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In this lecture ...

• Stirling and Ericsson cycles
• Brayton cycle: The ideal cycle for gas-

turbine engines
• The Brayton cycle with regeneration
• The Brayton cycle with intercooling, 

reheating and regeneration
• Rankine cycle: The ideal cycle for vapour 

power cycles
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Stirling and Ericsson cycles
• The ideal Otto and Diesel cycles are 

internally reversible, but not totally 
reversible.

• Hence their efficiencies will always be less 
than that of Carnot efficiency.

• For a cycle to approach a Carnot cycle, 
heat addition and heat rejection must 
take place isothermally.

• Stirling and Ericsson cycles comprise of 
isothermal heat addition and heat 
rejection.
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Regeneration

• Both these cycles also have 
a regeneration process.

• Regeneration, a process 
during which heat is 
transferred to a thermal 
energy storage device 
(called a regenerator) 
during one part of the cycle 
and is transferred back to 
the working fluid during 
another part of the cycle.
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Stirling cycle
• Consists of four totally reversible processes:

– 1-2 T = constant, expansion (heat addition 
from the external source)

– 2-3 v = constant, regeneration (internal heat 
transfer from the working fluid to the 
regenerator)

– 3-4 T= constant, compression (heat rejection 
to the external sink)

– 4-1 v = constant, regeneration (internal heat 
transfer from the regenerator back to the 
working fluid)

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay
5

Lect-18



Stirling cycle 
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Ericsson cycle
• Consists of four totally reversible processes:

– 1-2 T = constant, expansion (heat addition 
from the external source)

– 2-3 P = constant, regeneration (internal heat 
transfer from the working fluid to the 
regenerator)

– 3-4 T= constant, compression (heat rejection 
to the external sink)

– 4-1 P = constant, regeneration (internal heat 
transfer from the regenerator back to the 
working fluid)
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Ericsson cycle 
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Stirling and Ericsson cycles
• Since both these engines are totally 

reversible cycles, their efficiencies equal the 
Carnot efficiency between same 
temperature limits.

• These cycles are difficult to realise 
practically, but offer great potential.

• Regeneration increases efficiency.
• This fact is used in many modern day cycles 

to improve efficiency.
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Brayton cycle

• The Brayton cycle was proposed by George 
Brayton in 1870 for use in reciprocating 
engines.

• Modern day gas turbines operate on Brayton
cycle and work with rotating machinery.

• Gas turbines operate in open-cycle mode, but 
can be modelled as closed cycle using air-
standard assumptions.

• Combustion and exhaust replaced by constant 
pressure heat addition and rejection.
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Brayton cycle

• The Brayton cycle consists of four internally 
reversible processes:
– 1-2 Isentropic compression (in a 

compressor)
– 2-3 Constant-pressure heat addition
– 3-4 Isentropic expansion (in a turbine)
– 4-1 Constant-pressure heat rejection
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Brayton cycle 
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Brayton cycle

• The energy balance for a steady-flow 
process can be expressed as:
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Brayton cycle
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• The thermal efficiency of the ideal Brayton
cycle under the cold air standard 
assumptions becomes: 
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Brayton cycle 
• Substituting these equations into the 

thermal efficiency relation and simplifying:

• The thermal efficiency of a Brayton cycle is 
therefore a function of the cycle pressure 
ratio and the ratio of specific heats. 
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Brayton cycle with regeneration

• Regeneration can be carried out by using the 
hot air exhausting from the turbine to heat up 
the compressor exit flow.

• The thermal efficiency of the Brayton cycle 
increases as a part of the heat rejected is re-
used.

• Regeneration decreases the heat input (thus 
fuel) requirements for the same net work 
output.
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Brayton cycle with regeneration
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Brayton cycle with regeneration

• The highest temperature occurring within 
the regenerator is T4.

• Air normally leaves the regenerator at a 
lower temperature, T5.

• In the limiting (ideal) case, the air exits the 
regenerator at the inlet temperature of the 
exhaust gases T4.

• The actual and maximum heat transfers are:
qregen,act = h5 - h2    and   qregen,max = h5’- h2 = h4 - h2
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Brayton cycle with regeneration
• The extent to which a regenerator approaches 

an ideal regenerator is called the 
effectiveness, ε and is defined as    
ε = qregen,act / qregen,max = (h5 - h2)/(h4 - h2)

• Under the cold-air-standard assumptions, the 
thermal efficiency of an ideal Brayton cycle 
with regeneration is:

• The thermal efficiency depends upon the 
temperature as well as the pressure ratio.
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Brayton cycle with intercooling, 
reheating and regeneration

• The net work of a gas-turbine cycle is the 
difference between the turbine work output 
and the compressor work input.

• It can be increased by either decreasing the 
compressor work or increasing the turbine 
work, or both.

• The work required to compress a gas between 
two specified pressures can be decreased by 
carrying out the compression process in stages 
and cooling the gas in between: multi-stage 
compression with intercooling.
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Brayton cycle with intercooling, 
reheating and regeneration

• Similarly the work output of a turbine can be 
increased by: multi-stage expansion with 
reheating.

• As the number of stages of compression and 
expansion are increased, the process 
approaches an isothermal process.

• A combination of intercooling and reheating 
can increase the net work output of a 
Brayton cycle significantly.
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Brayton cycle with intercooling, 
reheating and regeneration
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Brayton cycle with intercooling, 
reheating and regeneration

• The net work output of a gas-turbine cycle 
improves as a result of intercooling and 
reheating.

• However, intercooling and reheating 
decreases the thermal efficiency unless 
they are accompanied by regeneration.

• This is because intercooling decreases the 
average temperature at which heat is 
added, and reheating increases the average 
temperature at which heat is rejected.
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Rankine cycle

• Rankine cycle is the ideal cycle for vapour 
power cycles.

• The ideal Rankine cycle does not involve any 
internal irreversibilities.

• The ideal cycle consists of the following:
– 1-2 Isentropic compression in a pump
– 2-3 Constant pressure heat addition in a boiler
– 3-4 Isentropic expansion in a turbine
– 4-1 Constant pressure heat rejection in a 

condenser
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Rankine cycle
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Rankine cycle

• All the components are steady flow systems.
• The energy balance for each sub-system can 

be expressed as:
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Rankine cycle
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Rankine cycle

• Rankine cycles can also be operated with 
reheat and regeneration. 

• The average temperature during the reheat 
process can be increased by increasing the 
number of expansion and reheat stages.

• A Rankine cycle with reheat and 
regeneration offer substantially higher 
efficiencies as compared to a simple Rankine
cycle.
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In this lecture ...

• Stirling and Ericsson cycles
• Brayton cycle: The ideal cycle for gas-

turbine engines
• The Brayton cycle with regeneration
• The Brayton cycle with intercooling, 

reheating and regeneration
• Rankine cycle: The ideal cycle for vapour 

power cycles
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In the next lecture ...

• Helmholtz and Gibb’s functions
• Legendre transformations
• Thermodynamic potentials
• The Maxwell relations
• The ideal gas equation of state
• Compressibility factor
• Other equations of state
• Joule-Thomson coefficient
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