Lect- 21

Lect-21

In this lecture...

• Axial flow turbine

TURBOMACHINERY AERODYNAMICS

• Degree of Reaction, Losses and **Efficiency**

Degree of reaction

- Acceleration takes place in both rotor and the stator.
- Enthalpy drop in the rotor as well as the stator.
- Degree of reaction provides a measure of the extent to which the rotor contributes to the overall enthalpy drop in the stage.

Lect-21

Velocity triangles

Degree of reaction

$$
R_x = \frac{\text{Static enthalpy drop in the rotor}}{\text{Stagnation enthalpy drop in the stage}}
$$

$$
= \frac{h_2 - h_3}{h_{01} - h_{03}}
$$

apparent stagnation enthalpy is constant, Since, in a coordinate system fixed to the rotor, the

$$
h_2 - h_3 = \frac{V_3^2}{2} - \frac{V_2^2}{2}
$$

of the rotor, this becomes, If the axial velocity is the same upstream and downstream

$$
h_2 - h_3 = \frac{1}{2} (V_{w3}^2 - V_{w2}^2) = \frac{1}{2} (V_{w3} - V_{w2}) (V_{w3} + V_{w2})
$$

Also, since $h_{01} - h_{03} = U(C_{w2} - C_{w3})$

Lect-21

Degree of reaction

 $\overline{}$ $\overline{}$ $\left|1-\frac{\mathsf{C}_{\mathsf{a}}}{\mathsf{L}}\left(\tan\alpha_{2}+\tan\beta_{3}\right)\right|$ $\overline{\mathsf{L}}$ \mathbf{r} $=\frac{1}{2}\left[1-\frac{\mathsf{v}_{\mathsf{a}}}{\mathsf{U}}\left(\tan\alpha_{2}+\tan\beta_{3}\right)\right]$ and $V_{w2} = C_a \tan \alpha_2 - U$ We know that, $V_{w3} = C_a \tan \beta_3$ + = − Since, $(V_{w3} - V_{w2}) = (C_{w3} - C_{w2})$ − $-V_{W2}$) (V_{W3} + = C so that R_x = $\frac{1}{2}$ | 1 – $\frac{64}{11}$ U Therefore, $R_x = -\frac{(V_{w3} + V_{w2})}{2!}$ $UC_{w2} - C_{w3}$ $R_{x} = \frac{(V_{w3} - V_{w2})(V_{w3} + V_{w2})}{21162}$ $x = \frac{1}{2}$ $1 - \frac{1}{2}$ (tarra $2 + \tan \frac{1}{2}$ $w3$ T V_W X w^2 \vee w $_{\rm W3}$ – $\mathbf{v}_{\rm W2}$, $\mathbf{v}_{\rm W3}$ – $\mathbf{v}_{\rm W}$ X $\frac{1}{2}$ | 1 – $\frac{a}{11}$ (tan α_2 + tan β 3 \mathbf{v}_{W2} 2 \vee w3 3 V_{W2} /(V_{W3} V_{W2} 2 2

Degree of reaction

is lower than that of a 50% reaction stage. higher and that is one of the reason why its efficiency impulse turbine stage, all the flow velocities are ratio than does the 50% reaction stage. In the turbine stage requires a much higher axial velocity For a given stator outlet angle, the impulse When, $V_{w3} = -V_{w2}$, $R_x = 0 \rightarrow$ Impulse turbine symmetrical triangles, $\alpha_2 = -\beta_3$, $R_x = 0.5$. It can be seen that for a special case of

Lect-21

Impulse turbine stage

Lect-21

50% Reaction turbine stage

Stator/Nozzle Rotor

- We noted that the aerodynamic losses in the turbine differ with the stage configuration, or the degree of reaction.
- Improved efficiency is associated with higher reaction, which implies less work per stage and therefore a higher number of stages for a given overall pressure ratio.
- The understanding of losses is important to design, not only in the choice of the configuration, but also on methods to control these losses.

- There are two commonly used turbine efficiency definitions.
	- Total-to-static efficiency
	- Total-to-total efficiency
- The usage of the efficiency definition depends upon the application.
- In land-based power plants, the useful turbine output is in the form of shaft power and exhaust KE is a loss.
- In this case the ideal turbine process would be isentropic such that there is no exhaust KE.

Lect-21

Efficiency

Expansion process in a turbine stage

TURBOMACHINERY AERODYNAMICS

 $W_{T,\text{ ideal}} = C_{P} (T_{01} - T_{3s})$ The total - to - static efficiency is defined as The ideal turbine work with no exhaust KE would be

$$
\eta_{ts} = \frac{T_{01} - T_{03}}{T_{01} - T_{3s}}
$$

=
$$
\frac{T_{01} - T_{03}}{T_{01} [1 - (P_3 / P_{01})^{(\gamma - 1)/\gamma}]} = \frac{1 - (T_{03} / T_{01})}{[1 - (P_3 / P_{01})^{(\gamma - 1)/\gamma}]}
$$

in such machines. not considered a loss as this is converted to thrust In many applications (turbojets), the exhaust KE is

The ideal turbine work in such cases would be

$$
W_{T,\text{ ideal}} = c_{P}(T_{01} - T_{03s})
$$

The total - to - total efficiency is defined as

$$
\eta_{ts} = \frac{T_{01} - T_{03}}{T_{01} - T_{03s}}
$$

=
$$
\frac{T_{01} - T_{03}}{T_{01} [1 - (P_{03} / P_{01})^{(\gamma - 1)/\gamma}]} = \frac{1 - (T_{03} / T_{01})}{[1 - (P_{03} / P_{01})^{(\gamma - 1)/\gamma}]}
$$

an approximation : We can compare the two definitions of efficiency by making

$$
T_{03s} - T_{3s} \approx T_{03s} - T_3 = C_3^2 / 2c_p
$$

Therefore, $\eta_{tt} = \frac{\eta_{ts}}{1 - C_3^2 [2c_p (T_{01} - T_{3s})]}$

We can see that, $\eta_{\rm tt} > \eta_{\rm ts}$

work done in the following way : The efficiency definitions can also be related to the specific

$$
w_t = \eta_{tt} c_p T_{01} \left[1 - \left(\frac{P_{03}}{P_{01}} \right)^{(\gamma - 1)/\gamma} \right]
$$
 and $w_t = \eta_{ts} c_p T_{01} \left[1 - \left(\frac{P_3}{P_{01}} \right)^{(\gamma - 1)/\gamma} \right]$

INERY AERODYNAMICS TURBO MACH

Lect-21

Efficiency

Influence of loading on the total-to-static efficiency

Losses in a turbine

- Nature of losses in an axial turbine
	- Viscous losses
	- 3-D effects like tip leakage flows, secondary flows etc.
	- Shock losses
	- Mixing losses
- Estimating the losses crucial designing loss control mechanisms.
- However isolating these losses not easy and often done through empirical correlations.
- Total losses in a turbine is the sum of the above losses.

Losses in a turbine

- Viscous losses
	- Profile losses: on account of the profile or nature of the airfoil cross-sections
	- Annulus losses: growth of boundary layer along the axis
	- Endwall losses: boundary layer effects in the corner (junction between the blade surface and the casing/hub)
- 3-D effects:
	- Secondary flows: flow through curved blade passages
	- Tip leakage flows: flow from pressure surface to suction surface at the blade tip
	- 3-D effects are likely to be stronger in a turbine blade as compared to compressor blade due to high camber and flow turning

MACHINERY AERODYNAMICS TURRO

Lect-21

Losses in a turbine

Variation of profile loss with incidence

2-D Losses in a turbine

- 2-D losses are relevant only to axial flow turbomachines.
- These are mainly associated with blade boundary layers, shock-boundary layer interactions, separated flows and wakes.
- The mixing of the wake downstream produces additional losses called mixing losses.
- The maximum losses occur near the blade surface and minimum loss occurs near the edge of the boundary layer.

2-D Losses in a turbine

• 2-D losses can be classified as:

TURBOMACHINERY AERODYNAMICS

- Profile loss due to boundary layer, including laminar and/or turbulent separation.
- Wake mixing losses
- Shock losses
- Trailing edge loss due to the blade.

Lect-21

Total losses in a turbine

• The overall losses in a turbine can be summarised as:

> ω_{E} : Endwall losses $\omega_{\text{\tiny L}}$: tip leakage loss ω_{s} : secondary flow loss $\omega_{\sf sh}$: shock losses Where, $\omega_\text{\tiny{P}}$: profile losses $\omega = \omega_{\rm p} + \omega_{\rm sh} + \omega_{\rm s} + \omega_{\rm L} + \omega_{\rm E}$

Deviation

- Flow at the exit of the rotor does not leave at exactly the blade exit angle.
- It has been found from experience that the actual exit angle at the design pressure ratio is well approximated by

 $\alpha_{2} = \cos^{-1}(d/s)$

- This is true as long as the nozzle is not choked.
- Under choked condition, a supersonic expansion may alter the flow direction at the exit.

Lect-21

Flow at the nozzle exit

Lect-21

Flow at the nozzle exit in the presence of shocks

Lect-21

In this lecture...

• Axial flow turbine

TURBOMACHINERY AERODYNAMICS

• Degree of Reaction, Losses and **Efficiency**

Lect-21

TURBOMACHINERY AERODYNAMICS

In the next lecture...

- Axial flow turbine
	- Performance characteristics
	- Exit flow matching with nozzle