Tutorial Problems for exercise

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

TURBOMACHINERY AERODYNAMICS

1. A 3-D design of a rotor blade of axial flow compressor following vortex laws may be used :

$$C_{w1}$$
 = (aR-b)/R and C_{w2} = (aR+b)/R
Where R = r/r_{mean}

And following data may be used : hub/tip radius ratio,

 $r_h / r_t = 0.6$; $C_a = constant across the rotor at mean radius$ $At mean radius <math>C_{w1} = 60 \text{ m/s}$; $C_{w2} = 150 \text{ m/s}$ Specific work = 21.6 kJ/kg

Calculate the following parameters :

- i) at mean radius : ΔT, Rx, a, b
- ii) at root and tip, Rx
- iii) at root and tip : inlet and exit axial velocities, C_{a1} , C_{a2}
- iv) Inlet and exit flow angles at root, mean and tip

Lect-10

TURBOMACHINERY AERODYNAMICS

2) The table here	Variable	Root Section	Mean Section	Tip Section
shows a few data of				ე
an axial flow	C_{W1} [m/s]	32	24	: 0
compressor rotor	C_{W2} [m/s]	?	150	· •
designed with Free	$R[r/r_{\rm m}]$?	?	?
U	$U_1 \text{ [m/s]}$?	?	?
vortex theory.	$U_2 \text{ [m/s]}$?	?	?
i) Calculate all the	$R_{\rm X}$?	?	?
data to complete	C_{a1} [m/s]	109	?	?
the table	$C_{a2} [m/s]$?	?	?
ii) Plot the entry	ΔT_0 [K]	?	?	?
	$U \Delta C_{W} [J/kg]$?	?	?
and exit velocity	$\alpha_1 [^{\circ}]$?	?	?
triangles at root,	α_2 [°]	?	?	?
mean and tip	β_1 [°]	?	?	?
	β_2 [°]	?	?	?
	Chord [cm]	6.0	5.5	5.0

TURBOMACHINERY AERODYNAMICS

3. An axial flow compressor with hub/tip radius ratio of 0.4 and maximum diameter as 0.6m, has been designed with constant reaction of 50% from root to tip . The blade tip speed $U_{tip} = 300$ m/s. The stagnation temperature rise is 16° C. The axial velocity prescribed for the flow near the casing, upstream of rotor, is 120 m/s. For air $c_p = 1.005$ kJ/kgK.

Determine the axial velocity before and after the rotor such that radial equilibrium is maintained.