Lect - 6

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

3-D Flows in Blade Passages of Axial Flow Compressors

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Local flow field decides blade shape

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

TURBOMACHINERY AERODYNAMICS

3-D Flows through axial compressor

- Axial flow acquires rotational component on entering the blades
- •Axial compressors blades are normally highly twisted
- Airfoils used may significantly vary in camber and stagger settings from hub to tip
- Solidity and spacing between the airfoils vary from root to tip
- As a result of the above, Cp distributions on the blade surfaces vary from root to tip

Fabricated Blades

3-D blade shapes

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect - 6

Weak Pressure Gradient inside the boundary layer Strong Pressure Gradient inside the boundary layer

TURBOMACHINERY AERODYNAMICS

In certain blade shapes the flow, in passing through the blades, develop two passage vortices

Weak Pressure Gradient inside the boundary layer Strong Pressure Gradient inside the boundary layer Looking at the flow from the rear of the blade passage

TURBOMACHINERY AERODYNAMICS

Boundary layer development at casing and hub (due to adverse pressure gradient of main flow) further contributes to 3-D flow development

End-wall Boundary layer development

TURBOMACHINERY AERODYNAMICS

11

Change of inlet velocity profile through stages

- Flow entering the stages downstream of the first stage becomes more and more non-axial
- Boundary layers are developed at the two ends of the blades casing and hub ends
- The growing end wall boundary layers also act as "blockage" and reduces the main flow rate

Lect - 6

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect - 6

Passage vortex development across blade passage

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

3-D Flow development in rotor blades

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

3-D Flow development in rotor blades

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

3-D Flow development in rotor blades

Next Class -----

3-D Flow Analysis – Simple Radial Equilibrium theory