows
are rarely Newtonian (e.g., fluids such as water or air, where viscous stress is
linearly proportional to the rate of strain), many drilling fluids are thin and
briny, and at times, simply water.  Thus, for analysis purposes, the study of
Newtonian flows is more than academic.  Furthermore, the mathematical
simplicity that it offers sheds some insight into the parameters that influence the
value of equilibrium cake thickness in the presence of erosive annular flow.
Whether our annular flow is Newtonian or power law, concentric or eccentric, it
is important to consider two underlying asymptotic fluid-dynamical models.
The first applies during small times when borehole fluid enters the formation
radially as filtrate, decelerating with time, while the second deals with large
times, when invasion rates are so slow that we essentially have classical no-slip
velocity boundary conditions.  We will first consider the small time limit,
assuming that the drill pipe does not rotate.

For initial times, the mudcake thickness is small compared to the borehole
radius, and the near-planar problem can be formulated in simple rectangular
coordinates.  We have, in particular, the two-dimensional viscous flow shown in
Figure 17-10, where a more or less uniform oncoming annular fluid flows
parallel to the cake surface, only to be withdrawn into the formation with a
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vertical filtration velocity vo(t).  The Navier-Stokes momentum equations

governing constant density, viscous, unsteady, Newtonian flow are Equations
17-36 and 17-37, while the corresponding requirement for mass conservation is
given by Equation 17-38,

ρ (ut + uux+ vuy) = -px+ µ(uxx + uyy)                                  (17-36)

ρ (vt + uvx+ vvy) = -py + µ(vxx + vyy)                                   (17-37)

ux + vy = 0                                                                         (17-38)

Here, u(x,y,t) and v(x,y,t) are Eulerian velocities in the x and y directions, t is
time, and p(x,y,t) represents the pressure; also, ρ is mass density and µ is
viscosity.

v  (t)o

U∞

Thin filter cakex

y

Figure 17-10.  Planar flow past thin mudcake at early times.

We note that Equations 17-36 to 17-38 apply in the borehole and do not
apply to flows in porous media.   Similarly, Darcy’s law (that is, u = - (k/µ) px,

v = - (k/µ) py, and p xx + pyy = 0, say) applies in the reservoir, and not in the

borehole.  For the problem in Figure 17-10, we will augment Equations 17-36 to
17-38 with the velocity boundary conditions in Equations 17-39a,b.

u(x,∞,t) = U∞ (a constant)                                                      (17-39a)

v(x,0,t) = vo(t) < 0                                                                 (17-39b)

Here, v(x,y,t) = vo(t) is the prescribed filtration rate, for example, as determined

from the √t law or its radial extensions.  While we have defined U∞ as the

annular velocity parallel to the hole axis in a nonrotating flow, we can more
generally take it as the maximum velocity (when both axial and circumferential
speeds are present) in flows with rotation, providing increased modeling
flexibility.  The closed-form solution to this problem is

u(x,y,t) = U∞ [1- exp{ vo(t)y/ν}]                                           (17-40)

v(x,y,t) = vo(t)                                                                        (17-41)

p(x,y,t) = - ρvo,t(t) y                                                              (17-42)

where ν is the kinematic viscosity µ/ρ.  Substitution of Equations 17-40 and 17-
41 for u and v into Equation 17-38 shows that the latter is identically satisfied.
Substitution of Equations 17-40 to 17-42 into Equation 17-37 shows that
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Equation 17-42 provides the (radial) pressure gradient required in the annulus to
produce the filtration speed vo(t).  Finally, substitution of Equations 17-40 to

17-42 into Equation 17-36 shows that our assumptions do produce solutions, so
long as

vo,t(t) y ≈ 0                                                                          (17-43)

This is certainly the case, since the filtrate acceleration dvo(t)/dt is small and y is

negligible at the cake surface.  In the limit when vo(t) is constant, Equations 17-

40 to 17-42 reduce to the classic boundary layer solution for asymptotic suction
profiles (Schlichting, 1968).  The shear stress at the cake surface y = 0 is easily
determined and is found to be

τ = µuy = - ρU∞vo(t)                                                                (17-44)

which is importantly independent of the viscosity µ.  Thus, during the initial
periods of cake buildup, when the cake has not yet undergone significant
compaction, the shear stress at the exposed surface of the mudcake is
determined only by the density and mean speed of the annular flow and by the
filtration rate.  If the shear stress given in Equation 17-44 exceeds the yield
stress of the newly formed cake (or, possibly, some type of gel strength that is
important in the interstitial pore spaces of the evolving mudcake), then mudcake
buildup is terminated, and equilibrium borehole conditions are reached; filtration
into the reservoir, of course, continues.

An asymptotic solution for large times can be developed.  For large times,
the annular radial geometry and the details of the fully developed laminar or
turbulent velocity profile become important.  Let us consider, for simplicity, the
concentric flow cross-section shown in Figure 17-11.  Again, we assume that the
drillpipe does not rotate, and for now, we introduce the constant axial pressure
gradient dp/dz where z is directed along the axis of the wellbore.  When
mudcake growth has built up sufficiently and stabilized, filtration rates (in the
radial direction) are extremely small, and the annular flow velocity parallel to
the wellbore axis satisfies no-slip velocity boundary conditions at the cake
surface Rc. (This is in addition to no-slip enforcement at the pipe radius Rp.) The
rectangular coordinates assumed in Figure 17-10, of course, no longer apply, as
the cylindrical radial nature of the flow dominates.  Fortunately, an exact
solution to this problem exists.  From Borehole Flow Modeling , the axial
velocity vz(r) parallel to the wellbore axis assuming laminar flow is

vz (r) = (4µ)-1(dp/dz)
[r2 - Rp

2 + {(Rc
2 -Rp

2 )/log (Rp/Rc)}log (r/Rp)]    (17-45)

which satisfies the boundary conditions vz(Rp) = vz (Rc) = 0.  The total annular
volume flow rate Q pumped is obtained by integrating vz(r) over concentric areal
rings, with incremental areas 2πr dr, leading to

Rc
Q = ∫ vz(r) 2πr dr                                                                  (17-46a,b)

Rp
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= (π/2µ)(dp/dz) [¼ (Rc
2 -Rp

2)2 - {Rp
2 (Rc

2 -Rp
2)/log (Rc/Rp)}

{½ (Rc/Rp)2 log (Rc/Rp)  - ¼ (Rc/Rp)2   + ¼ }]

Rock
formation

Rp

Rc

Annular flow

Drillpipe

Mudcake

Figure 17-11.  Cross-section of cylindrical flow domain.

Note that the viscous shear stress at the outer mudcake boundary is, using
Equation 17-45, found from

τ(Rc) = µ (dvz/dr)(Rc)                                                       (17-47)

=  ¼ {2Rc + {(Rc
2 -Rp

2 )/(Rc log (Rp/Rc))}(dp/dz)

Thus, the axial pressure gradient satisfies

dp/dz =  4τ(Rc)/{2Rc + {(Rc
2 -Rp

2 )/(Rc log (Rp/Rc))}          (17-48)

If we substitute Equation 17-48 into 17-46b, we find that

Q = 2πµ-1[τ(Rc)/{2Rc + {(Rc
2 -Rp

2 )/(Rc log (Rp/Rc))}] ×

[¼ (Rc
2 -Rp

2)2 - {Rp
2 (Rc

2 -Rp
2)/log (Rc/Rp)}

{½ (Rc/Rp)2 log (Rc/Rp)  - ¼ (Rc/Rp)2   + ¼ }]   (17-49)

expressing Q as a function of the cake radius Rc, the pipe radius Rp, the viscosity
µ, and the shear stress τ(Rc) at the cake surface.  When Q, Rp, and µ are given,

and the yield shear stress τyield is known empirically from a dynamic erosion test,
Equation 17-49 provides a nonlinear transcendental equation for the equilibrium
mudcake radius Rc,eq, that is,

Q = 2πµ-1 [τyield/{2Rc,eq + {(Rc,eq
2 -Rp

2 )/(Rc,eq log (Rp/Rc,eq))}] ×

[¼ (Rc,eq
2 -Rp

2)2 - {Rp
2 (Rc,eq

2 -Rp
2)/log (Rc,eq/Rp)}

{½ (Rc,eq/Rp)2 log (Rc,eq/Rp)  - ¼ (Rc,eq/Rp)2   + ¼ }] (17-50)

This equation for Rc,eq cannot be simply solved, but since Rwell  > Rc,eq > Rp
where Rwell is the well radius, it is trivial from a numerical point of view to test

for all possible radii that may possibly fulfill our geometric constraint.  In this
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manner, the equilibrium mudcake radius can be determined straightforwardly.
A useful solution procedure requires our rewriting Equation 17-49 in the form

τ(Rc) = (Qµ/2π){2Rc + {(Rc
2 -Rp

2 )/(Rc log (Rp/Rc))}/

[¼ (Rc
2 -Rp

2)2 - {Rp
2 (Rc

2 -Rp
2)/log (Rc/Rp)}

{½ (Rc/Rp)2 log (Rc/Rp)  - ¼ (Rc/Rp)2   + ¼ }] (17-51)

which is independent of the fluid density ρ.  For any known set of values Q, µ,
and Rp, the cake radius Rc can be varied to produce a sequence of cake wall shear
stresses τ(Rc).  If the mudcake yield shear stress is known, then the equilibrium
cake radius can be obtained immediately by tabular reference.

Figure 17-12 displays the results of one such calculation, assuming water
as the drilling fluid, flowing at 400 gpm.  We also take a drillpipe radius of 0.2
ft.  The well radius shown in the following input is not relevant to the
calculations, as it does not appear in the host equation (only the annular space
between the pipe and cake radii is dynamically significant); it is used only to
provide some indication of cake thickness.  The calculations correctly show how
shear stress increases as the cake radius (that is, annular size) decreases.  For
example, if the mudcake yield stress is known to be 0.0001 psi from an
independent erosion test, the tabulated results indicate that the corresponding
cake radius (from the origin at the center of the drillpipe) is 0.27 ft.  This limit,
the result of fluid erosion, prevents the complete hole plugging obtained earlier,
which assumes static filtration only.  Figure 17-12 also provides some indication
of typical shear stress magnitudes obtained under the stated no-slip assumptions,
here being O(10-4) psi.  It is also of interest to determine the values predicted
using Equation 17-44.  We again take a 400 gpm flow of water in the annular
region between 0.2 ft and 0.4 ft radii; this yields an average oncoming free
stream speed U∞ of 2.34 ft/sec.  If we assume a filtration rate vo of 1 ft/day, the
surface shear stress is found to be 3.65 x 10-7 psi, which appears somewhat
small.  But for small times, the yield strength of the cake may be substantially
less than at large times, when the irreversible effects of cake compaction have
set in.

INPUT PARAMETER SUMMARY:
 Total volume flow rate (gpm): .4000E+03
 Viscosity, drilling mud (cp): .1000E+01
 Radius of drill pipe  (feet): .2000E+00
 Radius  of bore hole  (feet): .4000E+00

 Rcake =  .3900E+00 ft, Thickn =  .1000E-01 ft, Shear =  .1070E-04 psi
 Rcake =  .3800E+00 ft, Thickn =  .2000E-01 ft, Shear =  .1216E-04 psi
 Rcake =  .3700E+00 ft, Thickn =  .3000E-01 ft, Shear =  .1391E-04 psi
 Rcake =  .3600E+00 ft, Thickn =  .4000E-01 ft, Shear =  .1603E-04 psi
 Rcake =  .3500E+00 ft, Thickn =  .5000E-01 ft, Shear =  .1864E-04 psi
 Rcake =  .3400E+00 ft, Thickn =  .6000E-01 ft, Shear =  .2186E-04 psi
 Rcake =  .3300E+00 ft, Thickn =  .7000E-01 ft, Shear =  .2593E-04 psi
 Rcake =  .3200E+00 ft, Thickn =  .8000E-01 ft, Shear =  .3113E-04 psi
 Rcake =  .3100E+00 ft, Thickn =  .9000E-01 ft, Shear =  .3792E-04 psi
 Rcake =  .3000E+00 ft, Thickn =  .1000E+00 ft, Shear =  .4700E-04 psi
 Rcake =  .2900E+00 ft, Thickn =  .1100E+00 ft, Shear =  .5947E-04 psi
 Rcake =  .2800E+00 ft, Thickn =  .1200E+00 ft, Shear =  .7720E-04 psi
 Rcake =  .2700E+00 ft, Thickn =  .1300E+00 ft, Shear =  .1035E-03 psi
 Rcake =  .2600E+00 ft, Thickn =  .1400E+00 ft, Shear =  .1447E-03 psi
 Rcake =  .2500E+00 ft, Thickn =  .1500E+00 ft, Shear =  .2141E-03 psi
 Rcake =  .2400E+00 ft, Thickn =  .1600E+00 ft, Shear =  .3443E-03 psi
 Rcake =  .2300E+00 ft, Thickn =  .1700E+00 ft, Shear =  .6303E-03 psi
 Rcake =  .2200E+00 ft, Thickn =  .1800E+00 ft, Shear =  .1462E-02 psi
 Rcake =  .2100E+00 ft, Thickn =  .1900E+00 ft, Shear =  .6033E-02 psi

Figure 17-12.  Mudcake surface shear stress.



332   Quantitative Methods in Reservoir Engineering

Thus, we might modify the cake growth recipes offered earlier as  follows.
Once the transient cake radius Rc(t) determined on a static filtration basis equals

the Rc,eq as calculated, we can restrict further mudcake growth by fixing cake

position at the Rc,eq radius. (In reality, this erosive shear stress acts

continuously!)  Of course, invasion will continue into the formation but at a
slower, typically unsteady rate dictated by a three-layer model, where the only
moving boundary is the displacement front separating two dissimilar fluids.

The yield stress τyield of the mudcake in question may depend on numerous
factors, among them, differential pressure, solids content, viscosifier type,
chemical composition, and temperature.  The critical invasion rate proposed by
Fordham et al. (1991) is simply the lowest volume flow rate Q that will, for a
particular mud and drillpipe size, produce viscous shear stresses at the mudcake
surface in excess of τyield .  Note that viscous stress and total volume flow rate,

in a Newtonian flow, are linearly related; this direct proportionality, as we will
see, disappears in the case of power law fluids.

Modifications for drillpipe rotation.   So far, we have considered non-
rotating drillpipe only.  With pipe rotation, two additional physical effects are
introduced.  First, nonzero azimuthal velocity will alter the stress state acting at
the surface of the mud; and second, the rotating flow will induce a centripetal
pressure gradient acting in the radial direction that contributes to additional
filtration.  The dimensionless parameter dictating the importance of rotation is
simply the tangential rotation speed at the drillpipe surface divided by the mean
axial flow speed in the annulus.  The axial velocity parallel to the borehole
velocity was given by Equation 17-45, that is, the exact annular flow solution

vz(r) = (4µ)-1(dp/dz)

[r2 - Rp
2 + {(Rc

2 -Rp
2 )/log (Rp/Rc)}log (r/Rp)]     (17-45)

for nonrotating drillpipe.  A solution to the rotating pipe problem without axial
flow is available from classical fluid mechanics (Schlichting, 1968).  For this
problem, the exact solution to the Navier-Stokes equations, written in radial
cylindrical coordinates, can be obtained as

vθ(r) = ω(Rc
2 - Rp

2)-1{Rp
2Rc

2/r  - rRp
2)                                  (17-52)

This circumferential velocity vanishes at the outer (cake) radius r = Rc,

satisfying no-slip conditions.  At the drillpipe r = Rp, the tangential speed

vθ(Rp) = ω(Rc
2 - Rp

2)-1{RpRc
2  - Rp

3) = ωRp                        (17-53)

corresponds to that for a rotation rate of ω.  While Equations 17-45 and 17-52
individually satisfy the nonlinear Navier-Stokes equations, it is not obvious that
both solutions can be linearly superposed to produce a dynamically correct
solution.  But this is so because fortuitous simplifications introduced by our
concentric geometry cause the nonlinear convective terms to vanish identically !
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Thus, the vector sum due to Equations 17-45 and 17-52 can be simply added to
produce the total velocity field, as is rigorously demonstrated in Borehole Flow
Modeling.  We emphasize, though, that this superposition does not apply to
eccentric Newtonian flows because the convective terms do not disappear, nor
does it apply to concentric or eccentric non-Newtonian flows.  Now, the
circumferential stress τ(θ) can be obtained by evaluating

τ(θ)(r) = µ r d{vθ(r)/r}/dr

= -2µωRp
2Rc

2/{r2(Rc
2- Rp

2)}                                 (17-54)

so that, at the mudcake surface, τ(θ)(r) assumes the value

τ(θ),Rc = -2µωRp
2Rc

2/{Rc
2(Rc

2- Rp
2)}                                 (17-55)

It follows that the total mudcake surface stress satisfies

τtotal = √{τ(Rc)
2 + τ(θ),Rc

2}                                                            (17-56)

Then, the sequence of numerical steps leading to the construction of the table in
Figure 17-12 can be repeated with Equation 17-56, with the additional pipe
rotation rate ω entering the calculations.  In addition to shear stress
modifications, drillpipe rotation alters the radial pressure gradient acting at the
surface of the mudcake, thereby affecting static filtration somewhat.  This effect
can be calculated from the centripetal acceleration formula dp/dr = ρ vθ(r)2/r,
where ρ represents the mass density of the mud.

Effect of solids concentration.  In drilling fluids, fine solids are added to
increase mud weight, for the purposes of formation pressure control.  These
solids are held in suspension using special viscosifiers, and the resultant fluids, it
turns out, behave characteristically in non-Newtonian fashion.  Whenever
possible, the exact rheological properties of the drilling fluid in question should
be measured using accepted laboratory techniques.  It is of historical interest,
however, to cite a viscosity correction formula attributed to Einstein, derived in
1906 in connection with his studies of Brownian motion (e.g., see Landau and
Lifshitz, 1959) for an English-language derivation).

A fluid in which numerous fine particles are suspended can be regarded as
a homogeneous medium if we are concerned with phenomena having much
larger characteristic lengths.  Let c represent the concentration of the suspension,
that is, the number of particles per unit volume; also, let µ0 and µ denote,
respectively, the original viscosity and the effective viscosity of the modified
fluid.  If the particles can be approximated as small spheres having a radius R,

then Einstein found that µ ≈ µo (1+ 10/3 πR3c) to leading order.  Of course, not

all drilling fluids behave homogeneously, since density stratification invariably
arises when drilling is interrupted during routine operations.  Computational
Rheology describes the consequences in detail.  Among the most problematic
and interesting physically are the recirculating vortex zones that form in the
annulus that impede cuttings transport.  Analytical solutions, to include relevant
dimensionless parameters, are presented in the book. (These were validated in
lab experiments conducted at M-I Drilling Fluids in Houston.)
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Turbulent versus laminar flow.   The subject of turbulent versus laminar
flow is important operationally, but flow turbulence, despite the advances made
during the past decades, is still empirically grounded and represents a research
discipline in its own right.  We will not extend our annular flow work to
turbulent regimes, except note that the ideas discussed so far (and next for power
law flows) can be applied to appropriate curve-fitted velocity profiles.

CONCENTRIC POWER LAW FLOWS WITHOUT PIPE ROTATION

In Newtonian fluids such as water and air, the shear stress τ is linearly
proportional to the rate of strain; for the preceding example, the rate of strain is
dvz(r)/dr, and we can write τ = µ dvz(r)/dr where the constant of proportionality

µ is the viscosity.  Most drilling fluids do not behave like Newtonian fluids, and
the study of rheology focuses on the stress behavior of different fluids acting at
different shear rates. (Note that the filtrated fluid entering the formation, namely
water, is  Newtonian.)  One popular model is the power law fluid.  In the
simplest case, its constitutive equation is taken in the form

τ =  Κ (dvz(r)/dr)n                                                                      (17-57)

where the fluid exponent n and the consistency factor K (not to be confused with
the Darcy flow permeability) are constants that characterize the fluid itself.  For
n = 1, the consistency factor reduces to the Newtonian viscosity µ; in general,
the units of K depend on the value of n. (Both n and K can be determined from
viscometer measurements using standard laboratory techniques.)

It is important that n and K are constant properties characterizing the fluid
and that they remain unchanged regardless of the flow problem.  The apparent
viscosity of the flow, however, will vary throughout the cross-section of the
flow geometry and additionally varies with the pressure gradient, or
equivalently, the total flow rate.  In other words, the apparent viscosity of a
power law flow varies from problem to problem, whereas n and K do not.  This
fact is not appreciated in drilling engineering.  Surface viscometer values for
fluid parameters having questionable scientific merit often find routine field
usage.  Thus, it is not surprising that, at least in cuttings transport analyses, they
cannot be correlated with measurable events such as hole cleaning efficiency.

There are other classes of fluids, such as Herschel-Bulkley fluids and
Bingham plastics, that follow different stress-strain relationships, which are
sometimes useful in different drilling and cementing applications.  For a
discussion on three-dimensional effects and a rigorous analysis of the stress
tensor, the reader should refer to Computational Rheology .  For now, we will
continue our discussion of mudcake shear stress, but turn our attention to power
law fluids.  The governing partial differential equations of motion, even for
simple relationships of the form given in Equation 17-57, are nonlinear and
therefore rarely amenable to simple mathematical solution.  For example, the
axial velocity vz(r) in our cylindrical radial flow satisfies

r-1 d{K(dvz/dr)n-1r dvz(r)/dr}/dr = dp/dz                        (17-58)
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which, despite its simple appearance, is difficult to solve because it is nonlinear.
An exact annular flow solution, however, is  available for nonrotating drillpipes.
Thus, in principle, a formula analogous to Equation 17-51, which relates
mudcake edge shear stress, total volume flow rate, pipe radius, and fluid
properties, is available.  The problem of concentric, nonrotating, annular flow
was solved using numerical methods in Fredrickson and Bird (1958).  If Ri and
Ro are inner and outer radii, where ∆P is a pressure drop, L is a characteristic
length, and Q is the annular volume flow rate, these authors show that

Ro∆P/(2L) = K[(2n+1)Q/{n πRo
3Y(1 - Ri/Ro)(2n+1)/n }]n       (17-59)

while the shear stress at the outer wall r = Ro is given by

τo = (1-λ2) Ro∆P/(2L)                                                        (17-60)

Y and λ in Equations 17-59 and 17-60, known in chemical engineering as the
Fredrickson-Bird Y and λ functions, respectively, depend on n and Ri/Ro only.

A condensed tabulation of their results appears in Figures 17-13 and 17-14.

                              Ri/Ro
n       0.01     0.1     0.2     0.4     0.6     0.8    0.9

1.00     0.6051  0.5908  0.6237  0.7094  0.8034  0.9008  0.9502
0.50     0.6929  0.6270  0.6445  0.7179  0.8064  0.9015  0.9504
0.33     0.7468  0.6547  0.6612  0.7246  0.8081  0.9022  0.9506
0.20     0.8064  0.6924  0.6838  0.7342  0.8128  0.9032  0.9510
0.10     0.8673  0.7367  0.7130  0.7462  0.8124  0.9054  0.9519

Figure 17-13.  Fredrickson-Bird Y Function (condensed).

                              Ri/Ro
  n       0.01     0.1     0.2     0.4     0.6     0.8    0.9
1.00     0.3295  0.4637  0.5461  0.6770  0.7915  0.8981  0.9495
0.50     0.2318  0.4192  0.5189  0.6655  0.7872  0.8972  0.9493
0.33     0.1817  0.3932  0.5030  0.6587  0.7847  0.8967  0.9492
0.20     0.1503  0.3712  0.4856  0.6509  0.7818  0.8960  0.9491
0.10     0.1237  0.3442  0.4687  0.6429  0.7784  0.8953  0.9489

Figure 17-14.  Fredrickson-Bird λ Function (condensed).

If we now eliminate Ro∆P/(2L) between Equations 17-59 and 17-60, we

obtain the required result

τo = (1-λ2)K[(2n+1)Q/{n πRo
3Y(1 - Ri/Ro)(2n+1)/n }]n         (17-61)

which relates mudcake edge shear stress, volume flow rate, pipe radius, and
fluid properties.  In the notation to this chapter, Equation 17-61 can be rewritten
as

τ(Rc) = (1-λ2)K[(2n+1)Q/{n πRc
3Y(1 - Rp/Rc)(2n+1)/n}]n      (17-62)

For any particular pair of n and R p/Rc values, the corresponding Y and λ
functions can be obtained from Figures 17-13 and 17-14.  Then, the remainder
of the right side of Equation 17-62 can be evaluated using n, K, Rc, and the
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prescribed annular volume flow rate Q.   The equilibrium mudcake thickness is
defined by the condition τ(Rc) = τyield as before, and the procedure for the critical

invasion rate discussed earlier carries through unchanged.

CONCENTRIC POWER LAW FLOWS WITH DRILLPIPE ROTATION

The Fredrickson-Bird solution for power law fluids is exact in that no
geometrical or dynamical simplifications are made.  However, the analogous
solution to the more general problem which includes drillpipe rotation cannot be
as concisely expressed, even numerically using tables, because nonlinearities
render computed solutions highly iterative.  In order to obtain some qualitative
idea about the effects of rotation, it is necessary to invoke a narrow annulus
assumption.  On doing so, it is possible to obtain explicit closed-form solutions
for the axial and circumferential velocities and viscous stresses.  In this section,
using results obtained in Computational Rheology, we extend the procedures
developed in our earlier discussions, and we again attempt to relate equilibrium
cake radius to prescribed yield stress.  As before, we let R c and R p denote

mudcake and drillpipe radii; also, n and K represent power law coefficients,
dp/dz is the axial borehole pressure gradient, and ω < 0, by convention, is the
rotation rate.  In the cited text, the solution to the general concentric rotating
flow problem is derived in its entirety.  In applying those results, adopting the
notation of the present chapter, let us introduce the constants

E1 = - 1/8 (Rc + Rp)2 dp/dz                                                    (17-63)

E2 = K{ω/(Rp - Rc)}n {(Rp + Rc)/2}n+2                                 (17-64)

Then, the velocity vz(r) parallel to the hole axis is given by

vz(r) = {(r + Rp)/2}2{E1 + ½ ((r + Rp)/2)2dp/dz}/E2

 × (E2/K)1/n [((r + Rp)/2)(2n+4)/(n-1) + ((r + Rp)/2)(4n+2)/(n-1)

{(E1 + ½ ((r + Rp)/2)2 dp/dz) / E2}2](1-n)/2n(r - Rp) (17-65)

while the circumferential speed vθ(r) satisfies vθ(r) = r Ω(r) where the angular

velocity  variable Ω(r) is determined from

Ω(r) = (E2/K)1/n (r-Rc)[((r+Rc)/2)(2n+4)/(n-1)                      (17-66)

 +  ((r+Rc)/2)(4n+2)/(n-1){(E1 +(r+Rc)2/8 dp/dz)/E2}2](1-n)/2n

Their corresponding viscous stresses Srz and Srθ, using the notation in

Computational Rheology, can be calculated from

Srz =  Szr = {0.5 r - (Rp + Rc)2/(8r)} dp/dz                            (17-67)

Srθ =  Sθr = K{ω/(Rp - Rc)}n {(Rp + Rc)/2}n+2 r -2              (17-68)

From Equations 17-67 and 17-68, a total stress Stotal can be defined in the usual

manner as Stotal = √( Srz
2 + Srθ2).  Now, as in our earlier sections, the objective
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is to eliminate dp/dz in the expression for total annular volume flow rate in favor
of Stotal.  This allows us to determine the equilibrium cake radius in terms of a

specified mudcake yield stress.  To do this, first rewrite the last result in the
form Srz

2 = Stotal
2
 - Srθ2.  Substitution of Equations 17-67 and 17-68 leads to

{0.5 Rc - (Rp + Rc)2/(8Rc)}2 (dp/dz)2  =  Stotal
2

- K2{ω/(Rp - Rc)}2n {(Rp + Rc)/2}2n+4 Rc -4         (17-69)

where we have evaluated r at the cake boundary r = R c.  Therefore, simple

division shows that the axial pressure gradient equals

dp/dz = √[{Stotal
2
 - K

2{ω/(Rp - Rc)}2n {(Rp + Rc)/2}2n+4 Rc -4}

/{0.5 Rc - (Rp + Rc)2/(8r)}2]                                     (17-70)

Thus, Equation 17-65, which expresses vz(r) in terms of the pressure gradient

dp/dz, can be rewritten in terms of the total stress Stotal  acting at the mudcake

surface.   As before, the volume flow rate Q can be explicitly found using

Rc

Q = ∫ vz(r) 2πr dr = Q(n, K, ω, Rp, Rc, Stotal)                       (17-71)
Rp

If we fix the magnitude of Q in Equation 17-71, then for any prescribed values
of the parameters n, K, ω, and Rp, we can tabulate Rc as a function of  Stotal, or

if desired, Stotal as a function of Rc.  For any mudcake yield stress Syield =

Stotal, we can therefore obtain the equilibrium mudcake radius Rc,eq
unambiguously.  If we next repeat these calculations for a range of Qs, then the
minimum value of Q that produces sufficient shear stress so as to erode the
mudcake then represents the critical invasion rate.

FORMATION INVASION AT EQUILIBRIUM MUDCAKE THICKNESS

Earlier we considered the three-layer radial invasion problem consisting of
mudcake, flushed zone, and uninvaded zone, and obtained a solution for coupled
mudcake growth and displacement front motion.  Here we revisit that problem,
but now assume that the mudcake no longer grows in time because it has
reached dynamic equilibrium.  The problem nonetheless consists of three layers,
these being, again, the mudcake, the flushed zone, and the uninvaded zone.  A
number of papers refer to a classic formula obtained by solving three coupled
pressure equations, each taking the form d2p/dr2 + 1/r dp/dr = 0, as the invasion
model (e.g., see Muskat, 1937) used as the basis for further development.
However, that formula strictly applies to the concentric radial flow of a single
fluid through three layers of nonmoving rock  having different permeabilities.
The formula does not apply when one of the internal boundaries is moving; for
such problems, the pressure boundary value problem as cited is incomplete, as
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we have noted earlier in this chapter, since the interface equations at the moving
boundary must be included in the formulation.

Again, the earlier radial mudcake example deals with two moving
boundaries, namely, the mud-to-mudcake interface, and the displacement front
separating two possibly dissimilar fluids within the formation.  The problem
considered in this section is simpler, because the mudcake, having reached
dynamic equilibrium, no longer grows.  Its thickness, therefore, is to be regarded
as statically fixed in time.  The reader should return to our earlier derivation to
review the basic assumptions and approach.  There, the cake radius R1 in the

coefficient function α2(R1,R3) was an unknown function of time that was to be

determined as part of the solution.  Here, we treat R1 as a constant that can be

regarded as known, once the shear stress criterion discussed earlier is applied.
Thus the integration of our radial displacement front equation proceeds more
simply.  After some algebra, we obtain the exact solution,

½ (k2/µ2) R3
2 log (R2/R1)                                                       (17-72)

+ (k1/µ1)R2
2 [½ (R3/R2)2 log (R3/R2) - ¼ (R3/R2)2]

- (k1k2µ3/µ1µ2k3)R4
2 [½ (R3/R4)2 log (R3/R4) - ¼ (R3/R4)2]  =

= - k1k2 (pr - pm) t /(µ1µ2φeff  ) + constant

The constant of integration in Equation 17-72 is determined from initial
conditions as suggested by the equilibrium solution that would be obtained from
the static filtration solution as modified by erosive annular effects.

In our discussion of the filtration process, we had taken the simple-minded
view that static filtration will continue until the point at which mudcake
thickness reaches the equilibrium thickness derived earlier.  At that time, cake
growth terminates, but front motions continue as determined by Equation 17-72.
This view is approximate and was adopted for discussion only.  In reality, the
shear stress in the borehole continuously acts on the mudcake as it is formed, so
that the interactions between mudcake growth, reservoir Darcy flow, and
borehole annular flow can be complicated.  We do not pretend to solve this more
realistic problem, but we do believe that the principal elements of both static and
dynamic filtration processes have been satisfactorily identified.

DYNAMIC FILTRATION IN ECCENTRIC BOREHOLES

Let us reiterate some basic ideas on borehole flow modeling.  Simply put,
mudcake that lines the borehole controls the filtration rate into the formation
when reservoir rock is permeable.  It is important to understand how mudcake
evolves because good time lapse logging requires a knowledge of the time scales
governing key physical processes.  For example, invasion is ongoing while
drilling, and front movement in the Darcy reservoir depends on viscosity and
porosity.  If we wished to determine, say, their values from resistivity
measurements made at two points in time, at what times should the readings be
taken?  Knowing how mudcake evolves under static and dynamic conditions is
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crucial, so that readings are not taken so closely that they are indistinguishable,
or too far apart that logging tools cannot respond accurately.  When formation
and cake permeability are comparable, mudcake growth couples strongly with
reservoir flow, posing additional uncertainty in modeling. (This problem is
numerically solved later in this book.)

r
V (r)z

x

y

Concentric flow

Eccentric flow

U(x,y)

Figure 17-15.  Concentric versus eccentric flows.

Figure 17-16.  Velocity field in highly eccentric annulus.

Still another problem is borehole geometry.  In modern horizontal and
multilateral wells, drillpipes rest on the low side of the hole, as shown in Figure
17-15.  Whether the fluids are Newtonian or non-Newtonian, much higher
annular velocities are found on the high side.  As we have seen, physical
quantities like shear stress are also important, in that they affect erosion in
dynamic filtration and therefore azimuthally varying filtration rates into the
reservoir.  The computation of velocity, apparent viscosity, shear rate, and



340   Quantitative Methods in Reservoir Engineering

viscous shear stress  in eccentric boreholes is necessary for various reasons, for
example, pump power requirements and cutting transport efficiency, and
accurate solutions are possible using the boundary-conforming, curvilinear mesh
systems studied in Chapters 8 and 9.  Applications of this method are developed
in Computational Rheology for Pipeline and Annular Flow (Chin, 2001a).
Snapshots of typical physical quantities are given in Figure 17-17.

Figure 17-17.  Typical computed quantities.

PROBLEMS AND EXERCISES

1. In this chapter, an implicit solution for the equilibrium thickness of a
mudcake was given assuming that its yield shear stress was known and that
the fluid was laminar and Newtonian.  Extend the solution to (i) turbulent
Newtonian, (ii) laminar power law, and (iii) turbulent power law fluids.

2. The time scales over which compressible fluid transients are significant
were given in Equations 17-30 to 17-35 for lineal flows.  Extend these
results to radial flows. (Refer to the well test literature for basic solutions.)
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18
Formation Tester Applications

Formation testers are measurement instruments that retrieve reservoir fluid
samples from wells during pauses in drilling operations.  Various practical
questions arise.  A type of reverse invasion problem appears:  how long must
pumps be operated in order to obtain true formation fluids and not mud filtrate
contaminants?  How do pump power requirements vary in permeable versus
tight zones?  Can measured pressure transients be interpreted for rock
characteristics like permeability and anisotropy?  Different answers are obtained
depending on the fluid model assumed.  Later in this book, we will consider
constant density, immiscible, two-phase flows with and without mudcake
effects.  For now we assume transient, compressible, single-phase flow, but
within this framework, we formulate and solve a very general problem.

Typically, the flow induced at the sandface of the borehole by the
formation tester probe is modeled spherically assuming the medium is isotropic.
Existing methods use point spherical sources which ignore the details of the
pump pistons and the details at early time.  In addition, they ignore mechanical
flowline storage effects, which are analogous to the wellbore storage effects in
Chapter 15. (Compressible fluids in the plumbing system mask permeability
effects at early times, which log analysts wish to estimate.)  They also ignore
skin effects due to formation damage, as well as the anisotropic character of
many sedimentary beds.  In this chapter, we consider general transient
anisotropic spherical (i.e., ellipsoidal) flow with storage and skin.  The complete
formulation is derived, and the exact, analytical, closed-form solution is
developed.   Why is an exact solution desirable for pressure transient analysis
and formation evaluation?  An exact solution (i) allows permeability prediction
from early-to-intermediate time data, without the ambiguities associated with
different approximate interpretation models for different early, middle, and late
time regimes, (ii) enables anisotropy measurement using data from multiple
tester probes, and (iii) reduces the probability of tool sticking because real-time
interpretation proceeds much faster.  Readers interested in practical applications
and field logging examples should consult Proett and Chin (2000).



342   Quantitative Methods in Reservoir Engineering

Governing partial differential equation.  The anisotropic partial
differential equation for weakly compressible liquids in transient flow is

kv ∂2P/∂z2 + kh (∂2P/∂x2 + ∂2P/∂y2 ) = φµc ∂P/∂t (18-1)

where P is pressure, t is time, and x, y, and z represent ground fixed Cartesian
coordinates whose axes are aligned with the principal axes of the permeability
tensor.  The vertical permeability kv is taken in the z direction, while horizontal
kh is assumed for both x and y lateral directions.  This transversely isotropic
model is used to study anisotropy in sedimentary beds.

Figure 18-1.  Ellipsoidal flow assumption.

Equation 18-1 is very general, but since there are no barriers or other
heterogeneities in the flow, we seek more specialized results.  As in many
transient applications, we will assume that a uniform initial pressure P0 exists,
whose value is also identical to the farfield pressure at subsequent times.
Furthermore, we assume that pressures are constant along ellipsoidal surfaces
with x2/kh + y2/kh + z2/kv = constant.  This applies even when the source surface
(i.e., the tester tool contact nozzle) is not ellipsoidal, provided we are several
nozzle diameters removed.  A similar result is known in reservoir engineering;
for example, in an areally anisotropic reservoir, constant pressure contours are
elliptical far from the well, even if the well is circular and contains fracture
imperfections.  Figure 18-1 summarizes several essential geometric elements.

It is therefore convenient to introduce the following dimensionless starred
quantities; that is,

p*(r*,t*) = {P(x,y,z,t) - P0}/Pref (18-2)

r* = {x2/kh + y2/kh + z2/kv}1/2 (18-3)

t* = t/tref (18-4)
where the dimensional constants Pref and t ref, as yet undefined, will be chosen to

simplify the math.  The choice for pressure allows us to set p*(r*,t*) to zero
initially and at the distant boundary for all time.  When Equations 18-2 to 18-4
are substituted into Equation 18-1, we obtain, after some algebra, a simple
partial differential equation, namely,
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∂2p*/∂r* 2  + 2/r* ∂p*/∂r* = φµc/tref ∂p*/∂t* (18-5)

that takes on a form identical to the one encountered in isotropic spherical flow!
This alone does not allow us to draw mathematical analogies, since boundary
conditions must be similarly transformed.

Total velocity flux through ellipsoidal surfaces.  Two types of physical
boundary value problem models can be defined, both of which apply auxiliary
conditions at the surface of the ellipsoidal source

x2/kh + y2/kh + z2/kv = r*w
2 (18-6)

defined by the dimensionless well radius r*
w.  (Idealized “point sources” are not

considered here, since they preclude storage modeling.)  The first specifies the
pressure p*(r*w,t*) itself, with the object of the solution being the total produced

volume flow rate (VFR) taken through the ellipsoidal surface in Equation 18-6.
The second specifies VFR(t), and involves a complicated surface integral to be
discussed; the solution, in this case, is the transient well pressure history, with
the effects of wellbore storage accounted for.  How the ellipsoidal radius r*w

physically relates to the actual tool nozzle is subtle.  Various authors use ad hoc
arguments associated with equivalent hydraulic areas, volumes, flow rates, and
the like, but these methods cannot be justified and are often incorrect.  For our
purposes, we observe that r*

w can be rigorously related to the tool response and

certain properties of the fluid and the rock formation.
In either formulation, an expression for VFR is required, which can be

obtained from simple geometrical considerations.  Let Σ represent the entire
ellipsoidal surface area in Equation 18-6 and dS denote the differential surface
area on Σ.  Then, if n is the local unit normal drawn perpendicular to dS, and q
is the Darcy velocity vector, we simply have

VFR(t) = - ∫Σ q • n dS (18-7)

The evaluation of this expression, however, requires some care, since q, n, and
dS must each be correctly described.  It turns out that it is most convenient to
evaluate the local flux q • n using original x, y, and z ground-based coordinates.
Now, the Darcy expression for velocity is just

q = - kh/µ ∂p/∂x i - kh/µ ∂p/∂y j - kv/µ ∂p/∂z k (18-8)

where i, j, and k are unit vectors in the x, y, and z directions.  If the surface Σ is
represented in the form

F(x,y,z;r*w) = x2/kh + y2/kh + z2/kv - r*
w

2 = 0 (18-9)

then n = (∂F/∂x i + ∂F/∂y j + ∂F/∂z k)/√{(∂F/∂x)2 + (∂F/∂y)2 + (∂F/∂z)2}, which
gives

n = (x/kh i + y/kh j + z/kv k)/√(x2/kh
2 + y2/kh

2 + z2/kv
2) (18-10)

It follows, from Equations 18-8 and 18-9, that
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q • n = - (1/µ) (x ∂p/∂x + y ∂p/∂y + z ∂p/∂z) /

√{x2/kh
2  + y2/kh

2 + kv
-1 (r*w

2 - x2/kh - y2/kh)} (18-11)

Next, dS is formally constructed by integrating the incremental surface
area dS = √{1 + (∂z/∂x)2 + (∂z/∂y)2} dx dy over the projection (e.g., refer to
Figure 18-1) of Σ on the x-y plane, denoted R(x,y), where z = z(x,y) is solved
using Equation 18-9.  Let us consider, for example, the equation of a typical
ellipsoid in the upper half-plane z > 0; that is,

z(x,y) = + kv
1/2  √(r*w

2 - x2/kh - y
2/kh) (18-12)

Then, it follows that

 dS = kv
1/2  √{x2/kh

2  + y2/kh
2 + kv

-1 (r*w
2 - x2/kh - y2/kh)} dx dy /

√(r*w
2 - x2/kh - y2/kh) (18-13)

We combine Equations 18-11 and 18-13 to obtain

q • n dS = - (kv
1/2 /µ) (x ∂p/∂x + y ∂p/∂y + z ∂p/∂z) dx dy /

√(r*w
2 - x2/kh - y

2/kh) (18-14)

Now, the quantity x ∂p/∂x + y ∂p/∂y + z ∂p/∂z can be re-expressed as Pref

r*w (∂p*/∂r*)w and is a function of r* only.  As such, it must be constant on r* =

r*w.  Thus, this quantity can be moved across any integral taken over Equation

18-11.  Since we have restricted ourselves to z > 0, the volume flow rate
VFR+(t) is simply

VFR+(t) = - ∫ z > 0 q • n dS (18-15)

= (Pref  kv
1/2 kh /µ) r*w (∂p*/∂r*)w ∫∫R dξ dη / √(r*w

2 - ξ2
 - η2

 )

where R is the areal projection of the ellipsoid on the x-y plane.  To simplify the
integration, we introduce a polar transformation of coordinates ξ = ρ cos θ and
η = ρ sin θ.  In the second double integral below, the integration is performed
over 0 ≤ θ ≤ 2π and 0 ≤ ρ ≤ r*w.  This leads to

∫∫R dξ dη / √(r*w
2 - ξ2

 - η2
 ) = ∫∫ ρ dρ dθ / √(r*w

2 - ρ2
 ) = 2πr*w (18-16)

The total volume flow rate VFR accounting for both upper and lower halves of
the ellipsoid is just twice the value of VFR+(t), so that

VFR(t) = (4πr*w
2 pref  kv

1/2 kh /µ)  (∂p*/∂r*)w (18-17)

which is, we emphasize, expressed in terms of the dimensionless pressure
gradient (∂p*/∂r*)w.  This result differs from the conventional one for spherical

isotropic flow, where VFR(t) = 4πRw
2 k/µ ∂p/∂r, which appears as a product of

the surface area 4πRw
2 and an isotropic velocity k/µ ∂p/∂r constant in all

directions.  This difference arises because ∂p/∂r is dimensional whereas ∂p*/∂r*
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is not, and should not cause confusion.  Again, kv
1/2 kh is not directly related to

any effective permeability, since k v and k h have not been completely scaled

out; for example, they appear in the definition of r *.  The expression for total
volume from rate in Equation 18-17 again applies to general deviated wells in
transversely isotropic media.  Two natural boundary value problems can be
defined for the ellipsoidal model considered here, namely, the usual pressure
and flow rate formulations.

Pressure boundary value problem.   In this formulation, a physical
pressure Pref p

*
w(t*) + P0 is prescribed along the ellipsoidal surface defined by

Equation 18-6, and the following boundary value problem is solved.

∂2p*/∂r* 2  + 2/r* ∂p*/∂r* = φµc/tref ∂p*/∂t* (18-18a)

p*(r*,0) = 0 (18-18b)
p*(r* → ∞ ,t*) = 0 (18-18c)
p*(r*w,t*) = p*

w(t*) (18-18d)

Once the solution for p*(r*,t*) is obtained, Equation 18-17 can be evaluated to
produce the dimensional volume flow rate.  For simplicity, the time scale tref can
be selected as φµc so that φµc/tref = 1.  This problem can be solved by Laplace
transforms.  For example, when p*

w is constant, the solution is

p*(r*,t*) = (p*
w ) (r w

* /r*) erfc [1/2 (r 
* /r w

 * - 1)/√ (t* /r w
*2 )] (18-18e)

At any point in time t*, the derivative ∂p*/∂r* can be determined and the volume
flow rate easily calculated.  If p*

w varies in time, Laplace transform methods can

be used to derive a closed-form superposition integral based on the elementary
solution in Equation 18-18e.  In this book, the pressure boundary value problem
is less significant than the one for flow rate.  We now turn to that formulation.

Volume flow rate problem without skin effects.  In this formulation,
Equations 18-18a,b,c apply, but the total volumetric production rate Q(t) of the
ellipsoidal source is specified instead of the pressure in Equation 18-18d.  This
rate is not generally equal to the Darcy VFR(t) unless wellbore storage effects
completely vanish.  The physical volumetric balance equation requires us to
consider the more general statement VFR(t) - VC ∂p/∂t = Q(t), where V is the
storage volume and C is the compressibility of the wellbore fluid.  For
convenience, we will take a dimensional production rate Q(t) in the form

Q(t) = Q0 F(t*) (18-19)

where the constant Q0 has dimensions of volume flow rate and the prescribed
function F(t*) is dimensionless.  Then, our problem takes the form

∂2p*/∂r* 2  + 2/r* ∂p*/∂r* = φµc/tref ∂p*/∂t* (18-20a)

p*(r*,0) = 0 (18-20b)

p*(r* → ∞ ,t*) = 0 (18-20c)
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(4πr*w
2 Pref  kv

1/2 kh /µ)  (∂p*/∂r*)w

- VCPref/tref ∂p*/∂t* = Q0 F(t*) (18-20d)

Flow rate problem with skin.  Equation 18-20d provides the boundary
condition for the flow rate problem without skin effects, and an exact solution
can be obtained in closed analytical form (Proett and Chin, 1998).  However, it
is possible to obtain an exact solution for the more difficult problem including
skin effects (Proett and Chin, 2000).  Since this more general solution is
available, we will not discuss the skin-free model in this book.  Perhaps the
greatest difficulty in formulating the problem correctly lies in the form of the
skin model used.  Conventionally, the ad hoc skin model pw = p - SRw ∂p/∂r is

invoked in well testing and justified empirically without understanding the
assumptions and limitations behind it.  We will derive it and show that it arises
from velocity continuity (that is, mass conservation approximately) at the planar
interface separating the damaged zone and the formation.  The derivation shows
that it holds only for lineal flows; then, the remainder of this section extends the
conventional skin model to encompass multidimensional anisotropic flows.

Figure 18-2.  Lineal isotropic flow.

Figure 18-3.  Ellipsoidal anisotropic flow.
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In Figure 18-2, a thin layer of skin of thickness δ is shown adjacent to a
much larger rock formation or sandface.  The Darcy velocity in the formation is
simply - (kr/µ) ∂p/∂r, where k r is the formation permeability and µ is the fluid

viscosity; this must be identical to the Darcy velocity within the skin, which can
be approximated by - (ks/µ) (p-pw)/δ, where ks is the permeability of the skin.

Equating the two leads to pw = p - SRw ∂p/∂r where S = δkr /(Rwks  ).  This

derivation is useful for two reasons.  First, it provides a direct relationship
connecting S to skin thickness and damaged zone permeability.  Second, it states
that pw = p - SRw ∂p/∂r is much more than an empirical model describing skin

effects, with an assumed dependence on spatial derivative.  Because it actually
appears as the consequence of mass conservation, the underlying principle can,
in effect, be extended to handle more complicated problems.

We now derive the extended model.  Before we proceed, let us state the
underlying physical assumptions.  We assume that the skin effect under
consideration arises from mudcake or invasion damage and also that the
permeability of the skin is much less than that of the formation.  When this is so,
formation properties affect skin or cake growth only minutely; that is, the
permeability of the formation, despite its anisotropic character, can be neglected
in determining mudcake growth or in characterizing skin.  Thus, the cake does
not see the formation, even when kh and kv are very different; it is therefore
appropriate to assume a skin permeability k s that is isotropic in nature, even

when the underlying formation is anisotropic.  We consistently assume a skin
thickness δ that is uniform areally.  Again, since rock properties are unimportant
to leading order, there is no reason for δ not to be anything but constant around
the ellipsoidal skin-to-formation interface shown in Figure 18-3.

We now generalize the approach used in deriving pw = p - SRw ∂p/∂r.

Within our layer of thin skin, the total volume flow rate through the ellipsoidal
surface interface can be represented as the product of the normal Darcy velocity
- (ks/µ) {(p-p w)/δ} and the total surface area Σ.  This must be equal to the total

integral of normal velocity q • n over dS taken in the formation, where dS
represents an incremental surface area of Σ .

- (ks/µ) {(p-p w)/δ}  Σ  = ∫ Σ q • n dS (18-21)

The surface integral in Equation 18-21 was computed earlier.  From Equations
18-15 and 18-17, we find that the right side of Equation 18-21 now takes the
form - (4πr*w

2 pref  kv
1/2 kh /µ)  (∂p*/∂r*)w; that is,

(ks/µ) {(p-p w)/δ}  Σ = (4πr*w
2 pref  kv

1/2 kh /µ)  (∂p*/∂r*)w  
(18-22)

Thus, we obtain

pw = p - {4πr*w
2 pref  kv

1/2 kh 
δ /(ks 

Σ)}  (∂p*/∂r*)w 
(18-23)

which generalizes the pw = p - (δkr /ks ) ∂p/∂r obtained for linear isotropic flows.

Now, recall that nearfield boundary conditions are applied on the surface of the
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ellipsoidal source x 2/kh + y 2/kh + z 2/kv = r* w 
2.  Expressions for the surface

area Σ in Equation 18-23 are available in the mathematics literature and depend
on the relative values of vertical and horizontal permeabilities.

Figure 18-4.  Ellipsoidal flow assumption.

If, as in the usual case, the permeabilities satisfy kh
 > kv  

, so that the ellipsoid

represents an oblate spheroid, it can be shown that

Σ = 2πkh  r*w
2 + πkv  r*w

2 ε-1 ln {(1+ε)/(1-ε)} (18-24a)

ε = √(1 - kv  
/kh) (18-24b)

On the other hand, if the permeabilities satisfy kv
 > kh  

, so that the ellipsoid

represents an prolate spheroid, it can be shown that

Σ = 2πkh  r*w
2 + 2πr*w

2 {√(khkv)} ε -1 arcsin ε (18-25a)

ε = √(1 - kh  
/kv) (18-25b)

In the limit k h  
→ kv  , the dimensionless parameter ε approaches zero; use of

L’Hospital’s Rule shows that the areas in Equations 18-24a and 18-25a reduce
to the 4πRw

2
  result anticipated for isotropic flows.

General flow rate problem formulation.   If we now return to Equation
18-20 and review the basic formulation, it is obvious that only Equation 18-20d
needs to be changed to model skin.  If we rewrite Equation 18-20d in the form
(4πr*w

2 Pref  kv
1/2 kh /µ)  (∂p*/∂r*)w - VC ∂p/∂t = Q 0 F(t*), it is clear that ∂p/∂t

must be replaced by ∂pw 
/∂t, to differentiate between the pressure inside the

sandface and that in the well.  Doing so, we obtained the extended law

(4πr*w
2 Pref  kv

1/2 kh /µ)  (∂p*/∂r*)w - VC ∂pw 
/∂t = Q0 F(t*) (18-26)

Combining Equations 18-23 and 18-26, we obtain

(4πr*w
2 Pref  kv

1/2 kh /µ)  (∂p*/∂r*)w  - VCPref/tref ∂p*
 
/∂t* (18-27)

+ {4πr*w
2 VCPref  kv

1/2 kh 
δ /(ks  

Σ tref)} (∂2p*/∂t*∂r*)w   
= Q0 F(t*)
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Two transformations map the anisotropic Cartesian equations into spherically
symmetric form.  If we apply Equations 18-2, 3,4 and Equations 18-28,29, that
is,

p*(r*,t*) = p(r,t) (18-28a)

r = ar* (18-28b)

t = t* (18-28c)

a = 4πφckv
1/2  kh r*w

2 /(VC) (18-29a)

tref = µV2C2/(16π2 φc kv kh
2 r*w

4 ) (18-29b)

Pref = µQ0VC/(16π2 φckv kh
2 r*w

4 ) (18-29c)

to Equation 18-27, where a is dimensionless, we straightforwardly obtain

∂2p/∂r2 + 2/r ∂p/∂r = ∂p/∂t (18-30a)
p(r,t = 0) = 0 (18-30b)

p(r → ∞ ,t) = 0 (18-30c)

∂p(rw , t)/∂r - ∂p/∂t + ξ ∂2p/∂r∂t = F(t) (18-30d)

where
rw = ar*w = 4πφckv

1/2  kh r*w
3 /(VC) (18-30e)

ξ = 16π2  φc  kv  
kh

2 r*w
4 δ/(ks  

ΣVC) > 0 (18-30f)

Note that we did not select tref = φµc, as we had done for our previous pressure
boundary value problem.  Instead, we chose tref and Pref judiciously, so that the
resulting normalized problem is solved once and only once, thereby eliminating
the need to generate numerous type curves, as is typical in well testing.

General solution.  An exact, closed-form, analytical solution to Equation
18-30 can be derived using transform methods.  If p (r,s) denotes the Laplace
transform of p(r,t), standard manipulations show that

p(r,s) = - F(s) rw
2 exp{(rw - r)√s}/[r{rws + (1 + ηs)(1 + rw√s )}] (18-37)

Consider constant rate buildup or drawdown and set F(t) = 1, so that F(s) = 1/s.
Evaluating at the effective well radius rw, we have

p(rw,s) = - rw /[s{rws + (1 + ηs)(1 + rw√s )}] (18-38)

Equation 18-38 cannot be inverted by straightforward table lookup.  However, a
closed-form solution can be obtained through the use of some algebra.  Let us
first rewrite Equation 18-38 in the form

p(rw,s) = -1/{ηs (s3/2  + a1s + a2s1/2  + a3)} (18-39a)

where
a1 = (rw+ η)/(rwη) (18-39b)

a2 = 1/η (18-39c)

a3 = 1/(rwη) (18-39d)

are real coefficients.  Then we can cast Equation 18-39a in the form
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p(rw,s)= -1/{ηs (s1/2  - x1)(s1/2  - x2)(s1/2  - x3)} (18-40)

where x1, x2, and x3 are the roots of the cubic polynomial equation

s3/2 + a1s + a2s1/2  + a3 = 0 (18-41)

for the quantity s1/2 .  The required roots can be easily expressed in terms of a1,
a2, and a3.  Let us introduce the auxiliary quantities

Q = (3a2 - a1
2)/9 (18-42a)

R = (9a1a2 - 27a3 - 2a1
3)/54 (18-42b)

and then define

D = Q3 + R2 (18-42c)

S = (R + √D)1/3 (18-42d)
T = (R - √D)1/3 (18-42e)

Then, it can be shown that

x1 = (S+T) - a1/3 (18-43a)

x2 = - (S+T)/2 - a1/3  + i ½ √3 (S-T) (18-43b)

x3 = - (S+T)/2 - a1/3  - i ½ √3 (S-T) (18-43c)

Using partial fraction expansions, we can rewrite Equation 18-40 in the form

p(rw,s) = - [1/{η (x1-x2 )(x1 -x3)}][1/{s(s1/2  - x1)}] (18-44)

- [1/{η (x2-x1 )(x2 -x3)}][1/{s(s1/2  - x2)}]

- [1/{η (x3-x1 )(x3 -x2)}][1/{s(s1/2  - x3)}]

Next observe that the inverse of the Laplace transform 1/{s(s1/2  + a)} is simply
{1 - exp(a2t) erfc(a√t)}/a.  Thus, the dimensionless Darcy pressure satisfies

p(rw,t) = {1 - exp(x1
2t) erfc(-x1√t)}/{η  x1  (x1 -x2)(x1-x3 )} (18-45)

+ {1 - exp(x2
2t) erfc(-x2√t)}/{η  x2  (x2 -x1)(x2-x3 )}

+ {1 - exp(x3
2t) erfc(-x3√t)}/{η  x3  (x3 -x1)(x3-x2 )}

This expression for p(rw,t) applies in the formation only, because it does not yet

include the pressure drop through the skin. (It is used for the first term on the
right of Equation 18-23, which shows that the pressure at the well requires a
contribution related to (∂p*/∂r*)w that can be obtained from Equation 18-37.)
The above model shows how transient invasion problems for compressible
liquids in anisotropic formations can be reduced to simple ones using geometric
transformations.  Far from an academic exercise, the solution represents the
backbone of an interpretation method for a modern multiprobed formation tester
tool that has proven successful in the field (Proett and Chin, 2000).  Extensions
to the preceding compressible fluid model that include formation heterogeneities
and miscible and immiscible fluids are outlined in Chapter 21.
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PROBLEMS AND EXERCISES

1. The skin model derived for anisotropic formations assumed the
displacement of a formation liquid by a liquid filtrate.  Extend the model so
that a liquid displaces formation gases having exponent m.

2. Formation invasion during drilling is described by the cylindrical flow
models in Chapter 17.  Give practical estimates for total invaded fluid
volume for typical wells at various stages in the drilling process.  The
formation tester model in this chapter assumes ellipsoidal flow.  How would
you use this solution to estimate pump-out time required to remove invaded
mud filtrate prior to reservoir fluid sampling?  Write a simple program,
noting that the roots in Equation 18-43 are complex.

3. The write-up beneath Equation 18-45 explained the need for (∂p*/∂r*)w.
Calculate it from Equation 18-37 to provide the complete well solution.

4. The Eulerian solution in this chapter describes flow at a point.  Using it,
derive an ordinary differential equation for dr/dt describing the progress of
an invasion front in compressible spherical flow.  Integrate this result
numerically in time for suitable initial conditons.  Explain your results.
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19
Analytical Methods for

Time Lapse Well LoggingAnalysis

Here we continue development of formation invasion models, and present
experimental results as reported in Chin et al. (1986) to support our simulation
efforts.  Importantly, we introduce practical uses for the derived formulas
describing coupled mudcake growth and displacement front motion, and in
particular, we develop the physical principles and reservoir flow bases
underlying time lapse analysis.  This work is pursued within the framework of
the plug-like displacement models treated so far.  Extensions of these inverse
prediction methods for miscible and immiscible multiphase flow effects will be
considered in Chapter 21.  There, powerful methods are developed first to
undiffuse fronts that have diffusely smeared and distorted geometrically, in
order to recover the original sharp step profiles so that the inverse plug flow
models in this chapter apply.  Also, methods to unshock saturation fronts
developed from immiscible water-oil flows, in order to recover the original
smooth flows, are developed so that they can be analyzed accurately for
formation information.

EXPERIMENTAL MODEL VALIDATION

“Formation Evaluation Using Repeated MWD Logging Measurements” by
Chin et al. (1986) summarized a multiyear effort aimed at assessing the viability
of time lapse analysis.  The exact unsteady front equation given in that paper
was simplified assuming high rock-to-cake permeability ratios for further
evaluation, thus leaving rock porosity as the sole formation parameter.  This
being so, porosity could be solved for in terms of displacement front location,
time, and mudcake properties.  The objective of the work lay, in part, in
determining the accuracy of the porosity thus obtained, in comparison to known
core-measured values and values available from other types of porosity logs.



Analytical Methods for Time Lapse Well Logging Analysis     353

Static filtration test procedure.  In order to understand the static filtration
process, Catscan measurements of flows in radial and lineal cores containing
growing mudcakes were obtained over periods of hours, with pressure and mud
weight systematically varied in sequential tests.  Photographs of the plastic,
translucent, radial, and lineal flow test fixtures appear in Chapter 14.  Gel-like
mud-to-cake boundaries, sometimes poorly defined due to weak density
contrasts, a result of barite present in both mud and mudcake, were enhanced for
visualization by adding lightening agents to the mud.  The salt water in the
Berea sandstone cores tested contrasted well with the fresh water filtrate used,
so that special visualization methods were not necessary for the flow internal to
the rock.  A database of information for mudcake thickness, lineal and radial
displacement front position versus time, for different mudcakes and differential
pressures, was obtained over a period of months.  Cake density and compaction
were also measured as a function of distance from the rock and monitored in
time (e.g., see Chapter 14).  The mudcake model used in the original work and
here, described in Collins (1961), is a well-known buildup model for cement
slurries.  Cake thicknesses obtained by CAT scan measurement agreed with
predictions, so that the model is also potentially useful in differential sticking.

Dynamic filtration testing.  Dynamic filtration was studied using a
closed-circuit recirculating flow loop.  The test section consisted of a foot-long
annular core of Berea sandstone, with a 2-in inner diameter, through which mud
flowed.  Under differential pressures ranging from 50 to 150 psi, a portion of
this recirculating flow is lost as mud filtrate, passing radially into the core and
into a collection tank open to a pressure-regulated chamber.  The dimensions of
the one-foot annular test section were selected to reduce end effects, thus
allowing pure radial flow at the center of the core.  The test fixture permitted
independent control of the differential pressure across the rock and cake, the
absolute pressure in the loop, and the mean flow speed.  This speed was
monitored ultrasonically, while constant system temperatures were controlled by
heat exchangers.  Pressures were regulated by an accumulator, and bubbles
introduced by the replenishing mud supply that replaced lost filtrate were
removed by a mechanical separator.  The test apparatus was also size-
constrained to allow convenient CAT scan recording while flowing.  The
preliminary reported results suggested that mudcake thickness ultimately
remains constant with time under laminar flow conditions, showing that surface
erosion due to shear stress does result in dynamic equilibrium.  For turbulent
flows, the cakes formed in the tests eroded, possibly because the low-pressure
differentials used did not sufficiently compact the mudcake.  Only limited data
was obtained in these tests, and general conclusions were not drawn.

Measurement of mudcake properties.  The mudcake model used
required independent lab measurements for permeability, porosity, and solid
fraction.  This implied the need for tedious, time-consuming tasks involving
weighing, drying, sorting, and so on, procedures not unlike those reported later
by other authors (e.g., Holditch and Dewan, 1991 and Dewan and Chenevert,
1993).  The inaccuracies present in such tests pose hurdles to practical field
implementation, since any formation predictions obtained would only be as
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accurate as the mudcake properties.  Much of the early effort addressed
sensitivities of predicted results as they depended on cake measurements.  At the
time, no solution to this problem was found, but it turns out that dynamically
equivalent information can be obtained by a single measurement for filtrate
volume and cake thickness at a single large time.  This is explained later in this
chapter.

Formation evaluation from invasion data.  At the time of the
experiments, a closed-form radial front solution as a function of mudcake
properties, filtrate and formation fluid viscosity, mud and pore pressure, rock
porosity and permeability, and spurt loss was not available.  Thus, the precise
conditions under which rock permeability, pore pressure, and oil viscosity can
be predicted from front data could not be determined.  Nor was the form of the
ultimate methodology that would host such calculations known: the exact
functional relationships were lacking.  Thus, the original work focused on rock
porosity only, since its role is obvious: when mudcake controls the net filtration
rate, the invasion front depends only on porosity, a simple geometric volume
variable.  The early work, in this sense, evaluated more the uncertainties due to
errors in mudcake characterization than it did the formation.  To determine these
sensitivities, the exact porosities of the Berea sandstone cores were
independently measured by direct core analysis methods and were found to vary
from 22% to 24%.  Figure 19-1, reproduced from Chin et al. (1986), shows
predicted porosities as a function of time after initial radial invasion.  Errors at
small times are due to two independent effects.  The first is poor mudcake
definition.  The second arises from the neglect of spurt in the derived radial flow
formulas, or more precisely, the incorrect assumption of zero spurt.  The
formulas used, in order to account for the large initial invasion due to spurt loss,
responded by predicting porosities that are abnormally low, in the 10% range.
This effect corrects for itself over time, since the limited volume of spurt
becomes unimportant with time, as the radial front expands geometrically.  At
least in the runs reported, the time scale required for this correction is about one
hour.  If an exact radial flow solution had been available, and spurt loss could be
estimated, the waiting time could have been reduced to ten minutes.

 Time   Porosity Time  Porosity
 (min)    (%)  (min)    (%)

1.2 10%   49.1 22%
3.9  14%   64.1 22%
9.0  17%   81.0 23%
16.1 20%   100  23%
25.6 21%   121  23%

               36.1   21%    144    23%

Figure 19-1.  Radial flow test, 15 ppg mud, ∆p = 150 psi.

As noted, unsteady cake growth and invasion fronts in time were monitored and
captured in CAT scans.  In Chapter 14, for example, a sequence of linear flow
slides is displayed, obtained over several hours.  A radial flow slide showing the
central test cross-section containing a ring of mudcake, together with a circular
front moving into rock core, is also given.  Lineal and radial flow results and
predictions, for the 9-15 ppg water-base muds used, proved very repeatable.
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Field applications.  Repeat resistivity data obtained from several MWD
logging runs taken in the Woodbine Sand in Quitman, Texas, was analyzed
using standard multilayer electromagnetic simulations.  These calculations
determined invasion front radii given resistivity time histories. Then, porosity
could be determined using inverse fluid methods, with the procedure repeated at
different depths.  Typical permeabilities and porosities in the water sands were
200 md and 25%.  Resistivity measurements were obtained at 30 minutes, 1 day,
and 31 days.  Samples of the 9 ppg water-base mud were retained for laboratory
mudcake evaluation.  The multilayer electromagnetic code was specialized to
four layers, comprising the tool, the mud, and invaded and virgin rock,
respectively.  A radius Ri separated the latter two zones.  This radius was
obtained iteratively, with the correct value being the one that reproduces the
known tool reading when the logging resistivities RT and Rxo are prescribed.
The original paper gave logs calculated at several depth intervals, displayed side
by side with the corresponding neutron and density porosity logs (e.g., see
Chapter 14).  The effective or invasion porosity logs were consistent with
neutron porosity and density tool measurements, duplicating qualitative and
quantitative features.  Exact agreement was not expected, since the latter
vertically averaged portions of their signals and were taken at rapid speeds; the
high vertical resolution resistivity tool used took instantaneous formation
snapshots and yielded accurate readings in this sense.  Our porosity refers to
connected pores that provide conduits for fluid flow.

During the field tests, the classical √t displacement law, strictly valid for
lineal invasion, broke down after several days due to significant formation
influx, making (simplified) radial flow modeling mandatory.  Again, the early
work did not address formation properties other than porosity, noting only that
quantitative results may be possible for hydrocarbon viscosity, formation
porosity, and permeability.  The principal difficulties with these properties, it
was realized, were subtle.  In formations with permeabilities greater than a few
millidarcies, mudcakes form rapidly and control the invasion process within
minutes.  As was the case with the work summarized above, the invasion front
then depends largely on porosity.  In order to determine hydrocarbon viscosity,
rock permeability, and mobility ratio, it is clear that the mobility in the cake
must be comparable to that of the formation, in order to create nontrivial
dynamical coupling between the two flows, from which the information needed
for use in inverse models can be derived or inferred.  Loosely speaking,
permeable formations should be probed using permeable mudcakes, while
impermeable formations require comparably impermeable cakes.  In this sense,
permeability prediction stands the greatest chance for success when it is
extremely low in value.  Still, the matter concerning the time separation required
between successive resistivity readings needs to be clarified.  And finally, how
the mudcake properties determined in lineal laboratory flow tests without
underlying impermeable rock are to be used in radial time lapse analysis must
be resolved.  These questions are addressed next, where our exact radial
mudcake invasion solution is taken as the basis for time lapse analysis.
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CHARACTERIZING MUDCAKE PROPERTIES

The invasion modeling results of Chapter 17 required us to characterize the
mudcake by three independent parameters, namely, the solid fraction f s, the

porosity φ c , and the cake permeability k.  The theoretical work in Chin et al.

(1986) and Collins (1961) required such empirical inputs, and elaborate
laboratory procedures were developed to support the volume and Darcy flow
resistance measurements needed.  It turns out that all of this is unnecessary, if
we apply the philosophy underlying time lapse analysis to mudcake properties
prediction, using simple lineal filtrate tests performed at the surface, flowing
through standard filter paper without underlying rock.  The key idea lies in the
fact that the foregoing parameters, for incompressible cakes anyway, only affect
filtration by way of the two lumped parameters µ/k and fs/{(1- fs)(1 - φc)},

where µ is the filtrate viscosity.
Simple extrapolation of mudcake properties.  In our study of lineal cake

buildup on filter paper, we found that the mudcake thickness can be written as
xc(t) = √{2kfs∆p/{µ(1- fs)(1 - φc)}} √t.  For simplicity, consider a collection

vessel having the same area dA as the cross-section of the core sample. (For
lineal flows, the complete area A can be substituted in place of dA.)  Then, the
filtrate height h(t) = Vl (t)/dA of the liquid column is simply h(t) = Vl(t)/dA =

√{2k∆p(1- fs)(1 - φc)/(µfs)} √t .  Dividing the first equation by the second,

fs/{(1- fs)(1 - φc)} = xc(t)/h(t)                                                    (19-1)

while the square of the equation for h(t) yields

µ/k = 2∆p{t/h2(t)}(1- fs)(1 - φc)/fs                                             (19-2)

Thus, if x c(t) and h(t) are both known at some time t, the lumped quantities

fs/{(1- fs)(1 - φc)} and µ/k are completely determined. (Our definition of the

filtrate height h(t) excludes mud spurt contributions.)
We emphasize that k and fs/{(1- fs)(1 - φc)} are material or constitutive

constants intrinsic to the particular mudcake.  The latter is a dimensionless
number that depends only upon the packing arrangement of the solid particles
making up the mudcake, which in turn depends on the instantaneous pressure
gradient and the shearing effects of dynamic filtration, if present.  These
constants are not unlike others used in engineering analysis, for example, the
viscosity of a lubricant or the yield stress of a steel test sample.  This being so,
their values can be obtained from the simple lineal buildup test just described,
and are applied to more general cylindrical radial or spherical flow formulas
derived for problems where mudcake and formation interaction are not weak.

The question of mudcake permeability often arises in assessing formation
damage, which, for example, manifests itself through reduced production in
reservoir engineering or by way of skin effects during transient well tests.  Many
researchers address this problem by forcing clean water through isolated
mudcake (retrieved from filtration vessels) under pressure, thus ensuring a
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controlled test where the mudcake no longer grows; permeability is calculated
by knowing the differential pressure, the cross-sectional area, the filtrate
volume, and the water viscosity.  This is the standard laboratory procedure used
to determine rock core permeability, but its application to mudcake analysis is
inconvenient, since it is laborious, and more often than not results in cake
damage and tearing.  This procedure can be circumvented if we observe that
Equations 19-1 and 19-2 imply that the cake permeability k takes the value

k = µ h(t)xc(t)/(2t∆p)                                                             (19-3)

which is completely determined using data from the foregoing test.  Therefore, it
is clear that separate flow tests for mudcake permeability prediction are
unnecessary, since the test just described provides the needed information.  In
order to reduce the experimental error associated with mudcake characterization,
the sample time t should be sufficiently large that errors due to initially
nonuniform mudcake definition are minimized.  This implies a wait of 30 to 60
minutes; in fact, a sequence of measurements corresponding to larger and larger
wait times might be useful, to be terminated only when calculated results for
mudcake properties converge to stable values.  It is assumed, of course, that
appropriate high temperature and pressure filtration vessels are used whenever
necessary to model mudcake growth in deep holes.  Experimentally, it has been
observed that the mud-to-mudcake interface may be unclear and gel-like at
times, thus introducing error into time lapse analysis.  It may well be that special
muds with easy-to-determine cake thicknesses will need to be formulated if
inverse applications are to be successful.

Radial mudcake growth on cylindrical filter paper.  Many authors
presume the universality of √t mudcake-filtration behavior at large times; this
may sometimes be valid in lineal flows.  However, as we have seen from our
general radial mudcake flow results in Chapter 17, this assumption can be
wrought with danger.  The exact nature of mudcake growth is not only important
to interpretation: cake thickness is a useful indicator for both formation damage
and probability of differential sticking.  While √t behavior provides a “back of
the envelope” guess, problems can arise when cake buildup is obviously radial,
for example, when mudcake thickness is a substantial fraction of the hole radius,
and in newer slimholes, where the buildup process may be uncertain.  In this
example, we will investigate the growth of mudcake in a radial flow vessel
formed by thin cylindrically formed filter paper, as shown in Figure 19-2.
Although it is possible to study this problem as a formal limit of our three-layer
solution, it is instructive to reconsider its formulation from first principles.  As
shown earlier, the governing ordinary differential equation for an
incompressible, isotropic, homogeneous, cylindrical radial Darcy flow is

d2p(r)/dr2 + (1/r) dp/dr = 0.  Then, the general solution to this equation takes the
form p(r) = A log r + B.
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Thin filter paper
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Figure 19-2.  Radial mudcake growth on filter paper.

For this radial flow, we impose the mud pressure Pm at the edge of the

growing cake interface and the external pressure Pext at the circularly wrapped

filter paper.  Thus, the differential pressure acting on the cake ring is Pm - Pext.

Our boundary conditions are p(rc) = Pm and p(rext) = Pext.  If we now substitute

these into the general solution, we find that the integration constant A satisfies A
= (Pm  - Pext)/(log rc/rext).  The differential equation derived in Chapter 17 for

mudcake buildup, for the coordinates used, takes the form

drc(t)/dt = - {fs/{(1- fs)(1 - φc)}} |vn|

= + {fs/{(1- fs)(1 - φc)}} (k/µ) dp(rc)/dr

= + {fs/{(1- fs)(1 - φc)}} (k/µ) A/rc                                (19-4)

where A is again a function of log rc.  This nonlinear ordinary differential

equation can be integrated in exact closed form.  To fix the constant of
integration, we assume that no mudcake exists at t = 0; that is, the cake radius is
the same as that shown in Figure 19-2, with rc(t  = 0) = rext.  Then, we obtain the
following exact implicit solution for radial cake growth as a function of time,

½ (rc/rext)
2 log (rc/rext) - ¼ (rc/rext)

2  + 1/4

=  {kfs(Pm - Pext)/{µ(1- fs)(1 - φc)rext
2}} t                         (19-5)

In deriving Equation 19-5, we assumed that Pm is constant.  If it is instead a

function of time, the integral ∫ Pm(t) dt will simply appear in place of Pmt.

Now consider the conditions under which this general result reduces to the
lineal √t law.  This is accomplished by introducing rc = rext - ∆r, with ∆r > 0;

that is, rc/rext = 1 - ∆r/rext = 1 - δ and δ > 0.  Then, we expand the above left-
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hand side LHS in Taylor series for small δ, so that LHS = ½ (1- δ)2 log (1- δ) -

¼ (1- δ)2  + ¼ ≈ ½ δ2 =  ½ (∆r/rext)
2.  Substitution into Equation 19-5 and

cancellation of common terms yield the cake thickness

∆r  ≈  √[{2kfs(Pm - Pext)/{µ(1- fs)(1 - φc)}} t]  > 0                (19-6)

in agreement with lineal theory.  Some indication of the extent to which ½ (1-δ)2

log (1-δ) - ¼ (1-δ)2 + ¼ can be approximated by ½ δ2 is found by tabulating
these functions versus δ , noting that δ = ∆r/rext.  This is done in Figure 19-3.

The results show that the √t law is satisfactory for ∆r/rext <  0.20.  This applies

to radial and lineal mudcake buildup on resistance-free filter paper only and
does not apply to cake buildup on formations having comparable mobilities.

                                                  ∆r/rext LHS (exact) Lineal

                     .0500     .0012     .0013
                     .1000     .0048     .0050
                     .1500     .0107     .0113
                     .2000     .0186     .0200
                     .2500     .0285     .0313
                     .3000     .0401     .0450
                     .3500     .0534     .0613
                     .4000     .0681     .0800
                     .4500     .0840     .1013
                     .5000     .1009     .1250
                     .5500     .1185     .1513
                     .6000     .1367     .1800
                     .6500     .1551     .2113
                     .7000     .1733     .2450
                     .7500     .1911     .2813
                     .8000     .2078     .3200
                     .8500     .2230     .3613
                     .9000     .2360     .4050
                     .9500     .2456     .4513

Figure 19-3.  Radial versus lineal mudcake theory.

Although thick mudcakes with large values of ∆r/rext > 0.20 may be

uncommon, at least in conventional drilling, with the lineal approximation found
to be quite applicable, it may well be that thicker mudcakes are actually desired
for accurate time lapse analysis applications.  This is so because both the
mudcake characterization tests discussed above, and the cruder, direct
measurements for k, f s, and φc alluded to earlier, ultimately require cake

thickness measurements in some form or another.  Having a thicker cake to
measure, ideally formed from solids with good textural qualities that ensure
discernible mud-to-cake boundaries, barring the risks of stuck pipe, of course,
reduces the level of experimental uncertainty.  Finally, note that a time scale of
interest in drilling is the time required for cake to completely plug the well,
under the assumption of static filtration.  The required formula is useful in
evaluating experimental muds drilled in slimholes.  When the hole is plugged,
we obtain rc = 0.  Then, substitution in Equation 19-5 yields the simple
relationship 1/4 = {kfs(Pm  - Pext)/{µ(1- fs)(1 - φc)rext

2}} t.  The time to plug is

tplug = µ(1- fs)(1 - φc)rext
2/{4kfs(Pm - Pext)}                      (19-7)
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This provides an estimate of the time scale over which plugging may become
important, and may be useful operationally in stuck pipe considerations.  Again,
Equations 19-5 and 19-7 appear as a result of exact radial flow theory.

POROSITY, PERMEABILITY, OIL VISCOSITY,
AND PORE PRESSURE DETERMINATION

Here we develop time lapse analysis using three models in the order of
increasing complexity.  In the first, we address porosity prediction, when
mudcake controls the overall invasion.  In the second, we consider fluid invasion
without the presence of mudcake, and we determine pore pressure, formation
permeability, and hydrocarbon viscosity.  In the third, the same formation
properties are considered, except that the complicating effects of mudcake are
not neglected.  Numerical examples are given which illustrate the basic ideas.

Simple porosity determination.  In wells where mudcake controls the
overall flow into the formation, and where ∆r/rext  < 0.20 is satisfied, a lineal

mudcake model suffices.  This being so, we unwrap the cake layer adhering to
our wellbore and view the buildup process as a lineal one satisfying the √t law.
But the invasion into the formation, of course, is highly radial: in this farfield,
the effects of borehole geometry and streamline divergence must be considered
in order to conserve mass.  Now consider a well with a radius rwell and an axial

borehole length L, for which the surface area dA of the unwrapped mudcake
layer is 2πrwell L.  Using results from Chapter 17, the total filtrate volume

passing through the mudcake at time t = t* is
Vl (t*) = √{2k∆p(1- fs)(1 - φc)/(µfs)} √t*  dA                            (19-8)

= 2πrwell L√[{2k∆p(1- fs)(1 - φc)/(µfs)}t*]

For incompressible flow, this equals the formation volume available for filtrate

storage; that is, π(rf 
2 -  rwell 

2)Lφeff , where φeff is the effective porosity.  Thus,
we can solve for the effective porosity as

φeff  = 2rwell{rf (t
*)2 -  rwell

2}-1√[{2k∆p(1- fs)(1 - φc)/(µfs)}t*] (19-9)

Ideally, the right side of Equation 19-9 will be independent of the time t*, but in
reality, one anticipates larger measurement errors for small times because cake
thicknesses are not yet well defined (e.g., the discussion for Figure 19-1).

Radial invasion without mudcake.  In the preceding example, we showed
how formation porosity can be calculated from purely geometric considerations
when mudcake controls the flow rate into the reservoir.  Sometimes the opposite
limit applies: in shallow holes and in special drilling applications, watery brines
are sometimes used as the circulating fluid.  We will develop the theory for such
problems, and then demonstrate how formation properties can be
straightforwardly predicted from time lapse analysis.
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R2  R3 R4

Figure 19-4.  Radial invasion without mudcake.

Let us now refer to Figure 19-4; here, R2 corresponds to the fixed borehole

radius where a mud pressure pm acts, R4 is the fixed effective radius where the

reservoir pore pressure pr acts, and R3 is the moving invasion front.  The

complete equation for compressible fluid flows in cylindrical radial coordinates

takes the form ∂2p(r,t)/∂r2 + (1/r) ∂p/∂r = (φµc/k) ∂p/∂t.  We will deal with

constant density flows, so that d2pi(r)/dr2 + (1/r) dpi  
/dr = 0, i = 1, 2.  Note that

the subscript 1 refers to R2 < r < R3, while the 2 refers to R3 < r < R4.  The

solutions to our ordinary differential equations are p1(r) = A log r + B and p2(r)

= C log r + D, where A, B, C, and D are determined by the boundary and
matching conditions.  These are p1(R2) = pm, p2(R4) = pr, p1(R3) = p2(R3),

and (k1/µ1) dp1(R3)/dr = (k2/µ2) dp2(R3)/dr, as in Chapter 17.

In our derivation, we allow the possibility of unequal permeabilities, so
that our results can mimic relative permeability effects in two-phase immiscible
flow.  One can show that A = (pr - pm)/log{(R3/R2)(R3/R4)-k1µ2/k2µ1}, B = pm
- A log R2, C = (k1µ2/k2µ1) A, and D = pr - C log R4.  Then, the differential

equation for radial front motion is as usual found from dR3(t)/dt = - {k1/(µ1φ)}

× dp1/dr = - {k1/(µ1φ)} A/R3 where A depends on R3.  This nonlinear ordinary

differential equation can be integrated exactly in closed analytical form.  If we
assume a pressure drop that is constant in time, together with the initial
condition R3(0) = R2 (that is, we assume that the radial invasion front initially

coincides with the wellbore radius), it follows that

[(pm - pr) t /(µ1R2
2)] (k1/φ) +

{½ (R3/R2)2 log (R3/R4) - ¼ (R3/R2)2 - ½ log (R2/R4) + ¼ }(k1µ2/k2µ1)

= ½ (R3/R2)2 log (R3/R2) - ¼ (R3/R2)2 + ¼        (19-10)

for the radial front R3(t).  This result could have been obtained as a limit of the

three-layer radial solution in Chapter 17, but its self-contained derivation from
first principles is instructive and useful in its own right.

We now develop the quantitative basis for time lapse analysis, within the
framework of the plug-flow displacement model just discussed, for rock
permeability, hydrocarbon viscosity, and pore pressure determination.  In
Problem 1, we consider simultaneous reservoir permeability and hydrocarbon
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viscosity prediction, while in Problem 2, we will add to these unknowns the
formation pore pressure.  To fix ideas, we set k1= k2 = k in Equation 19-10,

which is the situation of interest to reservoir engineers.  If we multiply Equation
19-10 by the mud viscosity µ1, we obtain the fundamental host equation

[(pm - pr) t /R2
2] (k/ φ) +

{½ (R3/R2)2 log (R3/R4) - ¼ (R3/R2)2 - ½ log (R2/R4) + ¼ } µ2
=  µ1 {½ (R3/R2)2 log (R3/R2) - ¼ (R3/R2)2 + ¼}       (19-11)

Problem 1.  Let us assume that the front position r = R3(t) is known at two

instants in time, say r = R3
* at t = t*, and r = R3

** at t = t**, for example, as

determined from multilayer electromagnetic analysis, as in Chin et al. (1986).
Since the values of pm, pr,  R2, R4, and µ1 are known, we can evaluate the

Equation 19-11 twice, using our data obtained at two points in time, to yield

[(pm - pr) t* /R2
2] (k/ φ) +

{½ (R3
*/R2)2 log (R3

*/R4) - ¼ (R3
*/R2)2 - ½ log (R2/R4) + ¼ } µ2

=  µ1 {½ (R3
*/R2)2 log (R3

*/R2) - ¼ (R3
*/R2)2 + ¼}          (19-12a)

and

[(pm - pr) t** /R2
2] (k/φ) +

{½ (R3
**/R2)2 log (R3

**/R4) - ¼ (R3
**/R2)2 - ½ log (R2/R4) + ¼ } µ2

=  µ1 {½ (R3
**/R2)2 log (R3

**/R2) - ¼ (R3
**/R2)2 + ¼}    (19-12b)

In shorthand, letting RHS denote right-hand-side quantities, Equations 19-12a
and 19-12b become

[  ] * (k/φ)  + {  }* µ2 =  RHS*                                                      (19-13a)

[  ] * * (k/φ)  + {  }**µ2 =  RHS**                                                    (19-13b)

Thus, we have two linear equations in the unknowns k/ φ, a useful lithology
indicator related to the well-known Leverett J-function, and the viscosity µ2.
This simple 2 × 2 system can be solved using elementary algebra.  If the
porosity of the formation were known from a separate logging measurement, or
from late-time-invasion based porosity extrapolation, then these equations
would yield solutions for formation permeability and hydrocarbon viscosity.

In order to test our inverse time lapse ideas, let us first generate synthetic
front displacement data versus time by assuming appropriate formation and fluid
properties for our forward simulation.  In Equation 19-11, the radius R3 is varied
parametrically, and the corresponding invasion time t is computed.  The results
of a forward  simulation are shown, where the parameters have been selected for
illustrative purposes only (for brevity, only partial numerical results are given).
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INPUT PARAMETER SUMMARY:
Rock core permeability (darcies): .1000E-02
Rock core porosity (decimal nbr): .2000E+00
Viscosity of invading fluid (cp): .1000E+01
Viscosity, displaced  fluid (cp): .2000E+01
Pressure at well boundary  (psi): .1000E+04
Pressure, effective radius (psi): .9000E+03
Radius  of the  well bore (feet): .2000E+00
Reservoir, effective radius (ft): .2000E+01
Maximum allowed  number of hours: .1000E+03

T =  .0000E+00 sec, Rf =  .2000E+00 ft
T =  .2978E+04 sec, Rf =  .3000E+00 ft
T =  .6830E+04 sec, Rf =  .4000E+00 ft
T =  .1148E+05 sec, Rf =  .5000E+00 ft
T =  .1685E+05 sec, Rf =  .6000E+00 ft
T =  .2292E+05 sec, Rf =  .7000E+00 ft
T =  .2962E+05 sec, Rf =  .8000E+00 ft
T =  .3693E+05 sec, Rf =  .9000E+00 ft
T =  .4481E+05 sec, Rf =  .1000E+01 ft
T =  .5323E+05 sec, Rf =  .1100E+01 ft
T =  .6217E+05 sec, Rf =  .1200E+01 ft
T =  .7161E+05 sec, Rf =  .1300E+01 ft
T =  .8151E+05 sec, Rf =  .1400E+01 ft
T =  .9187E+05 sec, Rf =  .1500E+01 ft
T =  .1027E+06 sec, Rf =  .1600E+01 ft
T =  .1139E+06 sec, Rf =  .1700E+01 ft
T =  .1255E+06 sec, Rf =  .1800E+01 ft
T =  .1375E+06 sec, Rf =  .1900E+01 ft
T =  .1498E+06 sec, Rf =  .2000E+01 ft

We now apply the inverse method developed earlier, and in particular,
assume the input parameters given below,

INPUT PARAMETER SUMMARY:
Cake-rock "delta pressure" (psi): .1000E+03
Rock core porosity (decimal nbr): .2000E+00
Viscosity of  mud  filtrate (cp): .1000E+01
Radius  of the  well bore (feet): .2000E+00
Reservoir, effective radius (ft): .2000E+01

In a field situation, the foregoing (bold) inputs would represent best guesses.
We next list the results of three separate calculations; additional best guesses for
radial invasion front position versus time are shown in bold print, whereas
predicted formation properties are shown in italicized type.

TIME LAPSE ANALYSIS PREDICTIONS:

Trial No. 1:
Time of the 1st data point (sec): .6830E+04
Radius  of invasion front (feet): .4000E+00
Time of the 2nd data point (sec): .2962E+05
Radius  of invasion front (feet): .8000E+00
Formation permeability (darcies): .1000E-02
Viscosity, formation  fluid (cp): .2000E+01

 Trial No. 2:
Time of the 1st data point (sec): .2962E+05
Radius  of invasion front (feet): .8000E+00
Time of the 2nd data point (sec): .6217E+05
Radius  of invasion front (feet): .1200E+01
Formation permeability (darcies): .1000E-02
Viscosity, formation  fluid (cp): .2000E+01
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 Trial No. 3:
Time of the 1st data point (sec): .6830E+04
Radius  of invasion front (feet): .4000E+00
Time of the 2nd data point (sec): .6217E+05
Radius  of invasion front (feet): .1200E+01
Formation permeability (darcies): .1000E-02
Viscosity, formation  fluid (cp): .2000E+01

Repeated runs for this example indicate that predictions for permeability and
formation fluid viscosity are very stable with respect to errors in the input data.
In fact, fluid viscosity remained stable to very large changes in assumed
parameters, although we have not yet pinpointed the exact reasons for this
fortunate circumstance.

Problem 2.  Next, suppose that the pore pressure p r was unknown and

additionally desired.  Here, we will rewrite the fundamental result of Equation
19-11 in the form

[pm t  /R2
2] (k/ φ) + (- t /R2

2 ) (pr k/φ)                                      (19-14)

+ {½ (R3/R2)2 log (R3/R4) - ¼ (R3/R2)2 - ½ log (R2/R4) + ¼ } µ2

=  µ1 {½ (R3/R2)2 log (R3/R2) - ¼ (R3/R2)2 + ¼}

Evaluation of Equation 19-14 at three instances in time, say t*, t**, and t***, now
yields a 3 × 3 system of algebraic equations, in particular,

[  ] * (k/φ)  +   (  ) * (pr k/φ)    + {  }* µ2 = RHS*          (19-15a)

[  ] ** (k/φ)  +   (  ) **(pr k/φ)    + {  }** µ2 = RHS**        (19-15b)

[  ] *** (k/φ)  +   (  ) * * * (pr k/φ)   + {  }*** µ2 = RHS***      (19-15c)

that is again easily solved using elementary algebra.  These three linear
equations completely determine the three unknowns k/ φ , pr k/φ, and µ2.  Once

the values of k/ φ and pr k/φ are known, the pore pressure pr can be obtained by

simple elimination.  Then, k/ φ, pr , and µ2 are immediately available.

We emphasize that the times t*, t**, and t*** and their corresponding radii
R3(t*), R3(t**), and R3(t***)  must be chosen so that the resulting simultaneous

equations are not ill-conditioned, in the linear algebra sense.   If any of the
equations are too nearly identical, because the invasion data points are taken too
closely in time, the determinant of the coefficient matrix will likely vanish and
yield indeterminate or inaccurate solutions.  For example, the solution to x + y =
4 and x + 1.01 y = 4, while mathematically unique, is unlikely to be physically
useful because the result is unstable.  One way to ensure correct conditioning is
to suddenly change the mud pressure pm(t).  But severe decreases or increases in

pressure may lead to dangerous underbalanced drilling or undesired formation
fracture, effects that outweigh the need for real-time formation information.

Time lapse analysis using general muds.  Now, we consider the complete
radial flow invasion problem modeled in Chapter 17, where general mudcake
and formation interaction is allowed.  This model studied dynamically coupled
mud filtrate invasion, simultaneous water or oil displacement, and time-
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dependent mudcake buildup.  In that application, we had derived the closed-
form solution in Equation 17-25 for the radial invasion front position as a
function of differential pressure, mudcake, rock, displaced liquid properties, and
time.  We will use that solution as a host time lapse analysis model equation in a
manner motivated by the foregoing inverse results.  It will be convenient to first
rewrite Equation 17-25 in the form

[{R2
2(1-φc)(1-fs)/4µ2φeff fs}

× { log {1  + fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}}

- fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}

+ fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}

× log {1  + fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}}

- k1(pm - pr)t/(µ1µ2φeff ) ]  k2

+ {(k1k2R4
2/µ1µ2k3) [ ½ (Rspurt/R4)2 log  (Rspurt/R4) - ¼ (Rspurt/R4)2

                       - ½ (R3/R4)2 log  (R3/R4) + ¼ (R3/R4)2 ] }  µ3

= ( (-k1R2
2/µ1) [ ½ (R3/R2)2 log  (R3/R2) - ¼ (R3/R2)2

- ½ (Rspurt/R2)2 log  (Rspurt/R2) + ¼ (Rspurt/R2)2 ] )     (19-16)

In deriving Equation 17-25, we assumed k2 ≠ k3 and µ1≠ µ2.  This is not so in

applications.  Thus, we simplify and write Equation 19-16 in a more meaningful
form, setting k2 = k3 = kr, k1 = kc , µ1 = µ2 = µm, and µ3 = µo where kr is rock

permeability, kc is cake permeability, µm is filtrate viscosity, and µo is “oil” or
displaced liquid viscosity.  With this change, Equation 19-16 becomes

[{R2
2(1-φc)(1-fs)/4µmφeff fs}

× { log {1  + fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}}

- fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}

+ fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}

× log {1  + fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}}

- kc(pm - pr)t/(µm
2φeff ) ]  kr

+ {(kcR4
2/µm

2) [ ½ (Rspurt/R4)2 log  (Rspurt/R4) - ¼ (Rspurt/R4)2

                       - ½ (R3/R4)2 log  (R3/R4) + ¼ (R3/R4)2 ] }  µo

= ( (-kcR2
2/µm) [ ½ (R3/R2)2 log  (R3/R2) - ¼ (R3/R2)2

- ½ (Rspurt/R2)2 log  (Rspurt/R2) + ¼ (Rspurt/R2)2 ] )   (19-17)

As in the previous example, we will consider two specific time lapse analysis
formulations.  In the first, we assume that the applied differential pressure is
known, and we seek formation permeability and hydrocarbon viscosity only.  In
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the second, we attempt to determine reservoir pore pressure, formation
permeability, and hydrocarbon viscosity simultaneously.

Problem 1.   Let us examine the physical quantities within the bold
brackets [  ], {  }, and (  ) of Equation 19-17.  First, our (lumped) mudcake
parameters will be regarded as known, since they can be obtained by the simple
surface filtrate test defined earlier.  That is, the parameter fs/{(1- fs)(1 - φc)} =

xc(t*)/h(t*), the cake permeability kc  = µm h(t*)xc(t*)/(2∆p t*), the ∆p pressure

differential used in the filtrate test, and the mud filtrate viscosity µm are

available from well site measurements.  The borehole and effective radii R2 and

R4 are also considered known, as is the initial spurt radius Rspurt.  (This becomes

less significant with time, as its effect on total invasion depth decreases, and
need not accurately specified.)  Finally, the effective porosity φeff of the

formation can be determined from the large time test in the first example or can
be assumed as known from other log measurements, while the pressure
differential (pm - pr) through the cake and formation is assumed as given.  Thus,

all of the quantities within our bold brackets are known parameters, with the
exception of the time t and its invasion depth R3(t).  As before we evaluate

Equation 19-17 using invasion data from two instances in time, say the radius
R3(t*) at time t*, and the radius R3(t**) at t**.  The two numerical instances of
Equation 19-17 are

[ ] * kr + { }* µo = ( ) *                                                (19-18a)

[ ] ** kr + { }** µo = ( ) **                                              (19-18b)

which provide a 2 x 2 system of algebraic equations for the formation
permeability kr and the hydrocarbon viscosity µo.  Again, our earlier comments

on ill-conditioned equations apply; this means, in practice, that t* and t** cannot
be too close together or too far apart.

Problem 2.  For this second problem, where the formation pore pressure pr

is regarded as an additional unknown, we rewrite the host invasion equation in a
form that separates out the effects of pore pressure, namely,

[{R2
2(1-φc)(1-fs)/4µmφeff fs}

× {log {1  + fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}}

- fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}

+ fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}

× log {1  + fsφeff {(Rspurt/R2)2 - (R3/R2)2}/{(1-φc)(1-fs)}}

- kcpmt/(µm
2φeff ) ]  kr

+ [[ kc t/(µm
2φeff ) ]]  prkr

+ {(kcR4
2/µm

2) [ ½ (Rspurt/R4)2 log  (Rspurt/R4) - ¼ (Rspurt/R4)2
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                       - ½ (R3/R4)2 log  (R3/R4) + ¼ (R3/R4)2 ] }  µo

= ( (-kcR2
2/µm) [ ½ (R3/R2)2 log  (R3/R2) - ¼ (R3/R2)2

- ½ (Rspurt/R2)2 log  (Rspurt/R2) + ¼ (Rspurt/R2)2 ] )     (19-19)

As in Problem 1, we evaluate Equation 19-19 using invasion radii data from
three different instances in time, say R3(t*) at time t*,  R3(t**) at t**, and the

radius R3(t***) at t***.  Therefore, the three instances of Equation 19-19 are

[ ] * kr + [[ ]] * prkr + { }* µo = ( ) *                      (19-20a)

[ ] ** kr + [[ ]] ** prkr + { }** µo = ( ) **                     (19-20b)

[ ] *** kr + [[ ]] *** prkr + { }*** µo = ( ) ***                  (19-20c)

which provide a 3 × 3 system of algebraic equations for the formation
permeability kr, the product prkr, and the hydrocarbon viscosity µ0.  (Once kr

and prkr are known, pr can be deduced.)  As before, simple determinant
inversion methods from elementary algebra can be used.  And again, our earlier
comments on ill-conditioned equations and on the stability of calculated
formation parameters apply; this means, in practice, that the times t* , t**, and t***

cannot be taken too closely together. (More precisely, displacement fronts must
not be spaced too closely together, in order that differences in dynamical effects
clearly manifest themselves.)

EXAMPLES OF TIME LAPSE ANALYSIS

While we have demonstrated how quantities of interest, such as
permeability, porosity, hydrocarbon viscosity, and pore pressure, can be
uniquely obtained, at least from invasion depth data satisfying our equations for
piston-like fluid displacement, the actual problem is far from solved even for the
simple fluid dynamics model considered here.  For one, the tacit assumption that
invasion depths can be accurately inferred from resistivity readings is not
entirely correct; invasion radii are presently extrapolated from resistivity charts
that usually assume concentric layered resistivities, which are at best simplified
approximations.  And second, since tool response and data interpretation
introduce additional uncertainties, not to mention unknown three-dimensional
geological effects in the wellbore, time lapse analysis is likely to remain an
iterative, subjective, and qualitative process in the near future.  With these
disclaimers said and done, we now demonstrate via numerical examples how
formation parameters might be determined from front radii in actual field runs.

Formation permeability and hydrocarbon viscosity.  In this and the
following example, we will first use the exact forward invasion simulation
model given by Equation 17-25 to compute dynamically coupled mudcake
growth and radial displacement front motion, where the mud filtrate displaces a
more viscous formation fluid.  We will compute radial front position and
mudcake boundary as a function of time, and subsequently, using this front
information, we will attempt the backward inversion process where we extract
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formation permeability and hydrocarbon viscosity values.  In other words, we
will generate synthetic invasion front displacement data and invert the computed
data in order to recover the original formation and fluid properties.  This
philosophical approach is well known in geophysics, where synthetic P-wave
data for known geological structures is created by computer detonations and
received surface signals are deconvolved in order to determine the prescribed
geology.  This validates both forward and backward simulations, demonstrating
that the mathematics is at least correct and consistent.  Clearly, this does not
guarantee success in the field, since the predicted values should ideally be stable
with respect to uncertainties in the input data.

The input and output results of a typical radial flow forward simulation are
displayed in Figure 19-5 (bold print denotes input quantities).  We have assumed
a 1 md, 20% porous rock, and a mudcake having 0.001 md permeability, 10%
porosity, and 30% solid fraction.  The mud filtrate is taken as water, with a
viscosity of 1 cp, and the formation oil is assumed to be 2 cp viscous.  Here, the
well pressure is taken as 100 psi, and the formation pore pressure is assumed to
be 0 psi, acting at wellbore and effective radii of 0.5 ft and 10 ft, respectively.
(Only differences in pressure are important for this example.)  The numerical
calculations show that the borehole completely plugs with mudcake in
17,920,000 sec (that is, 4,978 hrs, or 207 days), at which point the invasion front
radius terminates at 1.727 ft.

INPUT PARAMETER SUMMARY:
Rock core permeability (darcies): .1000E-02
Rock core porosity (decimal nbr): .2000E+00
Mud cake permeability  (darcies): .1000E-05
Mud cake porosity  (decimal nbr): .1000E+00
Mud solid fraction (decimal nbr): .3000E+00
Viscosity of invading fluid (cp): .1000E+01
Viscosity, displaced  fluid (cp): .2000E+01
Pressure at well boundary  (psi): .1000E+03
Pressure, effective radius (psi): .0000E+00
Radius  of the  well bore (feet): .5000E+00
Reservoir, effective radius (ft): .1000E+02
Rspurt > Rwell radius @ t=0 (ft): .6000E+00
Maximum allowed  number of hours: .1000E+07

 T =  .9521E+00 sec, Rf =  .6000E+00 ft, Rc =  .5000E+00 ft
T =  .3242E+05 sec, Rf =  .7000E+00 ft, Rc =  .4875E+00 ft
T =  .1270E+06 sec, Rf =  .8000E+00 ft, Rc =  .4726E+00 ft
T =  .3132E+06 sec, Rf =  .9000E+00 ft, Rc =  .4551E+00 ft
T =  .6284E+06 sec, Rf =  .1000E+01 ft, Rc =  .4348E+00 ft
T =  .1121E+07 sec, Rf =  .1100E+01 ft, Rc =  .4112E+00 ft
T =  .1856E+07 sec, Rf =  .1200E+01 ft, Rc =  .3836E+00 ft
T =  .2921E+07 sec, Rf =  .1300E+01 ft, Rc =  .3512E+00 ft
T =  .4445E+07 sec, Rf =  .1400E+01 ft, Rc =  .3124E+00 ft
T =  .6630E+07 sec, Rf =  .1500E+01 ft, Rc =  .2646E+00 ft
T =  .9862E+07 sec, Rf =  .1600E+01 ft, Rc =  .2012E+00 ft
T =  .1525E+08 sec, Rf =  .1700E+01 ft, Rc =  .9510E-01 ft
T =  .1565E+08 sec, Rf =  .1705E+01 ft, Rc =  .8616E-01 ft
T =  .1607E+08 sec, Rf =  .1710E+01 ft, Rc =  .7614E-01 ft
T =  .1653E+08 sec, Rf =  .1715E+01 ft, Rc =  .6454E-01 ft
T =  .1704E+08 sec, Rf =  .1720E+01 ft, Rc =  .5030E-01 ft
T =  .1763E+08 sec, Rf =  .1725E+01 ft, Rc =  .2982E-01 ft
T =  .1776E+08 sec, Rf =  .1726E+01 ft, Rc =  .2368E-01 ft
T =  .1792E+08 sec, Rf =  .1727E+01 ft, Rc =  .1523E-01 ft
Borehole plugged by mudcake ... run terminated.

Figure 19-5.  Numerical results, forward invasion simulation.
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Now let us apply the time lapse analysis methodology outlined in
Equations 19-17, 19-18a, and 19-18b.  We will assume the properties shown in
bold print in the following calculations, and then determine formation
permeability and hydrocarbon viscosity using invasion radii information taken
at two different points in time , as computed in Figure 19-5.  We will attempt this
three separate times, in order to demonstrate the utility of the approach.

INPUT PARAMETER SUMMARY:
Cake-rock "delta pressure" (psi): .1000E+03
Rock core porosity (decimal nbr): .2000E+00
Mud cake permeability  (darcies): .1000E-05
Mud cake porosity  (decimal nbr): .1000E+00
Mud solid fraction (decimal nbr): .3000E+00
Viscosity of  mud  filtrate (cp): .1000E+01
Radius  of the  well bore (feet): .5000E+00
Reservoir, effective radius (ft): .1000E+02
Rspurt > Rwell radius @ t=0 (ft): .6000E+00

TIME LAPSE ANALYSIS PREDICTIONS:

Trial No. 1:
Time of the 1st data point (sec): .3242E+05
Radius  of invasion front (feet): .7000E+00
Time of the 2nd data point (sec): .3132E+06
Radius  of invasion front (feet): .9000E+00
Formation permeability (darcies): .9573E-03
Viscosity, formation  fluid (cp): .1911E+01

Trial No. 2:
 Time of the 1st data point (sec): .3132E+06

Radius  of invasion front (feet): .9000E+00
Time of the 2nd data point (sec): .1856E+07
Radius  of invasion front (feet): .1200E+01
Formation permeability (darcies): .1059E-02
Viscosity, formation  fluid (cp): .2131E+01

 Trial No. 3:
Time of the 1st data point (sec): .1856E+07
Radius  of invasion front (feet): .1200E+01
Time of the 2nd data point (sec): .3242E+05
Radius  of invasion front (feet): .7000E+00
Formation permeability (darcies): .1016E-02
Viscosity, formation  fluid (cp): .2033E+01

Figure 19-6.  Numerical results, inverse invasion simulation.

Figure 19-6 shows that, in the first attempt, we obtained 0.9573 md and
1.911 cp; in the second and third attempts, we have 1.059 md and 2.131 cp, and
1.016 md and 2.033 cp, respectively.  These values compare favorably with the
assumed 1 md and 2 cp shown in Figure 19-5.  The disagreement arises because
only four decimal places of information are used from Figure 19-5.  Again,
sensitivity studies must be performed to show that known values of formation
properties remain stable to slight errors in input mudcake assumptions.  When
performing time lapse analysis in the presence of mudcake, significant
differences between mudcake and formation mobility heighten this sensitivity.
Only when the two are comparable, for example, as in the case where mudcake
builds on likewise low permeability rock, can such predictions prove robust,
repeatable, and accurate.
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Pore pressure, rock permeability, and fluid viscosity.  In this example,
we will rerun the forward simulation exercise just performed, except that we
will replace the pressure inputs

Pressure at well boundary  (psi): .1000E+03
Pressure, effective radius (psi): .0000E+00

by
Pressure at well boundary  (psi): .5000E+03
Pressure, effective radius (psi): .4000E+03

Since the differential pressure (of 100 psi) in both cases remains the same, we
would expect the same displacement front and cake buildup history.  As Figure
19-7 shows, we do. 

INPUT PARAMETER SUMMARY:
Rock core permeability (darcies): .1000E-02
Rock core porosity (decimal nbr): .2000E+00
Mud cake permeability  (darcies): .1000E-05
Mud cake porosity  (decimal nbr): .1000E+00
Mud solid fraction (decimal nbr): .3000E+00
Viscosity of invading fluid (cp): .1000E+01
Viscosity, displaced  fluid (cp): .2000E+01
Pressure at well boundary  (psi): .5000E+03
Pressure, effective radius (psi): .4000E+03
Radius  of the  well bore (feet): .5000E+00
Reservoir, effective radius (ft): .1000E+02
Rspurt > Rwell radius @ t=0 (ft): .6000E+00
Maximum allowed  number of hours: .1000E+06

T =  .9521E+00 sec, Rf =  .6000E+00 ft, Rc =  .5000E+00 ft
T =  .3242E+05 sec, Rf =  .7000E+00 ft, Rc =  .4875E+00 ft
T =  .1270E+06 sec, Rf =  .8000E+00 ft, Rc =  .4726E+00 ft
T =  .3132E+06 sec, Rf =  .9000E+00 ft, Rc =  .4551E+00 ft
T =  .6284E+06 sec, Rf =  .1000E+01 ft, Rc =  .4348E+00 ft
T =  .1121E+07 sec, Rf =  .1100E+01 ft, Rc =  .4112E+00 ft
T =  .1856E+07 sec, Rf =  .1200E+01 ft, Rc =  .3836E+00 ft
T =  .2921E+07 sec, Rf =  .1300E+01 ft, Rc =  .3512E+00 ft
T =  .4445E+07 sec, Rf =  .1400E+01 ft, Rc =  .3124E+00 ft
T =  .6630E+07 sec, Rf =  .1500E+01 ft, Rc =  .2646E+00 ft
T =  .9862E+07 sec, Rf =  .1600E+01 ft, Rc =  .2012E+00 ft
T =  .1525E+08 sec, Rf =  .1700E+01 ft, Rc =  .9510E-01 ft
T =  .1565E+08 sec, Rf =  .1705E+01 ft, Rc =  .8616E-01 ft
T =  .1607E+08 sec, Rf =  .1710E+01 ft, Rc =  .7614E-01 ft
T =  .1653E+08 sec, Rf =  .1715E+01 ft, Rc =  .6454E-01 ft
T =  .1704E+08 sec, Rf =  .1720E+01 ft, Rc =  .5030E-01 ft
T =  .1763E+08 sec, Rf =  .1725E+01 ft, Rc =  .2982E-01 ft
T =  .1776E+08 sec, Rf =  .1726E+01 ft, Rc =  .2368E-01 ft
T =  .1792E+08 sec, Rf =  .1727E+01 ft, Rc =  .1523E-01 ft
Borehole plugged by mudcake ... run terminated.

Figure 19-7.  Numerical results, forward invasion simulation.

We wish to illustrate the use of the inverse time lapse analysis model
inferred by Equations 19-19, 19-20a, 19-20b, and 19-20c.  Once we input the
known information found in the Input Parameter Summary printed in Figure 19-
8, including the borehole pressure, we will attempt two predictions for
simultaneous pore pressure, formation permeability, and hydrocarbon viscosity,
using two different sets of time-dependent front displacement data.  Unlike the
inverse example in Figure 19-7, however, each set of data now consists of three
readings, and not two, because of the additional unknown introduced.



Analytical Methods for Time Lapse Well Logging Analysis     371

INPUT PARAMETER SUMMARY:
Mud pressure  in bore hole (psi): .5000E+03
Rock core porosity (decimal nbr): .2000E+00
Mud cake permeability  (darcies): .1000E-05
Mud cake porosity  (decimal nbr): .1000E+00
Mud solid fraction (decimal nbr): .3000E+00
Viscosity of  mud  filtrate (cp): .1000E+01
Radius  of the  well bore (feet): .5000E+00
Reservoir, effective radius (ft): .1000E+02
Rspurt > Rwell radius @ t=0 (ft): .6000E+00

TIME LAPSE ANALYSIS PREDICTIONS:

Trial No. 1:
 Time of the 1st data point (sec): .3242E+05

Radius  of invasion front (feet): .7000E+00
Time of the 2nd data point (sec): .3132E+06
Radius  of invasion front (feet): .9000E+00
Time of the 3rd data point (sec): .1856E+07
Radius  of invasion front (feet): .1200E+01
Formation permeability (darcies): .8404E-03
Viscosity, formation  fluid (cp): .1670E+01
Pore pressure in reservoir (psi): .3999E+03

Trial No. 2:
 Time of the 1st data point (sec): .3242E+05

Radius  of invasion front (feet): .7000E+00
Time of the 2nd data point (sec): .1856E+07
Radius  of invasion front (feet): .1200E+01
Time of the 3rd data point (sec): .1525E+08
Radius  of invasion front (feet): .1700E+01
Formation permeability (darcies): .1008E-02
Viscosity, formation  fluid (cp): .2017E+01
Pore pressure in reservoir (psi): .4000E+03

Figure 19-8.  Numerical results, inverse invasion simulation.

Observe that the calculated values of permeability, 0.8404 md and 1.008
md, agree well with the assumed 1 md; the calculated hydrocarbon viscosities,
1.670 cp and 2.017 cp, agree with the assumed 2 cp; and finally, the calculated
pore pressures, 399.9 psi and 400.0 psi, agree with the assumed 400 psi from
Figure 19-6.  Because the only error in the inversion process considered here is
truncation error in our three-decimal-place accurate assumptions, the calculated
results here and in the previous example provide some indication of
computational sensitivities.  The preceding results show that, at least in this
limited study, pore pressure can be accurately obtained from time lapse analysis.
Continuing research in sensitivity analysis will be required if time lapse analysis
is to be successful.  More than likely, those predicted parameters that prove to be
unstable should be obtained by other logging means; such measurements can
augment the capabilities developed here.  We have developed time lapse
analysis methods that are contingent upon the existence of sharp fronts and
transitions.  Log analysts who deal with resistivity interpretation and tornado
charts, however, have rightly criticized those obvious deficiencies that arise in
the modeling of resistivity variations using multilayer step and even straight-line
ramped profiles.  Radii used in the former are arbitrarily selected by eye, while
the latter ramped profiles do not resemble real diffused ones with smoothed
corners.  Later, using ideas borrowed from seismic migration, where a
parabolized wave equation is used to image underground formations, we address
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resistivity migration.  An arbitrarily smeared, transient concentration profile is
undiffused or migrated backward in time to produce the original step
discontinuity.  The distinct front radius obtained can be used with time lapse
analysis formulas derived here for piston-like flows. (The method is tested using
computer generated synthetic lineal and radial flow data.)  Similarly, we can
unshock saturation discontinuities in two-phase immiscible flow, to recover the
original smooth flows for further study; this is demonstrated numerically.

PROBLEMS AND EXERCISES

1. Different fluid transients exist in the reservoir, for instance: (i) unsteady
effects arising from fluid compressibility, (ii) time-dependent effects due to
changing proportions of oil and water in two-phase, constant density,
immiscible flow, and (iii) transient effects due to miscible mixing in
incompressible flow.  For successful time lapse logging, the correct fluid-
dynamical process must be identified in order to use the appropriate
interpretation model.  Define such a strategy, assuming that you have access
to data from other logging instruments.

2. Using the exact solution for transient ellipsoidal flow of compressible
liquids in transversely isotropic media derived in Chapter 18, develop an
interpretation method to determine kh and kv assuming that pressure
histories at the source probe and another observation probe are available.
For typical formation tester pumping rates, what is the optimum
“transmitter to receiver” probe separation for maximum pressure resolution?

3. In the time lapse logging examples considered in this chapter, distinct fluid
front positions are assumed to be known as a function of time.  In practice,
these distances would be inferred from resistivity readings made at different
points in time, for example, while drilling, while tripping, and thirty days
later.  To what extent is this possible in the near future?  What types of
resistivity tools are available, and when are they used?  What are their depth
of investigation and vertical resolution capabilities?  Resistivity tools
actually measure volumetrically averaged quantities rather than properties at
a point.  What modeling and computational issues are involved when
translating average quantities to point values?

4. In electromagnetic logging, phase delays between transmitter and receiver
are used to predict resistivity.  Starting with the diffusion model implied by
Equation 18-5, show that, analogously, time delays between an oscillating
formation tester piston and an observation probe can be used to predict
permeability (Proett and Chin, 2000).
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20
Complex Invasion Problems:

Numerical Modeling
In this chapter, we introduce numerical methods for the solution of

complicated invasion problems, and in particular, we use modern finite
difference equation modeling.  We develop the basic ideas from first principles,
initially for steady-state problems and then for problems with moving
boundaries.  Our discussions, mathematical, numerical, and physical, are self-
contained and presented in an easy-to-read manner.  Numerical analogies
corresponding to the constant density flow analytical models given in Chapter
17 are derived first, coded in Fortran, explained, and executed.  Then, computed
results are given to illustrate the simulations and to demonstrate their physical
correctness.  These models include linear and radial incompressible flows, with
and without mudcake.  Once our basic approach to moving boundary value
problems is understood, the numerical modeling is extended to include other
real-world effects.  These include transients that arise from fluid compressibility,
gas displacement by liquids, and mudcake compressibility and compaction.  We
continue the discussion of piston, slug, or plug-like displacements initiated in
Chapter 17 for single-phase flows.  The numerical concepts developed in the
course of this modeling are generalized to miscible and immiscible flows in
Chapter 21.  The work in this book on invasion dynamics and numerical
simulation, fully self-contained, appears in few petroleum publications.  While
the modeling concepts used are powerful, the computer implementation is
reasonably straightforward.  Minor prerequisites include course work in
elementary calculus and undergraduate petroleum reservoir flow analysis.

FINITE DIFFERENCE MODELING

Exact analytical solutions to practical engineering problems are rare, and
recourse to numerical solutions is often necessary.  Finite element, boundary
integral (a.k.a., panel), and finite difference methods have been successfully
used to solve complicated engineering problems.  Recently, new finite
difference technologies have been introduced to the petroleum industry.  The
work of Chin (1992a,b; 2001a,b) applies these methods to annular borehole flow
and pipeline modeling, while the approaches of Chin (1993a,b) introduce
rigorous modeling concepts to reservoir flow simulation.  Chin (1994) applies
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finite difference methods to wave propagation problems such as drillstring
vibrations, MWD telemetry, and swab-surge.  In this chapter, we extend the
finite difference techniques introduced in Chapter 7 to more difficult reservoir
flow problems.  These extremely powerful methods, which can be mastered with
a minimum amount of higher math, in fact require no more than a background in
simple calculus.  Thus, we develop the fundamental ideas, and rapidly progress
to state-of-the-art algorithms for steady and transient invasion problems.
 Basic formulas.  Let us consider a differentiable function f(x) at three
consecutive equidistant locations x i-1, x i , and x i+1, where i-1, i, and i+1 are
indexing parameters.  Here, we will assume that all grids are uniformly
separated by the constant grid block distance ∆x.  Now, it is clear from Figure
20-1 that the first derivative at an intermediate point A between x i-1 and x i is

df(xA)/dx = (xi - xi-1)/∆x                                                            (20-1)

while the first derivative at an intermediate point B between xi and xi+1is

df(xB)/dx = (xi+1 - xi)/∆x                                                         (20-2)

Hence, the second derivative of f(x) at xi satisfies

d2f(xi)/dx2 = {df(xB)/dx - df(xA)/dx}/∆x                                 (20-3)

or
d2f(xi )/dx2 = {fi-1 - 2fi + fi+1}/(∆x)2  +  O(∆x)2                        (20-4)

Taylor series analysis shows that Equation 20-4 is second-order accurate in ∆x.
The O(∆x)2 notation describes the order of the truncation error.  If ∆x is small,
then O(∆x)2 may be regarded as very small.   Likewise, it is known that

df(xi )/dx = {fi+1 -  fi-1}/(2∆x)  +  O(∆x)2                               (20-5)

is second-order accurate.  Equations 20-4 and 20-5 are central difference
representations for the respective quantities at xi because they involve left and
right quantities at x i-1 and x i+1.  Note that the backward difference formula

d2f(xi )/dx2 = {fi - 2fi-1 + fi-2}/(∆x)2  +  O(∆x)                       (20-6)

for the second derivative is not incorrect.  But it is not as accurate as the central
difference formula, since it turns out to be first-order accurate, the error being
only somewhat small.  Similar comments apply to the  forward differencing

d2f(xi )/dx2 = {fi - 2fi+1 + fi+2}/(∆x)2  +  O(∆x)                         (20-7)

Alternative representations for the first derivative are the first-order accurate
backward and forward difference formulas

df(xi )/dx = {fi - fi-1}/∆x  +  O(∆x)                                           (20-8)

df(xi )/dx = {fi+1 - fi}/∆x  +  O(∆x)                                                (20-9)
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  x i -1    x i  x i +1

  f i +1

  f i -1

  f i

Figure 20-1.  Finite difference discretizations.

Despite their lesser accuracy, backward and forward difference formulas are
often used for practical reasons.  For example, they are applied at the boundaries
of computational domains.  At such boundaries, central difference formulas
(e.g., Equations 20-4 and 20-5) require values of i that are outside the domain,
and hence, undefined.  Although high-order accurate backward and forward
difference formulas are available, their use often forces simple matrix structures
into numerical forms that are not suitable for efficient inversion.

Model constant density flow analysis.  The basic ideas behind the
numerical solution of differential equations are reviewed using

d2p(x)/dx 2 = 0                                                                              (20-10)
whose solution p(x) = Ax + B is determined by two side constraints.  Suppose
we supplement Equation 20-10 with the left and right boundary conditions

p(0) = Pl                                                                                       (20-11)

p(x = L) = Pr                                                                              (20-12)

The steady-state pressure solution, applicable to constant density, lineal, liquid
flows in a homogeneous core, is

p(x) = (Pr  - Pl) x/L + Pl                                                            (20-13)

Suppose that we wish to solve Equation 20-10 numerically.  We introduce along
the x-axis the indexes i = 1, 2, 3, ..., i max-1, i max, where i = 1 and i max
correspond to the left- and right-side core ends x = 0 and x = L (e.g., see Figure
20-1).  With this convention, the constant width grid block size ∆x used takes
the value  ∆x = L/(imax -1).  Now, at any position xi (or simply i), the second
derivative in Equation 20-10 can be approximated using Equation 20-4, that is,

d2p(xi )/dx2 = {pi-1 - 2pi + pi+1}/(∆x)2  +  O(∆x)2 = 0               (20-14)

so that the finite difference model for our differential equation becomes

pi-1 - 2pi + pi+1 =  0                                                                  (20-15)
The pressures p 1, p 2, ..., and p imax at the nodes i = 1, 2, ..., and i max are

determined by writing Equation 20-15 for each internal node i = 2, 3, ..., and
imax-1.  This yields imax -2 linear algebraic equations, two short of the number
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of unknowns imax.  The two additional required equations are obtained from

boundary conditions, in this case, Equations 20-11 and 20-12; in particular, we
write p(0) = Pl and p(L) = Pr in the form p1 = Pl and pimax =  Pr.  To illustrate

this, consider the simple case of five nodes (that is, four grid blocks), taking
imax = 5 and with the grid size ∆x = L/(imax -1) = L/4.  We therefore have

p1 = Pl                           (20-16a,b,c,d,e)
i = 2: p1 -2p2 + p3 = 0
i = 3: p2 - 2p3 + p4 = 0
i = 4: p3 - 2p4 + p5 = 0

p5 = Pr

Equations 20-16a,b,c,d,e constitute five equations in five unknowns and
easily yield to solution, using standard (but tedious) determinant or Gaussian
elimination methods from elementary algebra.  We could stop here, but we take
the solution of Equation 20-16 one step further in order to develop efficient
solution techniques.  The simplicity seen here suggests that we can rewrite the
system shown in Equations 20-16a,b,c,d,e in the matrix or linear algebra form

| 1 0 | | p1 | = | Pl |
| 1 -2 1 | | p2 | = | 0 |
| 1   -2 1 | | p3 | = | 0 |               (20-17)
| 1 -2 1 | | p4 | = | 0 |
| 0 1 | | p5 | = | Pr |

The left-side coefficient matrix multiplying the unknown vector p is said to be
banded because its elements fall within diagonal bands.  The product shown
equals the nonzero right side in Equation 20-17, which contains the delta-p
pressure drop  (Pl - Pr) that drives the Darcy flow.  This delta-p, applied across

the entire core, mathematically manifests itself by controlling the top and bottom
rows of the governing tridiagonal matrix equation.

It is also interesting to note that our use of central differences physically
implies that the pressure at each and every point depends on its left and right
neighbors, so that coupled equations necessarily appear.  This is not true in
certain supersonic flow problems in high-speed aerodynamics, governed by
hyberbolic PDEs, where the time-like properties of some space variables may in
fact require the use of backward differences!  Also observe that the coefficient
matrix in Equation 20-17 is sparse (or empty), with each equation containing at
most three unknowns.  If each equation had approached imax number of

unknowns, the coefficient matrix would have been said to be full.  Furthermore,
note that our banded matrix possesses a simple tridiagonal (or three-diagonal)
structure that is amenable to rapid solution.  We will not review tridiagonal
solvers here.  They are standard in linear algebra, and we simply note that
Equation 20-17 represents a special instance of
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| B1 C1 | | V1 | |W1 |
| A2 B2 C2 | | V2 | |W2 |
| A3 B3 C3 | | V3 | |W3 |

| ....... | | .. |   = | ... |     (20-18)
| | | | | |
| Aimax-1 Bimax-1 Cimax-1 | | Vimax-1 | |Wimax-1 |
| Aimax Bimax | | Vimax | |Wimax   |

for the unknown vector V which, when programmed in the Fortran language, is
easily solved by a call to the subroutine TRIDI in Figure 20-2.
     SUBROUTINE TRIDI(A,B,C,V,W,N)
     DIMENSION A(1000), B(1000), C(1000), V(1000), W(1000)
     A(N) = A(N)/B(N)
     W(N) = W(N)/B(N)
     DO 100  I = 2,N
     II = -I+N+2
     BN = 1./(B(II-1)-A(II)*C(II-1))
     A(II-1) = A(II-1)*BN
     W(II-1) = (W(II-1)-C(II-1)*W(II))*BN
100  CONTINUE
     V(1) = W(1)
     DO 200  I = 2,N
     V(I) = W(I)-A(I)*V(I-1)
200  CONTINUE
     RETURN
     END

Figure 20-2.  Tridiagonal equation solver.

Thus, once the coefficient matrixes A, B , C, and W  are defined in the main body
of the computer program, with B1 = 1, C1 = 0, W1 = Pl; A2 = A3 = A4 = 1, B2
= B3 = B4 = -2, C2 = C3 = C4 = 1, W2 = W3 = W4 = 0; and, finally, A 5 = 0, B5
= 1, W5 = Pr, the statement CALL TRIDI(A,B,C,P,W,5) will solve and store the

pressure solution in the elements of P.  For machine purposes, we will typically
initialize memory using the dummies A(1) = 99 and C(IMAX) = 99, noting that
these values do not affect the solution.  In general, the internal coefficients are
easily defined using the code fragment,

     DO 200  I=2,IMAXM1
     A(I) =  1.
     B(I) = -2.
     C(I) =  1.
     W(I) =  0.
200  CONTINUE

which is followed by the subroutine call to the tridiagonal matrix solver (in our
Fortran, IMAXM1 denotes IMAX-1).  In this chapter, we will study how the
engine in the above Fortran will change from problem to problem.  For
d2p(x)/dx2 = 0, the exact linear pressure variation will always be obtained for
any choice of grid number; unfortunately, this is not so with more complicated
equations and formulations.  The reader who is not familiar with Fortran should
program, execute, and understand this simple example.  The ensuing programs
in this and Chapter 21 build upon this and are slightly more complicated.
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Transient compressible flow modeling.  The governing equation for
transient, compressible, single-phase, liquid flows through homogeneous cores
is given by the classical heat equation

∂2p(x,t)/∂x2 = (φµc/k) ∂p/∂t                                                        (20-19)
Equation 20-19 provides a useful vehicle for introducing basic ideas and for
testing difference schemes for use in forward simulation or time-marching, that
is, in modeling events as they evolve in time for given parameters and auxiliary
conditions.  As before, we will solve Equation 20-19 by approximating it with
algebraic equations at the nodes formed by a net of coordinate lines, but now,
the time coordinate must also be discretized at uniform time intervals.  Hence,
we deal with numerical solutions in the x-t plane.  We replace our space-time
continuum with independent variables formed by a discrete set of spatial points
xi = i ∆x, where i = 1, 2, 3, ... , imax, and a discrete set of time points tn = n ∆t,
where n = 1, 2, ... and so on.  We will represent the function p(x,t) as Pi,n.  We
expect that, at any time tn, the function Pi,n at any point xi will be influenced by
its left and right neighbors, so that the central difference formula

pxx(xi,tn) = (Pi+1,n -2Pi,n + Pi-1,n)/(∆x)2                                         (20-20)

holds.  Central differences, however, cannot be used for time derivatives.  Since
causality requires that events must depend on past and not future history,
backward differences apply.  Thus, following Equation 20-8, we must write

pt(xi,tn) = (Pi,n -Pi,n-1)/∆t                                                              (20-21)

Then, substitution of Equations 20-20 and 20-21 in Equation 20-19 shows that a
difference approximation to the governing partial differential equation is

(Pi+1,n - 2Pi,n + Pi-1,n)/(∆x)2 = (φµc/k) (Pi,n - Pi,n-1)/∆t             (20-22)

which is O{(∆x)2} correct in space but only O(∆t) correct in time.  Now, we can
rewrite Equation 20-22 in the form Pi+1,n -2Pi,n + Pi-1,n  = {φµc(∆x)2/(k∆t)}(Pi,n
-Pi,n-1), so that

Pi-1,n - [2 + {φµc(∆x)2/(k∆t)}] Pi,n + Pi+1,n                              (20-23)

 = - {φµc(∆x)2/(k∆t)}Pi,n-1

But Equation 20-23 for the tn solution is identical to Equation 20-15, that is, to
pi-1 - 2pi + pi+1 =  0, except in two minor respects.  The 2 in the simpler finite

difference equation is replaced by 2 + {φµc(∆x)2/(k∆t)}, while the right-side 0 is
replaced by the term -{φµc(∆x)2/(k∆t)}Pi,n-1 assumed to be available from the
computed solution in just one earlier time step.  For n = 2, the Pi,2-1 or Pi,1
solution is simply the prescribed initial condition p(x,0).  The tn level solution is

obtained as in our foregoing example; that is,  Equation 20-23 is written for each
of the internal nodes i = 2, 3, ..., i max -1.  Left- and right-side boundary
conditions are introduced to supplement the resulting incomplete set of algebraic
equations.  The tridiagonal subroutine is used to solve for the tn level solution as

a function of space.  Once this solution is available, it is used to evaluate the
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right side of Equation 20-23, and the left side is solved once more in a recursive
manner to produce pressure solutions at the subsequent time step.

We emphasize that, in Equation 20-22 for the time tn, both ∂2p/∂x2 and

∂p/∂t are evaluated at the nth time level.  This leads to our use of matrix solvers,
since all of the resulting nodal equations are algebraically coupled.  Finite
difference schemes that require matrix inversion are known as implicit schemes.

On the other hand, if we had approximated the derivative ∂2p/∂x2 at the earlier
(n-1) th time step, we would have obtained

(Pi+1,n-1  -2Pi,n-1 + Pi-1,n-1)/(∆x)2 = (φµc/k)(Pi,n -Pi,n-1)/∆t         (20-24)

It is clear from Equation 20-24 that Pi,n can be solved for explicitly by hand in
terms of Pi-1,n-1, Pi,n-1, and Pi+1,n-1, thus making matrix inversion unnecessary.
Then, Pi,n can be updated for every internal i index directly, using a simple
calculator.  Such explicit schemes, useful when computing machines were
uncommon, are less stable than implicit ones, but exceptions can be found.

Numerical stability.  To researchers and practitioners alike, nothing
strikes greater fear about simulation than numerical instabilities.  Computational
instabilities manifest themselves through unrealistic oscillations in pressure
buildup or drawdown curves, in unexpected wiggly spatial pressure
distributions, and in O(1010 psi) overflow messages.  How can instabilities be
avoided in the development process?  One useful tool is the von Neumann
stability test.  Numerical analysts employ stability tests to evaluate candidate
algorithms before embarking on resource-consuming programming efforts.  We
will study stability in detail later, but for now, we consider the model heat
equation u t = u xx for u = u(x,t).  Let us presume that a discretized u can be
approximated by v(x i,tn), where vi,n satisfies the explicit model (v i,n+1   - vi,n)/∆t
= (vi-1,n - 2 vi,n + vi+1,n)/(∆x)2, where ∆t and ∆x are time and spatial increments.

How useful is this obvious difference approximation?  To obtain some
mathematical insight, let us separate variables, and consider an elementary
Fourier wave component v i,n =  ψ(t) ejβx, where j = √-1.  Substitution then yields

{ψ(t + ∆t) e jβx - ψ(t) e jβx}/∆t = ψ(t)[e jβ(x-∆x)  -2e jβx + e jβ(x+∆x) ]/(∆x)2.  Thus,
ψ(t + ∆t) = ψ(t) (1 - 4λ sin2  β ∆x/2), where λ = ∆t/(∆x)2.  And since ψ (0) = 1,
we have the solution ψ(t) = (1 - 4λ sin2  β ∆x/2)t /∆t.  For stability, ψ(t) must
remain bounded (or finite) as ∆t, and thus ∆x, approaches zero.  This requires
that the absolute value |1 - 4 λ sin2  β ∆x/2| < 1, thereby establishing definite
requirements connecting ∆x and ∆t.  We need not have solved for ψ(t), of
course.  For example, we could have defined an amplification factor α =
|ψ(t+∆t)/ψ(t)| from the original equation and determined that α = |1-4λsin2

β ∆x/2|  < 1, leading to the same requirement.  Also observe that for large values
of λ = ∆t/(∆x)2 , the time-marching scheme becomes unstable, that is, the explicit
method is conditionally stable.  Later in this chapter, an absolutely or
unconditionally stable implicit scheme is devised for the heat equation for
cylindrical and spherical radial coordinates, which reduces to Equation 20-23 in
the lineal limit.  We will prove its von Neumann stability at that time.
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Convergence.   In our differencing of u(x,t), we denoted its numerical
representation by vi,n.  That u may not, in fact, tend to v, is suggested by this

usage.  In computational fluid dynamics, the exact functional form of the
formally small truncation error is all-important because it determines the type of
passive higher-order derivative term that controls the structure of the solution.
This determines how well computed solutions actually mirror those of the given
partial differential equation.  This point was developed in Chapter 13: without
evaluating the kinds of derivatives characterizing the neglected terms, whose
diffusive versus dispersive effects always remain with the computed solution,
the extent to which an “obvious” difference scheme actually models a
differential equation cannot be ascertained.

It is also important that the tridiagonal structure in Equation 20-23 is
diagonally dominant; that is, the absolute value of the middle diagonal
coefficient, being 2 + {φµc(∆x)2/(k∆t)}) > 2 = 1 + 1, exceeds the sum of the
(unity) coefficients of the side diagonals.  This property lends itself to numerical
stability, meaning that iterative solutions are not likely to blow up as a result of
truncation and round-off errors.  This does not guarantee that the computed
solutions are correct, but it does buttress the accepted (but questionable)
philosophy that any solution is better than no solution.  As should be clear from
Equation 20-23, only one additional time level of the solution needs to be stored
at any given point, so that two levels of information are required in total.  Thus,
the Fortran associated with our scheme can be written using two-dimensioned
scalar arrays PN(1000) and PNM1(1000) only, representing Pi,n and Pi,n-1,

where the Fortran dimension of 1,000 might signify 1,000 closely spaced nodes.
At the end of each time step, we copy PN into PNM1 and repeatedly apply the
time-recursive procedure until termination.

It is not necessary (or advisable) to have computer RAM memory allocated
for a complete field P(1000,500), say, representing 1,000 nodes, and 500 time
steps.  Intermediate results, such as displacement front location, mudcake
thickness, and pressure distributions, can be written to output files for
subsequent post-processing and display.  Also note that the coefficients A, B ,
and C need not be recomputed for subsequent time steps, since they are
constants defined once and for all.  The matrix solver TRIDI in Figure 20-2 will
destroy A, B, C, and W at the end of each inversion, so that they require
redefinition prior to each integration. (Other solvers are available which retain
their input values at the expense of increased memory requirements.)

Multiple physical time and space scales.  In Chapter 17, we considered
transient front motions whose time scales depend on the relative viscosities of
invading and displaced fluids.  In addition to these time scales, there now exist
additional ones associated with the presence of multiple fluids having different
compressibilities.  In using computer programs such as those derived here and
similar programs available in the industry, it is important to recognize that
whether or not calculated solutions capture all the physics associated with these
time scales will depend on the filtering effects of grids used, that is, on ∆x, ∆t ,
and their ratio.  Unfortunately, there are no obvious answers, and it is the
engineering evaluation of particular computed solutions as they relate to real-
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world problems that poses the greatest challenge.  In this book, we only
demonstrate how algorithms and programs are constructed.  We will not delve
into grid sensitivity studies and similar validation work, as our goals and
objectives are strictly tutorial.  Furthermore, our choices for parameters are
motivated by simplicity and comparative purposes only, and are not intended to
be representative of any particular oil reservoir.  With these preliminary remarks
completed, let us introduce the subject of numerical invasion simulation with a
sequence of examples designed to cover a broad range of physical problems.
Independent formulation parameters encompass (i) lineal, cylindrical, and
spherical flow domains, (ii) constant density and compressible flow, (iii)
possibly dissimilar fluids in formations, (iv) gas versus liquid problems, and
finally, (v) the presence of mudcakes with or without compaction.

Example 20-1.  Lineal liquid displacement without mudcake.

We have shown how d2p(x)/dx 
2 = 0 is easily solved.  We now return to an

early example for the piston-like Darcy displacement of two constant density
liquids with different viscosities in a homogeneous lineal core of given
permeability k.  The transient displacement depends on the relative proportions
of fluid initially present and on which portions of the core (i.e., upstream or
downstream) they occupy.  Now d2p(x)/dx2 = 0 applies to constant density
liquids, but parametric time dependence in the solution is permissible.  In this
problem, since two liquids are present, two such equations are needed,

d2pi(x)/dx2 = 0, i = 1, 2                                                                    (20-25)

for the first (left) and second (right) sections.  For numerical purposes, it will be
convenient to define an unknown, upper-case solution vector P(x) by

P(x) = p1(x), 0 < x < xf                                                                 (20-26)

= p2(x), xf  < x < L

where x = x f (t) represents the position of the unsteady moving front.  The

boundary value problem for d 
2P(x)/dx 

2 = 0 satisfies the left- and right-side
pressure boundary conditions

p1(0) = Pl                                                                                       (20-27a)

p2(L) = Pr                                                                                      (20-27b)

which are easily programmed as demonstrated earlier.  Now, the difference
equation corresponding to d 

2P(x)/dx 
2 = 0 at x = xf does not apply, since the

differential equation description of motion breaks down at the boundary
separating two distinct fluids where pressure gradients need not be continuous.
We therefore replace that equation with an alternative statement that
encompasses the requirements posed by the interfacial matching conditions

p1(xf ) = p2(xf )                                                                              (20-28a)

q1(xf ) = q2(xf )                                                                              (20-28b)

This can be done in any number of ways, but the best choice is a technique that
can be carried over to transient compressible flows without modification and
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that allows us to retain the diagonally dominant features of the time-marching
scheme derived earlier.  The final result is easily derived.

First, Equation 20-28b requires -(k1/µ1) dp1(xf )/dx = -(k2/µ2) dp2(xf )/dx

as a consequence of Darcy’s law q = - (k/µ) dp(x)/dx.  But since k1 = k2, this

statement simplifies to (1/ µ1) dp1(xf )/dx  = (1/ µ2) dp2(xf )/dx.  Now, we will

denote by if- and if+ the spatial locations infinitesimally close to the left and to
the right of the front x = xf, which is itself indexed by i = if.  (Note that this

index satisfies i f = xf /∆x + 1 in our nodal convention.)  Then, in Section 1, we

can approximate the pressure gradient dp1(xf )/dx using backward differences,

while in Section 2, we can apply forward differences (again, differentiation
through the interface itself is forbidden since the pressure gradient changes
suddenly).  This leads to (1/ µ1) (pif- - pif-1)/∆x  = (1/µ2) (p if+1 - pif+)/∆x, but

since ∆x cancels, (1/µ1) (p if- - pif-1)  = (1/ µ2) (p if+1 - pif+).  Assuming that

surface tension is unimportant, Equation 20-28a, which calls for pressure
continuity, requires that pif- = pif+ or simply p if.  Thus, at the interface,

(1/µ1) pif-1 - (1/µ1 + 1/ µ2)pif  + (1/µ2) p if+1 = 0                            (20-29)

applies.  However, unlike the difference approximation to the differential
equation, which is second-order accurate, our use of backward and forward
differences in deriving Equation 20-29 renders it only O(∆x) accurate.  In
deriving Equation 20-29, we emphasize that we have used the same mesh size to
the left and to the right of the front.  This is physically permissible if the two
viscosities are comparable, but clearly incorrect if they are not; later, in
modeling mudcake flows, we will find that significant mobility contrasts
existing in the problem demand dual mesh systems.

It is interesting, however, to observe that we can rewrite Equation 20-29 as
pif-1 - (1 + µ1/µ2)p if  + (µ1/µ2) pif+1 = 0.  In the single-fluid problem where

µ1= µ2, this matching condition reduces to pif-1 - 2p if  + pif+1 = 0, which is

identical to Equation 20-15 for the exact differential equation.  This fortuitous
situation does not apply to compressible transient flows or radial flows.  This
completes our discussion for the solution of Equations 20-25 to 20-28 for the
spatial pressure distribution, which assumes that the front location xf is

prescribed.  But the front does move with time, and our formulation needs to
accommodate this fact.  The physical problem is an initial value problem, a
transient formulation in which an interface, initially located at x = x f,o moves

with time – even though Equation 20-25 governing time-dependent pressure
does not contain time derivatives!

We can solve this unsteady problem by first producing the pressure
distribution as just outlined, then updating the front location x = xf, and

subsequently, repeating this process recursively, as required.  The update
formula is obtained from the kinematic requirement that
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dxf /dt = u/φ = - (k/µ1φ) dp1/dx

=  - (k/µ1φ)(pif - p if-1)/∆x                                                     (20-30)

in Section 1.  This kinematic statement, formally derived in Chapter 16, was
used extensively in the analytical invasion modeling pursued in Chapter 17.  If
we evaluate the right side of Equation 20-30 with the pressure solution just
obtained, denoting existing solutions for p and x f  as old, then the new xf is
obtained by approximating Equation 20-30 as

(xf,new -xf,old )/∆t  = - (k/µ1φ)(pif - pif-1)old/∆x                       (20-31)

or
xf,new  =  xf,old - {k∆t/(µ1φ∆x)}(p if - pif-1)old                         (20-32)

With this new front position available, we again solve for the pressure, followed
by a front update, and so on.  In Figure 20-3, the Fortran listing showing the
structural components of the recursive algorithm is given.  The front matching
conditions and position updating logic are shown in bold print.  Details related
to dimension statements, interactive input queries, print statements, and so on,
are omitted for brevity.  Only those salient features that relate to the algorithm
are replicated.  Note that the Fortran statement IFRONT = XFRONT/DX +1,
because IFRONT is a Fortran integer variable, will discard the fractional part of
the right-side division.  This means that the algorithm will not move IFRONT
from one time step to the next unless it has advanced sufficiently.  In this sense,
the scheme is not truly boundary conforming; however, it is easily modified  at
the expense of programming complexity.  Small meshes, in general, should be
used in modeling invasion front motions.

.
C     INITIAL SETUP
      IMAX = XCORE/DX +1
      IMAXM1 = IMAX-1
      IFRONT = XFRONT/DX +1
      .
      N = 0
      T = 0.
      NSTOP = 0
      MINDEX = 1
      TIME(1) = 0.
      XPLOT(1) = XFRONT
C
C     START TIME INTEGRATION
      DO 300  N=1,NMAX
      T = T+DT
      DO 200  I=2,IMAXM1
      A(I) =  1.
      B(I) = -2.
      C(I) =  1.
      W(I) =  0.
 200  CONTINUE
      A(1) = 99.
      B(1) = 1.
      C(1) = 0.
      W(1) = PLEFT

Figure 20-3a.  Fortran source code (Example 20-1).
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      A(IMAX) = 0.
      B(IMAX) = 1.
      C(IMAX) = 99.
      W(IMAX) = PRIGHT
      IF(VISCIN.EQ.VISCDP) GO TO 240
      A(IFRONT) =  1./VISCL
      B(IFRONT) = -1./VISCL -1./VISCR
      C(IFRONT) =  1./VISCR
      W(IFRONT) =  0.
 240  CALL TRIDI(A,B,C,VECTOR,W,IMAX)
      DO 250  I=1,IMAX
      P(I) = VECTOR(I)
 250  CONTINUE
      PGRAD = (P(IFRONT)-P(IFRONT-1))/DX
      XFRONT = XFRONT - (K*DT/(PHI*VISCL))*PGRAD
      IFRONT = XFRONT/DX +1
      IF(XFRONT.GE.XMAX.OR.XFRONT.LE.XMIN) NSTOP=1
      .
      .
      WRITE(*,280) N,T,XFRONT,IFRONT
 280  FORMAT(1X,'T(',I4,')= ',E8.3,' sec, Xf= ',E8.3,' ft, I= ',I3)
      MINDEX = MINDEX+1
      TIME(MINDEX) = T
      XPLOT(MINDEX) = XFRONT
 300  CONTINUE
 400  WRITE(*,10)
      CALL GRFIX(XPLOT,TIME,MINDEX)
      STOP
      END

Figure 20-3a.  Continued.

INPUT PARAMETER SUMMARY:
 Rock core permeability (darcies): .100E+00

Rock core porosity (decimal nbr): .200E+00
 Viscosity of invading fluid (cp): .100E+02
 Viscosity, displaced  fluid (cp): .100E+01
 Pressure at left boundary  (psi): .100E+03
 Pressure at right boundary (psi): .000E+00
 Length of rock core sample  (ft): .100E+01
 Initial "xfront" position (feet): .500E+00
 Integration space step size (ft): .200E-02
 Integration time step size (sec): .100E+01
 Maximum allowed  number of steps: .200E+04

   Time (sec)  Position (ft)
     .000E+00    .500E+00     |             *
     .600E+02    .539E+00     |              *
     .120E+03    .576E+00     |               *
     .180E+03    .611E+00     |                *
     .240E+03    .644E+00     |                 *
     .300E+03    .676E+00     |                  *
     .360E+03    .706E+00     |                   *
     .420E+03    .736E+00     |                    *
     .480E+03    .764E+00     |                     *
     .540E+03    .792E+00     |                      *
     .600E+03    .818E+00     |                      *
     .660E+03    .844E+00     |                       *
     .720E+03    .870E+00     |                        *
     .780E+03    .895E+00     |                         *
     .840E+03    .919E+00     |                         *
     .900E+03    .942E+00     |                          *
     .960E+03    .965E+00     |                           *
     .102E+04    .988E+00     |                            *

Figure 20-3b.   Numerical results (Example 20-1).
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INPUT PARAMETER SUMMARY:
Rock core permeability (darcies): .100E+00
Rock core porosity (decimal nbr): .200E+00
Viscosity of invading fluid (cp): .100E+01
Viscosity, displaced  fluid (cp): .100E+02
Pressure at left boundary  (psi): .100E+03
Pressure at right boundary (psi): .000E+00
Length of rock core sample  (ft): .100E+01
Initial "xfront" position (feet): .500E+00
Integration space step size (ft): .200E-02
Integration time step size (sec): .100E+01
Maximum allowed  number of steps: .200E+04

   Time (sec)  Position (ft)
                              ______________________________
     .000E+00    .500E+00     |             *
     .600E+02    .542E+00     |               *
     .120E+03    .586E+00     |                *
     .180E+03    .635E+00     |                  *
     .240E+03    .690E+00     |                    *
     .300E+03    .753E+00     |                      *
     .360E+03    .830E+00     |                        *
     .420E+03    .938E+00     |                            *

Figure 20-3c.  Numerical results (Example 20-1).

We will consider two computational limits that demonstrate the physics of
piston-like fluid displacement, as well as the correctness of the program.  For the
first example, consider the simulation input and solution in Figure 20-3b.  Note
the high viscosity of the invading fluid relative to that of the displaced fluid.
The plot and tabulated results correctly show that the front decelerates with
time.  This is so because fluid of increased viscosity displaces and replaces fluid
having lower viscosity, with the relative proportion of the former increasing
with time, as the low viscosity fluid is forced out the right side of the core.
Hence, continual slowdown is anticipated and is indeed obtained.  In our second
example, we reverse the role of the two fluids and allow a less viscous fluid to
displace one having much higher viscosity.  As the latter is forced through the
core and emptied, fluid having lower viscosity replaces it, so that it naturally
accelerates through the core.  Again, our computed results are physically
correct; also note the differences in the time scales of the two problems.

It is clear that our calculations produce results that make physical sense.
Of course, in the present problem where an analytical solution is available, there
is no need to resort to numerical methods.  But the solution is useful because it
allows us to study the effects of grid selection, that is, the role of ∆x and ∆t in
affecting computed solutions.  We emphasize that the above calculations
provide the time scales characteristic of the displacement flows.  Both fronts
start at the midpoint of the core, and both simulations terminate near the end of
the core.  Their total transit times are obviously different.  These time scales, as
our earlier closed-form solution

(µ1/µ2 -1)xf  + L = +{{(µ1/µ2 -1)xf,o + L}2

+ {2k (Pl - Pr)/(φµ2)}(µ1/µ2 -1) t}1/2       (17-13)

shows, depend on numerous parameters, combined in well-defined groups.  For
example, both (µ1/µ2 -1) and 2k (Pl - Pr)t/(φµ2) are individually important.
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The power of well-formulated numerical models lies, of course, in their
potential for simple extension.  For example, if the left- and right-side boundary
pressures PLEFT and PRIGHT are to be prescribed functions of time, these
constants are easily replaced by Fortran function statements.  Likewise, time
dependences in the left side invading fluid viscosity VISCL are readily
incorporated.  These generalizations are not unusual to actual drilling situations.
Changes in mud weight, which alter borehole pressure, are used for formation
control; these changes are effected by varying both solids and viscosifier
content.  Finally, some notes on the computational efficiency of the scheme are
in order.  Using a Pentium PC, 1,000 time steps requires approximately two
seconds for a 500 grid block problem, all the time printing intermediate
solutions to the screen. (This is the slowest part of the process and can be
omitted for increased speed).  The compiled code, dimensioned for a maximum
of 1,000 grid blocks, requires 40,000 bytes of RAM memory.   By contrast,
canned finite element simulators designed to solve general 3D problems, by
contrast, can require orders-of-magnitude more computing times for the same
number of steps.

Example 20-2.  Cylindrical radial liquid displacement without cake.

We now rework the preceding problem and alter the formulation so that it
handles cylindrical radial flows.  Thus, we replace Equation 20-10 (that is,
d2p(x)/dx 

2 = 0) by Laplace's equation in cylindrical radial flows,

d2p(r)/dr2  + (1/r) dp(r)/dr  =  0                                                        (20-33)
The required changes are minor.  Using Equation 20-14, we find that a simple
change of notation gives d2p(ri )/dr2 = {pi-1 - 2pi +  pi+1}/(∆r)2  +  O(∆r)2.
Similarly, from Equation 20-5, dp(ri )/dr = {p i+1 -  pi-1}/(2∆r)  +  O(∆r)2.  We

will define the radial variable r by r = Rwell + (i-1)∆r so that i = 1 corresponds

to the left boundary of the computational grid.  Then, substitution in Equation
20-33 and minor rearrangement lead to

[1 -  ½∆r/{Rwell + (i-1)∆r}] pi-1 - 2 pi

+  [1 +  ½∆r/{Rwell + (i-1)∆r}] pi+1 =  0                          (20-34)

Recall that the matrix coefficients A, B , C, and W  of the finite difference
equation for the lineal flow model d2p(x)/dx2 = 0, extracted from the simple
formula [1] p i-1 - 2 pi + [1] p i+1 =  0, were defined by the code fragment

     DO 200  I=2,IMAXM1
     A(I) =  1.
     B(I) = -2.
     C(I) =  1.
     W(I) =  0.
200  CONTINUE

Comparison with Equation 20-34 shows that the only required change needed to
model fully radial flow effects is a correction ±½∆r/{Rwell + (i-1)∆r} to the C

and A matrix coefficients.  That is, we replace the preceding code with
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     DO 200  I=2,IMAXM1
     CORRECT = 0.5*DX/(WELRAD + (I-1)*DX)
     A(I) =  1. - CORRECT
     B(I) = -2.
     C(I) =  1. + CORRECT
     W(I) =  0.
200  CONTINUE

Of course, there will be additional input and output nomenclature changes,
calling for wellbore and farfield radii, starting front radii, and so on.  For
readability, we have retained DX to represent the radial mesh length ∆r, in order
to limit the number of typographical changes; WELRAD represents the wellbore
radius.  The Fortran source code for this example, appearing in Figure 20-4a,
uses the same front matching logic as does lineal flows.

We will consider two computational limits that demonstrate the physics of
radial displacement flows, as well as the correctness of the computer program.
For the first example, we assume simulation input parameters that are identical
to those of the first run in Example 20-1, plus wellbore and farfield radii of 100
ft and 101 ft, so that the net radial extent of 1 ft equals the core length of the
previous example.  This large radius allows the program to mimic purely lineal
flows; we will compare the computed results with those obtained for exact lineal
flow.  For such large radii, the effect of the radial terms should be insignificant.
If so, then the computed radial front positions should be identical to those in
Figure 20-3c.  The two-decimal-place bold numbers in Figure 20-4b, when
compared to their three-decimal place counterparts in Figure 20-3c, demonstrate
that exactly the same water-to-oil displacement results are obtained as we
expected.  This provides a useful computing and programming check.

C     INITIAL SETUP
      IMAX = (XCORE-WELRAD)/DX +1
      IMAXM1 = IMAX-1
      IFRONT = (XFRONT-WELRAD)/DX +1
      .
      N = 0
      T = 0.
      NSTOP = 0
      MINDEX=1
      TIME(1) = 0.
      XPLOT(1) = XFRONT
C
C     START TIME INTEGRATION
      DO 300  N=1,NMAX
      T = T+DT
      DO 200  I=2,IMAXM1
      CORRECT = 0.5*DX/(WELRAD + (I-1)*DX)
      A(I) =  1. - CORRECT
      B(I) = -2.
      C(I) =  1. + CORRECT
      W(I) =  0.
 200  CONTINUE
      A(1) = 99.
      B(1) = 1.
      C(1) = 0.
      W(1) = PLEFT

Figure 20-4a.  Fortran source code (Example 20-2).
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      A(IMAX) = 0.
      B(IMAX) = 1.
      C(IMAX) = 99.
      W(IMAX) = PRIGHT
      IF(VISCIN.EQ.VISCDP) GO TO 240
      A(IFRONT) =  1./VISCL
      B(IFRONT) = -1./VISCL -1./VISCR
      C(IFRONT) =  1./VISCR
      W(IFRONT) =  0.
 240  CALL TRIDI(A,B,C,VECTOR,W,IMAX)
      DO 250  I=1,IMAX
      P(I) = VECTOR(I)
 250  CONTINUE
      PGRAD = (P(IFRONT)-P(IFRONT-1))/DX
      XFRONT = XFRONT - (K*DT/(PHI*VISCL))*PGRAD
      IFRONT = (XFRONT-WELRAD)/DX +1
      .
      WRITE(*,280) N,T,XFRONT,IFRONT
 280  FORMAT(1X,'T(',I4,')= ',E8.3,' sec, Rf= ',E10.5,' ft,I= ',I3)
      MINDEX = MINDEX+1
      TIME(MINDEX) = T
      XPLOT(MINDEX) = XFRONT
 300  CONTINUE
 400  WRITE(*,10)
      CALL GRFIX(XPLOT,TIME,MINDEX)
      STOP
      END

Figure 20-4a.  Continued.

 INPUT PARAMETER SUMMARY:
 Rock core permeability (darcies): .100E+00

 Rock core porosity (decimal nbr): .200E+00

 Viscosity of invading fluid (cp): .100E+01
 Viscosity, displaced  fluid (cp): .100E+02

 Pressure at well boundary  (psi): .100E+03

 Pressure, effective radius (psi): .000E+00
 Radius  of  the  bore  hole (ft): .100E+03
 Reservoir effective radius  (ft): .101E+03
 Initial "Rfront" position (feet): .101E+03 (i.e., 100.5)
 Integration space step size (ft): .200E-02

 Integration time step size (sec): .100E+01

 Maximum allowed  number of steps: .200E+04
 Number spatial DR grids selected: .500E+03

 COMPUTED RESULTS:
 T(   0)= .000E+00 sec, Rf= .10050E+03 ft, I= 250
 T(  60)= .600E+02 sec, Rf= .10054E+03 ft, I= 271
 T( 120)= .120E+03 sec, Rf= .10059E+03 ft, I= 294
 T( 180)= .180E+03 sec, Rf= .10064E+03 ft, I= 318
 T( 240)= .240E+03 sec, Rf= .10069E+03 ft, I= 346
 T( 300)= .300E+03 sec, Rf= .10075E+03 ft, I= 377
 T( 360)= .360E+03 sec, Rf= .10083E+03 ft, I= 416
 T( 420)= .420E+03 sec, Rf= .10094E+03 ft, I= 470

Figure 20-4b.   Numerical results (Example 20-2).
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  INPUT PARAMETER SUMMARY:
 Rock core permeability (darcies): .100E+00

 Rock core porosity (decimal nbr): .200E+00

 Viscosity of invading fluid (cp): .100E+01
 Viscosity, displaced  fluid (cp): .100E+02

 Pressure at well boundary  (psi): .100E+03

 Pressure, effective radius (psi): .000E+00
 Radius  of  the  bore  hole (ft): .100E+00
 Reservoir effective radius  (ft): .110E+01
 Initial "Rfront" position (feet): .600E+00
 Integration space step size (ft): .200E-02

 Integration time step size (sec): .100E+01

 Maximum allowed  number of steps: .200E+04
 Number spatial DR grids selected: .500E+03

   Time (sec)  Position (ft)
                              ______________________________

     .000E+00    .600E+00     |               *

     .600E+02    .647E+00     |                *
     .120E+03    .695E+00     |                  *

     .180E+03    .745E+00     |                   *

     .240E+03    .796E+00     |                     *
     .300E+03    .849E+00     |                      *

     .360E+03    .906E+00     |                        *

     .420E+03    .967E+00     |                          *
     .480E+03    .104E+01     |                            *

Figure 20-4c.  Numerical results (Example 20-2).

Next, we consider a physical situation where the geometric effects of radial
spreading must be important, and accordingly we select a small slimhole radius
of 0.1 ft and a farfield radius of 1.1 ft.  These choices therefore fix the length of
the core to one foot.  Again, we initialize our front position to the center of the
core sample.  Computed results demonstrate important geometric effects.  From
t = 360 to 420 sec, the radial front has advanced from r = 0.906 ft to 0.967 ft, for
a total extent of 0.061 ft.  If we refer to Figure 20-3c for the lineal result, in the
same time period, the front has advanced from x = 0.830 ft to 0.938 ft, for a total
of 0.108 ft.  The decrease in distance obtained in the radial case is clearly the
result of geometric spreading, and the twofold change indicates that such effects
can be significant for small-diameter holes.  These changes are all-important to
resistivity interpretation and modeling.

Example 20-3.  Spherical radial liquid displacement without cake.

Now let us rework the preceding cylindrical radial problem, and alter the
analytical and numerical formulations so that they handle spherical radial flows.
Such formulations model invasion at the drillbit and also point fluid influx into
formation testers at small times.  We will replace the governing equation for
cylindrical radial flows, namely, d2p(r)/dr2 + (1/r) dp(r)/dr = 0 in Equation 20-
33, by the spherical flow equation

d2p(r)/dr2  + (2/r) dp(r)/dr  =  0                                                  (20-35)

Again, we are restricted to constant density flows in homogeneous rocks.  The
required changes are minor, since we have merely substituted a “2/r” variable
coefficient in favor of 1/r.  Instead of Equation 20-34, we have
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[1 - ∆r/{Rwell + (i-1)∆r}] pi-1 - 2 pi

+  [1 + ∆r/{Rwell + (i-1)∆r}] pi+1 =  0                                    (20-36)

The code fragment

     DO 200  I=2,IMAXM1
     CORRECT = 0.5*DX/(WELRAD + (I-1)*DX)
     A(I) =  1. - CORRECT
     B(I) = -2.
     C(I) =  1. + CORRECT
     W(I) =  0.
200  CONTINUE

appearing in the cylindrical radial program requires only a one-line change in
order to implement Equation 20-36, so that instead we have
     DO 200  I=2,IMAXM1
     CORRECT = DX/(WELRAD + (I-1)*DX)
     A(I) =  1. - CORRECT
     B(I) = -2.
     C(I) =  1. + CORRECT
     W(I) =  0.
200  CONTINUE

As before, there are obvious input and output nomenclature changes, calling for
bit and farfield radii, starting front radii and so on. (Again, for readability, we
have retained DX to represent the radial mesh length ∆r.)  The source code is
similar to that in Figure 20-4a, except for the single line change just described.
In order to demonstrate the differences between cylindrical and spherical radial
flows, we have assumed parameters identical to those in the second run of
Example 20-2.  At t = 480 sec, the cylindrical  radial position is 1.04 ft, whereas
at the same instant, the spherical radial position is 0.852 ft, which is significantly
less.  As the calculated results in Figures 20-5a and 20-5b show, the spherical
front requires more time to reach the farfield boundary defined by the effective
radius r = 1.1 ft.  Its acceleration is less than that in the previous example as a
result of increased geometric spreading.

INPUT PARAMETER SUMMARY:
 Rock core permeability (darcies): .100E+00
 Rock core porosity (decimal nbr): .200E+00
 Viscosity of invading fluid (cp): .100E+01
 Viscosity, displaced  fluid (cp): .100E+02
 Pressure at "bit" boundary (psi): .100E+03
 Pressure, effective radius (psi): .000E+00
 Radius  at  the  drill  bit (ft): .100E+00
 Reservoir effective radius  (ft): .110E+01
 Initial "Rfront" position (feet): .600E+00
 Integration space step size (ft): .200E-02
 Integration time step size (sec): .100E+01
 Maximum allowed  number of steps: .200E+04
 Number spatial DR grids selected: .500E+03

Figure 20-5a.  Numerical results (Example 20-3).
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 Time (sec)  Position (ft)
                              ______________________________
     .000E+00    .600E+00     |              *
     .600E+02    .637E+00     |               *
     .120E+03    .673E+00     |                *
     .180E+03    .706E+00     |                 *
     .240E+03    .738E+00     |                  *
     .300E+03    .768E+00     |                   *
     .360E+03    .797E+00     |                    *
     .420E+03    .825E+00     |                    *
     .480E+03    .852E+00     |                     *
     .540E+03    .878E+00     |                      *
     .600E+03    .904E+00     |                       *
     .660E+03    .928E+00     |                       *
     .720E+03    .952E+00     |                        *
     .780E+03    .975E+00     |                         *
     .840E+03    .998E+00     |                         *
     .900E+03    .102E+01     |                          *
     .960E+03    .104E+01     |                          *
     .102E+04    .106E+01     |                           *
     .108E+04    .108E+01     |                            *

Figure 20-5b.   Numerical results (Example 20-3).

Example 20-4.  Lineal liquid displacement without mudcake,
including compressible flow transients.

In this example, we will revisit Example 20-1 but include the additional

effect of nonvanishing fluid compressibility.  This being the case, d2p/dx2 = 0 is
no longer the governing equation.  Instead, the governing partial differential
equation is the heat equation

∂2p(x,t)/∂x2 = (φµc/k) ∂p/∂t                                                      (20-19)
which requires initial conditions for spatial pressure distribution in addition to
those for front position.  Its finite difference approximation, as derived earlier,
takes the form

Pi-1,n - [2 + {φµc(∆x)2/(k∆t)}] Pi,n + Pi+1,n                              (20-23)

 = - {φµc(∆x)2/(k∆t)}Pi,n-1
instead of the simpler equation

(1) Pi-1 - 2 Pi + (1) Pi+1  =  0                                                   (20-37)

derived for d 2p/dx2 = 0.  The finite difference program of Example 20-1 can be
modified to handle transients due to fluid compressibility.  First, the right-side of
Equation 20-23 indicates that pressure information from one earlier time step is
required before the tridiagonal equations can be solved.  Thus, an initial
condition is required, so that the program user must enter an initial pressure.

When a new formation is penetrated, the initial pressure will always be
equal to the reservoir pore pressure.  However, in this book and in the code, we
will leave this input completely general, if only for code flexibility and the
possibility that the program will be used in special experimental situations.
Once the pressure field in space is obtained for a particular time step, it must be
copied into the pressure array for the earlier pressure before pressures can be
recursively advanced and integrated in time.  The bookkeeping of an earlier time
pressure array means that an additional Fortran dimension statement, plus more
allocated memory, will be required.  Aside from new input statements required
for fluid compressibilities, we will need to modify the matrix coefficients B and
W as required by Equations 20-23 and 20-37.  That is, the -2 of Equation 20-37
is to be replaced by the term - 2 - {φµc(∆x)2/(k∆t)} of Equation 20-23, while the
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0 of Equation 20-37 is now to be replaced by the -{φµc(∆x)2/(k∆t)}Pi,n-1 of
Equation 20-23. (Note that the former change increases numerical stability by
increasing diagonal dominance.)  The interfacial velocity matching conditions
derived in Example 20-1 do not change.  But the meaning of the product µc
must be understood: it is different on either side of the front, which again moves
from time step to time step.  The required Fortran source code changes are
shown in bold print in Figure 20-6a.  The array Pi,n-1 is denoted by PNM1, and
the initial pressure is PINIT.  In order to determine the transient effects of fluid
compressibility, we reconsider one of the data sets used in Example 20-1, where
water displaces an oil with ten times the viscosity.  The corresponding

compressibilities are taken as 3 x 10-6 /psi and 50 x 10-6 /psi, while the initial
pressure was assumed to be equal to the right-side reservoir pressure.  If we
compare computed results, which now include time scales related to fluid
compressibilities and moving fronts, with those in Example 20-1 (see Figure 20-
3c), we find that in the present run, the effect of compressible flow transients on
displacement front position with time is minimal.  One Fortran subtlety deserves
elaboration.  The 200 do-loop defines two separate difference equations for the
flows left and right of the front, but W(I) = -TERM*PNM1(I) refers to a single
pressure.  So long as the front does not move more than one mesh in a time step,
errors due to copying water pressure as oil pressure, or conversely, do not exist
(e.g., refer to the 260 loop); pressure continuity assures that both blocks contain
equal pressures.

      .
      .
C     INITIAL SETUP
      IMAX = XCORE/DX +1
      IMAXM1 = IMAX-1
      IFRONT = XFRONT/DX +1
      N = 0
      T = 0.
      DO 100  I=1,IMAX
      PNM1(I) = PINIT
 100  CONTINUE
      NSTOP = 0
      MINDEX=1
      TIME(1) = 0.
      XPLOT(1) = XFRONT
C
C     START TIME INTEGRATION
      DO 300  N=1,NMAX
      T = T+DT
      DO 200  I=2,IMAXM1
      IF(I.LT.IFRONT) COMP = COMPL
      IF(I.GE.IFRONT) COMP = COMPR
      IF(I.LT.IFRONT) VISC = VISCL
      IF(I.GE.IFRONT) VISC = VISCR
      TERM = PHI*VISC*COMP*DX*DX/(K*DT)
      A(I) =  1.
      B(I) = -2.-TERM
      C(I) =  1.
      W(I) =  -TERM*PNM1(I)
 200  CONTINUE
      A(1) = 99.
      B(1) = 1.
      C(1) = 0.
      W(1) = PLEFT

Figure 20-6a.  Fortran source code (Example 20-4).
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      A(IMAX) = 0.
      B(IMAX) = 1.
      C(IMAX) = 99.
      W(IMAX) = PRIGHT
      IF(VISCIN.EQ.VISCDP) GO TO 240
      A(IFRONT) =  1./VISCL
      B(IFRONT) = -1./VISCL -1./VISCR
      C(IFRONT) =  1./VISCR
      W(IFRONT) =  0.
 240  CALL TRIDI(A,B,C,VECTOR,W,IMAX)
      DO 250  I=1,IMAX
      P(I) = VECTOR(I)
 250  CONTINUE
      PGRAD = (P(IFRONT)-P(IFRONT-1))/DX
      XFRONT = XFRONT - (K*DT/(PHI*VISCL))*PGRAD
      IFRONT = XFRONT/DX +1
      DO 260  I=1,IMAX
      PNM1(I) = P(I)
 260  CONTINUE
      WRITE(*,280) N,T,XFRONT,IFRONT
 280  FORMAT(1X,'T(',I4,')= ',E8.3,' sec, Xf= ',E8.3,' ft, I= ',I3)
      MINDEX = MINDEX+1
      TIME(MINDEX) = T
      XPLOT(MINDEX) = XFRONT
 300  CONTINUE
 400  WRITE(*,10)
      WRITE(4,10)
      CALL GRFIX(XPLOT,TIME,MINDEX)
      STOP
      END

Figure 20-6a.  Continued.

INPUT PARAMETER SUMMARY:
 Rock core permeability (darcies): .100E+00
 Rock core porosity (decimal nbr): .200E+00
 Viscosity of invading fluid (cp): .100E+01
 Viscosity, displaced  fluid (cp): .100E+02
 Compr ... invading fluid (1/psi): .300E-05
 Compr .. displaced fluid (1/psi): .500E-04
 Pressure at left boundary  (psi): .100E+03
 Pressure at right boundary (psi): .000E+00
 Pressure, initial time t=0 (psi): .000E+00
 Length of rock core sample  (ft): .100E+01
 Initial "xfront" position (feet): .500E+00
 Integration space step size (ft): .200E-02
 Integration time step size (sec): .100E+01
 Maximum allowed  number of steps: .200E+04
 Number spatial DX grids selected: .500E+03

   Time (sec)  Position (ft)
                              ______________________________
     .000E+00    .500E+00     |             *
     .600E+02    .542E+00     |               *
     .120E+03    .587E+00     |                *
     .180E+03    .637E+00     |                  *
     .240E+03    .692E+00     |                   *
     .300E+03    .755E+00     |                     *
     .360E+03    .833E+00     |                        *
     .420E+03    .944E+00     |                            *

Figure 20-6b.  Numerical results (Example 20-4).

Example 20-5.  Von Neumann stability of implicit time schemes.

The implicit time scheme in Example 20-4 turns out to be stable
numerically, and it is of interest to examine its von Neumann characteristics for
a wider class of transient flow formulations.  In particular, let us consider those
encompassing lineal, cylindrical, and spherical radial limits, that is
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∂2p(x,t)/∂x2 = (φµc/k) ∂p/∂t                                                        (20-38)

∂2p/∂r2 + 1/r ∂p/∂r  =  (φµc/k) ∂p/∂t                                            (20-39)

∂2p/∂r2 + 2/r ∂p/∂r  =  (φµc/k) ∂p/∂t                                            (20-40)
and specifically examine

∂2p/∂r2 + N/r ∂p/∂r = (φµc/k) ∂p/∂t                                            (20-41)

where N = 0, 1, or 2 accordingly as the flow domain is lineal, cylindrical, or
spherical. (Other values for N are related to nonconventional fractal descriptions
that have been the subject of recent reservoir description studies.)  We will now
difference Equation 20-41 as suggested by Equation 20-22, and approximate
∂p/∂r by the central difference formula (Pi+1,n - Pi-1,n)/(2∆r), while the reciprocal

1/r is evaluated at the center point i.  This leads to
(Pi-1,n - 2 Pi,n + Pi+1,n)/(∆r)2                                                        (20-42)

      + (N/ri) (Pi+1,n - Pi-1,n)/(2∆r)  =  (φµc/k) (Pi,n - Pi,n-1)/∆t

or
{1 - N∆r/(2ri)} Pi-1,n - {2 + φµc(∆r)2/(k∆t)} Pi,n                       (20-43)

+ {1 + N∆r/(2ri)} Pi+1,n= - {φµc(∆r)2/(k∆t)} Pi,n-1

which immediately shows how the lineal flow algorithm given in the foregoing
example can be modified to handle cylindrical radial and spherical flow effects.
(That is, we now have the generalized matrix coefficients A = Ai = 1 - N∆r/(2ri)

and C = Ci = 1 + N∆r/(2ri) instead of unit coefficients.)  This represents the only

required change.  In order to determine its numerical stability, we will examine
Fourier wave components having the form

Pi,n = ζn e jβ(i∆r)                                                                            (20-44)

where j = √-1, β is a disturbance wavenumber (e.g., see Chin, 1994 for more
detailed discussion) and ζ represents the amplification factor introduced earlier.
Substitution in Equation 20-43 gives

ζ = 1/[1 + {4k∆t/(φµc(∆r)2)} sin2 β∆r/2  - j kN∆t/(φµcri∆r)]      (20-45)

For stability, we require that |ζ| < 1.  This is possible provided

[1 + {4k∆t/(φµc(∆r)2)} sin2 β∆r/2]2  + [kN∆t/(φµcri∆r)]2  > 1   (20-46)

Since sin2 β∆r/2 > 0, the inequality always holds if ∆t > 0, thus guaranteeing
stability. (Of course, mesh sizes must be kept small in order to reduce truncation
errors and to ensure convergence to solutions of the PDE.)   Unlike the
conditionally stable explicit scheme studied earlier, this implicit scheme, which
requires only tridiagonal matrix inversion, is unconditionally stable.  We have
tacitly assumed a positive time step ∆t > 0 in arriving at this stability, which is
the usual case.  But in Chapter 21, we will introduce reverse time integration
where we have ∆t < 0.  For such applications, the stability requirements are
altered, and the nature of the numerical truncation errors changes.



Complex Invasion Problems:  Numerical Modeling      395

Example 20-6.  Gas displacement by liquid in lineal core
without mudcake, including compressible flow transients.

The piston-like displacement of formation gas by liquid filtrate, even
without the complicating presence of mudcake, poses very difficult
mathematical obstacles to solution. (More accurate two-phase immiscible flow
modeling is pursued in Chapter 21.)  To this author's knowledge, the problem
has not been correctly solved in the literature, despite its importance in studying
flows in tight gas sands.  Many investigators simply assume

∂2p(x,t)/∂x2 = (φµc/k) ∂p/∂t                                                       (20-47)
which applies to liquids only, also applies to gases, with the appropriate value of
c. (Note that cwater ≈ 0.000003 psi -1, whereas gas values, highly dependent on

pressure, may be several hundred times this.)  But in fact, as we have noted, the
relevant equation for gases is

∂2pm+1(x,t)/∂x2 = {φµm/(kp)} ∂pm+1/∂t                                   (20-48)
with m being Muskat’s thermodynamic exponent. (Equations 20-47 and 20-48
both assume lineal, isotropic flow.)  Note that m = 1 for isothermal problems,
whereas for adiabatic flows, m = Cv/Cp ≈ 0.7 in the case of many gases.  Let us

demonstrate the nature of the complexities by examining the elementary case of
incompressible gas displacement by incompressible liquids.  Then, we will
proceed directly to a formulation that models the general displacement of gas by
liquid, with moving fronts and nonnegligible transient compressibility effects.
This study will highlight the importance of numerical methods, and we will also,
drawing on the von Neumann stability results of Example 20-5, demonstrate
how seemingly unrelated pieces of information can provide insight into
designing stable, robust, computational algorithms.

i= 1 2 imaxif

+-

if+1if-1

Liquid Gas

Left Right

Front

imax-1

Figure 20-7.  Gas displacement by liquid.

Incompressible problem.  For reference purposes, we will consider the
flow domain shown in Figure 20-7.  In the incompressible limit, Equation 20-47

reduces to d2p1(x)/dx 
2 = 0, and Equation 20-48 becomes d2p2

m+1(x)/dx 
2 = 0.

We have introduced the 1 and 2 subscripts to denote the left-side liquid and
right-side gas flows, respectively; these subscripts also remind us that these
flows satisfy very different ordinary differential equations.  These second-order

equations admit the solutions p1(x) = Ax + B and p2
m+1(x) = Cx + D.  For our

gas flow, it is important to understand that it is not the pressure p2(x) that varies
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linearly, but the function p2
m+1(x).  Now, the solution to p1(x) satisfying the

condition p1(0) = PL is p1(x) = Ax + P L, while the solution to p 2
m+1(x)

satisfying the right-side pressure boundary condition p2(L) = PR is p2
m+1(x) =

C(x-L) + PR
m+1.  (Again, L is the length of the core.)  So far, A and C are

unknown, but they are, in principle, fixed by invoking the continuity of pressure

and velocity at x = x f.  Since p2(x) = {C(x-L) + PR
m+1}1/(m+1) , the continuity

of pressure requires that we have Ax f + PL = {C(xf -L) + PR
m+1}1/(m+1).  Next,

we evaluate the derivative dp2(x)/dx = {C/(m+1)}{C(x-L) + PR
m+1}-m/(m+1).

Thus, continuity of velocity requires (1/µ1) dp1(xf)/dx = (1/ µ2) dp2(xf)/dx, or

A/µ1 = (1/µ2){C/(m+1)}{C(xf -L) + PR
m+1}-m/(m+1), since permeability is

uniform throughout.  In summary, we solve

Axf + PL = {C(xf -L) + PR
m+1}1/(m+1)                                        (20-49a)

A/µ1 = (1/µ2){C/(m+1)}{C(xf -L) + PR
m+1}-m/(m+1)                (20-49b)

analytically.  It is clear that A can be eliminated between Equations 20-49a and
20-49b, but this leaves an intractable nonlinear equation for C.  Even if explicit
expressions for A and C are obtained, the integration of the displacement front
equation dxf/dt = -k/(µφ) dp1(xf)/dx = -kA/(µφ) leads to complexities.  These

worsen when transient effects due to compressibility must be modeled.  Thus,
we are motivated to formulate the problem numerically, drawing on the success
of Example 20-4 and the stability information obtained in Example 20-5.

Transient, compressible problem.   The finite differencing required to
model Equation 20-47 has been discussed, and in Example 20-4, we in fact
considered displacements by dissimilar liquids having different viscosities and
compressibilities.  Again, the transients that arise are of two types, namely, the
usual compressible ones found in well testing and those due to front motions
that depend on mobility contrasts.  Equation 20-48, given its similarity to
Equation 20-47, can be differenced in a like manner, provided we observe that

the right-side coefficient φµm/(kp), or φµc*/k  in our earlier notation, is not
constant but dependent on p(x,t), which continuously evolves in time.
(Numerically, this pressure can be evaluated at the previous time step, at any
instant in the forward time integration.)  Let us recall that Example 20-4 was
successfully solved by approximating Equation 20-47 using

Pi-1,n - [2 + {φµc(∆x)2/(k∆t)}] Pi,n + Pi+1,n                             (20-23)

 = - {φµc(∆x)2/(k∆t)}Pi,n-1

This equation still applies to the left of the moving front in Figure 20-7,
where the invading liquid resides.  To the right of the front, however, Equation
20-48 applies.  Since implicit finite difference equations of the form given in
Equation 20-42 are unconditionally stable, we attempt to difference Equation
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20-48 in such a way as to take advantage of that stability.  To do this, we

observe that our ∂2pm+1(x,t)/ ∂x2 = {φµm/(kp)} ∂pm+1/∂t can be expanded as

∂2p(x,t)/∂x2 + (m/p) (∂p/∂x)2 = {φµm/(kp)} ∂p/∂t                     (20-50)

If we difference all old terms exactly as before, and approximate our new ones

with the O(∆x)2 accurate formulas

(m/p)(∂p/∂x)2  = (m/Pi,n-1){(Pi+1,n-1 - Pi-1,n-1)/(2∆x)}                (20-51)

× {(Pi+1,n - Pi-1,n)/(2∆x)}

φµm/(kp) = φµm/(kPi,n-1)                                                         (20-52)

we obtain
{1 - m(∆x)(∂p/∂x)i,n-1/(2Pi,n-1)}Pi-1,n                                           (20-53)

- [2 + {φµm(∆x)2/(kPi,n-1∆t)}] Pi,n + {1 + m(∆x)(∂p/∂x)i,n-1/(2Pi,n-1)}Pi+1,n

= - φµm(∆x)2/(k∆t)
Thus, the Fortran source code developed in Example 20-4 to model

displacement by dissimilar liquids can be easily modified to handle gas
displacement by liquids, if to the right of the front, we instead apply Equation
20-53.  The front matching condition

(1/µ1) pif-1 - (1/µ1 + 1/ µ2)pif  + (1/µ2) p if+1 = 0                      (20-29)

still applies at each time step; again, it embodies pressure and velocity
continuity, and is not related to fluid compressibility.  In the source code
modifications shown in Figure 20-8a, the Muskat exponent m is denoted EM.
The numerical results displayed in Figures 20-8b and 20-8c are obtained for two
different values of porosity, with all other parameters otherwise held fixed.

.

.

C     START TIME INTEGRATION
      DO 300  N=1,NMAX
      T = T+DT
      DO 200  I=2,IMAXM1
      IF(I.LT.IFRONT) A(I) = 1.
      IF(I.LT.IFRONT) B(I) =-2.-PHI*VISCL*COMPL*DX*DX/(K*DT)
      IF(I.LT.IFRONT) C(I) = 1.
      IF(I.LT.IFRONT) W(I) =-(PHI*VISCL*COMPL*DX*DX/(K*DT))*PNM1(I)
      IF(I.GE.IFRONT) DPDX = (PNM1(I+1)-PNM1(I-1))/(2.*DX)
      IF(I.GE.IFRONT) A(I) = 1. -EM*DX*DPDX/(2.*PNM1(I))
      IF(I.GE.IFRONT) B(I) =-2.-PHI*VISCR*EM*DX*DX/(K*DT*PNM1(I))
      IF(I.GE.IFRONT) C(I) = 1. +EM*DX*DPDX/(2.*PNM1(I))
      IF(I.GE.IFRONT) W(I) =-(PHI*VISCR*EM*DX*DX/(K*DT))
 200  CONTINUE
      A(1) = 99.
      B(1) = 1.
      C(1) = 0.
      W(1) = PLEFT
      A(IMAX) = 0.
      B(IMAX) = 1.
      C(IMAX) = 99.
      W(IMAX) = PRIGHT
      IF(VISCIN.EQ.VISCDP) GO TO 240

Figure 20-8a.  Fortran source code (Example 20-6).
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      A(IFRONT) =  1./VISCL
      B(IFRONT) = -1./VISCL -1./VISCR
      C(IFRONT) =  1./VISCR
      W(IFRONT) =  0.
 240  CALL TRIDI(A,B,C,VECTOR,W,IMAX)
      DO 250  I=1,IMAX
      P(I) = VECTOR(I)
 250  CONTINUE
      PGRAD = (P(IFRONT)-P(IFRONT-1))/DX
      XFRONT = XFRONT - (K*DT/(PHI*VISCL))*PGRAD
      IFRONT = XFRONT/DX +1
      DO 260  I=1,IMAX
      PNM1(I) = P(I)
 260  CONTINUE
      .

Figure 20-8a.  Continued.

 INPUT PARAMETER SUMMARY:
 Rock core permeability (darcies): .100E-02
 Rock core porosity (decimal nbr): .100E+00
 Viscosity, invading  liquid (cp): .100E+01
 Viscosity of  displaced gas (cp): .200E-01
 Compr .. invading liquid (1/psi): .300E-05
 Muskat m exponent of gas (real#): .700E+00
 Pressure at left boundary  (psi): .200E+03
 Pressure at right boundary (psi): .100E+03
 Pressure, initial time t=0 (psi): .100E+03
 Length of rock core sample  (ft): .100E+01
 Initial "xfront" position (feet): .200E+00
 Integration space step size (ft): .100E-01
 Integration time step size (sec): .100E+01
 Maximum allowed  number of steps: .100E+05
 Number spatial DX grids selected: .101E+03

    Time (sec)  Position (ft)

                              ______________________________

     .000E+00    .200E+00     |    *

     .600E+02    .221E+00     |    *

     .120E+03    .239E+00     |     *

     .180E+03    .256E+00     |      *

     .240E+03    .272E+00     |      *

     .300E+03    .287E+00     |       *

     .360E+03    .302E+00     |       *

     .420E+03    .316E+00     |       *

     .480E+03    .329E+00     |        *

     .540E+03    .342E+00     |        *

     .600E+03    .354E+00     |         *

     .660E+03    .366E+00     |         *

     .720E+03    .378E+00     |         *

     .780E+03    .389E+00     |          *

     .840E+03    .400E+00     |          *

     .900E+03    .411E+00     |          *

     .960E+03    .421E+00     |           *

     .102E+04    .431E+00     |           *

     .

     .

     .192E+04    .563E+00     |               *

     .198E+04    .571E+00     |               *

     .204E+04    .578E+00     |                *

     .210E+04    .586E+00     |                *

     .216E+04    .593E+00     |                *

     .222E+04    .601E+00     |                *

     .228E+04    .608E+00     |                 *

     .234E+04    .615E+00     |                 *

     .240E+04    .622E+00     |                 *

     .246E+04    .629E+00     |                 *

     .252E+04    .636E+00     |                 *

     .258E+04    .643E+00     |                  *

     .264E+04    .650E+00     |                  *

     .270E+04    .656E+00     |                  *

Figure 20-8b.   Numerical results (Example 20-6).
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One Fortran subtlety deserves elaboration.  The 200 do-loop defines two
separate difference equations for the flows left and right of the front, but the
pressure updating in the 260 do-loop refers to a single pressure.  So long as the
front does not move more than one mesh in a time step, errors due to copying
liquid pressure as gas pressure, or conversely, do not exist, assuming small
capillary pressures.  Pressure continuity assures that both blocks will contain
identical pressures.

  INPUT PARAMETER SUMMARY:
 Rock core permeability (darcies): .100E-02
 Rock core porosity (decimal nbr): .500E-01
 Viscosity, invading  liquid (cp): .100E+01
 Viscosity of  displaced gas (cp): .200E-01
 Compr .. invading liquid (1/psi): .300E-05
 Muskat m exponent of gas (real#): .700E+00
 Pressure at left boundary  (psi): .200E+03
 Pressure at right boundary (psi): .100E+03
 Pressure, initial time t=0 (psi): .100E+03
 Length of rock core sample  (ft): .100E+01
 Initial "xfront" position (feet): .200E+00
 Integration space step size (ft): .100E-01
 Integration time step size (sec): .100E+01
 Maximum allowed  number of steps: .100E+05
 Number spatial DX grids selected: .101E+03

   Time (sec)  Position (ft)
                              ______________________________
     .000E+00    .200E+00     |    *
     .600E+02    .239E+00     |     *
     .120E+03    .272E+00     |      *
     .180E+03    .302E+00     |       *
     .240E+03    .329E+00     |        *
     .300E+03    .354E+00     |         *
     .360E+03    .378E+00     |         *
     .420E+03    .400E+00     |          *
     .480E+03    .421E+00     |           *
     .540E+03    .441E+00     |           *
     .600E+03    .461E+00     |            *
     .660E+03    .479E+00     |             *
     .720E+03    .497E+00     |             *
     .
     .
     .204E+04    .796E+00     |                      *
     .210E+04    .807E+00     |                       *
     .216E+04    .818E+00     |                       *
     .222E+04    .829E+00     |                       *
     .228E+04    .839E+00     |                        *
     .234E+04    .850E+00     |                        *
     .240E+04    .860E+00     |                        *
     .246E+04    .870E+00     |                         *
     .252E+04    .880E+00     |                         *
     .258E+04    .890E+00     |                         *
     .264E+04    .900E+00     |                          *
     .270E+04    .910E+00     |                          *
     .276E+04    .920E+00     |                          *
     .282E+04    .929E+00     |                           *
     .288E+04    .939E+00     |                           *
     .294E+04    .948E+00     |                           *
     .300E+04    .957E+00     |                            *

Figure 20-8c.  Numerical results (Example 20-6).

Example 20-7.  Simultaneous mudcake buildup and
displacement front motion for incompressible liquid flows.

In this last exercise, we reconsider the problem of dynamically coupled
invasion front motion and mudcake growth in lineal flow; this was studied
analytically in Chapter 17, where it was solved in closed form, but we will
approach its solution numerically.  This is pursued for several reasons.  First, we
wish to demonstrate how problems with moving boundaries and disparate space
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scales (characterizing mudcake and rock) are formulated and solved with finite
differences.  Second, computational methods are ultimately needed because they
are more convenient when cake compaction, time-dependent applied pressures,
and formation heterogeneities are required.  Because the present problem can be
described analytically, we at least possess a tool with which to evaluate the
quality of more approximate solution methods.  In the foregoing examples, we
emphasized how the effects of transients due to fluid compressibility, and the
nonlinear effects of gas displacement by liquids, can be numerically modeled.
For the present, we return to simple incompressible flows of liquids to illustrate
the main ideas, so that we need not address the complicating, but nonetheless
straightforward, effects.  Here, we have instead two moving boundaries: the
displacement front within the rock and the surface of the mudcake, which moves
in such a way as to increase cake thickness with time.  Thus, analytical and
computational changes to our schemes are required.  In addition, as we have
noted, disparate space scales enter the numerical formulation in a subtle way:
mudcakes are thin relative to the distance that the filtrate penetrates the
formation.  The problem domain is shown in Figure 20-9a.

xfx = -xc < 0 0

if imaxiwalli = 1

Pmud Pres

Flow

Cake RockFront

Figure 20-9a.  Three-layer lineal flow problem.

For simplicity, we assume that in the cake and rock, the permeabilities kc

and kr are constant, although they can be different constants.  Therefore, whether
we start with d(kc dp/dx)/dx = 0 or d(kr dp/dx)/dx = 0, the permeabilities factor
out, leaving

d2p(x)/dx2 = 0                                                                                  (20-10)

in either case.  Now, we can approximate Equation 20-10 with the central
difference formula used earlier, namely,

d2p(xi )/dx2 = {pi-1 - 2pi + pi+1}/(∆x)2  +  O(∆x)2  = 0               (20-14)
Our combined mudcake-growth and displacement-front-movement

problem, with its clearly disparate length scales, is not unlike boundary layer or
shock layer type flows in classical fluid mechanics.  That is, the cake is
extremely thin, while the scale of the front motion is orders of magnitude larger:
any attempt to characterize both flows using the same physical measures of
length is likely to result in inaccuracy.  Therefore, we would like to select ∆x, as
usual, for the rock, but ∆xc for the mudcake, with ∆xc  << ∆x.  Fortunately, this
does not lead to numerical complexity, since the grid length completely drops
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out when applying Equation 20-14 to Equation 20-10. (This is not the case with
radial flows, or transient compressible flows, where minor changes are needed.)

Thus, Equation 20-15, which we have reproduced as follows, applies
throughout the entire domain of flow in the general case where we have both
different permeabilities and grid sizes.

pi-1 - 2pi + pi+1 =  0                                                                        (20-15)

This does not mean that changes won’t be needed; they are needed, and they
will be discussed shortly.  But for now, the pressures p1, p2, ..., and pimax at the
nodes i = 1, 2, ..., and i max are determined as in our earlier examples by writing

Equation 20-15 for each of the internal nodes i = 2, 3, ..., and imax-1 (with two

notable exceptions, to be discussed).  This yields i max -2 number of linear

equations, two short of the number of unknowns i max.  The two additional

required equations are obtained from boundary conditions; in this case,
p(-xc) = Pmud, xc  > 0                                                               (20-54)

p(L) = Pres                                                                                  (20-55)

for the mud and the farfield reservoir.  That is, we assume that p1 = Pmud and

pimax =  Pres where L is the core length.  This leads to the coupled equations

p1 = Pmud
i = 2: p1 -2p2 + p3 =  0
i = 3: p2 - 2p3 + p4 =  0
i = 4: p3 - 2p4 + p5 =  0
.
i = iwall (20-56)
.                                                                                                         
i = ifront or if :

.
i = imax-2: pimax-3 - 2pimax-2 + pimax-1 =  0
i = imax-1:  pimax-2  -2pimax-1+ pimax = 0

  pimax = Pres
or

| 1 0 | | p1 | = | Pmud |
| 1 -2 1 | | p2 | = | 0 |
| 1 -2 1 | | p3 | = | 0 |

| ... | | . | = | .. |
| ... | | . | = | .. | (20-57)
| ... | | . | = | .. |
| ... | | . | = | .. |
| 1   -2 1 | | pimax-2 | = | 0 |
| 1 -2 1 | | pimax-1 | = | 0 |
| 0 1 | | pimax | = | Pres |
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just as we had obtained for simple liquid flows.  The crucial differences,
however, arise from the matching conditions that need to be enforced at the
mud-to-mudcake and displacement front interfaces.  Let the subscripts c and r
denote cake and rock properties, while mf and o denote mud filtrate and
formation oil or displaced fluid.  At the front interface separating invading from
displaced fluids, velocity continuity requires that -(kr/µmf) dpr(xf -)/dx to the

left of the front equal the velocity -(kr/µo) dpr(xf +)/dx just to the right.

Matching conditions at displacement front.  Since rock permeability
cancels, we have (1/ µmf) dp(xf -)/dx = (1/ µo) dp(xf +)/dx.  Now we will denote

by if- and if+ the spatial locations infinitesimally close to the left and right of the
front x = xf, which is itself indexed by i = i f.  Then, we can approximate the

pressure gradient dp(xf -)/dx using backward differences, whereas the gradient

dp(xf +)/dx can be modeled using forward differences. (Again, differentiation

through the interface itself is forbidden since the pressure gradient in general
changes suddenly.)  This process leads to (1/µmf) (p if- - pif-1)/∆x  = (1/µo)

(pif+1 - pif+)/∆x, or (1/µmf) (pif- - pif-1)  = (1/µo) (p if+1 - pif+).  Now, since

surface tension is unimportant, pressure continuity requires that pif- = pif+ or
simply pif.  Thus, at the interface, the matching condition

(1/µmf) pif-1 - (1/µmf + 1/µo)pif  + (1/µo) pif+1 = 0                  (20-58)

applies, and straightforward changes are made to Equations 20-56 and 20-57
corresponding to the row defined by i = ifront.  Unlike the central difference
approximation, which is second-order accurate, our use of backward and
forward differences in deriving Equation 20-58 renders it only O(∆x) accurate.

Matching conditions at the cake-to-rock interface.  It is tempting to
invoke similar arguments at the index i = iwall representing the cake-to-rock
interface, modifying Equation 20-58 in the obvious manner to account for
differences between mudcake and rock permeabilities.  This would lead to

kc piwall-1 - (kc + kr) piwall  + kr piwall+1 = 0                          (20-59)

In Equation 20-59, viscosity drops out identically, since the same filtrate flows
through the mudcake as through the flushed zone in the rock.  However, any
attempt to use Equation 20-59 would produce gross numerical error and poor
physical resolution in the mudcake, since identical grid sizes ∆x are implicit in
its derivation.  Also, the fact that Equation 20-59 is not as numerically stable as
pi-1 - 2pi + pi+1 =  0, say, would lead to inaccuracies if our algorithm were

extended to transient compressible flows.  Thus, we need to return to basics and
consider the more general statement

- (kc/µmf) dp(xwall -)/dx = - (kr/µmf) dp(xwall+)/dx                 (20-60)

Since physical length scales in the mudcake are much smaller than those
characterizing the rock, we wish to use the mesh ∆xs in the cake, and the usual
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∆x in the rock, such that ∆xs << ∆x, in constructing our backward and forward
differences.  This leads to the matching condition

(kc/∆xs) piwall-1 - (kc/∆xs + kr/∆x) piwall  + (kr/∆x) piwall+1 = 0 (20-61)

since piwall-  =  p iwall+.   This difference equation, if we choose kc ∝ ∆xs  and

kr ∝ ∆xs , leads directly to our desired piwall-1 - 2 piwall  + piwall+1 = 0!  Thus,

we use Equation 20-61 in Equations 20-56 and 20-57 to separate the finite
difference equation blocks for the cake and flushed zone flows; this matching
condition applies at the matrix row corresponding to i = iwall.

Coding modifications.  Equations 20-58 and 20-61 represent,
theoretically, the most significant modifications, but other equally important
details must be addressed.  At the end of each time step, we advance the
displacement front using Equations 20-30 to 20-32, as in Example 20-1.  In the
notation of the present example, we have

xf,new  =  xf,old - {kr∆t/(µmfφ∆x)}(pif - p if-1)old                     (20-62)

where the p refers to the pressure in the flushed zone.  The mud-to-mudcake
boundary x = xc(t) is updated using our earlier mudcake growth formula,
modified to accommodate the sign convention of Figure 20-9a, that is,

dxc/dt = - {fs/{(1-fs)(1-φc)}}|vn| < 0                                           (20-63)

where |vn| is proportional to the Darcy velocity (kc/µmf) dp(xc)/dx at the cake
surface.  The mudcake counterpart to Equation 20-62 is therefore

xc,new  =  xc,old + {fs/{(1-fs)(1-φc)}}{kc∆t/(µmf∆x)}(p2 - p1)old (20-64)

Numerically, as Equation 20-56 suggests, three separate matrix regimes
(separated by two matching conditions) are required.  Initially, the iwall index

shown in Figure 20-9a must at least equal three; in this minimal setup, i = 1
handles the left mud pressure boundary condition, i = 3 handles Equation 20-61,
while i = 2 would correspond to a single finite difference equation pi-1 - 2pi +
pi+1 = 0 written for the index i = 2.  More initial mudcake grids, of course,
would lead to inaccuracy, since mudcake thickness is vanishingly small at initial
times (unless, of course, mesh sizes were significantly decreased).  The
suggested value of three allows us to grow our cake outward as time advances.
Finally, observe that we will dynamically adjust our meshes at each time step.
The leading index i = 1 is always assigned to the moving mud-to-mudcake
boundary.  Then we take the mudcake-to-rock interface at iwall = |xc|/∆x + 3 (so

that iwall = 3 if xc = 0), and additionally, i f = x f /∆x + i wall.  Also, while

Equation 20-63 explicitly requires that the mudcake properties fs, φc, and kc be

available, we understand from Chapter 19 that they can equivalently be replaced
by lumped parameters obtained from the surface filtration test developed there.
Relevant portions of the Fortran source code that we designed to implement the
foregoing changes are shown in Figure 20-9b, where we have added descriptive
comment statements as needed.  Key notes corresponding to ideas we have
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emphasized so far are shown in bold type for emphasis.  Finally, typical
computed results are displayed in Figure 20-9c.
             .
C     Mudcake properties can be entered as shown, but lumped data
C     from the  filtration  test  in Chapter 4 is more convenient.
      WRITE(*,36)
 36   FORMAT(' Mud cake  permeability (darcies):  ',$)
      READ(*,32) KCAKE
      WRITE(*,37)
 37   FORMAT(' Mud cake porosity  (decimal nbr):  ',$)
      READ(*,32) PHIMUD
      WRITE(*,38)
 38   FORMAT(' Mud solid fraction (decimal nbr):  ',$)
      READ(*,32) FS
      .
C     INITIAL SETUP
      IWALL = 3
      IMAX  = XCORE/DX + IWALL
      IMAXM1 = IMAX-1
      IFRONT = XFRONT/DX + IWALL
      .
      N = 0
      T = 0.
      XCAKE = 0.
      .
C     START TIME INTEGRATION
      DO 300  N=1,NMAX
      T = T+DT
      DO 200  I=2,IMAXM1
      A(I) =  1.
      B(I) = -2.
      C(I) =  1.
      W(I) =  0.
 200  CONTINUE
      A(1) = 99.
      B(1) = 1.
      C(1) = 0.
      W(1) = PLEFT
      A(IMAX) = 0.
      B(IMAX) = 1.
      C(IMAX) = 99.
      W(IMAX) = PRIGHT
      IF(VISCIN.EQ.VISCDP) GO TO 240
      A(IFRONT) =  1./VISCL
      B(IFRONT) = -1./VISCL -1./VISCR
      C(IFRONT) =  1./VISCR
      W(IFRONT) =  0.
 240  A(IWALL) =  KC/DXCAKE
      B(IWALL) = -KC/DXCAKE -K/DX
      C(IWALL) =  K/DX
      W(IWALL) =  0.
      CALL TRIDI(A,B,C,VECTOR,W,IMAX)
      DO 250  I=1,IMAX
      P(I) = VECTOR(I)
 250  CONTINUE
      PGRAD  = (P(IFRONT)-P(IFRONT-1))/DX
      XFRONT = XFRONT - (K*DT/(PHI*VISCL))*PGRAD
      PGRADC = (P(2)-P(1))/DXCAKE
      XCAKE  = XCAKE+(FS/((1.-PHIMUD)
     1        *(1.-FS)))*(KC/VISCL)*PGRADC*DT

Figure 20-9b.   Fortran source code (Example 20-7).
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      IWALL  = -XCAKE/DXCAKE + 3
      IFRONT = XFRONT/DX + IWALL
      IMAX   = XCORE/DX + IWALL
      .
      WRITE(*,280) N,T,XFRONT,IFRONT,XCAKE,IWALL
      MINDEX = MINDEX+1
      TIME(MINDEX) = T
      XPLOT(MINDEX) = XFRONT
      XC(MINDEX) = -XCAKE
 300  CONTINUE
      .

Figure 20-9b.   Continued.

 INPUT PARAMETER SUMMARY:
 Rock core permeability (darcies): .100E+01
 Rock core porosity (decimal nbr): .100E+00
 Mud cake permeability  (darcies): .100E-02
 Mud cake porosity  (decimal nbr): .100E+00
 Mud solid fraction (decimal nbr): .100E+00
 Viscosity of invading fluid (cp): .100E+01
 Viscosity, displaced  fluid (cp): .100E+01
 Pressure at left boundary  (psi): .100E+03
 Pressure at right boundary (psi): .000E+00
 Length of rock core sample  (ft): .100E+01
 Initial "xfront" position (feet): .100E+00
 DX grid size in rock sample (ft): .200E-02
 DX grid size in the mudcake (ft): .200E-03
 Integration time step size (sec): .100E+00
 Maximum allowed  number of steps: .100E+04

   INVASION FRONT POSITION VERSUS TIME:
   Time (sec)  Position (ft)
                              ______________________________
     .000E+00    .100E+00     | *
     .600E+01    .283E+00     |      *
     .120E+02    .388E+00     |          *
     .180E+02    .470E+00     |            *
     .240E+02    .540E+00     |              *
     .300E+02    .602E+00     |                *
     .360E+02    .659E+00     |                  *
     .420E+02    .710E+00     |                    *
     .480E+02    .759E+00     |                     *
     .540E+02    .804E+00     |                       *
     .600E+02    .847E+00     |                        *
     .660E+02    .888E+00     |                         *
     .720E+02    .927E+00     |                          *
     .780E+02    .965E+00     |                            *

   MUD CAKE THICKNESS VERSUS TIME:
   Time (sec)  Position (ft)
                              ______________________________
     .000E+00    .000E+00     |
     .600E+01    .226E-02     |    *
     .120E+02    .356E-02     |       *
     .180E+02    .457E-02     |          *
     .240E+02    .544E-02     |             *
     .300E+02    .620E-02     |               *
     .360E+02    .690E-02     |                 *
     .420E+02    .753E-02     |                   *
     .480E+02    .813E-02     |                    *
     .540E+02    .869E-02     |                      *
     .600E+02    .922E-02     |                       *
     .660E+02    .973E-02     |                         *
     .720E+02    .102E-01     |                          *
     .780E+02    .107E-01     |                            *

Figure 20-9c.  Numerical results (Example 20-7).

Modeling formation heterogeneities.  Rock heterogeneities such as
internal filter cake, or damaged zones, are easily modeled by allowing k r  to vary
with x.  If so, the differential equation d2p(x)/dx 

2 = 0 no longer applies, as it is
derived for constant permeabilities only.  Instead, we must consider

d(kr dp/dx)/dx = 0                                                                      (20-65)
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kr(x) d2p(x)/dx2 + (dkr/dx) dp/dx   = 0                                          (20-66)

Then, the central difference approximation
kr(xi) {pi-1 - 2pi + p i+1}/(∆x)2

+ {(kr,i+1 - kr,i-1)/(2∆x)}{(pi+1 - pi-1)/(2∆x)} = 0                     (20-67)
leads to

{pi-1 - 2pi + p i+1} + {(kr,i+1 - kr,i-1)/(4kr(xi))}(pi+1 - pi-1) = 0      (20-68)

or
[1 - {(kr,i+1 - kr,i-1)/(4kr(xi))}] p i-1 - 2pi

+ [1 + {(kr,i+1 - kr,i-1)/(4kr(xi))}] p i+1 =  0                      (20-69)

Thus, the only required change when kr(x) is an explicitly prescribed function of

x is the replacement of pi-1 - 2pi + pi+1 = 0 by Equation 20-69.  When kr (p) is a
function of p, which additionally depends on x, the physics changes, and the
algorithm modifications discussed next are required.

Mudcake compaction and compressibility.  Mudcake compaction,
meaning pressure-dependent permeability and porosity, is easily handled.  For
example, if kc = kc(p), the governing pressure equation in the mudcake

d(kc dp/dx)/dx = 0                                                                       (20-70)

becomes
kc(p) d2p(x)/dx2 + (dkc/dp) (dp/dx)2   = 0                                    (20-71)

Following the lead of earlier examples, Equation 20-71 can be linearized about
pressure values obtained from one earlier time step, so that we can write

kc(pold) d2p(x)/dx2 + {(dkc/dp)(dp/dx)}old (dp/dx)   = 0          (20-72)

This is exactly Equation 20-66, with k r(x) replaced by k c(pold) and (dkr /dx)

replaced by {(dkc/dp)(dp/dx)}old.  Thus, an equation analogous to Equation 20-

69 is easily obtained.  The function k c(p) and the function φc(p) in Equation 20-

64 could be hard-coded into the main program, or declared as subroutines or
statement functions, as desired.  Finally, mudcake compressibility transients are
easily modeled using the ideas developed in Example 20-4.  For such problems,
instead of the nonlinear ODE d(kc dp/dx)/dx = 0, we would instead solve the
nonlinear parabolic equation

∂{(kc(p)/µ) ∂p(x,t)}/∂x = ∂{φc(p)µc(p) p(x,t)}/∂t                             (20-73)

where we have introduced the pressure-dependent compressibility c(p).  The
required Fortran changes are left to the interested reader.

Modeling borehole activity.  We have developed the foregoing example
in detail assuming lineal flows, but as we have shown, the extension to
cylindrical radial flows requires but two lines of Fortran changes.  These are
specifically redefinitions for the A and C matrix coefficients as indicated in
Example 20-2.  We also observe that mud weight is often increased or decreased
during drilling and that this weight change is accomplished by adding or
removing solid particulates (e.g., barite), and modifying viscosifiers (e.g.,
bentonite).  The mud pressure PLEFT and the invading filtrate viscosity VISCIN
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can be redefined as general time-dependent Fortran statement functions.  This
allows modeling flexibility that cannot be achieved with exact analytical
solutions.  Finally, note that the erosive effects of dynamic filtration can be used
to limit radial mudcake growth to an equilibrium value, by introducing if-then
programming logic (e.g., do not update xc if xc > xc,equil).

We have selected a cross-section of examples, ranging from constant
density, two-fluid flows without mudcake to flows with transients due to
compressibility to problems with mudcake thickening with time.  Naturally,
other combinations of problems with lineal, radial, and spherical geometries,
single or multiple fluids in formations, compressible mudcake, general transient
effects, and so on, can be modeled by combining appropriate pieces of theory
and source code.  Finally, this author warns prospective users of canned
computational fluid mechanics software of likely formulation errors.  In an
environment driven by high-resolution graphics and user-friendly screen
interfaces, it is important to understand precisely which equations are solved and
the methodology employed.  The highly specialized problems typical of
formation invasion applications are unlikely to be pre-programmed in
commercial solvers; users should direct technical questions to development and
not sales staff.

PROBLEMS AND EXERCISES

1. The skin model derived in Chapter 18 for wellbore damage does not apply
when the damaged zone is extensive.  For such problems, two fully coupled
partial differential models (i.e., two heat equations) must be solved
simultaneously.  Formulate this problem for cylindrical radial flows and
solve it numerically.  Evaluate the extent to which the skin model applies
(or does not apply) in typical well testing applications.

2. The three-layer invasion model for piston-like displacements was solved
analytically in Chapter 17 for lineal and radial problems.  Solve these same
problems numerically, and compare their solutions with the exact ones.
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21
Forward and Inverse

Multiphase Flow Modeling

In this final chapter, we present new ideas on immiscible and miscible flow
modeling with respect to formation invasion and time lapse analysis.  In
particular, we first study forward simulation methods, where the evolution of an
initial state dynamically in time is considered.  Then, we focus on inverse time
lapse analysis applications that attempt to uncover formation evaluation
information from data collected by well logging instruments.  Whereas our
earlier models assume piston-like flows associated with discontinuous step
changes in fluid properties, the forward and inverse, miscible and immiscible
flow models here are generally smeared by diffusion, stretched by geometric
spreading, and characterized by steep saturation shock fronts.  We pose, and
importantly solve, what we call the resistivity migration problem, wherein the
distinct fronts from which prescribed smeared profiles evolve are recovered by
reverse diffusion using methods similar to the parabolized wave methods in
seismic migration.  We also show how the sharp saturation discontinuities
obtained in immiscible water-oil flows can be unshocked in order to recover the
original smooth saturation distributions for further information processing.  The
work in this chapter is not a tutorial on multiphase flow, although all derivations
do proceed from first principles.  This book assumes some exposure to reservoir
flow analysis, for example, to concepts such as Darcy’s law, miscible flow,
relative permeability, and capillary pressure, but it does not require any
exposure to the research literature or any experience in numerical simulation.

Problem hierarchies.  We first discuss immiscible two-phase flows in the
Buckley-Leverett limit of zero capillary pressure, and we provide exact,
analytical, closed-form solutions for early-time, near-well invasion problems,
which can be modeled by a planar flow.  Also, since mud filtration rates are at
their largest, the effects of capillary pressure can be ignored.  For the problem in
which saturation shocks form, shock-fitting is used to obtain the correct physical
solution.  Then, we turn our attention to miscible flows, where the competing
effects of convection and diffusion are important. (This model can be used to
refine the water-phase description obtained in the immiscible discussion.)  Here
new closed form solutions are given, and numerical models are developed.
Using these models, the basic ideas behind resistivity migration and undiffusion
are introduced using lineal and radial flow examples.
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With these discussions completed, we proceed to two more difficult
problems.  First, we consider deep, late-time invasion, when filtration rates are
likely to be the smallest; here, the effects of radial geometric divergence and
capillary pressure cannot be ignored.  A two-phase flow model is formulated
which assumes that a highly impermeable mudcake controls the filtration rate
into the flushed zone.  This is solved numerically for a range of parameters that
alter the ratio of inertial to capillary forces from very low to very high, in the
latter case, showing how shock formation as suggested by the Buckley-Leverett
limit of zero capillary pressure is recovered.  We show how nearly
discontinuous saturation solutions can be reversed or unshocked using a high-
order accurate numerical finite difference model.  Second, the immiscible flow
problem where mud filtrate invades a radial core is considered, but the usual
assumption that a highly impermeable mudcake controls the flow rate into the
core is not invoked.  Thus, the model applies to mud filtrate invasion into very
low permeability hydrocarbon zones with mixed water and oil.  This combined
analytical and computational model is developed using ideas obtained by
integrating our two-phase flow formulation with the numerical mudcake growth
model designed in Chapter 20.  Finally, because much of two-phase flow
modeling, by virtue of its inherent mathematical difficulties, is necessarily
numerical, we refer the reader to our prior discussion in Chapter 13 on artificial
viscosity, numerical diffusion, and convergence to correct solutions.

IMMISCIBLE BUCKLEY-LEVERETT LINEAL FLOWS
WITHOUT CAPILLARY PRESSURE

In this section, we will study the immiscible, constant density flow through
a homogeneous lineal core where the effects of capillary pressure are
insignificant.  In particular, we will derive exact, analytical, closed form
solutions for the forward modeling problem for a single core.  These solutions
include those for saturation, pressure and shock front velocity, for arbitrary
relative permeability and fractional flow functions.  We will determine what
formations properties can be inferred, assuming the existence of a propagating
front, when the front velocity is known.  The Darcy velocities are

qw = -(kw/µw) ∂Pw/∂x                                                      (21-1)

qnw = -(knw/µnw) ∂Pnw/∂x                                                  (21-2)

where µw and µnw are viscosities, and kw and knw are relative permeabilities,

the subscripts w and nw here denoting wetting and nonwetting phases.  For
mathematical simplicity, we assume zero capillary pressures Pc, so that

Pnw  - Pw  =  Pc =  0                                                                  (21-3)

For water injection problems, this assumes that the displacement is fast (or,
inertia dominated), so that surface tension can be neglected; however, when
water breakthrough occurs, the assumption breaks down locally.  In formation
invasion, this zero capillary pressure assumption may be valid during the early
periods of invasion near the well, when high filtrate influx rates are possible, as
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the resistance offered by mudcakes is minimal.  For slow flows, capillary
pressure is important; but generally, fast and slow must be characterized
dimensionlessly in the context of the model.  Since Pnw  = Pw holds, the pressure
gradient terms in Equations 21-1 and 21-2 are identical.  If we divide Equation
21-2 by Equation 21-1, these cancel and we obtain

qnw = (knwµw/kwµnw)qw                                                       (21-4)

At this point, we invoke mass conservation, and assume for simplicity a constant
density, incompressible flow.  Then, it follows that

∂qw/∂x = - φ∂Sw/∂t                                                                    (21-5)

∂qnw/∂x= - φ∂Snw/∂t                                                                (21-6)

where Sw and Snw are the wetting and non-wetting saturations.  Since the fluid
is incompressible, these saturations must sum to unity; that is,

Sw +  Snw  =  1                                                                           (21-7)

Then, upon adding Equations 21-5 and 21-6, and simplifying with Equation 21-
7, it follows that

∂(qw + qnw)/∂x  =  0                                                               (21-8)

Thus, we conclude that a one-dimensional, lineal, constant density flow without
capillary pressure admits the general total velocity integral

qw + qnw = q(t)                                                                         (21-9)

where an arbitrary functional dependence on time is permitted.  We have not yet
stated what q(t) is, or how it is to be determined; this crucial issue is discussed in
detail later.  It is convenient to define the fractional flow function f w for the
wetting phase by the quotient

fw = qw/q                                                                                  (21-10)

Then, for the nonwetting phase, we obtain
fnw = qnw/q  =  (q - q w )/q = 1 - fw                                          (21-11)

where we used Equation 21-9.  Equations 21-10 and 21-11 can be rewritten as
qw = q fw                                                                                     (21-12)

qnw = q (1 - fw)                                                                            (21-13)

Substituting into Equation 21-4, the function q(t) drops out, so that

1 - fw = (knwµw/kwµnw) fw                                                     (21-14)

fw(Sw,µw/µnw) = 1/{1 + (knwµw/kwµnw)}                             (21-15)

The function fw(Sw,µw/µnw) in Equation 21-15, we emphasize, is a function of

the constant viscosity ratio µw/µnw and the saturation function Sw itself.

According to Equation 21-12, qw must likewise be a function of Sw.  Thus, we

can rewrite Equation 21-5 with the more informed nomenclature
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∂Sw/∂t= -φ-1 ∂qw/∂x

= -φ-1q ∂fw(Sw,µw/µnw)/∂x

= -φ-1q dfw(Sw,µw/µnw)/Sw ∂Sw/∂x                          (21-16)

or
∂Sw/∂t  + {q(t)/ φ} dfw(Sw,µw/µnw)/dSw ∂Sw/∂x  = 0                (21-17)

Equation 21-17 is a first-order nonlinear partial differential equation for the
saturation Sw(x,t).  Its general solution can be easily constructed using concepts

from elementary calculus.  The total differential dSw for the function Sw(x,t)
can be written in the form

dSw  =  ∂Sw/∂t dt  + ∂Sw/∂x dx                                                  (21-18)

If we divide Equation 21-18 by dt, we find that

dSw/dt  =  ∂Sw/∂t  + dx/dt ∂Sw                                                  (21-19)

Comparison with Equation 21-17 shows that we can certainly set

dSw/dt  =  0                                                                                  (21-20)
provided

dx/dt = {q(t)/ φ} dfw(Sw,µw/µnw)/dSw                                       (21-21)

Equation 21-20 states that the saturation Sw is constant along a trajectory whose

speed is defined by Equation 21-21. (This constant may vary from trajectory to
trajectory.)  In two-phase immiscible flows, we conclude that it is the
characteristic velocity dx/dt = {q(t)/ φ} d fw(Sw,µw/µnw)/dSw that is important,

and not the simple dx/dt = q(t)/ φ obtained for single-phase flow.  But when
shocks form, it turns out that Equation 21-39 applies.

Example boundary value problems.  If the filtration rate q(t) is a
constant, say qo, Equation 21-21 takes the form

dx/dt = {qo/φ} dfw(Sw,µw/µnw)/dSw                                          (21-22)

Since the derivative dfw(Sw,µw/µnw)/dSw is also constant along trajectories (as

a result of Equation 21-20), depending only on the arguments Sw and µw/µnw,
it follows that Equation 21-22 can be integrated in the form

x  - {(qo/φ) dfw(Sw,µw/µnw)/dSw} t  =  constant                     (21-23)

That Sw is constant when x  - {  ...} t is constant can be expressed as

Sw(x,t) = G(x  - {(qo/φ) dfw(Sw,µw/µnw)/dSw}t)                    (21-24)

where G is a general function.  Note that the method by which we arrived at
Equation 21-24 is known as the method of characteristics (Hildebrand, 1948).

General initial value problem.  We now explore the meaning of Equation
21-24.  Let us set t = 0 in Equation 21-24.  Then, we obtain

Sw(x,0) = G(x)                                                                               (21-25)
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In other words, the general saturation solution to Equation 21-17 for constant
q(t) = qo satisfying the initial condition Sw(x,0) = G(x), where G is a prescribed

initial function, is exactly given by Equation 21-24!
Thus, it is clear that the finite difference numerical solutions offered by

some authors are not really necessary because problems without capillary
pressure can be solved analytically.  Actually, such computational solutions are
more damaging than useful because the artificial viscosity and numerical
diffusion introduced by truncation and round-off error smear certain
singularities (or, infinities) that appear as exact consequences of Equation 21-17.
Such numerical diffusion, we emphasize, appears as a result of finite difference
and finite element schemes only, and can be completely avoided using the more
labor-intensive method of characteristics.  For a review of these ideas, refer to
Chapter 13.  As we will show later, capillary pressure effects become important
when singularities appear; modeling these correctly is crucial to correct strength
and shock position prediction.

To examine how these singularities arise in the solution of Equation 21-17,
take partial derivatives of Equation 21-24 with respect to x, so that

∂Sw(x,t)/ ∂x  =  {G’}{1 - t (qo/φ) d2fw/dSw
2 ∂Sw(x,t)/ ∂x}      (21-26)

Solving for ∂Sw(x,t)/∂x, we obtain

∂Sw(x,t)/ ∂x = G’/{1 + t (qo/φ) (G') d2fw/dSw
2}                        (21-27)

Now, the fractional flow function f w(Sw,µw/µnw) is usually obtained from

laboratory measurement and is to be considered as prescribed for the purposes of
analysis.  Let us focus our attention on the denominator of Equation 21-27.  If it
remains positive, then the spatial derivative ∂Sw(x,t)/ ∂x is well-behaved for all

time.  If, however, (qo/φ) (G’) d2fw/dSw
2 < 0, then it follows that the

denominator vanishes in the finite breakthrough time given by

tbreakthrough = -φ/{qo G’ d2fw/Sw
2}                                         (21-28)

at which point the spatial derivative of saturation  ∂Sw(x,t)/∂x → ∞ becomes

singular, approaching infinity, increasing without bound.  In reservoir
engineering, this is known by various terms including water breakthrough,
shocks, or saturation discontinuities.  Since Sw undergoes rapid change, it is

also said to be multivalued, or doublevalued.  Whether or not this discontinuity
exists in reality cannot be determined within the scope of our zero capillary
pressure analysis.  When saturation gradients become large, the capillary forces
that we have neglected may become important, and cannot be excluded a priori
in any analysis.  When infinite saturation gradients form, as they have formed
here, low-order theory breaks down, and recourse to a model that offers finer
physical resolution is required.

General boundary value problem for infinite core.  Note that the argument
of G{ } appearing in the solution of Equation 21-24 takes the general form x  -
{(qo/φ) dfw(Sw,µw/µnw)/dSw} t.  There is nothing sacred about this
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expression, and we could have multiplied it by two, five, or - φ/(qo dfw/dSw ).
With the last choice, we can rewrite Equation 21-24 as

Sw(x,t) = H{t - φx /(qo dfw/dSw )}                                              (21-29)

If we set x = 0 throughout in Equation 21-29, we find that Sw(0,t) = H(t).  Thus,

the saturation solution to Equation 21-17 satisfying the boundary condition
Sw(0,t) = H(t), where H is a prescribed function, is given by Equation 21-29.

Variable q(t).  If the filtration rate q(t) is a general function of time, we
return to Equation 21-21 and rewrite it in the differential form

dx = {q(t)/ φ} dfw(Sw,µw/µnw)/dSw dt                                   (21-30)

Since Equation 21-20 states that Sw is still constant along a trajectory, the term

dfw(Sw,µw/µnw)/dSw is likewise constant.  Thus, the integral of Equation 21-
30 is simply

x - φ-1dfw(Sw,µw/µnw)/dSw ∫ q(t) dt  = constant                   (21-31)

where ∫ q(t) dt denotes the indefinite integral (e.g., ∫ qo dt = qot is obtained for

our constant rate problem).  Following a line of reasoning similar to that leading
to Equation 21-24, since Sw is constant whenever the left side of Equation 21-31
is constant, we have the equivalent functional statement

Sw(x,t) = G(x - φ-1dfw(Sw,µw/µnw)/dSw ∫ q(t) dt)               (21-32)

Equation 21-32 is the general saturation solution for time-dependent q(t).  If the
integrated function ∫ q(t) dt vanishes for t = 0, this solution satisfies the initial
condition specified by Equation 21-25.  If the function does not vanish, some
minor algebraic manipulation is required to obtain the correct format.

Mudcake-dominated invasion.  So far, we have not stated how the
velocity q(t), possibly transient, is determined.  If we assume that the flow at the
inlet to our lineal core is controlled by mudcake, as is often the case, the fluid
dynamics within the core will be unimportant in determining q(t). (This
assumption is removed in our last example.)  Then, the general mudcake model
in Chapter 17 for single-phase filtrate flows provides the required q(t).  In fact,

xf (t) = φeff
-1√{2k1(1-φc)(1-fs)(pm-pr)t/(µffs)}                       (21-33)

when the effect of spurt and the presence of the formation are neglected.  The
fluid influx rate q(t) through the mudcake is therefore given by

q(t) = φeff dxf (t)/dt = ½ t-½ √{2k1(1-φc)(1-fs)(pm-pr)/(µffs)}   (21-34)

which can be substituted in the nonlinear saturation equation

∂Sw/∂t  + {q(t)/ φ} dfw(Sw,µw/µnw)/dSw ∂Sw/∂x  = 0              (21-35)

This can be integrated straightforwardly using the method of characteristics.  So
long as singularities and saturation fronts do not form, saturations obtained as a
function of space and time will be smooth, and shocks will not appear.

Shock velocity.   We will consider the problem that arises when saturation
shocks do form. (Problems with smooth but rapidly varying properties are
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addressed in our capillary pressure analysis.)  In order to discuss saturation
discontinuities and steep gradients, we must complete the formulation by
specifying initial and boundary conditions.  We assume that at t = 0, our core is

held at the constant water saturation S w
i throughout, where the italicized i

denotes initial conditions.  At the left boundary x = 0, where fluid influx occurs,

we assume that the water saturation is fixed at a constant value Sw
l where the

italicized l denotes left. (Normally, this value is unity for water filtrates, but it
may differ for certain water-oil muds.)  That is, we take

Sw(x,0) = Sw
i                                                                            (21-36)

 Sw(0,t) = Sw
l                                                                             (21-37)

As discussed, we can expect shockwaves and steep saturation discontinuities to
form in time, depending on the exact form and values of our fractional flow
functions and initial conditions.  We will assume that the particular functions do
lead to piston-like shock formation very close to the borehole.  The shock
boundary value problem just stated can be solved in closed form, and, in fact, is
the petroleum engineering analogue of the classic nonlinear signaling problem
(ρt + c(ρ) ρ x = 0, ρ = ρo for x > 0, t = 0, and ρ = g(t) for t > 0, x = 0) discussed

in the wave mechanics book of Whitham (1974).
We will not rederive the mathematics, but will draw on Whitham’s results

only.  For brevity, define for convenience the function

Q(Sw) = {q(t)/ φ} dfw(Sw,µw/µnw)/dSw                            (21-38)

where q(t) is given in Equation 21-34.  It turns out that the shock propagates
with a shock speed equal to

Vshock  = {Qw(Sw
l ) - Qw(Sw

i )}/(Sw
l - Sw

i)                   (21-39)

If the injection rate q(t), the core porosity φ, and the speed of the front Vshock

separating saturations Sw
l from Sw

i are known, then since Sw
l is available at

the inlet of the core, Equations 21-38 and 21-39 yield information relating the

initial formation saturation Sw
i to the fractional flow derivative

dfw(Sw,µw/µnw)/dSw.  Equation 21-15 shows that the fractional flow function

satisfies fw(Sw,µw/µnw) = 1/{1 + (knwµw/kwµnw)}.  Thus, if additional

lithology information is available about the form of the relative permeability
functions, the viscosity ratio µw/µnw can be extracted, thus yielding µnw.  We

emphasize that this solution for the nonlinear saturation problem does not apply
to the linear single-phase flow where red water displaces blue water.

Pressure solution.  Now we derive the solution for the corresponding
transient pressure field.  Let us substitute Equations 21-1 and 21-2 (that is,
Darcy’s laws qw = - (kw/µw) ∂Pw/∂x and qnw = - (knw/µnw) ∂Pnw/∂x) into

Equation 21-9 (or qw + qnw = q(t)).  Also, from Equation 21-3, we find that

Pnw  = Pw.  Thus, we obtain the governing pressure equation



Forward and Inverse Multiphase Flow  Modeling      415

{(kw(Sw )/µw) + (knw(Sw )/µnw)} ∂Pw/∂x = - q(t)                  (21-40)
so that the pressure gradient satisfies

∂Pw/∂x = - q(t)/{(kw(Sw )/µw) + (knw(Sw )/µnw)}                  (21-41)

Since the saturation function Sw(x,t), following Whitham’s solution to the

signaling problem is a simple step function in the x direction whose hump
moves at the shock velocity, we conclude that the pressure gradient in Equation
21-41 takes on either of two constant values, depending on whether Sw equals

Sw
i or Sw

l locally.  Thus, on either side of the shock front, we have different but
linear pressure variations with space, when time is held fixed.  This situation is
shown in Figure 21-1.  At the shock front itself, the requirement that pressure be
continuous and single-valued, a consequence of our zero capillary pressure
assumption, is itself sufficient to uniquely define the time-varying pressure
distribution across the entire core.

Now we outline the computational procedure.  At the left of the core, the

saturation specification Sw
l completely determines the value of the linear

variation ∂Pw (Sw
l)/∂x, following the arguments of the preceding paragraph.

Since the exact value of pressure P l is assumed to be known at x = 0 (that is, the
interface between the rock core and the mudcake), knowledge of the constant
rate of change of pressure throughout completely defines the pressure variation
starting at x = 0.  Unlike reservoir engineering problems, we are not posing a
pressure problem for the core in order to calculate flow rate; our flow rate is
completely prescribed by the mudcake.  In this problem, saturation constraints
fix both pressure gradients, which in turn fix the right-side pressure.  The radial
flow extension of this procedure leads to an estimate for reservoir pore pressure.

Shock front

x

P

Figure 21-1.  Pressure in lineal core.

In finite length core flows without mudcakes, it is appropriate to specify both the

left and right pressures Pl and Pr, and determine the corresponding q(t).  Since
q(t) is now unknown, the shock velocity cannot be written down a priori, so that
the manner in which the step solution for saturation propagates is uncertain.
Strong nonlinear coupling between the pressure and saturation equations is
obtained, and iterative numerical solutions are required, which will be discussed
later.  Before embarking on radial flows with capillary pressure, we turn to
multiphase flows of miscible fluids, where diffusive processes predominate.
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MOLECULAR DIFFUSION IN FLUID FLOWS

Fluid flows need not be purely homogeneous, as in single-phase flows, nor
need they be definable by clearly discernible differences in properties, as in
multiphase immiscible flows.  For simplicity, let us consider mixtures having
two components only; the composition of the mixture is described by the
concentration C, defined as the ratio of the mass of one component to the total
mass of the fluid in a given volume element.  With the passage of time, this
concentration changes in two ways.  When there is macroscopic motion of the
fluid, mechanical mixing of the flow results; if we ignore thermal conduction
and internal friction, this change is thermodynamically reversible and does not
result in energy dissipation.  But a change in composition will also occur by the
molecular transfer of the components from one part of the fluid to another.  The
equalization of concentration by this direct change of composition is called
diffusion.  Diffusion is an irreversible process; like thermal conduction and
internal viscous friction, it is one of the sources of energy dissipation in fluid
mixtures.  If we denote by ρ the total density of the fluid, the equation of mass
continuity for the total mass of the fluid is, as before,

∂ρ/∂t + ∇• (ρ q) = 0                                                                    (21-42)

where q is the velocity vector and ∇ denotes the gradient operator from vector
calculus.  The corresponding momentum, or Darcy equations, remain
unchanged.  In the absence of diffusion, the composition of any given fluid
element would remain unchanged as it moved about.  That is, the total derivative
dC/dt would be zero, so that dC/dt = φ ∂C/∂t + q •∇C = 0.  This can be written,
using Equation 21-42 for mass continuity, in the form

φ ∂(ρ C)/∂t + ∇• (ρ qC) = 0                                                         (21-43)

as a continuity equation for a component of the mixture.  But when diffusion
occurs, besides the flux ρqC of the component under investigation, there is
another flux which results in the transfer of the components even when the fluid
mass as a whole is at rest.  The general concentration equation describing both
mass transport and diffusion takes the form (Peaceman, 1977)

φ ∂C/∂t + q •∇C = κ ∇2C                                                          (21-44)
where κ is the diffusivity coefficient.  In radial cylindrical coordinates, Equation
21-44 can be written as

φ ∂C/∂t  + v(r) ∂C/∂r = κ {∂2C/∂r2 + (1/r) ∂C/∂r}                       (21-45)

where v(r) is the underlying radial Darcy velocity, for example, as obtained in

Chapters 17 and 20, or
φ ∂C/∂t + (v(r) - κ/r) ∂C/∂r =  κ ∂2C/∂r2                                        (21-46)

What might be a typical value of κ?  Peaceman and Rachford (1962), for
example, assumed a value of κ = 10-3 sq cm/sec.  This corresponded to an
experimental situation where oil was flooded by solvent of equal density, from a
thin rectangular channel in Lucite packed with uniform Ottawa sand.  We will
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discuss Equation 21-46 in more detail later, but for now, it is useful to consider
lineal flows for which motivating exact analytical solutions are available.

Exact lineal flow solutions.  For one-dimensional lineal flows, the
convective-diffusion equation for a constant velocity U takes the form

φ ∂C/∂t + U ∂C/∂x = κ ∂2C/∂x2                                                    (21-47)
Let us assume that at t = 0, the concentration varies linearly with x in the form
C0 + α x, whereas at the inlet boundary x = 0, the concentration is imposed in

the form C1 + β t.  While the linear variations appear somewhat limiting, they

can be generally interpreted as first-order Taylor series representations to more
general initial and boundary conditions.  In mathematical form,

C(x > 0,0) = C0 + α x                                                                  (21-48)

C(0,t > 0) = C1 + β t                                                                  (21-49)

The exact solution to this initial-boundary value problem is straightforwardly
obtained using Laplace transforms and can be shown to be

C(x,t) = C0 + α (x-Ut/φ)                                                           (21-50)

+ ½ (C1- C0){erfc ½(x-Ut/φ)/(κt)½ + eUx/κ erfc ½(x+Ut/φ)/(κt)½}
+ {(β+αU/φ)/(2U/ φ)}{(x+Ut/φ)eUx/κ erfc ½(x+Ut/φ)/(κt)½

- (x-Ut/φ) erfc ½(x-Ut/φ)/(κt)½}
where erfc denotes the complementary error function.  These solutions show
that, in a coordinate system moving with the speed U, the width of the transition
zone increases and smears with time (Marle, 1981).  Several limits of Equation
21-50 immediately come to mind.  If α = β = 0,

C(x,t) = C0 +½ (C1 -C0){erfc ½(x-Ut/φ)/(κt)½+eUx/κ erfc ½(x+Ut/φ)/(κt)½} (21-51)

If, in addition, U = 0,

C(x,t) = C0 + ½ (C1 - C0){erfc ½x/(κt)½ + erfc ½x/(κt)½}        (21-52)

This solution, at least in lineal flows, describes the large-time behavior in
problems with thick mudcakes that effectively shut off the influx of filtrate.

Numerical analysis.  The numerical formulation for the heat-like equation

φ ∂C/∂t + U ∂C/∂x = κ ∂2C/∂x2 given in Equation 21-47 proceeds in the same

manner as that for Equation 20-19, or ∂2p(x,t)/ ∂x2 = (φµc/k) ∂p/∂t, since the
former can be written as

∂2C/∂x2 = φ/κ ∂C/∂t                                                                     (21-53)

in the U = 0 limit.  In this limit, Equations 20-22 and 20-23 apply without
change.  If we replace P in Equation 20-23 by C, and φµc/k by φ/κ, we have

Ci-1,n - [2 + {φ(∆x)2/(κ∆t)}] Ci,n + Ci+1,n                                 (21-54)

 = - {φ(∆x)2/(κ∆t)}Ci,n-1

Then, the algorithm and Fortran implementation developed for compressible
transient flows applies without change.  In the limit when U does not vanish, we

write the governing PDE in the form ∂2C/∂x2 = φ/κ ∂C/∂t + U/κ ∂C/∂x, or
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∂2C/∂x2 - U/κ ∂C/∂x = φ/κ ∂C/∂t                                               (21-55)

Applying central differences to all spatial derivatives and backward differences
to the first-order time derivative, we have

(Ci-1,n -2Ci,n +Ci+1,n)/∆x2 - (U/κ) (Ci+1,n - Ci-1,n)/(2∆x)

=  φ/κ (Ci,n - Ci,n-1)/∆t (21-56)

or

Ci-1,n -2Ci,n + Ci+1,n  - (U∆x2/κ) (Ci+1,n - Ci-1,n)/(2∆x)     (21-57)

=  {(φ∆x2)/(κ∆t)}(Ci,n  - Ci,n-1)

Thus, we again have the familiar tridiagonal difference equation

[1 + U∆x/2κ] Ci-1,n                                                                   (21-58)

- [2 + (φ∆x2)/(κ∆t)] Ci,n

+ [1 - U∆x/2κ] Ci+1,n =  - (φ∆x2)/(κ∆t)} Ci,n-1

which bears superficial resemblance to our pressure equation for radial flows.
Peaceman and Rachford (1962) discuss this model in their investigation of
miscible reservoir flow modeling.  Also, Lantz (1971) offers very enlightening
discussions on numerical diffusion, and in particular examines the types of
numerical diffusion and truncation error that arise in different kinds of
discretization schemes.  For example, instead of the central differencing used in
Equation 21-56 for the first derivative, we might have assumed

∂C/∂x ≈ (U/κ) (Ci+1,n - Ci,n)/∆x                                                   (21-59a)

∂C/∂x ≈ (U/κ) (Ci,n - Ci-1,n)/∆x                                                    (21-59b)

∂C/∂x ≈ (U/κ) (Ci+1,n-1 - Ci,n-1)/∆x                                             (21-59c)

or
∂C/∂x ≈ (U/κ) (Ci,n-1 - Ci-1,n-1)/∆x                                              (21-59d)

We caution that issues beyond accuracy are involved.  As noted in Chapter 13,
the computed diffusivity is not the physical diffusivity κ, but a combination of
that plus numerical diffusion due to truncation errors.

Diffusion in cake-dominated flows.  Close to the well, immiscible flows
containing propagating saturation discontinuities may exist.  But very often,
flows are obtained that do not contain shocks.  These include immiscible flows
with and without capillary pressure, and miscible flows governed by highly
diffusive processes, where discontinuities never form.
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Figure 21-2.  Diffusive front motion.

For purely diffusive flows, sharp (fresh versus saline water resistivity)
discontinuities always smear in time.  The dynamics of such flows are very
important in log interpretation.  For this class of problems, the speed of the
fresh-to-saline water interface slows appreciably once the mudcake establishes
itself at the borehole walls, as we have demonstrated in Chapter 17.  This is
especially true in the case of radial flows, where geometric spreading
significantly slows the front.  For such problems, the speed of the underlying
flow U can be neglected after some time, when diffusion predominates.  The
problem is shown in Figure 21-2.

Resistivity migration.  Let us suppose that the ultimate electromagnetic
wave resistivity tool were available and capable of determining the exact,
continuous, or even discontinuous variation of electrical properties in the
formation as a function of the radial coordinate r in a concentric problem.
(Resistivity and concentration  are used interchangeably, since they are related
through logging tool measurements.)  In order to use the piston-like
displacement results assumed in Chapter 19 for time lapse analysis, a front
having a distinct constant radius would have to be inferred from a generally
continuous distribution of resistivities.  Typically, this is done in any of several
ways: by eye, by arithmetic, geometric, or harmonic averaging, or by using the
improved method of Chin et al. (1986) as discussed in Chapter 19, all of which
are ad hoc.  Actually, a simple and exact solution to this problem is possible.
What we wish to do, at any particular instant in time, given a smeared
concentration profile that will generally vary with radial position, is to
extrapolate that profile back to time t = 0 when the front is truly discontinuous.
This problem formulation appears incredible, since diffusion is physically
irreversible.  For example, in heat transfer, the effect of an instantaneous point
heat source is a diffusion width that grows with time; the diffused temperature
distribution never evolves backward to become a point source.  However, while
physical diffusion is irreversible, the computational process isn’t.  It turns out
that we can undiffuse a smeared front using reverse diffusion and recover
original sharp transitions by marching backward in time using a host diffusion
equation.  Of course, the initial profile must be sufficiently transient, since a
steady-state profile is obviously devoid of historical content.  Such migration
methods are used in seismic imaging and geophysics.  In particular, wave-
equation-based methods, introduced by Claerbout (1985a,b) at M.I.T. and
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Stanford, and formalized by the multiple scale analyses in Chin (1994), lead to a
parabolized wave equation which is just the heat equation in disguise.

By applying these methods to our smeared concentrations, we can recover
any sharp discontinuities, if they in fact existed.  In doing so, we obtain the
location of the radial front for use in the plug-flow time lapse analysis equations
developed and used in Chapters 17 and 19.  In addition to this front position, we
can uncover the time scale of the reverse diffusion process as a byproduct of the
reverse time integration.  The key idea is simple: differential equations of
evolution do exist, and their application to deconvolution is not at all unusual.
There are some problems, however.  Since the end starting conditions are likely
to be complicated functions of space, determined at discrete points, the reverse
diffusion must be accomplished numerically in time.  But finite difference
methods produce truncation and round-off errors that are associated with their
own thermodynamic irreversibility and entropy production.  Thus, the scheme
has to be designed so that it is perfectly reversible in order to be usable for time
lapse analysis purposes.  This is accomplished by retaining the next highest
order finite difference contributions neglected in Chapter 20.

Lineal diffusion and undiffusion examples.  For simplicity, consider the
fresh-to-saline water invasion problem, where mudcake forms and grows at the
inlet entrance.  At first, mud filtrate motions are extremely rapid, and fluid
movements dominate the convection-diffusion process.  However, as mudcake
forms, the influx of filtrate decreases rapidly with time, and eventually, diffusion
dominates the dynamics.  For simplicity, we first study lineal flows where the
effects of radial geometric spreading are unimportant.  In our examples, because
fluid convection is negligible, we consider κ ∂2C/∂x2 = φ ∂C/∂t.  For numerical
purposes, we fix the left-side (x = 1) concentration at C = 10%, while the right
(x = 11) is held at C = 90%.  For visual clarity, all concentrations to the left side
of x = 6 are initially 10%, while those values to the right are 90%.

There are several objectives for pursuing the test cases described here. For
one, if the initial value problem when time reversal starts has progressed to
steady-state, straight-line conditions, it is clear that all transient information will
have been lost and that no amount of reverse diffusion will return the steady-
state system to its initial step profile. (The steady-state solution is obtained by
solving d2C/dx2 = 0, taking the straight line joining C values at the left and right
boundaries.)  The degree of smear and its percentage approach to steady state
are therefore important research questions.  Second, we need to determine if the
method is applicable to radial flows, if it proves successful for lineal ones.  This
objective is important because any spatial distribution of concentration obtained
radially is a consequence of both diffusion and geometric spreading.  Geometric
spreading worsens the undiffusion process because diffusion effects are less
clear.  The method must account for both mechanisms if the initial step profile is
to be recovered properly.  In the following results, we deemphasize the values of
the numerical inputs themselves; note that ten one-foot grid blocks were
selected, with 500 time steps taken forward, then followed by 500 taken
backwards.  The real parameters of computational significance, of course, are
the dimensionless ones that affect truncation errors.  Solutions are both tabulated
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and plotted using a simple ASCII text plotter; the wiggles in our plotter are due
to character spacing and font control issues and not instability, as tabulated
results clearly show.  Observe the strong initial discontinuity in the C(x,t) profile
used.  The bottom solution in Figure 21-3a represents the final spatial profile
obtained before we reverse integrate in time.  The profile is smeared, almost to
the point where a straight-line steady solution is obtained.  Carefully study the
reverse diffusion results in Figure 21-3b.

   Concentration vs distance @ time .5000E+00 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .100E+02     | *
     .300E+01    .100E+02     | *
     .400E+01    .100E+02     | *
     .500E+01    .103E+02     | *
     .600E+01    .897E+02     |                           *
     .700E+01    .900E+02     |                           *
     .800E+01    .900E+02     |                           *
     .900E+01    .900E+02     |                            *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .1000E+02 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .100E+02     | *
     .300E+01    .100E+02     | *
     .400E+01    .102E+02     | *
     .500E+01    .153E+02     |   *
     .600E+01    .847E+02     |                          *
     .700E+01    .898E+02     |                           *
     .800E+01    .900E+02     |                           *
     .900E+01    .900E+02     |                           *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .1000E+03 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .103E+02     | *
     .300E+01    .117E+02     | *
     .400E+01    .176E+02     |   *
     .500E+01    .351E+02     |         *
     .600E+01    .649E+02     |                   *
     .700E+01    .824E+02     |                         *
     .800E+01    .883E+02     |                           *
     .900E+01    .897E+02     |                           *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .2495E+03 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .124E+02     |  *
     .300E+01    .172E+02     |   *
     .400E+01    .265E+02     |      *
     .500E+01    .413E+02     |           *
     .600E+01    .587E+02     |                 *
     .700E+01    .735E+02     |                      *
     .800E+01    .828E+02     |                         *
     .900E+01    .874E+02     |                           *
     .100E+02    .892E+02     |                           *
     .110E+02    .900E+02     |                            *

Figure 21-3a.  A diffusing lineal flow.

Despite truncation errors after 1,000 time steps, the last tabulation-plot in Figure
21-3b shows that we have recaptured the step initial condition in three ways: we
(1) obtained the exact left-to-right concentration values of 10% and 90%, (2)
correctly imaged the transition boundary between the x = 5 to 6 ft nodes, and (3)
extracted the two solutions just quoted using exactly the same number of
backward time steps as we did forward time steps.  In time lapse analysis, the
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front position obtained in the last plot might be used as input to the piston-
displacement formulas derived in Chapters 7 and 19.  Similar results for radial
flows can be obtained.
  Concentration vs distance @ time .2000E+03 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .116E+02     | *
     .300E+01    .154E+02     |   *
     .400E+01    .243E+02     |      *
     .500E+01    .401E+02     |           *
     .600E+01    .599E+02     |                 *
     .700E+01    .757E+02     |                       *
     .800E+01    .846E+02     |                          *
     .900E+01    .883E+02     |                           *
     .100E+02    .896E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .1000E+03 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .103E+02     | *
     .300E+01    .117E+02     | *
     .400E+01    .176E+02     |   *
     .500E+01    .350E+02     |         *
     .600E+01    .650E+02     |                   *
     .700E+01    .824E+02     |                         *
     .800E+01    .883E+02     |                           *
     .900E+01    .897E+02     |                           *
     .100E+02    .899E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .8000E+01 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .999E+01     | *
     .300E+01    .100E+02     | *
     .400E+01    .105E+02     | *
     .500E+01    .130E+02     |  *
     .600E+01    .870E+02     |                          *
     .700E+01    .895E+02     |                           *
     .800E+01    .899E+02     |                           *
     .900E+01    .900E+02     |                            *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                           *

  Concentration vs distance @ time .0000E+00 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .999E+01     | *
     .300E+01    .100E+02     | *
     .400E+01    .106E+02     | *
     .500E+01    .833E+01     |*
     .600E+01    .917E+02     |                            *
     .700E+01    .894E+02     |                           *
     .800E+01    .900E+02     |                           *
     .900E+01    .900E+02     |                           *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                           *

Figure 21-3b.   An undiffusing lineal flow.

Radial diffusion and undiffusion examples.  Here, we repeat the foregoing
problem with the same computational parameters, except that the lineal equation
κ ∂2C/∂x2 = φ ∂C/∂t is replaced by its cylindrical radial counterpart, namely,
κ (∂2C/∂r2 + 1/r ∂C/∂r) = φ ∂C/∂t.  We introduce strongly divergent radial
effects by assuming a small borehole radius of 0.25 ft relative to our one-foot
grid blocks.  Again, the difference scheme is integrated 500 time steps, at which
point the smeared and geometrically distorted concentration profile is undiffused
in time for an identical 500 time steps.  Once more, our computed results
suggest that smeared resistivity profiles can be successfully deconvolved to
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produce the original sharp front.  The last display of Figure 21-4a represents the
final radial profile obtained before reverse time integration begins.  The time-
reversed computations are shown in Figure 21-4b.

   Concentration vs distance @ time .5000E+00 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .100E+02     | *
     .300E+01    .100E+02     | *
     .400E+01    .100E+02     | *
     .500E+01    .103E+02     | *
     .600E+01    .897E+02     |                           *
     .700E+01    .900E+02     |                           *
     .800E+01    .900E+02     |                           *
     .900E+01    .900E+02     |                            *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .1000E+01 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .100E+02     | *
     .300E+01    .100E+02     | *
     .400E+01    .100E+02     | *
     .500E+01    .107E+02     | *
     .600E+01    .895E+02     |                           *
     .700E+01    .900E+02     |                           *
     .800E+01    .900E+02     |                           *
     .900E+01    .900E+02     |                            *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .1000E+02 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .100E+02     | *
     .300E+01    .100E+02     | *
     .400E+01    .103E+02     | *
     .500E+01    .159E+02     |   *
     .600E+01    .853E+02     |                          *
     .700E+01    .898E+02     |                           *
     .800E+01    .900E+02     |                           *
     .900E+01    .900E+02     |                           *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .1000E+03 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .107E+02     | *
     .300E+01    .128E+02     |  *
     .400E+01    .202E+02     |    *
     .500E+01    .393E+02     |           *
     .600E+01    .685E+02     |                    *
     .700E+01    .839E+02     |                         *
     .800E+01    .887E+02     |                           *
     .900E+01    .898E+02     |                           *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .2000E+03 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .141E+02     |  *
     .300E+01    .194E+02     |    *
     .400E+01    .299E+02     |       *
     .500E+01    .466E+02     |             *
     .600E+01    .652E+02     |                   *
     .700E+01    .789E+02     |                        *
     .800E+01    .860E+02     |                          *
     .900E+01    .888E+02     |                           *
     .100E+02    .897E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .2495E+03 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .163E+02     |   *
     .300E+01    .226E+02     |     *
     .400E+01    .334E+02     |         *
     .500E+01    .486E+02     |              *
     .600E+01    .648E+02     |                   *
     .700E+01    .774E+02     |                       *
     .800E+01    .848E+02     |                          *
     .900E+01    .882E+02     |                           *
     .100E+02    .895E+02     |                           *
     .110E+02    .900E+02     |                            *

Figure 21-4a.  A diffusing radial flow.
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 Concentration vs distance @ time .2000E+03 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .141E+02     |  *
     .300E+01    .194E+02     |    *
     .400E+01    .299E+02     |       *
     .500E+01    .466E+02     |             *
     .600E+01    .653E+02     |                   *
     .700E+01    .789E+02     |                        *
     .800E+01    .860E+02     |                          *
     .900E+01    .888E+02     |                           *
     .100E+02    .897E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .5000E+02 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .101E+02     | *
     .300E+01    .107E+02     | *
     .400E+01    .141E+02     |  *
     .500E+01    .303E+02     |        *
     .600E+01    .745E+02     |                      *
     .700E+01    .875E+02     |                           *
     .800E+01    .897E+02     |                           *
     .900E+01    .900E+02     |                           *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                            *

  Concentration vs distance @ time .4000E+01 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .100E+02     | *
     .300E+01    .999E+01     | *
     .400E+01    .107E+02     | *
     .500E+01    .109E+02     | *
     .600E+01    .894E+02     |                           *
     .700E+01    .896E+02     |                           *
     .800E+01    .900E+02     |                           *
     .900E+01    .900E+02     |                            *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                           *

  Concentration vs distance @ time .0000E+00 sec.
    Position (ft)    C%
                              ______________________________
     .100E+01    .100E+02     | *
     .200E+01    .100E+02     | *
     .300E+01    .996E+01     | *
     .400E+01    .108E+02     | *
     .500E+01    .815E+01     |*
     .600E+01    .916E+02     |                            *
     .700E+01    .895E+02     |                           *
     .800E+01    .900E+02     |                           *
     .900E+01    .900E+02     |                           *
     .100E+02    .900E+02     |                           *
     .110E+02    .900E+02     |                           *

Figure 21-4b.   An undiffusing radial flow.

As before, we recaptured the exact initial step concentration profile, to include
concentration values, location of the discontinuity, and total time to undiffuse.
While the starting radial concentration profile is substantially smeared, and
significantly different from the lineal flow solution obtained at this point in
Figure 21-3a, we again successfully undiffuse our starting flow.

IMMISCIBLE RADIAL FLOWS WITH CAPILLARY
PRESSURE AND PRESCRIBED MUDCAKE GROWTH

In this section, we will consider immiscible radial flows with capillary
pressure and prescribed mudcake growth.  In particular, we will derive the
relevant governing equations, develop the numerical finite difference algorithm
and the Fortran implementation, and proceed to demonstrate the computational
model in both forward and inverse modes.

Governing saturation equation.  Let us now repeat the lineal flow
derivation given earlier but include the effects of radial geometric spreading and
nonvanishing capillary pressure.  Again, analogous Darcy laws apply, namely,
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qw = - (kw/µw) ∂Pw/∂r                                                               (21-60)

qnw = - (knw/µnw) ∂Pnw/∂r                                                         (21-61)

Unlike flows in rectangular systems, the mass continuity equations in cylindrical
radial coordinates take the form

∂qw/∂r  + qw/r = - φ ∂Sw/∂t                                                          (21-62)

∂qnw/∂r + qnw/r = - φ ∂Snw/∂t                                                      (21-63)

If we add Equations 21-62 and 21-63, and observe that
Sw + Snw = 1                                                                               (21-64)

is constant for incompressible flows, it follows that

r ∂(qw+qnw)/∂r + (q w+qnw) = 0                                                  (21-65)

or, equivalently, {r (qw+qnw)}r = 0, so that

r (qw+qnw) = Q(t)                                                                        (21-66)

Here the function Q(t), having dimensions of length squared per unit time (not to
be confused with volume flow rate), is determined by its value at the wellbore
sandface.  In particular, since only mud filtrate is obtained there, we have

Q(t) = Rwell q(t)                                                                           (21-67)

where Rwell  is the radius of the borehole and q(t) is the velocity through the
mudcake obtained on a lineal flow basis, given by the expression derived earlier
in this chapter, namely,

q(t) = φeff dxf (t)/dt = ½ t-½ √{2k1(1-φc)(1-fs)(pm-pr)/(µffs)} (21-34)

A means for handling the square root singularity at t = 0 is given later.  Note that
another choice of q(t), for thick mudcakes, is found in the radial cake growth
formula derived in Chapter 19.  At this point, it is convenient to introduce the
capillary pressure function Pc and write it as a function of the water saturation

Sw, taking
Pc(Sw) = Pnw  - Pw                                                                     (21-68)

Then, the nonwetting velocity in Equation 21-61 can be written in the form qnw
= - (knw/µnw) ∂Pnw/∂r = - (knw/µnw) ∂(Pc + Pw)/∂r.  If we substitute this and
Equation 21-60 into Equation 21-66, we obtain

r (kw/µw+ knw/µnw) ∂Pw/∂r + r (knw/µnw) ∂Pc/∂r = - Q(t)    (21-69)

or, more precisely,
r (kw/µw+ knw/µnw) ∂Pw/∂r + r (knw/µnw) Pc'(Sw) ∂Sw/∂r = - Q(t)  (21-70)

This yields

∂Pw/∂r = - {Q(t) + r (knw/µnw) P c’(Sw) ∂Sw/∂r}/{r (kw/µw+ knw/µnw)} (21-71)

so that Equation 21-60 becomes
qw = (kw/µw){Q(t)+r (knw/µnw)Pc’(Sw) ∂Sw/∂r}/{r (kw/µw+knw/µnw)} (21-72)
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If we combine Equations 21-72 and 21-62, that is, ∂qw/∂r  + qw/r = -φ ∂Sw/∂t,
we have

-φ ∂Sw/∂t = (∂/∂r  + 1/r)                                                               (21-73)

(kw/µw){Q(t)+r (knw/µnw)Pc’(Sw) ∂Sw/∂r}/{r (kw/µw+knw/µnw)}

where it is understood that the relative permeabilities kw and knw are both

prescribed functions of Sw.  This is the nonlinear governing equation for water

saturation.  Once Sw is known, the oil saturation Snw can be obtained using

Equation 21-64 as Snw = 1- Sw.   In order to simplify notation, let us reintroduce
the fractional flow function first used in Equation 21-15, namely,

F(Sw) = 1/{1 + µwknw/µnwkw}                                               (21-74)

and, in addition, the function

G(Sw) = {knw/µnw}F(Sw)Pc’(Sw)                                                (21-75)

Then, Equation 21-73 can be expressed succinctly in the form

-φ ∂Sw/∂t  - {Q(t)F'(Sw) + G(Sw)}/r ∂Sw/∂r                         (21-76)

= G’(Sw)(∂Sw/∂r)2 + G(Sw) ∂2Sw/∂r2

Numerical analysis.  Equation 21-76 is conveniently solved, again using
finite difference time-marching schemes.  We always central difference our first
and second-order space derivatives, while backward differencing in time, with
respect to the nodal point (ri,tn).  Furthermore, we will evaluate all nonlinear
saturation-dependent coefficients at their previous values in time.  This leads to

[1 - (QnF'i,n-1+Gi,n-1)∆r/(2Gi,n-1ri)

- G'i,n-1 (∂Sw/∂r)i,n-1∆r/(2Gi,n-1)] SWi-1,n

+ [-2 + φ(∆r)2/(Gi,n-1∆t)] SWi,n

+ [1 + (QnF'i,n-1+Gi,n-1)∆r/(2Gi,n-1ri)

+ G'i,n-1(∂Sw/∂r)i,n-1∆r/(2Gi,n-1)] SWi+1,n

= + φ(∆r)2SWi,n-1/(Gi,n-1∆t)  (21-77)

which importantly assumes tridiagonal form for rapid matrix inversion while
maintaining O(∆x)2 accuracy in space.  Note that ri = Rwell + (i-1)∆r.

Straightforward von Neumann analysis shows that the time-dependent scheme
implied by Equation 21-77 is conditionally stable, with the exact time step
limitations depending on the form of the relative permeability and capillary
pressure functions.  Following the rules established in Chapter 20, we write
Equation 21-77 for the internal nodes i = 2, 3, ..., imax-1, and augment the
resulting system of linearized equations with the mud filtrate boundary condition

SW1,n = SWl = 1 (for 100% water saturation) and the saturation SWimax,n =
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SWr < 1 at a distant effective radius.  To start the time-marching calculations,

the right side of Equation 21-77 is assumed as SWi,n-1 = SWr < 1 for the very

first value of the time index n.  In this discussion, SWr also represents the initial
uniform water saturation in the reservoir.  Once the left side of Equation 21-77
is inverted using the tridiagonal matrix solver TRIDI, SWi,n is copied into

SWi,n-1 on the right side, and the calculations are continued recursively.

      .
C     START RECURSIVE TIME INTEGRATION
      DO 300  N=1,NMAX
      T = T+DT
      THOURS = T/3600.
      DO 200  I=2,IMAXM1
      RI = WELRAD+(I-1)*DR
      SW = SNM1(I)
      DSDR =(SNM1(I+1)-SNM1(I-1))/(2.*DR)
      TERM1=((Q(T)*FP(SW)+G(SW))*DR)/(2.*G(SW)*RI)
      TERM2=  DR*DR*PHI/(G(SW)*DT)
      TERM3= (GP(SW)*DR/G(SW))*DSDR/2.
      A(I) =  1.- TERM1-TERM3
      B(I) = -2.+ TERM2
      C(I) =  1.+ TERM1+TERM3
      W(I) =  TERM2*SNM1(I)
 200  CONTINUE
      A(1) = 99.
      B(1) = 1.
      C(1) = 0.
      W(1) = SL
      A(IMAX) = 0.
      B(IMAX) = 1.
      C(IMAX) = 99.
      W(IMAX) = SR
      CALL TRIDI(A,B,C,VECTOR,W,IMAX)
      DO 250  I=1,IMAX
      S(I) = VECTOR(I)
 250  CONTINUE
      DO 260  I=1,IMAX
      SNM1(I) = S(I)
 260  CONTINUE
      CALL GRFIX(S,XPLOT,IMAX)
 300  CONTINUE
      .

Figure 21-5.  Nonlinear saturation solver.
Fortran implementation.  Equation 21-77 is easily programmed in

Fortran.  Because the implicit scheme is second-order accurate in space, thus
rigidly enforcing the diffusive character of the capillary pressure effects
assumed in this formulation, we do not obtain the oscillations at saturation
shocks or the saturation overshoots having S w > 1 often cited.  The exact

Fortran producing the results shown later is displayed in Figure 21-5 and in
several function statements given later.  For convenience, the saturation
derivatives F’(Sw) and G’(Sw) are denoted FP and GP (P indicates prime for

derivatives).
Typical calculations.  In this section, we will perform a suite of validation

runs designed to demonstrate the stability and physical correctness of the two-
phase flow algorithm.  In the calculations, a borehole radius of 0.2 ft and an
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effective reservoir radius of 2 ft are assumed.  The water saturation at the
borehole sandface is assumed to be unity, since it consists entirely of water-base
mud filtrate.  At the farfield boundary or effective radius, the water saturation is
taken as 0.10. (This is also assumed to be the initial reservoir water saturation.)
In addition, we discretize the radial coordinate using 0.1 ft grids, assume time
steps of 0.001 sec, and take the porosity of the rock as 20%.  Note that for the
twenty grid block mesh used, 1,000 time steps requires approximately one
second on typical Pentium class personal computers.  Multiphase flow
properties are conveniently defined in Fortran function statements.  In our
calculations, the relative permeability curves and fractional flow functions are
specified in code fragment

FUNCTION F(SW)
REAL KDARCY,KABS,KW,KNW
KDARCY = 0.001
KABS = KDARCY*0.00000001/(12.*12.*2.54*2.54)
KW = KABS * SW**2.
KNW = KABS*(SW-1.)**2.
VISCIN = 1.
VISCDP = 2.
VISCL  = 0.0000211*VISCIN
VISCR  = 0.0000211*VISCDP
F = 1. +VISCL*KNW/(VISCR*KW)
F = 1./F
RETURN
END

In the preceding calculations, an absolute permeability of 0.001 Darcies is
assumed for the formation, and the wetting and nonwetting relative permeability
functions, defined in terms of the water saturation Sw, are taken in the form kw =
Sw

2 and knw = (Sw-1) 2 for simplicity. Our water and oil viscosities are taken as 1
and 2 cp, respectively.  The fractional flow function just defined is independent
of the absolute permeability, of course, and depends only on the viscosity ratio.
The function G(Sw) is similarly defined by

FUNCTION G(SW)
REAL KDARCY,KABS,KNW
KDARCY = 0.001
KABS = KDARCY*0.00000001/(12.*12.*2.54*2.54)
KNW = KABS*(SW-1.)**2.
VISCDP = 2.
VISCR  = 0.0000211*VISCDP
G = KNW*F(SW)*PCP(SW)/VISCR
RETURN
END

while the capillary pressure function is defined by Pc = 35 (1-Sw) psi, again for

simplicity, through the function block
FUNCTION PC(SW)
PC = 1.-SW
PC = 144.*35.*PC
RETURN
END

Derivatives of Pc, F, and G with respect to water saturation can be easily taken

by introducing function statements that define the differentiation process.  We
now discuss typical calculations, designed to test the properties of the scheme,
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such as saturation overshoots, unstable oscillations, and so on.  We will find that
the algorithm given is physically consistent.  For example, it will not yield water
saturations that exceed unity or fall below zero; thus, oil will not be created or
destroyed, at least not in an obvious manner.  The fully implicit scheme, unlike
the explicit schemes used in many commercial IMPES models (to be discussed),
does not produce numerical oscillations at the head of the shock.  But
instabilities do arise when the saturation shock reflects back upstream from the
fictitious i = imax effective radius boundary; these instabilities, however, are
irrelevant to our simulations.  Finally, when mud filtrate is completely shut off,
the water-oil saturation front never moves and must remain stationary – a trait
not shared by several commercial simulators because of numerical roundoff.

Let us now discuss specific calculations.  In this very first example, we set
our mud filtration invasion rate identically to zero, using the function statement

FUNCTION Q(T)
Q = 0.
RETURN
END

The partial results shown in Figure 21-6a for the near-well nodes indicate that
the water front correctly stays absolutely static, with the remainder of the
computational domain remaining unperturbed, despite the 1,000 steps taken in
time.

   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .100E+00     | *
     .300E+01    .100E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *

   Water saturation at time (hrs): .150E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .100E+00     | *
     .300E+01    .100E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *

   Water saturation at time (hrs): .267E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .100E+00     | *
     .300E+01    .100E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *

Figure 21-6a.  Zero mud filtrate influx.

Again, we note that Q is not the volume flow rate, but the product of well
radius and radial Darcy velocity at the sandface.  For the assumed radius of 0.2
ft, a typical velocity may be assumed as 0.1 ft/hr, so that Q = (0.2 ft)(0.1 ft/hr) =

0.0000055 ft 2/sec in the units used.  We determine if the calculated invasion
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rates are physically reasonable, and in the process, we examine the stability of
the algorithm.  In Figure 21-6b below, 50,000 time steps of 0.001 sec are taken,
requiring one minute of Pentium PC computations, and sample early and late
time results are given.  Truncation error is negligible in this stable scheme.
   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .100E+00     | *
     .300E+01    .100E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .
     .
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .903E-02
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .110E+00     | *
     .300E+01    .100E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .
     .
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .126E-01
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .114E+00     | *
     .300E+01    .100E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

Figure 21-6b.  Very slow constant injection rate.

The question of large versus small Q are only meaningful dimensionlessly,
when the effects of inertia are measured against those due to capillary pressure.
Since the functional form of these changes from problem to problem, because
relative permeability and capillary pressure curves will often vary substantially,
a parameter as simple or as elegant as the Reynolds number in elementary
Newtonian fluid mechanics is not in general available.  But, fortunately, we can
understand the stability properties of the numerical scheme by examining
different parameter limits of the present problem.  It is clear from the two
foregoing runs that inertia is not important, since little of the fluid is actually
moving.  In this next example, we assume the comparatively large constant
value of Q = 1, to simulate water breakthrough known to reservoir engineers.

Large Qs model rapid influxes of injected water and should result in sharp
saturation discontinuities; for such problems, there is little smearing at the shock
due to capillary pressure.  This is not to say that capillary pressure is
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unimportant: it is, because of the singular role it plays in defining the correct
saturation discontinuity. (The shock-fitting used in the Buckley-Leverett
solution process is unnecessary in the present high-order formulation.)  For the
Q = 1, 2, and 3 calculations shown in the following figures, 3,000 time steps of
0.001 sec each were used.  In Figures 21-6c,d,e, note how the effects of radial
geometrical spreading are captured in the gently sloping curve, while steep
saturation gradients are computed as sudden changes.  Also note that the
calculations shown are extremely stable and that no numerical oscillations
appear in the results.  Moreover, we never obtain any water saturations that
exceed unity in our O(∆x2 ) accurate implicit scheme.  However, we have found
that instabilities will arise after the shock reaches the farfield computational
boundary and reflects.  By this time, the calculations have no physical meaning,
so that the existence of this instability is not germane to our applications.

   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .938E+00     |                          *
     .300E+01    .877E+00     |                        *
     .400E+01    .827E+00     |                      *
     .500E+01    .789E+00     |                     *
     .600E+01    .758E+00     |                    *
     .700E+01    .664E+00     |                 *
     .800E+01    .278E+00     |      *
     .900E+01    .116E+00     | *
     .100E+02    .101E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .500E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .975E+00     |                           *
     .300E+01    .945E+00     |                          *
     .400E+01    .913E+00     |                         *
     .500E+01    .881E+00     |                        *
     .600E+01    .849E+00     |                       *
     .700E+01    .819E+00     |                      *
     .800E+01    .794E+00     |                     *
     .900E+01    .774E+00     |                     *
     .100E+02    .760E+00     |                    *
     .110E+02    .751E+00     |                    *
     .120E+02    .739E+00     |                    *
     .130E+02    .682E+00     |                  *
     .140E+02    .372E+00     |         *
     .150E+02    .130E+00     | *
     .160E+02    .102E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .667E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .981E+00     |                           *
     .300E+01    .957E+00     |                          *
     .400E+01    .931E+00     |                         *
     .500E+01    .903E+00     |                         *
     .600E+01    .875E+00     |                        *
     .700E+01    .848E+00     |                       *
     .800E+01    .822E+00     |                      *
     .900E+01    .798E+00     |                     *
     .100E+02    .779E+00     |                     *
     .110E+02    .764E+00     |                    *
     .120E+02    .754E+00     |                    *
     .130E+02    .747E+00     |                    *
     .140E+02    .739E+00     |                    *
     .150E+02    .708E+00     |                   *
     .160E+02    .507E+00     |             *
     .170E+02    .164E+00     |  *
     .180E+02    .100E+00     | *

Figure 21-6c.  Q = 1, constant rate, high inertia flow.
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   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .964E+00     |                          *
     .300E+01    .925E+00     |                         *
     .400E+01    .884E+00     |                        *
     .500E+01    .846E+00     |                       *
     .600E+01    .811E+00     |                      *
     .700E+01    .784E+00     |                     *
     .800E+01    .764E+00     |                    *
     .900E+01    .749E+00     |                    *
     .100E+02    .716E+00     |                   *
     .110E+02    .510E+00     |             *
     .120E+02    .165E+00     |  *
     .130E+02    .106E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .333E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .981E+00     |                           *
     .300E+01    .957E+00     |                          *
     .400E+01    .931E+00     |                         *
     .500E+01    .903E+00     |                         *
     .600E+01    .876E+00     |                        *
     .700E+01    .848E+00     |                       *
     .800E+01    .822E+00     |                      *
     .900E+01    .798E+00     |                     *
     .100E+02    .778E+00     |                     *
     .110E+02    .762E+00     |                    *
     .120E+02    .752E+00     |                    *
     .130E+02    .745E+00     |                    *
     .140E+02    .737E+00     |                    *
     .150E+02    .709E+00     |                   *
     .160E+02    .520E+00     |             *
     .170E+02    .172E+00     |   *
     .180E+02    .100E+00     | *

Figure 21-6d.  Q = 2, constant rate, high inertia flow.
   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .976E+00     |                           *
     .300E+01    .947E+00     |                          *
     .400E+01    .916E+00     |                         *
     .500E+01    .883E+00     |                        *
     .600E+01    .851E+00     |                       *
     .700E+01    .821E+00     |                      *
     .800E+01    .794E+00     |                     *
     .900E+01    .772E+00     |                     *
     .100E+02    .756E+00     |                    *
     .110E+02    .746E+00     |                    *
     .120E+02    .735E+00     |                    *
     .130E+02    .688E+00     |                  *
     .140E+02    .396E+00     |         *
     .150E+02    .138E+00     |  *
     .160E+02    .103E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

Figure 21-6e.  Q = 3, constant rate, high inertia flow.

Mudcake-dominated flows.  Now we consider time-dependent influx
flows of the kind created by real mudcakes.  Earlier we found that the invasion
speed at t = 0 was infinite, behaving like t -1/2.  Such singularities, if implemented
exactly, would cause instabilities in finite difference schemes.  Fortunately, we
can circumvent this difficulty without introducing any artificial devices, by
considering the effects of nonzero mud spurt.  From Chapter 17, the filtration
thickness x(t) in a lineal flow varies like dx/dt = α/x, where α is a constant.  If
x(0) = xspurt, it follows that x(t) = √(2αt + xspurt

2); then, the speeds dx/dt =

α/√(2αt + xspurt
2) and q(t) = φ dx/dt = αφ/√(2αt + xspurt

2) are never infinite.

This lineal model is used because the controlling mudcake forms lineally; a
radial model can, of course, be substituted in slimhole applications.  The spurt
model is implemented by the Fortran function definition
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FUNCTION Q(T)
C MUDCAKE MODEL, ALPHA = 1.

PHI = 0.2
WELRAD = 0.2
SPURT =0.1
SPURT2 = SPURT**2
ALPHA = 1.
Q = WELRAD*ALPHA*PHI/SQRT(SPURT2+2.*ALPHA*T)
RETURN
END

Figure 21-7.  Mudcake-dominated invasion.

In the sequence of snapshots in Figures 21-8a,b,c, the formation and
movement of the saturation shocks are shown for high, very high, and very slow
invasion rates, all using 0.001 sec time steps.  Again, complete stability is
obtained, without numerical saturation oscillations.
   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .810E+00     |                      *
     .300E+01    .475E+00     |            *
     .400E+01    .132E+00     | *
     .500E+01    .101E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .117E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .905E+00     |                         *
     .300E+01    .831E+00     |                      *
     .400E+01    .776E+00     |                     *
     .500E+01    .639E+00     |                 *
     .600E+01    .222E+00     |    *
     .700E+01    .108E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *
   Water saturation at time (hrs): .383E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .939E+00     |                          *
     .300E+01    .879E+00     |                        *
     .400E+01    .829E+00     |                      *
     .500E+01    .793E+00     |                     *
     .600E+01    .764E+00     |                    *
     .700E+01    .688E+00     |                  *
     .800E+01    .340E+00     |        *
     .900E+01    .121E+00     | *
     .100E+02    .101E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .833E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .956E+00     |                          *
     .300E+01    .908E+00     |                         *
     .400E+01    .863E+00     |                       *
     .500E+01    .823E+00     |                      *
     .600E+01    .792E+00     |                     *
     .700E+01    .771E+00     |                     *
     .800E+01    .750E+00     |                    *
     .900E+01    .671E+00     |                  *
     .100E+02    .312E+00     |       *
     .110E+02    .119E+00     | *
     .120E+02    .101E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

Figure 21-8a.  High filtration rate mudcake model (α = 1).
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   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________

     .100E+01    .100E+01     |                            *

     .200E+01    .891E+00     |                        *

     .300E+01    .813E+00     |                      *

     .400E+01    .726E+00     |                   *

     .500E+01    .385E+00     |         *

     .600E+01    .125E+00     | *

     .700E+01    .101E+00     | *

     .800E+01    .100E+00     | *

     .900E+01    .100E+00     | *

     .100E+02    .100E+00     | *

     .110E+02    .100E+00     | *

     .120E+02    .100E+00     | *

     .130E+02    .100E+00     | *

     .140E+02    .100E+00     | *

     .150E+02    .100E+00     | *

     .160E+02    .100E+00     | *

     .170E+02    .100E+00     | *

     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .150E-03
   Position node Water Sat
                              ______________________________

     .100E+01    .100E+01     |                            *

     .200E+01    .953E+00     |                          *

     .300E+01    .904E+00     |                         *

     .400E+01    .857E+00     |                       *

     .500E+01    .817E+00     |                      *

     .600E+01    .788E+00     |                     *

     .700E+01    .767E+00     |                     *

     .800E+01    .738E+00     |                    *

     .900E+01    .595E+00     |               *

     .100E+02    .202E+00     |    *

     .110E+02    .108E+00     | *

     .120E+02    .100E+00     | *

     .130E+02    .100E+00     | *

     .140E+02    .100E+00     | *

     .150E+02    .100E+00     | *

     .160E+02    .100E+00     | *

     .170E+02    .100E+00     | *

     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .833E-03
   Position node Water Sat
                              ______________________________

     .100E+01    .100E+01     |                            *

     .200E+01    .978E+00     |                           *

     .300E+01    .952E+00     |                          *

     .400E+01    .924E+00     |                         *

     .500E+01    .894E+00     |                        *

     .600E+01    .864E+00     |                       *

     .700E+01    .836E+00     |                       *

     .800E+01    .810E+00     |                      *

     .900E+01    .788E+00     |                     *

     .100E+02    .772E+00     |                     *

     .110E+02    .760E+00     |                    *

     .120E+02    .752E+00     |                    *

     .130E+02    .743E+00     |                    *

     .140E+02    .711E+00     |                   *

     .150E+02    .511E+00     |             *

     .160E+02    .162E+00     |  *

     .170E+02    .105E+00     | *

     .180E+02    .100E+00     | *

Figure 21-8b.  Very high filtration rate mudcake model (α = 5).
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   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .101E+00     | *
     .300E+01    .100E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .120E-02
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .186E+00     |   *
     .300E+01    .102E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .167E-02
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .231E+00     |    *
     .300E+01    .104E+00     | *
     .400E+01    .100E+00     | *
     .500E+01    .100E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

 Figure 21-8c.  Very slow filtration rate model (α = 0.001).

Unshocking a saturation discontinuity.  In time lapse analysis, we may
detect a moving saturation front, and may wish to look within or unscramble the
steeply formed flow for additional fluid-dynamical information.  Here,
resistivity migration means unsteepening the shock, carefully untracing its
history, being dynamically consistent with the effects of capillary pressure and
nonlinear relative permeability functions.  Unlike the miscible flow problem,
where the dominant physical process involved the unsmearing of a diffused
front, several complications enter the present problem.  First, radial spreading
again exists.  But the high-order derivative term, now related to capillary
pressure instead of molecular diffusion, serves dual purposes: it smears the flow
throughout the entire flow domain, and it is instrumental in controlling the shock
formation. (Shocks, remember, do not exist in the miscible flow problem.)
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.
C     START TIME INTEGRATION
      DO 300  N=1,NMAX
      IF(N.LT.2000) T = T+DT
      IF(N.GE.2000) T = T-DT
      THOURS = T/3600.
      DO 200  I=2,IMAXM1
      RI = WELRAD+(I-1)*DR
      SW = SNM1(I)
      DSDR =(SNM1(I+1)-SNM1(I-1))/(2.*DR)
      IF(N.LT.2000) TERM1=((Q(T)*FP(SW)+G(SW))*DR)/(2.*G(SW)*RI)
      IF(N.GE.2000) TERM1=((-Q(T)*FP(SW)+G(SW))*DR)/(2.*G(SW)*RI)
      TERM2=  DR*DR*PHI/(G(SW)*DT)
      TERM3= (GP(SW)*DR/G(SW))*DSDR/2.
      A(I) =  1.- TERM1-TERM3
      B(I) = -2.+ TERM2
      C(I) =  1.+ TERM1+TERM3
      W(I) =  TERM2*SNM1(I)
 200  CONTINUE
      .
 300  CONTINUE

Figure 21-9.  Unshocking a steep gradient.

Can we undo all of these two-phase flow effects?  The answer appears to
be a definitive, “Yes.”  To evaluate this numerical reversibility, we execute the
program for 2,000 time steps, assuming α = 1, and then reverse the direction of
time as well as the direction of filtrate movement, as shown in Figure 21-9 by
the bold print modifications to our earlier source code.  Forward simulation
results are given in Figure 21-10a, while successfully migrated, or unshocked
results, are shown in Figure 21-10b.  The potential applications of this important
capability are vast indeed and are under investigation.
   Water saturation at time (hrs): .167E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .810E+00     |                      *
     .300E+01    .475E+00     |            *
     .400E+01    .132E+00     | *
     .500E+01    .101E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *

   Water saturation at time (hrs): .117E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .905E+00     |                         *
     .300E+01    .831E+00     |                      *
     .400E+01    .776E+00     |                     *
     .500E+01    .639E+00     |                 *
     .600E+01    .222E+00     |    *
     .700E+01    .108E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *

Figure 21-10a.   Forward shock formation.
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   Water saturation at time (hrs): .350E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .937E+00     |                          *
     .300E+01    .876E+00     |                        *
     .400E+01    .825E+00     |                      *
     .500E+01    .790E+00     |                     *
     .600E+01    .758E+00     |                    *
     .700E+01    .651E+00     |                 *
     .800E+01    .257E+00     |     *
     .900E+01    .112E+00     | *
     .100E+02    .101E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

Figure 21-10a.   Continued.

   Water saturation at time (hrs): .550E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .947E+00     |                          *
     .300E+01    .893E+00     |                        *
     .400E+01    .845E+00     |                       *
     .500E+01    .806E+00     |                      *
     .600E+01    .779E+00     |                     *
     .700E+01    .753E+00     |                    *
     .800E+01    .658E+00     |                 *
     .900E+01    .277E+00     |      *
     .100E+02    .115E+00     | *
     .110E+02    .101E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .211E-03
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .923E+00     |                         *
     .300E+01    .855E+00     |                       *
     .400E+01    .806E+00     |                      *
     .500E+01    .765E+00     |                    *
     .600E+01    .645E+00     |                 *
     .700E+01    .240E+00     |     *
     .800E+01    .110E+00     | *
     .900E+01    .101E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

   Water saturation at time (hrs): .106E-04
   Position node Water Sat
                              ______________________________
     .100E+01    .100E+01     |                            *
     .200E+01    .747E+00     |                    *
     .300E+01    .255E+00     |     *
     .400E+01    .108E+00     | *
     .500E+01    .101E+00     | *
     .600E+01    .100E+00     | *
     .700E+01    .100E+00     | *
     .800E+01    .100E+00     | *
     .900E+01    .100E+00     | *
     .100E+02    .100E+00     | *
     .110E+02    .100E+00     | *
     .120E+02    .100E+00     | *
     .130E+02    .100E+00     | *
     .140E+02    .100E+00     | *
     .150E+02    .100E+00     | *
     .160E+02    .100E+00     | *
     .170E+02    .100E+00     | *
     .180E+02    .100E+00     | *

Figure 21-10b.   Backward shock migration.



438   Quantitative Methods in Reservoir Engineering

IMMISCIBLE FLOWS WITH CAPILLARY PRESSURE
AND DYNAMICALLY COUPLED MUDCAKE GROWTH

In the foregoing formulation, we assumed that q(t) was available from a
knowledge of mudcake properties, and we solved for the resulting two-phase
flow in the rock.  Of course, this is not generally the case.  Consider the limit in
which no mudcake forms on the rock: here the time-dependent flow through the
rock is determined by the saturations and pressures at the inlet and outlet
boundaries of the problem.  For the cake-free problem just described, the PDEs
governing saturation and pressure are nonlinearly coupled, and the time-
dependent flow rate through the core must be determined iteratively.  This is
also the case when the mobility in the mudcake is comparable to that of the
formation.  But there is a complication.  For such problems, this cake growth
must be additionally determined as part of the solution; it does not alone dictate
the filtrate influx but depends strongly on two-phase flow details in the rock.

Flows without mudcakes.  In order to solve the latter, it is instructive to
formulate and discuss the former one without mudcake first.  In doing so, we
derive the complete set of two-phase flow equations required later, and we
demonstrate some essential ideas.  Let us recall that we had determined

r (kw/µw+ knw/µnw) ∂Pw/∂r + r (knw/µnw) Pc'(Sw) ∂Sw/∂r = - Q(t) (21-70)

In the previous section, Q(t) was assumed to be known; this being the case, the
derived saturation equation could be solved independently of the pressure
equation, so that a pressure differential equation was not required.  Now, we
expect that any derived governing pressure equation must reduce to an
anticipated ∂2Pw/∂r2 + (1/r) ∂Pw/∂r  = 0 in the single-phase flow limit.  This can

be accomplished by differentiating Equation 21-70 with respect to the radial
coordinate; this differentiation eliminates the explicit appearance of Q(t) which
is, again, unknown.  Since kw= kw(Sw) and knw= knw(Sw), straightforward

manipulations show that we can write the desired equation as

∂2Pw/∂r2 + [1/r +{(kw’/µw+knw’/µnw)/ (kw/µw+knw/µnw)}∂Sw/∂r] ∂Pw/∂r

= - [(∂2Sw/∂r2 + 1/r ∂Sw/∂r) (µwknw/µnwkw) Pc’(Sw)

+ {(µwknw’/µnwkw)Pc’(Sw)+ (µwknw/µnwkw)Pc”(Sw)}(∂Sw/∂r)2]/

[1 + (µwknw/µnwkw)]                                           (21-78)

Now, there exist two dependent variables in the present problem, namely,
pressure and saturation.  Pressure is governed by Equation 21-78, while
saturation satisfies Equation 21-73,

-φ ∂Sw/∂t = (∂/∂r  + 1/r)                                                          (21-73)

(kw/µw){Q(t)+r (knw/µnw)Pc’(Sw) ∂Sw/∂r}/{r (kw/µw+knw/µnw)}

where Q(t), now not a prescribed function, merely stands for the functional
combination

Q(t) = - r (kw/µw+ knw/µnw) ∂Pw/∂r - r (knw/µnw) Pc’(Sw) ∂Sw/∂r (21-79)
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as is clear from Equation 21-70.  If the initial spatial distributions for Pw and Sw
are prescribed, a reasonable numerical solution process might solve Equations
21-78 and 21-73 sequentially for a time step, before proceeding to the next.  We
will, in fact, adopt this procedure.  The solution procedure for saturation has
been discussed and was implemented using Equation 21-77.  We will retain that
procedure for the present problem.  For the pressure solution, in order to
simplify our nomenclature, we recast Equation 21-78 in the form

∂2Pw/∂r2 + COEF ∂Pw/∂r = RHS                                                 (21-80)

where COEF and RHS denote the coefficient and right-hand-side terms.  Then,

adopting the central difference approximation (PWi-1 - 2 PWi + PWi+1)/∆r2 +

COEFi (PWi+1 - PWi-1)/(2∆r) = RHS i, we rewrite Equation 21-80 as

(1 - COEFi ∆r/2) PWi-1- 2 PWi  + (1 + COEFi ∆r/2) PWi+1 = RHSi ∆r2 (21-81)

Insofar as the tridiagonal solver TRIDI is concerned, the coefficients A, B , C,
and W take the form Ai = (1 - COEF i ∆r/2), Bi = -2, Ci = (1 + COEF i ∆r/2), and

Wi = RHS i ∆r2 for the internal nodes i = 2, 3, ..., imax-1.  In addition, A(1) = 99,

B(1) = 1, C(1) = 0, W(1) = Pleft, and A(IMAX) = 0, B(IMAX) = 1, C(IMAX) =

99, W(IMAX) = Pright, where Pleft and Pright denote the prescribed pressures

at the inlet and outlet boundaries.
Observe that COEF and RHS will always be evaluated by second-order

accurate central differences in space at the previous time step.  Also, a starting
initial pressure distribution is required that is analogous to our initial condition
for saturation.  Selected portions of the Fortran source code engine required to
implement this algorithm are given in Figure 21-11.  They are obtained by
simple modification of our earlier program designed to solve two-phase flows
when the flow rate is a prescribed function of time.  Finally, observe that we do
not use the outlet saturation boundary condition of Collins (1961) because our
outlet is a fictitious computational boundary that is internal to the reservoir.

Note that “Multiple Factors That Influence Wireline Formation Tester
Pressure Measurements and Fluid Contact Estimates,” by M.A. Proett, W.C.
Chin, M. Manohar, R. Sigal, and J. Wu, SPE Paper 71566, presented at the 2001
SPE Annual Technical Conference and Exhibition in New Orleans, Louisiana,
September 30–October 3, 2001, extends the work in this chapter to higher order,
ensuring that mass is accurately conserved at strong saturation discontinuities.
For further information or a complimentary copy of the paper, the reader should
write or contact the author directly at wilsonchin@aol.com.
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      .
      .
C     INITIALIZATION
      T = 0.
      DO 100  I=1,IMAX
      SNM1(I) = SZERO
      XPLOT(I) = WELRAD+(I-1)*DR
      P(I) = PINIT
 100  CONTINUE
C
C     START TIME INTEGRATION
      DO 300  N=1,NMAX
      T = T+DT
      THOURS = T/3600.
C
C     PRESSURE EQUATION
      DO 150  I=2,IMAXM1
      RI = WELRAD+(I-1)*DR
      SW = SNM1(I)
      DSDR   = (SNM1(I+1)-SNM1(I-1))/(2.*DR)
      DSDR2  = DSDR**2.
      D2SDR2 = (SNM1(I-1)-2.*SNM1(I)+SNM1(I+1))/(DR*DR)
      DEL2S  =  D2SDR2+(1./RI)*DSDR
      COEF = 1./RI
     1 +((KWP(SW)/VISCL+KNWP(SW)/VISCR)/
     2   (KW(SW) /VISCL+KNW(SW) /VISCR))*DSDR
      RHS = PCP(SW)*DEL2S*(VISCL*KNW(SW)/(VISCR*KW(SW)))
     1      +DSDR2*VISCL*KNWP(SW)*PCP(SW)/(VISCR*KW(SW))
     2      +DSDR2*PCPP(SW)*(VISCL*KNW(SW)/(VISCR*KW(SW)))
      RHS = -RHS*F(SW)
      A(I) = 1.-COEF*DR/2.
      B(I) = -2.
      C(I) = 1.+COEF*DR/2.
      W(I) = RHS*DR*DR
 150  CONTINUE
      A(1) = 99.
      B(1) = 1.
      C(1) = 0.
      W(1) = PLEFT
      A(IMAX) = 0.
      B(IMAX) = 1.
      C(IMAX) = 99.
      W(IMAX) = PRIGHT
      CALL TRIDI(A,B,C,VECTOR,W,IMAX)
      DO 160  I=1,IMAX
      P(I) = VECTOR(I)
 160  CONTINUE
C
C     SATURATION EQUATION
      DO 200  I=2,IMAXM1
      RI = WELRAD+(I-1)*DR
      SW = SNM1(I)
      DSDR = (SNM1(I+1)-SNM1(I-1))/(2.*DR)
      DPDR = (P(I+1)-P(I-1))/(2.*DR)
      Q = -RI*(KW(SW)/VISCL+KNW(SW)/VISCR)*DPDR
     1    -RI*(KNW(SW)/VISCR)*PCP(SW)*DSDR
      TERM1=((Q*FP(SW)+G(SW))*DR)/(2.*G(SW)*RI)
      TERM2=  DR*DR*PHI/(G(SW)*DT)
      TERM3= (GP(SW)*DR/G(SW))*DSDR/2.
      A(I) =  1.- TERM1-TERM3
      B(I) = -2.+ TERM2

Figure 21-11.  Implicit pressure – implicit saturation solver.
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      C(I) =  1.+ TERM1+TERM3
      W(I) =  TERM2*SNM1(I)
 200  CONTINUE
      A(1) = 99.
      B(1) = 1.
      C(1) = 0.
      W(1) = SL
      A(IMAX) = 0.
      B(IMAX) = 1.
      C(IMAX) = 99.
      W(IMAX) = SR
      CALL TRIDI(A,B,C,VECTOR,W,IMAX)
      DO 250  I=1,IMAX
      S(I) = VECTOR(I)
 250  CONTINUE
      DO 260  I=1,IMAX
      SNM1(I) = S(I)
 260  CONTINUE
      IF(MOD(N,60).NE.0) GO TO 300
      WRITE(*,10)
      WRITE(4,10)
      WRITE(*,280) THOURS
      WRITE(4,280) THOURS
 280  FORMAT('   Water saturation at time (hrs):' E9.3)
      CALL GRFIX(S,XPLOT,IMAX,1)
      WRITE(*,281) THOURS
      WRITE(4,281) THOURS
 281  FORMAT('   Pressure versus r @ time (hrs):' E9.3)
      CALL GRFIX(P,XPLOT,IMAX,2)
 300  CONTINUE
      .
      .
      STOP
      END
C
      FUNCTION F(SW)
      REAL KDARCY,KABS,KW,KNW
      KDARCY = 0.001
      KABS = KDARCY*0.00000001/(12.*12.*2.54*2.54)
      KW = KABS * SW**2.
      KNW = KABS*(SW-1.)**2.
      VISCIN = 1.
      VISCDP = 2.
      VISCL  = 0.0000211*VISCIN
      VISCR  = 0.0000211*VISCDP
      F = 1. +VISCL*KNW/(VISCR*KW)
      F = 1./F
      RETURN
      END

Figure 21-11.  Continued.

In the following calculations, two tabulations are shown per frozen instant
in time, the first for spatial saturation distribution and the second for the
corresponding pressure. (The pressure and time units shown are not germane to
our discussion, since they were chosen to replicate an entire range of weak to
strong inertia-to-capillary force effects.)  The tabulated solution sets appear in
Figures 21-12a,b,c.
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   Water saturation at time (hrs): .167E-03
   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .807E+00     |                      *
     .400E+00    .388E+00     |         *
     .500E+00    .120E+00     | *
     .600E+00    .101E+00     | *
     .700E+00    .100E+00     | *
     .800E+00    .100E+00     | *
     .900E+00    .100E+00     | *
     .100E+01    .100E+00     | *
     .110E+01    .100E+00     | *
     .120E+01    .100E+00     | *
     .130E+01    .100E+00     | *
     .140E+01    .100E+00     | *
     .150E+01    .100E+00     | *
     .160E+01    .100E+00     | *
     .170E+01    .100E+00     | *
     .180E+01    .100E+00     | *
     .190E+01    .100E+00     | *

   Pressure versus r @ time (hrs): .167E-03
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .144E+09     |                            *
     .300E+00    .129E+09     |                        *
     .400E+00    .108E+09     |                    *
     .500E+00    .888E+08     |                *
     .600E+00    .765E+08     |             *
     .700E+00    .663E+08     |           *
     .800E+00    .574E+08     |         *
     .900E+00    .496E+08     |        *
     .100E+01    .426E+08     |      *
     .110E+01    .363E+08     |     *
     .120E+01    .305E+08     |    *
     .130E+01    .252E+08     |   *
     .140E+01    .203E+08     |  *
     .150E+01    .157E+08     | *
     .160E+01    .114E+08     |*
     .170E+01    .738E+07     *
     .180E+01    .359E+07     |
     .190E+01    .000E+00     |

Figure 21-12a.   Early time saturation and pressure.

The early time saturation solution shown in Figure 21-12a indicates that
inertia effects are not yet strong.  This is clear, since reference to our source
code shows that we have initialized our pressure field to a constant value
throughout, so that the flow is initially stagnant.  At t = 0+, a sudden applied
pressure differential is introduced (that is, PLEFT - PRIGHT > 0), and fluid
movement commences.  However, the saturation shock has not formed, and the
flow is controlled by capillary pressure.  Note how the computed pressure shows
a mild slope discontinuity, not unlike that presumed in Chapter 17.
   Water saturation at time (hrs): .667E-03
   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .919E+00     |                         *
     .400E+00    .854E+00     |                       *
     .500E+00    .811E+00     |                      *
     .600E+00    .756E+00     |                    *
     .700E+00    .491E+00     |            *
     .800E+00    .149E+00     |  *
     .900E+00    .103E+00     | *
     .100E+01    .100E+00     | *
     .110E+01    .100E+00     | *
     .120E+01    .100E+00     | *
     .130E+01    .100E+00     | *
     .140E+01    .100E+00     | *
     .150E+01    .100E+00     | *
     .160E+01    .100E+00     | *
     .170E+01    .100E+00     | *
     .180E+01    .100E+00     | *
     .190E+01    .100E+00     | *

Figure 21-12b.   Intermediate time saturation and pressure.
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   Pressure versus r @ time (hrs): .667E-03
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .144E+09     |                            *
     .300E+00    .129E+09     |                        *
     .400E+00    .117E+09     |                      *
     .500E+00    .106E+09     |                    *
     .600E+00    .962E+08     |                  *
     .700E+00    .845E+08     |               *
     .800E+00    .697E+08     |            *
     .900E+00    .599E+08     |          *
     .100E+01    .514E+08     |        *
     .110E+01    .438E+08     |       *
     .120E+01    .368E+08     |     *
     .130E+01    .304E+08     |    *
     .140E+01    .245E+08     |   *
     .150E+01    .189E+08     | *
     .160E+01    .138E+08     |*
     .170E+01    .891E+07     *
     .180E+01    .433E+07     |
     .190E+01    .000E+00     |

 Figure 21-12b.  Continued.

Figure 21-12b illustrates the start of saturation shock formation, an event
not unlike the piston-like displacements assumed early in this book.  It is
interesting to observe that immiscible two-phase flow theory will predict piston-
like fronts when they exist, but when they do not, will produce smooth flows.
Thus, immiscible flow theory is more general and more powerful.  However, it
suffers from several practical disadvantages.  Calculations are almost always
numerical and produce little intuitive insight; also, the relative permeability and
capillary pressure functions that are required may not be known accurately.
   Water saturation at time (hrs): .283E-02

   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .978E+00     |                           *
     .400E+00    .951E+00     |                          *
     .500E+00    .921E+00     |                         *
     .600E+00    .891E+00     |                        *
     .700E+00    .861E+00     |                       *
     .800E+00    .834E+00     |                       *
     .900E+00    .811E+00     |                      *
     .100E+01    .793E+00     |                     *
     .110E+01    .780E+00     |                     *
     .120E+01    .772E+00     |                     *
     .130E+01    .765E+00     |                    *
     .140E+01    .755E+00     |                    *
     .150E+01    .691E+00     |                  *
     .160E+01    .359E+00     |        *
     .170E+01    .127E+00     | *
     .180E+01    .102E+00     | *
     .190E+01    .100E+00     | *
   Pressure versus r @ time (hrs): .283E-02
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .144E+09     |                            *
     .300E+00    .125E+09     |                        *
     .400E+00    .111E+09     |                     *
     .500E+00    .100E+09     |                  *
     .600E+00    .899E+08     |                *
     .700E+00    .809E+08     |              *
     .800E+00    .726E+08     |             *
     .900E+00    .648E+08     |           *
     .100E+01    .576E+08     |          *
     .110E+01    .508E+08     |        *
     .120E+01    .445E+08     |       *
     .130E+01    .386E+08     |      *
     .140E+01    .331E+08     |    *
     .150E+01    .275E+08     |   *
     .160E+01    .196E+08     |  *
     .170E+01    .117E+08     |*
     .180E+01    .562E+07     *
     .190E+01    .000E+00     |

  Figure 21-12c.  Late time saturation and pressure.

Finally, note that while the saturation profiles in Figures 21-12a to 21-12c have
evolved significantly from the beginning to the end of the calculations, our
pressure profiles have remained more or less invariant with time.  This indicates
the existence of two global time scales in the problem, one governing pressure
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and the other governing saturation.  Also, while the pressure gradient profile is
mildly discontinuous, the saturation profile is strongly discontinuous.

The invariance of the pressure solution with time is not unexpected,
although it is not always obtained.  Since-steady state all-water and steady-state
all-oil pressure distributions are identical for a fixed pressure differential, one
might expect that all of the intervening mixed fluid pressure states will not
deviate far from the profile obtained on a single-phase flow basis.  The latter
solution can therefore be used to initialize the pressure solver for rapid
convergence.  The converged solution would contain the propagating slope
discontinuities required at the water-oil interface.  Intuitive arguments such as
this, when plausible, can motivate more efficient numerical schemes for research
purposes.  It is important to observe that the transient saturation equation may be
either parabolic or hyberbolic in nature (e.g., see Hildebrand (1948)), depending
on the importance of the capillary pressure term relative to the convection term.
The form of the equation given in Equation 21-76 illustrates this distinction very
clearly.  When capillary pressure is important, the G(Sw) ∂ 

2Sw/∂r 
2 term must be

retained, so that

-φ ∂Sw/∂t  - {Q(t)F’(Sw) + G(Sw)}/r ∂Sw/∂r =                            (21-76)

= G’(Sw)(∂Sw/∂r)2 + G(Sw) ∂2Sw/∂r2

is heat-like.  The equation ∂Sw/∂t ∝ ∂2Sw/∂r2 is clearly diffusive, and it is not

unlike the pressure diffusion equation used in transient compressible well test
simulation (see Chapter 20).  But when inertia is more important, the second
derivative term ∂ 

2Sw/∂r 
2 can be neglected, at least until shocks form.  With this

term neglected, Equation 21-76 reduces to the first-order wave equation

-φ ∂Sw/∂t  - {Q(t)F'(Sw) + G(Sw)}/r ∂Sw/∂r = G'(Sw)(∂Sw/∂r)2 (21-82)

which is the radial form of the Buckley-Leverett equation studied earlier for
lineal flows.  Whether or not the saturation equation is parabolic or hyperbolic,
the pressure equation

∂2Pw/∂r2 + COEF ∂Pw/∂r = RHS                                            (21-80)

is always elliptic-like and time-independent, at least to the extent that the
variables COEF  and RHS are evaluated at the previous time step.  In any event,
both governing equations, Equations 21-76 and 21-80, contain second-order
spatial derivative terms and are associated with well-defined boundary value
problems and boundary conditions.

These formulations were solved using second-order accurate implicit
schemes in the work just presented; that is, our approach was implicit pressure,
implicit saturation.  This is in contrast to the popular implicit pressure, explicit
saturation codes used in the industry, which are only conditionally stable. (The
von Neumann stability of both implicit and explicit schemes was considered in
Chapter 20.)  This so-called IMPES scheme, in addition to its stability problems,
yields undesirable saturation oscillations and overshoots that are often fixed by
upstream (that is, backward) differencing of spatial derivatives.  But this
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solution actually introduces more problems than it fixes.  As Lantz (1971)
demonstrates, this stabilizes the numerical problem, at the expense of adding
artificial viscosity by way of the truncation terms.  Thus, the physically
meaningful diffusion coefficient G in the G(Sw) ∂2Sw/∂r2 term of Equation 21-

76 is no longer the only diffusion in the problem: a numerical diffusion
comparable in size to G is introduced that contaminates the computed solution.
This has the effect of misplacing the position of the saturation shock and
miscalculating the magnitude of the saturation discontinuity.  These problems
are well known and solved in the aerospace industry, where they arise in high-
speed wing design.  Mathematical problems should be addressed within the
context of the equation itself.  However, the basic issues (Chin, 1993a) are still
overlooked by petroleum investigators overly concerned with field agreement.

Modeling mudcake coupling.  Now that we understand immiscible two-
phase flow formulations, both analytically and numerically, we address the
problem where an additional mudcake Darcy flow appears at the inlet to our
radial geometry.  This flow satisfies its own pressure differential equation and is
characterized by a moving mud-to-mudcake boundary and a fixed mudcake-to-
rock interface.  The problem is shown in Figure 21-13, where x applies to both
lineal and radial flows.  In order to solve this coupled problem, the algorithms
developed in Example 20-7 of Chapter 20 and the immiscible flow problem just
completed must be coupled.

iwall imaxi = 1

Cake Immiscible two-phase flow in rock

Pmud Pres

x = 0 x = Lx = -xc < 0

Figure 21-13.  Two-layer mudcake-rock, immiscible flow model.

Let us first review the mudcake formulation developed earlier.  Again, the
flow in the mudcake is assumed to be single-phase, and because compressibility
is neglected, the pressure distribution P(x,t) satisfies

d(kc dP/dx)/dx = 0                                                                      (21-83)

where the mudcake absolute permeability kc may be prescribed as a function of

x, or given as a function of P, or taken as a constant for simplicity.  We choose
the latter for convenience, so that the simple ordinary differential equation

d2P/dx2 = 0                                                                                    (21-84)

applies.  Note that P(x,t) will depend parametrically on time, even though there
are no time-dependent derivatives in Equation 21-84, because a moving
boundary will be allowed.  We also assume that the mud filtrate and the
formation water are identical, so that only two fluids need to be modeled.  Other
formulations are possible but will not be treated here.  If oil base muds are used,
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three separate fluids must be accounted for, namely, the oil filtrate, the
formation hydrocarbon, and the connate water.  If two different waters (e.g.,
fresh versus saline) are present, gravity effects may have to be accounted for.
And if combined water-oil muds are considered, the mudcake flow formulation
is necessarily two-phase as it is in the formation.  These formulations add to
numerical complexity and do not introduce new ideas.

Now how do we couple Equation 21-84 for the single-phase flow in the
growing  mudcake to Equations 21-78, 21-73, and 21-79 describing the two-
phase immiscible flow in the rock?  It is clear that the grid expansion method
used in Example 20-7 and suggested in Figure 21-13 cannot be used: the number
of nodes increases with time as the cake thickens, but the saturation solution Si,n
requires information at earlier nonexistent spatial nodes.  An elementary
solution to the problem, fortunately, is available, and requires us first to
transform the boundary value problem for the cake into a boundary condition
for the rock flow.  Since Equation 21-84 applies, where x actually refers to the
radial coordinate, the exact solution P = Ar + B applies.  Then, the simple
solution P = A(r - Rcake) + Pleft satisfies P = Pleft  at r = Rcake.  (Here, Pleft is

the borehole mud pressure, acting on the exposed face of the mud cake located
at r = Rcake.) The pressure at the mudcake-to-rock interface is given by the

expression P = A(Rwell - Rcake ) + Pleft, where r = Rwell is the wellbore radius

without cake.  The fluid velocity at the cake-to-rock interface is kcake dP/dr or

kcakeA.  This must be equal to the Darcy velocity krock(PW2,n-PW1,n)/∆r

evaluated from the two-phase flow solution.  Setting  the two equal, that is,
kcake A = krock (PW2,n -PW1,n)/∆r, and noting that pressure continuity

requires that PW1,n = A(Rwell - Rcake) + Pleft lead to the fact that

[kcake∆r + krock (Rwell - Rcake)] PW 1,n                                   (21-85)

- krock(Rwell - Rcake) PW2,n =  kcakePleft∆r

where we have eliminated the constant A, and PW is the wetting phase pressure.
Since the mudcake-to-rock interface is completely saturated with water, the
permeability k rock is exactly the absolute permeability.

Unchanging mudcake thickness.  In dynamic filtration, the mudcake
ceases to grow once equilibrium conditions are achieved in the borehole (see
Chapter 18).  This invasion is modeled by a cake thickness that is a prescribed
constant, which does not vary with time.  Then, the only algorithmic change to
the Fortran code in the foregoing section requires us to replace

A(1) = 99.
B(1) = 1.
C(1) = 0.
W(1) = PLEFT

by
KCAKE = 0.001
KC = KCAKE*0.00000001/(12.*12.*2.54*2.54)
RCAKE = 0.01/12.
.
.
A(1) = 99.
B(1) = KC*DR + K*(WELRAD-RCAKE)
C(1) = -K*(WELRAD-RCAKE)
W(1) = KC*PLEFT*DR
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Typical saturation and pressures in Figures 21-14a,b,c for early, intermediate,
and late times illustrate shock formation and propagation.  The parameters were
selected to cover the entire range of inertial-to-capillary force ratios.
   Water saturation at time (hrs): .167E-03
   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .715E+00     |                   *
     .400E+00    .213E+00     |    *
     .500E+00    .105E+00     | *
     .600E+00    .100E+00     | *
     .700E+00    .100E+00     | *
     .800E+00    .100E+00     | *
     .900E+00    .100E+00     | *
     .100E+01    .100E+00     | *
     .110E+01    .100E+00     | *
     .120E+01    .100E+00     | *
     .130E+01    .100E+00     | *
     .140E+01    .100E+00     | *
     .150E+01    .100E+00     | *

   Pressure versus r @ time (hrs): .167E-03
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .117E+09     |                            *
     .300E+00    .103E+09     |                        *
     .400E+00    .807E+08     |                  *
     .500E+00    .682E+08     |               *
     .600E+00    .589E+08     |             *
     .700E+00    .510E+08     |           *
     .800E+00    .442E+08     |         *
     .900E+00    .382E+08     |       *
     .100E+01    .328E+08     |      *
     .110E+01    .279E+08     |     *
     .120E+01    .235E+08     |    *
     .130E+01    .194E+08     |  *
     .140E+01    .156E+08     |  *
     .150E+01    .121E+08     | *
     .160E+01    .878E+07     |*
     .170E+01    .568E+07     *
     .180E+01    .276E+07     |
     .190E+01    .000E+00     |

 Figure 21-14a.  Early time solution.

   Water saturation at time (hrs): .100E-02
   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .929E+00     |                         *
     .400E+00    .867E+00     |                        *
     .500E+00    .823E+00     |                      *
     .600E+00    .792E+00     |                     *
     .700E+00    .720E+00     |                   *
     .800E+00    .374E+00     |         *
     .900E+00    .125E+00     | *
     .100E+01    .101E+00     | *
     .110E+01    .100E+00     | *
     .120E+01    .100E+00     | *
     .130E+01    .100E+00     | *
     .140E+01    .100E+00     | *
     .150E+01    .100E+00     | *
     .160E+01    .100E+00     | *
     .170E+01    .100E+00     | *
     .180E+01    .100E+00     | *
     .190E+01    .100E+00     | *

   Pressure versus r @ time (hrs): .100E-02
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .119E+09     |                            *
     .300E+00    .106E+09     |                        *
     .400E+00    .954E+08     |                      *
     .500E+00    .863E+08     |                   *
     .600E+00    .782E+08     |                 *
     .700E+00    .706E+08     |               *
     .800E+00    .603E+08     |             *
     .900E+00    .503E+08     |          *
     .100E+01    .431E+08     |        *
     .110E+01    .367E+08     |       *
     .120E+01    .308E+08     |     *
     .130E+01    .255E+08     |    *
     .140E+01    .205E+08     |   *
     .150E+01    .159E+08     |  *
     .160E+01    .115E+08     |*
     .170E+01    .747E+07     *
     .180E+01    .363E+07     |
     .190E+01    .000E+00     |

  Figure 21-14b.  Intermediate time solution.
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   Water saturation at time (hrs): .267E-02
   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .971E+00     |                           *
     .400E+00    .936E+00     |                          *
     .500E+00    .900E+00     |                         *
     .600E+00    .866E+00     |                       *
     .700E+00    .835E+00     |                       *
     .800E+00    .809E+00     |                      *
     .900E+00    .791E+00     |                     *
     .100E+01    .779E+00     |                     *
     .110E+01    .770E+00     |                     *
     .120E+01    .752E+00     |                    *
     .130E+01    .634E+00     |                 *
     .140E+01    .249E+00     |     *
     .150E+01    .112E+00     | *
     .160E+01    .101E+00     | *
     .170E+01    .100E+00     | *
     .180E+01    .100E+00     | *
     .190E+01    .100E+00     | *

   Pressure versus r @ time (hrs): .267E-02
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .116E+09     |                            *
     .300E+00    .102E+09     |                        *
     .400E+00    .907E+08     |                     *
     .500E+00    .816E+08     |                   *
     .600E+00    .736E+08     |                 *
     .700E+00    .664E+08     |               *
     .800E+00    .597E+08     |             *
     .900E+00    .536E+08     |           *
     .100E+01    .479E+08     |          *
     .110E+01    .426E+08     |         *
     .120E+01    .377E+08     |       *
     .130E+01    .324E+08     |      *
     .140E+01    .244E+08     |    *
     .150E+01    .183E+08     |  *
     .160E+01    .133E+08     | *
     .170E+01    .861E+07     |*
     .180E+01    .418E+07     *
     .190E+01    .000E+00     |

  Figure 21-14c.  Late time solution.

Transient mudcake growth.   When transient mudcake growth is allowed,
for example, as in static filtration or nonequilibrium dynamic filtration,
conceptual but simple coding changes are required.  For thin mudcake-to-
borehole radii ratios, the lineal cake growth model

dxc/dt = - {fs/{(1-fs)(1-φc)}}|vn| < 0                                             (20-63)

applies, where |vn| is proportional to the Darcy velocity (kc/µmf) dp(xc)/dx at

the cake surface.  Note that Equation 20-62 describing displacement fronts in the
rock is not used here, since saturation discontinuities are allowed to form
naturally in immiscible flows, if they exist.  Equation 20-63 is approximated by

xc,new  =  xc,old + {fs/{(1-fs)(1-φc)}}{kc∆t/(µmf∆x)}(p2 - p1)old (20-64)

where (p 2 - p1)old/∆x represents the pressure gradient in the cake.  But our

mudcake pressure solution P = Ar + B shows that dP/dr = A does not depend on
position, and that at any instant, it is a constant that does not change through the
cake.  This being the case, its value can be extrapolated from the velocity
matching interfacial condition kcake  dP/dr = krock(PW2,n -PW1,n)/∆r, that is,

dP/dr = (krock/kcake)(PW2,n-PW1,n)/∆r                                   (21-86)

Thus, the only required addition to the Fortran immediately preceding is the
following update logic in boldface type.
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C INITIAL SETUP
RCAKE = WELRAD
KCAKE = 0.001
KC = KCAKE*0.00000001/(12.*12.*2.54*2.54)
FS=0.2
PHIMUD=0.2

.

.
C Update cake position immediately after pressure integration.

RATIO  = K/KC
PGRADC = RATIO*(P(2)-P(1))/DR
RCAKE  = RCAKE+(FS/((1.-PHIMUD)*(1.-FS)))*(KC/VISCL)*PGRADC*DT
.
.
A(1) = 99.
B(1) = KC*DR + K*(WELRAD-RCAKE)
C(1) = -K*(WELRAD-RCAKE)
W(1) = KC*PLEFT*DR

The uppermost line represents the mudcake initial condition; that is, at time
t = 0, the surface of the infinitesimally thin cake coincides with the borehole
radius.  In Figures 21-15a,b,c, the computational parameters are identical to
those in Figures 21-14a,b,c, except that the cake grows from zero thickness, as
opposed to being fixed at 0.01 in. for all time.  Since the mudcake considered in
Figure 21-15 is typically thinner than that in Figure 21-14 for any instant in
time, we expect greater relative invasion.  In fact, we do observe increased water
saturation and deeper penetration of the saturation shock into the rock.

   Water saturation at time (hrs): .167E-03
   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .803E+00     |                      *
     .400E+00    .373E+00     |         *
     .500E+00    .118E+00     | *
     .600E+00    .101E+00     | *
     .700E+00    .100E+00     | *
     .800E+00    .100E+00     | *
     .900E+00    .100E+00     | *
     .100E+01    .100E+00     | *
     .110E+01    .100E+00     | *
     .120E+01    .100E+00     | *
     .130E+01    .100E+00     | *
     .140E+01    .100E+00     | *
     .150E+01    .100E+00     | *
     .160E+01    .100E+00     | *
     .170E+01    .100E+00     | *
     .180E+01    .100E+00     | *
     .190E+01    .100E+00     | *

   Pressure versus r @ time (hrs): .167E-03
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .141E+09     |                            *
     .300E+00    .125E+09     |                        *
     .400E+00    .104E+09     |                    *
     .500E+00    .862E+08     |                *
     .600E+00    .743E+08     |             *
     .700E+00    .644E+08     |           *
     .800E+00    .558E+08     |         *
     .900E+00    .482E+08     |        *
     .100E+01    .414E+08     |      *
     .110E+01    .352E+08     |     *
     .120E+01    .296E+08     |    *
     .130E+01    .245E+08     |   *
     .140E+01    .197E+08     |  *
     .150E+01    .152E+08     | *
     .160E+01    .111E+08     |*
     .170E+01    .717E+07     *
     .180E+01    .349E+07     |
     .190E+01    .000E+00     |

  Figure 21-15a.  Early time solution.

 Another interesting observation concerns pressure drops computed at
different points in the radial core sample.  In the normalized units selected, Pleft

= 0.144 x 109 was assumed at the borehole edge of the mudcake, while Pright  = 0
was taken at the far right effective radius.  Figure 21-15c shows that a pressure
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of 0.113 x 109 was obtained at the mudcake-to-rock interface.  In this
calculation, the rock and not the mudcake supports the greatest portion of the
total pressure drop.  The computations pursued here, in loose terms, model
invasion in very tight zones and in problems having highly permeable cakes.

   Water saturation at time (hrs): .100E-02
   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .937E+00     |                          *
     .400E+00    .879E+00     |                        *
     .500E+00    .833E+00     |                      *
     .600E+00    .803E+00     |                      *
     .700E+00    .774E+00     |                     *
     .800E+00    .650E+00     |                 *
     .900E+00    .249E+00     |     *
     .100E+01    .111E+00     | *
     .110E+01    .101E+00     | *
     .120E+01    .100E+00     | *
     .130E+01    .100E+00     | *
     .140E+01    .100E+00     | *
     .150E+01    .100E+00     | *
     .160E+01    .100E+00     | *
     .170E+01    .100E+00     | *
     .180E+01    .100E+00     | *
     .190E+01    .100E+00     | *

   Pressure versus r @ time (hrs): .100E-02
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .131E+09     |                            *
     .300E+00    .117E+09     |                        *
     .400E+00    .105E+09     |                      *
     .500E+00    .947E+08     |                   *
     .600E+00    .857E+08     |                 *
     .700E+00    .776E+08     |               *
     .800E+00    .693E+08     |             *
     .900E+00    .570E+08     |           *
     .100E+01    .481E+08     |         *
     .110E+01    .409E+08     |       *
     .120E+01    .344E+08     |     *
     .130E+01    .284E+08     |    *
     .140E+01    .228E+08     |   *
     .150E+01    .177E+08     |  *
     .160E+01    .129E+08     |*
     .170E+01    .832E+07     *
     .180E+01    .404E+07     |
     .190E+01    .000E+00     |

   Figure 21-15b.  Intermediate time solution.

We emphasize that we have obtained stable numerical results, without
saturation overshoots and local oscillations, all using second-order accurate
spatial central differencing, without having to introduce special upwind
operators.  The methods developed are stable and require minimal computing
since they are based on tridiagonal equations.  Several subtle aspects of
numerical simulation as they affect miscible diffusion and immiscible saturation
shock formation are discussed in Chapter 13.
   Water saturation at time (hrs): .267E-02
   Position (ft) Water Sat
                              ______________________________
     .200E+00    .100E+01     |                            *
     .300E+00    .973E+00     |                           *
     .400E+00    .941E+00     |                          *
     .500E+00    .907E+00     |                         *
     .600E+00    .874E+00     |                        *
     .700E+00    .843E+00     |                       *
     .800E+00    .816E+00     |                      *
     .900E+00    .796E+00     |                     *
     .100E+01    .783E+00     |                     *
     .110E+01    .773E+00     |                     *
     .120E+01    .764E+00     |                    *
     .130E+01    .734E+00     |                    *
     .140E+01    .525E+00     |             *
     .150E+01    .170E+00     |   *
     .160E+01    .105E+00     | *
     .170E+01    .100E+00     | *
     .180E+01    .100E+00     | *
     .190E+01    .100E+00     | *

 Figure 21-15c.  Late time solution.
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   Pressure versus r @ time (hrs): .267E-02
   Position (ft)  Pressure
                              ______________________________
     .200E+00    .113E+09     |                            *
     .300E+00    .987E+08     |                        *
     .400E+00    .882E+08     |                     *
     .500E+00    .794E+08     |                   *
     .600E+00    .717E+08     |                 *
     .700E+00    .647E+08     |               *
     .800E+00    .583E+08     |             *
     .900E+00    .523E+08     |           *
     .100E+01    .468E+08     |          *
     .110E+01    .417E+08     |         *
     .120E+01    .369E+08     |       *
     .130E+01    .323E+08     |      *
     .140E+01    .269E+08     |     *
     .150E+01    .192E+08     |   *
     .160E+01    .137E+08     | *
     .170E+01    .885E+07     |*
     .180E+01    .430E+07     *
     .190E+01    .000E+00     |

  Figure 21-15c.  Continued.

General immiscible flow model.  Earlier we showed how a first-order
nonlinear equation arises in immiscible two-phase flow.  We derived Equation
21-17, that is, ∂Sw/∂t + {q(t)/ φ} dfw(Sw,µw/µnw)/dSw ∂Sw/∂x = 0 for

saturation in one-dimensional systems, and indicated that it applied to high-rate
invasion problems where capillary pressure could be ignored.  This equation was
accurate at least until the appearance of saturation shocks and steep flow
gradients.  Then, the low-order description breaks down locally, but it could still
be used provided we introduce a shock that satisfies certain externally imposed
constraints that fall outside the scope of the simple formulation.  In fact, mass
conservation requires us to take the shock velocity in the form given by

Equation 21-39, namely, Vshock = {Qw(Sw
l) - Qw(Sw

i)}/(Sw
l - Sw

i).  But the

patched solution is incomplete, since the structure and thickness of the shock
cannot be resurrected.

In order to recover the complete details of the flow, recourse to the high-
order partial differential equation with capillary pressure is necessary.  In radial
flow, the required Equation 21-76 shows that the more detailed physical model
is -φ ∂Sw/∂t - {Q(t) F’(Sw) + G(Sw )}/r ∂Sw/∂r = G’(Sw)(∂Sw/∂r)2 + G(Sw)

∂2Sw/∂r2.  The G(Sw) ∂2Sw/∂r2 term is all-important, as we have seen (e.g.,

refer to Figure 21-6c) because it produces the shock structure naturally; also, it
will affect the propagation speed somewhat, and the shock speed so obtained
will differ from the Vshock  given here.  In addition, this second-order derivative

completely determines the particular flux that is conserved across shocks and
implicitly contains the entropy condition that dictates the manner in which
shocks form.  The key idea, we emphasize, is the crucial role that the high-order
derivative term plays: it may be negligible for a while, but it must be correctly
accounted for at the shock because it is large.  This being the case, it is
imperative that the correct high-order terms be modeled and that the included
terms remain free of undesirable numerical diffusion.

In this chapter, the coupling of dynamic mudcake growth to immiscible
fluid flow was studied as a purely radial problem.  Idealizations were undertaken
in order to extend the diffusion ideas first presented in Chapter 13 to broader
problems involving two-phase flow.  In practical applications, many physical
mechanisms are simultaneously at work in the formation, for example, reservoir
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heterogeneities, axial variations, and miscible mixing.  At the same time, the
auxiliary conditions that apply to well logging tools are far from simple.
Consider formation-testing-while-drilling.  During drilling, two-phase flow
invasion takes place while the mudcake builds; this establishes initial conditions
that apply once fluid sampling commences.  When pretest samples are taken,
mudcake is first removed at the piston, and complicated three-dimensional
boundary conditions that model skin and flow line storage effects must be used
(e.g., see Chapter 18 for an elementary discussion on tester modeling).  This
operational procedure can be simulated in detail using the building blocks
described in this book.  A comprehensive numerical model has been developed
for tester applications.  It can predict (1) the pumping times required to purge
the near-well formation of mud filtrate before uncontaminated petroleum fluids
are accessible, (2) the tool power requirements associated with such pumping
processes, and (3) continually refined formation evaluation parameters based on
compressible and incompressible fluid flow pressure transients.  This modeling
effort will be reported in “Sample Quality Prediction with Integrated Oil and
Water-Based Mud Invasion Modeling,” SPE Paper No. 77964, SPE Asia Pacific
Oil & Gas Conference and Exhibition (APOGCE) , Oct. 2002, Melbourne,
Australia by M. Proett, D. Belanger, M. Manohar, and the present author.

PROBLEMS AND EXERCISES

1. Select several available immiscible two-phase flow simulators, and define
conditions that would lead to water breakthrough in finite time.  Assume
different capillary pressure functions.  How are breakthrough times and
locations affected?  Is mass conserved across the saturation discontinuity?
Rerun your problem sets with capillary pressure identically zero and
compare results.

2. For the one-dimensional immiscible flow formulation considered here,
write a program comparing backward, central, and forward difference
approximations and their effects on mass conservation.  What general
conclusions can you draw?
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